053dd5dc2cf5115f39d36ee356f51ab962024a4e
[gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2015 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2015 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75
76 Other options are passed on to one stage of processing. Some options
77 control the preprocessor and others the compiler itself. Yet other
78 options control the assembler and linker; most of these are not
79 documented here, since you rarely need to use any of them.
80
81 @cindex C compilation options
82 Most of the command-line options that you can use with GCC are useful
83 for C programs; when an option is only useful with another language
84 (usually C++), the explanation says so explicitly. If the description
85 for a particular option does not mention a source language, you can use
86 that option with all supported languages.
87
88 @cindex C++ compilation options
89 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
90 options for compiling C++ programs.
91
92 @cindex grouping options
93 @cindex options, grouping
94 The @command{gcc} program accepts options and file names as operands. Many
95 options have multi-letter names; therefore multiple single-letter options
96 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
97 -v}}.
98
99 @cindex order of options
100 @cindex options, order
101 You can mix options and other arguments. For the most part, the order
102 you use doesn't matter. Order does matter when you use several
103 options of the same kind; for example, if you specify @option{-L} more
104 than once, the directories are searched in the order specified. Also,
105 the placement of the @option{-l} option is significant.
106
107 Many options have long names starting with @samp{-f} or with
108 @samp{-W}---for example,
109 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
110 these have both positive and negative forms; the negative form of
111 @option{-ffoo} is @option{-fno-foo}. This manual documents
112 only one of these two forms, whichever one is not the default.
113
114 @c man end
115
116 @xref{Option Index}, for an index to GCC's options.
117
118 @menu
119 * Option Summary:: Brief list of all options, without explanations.
120 * Overall Options:: Controlling the kind of output:
121 an executable, object files, assembler files,
122 or preprocessed source.
123 * Invoking G++:: Compiling C++ programs.
124 * C Dialect Options:: Controlling the variant of C language compiled.
125 * C++ Dialect Options:: Variations on C++.
126 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
127 and Objective-C++.
128 * Language Independent Options:: Controlling how diagnostics should be
129 formatted.
130 * Warning Options:: How picky should the compiler be?
131 * Debugging Options:: Symbol tables, measurements, and debugging dumps.
132 * Optimize Options:: How much optimization?
133 * Preprocessor Options:: Controlling header files and macro definitions.
134 Also, getting dependency information for Make.
135 * Assembler Options:: Passing options to the assembler.
136 * Link Options:: Specifying libraries and so on.
137 * Directory Options:: Where to find header files and libraries.
138 Where to find the compiler executable files.
139 * Spec Files:: How to pass switches to sub-processes.
140 * Target Options:: Running a cross-compiler, or an old version of GCC.
141 * Submodel Options:: Specifying minor hardware or convention variations,
142 such as 68010 vs 68020.
143 * Code Gen Options:: Specifying conventions for function calls, data layout
144 and register usage.
145 * Environment Variables:: Env vars that affect GCC.
146 * Precompiled Headers:: Compiling a header once, and using it many times.
147 @end menu
148
149 @c man begin OPTIONS
150
151 @node Option Summary
152 @section Option Summary
153
154 Here is a summary of all the options, grouped by type. Explanations are
155 in the following sections.
156
157 @table @emph
158 @item Overall Options
159 @xref{Overall Options,,Options Controlling the Kind of Output}.
160 @gccoptlist{-c -S -E -o @var{file} -no-canonical-prefixes @gol
161 -pipe -pass-exit-codes @gol
162 -x @var{language} -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help @gol
163 --version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
164 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
165
166 @item C Language Options
167 @xref{C Dialect Options,,Options Controlling C Dialect}.
168 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
169 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
170 -fno-asm -fno-builtin -fno-builtin-@var{function} @gol
171 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
172 -fms-extensions -fplan9-extensions -trigraphs -traditional -traditional-cpp @gol
173 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
174 -fsigned-bitfields -fsigned-char @gol
175 -funsigned-bitfields -funsigned-char}
176
177 @item C++ Language Options
178 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
179 @gccoptlist{-fabi-version=@var{n} -fno-access-control -fcheck-new @gol
180 -fconstexpr-depth=@var{n} -ffriend-injection @gol
181 -fno-elide-constructors @gol
182 -fno-enforce-eh-specs @gol
183 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
184 -fno-implicit-templates @gol
185 -fno-implicit-inline-templates @gol
186 -fno-implement-inlines -fms-extensions @gol
187 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
188 -fno-optional-diags -fpermissive @gol
189 -fno-pretty-templates @gol
190 -frepo -fno-rtti -fsized-deallocation @gol
191 -fstats -ftemplate-backtrace-limit=@var{n} @gol
192 -ftemplate-depth=@var{n} @gol
193 -fno-threadsafe-statics -fuse-cxa-atexit @gol
194 -fno-weak -nostdinc++ @gol
195 -fvisibility-inlines-hidden @gol
196 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
197 -fvtv-counts -fvtv-debug @gol
198 -fvisibility-ms-compat @gol
199 -fext-numeric-literals @gol
200 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
201 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing @gol
202 -Wnoexcept -Wnon-virtual-dtor -Wreorder @gol
203 -Weffc++ -Wstrict-null-sentinel @gol
204 -Wno-non-template-friend -Wold-style-cast @gol
205 -Woverloaded-virtual -Wno-pmf-conversions @gol
206 -Wsign-promo}
207
208 @item Objective-C and Objective-C++ Language Options
209 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
210 Objective-C and Objective-C++ Dialects}.
211 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
212 -fgnu-runtime -fnext-runtime @gol
213 -fno-nil-receivers @gol
214 -fobjc-abi-version=@var{n} @gol
215 -fobjc-call-cxx-cdtors @gol
216 -fobjc-direct-dispatch @gol
217 -fobjc-exceptions @gol
218 -fobjc-gc @gol
219 -fobjc-nilcheck @gol
220 -fobjc-std=objc1 @gol
221 -fno-local-ivars @gol
222 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
223 -freplace-objc-classes @gol
224 -fzero-link @gol
225 -gen-decls @gol
226 -Wassign-intercept @gol
227 -Wno-protocol -Wselector @gol
228 -Wstrict-selector-match @gol
229 -Wundeclared-selector}
230
231 @item Language Independent Options
232 @xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
233 @gccoptlist{-fmessage-length=@var{n} @gol
234 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
235 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
236 -fno-diagnostics-show-option -fno-diagnostics-show-caret}
237
238 @item Warning Options
239 @xref{Warning Options,,Options to Request or Suppress Warnings}.
240 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
241 -pedantic-errors @gol
242 -w -Wextra -Wall -Waddress -Waggregate-return @gol
243 -Waggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
244 -Wbool-compare @gol
245 -Wno-attributes -Wno-builtin-macro-redefined @gol
246 -Wc90-c99-compat -Wc99-c11-compat @gol
247 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
248 -Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported @gol
249 -Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp @gol
250 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
251 -Wdisabled-optimization @gol
252 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
253 -Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare @gol
254 -Wno-endif-labels -Werror -Werror=* @gol
255 -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
256 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
257 -Wformat-security -Wformat-signedness -Wformat-y2k @gol
258 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
259 -Wignored-qualifiers -Wincompatible-pointer-types @gol
260 -Wimplicit -Wimplicit-function-declaration -Wimplicit-int @gol
261 -Winit-self -Winline -Wno-int-conversion @gol
262 -Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
263 -Winvalid-pch -Wlarger-than=@var{len} -Wunsafe-loop-optimizations @gol
264 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
265 -Wmain -Wmaybe-uninitialized -Wmemset-transposed-args @gol
266 -Wmisleading-indentation -Wmissing-braces @gol
267 -Wmissing-field-initializers -Wmissing-include-dirs @gol
268 -Wno-multichar -Wnonnull -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
269 -Wodr -Wno-overflow -Wopenmp-simd @gol
270 -Woverride-init-side-effects @gol
271 -Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
272 -Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
273 -Wpointer-arith -Wno-pointer-to-int-cast @gol
274 -Wredundant-decls -Wno-return-local-addr @gol
275 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
276 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
277 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
278 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
279 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
280 -Wstrict-aliasing=n @gol -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
281 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
282 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
283 -Wmissing-format-attribute @gol
284 -Wswitch -Wswitch-default -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
285 -Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef @gol
286 -Wuninitialized -Wunknown-pragmas -Wno-pragmas @gol
287 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
288 -Wunused-label -Wunused-local-typedefs -Wunused-parameter @gol
289 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
290 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
291 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
292 -Wvla -Wvolatile-register-var -Wwrite-strings @gol
293 -Wzero-as-null-pointer-constant}
294
295 @item C and Objective-C-only Warning Options
296 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
297 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
298 -Wold-style-declaration -Wold-style-definition @gol
299 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
300 -Wdeclaration-after-statement -Wpointer-sign}
301
302 @item Debugging Options
303 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
304 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
305 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
306 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
307 -fsanitize-undefined-trap-on-error @gol
308 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
309 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
310 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
311 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
312 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
313 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
314 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
315 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
316 -fchkp-use-wrappers @gol
317 -fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
318 -fdisable-ipa-@var{pass_name} @gol
319 -fdisable-rtl-@var{pass_name} @gol
320 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
321 -fdisable-tree-@var{pass_name} @gol
322 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
323 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
324 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
325 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
326 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
327 -fdump-passes @gol
328 -fdump-statistics @gol
329 -fdump-tree-all @gol
330 -fdump-tree-original@r{[}-@var{n}@r{]} @gol
331 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
332 -fdump-tree-cfg -fdump-tree-alias @gol
333 -fdump-tree-ch @gol
334 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
335 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
336 -fdump-tree-gimple@r{[}-raw@r{]} @gol
337 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
338 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
339 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
340 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
341 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
342 -fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
343 -fdump-tree-nrv -fdump-tree-vect @gol
344 -fdump-tree-sink @gol
345 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
346 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
347 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
348 -fdump-tree-vtable-verify @gol
349 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
350 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
351 -fdump-final-insns=@var{file} @gol
352 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
353 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
354 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
355 -fenable-@var{kind}-@var{pass} @gol
356 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
357 -fdebug-types-section -fmem-report-wpa @gol
358 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
359 -fopt-info @gol
360 -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
361 -frandom-seed=@var{number} -fsched-verbose=@var{n} @gol
362 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
363 -fstack-usage -ftest-coverage -ftime-report -fvar-tracking @gol
364 -fvar-tracking-assignments -fvar-tracking-assignments-toggle @gol
365 -g -g@var{level} -gtoggle -gcoff -gdwarf-@var{version} @gol
366 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
367 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
368 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
369 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
370 -fdebug-prefix-map=@var{old}=@var{new} @gol
371 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
372 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
373 -p -pg -print-file-name=@var{library} -print-libgcc-file-name @gol
374 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
375 -print-prog-name=@var{program} -print-search-dirs -Q @gol
376 -print-sysroot -print-sysroot-headers-suffix @gol
377 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
378
379 @item Optimization Options
380 @xref{Optimize Options,,Options that Control Optimization}.
381 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
382 -falign-jumps[=@var{n}] @gol
383 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
384 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
385 -fauto-inc-dec -fbranch-probabilities @gol
386 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
387 -fbtr-bb-exclusive -fcaller-saves @gol
388 -fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack @gol
389 -fcompare-elim -fcprop-registers -fcrossjumping @gol
390 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
391 -fcx-limited-range @gol
392 -fdata-sections -fdce -fdelayed-branch @gol
393 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
394 -fdevirtualize-at-ltrans -fdse @gol
395 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
396 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
397 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
398 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
399 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
400 -fif-conversion2 -findirect-inlining @gol
401 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
402 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
403 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
404 -fira-algorithm=@var{algorithm} @gol
405 -fira-region=@var{region} -fira-hoist-pressure @gol
406 -fira-loop-pressure -fno-ira-share-save-slots @gol
407 -fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
408 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
409 -fivopts -fkeep-inline-functions -fkeep-static-consts @gol
410 -flive-range-shrinkage @gol
411 -floop-block -floop-interchange -floop-strip-mine @gol
412 -floop-unroll-and-jam -floop-nest-optimize @gol
413 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
414 -flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
415 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
416 -fmove-loop-invariants -fno-branch-count-reg @gol
417 -fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
418 -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
419 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
420 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
421 -fomit-frame-pointer -foptimize-sibling-calls @gol
422 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
423 -fprefetch-loop-arrays -fprofile-report @gol
424 -fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
425 -fprofile-generate=@var{path} @gol
426 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
427 -fprofile-reorder-functions @gol
428 -freciprocal-math -free -frename-registers -freorder-blocks @gol
429 -freorder-blocks-and-partition -freorder-functions @gol
430 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
431 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
432 -fsched-spec-load -fsched-spec-load-dangerous @gol
433 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
434 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
435 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
436 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
437 -fschedule-fusion @gol
438 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
439 -fselective-scheduling -fselective-scheduling2 @gol
440 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
441 -fsemantic-interposition @gol
442 -fshrink-wrap -fsignaling-nans -fsingle-precision-constant @gol
443 -fsplit-ivs-in-unroller -fsplit-wide-types -fssa-phiopt @gol
444 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
445 -fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
446 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
447 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
448 -ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop @gol
449 -ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse @gol
450 -ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
451 -ftree-loop-if-convert-stores -ftree-loop-im @gol
452 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
453 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
454 -ftree-loop-vectorize @gol
455 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
456 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
457 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
458 -ftree-vectorize -ftree-vrp @gol
459 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
460 -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
461 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
462 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
463 --param @var{name}=@var{value}
464 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
465
466 @item Preprocessor Options
467 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
468 @gccoptlist{-A@var{question}=@var{answer} @gol
469 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
470 -C -dD -dI -dM -dN @gol
471 -D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol
472 -idirafter @var{dir} @gol
473 -include @var{file} -imacros @var{file} @gol
474 -iprefix @var{file} -iwithprefix @var{dir} @gol
475 -iwithprefixbefore @var{dir} -isystem @var{dir} @gol
476 -imultilib @var{dir} -isysroot @var{dir} @gol
477 -M -MM -MF -MG -MP -MQ -MT -nostdinc @gol
478 -P -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
479 -remap -trigraphs -undef -U@var{macro} @gol
480 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
481
482 @item Assembler Option
483 @xref{Assembler Options,,Passing Options to the Assembler}.
484 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
485
486 @item Linker Options
487 @xref{Link Options,,Options for Linking}.
488 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
489 -nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol
490 -s -static -static-libgcc -static-libstdc++ @gol
491 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
492 -static-libmpx -static-libmpxwrappers @gol
493 -shared -shared-libgcc -symbolic @gol
494 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
495 -u @var{symbol} -z @var{keyword}}
496
497 @item Directory Options
498 @xref{Directory Options,,Options for Directory Search}.
499 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
500 -iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
501 --sysroot=@var{dir} --no-sysroot-suffix}
502
503 @item Machine Dependent Options
504 @xref{Submodel Options,,Hardware Models and Configurations}.
505 @c This list is ordered alphanumerically by subsection name.
506 @c Try and put the significant identifier (CPU or system) first,
507 @c so users have a clue at guessing where the ones they want will be.
508
509 @emph{AArch64 Options}
510 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
511 -mgeneral-regs-only @gol
512 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
513 -mstrict-align @gol
514 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
515 -mtls-dialect=desc -mtls-dialect=traditional @gol
516 -mfix-cortex-a53-835769 -mno-fix-cortex-a53-835769 @gol
517 -mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419 @gol
518 -march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
519
520 @emph{Adapteva Epiphany Options}
521 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
522 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
523 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
524 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
525 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
526 -msplit-vecmove-early -m1reg-@var{reg}}
527
528 @emph{ARC Options}
529 @gccoptlist{-mbarrel-shifter @gol
530 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
531 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
532 -mea -mno-mpy -mmul32x16 -mmul64 @gol
533 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
534 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
535 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
536 -mepilogue-cfi -mlong-calls -mmedium-calls -msdata @gol
537 -mucb-mcount -mvolatile-cache @gol
538 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
539 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
540 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
541 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
542 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
543 -mtune=@var{cpu} -mmultcost=@var{num} -munalign-prob-threshold=@var{probability}}
544
545 @emph{ARM Options}
546 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
547 -mabi=@var{name} @gol
548 -mapcs-stack-check -mno-apcs-stack-check @gol
549 -mapcs-float -mno-apcs-float @gol
550 -mapcs-reentrant -mno-apcs-reentrant @gol
551 -msched-prolog -mno-sched-prolog @gol
552 -mlittle-endian -mbig-endian @gol
553 -mfloat-abi=@var{name} @gol
554 -mfp16-format=@var{name}
555 -mthumb-interwork -mno-thumb-interwork @gol
556 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
557 -mtune=@var{name} -mprint-tune-info @gol
558 -mstructure-size-boundary=@var{n} @gol
559 -mabort-on-noreturn @gol
560 -mlong-calls -mno-long-calls @gol
561 -msingle-pic-base -mno-single-pic-base @gol
562 -mpic-register=@var{reg} @gol
563 -mnop-fun-dllimport @gol
564 -mpoke-function-name @gol
565 -mthumb -marm @gol
566 -mtpcs-frame -mtpcs-leaf-frame @gol
567 -mcaller-super-interworking -mcallee-super-interworking @gol
568 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
569 -mword-relocations @gol
570 -mfix-cortex-m3-ldrd @gol
571 -munaligned-access @gol
572 -mneon-for-64bits @gol
573 -mslow-flash-data @gol
574 -masm-syntax-unified @gol
575 -mrestrict-it}
576
577 @emph{AVR Options}
578 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
579 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
580 -mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert}
581
582 @emph{Blackfin Options}
583 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
584 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
585 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
586 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
587 -mno-id-shared-library -mshared-library-id=@var{n} @gol
588 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
589 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
590 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
591 -micplb}
592
593 @emph{C6X Options}
594 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
595 -msim -msdata=@var{sdata-type}}
596
597 @emph{CRIS Options}
598 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
599 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
600 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
601 -mstack-align -mdata-align -mconst-align @gol
602 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
603 -melf -maout -melinux -mlinux -sim -sim2 @gol
604 -mmul-bug-workaround -mno-mul-bug-workaround}
605
606 @emph{CR16 Options}
607 @gccoptlist{-mmac @gol
608 -mcr16cplus -mcr16c @gol
609 -msim -mint32 -mbit-ops
610 -mdata-model=@var{model}}
611
612 @emph{Darwin Options}
613 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
614 -arch_only -bind_at_load -bundle -bundle_loader @gol
615 -client_name -compatibility_version -current_version @gol
616 -dead_strip @gol
617 -dependency-file -dylib_file -dylinker_install_name @gol
618 -dynamic -dynamiclib -exported_symbols_list @gol
619 -filelist -flat_namespace -force_cpusubtype_ALL @gol
620 -force_flat_namespace -headerpad_max_install_names @gol
621 -iframework @gol
622 -image_base -init -install_name -keep_private_externs @gol
623 -multi_module -multiply_defined -multiply_defined_unused @gol
624 -noall_load -no_dead_strip_inits_and_terms @gol
625 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
626 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
627 -private_bundle -read_only_relocs -sectalign @gol
628 -sectobjectsymbols -whyload -seg1addr @gol
629 -sectcreate -sectobjectsymbols -sectorder @gol
630 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
631 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
632 -segprot -segs_read_only_addr -segs_read_write_addr @gol
633 -single_module -static -sub_library -sub_umbrella @gol
634 -twolevel_namespace -umbrella -undefined @gol
635 -unexported_symbols_list -weak_reference_mismatches @gol
636 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
637 -mkernel -mone-byte-bool}
638
639 @emph{DEC Alpha Options}
640 @gccoptlist{-mno-fp-regs -msoft-float @gol
641 -mieee -mieee-with-inexact -mieee-conformant @gol
642 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
643 -mtrap-precision=@var{mode} -mbuild-constants @gol
644 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
645 -mbwx -mmax -mfix -mcix @gol
646 -mfloat-vax -mfloat-ieee @gol
647 -mexplicit-relocs -msmall-data -mlarge-data @gol
648 -msmall-text -mlarge-text @gol
649 -mmemory-latency=@var{time}}
650
651 @emph{FR30 Options}
652 @gccoptlist{-msmall-model -mno-lsim}
653
654 @emph{FT32 Options}
655 @gccoptlist{-msim -mlra}
656
657 @emph{FRV Options}
658 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
659 -mhard-float -msoft-float @gol
660 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
661 -mdouble -mno-double @gol
662 -mmedia -mno-media -mmuladd -mno-muladd @gol
663 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
664 -mlinked-fp -mlong-calls -malign-labels @gol
665 -mlibrary-pic -macc-4 -macc-8 @gol
666 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
667 -moptimize-membar -mno-optimize-membar @gol
668 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
669 -mvliw-branch -mno-vliw-branch @gol
670 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
671 -mno-nested-cond-exec -mtomcat-stats @gol
672 -mTLS -mtls @gol
673 -mcpu=@var{cpu}}
674
675 @emph{GNU/Linux Options}
676 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
677 -tno-android-cc -tno-android-ld}
678
679 @emph{H8/300 Options}
680 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
681
682 @emph{HPPA Options}
683 @gccoptlist{-march=@var{architecture-type} @gol
684 -mdisable-fpregs -mdisable-indexing @gol
685 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
686 -mfixed-range=@var{register-range} @gol
687 -mjump-in-delay -mlinker-opt -mlong-calls @gol
688 -mlong-load-store -mno-disable-fpregs @gol
689 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
690 -mno-jump-in-delay -mno-long-load-store @gol
691 -mno-portable-runtime -mno-soft-float @gol
692 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
693 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
694 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
695 -munix=@var{unix-std} -nolibdld -static -threads}
696
697 @emph{IA-64 Options}
698 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
699 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
700 -mconstant-gp -mauto-pic -mfused-madd @gol
701 -minline-float-divide-min-latency @gol
702 -minline-float-divide-max-throughput @gol
703 -mno-inline-float-divide @gol
704 -minline-int-divide-min-latency @gol
705 -minline-int-divide-max-throughput @gol
706 -mno-inline-int-divide @gol
707 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
708 -mno-inline-sqrt @gol
709 -mdwarf2-asm -mearly-stop-bits @gol
710 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
711 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
712 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
713 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
714 -msched-spec-ldc -msched-spec-control-ldc @gol
715 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
716 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
717 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
718 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
719
720 @emph{LM32 Options}
721 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
722 -msign-extend-enabled -muser-enabled}
723
724 @emph{M32R/D Options}
725 @gccoptlist{-m32r2 -m32rx -m32r @gol
726 -mdebug @gol
727 -malign-loops -mno-align-loops @gol
728 -missue-rate=@var{number} @gol
729 -mbranch-cost=@var{number} @gol
730 -mmodel=@var{code-size-model-type} @gol
731 -msdata=@var{sdata-type} @gol
732 -mno-flush-func -mflush-func=@var{name} @gol
733 -mno-flush-trap -mflush-trap=@var{number} @gol
734 -G @var{num}}
735
736 @emph{M32C Options}
737 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
738
739 @emph{M680x0 Options}
740 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
741 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
742 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
743 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
744 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
745 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
746 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
747 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
748 -mxgot -mno-xgot}
749
750 @emph{MCore Options}
751 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
752 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
753 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
754 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
755 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
756
757 @emph{MeP Options}
758 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
759 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
760 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
761 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
762 -mtiny=@var{n}}
763
764 @emph{MicroBlaze Options}
765 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
766 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
767 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
768 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
769 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
770
771 @emph{MIPS Options}
772 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
773 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
774 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
775 -mips16 -mno-mips16 -mflip-mips16 @gol
776 -minterlink-compressed -mno-interlink-compressed @gol
777 -minterlink-mips16 -mno-interlink-mips16 @gol
778 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
779 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
780 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
781 -mno-float -msingle-float -mdouble-float @gol
782 -modd-spreg -mno-odd-spreg @gol
783 -mabs=@var{mode} -mnan=@var{encoding} @gol
784 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
785 -mmcu -mmno-mcu @gol
786 -meva -mno-eva @gol
787 -mvirt -mno-virt @gol
788 -mxpa -mno-xpa @gol
789 -mmicromips -mno-micromips @gol
790 -mfpu=@var{fpu-type} @gol
791 -msmartmips -mno-smartmips @gol
792 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
793 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
794 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
795 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
796 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
797 -membedded-data -mno-embedded-data @gol
798 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
799 -mcode-readable=@var{setting} @gol
800 -msplit-addresses -mno-split-addresses @gol
801 -mexplicit-relocs -mno-explicit-relocs @gol
802 -mcheck-zero-division -mno-check-zero-division @gol
803 -mdivide-traps -mdivide-breaks @gol
804 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
805 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
806 -mfix-24k -mno-fix-24k @gol
807 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
808 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
809 -mfix-vr4120 -mno-fix-vr4120 @gol
810 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
811 -mflush-func=@var{func} -mno-flush-func @gol
812 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
813 -mfp-exceptions -mno-fp-exceptions @gol
814 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
815 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address}
816
817 @emph{MMIX Options}
818 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
819 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
820 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
821 -mno-base-addresses -msingle-exit -mno-single-exit}
822
823 @emph{MN10300 Options}
824 @gccoptlist{-mmult-bug -mno-mult-bug @gol
825 -mno-am33 -mam33 -mam33-2 -mam34 @gol
826 -mtune=@var{cpu-type} @gol
827 -mreturn-pointer-on-d0 @gol
828 -mno-crt0 -mrelax -mliw -msetlb}
829
830 @emph{Moxie Options}
831 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
832
833 @emph{MSP430 Options}
834 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
835 -mcode-region= -mdata-region= @gol
836 -mhwmult= -minrt}
837
838 @emph{NDS32 Options}
839 @gccoptlist{-mbig-endian -mlittle-endian @gol
840 -mreduced-regs -mfull-regs @gol
841 -mcmov -mno-cmov @gol
842 -mperf-ext -mno-perf-ext @gol
843 -mv3push -mno-v3push @gol
844 -m16bit -mno-16bit @gol
845 -misr-vector-size=@var{num} @gol
846 -mcache-block-size=@var{num} @gol
847 -march=@var{arch} @gol
848 -mcmodel=@var{code-model} @gol
849 -mctor-dtor -mrelax}
850
851 @emph{Nios II Options}
852 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
853 -mel -meb @gol
854 -mno-bypass-cache -mbypass-cache @gol
855 -mno-cache-volatile -mcache-volatile @gol
856 -mno-fast-sw-div -mfast-sw-div @gol
857 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
858 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
859 -mcustom-fpu-cfg=@var{name} @gol
860 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name}}
861
862 @emph{Nvidia PTX Options}
863 @gccoptlist{-m32 -m64 -mmainkernel}
864
865 @emph{PDP-11 Options}
866 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
867 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
868 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
869 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
870 -mbranch-expensive -mbranch-cheap @gol
871 -munix-asm -mdec-asm}
872
873 @emph{picoChip Options}
874 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
875 -msymbol-as-address -mno-inefficient-warnings}
876
877 @emph{PowerPC Options}
878 See RS/6000 and PowerPC Options.
879
880 @emph{RL78 Options}
881 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
882 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
883 -m64bit-doubles -m32bit-doubles}
884
885 @emph{RS/6000 and PowerPC Options}
886 @gccoptlist{-mcpu=@var{cpu-type} @gol
887 -mtune=@var{cpu-type} @gol
888 -mcmodel=@var{code-model} @gol
889 -mpowerpc64 @gol
890 -maltivec -mno-altivec @gol
891 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
892 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
893 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
894 -mfprnd -mno-fprnd @gol
895 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
896 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
897 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
898 -malign-power -malign-natural @gol
899 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
900 -msingle-float -mdouble-float -msimple-fpu @gol
901 -mstring -mno-string -mupdate -mno-update @gol
902 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
903 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
904 -mstrict-align -mno-strict-align -mrelocatable @gol
905 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
906 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
907 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
908 -mprioritize-restricted-insns=@var{priority} @gol
909 -msched-costly-dep=@var{dependence_type} @gol
910 -minsert-sched-nops=@var{scheme} @gol
911 -mcall-sysv -mcall-netbsd @gol
912 -maix-struct-return -msvr4-struct-return @gol
913 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
914 -mblock-move-inline-limit=@var{num} @gol
915 -misel -mno-isel @gol
916 -misel=yes -misel=no @gol
917 -mspe -mno-spe @gol
918 -mspe=yes -mspe=no @gol
919 -mpaired @gol
920 -mgen-cell-microcode -mwarn-cell-microcode @gol
921 -mvrsave -mno-vrsave @gol
922 -mmulhw -mno-mulhw @gol
923 -mdlmzb -mno-dlmzb @gol
924 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
925 -mprototype -mno-prototype @gol
926 -msim -mmvme -mads -myellowknife -memb -msdata @gol
927 -msdata=@var{opt} -mvxworks -G @var{num} -pthread @gol
928 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
929 -mno-recip-precision @gol
930 -mveclibabi=@var{type} -mfriz -mno-friz @gol
931 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
932 -msave-toc-indirect -mno-save-toc-indirect @gol
933 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
934 -mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
935 -mquad-memory -mno-quad-memory @gol
936 -mquad-memory-atomic -mno-quad-memory-atomic @gol
937 -mcompat-align-parm -mno-compat-align-parm @gol
938 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
939 -mupper-regs -mno-upper-regs}
940
941 @emph{RX Options}
942 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
943 -mcpu=@gol
944 -mbig-endian-data -mlittle-endian-data @gol
945 -msmall-data @gol
946 -msim -mno-sim@gol
947 -mas100-syntax -mno-as100-syntax@gol
948 -mrelax@gol
949 -mmax-constant-size=@gol
950 -mint-register=@gol
951 -mpid@gol
952 -mallow-string-insns -mno-allow-string-insns@gol
953 -mno-warn-multiple-fast-interrupts@gol
954 -msave-acc-in-interrupts}
955
956 @emph{S/390 and zSeries Options}
957 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
958 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
959 -mlong-double-64 -mlong-double-128 @gol
960 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
961 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
962 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
963 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
964 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
965 -mhotpatch=@var{halfwords},@var{halfwords}}
966
967 @emph{Score Options}
968 @gccoptlist{-meb -mel @gol
969 -mnhwloop @gol
970 -muls @gol
971 -mmac @gol
972 -mscore5 -mscore5u -mscore7 -mscore7d}
973
974 @emph{SH Options}
975 @gccoptlist{-m1 -m2 -m2e @gol
976 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
977 -m3 -m3e @gol
978 -m4-nofpu -m4-single-only -m4-single -m4 @gol
979 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
980 -m5-64media -m5-64media-nofpu @gol
981 -m5-32media -m5-32media-nofpu @gol
982 -m5-compact -m5-compact-nofpu @gol
983 -mb -ml -mdalign -mrelax @gol
984 -mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
985 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
986 -mspace -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
987 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
988 -mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol
989 -maccumulate-outgoing-args -minvalid-symbols @gol
990 -matomic-model=@var{atomic-model} @gol
991 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
992 -mcbranch-force-delay-slot @gol
993 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
994 -mpretend-cmove -mtas}
995
996 @emph{Solaris 2 Options}
997 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
998 -pthreads -pthread}
999
1000 @emph{SPARC Options}
1001 @gccoptlist{-mcpu=@var{cpu-type} @gol
1002 -mtune=@var{cpu-type} @gol
1003 -mcmodel=@var{code-model} @gol
1004 -mmemory-model=@var{mem-model} @gol
1005 -m32 -m64 -mapp-regs -mno-app-regs @gol
1006 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1007 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1008 -mhard-quad-float -msoft-quad-float @gol
1009 -mstack-bias -mno-stack-bias @gol
1010 -munaligned-doubles -mno-unaligned-doubles @gol
1011 -muser-mode -mno-user-mode @gol
1012 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1013 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1014 -mcbcond -mno-cbcond @gol
1015 -mfmaf -mno-fmaf -mpopc -mno-popc @gol
1016 -mfix-at697f -mfix-ut699}
1017
1018 @emph{SPU Options}
1019 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1020 -msafe-dma -munsafe-dma @gol
1021 -mbranch-hints @gol
1022 -msmall-mem -mlarge-mem -mstdmain @gol
1023 -mfixed-range=@var{register-range} @gol
1024 -mea32 -mea64 @gol
1025 -maddress-space-conversion -mno-address-space-conversion @gol
1026 -mcache-size=@var{cache-size} @gol
1027 -matomic-updates -mno-atomic-updates}
1028
1029 @emph{System V Options}
1030 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1031
1032 @emph{TILE-Gx Options}
1033 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1034 -mcmodel=@var{code-model}}
1035
1036 @emph{TILEPro Options}
1037 @gccoptlist{-mcpu=@var{cpu} -m32}
1038
1039 @emph{V850 Options}
1040 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1041 -mprolog-function -mno-prolog-function -mspace @gol
1042 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1043 -mapp-regs -mno-app-regs @gol
1044 -mdisable-callt -mno-disable-callt @gol
1045 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1046 -mv850e -mv850 -mv850e3v5 @gol
1047 -mloop @gol
1048 -mrelax @gol
1049 -mlong-jumps @gol
1050 -msoft-float @gol
1051 -mhard-float @gol
1052 -mgcc-abi @gol
1053 -mrh850-abi @gol
1054 -mbig-switch}
1055
1056 @emph{VAX Options}
1057 @gccoptlist{-mg -mgnu -munix}
1058
1059 @emph{Visium Options}
1060 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1061 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1062
1063 @emph{VMS Options}
1064 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1065 -mpointer-size=@var{size}}
1066
1067 @emph{VxWorks Options}
1068 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1069 -Xbind-lazy -Xbind-now}
1070
1071 @emph{x86 Options}
1072 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1073 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1074 -mfpmath=@var{unit} @gol
1075 -masm=@var{dialect} -mno-fancy-math-387 @gol
1076 -mno-fp-ret-in-387 -msoft-float @gol
1077 -mno-wide-multiply -mrtd -malign-double @gol
1078 -mpreferred-stack-boundary=@var{num} @gol
1079 -mincoming-stack-boundary=@var{num} @gol
1080 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1081 -mrecip -mrecip=@var{opt} @gol
1082 -mvzeroupper -mprefer-avx128 @gol
1083 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1084 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -msha @gol
1085 -maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1 @gol
1086 -mclflushopt -mxsavec -mxsaves @gol
1087 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1088 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mmwaitx -mthreads @gol
1089 -mno-align-stringops -minline-all-stringops @gol
1090 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1091 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1092 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1093 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1094 -mregparm=@var{num} -msseregparm @gol
1095 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1096 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1097 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1098 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1099 -m32 -m64 -mx32 -m16 -mlarge-data-threshold=@var{num} @gol
1100 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1101 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1102 -malign-data=@var{type} -mstack-protector-guard=@var{guard}}
1103
1104 @emph{x86 Windows Options}
1105 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1106 -mnop-fun-dllimport -mthread @gol
1107 -municode -mwin32 -mwindows -fno-set-stack-executable}
1108
1109 @emph{Xstormy16 Options}
1110 @gccoptlist{-msim}
1111
1112 @emph{Xtensa Options}
1113 @gccoptlist{-mconst16 -mno-const16 @gol
1114 -mfused-madd -mno-fused-madd @gol
1115 -mforce-no-pic @gol
1116 -mserialize-volatile -mno-serialize-volatile @gol
1117 -mtext-section-literals -mno-text-section-literals @gol
1118 -mtarget-align -mno-target-align @gol
1119 -mlongcalls -mno-longcalls}
1120
1121 @emph{zSeries Options}
1122 See S/390 and zSeries Options.
1123
1124 @item Code Generation Options
1125 @xref{Code Gen Options,,Options for Code Generation Conventions}.
1126 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
1127 -ffixed-@var{reg} -fexceptions @gol
1128 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
1129 -fasynchronous-unwind-tables @gol
1130 -fno-gnu-unique @gol
1131 -finhibit-size-directive -finstrument-functions @gol
1132 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
1133 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
1134 -fno-common -fno-ident @gol
1135 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
1136 -fno-jump-tables @gol
1137 -frecord-gcc-switches @gol
1138 -freg-struct-return -fshort-enums @gol
1139 -fshort-double -fshort-wchar @gol
1140 -fverbose-asm -fpack-struct[=@var{n}] -fstack-check @gol
1141 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
1142 -fno-stack-limit -fsplit-stack @gol
1143 -fleading-underscore -ftls-model=@var{model} @gol
1144 -fstack-reuse=@var{reuse_level} @gol
1145 -ftrapv -fwrapv -fbounds-check @gol
1146 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
1147 -fstrict-volatile-bitfields -fsync-libcalls}
1148 @end table
1149
1150
1151 @node Overall Options
1152 @section Options Controlling the Kind of Output
1153
1154 Compilation can involve up to four stages: preprocessing, compilation
1155 proper, assembly and linking, always in that order. GCC is capable of
1156 preprocessing and compiling several files either into several
1157 assembler input files, or into one assembler input file; then each
1158 assembler input file produces an object file, and linking combines all
1159 the object files (those newly compiled, and those specified as input)
1160 into an executable file.
1161
1162 @cindex file name suffix
1163 For any given input file, the file name suffix determines what kind of
1164 compilation is done:
1165
1166 @table @gcctabopt
1167 @item @var{file}.c
1168 C source code that must be preprocessed.
1169
1170 @item @var{file}.i
1171 C source code that should not be preprocessed.
1172
1173 @item @var{file}.ii
1174 C++ source code that should not be preprocessed.
1175
1176 @item @var{file}.m
1177 Objective-C source code. Note that you must link with the @file{libobjc}
1178 library to make an Objective-C program work.
1179
1180 @item @var{file}.mi
1181 Objective-C source code that should not be preprocessed.
1182
1183 @item @var{file}.mm
1184 @itemx @var{file}.M
1185 Objective-C++ source code. Note that you must link with the @file{libobjc}
1186 library to make an Objective-C++ program work. Note that @samp{.M} refers
1187 to a literal capital M@.
1188
1189 @item @var{file}.mii
1190 Objective-C++ source code that should not be preprocessed.
1191
1192 @item @var{file}.h
1193 C, C++, Objective-C or Objective-C++ header file to be turned into a
1194 precompiled header (default), or C, C++ header file to be turned into an
1195 Ada spec (via the @option{-fdump-ada-spec} switch).
1196
1197 @item @var{file}.cc
1198 @itemx @var{file}.cp
1199 @itemx @var{file}.cxx
1200 @itemx @var{file}.cpp
1201 @itemx @var{file}.CPP
1202 @itemx @var{file}.c++
1203 @itemx @var{file}.C
1204 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1205 the last two letters must both be literally @samp{x}. Likewise,
1206 @samp{.C} refers to a literal capital C@.
1207
1208 @item @var{file}.mm
1209 @itemx @var{file}.M
1210 Objective-C++ source code that must be preprocessed.
1211
1212 @item @var{file}.mii
1213 Objective-C++ source code that should not be preprocessed.
1214
1215 @item @var{file}.hh
1216 @itemx @var{file}.H
1217 @itemx @var{file}.hp
1218 @itemx @var{file}.hxx
1219 @itemx @var{file}.hpp
1220 @itemx @var{file}.HPP
1221 @itemx @var{file}.h++
1222 @itemx @var{file}.tcc
1223 C++ header file to be turned into a precompiled header or Ada spec.
1224
1225 @item @var{file}.f
1226 @itemx @var{file}.for
1227 @itemx @var{file}.ftn
1228 Fixed form Fortran source code that should not be preprocessed.
1229
1230 @item @var{file}.F
1231 @itemx @var{file}.FOR
1232 @itemx @var{file}.fpp
1233 @itemx @var{file}.FPP
1234 @itemx @var{file}.FTN
1235 Fixed form Fortran source code that must be preprocessed (with the traditional
1236 preprocessor).
1237
1238 @item @var{file}.f90
1239 @itemx @var{file}.f95
1240 @itemx @var{file}.f03
1241 @itemx @var{file}.f08
1242 Free form Fortran source code that should not be preprocessed.
1243
1244 @item @var{file}.F90
1245 @itemx @var{file}.F95
1246 @itemx @var{file}.F03
1247 @itemx @var{file}.F08
1248 Free form Fortran source code that must be preprocessed (with the
1249 traditional preprocessor).
1250
1251 @item @var{file}.go
1252 Go source code.
1253
1254 @c FIXME: Descriptions of Java file types.
1255 @c @var{file}.java
1256 @c @var{file}.class
1257 @c @var{file}.zip
1258 @c @var{file}.jar
1259
1260 @item @var{file}.ads
1261 Ada source code file that contains a library unit declaration (a
1262 declaration of a package, subprogram, or generic, or a generic
1263 instantiation), or a library unit renaming declaration (a package,
1264 generic, or subprogram renaming declaration). Such files are also
1265 called @dfn{specs}.
1266
1267 @item @var{file}.adb
1268 Ada source code file containing a library unit body (a subprogram or
1269 package body). Such files are also called @dfn{bodies}.
1270
1271 @c GCC also knows about some suffixes for languages not yet included:
1272 @c Pascal:
1273 @c @var{file}.p
1274 @c @var{file}.pas
1275 @c Ratfor:
1276 @c @var{file}.r
1277
1278 @item @var{file}.s
1279 Assembler code.
1280
1281 @item @var{file}.S
1282 @itemx @var{file}.sx
1283 Assembler code that must be preprocessed.
1284
1285 @item @var{other}
1286 An object file to be fed straight into linking.
1287 Any file name with no recognized suffix is treated this way.
1288 @end table
1289
1290 @opindex x
1291 You can specify the input language explicitly with the @option{-x} option:
1292
1293 @table @gcctabopt
1294 @item -x @var{language}
1295 Specify explicitly the @var{language} for the following input files
1296 (rather than letting the compiler choose a default based on the file
1297 name suffix). This option applies to all following input files until
1298 the next @option{-x} option. Possible values for @var{language} are:
1299 @smallexample
1300 c c-header cpp-output
1301 c++ c++-header c++-cpp-output
1302 objective-c objective-c-header objective-c-cpp-output
1303 objective-c++ objective-c++-header objective-c++-cpp-output
1304 assembler assembler-with-cpp
1305 ada
1306 f77 f77-cpp-input f95 f95-cpp-input
1307 go
1308 java
1309 @end smallexample
1310
1311 @item -x none
1312 Turn off any specification of a language, so that subsequent files are
1313 handled according to their file name suffixes (as they are if @option{-x}
1314 has not been used at all).
1315
1316 @item -pass-exit-codes
1317 @opindex pass-exit-codes
1318 Normally the @command{gcc} program exits with the code of 1 if any
1319 phase of the compiler returns a non-success return code. If you specify
1320 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1321 the numerically highest error produced by any phase returning an error
1322 indication. The C, C++, and Fortran front ends return 4 if an internal
1323 compiler error is encountered.
1324 @end table
1325
1326 If you only want some of the stages of compilation, you can use
1327 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1328 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1329 @command{gcc} is to stop. Note that some combinations (for example,
1330 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1331
1332 @table @gcctabopt
1333 @item -c
1334 @opindex c
1335 Compile or assemble the source files, but do not link. The linking
1336 stage simply is not done. The ultimate output is in the form of an
1337 object file for each source file.
1338
1339 By default, the object file name for a source file is made by replacing
1340 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1341
1342 Unrecognized input files, not requiring compilation or assembly, are
1343 ignored.
1344
1345 @item -S
1346 @opindex S
1347 Stop after the stage of compilation proper; do not assemble. The output
1348 is in the form of an assembler code file for each non-assembler input
1349 file specified.
1350
1351 By default, the assembler file name for a source file is made by
1352 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1353
1354 Input files that don't require compilation are ignored.
1355
1356 @item -E
1357 @opindex E
1358 Stop after the preprocessing stage; do not run the compiler proper. The
1359 output is in the form of preprocessed source code, which is sent to the
1360 standard output.
1361
1362 Input files that don't require preprocessing are ignored.
1363
1364 @cindex output file option
1365 @item -o @var{file}
1366 @opindex o
1367 Place output in file @var{file}. This applies to whatever
1368 sort of output is being produced, whether it be an executable file,
1369 an object file, an assembler file or preprocessed C code.
1370
1371 If @option{-o} is not specified, the default is to put an executable
1372 file in @file{a.out}, the object file for
1373 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1374 assembler file in @file{@var{source}.s}, a precompiled header file in
1375 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1376 standard output.
1377
1378 @item -v
1379 @opindex v
1380 Print (on standard error output) the commands executed to run the stages
1381 of compilation. Also print the version number of the compiler driver
1382 program and of the preprocessor and the compiler proper.
1383
1384 @item -###
1385 @opindex ###
1386 Like @option{-v} except the commands are not executed and arguments
1387 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1388 This is useful for shell scripts to capture the driver-generated command lines.
1389
1390 @item -pipe
1391 @opindex pipe
1392 Use pipes rather than temporary files for communication between the
1393 various stages of compilation. This fails to work on some systems where
1394 the assembler is unable to read from a pipe; but the GNU assembler has
1395 no trouble.
1396
1397 @item --help
1398 @opindex help
1399 Print (on the standard output) a description of the command-line options
1400 understood by @command{gcc}. If the @option{-v} option is also specified
1401 then @option{--help} is also passed on to the various processes
1402 invoked by @command{gcc}, so that they can display the command-line options
1403 they accept. If the @option{-Wextra} option has also been specified
1404 (prior to the @option{--help} option), then command-line options that
1405 have no documentation associated with them are also displayed.
1406
1407 @item --target-help
1408 @opindex target-help
1409 Print (on the standard output) a description of target-specific command-line
1410 options for each tool. For some targets extra target-specific
1411 information may also be printed.
1412
1413 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1414 Print (on the standard output) a description of the command-line
1415 options understood by the compiler that fit into all specified classes
1416 and qualifiers. These are the supported classes:
1417
1418 @table @asis
1419 @item @samp{optimizers}
1420 Display all of the optimization options supported by the
1421 compiler.
1422
1423 @item @samp{warnings}
1424 Display all of the options controlling warning messages
1425 produced by the compiler.
1426
1427 @item @samp{target}
1428 Display target-specific options. Unlike the
1429 @option{--target-help} option however, target-specific options of the
1430 linker and assembler are not displayed. This is because those
1431 tools do not currently support the extended @option{--help=} syntax.
1432
1433 @item @samp{params}
1434 Display the values recognized by the @option{--param}
1435 option.
1436
1437 @item @var{language}
1438 Display the options supported for @var{language}, where
1439 @var{language} is the name of one of the languages supported in this
1440 version of GCC@.
1441
1442 @item @samp{common}
1443 Display the options that are common to all languages.
1444 @end table
1445
1446 These are the supported qualifiers:
1447
1448 @table @asis
1449 @item @samp{undocumented}
1450 Display only those options that are undocumented.
1451
1452 @item @samp{joined}
1453 Display options taking an argument that appears after an equal
1454 sign in the same continuous piece of text, such as:
1455 @samp{--help=target}.
1456
1457 @item @samp{separate}
1458 Display options taking an argument that appears as a separate word
1459 following the original option, such as: @samp{-o output-file}.
1460 @end table
1461
1462 Thus for example to display all the undocumented target-specific
1463 switches supported by the compiler, use:
1464
1465 @smallexample
1466 --help=target,undocumented
1467 @end smallexample
1468
1469 The sense of a qualifier can be inverted by prefixing it with the
1470 @samp{^} character, so for example to display all binary warning
1471 options (i.e., ones that are either on or off and that do not take an
1472 argument) that have a description, use:
1473
1474 @smallexample
1475 --help=warnings,^joined,^undocumented
1476 @end smallexample
1477
1478 The argument to @option{--help=} should not consist solely of inverted
1479 qualifiers.
1480
1481 Combining several classes is possible, although this usually
1482 restricts the output so much that there is nothing to display. One
1483 case where it does work, however, is when one of the classes is
1484 @var{target}. For example, to display all the target-specific
1485 optimization options, use:
1486
1487 @smallexample
1488 --help=target,optimizers
1489 @end smallexample
1490
1491 The @option{--help=} option can be repeated on the command line. Each
1492 successive use displays its requested class of options, skipping
1493 those that have already been displayed.
1494
1495 If the @option{-Q} option appears on the command line before the
1496 @option{--help=} option, then the descriptive text displayed by
1497 @option{--help=} is changed. Instead of describing the displayed
1498 options, an indication is given as to whether the option is enabled,
1499 disabled or set to a specific value (assuming that the compiler
1500 knows this at the point where the @option{--help=} option is used).
1501
1502 Here is a truncated example from the ARM port of @command{gcc}:
1503
1504 @smallexample
1505 % gcc -Q -mabi=2 --help=target -c
1506 The following options are target specific:
1507 -mabi= 2
1508 -mabort-on-noreturn [disabled]
1509 -mapcs [disabled]
1510 @end smallexample
1511
1512 The output is sensitive to the effects of previous command-line
1513 options, so for example it is possible to find out which optimizations
1514 are enabled at @option{-O2} by using:
1515
1516 @smallexample
1517 -Q -O2 --help=optimizers
1518 @end smallexample
1519
1520 Alternatively you can discover which binary optimizations are enabled
1521 by @option{-O3} by using:
1522
1523 @smallexample
1524 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1525 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1526 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1527 @end smallexample
1528
1529 @item -no-canonical-prefixes
1530 @opindex no-canonical-prefixes
1531 Do not expand any symbolic links, resolve references to @samp{/../}
1532 or @samp{/./}, or make the path absolute when generating a relative
1533 prefix.
1534
1535 @item --version
1536 @opindex version
1537 Display the version number and copyrights of the invoked GCC@.
1538
1539 @item -wrapper
1540 @opindex wrapper
1541 Invoke all subcommands under a wrapper program. The name of the
1542 wrapper program and its parameters are passed as a comma separated
1543 list.
1544
1545 @smallexample
1546 gcc -c t.c -wrapper gdb,--args
1547 @end smallexample
1548
1549 @noindent
1550 This invokes all subprograms of @command{gcc} under
1551 @samp{gdb --args}, thus the invocation of @command{cc1} is
1552 @samp{gdb --args cc1 @dots{}}.
1553
1554 @item -fplugin=@var{name}.so
1555 @opindex fplugin
1556 Load the plugin code in file @var{name}.so, assumed to be a
1557 shared object to be dlopen'd by the compiler. The base name of
1558 the shared object file is used to identify the plugin for the
1559 purposes of argument parsing (See
1560 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1561 Each plugin should define the callback functions specified in the
1562 Plugins API.
1563
1564 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1565 @opindex fplugin-arg
1566 Define an argument called @var{key} with a value of @var{value}
1567 for the plugin called @var{name}.
1568
1569 @item -fdump-ada-spec@r{[}-slim@r{]}
1570 @opindex fdump-ada-spec
1571 For C and C++ source and include files, generate corresponding Ada specs.
1572 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1573 GNAT User's Guide}, which provides detailed documentation on this feature.
1574
1575 @item -fada-spec-parent=@var{unit}
1576 @opindex fada-spec-parent
1577 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1578 Ada specs as child units of parent @var{unit}.
1579
1580 @item -fdump-go-spec=@var{file}
1581 @opindex fdump-go-spec
1582 For input files in any language, generate corresponding Go
1583 declarations in @var{file}. This generates Go @code{const},
1584 @code{type}, @code{var}, and @code{func} declarations which may be a
1585 useful way to start writing a Go interface to code written in some
1586 other language.
1587
1588 @include @value{srcdir}/../libiberty/at-file.texi
1589 @end table
1590
1591 @node Invoking G++
1592 @section Compiling C++ Programs
1593
1594 @cindex suffixes for C++ source
1595 @cindex C++ source file suffixes
1596 C++ source files conventionally use one of the suffixes @samp{.C},
1597 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1598 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1599 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1600 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1601 files with these names and compiles them as C++ programs even if you
1602 call the compiler the same way as for compiling C programs (usually
1603 with the name @command{gcc}).
1604
1605 @findex g++
1606 @findex c++
1607 However, the use of @command{gcc} does not add the C++ library.
1608 @command{g++} is a program that calls GCC and automatically specifies linking
1609 against the C++ library. It treats @samp{.c},
1610 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1611 files unless @option{-x} is used. This program is also useful when
1612 precompiling a C header file with a @samp{.h} extension for use in C++
1613 compilations. On many systems, @command{g++} is also installed with
1614 the name @command{c++}.
1615
1616 @cindex invoking @command{g++}
1617 When you compile C++ programs, you may specify many of the same
1618 command-line options that you use for compiling programs in any
1619 language; or command-line options meaningful for C and related
1620 languages; or options that are meaningful only for C++ programs.
1621 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1622 explanations of options for languages related to C@.
1623 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1624 explanations of options that are meaningful only for C++ programs.
1625
1626 @node C Dialect Options
1627 @section Options Controlling C Dialect
1628 @cindex dialect options
1629 @cindex language dialect options
1630 @cindex options, dialect
1631
1632 The following options control the dialect of C (or languages derived
1633 from C, such as C++, Objective-C and Objective-C++) that the compiler
1634 accepts:
1635
1636 @table @gcctabopt
1637 @cindex ANSI support
1638 @cindex ISO support
1639 @item -ansi
1640 @opindex ansi
1641 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1642 equivalent to @option{-std=c++98}.
1643
1644 This turns off certain features of GCC that are incompatible with ISO
1645 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1646 such as the @code{asm} and @code{typeof} keywords, and
1647 predefined macros such as @code{unix} and @code{vax} that identify the
1648 type of system you are using. It also enables the undesirable and
1649 rarely used ISO trigraph feature. For the C compiler,
1650 it disables recognition of C++ style @samp{//} comments as well as
1651 the @code{inline} keyword.
1652
1653 The alternate keywords @code{__asm__}, @code{__extension__},
1654 @code{__inline__} and @code{__typeof__} continue to work despite
1655 @option{-ansi}. You would not want to use them in an ISO C program, of
1656 course, but it is useful to put them in header files that might be included
1657 in compilations done with @option{-ansi}. Alternate predefined macros
1658 such as @code{__unix__} and @code{__vax__} are also available, with or
1659 without @option{-ansi}.
1660
1661 The @option{-ansi} option does not cause non-ISO programs to be
1662 rejected gratuitously. For that, @option{-Wpedantic} is required in
1663 addition to @option{-ansi}. @xref{Warning Options}.
1664
1665 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1666 option is used. Some header files may notice this macro and refrain
1667 from declaring certain functions or defining certain macros that the
1668 ISO standard doesn't call for; this is to avoid interfering with any
1669 programs that might use these names for other things.
1670
1671 Functions that are normally built in but do not have semantics
1672 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1673 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1674 built-in functions provided by GCC}, for details of the functions
1675 affected.
1676
1677 @item -std=
1678 @opindex std
1679 Determine the language standard. @xref{Standards,,Language Standards
1680 Supported by GCC}, for details of these standard versions. This option
1681 is currently only supported when compiling C or C++.
1682
1683 The compiler can accept several base standards, such as @samp{c90} or
1684 @samp{c++98}, and GNU dialects of those standards, such as
1685 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1686 compiler accepts all programs following that standard plus those
1687 using GNU extensions that do not contradict it. For example,
1688 @option{-std=c90} turns off certain features of GCC that are
1689 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1690 keywords, but not other GNU extensions that do not have a meaning in
1691 ISO C90, such as omitting the middle term of a @code{?:}
1692 expression. On the other hand, when a GNU dialect of a standard is
1693 specified, all features supported by the compiler are enabled, even when
1694 those features change the meaning of the base standard. As a result, some
1695 strict-conforming programs may be rejected. The particular standard
1696 is used by @option{-Wpedantic} to identify which features are GNU
1697 extensions given that version of the standard. For example
1698 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1699 comments, while @option{-std=gnu99 -Wpedantic} does not.
1700
1701 A value for this option must be provided; possible values are
1702
1703 @table @samp
1704 @item c90
1705 @itemx c89
1706 @itemx iso9899:1990
1707 Support all ISO C90 programs (certain GNU extensions that conflict
1708 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1709
1710 @item iso9899:199409
1711 ISO C90 as modified in amendment 1.
1712
1713 @item c99
1714 @itemx c9x
1715 @itemx iso9899:1999
1716 @itemx iso9899:199x
1717 ISO C99. This standard is substantially completely supported, modulo
1718 bugs and floating-point issues
1719 (mainly but not entirely relating to optional C99 features from
1720 Annexes F and G). See
1721 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1722 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1723
1724 @item c11
1725 @itemx c1x
1726 @itemx iso9899:2011
1727 ISO C11, the 2011 revision of the ISO C standard. This standard is
1728 substantially completely supported, modulo bugs, floating-point issues
1729 (mainly but not entirely relating to optional C11 features from
1730 Annexes F and G) and the optional Annexes K (Bounds-checking
1731 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1732
1733 @item gnu90
1734 @itemx gnu89
1735 GNU dialect of ISO C90 (including some C99 features).
1736
1737 @item gnu99
1738 @itemx gnu9x
1739 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1740
1741 @item gnu11
1742 @itemx gnu1x
1743 GNU dialect of ISO C11. This is the default for C code.
1744 The name @samp{gnu1x} is deprecated.
1745
1746 @item c++98
1747 @itemx c++03
1748 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1749 additional defect reports. Same as @option{-ansi} for C++ code.
1750
1751 @item gnu++98
1752 @itemx gnu++03
1753 GNU dialect of @option{-std=c++98}. This is the default for
1754 C++ code.
1755
1756 @item c++11
1757 @itemx c++0x
1758 The 2011 ISO C++ standard plus amendments.
1759 The name @samp{c++0x} is deprecated.
1760
1761 @item gnu++11
1762 @itemx gnu++0x
1763 GNU dialect of @option{-std=c++11}.
1764 The name @samp{gnu++0x} is deprecated.
1765
1766 @item c++14
1767 @itemx c++1y
1768 The 2014 ISO C++ standard plus amendments.
1769 The name @samp{c++1y} is deprecated.
1770
1771 @item gnu++14
1772 @itemx gnu++1y
1773 GNU dialect of @option{-std=c++14}.
1774 The name @samp{gnu++1y} is deprecated.
1775
1776 @item c++1z
1777 The next revision of the ISO C++ standard, tentatively planned for
1778 2017. Support is highly experimental, and will almost certainly
1779 change in incompatible ways in future releases.
1780
1781 @item gnu++1z
1782 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1783 and will almost certainly change in incompatible ways in future
1784 releases.
1785 @end table
1786
1787 @item -fgnu89-inline
1788 @opindex fgnu89-inline
1789 The option @option{-fgnu89-inline} tells GCC to use the traditional
1790 GNU semantics for @code{inline} functions when in C99 mode.
1791 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1792 Using this option is roughly equivalent to adding the
1793 @code{gnu_inline} function attribute to all inline functions
1794 (@pxref{Function Attributes}).
1795
1796 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1797 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1798 specifies the default behavior).
1799 This option is not supported in @option{-std=c90} or
1800 @option{-std=gnu90} mode.
1801
1802 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1803 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1804 in effect for @code{inline} functions. @xref{Common Predefined
1805 Macros,,,cpp,The C Preprocessor}.
1806
1807 @item -aux-info @var{filename}
1808 @opindex aux-info
1809 Output to the given filename prototyped declarations for all functions
1810 declared and/or defined in a translation unit, including those in header
1811 files. This option is silently ignored in any language other than C@.
1812
1813 Besides declarations, the file indicates, in comments, the origin of
1814 each declaration (source file and line), whether the declaration was
1815 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1816 @samp{O} for old, respectively, in the first character after the line
1817 number and the colon), and whether it came from a declaration or a
1818 definition (@samp{C} or @samp{F}, respectively, in the following
1819 character). In the case of function definitions, a K&R-style list of
1820 arguments followed by their declarations is also provided, inside
1821 comments, after the declaration.
1822
1823 @item -fallow-parameterless-variadic-functions
1824 @opindex fallow-parameterless-variadic-functions
1825 Accept variadic functions without named parameters.
1826
1827 Although it is possible to define such a function, this is not very
1828 useful as it is not possible to read the arguments. This is only
1829 supported for C as this construct is allowed by C++.
1830
1831 @item -fno-asm
1832 @opindex fno-asm
1833 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1834 keyword, so that code can use these words as identifiers. You can use
1835 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1836 instead. @option{-ansi} implies @option{-fno-asm}.
1837
1838 In C++, this switch only affects the @code{typeof} keyword, since
1839 @code{asm} and @code{inline} are standard keywords. You may want to
1840 use the @option{-fno-gnu-keywords} flag instead, which has the same
1841 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1842 switch only affects the @code{asm} and @code{typeof} keywords, since
1843 @code{inline} is a standard keyword in ISO C99.
1844
1845 @item -fno-builtin
1846 @itemx -fno-builtin-@var{function}
1847 @opindex fno-builtin
1848 @cindex built-in functions
1849 Don't recognize built-in functions that do not begin with
1850 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1851 functions provided by GCC}, for details of the functions affected,
1852 including those which are not built-in functions when @option{-ansi} or
1853 @option{-std} options for strict ISO C conformance are used because they
1854 do not have an ISO standard meaning.
1855
1856 GCC normally generates special code to handle certain built-in functions
1857 more efficiently; for instance, calls to @code{alloca} may become single
1858 instructions which adjust the stack directly, and calls to @code{memcpy}
1859 may become inline copy loops. The resulting code is often both smaller
1860 and faster, but since the function calls no longer appear as such, you
1861 cannot set a breakpoint on those calls, nor can you change the behavior
1862 of the functions by linking with a different library. In addition,
1863 when a function is recognized as a built-in function, GCC may use
1864 information about that function to warn about problems with calls to
1865 that function, or to generate more efficient code, even if the
1866 resulting code still contains calls to that function. For example,
1867 warnings are given with @option{-Wformat} for bad calls to
1868 @code{printf} when @code{printf} is built in and @code{strlen} is
1869 known not to modify global memory.
1870
1871 With the @option{-fno-builtin-@var{function}} option
1872 only the built-in function @var{function} is
1873 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1874 function is named that is not built-in in this version of GCC, this
1875 option is ignored. There is no corresponding
1876 @option{-fbuiltin-@var{function}} option; if you wish to enable
1877 built-in functions selectively when using @option{-fno-builtin} or
1878 @option{-ffreestanding}, you may define macros such as:
1879
1880 @smallexample
1881 #define abs(n) __builtin_abs ((n))
1882 #define strcpy(d, s) __builtin_strcpy ((d), (s))
1883 @end smallexample
1884
1885 @item -fhosted
1886 @opindex fhosted
1887 @cindex hosted environment
1888
1889 Assert that compilation targets a hosted environment. This implies
1890 @option{-fbuiltin}. A hosted environment is one in which the
1891 entire standard library is available, and in which @code{main} has a return
1892 type of @code{int}. Examples are nearly everything except a kernel.
1893 This is equivalent to @option{-fno-freestanding}.
1894
1895 @item -ffreestanding
1896 @opindex ffreestanding
1897 @cindex hosted environment
1898
1899 Assert that compilation targets a freestanding environment. This
1900 implies @option{-fno-builtin}. A freestanding environment
1901 is one in which the standard library may not exist, and program startup may
1902 not necessarily be at @code{main}. The most obvious example is an OS kernel.
1903 This is equivalent to @option{-fno-hosted}.
1904
1905 @xref{Standards,,Language Standards Supported by GCC}, for details of
1906 freestanding and hosted environments.
1907
1908 @item -fopenacc
1909 @opindex fopenacc
1910 @cindex OpenACC accelerator programming
1911 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1912 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
1913 compiler generates accelerated code according to the OpenACC Application
1914 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
1915 implies @option{-pthread}, and thus is only supported on targets that
1916 have support for @option{-pthread}.
1917
1918 Note that this is an experimental feature, incomplete, and subject to
1919 change in future versions of GCC. See
1920 @w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1921
1922 @item -fopenmp
1923 @opindex fopenmp
1924 @cindex OpenMP parallel
1925 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1926 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
1927 compiler generates parallel code according to the OpenMP Application
1928 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}. This option
1929 implies @option{-pthread}, and thus is only supported on targets that
1930 have support for @option{-pthread}. @option{-fopenmp} implies
1931 @option{-fopenmp-simd}.
1932
1933 @item -fopenmp-simd
1934 @opindex fopenmp-simd
1935 @cindex OpenMP SIMD
1936 @cindex SIMD
1937 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1938 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1939 are ignored.
1940
1941 @item -fcilkplus
1942 @opindex fcilkplus
1943 @cindex Enable Cilk Plus
1944 Enable the usage of Cilk Plus language extension features for C/C++.
1945 When the option @option{-fcilkplus} is specified, enable the usage of
1946 the Cilk Plus Language extension features for C/C++. The present
1947 implementation follows ABI version 1.2. This is an experimental
1948 feature that is only partially complete, and whose interface may
1949 change in future versions of GCC as the official specification
1950 changes. Currently, all features but @code{_Cilk_for} have been
1951 implemented.
1952
1953 @item -fgnu-tm
1954 @opindex fgnu-tm
1955 When the option @option{-fgnu-tm} is specified, the compiler
1956 generates code for the Linux variant of Intel's current Transactional
1957 Memory ABI specification document (Revision 1.1, May 6 2009). This is
1958 an experimental feature whose interface may change in future versions
1959 of GCC, as the official specification changes. Please note that not
1960 all architectures are supported for this feature.
1961
1962 For more information on GCC's support for transactional memory,
1963 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1964 Transactional Memory Library}.
1965
1966 Note that the transactional memory feature is not supported with
1967 non-call exceptions (@option{-fnon-call-exceptions}).
1968
1969 @item -fms-extensions
1970 @opindex fms-extensions
1971 Accept some non-standard constructs used in Microsoft header files.
1972
1973 In C++ code, this allows member names in structures to be similar
1974 to previous types declarations.
1975
1976 @smallexample
1977 typedef int UOW;
1978 struct ABC @{
1979 UOW UOW;
1980 @};
1981 @end smallexample
1982
1983 Some cases of unnamed fields in structures and unions are only
1984 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
1985 fields within structs/unions}, for details.
1986
1987 Note that this option is off for all targets but x86
1988 targets using ms-abi.
1989
1990 @item -fplan9-extensions
1991 @opindex fplan9-extensions
1992 Accept some non-standard constructs used in Plan 9 code.
1993
1994 This enables @option{-fms-extensions}, permits passing pointers to
1995 structures with anonymous fields to functions that expect pointers to
1996 elements of the type of the field, and permits referring to anonymous
1997 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
1998 struct/union fields within structs/unions}, for details. This is only
1999 supported for C, not C++.
2000
2001 @item -trigraphs
2002 @opindex trigraphs
2003 Support ISO C trigraphs. The @option{-ansi} option (and @option{-std}
2004 options for strict ISO C conformance) implies @option{-trigraphs}.
2005
2006 @cindex traditional C language
2007 @cindex C language, traditional
2008 @item -traditional
2009 @itemx -traditional-cpp
2010 @opindex traditional-cpp
2011 @opindex traditional
2012 Formerly, these options caused GCC to attempt to emulate a pre-standard
2013 C compiler. They are now only supported with the @option{-E} switch.
2014 The preprocessor continues to support a pre-standard mode. See the GNU
2015 CPP manual for details.
2016
2017 @item -fcond-mismatch
2018 @opindex fcond-mismatch
2019 Allow conditional expressions with mismatched types in the second and
2020 third arguments. The value of such an expression is void. This option
2021 is not supported for C++.
2022
2023 @item -flax-vector-conversions
2024 @opindex flax-vector-conversions
2025 Allow implicit conversions between vectors with differing numbers of
2026 elements and/or incompatible element types. This option should not be
2027 used for new code.
2028
2029 @item -funsigned-char
2030 @opindex funsigned-char
2031 Let the type @code{char} be unsigned, like @code{unsigned char}.
2032
2033 Each kind of machine has a default for what @code{char} should
2034 be. It is either like @code{unsigned char} by default or like
2035 @code{signed char} by default.
2036
2037 Ideally, a portable program should always use @code{signed char} or
2038 @code{unsigned char} when it depends on the signedness of an object.
2039 But many programs have been written to use plain @code{char} and
2040 expect it to be signed, or expect it to be unsigned, depending on the
2041 machines they were written for. This option, and its inverse, let you
2042 make such a program work with the opposite default.
2043
2044 The type @code{char} is always a distinct type from each of
2045 @code{signed char} or @code{unsigned char}, even though its behavior
2046 is always just like one of those two.
2047
2048 @item -fsigned-char
2049 @opindex fsigned-char
2050 Let the type @code{char} be signed, like @code{signed char}.
2051
2052 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2053 the negative form of @option{-funsigned-char}. Likewise, the option
2054 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2055
2056 @item -fsigned-bitfields
2057 @itemx -funsigned-bitfields
2058 @itemx -fno-signed-bitfields
2059 @itemx -fno-unsigned-bitfields
2060 @opindex fsigned-bitfields
2061 @opindex funsigned-bitfields
2062 @opindex fno-signed-bitfields
2063 @opindex fno-unsigned-bitfields
2064 These options control whether a bit-field is signed or unsigned, when the
2065 declaration does not use either @code{signed} or @code{unsigned}. By
2066 default, such a bit-field is signed, because this is consistent: the
2067 basic integer types such as @code{int} are signed types.
2068 @end table
2069
2070 @node C++ Dialect Options
2071 @section Options Controlling C++ Dialect
2072
2073 @cindex compiler options, C++
2074 @cindex C++ options, command-line
2075 @cindex options, C++
2076 This section describes the command-line options that are only meaningful
2077 for C++ programs. You can also use most of the GNU compiler options
2078 regardless of what language your program is in. For example, you
2079 might compile a file @file{firstClass.C} like this:
2080
2081 @smallexample
2082 g++ -g -frepo -O -c firstClass.C
2083 @end smallexample
2084
2085 @noindent
2086 In this example, only @option{-frepo} is an option meant
2087 only for C++ programs; you can use the other options with any
2088 language supported by GCC@.
2089
2090 Here is a list of options that are @emph{only} for compiling C++ programs:
2091
2092 @table @gcctabopt
2093
2094 @item -fabi-version=@var{n}
2095 @opindex fabi-version
2096 Use version @var{n} of the C++ ABI@. The default is version 0.
2097
2098 Version 0 refers to the version conforming most closely to
2099 the C++ ABI specification. Therefore, the ABI obtained using version 0
2100 will change in different versions of G++ as ABI bugs are fixed.
2101
2102 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2103
2104 Version 2 is the version of the C++ ABI that first appeared in G++
2105 3.4, and was the default through G++ 4.9.
2106
2107 Version 3 corrects an error in mangling a constant address as a
2108 template argument.
2109
2110 Version 4, which first appeared in G++ 4.5, implements a standard
2111 mangling for vector types.
2112
2113 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2114 attribute const/volatile on function pointer types, decltype of a
2115 plain decl, and use of a function parameter in the declaration of
2116 another parameter.
2117
2118 Version 6, which first appeared in G++ 4.7, corrects the promotion
2119 behavior of C++11 scoped enums and the mangling of template argument
2120 packs, const/static_cast, prefix ++ and --, and a class scope function
2121 used as a template argument.
2122
2123 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2124 builtin type and corrects the mangling of lambdas in default argument
2125 scope.
2126
2127 Version 8, which first appeared in G++ 4.9, corrects the substitution
2128 behavior of function types with function-cv-qualifiers.
2129
2130 See also @option{-Wabi}.
2131
2132 @item -fabi-compat-version=@var{n}
2133 @opindex fabi-compat-version
2134 On targets that support strong aliases, G++
2135 works around mangling changes by creating an alias with the correct
2136 mangled name when defining a symbol with an incorrect mangled name.
2137 This switch specifies which ABI version to use for the alias.
2138
2139 With @option{-fabi-version=0} (the default), this defaults to 2. If
2140 another ABI version is explicitly selected, this defaults to 0.
2141
2142 The compatibility version is also set by @option{-Wabi=@var{n}}.
2143
2144 @item -fno-access-control
2145 @opindex fno-access-control
2146 Turn off all access checking. This switch is mainly useful for working
2147 around bugs in the access control code.
2148
2149 @item -fcheck-new
2150 @opindex fcheck-new
2151 Check that the pointer returned by @code{operator new} is non-null
2152 before attempting to modify the storage allocated. This check is
2153 normally unnecessary because the C++ standard specifies that
2154 @code{operator new} only returns @code{0} if it is declared
2155 @code{throw()}, in which case the compiler always checks the
2156 return value even without this option. In all other cases, when
2157 @code{operator new} has a non-empty exception specification, memory
2158 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2159 @samp{new (nothrow)}.
2160
2161 @item -fconstexpr-depth=@var{n}
2162 @opindex fconstexpr-depth
2163 Set the maximum nested evaluation depth for C++11 constexpr functions
2164 to @var{n}. A limit is needed to detect endless recursion during
2165 constant expression evaluation. The minimum specified by the standard
2166 is 512.
2167
2168 @item -fdeduce-init-list
2169 @opindex fdeduce-init-list
2170 Enable deduction of a template type parameter as
2171 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2172
2173 @smallexample
2174 template <class T> auto forward(T t) -> decltype (realfn (t))
2175 @{
2176 return realfn (t);
2177 @}
2178
2179 void f()
2180 @{
2181 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2182 @}
2183 @end smallexample
2184
2185 This deduction was implemented as a possible extension to the
2186 originally proposed semantics for the C++11 standard, but was not part
2187 of the final standard, so it is disabled by default. This option is
2188 deprecated, and may be removed in a future version of G++.
2189
2190 @item -ffriend-injection
2191 @opindex ffriend-injection
2192 Inject friend functions into the enclosing namespace, so that they are
2193 visible outside the scope of the class in which they are declared.
2194 Friend functions were documented to work this way in the old Annotated
2195 C++ Reference Manual.
2196 However, in ISO C++ a friend function that is not declared
2197 in an enclosing scope can only be found using argument dependent
2198 lookup. GCC defaults to the standard behavior.
2199
2200 This option is for compatibility, and may be removed in a future
2201 release of G++.
2202
2203 @item -fno-elide-constructors
2204 @opindex fno-elide-constructors
2205 The C++ standard allows an implementation to omit creating a temporary
2206 that is only used to initialize another object of the same type.
2207 Specifying this option disables that optimization, and forces G++ to
2208 call the copy constructor in all cases.
2209
2210 @item -fno-enforce-eh-specs
2211 @opindex fno-enforce-eh-specs
2212 Don't generate code to check for violation of exception specifications
2213 at run time. This option violates the C++ standard, but may be useful
2214 for reducing code size in production builds, much like defining
2215 @code{NDEBUG}. This does not give user code permission to throw
2216 exceptions in violation of the exception specifications; the compiler
2217 still optimizes based on the specifications, so throwing an
2218 unexpected exception results in undefined behavior at run time.
2219
2220 @item -fextern-tls-init
2221 @itemx -fno-extern-tls-init
2222 @opindex fextern-tls-init
2223 @opindex fno-extern-tls-init
2224 The C++11 and OpenMP standards allow @code{thread_local} and
2225 @code{threadprivate} variables to have dynamic (runtime)
2226 initialization. To support this, any use of such a variable goes
2227 through a wrapper function that performs any necessary initialization.
2228 When the use and definition of the variable are in the same
2229 translation unit, this overhead can be optimized away, but when the
2230 use is in a different translation unit there is significant overhead
2231 even if the variable doesn't actually need dynamic initialization. If
2232 the programmer can be sure that no use of the variable in a
2233 non-defining TU needs to trigger dynamic initialization (either
2234 because the variable is statically initialized, or a use of the
2235 variable in the defining TU will be executed before any uses in
2236 another TU), they can avoid this overhead with the
2237 @option{-fno-extern-tls-init} option.
2238
2239 On targets that support symbol aliases, the default is
2240 @option{-fextern-tls-init}. On targets that do not support symbol
2241 aliases, the default is @option{-fno-extern-tls-init}.
2242
2243 @item -ffor-scope
2244 @itemx -fno-for-scope
2245 @opindex ffor-scope
2246 @opindex fno-for-scope
2247 If @option{-ffor-scope} is specified, the scope of variables declared in
2248 a @i{for-init-statement} is limited to the @code{for} loop itself,
2249 as specified by the C++ standard.
2250 If @option{-fno-for-scope} is specified, the scope of variables declared in
2251 a @i{for-init-statement} extends to the end of the enclosing scope,
2252 as was the case in old versions of G++, and other (traditional)
2253 implementations of C++.
2254
2255 If neither flag is given, the default is to follow the standard,
2256 but to allow and give a warning for old-style code that would
2257 otherwise be invalid, or have different behavior.
2258
2259 @item -fno-gnu-keywords
2260 @opindex fno-gnu-keywords
2261 Do not recognize @code{typeof} as a keyword, so that code can use this
2262 word as an identifier. You can use the keyword @code{__typeof__} instead.
2263 @option{-ansi} implies @option{-fno-gnu-keywords}.
2264
2265 @item -fno-implicit-templates
2266 @opindex fno-implicit-templates
2267 Never emit code for non-inline templates that are instantiated
2268 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2269 @xref{Template Instantiation}, for more information.
2270
2271 @item -fno-implicit-inline-templates
2272 @opindex fno-implicit-inline-templates
2273 Don't emit code for implicit instantiations of inline templates, either.
2274 The default is to handle inlines differently so that compiles with and
2275 without optimization need the same set of explicit instantiations.
2276
2277 @item -fno-implement-inlines
2278 @opindex fno-implement-inlines
2279 To save space, do not emit out-of-line copies of inline functions
2280 controlled by @code{#pragma implementation}. This causes linker
2281 errors if these functions are not inlined everywhere they are called.
2282
2283 @item -fms-extensions
2284 @opindex fms-extensions
2285 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2286 int and getting a pointer to member function via non-standard syntax.
2287
2288 @item -fno-nonansi-builtins
2289 @opindex fno-nonansi-builtins
2290 Disable built-in declarations of functions that are not mandated by
2291 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2292 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2293
2294 @item -fnothrow-opt
2295 @opindex fnothrow-opt
2296 Treat a @code{throw()} exception specification as if it were a
2297 @code{noexcept} specification to reduce or eliminate the text size
2298 overhead relative to a function with no exception specification. If
2299 the function has local variables of types with non-trivial
2300 destructors, the exception specification actually makes the
2301 function smaller because the EH cleanups for those variables can be
2302 optimized away. The semantic effect is that an exception thrown out of
2303 a function with such an exception specification results in a call
2304 to @code{terminate} rather than @code{unexpected}.
2305
2306 @item -fno-operator-names
2307 @opindex fno-operator-names
2308 Do not treat the operator name keywords @code{and}, @code{bitand},
2309 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2310 synonyms as keywords.
2311
2312 @item -fno-optional-diags
2313 @opindex fno-optional-diags
2314 Disable diagnostics that the standard says a compiler does not need to
2315 issue. Currently, the only such diagnostic issued by G++ is the one for
2316 a name having multiple meanings within a class.
2317
2318 @item -fpermissive
2319 @opindex fpermissive
2320 Downgrade some diagnostics about nonconformant code from errors to
2321 warnings. Thus, using @option{-fpermissive} allows some
2322 nonconforming code to compile.
2323
2324 @item -fno-pretty-templates
2325 @opindex fno-pretty-templates
2326 When an error message refers to a specialization of a function
2327 template, the compiler normally prints the signature of the
2328 template followed by the template arguments and any typedefs or
2329 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2330 rather than @code{void f(int)}) so that it's clear which template is
2331 involved. When an error message refers to a specialization of a class
2332 template, the compiler omits any template arguments that match
2333 the default template arguments for that template. If either of these
2334 behaviors make it harder to understand the error message rather than
2335 easier, you can use @option{-fno-pretty-templates} to disable them.
2336
2337 @item -frepo
2338 @opindex frepo
2339 Enable automatic template instantiation at link time. This option also
2340 implies @option{-fno-implicit-templates}. @xref{Template
2341 Instantiation}, for more information.
2342
2343 @item -fno-rtti
2344 @opindex fno-rtti
2345 Disable generation of information about every class with virtual
2346 functions for use by the C++ run-time type identification features
2347 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2348 of the language, you can save some space by using this flag. Note that
2349 exception handling uses the same information, but G++ generates it as
2350 needed. The @code{dynamic_cast} operator can still be used for casts that
2351 do not require run-time type information, i.e.@: casts to @code{void *} or to
2352 unambiguous base classes.
2353
2354 @item -fsized-deallocation
2355 @opindex fsized-deallocation
2356 Enable the built-in global declarations
2357 @smallexample
2358 void operator delete (void *, std::size_t) noexcept;
2359 void operator delete[] (void *, std::size_t) noexcept;
2360 @end smallexample
2361 as introduced in C++14. This is useful for user-defined replacement
2362 deallocation functions that, for example, use the size of the object
2363 to make deallocation faster. Enabled by default under
2364 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2365 warns about places that might want to add a definition.
2366
2367 @item -fstats
2368 @opindex fstats
2369 Emit statistics about front-end processing at the end of the compilation.
2370 This information is generally only useful to the G++ development team.
2371
2372 @item -fstrict-enums
2373 @opindex fstrict-enums
2374 Allow the compiler to optimize using the assumption that a value of
2375 enumerated type can only be one of the values of the enumeration (as
2376 defined in the C++ standard; basically, a value that can be
2377 represented in the minimum number of bits needed to represent all the
2378 enumerators). This assumption may not be valid if the program uses a
2379 cast to convert an arbitrary integer value to the enumerated type.
2380
2381 @item -ftemplate-backtrace-limit=@var{n}
2382 @opindex ftemplate-backtrace-limit
2383 Set the maximum number of template instantiation notes for a single
2384 warning or error to @var{n}. The default value is 10.
2385
2386 @item -ftemplate-depth=@var{n}
2387 @opindex ftemplate-depth
2388 Set the maximum instantiation depth for template classes to @var{n}.
2389 A limit on the template instantiation depth is needed to detect
2390 endless recursions during template class instantiation. ANSI/ISO C++
2391 conforming programs must not rely on a maximum depth greater than 17
2392 (changed to 1024 in C++11). The default value is 900, as the compiler
2393 can run out of stack space before hitting 1024 in some situations.
2394
2395 @item -fno-threadsafe-statics
2396 @opindex fno-threadsafe-statics
2397 Do not emit the extra code to use the routines specified in the C++
2398 ABI for thread-safe initialization of local statics. You can use this
2399 option to reduce code size slightly in code that doesn't need to be
2400 thread-safe.
2401
2402 @item -fuse-cxa-atexit
2403 @opindex fuse-cxa-atexit
2404 Register destructors for objects with static storage duration with the
2405 @code{__cxa_atexit} function rather than the @code{atexit} function.
2406 This option is required for fully standards-compliant handling of static
2407 destructors, but only works if your C library supports
2408 @code{__cxa_atexit}.
2409
2410 @item -fno-use-cxa-get-exception-ptr
2411 @opindex fno-use-cxa-get-exception-ptr
2412 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2413 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2414 if the runtime routine is not available.
2415
2416 @item -fvisibility-inlines-hidden
2417 @opindex fvisibility-inlines-hidden
2418 This switch declares that the user does not attempt to compare
2419 pointers to inline functions or methods where the addresses of the two functions
2420 are taken in different shared objects.
2421
2422 The effect of this is that GCC may, effectively, mark inline methods with
2423 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2424 appear in the export table of a DSO and do not require a PLT indirection
2425 when used within the DSO@. Enabling this option can have a dramatic effect
2426 on load and link times of a DSO as it massively reduces the size of the
2427 dynamic export table when the library makes heavy use of templates.
2428
2429 The behavior of this switch is not quite the same as marking the
2430 methods as hidden directly, because it does not affect static variables
2431 local to the function or cause the compiler to deduce that
2432 the function is defined in only one shared object.
2433
2434 You may mark a method as having a visibility explicitly to negate the
2435 effect of the switch for that method. For example, if you do want to
2436 compare pointers to a particular inline method, you might mark it as
2437 having default visibility. Marking the enclosing class with explicit
2438 visibility has no effect.
2439
2440 Explicitly instantiated inline methods are unaffected by this option
2441 as their linkage might otherwise cross a shared library boundary.
2442 @xref{Template Instantiation}.
2443
2444 @item -fvisibility-ms-compat
2445 @opindex fvisibility-ms-compat
2446 This flag attempts to use visibility settings to make GCC's C++
2447 linkage model compatible with that of Microsoft Visual Studio.
2448
2449 The flag makes these changes to GCC's linkage model:
2450
2451 @enumerate
2452 @item
2453 It sets the default visibility to @code{hidden}, like
2454 @option{-fvisibility=hidden}.
2455
2456 @item
2457 Types, but not their members, are not hidden by default.
2458
2459 @item
2460 The One Definition Rule is relaxed for types without explicit
2461 visibility specifications that are defined in more than one
2462 shared object: those declarations are permitted if they are
2463 permitted when this option is not used.
2464 @end enumerate
2465
2466 In new code it is better to use @option{-fvisibility=hidden} and
2467 export those classes that are intended to be externally visible.
2468 Unfortunately it is possible for code to rely, perhaps accidentally,
2469 on the Visual Studio behavior.
2470
2471 Among the consequences of these changes are that static data members
2472 of the same type with the same name but defined in different shared
2473 objects are different, so changing one does not change the other;
2474 and that pointers to function members defined in different shared
2475 objects may not compare equal. When this flag is given, it is a
2476 violation of the ODR to define types with the same name differently.
2477
2478 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2479 @opindex fvtable-verify
2480 Turn on (or off, if using @option{-fvtable-verify=none}) the security
2481 feature that verifies at run time, for every virtual call, that
2482 the vtable pointer through which the call is made is valid for the type of
2483 the object, and has not been corrupted or overwritten. If an invalid vtable
2484 pointer is detected at run time, an error is reported and execution of the
2485 program is immediately halted.
2486
2487 This option causes run-time data structures to be built at program startup,
2488 which are used for verifying the vtable pointers.
2489 The options @samp{std} and @samp{preinit}
2490 control the timing of when these data structures are built. In both cases the
2491 data structures are built before execution reaches @code{main}. Using
2492 @option{-fvtable-verify=std} causes the data structures to be built after
2493 shared libraries have been loaded and initialized.
2494 @option{-fvtable-verify=preinit} causes them to be built before shared
2495 libraries have been loaded and initialized.
2496
2497 If this option appears multiple times in the command line with different
2498 values specified, @samp{none} takes highest priority over both @samp{std} and
2499 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2500
2501 @item -fvtv-debug
2502 @opindex fvtv-debug
2503 When used in conjunction with @option{-fvtable-verify=std} or
2504 @option{-fvtable-verify=preinit}, causes debug versions of the
2505 runtime functions for the vtable verification feature to be called.
2506 This flag also causes the compiler to log information about which
2507 vtable pointers it finds for each class.
2508 This information is written to a file named @file{vtv_set_ptr_data.log}
2509 in the directory named by the environment variable @env{VTV_LOGS_DIR}
2510 if that is defined or the current working directory otherwise.
2511
2512 Note: This feature @emph{appends} data to the log file. If you want a fresh log
2513 file, be sure to delete any existing one.
2514
2515 @item -fvtv-counts
2516 @opindex fvtv-counts
2517 This is a debugging flag. When used in conjunction with
2518 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2519 causes the compiler to keep track of the total number of virtual calls
2520 it encounters and the number of verifications it inserts. It also
2521 counts the number of calls to certain run-time library functions
2522 that it inserts and logs this information for each compilation unit.
2523 The compiler writes this information to a file named
2524 @file{vtv_count_data.log} in the directory named by the environment
2525 variable @env{VTV_LOGS_DIR} if that is defined or the current working
2526 directory otherwise. It also counts the size of the vtable pointer sets
2527 for each class, and writes this information to @file{vtv_class_set_sizes.log}
2528 in the same directory.
2529
2530 Note: This feature @emph{appends} data to the log files. To get fresh log
2531 files, be sure to delete any existing ones.
2532
2533 @item -fno-weak
2534 @opindex fno-weak
2535 Do not use weak symbol support, even if it is provided by the linker.
2536 By default, G++ uses weak symbols if they are available. This
2537 option exists only for testing, and should not be used by end-users;
2538 it results in inferior code and has no benefits. This option may
2539 be removed in a future release of G++.
2540
2541 @item -nostdinc++
2542 @opindex nostdinc++
2543 Do not search for header files in the standard directories specific to
2544 C++, but do still search the other standard directories. (This option
2545 is used when building the C++ library.)
2546 @end table
2547
2548 In addition, these optimization, warning, and code generation options
2549 have meanings only for C++ programs:
2550
2551 @table @gcctabopt
2552 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2553 @opindex Wabi
2554 @opindex Wno-abi
2555 When an explicit @option{-fabi-version=@var{n}} option is used, causes
2556 G++ to warn when it generates code that is probably not compatible with the
2557 vendor-neutral C++ ABI@. Since G++ now defaults to
2558 @option{-fabi-version=0}, @option{-Wabi} has no effect unless either
2559 an older ABI version is selected (with @option{-fabi-version=@var{n}})
2560 or an older compatibility version is selected (with
2561 @option{-Wabi=@var{n}} or @option{-fabi-compat-version=@var{n}}).
2562
2563 Although an effort has been made to warn about
2564 all such cases, there are probably some cases that are not warned about,
2565 even though G++ is generating incompatible code. There may also be
2566 cases where warnings are emitted even though the code that is generated
2567 is compatible.
2568
2569 You should rewrite your code to avoid these warnings if you are
2570 concerned about the fact that code generated by G++ may not be binary
2571 compatible with code generated by other compilers.
2572
2573 @option{-Wabi} can also be used with an explicit version number to
2574 warn about compatibility with a particular @option{-fabi-version}
2575 level, e.g. @option{-Wabi=2} to warn about changes relative to
2576 @option{-fabi-version=2}. Specifying a version number also sets
2577 @option{-fabi-compat-version=@var{n}}.
2578
2579 The known incompatibilities in @option{-fabi-version=2} (which was the
2580 default from GCC 3.4 to 4.9) include:
2581
2582 @itemize @bullet
2583
2584 @item
2585 A template with a non-type template parameter of reference type was
2586 mangled incorrectly:
2587 @smallexample
2588 extern int N;
2589 template <int &> struct S @{@};
2590 void n (S<N>) @{2@}
2591 @end smallexample
2592
2593 This was fixed in @option{-fabi-version=3}.
2594
2595 @item
2596 SIMD vector types declared using @code{__attribute ((vector_size))} were
2597 mangled in a non-standard way that does not allow for overloading of
2598 functions taking vectors of different sizes.
2599
2600 The mangling was changed in @option{-fabi-version=4}.
2601
2602 @item
2603 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2604 qualifiers, and @code{decltype} of a plain declaration was folded away.
2605
2606 These mangling issues were fixed in @option{-fabi-version=5}.
2607
2608 @item
2609 Scoped enumerators passed as arguments to a variadic function are
2610 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2611 On most targets this does not actually affect the parameter passing
2612 ABI, as there is no way to pass an argument smaller than @code{int}.
2613
2614 Also, the ABI changed the mangling of template argument packs,
2615 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2616 a class scope function used as a template argument.
2617
2618 These issues were corrected in @option{-fabi-version=6}.
2619
2620 @item
2621 Lambdas in default argument scope were mangled incorrectly, and the
2622 ABI changed the mangling of @code{nullptr_t}.
2623
2624 These issues were corrected in @option{-fabi-version=7}.
2625
2626 @item
2627 When mangling a function type with function-cv-qualifiers, the
2628 un-qualified function type was incorrectly treated as a substitution
2629 candidate.
2630
2631 This was fixed in @option{-fabi-version=8}.
2632 @end itemize
2633
2634 It also warns about psABI-related changes. The known psABI changes at this
2635 point include:
2636
2637 @itemize @bullet
2638
2639 @item
2640 For SysV/x86-64, unions with @code{long double} members are
2641 passed in memory as specified in psABI. For example:
2642
2643 @smallexample
2644 union U @{
2645 long double ld;
2646 int i;
2647 @};
2648 @end smallexample
2649
2650 @noindent
2651 @code{union U} is always passed in memory.
2652
2653 @end itemize
2654
2655 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2656 @opindex Wabi-tag
2657 @opindex -Wabi-tag
2658 Warn when a type with an ABI tag is used in a context that does not
2659 have that ABI tag. See @ref{C++ Attributes} for more information
2660 about ABI tags.
2661
2662 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2663 @opindex Wctor-dtor-privacy
2664 @opindex Wno-ctor-dtor-privacy
2665 Warn when a class seems unusable because all the constructors or
2666 destructors in that class are private, and it has neither friends nor
2667 public static member functions. Also warn if there are no non-private
2668 methods, and there's at least one private member function that isn't
2669 a constructor or destructor.
2670
2671 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2672 @opindex Wdelete-non-virtual-dtor
2673 @opindex Wno-delete-non-virtual-dtor
2674 Warn when @code{delete} is used to destroy an instance of a class that
2675 has virtual functions and non-virtual destructor. It is unsafe to delete
2676 an instance of a derived class through a pointer to a base class if the
2677 base class does not have a virtual destructor. This warning is enabled
2678 by @option{-Wall}.
2679
2680 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2681 @opindex Wliteral-suffix
2682 @opindex Wno-literal-suffix
2683 Warn when a string or character literal is followed by a ud-suffix which does
2684 not begin with an underscore. As a conforming extension, GCC treats such
2685 suffixes as separate preprocessing tokens in order to maintain backwards
2686 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2687 For example:
2688
2689 @smallexample
2690 #define __STDC_FORMAT_MACROS
2691 #include <inttypes.h>
2692 #include <stdio.h>
2693
2694 int main() @{
2695 int64_t i64 = 123;
2696 printf("My int64: %" PRId64"\n", i64);
2697 @}
2698 @end smallexample
2699
2700 In this case, @code{PRId64} is treated as a separate preprocessing token.
2701
2702 This warning is enabled by default.
2703
2704 @item -Wlto-type-mismatch
2705 @opindex Wlto-type-mismatch
2706 @opindex Wno-lto-type-mistmach
2707
2708 During the link-time optimization warn about type mismatches in between
2709 global declarations from different compilation units.
2710 Requires @option{-flto} to be enabled. Enabled by default.
2711
2712 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2713 @opindex Wnarrowing
2714 @opindex Wno-narrowing
2715 Warn when a narrowing conversion prohibited by C++11 occurs within
2716 @samp{@{ @}}, e.g.
2717
2718 @smallexample
2719 int i = @{ 2.2 @}; // error: narrowing from double to int
2720 @end smallexample
2721
2722 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2723
2724 With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2725 required by the standard. Note that this does not affect the meaning
2726 of well-formed code; narrowing conversions are still considered
2727 ill-formed in SFINAE context.
2728
2729 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2730 @opindex Wnoexcept
2731 @opindex Wno-noexcept
2732 Warn when a noexcept-expression evaluates to false because of a call
2733 to a function that does not have a non-throwing exception
2734 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2735 the compiler to never throw an exception.
2736
2737 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2738 @opindex Wnon-virtual-dtor
2739 @opindex Wno-non-virtual-dtor
2740 Warn when a class has virtual functions and an accessible non-virtual
2741 destructor itself or in an accessible polymorphic base class, in which
2742 case it is possible but unsafe to delete an instance of a derived
2743 class through a pointer to the class itself or base class. This
2744 warning is automatically enabled if @option{-Weffc++} is specified.
2745
2746 @item -Wreorder @r{(C++ and Objective-C++ only)}
2747 @opindex Wreorder
2748 @opindex Wno-reorder
2749 @cindex reordering, warning
2750 @cindex warning for reordering of member initializers
2751 Warn when the order of member initializers given in the code does not
2752 match the order in which they must be executed. For instance:
2753
2754 @smallexample
2755 struct A @{
2756 int i;
2757 int j;
2758 A(): j (0), i (1) @{ @}
2759 @};
2760 @end smallexample
2761
2762 @noindent
2763 The compiler rearranges the member initializers for @code{i}
2764 and @code{j} to match the declaration order of the members, emitting
2765 a warning to that effect. This warning is enabled by @option{-Wall}.
2766
2767 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2768 @opindex fext-numeric-literals
2769 @opindex fno-ext-numeric-literals
2770 Accept imaginary, fixed-point, or machine-defined
2771 literal number suffixes as GNU extensions.
2772 When this option is turned off these suffixes are treated
2773 as C++11 user-defined literal numeric suffixes.
2774 This is on by default for all pre-C++11 dialects and all GNU dialects:
2775 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2776 @option{-std=gnu++14}.
2777 This option is off by default
2778 for ISO C++11 onwards (@option{-std=c++11}, ...).
2779 @end table
2780
2781 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2782
2783 @table @gcctabopt
2784 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2785 @opindex Weffc++
2786 @opindex Wno-effc++
2787 Warn about violations of the following style guidelines from Scott Meyers'
2788 @cite{Effective C++} series of books:
2789
2790 @itemize @bullet
2791 @item
2792 Define a copy constructor and an assignment operator for classes
2793 with dynamically-allocated memory.
2794
2795 @item
2796 Prefer initialization to assignment in constructors.
2797
2798 @item
2799 Have @code{operator=} return a reference to @code{*this}.
2800
2801 @item
2802 Don't try to return a reference when you must return an object.
2803
2804 @item
2805 Distinguish between prefix and postfix forms of increment and
2806 decrement operators.
2807
2808 @item
2809 Never overload @code{&&}, @code{||}, or @code{,}.
2810
2811 @end itemize
2812
2813 This option also enables @option{-Wnon-virtual-dtor}, which is also
2814 one of the effective C++ recommendations. However, the check is
2815 extended to warn about the lack of virtual destructor in accessible
2816 non-polymorphic bases classes too.
2817
2818 When selecting this option, be aware that the standard library
2819 headers do not obey all of these guidelines; use @samp{grep -v}
2820 to filter out those warnings.
2821
2822 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2823 @opindex Wstrict-null-sentinel
2824 @opindex Wno-strict-null-sentinel
2825 Warn about the use of an uncasted @code{NULL} as sentinel. When
2826 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2827 to @code{__null}. Although it is a null pointer constant rather than a
2828 null pointer, it is guaranteed to be of the same size as a pointer.
2829 But this use is not portable across different compilers.
2830
2831 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2832 @opindex Wno-non-template-friend
2833 @opindex Wnon-template-friend
2834 Disable warnings when non-templatized friend functions are declared
2835 within a template. Since the advent of explicit template specification
2836 support in G++, if the name of the friend is an unqualified-id (i.e.,
2837 @samp{friend foo(int)}), the C++ language specification demands that the
2838 friend declare or define an ordinary, nontemplate function. (Section
2839 14.5.3). Before G++ implemented explicit specification, unqualified-ids
2840 could be interpreted as a particular specialization of a templatized
2841 function. Because this non-conforming behavior is no longer the default
2842 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2843 check existing code for potential trouble spots and is on by default.
2844 This new compiler behavior can be turned off with
2845 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2846 but disables the helpful warning.
2847
2848 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2849 @opindex Wold-style-cast
2850 @opindex Wno-old-style-cast
2851 Warn if an old-style (C-style) cast to a non-void type is used within
2852 a C++ program. The new-style casts (@code{dynamic_cast},
2853 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2854 less vulnerable to unintended effects and much easier to search for.
2855
2856 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2857 @opindex Woverloaded-virtual
2858 @opindex Wno-overloaded-virtual
2859 @cindex overloaded virtual function, warning
2860 @cindex warning for overloaded virtual function
2861 Warn when a function declaration hides virtual functions from a
2862 base class. For example, in:
2863
2864 @smallexample
2865 struct A @{
2866 virtual void f();
2867 @};
2868
2869 struct B: public A @{
2870 void f(int);
2871 @};
2872 @end smallexample
2873
2874 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2875 like:
2876
2877 @smallexample
2878 B* b;
2879 b->f();
2880 @end smallexample
2881
2882 @noindent
2883 fails to compile.
2884
2885 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2886 @opindex Wno-pmf-conversions
2887 @opindex Wpmf-conversions
2888 Disable the diagnostic for converting a bound pointer to member function
2889 to a plain pointer.
2890
2891 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
2892 @opindex Wsign-promo
2893 @opindex Wno-sign-promo
2894 Warn when overload resolution chooses a promotion from unsigned or
2895 enumerated type to a signed type, over a conversion to an unsigned type of
2896 the same size. Previous versions of G++ tried to preserve
2897 unsignedness, but the standard mandates the current behavior.
2898
2899 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
2900 @opindex Wterminate
2901 @opindex Wno-terminate
2902 Disable the warning about a throw-expression that will immediately
2903 result in a call to @code{terminate}.
2904 @end table
2905
2906 @node Objective-C and Objective-C++ Dialect Options
2907 @section Options Controlling Objective-C and Objective-C++ Dialects
2908
2909 @cindex compiler options, Objective-C and Objective-C++
2910 @cindex Objective-C and Objective-C++ options, command-line
2911 @cindex options, Objective-C and Objective-C++
2912 (NOTE: This manual does not describe the Objective-C and Objective-C++
2913 languages themselves. @xref{Standards,,Language Standards
2914 Supported by GCC}, for references.)
2915
2916 This section describes the command-line options that are only meaningful
2917 for Objective-C and Objective-C++ programs. You can also use most of
2918 the language-independent GNU compiler options.
2919 For example, you might compile a file @file{some_class.m} like this:
2920
2921 @smallexample
2922 gcc -g -fgnu-runtime -O -c some_class.m
2923 @end smallexample
2924
2925 @noindent
2926 In this example, @option{-fgnu-runtime} is an option meant only for
2927 Objective-C and Objective-C++ programs; you can use the other options with
2928 any language supported by GCC@.
2929
2930 Note that since Objective-C is an extension of the C language, Objective-C
2931 compilations may also use options specific to the C front-end (e.g.,
2932 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
2933 C++-specific options (e.g., @option{-Wabi}).
2934
2935 Here is a list of options that are @emph{only} for compiling Objective-C
2936 and Objective-C++ programs:
2937
2938 @table @gcctabopt
2939 @item -fconstant-string-class=@var{class-name}
2940 @opindex fconstant-string-class
2941 Use @var{class-name} as the name of the class to instantiate for each
2942 literal string specified with the syntax @code{@@"@dots{}"}. The default
2943 class name is @code{NXConstantString} if the GNU runtime is being used, and
2944 @code{NSConstantString} if the NeXT runtime is being used (see below). The
2945 @option{-fconstant-cfstrings} option, if also present, overrides the
2946 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
2947 to be laid out as constant CoreFoundation strings.
2948
2949 @item -fgnu-runtime
2950 @opindex fgnu-runtime
2951 Generate object code compatible with the standard GNU Objective-C
2952 runtime. This is the default for most types of systems.
2953
2954 @item -fnext-runtime
2955 @opindex fnext-runtime
2956 Generate output compatible with the NeXT runtime. This is the default
2957 for NeXT-based systems, including Darwin and Mac OS X@. The macro
2958 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
2959 used.
2960
2961 @item -fno-nil-receivers
2962 @opindex fno-nil-receivers
2963 Assume that all Objective-C message dispatches (@code{[receiver
2964 message:arg]}) in this translation unit ensure that the receiver is
2965 not @code{nil}. This allows for more efficient entry points in the
2966 runtime to be used. This option is only available in conjunction with
2967 the NeXT runtime and ABI version 0 or 1.
2968
2969 @item -fobjc-abi-version=@var{n}
2970 @opindex fobjc-abi-version
2971 Use version @var{n} of the Objective-C ABI for the selected runtime.
2972 This option is currently supported only for the NeXT runtime. In that
2973 case, Version 0 is the traditional (32-bit) ABI without support for
2974 properties and other Objective-C 2.0 additions. Version 1 is the
2975 traditional (32-bit) ABI with support for properties and other
2976 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
2977 nothing is specified, the default is Version 0 on 32-bit target
2978 machines, and Version 2 on 64-bit target machines.
2979
2980 @item -fobjc-call-cxx-cdtors
2981 @opindex fobjc-call-cxx-cdtors
2982 For each Objective-C class, check if any of its instance variables is a
2983 C++ object with a non-trivial default constructor. If so, synthesize a
2984 special @code{- (id) .cxx_construct} instance method which runs
2985 non-trivial default constructors on any such instance variables, in order,
2986 and then return @code{self}. Similarly, check if any instance variable
2987 is a C++ object with a non-trivial destructor, and if so, synthesize a
2988 special @code{- (void) .cxx_destruct} method which runs
2989 all such default destructors, in reverse order.
2990
2991 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
2992 methods thusly generated only operate on instance variables
2993 declared in the current Objective-C class, and not those inherited
2994 from superclasses. It is the responsibility of the Objective-C
2995 runtime to invoke all such methods in an object's inheritance
2996 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
2997 by the runtime immediately after a new object instance is allocated;
2998 the @code{- (void) .cxx_destruct} methods are invoked immediately
2999 before the runtime deallocates an object instance.
3000
3001 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3002 support for invoking the @code{- (id) .cxx_construct} and
3003 @code{- (void) .cxx_destruct} methods.
3004
3005 @item -fobjc-direct-dispatch
3006 @opindex fobjc-direct-dispatch
3007 Allow fast jumps to the message dispatcher. On Darwin this is
3008 accomplished via the comm page.
3009
3010 @item -fobjc-exceptions
3011 @opindex fobjc-exceptions
3012 Enable syntactic support for structured exception handling in
3013 Objective-C, similar to what is offered by C++ and Java. This option
3014 is required to use the Objective-C keywords @code{@@try},
3015 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3016 @code{@@synchronized}. This option is available with both the GNU
3017 runtime and the NeXT runtime (but not available in conjunction with
3018 the NeXT runtime on Mac OS X 10.2 and earlier).
3019
3020 @item -fobjc-gc
3021 @opindex fobjc-gc
3022 Enable garbage collection (GC) in Objective-C and Objective-C++
3023 programs. This option is only available with the NeXT runtime; the
3024 GNU runtime has a different garbage collection implementation that
3025 does not require special compiler flags.
3026
3027 @item -fobjc-nilcheck
3028 @opindex fobjc-nilcheck
3029 For the NeXT runtime with version 2 of the ABI, check for a nil
3030 receiver in method invocations before doing the actual method call.
3031 This is the default and can be disabled using
3032 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3033 checked for nil in this way no matter what this flag is set to.
3034 Currently this flag does nothing when the GNU runtime, or an older
3035 version of the NeXT runtime ABI, is used.
3036
3037 @item -fobjc-std=objc1
3038 @opindex fobjc-std
3039 Conform to the language syntax of Objective-C 1.0, the language
3040 recognized by GCC 4.0. This only affects the Objective-C additions to
3041 the C/C++ language; it does not affect conformance to C/C++ standards,
3042 which is controlled by the separate C/C++ dialect option flags. When
3043 this option is used with the Objective-C or Objective-C++ compiler,
3044 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3045 This is useful if you need to make sure that your Objective-C code can
3046 be compiled with older versions of GCC@.
3047
3048 @item -freplace-objc-classes
3049 @opindex freplace-objc-classes
3050 Emit a special marker instructing @command{ld(1)} not to statically link in
3051 the resulting object file, and allow @command{dyld(1)} to load it in at
3052 run time instead. This is used in conjunction with the Fix-and-Continue
3053 debugging mode, where the object file in question may be recompiled and
3054 dynamically reloaded in the course of program execution, without the need
3055 to restart the program itself. Currently, Fix-and-Continue functionality
3056 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3057 and later.
3058
3059 @item -fzero-link
3060 @opindex fzero-link
3061 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3062 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3063 compile time) with static class references that get initialized at load time,
3064 which improves run-time performance. Specifying the @option{-fzero-link} flag
3065 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3066 to be retained. This is useful in Zero-Link debugging mode, since it allows
3067 for individual class implementations to be modified during program execution.
3068 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3069 regardless of command-line options.
3070
3071 @item -fno-local-ivars
3072 @opindex fno-local-ivars
3073 @opindex flocal-ivars
3074 By default instance variables in Objective-C can be accessed as if
3075 they were local variables from within the methods of the class they're
3076 declared in. This can lead to shadowing between instance variables
3077 and other variables declared either locally inside a class method or
3078 globally with the same name. Specifying the @option{-fno-local-ivars}
3079 flag disables this behavior thus avoiding variable shadowing issues.
3080
3081 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3082 @opindex fivar-visibility
3083 Set the default instance variable visibility to the specified option
3084 so that instance variables declared outside the scope of any access
3085 modifier directives default to the specified visibility.
3086
3087 @item -gen-decls
3088 @opindex gen-decls
3089 Dump interface declarations for all classes seen in the source file to a
3090 file named @file{@var{sourcename}.decl}.
3091
3092 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3093 @opindex Wassign-intercept
3094 @opindex Wno-assign-intercept
3095 Warn whenever an Objective-C assignment is being intercepted by the
3096 garbage collector.
3097
3098 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3099 @opindex Wno-protocol
3100 @opindex Wprotocol
3101 If a class is declared to implement a protocol, a warning is issued for
3102 every method in the protocol that is not implemented by the class. The
3103 default behavior is to issue a warning for every method not explicitly
3104 implemented in the class, even if a method implementation is inherited
3105 from the superclass. If you use the @option{-Wno-protocol} option, then
3106 methods inherited from the superclass are considered to be implemented,
3107 and no warning is issued for them.
3108
3109 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3110 @opindex Wselector
3111 @opindex Wno-selector
3112 Warn if multiple methods of different types for the same selector are
3113 found during compilation. The check is performed on the list of methods
3114 in the final stage of compilation. Additionally, a check is performed
3115 for each selector appearing in a @code{@@selector(@dots{})}
3116 expression, and a corresponding method for that selector has been found
3117 during compilation. Because these checks scan the method table only at
3118 the end of compilation, these warnings are not produced if the final
3119 stage of compilation is not reached, for example because an error is
3120 found during compilation, or because the @option{-fsyntax-only} option is
3121 being used.
3122
3123 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3124 @opindex Wstrict-selector-match
3125 @opindex Wno-strict-selector-match
3126 Warn if multiple methods with differing argument and/or return types are
3127 found for a given selector when attempting to send a message using this
3128 selector to a receiver of type @code{id} or @code{Class}. When this flag
3129 is off (which is the default behavior), the compiler omits such warnings
3130 if any differences found are confined to types that share the same size
3131 and alignment.
3132
3133 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3134 @opindex Wundeclared-selector
3135 @opindex Wno-undeclared-selector
3136 Warn if a @code{@@selector(@dots{})} expression referring to an
3137 undeclared selector is found. A selector is considered undeclared if no
3138 method with that name has been declared before the
3139 @code{@@selector(@dots{})} expression, either explicitly in an
3140 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3141 an @code{@@implementation} section. This option always performs its
3142 checks as soon as a @code{@@selector(@dots{})} expression is found,
3143 while @option{-Wselector} only performs its checks in the final stage of
3144 compilation. This also enforces the coding style convention
3145 that methods and selectors must be declared before being used.
3146
3147 @item -print-objc-runtime-info
3148 @opindex print-objc-runtime-info
3149 Generate C header describing the largest structure that is passed by
3150 value, if any.
3151
3152 @end table
3153
3154 @node Language Independent Options
3155 @section Options to Control Diagnostic Messages Formatting
3156 @cindex options to control diagnostics formatting
3157 @cindex diagnostic messages
3158 @cindex message formatting
3159
3160 Traditionally, diagnostic messages have been formatted irrespective of
3161 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3162 options described below
3163 to control the formatting algorithm for diagnostic messages,
3164 e.g.@: how many characters per line, how often source location
3165 information should be reported. Note that some language front ends may not
3166 honor these options.
3167
3168 @table @gcctabopt
3169 @item -fmessage-length=@var{n}
3170 @opindex fmessage-length
3171 Try to format error messages so that they fit on lines of about
3172 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3173 done; each error message appears on a single line. This is the
3174 default for all front ends.
3175
3176 @item -fdiagnostics-show-location=once
3177 @opindex fdiagnostics-show-location
3178 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3179 reporter to emit source location information @emph{once}; that is, in
3180 case the message is too long to fit on a single physical line and has to
3181 be wrapped, the source location won't be emitted (as prefix) again,
3182 over and over, in subsequent continuation lines. This is the default
3183 behavior.
3184
3185 @item -fdiagnostics-show-location=every-line
3186 Only meaningful in line-wrapping mode. Instructs the diagnostic
3187 messages reporter to emit the same source location information (as
3188 prefix) for physical lines that result from the process of breaking
3189 a message which is too long to fit on a single line.
3190
3191 @item -fdiagnostics-color[=@var{WHEN}]
3192 @itemx -fno-diagnostics-color
3193 @opindex fdiagnostics-color
3194 @cindex highlight, color, colour
3195 @vindex GCC_COLORS @r{environment variable}
3196 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3197 or @samp{auto}. The default depends on how the compiler has been configured,
3198 it can be any of the above @var{WHEN} options or also @samp{never}
3199 if @env{GCC_COLORS} environment variable isn't present in the environment,
3200 and @samp{auto} otherwise.
3201 @samp{auto} means to use color only when the standard error is a terminal.
3202 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3203 aliases for @option{-fdiagnostics-color=always} and
3204 @option{-fdiagnostics-color=never}, respectively.
3205
3206 The colors are defined by the environment variable @env{GCC_COLORS}.
3207 Its value is a colon-separated list of capabilities and Select Graphic
3208 Rendition (SGR) substrings. SGR commands are interpreted by the
3209 terminal or terminal emulator. (See the section in the documentation
3210 of your text terminal for permitted values and their meanings as
3211 character attributes.) These substring values are integers in decimal
3212 representation and can be concatenated with semicolons.
3213 Common values to concatenate include
3214 @samp{1} for bold,
3215 @samp{4} for underline,
3216 @samp{5} for blink,
3217 @samp{7} for inverse,
3218 @samp{39} for default foreground color,
3219 @samp{30} to @samp{37} for foreground colors,
3220 @samp{90} to @samp{97} for 16-color mode foreground colors,
3221 @samp{38;5;0} to @samp{38;5;255}
3222 for 88-color and 256-color modes foreground colors,
3223 @samp{49} for default background color,
3224 @samp{40} to @samp{47} for background colors,
3225 @samp{100} to @samp{107} for 16-color mode background colors,
3226 and @samp{48;5;0} to @samp{48;5;255}
3227 for 88-color and 256-color modes background colors.
3228
3229 The default @env{GCC_COLORS} is
3230 @smallexample
3231 error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3232 @end smallexample
3233 @noindent
3234 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3235 @samp{01;36} is bold cyan, @samp{01;32} is bold green and
3236 @samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3237 string disables colors.
3238 Supported capabilities are as follows.
3239
3240 @table @code
3241 @item error=
3242 @vindex error GCC_COLORS @r{capability}
3243 SGR substring for error: markers.
3244
3245 @item warning=
3246 @vindex warning GCC_COLORS @r{capability}
3247 SGR substring for warning: markers.
3248
3249 @item note=
3250 @vindex note GCC_COLORS @r{capability}
3251 SGR substring for note: markers.
3252
3253 @item caret=
3254 @vindex caret GCC_COLORS @r{capability}
3255 SGR substring for caret line.
3256
3257 @item locus=
3258 @vindex locus GCC_COLORS @r{capability}
3259 SGR substring for location information, @samp{file:line} or
3260 @samp{file:line:column} etc.
3261
3262 @item quote=
3263 @vindex quote GCC_COLORS @r{capability}
3264 SGR substring for information printed within quotes.
3265 @end table
3266
3267 @item -fno-diagnostics-show-option
3268 @opindex fno-diagnostics-show-option
3269 @opindex fdiagnostics-show-option
3270 By default, each diagnostic emitted includes text indicating the
3271 command-line option that directly controls the diagnostic (if such an
3272 option is known to the diagnostic machinery). Specifying the
3273 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3274
3275 @item -fno-diagnostics-show-caret
3276 @opindex fno-diagnostics-show-caret
3277 @opindex fdiagnostics-show-caret
3278 By default, each diagnostic emitted includes the original source line
3279 and a caret '^' indicating the column. This option suppresses this
3280 information. The source line is truncated to @var{n} characters, if
3281 the @option{-fmessage-length=n} option is given. When the output is done
3282 to the terminal, the width is limited to the width given by the
3283 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3284
3285 @end table
3286
3287 @node Warning Options
3288 @section Options to Request or Suppress Warnings
3289 @cindex options to control warnings
3290 @cindex warning messages
3291 @cindex messages, warning
3292 @cindex suppressing warnings
3293
3294 Warnings are diagnostic messages that report constructions that
3295 are not inherently erroneous but that are risky or suggest there
3296 may have been an error.
3297
3298 The following language-independent options do not enable specific
3299 warnings but control the kinds of diagnostics produced by GCC@.
3300
3301 @table @gcctabopt
3302 @cindex syntax checking
3303 @item -fsyntax-only
3304 @opindex fsyntax-only
3305 Check the code for syntax errors, but don't do anything beyond that.
3306
3307 @item -fmax-errors=@var{n}
3308 @opindex fmax-errors
3309 Limits the maximum number of error messages to @var{n}, at which point
3310 GCC bails out rather than attempting to continue processing the source
3311 code. If @var{n} is 0 (the default), there is no limit on the number
3312 of error messages produced. If @option{-Wfatal-errors} is also
3313 specified, then @option{-Wfatal-errors} takes precedence over this
3314 option.
3315
3316 @item -w
3317 @opindex w
3318 Inhibit all warning messages.
3319
3320 @item -Werror
3321 @opindex Werror
3322 @opindex Wno-error
3323 Make all warnings into errors.
3324
3325 @item -Werror=
3326 @opindex Werror=
3327 @opindex Wno-error=
3328 Make the specified warning into an error. The specifier for a warning
3329 is appended; for example @option{-Werror=switch} turns the warnings
3330 controlled by @option{-Wswitch} into errors. This switch takes a
3331 negative form, to be used to negate @option{-Werror} for specific
3332 warnings; for example @option{-Wno-error=switch} makes
3333 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3334 is in effect.
3335
3336 The warning message for each controllable warning includes the
3337 option that controls the warning. That option can then be used with
3338 @option{-Werror=} and @option{-Wno-error=} as described above.
3339 (Printing of the option in the warning message can be disabled using the
3340 @option{-fno-diagnostics-show-option} flag.)
3341
3342 Note that specifying @option{-Werror=}@var{foo} automatically implies
3343 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3344 imply anything.
3345
3346 @item -Wfatal-errors
3347 @opindex Wfatal-errors
3348 @opindex Wno-fatal-errors
3349 This option causes the compiler to abort compilation on the first error
3350 occurred rather than trying to keep going and printing further error
3351 messages.
3352
3353 @end table
3354
3355 You can request many specific warnings with options beginning with
3356 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3357 implicit declarations. Each of these specific warning options also
3358 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3359 example, @option{-Wno-implicit}. This manual lists only one of the
3360 two forms, whichever is not the default. For further
3361 language-specific options also refer to @ref{C++ Dialect Options} and
3362 @ref{Objective-C and Objective-C++ Dialect Options}.
3363
3364 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3365 options, such as @option{-Wunused}, which may turn on further options,
3366 such as @option{-Wunused-value}. The combined effect of positive and
3367 negative forms is that more specific options have priority over less
3368 specific ones, independently of their position in the command-line. For
3369 options of the same specificity, the last one takes effect. Options
3370 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3371 as if they appeared at the end of the command-line.
3372
3373 When an unrecognized warning option is requested (e.g.,
3374 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3375 that the option is not recognized. However, if the @option{-Wno-} form
3376 is used, the behavior is slightly different: no diagnostic is
3377 produced for @option{-Wno-unknown-warning} unless other diagnostics
3378 are being produced. This allows the use of new @option{-Wno-} options
3379 with old compilers, but if something goes wrong, the compiler
3380 warns that an unrecognized option is present.
3381
3382 @table @gcctabopt
3383 @item -Wpedantic
3384 @itemx -pedantic
3385 @opindex pedantic
3386 @opindex Wpedantic
3387 Issue all the warnings demanded by strict ISO C and ISO C++;
3388 reject all programs that use forbidden extensions, and some other
3389 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3390 version of the ISO C standard specified by any @option{-std} option used.
3391
3392 Valid ISO C and ISO C++ programs should compile properly with or without
3393 this option (though a rare few require @option{-ansi} or a
3394 @option{-std} option specifying the required version of ISO C)@. However,
3395 without this option, certain GNU extensions and traditional C and C++
3396 features are supported as well. With this option, they are rejected.
3397
3398 @option{-Wpedantic} does not cause warning messages for use of the
3399 alternate keywords whose names begin and end with @samp{__}. Pedantic
3400 warnings are also disabled in the expression that follows
3401 @code{__extension__}. However, only system header files should use
3402 these escape routes; application programs should avoid them.
3403 @xref{Alternate Keywords}.
3404
3405 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3406 C conformance. They soon find that it does not do quite what they want:
3407 it finds some non-ISO practices, but not all---only those for which
3408 ISO C @emph{requires} a diagnostic, and some others for which
3409 diagnostics have been added.
3410
3411 A feature to report any failure to conform to ISO C might be useful in
3412 some instances, but would require considerable additional work and would
3413 be quite different from @option{-Wpedantic}. We don't have plans to
3414 support such a feature in the near future.
3415
3416 Where the standard specified with @option{-std} represents a GNU
3417 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3418 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3419 extended dialect is based. Warnings from @option{-Wpedantic} are given
3420 where they are required by the base standard. (It does not make sense
3421 for such warnings to be given only for features not in the specified GNU
3422 C dialect, since by definition the GNU dialects of C include all
3423 features the compiler supports with the given option, and there would be
3424 nothing to warn about.)
3425
3426 @item -pedantic-errors
3427 @opindex pedantic-errors
3428 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3429 requires a diagnostic, in some cases where there is undefined behavior
3430 at compile-time and in some other cases that do not prevent compilation
3431 of programs that are valid according to the standard. This is not
3432 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3433 by this option and not enabled by the latter and vice versa.
3434
3435 @item -Wall
3436 @opindex Wall
3437 @opindex Wno-all
3438 This enables all the warnings about constructions that some users
3439 consider questionable, and that are easy to avoid (or modify to
3440 prevent the warning), even in conjunction with macros. This also
3441 enables some language-specific warnings described in @ref{C++ Dialect
3442 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3443
3444 @option{-Wall} turns on the following warning flags:
3445
3446 @gccoptlist{-Waddress @gol
3447 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3448 -Wc++11-compat -Wc++14-compat@gol
3449 -Wchar-subscripts @gol
3450 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3451 -Wimplicit-int @r{(C and Objective-C only)} @gol
3452 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3453 -Wcomment @gol
3454 -Wformat @gol
3455 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3456 -Wmaybe-uninitialized @gol
3457 -Wmissing-braces @r{(only for C/ObjC)} @gol
3458 -Wnonnull @gol
3459 -Wopenmp-simd @gol
3460 -Wparentheses @gol
3461 -Wpointer-sign @gol
3462 -Wreorder @gol
3463 -Wreturn-type @gol
3464 -Wsequence-point @gol
3465 -Wsign-compare @r{(only in C++)} @gol
3466 -Wstrict-aliasing @gol
3467 -Wstrict-overflow=1 @gol
3468 -Wswitch @gol
3469 -Wtrigraphs @gol
3470 -Wuninitialized @gol
3471 -Wunknown-pragmas @gol
3472 -Wunused-function @gol
3473 -Wunused-label @gol
3474 -Wunused-value @gol
3475 -Wunused-variable @gol
3476 -Wvolatile-register-var @gol
3477 }
3478
3479 Note that some warning flags are not implied by @option{-Wall}. Some of
3480 them warn about constructions that users generally do not consider
3481 questionable, but which occasionally you might wish to check for;
3482 others warn about constructions that are necessary or hard to avoid in
3483 some cases, and there is no simple way to modify the code to suppress
3484 the warning. Some of them are enabled by @option{-Wextra} but many of
3485 them must be enabled individually.
3486
3487 @item -Wextra
3488 @opindex W
3489 @opindex Wextra
3490 @opindex Wno-extra
3491 This enables some extra warning flags that are not enabled by
3492 @option{-Wall}. (This option used to be called @option{-W}. The older
3493 name is still supported, but the newer name is more descriptive.)
3494
3495 @gccoptlist{-Wclobbered @gol
3496 -Wempty-body @gol
3497 -Wignored-qualifiers @gol
3498 -Wmissing-field-initializers @gol
3499 -Wmissing-parameter-type @r{(C only)} @gol
3500 -Wold-style-declaration @r{(C only)} @gol
3501 -Woverride-init @gol
3502 -Wsign-compare @gol
3503 -Wtype-limits @gol
3504 -Wuninitialized @gol
3505 -Wshift-negative-value @gol
3506 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3507 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3508 }
3509
3510 The option @option{-Wextra} also prints warning messages for the
3511 following cases:
3512
3513 @itemize @bullet
3514
3515 @item
3516 A pointer is compared against integer zero with @code{<}, @code{<=},
3517 @code{>}, or @code{>=}.
3518
3519 @item
3520 (C++ only) An enumerator and a non-enumerator both appear in a
3521 conditional expression.
3522
3523 @item
3524 (C++ only) Ambiguous virtual bases.
3525
3526 @item
3527 (C++ only) Subscripting an array that has been declared @code{register}.
3528
3529 @item
3530 (C++ only) Taking the address of a variable that has been declared
3531 @code{register}.
3532
3533 @item
3534 (C++ only) A base class is not initialized in a derived class's copy
3535 constructor.
3536
3537 @end itemize
3538
3539 @item -Wchar-subscripts
3540 @opindex Wchar-subscripts
3541 @opindex Wno-char-subscripts
3542 Warn if an array subscript has type @code{char}. This is a common cause
3543 of error, as programmers often forget that this type is signed on some
3544 machines.
3545 This warning is enabled by @option{-Wall}.
3546
3547 @item -Wcomment
3548 @opindex Wcomment
3549 @opindex Wno-comment
3550 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3551 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3552 This warning is enabled by @option{-Wall}.
3553
3554 @item -Wno-coverage-mismatch
3555 @opindex Wno-coverage-mismatch
3556 Warn if feedback profiles do not match when using the
3557 @option{-fprofile-use} option.
3558 If a source file is changed between compiling with @option{-fprofile-gen} and
3559 with @option{-fprofile-use}, the files with the profile feedback can fail
3560 to match the source file and GCC cannot use the profile feedback
3561 information. By default, this warning is enabled and is treated as an
3562 error. @option{-Wno-coverage-mismatch} can be used to disable the
3563 warning or @option{-Wno-error=coverage-mismatch} can be used to
3564 disable the error. Disabling the error for this warning can result in
3565 poorly optimized code and is useful only in the
3566 case of very minor changes such as bug fixes to an existing code-base.
3567 Completely disabling the warning is not recommended.
3568
3569 @item -Wno-cpp
3570 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3571
3572 Suppress warning messages emitted by @code{#warning} directives.
3573
3574 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3575 @opindex Wdouble-promotion
3576 @opindex Wno-double-promotion
3577 Give a warning when a value of type @code{float} is implicitly
3578 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3579 floating-point unit implement @code{float} in hardware, but emulate
3580 @code{double} in software. On such a machine, doing computations
3581 using @code{double} values is much more expensive because of the
3582 overhead required for software emulation.
3583
3584 It is easy to accidentally do computations with @code{double} because
3585 floating-point literals are implicitly of type @code{double}. For
3586 example, in:
3587 @smallexample
3588 @group
3589 float area(float radius)
3590 @{
3591 return 3.14159 * radius * radius;
3592 @}
3593 @end group
3594 @end smallexample
3595 the compiler performs the entire computation with @code{double}
3596 because the floating-point literal is a @code{double}.
3597
3598 @item -Wformat
3599 @itemx -Wformat=@var{n}
3600 @opindex Wformat
3601 @opindex Wno-format
3602 @opindex ffreestanding
3603 @opindex fno-builtin
3604 @opindex Wformat=
3605 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3606 the arguments supplied have types appropriate to the format string
3607 specified, and that the conversions specified in the format string make
3608 sense. This includes standard functions, and others specified by format
3609 attributes (@pxref{Function Attributes}), in the @code{printf},
3610 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3611 not in the C standard) families (or other target-specific families).
3612 Which functions are checked without format attributes having been
3613 specified depends on the standard version selected, and such checks of
3614 functions without the attribute specified are disabled by
3615 @option{-ffreestanding} or @option{-fno-builtin}.
3616
3617 The formats are checked against the format features supported by GNU
3618 libc version 2.2. These include all ISO C90 and C99 features, as well
3619 as features from the Single Unix Specification and some BSD and GNU
3620 extensions. Other library implementations may not support all these
3621 features; GCC does not support warning about features that go beyond a
3622 particular library's limitations. However, if @option{-Wpedantic} is used
3623 with @option{-Wformat}, warnings are given about format features not
3624 in the selected standard version (but not for @code{strfmon} formats,
3625 since those are not in any version of the C standard). @xref{C Dialect
3626 Options,,Options Controlling C Dialect}.
3627
3628 @table @gcctabopt
3629 @item -Wformat=1
3630 @itemx -Wformat
3631 @opindex Wformat
3632 @opindex Wformat=1
3633 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3634 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
3635 @option{-Wformat} also checks for null format arguments for several
3636 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
3637 aspects of this level of format checking can be disabled by the
3638 options: @option{-Wno-format-contains-nul},
3639 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3640 @option{-Wformat} is enabled by @option{-Wall}.
3641
3642 @item -Wno-format-contains-nul
3643 @opindex Wno-format-contains-nul
3644 @opindex Wformat-contains-nul
3645 If @option{-Wformat} is specified, do not warn about format strings that
3646 contain NUL bytes.
3647
3648 @item -Wno-format-extra-args
3649 @opindex Wno-format-extra-args
3650 @opindex Wformat-extra-args
3651 If @option{-Wformat} is specified, do not warn about excess arguments to a
3652 @code{printf} or @code{scanf} format function. The C standard specifies
3653 that such arguments are ignored.
3654
3655 Where the unused arguments lie between used arguments that are
3656 specified with @samp{$} operand number specifications, normally
3657 warnings are still given, since the implementation could not know what
3658 type to pass to @code{va_arg} to skip the unused arguments. However,
3659 in the case of @code{scanf} formats, this option suppresses the
3660 warning if the unused arguments are all pointers, since the Single
3661 Unix Specification says that such unused arguments are allowed.
3662
3663 @item -Wno-format-zero-length
3664 @opindex Wno-format-zero-length
3665 @opindex Wformat-zero-length
3666 If @option{-Wformat} is specified, do not warn about zero-length formats.
3667 The C standard specifies that zero-length formats are allowed.
3668
3669
3670 @item -Wformat=2
3671 @opindex Wformat=2
3672 Enable @option{-Wformat} plus additional format checks. Currently
3673 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3674 -Wformat-y2k}.
3675
3676 @item -Wformat-nonliteral
3677 @opindex Wformat-nonliteral
3678 @opindex Wno-format-nonliteral
3679 If @option{-Wformat} is specified, also warn if the format string is not a
3680 string literal and so cannot be checked, unless the format function
3681 takes its format arguments as a @code{va_list}.
3682
3683 @item -Wformat-security
3684 @opindex Wformat-security
3685 @opindex Wno-format-security
3686 If @option{-Wformat} is specified, also warn about uses of format
3687 functions that represent possible security problems. At present, this
3688 warns about calls to @code{printf} and @code{scanf} functions where the
3689 format string is not a string literal and there are no format arguments,
3690 as in @code{printf (foo);}. This may be a security hole if the format
3691 string came from untrusted input and contains @samp{%n}. (This is
3692 currently a subset of what @option{-Wformat-nonliteral} warns about, but
3693 in future warnings may be added to @option{-Wformat-security} that are not
3694 included in @option{-Wformat-nonliteral}.)
3695
3696 @item -Wformat-signedness
3697 @opindex Wformat-signedness
3698 @opindex Wno-format-signedness
3699 If @option{-Wformat} is specified, also warn if the format string
3700 requires an unsigned argument and the argument is signed and vice versa.
3701
3702 @item -Wformat-y2k
3703 @opindex Wformat-y2k
3704 @opindex Wno-format-y2k
3705 If @option{-Wformat} is specified, also warn about @code{strftime}
3706 formats that may yield only a two-digit year.
3707 @end table
3708
3709 @item -Wnonnull
3710 @opindex Wnonnull
3711 @opindex Wno-nonnull
3712 Warn about passing a null pointer for arguments marked as
3713 requiring a non-null value by the @code{nonnull} function attribute.
3714
3715 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
3716 can be disabled with the @option{-Wno-nonnull} option.
3717
3718 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3719 @opindex Winit-self
3720 @opindex Wno-init-self
3721 Warn about uninitialized variables that are initialized with themselves.
3722 Note this option can only be used with the @option{-Wuninitialized} option.
3723
3724 For example, GCC warns about @code{i} being uninitialized in the
3725 following snippet only when @option{-Winit-self} has been specified:
3726 @smallexample
3727 @group
3728 int f()
3729 @{
3730 int i = i;
3731 return i;
3732 @}
3733 @end group
3734 @end smallexample
3735
3736 This warning is enabled by @option{-Wall} in C++.
3737
3738 @item -Wimplicit-int @r{(C and Objective-C only)}
3739 @opindex Wimplicit-int
3740 @opindex Wno-implicit-int
3741 Warn when a declaration does not specify a type.
3742 This warning is enabled by @option{-Wall}.
3743
3744 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3745 @opindex Wimplicit-function-declaration
3746 @opindex Wno-implicit-function-declaration
3747 Give a warning whenever a function is used before being declared. In
3748 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3749 enabled by default and it is made into an error by
3750 @option{-pedantic-errors}. This warning is also enabled by
3751 @option{-Wall}.
3752
3753 @item -Wimplicit @r{(C and Objective-C only)}
3754 @opindex Wimplicit
3755 @opindex Wno-implicit
3756 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3757 This warning is enabled by @option{-Wall}.
3758
3759 @item -Wignored-qualifiers @r{(C and C++ only)}
3760 @opindex Wignored-qualifiers
3761 @opindex Wno-ignored-qualifiers
3762 Warn if the return type of a function has a type qualifier
3763 such as @code{const}. For ISO C such a type qualifier has no effect,
3764 since the value returned by a function is not an lvalue.
3765 For C++, the warning is only emitted for scalar types or @code{void}.
3766 ISO C prohibits qualified @code{void} return types on function
3767 definitions, so such return types always receive a warning
3768 even without this option.
3769
3770 This warning is also enabled by @option{-Wextra}.
3771
3772 @item -Wmain
3773 @opindex Wmain
3774 @opindex Wno-main
3775 Warn if the type of @code{main} is suspicious. @code{main} should be
3776 a function with external linkage, returning int, taking either zero
3777 arguments, two, or three arguments of appropriate types. This warning
3778 is enabled by default in C++ and is enabled by either @option{-Wall}
3779 or @option{-Wpedantic}.
3780
3781 @item -Wmisleading-indentation @r{(C and C++ only)}
3782 @opindex Wmisleading-indentation
3783 @opindex Wno-misleading-indentation
3784 Warn when the indentation of the code does not reflect the block structure.
3785 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
3786 @code{for} clauses with a guarded statement that does not use braces,
3787 followed by an unguarded statement with the same indentation.
3788
3789 This warning is disabled by default.
3790
3791 In the following example, the call to ``bar'' is misleadingly indented as
3792 if it were guarded by the ``if'' conditional.
3793
3794 @smallexample
3795 if (some_condition ())
3796 foo ();
3797 bar (); /* Gotcha: this is not guarded by the "if". */
3798 @end smallexample
3799
3800 In the case of mixed tabs and spaces, the warning uses the
3801 @option{-ftabstop=} option to determine if the statements line up
3802 (defaulting to 8).
3803
3804 The warning is not issued for code involving multiline preprocessor logic
3805 such as the following example.
3806
3807 @smallexample
3808 if (flagA)
3809 foo (0);
3810 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
3811 if (flagB)
3812 #endif
3813 foo (1);
3814 @end smallexample
3815
3816 The warning is not issued after a @code{#line} directive, since this
3817 typically indicates autogenerated code, and no assumptions can be made
3818 about the layout of the file that the directive references.
3819
3820 @item -Wmissing-braces
3821 @opindex Wmissing-braces
3822 @opindex Wno-missing-braces
3823 Warn if an aggregate or union initializer is not fully bracketed. In
3824 the following example, the initializer for @code{a} is not fully
3825 bracketed, but that for @code{b} is fully bracketed. This warning is
3826 enabled by @option{-Wall} in C.
3827
3828 @smallexample
3829 int a[2][2] = @{ 0, 1, 2, 3 @};
3830 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3831 @end smallexample
3832
3833 This warning is enabled by @option{-Wall}.
3834
3835 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3836 @opindex Wmissing-include-dirs
3837 @opindex Wno-missing-include-dirs
3838 Warn if a user-supplied include directory does not exist.
3839
3840 @item -Wparentheses
3841 @opindex Wparentheses
3842 @opindex Wno-parentheses
3843 Warn if parentheses are omitted in certain contexts, such
3844 as when there is an assignment in a context where a truth value
3845 is expected, or when operators are nested whose precedence people
3846 often get confused about.
3847
3848 Also warn if a comparison like @code{x<=y<=z} appears; this is
3849 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3850 interpretation from that of ordinary mathematical notation.
3851
3852 Also warn about constructions where there may be confusion to which
3853 @code{if} statement an @code{else} branch belongs. Here is an example of
3854 such a case:
3855
3856 @smallexample
3857 @group
3858 @{
3859 if (a)
3860 if (b)
3861 foo ();
3862 else
3863 bar ();
3864 @}
3865 @end group
3866 @end smallexample
3867
3868 In C/C++, every @code{else} branch belongs to the innermost possible
3869 @code{if} statement, which in this example is @code{if (b)}. This is
3870 often not what the programmer expected, as illustrated in the above
3871 example by indentation the programmer chose. When there is the
3872 potential for this confusion, GCC issues a warning when this flag
3873 is specified. To eliminate the warning, add explicit braces around
3874 the innermost @code{if} statement so there is no way the @code{else}
3875 can belong to the enclosing @code{if}. The resulting code
3876 looks like this:
3877
3878 @smallexample
3879 @group
3880 @{
3881 if (a)
3882 @{
3883 if (b)
3884 foo ();
3885 else
3886 bar ();
3887 @}
3888 @}
3889 @end group
3890 @end smallexample
3891
3892 Also warn for dangerous uses of the GNU extension to
3893 @code{?:} with omitted middle operand. When the condition
3894 in the @code{?}: operator is a boolean expression, the omitted value is
3895 always 1. Often programmers expect it to be a value computed
3896 inside the conditional expression instead.
3897
3898 This warning is enabled by @option{-Wall}.
3899
3900 @item -Wsequence-point
3901 @opindex Wsequence-point
3902 @opindex Wno-sequence-point
3903 Warn about code that may have undefined semantics because of violations
3904 of sequence point rules in the C and C++ standards.
3905
3906 The C and C++ standards define the order in which expressions in a C/C++
3907 program are evaluated in terms of @dfn{sequence points}, which represent
3908 a partial ordering between the execution of parts of the program: those
3909 executed before the sequence point, and those executed after it. These
3910 occur after the evaluation of a full expression (one which is not part
3911 of a larger expression), after the evaluation of the first operand of a
3912 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
3913 function is called (but after the evaluation of its arguments and the
3914 expression denoting the called function), and in certain other places.
3915 Other than as expressed by the sequence point rules, the order of
3916 evaluation of subexpressions of an expression is not specified. All
3917 these rules describe only a partial order rather than a total order,
3918 since, for example, if two functions are called within one expression
3919 with no sequence point between them, the order in which the functions
3920 are called is not specified. However, the standards committee have
3921 ruled that function calls do not overlap.
3922
3923 It is not specified when between sequence points modifications to the
3924 values of objects take effect. Programs whose behavior depends on this
3925 have undefined behavior; the C and C++ standards specify that ``Between
3926 the previous and next sequence point an object shall have its stored
3927 value modified at most once by the evaluation of an expression.
3928 Furthermore, the prior value shall be read only to determine the value
3929 to be stored.''. If a program breaks these rules, the results on any
3930 particular implementation are entirely unpredictable.
3931
3932 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
3933 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
3934 diagnosed by this option, and it may give an occasional false positive
3935 result, but in general it has been found fairly effective at detecting
3936 this sort of problem in programs.
3937
3938 The standard is worded confusingly, therefore there is some debate
3939 over the precise meaning of the sequence point rules in subtle cases.
3940 Links to discussions of the problem, including proposed formal
3941 definitions, may be found on the GCC readings page, at
3942 @uref{http://gcc.gnu.org/@/readings.html}.
3943
3944 This warning is enabled by @option{-Wall} for C and C++.
3945
3946 @item -Wno-return-local-addr
3947 @opindex Wno-return-local-addr
3948 @opindex Wreturn-local-addr
3949 Do not warn about returning a pointer (or in C++, a reference) to a
3950 variable that goes out of scope after the function returns.
3951
3952 @item -Wreturn-type
3953 @opindex Wreturn-type
3954 @opindex Wno-return-type
3955 Warn whenever a function is defined with a return type that defaults
3956 to @code{int}. Also warn about any @code{return} statement with no
3957 return value in a function whose return type is not @code{void}
3958 (falling off the end of the function body is considered returning
3959 without a value), and about a @code{return} statement with an
3960 expression in a function whose return type is @code{void}.
3961
3962 For C++, a function without return type always produces a diagnostic
3963 message, even when @option{-Wno-return-type} is specified. The only
3964 exceptions are @code{main} and functions defined in system headers.
3965
3966 This warning is enabled by @option{-Wall}.
3967
3968 @item -Wshift-count-negative
3969 @opindex Wshift-count-negative
3970 @opindex Wno-shift-count-negative
3971 Warn if shift count is negative. This warning is enabled by default.
3972
3973 @item -Wshift-count-overflow
3974 @opindex Wshift-count-overflow
3975 @opindex Wno-shift-count-overflow
3976 Warn if shift count >= width of type. This warning is enabled by default.
3977
3978 @item -Wshift-negative-value
3979 @opindex Wshift-negative-value
3980 @opindex Wno-shift-negative-value
3981 Warn if left shifting a negative value. This warning is enabled by
3982 @option{-Wextra} in C99 and C++11 modes (and newer).
3983
3984 @item -Wswitch
3985 @opindex Wswitch
3986 @opindex Wno-switch
3987 Warn whenever a @code{switch} statement has an index of enumerated type
3988 and lacks a @code{case} for one or more of the named codes of that
3989 enumeration. (The presence of a @code{default} label prevents this
3990 warning.) @code{case} labels outside the enumeration range also
3991 provoke warnings when this option is used (even if there is a
3992 @code{default} label).
3993 This warning is enabled by @option{-Wall}.
3994
3995 @item -Wswitch-default
3996 @opindex Wswitch-default
3997 @opindex Wno-switch-default
3998 Warn whenever a @code{switch} statement does not have a @code{default}
3999 case.
4000
4001 @item -Wswitch-enum
4002 @opindex Wswitch-enum
4003 @opindex Wno-switch-enum
4004 Warn whenever a @code{switch} statement has an index of enumerated type
4005 and lacks a @code{case} for one or more of the named codes of that
4006 enumeration. @code{case} labels outside the enumeration range also
4007 provoke warnings when this option is used. The only difference
4008 between @option{-Wswitch} and this option is that this option gives a
4009 warning about an omitted enumeration code even if there is a
4010 @code{default} label.
4011
4012 @item -Wswitch-bool
4013 @opindex Wswitch-bool
4014 @opindex Wno-switch-bool
4015 Warn whenever a @code{switch} statement has an index of boolean type.
4016 It is possible to suppress this warning by casting the controlling
4017 expression to a type other than @code{bool}. For example:
4018 @smallexample
4019 @group
4020 switch ((int) (a == 4))
4021 @{
4022 @dots{}
4023 @}
4024 @end group
4025 @end smallexample
4026 This warning is enabled by default for C and C++ programs.
4027
4028 @item -Wsync-nand @r{(C and C++ only)}
4029 @opindex Wsync-nand
4030 @opindex Wno-sync-nand
4031 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4032 built-in functions are used. These functions changed semantics in GCC 4.4.
4033
4034 @item -Wtrigraphs
4035 @opindex Wtrigraphs
4036 @opindex Wno-trigraphs
4037 Warn if any trigraphs are encountered that might change the meaning of
4038 the program (trigraphs within comments are not warned about).
4039 This warning is enabled by @option{-Wall}.
4040
4041 @item -Wunused-but-set-parameter
4042 @opindex Wunused-but-set-parameter
4043 @opindex Wno-unused-but-set-parameter
4044 Warn whenever a function parameter is assigned to, but otherwise unused
4045 (aside from its declaration).
4046
4047 To suppress this warning use the @code{unused} attribute
4048 (@pxref{Variable Attributes}).
4049
4050 This warning is also enabled by @option{-Wunused} together with
4051 @option{-Wextra}.
4052
4053 @item -Wunused-but-set-variable
4054 @opindex Wunused-but-set-variable
4055 @opindex Wno-unused-but-set-variable
4056 Warn whenever a local variable is assigned to, but otherwise unused
4057 (aside from its declaration).
4058 This warning is enabled by @option{-Wall}.
4059
4060 To suppress this warning use the @code{unused} attribute
4061 (@pxref{Variable Attributes}).
4062
4063 This warning is also enabled by @option{-Wunused}, which is enabled
4064 by @option{-Wall}.
4065
4066 @item -Wunused-function
4067 @opindex Wunused-function
4068 @opindex Wno-unused-function
4069 Warn whenever a static function is declared but not defined or a
4070 non-inline static function is unused.
4071 This warning is enabled by @option{-Wall}.
4072
4073 @item -Wunused-label
4074 @opindex Wunused-label
4075 @opindex Wno-unused-label
4076 Warn whenever a label is declared but not used.
4077 This warning is enabled by @option{-Wall}.
4078
4079 To suppress this warning use the @code{unused} attribute
4080 (@pxref{Variable Attributes}).
4081
4082 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4083 @opindex Wunused-local-typedefs
4084 Warn when a typedef locally defined in a function is not used.
4085 This warning is enabled by @option{-Wall}.
4086
4087 @item -Wunused-parameter
4088 @opindex Wunused-parameter
4089 @opindex Wno-unused-parameter
4090 Warn whenever a function parameter is unused aside from its declaration.
4091
4092 To suppress this warning use the @code{unused} attribute
4093 (@pxref{Variable Attributes}).
4094
4095 @item -Wno-unused-result
4096 @opindex Wunused-result
4097 @opindex Wno-unused-result
4098 Do not warn if a caller of a function marked with attribute
4099 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4100 its return value. The default is @option{-Wunused-result}.
4101
4102 @item -Wunused-variable
4103 @opindex Wunused-variable
4104 @opindex Wno-unused-variable
4105 Warn whenever a local variable or non-constant static variable is unused
4106 aside from its declaration.
4107 This warning is enabled by @option{-Wall}.
4108
4109 To suppress this warning use the @code{unused} attribute
4110 (@pxref{Variable Attributes}).
4111
4112 @item -Wunused-value
4113 @opindex Wunused-value
4114 @opindex Wno-unused-value
4115 Warn whenever a statement computes a result that is explicitly not
4116 used. To suppress this warning cast the unused expression to
4117 @code{void}. This includes an expression-statement or the left-hand
4118 side of a comma expression that contains no side effects. For example,
4119 an expression such as @code{x[i,j]} causes a warning, while
4120 @code{x[(void)i,j]} does not.
4121
4122 This warning is enabled by @option{-Wall}.
4123
4124 @item -Wunused
4125 @opindex Wunused
4126 @opindex Wno-unused
4127 All the above @option{-Wunused} options combined.
4128
4129 In order to get a warning about an unused function parameter, you must
4130 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4131 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4132
4133 @item -Wuninitialized
4134 @opindex Wuninitialized
4135 @opindex Wno-uninitialized
4136 Warn if an automatic variable is used without first being initialized
4137 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4138 warn if a non-static reference or non-static @code{const} member
4139 appears in a class without constructors.
4140
4141 If you want to warn about code that uses the uninitialized value of the
4142 variable in its own initializer, use the @option{-Winit-self} option.
4143
4144 These warnings occur for individual uninitialized or clobbered
4145 elements of structure, union or array variables as well as for
4146 variables that are uninitialized or clobbered as a whole. They do
4147 not occur for variables or elements declared @code{volatile}. Because
4148 these warnings depend on optimization, the exact variables or elements
4149 for which there are warnings depends on the precise optimization
4150 options and version of GCC used.
4151
4152 Note that there may be no warning about a variable that is used only
4153 to compute a value that itself is never used, because such
4154 computations may be deleted by data flow analysis before the warnings
4155 are printed.
4156
4157 @item -Wmaybe-uninitialized
4158 @opindex Wmaybe-uninitialized
4159 @opindex Wno-maybe-uninitialized
4160 For an automatic variable, if there exists a path from the function
4161 entry to a use of the variable that is initialized, but there exist
4162 some other paths for which the variable is not initialized, the compiler
4163 emits a warning if it cannot prove the uninitialized paths are not
4164 executed at run time. These warnings are made optional because GCC is
4165 not smart enough to see all the reasons why the code might be correct
4166 in spite of appearing to have an error. Here is one example of how
4167 this can happen:
4168
4169 @smallexample
4170 @group
4171 @{
4172 int x;
4173 switch (y)
4174 @{
4175 case 1: x = 1;
4176 break;
4177 case 2: x = 4;
4178 break;
4179 case 3: x = 5;
4180 @}
4181 foo (x);
4182 @}
4183 @end group
4184 @end smallexample
4185
4186 @noindent
4187 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4188 always initialized, but GCC doesn't know this. To suppress the
4189 warning, you need to provide a default case with assert(0) or
4190 similar code.
4191
4192 @cindex @code{longjmp} warnings
4193 This option also warns when a non-volatile automatic variable might be
4194 changed by a call to @code{longjmp}. These warnings as well are possible
4195 only in optimizing compilation.
4196
4197 The compiler sees only the calls to @code{setjmp}. It cannot know
4198 where @code{longjmp} will be called; in fact, a signal handler could
4199 call it at any point in the code. As a result, you may get a warning
4200 even when there is in fact no problem because @code{longjmp} cannot
4201 in fact be called at the place that would cause a problem.
4202
4203 Some spurious warnings can be avoided if you declare all the functions
4204 you use that never return as @code{noreturn}. @xref{Function
4205 Attributes}.
4206
4207 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4208
4209 @item -Wunknown-pragmas
4210 @opindex Wunknown-pragmas
4211 @opindex Wno-unknown-pragmas
4212 @cindex warning for unknown pragmas
4213 @cindex unknown pragmas, warning
4214 @cindex pragmas, warning of unknown
4215 Warn when a @code{#pragma} directive is encountered that is not understood by
4216 GCC@. If this command-line option is used, warnings are even issued
4217 for unknown pragmas in system header files. This is not the case if
4218 the warnings are only enabled by the @option{-Wall} command-line option.
4219
4220 @item -Wno-pragmas
4221 @opindex Wno-pragmas
4222 @opindex Wpragmas
4223 Do not warn about misuses of pragmas, such as incorrect parameters,
4224 invalid syntax, or conflicts between pragmas. See also
4225 @option{-Wunknown-pragmas}.
4226
4227 @item -Wstrict-aliasing
4228 @opindex Wstrict-aliasing
4229 @opindex Wno-strict-aliasing
4230 This option is only active when @option{-fstrict-aliasing} is active.
4231 It warns about code that might break the strict aliasing rules that the
4232 compiler is using for optimization. The warning does not catch all
4233 cases, but does attempt to catch the more common pitfalls. It is
4234 included in @option{-Wall}.
4235 It is equivalent to @option{-Wstrict-aliasing=3}
4236
4237 @item -Wstrict-aliasing=n
4238 @opindex Wstrict-aliasing=n
4239 This option is only active when @option{-fstrict-aliasing} is active.
4240 It warns about code that might break the strict aliasing rules that the
4241 compiler is using for optimization.
4242 Higher levels correspond to higher accuracy (fewer false positives).
4243 Higher levels also correspond to more effort, similar to the way @option{-O}
4244 works.
4245 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4246
4247 Level 1: Most aggressive, quick, least accurate.
4248 Possibly useful when higher levels
4249 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4250 false negatives. However, it has many false positives.
4251 Warns for all pointer conversions between possibly incompatible types,
4252 even if never dereferenced. Runs in the front end only.
4253
4254 Level 2: Aggressive, quick, not too precise.
4255 May still have many false positives (not as many as level 1 though),
4256 and few false negatives (but possibly more than level 1).
4257 Unlike level 1, it only warns when an address is taken. Warns about
4258 incomplete types. Runs in the front end only.
4259
4260 Level 3 (default for @option{-Wstrict-aliasing}):
4261 Should have very few false positives and few false
4262 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
4263 Takes care of the common pun+dereference pattern in the front end:
4264 @code{*(int*)&some_float}.
4265 If optimization is enabled, it also runs in the back end, where it deals
4266 with multiple statement cases using flow-sensitive points-to information.
4267 Only warns when the converted pointer is dereferenced.
4268 Does not warn about incomplete types.
4269
4270 @item -Wstrict-overflow
4271 @itemx -Wstrict-overflow=@var{n}
4272 @opindex Wstrict-overflow
4273 @opindex Wno-strict-overflow
4274 This option is only active when @option{-fstrict-overflow} is active.
4275 It warns about cases where the compiler optimizes based on the
4276 assumption that signed overflow does not occur. Note that it does not
4277 warn about all cases where the code might overflow: it only warns
4278 about cases where the compiler implements some optimization. Thus
4279 this warning depends on the optimization level.
4280
4281 An optimization that assumes that signed overflow does not occur is
4282 perfectly safe if the values of the variables involved are such that
4283 overflow never does, in fact, occur. Therefore this warning can
4284 easily give a false positive: a warning about code that is not
4285 actually a problem. To help focus on important issues, several
4286 warning levels are defined. No warnings are issued for the use of
4287 undefined signed overflow when estimating how many iterations a loop
4288 requires, in particular when determining whether a loop will be
4289 executed at all.
4290
4291 @table @gcctabopt
4292 @item -Wstrict-overflow=1
4293 Warn about cases that are both questionable and easy to avoid. For
4294 example, with @option{-fstrict-overflow}, the compiler simplifies
4295 @code{x + 1 > x} to @code{1}. This level of
4296 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4297 are not, and must be explicitly requested.
4298
4299 @item -Wstrict-overflow=2
4300 Also warn about other cases where a comparison is simplified to a
4301 constant. For example: @code{abs (x) >= 0}. This can only be
4302 simplified when @option{-fstrict-overflow} is in effect, because
4303 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4304 zero. @option{-Wstrict-overflow} (with no level) is the same as
4305 @option{-Wstrict-overflow=2}.
4306
4307 @item -Wstrict-overflow=3
4308 Also warn about other cases where a comparison is simplified. For
4309 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4310
4311 @item -Wstrict-overflow=4
4312 Also warn about other simplifications not covered by the above cases.
4313 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4314
4315 @item -Wstrict-overflow=5
4316 Also warn about cases where the compiler reduces the magnitude of a
4317 constant involved in a comparison. For example: @code{x + 2 > y} is
4318 simplified to @code{x + 1 >= y}. This is reported only at the
4319 highest warning level because this simplification applies to many
4320 comparisons, so this warning level gives a very large number of
4321 false positives.
4322 @end table
4323
4324 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4325 @opindex Wsuggest-attribute=
4326 @opindex Wno-suggest-attribute=
4327 Warn for cases where adding an attribute may be beneficial. The
4328 attributes currently supported are listed below.
4329
4330 @table @gcctabopt
4331 @item -Wsuggest-attribute=pure
4332 @itemx -Wsuggest-attribute=const
4333 @itemx -Wsuggest-attribute=noreturn
4334 @opindex Wsuggest-attribute=pure
4335 @opindex Wno-suggest-attribute=pure
4336 @opindex Wsuggest-attribute=const
4337 @opindex Wno-suggest-attribute=const
4338 @opindex Wsuggest-attribute=noreturn
4339 @opindex Wno-suggest-attribute=noreturn
4340
4341 Warn about functions that might be candidates for attributes
4342 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
4343 functions visible in other compilation units or (in the case of @code{pure} and
4344 @code{const}) if it cannot prove that the function returns normally. A function
4345 returns normally if it doesn't contain an infinite loop or return abnormally
4346 by throwing, calling @code{abort} or trapping. This analysis requires option
4347 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4348 higher. Higher optimization levels improve the accuracy of the analysis.
4349
4350 @item -Wsuggest-attribute=format
4351 @itemx -Wmissing-format-attribute
4352 @opindex Wsuggest-attribute=format
4353 @opindex Wmissing-format-attribute
4354 @opindex Wno-suggest-attribute=format
4355 @opindex Wno-missing-format-attribute
4356 @opindex Wformat
4357 @opindex Wno-format
4358
4359 Warn about function pointers that might be candidates for @code{format}
4360 attributes. Note these are only possible candidates, not absolute ones.
4361 GCC guesses that function pointers with @code{format} attributes that
4362 are used in assignment, initialization, parameter passing or return
4363 statements should have a corresponding @code{format} attribute in the
4364 resulting type. I.e.@: the left-hand side of the assignment or
4365 initialization, the type of the parameter variable, or the return type
4366 of the containing function respectively should also have a @code{format}
4367 attribute to avoid the warning.
4368
4369 GCC also warns about function definitions that might be
4370 candidates for @code{format} attributes. Again, these are only
4371 possible candidates. GCC guesses that @code{format} attributes
4372 might be appropriate for any function that calls a function like
4373 @code{vprintf} or @code{vscanf}, but this might not always be the
4374 case, and some functions for which @code{format} attributes are
4375 appropriate may not be detected.
4376 @end table
4377
4378 @item -Wsuggest-final-types
4379 @opindex Wno-suggest-final-types
4380 @opindex Wsuggest-final-types
4381 Warn about types with virtual methods where code quality would be improved
4382 if the type were declared with the C++11 @code{final} specifier,
4383 or, if possible,
4384 declared in an anonymous namespace. This allows GCC to more aggressively
4385 devirtualize the polymorphic calls. This warning is more effective with link
4386 time optimization, where the information about the class hierarchy graph is
4387 more complete.
4388
4389 @item -Wsuggest-final-methods
4390 @opindex Wno-suggest-final-methods
4391 @opindex Wsuggest-final-methods
4392 Warn about virtual methods where code quality would be improved if the method
4393 were declared with the C++11 @code{final} specifier,
4394 or, if possible, its type were
4395 declared in an anonymous namespace or with the @code{final} specifier.
4396 This warning is
4397 more effective with link time optimization, where the information about the
4398 class hierarchy graph is more complete. It is recommended to first consider
4399 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4400 annotations.
4401
4402 @item -Wsuggest-override
4403 Warn about overriding virtual functions that are not marked with the override
4404 keyword.
4405
4406 @item -Warray-bounds
4407 @itemx -Warray-bounds=@var{n}
4408 @opindex Wno-array-bounds
4409 @opindex Warray-bounds
4410 This option is only active when @option{-ftree-vrp} is active
4411 (default for @option{-O2} and above). It warns about subscripts to arrays
4412 that are always out of bounds. This warning is enabled by @option{-Wall}.
4413
4414 @table @gcctabopt
4415 @item -Warray-bounds=1
4416 This is the warning level of @option{-Warray-bounds} and is enabled
4417 by @option{-Wall}; higher levels are not, and must be explicitly requested.
4418
4419 @item -Warray-bounds=2
4420 This warning level also warns about out of bounds access for
4421 arrays at the end of a struct and for arrays accessed through
4422 pointers. This warning level may give a larger number of
4423 false positives and is deactivated by default.
4424 @end table
4425
4426 @item -Wbool-compare
4427 @opindex Wno-bool-compare
4428 @opindex Wbool-compare
4429 Warn about boolean expression compared with an integer value different from
4430 @code{true}/@code{false}. For instance, the following comparison is
4431 always false:
4432 @smallexample
4433 int n = 5;
4434 @dots{}
4435 if ((n > 1) == 2) @{ @dots{} @}
4436 @end smallexample
4437 This warning is enabled by @option{-Wall}.
4438
4439 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4440 @opindex Wno-discarded-qualifiers
4441 @opindex Wdiscarded-qualifiers
4442 Do not warn if type qualifiers on pointers are being discarded.
4443 Typically, the compiler warns if a @code{const char *} variable is
4444 passed to a function that takes a @code{char *} parameter. This option
4445 can be used to suppress such a warning.
4446
4447 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4448 @opindex Wno-discarded-array-qualifiers
4449 @opindex Wdiscarded-array-qualifiers
4450 Do not warn if type qualifiers on arrays which are pointer targets
4451 are being discarded. Typically, the compiler warns if a
4452 @code{const int (*)[]} variable is passed to a function that
4453 takes a @code{int (*)[]} parameter. This option can be used to
4454 suppress such a warning.
4455
4456 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4457 @opindex Wno-incompatible-pointer-types
4458 @opindex Wincompatible-pointer-types
4459 Do not warn when there is a conversion between pointers that have incompatible
4460 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
4461 which warns for pointer argument passing or assignment with different
4462 signedness.
4463
4464 @item -Wno-int-conversion @r{(C and Objective-C only)}
4465 @opindex Wno-int-conversion
4466 @opindex Wint-conversion
4467 Do not warn about incompatible integer to pointer and pointer to integer
4468 conversions. This warning is about implicit conversions; for explicit
4469 conversions the warnings @option{-Wno-int-to-pointer-cast} and
4470 @option{-Wno-pointer-to-int-cast} may be used.
4471
4472 @item -Wno-div-by-zero
4473 @opindex Wno-div-by-zero
4474 @opindex Wdiv-by-zero
4475 Do not warn about compile-time integer division by zero. Floating-point
4476 division by zero is not warned about, as it can be a legitimate way of
4477 obtaining infinities and NaNs.
4478
4479 @item -Wsystem-headers
4480 @opindex Wsystem-headers
4481 @opindex Wno-system-headers
4482 @cindex warnings from system headers
4483 @cindex system headers, warnings from
4484 Print warning messages for constructs found in system header files.
4485 Warnings from system headers are normally suppressed, on the assumption
4486 that they usually do not indicate real problems and would only make the
4487 compiler output harder to read. Using this command-line option tells
4488 GCC to emit warnings from system headers as if they occurred in user
4489 code. However, note that using @option{-Wall} in conjunction with this
4490 option does @emph{not} warn about unknown pragmas in system
4491 headers---for that, @option{-Wunknown-pragmas} must also be used.
4492
4493 @item -Wtrampolines
4494 @opindex Wtrampolines
4495 @opindex Wno-trampolines
4496 Warn about trampolines generated for pointers to nested functions.
4497 A trampoline is a small piece of data or code that is created at run
4498 time on the stack when the address of a nested function is taken, and is
4499 used to call the nested function indirectly. For some targets, it is
4500 made up of data only and thus requires no special treatment. But, for
4501 most targets, it is made up of code and thus requires the stack to be
4502 made executable in order for the program to work properly.
4503
4504 @item -Wfloat-equal
4505 @opindex Wfloat-equal
4506 @opindex Wno-float-equal
4507 Warn if floating-point values are used in equality comparisons.
4508
4509 The idea behind this is that sometimes it is convenient (for the
4510 programmer) to consider floating-point values as approximations to
4511 infinitely precise real numbers. If you are doing this, then you need
4512 to compute (by analyzing the code, or in some other way) the maximum or
4513 likely maximum error that the computation introduces, and allow for it
4514 when performing comparisons (and when producing output, but that's a
4515 different problem). In particular, instead of testing for equality, you
4516 should check to see whether the two values have ranges that overlap; and
4517 this is done with the relational operators, so equality comparisons are
4518 probably mistaken.
4519
4520 @item -Wtraditional @r{(C and Objective-C only)}
4521 @opindex Wtraditional
4522 @opindex Wno-traditional
4523 Warn about certain constructs that behave differently in traditional and
4524 ISO C@. Also warn about ISO C constructs that have no traditional C
4525 equivalent, and/or problematic constructs that should be avoided.
4526
4527 @itemize @bullet
4528 @item
4529 Macro parameters that appear within string literals in the macro body.
4530 In traditional C macro replacement takes place within string literals,
4531 but in ISO C it does not.
4532
4533 @item
4534 In traditional C, some preprocessor directives did not exist.
4535 Traditional preprocessors only considered a line to be a directive
4536 if the @samp{#} appeared in column 1 on the line. Therefore
4537 @option{-Wtraditional} warns about directives that traditional C
4538 understands but ignores because the @samp{#} does not appear as the
4539 first character on the line. It also suggests you hide directives like
4540 @code{#pragma} not understood by traditional C by indenting them. Some
4541 traditional implementations do not recognize @code{#elif}, so this option
4542 suggests avoiding it altogether.
4543
4544 @item
4545 A function-like macro that appears without arguments.
4546
4547 @item
4548 The unary plus operator.
4549
4550 @item
4551 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4552 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
4553 constants.) Note, these suffixes appear in macros defined in the system
4554 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4555 Use of these macros in user code might normally lead to spurious
4556 warnings, however GCC's integrated preprocessor has enough context to
4557 avoid warning in these cases.
4558
4559 @item
4560 A function declared external in one block and then used after the end of
4561 the block.
4562
4563 @item
4564 A @code{switch} statement has an operand of type @code{long}.
4565
4566 @item
4567 A non-@code{static} function declaration follows a @code{static} one.
4568 This construct is not accepted by some traditional C compilers.
4569
4570 @item
4571 The ISO type of an integer constant has a different width or
4572 signedness from its traditional type. This warning is only issued if
4573 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
4574 typically represent bit patterns, are not warned about.
4575
4576 @item
4577 Usage of ISO string concatenation is detected.
4578
4579 @item
4580 Initialization of automatic aggregates.
4581
4582 @item
4583 Identifier conflicts with labels. Traditional C lacks a separate
4584 namespace for labels.
4585
4586 @item
4587 Initialization of unions. If the initializer is zero, the warning is
4588 omitted. This is done under the assumption that the zero initializer in
4589 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4590 initializer warnings and relies on default initialization to zero in the
4591 traditional C case.
4592
4593 @item
4594 Conversions by prototypes between fixed/floating-point values and vice
4595 versa. The absence of these prototypes when compiling with traditional
4596 C causes serious problems. This is a subset of the possible
4597 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4598
4599 @item
4600 Use of ISO C style function definitions. This warning intentionally is
4601 @emph{not} issued for prototype declarations or variadic functions
4602 because these ISO C features appear in your code when using
4603 libiberty's traditional C compatibility macros, @code{PARAMS} and
4604 @code{VPARAMS}. This warning is also bypassed for nested functions
4605 because that feature is already a GCC extension and thus not relevant to
4606 traditional C compatibility.
4607 @end itemize
4608
4609 @item -Wtraditional-conversion @r{(C and Objective-C only)}
4610 @opindex Wtraditional-conversion
4611 @opindex Wno-traditional-conversion
4612 Warn if a prototype causes a type conversion that is different from what
4613 would happen to the same argument in the absence of a prototype. This
4614 includes conversions of fixed point to floating and vice versa, and
4615 conversions changing the width or signedness of a fixed-point argument
4616 except when the same as the default promotion.
4617
4618 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4619 @opindex Wdeclaration-after-statement
4620 @opindex Wno-declaration-after-statement
4621 Warn when a declaration is found after a statement in a block. This
4622 construct, known from C++, was introduced with ISO C99 and is by default
4623 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
4624
4625 @item -Wundef
4626 @opindex Wundef
4627 @opindex Wno-undef
4628 Warn if an undefined identifier is evaluated in an @code{#if} directive.
4629
4630 @item -Wno-endif-labels
4631 @opindex Wno-endif-labels
4632 @opindex Wendif-labels
4633 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4634
4635 @item -Wshadow
4636 @opindex Wshadow
4637 @opindex Wno-shadow
4638 Warn whenever a local variable or type declaration shadows another
4639 variable, parameter, type, class member (in C++), or instance variable
4640 (in Objective-C) or whenever a built-in function is shadowed. Note
4641 that in C++, the compiler warns if a local variable shadows an
4642 explicit typedef, but not if it shadows a struct/class/enum.
4643
4644 @item -Wno-shadow-ivar @r{(Objective-C only)}
4645 @opindex Wno-shadow-ivar
4646 @opindex Wshadow-ivar
4647 Do not warn whenever a local variable shadows an instance variable in an
4648 Objective-C method.
4649
4650 @item -Wlarger-than=@var{len}
4651 @opindex Wlarger-than=@var{len}
4652 @opindex Wlarger-than-@var{len}
4653 Warn whenever an object of larger than @var{len} bytes is defined.
4654
4655 @item -Wframe-larger-than=@var{len}
4656 @opindex Wframe-larger-than
4657 Warn if the size of a function frame is larger than @var{len} bytes.
4658 The computation done to determine the stack frame size is approximate
4659 and not conservative.
4660 The actual requirements may be somewhat greater than @var{len}
4661 even if you do not get a warning. In addition, any space allocated
4662 via @code{alloca}, variable-length arrays, or related constructs
4663 is not included by the compiler when determining
4664 whether or not to issue a warning.
4665
4666 @item -Wno-free-nonheap-object
4667 @opindex Wno-free-nonheap-object
4668 @opindex Wfree-nonheap-object
4669 Do not warn when attempting to free an object that was not allocated
4670 on the heap.
4671
4672 @item -Wstack-usage=@var{len}
4673 @opindex Wstack-usage
4674 Warn if the stack usage of a function might be larger than @var{len} bytes.
4675 The computation done to determine the stack usage is conservative.
4676 Any space allocated via @code{alloca}, variable-length arrays, or related
4677 constructs is included by the compiler when determining whether or not to
4678 issue a warning.
4679
4680 The message is in keeping with the output of @option{-fstack-usage}.
4681
4682 @itemize
4683 @item
4684 If the stack usage is fully static but exceeds the specified amount, it's:
4685
4686 @smallexample
4687 warning: stack usage is 1120 bytes
4688 @end smallexample
4689 @item
4690 If the stack usage is (partly) dynamic but bounded, it's:
4691
4692 @smallexample
4693 warning: stack usage might be 1648 bytes
4694 @end smallexample
4695 @item
4696 If the stack usage is (partly) dynamic and not bounded, it's:
4697
4698 @smallexample
4699 warning: stack usage might be unbounded
4700 @end smallexample
4701 @end itemize
4702
4703 @item -Wunsafe-loop-optimizations
4704 @opindex Wunsafe-loop-optimizations
4705 @opindex Wno-unsafe-loop-optimizations
4706 Warn if the loop cannot be optimized because the compiler cannot
4707 assume anything on the bounds of the loop indices. With
4708 @option{-funsafe-loop-optimizations} warn if the compiler makes
4709 such assumptions.
4710
4711 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4712 @opindex Wno-pedantic-ms-format
4713 @opindex Wpedantic-ms-format
4714 When used in combination with @option{-Wformat}
4715 and @option{-pedantic} without GNU extensions, this option
4716 disables the warnings about non-ISO @code{printf} / @code{scanf} format
4717 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4718 which depend on the MS runtime.
4719
4720 @item -Wpointer-arith
4721 @opindex Wpointer-arith
4722 @opindex Wno-pointer-arith
4723 Warn about anything that depends on the ``size of'' a function type or
4724 of @code{void}. GNU C assigns these types a size of 1, for
4725 convenience in calculations with @code{void *} pointers and pointers
4726 to functions. In C++, warn also when an arithmetic operation involves
4727 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
4728
4729 @item -Wtype-limits
4730 @opindex Wtype-limits
4731 @opindex Wno-type-limits
4732 Warn if a comparison is always true or always false due to the limited
4733 range of the data type, but do not warn for constant expressions. For
4734 example, warn if an unsigned variable is compared against zero with
4735 @code{<} or @code{>=}. This warning is also enabled by
4736 @option{-Wextra}.
4737
4738 @item -Wbad-function-cast @r{(C and Objective-C only)}
4739 @opindex Wbad-function-cast
4740 @opindex Wno-bad-function-cast
4741 Warn when a function call is cast to a non-matching type.
4742 For example, warn if a call to a function returning an integer type
4743 is cast to a pointer type.
4744
4745 @item -Wc90-c99-compat @r{(C and Objective-C only)}
4746 @opindex Wc90-c99-compat
4747 @opindex Wno-c90-c99-compat
4748 Warn about features not present in ISO C90, but present in ISO C99.
4749 For instance, warn about use of variable length arrays, @code{long long}
4750 type, @code{bool} type, compound literals, designated initializers, and so
4751 on. This option is independent of the standards mode. Warnings are disabled
4752 in the expression that follows @code{__extension__}.
4753
4754 @item -Wc99-c11-compat @r{(C and Objective-C only)}
4755 @opindex Wc99-c11-compat
4756 @opindex Wno-c99-c11-compat
4757 Warn about features not present in ISO C99, but present in ISO C11.
4758 For instance, warn about use of anonymous structures and unions,
4759 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4760 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4761 and so on. This option is independent of the standards mode. Warnings are
4762 disabled in the expression that follows @code{__extension__}.
4763
4764 @item -Wc++-compat @r{(C and Objective-C only)}
4765 @opindex Wc++-compat
4766 Warn about ISO C constructs that are outside of the common subset of
4767 ISO C and ISO C++, e.g.@: request for implicit conversion from
4768 @code{void *} to a pointer to non-@code{void} type.
4769
4770 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
4771 @opindex Wc++11-compat
4772 Warn about C++ constructs whose meaning differs between ISO C++ 1998
4773 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
4774 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
4775 enabled by @option{-Wall}.
4776
4777 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
4778 @opindex Wc++14-compat
4779 Warn about C++ constructs whose meaning differs between ISO C++ 2011
4780 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
4781
4782 @item -Wcast-qual
4783 @opindex Wcast-qual
4784 @opindex Wno-cast-qual
4785 Warn whenever a pointer is cast so as to remove a type qualifier from
4786 the target type. For example, warn if a @code{const char *} is cast
4787 to an ordinary @code{char *}.
4788
4789 Also warn when making a cast that introduces a type qualifier in an
4790 unsafe way. For example, casting @code{char **} to @code{const char **}
4791 is unsafe, as in this example:
4792
4793 @smallexample
4794 /* p is char ** value. */
4795 const char **q = (const char **) p;
4796 /* Assignment of readonly string to const char * is OK. */
4797 *q = "string";
4798 /* Now char** pointer points to read-only memory. */
4799 **p = 'b';
4800 @end smallexample
4801
4802 @item -Wcast-align
4803 @opindex Wcast-align
4804 @opindex Wno-cast-align
4805 Warn whenever a pointer is cast such that the required alignment of the
4806 target is increased. For example, warn if a @code{char *} is cast to
4807 an @code{int *} on machines where integers can only be accessed at
4808 two- or four-byte boundaries.
4809
4810 @item -Wwrite-strings
4811 @opindex Wwrite-strings
4812 @opindex Wno-write-strings
4813 When compiling C, give string constants the type @code{const
4814 char[@var{length}]} so that copying the address of one into a
4815 non-@code{const} @code{char *} pointer produces a warning. These
4816 warnings help you find at compile time code that can try to write
4817 into a string constant, but only if you have been very careful about
4818 using @code{const} in declarations and prototypes. Otherwise, it is
4819 just a nuisance. This is why we did not make @option{-Wall} request
4820 these warnings.
4821
4822 When compiling C++, warn about the deprecated conversion from string
4823 literals to @code{char *}. This warning is enabled by default for C++
4824 programs.
4825
4826 @item -Wclobbered
4827 @opindex Wclobbered
4828 @opindex Wno-clobbered
4829 Warn for variables that might be changed by @code{longjmp} or
4830 @code{vfork}. This warning is also enabled by @option{-Wextra}.
4831
4832 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4833 @opindex Wconditionally-supported
4834 @opindex Wno-conditionally-supported
4835 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4836
4837 @item -Wconversion
4838 @opindex Wconversion
4839 @opindex Wno-conversion
4840 Warn for implicit conversions that may alter a value. This includes
4841 conversions between real and integer, like @code{abs (x)} when
4842 @code{x} is @code{double}; conversions between signed and unsigned,
4843 like @code{unsigned ui = -1}; and conversions to smaller types, like
4844 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
4845 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
4846 changed by the conversion like in @code{abs (2.0)}. Warnings about
4847 conversions between signed and unsigned integers can be disabled by
4848 using @option{-Wno-sign-conversion}.
4849
4850 For C++, also warn for confusing overload resolution for user-defined
4851 conversions; and conversions that never use a type conversion
4852 operator: conversions to @code{void}, the same type, a base class or a
4853 reference to them. Warnings about conversions between signed and
4854 unsigned integers are disabled by default in C++ unless
4855 @option{-Wsign-conversion} is explicitly enabled.
4856
4857 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
4858 @opindex Wconversion-null
4859 @opindex Wno-conversion-null
4860 Do not warn for conversions between @code{NULL} and non-pointer
4861 types. @option{-Wconversion-null} is enabled by default.
4862
4863 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
4864 @opindex Wzero-as-null-pointer-constant
4865 @opindex Wno-zero-as-null-pointer-constant
4866 Warn when a literal '0' is used as null pointer constant. This can
4867 be useful to facilitate the conversion to @code{nullptr} in C++11.
4868
4869 @item -Wdate-time
4870 @opindex Wdate-time
4871 @opindex Wno-date-time
4872 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
4873 are encountered as they might prevent bit-wise-identical reproducible
4874 compilations.
4875
4876 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
4877 @opindex Wdelete-incomplete
4878 @opindex Wno-delete-incomplete
4879 Warn when deleting a pointer to incomplete type, which may cause
4880 undefined behavior at runtime. This warning is enabled by default.
4881
4882 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
4883 @opindex Wuseless-cast
4884 @opindex Wno-useless-cast
4885 Warn when an expression is casted to its own type.
4886
4887 @item -Wempty-body
4888 @opindex Wempty-body
4889 @opindex Wno-empty-body
4890 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
4891 while} statement. This warning is also enabled by @option{-Wextra}.
4892
4893 @item -Wenum-compare
4894 @opindex Wenum-compare
4895 @opindex Wno-enum-compare
4896 Warn about a comparison between values of different enumerated types.
4897 In C++ enumeral mismatches in conditional expressions are also
4898 diagnosed and the warning is enabled by default. In C this warning is
4899 enabled by @option{-Wall}.
4900
4901 @item -Wjump-misses-init @r{(C, Objective-C only)}
4902 @opindex Wjump-misses-init
4903 @opindex Wno-jump-misses-init
4904 Warn if a @code{goto} statement or a @code{switch} statement jumps
4905 forward across the initialization of a variable, or jumps backward to a
4906 label after the variable has been initialized. This only warns about
4907 variables that are initialized when they are declared. This warning is
4908 only supported for C and Objective-C; in C++ this sort of branch is an
4909 error in any case.
4910
4911 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
4912 can be disabled with the @option{-Wno-jump-misses-init} option.
4913
4914 @item -Wsign-compare
4915 @opindex Wsign-compare
4916 @opindex Wno-sign-compare
4917 @cindex warning for comparison of signed and unsigned values
4918 @cindex comparison of signed and unsigned values, warning
4919 @cindex signed and unsigned values, comparison warning
4920 Warn when a comparison between signed and unsigned values could produce
4921 an incorrect result when the signed value is converted to unsigned.
4922 This warning is also enabled by @option{-Wextra}; to get the other warnings
4923 of @option{-Wextra} without this warning, use @option{-Wextra -Wno-sign-compare}.
4924
4925 @item -Wsign-conversion
4926 @opindex Wsign-conversion
4927 @opindex Wno-sign-conversion
4928 Warn for implicit conversions that may change the sign of an integer
4929 value, like assigning a signed integer expression to an unsigned
4930 integer variable. An explicit cast silences the warning. In C, this
4931 option is enabled also by @option{-Wconversion}.
4932
4933 @item -Wfloat-conversion
4934 @opindex Wfloat-conversion
4935 @opindex Wno-float-conversion
4936 Warn for implicit conversions that reduce the precision of a real value.
4937 This includes conversions from real to integer, and from higher precision
4938 real to lower precision real values. This option is also enabled by
4939 @option{-Wconversion}.
4940
4941 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
4942 @opindex Wsized-deallocation
4943 @opindex Wno-sized-deallocation
4944 Warn about a definition of an unsized deallocation function
4945 @smallexample
4946 void operator delete (void *) noexcept;
4947 void operator delete[] (void *) noexcept;
4948 @end smallexample
4949 without a definition of the corresponding sized deallocation function
4950 @smallexample
4951 void operator delete (void *, std::size_t) noexcept;
4952 void operator delete[] (void *, std::size_t) noexcept;
4953 @end smallexample
4954 or vice versa. Enabled by @option{-Wextra} along with
4955 @option{-fsized-deallocation}.
4956
4957 @item -Wsizeof-pointer-memaccess
4958 @opindex Wsizeof-pointer-memaccess
4959 @opindex Wno-sizeof-pointer-memaccess
4960 Warn for suspicious length parameters to certain string and memory built-in
4961 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
4962 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
4963 but a pointer, and suggests a possible fix, or about
4964 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
4965 @option{-Wall}.
4966
4967 @item -Wsizeof-array-argument
4968 @opindex Wsizeof-array-argument
4969 @opindex Wno-sizeof-array-argument
4970 Warn when the @code{sizeof} operator is applied to a parameter that is
4971 declared as an array in a function definition. This warning is enabled by
4972 default for C and C++ programs.
4973
4974 @item -Wmemset-transposed-args
4975 @opindex Wmemset-transposed-args
4976 @opindex Wno-memset-transposed-args
4977 Warn for suspicious calls to the @code{memset} built-in function, if the
4978 second argument is not zero and the third argument is zero. This warns e.g.@
4979 about @code{memset (buf, sizeof buf, 0)} where most probably
4980 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
4981 is only emitted if the third argument is literal zero. If it is some
4982 expression that is folded to zero, a cast of zero to some type, etc.,
4983 it is far less likely that the user has mistakenly exchanged the arguments
4984 and no warning is emitted. This warning is enabled by @option{-Wall}.
4985
4986 @item -Waddress
4987 @opindex Waddress
4988 @opindex Wno-address
4989 Warn about suspicious uses of memory addresses. These include using
4990 the address of a function in a conditional expression, such as
4991 @code{void func(void); if (func)}, and comparisons against the memory
4992 address of a string literal, such as @code{if (x == "abc")}. Such
4993 uses typically indicate a programmer error: the address of a function
4994 always evaluates to true, so their use in a conditional usually
4995 indicate that the programmer forgot the parentheses in a function
4996 call; and comparisons against string literals result in unspecified
4997 behavior and are not portable in C, so they usually indicate that the
4998 programmer intended to use @code{strcmp}. This warning is enabled by
4999 @option{-Wall}.
5000
5001 @item -Wlogical-op
5002 @opindex Wlogical-op
5003 @opindex Wno-logical-op
5004 Warn about suspicious uses of logical operators in expressions.
5005 This includes using logical operators in contexts where a
5006 bit-wise operator is likely to be expected. Also warns when
5007 the operands of a logical operator are the same:
5008 @smallexample
5009 extern int a;
5010 if (a < 0 && a < 0) @{ @dots{} @}
5011 @end smallexample
5012
5013 @item -Wlogical-not-parentheses
5014 @opindex Wlogical-not-parentheses
5015 @opindex Wno-logical-not-parentheses
5016 Warn about logical not used on the left hand side operand of a comparison.
5017 This option does not warn if the RHS operand is of a boolean type. Its
5018 purpose is to detect suspicious code like the following:
5019 @smallexample
5020 int a;
5021 @dots{}
5022 if (!a > 1) @{ @dots{} @}
5023 @end smallexample
5024
5025 It is possible to suppress the warning by wrapping the LHS into
5026 parentheses:
5027 @smallexample
5028 if ((!a) > 1) @{ @dots{} @}
5029 @end smallexample
5030
5031 This warning is enabled by @option{-Wall}.
5032
5033 @item -Waggregate-return
5034 @opindex Waggregate-return
5035 @opindex Wno-aggregate-return
5036 Warn if any functions that return structures or unions are defined or
5037 called. (In languages where you can return an array, this also elicits
5038 a warning.)
5039
5040 @item -Wno-aggressive-loop-optimizations
5041 @opindex Wno-aggressive-loop-optimizations
5042 @opindex Waggressive-loop-optimizations
5043 Warn if in a loop with constant number of iterations the compiler detects
5044 undefined behavior in some statement during one or more of the iterations.
5045
5046 @item -Wno-attributes
5047 @opindex Wno-attributes
5048 @opindex Wattributes
5049 Do not warn if an unexpected @code{__attribute__} is used, such as
5050 unrecognized attributes, function attributes applied to variables,
5051 etc. This does not stop errors for incorrect use of supported
5052 attributes.
5053
5054 @item -Wno-builtin-macro-redefined
5055 @opindex Wno-builtin-macro-redefined
5056 @opindex Wbuiltin-macro-redefined
5057 Do not warn if certain built-in macros are redefined. This suppresses
5058 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5059 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5060
5061 @item -Wstrict-prototypes @r{(C and Objective-C only)}
5062 @opindex Wstrict-prototypes
5063 @opindex Wno-strict-prototypes
5064 Warn if a function is declared or defined without specifying the
5065 argument types. (An old-style function definition is permitted without
5066 a warning if preceded by a declaration that specifies the argument
5067 types.)
5068
5069 @item -Wold-style-declaration @r{(C and Objective-C only)}
5070 @opindex Wold-style-declaration
5071 @opindex Wno-old-style-declaration
5072 Warn for obsolescent usages, according to the C Standard, in a
5073 declaration. For example, warn if storage-class specifiers like
5074 @code{static} are not the first things in a declaration. This warning
5075 is also enabled by @option{-Wextra}.
5076
5077 @item -Wold-style-definition @r{(C and Objective-C only)}
5078 @opindex Wold-style-definition
5079 @opindex Wno-old-style-definition
5080 Warn if an old-style function definition is used. A warning is given
5081 even if there is a previous prototype.
5082
5083 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5084 @opindex Wmissing-parameter-type
5085 @opindex Wno-missing-parameter-type
5086 A function parameter is declared without a type specifier in K&R-style
5087 functions:
5088
5089 @smallexample
5090 void foo(bar) @{ @}
5091 @end smallexample
5092
5093 This warning is also enabled by @option{-Wextra}.
5094
5095 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5096 @opindex Wmissing-prototypes
5097 @opindex Wno-missing-prototypes
5098 Warn if a global function is defined without a previous prototype
5099 declaration. This warning is issued even if the definition itself
5100 provides a prototype. Use this option to detect global functions
5101 that do not have a matching prototype declaration in a header file.
5102 This option is not valid for C++ because all function declarations
5103 provide prototypes and a non-matching declaration declares an
5104 overload rather than conflict with an earlier declaration.
5105 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5106
5107 @item -Wmissing-declarations
5108 @opindex Wmissing-declarations
5109 @opindex Wno-missing-declarations
5110 Warn if a global function is defined without a previous declaration.
5111 Do so even if the definition itself provides a prototype.
5112 Use this option to detect global functions that are not declared in
5113 header files. In C, no warnings are issued for functions with previous
5114 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5115 missing prototypes. In C++, no warnings are issued for function templates,
5116 or for inline functions, or for functions in anonymous namespaces.
5117
5118 @item -Wmissing-field-initializers
5119 @opindex Wmissing-field-initializers
5120 @opindex Wno-missing-field-initializers
5121 @opindex W
5122 @opindex Wextra
5123 @opindex Wno-extra
5124 Warn if a structure's initializer has some fields missing. For
5125 example, the following code causes such a warning, because
5126 @code{x.h} is implicitly zero:
5127
5128 @smallexample
5129 struct s @{ int f, g, h; @};
5130 struct s x = @{ 3, 4 @};
5131 @end smallexample
5132
5133 This option does not warn about designated initializers, so the following
5134 modification does not trigger a warning:
5135
5136 @smallexample
5137 struct s @{ int f, g, h; @};
5138 struct s x = @{ .f = 3, .g = 4 @};
5139 @end smallexample
5140
5141 In C++ this option does not warn either about the empty @{ @}
5142 initializer, for example:
5143
5144 @smallexample
5145 struct s @{ int f, g, h; @};
5146 s x = @{ @};
5147 @end smallexample
5148
5149 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
5150 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5151
5152 @item -Wno-multichar
5153 @opindex Wno-multichar
5154 @opindex Wmultichar
5155 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5156 Usually they indicate a typo in the user's code, as they have
5157 implementation-defined values, and should not be used in portable code.
5158
5159 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5160 @opindex Wnormalized=
5161 @opindex Wnormalized
5162 @opindex Wno-normalized
5163 @cindex NFC
5164 @cindex NFKC
5165 @cindex character set, input normalization
5166 In ISO C and ISO C++, two identifiers are different if they are
5167 different sequences of characters. However, sometimes when characters
5168 outside the basic ASCII character set are used, you can have two
5169 different character sequences that look the same. To avoid confusion,
5170 the ISO 10646 standard sets out some @dfn{normalization rules} which
5171 when applied ensure that two sequences that look the same are turned into
5172 the same sequence. GCC can warn you if you are using identifiers that
5173 have not been normalized; this option controls that warning.
5174
5175 There are four levels of warning supported by GCC@. The default is
5176 @option{-Wnormalized=nfc}, which warns about any identifier that is
5177 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
5178 recommended form for most uses. It is equivalent to
5179 @option{-Wnormalized}.
5180
5181 Unfortunately, there are some characters allowed in identifiers by
5182 ISO C and ISO C++ that, when turned into NFC, are not allowed in
5183 identifiers. That is, there's no way to use these symbols in portable
5184 ISO C or C++ and have all your identifiers in NFC@.
5185 @option{-Wnormalized=id} suppresses the warning for these characters.
5186 It is hoped that future versions of the standards involved will correct
5187 this, which is why this option is not the default.
5188
5189 You can switch the warning off for all characters by writing
5190 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
5191 only do this if you are using some other normalization scheme (like
5192 ``D''), because otherwise you can easily create bugs that are
5193 literally impossible to see.
5194
5195 Some characters in ISO 10646 have distinct meanings but look identical
5196 in some fonts or display methodologies, especially once formatting has
5197 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5198 LETTER N'', displays just like a regular @code{n} that has been
5199 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
5200 normalization scheme to convert all these into a standard form as
5201 well, and GCC warns if your code is not in NFKC if you use
5202 @option{-Wnormalized=nfkc}. This warning is comparable to warning
5203 about every identifier that contains the letter O because it might be
5204 confused with the digit 0, and so is not the default, but may be
5205 useful as a local coding convention if the programming environment
5206 cannot be fixed to display these characters distinctly.
5207
5208 @item -Wno-deprecated
5209 @opindex Wno-deprecated
5210 @opindex Wdeprecated
5211 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
5212
5213 @item -Wno-deprecated-declarations
5214 @opindex Wno-deprecated-declarations
5215 @opindex Wdeprecated-declarations
5216 Do not warn about uses of functions (@pxref{Function Attributes}),
5217 variables (@pxref{Variable Attributes}), and types (@pxref{Type
5218 Attributes}) marked as deprecated by using the @code{deprecated}
5219 attribute.
5220
5221 @item -Wno-overflow
5222 @opindex Wno-overflow
5223 @opindex Woverflow
5224 Do not warn about compile-time overflow in constant expressions.
5225
5226 @item -Wno-odr
5227 @opindex Wno-odr
5228 @opindex Wodr
5229 Warn about One Definition Rule violations during link-time optimization.
5230 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
5231
5232 @item -Wopenmp-simd
5233 @opindex Wopenm-simd
5234 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5235 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
5236 option can be used to relax the cost model.
5237
5238 @item -Woverride-init @r{(C and Objective-C only)}
5239 @opindex Woverride-init
5240 @opindex Wno-override-init
5241 @opindex W
5242 @opindex Wextra
5243 @opindex Wno-extra
5244 Warn if an initialized field without side effects is overridden when
5245 using designated initializers (@pxref{Designated Inits, , Designated
5246 Initializers}).
5247
5248 This warning is included in @option{-Wextra}. To get other
5249 @option{-Wextra} warnings without this one, use @option{-Wextra
5250 -Wno-override-init}.
5251
5252 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
5253 @opindex Woverride-init-side-effects
5254 @opindex Wno-override-init-side-effects
5255 Warn if an initialized field with side effects is overridden when
5256 using designated initializers (@pxref{Designated Inits, , Designated
5257 Initializers}). This warning is enabled by default.
5258
5259 @item -Wpacked
5260 @opindex Wpacked
5261 @opindex Wno-packed
5262 Warn if a structure is given the packed attribute, but the packed
5263 attribute has no effect on the layout or size of the structure.
5264 Such structures may be mis-aligned for little benefit. For
5265 instance, in this code, the variable @code{f.x} in @code{struct bar}
5266 is misaligned even though @code{struct bar} does not itself
5267 have the packed attribute:
5268
5269 @smallexample
5270 @group
5271 struct foo @{
5272 int x;
5273 char a, b, c, d;
5274 @} __attribute__((packed));
5275 struct bar @{
5276 char z;
5277 struct foo f;
5278 @};
5279 @end group
5280 @end smallexample
5281
5282 @item -Wpacked-bitfield-compat
5283 @opindex Wpacked-bitfield-compat
5284 @opindex Wno-packed-bitfield-compat
5285 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5286 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
5287 the change can lead to differences in the structure layout. GCC
5288 informs you when the offset of such a field has changed in GCC 4.4.
5289 For example there is no longer a 4-bit padding between field @code{a}
5290 and @code{b} in this structure:
5291
5292 @smallexample
5293 struct foo
5294 @{
5295 char a:4;
5296 char b:8;
5297 @} __attribute__ ((packed));
5298 @end smallexample
5299
5300 This warning is enabled by default. Use
5301 @option{-Wno-packed-bitfield-compat} to disable this warning.
5302
5303 @item -Wpadded
5304 @opindex Wpadded
5305 @opindex Wno-padded
5306 Warn if padding is included in a structure, either to align an element
5307 of the structure or to align the whole structure. Sometimes when this
5308 happens it is possible to rearrange the fields of the structure to
5309 reduce the padding and so make the structure smaller.
5310
5311 @item -Wredundant-decls
5312 @opindex Wredundant-decls
5313 @opindex Wno-redundant-decls
5314 Warn if anything is declared more than once in the same scope, even in
5315 cases where multiple declaration is valid and changes nothing.
5316
5317 @item -Wnested-externs @r{(C and Objective-C only)}
5318 @opindex Wnested-externs
5319 @opindex Wno-nested-externs
5320 Warn if an @code{extern} declaration is encountered within a function.
5321
5322 @item -Wno-inherited-variadic-ctor
5323 @opindex Winherited-variadic-ctor
5324 @opindex Wno-inherited-variadic-ctor
5325 Suppress warnings about use of C++11 inheriting constructors when the
5326 base class inherited from has a C variadic constructor; the warning is
5327 on by default because the ellipsis is not inherited.
5328
5329 @item -Winline
5330 @opindex Winline
5331 @opindex Wno-inline
5332 Warn if a function that is declared as inline cannot be inlined.
5333 Even with this option, the compiler does not warn about failures to
5334 inline functions declared in system headers.
5335
5336 The compiler uses a variety of heuristics to determine whether or not
5337 to inline a function. For example, the compiler takes into account
5338 the size of the function being inlined and the amount of inlining
5339 that has already been done in the current function. Therefore,
5340 seemingly insignificant changes in the source program can cause the
5341 warnings produced by @option{-Winline} to appear or disappear.
5342
5343 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5344 @opindex Wno-invalid-offsetof
5345 @opindex Winvalid-offsetof
5346 Suppress warnings from applying the @code{offsetof} macro to a non-POD
5347 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
5348 to a non-standard-layout type is undefined. In existing C++ implementations,
5349 however, @code{offsetof} typically gives meaningful results.
5350 This flag is for users who are aware that they are
5351 writing nonportable code and who have deliberately chosen to ignore the
5352 warning about it.
5353
5354 The restrictions on @code{offsetof} may be relaxed in a future version
5355 of the C++ standard.
5356
5357 @item -Wno-int-to-pointer-cast
5358 @opindex Wno-int-to-pointer-cast
5359 @opindex Wint-to-pointer-cast
5360 Suppress warnings from casts to pointer type of an integer of a
5361 different size. In C++, casting to a pointer type of smaller size is
5362 an error. @option{Wint-to-pointer-cast} is enabled by default.
5363
5364
5365 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5366 @opindex Wno-pointer-to-int-cast
5367 @opindex Wpointer-to-int-cast
5368 Suppress warnings from casts from a pointer to an integer type of a
5369 different size.
5370
5371 @item -Winvalid-pch
5372 @opindex Winvalid-pch
5373 @opindex Wno-invalid-pch
5374 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5375 the search path but can't be used.
5376
5377 @item -Wlong-long
5378 @opindex Wlong-long
5379 @opindex Wno-long-long
5380 Warn if @code{long long} type is used. This is enabled by either
5381 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5382 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
5383
5384 @item -Wvariadic-macros
5385 @opindex Wvariadic-macros
5386 @opindex Wno-variadic-macros
5387 Warn if variadic macros are used in ISO C90 mode, or if the GNU
5388 alternate syntax is used in ISO C99 mode. This is enabled by either
5389 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
5390 messages, use @option{-Wno-variadic-macros}.
5391
5392 @item -Wvarargs
5393 @opindex Wvarargs
5394 @opindex Wno-varargs
5395 Warn upon questionable usage of the macros used to handle variable
5396 arguments like @code{va_start}. This is default. To inhibit the
5397 warning messages, use @option{-Wno-varargs}.
5398
5399 @item -Wvector-operation-performance
5400 @opindex Wvector-operation-performance
5401 @opindex Wno-vector-operation-performance
5402 Warn if vector operation is not implemented via SIMD capabilities of the
5403 architecture. Mainly useful for the performance tuning.
5404 Vector operation can be implemented @code{piecewise}, which means that the
5405 scalar operation is performed on every vector element;
5406 @code{in parallel}, which means that the vector operation is implemented
5407 using scalars of wider type, which normally is more performance efficient;
5408 and @code{as a single scalar}, which means that vector fits into a
5409 scalar type.
5410
5411 @item -Wno-virtual-move-assign
5412 @opindex Wvirtual-move-assign
5413 @opindex Wno-virtual-move-assign
5414 Suppress warnings about inheriting from a virtual base with a
5415 non-trivial C++11 move assignment operator. This is dangerous because
5416 if the virtual base is reachable along more than one path, it is
5417 moved multiple times, which can mean both objects end up in the
5418 moved-from state. If the move assignment operator is written to avoid
5419 moving from a moved-from object, this warning can be disabled.
5420
5421 @item -Wvla
5422 @opindex Wvla
5423 @opindex Wno-vla
5424 Warn if variable length array is used in the code.
5425 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5426 the variable length array.
5427
5428 @item -Wvolatile-register-var
5429 @opindex Wvolatile-register-var
5430 @opindex Wno-volatile-register-var
5431 Warn if a register variable is declared volatile. The volatile
5432 modifier does not inhibit all optimizations that may eliminate reads
5433 and/or writes to register variables. This warning is enabled by
5434 @option{-Wall}.
5435
5436 @item -Wdisabled-optimization
5437 @opindex Wdisabled-optimization
5438 @opindex Wno-disabled-optimization
5439 Warn if a requested optimization pass is disabled. This warning does
5440 not generally indicate that there is anything wrong with your code; it
5441 merely indicates that GCC's optimizers are unable to handle the code
5442 effectively. Often, the problem is that your code is too big or too
5443 complex; GCC refuses to optimize programs when the optimization
5444 itself is likely to take inordinate amounts of time.
5445
5446 @item -Wpointer-sign @r{(C and Objective-C only)}
5447 @opindex Wpointer-sign
5448 @opindex Wno-pointer-sign
5449 Warn for pointer argument passing or assignment with different signedness.
5450 This option is only supported for C and Objective-C@. It is implied by
5451 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5452 @option{-Wno-pointer-sign}.
5453
5454 @item -Wstack-protector
5455 @opindex Wstack-protector
5456 @opindex Wno-stack-protector
5457 This option is only active when @option{-fstack-protector} is active. It
5458 warns about functions that are not protected against stack smashing.
5459
5460 @item -Woverlength-strings
5461 @opindex Woverlength-strings
5462 @opindex Wno-overlength-strings
5463 Warn about string constants that are longer than the ``minimum
5464 maximum'' length specified in the C standard. Modern compilers
5465 generally allow string constants that are much longer than the
5466 standard's minimum limit, but very portable programs should avoid
5467 using longer strings.
5468
5469 The limit applies @emph{after} string constant concatenation, and does
5470 not count the trailing NUL@. In C90, the limit was 509 characters; in
5471 C99, it was raised to 4095. C++98 does not specify a normative
5472 minimum maximum, so we do not diagnose overlength strings in C++@.
5473
5474 This option is implied by @option{-Wpedantic}, and can be disabled with
5475 @option{-Wno-overlength-strings}.
5476
5477 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5478 @opindex Wunsuffixed-float-constants
5479
5480 Issue a warning for any floating constant that does not have
5481 a suffix. When used together with @option{-Wsystem-headers} it
5482 warns about such constants in system header files. This can be useful
5483 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5484 from the decimal floating-point extension to C99.
5485
5486 @item -Wno-designated-init @r{(C and Objective-C only)}
5487 Suppress warnings when a positional initializer is used to initialize
5488 a structure that has been marked with the @code{designated_init}
5489 attribute.
5490
5491 @end table
5492
5493 @node Debugging Options
5494 @section Options for Debugging Your Program or GCC
5495 @cindex options, debugging
5496 @cindex debugging information options
5497
5498 GCC has various special options that are used for debugging
5499 either your program or GCC:
5500
5501 @table @gcctabopt
5502 @item -g
5503 @opindex g
5504 Produce debugging information in the operating system's native format
5505 (stabs, COFF, XCOFF, or DWARF 2)@. GDB can work with this debugging
5506 information.
5507
5508 On most systems that use stabs format, @option{-g} enables use of extra
5509 debugging information that only GDB can use; this extra information
5510 makes debugging work better in GDB but probably makes other debuggers
5511 crash or
5512 refuse to read the program. If you want to control for certain whether
5513 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5514 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5515
5516 GCC allows you to use @option{-g} with
5517 @option{-O}. The shortcuts taken by optimized code may occasionally
5518 produce surprising results: some variables you declared may not exist
5519 at all; flow of control may briefly move where you did not expect it;
5520 some statements may not be executed because they compute constant
5521 results or their values are already at hand; some statements may
5522 execute in different places because they have been moved out of loops.
5523
5524 Nevertheless it proves possible to debug optimized output. This makes
5525 it reasonable to use the optimizer for programs that might have bugs.
5526
5527 The following options are useful when GCC is generated with the
5528 capability for more than one debugging format.
5529
5530 @item -gsplit-dwarf
5531 @opindex gsplit-dwarf
5532 Separate as much dwarf debugging information as possible into a
5533 separate output file with the extension .dwo. This option allows
5534 the build system to avoid linking files with debug information. To
5535 be useful, this option requires a debugger capable of reading .dwo
5536 files.
5537
5538 @item -ggdb
5539 @opindex ggdb
5540 Produce debugging information for use by GDB@. This means to use the
5541 most expressive format available (DWARF 2, stabs, or the native format
5542 if neither of those are supported), including GDB extensions if at all
5543 possible.
5544
5545 @item -gpubnames
5546 @opindex gpubnames
5547 Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5548
5549 @item -ggnu-pubnames
5550 @opindex ggnu-pubnames
5551 Generate .debug_pubnames and .debug_pubtypes sections in a format
5552 suitable for conversion into a GDB@ index. This option is only useful
5553 with a linker that can produce GDB@ index version 7.
5554
5555 @item -gstabs
5556 @opindex gstabs
5557 Produce debugging information in stabs format (if that is supported),
5558 without GDB extensions. This is the format used by DBX on most BSD
5559 systems. On MIPS, Alpha and System V Release 4 systems this option
5560 produces stabs debugging output that is not understood by DBX or SDB@.
5561 On System V Release 4 systems this option requires the GNU assembler.
5562
5563 @item -feliminate-unused-debug-symbols
5564 @opindex feliminate-unused-debug-symbols
5565 Produce debugging information in stabs format (if that is supported),
5566 for only symbols that are actually used.
5567
5568 @item -femit-class-debug-always
5569 @opindex femit-class-debug-always
5570 Instead of emitting debugging information for a C++ class in only one
5571 object file, emit it in all object files using the class. This option
5572 should be used only with debuggers that are unable to handle the way GCC
5573 normally emits debugging information for classes because using this
5574 option increases the size of debugging information by as much as a
5575 factor of two.
5576
5577 @item -fdebug-types-section
5578 @opindex fdebug-types-section
5579 @opindex fno-debug-types-section
5580 When using DWARF Version 4 or higher, type DIEs can be put into
5581 their own @code{.debug_types} section instead of making them part of the
5582 @code{.debug_info} section. It is more efficient to put them in a separate
5583 comdat sections since the linker can then remove duplicates.
5584 But not all DWARF consumers support @code{.debug_types} sections yet
5585 and on some objects @code{.debug_types} produces larger instead of smaller
5586 debugging information.
5587
5588 @item -gstabs+
5589 @opindex gstabs+
5590 Produce debugging information in stabs format (if that is supported),
5591 using GNU extensions understood only by the GNU debugger (GDB)@. The
5592 use of these extensions is likely to make other debuggers crash or
5593 refuse to read the program.
5594
5595 @item -gcoff
5596 @opindex gcoff
5597 Produce debugging information in COFF format (if that is supported).
5598 This is the format used by SDB on most System V systems prior to
5599 System V Release 4.
5600
5601 @item -gxcoff
5602 @opindex gxcoff
5603 Produce debugging information in XCOFF format (if that is supported).
5604 This is the format used by the DBX debugger on IBM RS/6000 systems.
5605
5606 @item -gxcoff+
5607 @opindex gxcoff+
5608 Produce debugging information in XCOFF format (if that is supported),
5609 using GNU extensions understood only by the GNU debugger (GDB)@. The
5610 use of these extensions is likely to make other debuggers crash or
5611 refuse to read the program, and may cause assemblers other than the GNU
5612 assembler (GAS) to fail with an error.
5613
5614 @item -gdwarf-@var{version}
5615 @opindex gdwarf-@var{version}
5616 Produce debugging information in DWARF format (if that is supported).
5617 The value of @var{version} may be either 2, 3, 4 or 5; the default version
5618 for most targets is 4. DWARF Version 5 is only experimental.
5619
5620 Note that with DWARF Version 2, some ports require and always
5621 use some non-conflicting DWARF 3 extensions in the unwind tables.
5622
5623 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5624 for maximum benefit.
5625
5626 @item -grecord-gcc-switches
5627 @opindex grecord-gcc-switches
5628 This switch causes the command-line options used to invoke the
5629 compiler that may affect code generation to be appended to the
5630 DW_AT_producer attribute in DWARF debugging information. The options
5631 are concatenated with spaces separating them from each other and from
5632 the compiler version. See also @option{-frecord-gcc-switches} for another
5633 way of storing compiler options into the object file. This is the default.
5634
5635 @item -gno-record-gcc-switches
5636 @opindex gno-record-gcc-switches
5637 Disallow appending command-line options to the DW_AT_producer attribute
5638 in DWARF debugging information.
5639
5640 @item -gstrict-dwarf
5641 @opindex gstrict-dwarf
5642 Disallow using extensions of later DWARF standard version than selected
5643 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
5644 DWARF extensions from later standard versions is allowed.
5645
5646 @item -gno-strict-dwarf
5647 @opindex gno-strict-dwarf
5648 Allow using extensions of later DWARF standard version than selected with
5649 @option{-gdwarf-@var{version}}.
5650
5651 @item -gz@r{[}=@var{type}@r{]}
5652 @opindex gz
5653 Produce compressed debug sections in DWARF format, if that is supported.
5654 If @var{type} is not given, the default type depends on the capabilities
5655 of the assembler and linker used. @var{type} may be one of
5656 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5657 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5658 compression in traditional GNU format). If the linker doesn't support
5659 writing compressed debug sections, the option is rejected. Otherwise,
5660 if the assembler does not support them, @option{-gz} is silently ignored
5661 when producing object files.
5662
5663 @item -gvms
5664 @opindex gvms
5665 Produce debugging information in Alpha/VMS debug format (if that is
5666 supported). This is the format used by DEBUG on Alpha/VMS systems.
5667
5668 @item -g@var{level}
5669 @itemx -ggdb@var{level}
5670 @itemx -gstabs@var{level}
5671 @itemx -gcoff@var{level}
5672 @itemx -gxcoff@var{level}
5673 @itemx -gvms@var{level}
5674 Request debugging information and also use @var{level} to specify how
5675 much information. The default level is 2.
5676
5677 Level 0 produces no debug information at all. Thus, @option{-g0} negates
5678 @option{-g}.
5679
5680 Level 1 produces minimal information, enough for making backtraces in
5681 parts of the program that you don't plan to debug. This includes
5682 descriptions of functions and external variables, and line number
5683 tables, but no information about local variables.
5684
5685 Level 3 includes extra information, such as all the macro definitions
5686 present in the program. Some debuggers support macro expansion when
5687 you use @option{-g3}.
5688
5689 @option{-gdwarf-2} does not accept a concatenated debug level, because
5690 GCC used to support an option @option{-gdwarf} that meant to generate
5691 debug information in version 1 of the DWARF format (which is very
5692 different from version 2), and it would have been too confusing. That
5693 debug format is long obsolete, but the option cannot be changed now.
5694 Instead use an additional @option{-g@var{level}} option to change the
5695 debug level for DWARF.
5696
5697 @item -gtoggle
5698 @opindex gtoggle
5699 Turn off generation of debug info, if leaving out this option
5700 generates it, or turn it on at level 2 otherwise. The position of this
5701 argument in the command line does not matter; it takes effect after all
5702 other options are processed, and it does so only once, no matter how
5703 many times it is given. This is mainly intended to be used with
5704 @option{-fcompare-debug}.
5705
5706 @item -fsanitize=address
5707 @opindex fsanitize=address
5708 Enable AddressSanitizer, a fast memory error detector.
5709 Memory access instructions are instrumented to detect
5710 out-of-bounds and use-after-free bugs.
5711 See @uref{http://code.google.com/p/address-sanitizer/} for
5712 more details. The run-time behavior can be influenced using the
5713 @env{ASAN_OPTIONS} environment variable; see
5714 @url{https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags} for
5715 a list of supported options.
5716
5717 @item -fsanitize=kernel-address
5718 @opindex fsanitize=kernel-address
5719 Enable AddressSanitizer for Linux kernel.
5720 See @uref{http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel} for more details.
5721
5722 @item -fsanitize=thread
5723 @opindex fsanitize=thread
5724 Enable ThreadSanitizer, a fast data race detector.
5725 Memory access instructions are instrumented to detect
5726 data race bugs. See @uref{http://code.google.com/p/thread-sanitizer/} for more
5727 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5728 environment variable; see
5729 @url{https://code.google.com/p/thread-sanitizer/wiki/Flags} for a list of
5730 supported options.
5731
5732 @item -fsanitize=leak
5733 @opindex fsanitize=leak
5734 Enable LeakSanitizer, a memory leak detector.
5735 This option only matters for linking of executables and if neither
5736 @option{-fsanitize=address} nor @option{-fsanitize=thread} is used. In that
5737 case the executable is linked against a library that overrides @code{malloc}
5738 and other allocator functions. See
5739 @uref{https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer} for more
5740 details. The run-time behavior can be influenced using the
5741 @env{LSAN_OPTIONS} environment variable.
5742
5743 @item -fsanitize=undefined
5744 @opindex fsanitize=undefined
5745 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5746 Various computations are instrumented to detect undefined behavior
5747 at runtime. Current suboptions are:
5748
5749 @table @gcctabopt
5750
5751 @item -fsanitize=shift
5752 @opindex fsanitize=shift
5753 This option enables checking that the result of a shift operation is
5754 not undefined. Note that what exactly is considered undefined differs
5755 slightly between C and C++, as well as between ISO C90 and C99, etc.
5756
5757 @item -fsanitize=integer-divide-by-zero
5758 @opindex fsanitize=integer-divide-by-zero
5759 Detect integer division by zero as well as @code{INT_MIN / -1} division.
5760
5761 @item -fsanitize=unreachable
5762 @opindex fsanitize=unreachable
5763 With this option, the compiler turns the @code{__builtin_unreachable}
5764 call into a diagnostics message call instead. When reaching the
5765 @code{__builtin_unreachable} call, the behavior is undefined.
5766
5767 @item -fsanitize=vla-bound
5768 @opindex fsanitize=vla-bound
5769 This option instructs the compiler to check that the size of a variable
5770 length array is positive.
5771
5772 @item -fsanitize=null
5773 @opindex fsanitize=null
5774 This option enables pointer checking. Particularly, the application
5775 built with this option turned on will issue an error message when it
5776 tries to dereference a NULL pointer, or if a reference (possibly an
5777 rvalue reference) is bound to a NULL pointer, or if a method is invoked
5778 on an object pointed by a NULL pointer.
5779
5780 @item -fsanitize=return
5781 @opindex fsanitize=return
5782 This option enables return statement checking. Programs
5783 built with this option turned on will issue an error message
5784 when the end of a non-void function is reached without actually
5785 returning a value. This option works in C++ only.
5786
5787 @item -fsanitize=signed-integer-overflow
5788 @opindex fsanitize=signed-integer-overflow
5789 This option enables signed integer overflow checking. We check that
5790 the result of @code{+}, @code{*}, and both unary and binary @code{-}
5791 does not overflow in the signed arithmetics. Note, integer promotion
5792 rules must be taken into account. That is, the following is not an
5793 overflow:
5794 @smallexample
5795 signed char a = SCHAR_MAX;
5796 a++;
5797 @end smallexample
5798
5799 @item -fsanitize=bounds
5800 @opindex fsanitize=bounds
5801 This option enables instrumentation of array bounds. Various out of bounds
5802 accesses are detected. Flexible array members, flexible array member-like
5803 arrays, and initializers of variables with static storage are not instrumented.
5804
5805 @item -fsanitize=bounds-strict
5806 @opindex fsanitize=bounds-strict
5807 This option enables strict instrumentation of array bounds. Most out of bounds
5808 accesses are detected, including flexible array members and flexible array
5809 member-like arrays. Initializers of variables with static storage are not
5810 instrumented.
5811
5812 @item -fsanitize=alignment
5813 @opindex fsanitize=alignment
5814
5815 This option enables checking of alignment of pointers when they are
5816 dereferenced, or when a reference is bound to insufficiently aligned target,
5817 or when a method or constructor is invoked on insufficiently aligned object.
5818
5819 @item -fsanitize=object-size
5820 @opindex fsanitize=object-size
5821 This option enables instrumentation of memory references using the
5822 @code{__builtin_object_size} function. Various out of bounds pointer
5823 accesses are detected.
5824
5825 @item -fsanitize=float-divide-by-zero
5826 @opindex fsanitize=float-divide-by-zero
5827 Detect floating-point division by zero. Unlike other similar options,
5828 @option{-fsanitize=float-divide-by-zero} is not enabled by
5829 @option{-fsanitize=undefined}, since floating-point division by zero can
5830 be a legitimate way of obtaining infinities and NaNs.
5831
5832 @item -fsanitize=float-cast-overflow
5833 @opindex fsanitize=float-cast-overflow
5834 This option enables floating-point type to integer conversion checking.
5835 We check that the result of the conversion does not overflow.
5836 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
5837 not enabled by @option{-fsanitize=undefined}.
5838 This option does not work well with @code{FE_INVALID} exceptions enabled.
5839
5840 @item -fsanitize=nonnull-attribute
5841 @opindex fsanitize=nonnull-attribute
5842
5843 This option enables instrumentation of calls, checking whether null values
5844 are not passed to arguments marked as requiring a non-null value by the
5845 @code{nonnull} function attribute.
5846
5847 @item -fsanitize=returns-nonnull-attribute
5848 @opindex fsanitize=returns-nonnull-attribute
5849
5850 This option enables instrumentation of return statements in functions
5851 marked with @code{returns_nonnull} function attribute, to detect returning
5852 of null values from such functions.
5853
5854 @item -fsanitize=bool
5855 @opindex fsanitize=bool
5856
5857 This option enables instrumentation of loads from bool. If a value other
5858 than 0/1 is loaded, a run-time error is issued.
5859
5860 @item -fsanitize=enum
5861 @opindex fsanitize=enum
5862
5863 This option enables instrumentation of loads from an enum type. If
5864 a value outside the range of values for the enum type is loaded,
5865 a run-time error is issued.
5866
5867 @item -fsanitize=vptr
5868 @opindex fsanitize=vptr
5869
5870 This option enables instrumentation of C++ member function calls, member
5871 accesses and some conversions between pointers to base and derived classes,
5872 to verify the referenced object has the correct dynamic type.
5873
5874 @end table
5875
5876 While @option{-ftrapv} causes traps for signed overflows to be emitted,
5877 @option{-fsanitize=undefined} gives a diagnostic message.
5878 This currently works only for the C family of languages.
5879
5880 @item -fno-sanitize=all
5881 @opindex fno-sanitize=all
5882
5883 This option disables all previously enabled sanitizers.
5884 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
5885 together.
5886
5887 @item -fasan-shadow-offset=@var{number}
5888 @opindex fasan-shadow-offset
5889 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
5890 It is useful for experimenting with different shadow memory layouts in
5891 Kernel AddressSanitizer.
5892
5893 @item -fsanitize-sections=@var{s1},@var{s2},...
5894 @opindex fsanitize-sections
5895 Sanitize global variables in selected user-defined sections. @var{si} may
5896 contain wildcards.
5897
5898 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
5899 @opindex fsanitize-recover
5900 @opindex fno-sanitize-recover
5901 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
5902 mentioned in comma-separated list of @var{opts}. Enabling this option
5903 for a sanitizer component causes it to attempt to continue
5904 running the program as if no error happened. This means multiple
5905 runtime errors can be reported in a single program run, and the exit
5906 code of the program may indicate success even when errors
5907 have been reported. The @option{-fno-sanitize-recover=} option
5908 can be used to alter
5909 this behavior: only the first detected error is reported
5910 and program then exits with a non-zero exit code.
5911
5912 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
5913 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
5914 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero} and
5915 @option{-fsanitize=kernel-address}. For these sanitizers error recovery is turned on by default.
5916 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
5917 accepted, the former enables recovery for all sanitizers that support it,
5918 the latter disables recovery for all sanitizers that support it.
5919
5920 Syntax without explicit @var{opts} parameter is deprecated. It is equivalent to
5921 @smallexample
5922 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5923 @end smallexample
5924 @noindent
5925 Similarly @option{-fno-sanitize-recover} is equivalent to
5926 @smallexample
5927 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5928 @end smallexample
5929
5930 @item -fsanitize-undefined-trap-on-error
5931 @opindex fsanitize-undefined-trap-on-error
5932 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
5933 report undefined behavior using @code{__builtin_trap} rather than
5934 a @code{libubsan} library routine. The advantage of this is that the
5935 @code{libubsan} library is not needed and is not linked in, so this
5936 is usable even in freestanding environments.
5937
5938 @item -fcheck-pointer-bounds
5939 @opindex fcheck-pointer-bounds
5940 @opindex fno-check-pointer-bounds
5941 @cindex Pointer Bounds Checker options
5942 Enable Pointer Bounds Checker instrumentation. Each memory reference
5943 is instrumented with checks of the pointer used for memory access against
5944 bounds associated with that pointer.
5945
5946 Currently there
5947 is only an implementation for Intel MPX available, thus x86 target
5948 and @option{-mmpx} are required to enable this feature.
5949 MPX-based instrumentation requires
5950 a runtime library to enable MPX in hardware and handle bounds
5951 violation signals. By default when @option{-fcheck-pointer-bounds}
5952 and @option{-mmpx} options are used to link a program, the GCC driver
5953 links against the @file{libmpx} runtime library and @file{libmpxwrappers}
5954 library. It also passes '-z bndplt' to a linker in case it supports this
5955 option (which is checked on libmpx configuration). Note that old versions
5956 of linker may ignore option. Gold linker doesn't support '-z bndplt'
5957 option. With no '-z bndplt' support in linker all calls to dynamic libraries
5958 lose passed bounds reducing overall protection level. It's highly
5959 recommended to use linker with '-z bndplt' support. In case such linker
5960 is not available it is adviced to always use @option{-static-libmpxwrappers}
5961 for better protection level or use @option{-static} to completely avoid
5962 external calls to dynamic libraries. MPX-based instrumentation
5963 may be used for debugging and also may be included in production code
5964 to increase program security. Depending on usage, you may
5965 have different requirements for the runtime library. The current version
5966 of the MPX runtime library is more oriented for use as a debugging
5967 tool. MPX runtime library usage implies @option{-lpthread}. See
5968 also @option{-static-libmpx}. The runtime library behavior can be
5969 influenced using various @env{CHKP_RT_*} environment variables. See
5970 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
5971 for more details.
5972
5973 Generated instrumentation may be controlled by various
5974 @option{-fchkp-*} options and by the @code{bnd_variable_size}
5975 structure field attribute (@pxref{Type Attributes}) and
5976 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
5977 (@pxref{Function Attributes}). GCC also provides a number of built-in
5978 functions for controlling the Pointer Bounds Checker. @xref{Pointer
5979 Bounds Checker builtins}, for more information.
5980
5981 @item -fchkp-check-incomplete-type
5982 @opindex fchkp-check-incomplete-type
5983 @opindex fno-chkp-check-incomplete-type
5984 Generate pointer bounds checks for variables with incomplete type.
5985 Enabled by default.
5986
5987 @item -fchkp-narrow-bounds
5988 @opindex fchkp-narrow-bounds
5989 @opindex fno-chkp-narrow-bounds
5990 Controls bounds used by Pointer Bounds Checker for pointers to object
5991 fields. If narrowing is enabled then field bounds are used. Otherwise
5992 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
5993 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
5994
5995 @item -fchkp-first-field-has-own-bounds
5996 @opindex fchkp-first-field-has-own-bounds
5997 @opindex fno-chkp-first-field-has-own-bounds
5998 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
5999 first field in the structure. By default a pointer to the first field has
6000 the same bounds as a pointer to the whole structure.
6001
6002 @item -fchkp-narrow-to-innermost-array
6003 @opindex fchkp-narrow-to-innermost-array
6004 @opindex fno-chkp-narrow-to-innermost-array
6005 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
6006 case of nested static array access. By default this option is disabled and
6007 bounds of the outermost array are used.
6008
6009 @item -fchkp-optimize
6010 @opindex fchkp-optimize
6011 @opindex fno-chkp-optimize
6012 Enables Pointer Bounds Checker optimizations. Enabled by default at
6013 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
6014
6015 @item -fchkp-use-fast-string-functions
6016 @opindex fchkp-use-fast-string-functions
6017 @opindex fno-chkp-use-fast-string-functions
6018 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
6019 by Pointer Bounds Checker. Disabled by default.
6020
6021 @item -fchkp-use-nochk-string-functions
6022 @opindex fchkp-use-nochk-string-functions
6023 @opindex fno-chkp-use-nochk-string-functions
6024 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
6025 by Pointer Bounds Checker. Disabled by default.
6026
6027 @item -fchkp-use-static-bounds
6028 @opindex fchkp-use-static-bounds
6029 @opindex fno-chkp-use-static-bounds
6030 Allow Pointer Bounds Checker to generate static bounds holding
6031 bounds of static variables. Enabled by default.
6032
6033 @item -fchkp-use-static-const-bounds
6034 @opindex fchkp-use-static-const-bounds
6035 @opindex fno-chkp-use-static-const-bounds
6036 Use statically-initialized bounds for constant bounds instead of
6037 generating them each time they are required. By default enabled when
6038 @option{-fchkp-use-static-bounds} is enabled.
6039
6040 @item -fchkp-treat-zero-dynamic-size-as-infinite
6041 @opindex fchkp-treat-zero-dynamic-size-as-infinite
6042 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
6043 With this option, objects with incomplete type whose
6044 dynamically-obtained size is zero are treated as having infinite size
6045 instead by Pointer Bounds
6046 Checker. This option may be helpful if a program is linked with a library
6047 missing size information for some symbols. Disabled by default.
6048
6049 @item -fchkp-check-read
6050 @opindex fchkp-check-read
6051 @opindex fno-chkp-check-read
6052 Instructs Pointer Bounds Checker to generate checks for all read
6053 accesses to memory. Enabled by default.
6054
6055 @item -fchkp-check-write
6056 @opindex fchkp-check-write
6057 @opindex fno-chkp-check-write
6058 Instructs Pointer Bounds Checker to generate checks for all write
6059 accesses to memory. Enabled by default.
6060
6061 @item -fchkp-store-bounds
6062 @opindex fchkp-store-bounds
6063 @opindex fno-chkp-store-bounds
6064 Instructs Pointer Bounds Checker to generate bounds stores for
6065 pointer writes. Enabled by default.
6066
6067 @item -fchkp-instrument-calls
6068 @opindex fchkp-instrument-calls
6069 @opindex fno-chkp-instrument-calls
6070 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
6071 Enabled by default.
6072
6073 @item -fchkp-instrument-marked-only
6074 @opindex fchkp-instrument-marked-only
6075 @opindex fno-chkp-instrument-marked-only
6076 Instructs Pointer Bounds Checker to instrument only functions
6077 marked with the @code{bnd_instrument} attribute
6078 (@pxref{Function Attributes}). Disabled by default.
6079
6080 @item -fchkp-use-wrappers
6081 @opindex fchkp-use-wrappers
6082 @opindex fno-chkp-use-wrappers
6083 Allows Pointer Bounds Checker to replace calls to built-in functions
6084 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
6085 is used to link a program, the GCC driver automatically links
6086 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
6087 Enabled by default.
6088
6089 @item -fdump-final-insns@r{[}=@var{file}@r{]}
6090 @opindex fdump-final-insns
6091 Dump the final internal representation (RTL) to @var{file}. If the
6092 optional argument is omitted (or if @var{file} is @code{.}), the name
6093 of the dump file is determined by appending @code{.gkd} to the
6094 compilation output file name.
6095
6096 @item -fcompare-debug@r{[}=@var{opts}@r{]}
6097 @opindex fcompare-debug
6098 @opindex fno-compare-debug
6099 If no error occurs during compilation, run the compiler a second time,
6100 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6101 passed to the second compilation. Dump the final internal
6102 representation in both compilations, and print an error if they differ.
6103
6104 If the equal sign is omitted, the default @option{-gtoggle} is used.
6105
6106 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6107 and nonzero, implicitly enables @option{-fcompare-debug}. If
6108 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6109 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6110 is used.
6111
6112 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
6113 is equivalent to @option{-fno-compare-debug}, which disables the dumping
6114 of the final representation and the second compilation, preventing even
6115 @env{GCC_COMPARE_DEBUG} from taking effect.
6116
6117 To verify full coverage during @option{-fcompare-debug} testing, set
6118 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6119 which GCC rejects as an invalid option in any actual compilation
6120 (rather than preprocessing, assembly or linking). To get just a
6121 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6122 not overridden} will do.
6123
6124 @item -fcompare-debug-second
6125 @opindex fcompare-debug-second
6126 This option is implicitly passed to the compiler for the second
6127 compilation requested by @option{-fcompare-debug}, along with options to
6128 silence warnings, and omitting other options that would cause
6129 side-effect compiler outputs to files or to the standard output. Dump
6130 files and preserved temporary files are renamed so as to contain the
6131 @code{.gk} additional extension during the second compilation, to avoid
6132 overwriting those generated by the first.
6133
6134 When this option is passed to the compiler driver, it causes the
6135 @emph{first} compilation to be skipped, which makes it useful for little
6136 other than debugging the compiler proper.
6137
6138 @item -feliminate-dwarf2-dups
6139 @opindex feliminate-dwarf2-dups
6140 Compress DWARF 2 debugging information by eliminating duplicated
6141 information about each symbol. This option only makes sense when
6142 generating DWARF 2 debugging information with @option{-gdwarf-2}.
6143
6144 @item -femit-struct-debug-baseonly
6145 @opindex femit-struct-debug-baseonly
6146 Emit debug information for struct-like types
6147 only when the base name of the compilation source file
6148 matches the base name of file in which the struct is defined.
6149
6150 This option substantially reduces the size of debugging information,
6151 but at significant potential loss in type information to the debugger.
6152 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6153 See @option{-femit-struct-debug-detailed} for more detailed control.
6154
6155 This option works only with DWARF 2.
6156
6157 @item -femit-struct-debug-reduced
6158 @opindex femit-struct-debug-reduced
6159 Emit debug information for struct-like types
6160 only when the base name of the compilation source file
6161 matches the base name of file in which the type is defined,
6162 unless the struct is a template or defined in a system header.
6163
6164 This option significantly reduces the size of debugging information,
6165 with some potential loss in type information to the debugger.
6166 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6167 See @option{-femit-struct-debug-detailed} for more detailed control.
6168
6169 This option works only with DWARF 2.
6170
6171 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6172 @opindex femit-struct-debug-detailed
6173 Specify the struct-like types
6174 for which the compiler generates debug information.
6175 The intent is to reduce duplicate struct debug information
6176 between different object files within the same program.
6177
6178 This option is a detailed version of
6179 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6180 which serves for most needs.
6181
6182 A specification has the syntax@*
6183 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6184
6185 The optional first word limits the specification to
6186 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6187 A struct type is used directly when it is the type of a variable, member.
6188 Indirect uses arise through pointers to structs.
6189 That is, when use of an incomplete struct is valid, the use is indirect.
6190 An example is
6191 @samp{struct one direct; struct two * indirect;}.
6192
6193 The optional second word limits the specification to
6194 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6195 Generic structs are a bit complicated to explain.
6196 For C++, these are non-explicit specializations of template classes,
6197 or non-template classes within the above.
6198 Other programming languages have generics,
6199 but @option{-femit-struct-debug-detailed} does not yet implement them.
6200
6201 The third word specifies the source files for those
6202 structs for which the compiler should emit debug information.
6203 The values @samp{none} and @samp{any} have the normal meaning.
6204 The value @samp{base} means that
6205 the base of name of the file in which the type declaration appears
6206 must match the base of the name of the main compilation file.
6207 In practice, this means that when compiling @file{foo.c}, debug information
6208 is generated for types declared in that file and @file{foo.h},
6209 but not other header files.
6210 The value @samp{sys} means those types satisfying @samp{base}
6211 or declared in system or compiler headers.
6212
6213 You may need to experiment to determine the best settings for your application.
6214
6215 The default is @option{-femit-struct-debug-detailed=all}.
6216
6217 This option works only with DWARF 2.
6218
6219 @item -fno-merge-debug-strings
6220 @opindex fmerge-debug-strings
6221 @opindex fno-merge-debug-strings
6222 Direct the linker to not merge together strings in the debugging
6223 information that are identical in different object files. Merging is
6224 not supported by all assemblers or linkers. Merging decreases the size
6225 of the debug information in the output file at the cost of increasing
6226 link processing time. Merging is enabled by default.
6227
6228 @item -fdebug-prefix-map=@var{old}=@var{new}
6229 @opindex fdebug-prefix-map
6230 When compiling files in directory @file{@var{old}}, record debugging
6231 information describing them as in @file{@var{new}} instead.
6232
6233 @item -fno-dwarf2-cfi-asm
6234 @opindex fdwarf2-cfi-asm
6235 @opindex fno-dwarf2-cfi-asm
6236 Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6237 instead of using GAS @code{.cfi_*} directives.
6238
6239 @cindex @command{prof}
6240 @item -p
6241 @opindex p
6242 Generate extra code to write profile information suitable for the
6243 analysis program @command{prof}. You must use this option when compiling
6244 the source files you want data about, and you must also use it when
6245 linking.
6246
6247 @cindex @command{gprof}
6248 @item -pg
6249 @opindex pg
6250 Generate extra code to write profile information suitable for the
6251 analysis program @command{gprof}. You must use this option when compiling
6252 the source files you want data about, and you must also use it when
6253 linking.
6254
6255 @item -Q
6256 @opindex Q
6257 Makes the compiler print out each function name as it is compiled, and
6258 print some statistics about each pass when it finishes.
6259
6260 @item -ftime-report
6261 @opindex ftime-report
6262 Makes the compiler print some statistics about the time consumed by each
6263 pass when it finishes.
6264
6265 @item -fmem-report
6266 @opindex fmem-report
6267 Makes the compiler print some statistics about permanent memory
6268 allocation when it finishes.
6269
6270 @item -fmem-report-wpa
6271 @opindex fmem-report-wpa
6272 Makes the compiler print some statistics about permanent memory
6273 allocation for the WPA phase only.
6274
6275 @item -fpre-ipa-mem-report
6276 @opindex fpre-ipa-mem-report
6277 @item -fpost-ipa-mem-report
6278 @opindex fpost-ipa-mem-report
6279 Makes the compiler print some statistics about permanent memory
6280 allocation before or after interprocedural optimization.
6281
6282 @item -fprofile-report
6283 @opindex fprofile-report
6284 Makes the compiler print some statistics about consistency of the
6285 (estimated) profile and effect of individual passes.
6286
6287 @item -fstack-usage
6288 @opindex fstack-usage
6289 Makes the compiler output stack usage information for the program, on a
6290 per-function basis. The filename for the dump is made by appending
6291 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
6292 the output file, if explicitly specified and it is not an executable,
6293 otherwise it is the basename of the source file. An entry is made up
6294 of three fields:
6295
6296 @itemize
6297 @item
6298 The name of the function.
6299 @item
6300 A number of bytes.
6301 @item
6302 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6303 @end itemize
6304
6305 The qualifier @code{static} means that the function manipulates the stack
6306 statically: a fixed number of bytes are allocated for the frame on function
6307 entry and released on function exit; no stack adjustments are otherwise made
6308 in the function. The second field is this fixed number of bytes.
6309
6310 The qualifier @code{dynamic} means that the function manipulates the stack
6311 dynamically: in addition to the static allocation described above, stack
6312 adjustments are made in the body of the function, for example to push/pop
6313 arguments around function calls. If the qualifier @code{bounded} is also
6314 present, the amount of these adjustments is bounded at compile time and
6315 the second field is an upper bound of the total amount of stack used by
6316 the function. If it is not present, the amount of these adjustments is
6317 not bounded at compile time and the second field only represents the
6318 bounded part.
6319
6320 @item -fprofile-arcs
6321 @opindex fprofile-arcs
6322 Add code so that program flow @dfn{arcs} are instrumented. During
6323 execution the program records how many times each branch and call is
6324 executed and how many times it is taken or returns. When the compiled
6325 program exits it saves this data to a file called
6326 @file{@var{auxname}.gcda} for each source file. The data may be used for
6327 profile-directed optimizations (@option{-fbranch-probabilities}), or for
6328 test coverage analysis (@option{-ftest-coverage}). Each object file's
6329 @var{auxname} is generated from the name of the output file, if
6330 explicitly specified and it is not the final executable, otherwise it is
6331 the basename of the source file. In both cases any suffix is removed
6332 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6333 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6334 @xref{Cross-profiling}.
6335
6336 @cindex @command{gcov}
6337 @item --coverage
6338 @opindex coverage
6339
6340 This option is used to compile and link code instrumented for coverage
6341 analysis. The option is a synonym for @option{-fprofile-arcs}
6342 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6343 linking). See the documentation for those options for more details.
6344
6345 @itemize
6346
6347 @item
6348 Compile the source files with @option{-fprofile-arcs} plus optimization
6349 and code generation options. For test coverage analysis, use the
6350 additional @option{-ftest-coverage} option. You do not need to profile
6351 every source file in a program.
6352
6353 @item
6354 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6355 (the latter implies the former).
6356
6357 @item
6358 Run the program on a representative workload to generate the arc profile
6359 information. This may be repeated any number of times. You can run
6360 concurrent instances of your program, and provided that the file system
6361 supports locking, the data files will be correctly updated. Also
6362 @code{fork} calls are detected and correctly handled (double counting
6363 will not happen).
6364
6365 @item
6366 For profile-directed optimizations, compile the source files again with
6367 the same optimization and code generation options plus
6368 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6369 Control Optimization}).
6370
6371 @item
6372 For test coverage analysis, use @command{gcov} to produce human readable
6373 information from the @file{.gcno} and @file{.gcda} files. Refer to the
6374 @command{gcov} documentation for further information.
6375
6376 @end itemize
6377
6378 With @option{-fprofile-arcs}, for each function of your program GCC
6379 creates a program flow graph, then finds a spanning tree for the graph.
6380 Only arcs that are not on the spanning tree have to be instrumented: the
6381 compiler adds code to count the number of times that these arcs are
6382 executed. When an arc is the only exit or only entrance to a block, the
6383 instrumentation code can be added to the block; otherwise, a new basic
6384 block must be created to hold the instrumentation code.
6385
6386 @need 2000
6387 @item -ftest-coverage
6388 @opindex ftest-coverage
6389 Produce a notes file that the @command{gcov} code-coverage utility
6390 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6391 show program coverage. Each source file's note file is called
6392 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
6393 above for a description of @var{auxname} and instructions on how to
6394 generate test coverage data. Coverage data matches the source files
6395 more closely if you do not optimize.
6396
6397 @item -fdbg-cnt-list
6398 @opindex fdbg-cnt-list
6399 Print the name and the counter upper bound for all debug counters.
6400
6401
6402 @item -fdbg-cnt=@var{counter-value-list}
6403 @opindex fdbg-cnt
6404 Set the internal debug counter upper bound. @var{counter-value-list}
6405 is a comma-separated list of @var{name}:@var{value} pairs
6406 which sets the upper bound of each debug counter @var{name} to @var{value}.
6407 All debug counters have the initial upper bound of @code{UINT_MAX};
6408 thus @code{dbg_cnt} returns true always unless the upper bound
6409 is set by this option.
6410 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6411 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
6412
6413 @item -fenable-@var{kind}-@var{pass}
6414 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6415 @opindex fdisable-
6416 @opindex fenable-
6417
6418 This is a set of options that are used to explicitly disable/enable
6419 optimization passes. These options are intended for use for debugging GCC.
6420 Compiler users should use regular options for enabling/disabling
6421 passes instead.
6422
6423 @table @gcctabopt
6424
6425 @item -fdisable-ipa-@var{pass}
6426 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6427 statically invoked in the compiler multiple times, the pass name should be
6428 appended with a sequential number starting from 1.
6429
6430 @item -fdisable-rtl-@var{pass}
6431 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
6432 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
6433 statically invoked in the compiler multiple times, the pass name should be
6434 appended with a sequential number starting from 1. @var{range-list} is a
6435 comma-separated list of function ranges or assembler names. Each range is a number
6436 pair separated by a colon. The range is inclusive in both ends. If the range
6437 is trivial, the number pair can be simplified as a single number. If the
6438 function's call graph node's @var{uid} falls within one of the specified ranges,
6439 the @var{pass} is disabled for that function. The @var{uid} is shown in the
6440 function header of a dump file, and the pass names can be dumped by using
6441 option @option{-fdump-passes}.
6442
6443 @item -fdisable-tree-@var{pass}
6444 @itemx -fdisable-tree-@var{pass}=@var{range-list}
6445 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
6446 option arguments.
6447
6448 @item -fenable-ipa-@var{pass}
6449 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6450 statically invoked in the compiler multiple times, the pass name should be
6451 appended with a sequential number starting from 1.
6452
6453 @item -fenable-rtl-@var{pass}
6454 @itemx -fenable-rtl-@var{pass}=@var{range-list}
6455 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
6456 description and examples.
6457
6458 @item -fenable-tree-@var{pass}
6459 @itemx -fenable-tree-@var{pass}=@var{range-list}
6460 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
6461 of option arguments.
6462
6463 @end table
6464
6465 Here are some examples showing uses of these options.
6466
6467 @smallexample
6468
6469 # disable ccp1 for all functions
6470 -fdisable-tree-ccp1
6471 # disable complete unroll for function whose cgraph node uid is 1
6472 -fenable-tree-cunroll=1
6473 # disable gcse2 for functions at the following ranges [1,1],
6474 # [300,400], and [400,1000]
6475 # disable gcse2 for functions foo and foo2
6476 -fdisable-rtl-gcse2=foo,foo2
6477 # disable early inlining
6478 -fdisable-tree-einline
6479 # disable ipa inlining
6480 -fdisable-ipa-inline
6481 # enable tree full unroll
6482 -fenable-tree-unroll
6483
6484 @end smallexample
6485
6486 @item -d@var{letters}
6487 @itemx -fdump-rtl-@var{pass}
6488 @itemx -fdump-rtl-@var{pass}=@var{filename}
6489 @opindex d
6490 @opindex fdump-rtl-@var{pass}
6491 Says to make debugging dumps during compilation at times specified by
6492 @var{letters}. This is used for debugging the RTL-based passes of the
6493 compiler. The file names for most of the dumps are made by appending
6494 a pass number and a word to the @var{dumpname}, and the files are
6495 created in the directory of the output file. In case of
6496 @option{=@var{filename}} option, the dump is output on the given file
6497 instead of the pass numbered dump files. Note that the pass number is
6498 computed statically as passes get registered into the pass manager.
6499 Thus the numbering is not related to the dynamic order of execution of
6500 passes. In particular, a pass installed by a plugin could have a
6501 number over 200 even if it executed quite early. @var{dumpname} is
6502 generated from the name of the output file, if explicitly specified
6503 and it is not an executable, otherwise it is the basename of the
6504 source file. These switches may have different effects when
6505 @option{-E} is used for preprocessing.
6506
6507 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6508 @option{-d} option @var{letters}. Here are the possible
6509 letters for use in @var{pass} and @var{letters}, and their meanings:
6510
6511 @table @gcctabopt
6512
6513 @item -fdump-rtl-alignments
6514 @opindex fdump-rtl-alignments
6515 Dump after branch alignments have been computed.
6516
6517 @item -fdump-rtl-asmcons
6518 @opindex fdump-rtl-asmcons
6519 Dump after fixing rtl statements that have unsatisfied in/out constraints.
6520
6521 @item -fdump-rtl-auto_inc_dec
6522 @opindex fdump-rtl-auto_inc_dec
6523 Dump after auto-inc-dec discovery. This pass is only run on
6524 architectures that have auto inc or auto dec instructions.
6525
6526 @item -fdump-rtl-barriers
6527 @opindex fdump-rtl-barriers
6528 Dump after cleaning up the barrier instructions.
6529
6530 @item -fdump-rtl-bbpart
6531 @opindex fdump-rtl-bbpart
6532 Dump after partitioning hot and cold basic blocks.
6533
6534 @item -fdump-rtl-bbro
6535 @opindex fdump-rtl-bbro
6536 Dump after block reordering.
6537
6538 @item -fdump-rtl-btl1
6539 @itemx -fdump-rtl-btl2
6540 @opindex fdump-rtl-btl2
6541 @opindex fdump-rtl-btl2
6542 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6543 after the two branch
6544 target load optimization passes.
6545
6546 @item -fdump-rtl-bypass
6547 @opindex fdump-rtl-bypass
6548 Dump after jump bypassing and control flow optimizations.
6549
6550 @item -fdump-rtl-combine
6551 @opindex fdump-rtl-combine
6552 Dump after the RTL instruction combination pass.
6553
6554 @item -fdump-rtl-compgotos
6555 @opindex fdump-rtl-compgotos
6556 Dump after duplicating the computed gotos.
6557
6558 @item -fdump-rtl-ce1
6559 @itemx -fdump-rtl-ce2
6560 @itemx -fdump-rtl-ce3
6561 @opindex fdump-rtl-ce1
6562 @opindex fdump-rtl-ce2
6563 @opindex fdump-rtl-ce3
6564 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6565 @option{-fdump-rtl-ce3} enable dumping after the three
6566 if conversion passes.
6567
6568 @item -fdump-rtl-cprop_hardreg
6569 @opindex fdump-rtl-cprop_hardreg
6570 Dump after hard register copy propagation.
6571
6572 @item -fdump-rtl-csa
6573 @opindex fdump-rtl-csa
6574 Dump after combining stack adjustments.
6575
6576 @item -fdump-rtl-cse1
6577 @itemx -fdump-rtl-cse2
6578 @opindex fdump-rtl-cse1
6579 @opindex fdump-rtl-cse2
6580 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6581 the two common subexpression elimination passes.
6582
6583 @item -fdump-rtl-dce
6584 @opindex fdump-rtl-dce
6585 Dump after the standalone dead code elimination passes.
6586
6587 @item -fdump-rtl-dbr
6588 @opindex fdump-rtl-dbr
6589 Dump after delayed branch scheduling.
6590
6591 @item -fdump-rtl-dce1
6592 @itemx -fdump-rtl-dce2
6593 @opindex fdump-rtl-dce1
6594 @opindex fdump-rtl-dce2
6595 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6596 the two dead store elimination passes.
6597
6598 @item -fdump-rtl-eh
6599 @opindex fdump-rtl-eh
6600 Dump after finalization of EH handling code.
6601
6602 @item -fdump-rtl-eh_ranges
6603 @opindex fdump-rtl-eh_ranges
6604 Dump after conversion of EH handling range regions.
6605
6606 @item -fdump-rtl-expand
6607 @opindex fdump-rtl-expand
6608 Dump after RTL generation.
6609
6610 @item -fdump-rtl-fwprop1
6611 @itemx -fdump-rtl-fwprop2
6612 @opindex fdump-rtl-fwprop1
6613 @opindex fdump-rtl-fwprop2
6614 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6615 dumping after the two forward propagation passes.
6616
6617 @item -fdump-rtl-gcse1
6618 @itemx -fdump-rtl-gcse2
6619 @opindex fdump-rtl-gcse1
6620 @opindex fdump-rtl-gcse2
6621 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6622 after global common subexpression elimination.
6623
6624 @item -fdump-rtl-init-regs
6625 @opindex fdump-rtl-init-regs
6626 Dump after the initialization of the registers.
6627
6628 @item -fdump-rtl-initvals
6629 @opindex fdump-rtl-initvals
6630 Dump after the computation of the initial value sets.
6631
6632 @item -fdump-rtl-into_cfglayout
6633 @opindex fdump-rtl-into_cfglayout
6634 Dump after converting to cfglayout mode.
6635
6636 @item -fdump-rtl-ira
6637 @opindex fdump-rtl-ira
6638 Dump after iterated register allocation.
6639
6640 @item -fdump-rtl-jump
6641 @opindex fdump-rtl-jump
6642 Dump after the second jump optimization.
6643
6644 @item -fdump-rtl-loop2
6645 @opindex fdump-rtl-loop2
6646 @option{-fdump-rtl-loop2} enables dumping after the rtl
6647 loop optimization passes.
6648
6649 @item -fdump-rtl-mach
6650 @opindex fdump-rtl-mach
6651 Dump after performing the machine dependent reorganization pass, if that
6652 pass exists.
6653
6654 @item -fdump-rtl-mode_sw
6655 @opindex fdump-rtl-mode_sw
6656 Dump after removing redundant mode switches.
6657
6658 @item -fdump-rtl-rnreg
6659 @opindex fdump-rtl-rnreg
6660 Dump after register renumbering.
6661
6662 @item -fdump-rtl-outof_cfglayout
6663 @opindex fdump-rtl-outof_cfglayout
6664 Dump after converting from cfglayout mode.
6665
6666 @item -fdump-rtl-peephole2
6667 @opindex fdump-rtl-peephole2
6668 Dump after the peephole pass.
6669
6670 @item -fdump-rtl-postreload
6671 @opindex fdump-rtl-postreload
6672 Dump after post-reload optimizations.
6673
6674 @item -fdump-rtl-pro_and_epilogue
6675 @opindex fdump-rtl-pro_and_epilogue
6676 Dump after generating the function prologues and epilogues.
6677
6678 @item -fdump-rtl-sched1
6679 @itemx -fdump-rtl-sched2
6680 @opindex fdump-rtl-sched1
6681 @opindex fdump-rtl-sched2
6682 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6683 after the basic block scheduling passes.
6684
6685 @item -fdump-rtl-ree
6686 @opindex fdump-rtl-ree
6687 Dump after sign/zero extension elimination.
6688
6689 @item -fdump-rtl-seqabstr
6690 @opindex fdump-rtl-seqabstr
6691 Dump after common sequence discovery.
6692
6693 @item -fdump-rtl-shorten
6694 @opindex fdump-rtl-shorten
6695 Dump after shortening branches.
6696
6697 @item -fdump-rtl-sibling
6698 @opindex fdump-rtl-sibling
6699 Dump after sibling call optimizations.
6700
6701 @item -fdump-rtl-split1
6702 @itemx -fdump-rtl-split2
6703 @itemx -fdump-rtl-split3
6704 @itemx -fdump-rtl-split4
6705 @itemx -fdump-rtl-split5
6706 @opindex fdump-rtl-split1
6707 @opindex fdump-rtl-split2
6708 @opindex fdump-rtl-split3
6709 @opindex fdump-rtl-split4
6710 @opindex fdump-rtl-split5
6711 These options enable dumping after five rounds of
6712 instruction splitting.
6713
6714 @item -fdump-rtl-sms
6715 @opindex fdump-rtl-sms
6716 Dump after modulo scheduling. This pass is only run on some
6717 architectures.
6718
6719 @item -fdump-rtl-stack
6720 @opindex fdump-rtl-stack
6721 Dump after conversion from GCC's ``flat register file'' registers to the
6722 x87's stack-like registers. This pass is only run on x86 variants.
6723
6724 @item -fdump-rtl-subreg1
6725 @itemx -fdump-rtl-subreg2
6726 @opindex fdump-rtl-subreg1
6727 @opindex fdump-rtl-subreg2
6728 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6729 the two subreg expansion passes.
6730
6731 @item -fdump-rtl-unshare
6732 @opindex fdump-rtl-unshare
6733 Dump after all rtl has been unshared.
6734
6735 @item -fdump-rtl-vartrack
6736 @opindex fdump-rtl-vartrack
6737 Dump after variable tracking.
6738
6739 @item -fdump-rtl-vregs
6740 @opindex fdump-rtl-vregs
6741 Dump after converting virtual registers to hard registers.
6742
6743 @item -fdump-rtl-web
6744 @opindex fdump-rtl-web
6745 Dump after live range splitting.
6746
6747 @item -fdump-rtl-regclass
6748 @itemx -fdump-rtl-subregs_of_mode_init
6749 @itemx -fdump-rtl-subregs_of_mode_finish
6750 @itemx -fdump-rtl-dfinit
6751 @itemx -fdump-rtl-dfinish
6752 @opindex fdump-rtl-regclass
6753 @opindex fdump-rtl-subregs_of_mode_init
6754 @opindex fdump-rtl-subregs_of_mode_finish
6755 @opindex fdump-rtl-dfinit
6756 @opindex fdump-rtl-dfinish
6757 These dumps are defined but always produce empty files.
6758
6759 @item -da
6760 @itemx -fdump-rtl-all
6761 @opindex da
6762 @opindex fdump-rtl-all
6763 Produce all the dumps listed above.
6764
6765 @item -dA
6766 @opindex dA
6767 Annotate the assembler output with miscellaneous debugging information.
6768
6769 @item -dD
6770 @opindex dD
6771 Dump all macro definitions, at the end of preprocessing, in addition to
6772 normal output.
6773
6774 @item -dH
6775 @opindex dH
6776 Produce a core dump whenever an error occurs.
6777
6778 @item -dp
6779 @opindex dp
6780 Annotate the assembler output with a comment indicating which
6781 pattern and alternative is used. The length of each instruction is
6782 also printed.
6783
6784 @item -dP
6785 @opindex dP
6786 Dump the RTL in the assembler output as a comment before each instruction.
6787 Also turns on @option{-dp} annotation.
6788
6789 @item -dx
6790 @opindex dx
6791 Just generate RTL for a function instead of compiling it. Usually used
6792 with @option{-fdump-rtl-expand}.
6793 @end table
6794
6795 @item -fdump-noaddr
6796 @opindex fdump-noaddr
6797 When doing debugging dumps, suppress address output. This makes it more
6798 feasible to use diff on debugging dumps for compiler invocations with
6799 different compiler binaries and/or different
6800 text / bss / data / heap / stack / dso start locations.
6801
6802 @item -freport-bug
6803 @opindex freport-bug
6804 Collect and dump debug information into temporary file if ICE in C/C++
6805 compiler occured.
6806
6807 @item -fdump-unnumbered
6808 @opindex fdump-unnumbered
6809 When doing debugging dumps, suppress instruction numbers and address output.
6810 This makes it more feasible to use diff on debugging dumps for compiler
6811 invocations with different options, in particular with and without
6812 @option{-g}.
6813
6814 @item -fdump-unnumbered-links
6815 @opindex fdump-unnumbered-links
6816 When doing debugging dumps (see @option{-d} option above), suppress
6817 instruction numbers for the links to the previous and next instructions
6818 in a sequence.
6819
6820 @item -fdump-translation-unit @r{(C++ only)}
6821 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
6822 @opindex fdump-translation-unit
6823 Dump a representation of the tree structure for the entire translation
6824 unit to a file. The file name is made by appending @file{.tu} to the
6825 source file name, and the file is created in the same directory as the
6826 output file. If the @samp{-@var{options}} form is used, @var{options}
6827 controls the details of the dump as described for the
6828 @option{-fdump-tree} options.
6829
6830 @item -fdump-class-hierarchy @r{(C++ only)}
6831 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
6832 @opindex fdump-class-hierarchy
6833 Dump a representation of each class's hierarchy and virtual function
6834 table layout to a file. The file name is made by appending
6835 @file{.class} to the source file name, and the file is created in the
6836 same directory as the output file. If the @samp{-@var{options}} form
6837 is used, @var{options} controls the details of the dump as described
6838 for the @option{-fdump-tree} options.
6839
6840 @item -fdump-ipa-@var{switch}
6841 @opindex fdump-ipa
6842 Control the dumping at various stages of inter-procedural analysis
6843 language tree to a file. The file name is generated by appending a
6844 switch specific suffix to the source file name, and the file is created
6845 in the same directory as the output file. The following dumps are
6846 possible:
6847
6848 @table @samp
6849 @item all
6850 Enables all inter-procedural analysis dumps.
6851
6852 @item cgraph
6853 Dumps information about call-graph optimization, unused function removal,
6854 and inlining decisions.
6855
6856 @item inline
6857 Dump after function inlining.
6858
6859 @end table
6860
6861 @item -fdump-passes
6862 @opindex fdump-passes
6863 Dump the list of optimization passes that are turned on and off by
6864 the current command-line options.
6865
6866 @item -fdump-statistics-@var{option}
6867 @opindex fdump-statistics
6868 Enable and control dumping of pass statistics in a separate file. The
6869 file name is generated by appending a suffix ending in
6870 @samp{.statistics} to the source file name, and the file is created in
6871 the same directory as the output file. If the @samp{-@var{option}}
6872 form is used, @samp{-stats} causes counters to be summed over the
6873 whole compilation unit while @samp{-details} dumps every event as
6874 the passes generate them. The default with no option is to sum
6875 counters for each function compiled.
6876
6877 @item -fdump-tree-@var{switch}
6878 @itemx -fdump-tree-@var{switch}-@var{options}
6879 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
6880 @opindex fdump-tree
6881 Control the dumping at various stages of processing the intermediate
6882 language tree to a file. The file name is generated by appending a
6883 switch-specific suffix to the source file name, and the file is
6884 created in the same directory as the output file. In case of
6885 @option{=@var{filename}} option, the dump is output on the given file
6886 instead of the auto named dump files. If the @samp{-@var{options}}
6887 form is used, @var{options} is a list of @samp{-} separated options
6888 which control the details of the dump. Not all options are applicable
6889 to all dumps; those that are not meaningful are ignored. The
6890 following options are available
6891
6892 @table @samp
6893 @item address
6894 Print the address of each node. Usually this is not meaningful as it
6895 changes according to the environment and source file. Its primary use
6896 is for tying up a dump file with a debug environment.
6897 @item asmname
6898 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
6899 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
6900 use working backward from mangled names in the assembly file.
6901 @item slim
6902 When dumping front-end intermediate representations, inhibit dumping
6903 of members of a scope or body of a function merely because that scope
6904 has been reached. Only dump such items when they are directly reachable
6905 by some other path.
6906
6907 When dumping pretty-printed trees, this option inhibits dumping the
6908 bodies of control structures.
6909
6910 When dumping RTL, print the RTL in slim (condensed) form instead of
6911 the default LISP-like representation.
6912 @item raw
6913 Print a raw representation of the tree. By default, trees are
6914 pretty-printed into a C-like representation.
6915 @item details
6916 Enable more detailed dumps (not honored by every dump option). Also
6917 include information from the optimization passes.
6918 @item stats
6919 Enable dumping various statistics about the pass (not honored by every dump
6920 option).
6921 @item blocks
6922 Enable showing basic block boundaries (disabled in raw dumps).
6923 @item graph
6924 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
6925 dump a representation of the control flow graph suitable for viewing with
6926 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
6927 the file is pretty-printed as a subgraph, so that GraphViz can render them
6928 all in a single plot.
6929
6930 This option currently only works for RTL dumps, and the RTL is always
6931 dumped in slim form.
6932 @item vops
6933 Enable showing virtual operands for every statement.
6934 @item lineno
6935 Enable showing line numbers for statements.
6936 @item uid
6937 Enable showing the unique ID (@code{DECL_UID}) for each variable.
6938 @item verbose
6939 Enable showing the tree dump for each statement.
6940 @item eh
6941 Enable showing the EH region number holding each statement.
6942 @item scev
6943 Enable showing scalar evolution analysis details.
6944 @item optimized
6945 Enable showing optimization information (only available in certain
6946 passes).
6947 @item missed
6948 Enable showing missed optimization information (only available in certain
6949 passes).
6950 @item note
6951 Enable other detailed optimization information (only available in
6952 certain passes).
6953 @item =@var{filename}
6954 Instead of an auto named dump file, output into the given file
6955 name. The file names @file{stdout} and @file{stderr} are treated
6956 specially and are considered already open standard streams. For
6957 example,
6958
6959 @smallexample
6960 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
6961 -fdump-tree-pre=stderr file.c
6962 @end smallexample
6963
6964 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
6965 output on to @file{stderr}. If two conflicting dump filenames are
6966 given for the same pass, then the latter option overrides the earlier
6967 one.
6968
6969 @item all
6970 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
6971 and @option{lineno}.
6972
6973 @item optall
6974 Turn on all optimization options, i.e., @option{optimized},
6975 @option{missed}, and @option{note}.
6976 @end table
6977
6978 The following tree dumps are possible:
6979 @table @samp
6980
6981 @item original
6982 @opindex fdump-tree-original
6983 Dump before any tree based optimization, to @file{@var{file}.original}.
6984
6985 @item optimized
6986 @opindex fdump-tree-optimized
6987 Dump after all tree based optimization, to @file{@var{file}.optimized}.
6988
6989 @item gimple
6990 @opindex fdump-tree-gimple
6991 Dump each function before and after the gimplification pass to a file. The
6992 file name is made by appending @file{.gimple} to the source file name.
6993
6994 @item cfg
6995 @opindex fdump-tree-cfg
6996 Dump the control flow graph of each function to a file. The file name is
6997 made by appending @file{.cfg} to the source file name.
6998
6999 @item ch
7000 @opindex fdump-tree-ch
7001 Dump each function after copying loop headers. The file name is made by
7002 appending @file{.ch} to the source file name.
7003
7004 @item ssa
7005 @opindex fdump-tree-ssa
7006 Dump SSA related information to a file. The file name is made by appending
7007 @file{.ssa} to the source file name.
7008
7009 @item alias
7010 @opindex fdump-tree-alias
7011 Dump aliasing information for each function. The file name is made by
7012 appending @file{.alias} to the source file name.
7013
7014 @item ccp
7015 @opindex fdump-tree-ccp
7016 Dump each function after CCP@. The file name is made by appending
7017 @file{.ccp} to the source file name.
7018
7019 @item storeccp
7020 @opindex fdump-tree-storeccp
7021 Dump each function after STORE-CCP@. The file name is made by appending
7022 @file{.storeccp} to the source file name.
7023
7024 @item pre
7025 @opindex fdump-tree-pre
7026 Dump trees after partial redundancy elimination. The file name is made
7027 by appending @file{.pre} to the source file name.
7028
7029 @item fre
7030 @opindex fdump-tree-fre
7031 Dump trees after full redundancy elimination. The file name is made
7032 by appending @file{.fre} to the source file name.
7033
7034 @item copyprop
7035 @opindex fdump-tree-copyprop
7036 Dump trees after copy propagation. The file name is made
7037 by appending @file{.copyprop} to the source file name.
7038
7039 @item store_copyprop
7040 @opindex fdump-tree-store_copyprop
7041 Dump trees after store copy-propagation. The file name is made
7042 by appending @file{.store_copyprop} to the source file name.
7043
7044 @item dce
7045 @opindex fdump-tree-dce
7046 Dump each function after dead code elimination. The file name is made by
7047 appending @file{.dce} to the source file name.
7048
7049 @item sra
7050 @opindex fdump-tree-sra
7051 Dump each function after performing scalar replacement of aggregates. The
7052 file name is made by appending @file{.sra} to the source file name.
7053
7054 @item sink
7055 @opindex fdump-tree-sink
7056 Dump each function after performing code sinking. The file name is made
7057 by appending @file{.sink} to the source file name.
7058
7059 @item dom
7060 @opindex fdump-tree-dom
7061 Dump each function after applying dominator tree optimizations. The file
7062 name is made by appending @file{.dom} to the source file name.
7063
7064 @item dse
7065 @opindex fdump-tree-dse
7066 Dump each function after applying dead store elimination. The file
7067 name is made by appending @file{.dse} to the source file name.
7068
7069 @item phiopt
7070 @opindex fdump-tree-phiopt
7071 Dump each function after optimizing PHI nodes into straightline code. The file
7072 name is made by appending @file{.phiopt} to the source file name.
7073
7074 @item forwprop
7075 @opindex fdump-tree-forwprop
7076 Dump each function after forward propagating single use variables. The file
7077 name is made by appending @file{.forwprop} to the source file name.
7078
7079 @item copyrename
7080 @opindex fdump-tree-copyrename
7081 Dump each function after applying the copy rename optimization. The file
7082 name is made by appending @file{.copyrename} to the source file name.
7083
7084 @item nrv
7085 @opindex fdump-tree-nrv
7086 Dump each function after applying the named return value optimization on
7087 generic trees. The file name is made by appending @file{.nrv} to the source
7088 file name.
7089
7090 @item vect
7091 @opindex fdump-tree-vect
7092 Dump each function after applying vectorization of loops. The file name is
7093 made by appending @file{.vect} to the source file name.
7094
7095 @item slp
7096 @opindex fdump-tree-slp
7097 Dump each function after applying vectorization of basic blocks. The file name
7098 is made by appending @file{.slp} to the source file name.
7099
7100 @item vrp
7101 @opindex fdump-tree-vrp
7102 Dump each function after Value Range Propagation (VRP). The file name
7103 is made by appending @file{.vrp} to the source file name.
7104
7105 @item all
7106 @opindex fdump-tree-all
7107 Enable all the available tree dumps with the flags provided in this option.
7108 @end table
7109
7110 @item -fopt-info
7111 @itemx -fopt-info-@var{options}
7112 @itemx -fopt-info-@var{options}=@var{filename}
7113 @opindex fopt-info
7114 Controls optimization dumps from various optimization passes. If the
7115 @samp{-@var{options}} form is used, @var{options} is a list of
7116 @samp{-} separated option keywords to select the dump details and
7117 optimizations.
7118
7119 The @var{options} can be divided into two groups: options describing the
7120 verbosity of the dump, and options describing which optimizations
7121 should be included. The options from both the groups can be freely
7122 mixed as they are non-overlapping. However, in case of any conflicts,
7123 the later options override the earlier options on the command
7124 line.
7125
7126 The following options control the dump verbosity:
7127
7128 @table @samp
7129 @item optimized
7130 Print information when an optimization is successfully applied. It is
7131 up to a pass to decide which information is relevant. For example, the
7132 vectorizer passes print the source location of loops which are
7133 successfully vectorized.
7134 @item missed
7135 Print information about missed optimizations. Individual passes
7136 control which information to include in the output.
7137 @item note
7138 Print verbose information about optimizations, such as certain
7139 transformations, more detailed messages about decisions etc.
7140 @item all
7141 Print detailed optimization information. This includes
7142 @samp{optimized}, @samp{missed}, and @samp{note}.
7143 @end table
7144
7145 One or more of the following option keywords can be used to describe a
7146 group of optimizations:
7147
7148 @table @samp
7149 @item ipa
7150 Enable dumps from all interprocedural optimizations.
7151 @item loop
7152 Enable dumps from all loop optimizations.
7153 @item inline
7154 Enable dumps from all inlining optimizations.
7155 @item vec
7156 Enable dumps from all vectorization optimizations.
7157 @item optall
7158 Enable dumps from all optimizations. This is a superset of
7159 the optimization groups listed above.
7160 @end table
7161
7162 If @var{options} is
7163 omitted, it defaults to @samp{optimized-optall}, which means to dump all
7164 info about successful optimizations from all the passes.
7165
7166 If the @var{filename} is provided, then the dumps from all the
7167 applicable optimizations are concatenated into the @var{filename}.
7168 Otherwise the dump is output onto @file{stderr}. Though multiple
7169 @option{-fopt-info} options are accepted, only one of them can include
7170 a @var{filename}. If other filenames are provided then all but the
7171 first such option are ignored.
7172
7173 Note that the output @var{filename} is overwritten
7174 in case of multiple translation units. If a combined output from
7175 multiple translation units is desired, @file{stderr} should be used
7176 instead.
7177
7178 In the following example, the optimization info is output to
7179 @file{stderr}:
7180
7181 @smallexample
7182 gcc -O3 -fopt-info
7183 @end smallexample
7184
7185 This example:
7186 @smallexample
7187 gcc -O3 -fopt-info-missed=missed.all
7188 @end smallexample
7189
7190 @noindent
7191 outputs missed optimization report from all the passes into
7192 @file{missed.all}, and this one:
7193
7194 @smallexample
7195 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7196 @end smallexample
7197
7198 @noindent
7199 prints information about missed optimization opportunities from
7200 vectorization passes on @file{stderr}.
7201 Note that @option{-fopt-info-vec-missed} is equivalent to
7202 @option{-fopt-info-missed-vec}.
7203
7204 As another example,
7205 @smallexample
7206 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7207 @end smallexample
7208
7209 @noindent
7210 outputs information about missed optimizations as well as
7211 optimized locations from all the inlining passes into
7212 @file{inline.txt}.
7213
7214 Finally, consider:
7215
7216 @smallexample
7217 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7218 @end smallexample
7219
7220 @noindent
7221 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7222 in conflict since only one output file is allowed. In this case, only
7223 the first option takes effect and the subsequent options are
7224 ignored. Thus only @file{vec.miss} is produced which contains
7225 dumps from the vectorizer about missed opportunities.
7226
7227 @item -frandom-seed=@var{number}
7228 @opindex frandom-seed
7229 This option provides a seed that GCC uses in place of
7230 random numbers in generating certain symbol names
7231 that have to be different in every compiled file. It is also used to
7232 place unique stamps in coverage data files and the object files that
7233 produce them. You can use the @option{-frandom-seed} option to produce
7234 reproducibly identical object files.
7235
7236 The @var{number} should be different for every file you compile.
7237
7238 @item -fsched-verbose=@var{n}
7239 @opindex fsched-verbose
7240 On targets that use instruction scheduling, this option controls the
7241 amount of debugging output the scheduler prints. This information is
7242 written to standard error, unless @option{-fdump-rtl-sched1} or
7243 @option{-fdump-rtl-sched2} is specified, in which case it is output
7244 to the usual dump listing file, @file{.sched1} or @file{.sched2}
7245 respectively. However for @var{n} greater than nine, the output is
7246 always printed to standard error.
7247
7248 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7249 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7250 For @var{n} greater than one, it also output basic block probabilities,
7251 detailed ready list information and unit/insn info. For @var{n} greater
7252 than two, it includes RTL at abort point, control-flow and regions info.
7253 And for @var{n} over four, @option{-fsched-verbose} also includes
7254 dependence info.
7255
7256 @item -save-temps
7257 @itemx -save-temps=cwd
7258 @opindex save-temps
7259 Store the usual ``temporary'' intermediate files permanently; place them
7260 in the current directory and name them based on the source file. Thus,
7261 compiling @file{foo.c} with @option{-c -save-temps} produces files
7262 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
7263 preprocessed @file{foo.i} output file even though the compiler now
7264 normally uses an integrated preprocessor.
7265
7266 When used in combination with the @option{-x} command-line option,
7267 @option{-save-temps} is sensible enough to avoid over writing an
7268 input source file with the same extension as an intermediate file.
7269 The corresponding intermediate file may be obtained by renaming the
7270 source file before using @option{-save-temps}.
7271
7272 If you invoke GCC in parallel, compiling several different source
7273 files that share a common base name in different subdirectories or the
7274 same source file compiled for multiple output destinations, it is
7275 likely that the different parallel compilers will interfere with each
7276 other, and overwrite the temporary files. For instance:
7277
7278 @smallexample
7279 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7280 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7281 @end smallexample
7282
7283 may result in @file{foo.i} and @file{foo.o} being written to
7284 simultaneously by both compilers.
7285
7286 @item -save-temps=obj
7287 @opindex save-temps=obj
7288 Store the usual ``temporary'' intermediate files permanently. If the
7289 @option{-o} option is used, the temporary files are based on the
7290 object file. If the @option{-o} option is not used, the
7291 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
7292
7293 For example:
7294
7295 @smallexample
7296 gcc -save-temps=obj -c foo.c
7297 gcc -save-temps=obj -c bar.c -o dir/xbar.o
7298 gcc -save-temps=obj foobar.c -o dir2/yfoobar
7299 @end smallexample
7300
7301 @noindent
7302 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7303 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7304 @file{dir2/yfoobar.o}.
7305
7306 @item -time@r{[}=@var{file}@r{]}
7307 @opindex time
7308 Report the CPU time taken by each subprocess in the compilation
7309 sequence. For C source files, this is the compiler proper and assembler
7310 (plus the linker if linking is done).
7311
7312 Without the specification of an output file, the output looks like this:
7313
7314 @smallexample
7315 # cc1 0.12 0.01
7316 # as 0.00 0.01
7317 @end smallexample
7318
7319 The first number on each line is the ``user time'', that is time spent
7320 executing the program itself. The second number is ``system time'',
7321 time spent executing operating system routines on behalf of the program.
7322 Both numbers are in seconds.
7323
7324 With the specification of an output file, the output is appended to the
7325 named file, and it looks like this:
7326
7327 @smallexample
7328 0.12 0.01 cc1 @var{options}
7329 0.00 0.01 as @var{options}
7330 @end smallexample
7331
7332 The ``user time'' and the ``system time'' are moved before the program
7333 name, and the options passed to the program are displayed, so that one
7334 can later tell what file was being compiled, and with which options.
7335
7336 @item -fvar-tracking
7337 @opindex fvar-tracking
7338 Run variable tracking pass. It computes where variables are stored at each
7339 position in code. Better debugging information is then generated
7340 (if the debugging information format supports this information).
7341
7342 It is enabled by default when compiling with optimization (@option{-Os},
7343 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7344 the debug info format supports it.
7345
7346 @item -fvar-tracking-assignments
7347 @opindex fvar-tracking-assignments
7348 @opindex fno-var-tracking-assignments
7349 Annotate assignments to user variables early in the compilation and
7350 attempt to carry the annotations over throughout the compilation all the
7351 way to the end, in an attempt to improve debug information while
7352 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7353
7354 It can be enabled even if var-tracking is disabled, in which case
7355 annotations are created and maintained, but discarded at the end.
7356 By default, this flag is enabled together with @option{-fvar-tracking},
7357 except when selective scheduling is enabled.
7358
7359 @item -fvar-tracking-assignments-toggle
7360 @opindex fvar-tracking-assignments-toggle
7361 @opindex fno-var-tracking-assignments-toggle
7362 Toggle @option{-fvar-tracking-assignments}, in the same way that
7363 @option{-gtoggle} toggles @option{-g}.
7364
7365 @item -print-file-name=@var{library}
7366 @opindex print-file-name
7367 Print the full absolute name of the library file @var{library} that
7368 would be used when linking---and don't do anything else. With this
7369 option, GCC does not compile or link anything; it just prints the
7370 file name.
7371
7372 @item -print-multi-directory
7373 @opindex print-multi-directory
7374 Print the directory name corresponding to the multilib selected by any
7375 other switches present in the command line. This directory is supposed
7376 to exist in @env{GCC_EXEC_PREFIX}.
7377
7378 @item -print-multi-lib
7379 @opindex print-multi-lib
7380 Print the mapping from multilib directory names to compiler switches
7381 that enable them. The directory name is separated from the switches by
7382 @samp{;}, and each switch starts with an @samp{@@} instead of the
7383 @samp{-}, without spaces between multiple switches. This is supposed to
7384 ease shell processing.
7385
7386 @item -print-multi-os-directory
7387 @opindex print-multi-os-directory
7388 Print the path to OS libraries for the selected
7389 multilib, relative to some @file{lib} subdirectory. If OS libraries are
7390 present in the @file{lib} subdirectory and no multilibs are used, this is
7391 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7392 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7393 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7394 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7395
7396 @item -print-multiarch
7397 @opindex print-multiarch
7398 Print the path to OS libraries for the selected multiarch,
7399 relative to some @file{lib} subdirectory.
7400
7401 @item -print-prog-name=@var{program}
7402 @opindex print-prog-name
7403 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7404
7405 @item -print-libgcc-file-name
7406 @opindex print-libgcc-file-name
7407 Same as @option{-print-file-name=libgcc.a}.
7408
7409 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7410 but you do want to link with @file{libgcc.a}. You can do:
7411
7412 @smallexample
7413 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7414 @end smallexample
7415
7416 @item -print-search-dirs
7417 @opindex print-search-dirs
7418 Print the name of the configured installation directory and a list of
7419 program and library directories @command{gcc} searches---and don't do anything else.
7420
7421 This is useful when @command{gcc} prints the error message
7422 @samp{installation problem, cannot exec cpp0: No such file or directory}.
7423 To resolve this you either need to put @file{cpp0} and the other compiler
7424 components where @command{gcc} expects to find them, or you can set the environment
7425 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7426 Don't forget the trailing @samp{/}.
7427 @xref{Environment Variables}.
7428
7429 @item -print-sysroot
7430 @opindex print-sysroot
7431 Print the target sysroot directory that is used during
7432 compilation. This is the target sysroot specified either at configure
7433 time or using the @option{--sysroot} option, possibly with an extra
7434 suffix that depends on compilation options. If no target sysroot is
7435 specified, the option prints nothing.
7436
7437 @item -print-sysroot-headers-suffix
7438 @opindex print-sysroot-headers-suffix
7439 Print the suffix added to the target sysroot when searching for
7440 headers, or give an error if the compiler is not configured with such
7441 a suffix---and don't do anything else.
7442
7443 @item -dumpmachine
7444 @opindex dumpmachine
7445 Print the compiler's target machine (for example,
7446 @samp{i686-pc-linux-gnu})---and don't do anything else.
7447
7448 @item -dumpversion
7449 @opindex dumpversion
7450 Print the compiler version (for example, @code{3.0})---and don't do
7451 anything else.
7452
7453 @item -dumpspecs
7454 @opindex dumpspecs
7455 Print the compiler's built-in specs---and don't do anything else. (This
7456 is used when GCC itself is being built.) @xref{Spec Files}.
7457
7458 @item -fno-eliminate-unused-debug-types
7459 @opindex feliminate-unused-debug-types
7460 @opindex fno-eliminate-unused-debug-types
7461 Normally, when producing DWARF 2 output, GCC avoids producing debug symbol
7462 output for types that are nowhere used in the source file being compiled.
7463 Sometimes it is useful to have GCC emit debugging
7464 information for all types declared in a compilation
7465 unit, regardless of whether or not they are actually used
7466 in that compilation unit, for example
7467 if, in the debugger, you want to cast a value to a type that is
7468 not actually used in your program (but is declared). More often,
7469 however, this results in a significant amount of wasted space.
7470 @end table
7471
7472 @node Optimize Options
7473 @section Options That Control Optimization
7474 @cindex optimize options
7475 @cindex options, optimization
7476
7477 These options control various sorts of optimizations.
7478
7479 Without any optimization option, the compiler's goal is to reduce the
7480 cost of compilation and to make debugging produce the expected
7481 results. Statements are independent: if you stop the program with a
7482 breakpoint between statements, you can then assign a new value to any
7483 variable or change the program counter to any other statement in the
7484 function and get exactly the results you expect from the source
7485 code.
7486
7487 Turning on optimization flags makes the compiler attempt to improve
7488 the performance and/or code size at the expense of compilation time
7489 and possibly the ability to debug the program.
7490
7491 The compiler performs optimization based on the knowledge it has of the
7492 program. Compiling multiple files at once to a single output file mode allows
7493 the compiler to use information gained from all of the files when compiling
7494 each of them.
7495
7496 Not all optimizations are controlled directly by a flag. Only
7497 optimizations that have a flag are listed in this section.
7498
7499 Most optimizations are only enabled if an @option{-O} level is set on
7500 the command line. Otherwise they are disabled, even if individual
7501 optimization flags are specified.
7502
7503 Depending on the target and how GCC was configured, a slightly different
7504 set of optimizations may be enabled at each @option{-O} level than
7505 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7506 to find out the exact set of optimizations that are enabled at each level.
7507 @xref{Overall Options}, for examples.
7508
7509 @table @gcctabopt
7510 @item -O
7511 @itemx -O1
7512 @opindex O
7513 @opindex O1
7514 Optimize. Optimizing compilation takes somewhat more time, and a lot
7515 more memory for a large function.
7516
7517 With @option{-O}, the compiler tries to reduce code size and execution
7518 time, without performing any optimizations that take a great deal of
7519 compilation time.
7520
7521 @option{-O} turns on the following optimization flags:
7522 @gccoptlist{
7523 -fauto-inc-dec @gol
7524 -fbranch-count-reg @gol
7525 -fcombine-stack-adjustments @gol
7526 -fcompare-elim @gol
7527 -fcprop-registers @gol
7528 -fdce @gol
7529 -fdefer-pop @gol
7530 -fdelayed-branch @gol
7531 -fdse @gol
7532 -fforward-propagate @gol
7533 -fguess-branch-probability @gol
7534 -fif-conversion2 @gol
7535 -fif-conversion @gol
7536 -finline-functions-called-once @gol
7537 -fipa-pure-const @gol
7538 -fipa-profile @gol
7539 -fipa-reference @gol
7540 -fmerge-constants @gol
7541 -fmove-loop-invariants @gol
7542 -fshrink-wrap @gol
7543 -fsplit-wide-types @gol
7544 -ftree-bit-ccp @gol
7545 -ftree-ccp @gol
7546 -fssa-phiopt @gol
7547 -ftree-ch @gol
7548 -ftree-copy-prop @gol
7549 -ftree-copyrename @gol
7550 -ftree-dce @gol
7551 -ftree-dominator-opts @gol
7552 -ftree-dse @gol
7553 -ftree-forwprop @gol
7554 -ftree-fre @gol
7555 -ftree-phiprop @gol
7556 -ftree-sink @gol
7557 -ftree-slsr @gol
7558 -ftree-sra @gol
7559 -ftree-pta @gol
7560 -ftree-ter @gol
7561 -funit-at-a-time}
7562
7563 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7564 where doing so does not interfere with debugging.
7565
7566 @item -O2
7567 @opindex O2
7568 Optimize even more. GCC performs nearly all supported optimizations
7569 that do not involve a space-speed tradeoff.
7570 As compared to @option{-O}, this option increases both compilation time
7571 and the performance of the generated code.
7572
7573 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7574 also turns on the following optimization flags:
7575 @gccoptlist{-fthread-jumps @gol
7576 -falign-functions -falign-jumps @gol
7577 -falign-loops -falign-labels @gol
7578 -fcaller-saves @gol
7579 -fcrossjumping @gol
7580 -fcse-follow-jumps -fcse-skip-blocks @gol
7581 -fdelete-null-pointer-checks @gol
7582 -fdevirtualize -fdevirtualize-speculatively @gol
7583 -fexpensive-optimizations @gol
7584 -fgcse -fgcse-lm @gol
7585 -fhoist-adjacent-loads @gol
7586 -finline-small-functions @gol
7587 -findirect-inlining @gol
7588 -fipa-cp @gol
7589 -fipa-cp-alignment @gol
7590 -fipa-sra @gol
7591 -fipa-icf @gol
7592 -fisolate-erroneous-paths-dereference @gol
7593 -flra-remat @gol
7594 -foptimize-sibling-calls @gol
7595 -foptimize-strlen @gol
7596 -fpartial-inlining @gol
7597 -fpeephole2 @gol
7598 -freorder-blocks -freorder-blocks-and-partition -freorder-functions @gol
7599 -frerun-cse-after-loop @gol
7600 -fsched-interblock -fsched-spec @gol
7601 -fschedule-insns -fschedule-insns2 @gol
7602 -fstrict-aliasing -fstrict-overflow @gol
7603 -ftree-builtin-call-dce @gol
7604 -ftree-switch-conversion -ftree-tail-merge @gol
7605 -ftree-pre @gol
7606 -ftree-vrp @gol
7607 -fipa-ra}
7608
7609 Please note the warning under @option{-fgcse} about
7610 invoking @option{-O2} on programs that use computed gotos.
7611
7612 @item -O3
7613 @opindex O3
7614 Optimize yet more. @option{-O3} turns on all optimizations specified
7615 by @option{-O2} and also turns on the @option{-finline-functions},
7616 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7617 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7618 @option{-ftree-loop-distribute-patterns},
7619 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7620 @option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7621
7622 @item -O0
7623 @opindex O0
7624 Reduce compilation time and make debugging produce the expected
7625 results. This is the default.
7626
7627 @item -Os
7628 @opindex Os
7629 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7630 do not typically increase code size. It also performs further
7631 optimizations designed to reduce code size.
7632
7633 @option{-Os} disables the following optimization flags:
7634 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7635 -falign-labels -freorder-blocks -freorder-blocks-and-partition @gol
7636 -fprefetch-loop-arrays}
7637
7638 @item -Ofast
7639 @opindex Ofast
7640 Disregard strict standards compliance. @option{-Ofast} enables all
7641 @option{-O3} optimizations. It also enables optimizations that are not
7642 valid for all standard-compliant programs.
7643 It turns on @option{-ffast-math} and the Fortran-specific
7644 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7645
7646 @item -Og
7647 @opindex Og
7648 Optimize debugging experience. @option{-Og} enables optimizations
7649 that do not interfere with debugging. It should be the optimization
7650 level of choice for the standard edit-compile-debug cycle, offering
7651 a reasonable level of optimization while maintaining fast compilation
7652 and a good debugging experience.
7653
7654 If you use multiple @option{-O} options, with or without level numbers,
7655 the last such option is the one that is effective.
7656 @end table
7657
7658 Options of the form @option{-f@var{flag}} specify machine-independent
7659 flags. Most flags have both positive and negative forms; the negative
7660 form of @option{-ffoo} is @option{-fno-foo}. In the table
7661 below, only one of the forms is listed---the one you typically
7662 use. You can figure out the other form by either removing @samp{no-}
7663 or adding it.
7664
7665 The following options control specific optimizations. They are either
7666 activated by @option{-O} options or are related to ones that are. You
7667 can use the following flags in the rare cases when ``fine-tuning'' of
7668 optimizations to be performed is desired.
7669
7670 @table @gcctabopt
7671 @item -fno-defer-pop
7672 @opindex fno-defer-pop
7673 Always pop the arguments to each function call as soon as that function
7674 returns. For machines that must pop arguments after a function call,
7675 the compiler normally lets arguments accumulate on the stack for several
7676 function calls and pops them all at once.
7677
7678 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7679
7680 @item -fforward-propagate
7681 @opindex fforward-propagate
7682 Perform a forward propagation pass on RTL@. The pass tries to combine two
7683 instructions and checks if the result can be simplified. If loop unrolling
7684 is active, two passes are performed and the second is scheduled after
7685 loop unrolling.
7686
7687 This option is enabled by default at optimization levels @option{-O},
7688 @option{-O2}, @option{-O3}, @option{-Os}.
7689
7690 @item -ffp-contract=@var{style}
7691 @opindex ffp-contract
7692 @option{-ffp-contract=off} disables floating-point expression contraction.
7693 @option{-ffp-contract=fast} enables floating-point expression contraction
7694 such as forming of fused multiply-add operations if the target has
7695 native support for them.
7696 @option{-ffp-contract=on} enables floating-point expression contraction
7697 if allowed by the language standard. This is currently not implemented
7698 and treated equal to @option{-ffp-contract=off}.
7699
7700 The default is @option{-ffp-contract=fast}.
7701
7702 @item -fomit-frame-pointer
7703 @opindex fomit-frame-pointer
7704 Don't keep the frame pointer in a register for functions that
7705 don't need one. This avoids the instructions to save, set up and
7706 restore frame pointers; it also makes an extra register available
7707 in many functions. @strong{It also makes debugging impossible on
7708 some machines.}
7709
7710 On some machines, such as the VAX, this flag has no effect, because
7711 the standard calling sequence automatically handles the frame pointer
7712 and nothing is saved by pretending it doesn't exist. The
7713 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7714 whether a target machine supports this flag. @xref{Registers,,Register
7715 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7716
7717 The default setting (when not optimizing for
7718 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7719 @option{-fomit-frame-pointer}. You can configure GCC with the
7720 @option{--enable-frame-pointer} configure option to change the default.
7721
7722 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7723
7724 @item -foptimize-sibling-calls
7725 @opindex foptimize-sibling-calls
7726 Optimize sibling and tail recursive calls.
7727
7728 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7729
7730 @item -foptimize-strlen
7731 @opindex foptimize-strlen
7732 Optimize various standard C string functions (e.g. @code{strlen},
7733 @code{strchr} or @code{strcpy}) and
7734 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7735
7736 Enabled at levels @option{-O2}, @option{-O3}.
7737
7738 @item -fno-inline
7739 @opindex fno-inline
7740 Do not expand any functions inline apart from those marked with
7741 the @code{always_inline} attribute. This is the default when not
7742 optimizing.
7743
7744 Single functions can be exempted from inlining by marking them
7745 with the @code{noinline} attribute.
7746
7747 @item -finline-small-functions
7748 @opindex finline-small-functions
7749 Integrate functions into their callers when their body is smaller than expected
7750 function call code (so overall size of program gets smaller). The compiler
7751 heuristically decides which functions are simple enough to be worth integrating
7752 in this way. This inlining applies to all functions, even those not declared
7753 inline.
7754
7755 Enabled at level @option{-O2}.
7756
7757 @item -findirect-inlining
7758 @opindex findirect-inlining
7759 Inline also indirect calls that are discovered to be known at compile
7760 time thanks to previous inlining. This option has any effect only
7761 when inlining itself is turned on by the @option{-finline-functions}
7762 or @option{-finline-small-functions} options.
7763
7764 Enabled at level @option{-O2}.
7765
7766 @item -finline-functions
7767 @opindex finline-functions
7768 Consider all functions for inlining, even if they are not declared inline.
7769 The compiler heuristically decides which functions are worth integrating
7770 in this way.
7771
7772 If all calls to a given function are integrated, and the function is
7773 declared @code{static}, then the function is normally not output as
7774 assembler code in its own right.
7775
7776 Enabled at level @option{-O3}.
7777
7778 @item -finline-functions-called-once
7779 @opindex finline-functions-called-once
7780 Consider all @code{static} functions called once for inlining into their
7781 caller even if they are not marked @code{inline}. If a call to a given
7782 function is integrated, then the function is not output as assembler code
7783 in its own right.
7784
7785 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7786
7787 @item -fearly-inlining
7788 @opindex fearly-inlining
7789 Inline functions marked by @code{always_inline} and functions whose body seems
7790 smaller than the function call overhead early before doing
7791 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7792 makes profiling significantly cheaper and usually inlining faster on programs
7793 having large chains of nested wrapper functions.
7794
7795 Enabled by default.
7796
7797 @item -fipa-sra
7798 @opindex fipa-sra
7799 Perform interprocedural scalar replacement of aggregates, removal of
7800 unused parameters and replacement of parameters passed by reference
7801 by parameters passed by value.
7802
7803 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7804
7805 @item -finline-limit=@var{n}
7806 @opindex finline-limit
7807 By default, GCC limits the size of functions that can be inlined. This flag
7808 allows coarse control of this limit. @var{n} is the size of functions that
7809 can be inlined in number of pseudo instructions.
7810
7811 Inlining is actually controlled by a number of parameters, which may be
7812 specified individually by using @option{--param @var{name}=@var{value}}.
7813 The @option{-finline-limit=@var{n}} option sets some of these parameters
7814 as follows:
7815
7816 @table @gcctabopt
7817 @item max-inline-insns-single
7818 is set to @var{n}/2.
7819 @item max-inline-insns-auto
7820 is set to @var{n}/2.
7821 @end table
7822
7823 See below for a documentation of the individual
7824 parameters controlling inlining and for the defaults of these parameters.
7825
7826 @emph{Note:} there may be no value to @option{-finline-limit} that results
7827 in default behavior.
7828
7829 @emph{Note:} pseudo instruction represents, in this particular context, an
7830 abstract measurement of function's size. In no way does it represent a count
7831 of assembly instructions and as such its exact meaning might change from one
7832 release to an another.
7833
7834 @item -fno-keep-inline-dllexport
7835 @opindex fno-keep-inline-dllexport
7836 This is a more fine-grained version of @option{-fkeep-inline-functions},
7837 which applies only to functions that are declared using the @code{dllexport}
7838 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
7839 Functions}.)
7840
7841 @item -fkeep-inline-functions
7842 @opindex fkeep-inline-functions
7843 In C, emit @code{static} functions that are declared @code{inline}
7844 into the object file, even if the function has been inlined into all
7845 of its callers. This switch does not affect functions using the
7846 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7847 inline functions into the object file.
7848
7849 @item -fkeep-static-consts
7850 @opindex fkeep-static-consts
7851 Emit variables declared @code{static const} when optimization isn't turned
7852 on, even if the variables aren't referenced.
7853
7854 GCC enables this option by default. If you want to force the compiler to
7855 check if a variable is referenced, regardless of whether or not
7856 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7857
7858 @item -fmerge-constants
7859 @opindex fmerge-constants
7860 Attempt to merge identical constants (string constants and floating-point
7861 constants) across compilation units.
7862
7863 This option is the default for optimized compilation if the assembler and
7864 linker support it. Use @option{-fno-merge-constants} to inhibit this
7865 behavior.
7866
7867 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7868
7869 @item -fmerge-all-constants
7870 @opindex fmerge-all-constants
7871 Attempt to merge identical constants and identical variables.
7872
7873 This option implies @option{-fmerge-constants}. In addition to
7874 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7875 arrays or initialized constant variables with integral or floating-point
7876 types. Languages like C or C++ require each variable, including multiple
7877 instances of the same variable in recursive calls, to have distinct locations,
7878 so using this option results in non-conforming
7879 behavior.
7880
7881 @item -fmodulo-sched
7882 @opindex fmodulo-sched
7883 Perform swing modulo scheduling immediately before the first scheduling
7884 pass. This pass looks at innermost loops and reorders their
7885 instructions by overlapping different iterations.
7886
7887 @item -fmodulo-sched-allow-regmoves
7888 @opindex fmodulo-sched-allow-regmoves
7889 Perform more aggressive SMS-based modulo scheduling with register moves
7890 allowed. By setting this flag certain anti-dependences edges are
7891 deleted, which triggers the generation of reg-moves based on the
7892 life-range analysis. This option is effective only with
7893 @option{-fmodulo-sched} enabled.
7894
7895 @item -fno-branch-count-reg
7896 @opindex fno-branch-count-reg
7897 Do not use ``decrement and branch'' instructions on a count register,
7898 but instead generate a sequence of instructions that decrement a
7899 register, compare it against zero, then branch based upon the result.
7900 This option is only meaningful on architectures that support such
7901 instructions, which include x86, PowerPC, IA-64 and S/390.
7902
7903 Enabled by default at @option{-O1} and higher.
7904
7905 The default is @option{-fbranch-count-reg}.
7906
7907 @item -fno-function-cse
7908 @opindex fno-function-cse
7909 Do not put function addresses in registers; make each instruction that
7910 calls a constant function contain the function's address explicitly.
7911
7912 This option results in less efficient code, but some strange hacks
7913 that alter the assembler output may be confused by the optimizations
7914 performed when this option is not used.
7915
7916 The default is @option{-ffunction-cse}
7917
7918 @item -fno-zero-initialized-in-bss
7919 @opindex fno-zero-initialized-in-bss
7920 If the target supports a BSS section, GCC by default puts variables that
7921 are initialized to zero into BSS@. This can save space in the resulting
7922 code.
7923
7924 This option turns off this behavior because some programs explicitly
7925 rely on variables going to the data section---e.g., so that the
7926 resulting executable can find the beginning of that section and/or make
7927 assumptions based on that.
7928
7929 The default is @option{-fzero-initialized-in-bss}.
7930
7931 @item -fthread-jumps
7932 @opindex fthread-jumps
7933 Perform optimizations that check to see if a jump branches to a
7934 location where another comparison subsumed by the first is found. If
7935 so, the first branch is redirected to either the destination of the
7936 second branch or a point immediately following it, depending on whether
7937 the condition is known to be true or false.
7938
7939 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7940
7941 @item -fsplit-wide-types
7942 @opindex fsplit-wide-types
7943 When using a type that occupies multiple registers, such as @code{long
7944 long} on a 32-bit system, split the registers apart and allocate them
7945 independently. This normally generates better code for those types,
7946 but may make debugging more difficult.
7947
7948 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7949 @option{-Os}.
7950
7951 @item -fcse-follow-jumps
7952 @opindex fcse-follow-jumps
7953 In common subexpression elimination (CSE), scan through jump instructions
7954 when the target of the jump is not reached by any other path. For
7955 example, when CSE encounters an @code{if} statement with an
7956 @code{else} clause, CSE follows the jump when the condition
7957 tested is false.
7958
7959 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7960
7961 @item -fcse-skip-blocks
7962 @opindex fcse-skip-blocks
7963 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7964 follow jumps that conditionally skip over blocks. When CSE
7965 encounters a simple @code{if} statement with no else clause,
7966 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7967 body of the @code{if}.
7968
7969 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7970
7971 @item -frerun-cse-after-loop
7972 @opindex frerun-cse-after-loop
7973 Re-run common subexpression elimination after loop optimizations are
7974 performed.
7975
7976 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7977
7978 @item -fgcse
7979 @opindex fgcse
7980 Perform a global common subexpression elimination pass.
7981 This pass also performs global constant and copy propagation.
7982
7983 @emph{Note:} When compiling a program using computed gotos, a GCC
7984 extension, you may get better run-time performance if you disable
7985 the global common subexpression elimination pass by adding
7986 @option{-fno-gcse} to the command line.
7987
7988 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7989
7990 @item -fgcse-lm
7991 @opindex fgcse-lm
7992 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7993 attempts to move loads that are only killed by stores into themselves. This
7994 allows a loop containing a load/store sequence to be changed to a load outside
7995 the loop, and a copy/store within the loop.
7996
7997 Enabled by default when @option{-fgcse} is enabled.
7998
7999 @item -fgcse-sm
8000 @opindex fgcse-sm
8001 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8002 global common subexpression elimination. This pass attempts to move
8003 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8004 loops containing a load/store sequence can be changed to a load before
8005 the loop and a store after the loop.
8006
8007 Not enabled at any optimization level.
8008
8009 @item -fgcse-las
8010 @opindex fgcse-las
8011 When @option{-fgcse-las} is enabled, the global common subexpression
8012 elimination pass eliminates redundant loads that come after stores to the
8013 same memory location (both partial and full redundancies).
8014
8015 Not enabled at any optimization level.
8016
8017 @item -fgcse-after-reload
8018 @opindex fgcse-after-reload
8019 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8020 pass is performed after reload. The purpose of this pass is to clean up
8021 redundant spilling.
8022
8023 @item -faggressive-loop-optimizations
8024 @opindex faggressive-loop-optimizations
8025 This option tells the loop optimizer to use language constraints to
8026 derive bounds for the number of iterations of a loop. This assumes that
8027 loop code does not invoke undefined behavior by for example causing signed
8028 integer overflows or out-of-bound array accesses. The bounds for the
8029 number of iterations of a loop are used to guide loop unrolling and peeling
8030 and loop exit test optimizations.
8031 This option is enabled by default.
8032
8033 @item -funsafe-loop-optimizations
8034 @opindex funsafe-loop-optimizations
8035 This option tells the loop optimizer to assume that loop indices do not
8036 overflow, and that loops with nontrivial exit condition are not
8037 infinite. This enables a wider range of loop optimizations even if
8038 the loop optimizer itself cannot prove that these assumptions are valid.
8039 If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
8040 if it finds this kind of loop.
8041
8042 @item -fcrossjumping
8043 @opindex fcrossjumping
8044 Perform cross-jumping transformation.
8045 This transformation unifies equivalent code and saves code size. The
8046 resulting code may or may not perform better than without cross-jumping.
8047
8048 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8049
8050 @item -fauto-inc-dec
8051 @opindex fauto-inc-dec
8052 Combine increments or decrements of addresses with memory accesses.
8053 This pass is always skipped on architectures that do not have
8054 instructions to support this. Enabled by default at @option{-O} and
8055 higher on architectures that support this.
8056
8057 @item -fdce
8058 @opindex fdce
8059 Perform dead code elimination (DCE) on RTL@.
8060 Enabled by default at @option{-O} and higher.
8061
8062 @item -fdse
8063 @opindex fdse
8064 Perform dead store elimination (DSE) on RTL@.
8065 Enabled by default at @option{-O} and higher.
8066
8067 @item -fif-conversion
8068 @opindex fif-conversion
8069 Attempt to transform conditional jumps into branch-less equivalents. This
8070 includes use of conditional moves, min, max, set flags and abs instructions, and
8071 some tricks doable by standard arithmetics. The use of conditional execution
8072 on chips where it is available is controlled by @option{-fif-conversion2}.
8073
8074 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8075
8076 @item -fif-conversion2
8077 @opindex fif-conversion2
8078 Use conditional execution (where available) to transform conditional jumps into
8079 branch-less equivalents.
8080
8081 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8082
8083 @item -fdeclone-ctor-dtor
8084 @opindex fdeclone-ctor-dtor
8085 The C++ ABI requires multiple entry points for constructors and
8086 destructors: one for a base subobject, one for a complete object, and
8087 one for a virtual destructor that calls operator delete afterwards.
8088 For a hierarchy with virtual bases, the base and complete variants are
8089 clones, which means two copies of the function. With this option, the
8090 base and complete variants are changed to be thunks that call a common
8091 implementation.
8092
8093 Enabled by @option{-Os}.
8094
8095 @item -fdelete-null-pointer-checks
8096 @opindex fdelete-null-pointer-checks
8097 Assume that programs cannot safely dereference null pointers, and that
8098 no code or data element resides at address zero.
8099 This option enables simple constant
8100 folding optimizations at all optimization levels. In addition, other
8101 optimization passes in GCC use this flag to control global dataflow
8102 analyses that eliminate useless checks for null pointers; these assume
8103 that a memory access to address zero always results in a trap, so
8104 that if a pointer is checked after it has already been dereferenced,
8105 it cannot be null.
8106
8107 Note however that in some environments this assumption is not true.
8108 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8109 for programs that depend on that behavior.
8110
8111 This option is enabled by default on most targets. On Nios II ELF, it
8112 defaults to off. On AVR and CR16, this option is completely disabled.
8113
8114 Passes that use the dataflow information
8115 are enabled independently at different optimization levels.
8116
8117 @item -fdevirtualize
8118 @opindex fdevirtualize
8119 Attempt to convert calls to virtual functions to direct calls. This
8120 is done both within a procedure and interprocedurally as part of
8121 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8122 propagation (@option{-fipa-cp}).
8123 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8124
8125 @item -fdevirtualize-speculatively
8126 @opindex fdevirtualize-speculatively
8127 Attempt to convert calls to virtual functions to speculative direct calls.
8128 Based on the analysis of the type inheritance graph, determine for a given call
8129 the set of likely targets. If the set is small, preferably of size 1, change
8130 the call into a conditional deciding between direct and indirect calls. The
8131 speculative calls enable more optimizations, such as inlining. When they seem
8132 useless after further optimization, they are converted back into original form.
8133
8134 @item -fdevirtualize-at-ltrans
8135 @opindex fdevirtualize-at-ltrans
8136 Stream extra information needed for aggressive devirtualization when running
8137 the link-time optimizer in local transformation mode.
8138 This option enables more devirtualization but
8139 significantly increases the size of streamed data. For this reason it is
8140 disabled by default.
8141
8142 @item -fexpensive-optimizations
8143 @opindex fexpensive-optimizations
8144 Perform a number of minor optimizations that are relatively expensive.
8145
8146 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8147
8148 @item -free
8149 @opindex free
8150 Attempt to remove redundant extension instructions. This is especially
8151 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8152 registers after writing to their lower 32-bit half.
8153
8154 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8155 @option{-O3}, @option{-Os}.
8156
8157 @item -fno-lifetime-dse
8158 @opindex fno-lifetime-dse
8159 In C++ the value of an object is only affected by changes within its
8160 lifetime: when the constructor begins, the object has an indeterminate
8161 value, and any changes during the lifetime of the object are dead when
8162 the object is destroyed. Normally dead store elimination will take
8163 advantage of this; if your code relies on the value of the object
8164 storage persisting beyond the lifetime of the object, you can use this
8165 flag to disable this optimization.
8166
8167 @item -flive-range-shrinkage
8168 @opindex flive-range-shrinkage
8169 Attempt to decrease register pressure through register live range
8170 shrinkage. This is helpful for fast processors with small or moderate
8171 size register sets.
8172
8173 @item -fira-algorithm=@var{algorithm}
8174 @opindex fira-algorithm
8175 Use the specified coloring algorithm for the integrated register
8176 allocator. The @var{algorithm} argument can be @samp{priority}, which
8177 specifies Chow's priority coloring, or @samp{CB}, which specifies
8178 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8179 for all architectures, but for those targets that do support it, it is
8180 the default because it generates better code.
8181
8182 @item -fira-region=@var{region}
8183 @opindex fira-region
8184 Use specified regions for the integrated register allocator. The
8185 @var{region} argument should be one of the following:
8186
8187 @table @samp
8188
8189 @item all
8190 Use all loops as register allocation regions.
8191 This can give the best results for machines with a small and/or
8192 irregular register set.
8193
8194 @item mixed
8195 Use all loops except for loops with small register pressure
8196 as the regions. This value usually gives
8197 the best results in most cases and for most architectures,
8198 and is enabled by default when compiling with optimization for speed
8199 (@option{-O}, @option{-O2}, @dots{}).
8200
8201 @item one
8202 Use all functions as a single region.
8203 This typically results in the smallest code size, and is enabled by default for
8204 @option{-Os} or @option{-O0}.
8205
8206 @end table
8207
8208 @item -fira-hoist-pressure
8209 @opindex fira-hoist-pressure
8210 Use IRA to evaluate register pressure in the code hoisting pass for
8211 decisions to hoist expressions. This option usually results in smaller
8212 code, but it can slow the compiler down.
8213
8214 This option is enabled at level @option{-Os} for all targets.
8215
8216 @item -fira-loop-pressure
8217 @opindex fira-loop-pressure
8218 Use IRA to evaluate register pressure in loops for decisions to move
8219 loop invariants. This option usually results in generation
8220 of faster and smaller code on machines with large register files (>= 32
8221 registers), but it can slow the compiler down.
8222
8223 This option is enabled at level @option{-O3} for some targets.
8224
8225 @item -fno-ira-share-save-slots
8226 @opindex fno-ira-share-save-slots
8227 Disable sharing of stack slots used for saving call-used hard
8228 registers living through a call. Each hard register gets a
8229 separate stack slot, and as a result function stack frames are
8230 larger.
8231
8232 @item -fno-ira-share-spill-slots
8233 @opindex fno-ira-share-spill-slots
8234 Disable sharing of stack slots allocated for pseudo-registers. Each
8235 pseudo-register that does not get a hard register gets a separate
8236 stack slot, and as a result function stack frames are larger.
8237
8238 @item -fira-verbose=@var{n}
8239 @opindex fira-verbose
8240 Control the verbosity of the dump file for the integrated register allocator.
8241 The default value is 5. If the value @var{n} is greater or equal to 10,
8242 the dump output is sent to stderr using the same format as @var{n} minus 10.
8243
8244 @item -flra-remat
8245 @opindex flra-remat
8246 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8247 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8248 values if it is profitable.
8249
8250 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8251
8252 @item -fdelayed-branch
8253 @opindex fdelayed-branch
8254 If supported for the target machine, attempt to reorder instructions
8255 to exploit instruction slots available after delayed branch
8256 instructions.
8257
8258 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8259
8260 @item -fschedule-insns
8261 @opindex fschedule-insns
8262 If supported for the target machine, attempt to reorder instructions to
8263 eliminate execution stalls due to required data being unavailable. This
8264 helps machines that have slow floating point or memory load instructions
8265 by allowing other instructions to be issued until the result of the load
8266 or floating-point instruction is required.
8267
8268 Enabled at levels @option{-O2}, @option{-O3}.
8269
8270 @item -fschedule-insns2
8271 @opindex fschedule-insns2
8272 Similar to @option{-fschedule-insns}, but requests an additional pass of
8273 instruction scheduling after register allocation has been done. This is
8274 especially useful on machines with a relatively small number of
8275 registers and where memory load instructions take more than one cycle.
8276
8277 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8278
8279 @item -fno-sched-interblock
8280 @opindex fno-sched-interblock
8281 Don't schedule instructions across basic blocks. This is normally
8282 enabled by default when scheduling before register allocation, i.e.@:
8283 with @option{-fschedule-insns} or at @option{-O2} or higher.
8284
8285 @item -fno-sched-spec
8286 @opindex fno-sched-spec
8287 Don't allow speculative motion of non-load instructions. This is normally
8288 enabled by default when scheduling before register allocation, i.e.@:
8289 with @option{-fschedule-insns} or at @option{-O2} or higher.
8290
8291 @item -fsched-pressure
8292 @opindex fsched-pressure
8293 Enable register pressure sensitive insn scheduling before register
8294 allocation. This only makes sense when scheduling before register
8295 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8296 @option{-O2} or higher. Usage of this option can improve the
8297 generated code and decrease its size by preventing register pressure
8298 increase above the number of available hard registers and subsequent
8299 spills in register allocation.
8300
8301 @item -fsched-spec-load
8302 @opindex fsched-spec-load
8303 Allow speculative motion of some load instructions. This only makes
8304 sense when scheduling before register allocation, i.e.@: with
8305 @option{-fschedule-insns} or at @option{-O2} or higher.
8306
8307 @item -fsched-spec-load-dangerous
8308 @opindex fsched-spec-load-dangerous
8309 Allow speculative motion of more load instructions. This only makes
8310 sense when scheduling before register allocation, i.e.@: with
8311 @option{-fschedule-insns} or at @option{-O2} or higher.
8312
8313 @item -fsched-stalled-insns
8314 @itemx -fsched-stalled-insns=@var{n}
8315 @opindex fsched-stalled-insns
8316 Define how many insns (if any) can be moved prematurely from the queue
8317 of stalled insns into the ready list during the second scheduling pass.
8318 @option{-fno-sched-stalled-insns} means that no insns are moved
8319 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8320 on how many queued insns can be moved prematurely.
8321 @option{-fsched-stalled-insns} without a value is equivalent to
8322 @option{-fsched-stalled-insns=1}.
8323
8324 @item -fsched-stalled-insns-dep
8325 @itemx -fsched-stalled-insns-dep=@var{n}
8326 @opindex fsched-stalled-insns-dep
8327 Define how many insn groups (cycles) are examined for a dependency
8328 on a stalled insn that is a candidate for premature removal from the queue
8329 of stalled insns. This has an effect only during the second scheduling pass,
8330 and only if @option{-fsched-stalled-insns} is used.
8331 @option{-fno-sched-stalled-insns-dep} is equivalent to
8332 @option{-fsched-stalled-insns-dep=0}.
8333 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8334 @option{-fsched-stalled-insns-dep=1}.
8335
8336 @item -fsched2-use-superblocks
8337 @opindex fsched2-use-superblocks
8338 When scheduling after register allocation, use superblock scheduling.
8339 This allows motion across basic block boundaries,
8340 resulting in faster schedules. This option is experimental, as not all machine
8341 descriptions used by GCC model the CPU closely enough to avoid unreliable
8342 results from the algorithm.
8343
8344 This only makes sense when scheduling after register allocation, i.e.@: with
8345 @option{-fschedule-insns2} or at @option{-O2} or higher.
8346
8347 @item -fsched-group-heuristic
8348 @opindex fsched-group-heuristic
8349 Enable the group heuristic in the scheduler. This heuristic favors
8350 the instruction that belongs to a schedule group. This is enabled
8351 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8352 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8353
8354 @item -fsched-critical-path-heuristic
8355 @opindex fsched-critical-path-heuristic
8356 Enable the critical-path heuristic in the scheduler. This heuristic favors
8357 instructions on the critical path. This is enabled by default when
8358 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8359 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8360
8361 @item -fsched-spec-insn-heuristic
8362 @opindex fsched-spec-insn-heuristic
8363 Enable the speculative instruction heuristic in the scheduler. This
8364 heuristic favors speculative instructions with greater dependency weakness.
8365 This is enabled by default when scheduling is enabled, i.e.@:
8366 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8367 or at @option{-O2} or higher.
8368
8369 @item -fsched-rank-heuristic
8370 @opindex fsched-rank-heuristic
8371 Enable the rank heuristic in the scheduler. This heuristic favors
8372 the instruction belonging to a basic block with greater size or frequency.
8373 This is enabled by default when scheduling is enabled, i.e.@:
8374 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8375 at @option{-O2} or higher.
8376
8377 @item -fsched-last-insn-heuristic
8378 @opindex fsched-last-insn-heuristic
8379 Enable the last-instruction heuristic in the scheduler. This heuristic
8380 favors the instruction that is less dependent on the last instruction
8381 scheduled. This is enabled by default when scheduling is enabled,
8382 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8383 at @option{-O2} or higher.
8384
8385 @item -fsched-dep-count-heuristic
8386 @opindex fsched-dep-count-heuristic
8387 Enable the dependent-count heuristic in the scheduler. This heuristic
8388 favors the instruction that has more instructions depending on it.
8389 This is enabled by default when scheduling is enabled, i.e.@:
8390 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8391 at @option{-O2} or higher.
8392
8393 @item -freschedule-modulo-scheduled-loops
8394 @opindex freschedule-modulo-scheduled-loops
8395 Modulo scheduling is performed before traditional scheduling. If a loop
8396 is modulo scheduled, later scheduling passes may change its schedule.
8397 Use this option to control that behavior.
8398
8399 @item -fselective-scheduling
8400 @opindex fselective-scheduling
8401 Schedule instructions using selective scheduling algorithm. Selective
8402 scheduling runs instead of the first scheduler pass.
8403
8404 @item -fselective-scheduling2
8405 @opindex fselective-scheduling2
8406 Schedule instructions using selective scheduling algorithm. Selective
8407 scheduling runs instead of the second scheduler pass.
8408
8409 @item -fsel-sched-pipelining
8410 @opindex fsel-sched-pipelining
8411 Enable software pipelining of innermost loops during selective scheduling.
8412 This option has no effect unless one of @option{-fselective-scheduling} or
8413 @option{-fselective-scheduling2} is turned on.
8414
8415 @item -fsel-sched-pipelining-outer-loops
8416 @opindex fsel-sched-pipelining-outer-loops
8417 When pipelining loops during selective scheduling, also pipeline outer loops.
8418 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8419
8420 @item -fsemantic-interposition
8421 @opindex fsemantic-interposition
8422 Some object formats, like ELF, allow interposing of symbols by the
8423 dynamic linker.
8424 This means that for symbols exported from the DSO, the compiler cannot perform
8425 interprocedural propagation, inlining and other optimizations in anticipation
8426 that the function or variable in question may change. While this feature is
8427 useful, for example, to rewrite memory allocation functions by a debugging
8428 implementation, it is expensive in the terms of code quality.
8429 With @option{-fno-semantic-interposition} the compiler assumes that
8430 if interposition happens for functions the overwriting function will have
8431 precisely the same semantics (and side effects).
8432 Similarly if interposition happens
8433 for variables, the constructor of the variable will be the same. The flag
8434 has no effect for functions explicitly declared inline
8435 (where it is never allowed for interposition to change semantics)
8436 and for symbols explicitly declared weak.
8437
8438 @item -fshrink-wrap
8439 @opindex fshrink-wrap
8440 Emit function prologues only before parts of the function that need it,
8441 rather than at the top of the function. This flag is enabled by default at
8442 @option{-O} and higher.
8443
8444 @item -fcaller-saves
8445 @opindex fcaller-saves
8446 Enable allocation of values to registers that are clobbered by
8447 function calls, by emitting extra instructions to save and restore the
8448 registers around such calls. Such allocation is done only when it
8449 seems to result in better code.
8450
8451 This option is always enabled by default on certain machines, usually
8452 those which have no call-preserved registers to use instead.
8453
8454 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8455
8456 @item -fcombine-stack-adjustments
8457 @opindex fcombine-stack-adjustments
8458 Tracks stack adjustments (pushes and pops) and stack memory references
8459 and then tries to find ways to combine them.
8460
8461 Enabled by default at @option{-O1} and higher.
8462
8463 @item -fipa-ra
8464 @opindex fipa-ra
8465 Use caller save registers for allocation if those registers are not used by
8466 any called function. In that case it is not necessary to save and restore
8467 them around calls. This is only possible if called functions are part of
8468 same compilation unit as current function and they are compiled before it.
8469
8470 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8471
8472 @item -fconserve-stack
8473 @opindex fconserve-stack
8474 Attempt to minimize stack usage. The compiler attempts to use less
8475 stack space, even if that makes the program slower. This option
8476 implies setting the @option{large-stack-frame} parameter to 100
8477 and the @option{large-stack-frame-growth} parameter to 400.
8478
8479 @item -ftree-reassoc
8480 @opindex ftree-reassoc
8481 Perform reassociation on trees. This flag is enabled by default
8482 at @option{-O} and higher.
8483
8484 @item -ftree-pre
8485 @opindex ftree-pre
8486 Perform partial redundancy elimination (PRE) on trees. This flag is
8487 enabled by default at @option{-O2} and @option{-O3}.
8488
8489 @item -ftree-partial-pre
8490 @opindex ftree-partial-pre
8491 Make partial redundancy elimination (PRE) more aggressive. This flag is
8492 enabled by default at @option{-O3}.
8493
8494 @item -ftree-forwprop
8495 @opindex ftree-forwprop
8496 Perform forward propagation on trees. This flag is enabled by default
8497 at @option{-O} and higher.
8498
8499 @item -ftree-fre
8500 @opindex ftree-fre
8501 Perform full redundancy elimination (FRE) on trees. The difference
8502 between FRE and PRE is that FRE only considers expressions
8503 that are computed on all paths leading to the redundant computation.
8504 This analysis is faster than PRE, though it exposes fewer redundancies.
8505 This flag is enabled by default at @option{-O} and higher.
8506
8507 @item -ftree-phiprop
8508 @opindex ftree-phiprop
8509 Perform hoisting of loads from conditional pointers on trees. This
8510 pass is enabled by default at @option{-O} and higher.
8511
8512 @item -fhoist-adjacent-loads
8513 @opindex fhoist-adjacent-loads
8514 Speculatively hoist loads from both branches of an if-then-else if the
8515 loads are from adjacent locations in the same structure and the target
8516 architecture has a conditional move instruction. This flag is enabled
8517 by default at @option{-O2} and higher.
8518
8519 @item -ftree-copy-prop
8520 @opindex ftree-copy-prop
8521 Perform copy propagation on trees. This pass eliminates unnecessary
8522 copy operations. This flag is enabled by default at @option{-O} and
8523 higher.
8524
8525 @item -fipa-pure-const
8526 @opindex fipa-pure-const
8527 Discover which functions are pure or constant.
8528 Enabled by default at @option{-O} and higher.
8529
8530 @item -fipa-reference
8531 @opindex fipa-reference
8532 Discover which static variables do not escape the
8533 compilation unit.
8534 Enabled by default at @option{-O} and higher.
8535
8536 @item -fipa-pta
8537 @opindex fipa-pta
8538 Perform interprocedural pointer analysis and interprocedural modification
8539 and reference analysis. This option can cause excessive memory and
8540 compile-time usage on large compilation units. It is not enabled by
8541 default at any optimization level.
8542
8543 @item -fipa-profile
8544 @opindex fipa-profile
8545 Perform interprocedural profile propagation. The functions called only from
8546 cold functions are marked as cold. Also functions executed once (such as
8547 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8548 functions and loop less parts of functions executed once are then optimized for
8549 size.
8550 Enabled by default at @option{-O} and higher.
8551
8552 @item -fipa-cp
8553 @opindex fipa-cp
8554 Perform interprocedural constant propagation.
8555 This optimization analyzes the program to determine when values passed
8556 to functions are constants and then optimizes accordingly.
8557 This optimization can substantially increase performance
8558 if the application has constants passed to functions.
8559 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8560
8561 @item -fipa-cp-clone
8562 @opindex fipa-cp-clone
8563 Perform function cloning to make interprocedural constant propagation stronger.
8564 When enabled, interprocedural constant propagation performs function cloning
8565 when externally visible function can be called with constant arguments.
8566 Because this optimization can create multiple copies of functions,
8567 it may significantly increase code size
8568 (see @option{--param ipcp-unit-growth=@var{value}}).
8569 This flag is enabled by default at @option{-O3}.
8570
8571 @item -fipa-cp-alignment
8572 @opindex -fipa-cp-alignment
8573 When enabled, this optimization propagates alignment of function
8574 parameters to support better vectorization and string operations.
8575
8576 This flag is enabled by default at @option{-O2} and @option{-Os}. It
8577 requires that @option{-fipa-cp} is enabled.
8578
8579 @item -fipa-icf
8580 @opindex fipa-icf
8581 Perform Identical Code Folding for functions and read-only variables.
8582 The optimization reduces code size and may disturb unwind stacks by replacing
8583 a function by equivalent one with a different name. The optimization works
8584 more effectively with link time optimization enabled.
8585
8586 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8587 works on different levels and thus the optimizations are not same - there are
8588 equivalences that are found only by GCC and equivalences found only by Gold.
8589
8590 This flag is enabled by default at @option{-O2} and @option{-Os}.
8591
8592 @item -fisolate-erroneous-paths-dereference
8593 @opindex fisolate-erroneous-paths-dereference
8594 Detect paths that trigger erroneous or undefined behavior due to
8595 dereferencing a null pointer. Isolate those paths from the main control
8596 flow and turn the statement with erroneous or undefined behavior into a trap.
8597 This flag is enabled by default at @option{-O2} and higher and depends on
8598 @option{-fdelete-null-pointer-checks} also being enabled.
8599
8600 @item -fisolate-erroneous-paths-attribute
8601 @opindex fisolate-erroneous-paths-attribute
8602 Detect paths that trigger erroneous or undefined behavior due a null value
8603 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8604 attribute. Isolate those paths from the main control flow and turn the
8605 statement with erroneous or undefined behavior into a trap. This is not
8606 currently enabled, but may be enabled by @option{-O2} in the future.
8607
8608 @item -ftree-sink
8609 @opindex ftree-sink
8610 Perform forward store motion on trees. This flag is
8611 enabled by default at @option{-O} and higher.
8612
8613 @item -ftree-bit-ccp
8614 @opindex ftree-bit-ccp
8615 Perform sparse conditional bit constant propagation on trees and propagate
8616 pointer alignment information.
8617 This pass only operates on local scalar variables and is enabled by default
8618 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8619
8620 @item -ftree-ccp
8621 @opindex ftree-ccp
8622 Perform sparse conditional constant propagation (CCP) on trees. This
8623 pass only operates on local scalar variables and is enabled by default
8624 at @option{-O} and higher.
8625
8626 @item -fssa-phiopt
8627 @opindex fssa-phiopt
8628 Perform pattern matching on SSA PHI nodes to optimize conditional
8629 code. This pass is enabled by default at @option{-O} and higher.
8630
8631 @item -ftree-switch-conversion
8632 @opindex ftree-switch-conversion
8633 Perform conversion of simple initializations in a switch to
8634 initializations from a scalar array. This flag is enabled by default
8635 at @option{-O2} and higher.
8636
8637 @item -ftree-tail-merge
8638 @opindex ftree-tail-merge
8639 Look for identical code sequences. When found, replace one with a jump to the
8640 other. This optimization is known as tail merging or cross jumping. This flag
8641 is enabled by default at @option{-O2} and higher. The compilation time
8642 in this pass can
8643 be limited using @option{max-tail-merge-comparisons} parameter and
8644 @option{max-tail-merge-iterations} parameter.
8645
8646 @item -ftree-dce
8647 @opindex ftree-dce
8648 Perform dead code elimination (DCE) on trees. This flag is enabled by
8649 default at @option{-O} and higher.
8650
8651 @item -ftree-builtin-call-dce
8652 @opindex ftree-builtin-call-dce
8653 Perform conditional dead code elimination (DCE) for calls to built-in functions
8654 that may set @code{errno} but are otherwise side-effect free. This flag is
8655 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8656 specified.
8657
8658 @item -ftree-dominator-opts
8659 @opindex ftree-dominator-opts
8660 Perform a variety of simple scalar cleanups (constant/copy
8661 propagation, redundancy elimination, range propagation and expression
8662 simplification) based on a dominator tree traversal. This also
8663 performs jump threading (to reduce jumps to jumps). This flag is
8664 enabled by default at @option{-O} and higher.
8665
8666 @item -ftree-dse
8667 @opindex ftree-dse
8668 Perform dead store elimination (DSE) on trees. A dead store is a store into
8669 a memory location that is later overwritten by another store without
8670 any intervening loads. In this case the earlier store can be deleted. This
8671 flag is enabled by default at @option{-O} and higher.
8672
8673 @item -ftree-ch
8674 @opindex ftree-ch
8675 Perform loop header copying on trees. This is beneficial since it increases
8676 effectiveness of code motion optimizations. It also saves one jump. This flag
8677 is enabled by default at @option{-O} and higher. It is not enabled
8678 for @option{-Os}, since it usually increases code size.
8679
8680 @item -ftree-loop-optimize
8681 @opindex ftree-loop-optimize
8682 Perform loop optimizations on trees. This flag is enabled by default
8683 at @option{-O} and higher.
8684
8685 @item -ftree-loop-linear
8686 @opindex ftree-loop-linear
8687 Perform loop interchange transformations on tree. Same as
8688 @option{-floop-interchange}. To use this code transformation, GCC has
8689 to be configured with @option{--with-isl} to enable the Graphite loop
8690 transformation infrastructure.
8691
8692 @item -floop-interchange
8693 @opindex floop-interchange
8694 Perform loop interchange transformations on loops. Interchanging two
8695 nested loops switches the inner and outer loops. For example, given a
8696 loop like:
8697 @smallexample
8698 DO J = 1, M
8699 DO I = 1, N
8700 A(J, I) = A(J, I) * C
8701 ENDDO
8702 ENDDO
8703 @end smallexample
8704 @noindent
8705 loop interchange transforms the loop as if it were written:
8706 @smallexample
8707 DO I = 1, N
8708 DO J = 1, M
8709 A(J, I) = A(J, I) * C
8710 ENDDO
8711 ENDDO
8712 @end smallexample
8713 which can be beneficial when @code{N} is larger than the caches,
8714 because in Fortran, the elements of an array are stored in memory
8715 contiguously by column, and the original loop iterates over rows,
8716 potentially creating at each access a cache miss. This optimization
8717 applies to all the languages supported by GCC and is not limited to
8718 Fortran. To use this code transformation, GCC has to be configured
8719 with @option{--with-isl} to enable the Graphite loop transformation
8720 infrastructure.
8721
8722 @item -floop-strip-mine
8723 @opindex floop-strip-mine
8724 Perform loop strip mining transformations on loops. Strip mining
8725 splits a loop into two nested loops. The outer loop has strides
8726 equal to the strip size and the inner loop has strides of the
8727 original loop within a strip. The strip length can be changed
8728 using the @option{loop-block-tile-size} parameter. For example,
8729 given a loop like:
8730 @smallexample
8731 DO I = 1, N
8732 A(I) = A(I) + C
8733 ENDDO
8734 @end smallexample
8735 @noindent
8736 loop strip mining transforms the loop as if it were written:
8737 @smallexample
8738 DO II = 1, N, 51
8739 DO I = II, min (II + 50, N)
8740 A(I) = A(I) + C
8741 ENDDO
8742 ENDDO
8743 @end smallexample
8744 This optimization applies to all the languages supported by GCC and is
8745 not limited to Fortran. To use this code transformation, GCC has to
8746 be configured with @option{--with-isl} to enable the Graphite loop
8747 transformation infrastructure.
8748
8749 @item -floop-block
8750 @opindex floop-block
8751 Perform loop blocking transformations on loops. Blocking strip mines
8752 each loop in the loop nest such that the memory accesses of the
8753 element loops fit inside caches. The strip length can be changed
8754 using the @option{loop-block-tile-size} parameter. For example, given
8755 a loop like:
8756 @smallexample
8757 DO I = 1, N
8758 DO J = 1, M
8759 A(J, I) = B(I) + C(J)
8760 ENDDO
8761 ENDDO
8762 @end smallexample
8763 @noindent
8764 loop blocking transforms the loop as if it were written:
8765 @smallexample
8766 DO II = 1, N, 51
8767 DO JJ = 1, M, 51
8768 DO I = II, min (II + 50, N)
8769 DO J = JJ, min (JJ + 50, M)
8770 A(J, I) = B(I) + C(J)
8771 ENDDO
8772 ENDDO
8773 ENDDO
8774 ENDDO
8775 @end smallexample
8776 which can be beneficial when @code{M} is larger than the caches,
8777 because the innermost loop iterates over a smaller amount of data
8778 which can be kept in the caches. This optimization applies to all the
8779 languages supported by GCC and is not limited to Fortran. To use this
8780 code transformation, GCC has to be configured with @option{--with-isl}
8781 to enable the Graphite loop transformation infrastructure.
8782
8783 @item -fgraphite-identity
8784 @opindex fgraphite-identity
8785 Enable the identity transformation for graphite. For every SCoP we generate
8786 the polyhedral representation and transform it back to gimple. Using
8787 @option{-fgraphite-identity} we can check the costs or benefits of the
8788 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8789 are also performed by the code generator ISL, like index splitting and
8790 dead code elimination in loops.
8791
8792 @item -floop-nest-optimize
8793 @opindex floop-nest-optimize
8794 Enable the ISL based loop nest optimizer. This is a generic loop nest
8795 optimizer based on the Pluto optimization algorithms. It calculates a loop
8796 structure optimized for data-locality and parallelism. This option
8797 is experimental.
8798
8799 @item -floop-unroll-and-jam
8800 @opindex floop-unroll-and-jam
8801 Enable unroll and jam for the ISL based loop nest optimizer. The unroll
8802 factor can be changed using the @option{loop-unroll-jam-size} parameter.
8803 The unrolled dimension (counting from the most inner one) can be changed
8804 using the @option{loop-unroll-jam-depth} parameter. .
8805
8806 @item -floop-parallelize-all
8807 @opindex floop-parallelize-all
8808 Use the Graphite data dependence analysis to identify loops that can
8809 be parallelized. Parallelize all the loops that can be analyzed to
8810 not contain loop carried dependences without checking that it is
8811 profitable to parallelize the loops.
8812
8813 @item -fcheck-data-deps
8814 @opindex fcheck-data-deps
8815 Compare the results of several data dependence analyzers. This option
8816 is used for debugging the data dependence analyzers.
8817
8818 @item -ftree-loop-if-convert
8819 @opindex ftree-loop-if-convert
8820 Attempt to transform conditional jumps in the innermost loops to
8821 branch-less equivalents. The intent is to remove control-flow from
8822 the innermost loops in order to improve the ability of the
8823 vectorization pass to handle these loops. This is enabled by default
8824 if vectorization is enabled.
8825
8826 @item -ftree-loop-if-convert-stores
8827 @opindex ftree-loop-if-convert-stores
8828 Attempt to also if-convert conditional jumps containing memory writes.
8829 This transformation can be unsafe for multi-threaded programs as it
8830 transforms conditional memory writes into unconditional memory writes.
8831 For example,
8832 @smallexample
8833 for (i = 0; i < N; i++)
8834 if (cond)
8835 A[i] = expr;
8836 @end smallexample
8837 is transformed to
8838 @smallexample
8839 for (i = 0; i < N; i++)
8840 A[i] = cond ? expr : A[i];
8841 @end smallexample
8842 potentially producing data races.
8843
8844 @item -ftree-loop-distribution
8845 @opindex ftree-loop-distribution
8846 Perform loop distribution. This flag can improve cache performance on
8847 big loop bodies and allow further loop optimizations, like
8848 parallelization or vectorization, to take place. For example, the loop
8849 @smallexample
8850 DO I = 1, N
8851 A(I) = B(I) + C
8852 D(I) = E(I) * F
8853 ENDDO
8854 @end smallexample
8855 is transformed to
8856 @smallexample
8857 DO I = 1, N
8858 A(I) = B(I) + C
8859 ENDDO
8860 DO I = 1, N
8861 D(I) = E(I) * F
8862 ENDDO
8863 @end smallexample
8864
8865 @item -ftree-loop-distribute-patterns
8866 @opindex ftree-loop-distribute-patterns
8867 Perform loop distribution of patterns that can be code generated with
8868 calls to a library. This flag is enabled by default at @option{-O3}.
8869
8870 This pass distributes the initialization loops and generates a call to
8871 memset zero. For example, the loop
8872 @smallexample
8873 DO I = 1, N
8874 A(I) = 0
8875 B(I) = A(I) + I
8876 ENDDO
8877 @end smallexample
8878 is transformed to
8879 @smallexample
8880 DO I = 1, N
8881 A(I) = 0
8882 ENDDO
8883 DO I = 1, N
8884 B(I) = A(I) + I
8885 ENDDO
8886 @end smallexample
8887 and the initialization loop is transformed into a call to memset zero.
8888
8889 @item -ftree-loop-im
8890 @opindex ftree-loop-im
8891 Perform loop invariant motion on trees. This pass moves only invariants that
8892 are hard to handle at RTL level (function calls, operations that expand to
8893 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8894 operands of conditions that are invariant out of the loop, so that we can use
8895 just trivial invariantness analysis in loop unswitching. The pass also includes
8896 store motion.
8897
8898 @item -ftree-loop-ivcanon
8899 @opindex ftree-loop-ivcanon
8900 Create a canonical counter for number of iterations in loops for which
8901 determining number of iterations requires complicated analysis. Later
8902 optimizations then may determine the number easily. Useful especially
8903 in connection with unrolling.
8904
8905 @item -fivopts
8906 @opindex fivopts
8907 Perform induction variable optimizations (strength reduction, induction
8908 variable merging and induction variable elimination) on trees.
8909
8910 @item -ftree-parallelize-loops=n
8911 @opindex ftree-parallelize-loops
8912 Parallelize loops, i.e., split their iteration space to run in n threads.
8913 This is only possible for loops whose iterations are independent
8914 and can be arbitrarily reordered. The optimization is only
8915 profitable on multiprocessor machines, for loops that are CPU-intensive,
8916 rather than constrained e.g.@: by memory bandwidth. This option
8917 implies @option{-pthread}, and thus is only supported on targets
8918 that have support for @option{-pthread}.
8919
8920 @item -ftree-pta
8921 @opindex ftree-pta
8922 Perform function-local points-to analysis on trees. This flag is
8923 enabled by default at @option{-O} and higher.
8924
8925 @item -ftree-sra
8926 @opindex ftree-sra
8927 Perform scalar replacement of aggregates. This pass replaces structure
8928 references with scalars to prevent committing structures to memory too
8929 early. This flag is enabled by default at @option{-O} and higher.
8930
8931 @item -ftree-copyrename
8932 @opindex ftree-copyrename
8933 Perform copy renaming on trees. This pass attempts to rename compiler
8934 temporaries to other variables at copy locations, usually resulting in
8935 variable names which more closely resemble the original variables. This flag
8936 is enabled by default at @option{-O} and higher.
8937
8938 @item -ftree-coalesce-inlined-vars
8939 @opindex ftree-coalesce-inlined-vars
8940 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8941 combine small user-defined variables too, but only if they are inlined
8942 from other functions. It is a more limited form of
8943 @option{-ftree-coalesce-vars}. This may harm debug information of such
8944 inlined variables, but it keeps variables of the inlined-into
8945 function apart from each other, such that they are more likely to
8946 contain the expected values in a debugging session.
8947
8948 @item -ftree-coalesce-vars
8949 @opindex ftree-coalesce-vars
8950 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8951 combine small user-defined variables too, instead of just compiler
8952 temporaries. This may severely limit the ability to debug an optimized
8953 program compiled with @option{-fno-var-tracking-assignments}. In the
8954 negated form, this flag prevents SSA coalescing of user variables,
8955 including inlined ones. This option is enabled by default.
8956
8957 @item -ftree-ter
8958 @opindex ftree-ter
8959 Perform temporary expression replacement during the SSA->normal phase. Single
8960 use/single def temporaries are replaced at their use location with their
8961 defining expression. This results in non-GIMPLE code, but gives the expanders
8962 much more complex trees to work on resulting in better RTL generation. This is
8963 enabled by default at @option{-O} and higher.
8964
8965 @item -ftree-slsr
8966 @opindex ftree-slsr
8967 Perform straight-line strength reduction on trees. This recognizes related
8968 expressions involving multiplications and replaces them by less expensive
8969 calculations when possible. This is enabled by default at @option{-O} and
8970 higher.
8971
8972 @item -ftree-vectorize
8973 @opindex ftree-vectorize
8974 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8975 and @option{-ftree-slp-vectorize} if not explicitly specified.
8976
8977 @item -ftree-loop-vectorize
8978 @opindex ftree-loop-vectorize
8979 Perform loop vectorization on trees. This flag is enabled by default at
8980 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8981
8982 @item -ftree-slp-vectorize
8983 @opindex ftree-slp-vectorize
8984 Perform basic block vectorization on trees. This flag is enabled by default at
8985 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8986
8987 @item -fvect-cost-model=@var{model}
8988 @opindex fvect-cost-model
8989 Alter the cost model used for vectorization. The @var{model} argument
8990 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8991 With the @samp{unlimited} model the vectorized code-path is assumed
8992 to be profitable while with the @samp{dynamic} model a runtime check
8993 guards the vectorized code-path to enable it only for iteration
8994 counts that will likely execute faster than when executing the original
8995 scalar loop. The @samp{cheap} model disables vectorization of
8996 loops where doing so would be cost prohibitive for example due to
8997 required runtime checks for data dependence or alignment but otherwise
8998 is equal to the @samp{dynamic} model.
8999 The default cost model depends on other optimization flags and is
9000 either @samp{dynamic} or @samp{cheap}.
9001
9002 @item -fsimd-cost-model=@var{model}
9003 @opindex fsimd-cost-model
9004 Alter the cost model used for vectorization of loops marked with the OpenMP
9005 or Cilk Plus simd directive. The @var{model} argument should be one of
9006 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
9007 have the same meaning as described in @option{-fvect-cost-model} and by
9008 default a cost model defined with @option{-fvect-cost-model} is used.
9009
9010 @item -ftree-vrp
9011 @opindex ftree-vrp
9012 Perform Value Range Propagation on trees. This is similar to the
9013 constant propagation pass, but instead of values, ranges of values are
9014 propagated. This allows the optimizers to remove unnecessary range
9015 checks like array bound checks and null pointer checks. This is
9016 enabled by default at @option{-O2} and higher. Null pointer check
9017 elimination is only done if @option{-fdelete-null-pointer-checks} is
9018 enabled.
9019
9020 @item -fsplit-ivs-in-unroller
9021 @opindex fsplit-ivs-in-unroller
9022 Enables expression of values of induction variables in later iterations
9023 of the unrolled loop using the value in the first iteration. This breaks
9024 long dependency chains, thus improving efficiency of the scheduling passes.
9025
9026 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9027 same effect. However, that is not reliable in cases where the loop body
9028 is more complicated than a single basic block. It also does not work at all
9029 on some architectures due to restrictions in the CSE pass.
9030
9031 This optimization is enabled by default.
9032
9033 @item -fvariable-expansion-in-unroller
9034 @opindex fvariable-expansion-in-unroller
9035 With this option, the compiler creates multiple copies of some
9036 local variables when unrolling a loop, which can result in superior code.
9037
9038 @item -fpartial-inlining
9039 @opindex fpartial-inlining
9040 Inline parts of functions. This option has any effect only
9041 when inlining itself is turned on by the @option{-finline-functions}
9042 or @option{-finline-small-functions} options.
9043
9044 Enabled at level @option{-O2}.
9045
9046 @item -fpredictive-commoning
9047 @opindex fpredictive-commoning
9048 Perform predictive commoning optimization, i.e., reusing computations
9049 (especially memory loads and stores) performed in previous
9050 iterations of loops.
9051
9052 This option is enabled at level @option{-O3}.
9053
9054 @item -fprefetch-loop-arrays
9055 @opindex fprefetch-loop-arrays
9056 If supported by the target machine, generate instructions to prefetch
9057 memory to improve the performance of loops that access large arrays.
9058
9059 This option may generate better or worse code; results are highly
9060 dependent on the structure of loops within the source code.
9061
9062 Disabled at level @option{-Os}.
9063
9064 @item -fno-peephole
9065 @itemx -fno-peephole2
9066 @opindex fno-peephole
9067 @opindex fno-peephole2
9068 Disable any machine-specific peephole optimizations. The difference
9069 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9070 are implemented in the compiler; some targets use one, some use the
9071 other, a few use both.
9072
9073 @option{-fpeephole} is enabled by default.
9074 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9075
9076 @item -fno-guess-branch-probability
9077 @opindex fno-guess-branch-probability
9078 Do not guess branch probabilities using heuristics.
9079
9080 GCC uses heuristics to guess branch probabilities if they are
9081 not provided by profiling feedback (@option{-fprofile-arcs}). These
9082 heuristics are based on the control flow graph. If some branch probabilities
9083 are specified by @code{__builtin_expect}, then the heuristics are
9084 used to guess branch probabilities for the rest of the control flow graph,
9085 taking the @code{__builtin_expect} info into account. The interactions
9086 between the heuristics and @code{__builtin_expect} can be complex, and in
9087 some cases, it may be useful to disable the heuristics so that the effects
9088 of @code{__builtin_expect} are easier to understand.
9089
9090 The default is @option{-fguess-branch-probability} at levels
9091 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9092
9093 @item -freorder-blocks
9094 @opindex freorder-blocks
9095 Reorder basic blocks in the compiled function in order to reduce number of
9096 taken branches and improve code locality.
9097
9098 Enabled at levels @option{-O2}, @option{-O3}.
9099
9100 @item -freorder-blocks-and-partition
9101 @opindex freorder-blocks-and-partition
9102 In addition to reordering basic blocks in the compiled function, in order
9103 to reduce number of taken branches, partitions hot and cold basic blocks
9104 into separate sections of the assembly and .o files, to improve
9105 paging and cache locality performance.
9106
9107 This optimization is automatically turned off in the presence of
9108 exception handling, for linkonce sections, for functions with a user-defined
9109 section attribute and on any architecture that does not support named
9110 sections.
9111
9112 Enabled for x86 at levels @option{-O2}, @option{-O3}.
9113
9114 @item -freorder-functions
9115 @opindex freorder-functions
9116 Reorder functions in the object file in order to
9117 improve code locality. This is implemented by using special
9118 subsections @code{.text.hot} for most frequently executed functions and
9119 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
9120 the linker so object file format must support named sections and linker must
9121 place them in a reasonable way.
9122
9123 Also profile feedback must be available to make this option effective. See
9124 @option{-fprofile-arcs} for details.
9125
9126 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9127
9128 @item -fstrict-aliasing
9129 @opindex fstrict-aliasing
9130 Allow the compiler to assume the strictest aliasing rules applicable to
9131 the language being compiled. For C (and C++), this activates
9132 optimizations based on the type of expressions. In particular, an
9133 object of one type is assumed never to reside at the same address as an
9134 object of a different type, unless the types are almost the same. For
9135 example, an @code{unsigned int} can alias an @code{int}, but not a
9136 @code{void*} or a @code{double}. A character type may alias any other
9137 type.
9138
9139 @anchor{Type-punning}Pay special attention to code like this:
9140 @smallexample
9141 union a_union @{
9142 int i;
9143 double d;
9144 @};
9145
9146 int f() @{
9147 union a_union t;
9148 t.d = 3.0;
9149 return t.i;
9150 @}
9151 @end smallexample
9152 The practice of reading from a different union member than the one most
9153 recently written to (called ``type-punning'') is common. Even with
9154 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9155 is accessed through the union type. So, the code above works as
9156 expected. @xref{Structures unions enumerations and bit-fields
9157 implementation}. However, this code might not:
9158 @smallexample
9159 int f() @{
9160 union a_union t;
9161 int* ip;
9162 t.d = 3.0;
9163 ip = &t.i;
9164 return *ip;
9165 @}
9166 @end smallexample
9167
9168 Similarly, access by taking the address, casting the resulting pointer
9169 and dereferencing the result has undefined behavior, even if the cast
9170 uses a union type, e.g.:
9171 @smallexample
9172 int f() @{
9173 double d = 3.0;
9174 return ((union a_union *) &d)->i;
9175 @}
9176 @end smallexample
9177
9178 The @option{-fstrict-aliasing} option is enabled at levels
9179 @option{-O2}, @option{-O3}, @option{-Os}.
9180
9181 @item -fstrict-overflow
9182 @opindex fstrict-overflow
9183 Allow the compiler to assume strict signed overflow rules, depending
9184 on the language being compiled. For C (and C++) this means that
9185 overflow when doing arithmetic with signed numbers is undefined, which
9186 means that the compiler may assume that it does not happen. This
9187 permits various optimizations. For example, the compiler assumes
9188 that an expression like @code{i + 10 > i} is always true for
9189 signed @code{i}. This assumption is only valid if signed overflow is
9190 undefined, as the expression is false if @code{i + 10} overflows when
9191 using twos complement arithmetic. When this option is in effect any
9192 attempt to determine whether an operation on signed numbers
9193 overflows must be written carefully to not actually involve overflow.
9194
9195 This option also allows the compiler to assume strict pointer
9196 semantics: given a pointer to an object, if adding an offset to that
9197 pointer does not produce a pointer to the same object, the addition is
9198 undefined. This permits the compiler to conclude that @code{p + u >
9199 p} is always true for a pointer @code{p} and unsigned integer
9200 @code{u}. This assumption is only valid because pointer wraparound is
9201 undefined, as the expression is false if @code{p + u} overflows using
9202 twos complement arithmetic.
9203
9204 See also the @option{-fwrapv} option. Using @option{-fwrapv} means
9205 that integer signed overflow is fully defined: it wraps. When
9206 @option{-fwrapv} is used, there is no difference between
9207 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9208 integers. With @option{-fwrapv} certain types of overflow are
9209 permitted. For example, if the compiler gets an overflow when doing
9210 arithmetic on constants, the overflowed value can still be used with
9211 @option{-fwrapv}, but not otherwise.
9212
9213 The @option{-fstrict-overflow} option is enabled at levels
9214 @option{-O2}, @option{-O3}, @option{-Os}.
9215
9216 @item -falign-functions
9217 @itemx -falign-functions=@var{n}
9218 @opindex falign-functions
9219 Align the start of functions to the next power-of-two greater than
9220 @var{n}, skipping up to @var{n} bytes. For instance,
9221 @option{-falign-functions=32} aligns functions to the next 32-byte
9222 boundary, but @option{-falign-functions=24} aligns to the next
9223 32-byte boundary only if this can be done by skipping 23 bytes or less.
9224
9225 @option{-fno-align-functions} and @option{-falign-functions=1} are
9226 equivalent and mean that functions are not aligned.
9227
9228 Some assemblers only support this flag when @var{n} is a power of two;
9229 in that case, it is rounded up.
9230
9231 If @var{n} is not specified or is zero, use a machine-dependent default.
9232
9233 Enabled at levels @option{-O2}, @option{-O3}.
9234
9235 @item -falign-labels
9236 @itemx -falign-labels=@var{n}
9237 @opindex falign-labels
9238 Align all branch targets to a power-of-two boundary, skipping up to
9239 @var{n} bytes like @option{-falign-functions}. This option can easily
9240 make code slower, because it must insert dummy operations for when the
9241 branch target is reached in the usual flow of the code.
9242
9243 @option{-fno-align-labels} and @option{-falign-labels=1} are
9244 equivalent and mean that labels are not aligned.
9245
9246 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9247 are greater than this value, then their values are used instead.
9248
9249 If @var{n} is not specified or is zero, use a machine-dependent default
9250 which is very likely to be @samp{1}, meaning no alignment.
9251
9252 Enabled at levels @option{-O2}, @option{-O3}.
9253
9254 @item -falign-loops
9255 @itemx -falign-loops=@var{n}
9256 @opindex falign-loops
9257 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9258 like @option{-falign-functions}. If the loops are
9259 executed many times, this makes up for any execution of the dummy
9260 operations.
9261
9262 @option{-fno-align-loops} and @option{-falign-loops=1} are
9263 equivalent and mean that loops are not aligned.
9264
9265 If @var{n} is not specified or is zero, use a machine-dependent default.
9266
9267 Enabled at levels @option{-O2}, @option{-O3}.
9268
9269 @item -falign-jumps
9270 @itemx -falign-jumps=@var{n}
9271 @opindex falign-jumps
9272 Align branch targets to a power-of-two boundary, for branch targets
9273 where the targets can only be reached by jumping, skipping up to @var{n}
9274 bytes like @option{-falign-functions}. In this case, no dummy operations
9275 need be executed.
9276
9277 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9278 equivalent and mean that loops are not aligned.
9279
9280 If @var{n} is not specified or is zero, use a machine-dependent default.
9281
9282 Enabled at levels @option{-O2}, @option{-O3}.
9283
9284 @item -funit-at-a-time
9285 @opindex funit-at-a-time
9286 This option is left for compatibility reasons. @option{-funit-at-a-time}
9287 has no effect, while @option{-fno-unit-at-a-time} implies
9288 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9289
9290 Enabled by default.
9291
9292 @item -fno-toplevel-reorder
9293 @opindex fno-toplevel-reorder
9294 Do not reorder top-level functions, variables, and @code{asm}
9295 statements. Output them in the same order that they appear in the
9296 input file. When this option is used, unreferenced static variables
9297 are not removed. This option is intended to support existing code
9298 that relies on a particular ordering. For new code, it is better to
9299 use attributes when possible.
9300
9301 Enabled at level @option{-O0}. When disabled explicitly, it also implies
9302 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9303 targets.
9304
9305 @item -fweb
9306 @opindex fweb
9307 Constructs webs as commonly used for register allocation purposes and assign
9308 each web individual pseudo register. This allows the register allocation pass
9309 to operate on pseudos directly, but also strengthens several other optimization
9310 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
9311 however, make debugging impossible, since variables no longer stay in a
9312 ``home register''.
9313
9314 Enabled by default with @option{-funroll-loops}.
9315
9316 @item -fwhole-program
9317 @opindex fwhole-program
9318 Assume that the current compilation unit represents the whole program being
9319 compiled. All public functions and variables with the exception of @code{main}
9320 and those merged by attribute @code{externally_visible} become static functions
9321 and in effect are optimized more aggressively by interprocedural optimizers.
9322
9323 This option should not be used in combination with @option{-flto}.
9324 Instead relying on a linker plugin should provide safer and more precise
9325 information.
9326
9327 @item -flto[=@var{n}]
9328 @opindex flto
9329 This option runs the standard link-time optimizer. When invoked
9330 with source code, it generates GIMPLE (one of GCC's internal
9331 representations) and writes it to special ELF sections in the object
9332 file. When the object files are linked together, all the function
9333 bodies are read from these ELF sections and instantiated as if they
9334 had been part of the same translation unit.
9335
9336 To use the link-time optimizer, @option{-flto} and optimization
9337 options should be specified at compile time and during the final link.
9338 For example:
9339
9340 @smallexample
9341 gcc -c -O2 -flto foo.c
9342 gcc -c -O2 -flto bar.c
9343 gcc -o myprog -flto -O2 foo.o bar.o
9344 @end smallexample
9345
9346 The first two invocations to GCC save a bytecode representation
9347 of GIMPLE into special ELF sections inside @file{foo.o} and
9348 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
9349 @file{foo.o} and @file{bar.o}, merges the two files into a single
9350 internal image, and compiles the result as usual. Since both
9351 @file{foo.o} and @file{bar.o} are merged into a single image, this
9352 causes all the interprocedural analyses and optimizations in GCC to
9353 work across the two files as if they were a single one. This means,
9354 for example, that the inliner is able to inline functions in
9355 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9356
9357 Another (simpler) way to enable link-time optimization is:
9358
9359 @smallexample
9360 gcc -o myprog -flto -O2 foo.c bar.c
9361 @end smallexample
9362
9363 The above generates bytecode for @file{foo.c} and @file{bar.c},
9364 merges them together into a single GIMPLE representation and optimizes
9365 them as usual to produce @file{myprog}.
9366
9367 The only important thing to keep in mind is that to enable link-time
9368 optimizations you need to use the GCC driver to perform the link-step.
9369 GCC then automatically performs link-time optimization if any of the
9370 objects involved were compiled with the @option{-flto} command-line option.
9371 You generally
9372 should specify the optimization options to be used for link-time
9373 optimization though GCC tries to be clever at guessing an
9374 optimization level to use from the options used at compile-time
9375 if you fail to specify one at link-time. You can always override
9376 the automatic decision to do link-time optimization at link-time
9377 by passing @option{-fno-lto} to the link command.
9378
9379 To make whole program optimization effective, it is necessary to make
9380 certain whole program assumptions. The compiler needs to know
9381 what functions and variables can be accessed by libraries and runtime
9382 outside of the link-time optimized unit. When supported by the linker,
9383 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9384 to the compiler about used and externally visible symbols. When
9385 the linker plugin is not available, @option{-fwhole-program} should be
9386 used to allow the compiler to make these assumptions, which leads
9387 to more aggressive optimization decisions.
9388
9389 When @option{-fuse-linker-plugin} is not enabled then, when a file is
9390 compiled with @option{-flto}, the generated object file is larger than
9391 a regular object file because it contains GIMPLE bytecodes and the usual
9392 final code (see @option{-ffat-lto-objects}. This means that
9393 object files with LTO information can be linked as normal object
9394 files; if @option{-fno-lto} is passed to the linker, no
9395 interprocedural optimizations are applied. Note that when
9396 @option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9397 but you cannot perform a regular, non-LTO link on them.
9398
9399 Additionally, the optimization flags used to compile individual files
9400 are not necessarily related to those used at link time. For instance,
9401
9402 @smallexample
9403 gcc -c -O0 -ffat-lto-objects -flto foo.c
9404 gcc -c -O0 -ffat-lto-objects -flto bar.c
9405 gcc -o myprog -O3 foo.o bar.o
9406 @end smallexample
9407
9408 This produces individual object files with unoptimized assembler
9409 code, but the resulting binary @file{myprog} is optimized at
9410 @option{-O3}. If, instead, the final binary is generated with
9411 @option{-fno-lto}, then @file{myprog} is not optimized.
9412
9413 When producing the final binary, GCC only
9414 applies link-time optimizations to those files that contain bytecode.
9415 Therefore, you can mix and match object files and libraries with
9416 GIMPLE bytecodes and final object code. GCC automatically selects
9417 which files to optimize in LTO mode and which files to link without
9418 further processing.
9419
9420 There are some code generation flags preserved by GCC when
9421 generating bytecodes, as they need to be used during the final link
9422 stage. Generally options specified at link-time override those
9423 specified at compile-time.
9424
9425 If you do not specify an optimization level option @option{-O} at
9426 link-time then GCC computes one based on the optimization levels
9427 used when compiling the object files. The highest optimization
9428 level wins here.
9429
9430 Currently, the following options and their setting are take from
9431 the first object file that explicitely specified it:
9432 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9433 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9434 and all the @option{-m} target flags.
9435
9436 Certain ABI changing flags are required to match in all compilation-units
9437 and trying to override this at link-time with a conflicting value
9438 is ignored. This includes options such as @option{-freg-struct-return}
9439 and @option{-fpcc-struct-return}.
9440
9441 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9442 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9443 are passed through to the link stage and merged conservatively for
9444 conflicting translation units. Specifically
9445 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9446 precedence and for example @option{-ffp-contract=off} takes precedence
9447 over @option{-ffp-contract=fast}. You can override them at linke-time.
9448
9449 It is recommended that you compile all the files participating in the
9450 same link with the same options and also specify those options at
9451 link time.
9452
9453 If LTO encounters objects with C linkage declared with incompatible
9454 types in separate translation units to be linked together (undefined
9455 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9456 issued. The behavior is still undefined at run time. Similar
9457 diagnostics may be raised for other languages.
9458
9459 Another feature of LTO is that it is possible to apply interprocedural
9460 optimizations on files written in different languages:
9461
9462 @smallexample
9463 gcc -c -flto foo.c
9464 g++ -c -flto bar.cc
9465 gfortran -c -flto baz.f90
9466 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9467 @end smallexample
9468
9469 Notice that the final link is done with @command{g++} to get the C++
9470 runtime libraries and @option{-lgfortran} is added to get the Fortran
9471 runtime libraries. In general, when mixing languages in LTO mode, you
9472 should use the same link command options as when mixing languages in a
9473 regular (non-LTO) compilation.
9474
9475 If object files containing GIMPLE bytecode are stored in a library archive, say
9476 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9477 are using a linker with plugin support. To create static libraries suitable
9478 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9479 and @command{ranlib};
9480 to show the symbols of object files with GIMPLE bytecode, use
9481 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9482 and @command{nm} have been compiled with plugin support. At link time, use the the
9483 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9484 the LTO optimization process:
9485
9486 @smallexample
9487 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9488 @end smallexample
9489
9490 With the linker plugin enabled, the linker extracts the needed
9491 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9492 to make them part of the aggregated GIMPLE image to be optimized.
9493
9494 If you are not using a linker with plugin support and/or do not
9495 enable the linker plugin, then the objects inside @file{libfoo.a}
9496 are extracted and linked as usual, but they do not participate
9497 in the LTO optimization process. In order to make a static library suitable
9498 for both LTO optimization and usual linkage, compile its object files with
9499 @option{-flto} @option{-ffat-lto-objects}.
9500
9501 Link-time optimizations do not require the presence of the whole program to
9502 operate. If the program does not require any symbols to be exported, it is
9503 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9504 the interprocedural optimizers to use more aggressive assumptions which may
9505 lead to improved optimization opportunities.
9506 Use of @option{-fwhole-program} is not needed when linker plugin is
9507 active (see @option{-fuse-linker-plugin}).
9508
9509 The current implementation of LTO makes no
9510 attempt to generate bytecode that is portable between different
9511 types of hosts. The bytecode files are versioned and there is a
9512 strict version check, so bytecode files generated in one version of
9513 GCC do not work with an older or newer version of GCC.
9514
9515 Link-time optimization does not work well with generation of debugging
9516 information. Combining @option{-flto} with
9517 @option{-g} is currently experimental and expected to produce unexpected
9518 results.
9519
9520 If you specify the optional @var{n}, the optimization and code
9521 generation done at link time is executed in parallel using @var{n}
9522 parallel jobs by utilizing an installed @command{make} program. The
9523 environment variable @env{MAKE} may be used to override the program
9524 used. The default value for @var{n} is 1.
9525
9526 You can also specify @option{-flto=jobserver} to use GNU make's
9527 job server mode to determine the number of parallel jobs. This
9528 is useful when the Makefile calling GCC is already executing in parallel.
9529 You must prepend a @samp{+} to the command recipe in the parent Makefile
9530 for this to work. This option likely only works if @env{MAKE} is
9531 GNU make.
9532
9533 @item -flto-partition=@var{alg}
9534 @opindex flto-partition
9535 Specify the partitioning algorithm used by the link-time optimizer.
9536 The value is either @samp{1to1} to specify a partitioning mirroring
9537 the original source files or @samp{balanced} to specify partitioning
9538 into equally sized chunks (whenever possible) or @samp{max} to create
9539 new partition for every symbol where possible. Specifying @samp{none}
9540 as an algorithm disables partitioning and streaming completely.
9541 The default value is @samp{balanced}. While @samp{1to1} can be used
9542 as an workaround for various code ordering issues, the @samp{max}
9543 partitioning is intended for internal testing only.
9544 The value @samp{one} specifies that exactly one partition should be
9545 used while the value @samp{none} bypasses partitioning and executes
9546 the link-time optimization step directly from the WPA phase.
9547
9548 @item -flto-odr-type-merging
9549 @opindex flto-odr-type-merging
9550 Enable streaming of mangled types names of C++ types and their unification
9551 at linktime. This increases size of LTO object files, but enable
9552 diagnostics about One Definition Rule violations.
9553
9554 @item -flto-compression-level=@var{n}
9555 @opindex flto-compression-level
9556 This option specifies the level of compression used for intermediate
9557 language written to LTO object files, and is only meaningful in
9558 conjunction with LTO mode (@option{-flto}). Valid
9559 values are 0 (no compression) to 9 (maximum compression). Values
9560 outside this range are clamped to either 0 or 9. If the option is not
9561 given, a default balanced compression setting is used.
9562
9563 @item -flto-report
9564 @opindex flto-report
9565 Prints a report with internal details on the workings of the link-time
9566 optimizer. The contents of this report vary from version to version.
9567 It is meant to be useful to GCC developers when processing object
9568 files in LTO mode (via @option{-flto}).
9569
9570 Disabled by default.
9571
9572 @item -flto-report-wpa
9573 @opindex flto-report-wpa
9574 Like @option{-flto-report}, but only print for the WPA phase of Link
9575 Time Optimization.
9576
9577 @item -fuse-linker-plugin
9578 @opindex fuse-linker-plugin
9579 Enables the use of a linker plugin during link-time optimization. This
9580 option relies on plugin support in the linker, which is available in gold
9581 or in GNU ld 2.21 or newer.
9582
9583 This option enables the extraction of object files with GIMPLE bytecode out
9584 of library archives. This improves the quality of optimization by exposing
9585 more code to the link-time optimizer. This information specifies what
9586 symbols can be accessed externally (by non-LTO object or during dynamic
9587 linking). Resulting code quality improvements on binaries (and shared
9588 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9589 See @option{-flto} for a description of the effect of this flag and how to
9590 use it.
9591
9592 This option is enabled by default when LTO support in GCC is enabled
9593 and GCC was configured for use with
9594 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9595
9596 @item -ffat-lto-objects
9597 @opindex ffat-lto-objects
9598 Fat LTO objects are object files that contain both the intermediate language
9599 and the object code. This makes them usable for both LTO linking and normal
9600 linking. This option is effective only when compiling with @option{-flto}
9601 and is ignored at link time.
9602
9603 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9604 requires the complete toolchain to be aware of LTO. It requires a linker with
9605 linker plugin support for basic functionality. Additionally,
9606 @command{nm}, @command{ar} and @command{ranlib}
9607 need to support linker plugins to allow a full-featured build environment
9608 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9609 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9610 to these tools. With non fat LTO makefiles need to be modified to use them.
9611
9612 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9613 support.
9614
9615 @item -fcompare-elim
9616 @opindex fcompare-elim
9617 After register allocation and post-register allocation instruction splitting,
9618 identify arithmetic instructions that compute processor flags similar to a
9619 comparison operation based on that arithmetic. If possible, eliminate the
9620 explicit comparison operation.
9621
9622 This pass only applies to certain targets that cannot explicitly represent
9623 the comparison operation before register allocation is complete.
9624
9625 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9626
9627 @item -fcprop-registers
9628 @opindex fcprop-registers
9629 After register allocation and post-register allocation instruction splitting,
9630 perform a copy-propagation pass to try to reduce scheduling dependencies
9631 and occasionally eliminate the copy.
9632
9633 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9634
9635 @item -fprofile-correction
9636 @opindex fprofile-correction
9637 Profiles collected using an instrumented binary for multi-threaded programs may
9638 be inconsistent due to missed counter updates. When this option is specified,
9639 GCC uses heuristics to correct or smooth out such inconsistencies. By
9640 default, GCC emits an error message when an inconsistent profile is detected.
9641
9642 @item -fprofile-dir=@var{path}
9643 @opindex fprofile-dir
9644
9645 Set the directory to search for the profile data files in to @var{path}.
9646 This option affects only the profile data generated by
9647 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9648 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9649 and its related options. Both absolute and relative paths can be used.
9650 By default, GCC uses the current directory as @var{path}, thus the
9651 profile data file appears in the same directory as the object file.
9652
9653 @item -fprofile-generate
9654 @itemx -fprofile-generate=@var{path}
9655 @opindex fprofile-generate
9656
9657 Enable options usually used for instrumenting application to produce
9658 profile useful for later recompilation with profile feedback based
9659 optimization. You must use @option{-fprofile-generate} both when
9660 compiling and when linking your program.
9661
9662 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9663
9664 If @var{path} is specified, GCC looks at the @var{path} to find
9665 the profile feedback data files. See @option{-fprofile-dir}.
9666
9667 @item -fprofile-use
9668 @itemx -fprofile-use=@var{path}
9669 @opindex fprofile-use
9670 Enable profile feedback-directed optimizations,
9671 and the following optimizations
9672 which are generally profitable only with profile feedback available:
9673 @option{-fbranch-probabilities}, @option{-fvpt},
9674 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9675 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9676
9677 By default, GCC emits an error message if the feedback profiles do not
9678 match the source code. This error can be turned into a warning by using
9679 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9680 code.
9681
9682 If @var{path} is specified, GCC looks at the @var{path} to find
9683 the profile feedback data files. See @option{-fprofile-dir}.
9684
9685 @item -fauto-profile
9686 @itemx -fauto-profile=@var{path}
9687 @opindex fauto-profile
9688 Enable sampling-based feedback-directed optimizations,
9689 and the following optimizations
9690 which are generally profitable only with profile feedback available:
9691 @option{-fbranch-probabilities}, @option{-fvpt},
9692 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9693 @option{-ftree-vectorize},
9694 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9695 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9696 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9697
9698 @var{path} is the name of a file containing AutoFDO profile information.
9699 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9700
9701 Producing an AutoFDO profile data file requires running your program
9702 with the @command{perf} utility on a supported GNU/Linux target system.
9703 For more information, see @uref{https://perf.wiki.kernel.org/}.
9704
9705 E.g.
9706 @smallexample
9707 perf record -e br_inst_retired:near_taken -b -o perf.data \
9708 -- your_program
9709 @end smallexample
9710
9711 Then use the @command{create_gcov} tool to convert the raw profile data
9712 to a format that can be used by GCC.@ You must also supply the
9713 unstripped binary for your program to this tool.
9714 See @uref{https://github.com/google/autofdo}.
9715
9716 E.g.
9717 @smallexample
9718 create_gcov --binary=your_program.unstripped --profile=perf.data \
9719 --gcov=profile.afdo
9720 @end smallexample
9721 @end table
9722
9723 The following options control compiler behavior regarding floating-point
9724 arithmetic. These options trade off between speed and
9725 correctness. All must be specifically enabled.
9726
9727 @table @gcctabopt
9728 @item -ffloat-store
9729 @opindex ffloat-store
9730 Do not store floating-point variables in registers, and inhibit other
9731 options that might change whether a floating-point value is taken from a
9732 register or memory.
9733
9734 @cindex floating-point precision
9735 This option prevents undesirable excess precision on machines such as
9736 the 68000 where the floating registers (of the 68881) keep more
9737 precision than a @code{double} is supposed to have. Similarly for the
9738 x86 architecture. For most programs, the excess precision does only
9739 good, but a few programs rely on the precise definition of IEEE floating
9740 point. Use @option{-ffloat-store} for such programs, after modifying
9741 them to store all pertinent intermediate computations into variables.
9742
9743 @item -fexcess-precision=@var{style}
9744 @opindex fexcess-precision
9745 This option allows further control over excess precision on machines
9746 where floating-point registers have more precision than the IEEE
9747 @code{float} and @code{double} types and the processor does not
9748 support operations rounding to those types. By default,
9749 @option{-fexcess-precision=fast} is in effect; this means that
9750 operations are carried out in the precision of the registers and that
9751 it is unpredictable when rounding to the types specified in the source
9752 code takes place. When compiling C, if
9753 @option{-fexcess-precision=standard} is specified then excess
9754 precision follows the rules specified in ISO C99; in particular,
9755 both casts and assignments cause values to be rounded to their
9756 semantic types (whereas @option{-ffloat-store} only affects
9757 assignments). This option is enabled by default for C if a strict
9758 conformance option such as @option{-std=c99} is used.
9759
9760 @opindex mfpmath
9761 @option{-fexcess-precision=standard} is not implemented for languages
9762 other than C, and has no effect if
9763 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
9764 specified. On the x86, it also has no effect if @option{-mfpmath=sse}
9765 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9766 semantics apply without excess precision, and in the latter, rounding
9767 is unpredictable.
9768
9769 @item -ffast-math
9770 @opindex ffast-math
9771 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9772 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9773 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9774
9775 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9776
9777 This option is not turned on by any @option{-O} option besides
9778 @option{-Ofast} since it can result in incorrect output for programs
9779 that depend on an exact implementation of IEEE or ISO rules/specifications
9780 for math functions. It may, however, yield faster code for programs
9781 that do not require the guarantees of these specifications.
9782
9783 @item -fno-math-errno
9784 @opindex fno-math-errno
9785 Do not set @code{errno} after calling math functions that are executed
9786 with a single instruction, e.g., @code{sqrt}. A program that relies on
9787 IEEE exceptions for math error handling may want to use this flag
9788 for speed while maintaining IEEE arithmetic compatibility.
9789
9790 This option is not turned on by any @option{-O} option since
9791 it can result in incorrect output for programs that depend on
9792 an exact implementation of IEEE or ISO rules/specifications for
9793 math functions. It may, however, yield faster code for programs
9794 that do not require the guarantees of these specifications.
9795
9796 The default is @option{-fmath-errno}.
9797
9798 On Darwin systems, the math library never sets @code{errno}. There is
9799 therefore no reason for the compiler to consider the possibility that
9800 it might, and @option{-fno-math-errno} is the default.
9801
9802 @item -funsafe-math-optimizations
9803 @opindex funsafe-math-optimizations
9804
9805 Allow optimizations for floating-point arithmetic that (a) assume
9806 that arguments and results are valid and (b) may violate IEEE or
9807 ANSI standards. When used at link-time, it may include libraries
9808 or startup files that change the default FPU control word or other
9809 similar optimizations.
9810
9811 This option is not turned on by any @option{-O} option since
9812 it can result in incorrect output for programs that depend on
9813 an exact implementation of IEEE or ISO rules/specifications for
9814 math functions. It may, however, yield faster code for programs
9815 that do not require the guarantees of these specifications.
9816 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9817 @option{-fassociative-math} and @option{-freciprocal-math}.
9818
9819 The default is @option{-fno-unsafe-math-optimizations}.
9820
9821 @item -fassociative-math
9822 @opindex fassociative-math
9823
9824 Allow re-association of operands in series of floating-point operations.
9825 This violates the ISO C and C++ language standard by possibly changing
9826 computation result. NOTE: re-ordering may change the sign of zero as
9827 well as ignore NaNs and inhibit or create underflow or overflow (and
9828 thus cannot be used on code that relies on rounding behavior like
9829 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9830 and thus may not be used when ordered comparisons are required.
9831 This option requires that both @option{-fno-signed-zeros} and
9832 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9833 much sense with @option{-frounding-math}. For Fortran the option
9834 is automatically enabled when both @option{-fno-signed-zeros} and
9835 @option{-fno-trapping-math} are in effect.
9836
9837 The default is @option{-fno-associative-math}.
9838
9839 @item -freciprocal-math
9840 @opindex freciprocal-math
9841
9842 Allow the reciprocal of a value to be used instead of dividing by
9843 the value if this enables optimizations. For example @code{x / y}
9844 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9845 is subject to common subexpression elimination. Note that this loses
9846 precision and increases the number of flops operating on the value.
9847
9848 The default is @option{-fno-reciprocal-math}.
9849
9850 @item -ffinite-math-only
9851 @opindex ffinite-math-only
9852 Allow optimizations for floating-point arithmetic that assume
9853 that arguments and results are not NaNs or +-Infs.
9854
9855 This option is not turned on by any @option{-O} option since
9856 it can result in incorrect output for programs that depend on
9857 an exact implementation of IEEE or ISO rules/specifications for
9858 math functions. It may, however, yield faster code for programs
9859 that do not require the guarantees of these specifications.
9860
9861 The default is @option{-fno-finite-math-only}.
9862
9863 @item -fno-signed-zeros
9864 @opindex fno-signed-zeros
9865 Allow optimizations for floating-point arithmetic that ignore the
9866 signedness of zero. IEEE arithmetic specifies the behavior of
9867 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9868 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9869 This option implies that the sign of a zero result isn't significant.
9870
9871 The default is @option{-fsigned-zeros}.
9872
9873 @item -fno-trapping-math
9874 @opindex fno-trapping-math
9875 Compile code assuming that floating-point operations cannot generate
9876 user-visible traps. These traps include division by zero, overflow,
9877 underflow, inexact result and invalid operation. This option requires
9878 that @option{-fno-signaling-nans} be in effect. Setting this option may
9879 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9880
9881 This option should never be turned on by any @option{-O} option since
9882 it can result in incorrect output for programs that depend on
9883 an exact implementation of IEEE or ISO rules/specifications for
9884 math functions.
9885
9886 The default is @option{-ftrapping-math}.
9887
9888 @item -frounding-math
9889 @opindex frounding-math
9890 Disable transformations and optimizations that assume default floating-point
9891 rounding behavior. This is round-to-zero for all floating point
9892 to integer conversions, and round-to-nearest for all other arithmetic
9893 truncations. This option should be specified for programs that change
9894 the FP rounding mode dynamically, or that may be executed with a
9895 non-default rounding mode. This option disables constant folding of
9896 floating-point expressions at compile time (which may be affected by
9897 rounding mode) and arithmetic transformations that are unsafe in the
9898 presence of sign-dependent rounding modes.
9899
9900 The default is @option{-fno-rounding-math}.
9901
9902 This option is experimental and does not currently guarantee to
9903 disable all GCC optimizations that are affected by rounding mode.
9904 Future versions of GCC may provide finer control of this setting
9905 using C99's @code{FENV_ACCESS} pragma. This command-line option
9906 will be used to specify the default state for @code{FENV_ACCESS}.
9907
9908 @item -fsignaling-nans
9909 @opindex fsignaling-nans
9910 Compile code assuming that IEEE signaling NaNs may generate user-visible
9911 traps during floating-point operations. Setting this option disables
9912 optimizations that may change the number of exceptions visible with
9913 signaling NaNs. This option implies @option{-ftrapping-math}.
9914
9915 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9916 be defined.
9917
9918 The default is @option{-fno-signaling-nans}.
9919
9920 This option is experimental and does not currently guarantee to
9921 disable all GCC optimizations that affect signaling NaN behavior.
9922
9923 @item -fsingle-precision-constant
9924 @opindex fsingle-precision-constant
9925 Treat floating-point constants as single precision instead of
9926 implicitly converting them to double-precision constants.
9927
9928 @item -fcx-limited-range
9929 @opindex fcx-limited-range
9930 When enabled, this option states that a range reduction step is not
9931 needed when performing complex division. Also, there is no checking
9932 whether the result of a complex multiplication or division is @code{NaN
9933 + I*NaN}, with an attempt to rescue the situation in that case. The
9934 default is @option{-fno-cx-limited-range}, but is enabled by
9935 @option{-ffast-math}.
9936
9937 This option controls the default setting of the ISO C99
9938 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9939 all languages.
9940
9941 @item -fcx-fortran-rules
9942 @opindex fcx-fortran-rules
9943 Complex multiplication and division follow Fortran rules. Range
9944 reduction is done as part of complex division, but there is no checking
9945 whether the result of a complex multiplication or division is @code{NaN
9946 + I*NaN}, with an attempt to rescue the situation in that case.
9947
9948 The default is @option{-fno-cx-fortran-rules}.
9949
9950 @end table
9951
9952 The following options control optimizations that may improve
9953 performance, but are not enabled by any @option{-O} options. This
9954 section includes experimental options that may produce broken code.
9955
9956 @table @gcctabopt
9957 @item -fbranch-probabilities
9958 @opindex fbranch-probabilities
9959 After running a program compiled with @option{-fprofile-arcs}
9960 (@pxref{Debugging Options,, Options for Debugging Your Program or
9961 @command{gcc}}), you can compile it a second time using
9962 @option{-fbranch-probabilities}, to improve optimizations based on
9963 the number of times each branch was taken. When a program
9964 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9965 counts to a file called @file{@var{sourcename}.gcda} for each source
9966 file. The information in this data file is very dependent on the
9967 structure of the generated code, so you must use the same source code
9968 and the same optimization options for both compilations.
9969
9970 With @option{-fbranch-probabilities}, GCC puts a
9971 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9972 These can be used to improve optimization. Currently, they are only
9973 used in one place: in @file{reorg.c}, instead of guessing which path a
9974 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9975 exactly determine which path is taken more often.
9976
9977 @item -fprofile-values
9978 @opindex fprofile-values
9979 If combined with @option{-fprofile-arcs}, it adds code so that some
9980 data about values of expressions in the program is gathered.
9981
9982 With @option{-fbranch-probabilities}, it reads back the data gathered
9983 from profiling values of expressions for usage in optimizations.
9984
9985 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9986
9987 @item -fprofile-reorder-functions
9988 @opindex fprofile-reorder-functions
9989 Function reordering based on profile instrumentation collects
9990 first time of execution of a function and orders these functions
9991 in ascending order.
9992
9993 Enabled with @option{-fprofile-use}.
9994
9995 @item -fvpt
9996 @opindex fvpt
9997 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9998 to add code to gather information about values of expressions.
9999
10000 With @option{-fbranch-probabilities}, it reads back the data gathered
10001 and actually performs the optimizations based on them.
10002 Currently the optimizations include specialization of division operations
10003 using the knowledge about the value of the denominator.
10004
10005 @item -frename-registers
10006 @opindex frename-registers
10007 Attempt to avoid false dependencies in scheduled code by making use
10008 of registers left over after register allocation. This optimization
10009 most benefits processors with lots of registers. Depending on the
10010 debug information format adopted by the target, however, it can
10011 make debugging impossible, since variables no longer stay in
10012 a ``home register''.
10013
10014 Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
10015
10016 @item -fschedule-fusion
10017 @opindex fschedule-fusion
10018 Performs a target dependent pass over the instruction stream to schedule
10019 instructions of same type together because target machine can execute them
10020 more efficiently if they are adjacent to each other in the instruction flow.
10021
10022 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10023
10024 @item -ftracer
10025 @opindex ftracer
10026 Perform tail duplication to enlarge superblock size. This transformation
10027 simplifies the control flow of the function allowing other optimizations to do
10028 a better job.
10029
10030 Enabled with @option{-fprofile-use}.
10031
10032 @item -funroll-loops
10033 @opindex funroll-loops
10034 Unroll loops whose number of iterations can be determined at compile time or
10035 upon entry to the loop. @option{-funroll-loops} implies
10036 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10037 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10038 a small constant number of iterations). This option makes code larger, and may
10039 or may not make it run faster.
10040
10041 Enabled with @option{-fprofile-use}.
10042
10043 @item -funroll-all-loops
10044 @opindex funroll-all-loops
10045 Unroll all loops, even if their number of iterations is uncertain when
10046 the loop is entered. This usually makes programs run more slowly.
10047 @option{-funroll-all-loops} implies the same options as
10048 @option{-funroll-loops}.
10049
10050 @item -fpeel-loops
10051 @opindex fpeel-loops
10052 Peels loops for which there is enough information that they do not
10053 roll much (from profile feedback). It also turns on complete loop peeling
10054 (i.e.@: complete removal of loops with small constant number of iterations).
10055
10056 Enabled with @option{-fprofile-use}.
10057
10058 @item -fmove-loop-invariants
10059 @opindex fmove-loop-invariants
10060 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10061 at level @option{-O1}
10062
10063 @item -funswitch-loops
10064 @opindex funswitch-loops
10065 Move branches with loop invariant conditions out of the loop, with duplicates
10066 of the loop on both branches (modified according to result of the condition).
10067
10068 @item -ffunction-sections
10069 @itemx -fdata-sections
10070 @opindex ffunction-sections
10071 @opindex fdata-sections
10072 Place each function or data item into its own section in the output
10073 file if the target supports arbitrary sections. The name of the
10074 function or the name of the data item determines the section's name
10075 in the output file.
10076
10077 Use these options on systems where the linker can perform optimizations
10078 to improve locality of reference in the instruction space. Most systems
10079 using the ELF object format and SPARC processors running Solaris 2 have
10080 linkers with such optimizations. AIX may have these optimizations in
10081 the future.
10082
10083 Only use these options when there are significant benefits from doing
10084 so. When you specify these options, the assembler and linker
10085 create larger object and executable files and are also slower.
10086 You cannot use @command{gprof} on all systems if you
10087 specify this option, and you may have problems with debugging if
10088 you specify both this option and @option{-g}.
10089
10090 @item -fbranch-target-load-optimize
10091 @opindex fbranch-target-load-optimize
10092 Perform branch target register load optimization before prologue / epilogue
10093 threading.
10094 The use of target registers can typically be exposed only during reload,
10095 thus hoisting loads out of loops and doing inter-block scheduling needs
10096 a separate optimization pass.
10097
10098 @item -fbranch-target-load-optimize2
10099 @opindex fbranch-target-load-optimize2
10100 Perform branch target register load optimization after prologue / epilogue
10101 threading.
10102
10103 @item -fbtr-bb-exclusive
10104 @opindex fbtr-bb-exclusive
10105 When performing branch target register load optimization, don't reuse
10106 branch target registers within any basic block.
10107
10108 @item -fstack-protector
10109 @opindex fstack-protector
10110 Emit extra code to check for buffer overflows, such as stack smashing
10111 attacks. This is done by adding a guard variable to functions with
10112 vulnerable objects. This includes functions that call @code{alloca}, and
10113 functions with buffers larger than 8 bytes. The guards are initialized
10114 when a function is entered and then checked when the function exits.
10115 If a guard check fails, an error message is printed and the program exits.
10116
10117 @item -fstack-protector-all
10118 @opindex fstack-protector-all
10119 Like @option{-fstack-protector} except that all functions are protected.
10120
10121 @item -fstack-protector-strong
10122 @opindex fstack-protector-strong
10123 Like @option{-fstack-protector} but includes additional functions to
10124 be protected --- those that have local array definitions, or have
10125 references to local frame addresses.
10126
10127 @item -fstack-protector-explicit
10128 @opindex fstack-protector-explicit
10129 Like @option{-fstack-protector} but only protects those functions which
10130 have the @code{stack_protect} attribute
10131
10132 @item -fstdarg-opt
10133 @opindex fstdarg-opt
10134 Optimize the prologue of variadic argument functions with respect to usage of
10135 those arguments.
10136
10137 @item -fsection-anchors
10138 @opindex fsection-anchors
10139 Try to reduce the number of symbolic address calculations by using
10140 shared ``anchor'' symbols to address nearby objects. This transformation
10141 can help to reduce the number of GOT entries and GOT accesses on some
10142 targets.
10143
10144 For example, the implementation of the following function @code{foo}:
10145
10146 @smallexample
10147 static int a, b, c;
10148 int foo (void) @{ return a + b + c; @}
10149 @end smallexample
10150
10151 @noindent
10152 usually calculates the addresses of all three variables, but if you
10153 compile it with @option{-fsection-anchors}, it accesses the variables
10154 from a common anchor point instead. The effect is similar to the
10155 following pseudocode (which isn't valid C):
10156
10157 @smallexample
10158 int foo (void)
10159 @{
10160 register int *xr = &x;
10161 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10162 @}
10163 @end smallexample
10164
10165 Not all targets support this option.
10166
10167 @item --param @var{name}=@var{value}
10168 @opindex param
10169 In some places, GCC uses various constants to control the amount of
10170 optimization that is done. For example, GCC does not inline functions
10171 that contain more than a certain number of instructions. You can
10172 control some of these constants on the command line using the
10173 @option{--param} option.
10174
10175 The names of specific parameters, and the meaning of the values, are
10176 tied to the internals of the compiler, and are subject to change
10177 without notice in future releases.
10178
10179 In each case, the @var{value} is an integer. The allowable choices for
10180 @var{name} are:
10181
10182 @table @gcctabopt
10183 @item predictable-branch-outcome
10184 When branch is predicted to be taken with probability lower than this threshold
10185 (in percent), then it is considered well predictable. The default is 10.
10186
10187 @item max-crossjump-edges
10188 The maximum number of incoming edges to consider for cross-jumping.
10189 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10190 the number of edges incoming to each block. Increasing values mean
10191 more aggressive optimization, making the compilation time increase with
10192 probably small improvement in executable size.
10193
10194 @item min-crossjump-insns
10195 The minimum number of instructions that must be matched at the end
10196 of two blocks before cross-jumping is performed on them. This
10197 value is ignored in the case where all instructions in the block being
10198 cross-jumped from are matched. The default value is 5.
10199
10200 @item max-grow-copy-bb-insns
10201 The maximum code size expansion factor when copying basic blocks
10202 instead of jumping. The expansion is relative to a jump instruction.
10203 The default value is 8.
10204
10205 @item max-goto-duplication-insns
10206 The maximum number of instructions to duplicate to a block that jumps
10207 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
10208 passes, GCC factors computed gotos early in the compilation process,
10209 and unfactors them as late as possible. Only computed jumps at the
10210 end of a basic blocks with no more than max-goto-duplication-insns are
10211 unfactored. The default value is 8.
10212
10213 @item max-delay-slot-insn-search
10214 The maximum number of instructions to consider when looking for an
10215 instruction to fill a delay slot. If more than this arbitrary number of
10216 instructions are searched, the time savings from filling the delay slot
10217 are minimal, so stop searching. Increasing values mean more
10218 aggressive optimization, making the compilation time increase with probably
10219 small improvement in execution time.
10220
10221 @item max-delay-slot-live-search
10222 When trying to fill delay slots, the maximum number of instructions to
10223 consider when searching for a block with valid live register
10224 information. Increasing this arbitrarily chosen value means more
10225 aggressive optimization, increasing the compilation time. This parameter
10226 should be removed when the delay slot code is rewritten to maintain the
10227 control-flow graph.
10228
10229 @item max-gcse-memory
10230 The approximate maximum amount of memory that can be allocated in
10231 order to perform the global common subexpression elimination
10232 optimization. If more memory than specified is required, the
10233 optimization is not done.
10234
10235 @item max-gcse-insertion-ratio
10236 If the ratio of expression insertions to deletions is larger than this value
10237 for any expression, then RTL PRE inserts or removes the expression and thus
10238 leaves partially redundant computations in the instruction stream. The default value is 20.
10239
10240 @item max-pending-list-length
10241 The maximum number of pending dependencies scheduling allows
10242 before flushing the current state and starting over. Large functions
10243 with few branches or calls can create excessively large lists which
10244 needlessly consume memory and resources.
10245
10246 @item max-modulo-backtrack-attempts
10247 The maximum number of backtrack attempts the scheduler should make
10248 when modulo scheduling a loop. Larger values can exponentially increase
10249 compilation time.
10250
10251 @item max-inline-insns-single
10252 Several parameters control the tree inliner used in GCC@.
10253 This number sets the maximum number of instructions (counted in GCC's
10254 internal representation) in a single function that the tree inliner
10255 considers for inlining. This only affects functions declared
10256 inline and methods implemented in a class declaration (C++).
10257 The default value is 400.
10258
10259 @item max-inline-insns-auto
10260 When you use @option{-finline-functions} (included in @option{-O3}),
10261 a lot of functions that would otherwise not be considered for inlining
10262 by the compiler are investigated. To those functions, a different
10263 (more restrictive) limit compared to functions declared inline can
10264 be applied.
10265 The default value is 40.
10266
10267 @item inline-min-speedup
10268 When estimated performance improvement of caller + callee runtime exceeds this
10269 threshold (in precent), the function can be inlined regardless the limit on
10270 @option{--param max-inline-insns-single} and @option{--param
10271 max-inline-insns-auto}.
10272
10273 @item large-function-insns
10274 The limit specifying really large functions. For functions larger than this
10275 limit after inlining, inlining is constrained by
10276 @option{--param large-function-growth}. This parameter is useful primarily
10277 to avoid extreme compilation time caused by non-linear algorithms used by the
10278 back end.
10279 The default value is 2700.
10280
10281 @item large-function-growth
10282 Specifies maximal growth of large function caused by inlining in percents.
10283 The default value is 100 which limits large function growth to 2.0 times
10284 the original size.
10285
10286 @item large-unit-insns
10287 The limit specifying large translation unit. Growth caused by inlining of
10288 units larger than this limit is limited by @option{--param inline-unit-growth}.
10289 For small units this might be too tight.
10290 For example, consider a unit consisting of function A
10291 that is inline and B that just calls A three times. If B is small relative to
10292 A, the growth of unit is 300\% and yet such inlining is very sane. For very
10293 large units consisting of small inlineable functions, however, the overall unit
10294 growth limit is needed to avoid exponential explosion of code size. Thus for
10295 smaller units, the size is increased to @option{--param large-unit-insns}
10296 before applying @option{--param inline-unit-growth}. The default is 10000.
10297
10298 @item inline-unit-growth
10299 Specifies maximal overall growth of the compilation unit caused by inlining.
10300 The default value is 20 which limits unit growth to 1.2 times the original
10301 size. Cold functions (either marked cold via an attribute or by profile
10302 feedback) are not accounted into the unit size.
10303
10304 @item ipcp-unit-growth
10305 Specifies maximal overall growth of the compilation unit caused by
10306 interprocedural constant propagation. The default value is 10 which limits
10307 unit growth to 1.1 times the original size.
10308
10309 @item large-stack-frame
10310 The limit specifying large stack frames. While inlining the algorithm is trying
10311 to not grow past this limit too much. The default value is 256 bytes.
10312
10313 @item large-stack-frame-growth
10314 Specifies maximal growth of large stack frames caused by inlining in percents.
10315 The default value is 1000 which limits large stack frame growth to 11 times
10316 the original size.
10317
10318 @item max-inline-insns-recursive
10319 @itemx max-inline-insns-recursive-auto
10320 Specifies the maximum number of instructions an out-of-line copy of a
10321 self-recursive inline
10322 function can grow into by performing recursive inlining.
10323
10324 @option{--param max-inline-insns-recursive} applies to functions
10325 declared inline.
10326 For functions not declared inline, recursive inlining
10327 happens only when @option{-finline-functions} (included in @option{-O3}) is
10328 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
10329 default value is 450.
10330
10331 @item max-inline-recursive-depth
10332 @itemx max-inline-recursive-depth-auto
10333 Specifies the maximum recursion depth used for recursive inlining.
10334
10335 @option{--param max-inline-recursive-depth} applies to functions
10336 declared inline. For functions not declared inline, recursive inlining
10337 happens only when @option{-finline-functions} (included in @option{-O3}) is
10338 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
10339 default value is 8.
10340
10341 @item min-inline-recursive-probability
10342 Recursive inlining is profitable only for function having deep recursion
10343 in average and can hurt for function having little recursion depth by
10344 increasing the prologue size or complexity of function body to other
10345 optimizers.
10346
10347 When profile feedback is available (see @option{-fprofile-generate}) the actual
10348 recursion depth can be guessed from probability that function recurses via a
10349 given call expression. This parameter limits inlining only to call expressions
10350 whose probability exceeds the given threshold (in percents).
10351 The default value is 10.
10352
10353 @item early-inlining-insns
10354 Specify growth that the early inliner can make. In effect it increases
10355 the amount of inlining for code having a large abstraction penalty.
10356 The default value is 14.
10357
10358 @item max-early-inliner-iterations
10359 Limit of iterations of the early inliner. This basically bounds
10360 the number of nested indirect calls the early inliner can resolve.
10361 Deeper chains are still handled by late inlining.
10362
10363 @item comdat-sharing-probability
10364 Probability (in percent) that C++ inline function with comdat visibility
10365 are shared across multiple compilation units. The default value is 20.
10366
10367 @item profile-func-internal-id
10368 A parameter to control whether to use function internal id in profile
10369 database lookup. If the value is 0, the compiler uses an id that
10370 is based on function assembler name and filename, which makes old profile
10371 data more tolerant to source changes such as function reordering etc.
10372 The default value is 0.
10373
10374 @item min-vect-loop-bound
10375 The minimum number of iterations under which loops are not vectorized
10376 when @option{-ftree-vectorize} is used. The number of iterations after
10377 vectorization needs to be greater than the value specified by this option
10378 to allow vectorization. The default value is 0.
10379
10380 @item gcse-cost-distance-ratio
10381 Scaling factor in calculation of maximum distance an expression
10382 can be moved by GCSE optimizations. This is currently supported only in the
10383 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
10384 is with simple expressions, i.e., the expressions that have cost
10385 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
10386 hoisting of simple expressions. The default value is 10.
10387
10388 @item gcse-unrestricted-cost
10389 Cost, roughly measured as the cost of a single typical machine
10390 instruction, at which GCSE optimizations do not constrain
10391 the distance an expression can travel. This is currently
10392 supported only in the code hoisting pass. The lesser the cost,
10393 the more aggressive code hoisting is. Specifying 0
10394 allows all expressions to travel unrestricted distances.
10395 The default value is 3.
10396
10397 @item max-hoist-depth
10398 The depth of search in the dominator tree for expressions to hoist.
10399 This is used to avoid quadratic behavior in hoisting algorithm.
10400 The value of 0 does not limit on the search, but may slow down compilation
10401 of huge functions. The default value is 30.
10402
10403 @item max-tail-merge-comparisons
10404 The maximum amount of similar bbs to compare a bb with. This is used to
10405 avoid quadratic behavior in tree tail merging. The default value is 10.
10406
10407 @item max-tail-merge-iterations
10408 The maximum amount of iterations of the pass over the function. This is used to
10409 limit compilation time in tree tail merging. The default value is 2.
10410
10411 @item max-unrolled-insns
10412 The maximum number of instructions that a loop may have to be unrolled.
10413 If a loop is unrolled, this parameter also determines how many times
10414 the loop code is unrolled.
10415
10416 @item max-average-unrolled-insns
10417 The maximum number of instructions biased by probabilities of their execution
10418 that a loop may have to be unrolled. If a loop is unrolled,
10419 this parameter also determines how many times the loop code is unrolled.
10420
10421 @item max-unroll-times
10422 The maximum number of unrollings of a single loop.
10423
10424 @item max-peeled-insns
10425 The maximum number of instructions that a loop may have to be peeled.
10426 If a loop is peeled, this parameter also determines how many times
10427 the loop code is peeled.
10428
10429 @item max-peel-times
10430 The maximum number of peelings of a single loop.
10431
10432 @item max-peel-branches
10433 The maximum number of branches on the hot path through the peeled sequence.
10434
10435 @item max-completely-peeled-insns
10436 The maximum number of insns of a completely peeled loop.
10437
10438 @item max-completely-peel-times
10439 The maximum number of iterations of a loop to be suitable for complete peeling.
10440
10441 @item max-completely-peel-loop-nest-depth
10442 The maximum depth of a loop nest suitable for complete peeling.
10443
10444 @item max-unswitch-insns
10445 The maximum number of insns of an unswitched loop.
10446
10447 @item max-unswitch-level
10448 The maximum number of branches unswitched in a single loop.
10449
10450 @item lim-expensive
10451 The minimum cost of an expensive expression in the loop invariant motion.
10452
10453 @item iv-consider-all-candidates-bound
10454 Bound on number of candidates for induction variables, below which
10455 all candidates are considered for each use in induction variable
10456 optimizations. If there are more candidates than this,
10457 only the most relevant ones are considered to avoid quadratic time complexity.
10458
10459 @item iv-max-considered-uses
10460 The induction variable optimizations give up on loops that contain more
10461 induction variable uses.
10462
10463 @item iv-always-prune-cand-set-bound
10464 If the number of candidates in the set is smaller than this value,
10465 always try to remove unnecessary ivs from the set
10466 when adding a new one.
10467
10468 @item scev-max-expr-size
10469 Bound on size of expressions used in the scalar evolutions analyzer.
10470 Large expressions slow the analyzer.
10471
10472 @item scev-max-expr-complexity
10473 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10474 Complex expressions slow the analyzer.
10475
10476 @item omega-max-vars
10477 The maximum number of variables in an Omega constraint system.
10478 The default value is 128.
10479
10480 @item omega-max-geqs
10481 The maximum number of inequalities in an Omega constraint system.
10482 The default value is 256.
10483
10484 @item omega-max-eqs
10485 The maximum number of equalities in an Omega constraint system.
10486 The default value is 128.
10487
10488 @item omega-max-wild-cards
10489 The maximum number of wildcard variables that the Omega solver is
10490 able to insert. The default value is 18.
10491
10492 @item omega-hash-table-size
10493 The size of the hash table in the Omega solver. The default value is
10494 550.
10495
10496 @item omega-max-keys
10497 The maximal number of keys used by the Omega solver. The default
10498 value is 500.
10499
10500 @item omega-eliminate-redundant-constraints
10501 When set to 1, use expensive methods to eliminate all redundant
10502 constraints. The default value is 0.
10503
10504 @item vect-max-version-for-alignment-checks
10505 The maximum number of run-time checks that can be performed when
10506 doing loop versioning for alignment in the vectorizer.
10507
10508 @item vect-max-version-for-alias-checks
10509 The maximum number of run-time checks that can be performed when
10510 doing loop versioning for alias in the vectorizer.
10511
10512 @item vect-max-peeling-for-alignment
10513 The maximum number of loop peels to enhance access alignment
10514 for vectorizer. Value -1 means 'no limit'.
10515
10516 @item max-iterations-to-track
10517 The maximum number of iterations of a loop the brute-force algorithm
10518 for analysis of the number of iterations of the loop tries to evaluate.
10519
10520 @item hot-bb-count-ws-permille
10521 A basic block profile count is considered hot if it contributes to
10522 the given permillage (i.e. 0...1000) of the entire profiled execution.
10523
10524 @item hot-bb-frequency-fraction
10525 Select fraction of the entry block frequency of executions of basic block in
10526 function given basic block needs to have to be considered hot.
10527
10528 @item max-predicted-iterations
10529 The maximum number of loop iterations we predict statically. This is useful
10530 in cases where a function contains a single loop with known bound and
10531 another loop with unknown bound.
10532 The known number of iterations is predicted correctly, while
10533 the unknown number of iterations average to roughly 10. This means that the
10534 loop without bounds appears artificially cold relative to the other one.
10535
10536 @item builtin-expect-probability
10537 Control the probability of the expression having the specified value. This
10538 parameter takes a percentage (i.e. 0 ... 100) as input.
10539 The default probability of 90 is obtained empirically.
10540
10541 @item align-threshold
10542
10543 Select fraction of the maximal frequency of executions of a basic block in
10544 a function to align the basic block.
10545
10546 @item align-loop-iterations
10547
10548 A loop expected to iterate at least the selected number of iterations is
10549 aligned.
10550
10551 @item tracer-dynamic-coverage
10552 @itemx tracer-dynamic-coverage-feedback
10553
10554 This value is used to limit superblock formation once the given percentage of
10555 executed instructions is covered. This limits unnecessary code size
10556 expansion.
10557
10558 The @option{tracer-dynamic-coverage-feedback} parameter
10559 is used only when profile
10560 feedback is available. The real profiles (as opposed to statically estimated
10561 ones) are much less balanced allowing the threshold to be larger value.
10562
10563 @item tracer-max-code-growth
10564 Stop tail duplication once code growth has reached given percentage. This is
10565 a rather artificial limit, as most of the duplicates are eliminated later in
10566 cross jumping, so it may be set to much higher values than is the desired code
10567 growth.
10568
10569 @item tracer-min-branch-ratio
10570
10571 Stop reverse growth when the reverse probability of best edge is less than this
10572 threshold (in percent).
10573
10574 @item tracer-min-branch-ratio
10575 @itemx tracer-min-branch-ratio-feedback
10576
10577 Stop forward growth if the best edge has probability lower than this
10578 threshold.
10579
10580 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10581 compilation for profile feedback and one for compilation without. The value
10582 for compilation with profile feedback needs to be more conservative (higher) in
10583 order to make tracer effective.
10584
10585 @item max-cse-path-length
10586
10587 The maximum number of basic blocks on path that CSE considers.
10588 The default is 10.
10589
10590 @item max-cse-insns
10591 The maximum number of instructions CSE processes before flushing.
10592 The default is 1000.
10593
10594 @item ggc-min-expand
10595
10596 GCC uses a garbage collector to manage its own memory allocation. This
10597 parameter specifies the minimum percentage by which the garbage
10598 collector's heap should be allowed to expand between collections.
10599 Tuning this may improve compilation speed; it has no effect on code
10600 generation.
10601
10602 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10603 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10604 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10605 GCC is not able to calculate RAM on a particular platform, the lower
10606 bound of 30% is used. Setting this parameter and
10607 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10608 every opportunity. This is extremely slow, but can be useful for
10609 debugging.
10610
10611 @item ggc-min-heapsize
10612
10613 Minimum size of the garbage collector's heap before it begins bothering
10614 to collect garbage. The first collection occurs after the heap expands
10615 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10616 tuning this may improve compilation speed, and has no effect on code
10617 generation.
10618
10619 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10620 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10621 with a lower bound of 4096 (four megabytes) and an upper bound of
10622 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10623 particular platform, the lower bound is used. Setting this parameter
10624 very large effectively disables garbage collection. Setting this
10625 parameter and @option{ggc-min-expand} to zero causes a full collection
10626 to occur at every opportunity.
10627
10628 @item max-reload-search-insns
10629 The maximum number of instruction reload should look backward for equivalent
10630 register. Increasing values mean more aggressive optimization, making the
10631 compilation time increase with probably slightly better performance.
10632 The default value is 100.
10633
10634 @item max-cselib-memory-locations
10635 The maximum number of memory locations cselib should take into account.
10636 Increasing values mean more aggressive optimization, making the compilation time
10637 increase with probably slightly better performance. The default value is 500.
10638
10639 @item reorder-blocks-duplicate
10640 @itemx reorder-blocks-duplicate-feedback
10641
10642 Used by the basic block reordering pass to decide whether to use unconditional
10643 branch or duplicate the code on its destination. Code is duplicated when its
10644 estimated size is smaller than this value multiplied by the estimated size of
10645 unconditional jump in the hot spots of the program.
10646
10647 The @option{reorder-block-duplicate-feedback} parameter
10648 is used only when profile
10649 feedback is available. It may be set to higher values than
10650 @option{reorder-block-duplicate} since information about the hot spots is more
10651 accurate.
10652
10653 @item max-sched-ready-insns
10654 The maximum number of instructions ready to be issued the scheduler should
10655 consider at any given time during the first scheduling pass. Increasing
10656 values mean more thorough searches, making the compilation time increase
10657 with probably little benefit. The default value is 100.
10658
10659 @item max-sched-region-blocks
10660 The maximum number of blocks in a region to be considered for
10661 interblock scheduling. The default value is 10.
10662
10663 @item max-pipeline-region-blocks
10664 The maximum number of blocks in a region to be considered for
10665 pipelining in the selective scheduler. The default value is 15.
10666
10667 @item max-sched-region-insns
10668 The maximum number of insns in a region to be considered for
10669 interblock scheduling. The default value is 100.
10670
10671 @item max-pipeline-region-insns
10672 The maximum number of insns in a region to be considered for
10673 pipelining in the selective scheduler. The default value is 200.
10674
10675 @item min-spec-prob
10676 The minimum probability (in percents) of reaching a source block
10677 for interblock speculative scheduling. The default value is 40.
10678
10679 @item max-sched-extend-regions-iters
10680 The maximum number of iterations through CFG to extend regions.
10681 A value of 0 (the default) disables region extensions.
10682
10683 @item max-sched-insn-conflict-delay
10684 The maximum conflict delay for an insn to be considered for speculative motion.
10685 The default value is 3.
10686
10687 @item sched-spec-prob-cutoff
10688 The minimal probability of speculation success (in percents), so that
10689 speculative insns are scheduled.
10690 The default value is 40.
10691
10692 @item sched-spec-state-edge-prob-cutoff
10693 The minimum probability an edge must have for the scheduler to save its
10694 state across it.
10695 The default value is 10.
10696
10697 @item sched-mem-true-dep-cost
10698 Minimal distance (in CPU cycles) between store and load targeting same
10699 memory locations. The default value is 1.
10700
10701 @item selsched-max-lookahead
10702 The maximum size of the lookahead window of selective scheduling. It is a
10703 depth of search for available instructions.
10704 The default value is 50.
10705
10706 @item selsched-max-sched-times
10707 The maximum number of times that an instruction is scheduled during
10708 selective scheduling. This is the limit on the number of iterations
10709 through which the instruction may be pipelined. The default value is 2.
10710
10711 @item selsched-max-insns-to-rename
10712 The maximum number of best instructions in the ready list that are considered
10713 for renaming in the selective scheduler. The default value is 2.
10714
10715 @item sms-min-sc
10716 The minimum value of stage count that swing modulo scheduler
10717 generates. The default value is 2.
10718
10719 @item max-last-value-rtl
10720 The maximum size measured as number of RTLs that can be recorded in an expression
10721 in combiner for a pseudo register as last known value of that register. The default
10722 is 10000.
10723
10724 @item max-combine-insns
10725 The maximum number of instructions the RTL combiner tries to combine.
10726 The default value is 2 at @option{-Og} and 4 otherwise.
10727
10728 @item integer-share-limit
10729 Small integer constants can use a shared data structure, reducing the
10730 compiler's memory usage and increasing its speed. This sets the maximum
10731 value of a shared integer constant. The default value is 256.
10732
10733 @item ssp-buffer-size
10734 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10735 protection when @option{-fstack-protection} is used.
10736
10737 @item min-size-for-stack-sharing
10738 The minimum size of variables taking part in stack slot sharing when not
10739 optimizing. The default value is 32.
10740
10741 @item max-jump-thread-duplication-stmts
10742 Maximum number of statements allowed in a block that needs to be
10743 duplicated when threading jumps.
10744
10745 @item max-fields-for-field-sensitive
10746 Maximum number of fields in a structure treated in
10747 a field sensitive manner during pointer analysis. The default is zero
10748 for @option{-O0} and @option{-O1},
10749 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10750
10751 @item prefetch-latency
10752 Estimate on average number of instructions that are executed before
10753 prefetch finishes. The distance prefetched ahead is proportional
10754 to this constant. Increasing this number may also lead to less
10755 streams being prefetched (see @option{simultaneous-prefetches}).
10756
10757 @item simultaneous-prefetches
10758 Maximum number of prefetches that can run at the same time.
10759
10760 @item l1-cache-line-size
10761 The size of cache line in L1 cache, in bytes.
10762
10763 @item l1-cache-size
10764 The size of L1 cache, in kilobytes.
10765
10766 @item l2-cache-size
10767 The size of L2 cache, in kilobytes.
10768
10769 @item min-insn-to-prefetch-ratio
10770 The minimum ratio between the number of instructions and the
10771 number of prefetches to enable prefetching in a loop.
10772
10773 @item prefetch-min-insn-to-mem-ratio
10774 The minimum ratio between the number of instructions and the
10775 number of memory references to enable prefetching in a loop.
10776
10777 @item use-canonical-types
10778 Whether the compiler should use the ``canonical'' type system. By
10779 default, this should always be 1, which uses a more efficient internal
10780 mechanism for comparing types in C++ and Objective-C++. However, if
10781 bugs in the canonical type system are causing compilation failures,
10782 set this value to 0 to disable canonical types.
10783
10784 @item switch-conversion-max-branch-ratio
10785 Switch initialization conversion refuses to create arrays that are
10786 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10787 branches in the switch.
10788
10789 @item max-partial-antic-length
10790 Maximum length of the partial antic set computed during the tree
10791 partial redundancy elimination optimization (@option{-ftree-pre}) when
10792 optimizing at @option{-O3} and above. For some sorts of source code
10793 the enhanced partial redundancy elimination optimization can run away,
10794 consuming all of the memory available on the host machine. This
10795 parameter sets a limit on the length of the sets that are computed,
10796 which prevents the runaway behavior. Setting a value of 0 for
10797 this parameter allows an unlimited set length.
10798
10799 @item sccvn-max-scc-size
10800 Maximum size of a strongly connected component (SCC) during SCCVN
10801 processing. If this limit is hit, SCCVN processing for the whole
10802 function is not done and optimizations depending on it are
10803 disabled. The default maximum SCC size is 10000.
10804
10805 @item sccvn-max-alias-queries-per-access
10806 Maximum number of alias-oracle queries we perform when looking for
10807 redundancies for loads and stores. If this limit is hit the search
10808 is aborted and the load or store is not considered redundant. The
10809 number of queries is algorithmically limited to the number of
10810 stores on all paths from the load to the function entry.
10811 The default maxmimum number of queries is 1000.
10812
10813 @item ira-max-loops-num
10814 IRA uses regional register allocation by default. If a function
10815 contains more loops than the number given by this parameter, only at most
10816 the given number of the most frequently-executed loops form regions
10817 for regional register allocation. The default value of the
10818 parameter is 100.
10819
10820 @item ira-max-conflict-table-size
10821 Although IRA uses a sophisticated algorithm to compress the conflict
10822 table, the table can still require excessive amounts of memory for
10823 huge functions. If the conflict table for a function could be more
10824 than the size in MB given by this parameter, the register allocator
10825 instead uses a faster, simpler, and lower-quality
10826 algorithm that does not require building a pseudo-register conflict table.
10827 The default value of the parameter is 2000.
10828
10829 @item ira-loop-reserved-regs
10830 IRA can be used to evaluate more accurate register pressure in loops
10831 for decisions to move loop invariants (see @option{-O3}). The number
10832 of available registers reserved for some other purposes is given
10833 by this parameter. The default value of the parameter is 2, which is
10834 the minimal number of registers needed by typical instructions.
10835 This value is the best found from numerous experiments.
10836
10837 @item lra-inheritance-ebb-probability-cutoff
10838 LRA tries to reuse values reloaded in registers in subsequent insns.
10839 This optimization is called inheritance. EBB is used as a region to
10840 do this optimization. The parameter defines a minimal fall-through
10841 edge probability in percentage used to add BB to inheritance EBB in
10842 LRA. The default value of the parameter is 40. The value was chosen
10843 from numerous runs of SPEC2000 on x86-64.
10844
10845 @item loop-invariant-max-bbs-in-loop
10846 Loop invariant motion can be very expensive, both in compilation time and
10847 in amount of needed compile-time memory, with very large loops. Loops
10848 with more basic blocks than this parameter won't have loop invariant
10849 motion optimization performed on them. The default value of the
10850 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10851
10852 @item loop-max-datarefs-for-datadeps
10853 Building data dapendencies is expensive for very large loops. This
10854 parameter limits the number of data references in loops that are
10855 considered for data dependence analysis. These large loops are no
10856 handled by the optimizations using loop data dependencies.
10857 The default value is 1000.
10858
10859 @item max-vartrack-size
10860 Sets a maximum number of hash table slots to use during variable
10861 tracking dataflow analysis of any function. If this limit is exceeded
10862 with variable tracking at assignments enabled, analysis for that
10863 function is retried without it, after removing all debug insns from
10864 the function. If the limit is exceeded even without debug insns, var
10865 tracking analysis is completely disabled for the function. Setting
10866 the parameter to zero makes it unlimited.
10867
10868 @item max-vartrack-expr-depth
10869 Sets a maximum number of recursion levels when attempting to map
10870 variable names or debug temporaries to value expressions. This trades
10871 compilation time for more complete debug information. If this is set too
10872 low, value expressions that are available and could be represented in
10873 debug information may end up not being used; setting this higher may
10874 enable the compiler to find more complex debug expressions, but compile
10875 time and memory use may grow. The default is 12.
10876
10877 @item min-nondebug-insn-uid
10878 Use uids starting at this parameter for nondebug insns. The range below
10879 the parameter is reserved exclusively for debug insns created by
10880 @option{-fvar-tracking-assignments}, but debug insns may get
10881 (non-overlapping) uids above it if the reserved range is exhausted.
10882
10883 @item ipa-sra-ptr-growth-factor
10884 IPA-SRA replaces a pointer to an aggregate with one or more new
10885 parameters only when their cumulative size is less or equal to
10886 @option{ipa-sra-ptr-growth-factor} times the size of the original
10887 pointer parameter.
10888
10889 @item sra-max-scalarization-size-Ospeed
10890 @item sra-max-scalarization-size-Osize
10891 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10892 replace scalar parts of aggregates with uses of independent scalar
10893 variables. These parameters control the maximum size, in storage units,
10894 of aggregate which is considered for replacement when compiling for
10895 speed
10896 (@option{sra-max-scalarization-size-Ospeed}) or size
10897 (@option{sra-max-scalarization-size-Osize}) respectively.
10898
10899 @item tm-max-aggregate-size
10900 When making copies of thread-local variables in a transaction, this
10901 parameter specifies the size in bytes after which variables are
10902 saved with the logging functions as opposed to save/restore code
10903 sequence pairs. This option only applies when using
10904 @option{-fgnu-tm}.
10905
10906 @item graphite-max-nb-scop-params
10907 To avoid exponential effects in the Graphite loop transforms, the
10908 number of parameters in a Static Control Part (SCoP) is bounded. The
10909 default value is 10 parameters. A variable whose value is unknown at
10910 compilation time and defined outside a SCoP is a parameter of the SCoP.
10911
10912 @item graphite-max-bbs-per-function
10913 To avoid exponential effects in the detection of SCoPs, the size of
10914 the functions analyzed by Graphite is bounded. The default value is
10915 100 basic blocks.
10916
10917 @item loop-block-tile-size
10918 Loop blocking or strip mining transforms, enabled with
10919 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10920 loop in the loop nest by a given number of iterations. The strip
10921 length can be changed using the @option{loop-block-tile-size}
10922 parameter. The default value is 51 iterations.
10923
10924 @item loop-unroll-jam-size
10925 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10926 default value is 4.
10927
10928 @item loop-unroll-jam-depth
10929 Specify the dimension to be unrolled (counting from the most inner loop)
10930 for the @option{-floop-unroll-and-jam}. The default value is 2.
10931
10932 @item ipa-cp-value-list-size
10933 IPA-CP attempts to track all possible values and types passed to a function's
10934 parameter in order to propagate them and perform devirtualization.
10935 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10936 stores per one formal parameter of a function.
10937
10938 @item ipa-cp-eval-threshold
10939 IPA-CP calculates its own score of cloning profitability heuristics
10940 and performs those cloning opportunities with scores that exceed
10941 @option{ipa-cp-eval-threshold}.
10942
10943 @item ipa-cp-recursion-penalty
10944 Percentage penalty the recursive functions will receive when they
10945 are evaluated for cloning.
10946
10947 @item ipa-cp-single-call-penalty
10948 Percentage penalty functions containg a single call to another
10949 function will receive when they are evaluated for cloning.
10950
10951
10952 @item ipa-max-agg-items
10953 IPA-CP is also capable to propagate a number of scalar values passed
10954 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10955 number of such values per one parameter.
10956
10957 @item ipa-cp-loop-hint-bonus
10958 When IPA-CP determines that a cloning candidate would make the number
10959 of iterations of a loop known, it adds a bonus of
10960 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10961 the candidate.
10962
10963 @item ipa-cp-array-index-hint-bonus
10964 When IPA-CP determines that a cloning candidate would make the index of
10965 an array access known, it adds a bonus of
10966 @option{ipa-cp-array-index-hint-bonus} to the profitability
10967 score of the candidate.
10968
10969 @item ipa-max-aa-steps
10970 During its analysis of function bodies, IPA-CP employs alias analysis
10971 in order to track values pointed to by function parameters. In order
10972 not spend too much time analyzing huge functions, it gives up and
10973 consider all memory clobbered after examining
10974 @option{ipa-max-aa-steps} statements modifying memory.
10975
10976 @item lto-partitions
10977 Specify desired number of partitions produced during WHOPR compilation.
10978 The number of partitions should exceed the number of CPUs used for compilation.
10979 The default value is 32.
10980
10981 @item lto-minpartition
10982 Size of minimal partition for WHOPR (in estimated instructions).
10983 This prevents expenses of splitting very small programs into too many
10984 partitions.
10985
10986 @item cxx-max-namespaces-for-diagnostic-help
10987 The maximum number of namespaces to consult for suggestions when C++
10988 name lookup fails for an identifier. The default is 1000.
10989
10990 @item sink-frequency-threshold
10991 The maximum relative execution frequency (in percents) of the target block
10992 relative to a statement's original block to allow statement sinking of a
10993 statement. Larger numbers result in more aggressive statement sinking.
10994 The default value is 75. A small positive adjustment is applied for
10995 statements with memory operands as those are even more profitable so sink.
10996
10997 @item max-stores-to-sink
10998 The maximum number of conditional stores paires that can be sunk. Set to 0
10999 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11000 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
11001
11002 @item allow-store-data-races
11003 Allow optimizers to introduce new data races on stores.
11004 Set to 1 to allow, otherwise to 0. This option is enabled by default
11005 at optimization level @option{-Ofast}.
11006
11007 @item case-values-threshold
11008 The smallest number of different values for which it is best to use a
11009 jump-table instead of a tree of conditional branches. If the value is
11010 0, use the default for the machine. The default is 0.
11011
11012 @item tree-reassoc-width
11013 Set the maximum number of instructions executed in parallel in
11014 reassociated tree. This parameter overrides target dependent
11015 heuristics used by default if has non zero value.
11016
11017 @item sched-pressure-algorithm
11018 Choose between the two available implementations of
11019 @option{-fsched-pressure}. Algorithm 1 is the original implementation
11020 and is the more likely to prevent instructions from being reordered.
11021 Algorithm 2 was designed to be a compromise between the relatively
11022 conservative approach taken by algorithm 1 and the rather aggressive
11023 approach taken by the default scheduler. It relies more heavily on
11024 having a regular register file and accurate register pressure classes.
11025 See @file{haifa-sched.c} in the GCC sources for more details.
11026
11027 The default choice depends on the target.
11028
11029 @item max-slsr-cand-scan
11030 Set the maximum number of existing candidates that are considered when
11031 seeking a basis for a new straight-line strength reduction candidate.
11032
11033 @item asan-globals
11034 Enable buffer overflow detection for global objects. This kind
11035 of protection is enabled by default if you are using
11036 @option{-fsanitize=address} option.
11037 To disable global objects protection use @option{--param asan-globals=0}.
11038
11039 @item asan-stack
11040 Enable buffer overflow detection for stack objects. This kind of
11041 protection is enabled by default when using@option{-fsanitize=address}.
11042 To disable stack protection use @option{--param asan-stack=0} option.
11043
11044 @item asan-instrument-reads
11045 Enable buffer overflow detection for memory reads. This kind of
11046 protection is enabled by default when using @option{-fsanitize=address}.
11047 To disable memory reads protection use
11048 @option{--param asan-instrument-reads=0}.
11049
11050 @item asan-instrument-writes
11051 Enable buffer overflow detection for memory writes. This kind of
11052 protection is enabled by default when using @option{-fsanitize=address}.
11053 To disable memory writes protection use
11054 @option{--param asan-instrument-writes=0} option.
11055
11056 @item asan-memintrin
11057 Enable detection for built-in functions. This kind of protection
11058 is enabled by default when using @option{-fsanitize=address}.
11059 To disable built-in functions protection use
11060 @option{--param asan-memintrin=0}.
11061
11062 @item asan-use-after-return
11063 Enable detection of use-after-return. This kind of protection
11064 is enabled by default when using @option{-fsanitize=address} option.
11065 To disable use-after-return detection use
11066 @option{--param asan-use-after-return=0}.
11067
11068 @item asan-instrumentation-with-call-threshold
11069 If number of memory accesses in function being instrumented
11070 is greater or equal to this number, use callbacks instead of inline checks.
11071 E.g. to disable inline code use
11072 @option{--param asan-instrumentation-with-call-threshold=0}.
11073
11074 @item chkp-max-ctor-size
11075 Static constructors generated by Pointer Bounds Checker may become very
11076 large and significantly increase compile time at optimization level
11077 @option{-O1} and higher. This parameter is a maximum nubmer of statements
11078 in a single generated constructor. Default value is 5000.
11079
11080 @item max-fsm-thread-path-insns
11081 Maximum number of instructions to copy when duplicating blocks on a
11082 finite state automaton jump thread path. The default is 100.
11083
11084 @item max-fsm-thread-length
11085 Maximum number of basic blocks on a finite state automaton jump thread
11086 path. The default is 10.
11087
11088 @item max-fsm-thread-paths
11089 Maximum number of new jump thread paths to create for a finite state
11090 automaton. The default is 50.
11091
11092 @end table
11093 @end table
11094
11095 @node Preprocessor Options
11096 @section Options Controlling the Preprocessor
11097 @cindex preprocessor options
11098 @cindex options, preprocessor
11099
11100 These options control the C preprocessor, which is run on each C source
11101 file before actual compilation.
11102
11103 If you use the @option{-E} option, nothing is done except preprocessing.
11104 Some of these options make sense only together with @option{-E} because
11105 they cause the preprocessor output to be unsuitable for actual
11106 compilation.
11107
11108 @table @gcctabopt
11109 @item -Wp,@var{option}
11110 @opindex Wp
11111 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11112 and pass @var{option} directly through to the preprocessor. If
11113 @var{option} contains commas, it is split into multiple options at the
11114 commas. However, many options are modified, translated or interpreted
11115 by the compiler driver before being passed to the preprocessor, and
11116 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11117 interface is undocumented and subject to change, so whenever possible
11118 you should avoid using @option{-Wp} and let the driver handle the
11119 options instead.
11120
11121 @item -Xpreprocessor @var{option}
11122 @opindex Xpreprocessor
11123 Pass @var{option} as an option to the preprocessor. You can use this to
11124 supply system-specific preprocessor options that GCC does not
11125 recognize.
11126
11127 If you want to pass an option that takes an argument, you must use
11128 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11129
11130 @item -no-integrated-cpp
11131 @opindex no-integrated-cpp
11132 Perform preprocessing as a separate pass before compilation.
11133 By default, GCC performs preprocessing as an integrated part of
11134 input tokenization and parsing.
11135 If this option is provided, the appropriate language front end
11136 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11137 and Objective-C, respectively) is instead invoked twice,
11138 once for preprocessing only and once for actual compilation
11139 of the preprocessed input.
11140 This option may be useful in conjunction with the @option{-B} or
11141 @option{-wrapper} options to specify an alternate preprocessor or
11142 perform additional processing of the program source between
11143 normal preprocessing and compilation.
11144 @end table
11145
11146 @include cppopts.texi
11147
11148 @node Assembler Options
11149 @section Passing Options to the Assembler
11150
11151 @c prevent bad page break with this line
11152 You can pass options to the assembler.
11153
11154 @table @gcctabopt
11155 @item -Wa,@var{option}
11156 @opindex Wa
11157 Pass @var{option} as an option to the assembler. If @var{option}
11158 contains commas, it is split into multiple options at the commas.
11159
11160 @item -Xassembler @var{option}
11161 @opindex Xassembler
11162 Pass @var{option} as an option to the assembler. You can use this to
11163 supply system-specific assembler options that GCC does not
11164 recognize.
11165
11166 If you want to pass an option that takes an argument, you must use
11167 @option{-Xassembler} twice, once for the option and once for the argument.
11168
11169 @end table
11170
11171 @node Link Options
11172 @section Options for Linking
11173 @cindex link options
11174 @cindex options, linking
11175
11176 These options come into play when the compiler links object files into
11177 an executable output file. They are meaningless if the compiler is
11178 not doing a link step.
11179
11180 @table @gcctabopt
11181 @cindex file names
11182 @item @var{object-file-name}
11183 A file name that does not end in a special recognized suffix is
11184 considered to name an object file or library. (Object files are
11185 distinguished from libraries by the linker according to the file
11186 contents.) If linking is done, these object files are used as input
11187 to the linker.
11188
11189 @item -c
11190 @itemx -S
11191 @itemx -E
11192 @opindex c
11193 @opindex S
11194 @opindex E
11195 If any of these options is used, then the linker is not run, and
11196 object file names should not be used as arguments. @xref{Overall
11197 Options}.
11198
11199 @item -fuse-ld=bfd
11200 @opindex fuse-ld=bfd
11201 Use the @command{bfd} linker instead of the default linker.
11202
11203 @item -fuse-ld=gold
11204 @opindex fuse-ld=gold
11205 Use the @command{gold} linker instead of the default linker.
11206
11207 @cindex Libraries
11208 @item -l@var{library}
11209 @itemx -l @var{library}
11210 @opindex l
11211 Search the library named @var{library} when linking. (The second
11212 alternative with the library as a separate argument is only for
11213 POSIX compliance and is not recommended.)
11214
11215 It makes a difference where in the command you write this option; the
11216 linker searches and processes libraries and object files in the order they
11217 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11218 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11219 to functions in @samp{z}, those functions may not be loaded.
11220
11221 The linker searches a standard list of directories for the library,
11222 which is actually a file named @file{lib@var{library}.a}. The linker
11223 then uses this file as if it had been specified precisely by name.
11224
11225 The directories searched include several standard system directories
11226 plus any that you specify with @option{-L}.
11227
11228 Normally the files found this way are library files---archive files
11229 whose members are object files. The linker handles an archive file by
11230 scanning through it for members which define symbols that have so far
11231 been referenced but not defined. But if the file that is found is an
11232 ordinary object file, it is linked in the usual fashion. The only
11233 difference between using an @option{-l} option and specifying a file name
11234 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11235 and searches several directories.
11236
11237 @item -lobjc
11238 @opindex lobjc
11239 You need this special case of the @option{-l} option in order to
11240 link an Objective-C or Objective-C++ program.
11241
11242 @item -nostartfiles
11243 @opindex nostartfiles
11244 Do not use the standard system startup files when linking.
11245 The standard system libraries are used normally, unless @option{-nostdlib}
11246 or @option{-nodefaultlibs} is used.
11247
11248 @item -nodefaultlibs
11249 @opindex nodefaultlibs
11250 Do not use the standard system libraries when linking.
11251 Only the libraries you specify are passed to the linker, and options
11252 specifying linkage of the system libraries, such as @option{-static-libgcc}
11253 or @option{-shared-libgcc}, are ignored.
11254 The standard startup files are used normally, unless @option{-nostartfiles}
11255 is used.
11256
11257 The compiler may generate calls to @code{memcmp},
11258 @code{memset}, @code{memcpy} and @code{memmove}.
11259 These entries are usually resolved by entries in
11260 libc. These entry points should be supplied through some other
11261 mechanism when this option is specified.
11262
11263 @item -nostdlib
11264 @opindex nostdlib
11265 Do not use the standard system startup files or libraries when linking.
11266 No startup files and only the libraries you specify are passed to
11267 the linker, and options specifying linkage of the system libraries, such as
11268 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11269
11270 The compiler may generate calls to @code{memcmp}, @code{memset},
11271 @code{memcpy} and @code{memmove}.
11272 These entries are usually resolved by entries in
11273 libc. These entry points should be supplied through some other
11274 mechanism when this option is specified.
11275
11276 @cindex @option{-lgcc}, use with @option{-nostdlib}
11277 @cindex @option{-nostdlib} and unresolved references
11278 @cindex unresolved references and @option{-nostdlib}
11279 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11280 @cindex @option{-nodefaultlibs} and unresolved references
11281 @cindex unresolved references and @option{-nodefaultlibs}
11282 One of the standard libraries bypassed by @option{-nostdlib} and
11283 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11284 which GCC uses to overcome shortcomings of particular machines, or special
11285 needs for some languages.
11286 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11287 Collection (GCC) Internals},
11288 for more discussion of @file{libgcc.a}.)
11289 In most cases, you need @file{libgcc.a} even when you want to avoid
11290 other standard libraries. In other words, when you specify @option{-nostdlib}
11291 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11292 This ensures that you have no unresolved references to internal GCC
11293 library subroutines.
11294 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11295 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11296 GNU Compiler Collection (GCC) Internals}.)
11297
11298 @item -pie
11299 @opindex pie
11300 Produce a position independent executable on targets that support it.
11301 For predictable results, you must also specify the same set of options
11302 used for compilation (@option{-fpie}, @option{-fPIE},
11303 or model suboptions) when you specify this linker option.
11304
11305 @item -no-pie
11306 @opindex no-pie
11307 Don't produce a position independent executable.
11308
11309 @item -rdynamic
11310 @opindex rdynamic
11311 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11312 that support it. This instructs the linker to add all symbols, not
11313 only used ones, to the dynamic symbol table. This option is needed
11314 for some uses of @code{dlopen} or to allow obtaining backtraces
11315 from within a program.
11316
11317 @item -s
11318 @opindex s
11319 Remove all symbol table and relocation information from the executable.
11320
11321 @item -static
11322 @opindex static
11323 On systems that support dynamic linking, this prevents linking with the shared
11324 libraries. On other systems, this option has no effect.
11325
11326 @item -shared
11327 @opindex shared
11328 Produce a shared object which can then be linked with other objects to
11329 form an executable. Not all systems support this option. For predictable
11330 results, you must also specify the same set of options used for compilation
11331 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11332 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11333 needs to build supplementary stub code for constructors to work. On
11334 multi-libbed systems, @samp{gcc -shared} must select the correct support
11335 libraries to link against. Failing to supply the correct flags may lead
11336 to subtle defects. Supplying them in cases where they are not necessary
11337 is innocuous.}
11338
11339 @item -shared-libgcc
11340 @itemx -static-libgcc
11341 @opindex shared-libgcc
11342 @opindex static-libgcc
11343 On systems that provide @file{libgcc} as a shared library, these options
11344 force the use of either the shared or static version, respectively.
11345 If no shared version of @file{libgcc} was built when the compiler was
11346 configured, these options have no effect.
11347
11348 There are several situations in which an application should use the
11349 shared @file{libgcc} instead of the static version. The most common
11350 of these is when the application wishes to throw and catch exceptions
11351 across different shared libraries. In that case, each of the libraries
11352 as well as the application itself should use the shared @file{libgcc}.
11353
11354 Therefore, the G++ and GCJ drivers automatically add
11355 @option{-shared-libgcc} whenever you build a shared library or a main
11356 executable, because C++ and Java programs typically use exceptions, so
11357 this is the right thing to do.
11358
11359 If, instead, you use the GCC driver to create shared libraries, you may
11360 find that they are not always linked with the shared @file{libgcc}.
11361 If GCC finds, at its configuration time, that you have a non-GNU linker
11362 or a GNU linker that does not support option @option{--eh-frame-hdr},
11363 it links the shared version of @file{libgcc} into shared libraries
11364 by default. Otherwise, it takes advantage of the linker and optimizes
11365 away the linking with the shared version of @file{libgcc}, linking with
11366 the static version of libgcc by default. This allows exceptions to
11367 propagate through such shared libraries, without incurring relocation
11368 costs at library load time.
11369
11370 However, if a library or main executable is supposed to throw or catch
11371 exceptions, you must link it using the G++ or GCJ driver, as appropriate
11372 for the languages used in the program, or using the option
11373 @option{-shared-libgcc}, such that it is linked with the shared
11374 @file{libgcc}.
11375
11376 @item -static-libasan
11377 @opindex static-libasan
11378 When the @option{-fsanitize=address} option is used to link a program,
11379 the GCC driver automatically links against @option{libasan}. If
11380 @file{libasan} is available as a shared library, and the @option{-static}
11381 option is not used, then this links against the shared version of
11382 @file{libasan}. The @option{-static-libasan} option directs the GCC
11383 driver to link @file{libasan} statically, without necessarily linking
11384 other libraries statically.
11385
11386 @item -static-libtsan
11387 @opindex static-libtsan
11388 When the @option{-fsanitize=thread} option is used to link a program,
11389 the GCC driver automatically links against @option{libtsan}. If
11390 @file{libtsan} is available as a shared library, and the @option{-static}
11391 option is not used, then this links against the shared version of
11392 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11393 driver to link @file{libtsan} statically, without necessarily linking
11394 other libraries statically.
11395
11396 @item -static-liblsan
11397 @opindex static-liblsan
11398 When the @option{-fsanitize=leak} option is used to link a program,
11399 the GCC driver automatically links against @option{liblsan}. If
11400 @file{liblsan} is available as a shared library, and the @option{-static}
11401 option is not used, then this links against the shared version of
11402 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11403 driver to link @file{liblsan} statically, without necessarily linking
11404 other libraries statically.
11405
11406 @item -static-libubsan
11407 @opindex static-libubsan
11408 When the @option{-fsanitize=undefined} option is used to link a program,
11409 the GCC driver automatically links against @option{libubsan}. If
11410 @file{libubsan} is available as a shared library, and the @option{-static}
11411 option is not used, then this links against the shared version of
11412 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11413 driver to link @file{libubsan} statically, without necessarily linking
11414 other libraries statically.
11415
11416 @item -static-libmpx
11417 @opindex static-libmpx
11418 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11419 used to link a program, the GCC driver automatically links against
11420 @file{libmpx}. If @file{libmpx} is available as a shared library,
11421 and the @option{-static} option is not used, then this links against
11422 the shared version of @file{libmpx}. The @option{-static-libmpx}
11423 option directs the GCC driver to link @file{libmpx} statically,
11424 without necessarily linking other libraries statically.
11425
11426 @item -static-libmpxwrappers
11427 @opindex static-libmpxwrappers
11428 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11429 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11430 GCC driver automatically links against @file{libmpxwrappers}. If
11431 @file{libmpxwrappers} is available as a shared library, and the
11432 @option{-static} option is not used, then this links against the shared
11433 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11434 option directs the GCC driver to link @file{libmpxwrappers} statically,
11435 without necessarily linking other libraries statically.
11436
11437 @item -static-libstdc++
11438 @opindex static-libstdc++
11439 When the @command{g++} program is used to link a C++ program, it
11440 normally automatically links against @option{libstdc++}. If
11441 @file{libstdc++} is available as a shared library, and the
11442 @option{-static} option is not used, then this links against the
11443 shared version of @file{libstdc++}. That is normally fine. However, it
11444 is sometimes useful to freeze the version of @file{libstdc++} used by
11445 the program without going all the way to a fully static link. The
11446 @option{-static-libstdc++} option directs the @command{g++} driver to
11447 link @file{libstdc++} statically, without necessarily linking other
11448 libraries statically.
11449
11450 @item -symbolic
11451 @opindex symbolic
11452 Bind references to global symbols when building a shared object. Warn
11453 about any unresolved references (unless overridden by the link editor
11454 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11455 this option.
11456
11457 @item -T @var{script}
11458 @opindex T
11459 @cindex linker script
11460 Use @var{script} as the linker script. This option is supported by most
11461 systems using the GNU linker. On some targets, such as bare-board
11462 targets without an operating system, the @option{-T} option may be required
11463 when linking to avoid references to undefined symbols.
11464
11465 @item -Xlinker @var{option}
11466 @opindex Xlinker
11467 Pass @var{option} as an option to the linker. You can use this to
11468 supply system-specific linker options that GCC does not recognize.
11469
11470 If you want to pass an option that takes a separate argument, you must use
11471 @option{-Xlinker} twice, once for the option and once for the argument.
11472 For example, to pass @option{-assert definitions}, you must write
11473 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11474 @option{-Xlinker "-assert definitions"}, because this passes the entire
11475 string as a single argument, which is not what the linker expects.
11476
11477 When using the GNU linker, it is usually more convenient to pass
11478 arguments to linker options using the @option{@var{option}=@var{value}}
11479 syntax than as separate arguments. For example, you can specify
11480 @option{-Xlinker -Map=output.map} rather than
11481 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11482 this syntax for command-line options.
11483
11484 @item -Wl,@var{option}
11485 @opindex Wl
11486 Pass @var{option} as an option to the linker. If @var{option} contains
11487 commas, it is split into multiple options at the commas. You can use this
11488 syntax to pass an argument to the option.
11489 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11490 linker. When using the GNU linker, you can also get the same effect with
11491 @option{-Wl,-Map=output.map}.
11492
11493 @item -u @var{symbol}
11494 @opindex u
11495 Pretend the symbol @var{symbol} is undefined, to force linking of
11496 library modules to define it. You can use @option{-u} multiple times with
11497 different symbols to force loading of additional library modules.
11498
11499 @item -z @var{keyword}
11500 @opindex z
11501 @option{-z} is passed directly on to the linker along with the keyword
11502 @var{keyword}. See the section in the documentation of your linker for
11503 permitted values and their meanings.
11504 @end table
11505
11506 @node Directory Options
11507 @section Options for Directory Search
11508 @cindex directory options
11509 @cindex options, directory search
11510 @cindex search path
11511
11512 These options specify directories to search for header files, for
11513 libraries and for parts of the compiler:
11514
11515 @table @gcctabopt
11516 @item -I@var{dir}
11517 @opindex I
11518 Add the directory @var{dir} to the head of the list of directories to be
11519 searched for header files. This can be used to override a system header
11520 file, substituting your own version, since these directories are
11521 searched before the system header file directories. However, you should
11522 not use this option to add directories that contain vendor-supplied
11523 system header files (use @option{-isystem} for that). If you use more than
11524 one @option{-I} option, the directories are scanned in left-to-right
11525 order; the standard system directories come after.
11526
11527 If a standard system include directory, or a directory specified with
11528 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
11529 option is ignored. The directory is still searched but as a
11530 system directory at its normal position in the system include chain.
11531 This is to ensure that GCC's procedure to fix buggy system headers and
11532 the ordering for the @code{include_next} directive are not inadvertently changed.
11533 If you really need to change the search order for system directories,
11534 use the @option{-nostdinc} and/or @option{-isystem} options.
11535
11536 @item -iplugindir=@var{dir}
11537 @opindex iplugindir=
11538 Set the directory to search for plugins that are passed
11539 by @option{-fplugin=@var{name}} instead of
11540 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11541 to be used by the user, but only passed by the driver.
11542
11543 @item -iquote@var{dir}
11544 @opindex iquote
11545 Add the directory @var{dir} to the head of the list of directories to
11546 be searched for header files only for the case of @code{#include
11547 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
11548 otherwise just like @option{-I}.
11549
11550 @item -L@var{dir}
11551 @opindex L
11552 Add directory @var{dir} to the list of directories to be searched
11553 for @option{-l}.
11554
11555 @item -B@var{prefix}
11556 @opindex B
11557 This option specifies where to find the executables, libraries,
11558 include files, and data files of the compiler itself.
11559
11560 The compiler driver program runs one or more of the subprograms
11561 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11562 @var{prefix} as a prefix for each program it tries to run, both with and
11563 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
11564
11565 For each subprogram to be run, the compiler driver first tries the
11566 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11567 is not specified, the driver tries two standard prefixes,
11568 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11569 those results in a file name that is found, the unmodified program
11570 name is searched for using the directories specified in your
11571 @env{PATH} environment variable.
11572
11573 The compiler checks to see if the path provided by @option{-B}
11574 refers to a directory, and if necessary it adds a directory
11575 separator character at the end of the path.
11576
11577 @option{-B} prefixes that effectively specify directory names also apply
11578 to libraries in the linker, because the compiler translates these
11579 options into @option{-L} options for the linker. They also apply to
11580 include files in the preprocessor, because the compiler translates these
11581 options into @option{-isystem} options for the preprocessor. In this case,
11582 the compiler appends @samp{include} to the prefix.
11583
11584 The runtime support file @file{libgcc.a} can also be searched for using
11585 the @option{-B} prefix, if needed. If it is not found there, the two
11586 standard prefixes above are tried, and that is all. The file is left
11587 out of the link if it is not found by those means.
11588
11589 Another way to specify a prefix much like the @option{-B} prefix is to use
11590 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
11591 Variables}.
11592
11593 As a special kludge, if the path provided by @option{-B} is
11594 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11595 9, then it is replaced by @file{[dir/]include}. This is to help
11596 with boot-strapping the compiler.
11597
11598 @item -specs=@var{file}
11599 @opindex specs
11600 Process @var{file} after the compiler reads in the standard @file{specs}
11601 file, in order to override the defaults which the @command{gcc} driver
11602 program uses when determining what switches to pass to @command{cc1},
11603 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
11604 @option{-specs=@var{file}} can be specified on the command line, and they
11605 are processed in order, from left to right.
11606
11607 @item --sysroot=@var{dir}
11608 @opindex sysroot
11609 Use @var{dir} as the logical root directory for headers and libraries.
11610 For example, if the compiler normally searches for headers in
11611 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11612 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11613
11614 If you use both this option and the @option{-isysroot} option, then
11615 the @option{--sysroot} option applies to libraries, but the
11616 @option{-isysroot} option applies to header files.
11617
11618 The GNU linker (beginning with version 2.16) has the necessary support
11619 for this option. If your linker does not support this option, the
11620 header file aspect of @option{--sysroot} still works, but the
11621 library aspect does not.
11622
11623 @item --no-sysroot-suffix
11624 @opindex no-sysroot-suffix
11625 For some targets, a suffix is added to the root directory specified
11626 with @option{--sysroot}, depending on the other options used, so that
11627 headers may for example be found in
11628 @file{@var{dir}/@var{suffix}/usr/include} instead of
11629 @file{@var{dir}/usr/include}. This option disables the addition of
11630 such a suffix.
11631
11632 @item -I-
11633 @opindex I-
11634 This option has been deprecated. Please use @option{-iquote} instead for
11635 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11636 option.
11637 Any directories you specify with @option{-I} options before the @option{-I-}
11638 option are searched only for the case of @code{#include "@var{file}"};
11639 they are not searched for @code{#include <@var{file}>}.
11640
11641 If additional directories are specified with @option{-I} options after
11642 the @option{-I-} option, these directories are searched for all @code{#include}
11643 directives. (Ordinarily @emph{all} @option{-I} directories are used
11644 this way.)
11645
11646 In addition, the @option{-I-} option inhibits the use of the current
11647 directory (where the current input file came from) as the first search
11648 directory for @code{#include "@var{file}"}. There is no way to
11649 override this effect of @option{-I-}. With @option{-I.} you can specify
11650 searching the directory that is current when the compiler is
11651 invoked. That is not exactly the same as what the preprocessor does
11652 by default, but it is often satisfactory.
11653
11654 @option{-I-} does not inhibit the use of the standard system directories
11655 for header files. Thus, @option{-I-} and @option{-nostdinc} are
11656 independent.
11657 @end table
11658
11659 @c man end
11660
11661 @node Spec Files
11662 @section Specifying Subprocesses and the Switches to Pass to Them
11663 @cindex Spec Files
11664
11665 @command{gcc} is a driver program. It performs its job by invoking a
11666 sequence of other programs to do the work of compiling, assembling and
11667 linking. GCC interprets its command-line parameters and uses these to
11668 deduce which programs it should invoke, and which command-line options
11669 it ought to place on their command lines. This behavior is controlled
11670 by @dfn{spec strings}. In most cases there is one spec string for each
11671 program that GCC can invoke, but a few programs have multiple spec
11672 strings to control their behavior. The spec strings built into GCC can
11673 be overridden by using the @option{-specs=} command-line switch to specify
11674 a spec file.
11675
11676 @dfn{Spec files} are plaintext files that are used to construct spec
11677 strings. They consist of a sequence of directives separated by blank
11678 lines. The type of directive is determined by the first non-whitespace
11679 character on the line, which can be one of the following:
11680
11681 @table @code
11682 @item %@var{command}
11683 Issues a @var{command} to the spec file processor. The commands that can
11684 appear here are:
11685
11686 @table @code
11687 @item %include <@var{file}>
11688 @cindex @code{%include}
11689 Search for @var{file} and insert its text at the current point in the
11690 specs file.
11691
11692 @item %include_noerr <@var{file}>
11693 @cindex @code{%include_noerr}
11694 Just like @samp{%include}, but do not generate an error message if the include
11695 file cannot be found.
11696
11697 @item %rename @var{old_name} @var{new_name}
11698 @cindex @code{%rename}
11699 Rename the spec string @var{old_name} to @var{new_name}.
11700
11701 @end table
11702
11703 @item *[@var{spec_name}]:
11704 This tells the compiler to create, override or delete the named spec
11705 string. All lines after this directive up to the next directive or
11706 blank line are considered to be the text for the spec string. If this
11707 results in an empty string then the spec is deleted. (Or, if the
11708 spec did not exist, then nothing happens.) Otherwise, if the spec
11709 does not currently exist a new spec is created. If the spec does
11710 exist then its contents are overridden by the text of this
11711 directive, unless the first character of that text is the @samp{+}
11712 character, in which case the text is appended to the spec.
11713
11714 @item [@var{suffix}]:
11715 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
11716 and up to the next directive or blank line are considered to make up the
11717 spec string for the indicated suffix. When the compiler encounters an
11718 input file with the named suffix, it processes the spec string in
11719 order to work out how to compile that file. For example:
11720
11721 @smallexample
11722 .ZZ:
11723 z-compile -input %i
11724 @end smallexample
11725
11726 This says that any input file whose name ends in @samp{.ZZ} should be
11727 passed to the program @samp{z-compile}, which should be invoked with the
11728 command-line switch @option{-input} and with the result of performing the
11729 @samp{%i} substitution. (See below.)
11730
11731 As an alternative to providing a spec string, the text following a
11732 suffix directive can be one of the following:
11733
11734 @table @code
11735 @item @@@var{language}
11736 This says that the suffix is an alias for a known @var{language}. This is
11737 similar to using the @option{-x} command-line switch to GCC to specify a
11738 language explicitly. For example:
11739
11740 @smallexample
11741 .ZZ:
11742 @@c++
11743 @end smallexample
11744
11745 Says that .ZZ files are, in fact, C++ source files.
11746
11747 @item #@var{name}
11748 This causes an error messages saying:
11749
11750 @smallexample
11751 @var{name} compiler not installed on this system.
11752 @end smallexample
11753 @end table
11754
11755 GCC already has an extensive list of suffixes built into it.
11756 This directive adds an entry to the end of the list of suffixes, but
11757 since the list is searched from the end backwards, it is effectively
11758 possible to override earlier entries using this technique.
11759
11760 @end table
11761
11762 GCC has the following spec strings built into it. Spec files can
11763 override these strings or create their own. Note that individual
11764 targets can also add their own spec strings to this list.
11765
11766 @smallexample
11767 asm Options to pass to the assembler
11768 asm_final Options to pass to the assembler post-processor
11769 cpp Options to pass to the C preprocessor
11770 cc1 Options to pass to the C compiler
11771 cc1plus Options to pass to the C++ compiler
11772 endfile Object files to include at the end of the link
11773 link Options to pass to the linker
11774 lib Libraries to include on the command line to the linker
11775 libgcc Decides which GCC support library to pass to the linker
11776 linker Sets the name of the linker
11777 predefines Defines to be passed to the C preprocessor
11778 signed_char Defines to pass to CPP to say whether @code{char} is signed
11779 by default
11780 startfile Object files to include at the start of the link
11781 @end smallexample
11782
11783 Here is a small example of a spec file:
11784
11785 @smallexample
11786 %rename lib old_lib
11787
11788 *lib:
11789 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
11790 @end smallexample
11791
11792 This example renames the spec called @samp{lib} to @samp{old_lib} and
11793 then overrides the previous definition of @samp{lib} with a new one.
11794 The new definition adds in some extra command-line options before
11795 including the text of the old definition.
11796
11797 @dfn{Spec strings} are a list of command-line options to be passed to their
11798 corresponding program. In addition, the spec strings can contain
11799 @samp{%}-prefixed sequences to substitute variable text or to
11800 conditionally insert text into the command line. Using these constructs
11801 it is possible to generate quite complex command lines.
11802
11803 Here is a table of all defined @samp{%}-sequences for spec
11804 strings. Note that spaces are not generated automatically around the
11805 results of expanding these sequences. Therefore you can concatenate them
11806 together or combine them with constant text in a single argument.
11807
11808 @table @code
11809 @item %%
11810 Substitute one @samp{%} into the program name or argument.
11811
11812 @item %i
11813 Substitute the name of the input file being processed.
11814
11815 @item %b
11816 Substitute the basename of the input file being processed.
11817 This is the substring up to (and not including) the last period
11818 and not including the directory.
11819
11820 @item %B
11821 This is the same as @samp{%b}, but include the file suffix (text after
11822 the last period).
11823
11824 @item %d
11825 Marks the argument containing or following the @samp{%d} as a
11826 temporary file name, so that that file is deleted if GCC exits
11827 successfully. Unlike @samp{%g}, this contributes no text to the
11828 argument.
11829
11830 @item %g@var{suffix}
11831 Substitute a file name that has suffix @var{suffix} and is chosen
11832 once per compilation, and mark the argument in the same way as
11833 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
11834 name is now chosen in a way that is hard to predict even when previously
11835 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
11836 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
11837 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
11838 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
11839 was simply substituted with a file name chosen once per compilation,
11840 without regard to any appended suffix (which was therefore treated
11841 just like ordinary text), making such attacks more likely to succeed.
11842
11843 @item %u@var{suffix}
11844 Like @samp{%g}, but generates a new temporary file name
11845 each time it appears instead of once per compilation.
11846
11847 @item %U@var{suffix}
11848 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
11849 new one if there is no such last file name. In the absence of any
11850 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
11851 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
11852 involves the generation of two distinct file names, one
11853 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
11854 simply substituted with a file name chosen for the previous @samp{%u},
11855 without regard to any appended suffix.
11856
11857 @item %j@var{suffix}
11858 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
11859 writable, and if @option{-save-temps} is not used;
11860 otherwise, substitute the name
11861 of a temporary file, just like @samp{%u}. This temporary file is not
11862 meant for communication between processes, but rather as a junk
11863 disposal mechanism.
11864
11865 @item %|@var{suffix}
11866 @itemx %m@var{suffix}
11867 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
11868 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
11869 all. These are the two most common ways to instruct a program that it
11870 should read from standard input or write to standard output. If you
11871 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
11872 construct: see for example @file{f/lang-specs.h}.
11873
11874 @item %.@var{SUFFIX}
11875 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
11876 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
11877 terminated by the next space or %.
11878
11879 @item %w
11880 Marks the argument containing or following the @samp{%w} as the
11881 designated output file of this compilation. This puts the argument
11882 into the sequence of arguments that @samp{%o} substitutes.
11883
11884 @item %o
11885 Substitutes the names of all the output files, with spaces
11886 automatically placed around them. You should write spaces
11887 around the @samp{%o} as well or the results are undefined.
11888 @samp{%o} is for use in the specs for running the linker.
11889 Input files whose names have no recognized suffix are not compiled
11890 at all, but they are included among the output files, so they are
11891 linked.
11892
11893 @item %O
11894 Substitutes the suffix for object files. Note that this is
11895 handled specially when it immediately follows @samp{%g, %u, or %U},
11896 because of the need for those to form complete file names. The
11897 handling is such that @samp{%O} is treated exactly as if it had already
11898 been substituted, except that @samp{%g, %u, and %U} do not currently
11899 support additional @var{suffix} characters following @samp{%O} as they do
11900 following, for example, @samp{.o}.
11901
11902 @item %p
11903 Substitutes the standard macro predefinitions for the
11904 current target machine. Use this when running @command{cpp}.
11905
11906 @item %P
11907 Like @samp{%p}, but puts @samp{__} before and after the name of each
11908 predefined macro, except for macros that start with @samp{__} or with
11909 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
11910 C@.
11911
11912 @item %I
11913 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
11914 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
11915 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
11916 and @option{-imultilib} as necessary.
11917
11918 @item %s
11919 Current argument is the name of a library or startup file of some sort.
11920 Search for that file in a standard list of directories and substitute
11921 the full name found. The current working directory is included in the
11922 list of directories scanned.
11923
11924 @item %T
11925 Current argument is the name of a linker script. Search for that file
11926 in the current list of directories to scan for libraries. If the file
11927 is located insert a @option{--script} option into the command line
11928 followed by the full path name found. If the file is not found then
11929 generate an error message. Note: the current working directory is not
11930 searched.
11931
11932 @item %e@var{str}
11933 Print @var{str} as an error message. @var{str} is terminated by a newline.
11934 Use this when inconsistent options are detected.
11935
11936 @item %(@var{name})
11937 Substitute the contents of spec string @var{name} at this point.
11938
11939 @item %x@{@var{option}@}
11940 Accumulate an option for @samp{%X}.
11941
11942 @item %X
11943 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
11944 spec string.
11945
11946 @item %Y
11947 Output the accumulated assembler options specified by @option{-Wa}.
11948
11949 @item %Z
11950 Output the accumulated preprocessor options specified by @option{-Wp}.
11951
11952 @item %a
11953 Process the @code{asm} spec. This is used to compute the
11954 switches to be passed to the assembler.
11955
11956 @item %A
11957 Process the @code{asm_final} spec. This is a spec string for
11958 passing switches to an assembler post-processor, if such a program is
11959 needed.
11960
11961 @item %l
11962 Process the @code{link} spec. This is the spec for computing the
11963 command line passed to the linker. Typically it makes use of the
11964 @samp{%L %G %S %D and %E} sequences.
11965
11966 @item %D
11967 Dump out a @option{-L} option for each directory that GCC believes might
11968 contain startup files. If the target supports multilibs then the
11969 current multilib directory is prepended to each of these paths.
11970
11971 @item %L
11972 Process the @code{lib} spec. This is a spec string for deciding which
11973 libraries are included on the command line to the linker.
11974
11975 @item %G
11976 Process the @code{libgcc} spec. This is a spec string for deciding
11977 which GCC support library is included on the command line to the linker.
11978
11979 @item %S
11980 Process the @code{startfile} spec. This is a spec for deciding which
11981 object files are the first ones passed to the linker. Typically
11982 this might be a file named @file{crt0.o}.
11983
11984 @item %E
11985 Process the @code{endfile} spec. This is a spec string that specifies
11986 the last object files that are passed to the linker.
11987
11988 @item %C
11989 Process the @code{cpp} spec. This is used to construct the arguments
11990 to be passed to the C preprocessor.
11991
11992 @item %1
11993 Process the @code{cc1} spec. This is used to construct the options to be
11994 passed to the actual C compiler (@command{cc1}).
11995
11996 @item %2
11997 Process the @code{cc1plus} spec. This is used to construct the options to be
11998 passed to the actual C++ compiler (@command{cc1plus}).
11999
12000 @item %*
12001 Substitute the variable part of a matched option. See below.
12002 Note that each comma in the substituted string is replaced by
12003 a single space.
12004
12005 @item %<@code{S}
12006 Remove all occurrences of @code{-S} from the command line. Note---this
12007 command is position dependent. @samp{%} commands in the spec string
12008 before this one see @code{-S}, @samp{%} commands in the spec string
12009 after this one do not.
12010
12011 @item %:@var{function}(@var{args})
12012 Call the named function @var{function}, passing it @var{args}.
12013 @var{args} is first processed as a nested spec string, then split
12014 into an argument vector in the usual fashion. The function returns
12015 a string which is processed as if it had appeared literally as part
12016 of the current spec.
12017
12018 The following built-in spec functions are provided:
12019
12020 @table @code
12021 @item @code{getenv}
12022 The @code{getenv} spec function takes two arguments: an environment
12023 variable name and a string. If the environment variable is not
12024 defined, a fatal error is issued. Otherwise, the return value is the
12025 value of the environment variable concatenated with the string. For
12026 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
12027
12028 @smallexample
12029 %:getenv(TOPDIR /include)
12030 @end smallexample
12031
12032 expands to @file{/path/to/top/include}.
12033
12034 @item @code{if-exists}
12035 The @code{if-exists} spec function takes one argument, an absolute
12036 pathname to a file. If the file exists, @code{if-exists} returns the
12037 pathname. Here is a small example of its usage:
12038
12039 @smallexample
12040 *startfile:
12041 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
12042 @end smallexample
12043
12044 @item @code{if-exists-else}
12045 The @code{if-exists-else} spec function is similar to the @code{if-exists}
12046 spec function, except that it takes two arguments. The first argument is
12047 an absolute pathname to a file. If the file exists, @code{if-exists-else}
12048 returns the pathname. If it does not exist, it returns the second argument.
12049 This way, @code{if-exists-else} can be used to select one file or another,
12050 based on the existence of the first. Here is a small example of its usage:
12051
12052 @smallexample
12053 *startfile:
12054 crt0%O%s %:if-exists(crti%O%s) \
12055 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
12056 @end smallexample
12057
12058 @item @code{replace-outfile}
12059 The @code{replace-outfile} spec function takes two arguments. It looks for the
12060 first argument in the outfiles array and replaces it with the second argument. Here
12061 is a small example of its usage:
12062
12063 @smallexample
12064 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
12065 @end smallexample
12066
12067 @item @code{remove-outfile}
12068 The @code{remove-outfile} spec function takes one argument. It looks for the
12069 first argument in the outfiles array and removes it. Here is a small example
12070 its usage:
12071
12072 @smallexample
12073 %:remove-outfile(-lm)
12074 @end smallexample
12075
12076 @item @code{pass-through-libs}
12077 The @code{pass-through-libs} spec function takes any number of arguments. It
12078 finds any @option{-l} options and any non-options ending in @file{.a} (which it
12079 assumes are the names of linker input library archive files) and returns a
12080 result containing all the found arguments each prepended by
12081 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
12082 intended to be passed to the LTO linker plugin.
12083
12084 @smallexample
12085 %:pass-through-libs(%G %L %G)
12086 @end smallexample
12087
12088 @item @code{print-asm-header}
12089 The @code{print-asm-header} function takes no arguments and simply
12090 prints a banner like:
12091
12092 @smallexample
12093 Assembler options
12094 =================
12095
12096 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
12097 @end smallexample
12098
12099 It is used to separate compiler options from assembler options
12100 in the @option{--target-help} output.
12101 @end table
12102
12103 @item %@{@code{S}@}
12104 Substitutes the @code{-S} switch, if that switch is given to GCC@.
12105 If that switch is not specified, this substitutes nothing. Note that
12106 the leading dash is omitted when specifying this option, and it is
12107 automatically inserted if the substitution is performed. Thus the spec
12108 string @samp{%@{foo@}} matches the command-line option @option{-foo}
12109 and outputs the command-line option @option{-foo}.
12110
12111 @item %W@{@code{S}@}
12112 Like %@{@code{S}@} but mark last argument supplied within as a file to be
12113 deleted on failure.
12114
12115 @item %@{@code{S}*@}
12116 Substitutes all the switches specified to GCC whose names start
12117 with @code{-S}, but which also take an argument. This is used for
12118 switches like @option{-o}, @option{-D}, @option{-I}, etc.
12119 GCC considers @option{-o foo} as being
12120 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
12121 text, including the space. Thus two arguments are generated.
12122
12123 @item %@{@code{S}*&@code{T}*@}
12124 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
12125 (the order of @code{S} and @code{T} in the spec is not significant).
12126 There can be any number of ampersand-separated variables; for each the
12127 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
12128
12129 @item %@{@code{S}:@code{X}@}
12130 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
12131
12132 @item %@{!@code{S}:@code{X}@}
12133 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
12134
12135 @item %@{@code{S}*:@code{X}@}
12136 Substitutes @code{X} if one or more switches whose names start with
12137 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
12138 once, no matter how many such switches appeared. However, if @code{%*}
12139 appears somewhere in @code{X}, then @code{X} is substituted once
12140 for each matching switch, with the @code{%*} replaced by the part of
12141 that switch matching the @code{*}.
12142
12143 If @code{%*} appears as the last part of a spec sequence then a space
12144 is added after the end of the last substitution. If there is more
12145 text in the sequence, however, then a space is not generated. This
12146 allows the @code{%*} substitution to be used as part of a larger
12147 string. For example, a spec string like this:
12148
12149 @smallexample
12150 %@{mcu=*:--script=%*/memory.ld@}
12151 @end smallexample
12152
12153 @noindent
12154 when matching an option like @option{-mcu=newchip} produces:
12155
12156 @smallexample
12157 --script=newchip/memory.ld
12158 @end smallexample
12159
12160 @item %@{.@code{S}:@code{X}@}
12161 Substitutes @code{X}, if processing a file with suffix @code{S}.
12162
12163 @item %@{!.@code{S}:@code{X}@}
12164 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
12165
12166 @item %@{,@code{S}:@code{X}@}
12167 Substitutes @code{X}, if processing a file for language @code{S}.
12168
12169 @item %@{!,@code{S}:@code{X}@}
12170 Substitutes @code{X}, if not processing a file for language @code{S}.
12171
12172 @item %@{@code{S}|@code{P}:@code{X}@}
12173 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
12174 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
12175 @code{*} sequences as well, although they have a stronger binding than
12176 the @samp{|}. If @code{%*} appears in @code{X}, all of the
12177 alternatives must be starred, and only the first matching alternative
12178 is substituted.
12179
12180 For example, a spec string like this:
12181
12182 @smallexample
12183 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
12184 @end smallexample
12185
12186 @noindent
12187 outputs the following command-line options from the following input
12188 command-line options:
12189
12190 @smallexample
12191 fred.c -foo -baz
12192 jim.d -bar -boggle
12193 -d fred.c -foo -baz -boggle
12194 -d jim.d -bar -baz -boggle
12195 @end smallexample
12196
12197 @item %@{S:X; T:Y; :D@}
12198
12199 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
12200 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
12201 be as many clauses as you need. This may be combined with @code{.},
12202 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
12203
12204
12205 @end table
12206
12207 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
12208 construct may contain other nested @samp{%} constructs or spaces, or
12209 even newlines. They are processed as usual, as described above.
12210 Trailing white space in @code{X} is ignored. White space may also
12211 appear anywhere on the left side of the colon in these constructs,
12212 except between @code{.} or @code{*} and the corresponding word.
12213
12214 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
12215 handled specifically in these constructs. If another value of
12216 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
12217 @option{-W} switch is found later in the command line, the earlier
12218 switch value is ignored, except with @{@code{S}*@} where @code{S} is
12219 just one letter, which passes all matching options.
12220
12221 The character @samp{|} at the beginning of the predicate text is used to
12222 indicate that a command should be piped to the following command, but
12223 only if @option{-pipe} is specified.
12224
12225 It is built into GCC which switches take arguments and which do not.
12226 (You might think it would be useful to generalize this to allow each
12227 compiler's spec to say which switches take arguments. But this cannot
12228 be done in a consistent fashion. GCC cannot even decide which input
12229 files have been specified without knowing which switches take arguments,
12230 and it must know which input files to compile in order to tell which
12231 compilers to run).
12232
12233 GCC also knows implicitly that arguments starting in @option{-l} are to be
12234 treated as compiler output files, and passed to the linker in their
12235 proper position among the other output files.
12236
12237 @c man begin OPTIONS
12238
12239 @node Target Options
12240 @section Specifying Target Machine and Compiler Version
12241 @cindex target options
12242 @cindex cross compiling
12243 @cindex specifying machine version
12244 @cindex specifying compiler version and target machine
12245 @cindex compiler version, specifying
12246 @cindex target machine, specifying
12247
12248 The usual way to run GCC is to run the executable called @command{gcc}, or
12249 @command{@var{machine}-gcc} when cross-compiling, or
12250 @command{@var{machine}-gcc-@var{version}} to run a version other than the
12251 one that was installed last.
12252
12253 @node Submodel Options
12254 @section Hardware Models and Configurations
12255 @cindex submodel options
12256 @cindex specifying hardware config
12257 @cindex hardware models and configurations, specifying
12258 @cindex machine dependent options
12259
12260 Each target machine types can have its own
12261 special options, starting with @samp{-m}, to choose among various
12262 hardware models or configurations---for example, 68010 vs 68020,
12263 floating coprocessor or none. A single installed version of the
12264 compiler can compile for any model or configuration, according to the
12265 options specified.
12266
12267 Some configurations of the compiler also support additional special
12268 options, usually for compatibility with other compilers on the same
12269 platform.
12270
12271 @c This list is ordered alphanumerically by subsection name.
12272 @c It should be the same order and spelling as these options are listed
12273 @c in Machine Dependent Options
12274
12275 @menu
12276 * AArch64 Options::
12277 * Adapteva Epiphany Options::
12278 * ARC Options::
12279 * ARM Options::
12280 * AVR Options::
12281 * Blackfin Options::
12282 * C6X Options::
12283 * CRIS Options::
12284 * CR16 Options::
12285 * Darwin Options::
12286 * DEC Alpha Options::
12287 * FR30 Options::
12288 * FT32 Options::
12289 * FRV Options::
12290 * GNU/Linux Options::
12291 * H8/300 Options::
12292 * HPPA Options::
12293 * IA-64 Options::
12294 * LM32 Options::
12295 * M32C Options::
12296 * M32R/D Options::
12297 * M680x0 Options::
12298 * MCore Options::
12299 * MeP Options::
12300 * MicroBlaze Options::
12301 * MIPS Options::
12302 * MMIX Options::
12303 * MN10300 Options::
12304 * Moxie Options::
12305 * MSP430 Options::
12306 * NDS32 Options::
12307 * Nios II Options::
12308 * Nvidia PTX Options::
12309 * PDP-11 Options::
12310 * picoChip Options::
12311 * PowerPC Options::
12312 * RL78 Options::
12313 * RS/6000 and PowerPC Options::
12314 * RX Options::
12315 * S/390 and zSeries Options::
12316 * Score Options::
12317 * SH Options::
12318 * Solaris 2 Options::
12319 * SPARC Options::
12320 * SPU Options::
12321 * System V Options::
12322 * TILE-Gx Options::
12323 * TILEPro Options::
12324 * V850 Options::
12325 * VAX Options::
12326 * Visium Options::
12327 * VMS Options::
12328 * VxWorks Options::
12329 * x86 Options::
12330 * x86 Windows Options::
12331 * Xstormy16 Options::
12332 * Xtensa Options::
12333 * zSeries Options::
12334 @end menu
12335
12336 @node AArch64 Options
12337 @subsection AArch64 Options
12338 @cindex AArch64 Options
12339
12340 These options are defined for AArch64 implementations:
12341
12342 @table @gcctabopt
12343
12344 @item -mabi=@var{name}
12345 @opindex mabi
12346 Generate code for the specified data model. Permissible values
12347 are @samp{ilp32} for SysV-like data model where int, long int and pointer
12348 are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12349 but long int and pointer are 64-bit.
12350
12351 The default depends on the specific target configuration. Note that
12352 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12353 entire program with the same ABI, and link with a compatible set of libraries.
12354
12355 @item -mbig-endian
12356 @opindex mbig-endian
12357 Generate big-endian code. This is the default when GCC is configured for an
12358 @samp{aarch64_be-*-*} target.
12359
12360 @item -mgeneral-regs-only
12361 @opindex mgeneral-regs-only
12362 Generate code which uses only the general-purpose registers. This is equivalent
12363 to feature modifier @option{nofp} of @option{-march} or @option{-mcpu}, except
12364 that @option{-mgeneral-regs-only} takes precedence over any conflicting feature
12365 modifier regardless of sequence.
12366
12367 @item -mlittle-endian
12368 @opindex mlittle-endian
12369 Generate little-endian code. This is the default when GCC is configured for an
12370 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12371
12372 @item -mcmodel=tiny
12373 @opindex mcmodel=tiny
12374 Generate code for the tiny code model. The program and its statically defined
12375 symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
12376 be statically or dynamically linked. This model is not fully implemented and
12377 mostly treated as @samp{small}.
12378
12379 @item -mcmodel=small
12380 @opindex mcmodel=small
12381 Generate code for the small code model. The program and its statically defined
12382 symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
12383 be statically or dynamically linked. This is the default code model.
12384
12385 @item -mcmodel=large
12386 @opindex mcmodel=large
12387 Generate code for the large code model. This makes no assumptions about
12388 addresses and sizes of sections. Pointers are 64 bits. Programs can be
12389 statically linked only.
12390
12391 @item -mstrict-align
12392 @opindex mstrict-align
12393 Do not assume that unaligned memory references are handled by the system.
12394
12395 @item -momit-leaf-frame-pointer
12396 @itemx -mno-omit-leaf-frame-pointer
12397 @opindex momit-leaf-frame-pointer
12398 @opindex mno-omit-leaf-frame-pointer
12399 Omit or keep the frame pointer in leaf functions. The former behaviour is the
12400 default.
12401
12402 @item -mtls-dialect=desc
12403 @opindex mtls-dialect=desc
12404 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12405 of TLS variables. This is the default.
12406
12407 @item -mtls-dialect=traditional
12408 @opindex mtls-dialect=traditional
12409 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12410 of TLS variables.
12411
12412 @item -mfix-cortex-a53-835769
12413 @itemx -mno-fix-cortex-a53-835769
12414 @opindex mfix-cortex-a53-835769
12415 @opindex mno-fix-cortex-a53-835769
12416 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12417 This involves inserting a NOP instruction between memory instructions and
12418 64-bit integer multiply-accumulate instructions.
12419
12420 @item -mfix-cortex-a53-843419
12421 @itemx -mno-fix-cortex-a53-843419
12422 @opindex mfix-cortex-a53-843419
12423 @opindex mno-fix-cortex-a53-843419
12424 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
12425 This erratum workaround is made at link time and this will only pass the
12426 corresponding flag to the linker.
12427
12428 @item -march=@var{name}
12429 @opindex march
12430 Specify the name of the target architecture, optionally suffixed by one or
12431 more feature modifiers. This option has the form
12432 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12433 permissible values for @var{arch} are @samp{armv8-a} or @samp{armv8.1-a}.
12434 The permissible values for @var{feature} are documented in the sub-section
12435 below. Additionally on native AArch64 GNU/Linux systems the value
12436 @samp{native} is available. This option causes the compiler to pick the
12437 architecture of the host system. If the compiler is unable to recognize the
12438 architecture of the host system this option has no effect.
12439
12440 Where conflicting feature modifiers are specified, the right-most feature is
12441 used.
12442
12443 GCC uses this name to determine what kind of instructions it can emit when
12444 generating assembly code.
12445
12446 Where @option{-march} is specified without either of @option{-mtune}
12447 or @option{-mcpu} also being specified, the code is tuned to perform
12448 well across a range of target processors implementing the target
12449 architecture.
12450
12451 @item -mtune=@var{name}
12452 @opindex mtune
12453 Specify the name of the target processor for which GCC should tune the
12454 performance of the code. Permissible values for this option are:
12455 @samp{generic}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
12456 @samp{exynos-m1}, @samp{thunderx}, @samp{xgene1}.
12457
12458 Additionally, this option can specify that GCC should tune the performance
12459 of the code for a big.LITTLE system. Permissible values for this
12460 option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12461
12462 Additionally on native AArch64 GNU/Linux systems the value @samp{native}
12463 is available.
12464 This option causes the compiler to pick the architecture of and tune the
12465 performance of the code for the processor of the host system.
12466 If the compiler is unable to recognize the processor of the host system
12467 this option has no effect.
12468
12469 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12470 are specified, the code is tuned to perform well across a range
12471 of target processors.
12472
12473 This option cannot be suffixed by feature modifiers.
12474
12475 @item -mcpu=@var{name}
12476 @opindex mcpu
12477 Specify the name of the target processor, optionally suffixed by one or more
12478 feature modifiers. This option has the form
12479 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12480 permissible values for @var{cpu} are the same as those available for
12481 @option{-mtune}. Additionally on native AArch64 GNU/Linux systems the
12482 value @samp{native} is available.
12483 This option causes the compiler to tune the performance of the code for the
12484 processor of the host system. If the compiler is unable to recognize the
12485 processor of the host system this option has no effect.
12486
12487 The permissible values for @var{feature} are documented in the sub-section
12488 below.
12489
12490 Where conflicting feature modifiers are specified, the right-most feature is
12491 used.
12492
12493 GCC uses this name to determine what kind of instructions it can emit when
12494 generating assembly code (as if by @option{-march}) and to determine
12495 the target processor for which to tune for performance (as if
12496 by @option{-mtune}). Where this option is used in conjunction
12497 with @option{-march} or @option{-mtune}, those options take precedence
12498 over the appropriate part of this option.
12499 @end table
12500
12501 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12502 @cindex @option{-march} feature modifiers
12503 @cindex @option{-mcpu} feature modifiers
12504 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
12505 the following and their inverses @option{no@var{feature}}:
12506
12507 @table @samp
12508 @item crc
12509 Enable CRC extension.
12510 @item crypto
12511 Enable Crypto extension. This also enables Advanced SIMD and floating-point
12512 instructions.
12513 @item fp
12514 Enable floating-point instructions. This is on by default for all possible
12515 values for options @option{-march} and @option{-mcpu}.
12516 @item simd
12517 Enable Advanced SIMD instructions. This also enables floating-point
12518 instructions. This is on by default for all possible values for options
12519 @option{-march} and @option{-mcpu}.
12520 @item lse
12521 Enable Large System Extension instructions.
12522 @item pan
12523 Enable Privileged Access Never support.
12524 @item lor
12525 Enable Limited Ordering Regions support.
12526 @item rdma
12527 Enable ARMv8.1 Advanced SIMD instructions.
12528 @end table
12529
12530 That is, @option{crypto} implies @option{simd} implies @option{fp}.
12531 Conversely, @option{nofp} (or equivalently, @option{-mgeneral-regs-only})
12532 implies @option{nosimd} implies @option{nocrypto}.
12533
12534 @node Adapteva Epiphany Options
12535 @subsection Adapteva Epiphany Options
12536
12537 These @samp{-m} options are defined for Adapteva Epiphany:
12538
12539 @table @gcctabopt
12540 @item -mhalf-reg-file
12541 @opindex mhalf-reg-file
12542 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12543 That allows code to run on hardware variants that lack these registers.
12544
12545 @item -mprefer-short-insn-regs
12546 @opindex mprefer-short-insn-regs
12547 Preferrentially allocate registers that allow short instruction generation.
12548 This can result in increased instruction count, so this may either reduce or
12549 increase overall code size.
12550
12551 @item -mbranch-cost=@var{num}
12552 @opindex mbranch-cost
12553 Set the cost of branches to roughly @var{num} ``simple'' instructions.
12554 This cost is only a heuristic and is not guaranteed to produce
12555 consistent results across releases.
12556
12557 @item -mcmove
12558 @opindex mcmove
12559 Enable the generation of conditional moves.
12560
12561 @item -mnops=@var{num}
12562 @opindex mnops
12563 Emit @var{num} NOPs before every other generated instruction.
12564
12565 @item -mno-soft-cmpsf
12566 @opindex mno-soft-cmpsf
12567 For single-precision floating-point comparisons, emit an @code{fsub} instruction
12568 and test the flags. This is faster than a software comparison, but can
12569 get incorrect results in the presence of NaNs, or when two different small
12570 numbers are compared such that their difference is calculated as zero.
12571 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12572 software comparisons.
12573
12574 @item -mstack-offset=@var{num}
12575 @opindex mstack-offset
12576 Set the offset between the top of the stack and the stack pointer.
12577 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12578 can be used by leaf functions without stack allocation.
12579 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12580 Note also that this option changes the ABI; compiling a program with a
12581 different stack offset than the libraries have been compiled with
12582 generally does not work.
12583 This option can be useful if you want to evaluate if a different stack
12584 offset would give you better code, but to actually use a different stack
12585 offset to build working programs, it is recommended to configure the
12586 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12587
12588 @item -mno-round-nearest
12589 @opindex mno-round-nearest
12590 Make the scheduler assume that the rounding mode has been set to
12591 truncating. The default is @option{-mround-nearest}.
12592
12593 @item -mlong-calls
12594 @opindex mlong-calls
12595 If not otherwise specified by an attribute, assume all calls might be beyond
12596 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12597 function address into a register before performing a (otherwise direct) call.
12598 This is the default.
12599
12600 @item -mshort-calls
12601 @opindex short-calls
12602 If not otherwise specified by an attribute, assume all direct calls are
12603 in the range of the @code{b} / @code{bl} instructions, so use these instructions
12604 for direct calls. The default is @option{-mlong-calls}.
12605
12606 @item -msmall16
12607 @opindex msmall16
12608 Assume addresses can be loaded as 16-bit unsigned values. This does not
12609 apply to function addresses for which @option{-mlong-calls} semantics
12610 are in effect.
12611
12612 @item -mfp-mode=@var{mode}
12613 @opindex mfp-mode
12614 Set the prevailing mode of the floating-point unit.
12615 This determines the floating-point mode that is provided and expected
12616 at function call and return time. Making this mode match the mode you
12617 predominantly need at function start can make your programs smaller and
12618 faster by avoiding unnecessary mode switches.
12619
12620 @var{mode} can be set to one the following values:
12621
12622 @table @samp
12623 @item caller
12624 Any mode at function entry is valid, and retained or restored when
12625 the function returns, and when it calls other functions.
12626 This mode is useful for compiling libraries or other compilation units
12627 you might want to incorporate into different programs with different
12628 prevailing FPU modes, and the convenience of being able to use a single
12629 object file outweighs the size and speed overhead for any extra
12630 mode switching that might be needed, compared with what would be needed
12631 with a more specific choice of prevailing FPU mode.
12632
12633 @item truncate
12634 This is the mode used for floating-point calculations with
12635 truncating (i.e.@: round towards zero) rounding mode. That includes
12636 conversion from floating point to integer.
12637
12638 @item round-nearest
12639 This is the mode used for floating-point calculations with
12640 round-to-nearest-or-even rounding mode.
12641
12642 @item int
12643 This is the mode used to perform integer calculations in the FPU, e.g.@:
12644 integer multiply, or integer multiply-and-accumulate.
12645 @end table
12646
12647 The default is @option{-mfp-mode=caller}
12648
12649 @item -mnosplit-lohi
12650 @itemx -mno-postinc
12651 @itemx -mno-postmodify
12652 @opindex mnosplit-lohi
12653 @opindex mno-postinc
12654 @opindex mno-postmodify
12655 Code generation tweaks that disable, respectively, splitting of 32-bit
12656 loads, generation of post-increment addresses, and generation of
12657 post-modify addresses. The defaults are @option{msplit-lohi},
12658 @option{-mpost-inc}, and @option{-mpost-modify}.
12659
12660 @item -mnovect-double
12661 @opindex mno-vect-double
12662 Change the preferred SIMD mode to SImode. The default is
12663 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
12664
12665 @item -max-vect-align=@var{num}
12666 @opindex max-vect-align
12667 The maximum alignment for SIMD vector mode types.
12668 @var{num} may be 4 or 8. The default is 8.
12669 Note that this is an ABI change, even though many library function
12670 interfaces are unaffected if they don't use SIMD vector modes
12671 in places that affect size and/or alignment of relevant types.
12672
12673 @item -msplit-vecmove-early
12674 @opindex msplit-vecmove-early
12675 Split vector moves into single word moves before reload. In theory this
12676 can give better register allocation, but so far the reverse seems to be
12677 generally the case.
12678
12679 @item -m1reg-@var{reg}
12680 @opindex m1reg-
12681 Specify a register to hold the constant @minus{}1, which makes loading small negative
12682 constants and certain bitmasks faster.
12683 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
12684 which specify use of that register as a fixed register,
12685 and @samp{none}, which means that no register is used for this
12686 purpose. The default is @option{-m1reg-none}.
12687
12688 @end table
12689
12690 @node ARC Options
12691 @subsection ARC Options
12692 @cindex ARC options
12693
12694 The following options control the architecture variant for which code
12695 is being compiled:
12696
12697 @c architecture variants
12698 @table @gcctabopt
12699
12700 @item -mbarrel-shifter
12701 @opindex mbarrel-shifter
12702 Generate instructions supported by barrel shifter. This is the default
12703 unless @option{-mcpu=ARC601} is in effect.
12704
12705 @item -mcpu=@var{cpu}
12706 @opindex mcpu
12707 Set architecture type, register usage, and instruction scheduling
12708 parameters for @var{cpu}. There are also shortcut alias options
12709 available for backward compatibility and convenience. Supported
12710 values for @var{cpu} are
12711
12712 @table @samp
12713 @opindex mA6
12714 @opindex mARC600
12715 @item ARC600
12716 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
12717
12718 @item ARC601
12719 @opindex mARC601
12720 Compile for ARC601. Alias: @option{-mARC601}.
12721
12722 @item ARC700
12723 @opindex mA7
12724 @opindex mARC700
12725 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
12726 This is the default when configured with @option{--with-cpu=arc700}@.
12727 @end table
12728
12729 @item -mdpfp
12730 @opindex mdpfp
12731 @itemx -mdpfp-compact
12732 @opindex mdpfp-compact
12733 FPX: Generate Double Precision FPX instructions, tuned for the compact
12734 implementation.
12735
12736 @item -mdpfp-fast
12737 @opindex mdpfp-fast
12738 FPX: Generate Double Precision FPX instructions, tuned for the fast
12739 implementation.
12740
12741 @item -mno-dpfp-lrsr
12742 @opindex mno-dpfp-lrsr
12743 Disable LR and SR instructions from using FPX extension aux registers.
12744
12745 @item -mea
12746 @opindex mea
12747 Generate Extended arithmetic instructions. Currently only
12748 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
12749 supported. This is always enabled for @option{-mcpu=ARC700}.
12750
12751 @item -mno-mpy
12752 @opindex mno-mpy
12753 Do not generate mpy instructions for ARC700.
12754
12755 @item -mmul32x16
12756 @opindex mmul32x16
12757 Generate 32x16 bit multiply and mac instructions.
12758
12759 @item -mmul64
12760 @opindex mmul64
12761 Generate mul64 and mulu64 instructions. Only valid for @option{-mcpu=ARC600}.
12762
12763 @item -mnorm
12764 @opindex mnorm
12765 Generate norm instruction. This is the default if @option{-mcpu=ARC700}
12766 is in effect.
12767
12768 @item -mspfp
12769 @opindex mspfp
12770 @itemx -mspfp-compact
12771 @opindex mspfp-compact
12772 FPX: Generate Single Precision FPX instructions, tuned for the compact
12773 implementation.
12774
12775 @item -mspfp-fast
12776 @opindex mspfp-fast
12777 FPX: Generate Single Precision FPX instructions, tuned for the fast
12778 implementation.
12779
12780 @item -msimd
12781 @opindex msimd
12782 Enable generation of ARC SIMD instructions via target-specific
12783 builtins. Only valid for @option{-mcpu=ARC700}.
12784
12785 @item -msoft-float
12786 @opindex msoft-float
12787 This option ignored; it is provided for compatibility purposes only.
12788 Software floating point code is emitted by default, and this default
12789 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
12790 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
12791 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
12792
12793 @item -mswap
12794 @opindex mswap
12795 Generate swap instructions.
12796
12797 @end table
12798
12799 The following options are passed through to the assembler, and also
12800 define preprocessor macro symbols.
12801
12802 @c Flags used by the assembler, but for which we define preprocessor
12803 @c macro symbols as well.
12804 @table @gcctabopt
12805 @item -mdsp-packa
12806 @opindex mdsp-packa
12807 Passed down to the assembler to enable the DSP Pack A extensions.
12808 Also sets the preprocessor symbol @code{__Xdsp_packa}.
12809
12810 @item -mdvbf
12811 @opindex mdvbf
12812 Passed down to the assembler to enable the dual viterbi butterfly
12813 extension. Also sets the preprocessor symbol @code{__Xdvbf}.
12814
12815 @c ARC700 4.10 extension instruction
12816 @item -mlock
12817 @opindex mlock
12818 Passed down to the assembler to enable the Locked Load/Store
12819 Conditional extension. Also sets the preprocessor symbol
12820 @code{__Xlock}.
12821
12822 @item -mmac-d16
12823 @opindex mmac-d16
12824 Passed down to the assembler. Also sets the preprocessor symbol
12825 @code{__Xxmac_d16}.
12826
12827 @item -mmac-24
12828 @opindex mmac-24
12829 Passed down to the assembler. Also sets the preprocessor symbol
12830 @code{__Xxmac_24}.
12831
12832 @c ARC700 4.10 extension instruction
12833 @item -mrtsc
12834 @opindex mrtsc
12835 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
12836 extension instruction. Also sets the preprocessor symbol
12837 @code{__Xrtsc}.
12838
12839 @c ARC700 4.10 extension instruction
12840 @item -mswape
12841 @opindex mswape
12842 Passed down to the assembler to enable the swap byte ordering
12843 extension instruction. Also sets the preprocessor symbol
12844 @code{__Xswape}.
12845
12846 @item -mtelephony
12847 @opindex mtelephony
12848 Passed down to the assembler to enable dual and single operand
12849 instructions for telephony. Also sets the preprocessor symbol
12850 @code{__Xtelephony}.
12851
12852 @item -mxy
12853 @opindex mxy
12854 Passed down to the assembler to enable the XY Memory extension. Also
12855 sets the preprocessor symbol @code{__Xxy}.
12856
12857 @end table
12858
12859 The following options control how the assembly code is annotated:
12860
12861 @c Assembly annotation options
12862 @table @gcctabopt
12863 @item -misize
12864 @opindex misize
12865 Annotate assembler instructions with estimated addresses.
12866
12867 @item -mannotate-align
12868 @opindex mannotate-align
12869 Explain what alignment considerations lead to the decision to make an
12870 instruction short or long.
12871
12872 @end table
12873
12874 The following options are passed through to the linker:
12875
12876 @c options passed through to the linker
12877 @table @gcctabopt
12878 @item -marclinux
12879 @opindex marclinux
12880 Passed through to the linker, to specify use of the @code{arclinux} emulation.
12881 This option is enabled by default in tool chains built for
12882 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
12883 when profiling is not requested.
12884
12885 @item -marclinux_prof
12886 @opindex marclinux_prof
12887 Passed through to the linker, to specify use of the
12888 @code{arclinux_prof} emulation. This option is enabled by default in
12889 tool chains built for @w{@code{arc-linux-uclibc}} and
12890 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
12891
12892 @end table
12893
12894 The following options control the semantics of generated code:
12895
12896 @c semantically relevant code generation options
12897 @table @gcctabopt
12898 @item -mepilogue-cfi
12899 @opindex mepilogue-cfi
12900 Enable generation of call frame information for epilogues.
12901
12902 @item -mno-epilogue-cfi
12903 @opindex mno-epilogue-cfi
12904 Disable generation of call frame information for epilogues.
12905
12906 @item -mlong-calls
12907 @opindex mlong-calls
12908 Generate call insns as register indirect calls, thus providing access
12909 to the full 32-bit address range.
12910
12911 @item -mmedium-calls
12912 @opindex mmedium-calls
12913 Don't use less than 25 bit addressing range for calls, which is the
12914 offset available for an unconditional branch-and-link
12915 instruction. Conditional execution of function calls is suppressed, to
12916 allow use of the 25-bit range, rather than the 21-bit range with
12917 conditional branch-and-link. This is the default for tool chains built
12918 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
12919
12920 @item -mno-sdata
12921 @opindex mno-sdata
12922 Do not generate sdata references. This is the default for tool chains
12923 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
12924 targets.
12925
12926 @item -mucb-mcount
12927 @opindex mucb-mcount
12928 Instrument with mcount calls as used in UCB code. I.e. do the
12929 counting in the callee, not the caller. By default ARC instrumentation
12930 counts in the caller.
12931
12932 @item -mvolatile-cache
12933 @opindex mvolatile-cache
12934 Use ordinarily cached memory accesses for volatile references. This is the
12935 default.
12936
12937 @item -mno-volatile-cache
12938 @opindex mno-volatile-cache
12939 Enable cache bypass for volatile references.
12940
12941 @end table
12942
12943 The following options fine tune code generation:
12944 @c code generation tuning options
12945 @table @gcctabopt
12946 @item -malign-call
12947 @opindex malign-call
12948 Do alignment optimizations for call instructions.
12949
12950 @item -mauto-modify-reg
12951 @opindex mauto-modify-reg
12952 Enable the use of pre/post modify with register displacement.
12953
12954 @item -mbbit-peephole
12955 @opindex mbbit-peephole
12956 Enable bbit peephole2.
12957
12958 @item -mno-brcc
12959 @opindex mno-brcc
12960 This option disables a target-specific pass in @file{arc_reorg} to
12961 generate @code{BRcc} instructions. It has no effect on @code{BRcc}
12962 generation driven by the combiner pass.
12963
12964 @item -mcase-vector-pcrel
12965 @opindex mcase-vector-pcrel
12966 Use pc-relative switch case tables - this enables case table shortening.
12967 This is the default for @option{-Os}.
12968
12969 @item -mcompact-casesi
12970 @opindex mcompact-casesi
12971 Enable compact casesi pattern.
12972 This is the default for @option{-Os}.
12973
12974 @item -mno-cond-exec
12975 @opindex mno-cond-exec
12976 Disable ARCompact specific pass to generate conditional execution instructions.
12977 Due to delay slot scheduling and interactions between operand numbers,
12978 literal sizes, instruction lengths, and the support for conditional execution,
12979 the target-independent pass to generate conditional execution is often lacking,
12980 so the ARC port has kept a special pass around that tries to find more
12981 conditional execution generating opportunities after register allocation,
12982 branch shortening, and delay slot scheduling have been done. This pass
12983 generally, but not always, improves performance and code size, at the cost of
12984 extra compilation time, which is why there is an option to switch it off.
12985 If you have a problem with call instructions exceeding their allowable
12986 offset range because they are conditionalized, you should consider using
12987 @option{-mmedium-calls} instead.
12988
12989 @item -mearly-cbranchsi
12990 @opindex mearly-cbranchsi
12991 Enable pre-reload use of the cbranchsi pattern.
12992
12993 @item -mexpand-adddi
12994 @opindex mexpand-adddi
12995 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
12996 @code{add.f}, @code{adc} etc.
12997
12998 @item -mindexed-loads
12999 @opindex mindexed-loads
13000 Enable the use of indexed loads. This can be problematic because some
13001 optimizers then assume that indexed stores exist, which is not
13002 the case.
13003
13004 @item -mlra
13005 @opindex mlra
13006 Enable Local Register Allocation. This is still experimental for ARC,
13007 so by default the compiler uses standard reload
13008 (i.e. @option{-mno-lra}).
13009
13010 @item -mlra-priority-none
13011 @opindex mlra-priority-none
13012 Don't indicate any priority for target registers.
13013
13014 @item -mlra-priority-compact
13015 @opindex mlra-priority-compact
13016 Indicate target register priority for r0..r3 / r12..r15.
13017
13018 @item -mlra-priority-noncompact
13019 @opindex mlra-priority-noncompact
13020 Reduce target regsiter priority for r0..r3 / r12..r15.
13021
13022 @item -mno-millicode
13023 @opindex mno-millicode
13024 When optimizing for size (using @option{-Os}), prologues and epilogues
13025 that have to save or restore a large number of registers are often
13026 shortened by using call to a special function in libgcc; this is
13027 referred to as a @emph{millicode} call. As these calls can pose
13028 performance issues, and/or cause linking issues when linking in a
13029 nonstandard way, this option is provided to turn off millicode call
13030 generation.
13031
13032 @item -mmixed-code
13033 @opindex mmixed-code
13034 Tweak register allocation to help 16-bit instruction generation.
13035 This generally has the effect of decreasing the average instruction size
13036 while increasing the instruction count.
13037
13038 @item -mq-class
13039 @opindex mq-class
13040 Enable 'q' instruction alternatives.
13041 This is the default for @option{-Os}.
13042
13043 @item -mRcq
13044 @opindex mRcq
13045 Enable Rcq constraint handling - most short code generation depends on this.
13046 This is the default.
13047
13048 @item -mRcw
13049 @opindex mRcw
13050 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
13051 This is the default.
13052
13053 @item -msize-level=@var{level}
13054 @opindex msize-level
13055 Fine-tune size optimization with regards to instruction lengths and alignment.
13056 The recognized values for @var{level} are:
13057 @table @samp
13058 @item 0
13059 No size optimization. This level is deprecated and treated like @samp{1}.
13060
13061 @item 1
13062 Short instructions are used opportunistically.
13063
13064 @item 2
13065 In addition, alignment of loops and of code after barriers are dropped.
13066
13067 @item 3
13068 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
13069
13070 @end table
13071
13072 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
13073 the behavior when this is not set is equivalent to level @samp{1}.
13074
13075 @item -mtune=@var{cpu}
13076 @opindex mtune
13077 Set instruction scheduling parameters for @var{cpu}, overriding any implied
13078 by @option{-mcpu=}.
13079
13080 Supported values for @var{cpu} are
13081
13082 @table @samp
13083 @item ARC600
13084 Tune for ARC600 cpu.
13085
13086 @item ARC601
13087 Tune for ARC601 cpu.
13088
13089 @item ARC700
13090 Tune for ARC700 cpu with standard multiplier block.
13091
13092 @item ARC700-xmac
13093 Tune for ARC700 cpu with XMAC block.
13094
13095 @item ARC725D
13096 Tune for ARC725D cpu.
13097
13098 @item ARC750D
13099 Tune for ARC750D cpu.
13100
13101 @end table
13102
13103 @item -mmultcost=@var{num}
13104 @opindex mmultcost
13105 Cost to assume for a multiply instruction, with @samp{4} being equal to a
13106 normal instruction.
13107
13108 @item -munalign-prob-threshold=@var{probability}
13109 @opindex munalign-prob-threshold
13110 Set probability threshold for unaligning branches.
13111 When tuning for @samp{ARC700} and optimizing for speed, branches without
13112 filled delay slot are preferably emitted unaligned and long, unless
13113 profiling indicates that the probability for the branch to be taken
13114 is below @var{probability}. @xref{Cross-profiling}.
13115 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13116
13117 @end table
13118
13119 The following options are maintained for backward compatibility, but
13120 are now deprecated and will be removed in a future release:
13121
13122 @c Deprecated options
13123 @table @gcctabopt
13124
13125 @item -margonaut
13126 @opindex margonaut
13127 Obsolete FPX.
13128
13129 @item -mbig-endian
13130 @opindex mbig-endian
13131 @itemx -EB
13132 @opindex EB
13133 Compile code for big endian targets. Use of these options is now
13134 deprecated. Users wanting big-endian code, should use the
13135 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13136 building the tool chain, for which big-endian is the default.
13137
13138 @item -mlittle-endian
13139 @opindex mlittle-endian
13140 @itemx -EL
13141 @opindex EL
13142 Compile code for little endian targets. Use of these options is now
13143 deprecated. Users wanting little-endian code should use the
13144 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13145 building the tool chain, for which little-endian is the default.
13146
13147 @item -mbarrel_shifter
13148 @opindex mbarrel_shifter
13149 Replaced by @option{-mbarrel-shifter}.
13150
13151 @item -mdpfp_compact
13152 @opindex mdpfp_compact
13153 Replaced by @option{-mdpfp-compact}.
13154
13155 @item -mdpfp_fast
13156 @opindex mdpfp_fast
13157 Replaced by @option{-mdpfp-fast}.
13158
13159 @item -mdsp_packa
13160 @opindex mdsp_packa
13161 Replaced by @option{-mdsp-packa}.
13162
13163 @item -mEA
13164 @opindex mEA
13165 Replaced by @option{-mea}.
13166
13167 @item -mmac_24
13168 @opindex mmac_24
13169 Replaced by @option{-mmac-24}.
13170
13171 @item -mmac_d16
13172 @opindex mmac_d16
13173 Replaced by @option{-mmac-d16}.
13174
13175 @item -mspfp_compact
13176 @opindex mspfp_compact
13177 Replaced by @option{-mspfp-compact}.
13178
13179 @item -mspfp_fast
13180 @opindex mspfp_fast
13181 Replaced by @option{-mspfp-fast}.
13182
13183 @item -mtune=@var{cpu}
13184 @opindex mtune
13185 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13186 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13187 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13188
13189 @item -multcost=@var{num}
13190 @opindex multcost
13191 Replaced by @option{-mmultcost}.
13192
13193 @end table
13194
13195 @node ARM Options
13196 @subsection ARM Options
13197 @cindex ARM options
13198
13199 These @samp{-m} options are defined for the ARM port:
13200
13201 @table @gcctabopt
13202 @item -mabi=@var{name}
13203 @opindex mabi
13204 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
13205 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13206
13207 @item -mapcs-frame
13208 @opindex mapcs-frame
13209 Generate a stack frame that is compliant with the ARM Procedure Call
13210 Standard for all functions, even if this is not strictly necessary for
13211 correct execution of the code. Specifying @option{-fomit-frame-pointer}
13212 with this option causes the stack frames not to be generated for
13213 leaf functions. The default is @option{-mno-apcs-frame}.
13214 This option is deprecated.
13215
13216 @item -mapcs
13217 @opindex mapcs
13218 This is a synonym for @option{-mapcs-frame} and is deprecated.
13219
13220 @ignore
13221 @c not currently implemented
13222 @item -mapcs-stack-check
13223 @opindex mapcs-stack-check
13224 Generate code to check the amount of stack space available upon entry to
13225 every function (that actually uses some stack space). If there is
13226 insufficient space available then either the function
13227 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13228 called, depending upon the amount of stack space required. The runtime
13229 system is required to provide these functions. The default is
13230 @option{-mno-apcs-stack-check}, since this produces smaller code.
13231
13232 @c not currently implemented
13233 @item -mapcs-float
13234 @opindex mapcs-float
13235 Pass floating-point arguments using the floating-point registers. This is
13236 one of the variants of the APCS@. This option is recommended if the
13237 target hardware has a floating-point unit or if a lot of floating-point
13238 arithmetic is going to be performed by the code. The default is
13239 @option{-mno-apcs-float}, since the size of integer-only code is
13240 slightly increased if @option{-mapcs-float} is used.
13241
13242 @c not currently implemented
13243 @item -mapcs-reentrant
13244 @opindex mapcs-reentrant
13245 Generate reentrant, position-independent code. The default is
13246 @option{-mno-apcs-reentrant}.
13247 @end ignore
13248
13249 @item -mthumb-interwork
13250 @opindex mthumb-interwork
13251 Generate code that supports calling between the ARM and Thumb
13252 instruction sets. Without this option, on pre-v5 architectures, the
13253 two instruction sets cannot be reliably used inside one program. The
13254 default is @option{-mno-thumb-interwork}, since slightly larger code
13255 is generated when @option{-mthumb-interwork} is specified. In AAPCS
13256 configurations this option is meaningless.
13257
13258 @item -mno-sched-prolog
13259 @opindex mno-sched-prolog
13260 Prevent the reordering of instructions in the function prologue, or the
13261 merging of those instruction with the instructions in the function's
13262 body. This means that all functions start with a recognizable set
13263 of instructions (or in fact one of a choice from a small set of
13264 different function prologues), and this information can be used to
13265 locate the start of functions inside an executable piece of code. The
13266 default is @option{-msched-prolog}.
13267
13268 @item -mfloat-abi=@var{name}
13269 @opindex mfloat-abi
13270 Specifies which floating-point ABI to use. Permissible values
13271 are: @samp{soft}, @samp{softfp} and @samp{hard}.
13272
13273 Specifying @samp{soft} causes GCC to generate output containing
13274 library calls for floating-point operations.
13275 @samp{softfp} allows the generation of code using hardware floating-point
13276 instructions, but still uses the soft-float calling conventions.
13277 @samp{hard} allows generation of floating-point instructions
13278 and uses FPU-specific calling conventions.
13279
13280 The default depends on the specific target configuration. Note that
13281 the hard-float and soft-float ABIs are not link-compatible; you must
13282 compile your entire program with the same ABI, and link with a
13283 compatible set of libraries.
13284
13285 @item -mlittle-endian
13286 @opindex mlittle-endian
13287 Generate code for a processor running in little-endian mode. This is
13288 the default for all standard configurations.
13289
13290 @item -mbig-endian
13291 @opindex mbig-endian
13292 Generate code for a processor running in big-endian mode; the default is
13293 to compile code for a little-endian processor.
13294
13295 @item -march=@var{name}
13296 @opindex march
13297 This specifies the name of the target ARM architecture. GCC uses this
13298 name to determine what kind of instructions it can emit when generating
13299 assembly code. This option can be used in conjunction with or instead
13300 of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
13301 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13302 @samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13303 @samp{armv6}, @samp{armv6j},
13304 @samp{armv6t2}, @samp{armv6z}, @samp{armv6zk}, @samp{armv6-m},
13305 @samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13306 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc},
13307 @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13308
13309 @option{-march=armv7ve} is the armv7-a architecture with virtualization
13310 extensions.
13311
13312 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13313 architecture together with the optional CRC32 extensions.
13314
13315 @option{-march=native} causes the compiler to auto-detect the architecture
13316 of the build computer. At present, this feature is only supported on
13317 GNU/Linux, and not all architectures are recognized. If the auto-detect
13318 is unsuccessful the option has no effect.
13319
13320 @item -mtune=@var{name}
13321 @opindex mtune
13322 This option specifies the name of the target ARM processor for
13323 which GCC should tune the performance of the code.
13324 For some ARM implementations better performance can be obtained by using
13325 this option.
13326 Permissible names are: @samp{arm2}, @samp{arm250},
13327 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13328 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13329 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13330 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13331 @samp{arm720},
13332 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13333 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13334 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13335 @samp{strongarm1110},
13336 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13337 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13338 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13339 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13340 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13341 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13342 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13343 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
13344 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
13345 @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
13346 @samp{cortex-r4},
13347 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13348 @samp{cortex-m4},
13349 @samp{cortex-m3},
13350 @samp{cortex-m1},
13351 @samp{cortex-m0},
13352 @samp{cortex-m0plus},
13353 @samp{cortex-m1.small-multiply},
13354 @samp{cortex-m0.small-multiply},
13355 @samp{cortex-m0plus.small-multiply},
13356 @samp{exynos-m1},
13357 @samp{marvell-pj4},
13358 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13359 @samp{fa526}, @samp{fa626},
13360 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13361 @samp{xgene1}.
13362
13363 Additionally, this option can specify that GCC should tune the performance
13364 of the code for a big.LITTLE system. Permissible names are:
13365 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
13366 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
13367
13368 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13369 performance for a blend of processors within architecture @var{arch}.
13370 The aim is to generate code that run well on the current most popular
13371 processors, balancing between optimizations that benefit some CPUs in the
13372 range, and avoiding performance pitfalls of other CPUs. The effects of
13373 this option may change in future GCC versions as CPU models come and go.
13374
13375 @option{-mtune=native} causes the compiler to auto-detect the CPU
13376 of the build computer. At present, this feature is only supported on
13377 GNU/Linux, and not all architectures are recognized. If the auto-detect is
13378 unsuccessful the option has no effect.
13379
13380 @item -mcpu=@var{name}
13381 @opindex mcpu
13382 This specifies the name of the target ARM processor. GCC uses this name
13383 to derive the name of the target ARM architecture (as if specified
13384 by @option{-march}) and the ARM processor type for which to tune for
13385 performance (as if specified by @option{-mtune}). Where this option
13386 is used in conjunction with @option{-march} or @option{-mtune},
13387 those options take precedence over the appropriate part of this option.
13388
13389 Permissible names for this option are the same as those for
13390 @option{-mtune}.
13391
13392 @option{-mcpu=generic-@var{arch}} is also permissible, and is
13393 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13394 See @option{-mtune} for more information.
13395
13396 @option{-mcpu=native} causes the compiler to auto-detect the CPU
13397 of the build computer. At present, this feature is only supported on
13398 GNU/Linux, and not all architectures are recognized. If the auto-detect
13399 is unsuccessful the option has no effect.
13400
13401 @item -mfpu=@var{name}
13402 @opindex mfpu
13403 This specifies what floating-point hardware (or hardware emulation) is
13404 available on the target. Permissible names are: @samp{vfp}, @samp{vfpv3},
13405 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13406 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13407 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13408 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
13409 @samp{fp-armv8}, @samp{neon-fp-armv8}, and @samp{crypto-neon-fp-armv8}.
13410
13411 If @option{-msoft-float} is specified this specifies the format of
13412 floating-point values.
13413
13414 If the selected floating-point hardware includes the NEON extension
13415 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13416 operations are not generated by GCC's auto-vectorization pass unless
13417 @option{-funsafe-math-optimizations} is also specified. This is
13418 because NEON hardware does not fully implement the IEEE 754 standard for
13419 floating-point arithmetic (in particular denormal values are treated as
13420 zero), so the use of NEON instructions may lead to a loss of precision.
13421
13422 @item -mfp16-format=@var{name}
13423 @opindex mfp16-format
13424 Specify the format of the @code{__fp16} half-precision floating-point type.
13425 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13426 the default is @samp{none}, in which case the @code{__fp16} type is not
13427 defined. @xref{Half-Precision}, for more information.
13428
13429 @item -mstructure-size-boundary=@var{n}
13430 @opindex mstructure-size-boundary
13431 The sizes of all structures and unions are rounded up to a multiple
13432 of the number of bits set by this option. Permissible values are 8, 32
13433 and 64. The default value varies for different toolchains. For the COFF
13434 targeted toolchain the default value is 8. A value of 64 is only allowed
13435 if the underlying ABI supports it.
13436
13437 Specifying a larger number can produce faster, more efficient code, but
13438 can also increase the size of the program. Different values are potentially
13439 incompatible. Code compiled with one value cannot necessarily expect to
13440 work with code or libraries compiled with another value, if they exchange
13441 information using structures or unions.
13442
13443 @item -mabort-on-noreturn
13444 @opindex mabort-on-noreturn
13445 Generate a call to the function @code{abort} at the end of a
13446 @code{noreturn} function. It is executed if the function tries to
13447 return.
13448
13449 @item -mlong-calls
13450 @itemx -mno-long-calls
13451 @opindex mlong-calls
13452 @opindex mno-long-calls
13453 Tells the compiler to perform function calls by first loading the
13454 address of the function into a register and then performing a subroutine
13455 call on this register. This switch is needed if the target function
13456 lies outside of the 64-megabyte addressing range of the offset-based
13457 version of subroutine call instruction.
13458
13459 Even if this switch is enabled, not all function calls are turned
13460 into long calls. The heuristic is that static functions, functions
13461 that have the @code{short_call} attribute, functions that are inside
13462 the scope of a @code{#pragma no_long_calls} directive, and functions whose
13463 definitions have already been compiled within the current compilation
13464 unit are not turned into long calls. The exceptions to this rule are
13465 that weak function definitions, functions with the @code{long_call}
13466 attribute or the @code{section} attribute, and functions that are within
13467 the scope of a @code{#pragma long_calls} directive are always
13468 turned into long calls.
13469
13470 This feature is not enabled by default. Specifying
13471 @option{-mno-long-calls} restores the default behavior, as does
13472 placing the function calls within the scope of a @code{#pragma
13473 long_calls_off} directive. Note these switches have no effect on how
13474 the compiler generates code to handle function calls via function
13475 pointers.
13476
13477 @item -msingle-pic-base
13478 @opindex msingle-pic-base
13479 Treat the register used for PIC addressing as read-only, rather than
13480 loading it in the prologue for each function. The runtime system is
13481 responsible for initializing this register with an appropriate value
13482 before execution begins.
13483
13484 @item -mpic-register=@var{reg}
13485 @opindex mpic-register
13486 Specify the register to be used for PIC addressing.
13487 For standard PIC base case, the default is any suitable register
13488 determined by compiler. For single PIC base case, the default is
13489 @samp{R9} if target is EABI based or stack-checking is enabled,
13490 otherwise the default is @samp{R10}.
13491
13492 @item -mpic-data-is-text-relative
13493 @opindex mpic-data-is-text-relative
13494 Assume that each data segments are relative to text segment at load time.
13495 Therefore, it permits addressing data using PC-relative operations.
13496 This option is on by default for targets other than VxWorks RTP.
13497
13498 @item -mpoke-function-name
13499 @opindex mpoke-function-name
13500 Write the name of each function into the text section, directly
13501 preceding the function prologue. The generated code is similar to this:
13502
13503 @smallexample
13504 t0
13505 .ascii "arm_poke_function_name", 0
13506 .align
13507 t1
13508 .word 0xff000000 + (t1 - t0)
13509 arm_poke_function_name
13510 mov ip, sp
13511 stmfd sp!, @{fp, ip, lr, pc@}
13512 sub fp, ip, #4
13513 @end smallexample
13514
13515 When performing a stack backtrace, code can inspect the value of
13516 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
13517 location @code{pc - 12} and the top 8 bits are set, then we know that
13518 there is a function name embedded immediately preceding this location
13519 and has length @code{((pc[-3]) & 0xff000000)}.
13520
13521 @item -mthumb
13522 @itemx -marm
13523 @opindex marm
13524 @opindex mthumb
13525
13526 Select between generating code that executes in ARM and Thumb
13527 states. The default for most configurations is to generate code
13528 that executes in ARM state, but the default can be changed by
13529 configuring GCC with the @option{--with-mode=}@var{state}
13530 configure option.
13531
13532 You can also override the ARM and Thumb mode for each function
13533 by using the @code{target("thumb")} and @code{target("arm")} function attributes
13534 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
13535
13536 @item -mtpcs-frame
13537 @opindex mtpcs-frame
13538 Generate a stack frame that is compliant with the Thumb Procedure Call
13539 Standard for all non-leaf functions. (A leaf function is one that does
13540 not call any other functions.) The default is @option{-mno-tpcs-frame}.
13541
13542 @item -mtpcs-leaf-frame
13543 @opindex mtpcs-leaf-frame
13544 Generate a stack frame that is compliant with the Thumb Procedure Call
13545 Standard for all leaf functions. (A leaf function is one that does
13546 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
13547
13548 @item -mcallee-super-interworking
13549 @opindex mcallee-super-interworking
13550 Gives all externally visible functions in the file being compiled an ARM
13551 instruction set header which switches to Thumb mode before executing the
13552 rest of the function. This allows these functions to be called from
13553 non-interworking code. This option is not valid in AAPCS configurations
13554 because interworking is enabled by default.
13555
13556 @item -mcaller-super-interworking
13557 @opindex mcaller-super-interworking
13558 Allows calls via function pointers (including virtual functions) to
13559 execute correctly regardless of whether the target code has been
13560 compiled for interworking or not. There is a small overhead in the cost
13561 of executing a function pointer if this option is enabled. This option
13562 is not valid in AAPCS configurations because interworking is enabled
13563 by default.
13564
13565 @item -mtp=@var{name}
13566 @opindex mtp
13567 Specify the access model for the thread local storage pointer. The valid
13568 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13569 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13570 (supported in the arm6k architecture), and @samp{auto}, which uses the
13571 best available method for the selected processor. The default setting is
13572 @samp{auto}.
13573
13574 @item -mtls-dialect=@var{dialect}
13575 @opindex mtls-dialect
13576 Specify the dialect to use for accessing thread local storage. Two
13577 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
13578 @samp{gnu} dialect selects the original GNU scheme for supporting
13579 local and global dynamic TLS models. The @samp{gnu2} dialect
13580 selects the GNU descriptor scheme, which provides better performance
13581 for shared libraries. The GNU descriptor scheme is compatible with
13582 the original scheme, but does require new assembler, linker and
13583 library support. Initial and local exec TLS models are unaffected by
13584 this option and always use the original scheme.
13585
13586 @item -mword-relocations
13587 @opindex mword-relocations
13588 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
13589 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
13590 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
13591 is specified.
13592
13593 @item -mfix-cortex-m3-ldrd
13594 @opindex mfix-cortex-m3-ldrd
13595 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
13596 with overlapping destination and base registers are used. This option avoids
13597 generating these instructions. This option is enabled by default when
13598 @option{-mcpu=cortex-m3} is specified.
13599
13600 @item -munaligned-access
13601 @itemx -mno-unaligned-access
13602 @opindex munaligned-access
13603 @opindex mno-unaligned-access
13604 Enables (or disables) reading and writing of 16- and 32- bit values
13605 from addresses that are not 16- or 32- bit aligned. By default
13606 unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
13607 architectures, and enabled for all other architectures. If unaligned
13608 access is not enabled then words in packed data structures are
13609 accessed a byte at a time.
13610
13611 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
13612 generated object file to either true or false, depending upon the
13613 setting of this option. If unaligned access is enabled then the
13614 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
13615 defined.
13616
13617 @item -mneon-for-64bits
13618 @opindex mneon-for-64bits
13619 Enables using Neon to handle scalar 64-bits operations. This is
13620 disabled by default since the cost of moving data from core registers
13621 to Neon is high.
13622
13623 @item -mslow-flash-data
13624 @opindex mslow-flash-data
13625 Assume loading data from flash is slower than fetching instruction.
13626 Therefore literal load is minimized for better performance.
13627 This option is only supported when compiling for ARMv7 M-profile and
13628 off by default.
13629
13630 @item -masm-syntax-unified
13631 @opindex masm-syntax-unified
13632 Assume inline assembler is using unified asm syntax. The default is
13633 currently off which implies divided syntax. Currently this option is
13634 available only for Thumb1 and has no effect on ARM state and Thumb2.
13635 However, this may change in future releases of GCC. Divided syntax
13636 should be considered deprecated.
13637
13638 @item -mrestrict-it
13639 @opindex mrestrict-it
13640 Restricts generation of IT blocks to conform to the rules of ARMv8.
13641 IT blocks can only contain a single 16-bit instruction from a select
13642 set of instructions. This option is on by default for ARMv8 Thumb mode.
13643
13644 @item -mprint-tune-info
13645 @opindex mprint-tune-info
13646 Print CPU tuning information as comment in assembler file. This is
13647 an option used only for regression testing of the compiler and not
13648 intended for ordinary use in compiling code. This option is disabled
13649 by default.
13650 @end table
13651
13652 @node AVR Options
13653 @subsection AVR Options
13654 @cindex AVR Options
13655
13656 These options are defined for AVR implementations:
13657
13658 @table @gcctabopt
13659 @item -mmcu=@var{mcu}
13660 @opindex mmcu
13661 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
13662
13663 The default for this option is@tie{}@samp{avr2}.
13664
13665 GCC supports the following AVR devices and ISAs:
13666
13667 @include avr-mmcu.texi
13668
13669 @item -maccumulate-args
13670 @opindex maccumulate-args
13671 Accumulate outgoing function arguments and acquire/release the needed
13672 stack space for outgoing function arguments once in function
13673 prologue/epilogue. Without this option, outgoing arguments are pushed
13674 before calling a function and popped afterwards.
13675
13676 Popping the arguments after the function call can be expensive on
13677 AVR so that accumulating the stack space might lead to smaller
13678 executables because arguments need not to be removed from the
13679 stack after such a function call.
13680
13681 This option can lead to reduced code size for functions that perform
13682 several calls to functions that get their arguments on the stack like
13683 calls to printf-like functions.
13684
13685 @item -mbranch-cost=@var{cost}
13686 @opindex mbranch-cost
13687 Set the branch costs for conditional branch instructions to
13688 @var{cost}. Reasonable values for @var{cost} are small, non-negative
13689 integers. The default branch cost is 0.
13690
13691 @item -mcall-prologues
13692 @opindex mcall-prologues
13693 Functions prologues/epilogues are expanded as calls to appropriate
13694 subroutines. Code size is smaller.
13695
13696 @item -mint8
13697 @opindex mint8
13698 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
13699 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
13700 and @code{long long} is 4 bytes. Please note that this option does not
13701 conform to the C standards, but it results in smaller code
13702 size.
13703
13704 @item -mn-flash=@var{num}
13705 @opindex mn-flash
13706 Assume that the flash memory has a size of
13707 @var{num} times 64@tie{}KiB.
13708
13709 @item -mno-interrupts
13710 @opindex mno-interrupts
13711 Generated code is not compatible with hardware interrupts.
13712 Code size is smaller.
13713
13714 @item -mrelax
13715 @opindex mrelax
13716 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
13717 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
13718 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
13719 the assembler's command line and the @option{--relax} option to the
13720 linker's command line.
13721
13722 Jump relaxing is performed by the linker because jump offsets are not
13723 known before code is located. Therefore, the assembler code generated by the
13724 compiler is the same, but the instructions in the executable may
13725 differ from instructions in the assembler code.
13726
13727 Relaxing must be turned on if linker stubs are needed, see the
13728 section on @code{EIND} and linker stubs below.
13729
13730 @item -mrmw
13731 @opindex mrmw
13732 Assume that the device supports the Read-Modify-Write
13733 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
13734
13735 @item -msp8
13736 @opindex msp8
13737 Treat the stack pointer register as an 8-bit register,
13738 i.e.@: assume the high byte of the stack pointer is zero.
13739 In general, you don't need to set this option by hand.
13740
13741 This option is used internally by the compiler to select and
13742 build multilibs for architectures @code{avr2} and @code{avr25}.
13743 These architectures mix devices with and without @code{SPH}.
13744 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
13745 the compiler driver adds or removes this option from the compiler
13746 proper's command line, because the compiler then knows if the device
13747 or architecture has an 8-bit stack pointer and thus no @code{SPH}
13748 register or not.
13749
13750 @item -mstrict-X
13751 @opindex mstrict-X
13752 Use address register @code{X} in a way proposed by the hardware. This means
13753 that @code{X} is only used in indirect, post-increment or
13754 pre-decrement addressing.
13755
13756 Without this option, the @code{X} register may be used in the same way
13757 as @code{Y} or @code{Z} which then is emulated by additional
13758 instructions.
13759 For example, loading a value with @code{X+const} addressing with a
13760 small non-negative @code{const < 64} to a register @var{Rn} is
13761 performed as
13762
13763 @example
13764 adiw r26, const ; X += const
13765 ld @var{Rn}, X ; @var{Rn} = *X
13766 sbiw r26, const ; X -= const
13767 @end example
13768
13769 @item -mtiny-stack
13770 @opindex mtiny-stack
13771 Only change the lower 8@tie{}bits of the stack pointer.
13772
13773 @item -nodevicelib
13774 @opindex nodevicelib
13775 Don't link against AVR-LibC's device specific library @code{libdev.a}.
13776
13777 @item -Waddr-space-convert
13778 @opindex Waddr-space-convert
13779 Warn about conversions between address spaces in the case where the
13780 resulting address space is not contained in the incoming address space.
13781 @end table
13782
13783 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
13784 @cindex @code{EIND}
13785 Pointers in the implementation are 16@tie{}bits wide.
13786 The address of a function or label is represented as word address so
13787 that indirect jumps and calls can target any code address in the
13788 range of 64@tie{}Ki words.
13789
13790 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
13791 bytes of program memory space, there is a special function register called
13792 @code{EIND} that serves as most significant part of the target address
13793 when @code{EICALL} or @code{EIJMP} instructions are used.
13794
13795 Indirect jumps and calls on these devices are handled as follows by
13796 the compiler and are subject to some limitations:
13797
13798 @itemize @bullet
13799
13800 @item
13801 The compiler never sets @code{EIND}.
13802
13803 @item
13804 The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
13805 instructions or might read @code{EIND} directly in order to emulate an
13806 indirect call/jump by means of a @code{RET} instruction.
13807
13808 @item
13809 The compiler assumes that @code{EIND} never changes during the startup
13810 code or during the application. In particular, @code{EIND} is not
13811 saved/restored in function or interrupt service routine
13812 prologue/epilogue.
13813
13814 @item
13815 For indirect calls to functions and computed goto, the linker
13816 generates @emph{stubs}. Stubs are jump pads sometimes also called
13817 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
13818 The stub contains a direct jump to the desired address.
13819
13820 @item
13821 Linker relaxation must be turned on so that the linker generates
13822 the stubs correctly in all situations. See the compiler option
13823 @option{-mrelax} and the linker option @option{--relax}.
13824 There are corner cases where the linker is supposed to generate stubs
13825 but aborts without relaxation and without a helpful error message.
13826
13827 @item
13828 The default linker script is arranged for code with @code{EIND = 0}.
13829 If code is supposed to work for a setup with @code{EIND != 0}, a custom
13830 linker script has to be used in order to place the sections whose
13831 name start with @code{.trampolines} into the segment where @code{EIND}
13832 points to.
13833
13834 @item
13835 The startup code from libgcc never sets @code{EIND}.
13836 Notice that startup code is a blend of code from libgcc and AVR-LibC.
13837 For the impact of AVR-LibC on @code{EIND}, see the
13838 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
13839
13840 @item
13841 It is legitimate for user-specific startup code to set up @code{EIND}
13842 early, for example by means of initialization code located in
13843 section @code{.init3}. Such code runs prior to general startup code
13844 that initializes RAM and calls constructors, but after the bit
13845 of startup code from AVR-LibC that sets @code{EIND} to the segment
13846 where the vector table is located.
13847 @example
13848 #include <avr/io.h>
13849
13850 static void
13851 __attribute__((section(".init3"),naked,used,no_instrument_function))
13852 init3_set_eind (void)
13853 @{
13854 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
13855 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
13856 @}
13857 @end example
13858
13859 @noindent
13860 The @code{__trampolines_start} symbol is defined in the linker script.
13861
13862 @item
13863 Stubs are generated automatically by the linker if
13864 the following two conditions are met:
13865 @itemize @minus
13866
13867 @item The address of a label is taken by means of the @code{gs} modifier
13868 (short for @emph{generate stubs}) like so:
13869 @example
13870 LDI r24, lo8(gs(@var{func}))
13871 LDI r25, hi8(gs(@var{func}))
13872 @end example
13873 @item The final location of that label is in a code segment
13874 @emph{outside} the segment where the stubs are located.
13875 @end itemize
13876
13877 @item
13878 The compiler emits such @code{gs} modifiers for code labels in the
13879 following situations:
13880 @itemize @minus
13881 @item Taking address of a function or code label.
13882 @item Computed goto.
13883 @item If prologue-save function is used, see @option{-mcall-prologues}
13884 command-line option.
13885 @item Switch/case dispatch tables. If you do not want such dispatch
13886 tables you can specify the @option{-fno-jump-tables} command-line option.
13887 @item C and C++ constructors/destructors called during startup/shutdown.
13888 @item If the tools hit a @code{gs()} modifier explained above.
13889 @end itemize
13890
13891 @item
13892 Jumping to non-symbolic addresses like so is @emph{not} supported:
13893
13894 @example
13895 int main (void)
13896 @{
13897 /* Call function at word address 0x2 */
13898 return ((int(*)(void)) 0x2)();
13899 @}
13900 @end example
13901
13902 Instead, a stub has to be set up, i.e.@: the function has to be called
13903 through a symbol (@code{func_4} in the example):
13904
13905 @example
13906 int main (void)
13907 @{
13908 extern int func_4 (void);
13909
13910 /* Call function at byte address 0x4 */
13911 return func_4();
13912 @}
13913 @end example
13914
13915 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
13916 Alternatively, @code{func_4} can be defined in the linker script.
13917 @end itemize
13918
13919 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
13920 @cindex @code{RAMPD}
13921 @cindex @code{RAMPX}
13922 @cindex @code{RAMPY}
13923 @cindex @code{RAMPZ}
13924 Some AVR devices support memories larger than the 64@tie{}KiB range
13925 that can be accessed with 16-bit pointers. To access memory locations
13926 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
13927 register is used as high part of the address:
13928 The @code{X}, @code{Y}, @code{Z} address register is concatenated
13929 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
13930 register, respectively, to get a wide address. Similarly,
13931 @code{RAMPD} is used together with direct addressing.
13932
13933 @itemize
13934 @item
13935 The startup code initializes the @code{RAMP} special function
13936 registers with zero.
13937
13938 @item
13939 If a @ref{AVR Named Address Spaces,named address space} other than
13940 generic or @code{__flash} is used, then @code{RAMPZ} is set
13941 as needed before the operation.
13942
13943 @item
13944 If the device supports RAM larger than 64@tie{}KiB and the compiler
13945 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
13946 is reset to zero after the operation.
13947
13948 @item
13949 If the device comes with a specific @code{RAMP} register, the ISR
13950 prologue/epilogue saves/restores that SFR and initializes it with
13951 zero in case the ISR code might (implicitly) use it.
13952
13953 @item
13954 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
13955 If you use inline assembler to read from locations outside the
13956 16-bit address range and change one of the @code{RAMP} registers,
13957 you must reset it to zero after the access.
13958
13959 @end itemize
13960
13961 @subsubsection AVR Built-in Macros
13962
13963 GCC defines several built-in macros so that the user code can test
13964 for the presence or absence of features. Almost any of the following
13965 built-in macros are deduced from device capabilities and thus
13966 triggered by the @option{-mmcu=} command-line option.
13967
13968 For even more AVR-specific built-in macros see
13969 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
13970
13971 @table @code
13972
13973 @item __AVR_ARCH__
13974 Build-in macro that resolves to a decimal number that identifies the
13975 architecture and depends on the @option{-mmcu=@var{mcu}} option.
13976 Possible values are:
13977
13978 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
13979 @code{4}, @code{5}, @code{51}, @code{6}
13980
13981 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
13982 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
13983
13984 respectively and
13985
13986 @code{100}, @code{102}, @code{104},
13987 @code{105}, @code{106}, @code{107}
13988
13989 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
13990 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
13991 If @var{mcu} specifies a device, this built-in macro is set
13992 accordingly. For example, with @option{-mmcu=atmega8} the macro is
13993 defined to @code{4}.
13994
13995 @item __AVR_@var{Device}__
13996 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
13997 the device's name. For example, @option{-mmcu=atmega8} defines the
13998 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
13999 @code{__AVR_ATtiny261A__}, etc.
14000
14001 The built-in macros' names follow
14002 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
14003 the device name as from the AVR user manual. The difference between
14004 @var{Device} in the built-in macro and @var{device} in
14005 @option{-mmcu=@var{device}} is that the latter is always lowercase.
14006
14007 If @var{device} is not a device but only a core architecture like
14008 @samp{avr51}, this macro is not defined.
14009
14010 @item __AVR_DEVICE_NAME__
14011 Setting @option{-mmcu=@var{device}} defines this built-in macro to
14012 the device's name. For example, with @option{-mmcu=atmega8} the macro
14013 is defined to @code{atmega8}.
14014
14015 If @var{device} is not a device but only a core architecture like
14016 @samp{avr51}, this macro is not defined.
14017
14018 @item __AVR_XMEGA__
14019 The device / architecture belongs to the XMEGA family of devices.
14020
14021 @item __AVR_HAVE_ELPM__
14022 The device has the the @code{ELPM} instruction.
14023
14024 @item __AVR_HAVE_ELPMX__
14025 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
14026 R@var{n},Z+} instructions.
14027
14028 @item __AVR_HAVE_MOVW__
14029 The device has the @code{MOVW} instruction to perform 16-bit
14030 register-register moves.
14031
14032 @item __AVR_HAVE_LPMX__
14033 The device has the @code{LPM R@var{n},Z} and
14034 @code{LPM R@var{n},Z+} instructions.
14035
14036 @item __AVR_HAVE_MUL__
14037 The device has a hardware multiplier.
14038
14039 @item __AVR_HAVE_JMP_CALL__
14040 The device has the @code{JMP} and @code{CALL} instructions.
14041 This is the case for devices with at least 16@tie{}KiB of program
14042 memory.
14043
14044 @item __AVR_HAVE_EIJMP_EICALL__
14045 @itemx __AVR_3_BYTE_PC__
14046 The device has the @code{EIJMP} and @code{EICALL} instructions.
14047 This is the case for devices with more than 128@tie{}KiB of program memory.
14048 This also means that the program counter
14049 (PC) is 3@tie{}bytes wide.
14050
14051 @item __AVR_2_BYTE_PC__
14052 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
14053 with up to 128@tie{}KiB of program memory.
14054
14055 @item __AVR_HAVE_8BIT_SP__
14056 @itemx __AVR_HAVE_16BIT_SP__
14057 The stack pointer (SP) register is treated as 8-bit respectively
14058 16-bit register by the compiler.
14059 The definition of these macros is affected by @option{-mtiny-stack}.
14060
14061 @item __AVR_HAVE_SPH__
14062 @itemx __AVR_SP8__
14063 The device has the SPH (high part of stack pointer) special function
14064 register or has an 8-bit stack pointer, respectively.
14065 The definition of these macros is affected by @option{-mmcu=} and
14066 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
14067 by @option{-msp8}.
14068
14069 @item __AVR_HAVE_RAMPD__
14070 @itemx __AVR_HAVE_RAMPX__
14071 @itemx __AVR_HAVE_RAMPY__
14072 @itemx __AVR_HAVE_RAMPZ__
14073 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
14074 @code{RAMPZ} special function register, respectively.
14075
14076 @item __NO_INTERRUPTS__
14077 This macro reflects the @option{-mno-interrupts} command-line option.
14078
14079 @item __AVR_ERRATA_SKIP__
14080 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
14081 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
14082 instructions because of a hardware erratum. Skip instructions are
14083 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
14084 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
14085 set.
14086
14087 @item __AVR_ISA_RMW__
14088 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
14089
14090 @item __AVR_SFR_OFFSET__=@var{offset}
14091 Instructions that can address I/O special function registers directly
14092 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
14093 address as if addressed by an instruction to access RAM like @code{LD}
14094 or @code{STS}. This offset depends on the device architecture and has
14095 to be subtracted from the RAM address in order to get the
14096 respective I/O@tie{}address.
14097
14098 @item __WITH_AVRLIBC__
14099 The compiler is configured to be used together with AVR-Libc.
14100 See the @option{--with-avrlibc} configure option.
14101
14102 @end table
14103
14104 @node Blackfin Options
14105 @subsection Blackfin Options
14106 @cindex Blackfin Options
14107
14108 @table @gcctabopt
14109 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
14110 @opindex mcpu=
14111 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
14112 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
14113 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
14114 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
14115 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
14116 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
14117 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
14118 @samp{bf561}, @samp{bf592}.
14119
14120 The optional @var{sirevision} specifies the silicon revision of the target
14121 Blackfin processor. Any workarounds available for the targeted silicon revision
14122 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
14123 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14124 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
14125 hexadecimal digits representing the major and minor numbers in the silicon
14126 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14127 is not defined. If @var{sirevision} is @samp{any}, the
14128 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14129 If this optional @var{sirevision} is not used, GCC assumes the latest known
14130 silicon revision of the targeted Blackfin processor.
14131
14132 GCC defines a preprocessor macro for the specified @var{cpu}.
14133 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14134 provided by libgloss to be linked in if @option{-msim} is not given.
14135
14136 Without this option, @samp{bf532} is used as the processor by default.
14137
14138 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
14139 only the preprocessor macro is defined.
14140
14141 @item -msim
14142 @opindex msim
14143 Specifies that the program will be run on the simulator. This causes
14144 the simulator BSP provided by libgloss to be linked in. This option
14145 has effect only for @samp{bfin-elf} toolchain.
14146 Certain other options, such as @option{-mid-shared-library} and
14147 @option{-mfdpic}, imply @option{-msim}.
14148
14149 @item -momit-leaf-frame-pointer
14150 @opindex momit-leaf-frame-pointer
14151 Don't keep the frame pointer in a register for leaf functions. This
14152 avoids the instructions to save, set up and restore frame pointers and
14153 makes an extra register available in leaf functions. The option
14154 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
14155 which might make debugging harder.
14156
14157 @item -mspecld-anomaly
14158 @opindex mspecld-anomaly
14159 When enabled, the compiler ensures that the generated code does not
14160 contain speculative loads after jump instructions. If this option is used,
14161 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14162
14163 @item -mno-specld-anomaly
14164 @opindex mno-specld-anomaly
14165 Don't generate extra code to prevent speculative loads from occurring.
14166
14167 @item -mcsync-anomaly
14168 @opindex mcsync-anomaly
14169 When enabled, the compiler ensures that the generated code does not
14170 contain CSYNC or SSYNC instructions too soon after conditional branches.
14171 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14172
14173 @item -mno-csync-anomaly
14174 @opindex mno-csync-anomaly
14175 Don't generate extra code to prevent CSYNC or SSYNC instructions from
14176 occurring too soon after a conditional branch.
14177
14178 @item -mlow-64k
14179 @opindex mlow-64k
14180 When enabled, the compiler is free to take advantage of the knowledge that
14181 the entire program fits into the low 64k of memory.
14182
14183 @item -mno-low-64k
14184 @opindex mno-low-64k
14185 Assume that the program is arbitrarily large. This is the default.
14186
14187 @item -mstack-check-l1
14188 @opindex mstack-check-l1
14189 Do stack checking using information placed into L1 scratchpad memory by the
14190 uClinux kernel.
14191
14192 @item -mid-shared-library
14193 @opindex mid-shared-library
14194 Generate code that supports shared libraries via the library ID method.
14195 This allows for execute in place and shared libraries in an environment
14196 without virtual memory management. This option implies @option{-fPIC}.
14197 With a @samp{bfin-elf} target, this option implies @option{-msim}.
14198
14199 @item -mno-id-shared-library
14200 @opindex mno-id-shared-library
14201 Generate code that doesn't assume ID-based shared libraries are being used.
14202 This is the default.
14203
14204 @item -mleaf-id-shared-library
14205 @opindex mleaf-id-shared-library
14206 Generate code that supports shared libraries via the library ID method,
14207 but assumes that this library or executable won't link against any other
14208 ID shared libraries. That allows the compiler to use faster code for jumps
14209 and calls.
14210
14211 @item -mno-leaf-id-shared-library
14212 @opindex mno-leaf-id-shared-library
14213 Do not assume that the code being compiled won't link against any ID shared
14214 libraries. Slower code is generated for jump and call insns.
14215
14216 @item -mshared-library-id=n
14217 @opindex mshared-library-id
14218 Specifies the identification number of the ID-based shared library being
14219 compiled. Specifying a value of 0 generates more compact code; specifying
14220 other values forces the allocation of that number to the current
14221 library but is no more space- or time-efficient than omitting this option.
14222
14223 @item -msep-data
14224 @opindex msep-data
14225 Generate code that allows the data segment to be located in a different
14226 area of memory from the text segment. This allows for execute in place in
14227 an environment without virtual memory management by eliminating relocations
14228 against the text section.
14229
14230 @item -mno-sep-data
14231 @opindex mno-sep-data
14232 Generate code that assumes that the data segment follows the text segment.
14233 This is the default.
14234
14235 @item -mlong-calls
14236 @itemx -mno-long-calls
14237 @opindex mlong-calls
14238 @opindex mno-long-calls
14239 Tells the compiler to perform function calls by first loading the
14240 address of the function into a register and then performing a subroutine
14241 call on this register. This switch is needed if the target function
14242 lies outside of the 24-bit addressing range of the offset-based
14243 version of subroutine call instruction.
14244
14245 This feature is not enabled by default. Specifying
14246 @option{-mno-long-calls} restores the default behavior. Note these
14247 switches have no effect on how the compiler generates code to handle
14248 function calls via function pointers.
14249
14250 @item -mfast-fp
14251 @opindex mfast-fp
14252 Link with the fast floating-point library. This library relaxes some of
14253 the IEEE floating-point standard's rules for checking inputs against
14254 Not-a-Number (NAN), in the interest of performance.
14255
14256 @item -minline-plt
14257 @opindex minline-plt
14258 Enable inlining of PLT entries in function calls to functions that are
14259 not known to bind locally. It has no effect without @option{-mfdpic}.
14260
14261 @item -mmulticore
14262 @opindex mmulticore
14263 Build a standalone application for multicore Blackfin processors.
14264 This option causes proper start files and link scripts supporting
14265 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
14266 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
14267
14268 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14269 selects the one-application-per-core programming model. Without
14270 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14271 programming model is used. In this model, the main function of Core B
14272 should be named as @code{coreb_main}.
14273
14274 If this option is not used, the single-core application programming
14275 model is used.
14276
14277 @item -mcorea
14278 @opindex mcorea
14279 Build a standalone application for Core A of BF561 when using
14280 the one-application-per-core programming model. Proper start files
14281 and link scripts are used to support Core A, and the macro
14282 @code{__BFIN_COREA} is defined.
14283 This option can only be used in conjunction with @option{-mmulticore}.
14284
14285 @item -mcoreb
14286 @opindex mcoreb
14287 Build a standalone application for Core B of BF561 when using
14288 the one-application-per-core programming model. Proper start files
14289 and link scripts are used to support Core B, and the macro
14290 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14291 should be used instead of @code{main}.
14292 This option can only be used in conjunction with @option{-mmulticore}.
14293
14294 @item -msdram
14295 @opindex msdram
14296 Build a standalone application for SDRAM. Proper start files and
14297 link scripts are used to put the application into SDRAM, and the macro
14298 @code{__BFIN_SDRAM} is defined.
14299 The loader should initialize SDRAM before loading the application.
14300
14301 @item -micplb
14302 @opindex micplb
14303 Assume that ICPLBs are enabled at run time. This has an effect on certain
14304 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
14305 are enabled; for standalone applications the default is off.
14306 @end table
14307
14308 @node C6X Options
14309 @subsection C6X Options
14310 @cindex C6X Options
14311
14312 @table @gcctabopt
14313 @item -march=@var{name}
14314 @opindex march
14315 This specifies the name of the target architecture. GCC uses this
14316 name to determine what kind of instructions it can emit when generating
14317 assembly code. Permissible names are: @samp{c62x},
14318 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14319
14320 @item -mbig-endian
14321 @opindex mbig-endian
14322 Generate code for a big-endian target.
14323
14324 @item -mlittle-endian
14325 @opindex mlittle-endian
14326 Generate code for a little-endian target. This is the default.
14327
14328 @item -msim
14329 @opindex msim
14330 Choose startup files and linker script suitable for the simulator.
14331
14332 @item -msdata=default
14333 @opindex msdata=default
14334 Put small global and static data in the @code{.neardata} section,
14335 which is pointed to by register @code{B14}. Put small uninitialized
14336 global and static data in the @code{.bss} section, which is adjacent
14337 to the @code{.neardata} section. Put small read-only data into the
14338 @code{.rodata} section. The corresponding sections used for large
14339 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14340
14341 @item -msdata=all
14342 @opindex msdata=all
14343 Put all data, not just small objects, into the sections reserved for
14344 small data, and use addressing relative to the @code{B14} register to
14345 access them.
14346
14347 @item -msdata=none
14348 @opindex msdata=none
14349 Make no use of the sections reserved for small data, and use absolute
14350 addresses to access all data. Put all initialized global and static
14351 data in the @code{.fardata} section, and all uninitialized data in the
14352 @code{.far} section. Put all constant data into the @code{.const}
14353 section.
14354 @end table
14355
14356 @node CRIS Options
14357 @subsection CRIS Options
14358 @cindex CRIS Options
14359
14360 These options are defined specifically for the CRIS ports.
14361
14362 @table @gcctabopt
14363 @item -march=@var{architecture-type}
14364 @itemx -mcpu=@var{architecture-type}
14365 @opindex march
14366 @opindex mcpu
14367 Generate code for the specified architecture. The choices for
14368 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14369 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14370 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14371 @samp{v10}.
14372
14373 @item -mtune=@var{architecture-type}
14374 @opindex mtune
14375 Tune to @var{architecture-type} everything applicable about the generated
14376 code, except for the ABI and the set of available instructions. The
14377 choices for @var{architecture-type} are the same as for
14378 @option{-march=@var{architecture-type}}.
14379
14380 @item -mmax-stack-frame=@var{n}
14381 @opindex mmax-stack-frame
14382 Warn when the stack frame of a function exceeds @var{n} bytes.
14383
14384 @item -metrax4
14385 @itemx -metrax100
14386 @opindex metrax4
14387 @opindex metrax100
14388 The options @option{-metrax4} and @option{-metrax100} are synonyms for
14389 @option{-march=v3} and @option{-march=v8} respectively.
14390
14391 @item -mmul-bug-workaround
14392 @itemx -mno-mul-bug-workaround
14393 @opindex mmul-bug-workaround
14394 @opindex mno-mul-bug-workaround
14395 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14396 models where it applies. This option is active by default.
14397
14398 @item -mpdebug
14399 @opindex mpdebug
14400 Enable CRIS-specific verbose debug-related information in the assembly
14401 code. This option also has the effect of turning off the @samp{#NO_APP}
14402 formatted-code indicator to the assembler at the beginning of the
14403 assembly file.
14404
14405 @item -mcc-init
14406 @opindex mcc-init
14407 Do not use condition-code results from previous instruction; always emit
14408 compare and test instructions before use of condition codes.
14409
14410 @item -mno-side-effects
14411 @opindex mno-side-effects
14412 Do not emit instructions with side effects in addressing modes other than
14413 post-increment.
14414
14415 @item -mstack-align
14416 @itemx -mno-stack-align
14417 @itemx -mdata-align
14418 @itemx -mno-data-align
14419 @itemx -mconst-align
14420 @itemx -mno-const-align
14421 @opindex mstack-align
14422 @opindex mno-stack-align
14423 @opindex mdata-align
14424 @opindex mno-data-align
14425 @opindex mconst-align
14426 @opindex mno-const-align
14427 These options (@samp{no-} options) arrange (eliminate arrangements) for the
14428 stack frame, individual data and constants to be aligned for the maximum
14429 single data access size for the chosen CPU model. The default is to
14430 arrange for 32-bit alignment. ABI details such as structure layout are
14431 not affected by these options.
14432
14433 @item -m32-bit
14434 @itemx -m16-bit
14435 @itemx -m8-bit
14436 @opindex m32-bit
14437 @opindex m16-bit
14438 @opindex m8-bit
14439 Similar to the stack- data- and const-align options above, these options
14440 arrange for stack frame, writable data and constants to all be 32-bit,
14441 16-bit or 8-bit aligned. The default is 32-bit alignment.
14442
14443 @item -mno-prologue-epilogue
14444 @itemx -mprologue-epilogue
14445 @opindex mno-prologue-epilogue
14446 @opindex mprologue-epilogue
14447 With @option{-mno-prologue-epilogue}, the normal function prologue and
14448 epilogue which set up the stack frame are omitted and no return
14449 instructions or return sequences are generated in the code. Use this
14450 option only together with visual inspection of the compiled code: no
14451 warnings or errors are generated when call-saved registers must be saved,
14452 or storage for local variables needs to be allocated.
14453
14454 @item -mno-gotplt
14455 @itemx -mgotplt
14456 @opindex mno-gotplt
14457 @opindex mgotplt
14458 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14459 instruction sequences that load addresses for functions from the PLT part
14460 of the GOT rather than (traditional on other architectures) calls to the
14461 PLT@. The default is @option{-mgotplt}.
14462
14463 @item -melf
14464 @opindex melf
14465 Legacy no-op option only recognized with the cris-axis-elf and
14466 cris-axis-linux-gnu targets.
14467
14468 @item -mlinux
14469 @opindex mlinux
14470 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14471
14472 @item -sim
14473 @opindex sim
14474 This option, recognized for the cris-axis-elf, arranges
14475 to link with input-output functions from a simulator library. Code,
14476 initialized data and zero-initialized data are allocated consecutively.
14477
14478 @item -sim2
14479 @opindex sim2
14480 Like @option{-sim}, but pass linker options to locate initialized data at
14481 0x40000000 and zero-initialized data at 0x80000000.
14482 @end table
14483
14484 @node CR16 Options
14485 @subsection CR16 Options
14486 @cindex CR16 Options
14487
14488 These options are defined specifically for the CR16 ports.
14489
14490 @table @gcctabopt
14491
14492 @item -mmac
14493 @opindex mmac
14494 Enable the use of multiply-accumulate instructions. Disabled by default.
14495
14496 @item -mcr16cplus
14497 @itemx -mcr16c
14498 @opindex mcr16cplus
14499 @opindex mcr16c
14500 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
14501 is default.
14502
14503 @item -msim
14504 @opindex msim
14505 Links the library libsim.a which is in compatible with simulator. Applicable
14506 to ELF compiler only.
14507
14508 @item -mint32
14509 @opindex mint32
14510 Choose integer type as 32-bit wide.
14511
14512 @item -mbit-ops
14513 @opindex mbit-ops
14514 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14515
14516 @item -mdata-model=@var{model}
14517 @opindex mdata-model
14518 Choose a data model. The choices for @var{model} are @samp{near},
14519 @samp{far} or @samp{medium}. @samp{medium} is default.
14520 However, @samp{far} is not valid with @option{-mcr16c}, as the
14521 CR16C architecture does not support the far data model.
14522 @end table
14523
14524 @node Darwin Options
14525 @subsection Darwin Options
14526 @cindex Darwin options
14527
14528 These options are defined for all architectures running the Darwin operating
14529 system.
14530
14531 FSF GCC on Darwin does not create ``fat'' object files; it creates
14532 an object file for the single architecture that GCC was built to
14533 target. Apple's GCC on Darwin does create ``fat'' files if multiple
14534 @option{-arch} options are used; it does so by running the compiler or
14535 linker multiple times and joining the results together with
14536 @file{lipo}.
14537
14538 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14539 @samp{i686}) is determined by the flags that specify the ISA
14540 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
14541 @option{-force_cpusubtype_ALL} option can be used to override this.
14542
14543 The Darwin tools vary in their behavior when presented with an ISA
14544 mismatch. The assembler, @file{as}, only permits instructions to
14545 be used that are valid for the subtype of the file it is generating,
14546 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14547 The linker for shared libraries, @file{/usr/bin/libtool}, fails
14548 and prints an error if asked to create a shared library with a less
14549 restrictive subtype than its input files (for instance, trying to put
14550 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
14551 for executables, @command{ld}, quietly gives the executable the most
14552 restrictive subtype of any of its input files.
14553
14554 @table @gcctabopt
14555 @item -F@var{dir}
14556 @opindex F
14557 Add the framework directory @var{dir} to the head of the list of
14558 directories to be searched for header files. These directories are
14559 interleaved with those specified by @option{-I} options and are
14560 scanned in a left-to-right order.
14561
14562 A framework directory is a directory with frameworks in it. A
14563 framework is a directory with a @file{Headers} and/or
14564 @file{PrivateHeaders} directory contained directly in it that ends
14565 in @file{.framework}. The name of a framework is the name of this
14566 directory excluding the @file{.framework}. Headers associated with
14567 the framework are found in one of those two directories, with
14568 @file{Headers} being searched first. A subframework is a framework
14569 directory that is in a framework's @file{Frameworks} directory.
14570 Includes of subframework headers can only appear in a header of a
14571 framework that contains the subframework, or in a sibling subframework
14572 header. Two subframeworks are siblings if they occur in the same
14573 framework. A subframework should not have the same name as a
14574 framework; a warning is issued if this is violated. Currently a
14575 subframework cannot have subframeworks; in the future, the mechanism
14576 may be extended to support this. The standard frameworks can be found
14577 in @file{/System/Library/Frameworks} and
14578 @file{/Library/Frameworks}. An example include looks like
14579 @code{#include <Framework/header.h>}, where @file{Framework} denotes
14580 the name of the framework and @file{header.h} is found in the
14581 @file{PrivateHeaders} or @file{Headers} directory.
14582
14583 @item -iframework@var{dir}
14584 @opindex iframework
14585 Like @option{-F} except the directory is a treated as a system
14586 directory. The main difference between this @option{-iframework} and
14587 @option{-F} is that with @option{-iframework} the compiler does not
14588 warn about constructs contained within header files found via
14589 @var{dir}. This option is valid only for the C family of languages.
14590
14591 @item -gused
14592 @opindex gused
14593 Emit debugging information for symbols that are used. For stabs
14594 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
14595 This is by default ON@.
14596
14597 @item -gfull
14598 @opindex gfull
14599 Emit debugging information for all symbols and types.
14600
14601 @item -mmacosx-version-min=@var{version}
14602 The earliest version of MacOS X that this executable will run on
14603 is @var{version}. Typical values of @var{version} include @code{10.1},
14604 @code{10.2}, and @code{10.3.9}.
14605
14606 If the compiler was built to use the system's headers by default,
14607 then the default for this option is the system version on which the
14608 compiler is running, otherwise the default is to make choices that
14609 are compatible with as many systems and code bases as possible.
14610
14611 @item -mkernel
14612 @opindex mkernel
14613 Enable kernel development mode. The @option{-mkernel} option sets
14614 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
14615 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
14616 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
14617 applicable. This mode also sets @option{-mno-altivec},
14618 @option{-msoft-float}, @option{-fno-builtin} and
14619 @option{-mlong-branch} for PowerPC targets.
14620
14621 @item -mone-byte-bool
14622 @opindex mone-byte-bool
14623 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
14624 By default @code{sizeof(bool)} is @code{4} when compiling for
14625 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
14626 option has no effect on x86.
14627
14628 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
14629 to generate code that is not binary compatible with code generated
14630 without that switch. Using this switch may require recompiling all
14631 other modules in a program, including system libraries. Use this
14632 switch to conform to a non-default data model.
14633
14634 @item -mfix-and-continue
14635 @itemx -ffix-and-continue
14636 @itemx -findirect-data
14637 @opindex mfix-and-continue
14638 @opindex ffix-and-continue
14639 @opindex findirect-data
14640 Generate code suitable for fast turnaround development, such as to
14641 allow GDB to dynamically load @file{.o} files into already-running
14642 programs. @option{-findirect-data} and @option{-ffix-and-continue}
14643 are provided for backwards compatibility.
14644
14645 @item -all_load
14646 @opindex all_load
14647 Loads all members of static archive libraries.
14648 See man ld(1) for more information.
14649
14650 @item -arch_errors_fatal
14651 @opindex arch_errors_fatal
14652 Cause the errors having to do with files that have the wrong architecture
14653 to be fatal.
14654
14655 @item -bind_at_load
14656 @opindex bind_at_load
14657 Causes the output file to be marked such that the dynamic linker will
14658 bind all undefined references when the file is loaded or launched.
14659
14660 @item -bundle
14661 @opindex bundle
14662 Produce a Mach-o bundle format file.
14663 See man ld(1) for more information.
14664
14665 @item -bundle_loader @var{executable}
14666 @opindex bundle_loader
14667 This option specifies the @var{executable} that will load the build
14668 output file being linked. See man ld(1) for more information.
14669
14670 @item -dynamiclib
14671 @opindex dynamiclib
14672 When passed this option, GCC produces a dynamic library instead of
14673 an executable when linking, using the Darwin @file{libtool} command.
14674
14675 @item -force_cpusubtype_ALL
14676 @opindex force_cpusubtype_ALL
14677 This causes GCC's output file to have the @samp{ALL} subtype, instead of
14678 one controlled by the @option{-mcpu} or @option{-march} option.
14679
14680 @item -allowable_client @var{client_name}
14681 @itemx -client_name
14682 @itemx -compatibility_version
14683 @itemx -current_version
14684 @itemx -dead_strip
14685 @itemx -dependency-file
14686 @itemx -dylib_file
14687 @itemx -dylinker_install_name
14688 @itemx -dynamic
14689 @itemx -exported_symbols_list
14690 @itemx -filelist
14691 @need 800
14692 @itemx -flat_namespace
14693 @itemx -force_flat_namespace
14694 @itemx -headerpad_max_install_names
14695 @itemx -image_base
14696 @itemx -init
14697 @itemx -install_name
14698 @itemx -keep_private_externs
14699 @itemx -multi_module
14700 @itemx -multiply_defined
14701 @itemx -multiply_defined_unused
14702 @need 800
14703 @itemx -noall_load
14704 @itemx -no_dead_strip_inits_and_terms
14705 @itemx -nofixprebinding
14706 @itemx -nomultidefs
14707 @itemx -noprebind
14708 @itemx -noseglinkedit
14709 @itemx -pagezero_size
14710 @itemx -prebind
14711 @itemx -prebind_all_twolevel_modules
14712 @itemx -private_bundle
14713 @need 800
14714 @itemx -read_only_relocs
14715 @itemx -sectalign
14716 @itemx -sectobjectsymbols
14717 @itemx -whyload
14718 @itemx -seg1addr
14719 @itemx -sectcreate
14720 @itemx -sectobjectsymbols
14721 @itemx -sectorder
14722 @itemx -segaddr
14723 @itemx -segs_read_only_addr
14724 @need 800
14725 @itemx -segs_read_write_addr
14726 @itemx -seg_addr_table
14727 @itemx -seg_addr_table_filename
14728 @itemx -seglinkedit
14729 @itemx -segprot
14730 @itemx -segs_read_only_addr
14731 @itemx -segs_read_write_addr
14732 @itemx -single_module
14733 @itemx -static
14734 @itemx -sub_library
14735 @need 800
14736 @itemx -sub_umbrella
14737 @itemx -twolevel_namespace
14738 @itemx -umbrella
14739 @itemx -undefined
14740 @itemx -unexported_symbols_list
14741 @itemx -weak_reference_mismatches
14742 @itemx -whatsloaded
14743 @opindex allowable_client
14744 @opindex client_name
14745 @opindex compatibility_version
14746 @opindex current_version
14747 @opindex dead_strip
14748 @opindex dependency-file
14749 @opindex dylib_file
14750 @opindex dylinker_install_name
14751 @opindex dynamic
14752 @opindex exported_symbols_list
14753 @opindex filelist
14754 @opindex flat_namespace
14755 @opindex force_flat_namespace
14756 @opindex headerpad_max_install_names
14757 @opindex image_base
14758 @opindex init
14759 @opindex install_name
14760 @opindex keep_private_externs
14761 @opindex multi_module
14762 @opindex multiply_defined
14763 @opindex multiply_defined_unused
14764 @opindex noall_load
14765 @opindex no_dead_strip_inits_and_terms
14766 @opindex nofixprebinding
14767 @opindex nomultidefs
14768 @opindex noprebind
14769 @opindex noseglinkedit
14770 @opindex pagezero_size
14771 @opindex prebind
14772 @opindex prebind_all_twolevel_modules
14773 @opindex private_bundle
14774 @opindex read_only_relocs
14775 @opindex sectalign
14776 @opindex sectobjectsymbols
14777 @opindex whyload
14778 @opindex seg1addr
14779 @opindex sectcreate
14780 @opindex sectobjectsymbols
14781 @opindex sectorder
14782 @opindex segaddr
14783 @opindex segs_read_only_addr
14784 @opindex segs_read_write_addr
14785 @opindex seg_addr_table
14786 @opindex seg_addr_table_filename
14787 @opindex seglinkedit
14788 @opindex segprot
14789 @opindex segs_read_only_addr
14790 @opindex segs_read_write_addr
14791 @opindex single_module
14792 @opindex static
14793 @opindex sub_library
14794 @opindex sub_umbrella
14795 @opindex twolevel_namespace
14796 @opindex umbrella
14797 @opindex undefined
14798 @opindex unexported_symbols_list
14799 @opindex weak_reference_mismatches
14800 @opindex whatsloaded
14801 These options are passed to the Darwin linker. The Darwin linker man page
14802 describes them in detail.
14803 @end table
14804
14805 @node DEC Alpha Options
14806 @subsection DEC Alpha Options
14807
14808 These @samp{-m} options are defined for the DEC Alpha implementations:
14809
14810 @table @gcctabopt
14811 @item -mno-soft-float
14812 @itemx -msoft-float
14813 @opindex mno-soft-float
14814 @opindex msoft-float
14815 Use (do not use) the hardware floating-point instructions for
14816 floating-point operations. When @option{-msoft-float} is specified,
14817 functions in @file{libgcc.a} are used to perform floating-point
14818 operations. Unless they are replaced by routines that emulate the
14819 floating-point operations, or compiled in such a way as to call such
14820 emulations routines, these routines issue floating-point
14821 operations. If you are compiling for an Alpha without floating-point
14822 operations, you must ensure that the library is built so as not to call
14823 them.
14824
14825 Note that Alpha implementations without floating-point operations are
14826 required to have floating-point registers.
14827
14828 @item -mfp-reg
14829 @itemx -mno-fp-regs
14830 @opindex mfp-reg
14831 @opindex mno-fp-regs
14832 Generate code that uses (does not use) the floating-point register set.
14833 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
14834 register set is not used, floating-point operands are passed in integer
14835 registers as if they were integers and floating-point results are passed
14836 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
14837 so any function with a floating-point argument or return value called by code
14838 compiled with @option{-mno-fp-regs} must also be compiled with that
14839 option.
14840
14841 A typical use of this option is building a kernel that does not use,
14842 and hence need not save and restore, any floating-point registers.
14843
14844 @item -mieee
14845 @opindex mieee
14846 The Alpha architecture implements floating-point hardware optimized for
14847 maximum performance. It is mostly compliant with the IEEE floating-point
14848 standard. However, for full compliance, software assistance is
14849 required. This option generates code fully IEEE-compliant code
14850 @emph{except} that the @var{inexact-flag} is not maintained (see below).
14851 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
14852 defined during compilation. The resulting code is less efficient but is
14853 able to correctly support denormalized numbers and exceptional IEEE
14854 values such as not-a-number and plus/minus infinity. Other Alpha
14855 compilers call this option @option{-ieee_with_no_inexact}.
14856
14857 @item -mieee-with-inexact
14858 @opindex mieee-with-inexact
14859 This is like @option{-mieee} except the generated code also maintains
14860 the IEEE @var{inexact-flag}. Turning on this option causes the
14861 generated code to implement fully-compliant IEEE math. In addition to
14862 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
14863 macro. On some Alpha implementations the resulting code may execute
14864 significantly slower than the code generated by default. Since there is
14865 very little code that depends on the @var{inexact-flag}, you should
14866 normally not specify this option. Other Alpha compilers call this
14867 option @option{-ieee_with_inexact}.
14868
14869 @item -mfp-trap-mode=@var{trap-mode}
14870 @opindex mfp-trap-mode
14871 This option controls what floating-point related traps are enabled.
14872 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
14873 The trap mode can be set to one of four values:
14874
14875 @table @samp
14876 @item n
14877 This is the default (normal) setting. The only traps that are enabled
14878 are the ones that cannot be disabled in software (e.g., division by zero
14879 trap).
14880
14881 @item u
14882 In addition to the traps enabled by @samp{n}, underflow traps are enabled
14883 as well.
14884
14885 @item su
14886 Like @samp{u}, but the instructions are marked to be safe for software
14887 completion (see Alpha architecture manual for details).
14888
14889 @item sui
14890 Like @samp{su}, but inexact traps are enabled as well.
14891 @end table
14892
14893 @item -mfp-rounding-mode=@var{rounding-mode}
14894 @opindex mfp-rounding-mode
14895 Selects the IEEE rounding mode. Other Alpha compilers call this option
14896 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
14897 of:
14898
14899 @table @samp
14900 @item n
14901 Normal IEEE rounding mode. Floating-point numbers are rounded towards
14902 the nearest machine number or towards the even machine number in case
14903 of a tie.
14904
14905 @item m
14906 Round towards minus infinity.
14907
14908 @item c
14909 Chopped rounding mode. Floating-point numbers are rounded towards zero.
14910
14911 @item d
14912 Dynamic rounding mode. A field in the floating-point control register
14913 (@var{fpcr}, see Alpha architecture reference manual) controls the
14914 rounding mode in effect. The C library initializes this register for
14915 rounding towards plus infinity. Thus, unless your program modifies the
14916 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
14917 @end table
14918
14919 @item -mtrap-precision=@var{trap-precision}
14920 @opindex mtrap-precision
14921 In the Alpha architecture, floating-point traps are imprecise. This
14922 means without software assistance it is impossible to recover from a
14923 floating trap and program execution normally needs to be terminated.
14924 GCC can generate code that can assist operating system trap handlers
14925 in determining the exact location that caused a floating-point trap.
14926 Depending on the requirements of an application, different levels of
14927 precisions can be selected:
14928
14929 @table @samp
14930 @item p
14931 Program precision. This option is the default and means a trap handler
14932 can only identify which program caused a floating-point exception.
14933
14934 @item f
14935 Function precision. The trap handler can determine the function that
14936 caused a floating-point exception.
14937
14938 @item i
14939 Instruction precision. The trap handler can determine the exact
14940 instruction that caused a floating-point exception.
14941 @end table
14942
14943 Other Alpha compilers provide the equivalent options called
14944 @option{-scope_safe} and @option{-resumption_safe}.
14945
14946 @item -mieee-conformant
14947 @opindex mieee-conformant
14948 This option marks the generated code as IEEE conformant. You must not
14949 use this option unless you also specify @option{-mtrap-precision=i} and either
14950 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
14951 is to emit the line @samp{.eflag 48} in the function prologue of the
14952 generated assembly file.
14953
14954 @item -mbuild-constants
14955 @opindex mbuild-constants
14956 Normally GCC examines a 32- or 64-bit integer constant to
14957 see if it can construct it from smaller constants in two or three
14958 instructions. If it cannot, it outputs the constant as a literal and
14959 generates code to load it from the data segment at run time.
14960
14961 Use this option to require GCC to construct @emph{all} integer constants
14962 using code, even if it takes more instructions (the maximum is six).
14963
14964 You typically use this option to build a shared library dynamic
14965 loader. Itself a shared library, it must relocate itself in memory
14966 before it can find the variables and constants in its own data segment.
14967
14968 @item -mbwx
14969 @itemx -mno-bwx
14970 @itemx -mcix
14971 @itemx -mno-cix
14972 @itemx -mfix
14973 @itemx -mno-fix
14974 @itemx -mmax
14975 @itemx -mno-max
14976 @opindex mbwx
14977 @opindex mno-bwx
14978 @opindex mcix
14979 @opindex mno-cix
14980 @opindex mfix
14981 @opindex mno-fix
14982 @opindex mmax
14983 @opindex mno-max
14984 Indicate whether GCC should generate code to use the optional BWX,
14985 CIX, FIX and MAX instruction sets. The default is to use the instruction
14986 sets supported by the CPU type specified via @option{-mcpu=} option or that
14987 of the CPU on which GCC was built if none is specified.
14988
14989 @item -mfloat-vax
14990 @itemx -mfloat-ieee
14991 @opindex mfloat-vax
14992 @opindex mfloat-ieee
14993 Generate code that uses (does not use) VAX F and G floating-point
14994 arithmetic instead of IEEE single and double precision.
14995
14996 @item -mexplicit-relocs
14997 @itemx -mno-explicit-relocs
14998 @opindex mexplicit-relocs
14999 @opindex mno-explicit-relocs
15000 Older Alpha assemblers provided no way to generate symbol relocations
15001 except via assembler macros. Use of these macros does not allow
15002 optimal instruction scheduling. GNU binutils as of version 2.12
15003 supports a new syntax that allows the compiler to explicitly mark
15004 which relocations should apply to which instructions. This option
15005 is mostly useful for debugging, as GCC detects the capabilities of
15006 the assembler when it is built and sets the default accordingly.
15007
15008 @item -msmall-data
15009 @itemx -mlarge-data
15010 @opindex msmall-data
15011 @opindex mlarge-data
15012 When @option{-mexplicit-relocs} is in effect, static data is
15013 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
15014 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
15015 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
15016 16-bit relocations off of the @code{$gp} register. This limits the
15017 size of the small data area to 64KB, but allows the variables to be
15018 directly accessed via a single instruction.
15019
15020 The default is @option{-mlarge-data}. With this option the data area
15021 is limited to just below 2GB@. Programs that require more than 2GB of
15022 data must use @code{malloc} or @code{mmap} to allocate the data in the
15023 heap instead of in the program's data segment.
15024
15025 When generating code for shared libraries, @option{-fpic} implies
15026 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
15027
15028 @item -msmall-text
15029 @itemx -mlarge-text
15030 @opindex msmall-text
15031 @opindex mlarge-text
15032 When @option{-msmall-text} is used, the compiler assumes that the
15033 code of the entire program (or shared library) fits in 4MB, and is
15034 thus reachable with a branch instruction. When @option{-msmall-data}
15035 is used, the compiler can assume that all local symbols share the
15036 same @code{$gp} value, and thus reduce the number of instructions
15037 required for a function call from 4 to 1.
15038
15039 The default is @option{-mlarge-text}.
15040
15041 @item -mcpu=@var{cpu_type}
15042 @opindex mcpu
15043 Set the instruction set and instruction scheduling parameters for
15044 machine type @var{cpu_type}. You can specify either the @samp{EV}
15045 style name or the corresponding chip number. GCC supports scheduling
15046 parameters for the EV4, EV5 and EV6 family of processors and
15047 chooses the default values for the instruction set from the processor
15048 you specify. If you do not specify a processor type, GCC defaults
15049 to the processor on which the compiler was built.
15050
15051 Supported values for @var{cpu_type} are
15052
15053 @table @samp
15054 @item ev4
15055 @itemx ev45
15056 @itemx 21064
15057 Schedules as an EV4 and has no instruction set extensions.
15058
15059 @item ev5
15060 @itemx 21164
15061 Schedules as an EV5 and has no instruction set extensions.
15062
15063 @item ev56
15064 @itemx 21164a
15065 Schedules as an EV5 and supports the BWX extension.
15066
15067 @item pca56
15068 @itemx 21164pc
15069 @itemx 21164PC
15070 Schedules as an EV5 and supports the BWX and MAX extensions.
15071
15072 @item ev6
15073 @itemx 21264
15074 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
15075
15076 @item ev67
15077 @itemx 21264a
15078 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
15079 @end table
15080
15081 Native toolchains also support the value @samp{native},
15082 which selects the best architecture option for the host processor.
15083 @option{-mcpu=native} has no effect if GCC does not recognize
15084 the processor.
15085
15086 @item -mtune=@var{cpu_type}
15087 @opindex mtune
15088 Set only the instruction scheduling parameters for machine type
15089 @var{cpu_type}. The instruction set is not changed.
15090
15091 Native toolchains also support the value @samp{native},
15092 which selects the best architecture option for the host processor.
15093 @option{-mtune=native} has no effect if GCC does not recognize
15094 the processor.
15095
15096 @item -mmemory-latency=@var{time}
15097 @opindex mmemory-latency
15098 Sets the latency the scheduler should assume for typical memory
15099 references as seen by the application. This number is highly
15100 dependent on the memory access patterns used by the application
15101 and the size of the external cache on the machine.
15102
15103 Valid options for @var{time} are
15104
15105 @table @samp
15106 @item @var{number}
15107 A decimal number representing clock cycles.
15108
15109 @item L1
15110 @itemx L2
15111 @itemx L3
15112 @itemx main
15113 The compiler contains estimates of the number of clock cycles for
15114 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
15115 (also called Dcache, Scache, and Bcache), as well as to main memory.
15116 Note that L3 is only valid for EV5.
15117
15118 @end table
15119 @end table
15120
15121 @node FR30 Options
15122 @subsection FR30 Options
15123 @cindex FR30 Options
15124
15125 These options are defined specifically for the FR30 port.
15126
15127 @table @gcctabopt
15128
15129 @item -msmall-model
15130 @opindex msmall-model
15131 Use the small address space model. This can produce smaller code, but
15132 it does assume that all symbolic values and addresses fit into a
15133 20-bit range.
15134
15135 @item -mno-lsim
15136 @opindex mno-lsim
15137 Assume that runtime support has been provided and so there is no need
15138 to include the simulator library (@file{libsim.a}) on the linker
15139 command line.
15140
15141 @end table
15142
15143 @node FT32 Options
15144 @subsection FT32 Options
15145 @cindex FT32 Options
15146
15147 These options are defined specifically for the FT32 port.
15148
15149 @table @gcctabopt
15150
15151 @item -msim
15152 @opindex msim
15153 Specifies that the program will be run on the simulator. This causes
15154 an alternate runtime startup and library to be linked.
15155 You must not use this option when generating programs that will run on
15156 real hardware; you must provide your own runtime library for whatever
15157 I/O functions are needed.
15158
15159 @item -mlra
15160 @opindex mlra
15161 Enable Local Register Allocation. This is still experimental for FT32,
15162 so by default the compiler uses standard reload.
15163
15164 @end table
15165
15166 @node FRV Options
15167 @subsection FRV Options
15168 @cindex FRV Options
15169
15170 @table @gcctabopt
15171 @item -mgpr-32
15172 @opindex mgpr-32
15173
15174 Only use the first 32 general-purpose registers.
15175
15176 @item -mgpr-64
15177 @opindex mgpr-64
15178
15179 Use all 64 general-purpose registers.
15180
15181 @item -mfpr-32
15182 @opindex mfpr-32
15183
15184 Use only the first 32 floating-point registers.
15185
15186 @item -mfpr-64
15187 @opindex mfpr-64
15188
15189 Use all 64 floating-point registers.
15190
15191 @item -mhard-float
15192 @opindex mhard-float
15193
15194 Use hardware instructions for floating-point operations.
15195
15196 @item -msoft-float
15197 @opindex msoft-float
15198
15199 Use library routines for floating-point operations.
15200
15201 @item -malloc-cc
15202 @opindex malloc-cc
15203
15204 Dynamically allocate condition code registers.
15205
15206 @item -mfixed-cc
15207 @opindex mfixed-cc
15208
15209 Do not try to dynamically allocate condition code registers, only
15210 use @code{icc0} and @code{fcc0}.
15211
15212 @item -mdword
15213 @opindex mdword
15214
15215 Change ABI to use double word insns.
15216
15217 @item -mno-dword
15218 @opindex mno-dword
15219
15220 Do not use double word instructions.
15221
15222 @item -mdouble
15223 @opindex mdouble
15224
15225 Use floating-point double instructions.
15226
15227 @item -mno-double
15228 @opindex mno-double
15229
15230 Do not use floating-point double instructions.
15231
15232 @item -mmedia
15233 @opindex mmedia
15234
15235 Use media instructions.
15236
15237 @item -mno-media
15238 @opindex mno-media
15239
15240 Do not use media instructions.
15241
15242 @item -mmuladd
15243 @opindex mmuladd
15244
15245 Use multiply and add/subtract instructions.
15246
15247 @item -mno-muladd
15248 @opindex mno-muladd
15249
15250 Do not use multiply and add/subtract instructions.
15251
15252 @item -mfdpic
15253 @opindex mfdpic
15254
15255 Select the FDPIC ABI, which uses function descriptors to represent
15256 pointers to functions. Without any PIC/PIE-related options, it
15257 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
15258 assumes GOT entries and small data are within a 12-bit range from the
15259 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15260 are computed with 32 bits.
15261 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15262
15263 @item -minline-plt
15264 @opindex minline-plt
15265
15266 Enable inlining of PLT entries in function calls to functions that are
15267 not known to bind locally. It has no effect without @option{-mfdpic}.
15268 It's enabled by default if optimizing for speed and compiling for
15269 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15270 optimization option such as @option{-O3} or above is present in the
15271 command line.
15272
15273 @item -mTLS
15274 @opindex mTLS
15275
15276 Assume a large TLS segment when generating thread-local code.
15277
15278 @item -mtls
15279 @opindex mtls
15280
15281 Do not assume a large TLS segment when generating thread-local code.
15282
15283 @item -mgprel-ro
15284 @opindex mgprel-ro
15285
15286 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15287 that is known to be in read-only sections. It's enabled by default,
15288 except for @option{-fpic} or @option{-fpie}: even though it may help
15289 make the global offset table smaller, it trades 1 instruction for 4.
15290 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15291 one of which may be shared by multiple symbols, and it avoids the need
15292 for a GOT entry for the referenced symbol, so it's more likely to be a
15293 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
15294
15295 @item -multilib-library-pic
15296 @opindex multilib-library-pic
15297
15298 Link with the (library, not FD) pic libraries. It's implied by
15299 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
15300 @option{-fpic} without @option{-mfdpic}. You should never have to use
15301 it explicitly.
15302
15303 @item -mlinked-fp
15304 @opindex mlinked-fp
15305
15306 Follow the EABI requirement of always creating a frame pointer whenever
15307 a stack frame is allocated. This option is enabled by default and can
15308 be disabled with @option{-mno-linked-fp}.
15309
15310 @item -mlong-calls
15311 @opindex mlong-calls
15312
15313 Use indirect addressing to call functions outside the current
15314 compilation unit. This allows the functions to be placed anywhere
15315 within the 32-bit address space.
15316
15317 @item -malign-labels
15318 @opindex malign-labels
15319
15320 Try to align labels to an 8-byte boundary by inserting NOPs into the
15321 previous packet. This option only has an effect when VLIW packing
15322 is enabled. It doesn't create new packets; it merely adds NOPs to
15323 existing ones.
15324
15325 @item -mlibrary-pic
15326 @opindex mlibrary-pic
15327
15328 Generate position-independent EABI code.
15329
15330 @item -macc-4
15331 @opindex macc-4
15332
15333 Use only the first four media accumulator registers.
15334
15335 @item -macc-8
15336 @opindex macc-8
15337
15338 Use all eight media accumulator registers.
15339
15340 @item -mpack
15341 @opindex mpack
15342
15343 Pack VLIW instructions.
15344
15345 @item -mno-pack
15346 @opindex mno-pack
15347
15348 Do not pack VLIW instructions.
15349
15350 @item -mno-eflags
15351 @opindex mno-eflags
15352
15353 Do not mark ABI switches in e_flags.
15354
15355 @item -mcond-move
15356 @opindex mcond-move
15357
15358 Enable the use of conditional-move instructions (default).
15359
15360 This switch is mainly for debugging the compiler and will likely be removed
15361 in a future version.
15362
15363 @item -mno-cond-move
15364 @opindex mno-cond-move
15365
15366 Disable the use of conditional-move instructions.
15367
15368 This switch is mainly for debugging the compiler and will likely be removed
15369 in a future version.
15370
15371 @item -mscc
15372 @opindex mscc
15373
15374 Enable the use of conditional set instructions (default).
15375
15376 This switch is mainly for debugging the compiler and will likely be removed
15377 in a future version.
15378
15379 @item -mno-scc
15380 @opindex mno-scc
15381
15382 Disable the use of conditional set instructions.
15383
15384 This switch is mainly for debugging the compiler and will likely be removed
15385 in a future version.
15386
15387 @item -mcond-exec
15388 @opindex mcond-exec
15389
15390 Enable the use of conditional execution (default).
15391
15392 This switch is mainly for debugging the compiler and will likely be removed
15393 in a future version.
15394
15395 @item -mno-cond-exec
15396 @opindex mno-cond-exec
15397
15398 Disable the use of conditional execution.
15399
15400 This switch is mainly for debugging the compiler and will likely be removed
15401 in a future version.
15402
15403 @item -mvliw-branch
15404 @opindex mvliw-branch
15405
15406 Run a pass to pack branches into VLIW instructions (default).
15407
15408 This switch is mainly for debugging the compiler and will likely be removed
15409 in a future version.
15410
15411 @item -mno-vliw-branch
15412 @opindex mno-vliw-branch
15413
15414 Do not run a pass to pack branches into VLIW instructions.
15415
15416 This switch is mainly for debugging the compiler and will likely be removed
15417 in a future version.
15418
15419 @item -mmulti-cond-exec
15420 @opindex mmulti-cond-exec
15421
15422 Enable optimization of @code{&&} and @code{||} in conditional execution
15423 (default).
15424
15425 This switch is mainly for debugging the compiler and will likely be removed
15426 in a future version.
15427
15428 @item -mno-multi-cond-exec
15429 @opindex mno-multi-cond-exec
15430
15431 Disable optimization of @code{&&} and @code{||} in conditional execution.
15432
15433 This switch is mainly for debugging the compiler and will likely be removed
15434 in a future version.
15435
15436 @item -mnested-cond-exec
15437 @opindex mnested-cond-exec
15438
15439 Enable nested conditional execution optimizations (default).
15440
15441 This switch is mainly for debugging the compiler and will likely be removed
15442 in a future version.
15443
15444 @item -mno-nested-cond-exec
15445 @opindex mno-nested-cond-exec
15446
15447 Disable nested conditional execution optimizations.
15448
15449 This switch is mainly for debugging the compiler and will likely be removed
15450 in a future version.
15451
15452 @item -moptimize-membar
15453 @opindex moptimize-membar
15454
15455 This switch removes redundant @code{membar} instructions from the
15456 compiler-generated code. It is enabled by default.
15457
15458 @item -mno-optimize-membar
15459 @opindex mno-optimize-membar
15460
15461 This switch disables the automatic removal of redundant @code{membar}
15462 instructions from the generated code.
15463
15464 @item -mtomcat-stats
15465 @opindex mtomcat-stats
15466
15467 Cause gas to print out tomcat statistics.
15468
15469 @item -mcpu=@var{cpu}
15470 @opindex mcpu
15471
15472 Select the processor type for which to generate code. Possible values are
15473 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15474 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15475
15476 @end table
15477
15478 @node GNU/Linux Options
15479 @subsection GNU/Linux Options
15480
15481 These @samp{-m} options are defined for GNU/Linux targets:
15482
15483 @table @gcctabopt
15484 @item -mglibc
15485 @opindex mglibc
15486 Use the GNU C library. This is the default except
15487 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
15488 @samp{*-*-linux-*android*} targets.
15489
15490 @item -muclibc
15491 @opindex muclibc
15492 Use uClibc C library. This is the default on
15493 @samp{*-*-linux-*uclibc*} targets.
15494
15495 @item -mmusl
15496 @opindex mmusl
15497 Use the musl C library. This is the default on
15498 @samp{*-*-linux-*musl*} targets.
15499
15500 @item -mbionic
15501 @opindex mbionic
15502 Use Bionic C library. This is the default on
15503 @samp{*-*-linux-*android*} targets.
15504
15505 @item -mandroid
15506 @opindex mandroid
15507 Compile code compatible with Android platform. This is the default on
15508 @samp{*-*-linux-*android*} targets.
15509
15510 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15511 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
15512 this option makes the GCC driver pass Android-specific options to the linker.
15513 Finally, this option causes the preprocessor macro @code{__ANDROID__}
15514 to be defined.
15515
15516 @item -tno-android-cc
15517 @opindex tno-android-cc
15518 Disable compilation effects of @option{-mandroid}, i.e., do not enable
15519 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15520 @option{-fno-rtti} by default.
15521
15522 @item -tno-android-ld
15523 @opindex tno-android-ld
15524 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15525 linking options to the linker.
15526
15527 @end table
15528
15529 @node H8/300 Options
15530 @subsection H8/300 Options
15531
15532 These @samp{-m} options are defined for the H8/300 implementations:
15533
15534 @table @gcctabopt
15535 @item -mrelax
15536 @opindex mrelax
15537 Shorten some address references at link time, when possible; uses the
15538 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
15539 ld, Using ld}, for a fuller description.
15540
15541 @item -mh
15542 @opindex mh
15543 Generate code for the H8/300H@.
15544
15545 @item -ms
15546 @opindex ms
15547 Generate code for the H8S@.
15548
15549 @item -mn
15550 @opindex mn
15551 Generate code for the H8S and H8/300H in the normal mode. This switch
15552 must be used either with @option{-mh} or @option{-ms}.
15553
15554 @item -ms2600
15555 @opindex ms2600
15556 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
15557
15558 @item -mexr
15559 @opindex mexr
15560 Extended registers are stored on stack before execution of function
15561 with monitor attribute. Default option is @option{-mexr}.
15562 This option is valid only for H8S targets.
15563
15564 @item -mno-exr
15565 @opindex mno-exr
15566 Extended registers are not stored on stack before execution of function
15567 with monitor attribute. Default option is @option{-mno-exr}.
15568 This option is valid only for H8S targets.
15569
15570 @item -mint32
15571 @opindex mint32
15572 Make @code{int} data 32 bits by default.
15573
15574 @item -malign-300
15575 @opindex malign-300
15576 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15577 The default for the H8/300H and H8S is to align longs and floats on
15578 4-byte boundaries.
15579 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
15580 This option has no effect on the H8/300.
15581 @end table
15582
15583 @node HPPA Options
15584 @subsection HPPA Options
15585 @cindex HPPA Options
15586
15587 These @samp{-m} options are defined for the HPPA family of computers:
15588
15589 @table @gcctabopt
15590 @item -march=@var{architecture-type}
15591 @opindex march
15592 Generate code for the specified architecture. The choices for
15593 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
15594 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
15595 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
15596 architecture option for your machine. Code compiled for lower numbered
15597 architectures runs on higher numbered architectures, but not the
15598 other way around.
15599
15600 @item -mpa-risc-1-0
15601 @itemx -mpa-risc-1-1
15602 @itemx -mpa-risc-2-0
15603 @opindex mpa-risc-1-0
15604 @opindex mpa-risc-1-1
15605 @opindex mpa-risc-2-0
15606 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
15607
15608 @item -mjump-in-delay
15609 @opindex mjump-in-delay
15610 This option is ignored and provided for compatibility purposes only.
15611
15612 @item -mdisable-fpregs
15613 @opindex mdisable-fpregs
15614 Prevent floating-point registers from being used in any manner. This is
15615 necessary for compiling kernels that perform lazy context switching of
15616 floating-point registers. If you use this option and attempt to perform
15617 floating-point operations, the compiler aborts.
15618
15619 @item -mdisable-indexing
15620 @opindex mdisable-indexing
15621 Prevent the compiler from using indexing address modes. This avoids some
15622 rather obscure problems when compiling MIG generated code under MACH@.
15623
15624 @item -mno-space-regs
15625 @opindex mno-space-regs
15626 Generate code that assumes the target has no space registers. This allows
15627 GCC to generate faster indirect calls and use unscaled index address modes.
15628
15629 Such code is suitable for level 0 PA systems and kernels.
15630
15631 @item -mfast-indirect-calls
15632 @opindex mfast-indirect-calls
15633 Generate code that assumes calls never cross space boundaries. This
15634 allows GCC to emit code that performs faster indirect calls.
15635
15636 This option does not work in the presence of shared libraries or nested
15637 functions.
15638
15639 @item -mfixed-range=@var{register-range}
15640 @opindex mfixed-range
15641 Generate code treating the given register range as fixed registers.
15642 A fixed register is one that the register allocator cannot use. This is
15643 useful when compiling kernel code. A register range is specified as
15644 two registers separated by a dash. Multiple register ranges can be
15645 specified separated by a comma.
15646
15647 @item -mlong-load-store
15648 @opindex mlong-load-store
15649 Generate 3-instruction load and store sequences as sometimes required by
15650 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
15651 the HP compilers.
15652
15653 @item -mportable-runtime
15654 @opindex mportable-runtime
15655 Use the portable calling conventions proposed by HP for ELF systems.
15656
15657 @item -mgas
15658 @opindex mgas
15659 Enable the use of assembler directives only GAS understands.
15660
15661 @item -mschedule=@var{cpu-type}
15662 @opindex mschedule
15663 Schedule code according to the constraints for the machine type
15664 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
15665 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
15666 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
15667 proper scheduling option for your machine. The default scheduling is
15668 @samp{8000}.
15669
15670 @item -mlinker-opt
15671 @opindex mlinker-opt
15672 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
15673 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
15674 linkers in which they give bogus error messages when linking some programs.
15675
15676 @item -msoft-float
15677 @opindex msoft-float
15678 Generate output containing library calls for floating point.
15679 @strong{Warning:} the requisite libraries are not available for all HPPA
15680 targets. Normally the facilities of the machine's usual C compiler are
15681 used, but this cannot be done directly in cross-compilation. You must make
15682 your own arrangements to provide suitable library functions for
15683 cross-compilation.
15684
15685 @option{-msoft-float} changes the calling convention in the output file;
15686 therefore, it is only useful if you compile @emph{all} of a program with
15687 this option. In particular, you need to compile @file{libgcc.a}, the
15688 library that comes with GCC, with @option{-msoft-float} in order for
15689 this to work.
15690
15691 @item -msio
15692 @opindex msio
15693 Generate the predefine, @code{_SIO}, for server IO@. The default is
15694 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
15695 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
15696 options are available under HP-UX and HI-UX@.
15697
15698 @item -mgnu-ld
15699 @opindex mgnu-ld
15700 Use options specific to GNU @command{ld}.
15701 This passes @option{-shared} to @command{ld} when
15702 building a shared library. It is the default when GCC is configured,
15703 explicitly or implicitly, with the GNU linker. This option does not
15704 affect which @command{ld} is called; it only changes what parameters
15705 are passed to that @command{ld}.
15706 The @command{ld} that is called is determined by the
15707 @option{--with-ld} configure option, GCC's program search path, and
15708 finally by the user's @env{PATH}. The linker used by GCC can be printed
15709 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
15710 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15711
15712 @item -mhp-ld
15713 @opindex mhp-ld
15714 Use options specific to HP @command{ld}.
15715 This passes @option{-b} to @command{ld} when building
15716 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
15717 links. It is the default when GCC is configured, explicitly or
15718 implicitly, with the HP linker. This option does not affect
15719 which @command{ld} is called; it only changes what parameters are passed to that
15720 @command{ld}.
15721 The @command{ld} that is called is determined by the @option{--with-ld}
15722 configure option, GCC's program search path, and finally by the user's
15723 @env{PATH}. The linker used by GCC can be printed using @samp{which
15724 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
15725 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15726
15727 @item -mlong-calls
15728 @opindex mno-long-calls
15729 Generate code that uses long call sequences. This ensures that a call
15730 is always able to reach linker generated stubs. The default is to generate
15731 long calls only when the distance from the call site to the beginning
15732 of the function or translation unit, as the case may be, exceeds a
15733 predefined limit set by the branch type being used. The limits for
15734 normal calls are 7,600,000 and 240,000 bytes, respectively for the
15735 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
15736 240,000 bytes.
15737
15738 Distances are measured from the beginning of functions when using the
15739 @option{-ffunction-sections} option, or when using the @option{-mgas}
15740 and @option{-mno-portable-runtime} options together under HP-UX with
15741 the SOM linker.
15742
15743 It is normally not desirable to use this option as it degrades
15744 performance. However, it may be useful in large applications,
15745 particularly when partial linking is used to build the application.
15746
15747 The types of long calls used depends on the capabilities of the
15748 assembler and linker, and the type of code being generated. The
15749 impact on systems that support long absolute calls, and long pic
15750 symbol-difference or pc-relative calls should be relatively small.
15751 However, an indirect call is used on 32-bit ELF systems in pic code
15752 and it is quite long.
15753
15754 @item -munix=@var{unix-std}
15755 @opindex march
15756 Generate compiler predefines and select a startfile for the specified
15757 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
15758 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
15759 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
15760 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
15761 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
15762 and later.
15763
15764 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
15765 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
15766 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
15767 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
15768 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
15769 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
15770
15771 It is @emph{important} to note that this option changes the interfaces
15772 for various library routines. It also affects the operational behavior
15773 of the C library. Thus, @emph{extreme} care is needed in using this
15774 option.
15775
15776 Library code that is intended to operate with more than one UNIX
15777 standard must test, set and restore the variable @code{__xpg4_extended_mask}
15778 as appropriate. Most GNU software doesn't provide this capability.
15779
15780 @item -nolibdld
15781 @opindex nolibdld
15782 Suppress the generation of link options to search libdld.sl when the
15783 @option{-static} option is specified on HP-UX 10 and later.
15784
15785 @item -static
15786 @opindex static
15787 The HP-UX implementation of setlocale in libc has a dependency on
15788 libdld.sl. There isn't an archive version of libdld.sl. Thus,
15789 when the @option{-static} option is specified, special link options
15790 are needed to resolve this dependency.
15791
15792 On HP-UX 10 and later, the GCC driver adds the necessary options to
15793 link with libdld.sl when the @option{-static} option is specified.
15794 This causes the resulting binary to be dynamic. On the 64-bit port,
15795 the linkers generate dynamic binaries by default in any case. The
15796 @option{-nolibdld} option can be used to prevent the GCC driver from
15797 adding these link options.
15798
15799 @item -threads
15800 @opindex threads
15801 Add support for multithreading with the @dfn{dce thread} library
15802 under HP-UX@. This option sets flags for both the preprocessor and
15803 linker.
15804 @end table
15805
15806 @node IA-64 Options
15807 @subsection IA-64 Options
15808 @cindex IA-64 Options
15809
15810 These are the @samp{-m} options defined for the Intel IA-64 architecture.
15811
15812 @table @gcctabopt
15813 @item -mbig-endian
15814 @opindex mbig-endian
15815 Generate code for a big-endian target. This is the default for HP-UX@.
15816
15817 @item -mlittle-endian
15818 @opindex mlittle-endian
15819 Generate code for a little-endian target. This is the default for AIX5
15820 and GNU/Linux.
15821
15822 @item -mgnu-as
15823 @itemx -mno-gnu-as
15824 @opindex mgnu-as
15825 @opindex mno-gnu-as
15826 Generate (or don't) code for the GNU assembler. This is the default.
15827 @c Also, this is the default if the configure option @option{--with-gnu-as}
15828 @c is used.
15829
15830 @item -mgnu-ld
15831 @itemx -mno-gnu-ld
15832 @opindex mgnu-ld
15833 @opindex mno-gnu-ld
15834 Generate (or don't) code for the GNU linker. This is the default.
15835 @c Also, this is the default if the configure option @option{--with-gnu-ld}
15836 @c is used.
15837
15838 @item -mno-pic
15839 @opindex mno-pic
15840 Generate code that does not use a global pointer register. The result
15841 is not position independent code, and violates the IA-64 ABI@.
15842
15843 @item -mvolatile-asm-stop
15844 @itemx -mno-volatile-asm-stop
15845 @opindex mvolatile-asm-stop
15846 @opindex mno-volatile-asm-stop
15847 Generate (or don't) a stop bit immediately before and after volatile asm
15848 statements.
15849
15850 @item -mregister-names
15851 @itemx -mno-register-names
15852 @opindex mregister-names
15853 @opindex mno-register-names
15854 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
15855 the stacked registers. This may make assembler output more readable.
15856
15857 @item -mno-sdata
15858 @itemx -msdata
15859 @opindex mno-sdata
15860 @opindex msdata
15861 Disable (or enable) optimizations that use the small data section. This may
15862 be useful for working around optimizer bugs.
15863
15864 @item -mconstant-gp
15865 @opindex mconstant-gp
15866 Generate code that uses a single constant global pointer value. This is
15867 useful when compiling kernel code.
15868
15869 @item -mauto-pic
15870 @opindex mauto-pic
15871 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
15872 This is useful when compiling firmware code.
15873
15874 @item -minline-float-divide-min-latency
15875 @opindex minline-float-divide-min-latency
15876 Generate code for inline divides of floating-point values
15877 using the minimum latency algorithm.
15878
15879 @item -minline-float-divide-max-throughput
15880 @opindex minline-float-divide-max-throughput
15881 Generate code for inline divides of floating-point values
15882 using the maximum throughput algorithm.
15883
15884 @item -mno-inline-float-divide
15885 @opindex mno-inline-float-divide
15886 Do not generate inline code for divides of floating-point values.
15887
15888 @item -minline-int-divide-min-latency
15889 @opindex minline-int-divide-min-latency
15890 Generate code for inline divides of integer values
15891 using the minimum latency algorithm.
15892
15893 @item -minline-int-divide-max-throughput
15894 @opindex minline-int-divide-max-throughput
15895 Generate code for inline divides of integer values
15896 using the maximum throughput algorithm.
15897
15898 @item -mno-inline-int-divide
15899 @opindex mno-inline-int-divide
15900 Do not generate inline code for divides of integer values.
15901
15902 @item -minline-sqrt-min-latency
15903 @opindex minline-sqrt-min-latency
15904 Generate code for inline square roots
15905 using the minimum latency algorithm.
15906
15907 @item -minline-sqrt-max-throughput
15908 @opindex minline-sqrt-max-throughput
15909 Generate code for inline square roots
15910 using the maximum throughput algorithm.
15911
15912 @item -mno-inline-sqrt
15913 @opindex mno-inline-sqrt
15914 Do not generate inline code for @code{sqrt}.
15915
15916 @item -mfused-madd
15917 @itemx -mno-fused-madd
15918 @opindex mfused-madd
15919 @opindex mno-fused-madd
15920 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
15921 instructions. The default is to use these instructions.
15922
15923 @item -mno-dwarf2-asm
15924 @itemx -mdwarf2-asm
15925 @opindex mno-dwarf2-asm
15926 @opindex mdwarf2-asm
15927 Don't (or do) generate assembler code for the DWARF 2 line number debugging
15928 info. This may be useful when not using the GNU assembler.
15929
15930 @item -mearly-stop-bits
15931 @itemx -mno-early-stop-bits
15932 @opindex mearly-stop-bits
15933 @opindex mno-early-stop-bits
15934 Allow stop bits to be placed earlier than immediately preceding the
15935 instruction that triggered the stop bit. This can improve instruction
15936 scheduling, but does not always do so.
15937
15938 @item -mfixed-range=@var{register-range}
15939 @opindex mfixed-range
15940 Generate code treating the given register range as fixed registers.
15941 A fixed register is one that the register allocator cannot use. This is
15942 useful when compiling kernel code. A register range is specified as
15943 two registers separated by a dash. Multiple register ranges can be
15944 specified separated by a comma.
15945
15946 @item -mtls-size=@var{tls-size}
15947 @opindex mtls-size
15948 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
15949 64.
15950
15951 @item -mtune=@var{cpu-type}
15952 @opindex mtune
15953 Tune the instruction scheduling for a particular CPU, Valid values are
15954 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
15955 and @samp{mckinley}.
15956
15957 @item -milp32
15958 @itemx -mlp64
15959 @opindex milp32
15960 @opindex mlp64
15961 Generate code for a 32-bit or 64-bit environment.
15962 The 32-bit environment sets int, long and pointer to 32 bits.
15963 The 64-bit environment sets int to 32 bits and long and pointer
15964 to 64 bits. These are HP-UX specific flags.
15965
15966 @item -mno-sched-br-data-spec
15967 @itemx -msched-br-data-spec
15968 @opindex mno-sched-br-data-spec
15969 @opindex msched-br-data-spec
15970 (Dis/En)able data speculative scheduling before reload.
15971 This results in generation of @code{ld.a} instructions and
15972 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15973 The default is 'disable'.
15974
15975 @item -msched-ar-data-spec
15976 @itemx -mno-sched-ar-data-spec
15977 @opindex msched-ar-data-spec
15978 @opindex mno-sched-ar-data-spec
15979 (En/Dis)able data speculative scheduling after reload.
15980 This results in generation of @code{ld.a} instructions and
15981 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15982 The default is 'enable'.
15983
15984 @item -mno-sched-control-spec
15985 @itemx -msched-control-spec
15986 @opindex mno-sched-control-spec
15987 @opindex msched-control-spec
15988 (Dis/En)able control speculative scheduling. This feature is
15989 available only during region scheduling (i.e.@: before reload).
15990 This results in generation of the @code{ld.s} instructions and
15991 the corresponding check instructions @code{chk.s}.
15992 The default is 'disable'.
15993
15994 @item -msched-br-in-data-spec
15995 @itemx -mno-sched-br-in-data-spec
15996 @opindex msched-br-in-data-spec
15997 @opindex mno-sched-br-in-data-spec
15998 (En/Dis)able speculative scheduling of the instructions that
15999 are dependent on the data speculative loads before reload.
16000 This is effective only with @option{-msched-br-data-spec} enabled.
16001 The default is 'enable'.
16002
16003 @item -msched-ar-in-data-spec
16004 @itemx -mno-sched-ar-in-data-spec
16005 @opindex msched-ar-in-data-spec
16006 @opindex mno-sched-ar-in-data-spec
16007 (En/Dis)able speculative scheduling of the instructions that
16008 are dependent on the data speculative loads after reload.
16009 This is effective only with @option{-msched-ar-data-spec} enabled.
16010 The default is 'enable'.
16011
16012 @item -msched-in-control-spec
16013 @itemx -mno-sched-in-control-spec
16014 @opindex msched-in-control-spec
16015 @opindex mno-sched-in-control-spec
16016 (En/Dis)able speculative scheduling of the instructions that
16017 are dependent on the control speculative loads.
16018 This is effective only with @option{-msched-control-spec} enabled.
16019 The default is 'enable'.
16020
16021 @item -mno-sched-prefer-non-data-spec-insns
16022 @itemx -msched-prefer-non-data-spec-insns
16023 @opindex mno-sched-prefer-non-data-spec-insns
16024 @opindex msched-prefer-non-data-spec-insns
16025 If enabled, data-speculative instructions are chosen for schedule
16026 only if there are no other choices at the moment. This makes
16027 the use of the data speculation much more conservative.
16028 The default is 'disable'.
16029
16030 @item -mno-sched-prefer-non-control-spec-insns
16031 @itemx -msched-prefer-non-control-spec-insns
16032 @opindex mno-sched-prefer-non-control-spec-insns
16033 @opindex msched-prefer-non-control-spec-insns
16034 If enabled, control-speculative instructions are chosen for schedule
16035 only if there are no other choices at the moment. This makes
16036 the use of the control speculation much more conservative.
16037 The default is 'disable'.
16038
16039 @item -mno-sched-count-spec-in-critical-path
16040 @itemx -msched-count-spec-in-critical-path
16041 @opindex mno-sched-count-spec-in-critical-path
16042 @opindex msched-count-spec-in-critical-path
16043 If enabled, speculative dependencies are considered during
16044 computation of the instructions priorities. This makes the use of the
16045 speculation a bit more conservative.
16046 The default is 'disable'.
16047
16048 @item -msched-spec-ldc
16049 @opindex msched-spec-ldc
16050 Use a simple data speculation check. This option is on by default.
16051
16052 @item -msched-control-spec-ldc
16053 @opindex msched-spec-ldc
16054 Use a simple check for control speculation. This option is on by default.
16055
16056 @item -msched-stop-bits-after-every-cycle
16057 @opindex msched-stop-bits-after-every-cycle
16058 Place a stop bit after every cycle when scheduling. This option is on
16059 by default.
16060
16061 @item -msched-fp-mem-deps-zero-cost
16062 @opindex msched-fp-mem-deps-zero-cost
16063 Assume that floating-point stores and loads are not likely to cause a conflict
16064 when placed into the same instruction group. This option is disabled by
16065 default.
16066
16067 @item -msel-sched-dont-check-control-spec
16068 @opindex msel-sched-dont-check-control-spec
16069 Generate checks for control speculation in selective scheduling.
16070 This flag is disabled by default.
16071
16072 @item -msched-max-memory-insns=@var{max-insns}
16073 @opindex msched-max-memory-insns
16074 Limit on the number of memory insns per instruction group, giving lower
16075 priority to subsequent memory insns attempting to schedule in the same
16076 instruction group. Frequently useful to prevent cache bank conflicts.
16077 The default value is 1.
16078
16079 @item -msched-max-memory-insns-hard-limit
16080 @opindex msched-max-memory-insns-hard-limit
16081 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
16082 disallowing more than that number in an instruction group.
16083 Otherwise, the limit is ``soft'', meaning that non-memory operations
16084 are preferred when the limit is reached, but memory operations may still
16085 be scheduled.
16086
16087 @end table
16088
16089 @node LM32 Options
16090 @subsection LM32 Options
16091 @cindex LM32 options
16092
16093 These @option{-m} options are defined for the LatticeMico32 architecture:
16094
16095 @table @gcctabopt
16096 @item -mbarrel-shift-enabled
16097 @opindex mbarrel-shift-enabled
16098 Enable barrel-shift instructions.
16099
16100 @item -mdivide-enabled
16101 @opindex mdivide-enabled
16102 Enable divide and modulus instructions.
16103
16104 @item -mmultiply-enabled
16105 @opindex multiply-enabled
16106 Enable multiply instructions.
16107
16108 @item -msign-extend-enabled
16109 @opindex msign-extend-enabled
16110 Enable sign extend instructions.
16111
16112 @item -muser-enabled
16113 @opindex muser-enabled
16114 Enable user-defined instructions.
16115
16116 @end table
16117
16118 @node M32C Options
16119 @subsection M32C Options
16120 @cindex M32C options
16121
16122 @table @gcctabopt
16123 @item -mcpu=@var{name}
16124 @opindex mcpu=
16125 Select the CPU for which code is generated. @var{name} may be one of
16126 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
16127 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
16128 the M32C/80 series.
16129
16130 @item -msim
16131 @opindex msim
16132 Specifies that the program will be run on the simulator. This causes
16133 an alternate runtime library to be linked in which supports, for
16134 example, file I/O@. You must not use this option when generating
16135 programs that will run on real hardware; you must provide your own
16136 runtime library for whatever I/O functions are needed.
16137
16138 @item -memregs=@var{number}
16139 @opindex memregs=
16140 Specifies the number of memory-based pseudo-registers GCC uses
16141 during code generation. These pseudo-registers are used like real
16142 registers, so there is a tradeoff between GCC's ability to fit the
16143 code into available registers, and the performance penalty of using
16144 memory instead of registers. Note that all modules in a program must
16145 be compiled with the same value for this option. Because of that, you
16146 must not use this option with GCC's default runtime libraries.
16147
16148 @end table
16149
16150 @node M32R/D Options
16151 @subsection M32R/D Options
16152 @cindex M32R/D options
16153
16154 These @option{-m} options are defined for Renesas M32R/D architectures:
16155
16156 @table @gcctabopt
16157 @item -m32r2
16158 @opindex m32r2
16159 Generate code for the M32R/2@.
16160
16161 @item -m32rx
16162 @opindex m32rx
16163 Generate code for the M32R/X@.
16164
16165 @item -m32r
16166 @opindex m32r
16167 Generate code for the M32R@. This is the default.
16168
16169 @item -mmodel=small
16170 @opindex mmodel=small
16171 Assume all objects live in the lower 16MB of memory (so that their addresses
16172 can be loaded with the @code{ld24} instruction), and assume all subroutines
16173 are reachable with the @code{bl} instruction.
16174 This is the default.
16175
16176 The addressability of a particular object can be set with the
16177 @code{model} attribute.
16178
16179 @item -mmodel=medium
16180 @opindex mmodel=medium
16181 Assume objects may be anywhere in the 32-bit address space (the compiler
16182 generates @code{seth/add3} instructions to load their addresses), and
16183 assume all subroutines are reachable with the @code{bl} instruction.
16184
16185 @item -mmodel=large
16186 @opindex mmodel=large
16187 Assume objects may be anywhere in the 32-bit address space (the compiler
16188 generates @code{seth/add3} instructions to load their addresses), and
16189 assume subroutines may not be reachable with the @code{bl} instruction
16190 (the compiler generates the much slower @code{seth/add3/jl}
16191 instruction sequence).
16192
16193 @item -msdata=none
16194 @opindex msdata=none
16195 Disable use of the small data area. Variables are put into
16196 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16197 @code{section} attribute has been specified).
16198 This is the default.
16199
16200 The small data area consists of sections @code{.sdata} and @code{.sbss}.
16201 Objects may be explicitly put in the small data area with the
16202 @code{section} attribute using one of these sections.
16203
16204 @item -msdata=sdata
16205 @opindex msdata=sdata
16206 Put small global and static data in the small data area, but do not
16207 generate special code to reference them.
16208
16209 @item -msdata=use
16210 @opindex msdata=use
16211 Put small global and static data in the small data area, and generate
16212 special instructions to reference them.
16213
16214 @item -G @var{num}
16215 @opindex G
16216 @cindex smaller data references
16217 Put global and static objects less than or equal to @var{num} bytes
16218 into the small data or BSS sections instead of the normal data or BSS
16219 sections. The default value of @var{num} is 8.
16220 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16221 for this option to have any effect.
16222
16223 All modules should be compiled with the same @option{-G @var{num}} value.
16224 Compiling with different values of @var{num} may or may not work; if it
16225 doesn't the linker gives an error message---incorrect code is not
16226 generated.
16227
16228 @item -mdebug
16229 @opindex mdebug
16230 Makes the M32R-specific code in the compiler display some statistics
16231 that might help in debugging programs.
16232
16233 @item -malign-loops
16234 @opindex malign-loops
16235 Align all loops to a 32-byte boundary.
16236
16237 @item -mno-align-loops
16238 @opindex mno-align-loops
16239 Do not enforce a 32-byte alignment for loops. This is the default.
16240
16241 @item -missue-rate=@var{number}
16242 @opindex missue-rate=@var{number}
16243 Issue @var{number} instructions per cycle. @var{number} can only be 1
16244 or 2.
16245
16246 @item -mbranch-cost=@var{number}
16247 @opindex mbranch-cost=@var{number}
16248 @var{number} can only be 1 or 2. If it is 1 then branches are
16249 preferred over conditional code, if it is 2, then the opposite applies.
16250
16251 @item -mflush-trap=@var{number}
16252 @opindex mflush-trap=@var{number}
16253 Specifies the trap number to use to flush the cache. The default is
16254 12. Valid numbers are between 0 and 15 inclusive.
16255
16256 @item -mno-flush-trap
16257 @opindex mno-flush-trap
16258 Specifies that the cache cannot be flushed by using a trap.
16259
16260 @item -mflush-func=@var{name}
16261 @opindex mflush-func=@var{name}
16262 Specifies the name of the operating system function to call to flush
16263 the cache. The default is @samp{_flush_cache}, but a function call
16264 is only used if a trap is not available.
16265
16266 @item -mno-flush-func
16267 @opindex mno-flush-func
16268 Indicates that there is no OS function for flushing the cache.
16269
16270 @end table
16271
16272 @node M680x0 Options
16273 @subsection M680x0 Options
16274 @cindex M680x0 options
16275
16276 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16277 The default settings depend on which architecture was selected when
16278 the compiler was configured; the defaults for the most common choices
16279 are given below.
16280
16281 @table @gcctabopt
16282 @item -march=@var{arch}
16283 @opindex march
16284 Generate code for a specific M680x0 or ColdFire instruction set
16285 architecture. Permissible values of @var{arch} for M680x0
16286 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16287 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
16288 architectures are selected according to Freescale's ISA classification
16289 and the permissible values are: @samp{isaa}, @samp{isaaplus},
16290 @samp{isab} and @samp{isac}.
16291
16292 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16293 code for a ColdFire target. The @var{arch} in this macro is one of the
16294 @option{-march} arguments given above.
16295
16296 When used together, @option{-march} and @option{-mtune} select code
16297 that runs on a family of similar processors but that is optimized
16298 for a particular microarchitecture.
16299
16300 @item -mcpu=@var{cpu}
16301 @opindex mcpu
16302 Generate code for a specific M680x0 or ColdFire processor.
16303 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16304 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16305 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
16306 below, which also classifies the CPUs into families:
16307
16308 @multitable @columnfractions 0.20 0.80
16309 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16310 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16311 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16312 @item @samp{5206e} @tab @samp{5206e}
16313 @item @samp{5208} @tab @samp{5207} @samp{5208}
16314 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16315 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16316 @item @samp{5216} @tab @samp{5214} @samp{5216}
16317 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16318 @item @samp{5225} @tab @samp{5224} @samp{5225}
16319 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16320 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16321 @item @samp{5249} @tab @samp{5249}
16322 @item @samp{5250} @tab @samp{5250}
16323 @item @samp{5271} @tab @samp{5270} @samp{5271}
16324 @item @samp{5272} @tab @samp{5272}
16325 @item @samp{5275} @tab @samp{5274} @samp{5275}
16326 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16327 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16328 @item @samp{5307} @tab @samp{5307}
16329 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16330 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16331 @item @samp{5407} @tab @samp{5407}
16332 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16333 @end multitable
16334
16335 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16336 @var{arch} is compatible with @var{cpu}. Other combinations of
16337 @option{-mcpu} and @option{-march} are rejected.
16338
16339 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16340 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
16341 where the value of @var{family} is given by the table above.
16342
16343 @item -mtune=@var{tune}
16344 @opindex mtune
16345 Tune the code for a particular microarchitecture within the
16346 constraints set by @option{-march} and @option{-mcpu}.
16347 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16348 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16349 and @samp{cpu32}. The ColdFire microarchitectures
16350 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16351
16352 You can also use @option{-mtune=68020-40} for code that needs
16353 to run relatively well on 68020, 68030 and 68040 targets.
16354 @option{-mtune=68020-60} is similar but includes 68060 targets
16355 as well. These two options select the same tuning decisions as
16356 @option{-m68020-40} and @option{-m68020-60} respectively.
16357
16358 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16359 when tuning for 680x0 architecture @var{arch}. It also defines
16360 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16361 option is used. If GCC is tuning for a range of architectures,
16362 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16363 it defines the macros for every architecture in the range.
16364
16365 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16366 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16367 of the arguments given above.
16368
16369 @item -m68000
16370 @itemx -mc68000
16371 @opindex m68000
16372 @opindex mc68000
16373 Generate output for a 68000. This is the default
16374 when the compiler is configured for 68000-based systems.
16375 It is equivalent to @option{-march=68000}.
16376
16377 Use this option for microcontrollers with a 68000 or EC000 core,
16378 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16379
16380 @item -m68010
16381 @opindex m68010
16382 Generate output for a 68010. This is the default
16383 when the compiler is configured for 68010-based systems.
16384 It is equivalent to @option{-march=68010}.
16385
16386 @item -m68020
16387 @itemx -mc68020
16388 @opindex m68020
16389 @opindex mc68020
16390 Generate output for a 68020. This is the default
16391 when the compiler is configured for 68020-based systems.
16392 It is equivalent to @option{-march=68020}.
16393
16394 @item -m68030
16395 @opindex m68030
16396 Generate output for a 68030. This is the default when the compiler is
16397 configured for 68030-based systems. It is equivalent to
16398 @option{-march=68030}.
16399
16400 @item -m68040
16401 @opindex m68040
16402 Generate output for a 68040. This is the default when the compiler is
16403 configured for 68040-based systems. It is equivalent to
16404 @option{-march=68040}.
16405
16406 This option inhibits the use of 68881/68882 instructions that have to be
16407 emulated by software on the 68040. Use this option if your 68040 does not
16408 have code to emulate those instructions.
16409
16410 @item -m68060
16411 @opindex m68060
16412 Generate output for a 68060. This is the default when the compiler is
16413 configured for 68060-based systems. It is equivalent to
16414 @option{-march=68060}.
16415
16416 This option inhibits the use of 68020 and 68881/68882 instructions that
16417 have to be emulated by software on the 68060. Use this option if your 68060
16418 does not have code to emulate those instructions.
16419
16420 @item -mcpu32
16421 @opindex mcpu32
16422 Generate output for a CPU32. This is the default
16423 when the compiler is configured for CPU32-based systems.
16424 It is equivalent to @option{-march=cpu32}.
16425
16426 Use this option for microcontrollers with a
16427 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
16428 68336, 68340, 68341, 68349 and 68360.
16429
16430 @item -m5200
16431 @opindex m5200
16432 Generate output for a 520X ColdFire CPU@. This is the default
16433 when the compiler is configured for 520X-based systems.
16434 It is equivalent to @option{-mcpu=5206}, and is now deprecated
16435 in favor of that option.
16436
16437 Use this option for microcontroller with a 5200 core, including
16438 the MCF5202, MCF5203, MCF5204 and MCF5206.
16439
16440 @item -m5206e
16441 @opindex m5206e
16442 Generate output for a 5206e ColdFire CPU@. The option is now
16443 deprecated in favor of the equivalent @option{-mcpu=5206e}.
16444
16445 @item -m528x
16446 @opindex m528x
16447 Generate output for a member of the ColdFire 528X family.
16448 The option is now deprecated in favor of the equivalent
16449 @option{-mcpu=528x}.
16450
16451 @item -m5307
16452 @opindex m5307
16453 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
16454 in favor of the equivalent @option{-mcpu=5307}.
16455
16456 @item -m5407
16457 @opindex m5407
16458 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
16459 in favor of the equivalent @option{-mcpu=5407}.
16460
16461 @item -mcfv4e
16462 @opindex mcfv4e
16463 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16464 This includes use of hardware floating-point instructions.
16465 The option is equivalent to @option{-mcpu=547x}, and is now
16466 deprecated in favor of that option.
16467
16468 @item -m68020-40
16469 @opindex m68020-40
16470 Generate output for a 68040, without using any of the new instructions.
16471 This results in code that can run relatively efficiently on either a
16472 68020/68881 or a 68030 or a 68040. The generated code does use the
16473 68881 instructions that are emulated on the 68040.
16474
16475 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16476
16477 @item -m68020-60
16478 @opindex m68020-60
16479 Generate output for a 68060, without using any of the new instructions.
16480 This results in code that can run relatively efficiently on either a
16481 68020/68881 or a 68030 or a 68040. The generated code does use the
16482 68881 instructions that are emulated on the 68060.
16483
16484 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16485
16486 @item -mhard-float
16487 @itemx -m68881
16488 @opindex mhard-float
16489 @opindex m68881
16490 Generate floating-point instructions. This is the default for 68020
16491 and above, and for ColdFire devices that have an FPU@. It defines the
16492 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16493 on ColdFire targets.
16494
16495 @item -msoft-float
16496 @opindex msoft-float
16497 Do not generate floating-point instructions; use library calls instead.
16498 This is the default for 68000, 68010, and 68832 targets. It is also
16499 the default for ColdFire devices that have no FPU.
16500
16501 @item -mdiv
16502 @itemx -mno-div
16503 @opindex mdiv
16504 @opindex mno-div
16505 Generate (do not generate) ColdFire hardware divide and remainder
16506 instructions. If @option{-march} is used without @option{-mcpu},
16507 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16508 architectures. Otherwise, the default is taken from the target CPU
16509 (either the default CPU, or the one specified by @option{-mcpu}). For
16510 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16511 @option{-mcpu=5206e}.
16512
16513 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16514
16515 @item -mshort
16516 @opindex mshort
16517 Consider type @code{int} to be 16 bits wide, like @code{short int}.
16518 Additionally, parameters passed on the stack are also aligned to a
16519 16-bit boundary even on targets whose API mandates promotion to 32-bit.
16520
16521 @item -mno-short
16522 @opindex mno-short
16523 Do not consider type @code{int} to be 16 bits wide. This is the default.
16524
16525 @item -mnobitfield
16526 @itemx -mno-bitfield
16527 @opindex mnobitfield
16528 @opindex mno-bitfield
16529 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
16530 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16531
16532 @item -mbitfield
16533 @opindex mbitfield
16534 Do use the bit-field instructions. The @option{-m68020} option implies
16535 @option{-mbitfield}. This is the default if you use a configuration
16536 designed for a 68020.
16537
16538 @item -mrtd
16539 @opindex mrtd
16540 Use a different function-calling convention, in which functions
16541 that take a fixed number of arguments return with the @code{rtd}
16542 instruction, which pops their arguments while returning. This
16543 saves one instruction in the caller since there is no need to pop
16544 the arguments there.
16545
16546 This calling convention is incompatible with the one normally
16547 used on Unix, so you cannot use it if you need to call libraries
16548 compiled with the Unix compiler.
16549
16550 Also, you must provide function prototypes for all functions that
16551 take variable numbers of arguments (including @code{printf});
16552 otherwise incorrect code is generated for calls to those
16553 functions.
16554
16555 In addition, seriously incorrect code results if you call a
16556 function with too many arguments. (Normally, extra arguments are
16557 harmlessly ignored.)
16558
16559 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
16560 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16561
16562 @item -mno-rtd
16563 @opindex mno-rtd
16564 Do not use the calling conventions selected by @option{-mrtd}.
16565 This is the default.
16566
16567 @item -malign-int
16568 @itemx -mno-align-int
16569 @opindex malign-int
16570 @opindex mno-align-int
16571 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16572 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
16573 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16574 Aligning variables on 32-bit boundaries produces code that runs somewhat
16575 faster on processors with 32-bit busses at the expense of more memory.
16576
16577 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
16578 aligns structures containing the above types differently than
16579 most published application binary interface specifications for the m68k.
16580
16581 @item -mpcrel
16582 @opindex mpcrel
16583 Use the pc-relative addressing mode of the 68000 directly, instead of
16584 using a global offset table. At present, this option implies @option{-fpic},
16585 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
16586 not presently supported with @option{-mpcrel}, though this could be supported for
16587 68020 and higher processors.
16588
16589 @item -mno-strict-align
16590 @itemx -mstrict-align
16591 @opindex mno-strict-align
16592 @opindex mstrict-align
16593 Do not (do) assume that unaligned memory references are handled by
16594 the system.
16595
16596 @item -msep-data
16597 Generate code that allows the data segment to be located in a different
16598 area of memory from the text segment. This allows for execute-in-place in
16599 an environment without virtual memory management. This option implies
16600 @option{-fPIC}.
16601
16602 @item -mno-sep-data
16603 Generate code that assumes that the data segment follows the text segment.
16604 This is the default.
16605
16606 @item -mid-shared-library
16607 Generate code that supports shared libraries via the library ID method.
16608 This allows for execute-in-place and shared libraries in an environment
16609 without virtual memory management. This option implies @option{-fPIC}.
16610
16611 @item -mno-id-shared-library
16612 Generate code that doesn't assume ID-based shared libraries are being used.
16613 This is the default.
16614
16615 @item -mshared-library-id=n
16616 Specifies the identification number of the ID-based shared library being
16617 compiled. Specifying a value of 0 generates more compact code; specifying
16618 other values forces the allocation of that number to the current
16619 library, but is no more space- or time-efficient than omitting this option.
16620
16621 @item -mxgot
16622 @itemx -mno-xgot
16623 @opindex mxgot
16624 @opindex mno-xgot
16625 When generating position-independent code for ColdFire, generate code
16626 that works if the GOT has more than 8192 entries. This code is
16627 larger and slower than code generated without this option. On M680x0
16628 processors, this option is not needed; @option{-fPIC} suffices.
16629
16630 GCC normally uses a single instruction to load values from the GOT@.
16631 While this is relatively efficient, it only works if the GOT
16632 is smaller than about 64k. Anything larger causes the linker
16633 to report an error such as:
16634
16635 @cindex relocation truncated to fit (ColdFire)
16636 @smallexample
16637 relocation truncated to fit: R_68K_GOT16O foobar
16638 @end smallexample
16639
16640 If this happens, you should recompile your code with @option{-mxgot}.
16641 It should then work with very large GOTs. However, code generated with
16642 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
16643 the value of a global symbol.
16644
16645 Note that some linkers, including newer versions of the GNU linker,
16646 can create multiple GOTs and sort GOT entries. If you have such a linker,
16647 you should only need to use @option{-mxgot} when compiling a single
16648 object file that accesses more than 8192 GOT entries. Very few do.
16649
16650 These options have no effect unless GCC is generating
16651 position-independent code.
16652
16653 @end table
16654
16655 @node MCore Options
16656 @subsection MCore Options
16657 @cindex MCore options
16658
16659 These are the @samp{-m} options defined for the Motorola M*Core
16660 processors.
16661
16662 @table @gcctabopt
16663
16664 @item -mhardlit
16665 @itemx -mno-hardlit
16666 @opindex mhardlit
16667 @opindex mno-hardlit
16668 Inline constants into the code stream if it can be done in two
16669 instructions or less.
16670
16671 @item -mdiv
16672 @itemx -mno-div
16673 @opindex mdiv
16674 @opindex mno-div
16675 Use the divide instruction. (Enabled by default).
16676
16677 @item -mrelax-immediate
16678 @itemx -mno-relax-immediate
16679 @opindex mrelax-immediate
16680 @opindex mno-relax-immediate
16681 Allow arbitrary-sized immediates in bit operations.
16682
16683 @item -mwide-bitfields
16684 @itemx -mno-wide-bitfields
16685 @opindex mwide-bitfields
16686 @opindex mno-wide-bitfields
16687 Always treat bit-fields as @code{int}-sized.
16688
16689 @item -m4byte-functions
16690 @itemx -mno-4byte-functions
16691 @opindex m4byte-functions
16692 @opindex mno-4byte-functions
16693 Force all functions to be aligned to a 4-byte boundary.
16694
16695 @item -mcallgraph-data
16696 @itemx -mno-callgraph-data
16697 @opindex mcallgraph-data
16698 @opindex mno-callgraph-data
16699 Emit callgraph information.
16700
16701 @item -mslow-bytes
16702 @itemx -mno-slow-bytes
16703 @opindex mslow-bytes
16704 @opindex mno-slow-bytes
16705 Prefer word access when reading byte quantities.
16706
16707 @item -mlittle-endian
16708 @itemx -mbig-endian
16709 @opindex mlittle-endian
16710 @opindex mbig-endian
16711 Generate code for a little-endian target.
16712
16713 @item -m210
16714 @itemx -m340
16715 @opindex m210
16716 @opindex m340
16717 Generate code for the 210 processor.
16718
16719 @item -mno-lsim
16720 @opindex mno-lsim
16721 Assume that runtime support has been provided and so omit the
16722 simulator library (@file{libsim.a)} from the linker command line.
16723
16724 @item -mstack-increment=@var{size}
16725 @opindex mstack-increment
16726 Set the maximum amount for a single stack increment operation. Large
16727 values can increase the speed of programs that contain functions
16728 that need a large amount of stack space, but they can also trigger a
16729 segmentation fault if the stack is extended too much. The default
16730 value is 0x1000.
16731
16732 @end table
16733
16734 @node MeP Options
16735 @subsection MeP Options
16736 @cindex MeP options
16737
16738 @table @gcctabopt
16739
16740 @item -mabsdiff
16741 @opindex mabsdiff
16742 Enables the @code{abs} instruction, which is the absolute difference
16743 between two registers.
16744
16745 @item -mall-opts
16746 @opindex mall-opts
16747 Enables all the optional instructions---average, multiply, divide, bit
16748 operations, leading zero, absolute difference, min/max, clip, and
16749 saturation.
16750
16751
16752 @item -maverage
16753 @opindex maverage
16754 Enables the @code{ave} instruction, which computes the average of two
16755 registers.
16756
16757 @item -mbased=@var{n}
16758 @opindex mbased=
16759 Variables of size @var{n} bytes or smaller are placed in the
16760 @code{.based} section by default. Based variables use the @code{$tp}
16761 register as a base register, and there is a 128-byte limit to the
16762 @code{.based} section.
16763
16764 @item -mbitops
16765 @opindex mbitops
16766 Enables the bit operation instructions---bit test (@code{btstm}), set
16767 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
16768 test-and-set (@code{tas}).
16769
16770 @item -mc=@var{name}
16771 @opindex mc=
16772 Selects which section constant data is placed in. @var{name} may
16773 be @samp{tiny}, @samp{near}, or @samp{far}.
16774
16775 @item -mclip
16776 @opindex mclip
16777 Enables the @code{clip} instruction. Note that @option{-mclip} is not
16778 useful unless you also provide @option{-mminmax}.
16779
16780 @item -mconfig=@var{name}
16781 @opindex mconfig=
16782 Selects one of the built-in core configurations. Each MeP chip has
16783 one or more modules in it; each module has a core CPU and a variety of
16784 coprocessors, optional instructions, and peripherals. The
16785 @code{MeP-Integrator} tool, not part of GCC, provides these
16786 configurations through this option; using this option is the same as
16787 using all the corresponding command-line options. The default
16788 configuration is @samp{default}.
16789
16790 @item -mcop
16791 @opindex mcop
16792 Enables the coprocessor instructions. By default, this is a 32-bit
16793 coprocessor. Note that the coprocessor is normally enabled via the
16794 @option{-mconfig=} option.
16795
16796 @item -mcop32
16797 @opindex mcop32
16798 Enables the 32-bit coprocessor's instructions.
16799
16800 @item -mcop64
16801 @opindex mcop64
16802 Enables the 64-bit coprocessor's instructions.
16803
16804 @item -mivc2
16805 @opindex mivc2
16806 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
16807
16808 @item -mdc
16809 @opindex mdc
16810 Causes constant variables to be placed in the @code{.near} section.
16811
16812 @item -mdiv
16813 @opindex mdiv
16814 Enables the @code{div} and @code{divu} instructions.
16815
16816 @item -meb
16817 @opindex meb
16818 Generate big-endian code.
16819
16820 @item -mel
16821 @opindex mel
16822 Generate little-endian code.
16823
16824 @item -mio-volatile
16825 @opindex mio-volatile
16826 Tells the compiler that any variable marked with the @code{io}
16827 attribute is to be considered volatile.
16828
16829 @item -ml
16830 @opindex ml
16831 Causes variables to be assigned to the @code{.far} section by default.
16832
16833 @item -mleadz
16834 @opindex mleadz
16835 Enables the @code{leadz} (leading zero) instruction.
16836
16837 @item -mm
16838 @opindex mm
16839 Causes variables to be assigned to the @code{.near} section by default.
16840
16841 @item -mminmax
16842 @opindex mminmax
16843 Enables the @code{min} and @code{max} instructions.
16844
16845 @item -mmult
16846 @opindex mmult
16847 Enables the multiplication and multiply-accumulate instructions.
16848
16849 @item -mno-opts
16850 @opindex mno-opts
16851 Disables all the optional instructions enabled by @option{-mall-opts}.
16852
16853 @item -mrepeat
16854 @opindex mrepeat
16855 Enables the @code{repeat} and @code{erepeat} instructions, used for
16856 low-overhead looping.
16857
16858 @item -ms
16859 @opindex ms
16860 Causes all variables to default to the @code{.tiny} section. Note
16861 that there is a 65536-byte limit to this section. Accesses to these
16862 variables use the @code{%gp} base register.
16863
16864 @item -msatur
16865 @opindex msatur
16866 Enables the saturation instructions. Note that the compiler does not
16867 currently generate these itself, but this option is included for
16868 compatibility with other tools, like @code{as}.
16869
16870 @item -msdram
16871 @opindex msdram
16872 Link the SDRAM-based runtime instead of the default ROM-based runtime.
16873
16874 @item -msim
16875 @opindex msim
16876 Link the simulator run-time libraries.
16877
16878 @item -msimnovec
16879 @opindex msimnovec
16880 Link the simulator runtime libraries, excluding built-in support
16881 for reset and exception vectors and tables.
16882
16883 @item -mtf
16884 @opindex mtf
16885 Causes all functions to default to the @code{.far} section. Without
16886 this option, functions default to the @code{.near} section.
16887
16888 @item -mtiny=@var{n}
16889 @opindex mtiny=
16890 Variables that are @var{n} bytes or smaller are allocated to the
16891 @code{.tiny} section. These variables use the @code{$gp} base
16892 register. The default for this option is 4, but note that there's a
16893 65536-byte limit to the @code{.tiny} section.
16894
16895 @end table
16896
16897 @node MicroBlaze Options
16898 @subsection MicroBlaze Options
16899 @cindex MicroBlaze Options
16900
16901 @table @gcctabopt
16902
16903 @item -msoft-float
16904 @opindex msoft-float
16905 Use software emulation for floating point (default).
16906
16907 @item -mhard-float
16908 @opindex mhard-float
16909 Use hardware floating-point instructions.
16910
16911 @item -mmemcpy
16912 @opindex mmemcpy
16913 Do not optimize block moves, use @code{memcpy}.
16914
16915 @item -mno-clearbss
16916 @opindex mno-clearbss
16917 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
16918
16919 @item -mcpu=@var{cpu-type}
16920 @opindex mcpu=
16921 Use features of, and schedule code for, the given CPU.
16922 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
16923 where @var{X} is a major version, @var{YY} is the minor version, and
16924 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
16925 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
16926
16927 @item -mxl-soft-mul
16928 @opindex mxl-soft-mul
16929 Use software multiply emulation (default).
16930
16931 @item -mxl-soft-div
16932 @opindex mxl-soft-div
16933 Use software emulation for divides (default).
16934
16935 @item -mxl-barrel-shift
16936 @opindex mxl-barrel-shift
16937 Use the hardware barrel shifter.
16938
16939 @item -mxl-pattern-compare
16940 @opindex mxl-pattern-compare
16941 Use pattern compare instructions.
16942
16943 @item -msmall-divides
16944 @opindex msmall-divides
16945 Use table lookup optimization for small signed integer divisions.
16946
16947 @item -mxl-stack-check
16948 @opindex mxl-stack-check
16949 This option is deprecated. Use @option{-fstack-check} instead.
16950
16951 @item -mxl-gp-opt
16952 @opindex mxl-gp-opt
16953 Use GP-relative @code{.sdata}/@code{.sbss} sections.
16954
16955 @item -mxl-multiply-high
16956 @opindex mxl-multiply-high
16957 Use multiply high instructions for high part of 32x32 multiply.
16958
16959 @item -mxl-float-convert
16960 @opindex mxl-float-convert
16961 Use hardware floating-point conversion instructions.
16962
16963 @item -mxl-float-sqrt
16964 @opindex mxl-float-sqrt
16965 Use hardware floating-point square root instruction.
16966
16967 @item -mbig-endian
16968 @opindex mbig-endian
16969 Generate code for a big-endian target.
16970
16971 @item -mlittle-endian
16972 @opindex mlittle-endian
16973 Generate code for a little-endian target.
16974
16975 @item -mxl-reorder
16976 @opindex mxl-reorder
16977 Use reorder instructions (swap and byte reversed load/store).
16978
16979 @item -mxl-mode-@var{app-model}
16980 Select application model @var{app-model}. Valid models are
16981 @table @samp
16982 @item executable
16983 normal executable (default), uses startup code @file{crt0.o}.
16984
16985 @item xmdstub
16986 for use with Xilinx Microprocessor Debugger (XMD) based
16987 software intrusive debug agent called xmdstub. This uses startup file
16988 @file{crt1.o} and sets the start address of the program to 0x800.
16989
16990 @item bootstrap
16991 for applications that are loaded using a bootloader.
16992 This model uses startup file @file{crt2.o} which does not contain a processor
16993 reset vector handler. This is suitable for transferring control on a
16994 processor reset to the bootloader rather than the application.
16995
16996 @item novectors
16997 for applications that do not require any of the
16998 MicroBlaze vectors. This option may be useful for applications running
16999 within a monitoring application. This model uses @file{crt3.o} as a startup file.
17000 @end table
17001
17002 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
17003 @option{-mxl-mode-@var{app-model}}.
17004
17005 @end table
17006
17007 @node MIPS Options
17008 @subsection MIPS Options
17009 @cindex MIPS options
17010
17011 @table @gcctabopt
17012
17013 @item -EB
17014 @opindex EB
17015 Generate big-endian code.
17016
17017 @item -EL
17018 @opindex EL
17019 Generate little-endian code. This is the default for @samp{mips*el-*-*}
17020 configurations.
17021
17022 @item -march=@var{arch}
17023 @opindex march
17024 Generate code that runs on @var{arch}, which can be the name of a
17025 generic MIPS ISA, or the name of a particular processor.
17026 The ISA names are:
17027 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
17028 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
17029 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
17030 @samp{mips64r5} and @samp{mips64r6}.
17031 The processor names are:
17032 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
17033 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
17034 @samp{5kc}, @samp{5kf},
17035 @samp{20kc},
17036 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
17037 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
17038 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
17039 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
17040 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
17041 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
17042 @samp{m4k},
17043 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
17044 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
17045 @samp{orion},
17046 @samp{p5600},
17047 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
17048 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
17049 @samp{rm7000}, @samp{rm9000},
17050 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
17051 @samp{sb1},
17052 @samp{sr71000},
17053 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
17054 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
17055 @samp{xlr} and @samp{xlp}.
17056 The special value @samp{from-abi} selects the
17057 most compatible architecture for the selected ABI (that is,
17058 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
17059
17060 The native Linux/GNU toolchain also supports the value @samp{native},
17061 which selects the best architecture option for the host processor.
17062 @option{-march=native} has no effect if GCC does not recognize
17063 the processor.
17064
17065 In processor names, a final @samp{000} can be abbreviated as @samp{k}
17066 (for example, @option{-march=r2k}). Prefixes are optional, and
17067 @samp{vr} may be written @samp{r}.
17068
17069 Names of the form @samp{@var{n}f2_1} refer to processors with
17070 FPUs clocked at half the rate of the core, names of the form
17071 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
17072 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
17073 processors with FPUs clocked a ratio of 3:2 with respect to the core.
17074 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
17075 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
17076 accepted as synonyms for @samp{@var{n}f1_1}.
17077
17078 GCC defines two macros based on the value of this option. The first
17079 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
17080 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
17081 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
17082 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
17083 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
17084
17085 Note that the @code{_MIPS_ARCH} macro uses the processor names given
17086 above. In other words, it has the full prefix and does not
17087 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
17088 the macro names the resolved architecture (either @code{"mips1"} or
17089 @code{"mips3"}). It names the default architecture when no
17090 @option{-march} option is given.
17091
17092 @item -mtune=@var{arch}
17093 @opindex mtune
17094 Optimize for @var{arch}. Among other things, this option controls
17095 the way instructions are scheduled, and the perceived cost of arithmetic
17096 operations. The list of @var{arch} values is the same as for
17097 @option{-march}.
17098
17099 When this option is not used, GCC optimizes for the processor
17100 specified by @option{-march}. By using @option{-march} and
17101 @option{-mtune} together, it is possible to generate code that
17102 runs on a family of processors, but optimize the code for one
17103 particular member of that family.
17104
17105 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
17106 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
17107 @option{-march} ones described above.
17108
17109 @item -mips1
17110 @opindex mips1
17111 Equivalent to @option{-march=mips1}.
17112
17113 @item -mips2
17114 @opindex mips2
17115 Equivalent to @option{-march=mips2}.
17116
17117 @item -mips3
17118 @opindex mips3
17119 Equivalent to @option{-march=mips3}.
17120
17121 @item -mips4
17122 @opindex mips4
17123 Equivalent to @option{-march=mips4}.
17124
17125 @item -mips32
17126 @opindex mips32
17127 Equivalent to @option{-march=mips32}.
17128
17129 @item -mips32r3
17130 @opindex mips32r3
17131 Equivalent to @option{-march=mips32r3}.
17132
17133 @item -mips32r5
17134 @opindex mips32r5
17135 Equivalent to @option{-march=mips32r5}.
17136
17137 @item -mips32r6
17138 @opindex mips32r6
17139 Equivalent to @option{-march=mips32r6}.
17140
17141 @item -mips64
17142 @opindex mips64
17143 Equivalent to @option{-march=mips64}.
17144
17145 @item -mips64r2
17146 @opindex mips64r2
17147 Equivalent to @option{-march=mips64r2}.
17148
17149 @item -mips64r3
17150 @opindex mips64r3
17151 Equivalent to @option{-march=mips64r3}.
17152
17153 @item -mips64r5
17154 @opindex mips64r5
17155 Equivalent to @option{-march=mips64r5}.
17156
17157 @item -mips64r6
17158 @opindex mips64r6
17159 Equivalent to @option{-march=mips64r6}.
17160
17161 @item -mips16
17162 @itemx -mno-mips16
17163 @opindex mips16
17164 @opindex mno-mips16
17165 Generate (do not generate) MIPS16 code. If GCC is targeting a
17166 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17167
17168 MIPS16 code generation can also be controlled on a per-function basis
17169 by means of @code{mips16} and @code{nomips16} attributes.
17170 @xref{Function Attributes}, for more information.
17171
17172 @item -mflip-mips16
17173 @opindex mflip-mips16
17174 Generate MIPS16 code on alternating functions. This option is provided
17175 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17176 not intended for ordinary use in compiling user code.
17177
17178 @item -minterlink-compressed
17179 @item -mno-interlink-compressed
17180 @opindex minterlink-compressed
17181 @opindex mno-interlink-compressed
17182 Require (do not require) that code using the standard (uncompressed) MIPS ISA
17183 be link-compatible with MIPS16 and microMIPS code, and vice versa.
17184
17185 For example, code using the standard ISA encoding cannot jump directly
17186 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17187 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
17188 knows that the target of the jump is not compressed.
17189
17190 @item -minterlink-mips16
17191 @itemx -mno-interlink-mips16
17192 @opindex minterlink-mips16
17193 @opindex mno-interlink-mips16
17194 Aliases of @option{-minterlink-compressed} and
17195 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
17196 and are retained for backwards compatibility.
17197
17198 @item -mabi=32
17199 @itemx -mabi=o64
17200 @itemx -mabi=n32
17201 @itemx -mabi=64
17202 @itemx -mabi=eabi
17203 @opindex mabi=32
17204 @opindex mabi=o64
17205 @opindex mabi=n32
17206 @opindex mabi=64
17207 @opindex mabi=eabi
17208 Generate code for the given ABI@.
17209
17210 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
17211 generates 64-bit code when you select a 64-bit architecture, but you
17212 can use @option{-mgp32} to get 32-bit code instead.
17213
17214 For information about the O64 ABI, see
17215 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17216
17217 GCC supports a variant of the o32 ABI in which floating-point registers
17218 are 64 rather than 32 bits wide. You can select this combination with
17219 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
17220 and @code{mfhc1} instructions and is therefore only supported for
17221 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17222
17223 The register assignments for arguments and return values remain the
17224 same, but each scalar value is passed in a single 64-bit register
17225 rather than a pair of 32-bit registers. For example, scalar
17226 floating-point values are returned in @samp{$f0} only, not a
17227 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
17228 remains the same in that the even-numbered double-precision registers
17229 are saved.
17230
17231 Two additional variants of the o32 ABI are supported to enable
17232 a transition from 32-bit to 64-bit registers. These are FPXX
17233 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17234 The FPXX extension mandates that all code must execute correctly
17235 when run using 32-bit or 64-bit registers. The code can be interlinked
17236 with either FP32 or FP64, but not both.
17237 The FP64A extension is similar to the FP64 extension but forbids the
17238 use of odd-numbered single-precision registers. This can be used
17239 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17240 processors and allows both FP32 and FP64A code to interlink and
17241 run in the same process without changing FPU modes.
17242
17243 @item -mabicalls
17244 @itemx -mno-abicalls
17245 @opindex mabicalls
17246 @opindex mno-abicalls
17247 Generate (do not generate) code that is suitable for SVR4-style
17248 dynamic objects. @option{-mabicalls} is the default for SVR4-based
17249 systems.
17250
17251 @item -mshared
17252 @itemx -mno-shared
17253 Generate (do not generate) code that is fully position-independent,
17254 and that can therefore be linked into shared libraries. This option
17255 only affects @option{-mabicalls}.
17256
17257 All @option{-mabicalls} code has traditionally been position-independent,
17258 regardless of options like @option{-fPIC} and @option{-fpic}. However,
17259 as an extension, the GNU toolchain allows executables to use absolute
17260 accesses for locally-binding symbols. It can also use shorter GP
17261 initialization sequences and generate direct calls to locally-defined
17262 functions. This mode is selected by @option{-mno-shared}.
17263
17264 @option{-mno-shared} depends on binutils 2.16 or higher and generates
17265 objects that can only be linked by the GNU linker. However, the option
17266 does not affect the ABI of the final executable; it only affects the ABI
17267 of relocatable objects. Using @option{-mno-shared} generally makes
17268 executables both smaller and quicker.
17269
17270 @option{-mshared} is the default.
17271
17272 @item -mplt
17273 @itemx -mno-plt
17274 @opindex mplt
17275 @opindex mno-plt
17276 Assume (do not assume) that the static and dynamic linkers
17277 support PLTs and copy relocations. This option only affects
17278 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
17279 has no effect without @option{-msym32}.
17280
17281 You can make @option{-mplt} the default by configuring
17282 GCC with @option{--with-mips-plt}. The default is
17283 @option{-mno-plt} otherwise.
17284
17285 @item -mxgot
17286 @itemx -mno-xgot
17287 @opindex mxgot
17288 @opindex mno-xgot
17289 Lift (do not lift) the usual restrictions on the size of the global
17290 offset table.
17291
17292 GCC normally uses a single instruction to load values from the GOT@.
17293 While this is relatively efficient, it only works if the GOT
17294 is smaller than about 64k. Anything larger causes the linker
17295 to report an error such as:
17296
17297 @cindex relocation truncated to fit (MIPS)
17298 @smallexample
17299 relocation truncated to fit: R_MIPS_GOT16 foobar
17300 @end smallexample
17301
17302 If this happens, you should recompile your code with @option{-mxgot}.
17303 This works with very large GOTs, although the code is also
17304 less efficient, since it takes three instructions to fetch the
17305 value of a global symbol.
17306
17307 Note that some linkers can create multiple GOTs. If you have such a
17308 linker, you should only need to use @option{-mxgot} when a single object
17309 file accesses more than 64k's worth of GOT entries. Very few do.
17310
17311 These options have no effect unless GCC is generating position
17312 independent code.
17313
17314 @item -mgp32
17315 @opindex mgp32
17316 Assume that general-purpose registers are 32 bits wide.
17317
17318 @item -mgp64
17319 @opindex mgp64
17320 Assume that general-purpose registers are 64 bits wide.
17321
17322 @item -mfp32
17323 @opindex mfp32
17324 Assume that floating-point registers are 32 bits wide.
17325
17326 @item -mfp64
17327 @opindex mfp64
17328 Assume that floating-point registers are 64 bits wide.
17329
17330 @item -mfpxx
17331 @opindex mfpxx
17332 Do not assume the width of floating-point registers.
17333
17334 @item -mhard-float
17335 @opindex mhard-float
17336 Use floating-point coprocessor instructions.
17337
17338 @item -msoft-float
17339 @opindex msoft-float
17340 Do not use floating-point coprocessor instructions. Implement
17341 floating-point calculations using library calls instead.
17342
17343 @item -mno-float
17344 @opindex mno-float
17345 Equivalent to @option{-msoft-float}, but additionally asserts that the
17346 program being compiled does not perform any floating-point operations.
17347 This option is presently supported only by some bare-metal MIPS
17348 configurations, where it may select a special set of libraries
17349 that lack all floating-point support (including, for example, the
17350 floating-point @code{printf} formats).
17351 If code compiled with @option{-mno-float} accidentally contains
17352 floating-point operations, it is likely to suffer a link-time
17353 or run-time failure.
17354
17355 @item -msingle-float
17356 @opindex msingle-float
17357 Assume that the floating-point coprocessor only supports single-precision
17358 operations.
17359
17360 @item -mdouble-float
17361 @opindex mdouble-float
17362 Assume that the floating-point coprocessor supports double-precision
17363 operations. This is the default.
17364
17365 @item -modd-spreg
17366 @itemx -mno-odd-spreg
17367 @opindex modd-spreg
17368 @opindex mno-odd-spreg
17369 Enable the use of odd-numbered single-precision floating-point registers
17370 for the o32 ABI. This is the default for processors that are known to
17371 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17372 is set by default.
17373
17374 @item -mabs=2008
17375 @itemx -mabs=legacy
17376 @opindex mabs=2008
17377 @opindex mabs=legacy
17378 These options control the treatment of the special not-a-number (NaN)
17379 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17380 @code{neg.@i{fmt}} machine instructions.
17381
17382 By default or when @option{-mabs=legacy} is used the legacy
17383 treatment is selected. In this case these instructions are considered
17384 arithmetic and avoided where correct operation is required and the
17385 input operand might be a NaN. A longer sequence of instructions that
17386 manipulate the sign bit of floating-point datum manually is used
17387 instead unless the @option{-ffinite-math-only} option has also been
17388 specified.
17389
17390 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
17391 this case these instructions are considered non-arithmetic and therefore
17392 operating correctly in all cases, including in particular where the
17393 input operand is a NaN. These instructions are therefore always used
17394 for the respective operations.
17395
17396 @item -mnan=2008
17397 @itemx -mnan=legacy
17398 @opindex mnan=2008
17399 @opindex mnan=legacy
17400 These options control the encoding of the special not-a-number (NaN)
17401 IEEE 754 floating-point data.
17402
17403 The @option{-mnan=legacy} option selects the legacy encoding. In this
17404 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17405 significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17406 by the first bit of their trailing significand field being 1.
17407
17408 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
17409 this case qNaNs are denoted by the first bit of their trailing
17410 significand field being 1, whereas sNaNs are denoted by the first bit of
17411 their trailing significand field being 0.
17412
17413 The default is @option{-mnan=legacy} unless GCC has been configured with
17414 @option{--with-nan=2008}.
17415
17416 @item -mllsc
17417 @itemx -mno-llsc
17418 @opindex mllsc
17419 @opindex mno-llsc
17420 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17421 implement atomic memory built-in functions. When neither option is
17422 specified, GCC uses the instructions if the target architecture
17423 supports them.
17424
17425 @option{-mllsc} is useful if the runtime environment can emulate the
17426 instructions and @option{-mno-llsc} can be useful when compiling for
17427 nonstandard ISAs. You can make either option the default by
17428 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17429 respectively. @option{--with-llsc} is the default for some
17430 configurations; see the installation documentation for details.
17431
17432 @item -mdsp
17433 @itemx -mno-dsp
17434 @opindex mdsp
17435 @opindex mno-dsp
17436 Use (do not use) revision 1 of the MIPS DSP ASE@.
17437 @xref{MIPS DSP Built-in Functions}. This option defines the
17438 preprocessor macro @code{__mips_dsp}. It also defines
17439 @code{__mips_dsp_rev} to 1.
17440
17441 @item -mdspr2
17442 @itemx -mno-dspr2
17443 @opindex mdspr2
17444 @opindex mno-dspr2
17445 Use (do not use) revision 2 of the MIPS DSP ASE@.
17446 @xref{MIPS DSP Built-in Functions}. This option defines the
17447 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17448 It also defines @code{__mips_dsp_rev} to 2.
17449
17450 @item -msmartmips
17451 @itemx -mno-smartmips
17452 @opindex msmartmips
17453 @opindex mno-smartmips
17454 Use (do not use) the MIPS SmartMIPS ASE.
17455
17456 @item -mpaired-single
17457 @itemx -mno-paired-single
17458 @opindex mpaired-single
17459 @opindex mno-paired-single
17460 Use (do not use) paired-single floating-point instructions.
17461 @xref{MIPS Paired-Single Support}. This option requires
17462 hardware floating-point support to be enabled.
17463
17464 @item -mdmx
17465 @itemx -mno-mdmx
17466 @opindex mdmx
17467 @opindex mno-mdmx
17468 Use (do not use) MIPS Digital Media Extension instructions.
17469 This option can only be used when generating 64-bit code and requires
17470 hardware floating-point support to be enabled.
17471
17472 @item -mips3d
17473 @itemx -mno-mips3d
17474 @opindex mips3d
17475 @opindex mno-mips3d
17476 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
17477 The option @option{-mips3d} implies @option{-mpaired-single}.
17478
17479 @item -mmicromips
17480 @itemx -mno-micromips
17481 @opindex mmicromips
17482 @opindex mno-mmicromips
17483 Generate (do not generate) microMIPS code.
17484
17485 MicroMIPS code generation can also be controlled on a per-function basis
17486 by means of @code{micromips} and @code{nomicromips} attributes.
17487 @xref{Function Attributes}, for more information.
17488
17489 @item -mmt
17490 @itemx -mno-mt
17491 @opindex mmt
17492 @opindex mno-mt
17493 Use (do not use) MT Multithreading instructions.
17494
17495 @item -mmcu
17496 @itemx -mno-mcu
17497 @opindex mmcu
17498 @opindex mno-mcu
17499 Use (do not use) the MIPS MCU ASE instructions.
17500
17501 @item -meva
17502 @itemx -mno-eva
17503 @opindex meva
17504 @opindex mno-eva
17505 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17506
17507 @item -mvirt
17508 @itemx -mno-virt
17509 @opindex mvirt
17510 @opindex mno-virt
17511 Use (do not use) the MIPS Virtualization Application Specific instructions.
17512
17513 @item -mxpa
17514 @itemx -mno-xpa
17515 @opindex mxpa
17516 @opindex mno-xpa
17517 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17518
17519 @item -mlong64
17520 @opindex mlong64
17521 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
17522 an explanation of the default and the way that the pointer size is
17523 determined.
17524
17525 @item -mlong32
17526 @opindex mlong32
17527 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17528
17529 The default size of @code{int}s, @code{long}s and pointers depends on
17530 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
17531 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
17532 32-bit @code{long}s. Pointers are the same size as @code{long}s,
17533 or the same size as integer registers, whichever is smaller.
17534
17535 @item -msym32
17536 @itemx -mno-sym32
17537 @opindex msym32
17538 @opindex mno-sym32
17539 Assume (do not assume) that all symbols have 32-bit values, regardless
17540 of the selected ABI@. This option is useful in combination with
17541 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17542 to generate shorter and faster references to symbolic addresses.
17543
17544 @item -G @var{num}
17545 @opindex G
17546 Put definitions of externally-visible data in a small data section
17547 if that data is no bigger than @var{num} bytes. GCC can then generate
17548 more efficient accesses to the data; see @option{-mgpopt} for details.
17549
17550 The default @option{-G} option depends on the configuration.
17551
17552 @item -mlocal-sdata
17553 @itemx -mno-local-sdata
17554 @opindex mlocal-sdata
17555 @opindex mno-local-sdata
17556 Extend (do not extend) the @option{-G} behavior to local data too,
17557 such as to static variables in C@. @option{-mlocal-sdata} is the
17558 default for all configurations.
17559
17560 If the linker complains that an application is using too much small data,
17561 you might want to try rebuilding the less performance-critical parts with
17562 @option{-mno-local-sdata}. You might also want to build large
17563 libraries with @option{-mno-local-sdata}, so that the libraries leave
17564 more room for the main program.
17565
17566 @item -mextern-sdata
17567 @itemx -mno-extern-sdata
17568 @opindex mextern-sdata
17569 @opindex mno-extern-sdata
17570 Assume (do not assume) that externally-defined data is in
17571 a small data section if the size of that data is within the @option{-G} limit.
17572 @option{-mextern-sdata} is the default for all configurations.
17573
17574 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17575 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
17576 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
17577 is placed in a small data section. If @var{Var} is defined by another
17578 module, you must either compile that module with a high-enough
17579 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
17580 definition. If @var{Var} is common, you must link the application
17581 with a high-enough @option{-G} setting.
17582
17583 The easiest way of satisfying these restrictions is to compile
17584 and link every module with the same @option{-G} option. However,
17585 you may wish to build a library that supports several different
17586 small data limits. You can do this by compiling the library with
17587 the highest supported @option{-G} setting and additionally using
17588 @option{-mno-extern-sdata} to stop the library from making assumptions
17589 about externally-defined data.
17590
17591 @item -mgpopt
17592 @itemx -mno-gpopt
17593 @opindex mgpopt
17594 @opindex mno-gpopt
17595 Use (do not use) GP-relative accesses for symbols that are known to be
17596 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
17597 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
17598 configurations.
17599
17600 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
17601 might not hold the value of @code{_gp}. For example, if the code is
17602 part of a library that might be used in a boot monitor, programs that
17603 call boot monitor routines pass an unknown value in @code{$gp}.
17604 (In such situations, the boot monitor itself is usually compiled
17605 with @option{-G0}.)
17606
17607 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
17608 @option{-mno-extern-sdata}.
17609
17610 @item -membedded-data
17611 @itemx -mno-embedded-data
17612 @opindex membedded-data
17613 @opindex mno-embedded-data
17614 Allocate variables to the read-only data section first if possible, then
17615 next in the small data section if possible, otherwise in data. This gives
17616 slightly slower code than the default, but reduces the amount of RAM required
17617 when executing, and thus may be preferred for some embedded systems.
17618
17619 @item -muninit-const-in-rodata
17620 @itemx -mno-uninit-const-in-rodata
17621 @opindex muninit-const-in-rodata
17622 @opindex mno-uninit-const-in-rodata
17623 Put uninitialized @code{const} variables in the read-only data section.
17624 This option is only meaningful in conjunction with @option{-membedded-data}.
17625
17626 @item -mcode-readable=@var{setting}
17627 @opindex mcode-readable
17628 Specify whether GCC may generate code that reads from executable sections.
17629 There are three possible settings:
17630
17631 @table @gcctabopt
17632 @item -mcode-readable=yes
17633 Instructions may freely access executable sections. This is the
17634 default setting.
17635
17636 @item -mcode-readable=pcrel
17637 MIPS16 PC-relative load instructions can access executable sections,
17638 but other instructions must not do so. This option is useful on 4KSc
17639 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
17640 It is also useful on processors that can be configured to have a dual
17641 instruction/data SRAM interface and that, like the M4K, automatically
17642 redirect PC-relative loads to the instruction RAM.
17643
17644 @item -mcode-readable=no
17645 Instructions must not access executable sections. This option can be
17646 useful on targets that are configured to have a dual instruction/data
17647 SRAM interface but that (unlike the M4K) do not automatically redirect
17648 PC-relative loads to the instruction RAM.
17649 @end table
17650
17651 @item -msplit-addresses
17652 @itemx -mno-split-addresses
17653 @opindex msplit-addresses
17654 @opindex mno-split-addresses
17655 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
17656 relocation operators. This option has been superseded by
17657 @option{-mexplicit-relocs} but is retained for backwards compatibility.
17658
17659 @item -mexplicit-relocs
17660 @itemx -mno-explicit-relocs
17661 @opindex mexplicit-relocs
17662 @opindex mno-explicit-relocs
17663 Use (do not use) assembler relocation operators when dealing with symbolic
17664 addresses. The alternative, selected by @option{-mno-explicit-relocs},
17665 is to use assembler macros instead.
17666
17667 @option{-mexplicit-relocs} is the default if GCC was configured
17668 to use an assembler that supports relocation operators.
17669
17670 @item -mcheck-zero-division
17671 @itemx -mno-check-zero-division
17672 @opindex mcheck-zero-division
17673 @opindex mno-check-zero-division
17674 Trap (do not trap) on integer division by zero.
17675
17676 The default is @option{-mcheck-zero-division}.
17677
17678 @item -mdivide-traps
17679 @itemx -mdivide-breaks
17680 @opindex mdivide-traps
17681 @opindex mdivide-breaks
17682 MIPS systems check for division by zero by generating either a
17683 conditional trap or a break instruction. Using traps results in
17684 smaller code, but is only supported on MIPS II and later. Also, some
17685 versions of the Linux kernel have a bug that prevents trap from
17686 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
17687 allow conditional traps on architectures that support them and
17688 @option{-mdivide-breaks} to force the use of breaks.
17689
17690 The default is usually @option{-mdivide-traps}, but this can be
17691 overridden at configure time using @option{--with-divide=breaks}.
17692 Divide-by-zero checks can be completely disabled using
17693 @option{-mno-check-zero-division}.
17694
17695 @item -mmemcpy
17696 @itemx -mno-memcpy
17697 @opindex mmemcpy
17698 @opindex mno-memcpy
17699 Force (do not force) the use of @code{memcpy} for non-trivial block
17700 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
17701 most constant-sized copies.
17702
17703 @item -mlong-calls
17704 @itemx -mno-long-calls
17705 @opindex mlong-calls
17706 @opindex mno-long-calls
17707 Disable (do not disable) use of the @code{jal} instruction. Calling
17708 functions using @code{jal} is more efficient but requires the caller
17709 and callee to be in the same 256 megabyte segment.
17710
17711 This option has no effect on abicalls code. The default is
17712 @option{-mno-long-calls}.
17713
17714 @item -mmad
17715 @itemx -mno-mad
17716 @opindex mmad
17717 @opindex mno-mad
17718 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
17719 instructions, as provided by the R4650 ISA@.
17720
17721 @item -mimadd
17722 @itemx -mno-imadd
17723 @opindex mimadd
17724 @opindex mno-imadd
17725 Enable (disable) use of the @code{madd} and @code{msub} integer
17726 instructions. The default is @option{-mimadd} on architectures
17727 that support @code{madd} and @code{msub} except for the 74k
17728 architecture where it was found to generate slower code.
17729
17730 @item -mfused-madd
17731 @itemx -mno-fused-madd
17732 @opindex mfused-madd
17733 @opindex mno-fused-madd
17734 Enable (disable) use of the floating-point multiply-accumulate
17735 instructions, when they are available. The default is
17736 @option{-mfused-madd}.
17737
17738 On the R8000 CPU when multiply-accumulate instructions are used,
17739 the intermediate product is calculated to infinite precision
17740 and is not subject to the FCSR Flush to Zero bit. This may be
17741 undesirable in some circumstances. On other processors the result
17742 is numerically identical to the equivalent computation using
17743 separate multiply, add, subtract and negate instructions.
17744
17745 @item -nocpp
17746 @opindex nocpp
17747 Tell the MIPS assembler to not run its preprocessor over user
17748 assembler files (with a @samp{.s} suffix) when assembling them.
17749
17750 @item -mfix-24k
17751 @item -mno-fix-24k
17752 @opindex mfix-24k
17753 @opindex mno-fix-24k
17754 Work around the 24K E48 (lost data on stores during refill) errata.
17755 The workarounds are implemented by the assembler rather than by GCC@.
17756
17757 @item -mfix-r4000
17758 @itemx -mno-fix-r4000
17759 @opindex mfix-r4000
17760 @opindex mno-fix-r4000
17761 Work around certain R4000 CPU errata:
17762 @itemize @minus
17763 @item
17764 A double-word or a variable shift may give an incorrect result if executed
17765 immediately after starting an integer division.
17766 @item
17767 A double-word or a variable shift may give an incorrect result if executed
17768 while an integer multiplication is in progress.
17769 @item
17770 An integer division may give an incorrect result if started in a delay slot
17771 of a taken branch or a jump.
17772 @end itemize
17773
17774 @item -mfix-r4400
17775 @itemx -mno-fix-r4400
17776 @opindex mfix-r4400
17777 @opindex mno-fix-r4400
17778 Work around certain R4400 CPU errata:
17779 @itemize @minus
17780 @item
17781 A double-word or a variable shift may give an incorrect result if executed
17782 immediately after starting an integer division.
17783 @end itemize
17784
17785 @item -mfix-r10000
17786 @itemx -mno-fix-r10000
17787 @opindex mfix-r10000
17788 @opindex mno-fix-r10000
17789 Work around certain R10000 errata:
17790 @itemize @minus
17791 @item
17792 @code{ll}/@code{sc} sequences may not behave atomically on revisions
17793 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
17794 @end itemize
17795
17796 This option can only be used if the target architecture supports
17797 branch-likely instructions. @option{-mfix-r10000} is the default when
17798 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
17799 otherwise.
17800
17801 @item -mfix-rm7000
17802 @itemx -mno-fix-rm7000
17803 @opindex mfix-rm7000
17804 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
17805 workarounds are implemented by the assembler rather than by GCC@.
17806
17807 @item -mfix-vr4120
17808 @itemx -mno-fix-vr4120
17809 @opindex mfix-vr4120
17810 Work around certain VR4120 errata:
17811 @itemize @minus
17812 @item
17813 @code{dmultu} does not always produce the correct result.
17814 @item
17815 @code{div} and @code{ddiv} do not always produce the correct result if one
17816 of the operands is negative.
17817 @end itemize
17818 The workarounds for the division errata rely on special functions in
17819 @file{libgcc.a}. At present, these functions are only provided by
17820 the @code{mips64vr*-elf} configurations.
17821
17822 Other VR4120 errata require a NOP to be inserted between certain pairs of
17823 instructions. These errata are handled by the assembler, not by GCC itself.
17824
17825 @item -mfix-vr4130
17826 @opindex mfix-vr4130
17827 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
17828 workarounds are implemented by the assembler rather than by GCC,
17829 although GCC avoids using @code{mflo} and @code{mfhi} if the
17830 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
17831 instructions are available instead.
17832
17833 @item -mfix-sb1
17834 @itemx -mno-fix-sb1
17835 @opindex mfix-sb1
17836 Work around certain SB-1 CPU core errata.
17837 (This flag currently works around the SB-1 revision 2
17838 ``F1'' and ``F2'' floating-point errata.)
17839
17840 @item -mr10k-cache-barrier=@var{setting}
17841 @opindex mr10k-cache-barrier
17842 Specify whether GCC should insert cache barriers to avoid the
17843 side-effects of speculation on R10K processors.
17844
17845 In common with many processors, the R10K tries to predict the outcome
17846 of a conditional branch and speculatively executes instructions from
17847 the ``taken'' branch. It later aborts these instructions if the
17848 predicted outcome is wrong. However, on the R10K, even aborted
17849 instructions can have side effects.
17850
17851 This problem only affects kernel stores and, depending on the system,
17852 kernel loads. As an example, a speculatively-executed store may load
17853 the target memory into cache and mark the cache line as dirty, even if
17854 the store itself is later aborted. If a DMA operation writes to the
17855 same area of memory before the ``dirty'' line is flushed, the cached
17856 data overwrites the DMA-ed data. See the R10K processor manual
17857 for a full description, including other potential problems.
17858
17859 One workaround is to insert cache barrier instructions before every memory
17860 access that might be speculatively executed and that might have side
17861 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
17862 controls GCC's implementation of this workaround. It assumes that
17863 aborted accesses to any byte in the following regions does not have
17864 side effects:
17865
17866 @enumerate
17867 @item
17868 the memory occupied by the current function's stack frame;
17869
17870 @item
17871 the memory occupied by an incoming stack argument;
17872
17873 @item
17874 the memory occupied by an object with a link-time-constant address.
17875 @end enumerate
17876
17877 It is the kernel's responsibility to ensure that speculative
17878 accesses to these regions are indeed safe.
17879
17880 If the input program contains a function declaration such as:
17881
17882 @smallexample
17883 void foo (void);
17884 @end smallexample
17885
17886 then the implementation of @code{foo} must allow @code{j foo} and
17887 @code{jal foo} to be executed speculatively. GCC honors this
17888 restriction for functions it compiles itself. It expects non-GCC
17889 functions (such as hand-written assembly code) to do the same.
17890
17891 The option has three forms:
17892
17893 @table @gcctabopt
17894 @item -mr10k-cache-barrier=load-store
17895 Insert a cache barrier before a load or store that might be
17896 speculatively executed and that might have side effects even
17897 if aborted.
17898
17899 @item -mr10k-cache-barrier=store
17900 Insert a cache barrier before a store that might be speculatively
17901 executed and that might have side effects even if aborted.
17902
17903 @item -mr10k-cache-barrier=none
17904 Disable the insertion of cache barriers. This is the default setting.
17905 @end table
17906
17907 @item -mflush-func=@var{func}
17908 @itemx -mno-flush-func
17909 @opindex mflush-func
17910 Specifies the function to call to flush the I and D caches, or to not
17911 call any such function. If called, the function must take the same
17912 arguments as the common @code{_flush_func}, that is, the address of the
17913 memory range for which the cache is being flushed, the size of the
17914 memory range, and the number 3 (to flush both caches). The default
17915 depends on the target GCC was configured for, but commonly is either
17916 @code{_flush_func} or @code{__cpu_flush}.
17917
17918 @item mbranch-cost=@var{num}
17919 @opindex mbranch-cost
17920 Set the cost of branches to roughly @var{num} ``simple'' instructions.
17921 This cost is only a heuristic and is not guaranteed to produce
17922 consistent results across releases. A zero cost redundantly selects
17923 the default, which is based on the @option{-mtune} setting.
17924
17925 @item -mbranch-likely
17926 @itemx -mno-branch-likely
17927 @opindex mbranch-likely
17928 @opindex mno-branch-likely
17929 Enable or disable use of Branch Likely instructions, regardless of the
17930 default for the selected architecture. By default, Branch Likely
17931 instructions may be generated if they are supported by the selected
17932 architecture. An exception is for the MIPS32 and MIPS64 architectures
17933 and processors that implement those architectures; for those, Branch
17934 Likely instructions are not be generated by default because the MIPS32
17935 and MIPS64 architectures specifically deprecate their use.
17936
17937 @item -mfp-exceptions
17938 @itemx -mno-fp-exceptions
17939 @opindex mfp-exceptions
17940 Specifies whether FP exceptions are enabled. This affects how
17941 FP instructions are scheduled for some processors.
17942 The default is that FP exceptions are
17943 enabled.
17944
17945 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
17946 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
17947 FP pipe.
17948
17949 @item -mvr4130-align
17950 @itemx -mno-vr4130-align
17951 @opindex mvr4130-align
17952 The VR4130 pipeline is two-way superscalar, but can only issue two
17953 instructions together if the first one is 8-byte aligned. When this
17954 option is enabled, GCC aligns pairs of instructions that it
17955 thinks should execute in parallel.
17956
17957 This option only has an effect when optimizing for the VR4130.
17958 It normally makes code faster, but at the expense of making it bigger.
17959 It is enabled by default at optimization level @option{-O3}.
17960
17961 @item -msynci
17962 @itemx -mno-synci
17963 @opindex msynci
17964 Enable (disable) generation of @code{synci} instructions on
17965 architectures that support it. The @code{synci} instructions (if
17966 enabled) are generated when @code{__builtin___clear_cache} is
17967 compiled.
17968
17969 This option defaults to @option{-mno-synci}, but the default can be
17970 overridden by configuring GCC with @option{--with-synci}.
17971
17972 When compiling code for single processor systems, it is generally safe
17973 to use @code{synci}. However, on many multi-core (SMP) systems, it
17974 does not invalidate the instruction caches on all cores and may lead
17975 to undefined behavior.
17976
17977 @item -mrelax-pic-calls
17978 @itemx -mno-relax-pic-calls
17979 @opindex mrelax-pic-calls
17980 Try to turn PIC calls that are normally dispatched via register
17981 @code{$25} into direct calls. This is only possible if the linker can
17982 resolve the destination at link-time and if the destination is within
17983 range for a direct call.
17984
17985 @option{-mrelax-pic-calls} is the default if GCC was configured to use
17986 an assembler and a linker that support the @code{.reloc} assembly
17987 directive and @option{-mexplicit-relocs} is in effect. With
17988 @option{-mno-explicit-relocs}, this optimization can be performed by the
17989 assembler and the linker alone without help from the compiler.
17990
17991 @item -mmcount-ra-address
17992 @itemx -mno-mcount-ra-address
17993 @opindex mmcount-ra-address
17994 @opindex mno-mcount-ra-address
17995 Emit (do not emit) code that allows @code{_mcount} to modify the
17996 calling function's return address. When enabled, this option extends
17997 the usual @code{_mcount} interface with a new @var{ra-address}
17998 parameter, which has type @code{intptr_t *} and is passed in register
17999 @code{$12}. @code{_mcount} can then modify the return address by
18000 doing both of the following:
18001 @itemize
18002 @item
18003 Returning the new address in register @code{$31}.
18004 @item
18005 Storing the new address in @code{*@var{ra-address}},
18006 if @var{ra-address} is nonnull.
18007 @end itemize
18008
18009 The default is @option{-mno-mcount-ra-address}.
18010
18011 @end table
18012
18013 @node MMIX Options
18014 @subsection MMIX Options
18015 @cindex MMIX Options
18016
18017 These options are defined for the MMIX:
18018
18019 @table @gcctabopt
18020 @item -mlibfuncs
18021 @itemx -mno-libfuncs
18022 @opindex mlibfuncs
18023 @opindex mno-libfuncs
18024 Specify that intrinsic library functions are being compiled, passing all
18025 values in registers, no matter the size.
18026
18027 @item -mepsilon
18028 @itemx -mno-epsilon
18029 @opindex mepsilon
18030 @opindex mno-epsilon
18031 Generate floating-point comparison instructions that compare with respect
18032 to the @code{rE} epsilon register.
18033
18034 @item -mabi=mmixware
18035 @itemx -mabi=gnu
18036 @opindex mabi=mmixware
18037 @opindex mabi=gnu
18038 Generate code that passes function parameters and return values that (in
18039 the called function) are seen as registers @code{$0} and up, as opposed to
18040 the GNU ABI which uses global registers @code{$231} and up.
18041
18042 @item -mzero-extend
18043 @itemx -mno-zero-extend
18044 @opindex mzero-extend
18045 @opindex mno-zero-extend
18046 When reading data from memory in sizes shorter than 64 bits, use (do not
18047 use) zero-extending load instructions by default, rather than
18048 sign-extending ones.
18049
18050 @item -mknuthdiv
18051 @itemx -mno-knuthdiv
18052 @opindex mknuthdiv
18053 @opindex mno-knuthdiv
18054 Make the result of a division yielding a remainder have the same sign as
18055 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
18056 remainder follows the sign of the dividend. Both methods are
18057 arithmetically valid, the latter being almost exclusively used.
18058
18059 @item -mtoplevel-symbols
18060 @itemx -mno-toplevel-symbols
18061 @opindex mtoplevel-symbols
18062 @opindex mno-toplevel-symbols
18063 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
18064 code can be used with the @code{PREFIX} assembly directive.
18065
18066 @item -melf
18067 @opindex melf
18068 Generate an executable in the ELF format, rather than the default
18069 @samp{mmo} format used by the @command{mmix} simulator.
18070
18071 @item -mbranch-predict
18072 @itemx -mno-branch-predict
18073 @opindex mbranch-predict
18074 @opindex mno-branch-predict
18075 Use (do not use) the probable-branch instructions, when static branch
18076 prediction indicates a probable branch.
18077
18078 @item -mbase-addresses
18079 @itemx -mno-base-addresses
18080 @opindex mbase-addresses
18081 @opindex mno-base-addresses
18082 Generate (do not generate) code that uses @emph{base addresses}. Using a
18083 base address automatically generates a request (handled by the assembler
18084 and the linker) for a constant to be set up in a global register. The
18085 register is used for one or more base address requests within the range 0
18086 to 255 from the value held in the register. The generally leads to short
18087 and fast code, but the number of different data items that can be
18088 addressed is limited. This means that a program that uses lots of static
18089 data may require @option{-mno-base-addresses}.
18090
18091 @item -msingle-exit
18092 @itemx -mno-single-exit
18093 @opindex msingle-exit
18094 @opindex mno-single-exit
18095 Force (do not force) generated code to have a single exit point in each
18096 function.
18097 @end table
18098
18099 @node MN10300 Options
18100 @subsection MN10300 Options
18101 @cindex MN10300 options
18102
18103 These @option{-m} options are defined for Matsushita MN10300 architectures:
18104
18105 @table @gcctabopt
18106 @item -mmult-bug
18107 @opindex mmult-bug
18108 Generate code to avoid bugs in the multiply instructions for the MN10300
18109 processors. This is the default.
18110
18111 @item -mno-mult-bug
18112 @opindex mno-mult-bug
18113 Do not generate code to avoid bugs in the multiply instructions for the
18114 MN10300 processors.
18115
18116 @item -mam33
18117 @opindex mam33
18118 Generate code using features specific to the AM33 processor.
18119
18120 @item -mno-am33
18121 @opindex mno-am33
18122 Do not generate code using features specific to the AM33 processor. This
18123 is the default.
18124
18125 @item -mam33-2
18126 @opindex mam33-2
18127 Generate code using features specific to the AM33/2.0 processor.
18128
18129 @item -mam34
18130 @opindex mam34
18131 Generate code using features specific to the AM34 processor.
18132
18133 @item -mtune=@var{cpu-type}
18134 @opindex mtune
18135 Use the timing characteristics of the indicated CPU type when
18136 scheduling instructions. This does not change the targeted processor
18137 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
18138 @samp{am33-2} or @samp{am34}.
18139
18140 @item -mreturn-pointer-on-d0
18141 @opindex mreturn-pointer-on-d0
18142 When generating a function that returns a pointer, return the pointer
18143 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
18144 only in @code{a0}, and attempts to call such functions without a prototype
18145 result in errors. Note that this option is on by default; use
18146 @option{-mno-return-pointer-on-d0} to disable it.
18147
18148 @item -mno-crt0
18149 @opindex mno-crt0
18150 Do not link in the C run-time initialization object file.
18151
18152 @item -mrelax
18153 @opindex mrelax
18154 Indicate to the linker that it should perform a relaxation optimization pass
18155 to shorten branches, calls and absolute memory addresses. This option only
18156 has an effect when used on the command line for the final link step.
18157
18158 This option makes symbolic debugging impossible.
18159
18160 @item -mliw
18161 @opindex mliw
18162 Allow the compiler to generate @emph{Long Instruction Word}
18163 instructions if the target is the @samp{AM33} or later. This is the
18164 default. This option defines the preprocessor macro @code{__LIW__}.
18165
18166 @item -mnoliw
18167 @opindex mnoliw
18168 Do not allow the compiler to generate @emph{Long Instruction Word}
18169 instructions. This option defines the preprocessor macro
18170 @code{__NO_LIW__}.
18171
18172 @item -msetlb
18173 @opindex msetlb
18174 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18175 instructions if the target is the @samp{AM33} or later. This is the
18176 default. This option defines the preprocessor macro @code{__SETLB__}.
18177
18178 @item -mnosetlb
18179 @opindex mnosetlb
18180 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18181 instructions. This option defines the preprocessor macro
18182 @code{__NO_SETLB__}.
18183
18184 @end table
18185
18186 @node Moxie Options
18187 @subsection Moxie Options
18188 @cindex Moxie Options
18189
18190 @table @gcctabopt
18191
18192 @item -meb
18193 @opindex meb
18194 Generate big-endian code. This is the default for @samp{moxie-*-*}
18195 configurations.
18196
18197 @item -mel
18198 @opindex mel
18199 Generate little-endian code.
18200
18201 @item -mmul.x
18202 @opindex mmul.x
18203 Generate mul.x and umul.x instructions. This is the default for
18204 @samp{moxiebox-*-*} configurations.
18205
18206 @item -mno-crt0
18207 @opindex mno-crt0
18208 Do not link in the C run-time initialization object file.
18209
18210 @end table
18211
18212 @node MSP430 Options
18213 @subsection MSP430 Options
18214 @cindex MSP430 Options
18215
18216 These options are defined for the MSP430:
18217
18218 @table @gcctabopt
18219
18220 @item -masm-hex
18221 @opindex masm-hex
18222 Force assembly output to always use hex constants. Normally such
18223 constants are signed decimals, but this option is available for
18224 testsuite and/or aesthetic purposes.
18225
18226 @item -mmcu=
18227 @opindex mmcu=
18228 Select the MCU to target. This is used to create a C preprocessor
18229 symbol based upon the MCU name, converted to upper case and pre- and
18230 post-fixed with @samp{__}. This in turn is used by the
18231 @file{msp430.h} header file to select an MCU-specific supplementary
18232 header file.
18233
18234 The option also sets the ISA to use. If the MCU name is one that is
18235 known to only support the 430 ISA then that is selected, otherwise the
18236 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
18237 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
18238 name selects the 430X ISA.
18239
18240 In addition an MCU-specific linker script is added to the linker
18241 command line. The script's name is the name of the MCU with
18242 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18243 command line defines the C preprocessor symbol @code{__XXX__} and
18244 cause the linker to search for a script called @file{xxx.ld}.
18245
18246 This option is also passed on to the assembler.
18247
18248 @item -mcpu=
18249 @opindex mcpu=
18250 Specifies the ISA to use. Accepted values are @samp{msp430},
18251 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
18252 @option{-mmcu=} option should be used to select the ISA.
18253
18254 @item -msim
18255 @opindex msim
18256 Link to the simulator runtime libraries and linker script. Overrides
18257 any scripts that would be selected by the @option{-mmcu=} option.
18258
18259 @item -mlarge
18260 @opindex mlarge
18261 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18262
18263 @item -msmall
18264 @opindex msmall
18265 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18266
18267 @item -mrelax
18268 @opindex mrelax
18269 This option is passed to the assembler and linker, and allows the
18270 linker to perform certain optimizations that cannot be done until
18271 the final link.
18272
18273 @item mhwmult=
18274 @opindex mhwmult=
18275 Describes the type of hardware multiply supported by the target.
18276 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18277 for the original 16-bit-only multiply supported by early MCUs.
18278 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18279 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18280 A value of @samp{auto} can also be given. This tells GCC to deduce
18281 the hardware multiply support based upon the MCU name provided by the
18282 @option{-mmcu} option. If no @option{-mmcu} option is specified then
18283 @samp{32bit} hardware multiply support is assumed. @samp{auto} is the
18284 default setting.
18285
18286 Hardware multiplies are normally performed by calling a library
18287 routine. This saves space in the generated code. When compiling at
18288 @option{-O3} or higher however the hardware multiplier is invoked
18289 inline. This makes for bigger, but faster code.
18290
18291 The hardware multiply routines disable interrupts whilst running and
18292 restore the previous interrupt state when they finish. This makes
18293 them safe to use inside interrupt handlers as well as in normal code.
18294
18295 @item -minrt
18296 @opindex minrt
18297 Enable the use of a minimum runtime environment - no static
18298 initializers or constructors. This is intended for memory-constrained
18299 devices. The compiler includes special symbols in some objects
18300 that tell the linker and runtime which code fragments are required.
18301
18302 @item -mcode-region=
18303 @itemx -mdata-region=
18304 @opindex mcode-region
18305 @opindex mdata-region
18306 These options tell the compiler where to place functions and data that
18307 do not have one of the @code{lower}, @code{upper}, @code{either} or
18308 @code{section} attributes. Possible values are @code{lower},
18309 @code{upper}, @code{either} or @code{any}. The first three behave
18310 like the corresponding attribute. The fourth possible value -
18311 @code{any} - is the default. It leaves placement entirely up to the
18312 linker script and how it assigns the standard sections (.text, .data
18313 etc) to the memory regions.
18314
18315 @end table
18316
18317 @node NDS32 Options
18318 @subsection NDS32 Options
18319 @cindex NDS32 Options
18320
18321 These options are defined for NDS32 implementations:
18322
18323 @table @gcctabopt
18324
18325 @item -mbig-endian
18326 @opindex mbig-endian
18327 Generate code in big-endian mode.
18328
18329 @item -mlittle-endian
18330 @opindex mlittle-endian
18331 Generate code in little-endian mode.
18332
18333 @item -mreduced-regs
18334 @opindex mreduced-regs
18335 Use reduced-set registers for register allocation.
18336
18337 @item -mfull-regs
18338 @opindex mfull-regs
18339 Use full-set registers for register allocation.
18340
18341 @item -mcmov
18342 @opindex mcmov
18343 Generate conditional move instructions.
18344
18345 @item -mno-cmov
18346 @opindex mno-cmov
18347 Do not generate conditional move instructions.
18348
18349 @item -mperf-ext
18350 @opindex mperf-ext
18351 Generate performance extension instructions.
18352
18353 @item -mno-perf-ext
18354 @opindex mno-perf-ext
18355 Do not generate performance extension instructions.
18356
18357 @item -mv3push
18358 @opindex mv3push
18359 Generate v3 push25/pop25 instructions.
18360
18361 @item -mno-v3push
18362 @opindex mno-v3push
18363 Do not generate v3 push25/pop25 instructions.
18364
18365 @item -m16-bit
18366 @opindex m16-bit
18367 Generate 16-bit instructions.
18368
18369 @item -mno-16-bit
18370 @opindex mno-16-bit
18371 Do not generate 16-bit instructions.
18372
18373 @item -misr-vector-size=@var{num}
18374 @opindex misr-vector-size
18375 Specify the size of each interrupt vector, which must be 4 or 16.
18376
18377 @item -mcache-block-size=@var{num}
18378 @opindex mcache-block-size
18379 Specify the size of each cache block,
18380 which must be a power of 2 between 4 and 512.
18381
18382 @item -march=@var{arch}
18383 @opindex march
18384 Specify the name of the target architecture.
18385
18386 @item -mcmodel=@var{code-model}
18387 @opindex mcmodel
18388 Set the code model to one of
18389 @table @asis
18390 @item @samp{small}
18391 All the data and read-only data segments must be within 512KB addressing space.
18392 The text segment must be within 16MB addressing space.
18393 @item @samp{medium}
18394 The data segment must be within 512KB while the read-only data segment can be
18395 within 4GB addressing space. The text segment should be still within 16MB
18396 addressing space.
18397 @item @samp{large}
18398 All the text and data segments can be within 4GB addressing space.
18399 @end table
18400
18401 @item -mctor-dtor
18402 @opindex mctor-dtor
18403 Enable constructor/destructor feature.
18404
18405 @item -mrelax
18406 @opindex mrelax
18407 Guide linker to relax instructions.
18408
18409 @end table
18410
18411 @node Nios II Options
18412 @subsection Nios II Options
18413 @cindex Nios II options
18414 @cindex Altera Nios II options
18415
18416 These are the options defined for the Altera Nios II processor.
18417
18418 @table @gcctabopt
18419
18420 @item -G @var{num}
18421 @opindex G
18422 @cindex smaller data references
18423 Put global and static objects less than or equal to @var{num} bytes
18424 into the small data or BSS sections instead of the normal data or BSS
18425 sections. The default value of @var{num} is 8.
18426
18427 @item -mgpopt=@var{option}
18428 @item -mgpopt
18429 @itemx -mno-gpopt
18430 @opindex mgpopt
18431 @opindex mno-gpopt
18432 Generate (do not generate) GP-relative accesses. The following
18433 @var{option} names are recognized:
18434
18435 @table @samp
18436
18437 @item none
18438 Do not generate GP-relative accesses.
18439
18440 @item local
18441 Generate GP-relative accesses for small data objects that are not
18442 external or weak. Also use GP-relative addressing for objects that
18443 have been explicitly placed in a small data section via a @code{section}
18444 attribute.
18445
18446 @item global
18447 As for @samp{local}, but also generate GP-relative accesses for
18448 small data objects that are external or weak. If you use this option,
18449 you must ensure that all parts of your program (including libraries) are
18450 compiled with the same @option{-G} setting.
18451
18452 @item data
18453 Generate GP-relative accesses for all data objects in the program. If you
18454 use this option, the entire data and BSS segments
18455 of your program must fit in 64K of memory and you must use an appropriate
18456 linker script to allocate them within the addressible range of the
18457 global pointer.
18458
18459 @item all
18460 Generate GP-relative addresses for function pointers as well as data
18461 pointers. If you use this option, the entire text, data, and BSS segments
18462 of your program must fit in 64K of memory and you must use an appropriate
18463 linker script to allocate them within the addressible range of the
18464 global pointer.
18465
18466 @end table
18467
18468 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18469 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18470
18471 The default is @option{-mgpopt} except when @option{-fpic} or
18472 @option{-fPIC} is specified to generate position-independent code.
18473 Note that the Nios II ABI does not permit GP-relative accesses from
18474 shared libraries.
18475
18476 You may need to specify @option{-mno-gpopt} explicitly when building
18477 programs that include large amounts of small data, including large
18478 GOT data sections. In this case, the 16-bit offset for GP-relative
18479 addressing may not be large enough to allow access to the entire
18480 small data section.
18481
18482 @item -mel
18483 @itemx -meb
18484 @opindex mel
18485 @opindex meb
18486 Generate little-endian (default) or big-endian (experimental) code,
18487 respectively.
18488
18489 @item -mbypass-cache
18490 @itemx -mno-bypass-cache
18491 @opindex mno-bypass-cache
18492 @opindex mbypass-cache
18493 Force all load and store instructions to always bypass cache by
18494 using I/O variants of the instructions. The default is not to
18495 bypass the cache.
18496
18497 @item -mno-cache-volatile
18498 @itemx -mcache-volatile
18499 @opindex mcache-volatile
18500 @opindex mno-cache-volatile
18501 Volatile memory access bypass the cache using the I/O variants of
18502 the load and store instructions. The default is not to bypass the cache.
18503
18504 @item -mno-fast-sw-div
18505 @itemx -mfast-sw-div
18506 @opindex mno-fast-sw-div
18507 @opindex mfast-sw-div
18508 Do not use table-based fast divide for small numbers. The default
18509 is to use the fast divide at @option{-O3} and above.
18510
18511 @item -mno-hw-mul
18512 @itemx -mhw-mul
18513 @itemx -mno-hw-mulx
18514 @itemx -mhw-mulx
18515 @itemx -mno-hw-div
18516 @itemx -mhw-div
18517 @opindex mno-hw-mul
18518 @opindex mhw-mul
18519 @opindex mno-hw-mulx
18520 @opindex mhw-mulx
18521 @opindex mno-hw-div
18522 @opindex mhw-div
18523 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
18524 instructions by the compiler. The default is to emit @code{mul}
18525 and not emit @code{div} and @code{mulx}.
18526
18527 @item -mcustom-@var{insn}=@var{N}
18528 @itemx -mno-custom-@var{insn}
18529 @opindex mcustom-@var{insn}
18530 @opindex mno-custom-@var{insn}
18531 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
18532 custom instruction with encoding @var{N} when generating code that uses
18533 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
18534 instruction 253 for single-precision floating-point add operations instead
18535 of the default behavior of using a library call.
18536
18537 The following values of @var{insn} are supported. Except as otherwise
18538 noted, floating-point operations are expected to be implemented with
18539 normal IEEE 754 semantics and correspond directly to the C operators or the
18540 equivalent GCC built-in functions (@pxref{Other Builtins}).
18541
18542 Single-precision floating point:
18543 @table @asis
18544
18545 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
18546 Binary arithmetic operations.
18547
18548 @item @samp{fnegs}
18549 Unary negation.
18550
18551 @item @samp{fabss}
18552 Unary absolute value.
18553
18554 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
18555 Comparison operations.
18556
18557 @item @samp{fmins}, @samp{fmaxs}
18558 Floating-point minimum and maximum. These instructions are only
18559 generated if @option{-ffinite-math-only} is specified.
18560
18561 @item @samp{fsqrts}
18562 Unary square root operation.
18563
18564 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
18565 Floating-point trigonometric and exponential functions. These instructions
18566 are only generated if @option{-funsafe-math-optimizations} is also specified.
18567
18568 @end table
18569
18570 Double-precision floating point:
18571 @table @asis
18572
18573 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
18574 Binary arithmetic operations.
18575
18576 @item @samp{fnegd}
18577 Unary negation.
18578
18579 @item @samp{fabsd}
18580 Unary absolute value.
18581
18582 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
18583 Comparison operations.
18584
18585 @item @samp{fmind}, @samp{fmaxd}
18586 Double-precision minimum and maximum. These instructions are only
18587 generated if @option{-ffinite-math-only} is specified.
18588
18589 @item @samp{fsqrtd}
18590 Unary square root operation.
18591
18592 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
18593 Double-precision trigonometric and exponential functions. These instructions
18594 are only generated if @option{-funsafe-math-optimizations} is also specified.
18595
18596 @end table
18597
18598 Conversions:
18599 @table @asis
18600 @item @samp{fextsd}
18601 Conversion from single precision to double precision.
18602
18603 @item @samp{ftruncds}
18604 Conversion from double precision to single precision.
18605
18606 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
18607 Conversion from floating point to signed or unsigned integer types, with
18608 truncation towards zero.
18609
18610 @item @samp{round}
18611 Conversion from single-precision floating point to signed integer,
18612 rounding to the nearest integer and ties away from zero.
18613 This corresponds to the @code{__builtin_lroundf} function when
18614 @option{-fno-math-errno} is used.
18615
18616 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
18617 Conversion from signed or unsigned integer types to floating-point types.
18618
18619 @end table
18620
18621 In addition, all of the following transfer instructions for internal
18622 registers X and Y must be provided to use any of the double-precision
18623 floating-point instructions. Custom instructions taking two
18624 double-precision source operands expect the first operand in the
18625 64-bit register X. The other operand (or only operand of a unary
18626 operation) is given to the custom arithmetic instruction with the
18627 least significant half in source register @var{src1} and the most
18628 significant half in @var{src2}. A custom instruction that returns a
18629 double-precision result returns the most significant 32 bits in the
18630 destination register and the other half in 32-bit register Y.
18631 GCC automatically generates the necessary code sequences to write
18632 register X and/or read register Y when double-precision floating-point
18633 instructions are used.
18634
18635 @table @asis
18636
18637 @item @samp{fwrx}
18638 Write @var{src1} into the least significant half of X and @var{src2} into
18639 the most significant half of X.
18640
18641 @item @samp{fwry}
18642 Write @var{src1} into Y.
18643
18644 @item @samp{frdxhi}, @samp{frdxlo}
18645 Read the most or least (respectively) significant half of X and store it in
18646 @var{dest}.
18647
18648 @item @samp{frdy}
18649 Read the value of Y and store it into @var{dest}.
18650 @end table
18651
18652 Note that you can gain more local control over generation of Nios II custom
18653 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
18654 and @code{target("no-custom-@var{insn}")} function attributes
18655 (@pxref{Function Attributes})
18656 or pragmas (@pxref{Function Specific Option Pragmas}).
18657
18658 @item -mcustom-fpu-cfg=@var{name}
18659 @opindex mcustom-fpu-cfg
18660
18661 This option enables a predefined, named set of custom instruction encodings
18662 (see @option{-mcustom-@var{insn}} above).
18663 Currently, the following sets are defined:
18664
18665 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
18666 @gccoptlist{-mcustom-fmuls=252 @gol
18667 -mcustom-fadds=253 @gol
18668 -mcustom-fsubs=254 @gol
18669 -fsingle-precision-constant}
18670
18671 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
18672 @gccoptlist{-mcustom-fmuls=252 @gol
18673 -mcustom-fadds=253 @gol
18674 -mcustom-fsubs=254 @gol
18675 -mcustom-fdivs=255 @gol
18676 -fsingle-precision-constant}
18677
18678 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
18679 @gccoptlist{-mcustom-floatus=243 @gol
18680 -mcustom-fixsi=244 @gol
18681 -mcustom-floatis=245 @gol
18682 -mcustom-fcmpgts=246 @gol
18683 -mcustom-fcmples=249 @gol
18684 -mcustom-fcmpeqs=250 @gol
18685 -mcustom-fcmpnes=251 @gol
18686 -mcustom-fmuls=252 @gol
18687 -mcustom-fadds=253 @gol
18688 -mcustom-fsubs=254 @gol
18689 -mcustom-fdivs=255 @gol
18690 -fsingle-precision-constant}
18691
18692 Custom instruction assignments given by individual
18693 @option{-mcustom-@var{insn}=} options override those given by
18694 @option{-mcustom-fpu-cfg=}, regardless of the
18695 order of the options on the command line.
18696
18697 Note that you can gain more local control over selection of a FPU
18698 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
18699 function attribute (@pxref{Function Attributes})
18700 or pragma (@pxref{Function Specific Option Pragmas}).
18701
18702 @end table
18703
18704 These additional @samp{-m} options are available for the Altera Nios II
18705 ELF (bare-metal) target:
18706
18707 @table @gcctabopt
18708
18709 @item -mhal
18710 @opindex mhal
18711 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
18712 startup and termination code, and is typically used in conjunction with
18713 @option{-msys-crt0=} to specify the location of the alternate startup code
18714 provided by the HAL BSP.
18715
18716 @item -msmallc
18717 @opindex msmallc
18718 Link with a limited version of the C library, @option{-lsmallc}, rather than
18719 Newlib.
18720
18721 @item -msys-crt0=@var{startfile}
18722 @opindex msys-crt0
18723 @var{startfile} is the file name of the startfile (crt0) to use
18724 when linking. This option is only useful in conjunction with @option{-mhal}.
18725
18726 @item -msys-lib=@var{systemlib}
18727 @opindex msys-lib
18728 @var{systemlib} is the library name of the library that provides
18729 low-level system calls required by the C library,
18730 e.g. @code{read} and @code{write}.
18731 This option is typically used to link with a library provided by a HAL BSP.
18732
18733 @end table
18734
18735 @node Nvidia PTX Options
18736 @subsection Nvidia PTX Options
18737 @cindex Nvidia PTX options
18738 @cindex nvptx options
18739
18740 These options are defined for Nvidia PTX:
18741
18742 @table @gcctabopt
18743
18744 @item -m32
18745 @itemx -m64
18746 @opindex m32
18747 @opindex m64
18748 Generate code for 32-bit or 64-bit ABI.
18749
18750 @item -mmainkernel
18751 @opindex mmainkernel
18752 Link in code for a __main kernel. This is for stand-alone instead of
18753 offloading execution.
18754
18755 @end table
18756
18757 @node PDP-11 Options
18758 @subsection PDP-11 Options
18759 @cindex PDP-11 Options
18760
18761 These options are defined for the PDP-11:
18762
18763 @table @gcctabopt
18764 @item -mfpu
18765 @opindex mfpu
18766 Use hardware FPP floating point. This is the default. (FIS floating
18767 point on the PDP-11/40 is not supported.)
18768
18769 @item -msoft-float
18770 @opindex msoft-float
18771 Do not use hardware floating point.
18772
18773 @item -mac0
18774 @opindex mac0
18775 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
18776
18777 @item -mno-ac0
18778 @opindex mno-ac0
18779 Return floating-point results in memory. This is the default.
18780
18781 @item -m40
18782 @opindex m40
18783 Generate code for a PDP-11/40.
18784
18785 @item -m45
18786 @opindex m45
18787 Generate code for a PDP-11/45. This is the default.
18788
18789 @item -m10
18790 @opindex m10
18791 Generate code for a PDP-11/10.
18792
18793 @item -mbcopy-builtin
18794 @opindex mbcopy-builtin
18795 Use inline @code{movmemhi} patterns for copying memory. This is the
18796 default.
18797
18798 @item -mbcopy
18799 @opindex mbcopy
18800 Do not use inline @code{movmemhi} patterns for copying memory.
18801
18802 @item -mint16
18803 @itemx -mno-int32
18804 @opindex mint16
18805 @opindex mno-int32
18806 Use 16-bit @code{int}. This is the default.
18807
18808 @item -mint32
18809 @itemx -mno-int16
18810 @opindex mint32
18811 @opindex mno-int16
18812 Use 32-bit @code{int}.
18813
18814 @item -mfloat64
18815 @itemx -mno-float32
18816 @opindex mfloat64
18817 @opindex mno-float32
18818 Use 64-bit @code{float}. This is the default.
18819
18820 @item -mfloat32
18821 @itemx -mno-float64
18822 @opindex mfloat32
18823 @opindex mno-float64
18824 Use 32-bit @code{float}.
18825
18826 @item -mabshi
18827 @opindex mabshi
18828 Use @code{abshi2} pattern. This is the default.
18829
18830 @item -mno-abshi
18831 @opindex mno-abshi
18832 Do not use @code{abshi2} pattern.
18833
18834 @item -mbranch-expensive
18835 @opindex mbranch-expensive
18836 Pretend that branches are expensive. This is for experimenting with
18837 code generation only.
18838
18839 @item -mbranch-cheap
18840 @opindex mbranch-cheap
18841 Do not pretend that branches are expensive. This is the default.
18842
18843 @item -munix-asm
18844 @opindex munix-asm
18845 Use Unix assembler syntax. This is the default when configured for
18846 @samp{pdp11-*-bsd}.
18847
18848 @item -mdec-asm
18849 @opindex mdec-asm
18850 Use DEC assembler syntax. This is the default when configured for any
18851 PDP-11 target other than @samp{pdp11-*-bsd}.
18852 @end table
18853
18854 @node picoChip Options
18855 @subsection picoChip Options
18856 @cindex picoChip options
18857
18858 These @samp{-m} options are defined for picoChip implementations:
18859
18860 @table @gcctabopt
18861
18862 @item -mae=@var{ae_type}
18863 @opindex mcpu
18864 Set the instruction set, register set, and instruction scheduling
18865 parameters for array element type @var{ae_type}. Supported values
18866 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
18867
18868 @option{-mae=ANY} selects a completely generic AE type. Code
18869 generated with this option runs on any of the other AE types. The
18870 code is not as efficient as it would be if compiled for a specific
18871 AE type, and some types of operation (e.g., multiplication) do not
18872 work properly on all types of AE.
18873
18874 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
18875 for compiled code, and is the default.
18876
18877 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
18878 option may suffer from poor performance of byte (char) manipulation,
18879 since the DSP AE does not provide hardware support for byte load/stores.
18880
18881 @item -msymbol-as-address
18882 Enable the compiler to directly use a symbol name as an address in a
18883 load/store instruction, without first loading it into a
18884 register. Typically, the use of this option generates larger
18885 programs, which run faster than when the option isn't used. However, the
18886 results vary from program to program, so it is left as a user option,
18887 rather than being permanently enabled.
18888
18889 @item -mno-inefficient-warnings
18890 Disables warnings about the generation of inefficient code. These
18891 warnings can be generated, for example, when compiling code that
18892 performs byte-level memory operations on the MAC AE type. The MAC AE has
18893 no hardware support for byte-level memory operations, so all byte
18894 load/stores must be synthesized from word load/store operations. This is
18895 inefficient and a warning is generated to indicate
18896 that you should rewrite the code to avoid byte operations, or to target
18897 an AE type that has the necessary hardware support. This option disables
18898 these warnings.
18899
18900 @end table
18901
18902 @node PowerPC Options
18903 @subsection PowerPC Options
18904 @cindex PowerPC options
18905
18906 These are listed under @xref{RS/6000 and PowerPC Options}.
18907
18908 @node RL78 Options
18909 @subsection RL78 Options
18910 @cindex RL78 Options
18911
18912 @table @gcctabopt
18913
18914 @item -msim
18915 @opindex msim
18916 Links in additional target libraries to support operation within a
18917 simulator.
18918
18919 @item -mmul=none
18920 @itemx -mmul=g10
18921 @itemx -mmul=g13
18922 @itemx -mmul=g14
18923 @itemx -mmul=rl78
18924 @opindex mmul
18925 Specifies the type of hardware multiplication and division support to
18926 be used. The simplest is @code{none}, which uses software for both
18927 multiplication and division. This is the default. The @code{g13}
18928 value is for the hardware multiply/divide peripheral found on the
18929 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
18930 the multiplication and division instructions supported by the RL78/G14
18931 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
18932 the value @code{mg10} is an alias for @code{none}.
18933
18934 In addition a C preprocessor macro is defined, based upon the setting
18935 of this option. Possible values are: @code{__RL78_MUL_NONE__},
18936 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
18937
18938 @item -mcpu=g10
18939 @itemx -mcpu=g13
18940 @itemx -mcpu=g14
18941 @itemx -mcpu=rl78
18942 @opindex mcpu
18943 Specifies the RL78 core to target. The default is the G14 core, also
18944 known as an S3 core or just RL78. The G13 or S2 core does not have
18945 multiply or divide instructions, instead it uses a hardware peripheral
18946 for these operations. The G10 or S1 core does not have register
18947 banks, so it uses a different calling convention.
18948
18949 If this option is set it also selects the type of hardware multiply
18950 support to use, unless this is overridden by an explicit
18951 @option{-mmul=none} option on the command line. Thus specifying
18952 @option{-mcpu=g13} enables the use of the G13 hardware multiply
18953 peripheral and specifying @option{-mcpu=g10} disables the use of
18954 hardware multipications altogether.
18955
18956 Note, although the RL78/G14 core is the default target, specifying
18957 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
18958 change the behaviour of the toolchain since it also enables G14
18959 hardware multiply support. If these options are not specified on the
18960 command line then software multiplication routines will be used even
18961 though the code targets the RL78 core. This is for backwards
18962 compatibility with older toolchains which did not have hardware
18963 multiply and divide support.
18964
18965 In addition a C preprocessor macro is defined, based upon the setting
18966 of this option. Possible values are: @code{__RL78_G10__},
18967 @code{__RL78_G13__} or @code{__RL78_G14__}.
18968
18969 @item -mg10
18970 @itemx -mg13
18971 @itemx -mg14
18972 @itemx -mrl78
18973 @opindex mg10
18974 @opindex mg13
18975 @opindex mg14
18976 @opindex mrl78
18977 These are aliases for the corresponding @option{-mcpu=} option. They
18978 are provided for backwards compatibility.
18979
18980 @item -mallregs
18981 @opindex mallregs
18982 Allow the compiler to use all of the available registers. By default
18983 registers @code{r24..r31} are reserved for use in interrupt handlers.
18984 With this option enabled these registers can be used in ordinary
18985 functions as well.
18986
18987 @item -m64bit-doubles
18988 @itemx -m32bit-doubles
18989 @opindex m64bit-doubles
18990 @opindex m32bit-doubles
18991 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
18992 or 32 bits (@option{-m32bit-doubles}) in size. The default is
18993 @option{-m32bit-doubles}.
18994
18995 @end table
18996
18997 @node RS/6000 and PowerPC Options
18998 @subsection IBM RS/6000 and PowerPC Options
18999 @cindex RS/6000 and PowerPC Options
19000 @cindex IBM RS/6000 and PowerPC Options
19001
19002 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
19003 @table @gcctabopt
19004 @item -mpowerpc-gpopt
19005 @itemx -mno-powerpc-gpopt
19006 @itemx -mpowerpc-gfxopt
19007 @itemx -mno-powerpc-gfxopt
19008 @need 800
19009 @itemx -mpowerpc64
19010 @itemx -mno-powerpc64
19011 @itemx -mmfcrf
19012 @itemx -mno-mfcrf
19013 @itemx -mpopcntb
19014 @itemx -mno-popcntb
19015 @itemx -mpopcntd
19016 @itemx -mno-popcntd
19017 @itemx -mfprnd
19018 @itemx -mno-fprnd
19019 @need 800
19020 @itemx -mcmpb
19021 @itemx -mno-cmpb
19022 @itemx -mmfpgpr
19023 @itemx -mno-mfpgpr
19024 @itemx -mhard-dfp
19025 @itemx -mno-hard-dfp
19026 @opindex mpowerpc-gpopt
19027 @opindex mno-powerpc-gpopt
19028 @opindex mpowerpc-gfxopt
19029 @opindex mno-powerpc-gfxopt
19030 @opindex mpowerpc64
19031 @opindex mno-powerpc64
19032 @opindex mmfcrf
19033 @opindex mno-mfcrf
19034 @opindex mpopcntb
19035 @opindex mno-popcntb
19036 @opindex mpopcntd
19037 @opindex mno-popcntd
19038 @opindex mfprnd
19039 @opindex mno-fprnd
19040 @opindex mcmpb
19041 @opindex mno-cmpb
19042 @opindex mmfpgpr
19043 @opindex mno-mfpgpr
19044 @opindex mhard-dfp
19045 @opindex mno-hard-dfp
19046 You use these options to specify which instructions are available on the
19047 processor you are using. The default value of these options is
19048 determined when configuring GCC@. Specifying the
19049 @option{-mcpu=@var{cpu_type}} overrides the specification of these
19050 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
19051 rather than the options listed above.
19052
19053 Specifying @option{-mpowerpc-gpopt} allows
19054 GCC to use the optional PowerPC architecture instructions in the
19055 General Purpose group, including floating-point square root. Specifying
19056 @option{-mpowerpc-gfxopt} allows GCC to
19057 use the optional PowerPC architecture instructions in the Graphics
19058 group, including floating-point select.
19059
19060 The @option{-mmfcrf} option allows GCC to generate the move from
19061 condition register field instruction implemented on the POWER4
19062 processor and other processors that support the PowerPC V2.01
19063 architecture.
19064 The @option{-mpopcntb} option allows GCC to generate the popcount and
19065 double-precision FP reciprocal estimate instruction implemented on the
19066 POWER5 processor and other processors that support the PowerPC V2.02
19067 architecture.
19068 The @option{-mpopcntd} option allows GCC to generate the popcount
19069 instruction implemented on the POWER7 processor and other processors
19070 that support the PowerPC V2.06 architecture.
19071 The @option{-mfprnd} option allows GCC to generate the FP round to
19072 integer instructions implemented on the POWER5+ processor and other
19073 processors that support the PowerPC V2.03 architecture.
19074 The @option{-mcmpb} option allows GCC to generate the compare bytes
19075 instruction implemented on the POWER6 processor and other processors
19076 that support the PowerPC V2.05 architecture.
19077 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
19078 general-purpose register instructions implemented on the POWER6X
19079 processor and other processors that support the extended PowerPC V2.05
19080 architecture.
19081 The @option{-mhard-dfp} option allows GCC to generate the decimal
19082 floating-point instructions implemented on some POWER processors.
19083
19084 The @option{-mpowerpc64} option allows GCC to generate the additional
19085 64-bit instructions that are found in the full PowerPC64 architecture
19086 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
19087 @option{-mno-powerpc64}.
19088
19089 @item -mcpu=@var{cpu_type}
19090 @opindex mcpu
19091 Set architecture type, register usage, and
19092 instruction scheduling parameters for machine type @var{cpu_type}.
19093 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
19094 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
19095 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
19096 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
19097 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
19098 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
19099 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
19100 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
19101 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
19102 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8}, @samp{powerpc},
19103 @samp{powerpc64}, @samp{powerpc64le}, and @samp{rs64}.
19104
19105 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
19106 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
19107 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
19108 architecture machine types, with an appropriate, generic processor
19109 model assumed for scheduling purposes.
19110
19111 The other options specify a specific processor. Code generated under
19112 those options runs best on that processor, and may not run at all on
19113 others.
19114
19115 The @option{-mcpu} options automatically enable or disable the
19116 following options:
19117
19118 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
19119 -mpopcntb -mpopcntd -mpowerpc64 @gol
19120 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
19121 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
19122 -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol
19123 -mquad-memory -mquad-memory-atomic}
19124
19125 The particular options set for any particular CPU varies between
19126 compiler versions, depending on what setting seems to produce optimal
19127 code for that CPU; it doesn't necessarily reflect the actual hardware's
19128 capabilities. If you wish to set an individual option to a particular
19129 value, you may specify it after the @option{-mcpu} option, like
19130 @option{-mcpu=970 -mno-altivec}.
19131
19132 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
19133 not enabled or disabled by the @option{-mcpu} option at present because
19134 AIX does not have full support for these options. You may still
19135 enable or disable them individually if you're sure it'll work in your
19136 environment.
19137
19138 @item -mtune=@var{cpu_type}
19139 @opindex mtune
19140 Set the instruction scheduling parameters for machine type
19141 @var{cpu_type}, but do not set the architecture type or register usage,
19142 as @option{-mcpu=@var{cpu_type}} does. The same
19143 values for @var{cpu_type} are used for @option{-mtune} as for
19144 @option{-mcpu}. If both are specified, the code generated uses the
19145 architecture and registers set by @option{-mcpu}, but the
19146 scheduling parameters set by @option{-mtune}.
19147
19148 @item -mcmodel=small
19149 @opindex mcmodel=small
19150 Generate PowerPC64 code for the small model: The TOC is limited to
19151 64k.
19152
19153 @item -mcmodel=medium
19154 @opindex mcmodel=medium
19155 Generate PowerPC64 code for the medium model: The TOC and other static
19156 data may be up to a total of 4G in size.
19157
19158 @item -mcmodel=large
19159 @opindex mcmodel=large
19160 Generate PowerPC64 code for the large model: The TOC may be up to 4G
19161 in size. Other data and code is only limited by the 64-bit address
19162 space.
19163
19164 @item -maltivec
19165 @itemx -mno-altivec
19166 @opindex maltivec
19167 @opindex mno-altivec
19168 Generate code that uses (does not use) AltiVec instructions, and also
19169 enable the use of built-in functions that allow more direct access to
19170 the AltiVec instruction set. You may also need to set
19171 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
19172 enhancements.
19173
19174 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
19175 @option{-maltivec=be}, the element order for Altivec intrinsics such
19176 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
19177 match array element order corresponding to the endianness of the
19178 target. That is, element zero identifies the leftmost element in a
19179 vector register when targeting a big-endian platform, and identifies
19180 the rightmost element in a vector register when targeting a
19181 little-endian platform.
19182
19183 @item -maltivec=be
19184 @opindex maltivec=be
19185 Generate Altivec instructions using big-endian element order,
19186 regardless of whether the target is big- or little-endian. This is
19187 the default when targeting a big-endian platform.
19188
19189 The element order is used to interpret element numbers in Altivec
19190 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19191 @code{vec_insert}. By default, these match array element order
19192 corresponding to the endianness for the target.
19193
19194 @item -maltivec=le
19195 @opindex maltivec=le
19196 Generate Altivec instructions using little-endian element order,
19197 regardless of whether the target is big- or little-endian. This is
19198 the default when targeting a little-endian platform. This option is
19199 currently ignored when targeting a big-endian platform.
19200
19201 The element order is used to interpret element numbers in Altivec
19202 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19203 @code{vec_insert}. By default, these match array element order
19204 corresponding to the endianness for the target.
19205
19206 @item -mvrsave
19207 @itemx -mno-vrsave
19208 @opindex mvrsave
19209 @opindex mno-vrsave
19210 Generate VRSAVE instructions when generating AltiVec code.
19211
19212 @item -mgen-cell-microcode
19213 @opindex mgen-cell-microcode
19214 Generate Cell microcode instructions.
19215
19216 @item -mwarn-cell-microcode
19217 @opindex mwarn-cell-microcode
19218 Warn when a Cell microcode instruction is emitted. An example
19219 of a Cell microcode instruction is a variable shift.
19220
19221 @item -msecure-plt
19222 @opindex msecure-plt
19223 Generate code that allows @command{ld} and @command{ld.so}
19224 to build executables and shared
19225 libraries with non-executable @code{.plt} and @code{.got} sections.
19226 This is a PowerPC
19227 32-bit SYSV ABI option.
19228
19229 @item -mbss-plt
19230 @opindex mbss-plt
19231 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19232 fills in, and
19233 requires @code{.plt} and @code{.got}
19234 sections that are both writable and executable.
19235 This is a PowerPC 32-bit SYSV ABI option.
19236
19237 @item -misel
19238 @itemx -mno-isel
19239 @opindex misel
19240 @opindex mno-isel
19241 This switch enables or disables the generation of ISEL instructions.
19242
19243 @item -misel=@var{yes/no}
19244 This switch has been deprecated. Use @option{-misel} and
19245 @option{-mno-isel} instead.
19246
19247 @item -mspe
19248 @itemx -mno-spe
19249 @opindex mspe
19250 @opindex mno-spe
19251 This switch enables or disables the generation of SPE simd
19252 instructions.
19253
19254 @item -mpaired
19255 @itemx -mno-paired
19256 @opindex mpaired
19257 @opindex mno-paired
19258 This switch enables or disables the generation of PAIRED simd
19259 instructions.
19260
19261 @item -mspe=@var{yes/no}
19262 This option has been deprecated. Use @option{-mspe} and
19263 @option{-mno-spe} instead.
19264
19265 @item -mvsx
19266 @itemx -mno-vsx
19267 @opindex mvsx
19268 @opindex mno-vsx
19269 Generate code that uses (does not use) vector/scalar (VSX)
19270 instructions, and also enable the use of built-in functions that allow
19271 more direct access to the VSX instruction set.
19272
19273 @item -mcrypto
19274 @itemx -mno-crypto
19275 @opindex mcrypto
19276 @opindex mno-crypto
19277 Enable the use (disable) of the built-in functions that allow direct
19278 access to the cryptographic instructions that were added in version
19279 2.07 of the PowerPC ISA.
19280
19281 @item -mdirect-move
19282 @itemx -mno-direct-move
19283 @opindex mdirect-move
19284 @opindex mno-direct-move
19285 Generate code that uses (does not use) the instructions to move data
19286 between the general purpose registers and the vector/scalar (VSX)
19287 registers that were added in version 2.07 of the PowerPC ISA.
19288
19289 @item -mpower8-fusion
19290 @itemx -mno-power8-fusion
19291 @opindex mpower8-fusion
19292 @opindex mno-power8-fusion
19293 Generate code that keeps (does not keeps) some integer operations
19294 adjacent so that the instructions can be fused together on power8 and
19295 later processors.
19296
19297 @item -mpower8-vector
19298 @itemx -mno-power8-vector
19299 @opindex mpower8-vector
19300 @opindex mno-power8-vector
19301 Generate code that uses (does not use) the vector and scalar
19302 instructions that were added in version 2.07 of the PowerPC ISA. Also
19303 enable the use of built-in functions that allow more direct access to
19304 the vector instructions.
19305
19306 @item -mquad-memory
19307 @itemx -mno-quad-memory
19308 @opindex mquad-memory
19309 @opindex mno-quad-memory
19310 Generate code that uses (does not use) the non-atomic quad word memory
19311 instructions. The @option{-mquad-memory} option requires use of
19312 64-bit mode.
19313
19314 @item -mquad-memory-atomic
19315 @itemx -mno-quad-memory-atomic
19316 @opindex mquad-memory-atomic
19317 @opindex mno-quad-memory-atomic
19318 Generate code that uses (does not use) the atomic quad word memory
19319 instructions. The @option{-mquad-memory-atomic} option requires use of
19320 64-bit mode.
19321
19322 @item -mupper-regs-df
19323 @itemx -mno-upper-regs-df
19324 @opindex mupper-regs-df
19325 @opindex mno-upper-regs-df
19326 Generate code that uses (does not use) the scalar double precision
19327 instructions that target all 64 registers in the vector/scalar
19328 floating point register set that were added in version 2.06 of the
19329 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
19330 use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19331 @option{-mvsx} options.
19332
19333 @item -mupper-regs-sf
19334 @itemx -mno-upper-regs-sf
19335 @opindex mupper-regs-sf
19336 @opindex mno-upper-regs-sf
19337 Generate code that uses (does not use) the scalar single precision
19338 instructions that target all 64 registers in the vector/scalar
19339 floating point register set that were added in version 2.07 of the
19340 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
19341 use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19342 options.
19343
19344 @item -mupper-regs
19345 @itemx -mno-upper-regs
19346 @opindex mupper-regs
19347 @opindex mno-upper-regs
19348 Generate code that uses (does not use) the scalar
19349 instructions that target all 64 registers in the vector/scalar
19350 floating point register set, depending on the model of the machine.
19351
19352 If the @option{-mno-upper-regs} option is used, it turns off both
19353 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19354
19355 @item -mfloat-gprs=@var{yes/single/double/no}
19356 @itemx -mfloat-gprs
19357 @opindex mfloat-gprs
19358 This switch enables or disables the generation of floating-point
19359 operations on the general-purpose registers for architectures that
19360 support it.
19361
19362 The argument @samp{yes} or @samp{single} enables the use of
19363 single-precision floating-point operations.
19364
19365 The argument @samp{double} enables the use of single and
19366 double-precision floating-point operations.
19367
19368 The argument @samp{no} disables floating-point operations on the
19369 general-purpose registers.
19370
19371 This option is currently only available on the MPC854x.
19372
19373 @item -m32
19374 @itemx -m64
19375 @opindex m32
19376 @opindex m64
19377 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19378 targets (including GNU/Linux). The 32-bit environment sets int, long
19379 and pointer to 32 bits and generates code that runs on any PowerPC
19380 variant. The 64-bit environment sets int to 32 bits and long and
19381 pointer to 64 bits, and generates code for PowerPC64, as for
19382 @option{-mpowerpc64}.
19383
19384 @item -mfull-toc
19385 @itemx -mno-fp-in-toc
19386 @itemx -mno-sum-in-toc
19387 @itemx -mminimal-toc
19388 @opindex mfull-toc
19389 @opindex mno-fp-in-toc
19390 @opindex mno-sum-in-toc
19391 @opindex mminimal-toc
19392 Modify generation of the TOC (Table Of Contents), which is created for
19393 every executable file. The @option{-mfull-toc} option is selected by
19394 default. In that case, GCC allocates at least one TOC entry for
19395 each unique non-automatic variable reference in your program. GCC
19396 also places floating-point constants in the TOC@. However, only
19397 16,384 entries are available in the TOC@.
19398
19399 If you receive a linker error message that saying you have overflowed
19400 the available TOC space, you can reduce the amount of TOC space used
19401 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19402 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
19403 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19404 generate code to calculate the sum of an address and a constant at
19405 run time instead of putting that sum into the TOC@. You may specify one
19406 or both of these options. Each causes GCC to produce very slightly
19407 slower and larger code at the expense of conserving TOC space.
19408
19409 If you still run out of space in the TOC even when you specify both of
19410 these options, specify @option{-mminimal-toc} instead. This option causes
19411 GCC to make only one TOC entry for every file. When you specify this
19412 option, GCC produces code that is slower and larger but which
19413 uses extremely little TOC space. You may wish to use this option
19414 only on files that contain less frequently-executed code.
19415
19416 @item -maix64
19417 @itemx -maix32
19418 @opindex maix64
19419 @opindex maix32
19420 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19421 @code{long} type, and the infrastructure needed to support them.
19422 Specifying @option{-maix64} implies @option{-mpowerpc64},
19423 while @option{-maix32} disables the 64-bit ABI and
19424 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
19425
19426 @item -mxl-compat
19427 @itemx -mno-xl-compat
19428 @opindex mxl-compat
19429 @opindex mno-xl-compat
19430 Produce code that conforms more closely to IBM XL compiler semantics
19431 when using AIX-compatible ABI@. Pass floating-point arguments to
19432 prototyped functions beyond the register save area (RSA) on the stack
19433 in addition to argument FPRs. Do not assume that most significant
19434 double in 128-bit long double value is properly rounded when comparing
19435 values and converting to double. Use XL symbol names for long double
19436 support routines.
19437
19438 The AIX calling convention was extended but not initially documented to
19439 handle an obscure K&R C case of calling a function that takes the
19440 address of its arguments with fewer arguments than declared. IBM XL
19441 compilers access floating-point arguments that do not fit in the
19442 RSA from the stack when a subroutine is compiled without
19443 optimization. Because always storing floating-point arguments on the
19444 stack is inefficient and rarely needed, this option is not enabled by
19445 default and only is necessary when calling subroutines compiled by IBM
19446 XL compilers without optimization.
19447
19448 @item -mpe
19449 @opindex mpe
19450 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
19451 application written to use message passing with special startup code to
19452 enable the application to run. The system must have PE installed in the
19453 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
19454 must be overridden with the @option{-specs=} option to specify the
19455 appropriate directory location. The Parallel Environment does not
19456 support threads, so the @option{-mpe} option and the @option{-pthread}
19457 option are incompatible.
19458
19459 @item -malign-natural
19460 @itemx -malign-power
19461 @opindex malign-natural
19462 @opindex malign-power
19463 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
19464 @option{-malign-natural} overrides the ABI-defined alignment of larger
19465 types, such as floating-point doubles, on their natural size-based boundary.
19466 The option @option{-malign-power} instructs GCC to follow the ABI-specified
19467 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
19468
19469 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
19470 is not supported.
19471
19472 @item -msoft-float
19473 @itemx -mhard-float
19474 @opindex msoft-float
19475 @opindex mhard-float
19476 Generate code that does not use (uses) the floating-point register set.
19477 Software floating-point emulation is provided if you use the
19478 @option{-msoft-float} option, and pass the option to GCC when linking.
19479
19480 @item -msingle-float
19481 @itemx -mdouble-float
19482 @opindex msingle-float
19483 @opindex mdouble-float
19484 Generate code for single- or double-precision floating-point operations.
19485 @option{-mdouble-float} implies @option{-msingle-float}.
19486
19487 @item -msimple-fpu
19488 @opindex msimple-fpu
19489 Do not generate @code{sqrt} and @code{div} instructions for hardware
19490 floating-point unit.
19491
19492 @item -mfpu=@var{name}
19493 @opindex mfpu
19494 Specify type of floating-point unit. Valid values for @var{name} are
19495 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
19496 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
19497 @samp{sp_full} (equivalent to @option{-msingle-float}),
19498 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
19499
19500 @item -mxilinx-fpu
19501 @opindex mxilinx-fpu
19502 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
19503
19504 @item -mmultiple
19505 @itemx -mno-multiple
19506 @opindex mmultiple
19507 @opindex mno-multiple
19508 Generate code that uses (does not use) the load multiple word
19509 instructions and the store multiple word instructions. These
19510 instructions are generated by default on POWER systems, and not
19511 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
19512 PowerPC systems, since those instructions do not work when the
19513 processor is in little-endian mode. The exceptions are PPC740 and
19514 PPC750 which permit these instructions in little-endian mode.
19515
19516 @item -mstring
19517 @itemx -mno-string
19518 @opindex mstring
19519 @opindex mno-string
19520 Generate code that uses (does not use) the load string instructions
19521 and the store string word instructions to save multiple registers and
19522 do small block moves. These instructions are generated by default on
19523 POWER systems, and not generated on PowerPC systems. Do not use
19524 @option{-mstring} on little-endian PowerPC systems, since those
19525 instructions do not work when the processor is in little-endian mode.
19526 The exceptions are PPC740 and PPC750 which permit these instructions
19527 in little-endian mode.
19528
19529 @item -mupdate
19530 @itemx -mno-update
19531 @opindex mupdate
19532 @opindex mno-update
19533 Generate code that uses (does not use) the load or store instructions
19534 that update the base register to the address of the calculated memory
19535 location. These instructions are generated by default. If you use
19536 @option{-mno-update}, there is a small window between the time that the
19537 stack pointer is updated and the address of the previous frame is
19538 stored, which means code that walks the stack frame across interrupts or
19539 signals may get corrupted data.
19540
19541 @item -mavoid-indexed-addresses
19542 @itemx -mno-avoid-indexed-addresses
19543 @opindex mavoid-indexed-addresses
19544 @opindex mno-avoid-indexed-addresses
19545 Generate code that tries to avoid (not avoid) the use of indexed load
19546 or store instructions. These instructions can incur a performance
19547 penalty on Power6 processors in certain situations, such as when
19548 stepping through large arrays that cross a 16M boundary. This option
19549 is enabled by default when targeting Power6 and disabled otherwise.
19550
19551 @item -mfused-madd
19552 @itemx -mno-fused-madd
19553 @opindex mfused-madd
19554 @opindex mno-fused-madd
19555 Generate code that uses (does not use) the floating-point multiply and
19556 accumulate instructions. These instructions are generated by default
19557 if hardware floating point is used. The machine-dependent
19558 @option{-mfused-madd} option is now mapped to the machine-independent
19559 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
19560 mapped to @option{-ffp-contract=off}.
19561
19562 @item -mmulhw
19563 @itemx -mno-mulhw
19564 @opindex mmulhw
19565 @opindex mno-mulhw
19566 Generate code that uses (does not use) the half-word multiply and
19567 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
19568 These instructions are generated by default when targeting those
19569 processors.
19570
19571 @item -mdlmzb
19572 @itemx -mno-dlmzb
19573 @opindex mdlmzb
19574 @opindex mno-dlmzb
19575 Generate code that uses (does not use) the string-search @samp{dlmzb}
19576 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
19577 generated by default when targeting those processors.
19578
19579 @item -mno-bit-align
19580 @itemx -mbit-align
19581 @opindex mno-bit-align
19582 @opindex mbit-align
19583 On System V.4 and embedded PowerPC systems do not (do) force structures
19584 and unions that contain bit-fields to be aligned to the base type of the
19585 bit-field.
19586
19587 For example, by default a structure containing nothing but 8
19588 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
19589 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
19590 the structure is aligned to a 1-byte boundary and is 1 byte in
19591 size.
19592
19593 @item -mno-strict-align
19594 @itemx -mstrict-align
19595 @opindex mno-strict-align
19596 @opindex mstrict-align
19597 On System V.4 and embedded PowerPC systems do not (do) assume that
19598 unaligned memory references are handled by the system.
19599
19600 @item -mrelocatable
19601 @itemx -mno-relocatable
19602 @opindex mrelocatable
19603 @opindex mno-relocatable
19604 Generate code that allows (does not allow) a static executable to be
19605 relocated to a different address at run time. A simple embedded
19606 PowerPC system loader should relocate the entire contents of
19607 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
19608 a table of 32-bit addresses generated by this option. For this to
19609 work, all objects linked together must be compiled with
19610 @option{-mrelocatable} or @option{-mrelocatable-lib}.
19611 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
19612
19613 @item -mrelocatable-lib
19614 @itemx -mno-relocatable-lib
19615 @opindex mrelocatable-lib
19616 @opindex mno-relocatable-lib
19617 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
19618 @code{.fixup} section to allow static executables to be relocated at
19619 run time, but @option{-mrelocatable-lib} does not use the smaller stack
19620 alignment of @option{-mrelocatable}. Objects compiled with
19621 @option{-mrelocatable-lib} may be linked with objects compiled with
19622 any combination of the @option{-mrelocatable} options.
19623
19624 @item -mno-toc
19625 @itemx -mtoc
19626 @opindex mno-toc
19627 @opindex mtoc
19628 On System V.4 and embedded PowerPC systems do not (do) assume that
19629 register 2 contains a pointer to a global area pointing to the addresses
19630 used in the program.
19631
19632 @item -mlittle
19633 @itemx -mlittle-endian
19634 @opindex mlittle
19635 @opindex mlittle-endian
19636 On System V.4 and embedded PowerPC systems compile code for the
19637 processor in little-endian mode. The @option{-mlittle-endian} option is
19638 the same as @option{-mlittle}.
19639
19640 @item -mbig
19641 @itemx -mbig-endian
19642 @opindex mbig
19643 @opindex mbig-endian
19644 On System V.4 and embedded PowerPC systems compile code for the
19645 processor in big-endian mode. The @option{-mbig-endian} option is
19646 the same as @option{-mbig}.
19647
19648 @item -mdynamic-no-pic
19649 @opindex mdynamic-no-pic
19650 On Darwin and Mac OS X systems, compile code so that it is not
19651 relocatable, but that its external references are relocatable. The
19652 resulting code is suitable for applications, but not shared
19653 libraries.
19654
19655 @item -msingle-pic-base
19656 @opindex msingle-pic-base
19657 Treat the register used for PIC addressing as read-only, rather than
19658 loading it in the prologue for each function. The runtime system is
19659 responsible for initializing this register with an appropriate value
19660 before execution begins.
19661
19662 @item -mprioritize-restricted-insns=@var{priority}
19663 @opindex mprioritize-restricted-insns
19664 This option controls the priority that is assigned to
19665 dispatch-slot restricted instructions during the second scheduling
19666 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
19667 or @samp{2} to assign no, highest, or second-highest (respectively)
19668 priority to dispatch-slot restricted
19669 instructions.
19670
19671 @item -msched-costly-dep=@var{dependence_type}
19672 @opindex msched-costly-dep
19673 This option controls which dependences are considered costly
19674 by the target during instruction scheduling. The argument
19675 @var{dependence_type} takes one of the following values:
19676
19677 @table @asis
19678 @item @samp{no}
19679 No dependence is costly.
19680
19681 @item @samp{all}
19682 All dependences are costly.
19683
19684 @item @samp{true_store_to_load}
19685 A true dependence from store to load is costly.
19686
19687 @item @samp{store_to_load}
19688 Any dependence from store to load is costly.
19689
19690 @item @var{number}
19691 Any dependence for which the latency is greater than or equal to
19692 @var{number} is costly.
19693 @end table
19694
19695 @item -minsert-sched-nops=@var{scheme}
19696 @opindex minsert-sched-nops
19697 This option controls which NOP insertion scheme is used during
19698 the second scheduling pass. The argument @var{scheme} takes one of the
19699 following values:
19700
19701 @table @asis
19702 @item @samp{no}
19703 Don't insert NOPs.
19704
19705 @item @samp{pad}
19706 Pad with NOPs any dispatch group that has vacant issue slots,
19707 according to the scheduler's grouping.
19708
19709 @item @samp{regroup_exact}
19710 Insert NOPs to force costly dependent insns into
19711 separate groups. Insert exactly as many NOPs as needed to force an insn
19712 to a new group, according to the estimated processor grouping.
19713
19714 @item @var{number}
19715 Insert NOPs to force costly dependent insns into
19716 separate groups. Insert @var{number} NOPs to force an insn to a new group.
19717 @end table
19718
19719 @item -mcall-sysv
19720 @opindex mcall-sysv
19721 On System V.4 and embedded PowerPC systems compile code using calling
19722 conventions that adhere to the March 1995 draft of the System V
19723 Application Binary Interface, PowerPC processor supplement. This is the
19724 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
19725
19726 @item -mcall-sysv-eabi
19727 @itemx -mcall-eabi
19728 @opindex mcall-sysv-eabi
19729 @opindex mcall-eabi
19730 Specify both @option{-mcall-sysv} and @option{-meabi} options.
19731
19732 @item -mcall-sysv-noeabi
19733 @opindex mcall-sysv-noeabi
19734 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
19735
19736 @item -mcall-aixdesc
19737 @opindex m
19738 On System V.4 and embedded PowerPC systems compile code for the AIX
19739 operating system.
19740
19741 @item -mcall-linux
19742 @opindex mcall-linux
19743 On System V.4 and embedded PowerPC systems compile code for the
19744 Linux-based GNU system.
19745
19746 @item -mcall-freebsd
19747 @opindex mcall-freebsd
19748 On System V.4 and embedded PowerPC systems compile code for the
19749 FreeBSD operating system.
19750
19751 @item -mcall-netbsd
19752 @opindex mcall-netbsd
19753 On System V.4 and embedded PowerPC systems compile code for the
19754 NetBSD operating system.
19755
19756 @item -mcall-openbsd
19757 @opindex mcall-netbsd
19758 On System V.4 and embedded PowerPC systems compile code for the
19759 OpenBSD operating system.
19760
19761 @item -maix-struct-return
19762 @opindex maix-struct-return
19763 Return all structures in memory (as specified by the AIX ABI)@.
19764
19765 @item -msvr4-struct-return
19766 @opindex msvr4-struct-return
19767 Return structures smaller than 8 bytes in registers (as specified by the
19768 SVR4 ABI)@.
19769
19770 @item -mabi=@var{abi-type}
19771 @opindex mabi
19772 Extend the current ABI with a particular extension, or remove such extension.
19773 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
19774 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
19775 @samp{elfv1}, @samp{elfv2}@.
19776
19777 @item -mabi=spe
19778 @opindex mabi=spe
19779 Extend the current ABI with SPE ABI extensions. This does not change
19780 the default ABI, instead it adds the SPE ABI extensions to the current
19781 ABI@.
19782
19783 @item -mabi=no-spe
19784 @opindex mabi=no-spe
19785 Disable Book-E SPE ABI extensions for the current ABI@.
19786
19787 @item -mabi=ibmlongdouble
19788 @opindex mabi=ibmlongdouble
19789 Change the current ABI to use IBM extended-precision long double.
19790 This is a PowerPC 32-bit SYSV ABI option.
19791
19792 @item -mabi=ieeelongdouble
19793 @opindex mabi=ieeelongdouble
19794 Change the current ABI to use IEEE extended-precision long double.
19795 This is a PowerPC 32-bit Linux ABI option.
19796
19797 @item -mabi=elfv1
19798 @opindex mabi=elfv1
19799 Change the current ABI to use the ELFv1 ABI.
19800 This is the default ABI for big-endian PowerPC 64-bit Linux.
19801 Overriding the default ABI requires special system support and is
19802 likely to fail in spectacular ways.
19803
19804 @item -mabi=elfv2
19805 @opindex mabi=elfv2
19806 Change the current ABI to use the ELFv2 ABI.
19807 This is the default ABI for little-endian PowerPC 64-bit Linux.
19808 Overriding the default ABI requires special system support and is
19809 likely to fail in spectacular ways.
19810
19811 @item -mprototype
19812 @itemx -mno-prototype
19813 @opindex mprototype
19814 @opindex mno-prototype
19815 On System V.4 and embedded PowerPC systems assume that all calls to
19816 variable argument functions are properly prototyped. Otherwise, the
19817 compiler must insert an instruction before every non-prototyped call to
19818 set or clear bit 6 of the condition code register (@code{CR}) to
19819 indicate whether floating-point values are passed in the floating-point
19820 registers in case the function takes variable arguments. With
19821 @option{-mprototype}, only calls to prototyped variable argument functions
19822 set or clear the bit.
19823
19824 @item -msim
19825 @opindex msim
19826 On embedded PowerPC systems, assume that the startup module is called
19827 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
19828 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
19829 configurations.
19830
19831 @item -mmvme
19832 @opindex mmvme
19833 On embedded PowerPC systems, assume that the startup module is called
19834 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
19835 @file{libc.a}.
19836
19837 @item -mads
19838 @opindex mads
19839 On embedded PowerPC systems, assume that the startup module is called
19840 @file{crt0.o} and the standard C libraries are @file{libads.a} and
19841 @file{libc.a}.
19842
19843 @item -myellowknife
19844 @opindex myellowknife
19845 On embedded PowerPC systems, assume that the startup module is called
19846 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
19847 @file{libc.a}.
19848
19849 @item -mvxworks
19850 @opindex mvxworks
19851 On System V.4 and embedded PowerPC systems, specify that you are
19852 compiling for a VxWorks system.
19853
19854 @item -memb
19855 @opindex memb
19856 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
19857 header to indicate that @samp{eabi} extended relocations are used.
19858
19859 @item -meabi
19860 @itemx -mno-eabi
19861 @opindex meabi
19862 @opindex mno-eabi
19863 On System V.4 and embedded PowerPC systems do (do not) adhere to the
19864 Embedded Applications Binary Interface (EABI), which is a set of
19865 modifications to the System V.4 specifications. Selecting @option{-meabi}
19866 means that the stack is aligned to an 8-byte boundary, a function
19867 @code{__eabi} is called from @code{main} to set up the EABI
19868 environment, and the @option{-msdata} option can use both @code{r2} and
19869 @code{r13} to point to two separate small data areas. Selecting
19870 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
19871 no EABI initialization function is called from @code{main}, and the
19872 @option{-msdata} option only uses @code{r13} to point to a single
19873 small data area. The @option{-meabi} option is on by default if you
19874 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
19875
19876 @item -msdata=eabi
19877 @opindex msdata=eabi
19878 On System V.4 and embedded PowerPC systems, put small initialized
19879 @code{const} global and static data in the @code{.sdata2} section, which
19880 is pointed to by register @code{r2}. Put small initialized
19881 non-@code{const} global and static data in the @code{.sdata} section,
19882 which is pointed to by register @code{r13}. Put small uninitialized
19883 global and static data in the @code{.sbss} section, which is adjacent to
19884 the @code{.sdata} section. The @option{-msdata=eabi} option is
19885 incompatible with the @option{-mrelocatable} option. The
19886 @option{-msdata=eabi} option also sets the @option{-memb} option.
19887
19888 @item -msdata=sysv
19889 @opindex msdata=sysv
19890 On System V.4 and embedded PowerPC systems, put small global and static
19891 data in the @code{.sdata} section, which is pointed to by register
19892 @code{r13}. Put small uninitialized global and static data in the
19893 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
19894 The @option{-msdata=sysv} option is incompatible with the
19895 @option{-mrelocatable} option.
19896
19897 @item -msdata=default
19898 @itemx -msdata
19899 @opindex msdata=default
19900 @opindex msdata
19901 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
19902 compile code the same as @option{-msdata=eabi}, otherwise compile code the
19903 same as @option{-msdata=sysv}.
19904
19905 @item -msdata=data
19906 @opindex msdata=data
19907 On System V.4 and embedded PowerPC systems, put small global
19908 data in the @code{.sdata} section. Put small uninitialized global
19909 data in the @code{.sbss} section. Do not use register @code{r13}
19910 to address small data however. This is the default behavior unless
19911 other @option{-msdata} options are used.
19912
19913 @item -msdata=none
19914 @itemx -mno-sdata
19915 @opindex msdata=none
19916 @opindex mno-sdata
19917 On embedded PowerPC systems, put all initialized global and static data
19918 in the @code{.data} section, and all uninitialized data in the
19919 @code{.bss} section.
19920
19921 @item -mblock-move-inline-limit=@var{num}
19922 @opindex mblock-move-inline-limit
19923 Inline all block moves (such as calls to @code{memcpy} or structure
19924 copies) less than or equal to @var{num} bytes. The minimum value for
19925 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
19926 targets. The default value is target-specific.
19927
19928 @item -G @var{num}
19929 @opindex G
19930 @cindex smaller data references (PowerPC)
19931 @cindex .sdata/.sdata2 references (PowerPC)
19932 On embedded PowerPC systems, put global and static items less than or
19933 equal to @var{num} bytes into the small data or BSS sections instead of
19934 the normal data or BSS section. By default, @var{num} is 8. The
19935 @option{-G @var{num}} switch is also passed to the linker.
19936 All modules should be compiled with the same @option{-G @var{num}} value.
19937
19938 @item -mregnames
19939 @itemx -mno-regnames
19940 @opindex mregnames
19941 @opindex mno-regnames
19942 On System V.4 and embedded PowerPC systems do (do not) emit register
19943 names in the assembly language output using symbolic forms.
19944
19945 @item -mlongcall
19946 @itemx -mno-longcall
19947 @opindex mlongcall
19948 @opindex mno-longcall
19949 By default assume that all calls are far away so that a longer and more
19950 expensive calling sequence is required. This is required for calls
19951 farther than 32 megabytes (33,554,432 bytes) from the current location.
19952 A short call is generated if the compiler knows
19953 the call cannot be that far away. This setting can be overridden by
19954 the @code{shortcall} function attribute, or by @code{#pragma
19955 longcall(0)}.
19956
19957 Some linkers are capable of detecting out-of-range calls and generating
19958 glue code on the fly. On these systems, long calls are unnecessary and
19959 generate slower code. As of this writing, the AIX linker can do this,
19960 as can the GNU linker for PowerPC/64. It is planned to add this feature
19961 to the GNU linker for 32-bit PowerPC systems as well.
19962
19963 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
19964 callee, L42}, plus a @dfn{branch island} (glue code). The two target
19965 addresses represent the callee and the branch island. The
19966 Darwin/PPC linker prefers the first address and generates a @code{bl
19967 callee} if the PPC @code{bl} instruction reaches the callee directly;
19968 otherwise, the linker generates @code{bl L42} to call the branch
19969 island. The branch island is appended to the body of the
19970 calling function; it computes the full 32-bit address of the callee
19971 and jumps to it.
19972
19973 On Mach-O (Darwin) systems, this option directs the compiler emit to
19974 the glue for every direct call, and the Darwin linker decides whether
19975 to use or discard it.
19976
19977 In the future, GCC may ignore all longcall specifications
19978 when the linker is known to generate glue.
19979
19980 @item -mtls-markers
19981 @itemx -mno-tls-markers
19982 @opindex mtls-markers
19983 @opindex mno-tls-markers
19984 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
19985 specifying the function argument. The relocation allows the linker to
19986 reliably associate function call with argument setup instructions for
19987 TLS optimization, which in turn allows GCC to better schedule the
19988 sequence.
19989
19990 @item -pthread
19991 @opindex pthread
19992 Adds support for multithreading with the @dfn{pthreads} library.
19993 This option sets flags for both the preprocessor and linker.
19994
19995 @item -mrecip
19996 @itemx -mno-recip
19997 @opindex mrecip
19998 This option enables use of the reciprocal estimate and
19999 reciprocal square root estimate instructions with additional
20000 Newton-Raphson steps to increase precision instead of doing a divide or
20001 square root and divide for floating-point arguments. You should use
20002 the @option{-ffast-math} option when using @option{-mrecip} (or at
20003 least @option{-funsafe-math-optimizations},
20004 @option{-finite-math-only}, @option{-freciprocal-math} and
20005 @option{-fno-trapping-math}). Note that while the throughput of the
20006 sequence is generally higher than the throughput of the non-reciprocal
20007 instruction, the precision of the sequence can be decreased by up to 2
20008 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
20009 roots.
20010
20011 @item -mrecip=@var{opt}
20012 @opindex mrecip=opt
20013 This option controls which reciprocal estimate instructions
20014 may be used. @var{opt} is a comma-separated list of options, which may
20015 be preceded by a @code{!} to invert the option:
20016
20017 @table @samp
20018
20019 @item all
20020 Enable all estimate instructions.
20021
20022 @item default
20023 Enable the default instructions, equivalent to @option{-mrecip}.
20024
20025 @item none
20026 Disable all estimate instructions, equivalent to @option{-mno-recip}.
20027
20028 @item div
20029 Enable the reciprocal approximation instructions for both
20030 single and double precision.
20031
20032 @item divf
20033 Enable the single-precision reciprocal approximation instructions.
20034
20035 @item divd
20036 Enable the double-precision reciprocal approximation instructions.
20037
20038 @item rsqrt
20039 Enable the reciprocal square root approximation instructions for both
20040 single and double precision.
20041
20042 @item rsqrtf
20043 Enable the single-precision reciprocal square root approximation instructions.
20044
20045 @item rsqrtd
20046 Enable the double-precision reciprocal square root approximation instructions.
20047
20048 @end table
20049
20050 So, for example, @option{-mrecip=all,!rsqrtd} enables
20051 all of the reciprocal estimate instructions, except for the
20052 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
20053 which handle the double-precision reciprocal square root calculations.
20054
20055 @item -mrecip-precision
20056 @itemx -mno-recip-precision
20057 @opindex mrecip-precision
20058 Assume (do not assume) that the reciprocal estimate instructions
20059 provide higher-precision estimates than is mandated by the PowerPC
20060 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
20061 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
20062 The double-precision square root estimate instructions are not generated by
20063 default on low-precision machines, since they do not provide an
20064 estimate that converges after three steps.
20065
20066 @item -mveclibabi=@var{type}
20067 @opindex mveclibabi
20068 Specifies the ABI type to use for vectorizing intrinsics using an
20069 external library. The only type supported at present is @samp{mass},
20070 which specifies to use IBM's Mathematical Acceleration Subsystem
20071 (MASS) libraries for vectorizing intrinsics using external libraries.
20072 GCC currently emits calls to @code{acosd2}, @code{acosf4},
20073 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
20074 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
20075 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
20076 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
20077 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
20078 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
20079 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
20080 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
20081 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
20082 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
20083 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
20084 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
20085 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
20086 for power7. Both @option{-ftree-vectorize} and
20087 @option{-funsafe-math-optimizations} must also be enabled. The MASS
20088 libraries must be specified at link time.
20089
20090 @item -mfriz
20091 @itemx -mno-friz
20092 @opindex mfriz
20093 Generate (do not generate) the @code{friz} instruction when the
20094 @option{-funsafe-math-optimizations} option is used to optimize
20095 rounding of floating-point values to 64-bit integer and back to floating
20096 point. The @code{friz} instruction does not return the same value if
20097 the floating-point number is too large to fit in an integer.
20098
20099 @item -mpointers-to-nested-functions
20100 @itemx -mno-pointers-to-nested-functions
20101 @opindex mpointers-to-nested-functions
20102 Generate (do not generate) code to load up the static chain register
20103 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
20104 systems where a function pointer points to a 3-word descriptor giving
20105 the function address, TOC value to be loaded in register @code{r2}, and
20106 static chain value to be loaded in register @code{r11}. The
20107 @option{-mpointers-to-nested-functions} is on by default. You cannot
20108 call through pointers to nested functions or pointers
20109 to functions compiled in other languages that use the static chain if
20110 you use @option{-mno-pointers-to-nested-functions}.
20111
20112 @item -msave-toc-indirect
20113 @itemx -mno-save-toc-indirect
20114 @opindex msave-toc-indirect
20115 Generate (do not generate) code to save the TOC value in the reserved
20116 stack location in the function prologue if the function calls through
20117 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
20118 saved in the prologue, it is saved just before the call through the
20119 pointer. The @option{-mno-save-toc-indirect} option is the default.
20120
20121 @item -mcompat-align-parm
20122 @itemx -mno-compat-align-parm
20123 @opindex mcompat-align-parm
20124 Generate (do not generate) code to pass structure parameters with a
20125 maximum alignment of 64 bits, for compatibility with older versions
20126 of GCC.
20127
20128 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
20129 structure parameter on a 128-bit boundary when that structure contained
20130 a member requiring 128-bit alignment. This is corrected in more
20131 recent versions of GCC. This option may be used to generate code
20132 that is compatible with functions compiled with older versions of
20133 GCC.
20134
20135 The @option{-mno-compat-align-parm} option is the default.
20136 @end table
20137
20138 @node RX Options
20139 @subsection RX Options
20140 @cindex RX Options
20141
20142 These command-line options are defined for RX targets:
20143
20144 @table @gcctabopt
20145 @item -m64bit-doubles
20146 @itemx -m32bit-doubles
20147 @opindex m64bit-doubles
20148 @opindex m32bit-doubles
20149 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
20150 or 32 bits (@option{-m32bit-doubles}) in size. The default is
20151 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
20152 works on 32-bit values, which is why the default is
20153 @option{-m32bit-doubles}.
20154
20155 @item -fpu
20156 @itemx -nofpu
20157 @opindex fpu
20158 @opindex nofpu
20159 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
20160 floating-point hardware. The default is enabled for the RX600
20161 series and disabled for the RX200 series.
20162
20163 Floating-point instructions are only generated for 32-bit floating-point
20164 values, however, so the FPU hardware is not used for doubles if the
20165 @option{-m64bit-doubles} option is used.
20166
20167 @emph{Note} If the @option{-fpu} option is enabled then
20168 @option{-funsafe-math-optimizations} is also enabled automatically.
20169 This is because the RX FPU instructions are themselves unsafe.
20170
20171 @item -mcpu=@var{name}
20172 @opindex mcpu
20173 Selects the type of RX CPU to be targeted. Currently three types are
20174 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
20175 the specific @samp{RX610} CPU. The default is @samp{RX600}.
20176
20177 The only difference between @samp{RX600} and @samp{RX610} is that the
20178 @samp{RX610} does not support the @code{MVTIPL} instruction.
20179
20180 The @samp{RX200} series does not have a hardware floating-point unit
20181 and so @option{-nofpu} is enabled by default when this type is
20182 selected.
20183
20184 @item -mbig-endian-data
20185 @itemx -mlittle-endian-data
20186 @opindex mbig-endian-data
20187 @opindex mlittle-endian-data
20188 Store data (but not code) in the big-endian format. The default is
20189 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
20190 format.
20191
20192 @item -msmall-data-limit=@var{N}
20193 @opindex msmall-data-limit
20194 Specifies the maximum size in bytes of global and static variables
20195 which can be placed into the small data area. Using the small data
20196 area can lead to smaller and faster code, but the size of area is
20197 limited and it is up to the programmer to ensure that the area does
20198 not overflow. Also when the small data area is used one of the RX's
20199 registers (usually @code{r13}) is reserved for use pointing to this
20200 area, so it is no longer available for use by the compiler. This
20201 could result in slower and/or larger code if variables are pushed onto
20202 the stack instead of being held in this register.
20203
20204 Note, common variables (variables that have not been initialized) and
20205 constants are not placed into the small data area as they are assigned
20206 to other sections in the output executable.
20207
20208 The default value is zero, which disables this feature. Note, this
20209 feature is not enabled by default with higher optimization levels
20210 (@option{-O2} etc) because of the potentially detrimental effects of
20211 reserving a register. It is up to the programmer to experiment and
20212 discover whether this feature is of benefit to their program. See the
20213 description of the @option{-mpid} option for a description of how the
20214 actual register to hold the small data area pointer is chosen.
20215
20216 @item -msim
20217 @itemx -mno-sim
20218 @opindex msim
20219 @opindex mno-sim
20220 Use the simulator runtime. The default is to use the libgloss
20221 board-specific runtime.
20222
20223 @item -mas100-syntax
20224 @itemx -mno-as100-syntax
20225 @opindex mas100-syntax
20226 @opindex mno-as100-syntax
20227 When generating assembler output use a syntax that is compatible with
20228 Renesas's AS100 assembler. This syntax can also be handled by the GAS
20229 assembler, but it has some restrictions so it is not generated by default.
20230
20231 @item -mmax-constant-size=@var{N}
20232 @opindex mmax-constant-size
20233 Specifies the maximum size, in bytes, of a constant that can be used as
20234 an operand in a RX instruction. Although the RX instruction set does
20235 allow constants of up to 4 bytes in length to be used in instructions,
20236 a longer value equates to a longer instruction. Thus in some
20237 circumstances it can be beneficial to restrict the size of constants
20238 that are used in instructions. Constants that are too big are instead
20239 placed into a constant pool and referenced via register indirection.
20240
20241 The value @var{N} can be between 0 and 4. A value of 0 (the default)
20242 or 4 means that constants of any size are allowed.
20243
20244 @item -mrelax
20245 @opindex mrelax
20246 Enable linker relaxation. Linker relaxation is a process whereby the
20247 linker attempts to reduce the size of a program by finding shorter
20248 versions of various instructions. Disabled by default.
20249
20250 @item -mint-register=@var{N}
20251 @opindex mint-register
20252 Specify the number of registers to reserve for fast interrupt handler
20253 functions. The value @var{N} can be between 0 and 4. A value of 1
20254 means that register @code{r13} is reserved for the exclusive use
20255 of fast interrupt handlers. A value of 2 reserves @code{r13} and
20256 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
20257 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20258 A value of 0, the default, does not reserve any registers.
20259
20260 @item -msave-acc-in-interrupts
20261 @opindex msave-acc-in-interrupts
20262 Specifies that interrupt handler functions should preserve the
20263 accumulator register. This is only necessary if normal code might use
20264 the accumulator register, for example because it performs 64-bit
20265 multiplications. The default is to ignore the accumulator as this
20266 makes the interrupt handlers faster.
20267
20268 @item -mpid
20269 @itemx -mno-pid
20270 @opindex mpid
20271 @opindex mno-pid
20272 Enables the generation of position independent data. When enabled any
20273 access to constant data is done via an offset from a base address
20274 held in a register. This allows the location of constant data to be
20275 determined at run time without requiring the executable to be
20276 relocated, which is a benefit to embedded applications with tight
20277 memory constraints. Data that can be modified is not affected by this
20278 option.
20279
20280 Note, using this feature reserves a register, usually @code{r13}, for
20281 the constant data base address. This can result in slower and/or
20282 larger code, especially in complicated functions.
20283
20284 The actual register chosen to hold the constant data base address
20285 depends upon whether the @option{-msmall-data-limit} and/or the
20286 @option{-mint-register} command-line options are enabled. Starting
20287 with register @code{r13} and proceeding downwards, registers are
20288 allocated first to satisfy the requirements of @option{-mint-register},
20289 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
20290 is possible for the small data area register to be @code{r8} if both
20291 @option{-mint-register=4} and @option{-mpid} are specified on the
20292 command line.
20293
20294 By default this feature is not enabled. The default can be restored
20295 via the @option{-mno-pid} command-line option.
20296
20297 @item -mno-warn-multiple-fast-interrupts
20298 @itemx -mwarn-multiple-fast-interrupts
20299 @opindex mno-warn-multiple-fast-interrupts
20300 @opindex mwarn-multiple-fast-interrupts
20301 Prevents GCC from issuing a warning message if it finds more than one
20302 fast interrupt handler when it is compiling a file. The default is to
20303 issue a warning for each extra fast interrupt handler found, as the RX
20304 only supports one such interrupt.
20305
20306 @item -mallow-string-insns
20307 @itemx -mno-allow-string-insns
20308 @opindex mallow-string-insns
20309 @opindex mno-allow-string-insns
20310 Enables or disables the use of the string manipulation instructions
20311 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
20312 @code{SWHILE} and also the @code{RMPA} instruction. These
20313 instructions may prefetch data, which is not safe to do if accessing
20314 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
20315 for more information).
20316
20317 The default is to allow these instructions, but it is not possible for
20318 GCC to reliably detect all circumstances where a string instruction
20319 might be used to access an I/O register, so their use cannot be
20320 disabled automatically. Instead it is reliant upon the programmer to
20321 use the @option{-mno-allow-string-insns} option if their program
20322 accesses I/O space.
20323
20324 When the instructions are enabled GCC defines the C preprocessor
20325 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
20326 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
20327 @end table
20328
20329 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20330 has special significance to the RX port when used with the
20331 @code{interrupt} function attribute. This attribute indicates a
20332 function intended to process fast interrupts. GCC ensures
20333 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20334 and/or @code{r13} and only provided that the normal use of the
20335 corresponding registers have been restricted via the
20336 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20337 options.
20338
20339 @node S/390 and zSeries Options
20340 @subsection S/390 and zSeries Options
20341 @cindex S/390 and zSeries Options
20342
20343 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20344
20345 @table @gcctabopt
20346 @item -mhard-float
20347 @itemx -msoft-float
20348 @opindex mhard-float
20349 @opindex msoft-float
20350 Use (do not use) the hardware floating-point instructions and registers
20351 for floating-point operations. When @option{-msoft-float} is specified,
20352 functions in @file{libgcc.a} are used to perform floating-point
20353 operations. When @option{-mhard-float} is specified, the compiler
20354 generates IEEE floating-point instructions. This is the default.
20355
20356 @item -mhard-dfp
20357 @itemx -mno-hard-dfp
20358 @opindex mhard-dfp
20359 @opindex mno-hard-dfp
20360 Use (do not use) the hardware decimal-floating-point instructions for
20361 decimal-floating-point operations. When @option{-mno-hard-dfp} is
20362 specified, functions in @file{libgcc.a} are used to perform
20363 decimal-floating-point operations. When @option{-mhard-dfp} is
20364 specified, the compiler generates decimal-floating-point hardware
20365 instructions. This is the default for @option{-march=z9-ec} or higher.
20366
20367 @item -mlong-double-64
20368 @itemx -mlong-double-128
20369 @opindex mlong-double-64
20370 @opindex mlong-double-128
20371 These switches control the size of @code{long double} type. A size
20372 of 64 bits makes the @code{long double} type equivalent to the @code{double}
20373 type. This is the default.
20374
20375 @item -mbackchain
20376 @itemx -mno-backchain
20377 @opindex mbackchain
20378 @opindex mno-backchain
20379 Store (do not store) the address of the caller's frame as backchain pointer
20380 into the callee's stack frame.
20381 A backchain may be needed to allow debugging using tools that do not understand
20382 DWARF 2 call frame information.
20383 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20384 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20385 the backchain is placed into the topmost word of the 96/160 byte register
20386 save area.
20387
20388 In general, code compiled with @option{-mbackchain} is call-compatible with
20389 code compiled with @option{-mmo-backchain}; however, use of the backchain
20390 for debugging purposes usually requires that the whole binary is built with
20391 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
20392 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20393 to build a linux kernel use @option{-msoft-float}.
20394
20395 The default is to not maintain the backchain.
20396
20397 @item -mpacked-stack
20398 @itemx -mno-packed-stack
20399 @opindex mpacked-stack
20400 @opindex mno-packed-stack
20401 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
20402 specified, the compiler uses the all fields of the 96/160 byte register save
20403 area only for their default purpose; unused fields still take up stack space.
20404 When @option{-mpacked-stack} is specified, register save slots are densely
20405 packed at the top of the register save area; unused space is reused for other
20406 purposes, allowing for more efficient use of the available stack space.
20407 However, when @option{-mbackchain} is also in effect, the topmost word of
20408 the save area is always used to store the backchain, and the return address
20409 register is always saved two words below the backchain.
20410
20411 As long as the stack frame backchain is not used, code generated with
20412 @option{-mpacked-stack} is call-compatible with code generated with
20413 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
20414 S/390 or zSeries generated code that uses the stack frame backchain at run
20415 time, not just for debugging purposes. Such code is not call-compatible
20416 with code compiled with @option{-mpacked-stack}. Also, note that the
20417 combination of @option{-mbackchain},
20418 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20419 to build a linux kernel use @option{-msoft-float}.
20420
20421 The default is to not use the packed stack layout.
20422
20423 @item -msmall-exec
20424 @itemx -mno-small-exec
20425 @opindex msmall-exec
20426 @opindex mno-small-exec
20427 Generate (or do not generate) code using the @code{bras} instruction
20428 to do subroutine calls.
20429 This only works reliably if the total executable size does not
20430 exceed 64k. The default is to use the @code{basr} instruction instead,
20431 which does not have this limitation.
20432
20433 @item -m64
20434 @itemx -m31
20435 @opindex m64
20436 @opindex m31
20437 When @option{-m31} is specified, generate code compliant to the
20438 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
20439 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
20440 particular to generate 64-bit instructions. For the @samp{s390}
20441 targets, the default is @option{-m31}, while the @samp{s390x}
20442 targets default to @option{-m64}.
20443
20444 @item -mzarch
20445 @itemx -mesa
20446 @opindex mzarch
20447 @opindex mesa
20448 When @option{-mzarch} is specified, generate code using the
20449 instructions available on z/Architecture.
20450 When @option{-mesa} is specified, generate code using the
20451 instructions available on ESA/390. Note that @option{-mesa} is
20452 not possible with @option{-m64}.
20453 When generating code compliant to the GNU/Linux for S/390 ABI,
20454 the default is @option{-mesa}. When generating code compliant
20455 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
20456
20457 @item -mmvcle
20458 @itemx -mno-mvcle
20459 @opindex mmvcle
20460 @opindex mno-mvcle
20461 Generate (or do not generate) code using the @code{mvcle} instruction
20462 to perform block moves. When @option{-mno-mvcle} is specified,
20463 use a @code{mvc} loop instead. This is the default unless optimizing for
20464 size.
20465
20466 @item -mdebug
20467 @itemx -mno-debug
20468 @opindex mdebug
20469 @opindex mno-debug
20470 Print (or do not print) additional debug information when compiling.
20471 The default is to not print debug information.
20472
20473 @item -march=@var{cpu-type}
20474 @opindex march
20475 Generate code that runs on @var{cpu-type}, which is the name of a system
20476 representing a certain processor type. Possible values for
20477 @var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
20478 @samp{z9-109}, @samp{z9-ec}, @samp{z10}, @samp{z196}, @samp{zEC12},
20479 and @samp{z13}.
20480 When generating code using the instructions available on z/Architecture,
20481 the default is @option{-march=z900}. Otherwise, the default is
20482 @option{-march=g5}.
20483
20484 @item -mtune=@var{cpu-type}
20485 @opindex mtune
20486 Tune to @var{cpu-type} everything applicable about the generated code,
20487 except for the ABI and the set of available instructions.
20488 The list of @var{cpu-type} values is the same as for @option{-march}.
20489 The default is the value used for @option{-march}.
20490
20491 @item -mtpf-trace
20492 @itemx -mno-tpf-trace
20493 @opindex mtpf-trace
20494 @opindex mno-tpf-trace
20495 Generate code that adds (does not add) in TPF OS specific branches to trace
20496 routines in the operating system. This option is off by default, even
20497 when compiling for the TPF OS@.
20498
20499 @item -mfused-madd
20500 @itemx -mno-fused-madd
20501 @opindex mfused-madd
20502 @opindex mno-fused-madd
20503 Generate code that uses (does not use) the floating-point multiply and
20504 accumulate instructions. These instructions are generated by default if
20505 hardware floating point is used.
20506
20507 @item -mwarn-framesize=@var{framesize}
20508 @opindex mwarn-framesize
20509 Emit a warning if the current function exceeds the given frame size. Because
20510 this is a compile-time check it doesn't need to be a real problem when the program
20511 runs. It is intended to identify functions that most probably cause
20512 a stack overflow. It is useful to be used in an environment with limited stack
20513 size e.g.@: the linux kernel.
20514
20515 @item -mwarn-dynamicstack
20516 @opindex mwarn-dynamicstack
20517 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
20518 arrays. This is generally a bad idea with a limited stack size.
20519
20520 @item -mstack-guard=@var{stack-guard}
20521 @itemx -mstack-size=@var{stack-size}
20522 @opindex mstack-guard
20523 @opindex mstack-size
20524 If these options are provided the S/390 back end emits additional instructions in
20525 the function prologue that trigger a trap if the stack size is @var{stack-guard}
20526 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
20527 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
20528 the frame size of the compiled function is chosen.
20529 These options are intended to be used to help debugging stack overflow problems.
20530 The additionally emitted code causes only little overhead and hence can also be
20531 used in production-like systems without greater performance degradation. The given
20532 values have to be exact powers of 2 and @var{stack-size} has to be greater than
20533 @var{stack-guard} without exceeding 64k.
20534 In order to be efficient the extra code makes the assumption that the stack starts
20535 at an address aligned to the value given by @var{stack-size}.
20536 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
20537
20538 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
20539 @opindex mhotpatch
20540 If the hotpatch option is enabled, a ``hot-patching'' function
20541 prologue is generated for all functions in the compilation unit.
20542 The funtion label is prepended with the given number of two-byte
20543 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
20544 the label, 2 * @var{post-halfwords} bytes are appended, using the
20545 largest NOP like instructions the architecture allows (maximum
20546 1000000).
20547
20548 If both arguments are zero, hotpatching is disabled.
20549
20550 This option can be overridden for individual functions with the
20551 @code{hotpatch} attribute.
20552 @end table
20553
20554 @node Score Options
20555 @subsection Score Options
20556 @cindex Score Options
20557
20558 These options are defined for Score implementations:
20559
20560 @table @gcctabopt
20561 @item -meb
20562 @opindex meb
20563 Compile code for big-endian mode. This is the default.
20564
20565 @item -mel
20566 @opindex mel
20567 Compile code for little-endian mode.
20568
20569 @item -mnhwloop
20570 @opindex mnhwloop
20571 Disable generation of @code{bcnz} instructions.
20572
20573 @item -muls
20574 @opindex muls
20575 Enable generation of unaligned load and store instructions.
20576
20577 @item -mmac
20578 @opindex mmac
20579 Enable the use of multiply-accumulate instructions. Disabled by default.
20580
20581 @item -mscore5
20582 @opindex mscore5
20583 Specify the SCORE5 as the target architecture.
20584
20585 @item -mscore5u
20586 @opindex mscore5u
20587 Specify the SCORE5U of the target architecture.
20588
20589 @item -mscore7
20590 @opindex mscore7
20591 Specify the SCORE7 as the target architecture. This is the default.
20592
20593 @item -mscore7d
20594 @opindex mscore7d
20595 Specify the SCORE7D as the target architecture.
20596 @end table
20597
20598 @node SH Options
20599 @subsection SH Options
20600
20601 These @samp{-m} options are defined for the SH implementations:
20602
20603 @table @gcctabopt
20604 @item -m1
20605 @opindex m1
20606 Generate code for the SH1.
20607
20608 @item -m2
20609 @opindex m2
20610 Generate code for the SH2.
20611
20612 @item -m2e
20613 Generate code for the SH2e.
20614
20615 @item -m2a-nofpu
20616 @opindex m2a-nofpu
20617 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
20618 that the floating-point unit is not used.
20619
20620 @item -m2a-single-only
20621 @opindex m2a-single-only
20622 Generate code for the SH2a-FPU, in such a way that no double-precision
20623 floating-point operations are used.
20624
20625 @item -m2a-single
20626 @opindex m2a-single
20627 Generate code for the SH2a-FPU assuming the floating-point unit is in
20628 single-precision mode by default.
20629
20630 @item -m2a
20631 @opindex m2a
20632 Generate code for the SH2a-FPU assuming the floating-point unit is in
20633 double-precision mode by default.
20634
20635 @item -m3
20636 @opindex m3
20637 Generate code for the SH3.
20638
20639 @item -m3e
20640 @opindex m3e
20641 Generate code for the SH3e.
20642
20643 @item -m4-nofpu
20644 @opindex m4-nofpu
20645 Generate code for the SH4 without a floating-point unit.
20646
20647 @item -m4-single-only
20648 @opindex m4-single-only
20649 Generate code for the SH4 with a floating-point unit that only
20650 supports single-precision arithmetic.
20651
20652 @item -m4-single
20653 @opindex m4-single
20654 Generate code for the SH4 assuming the floating-point unit is in
20655 single-precision mode by default.
20656
20657 @item -m4
20658 @opindex m4
20659 Generate code for the SH4.
20660
20661 @item -m4-100
20662 @opindex m4-100
20663 Generate code for SH4-100.
20664
20665 @item -m4-100-nofpu
20666 @opindex m4-100-nofpu
20667 Generate code for SH4-100 in such a way that the
20668 floating-point unit is not used.
20669
20670 @item -m4-100-single
20671 @opindex m4-100-single
20672 Generate code for SH4-100 assuming the floating-point unit is in
20673 single-precision mode by default.
20674
20675 @item -m4-100-single-only
20676 @opindex m4-100-single-only
20677 Generate code for SH4-100 in such a way that no double-precision
20678 floating-point operations are used.
20679
20680 @item -m4-200
20681 @opindex m4-200
20682 Generate code for SH4-200.
20683
20684 @item -m4-200-nofpu
20685 @opindex m4-200-nofpu
20686 Generate code for SH4-200 without in such a way that the
20687 floating-point unit is not used.
20688
20689 @item -m4-200-single
20690 @opindex m4-200-single
20691 Generate code for SH4-200 assuming the floating-point unit is in
20692 single-precision mode by default.
20693
20694 @item -m4-200-single-only
20695 @opindex m4-200-single-only
20696 Generate code for SH4-200 in such a way that no double-precision
20697 floating-point operations are used.
20698
20699 @item -m4-300
20700 @opindex m4-300
20701 Generate code for SH4-300.
20702
20703 @item -m4-300-nofpu
20704 @opindex m4-300-nofpu
20705 Generate code for SH4-300 without in such a way that the
20706 floating-point unit is not used.
20707
20708 @item -m4-300-single
20709 @opindex m4-300-single
20710 Generate code for SH4-300 in such a way that no double-precision
20711 floating-point operations are used.
20712
20713 @item -m4-300-single-only
20714 @opindex m4-300-single-only
20715 Generate code for SH4-300 in such a way that no double-precision
20716 floating-point operations are used.
20717
20718 @item -m4-340
20719 @opindex m4-340
20720 Generate code for SH4-340 (no MMU, no FPU).
20721
20722 @item -m4-500
20723 @opindex m4-500
20724 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
20725 assembler.
20726
20727 @item -m4a-nofpu
20728 @opindex m4a-nofpu
20729 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
20730 floating-point unit is not used.
20731
20732 @item -m4a-single-only
20733 @opindex m4a-single-only
20734 Generate code for the SH4a, in such a way that no double-precision
20735 floating-point operations are used.
20736
20737 @item -m4a-single
20738 @opindex m4a-single
20739 Generate code for the SH4a assuming the floating-point unit is in
20740 single-precision mode by default.
20741
20742 @item -m4a
20743 @opindex m4a
20744 Generate code for the SH4a.
20745
20746 @item -m4al
20747 @opindex m4al
20748 Same as @option{-m4a-nofpu}, except that it implicitly passes
20749 @option{-dsp} to the assembler. GCC doesn't generate any DSP
20750 instructions at the moment.
20751
20752 @item -m5-32media
20753 @opindex m5-32media
20754 Generate 32-bit code for SHmedia.
20755
20756 @item -m5-32media-nofpu
20757 @opindex m5-32media-nofpu
20758 Generate 32-bit code for SHmedia in such a way that the
20759 floating-point unit is not used.
20760
20761 @item -m5-64media
20762 @opindex m5-64media
20763 Generate 64-bit code for SHmedia.
20764
20765 @item -m5-64media-nofpu
20766 @opindex m5-64media-nofpu
20767 Generate 64-bit code for SHmedia in such a way that the
20768 floating-point unit is not used.
20769
20770 @item -m5-compact
20771 @opindex m5-compact
20772 Generate code for SHcompact.
20773
20774 @item -m5-compact-nofpu
20775 @opindex m5-compact-nofpu
20776 Generate code for SHcompact in such a way that the
20777 floating-point unit is not used.
20778
20779 @item -mb
20780 @opindex mb
20781 Compile code for the processor in big-endian mode.
20782
20783 @item -ml
20784 @opindex ml
20785 Compile code for the processor in little-endian mode.
20786
20787 @item -mdalign
20788 @opindex mdalign
20789 Align doubles at 64-bit boundaries. Note that this changes the calling
20790 conventions, and thus some functions from the standard C library do
20791 not work unless you recompile it first with @option{-mdalign}.
20792
20793 @item -mrelax
20794 @opindex mrelax
20795 Shorten some address references at link time, when possible; uses the
20796 linker option @option{-relax}.
20797
20798 @item -mbigtable
20799 @opindex mbigtable
20800 Use 32-bit offsets in @code{switch} tables. The default is to use
20801 16-bit offsets.
20802
20803 @item -mbitops
20804 @opindex mbitops
20805 Enable the use of bit manipulation instructions on SH2A.
20806
20807 @item -mfmovd
20808 @opindex mfmovd
20809 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
20810 alignment constraints.
20811
20812 @item -mrenesas
20813 @opindex mrenesas
20814 Comply with the calling conventions defined by Renesas.
20815
20816 @item -mno-renesas
20817 @opindex mno-renesas
20818 Comply with the calling conventions defined for GCC before the Renesas
20819 conventions were available. This option is the default for all
20820 targets of the SH toolchain.
20821
20822 @item -mnomacsave
20823 @opindex mnomacsave
20824 Mark the @code{MAC} register as call-clobbered, even if
20825 @option{-mrenesas} is given.
20826
20827 @item -mieee
20828 @itemx -mno-ieee
20829 @opindex mieee
20830 @opindex mno-ieee
20831 Control the IEEE compliance of floating-point comparisons, which affects the
20832 handling of cases where the result of a comparison is unordered. By default
20833 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
20834 enabled @option{-mno-ieee} is implicitly set, which results in faster
20835 floating-point greater-equal and less-equal comparisons. The implcit settings
20836 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
20837
20838 @item -minline-ic_invalidate
20839 @opindex minline-ic_invalidate
20840 Inline code to invalidate instruction cache entries after setting up
20841 nested function trampolines.
20842 This option has no effect if @option{-musermode} is in effect and the selected
20843 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
20844 instruction.
20845 If the selected code generation option does not allow the use of the @code{icbi}
20846 instruction, and @option{-musermode} is not in effect, the inlined code
20847 manipulates the instruction cache address array directly with an associative
20848 write. This not only requires privileged mode at run time, but it also
20849 fails if the cache line had been mapped via the TLB and has become unmapped.
20850
20851 @item -misize
20852 @opindex misize
20853 Dump instruction size and location in the assembly code.
20854
20855 @item -mpadstruct
20856 @opindex mpadstruct
20857 This option is deprecated. It pads structures to multiple of 4 bytes,
20858 which is incompatible with the SH ABI@.
20859
20860 @item -matomic-model=@var{model}
20861 @opindex matomic-model=@var{model}
20862 Sets the model of atomic operations and additional parameters as a comma
20863 separated list. For details on the atomic built-in functions see
20864 @ref{__atomic Builtins}. The following models and parameters are supported:
20865
20866 @table @samp
20867
20868 @item none
20869 Disable compiler generated atomic sequences and emit library calls for atomic
20870 operations. This is the default if the target is not @code{sh*-*-linux*}.
20871
20872 @item soft-gusa
20873 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
20874 built-in functions. The generated atomic sequences require additional support
20875 from the interrupt/exception handling code of the system and are only suitable
20876 for SH3* and SH4* single-core systems. This option is enabled by default when
20877 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
20878 this option also partially utilizes the hardware atomic instructions
20879 @code{movli.l} and @code{movco.l} to create more efficient code, unless
20880 @samp{strict} is specified.
20881
20882 @item soft-tcb
20883 Generate software atomic sequences that use a variable in the thread control
20884 block. This is a variation of the gUSA sequences which can also be used on
20885 SH1* and SH2* targets. The generated atomic sequences require additional
20886 support from the interrupt/exception handling code of the system and are only
20887 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
20888 parameter has to be specified as well.
20889
20890 @item soft-imask
20891 Generate software atomic sequences that temporarily disable interrupts by
20892 setting @code{SR.IMASK = 1111}. This model works only when the program runs
20893 in privileged mode and is only suitable for single-core systems. Additional
20894 support from the interrupt/exception handling code of the system is not
20895 required. This model is enabled by default when the target is
20896 @code{sh*-*-linux*} and SH1* or SH2*.
20897
20898 @item hard-llcs
20899 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
20900 instructions only. This is only available on SH4A and is suitable for
20901 multi-core systems. Since the hardware instructions support only 32 bit atomic
20902 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
20903 Code compiled with this option is also compatible with other software
20904 atomic model interrupt/exception handling systems if executed on an SH4A
20905 system. Additional support from the interrupt/exception handling code of the
20906 system is not required for this model.
20907
20908 @item gbr-offset=
20909 This parameter specifies the offset in bytes of the variable in the thread
20910 control block structure that should be used by the generated atomic sequences
20911 when the @samp{soft-tcb} model has been selected. For other models this
20912 parameter is ignored. The specified value must be an integer multiple of four
20913 and in the range 0-1020.
20914
20915 @item strict
20916 This parameter prevents mixed usage of multiple atomic models, even if they
20917 are compatible, and makes the compiler generate atomic sequences of the
20918 specified model only.
20919
20920 @end table
20921
20922 @item -mtas
20923 @opindex mtas
20924 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
20925 Notice that depending on the particular hardware and software configuration
20926 this can degrade overall performance due to the operand cache line flushes
20927 that are implied by the @code{tas.b} instruction. On multi-core SH4A
20928 processors the @code{tas.b} instruction must be used with caution since it
20929 can result in data corruption for certain cache configurations.
20930
20931 @item -mprefergot
20932 @opindex mprefergot
20933 When generating position-independent code, emit function calls using
20934 the Global Offset Table instead of the Procedure Linkage Table.
20935
20936 @item -musermode
20937 @itemx -mno-usermode
20938 @opindex musermode
20939 @opindex mno-usermode
20940 Don't allow (allow) the compiler generating privileged mode code. Specifying
20941 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
20942 inlined code would not work in user mode. @option{-musermode} is the default
20943 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
20944 @option{-musermode} has no effect, since there is no user mode.
20945
20946 @item -multcost=@var{number}
20947 @opindex multcost=@var{number}
20948 Set the cost to assume for a multiply insn.
20949
20950 @item -mdiv=@var{strategy}
20951 @opindex mdiv=@var{strategy}
20952 Set the division strategy to be used for integer division operations.
20953 For SHmedia @var{strategy} can be one of:
20954
20955 @table @samp
20956
20957 @item fp
20958 Performs the operation in floating point. This has a very high latency,
20959 but needs only a few instructions, so it might be a good choice if
20960 your code has enough easily-exploitable ILP to allow the compiler to
20961 schedule the floating-point instructions together with other instructions.
20962 Division by zero causes a floating-point exception.
20963
20964 @item inv
20965 Uses integer operations to calculate the inverse of the divisor,
20966 and then multiplies the dividend with the inverse. This strategy allows
20967 CSE and hoisting of the inverse calculation. Division by zero calculates
20968 an unspecified result, but does not trap.
20969
20970 @item inv:minlat
20971 A variant of @samp{inv} where, if no CSE or hoisting opportunities
20972 have been found, or if the entire operation has been hoisted to the same
20973 place, the last stages of the inverse calculation are intertwined with the
20974 final multiply to reduce the overall latency, at the expense of using a few
20975 more instructions, and thus offering fewer scheduling opportunities with
20976 other code.
20977
20978 @item call
20979 Calls a library function that usually implements the @samp{inv:minlat}
20980 strategy.
20981 This gives high code density for @code{m5-*media-nofpu} compilations.
20982
20983 @item call2
20984 Uses a different entry point of the same library function, where it
20985 assumes that a pointer to a lookup table has already been set up, which
20986 exposes the pointer load to CSE and code hoisting optimizations.
20987
20988 @item inv:call
20989 @itemx inv:call2
20990 @itemx inv:fp
20991 Use the @samp{inv} algorithm for initial
20992 code generation, but if the code stays unoptimized, revert to the @samp{call},
20993 @samp{call2}, or @samp{fp} strategies, respectively. Note that the
20994 potentially-trapping side effect of division by zero is carried by a
20995 separate instruction, so it is possible that all the integer instructions
20996 are hoisted out, but the marker for the side effect stays where it is.
20997 A recombination to floating-point operations or a call is not possible
20998 in that case.
20999
21000 @item inv20u
21001 @itemx inv20l
21002 Variants of the @samp{inv:minlat} strategy. In the case
21003 that the inverse calculation is not separated from the multiply, they speed
21004 up division where the dividend fits into 20 bits (plus sign where applicable)
21005 by inserting a test to skip a number of operations in this case; this test
21006 slows down the case of larger dividends. @samp{inv20u} assumes the case of a such
21007 a small dividend to be unlikely, and @samp{inv20l} assumes it to be likely.
21008
21009 @end table
21010
21011 For targets other than SHmedia @var{strategy} can be one of:
21012
21013 @table @samp
21014
21015 @item call-div1
21016 Calls a library function that uses the single-step division instruction
21017 @code{div1} to perform the operation. Division by zero calculates an
21018 unspecified result and does not trap. This is the default except for SH4,
21019 SH2A and SHcompact.
21020
21021 @item call-fp
21022 Calls a library function that performs the operation in double precision
21023 floating point. Division by zero causes a floating-point exception. This is
21024 the default for SHcompact with FPU. Specifying this for targets that do not
21025 have a double precision FPU defaults to @code{call-div1}.
21026
21027 @item call-table
21028 Calls a library function that uses a lookup table for small divisors and
21029 the @code{div1} instruction with case distinction for larger divisors. Division
21030 by zero calculates an unspecified result and does not trap. This is the default
21031 for SH4. Specifying this for targets that do not have dynamic shift
21032 instructions defaults to @code{call-div1}.
21033
21034 @end table
21035
21036 When a division strategy has not been specified the default strategy is
21037 selected based on the current target. For SH2A the default strategy is to
21038 use the @code{divs} and @code{divu} instructions instead of library function
21039 calls.
21040
21041 @item -maccumulate-outgoing-args
21042 @opindex maccumulate-outgoing-args
21043 Reserve space once for outgoing arguments in the function prologue rather
21044 than around each call. Generally beneficial for performance and size. Also
21045 needed for unwinding to avoid changing the stack frame around conditional code.
21046
21047 @item -mdivsi3_libfunc=@var{name}
21048 @opindex mdivsi3_libfunc=@var{name}
21049 Set the name of the library function used for 32-bit signed division to
21050 @var{name}.
21051 This only affects the name used in the @samp{call} and @samp{inv:call}
21052 division strategies, and the compiler still expects the same
21053 sets of input/output/clobbered registers as if this option were not present.
21054
21055 @item -mfixed-range=@var{register-range}
21056 @opindex mfixed-range
21057 Generate code treating the given register range as fixed registers.
21058 A fixed register is one that the register allocator can not use. This is
21059 useful when compiling kernel code. A register range is specified as
21060 two registers separated by a dash. Multiple register ranges can be
21061 specified separated by a comma.
21062
21063 @item -mindexed-addressing
21064 @opindex mindexed-addressing
21065 Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
21066 This is only safe if the hardware and/or OS implement 32-bit wrap-around
21067 semantics for the indexed addressing mode. The architecture allows the
21068 implementation of processors with 64-bit MMU, which the OS could use to
21069 get 32-bit addressing, but since no current hardware implementation supports
21070 this or any other way to make the indexed addressing mode safe to use in
21071 the 32-bit ABI, the default is @option{-mno-indexed-addressing}.
21072
21073 @item -mgettrcost=@var{number}
21074 @opindex mgettrcost=@var{number}
21075 Set the cost assumed for the @code{gettr} instruction to @var{number}.
21076 The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise.
21077
21078 @item -mpt-fixed
21079 @opindex mpt-fixed
21080 Assume @code{pt*} instructions won't trap. This generally generates
21081 better-scheduled code, but is unsafe on current hardware.
21082 The current architecture
21083 definition says that @code{ptabs} and @code{ptrel} trap when the target
21084 anded with 3 is 3.
21085 This has the unintentional effect of making it unsafe to schedule these
21086 instructions before a branch, or hoist them out of a loop. For example,
21087 @code{__do_global_ctors}, a part of @file{libgcc}
21088 that runs constructors at program
21089 startup, calls functions in a list which is delimited by @minus{}1. With the
21090 @option{-mpt-fixed} option, the @code{ptabs} is done before testing against @minus{}1.
21091 That means that all the constructors run a bit more quickly, but when
21092 the loop comes to the end of the list, the program crashes because @code{ptabs}
21093 loads @minus{}1 into a target register.
21094
21095 Since this option is unsafe for any
21096 hardware implementing the current architecture specification, the default
21097 is @option{-mno-pt-fixed}. Unless specified explicitly with
21098 @option{-mgettrcost}, @option{-mno-pt-fixed} also implies @option{-mgettrcost=100};
21099 this deters register allocation from using target registers for storing
21100 ordinary integers.
21101
21102 @item -minvalid-symbols
21103 @opindex minvalid-symbols
21104 Assume symbols might be invalid. Ordinary function symbols generated by
21105 the compiler are always valid to load with
21106 @code{movi}/@code{shori}/@code{ptabs} or
21107 @code{movi}/@code{shori}/@code{ptrel},
21108 but with assembler and/or linker tricks it is possible
21109 to generate symbols that cause @code{ptabs} or @code{ptrel} to trap.
21110 This option is only meaningful when @option{-mno-pt-fixed} is in effect.
21111 It prevents cross-basic-block CSE, hoisting and most scheduling
21112 of symbol loads. The default is @option{-mno-invalid-symbols}.
21113
21114 @item -mbranch-cost=@var{num}
21115 @opindex mbranch-cost=@var{num}
21116 Assume @var{num} to be the cost for a branch instruction. Higher numbers
21117 make the compiler try to generate more branch-free code if possible.
21118 If not specified the value is selected depending on the processor type that
21119 is being compiled for.
21120
21121 @item -mzdcbranch
21122 @itemx -mno-zdcbranch
21123 @opindex mzdcbranch
21124 @opindex mno-zdcbranch
21125 Assume (do not assume) that zero displacement conditional branch instructions
21126 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
21127 compiler prefers zero displacement branch code sequences. This is
21128 enabled by default when generating code for SH4 and SH4A. It can be explicitly
21129 disabled by specifying @option{-mno-zdcbranch}.
21130
21131 @item -mcbranch-force-delay-slot
21132 @opindex mcbranch-force-delay-slot
21133 Force the usage of delay slots for conditional branches, which stuffs the delay
21134 slot with a @code{nop} if a suitable instruction can't be found. By default
21135 this option is disabled. It can be enabled to work around hardware bugs as
21136 found in the original SH7055.
21137
21138 @item -mfused-madd
21139 @itemx -mno-fused-madd
21140 @opindex mfused-madd
21141 @opindex mno-fused-madd
21142 Generate code that uses (does not use) the floating-point multiply and
21143 accumulate instructions. These instructions are generated by default
21144 if hardware floating point is used. The machine-dependent
21145 @option{-mfused-madd} option is now mapped to the machine-independent
21146 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
21147 mapped to @option{-ffp-contract=off}.
21148
21149 @item -mfsca
21150 @itemx -mno-fsca
21151 @opindex mfsca
21152 @opindex mno-fsca
21153 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
21154 and cosine approximations. The option @option{-mfsca} must be used in
21155 combination with @option{-funsafe-math-optimizations}. It is enabled by default
21156 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
21157 approximations even if @option{-funsafe-math-optimizations} is in effect.
21158
21159 @item -mfsrra
21160 @itemx -mno-fsrra
21161 @opindex mfsrra
21162 @opindex mno-fsrra
21163 Allow or disallow the compiler to emit the @code{fsrra} instruction for
21164 reciprocal square root approximations. The option @option{-mfsrra} must be used
21165 in combination with @option{-funsafe-math-optimizations} and
21166 @option{-ffinite-math-only}. It is enabled by default when generating code for
21167 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
21168 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
21169 in effect.
21170
21171 @item -mpretend-cmove
21172 @opindex mpretend-cmove
21173 Prefer zero-displacement conditional branches for conditional move instruction
21174 patterns. This can result in faster code on the SH4 processor.
21175
21176 @end table
21177
21178 @node Solaris 2 Options
21179 @subsection Solaris 2 Options
21180 @cindex Solaris 2 options
21181
21182 These @samp{-m} options are supported on Solaris 2:
21183
21184 @table @gcctabopt
21185 @item -mclear-hwcap
21186 @opindex mclear-hwcap
21187 @option{-mclear-hwcap} tells the compiler to remove the hardware
21188 capabilities generated by the Solaris assembler. This is only necessary
21189 when object files use ISA extensions not supported by the current
21190 machine, but check at runtime whether or not to use them.
21191
21192 @item -mimpure-text
21193 @opindex mimpure-text
21194 @option{-mimpure-text}, used in addition to @option{-shared}, tells
21195 the compiler to not pass @option{-z text} to the linker when linking a
21196 shared object. Using this option, you can link position-dependent
21197 code into a shared object.
21198
21199 @option{-mimpure-text} suppresses the ``relocations remain against
21200 allocatable but non-writable sections'' linker error message.
21201 However, the necessary relocations trigger copy-on-write, and the
21202 shared object is not actually shared across processes. Instead of
21203 using @option{-mimpure-text}, you should compile all source code with
21204 @option{-fpic} or @option{-fPIC}.
21205
21206 @end table
21207
21208 These switches are supported in addition to the above on Solaris 2:
21209
21210 @table @gcctabopt
21211 @item -pthreads
21212 @opindex pthreads
21213 Add support for multithreading using the POSIX threads library. This
21214 option sets flags for both the preprocessor and linker. This option does
21215 not affect the thread safety of object code produced by the compiler or
21216 that of libraries supplied with it.
21217
21218 @item -pthread
21219 @opindex pthread
21220 This is a synonym for @option{-pthreads}.
21221 @end table
21222
21223 @node SPARC Options
21224 @subsection SPARC Options
21225 @cindex SPARC options
21226
21227 These @samp{-m} options are supported on the SPARC:
21228
21229 @table @gcctabopt
21230 @item -mno-app-regs
21231 @itemx -mapp-regs
21232 @opindex mno-app-regs
21233 @opindex mapp-regs
21234 Specify @option{-mapp-regs} to generate output using the global registers
21235 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
21236 global register 1, each global register 2 through 4 is then treated as an
21237 allocable register that is clobbered by function calls. This is the default.
21238
21239 To be fully SVR4 ABI-compliant at the cost of some performance loss,
21240 specify @option{-mno-app-regs}. You should compile libraries and system
21241 software with this option.
21242
21243 @item -mflat
21244 @itemx -mno-flat
21245 @opindex mflat
21246 @opindex mno-flat
21247 With @option{-mflat}, the compiler does not generate save/restore instructions
21248 and uses a ``flat'' or single register window model. This model is compatible
21249 with the regular register window model. The local registers and the input
21250 registers (0--5) are still treated as ``call-saved'' registers and are
21251 saved on the stack as needed.
21252
21253 With @option{-mno-flat} (the default), the compiler generates save/restore
21254 instructions (except for leaf functions). This is the normal operating mode.
21255
21256 @item -mfpu
21257 @itemx -mhard-float
21258 @opindex mfpu
21259 @opindex mhard-float
21260 Generate output containing floating-point instructions. This is the
21261 default.
21262
21263 @item -mno-fpu
21264 @itemx -msoft-float
21265 @opindex mno-fpu
21266 @opindex msoft-float
21267 Generate output containing library calls for floating point.
21268 @strong{Warning:} the requisite libraries are not available for all SPARC
21269 targets. Normally the facilities of the machine's usual C compiler are
21270 used, but this cannot be done directly in cross-compilation. You must make
21271 your own arrangements to provide suitable library functions for
21272 cross-compilation. The embedded targets @samp{sparc-*-aout} and
21273 @samp{sparclite-*-*} do provide software floating-point support.
21274
21275 @option{-msoft-float} changes the calling convention in the output file;
21276 therefore, it is only useful if you compile @emph{all} of a program with
21277 this option. In particular, you need to compile @file{libgcc.a}, the
21278 library that comes with GCC, with @option{-msoft-float} in order for
21279 this to work.
21280
21281 @item -mhard-quad-float
21282 @opindex mhard-quad-float
21283 Generate output containing quad-word (long double) floating-point
21284 instructions.
21285
21286 @item -msoft-quad-float
21287 @opindex msoft-quad-float
21288 Generate output containing library calls for quad-word (long double)
21289 floating-point instructions. The functions called are those specified
21290 in the SPARC ABI@. This is the default.
21291
21292 As of this writing, there are no SPARC implementations that have hardware
21293 support for the quad-word floating-point instructions. They all invoke
21294 a trap handler for one of these instructions, and then the trap handler
21295 emulates the effect of the instruction. Because of the trap handler overhead,
21296 this is much slower than calling the ABI library routines. Thus the
21297 @option{-msoft-quad-float} option is the default.
21298
21299 @item -mno-unaligned-doubles
21300 @itemx -munaligned-doubles
21301 @opindex mno-unaligned-doubles
21302 @opindex munaligned-doubles
21303 Assume that doubles have 8-byte alignment. This is the default.
21304
21305 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21306 alignment only if they are contained in another type, or if they have an
21307 absolute address. Otherwise, it assumes they have 4-byte alignment.
21308 Specifying this option avoids some rare compatibility problems with code
21309 generated by other compilers. It is not the default because it results
21310 in a performance loss, especially for floating-point code.
21311
21312 @item -muser-mode
21313 @itemx -mno-user-mode
21314 @opindex muser-mode
21315 @opindex mno-user-mode
21316 Do not generate code that can only run in supervisor mode. This is relevant
21317 only for the @code{casa} instruction emitted for the LEON3 processor. The
21318 default is @option{-mno-user-mode}.
21319
21320 @item -mno-faster-structs
21321 @itemx -mfaster-structs
21322 @opindex mno-faster-structs
21323 @opindex mfaster-structs
21324 With @option{-mfaster-structs}, the compiler assumes that structures
21325 should have 8-byte alignment. This enables the use of pairs of
21326 @code{ldd} and @code{std} instructions for copies in structure
21327 assignment, in place of twice as many @code{ld} and @code{st} pairs.
21328 However, the use of this changed alignment directly violates the SPARC
21329 ABI@. Thus, it's intended only for use on targets where the developer
21330 acknowledges that their resulting code is not directly in line with
21331 the rules of the ABI@.
21332
21333 @item -mcpu=@var{cpu_type}
21334 @opindex mcpu
21335 Set the instruction set, register set, and instruction scheduling parameters
21336 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
21337 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21338 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21339 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21340 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21341 @samp{niagara3} and @samp{niagara4}.
21342
21343 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21344 which selects the best architecture option for the host processor.
21345 @option{-mcpu=native} has no effect if GCC does not recognize
21346 the processor.
21347
21348 Default instruction scheduling parameters are used for values that select
21349 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
21350 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
21351
21352 Here is a list of each supported architecture and their supported
21353 implementations.
21354
21355 @table @asis
21356 @item v7
21357 cypress, leon3v7
21358
21359 @item v8
21360 supersparc, hypersparc, leon, leon3
21361
21362 @item sparclite
21363 f930, f934, sparclite86x
21364
21365 @item sparclet
21366 tsc701
21367
21368 @item v9
21369 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21370 @end table
21371
21372 By default (unless configured otherwise), GCC generates code for the V7
21373 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
21374 additionally optimizes it for the Cypress CY7C602 chip, as used in the
21375 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
21376 SPARCStation 1, 2, IPX etc.
21377
21378 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21379 architecture. The only difference from V7 code is that the compiler emits
21380 the integer multiply and integer divide instructions which exist in SPARC-V8
21381 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
21382 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
21383 2000 series.
21384
21385 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21386 the SPARC architecture. This adds the integer multiply, integer divide step
21387 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21388 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21389 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
21390 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21391 MB86934 chip, which is the more recent SPARClite with FPU@.
21392
21393 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21394 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
21395 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21396 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
21397 optimizes it for the TEMIC SPARClet chip.
21398
21399 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21400 architecture. This adds 64-bit integer and floating-point move instructions,
21401 3 additional floating-point condition code registers and conditional move
21402 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
21403 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
21404 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21405 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
21406 @option{-mcpu=niagara}, the compiler additionally optimizes it for
21407 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
21408 additionally optimizes it for Sun UltraSPARC T2 chips. With
21409 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21410 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
21411 additionally optimizes it for Sun UltraSPARC T4 chips.
21412
21413 @item -mtune=@var{cpu_type}
21414 @opindex mtune
21415 Set the instruction scheduling parameters for machine type
21416 @var{cpu_type}, but do not set the instruction set or register set that the
21417 option @option{-mcpu=@var{cpu_type}} does.
21418
21419 The same values for @option{-mcpu=@var{cpu_type}} can be used for
21420 @option{-mtune=@var{cpu_type}}, but the only useful values are those
21421 that select a particular CPU implementation. Those are @samp{cypress},
21422 @samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21423 @samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21424 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21425 @samp{niagara3} and @samp{niagara4}. With native Solaris and GNU/Linux
21426 toolchains, @samp{native} can also be used.
21427
21428 @item -mv8plus
21429 @itemx -mno-v8plus
21430 @opindex mv8plus
21431 @opindex mno-v8plus
21432 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
21433 difference from the V8 ABI is that the global and out registers are
21434 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
21435 mode for all SPARC-V9 processors.
21436
21437 @item -mvis
21438 @itemx -mno-vis
21439 @opindex mvis
21440 @opindex mno-vis
21441 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21442 Visual Instruction Set extensions. The default is @option{-mno-vis}.
21443
21444 @item -mvis2
21445 @itemx -mno-vis2
21446 @opindex mvis2
21447 @opindex mno-vis2
21448 With @option{-mvis2}, GCC generates code that takes advantage of
21449 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
21450 default is @option{-mvis2} when targeting a cpu that supports such
21451 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
21452 also sets @option{-mvis}.
21453
21454 @item -mvis3
21455 @itemx -mno-vis3
21456 @opindex mvis3
21457 @opindex mno-vis3
21458 With @option{-mvis3}, GCC generates code that takes advantage of
21459 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
21460 default is @option{-mvis3} when targeting a cpu that supports such
21461 instructions, such as niagara-3 and later. Setting @option{-mvis3}
21462 also sets @option{-mvis2} and @option{-mvis}.
21463
21464 @item -mcbcond
21465 @itemx -mno-cbcond
21466 @opindex mcbcond
21467 @opindex mno-cbcond
21468 With @option{-mcbcond}, GCC generates code that takes advantage of
21469 compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21470 The default is @option{-mcbcond} when targeting a cpu that supports such
21471 instructions, such as niagara-4 and later.
21472
21473 @item -mpopc
21474 @itemx -mno-popc
21475 @opindex mpopc
21476 @opindex mno-popc
21477 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21478 population count instruction. The default is @option{-mpopc}
21479 when targeting a cpu that supports such instructions, such as Niagara-2 and
21480 later.
21481
21482 @item -mfmaf
21483 @itemx -mno-fmaf
21484 @opindex mfmaf
21485 @opindex mno-fmaf
21486 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21487 Fused Multiply-Add Floating-point extensions. The default is @option{-mfmaf}
21488 when targeting a cpu that supports such instructions, such as Niagara-3 and
21489 later.
21490
21491 @item -mfix-at697f
21492 @opindex mfix-at697f
21493 Enable the documented workaround for the single erratum of the Atmel AT697F
21494 processor (which corresponds to erratum #13 of the AT697E processor).
21495
21496 @item -mfix-ut699
21497 @opindex mfix-ut699
21498 Enable the documented workarounds for the floating-point errata and the data
21499 cache nullify errata of the UT699 processor.
21500 @end table
21501
21502 These @samp{-m} options are supported in addition to the above
21503 on SPARC-V9 processors in 64-bit environments:
21504
21505 @table @gcctabopt
21506 @item -m32
21507 @itemx -m64
21508 @opindex m32
21509 @opindex m64
21510 Generate code for a 32-bit or 64-bit environment.
21511 The 32-bit environment sets int, long and pointer to 32 bits.
21512 The 64-bit environment sets int to 32 bits and long and pointer
21513 to 64 bits.
21514
21515 @item -mcmodel=@var{which}
21516 @opindex mcmodel
21517 Set the code model to one of
21518
21519 @table @samp
21520 @item medlow
21521 The Medium/Low code model: 64-bit addresses, programs
21522 must be linked in the low 32 bits of memory. Programs can be statically
21523 or dynamically linked.
21524
21525 @item medmid
21526 The Medium/Middle code model: 64-bit addresses, programs
21527 must be linked in the low 44 bits of memory, the text and data segments must
21528 be less than 2GB in size and the data segment must be located within 2GB of
21529 the text segment.
21530
21531 @item medany
21532 The Medium/Anywhere code model: 64-bit addresses, programs
21533 may be linked anywhere in memory, the text and data segments must be less
21534 than 2GB in size and the data segment must be located within 2GB of the
21535 text segment.
21536
21537 @item embmedany
21538 The Medium/Anywhere code model for embedded systems:
21539 64-bit addresses, the text and data segments must be less than 2GB in
21540 size, both starting anywhere in memory (determined at link time). The
21541 global register %g4 points to the base of the data segment. Programs
21542 are statically linked and PIC is not supported.
21543 @end table
21544
21545 @item -mmemory-model=@var{mem-model}
21546 @opindex mmemory-model
21547 Set the memory model in force on the processor to one of
21548
21549 @table @samp
21550 @item default
21551 The default memory model for the processor and operating system.
21552
21553 @item rmo
21554 Relaxed Memory Order
21555
21556 @item pso
21557 Partial Store Order
21558
21559 @item tso
21560 Total Store Order
21561
21562 @item sc
21563 Sequential Consistency
21564 @end table
21565
21566 These memory models are formally defined in Appendix D of the Sparc V9
21567 architecture manual, as set in the processor's @code{PSTATE.MM} field.
21568
21569 @item -mstack-bias
21570 @itemx -mno-stack-bias
21571 @opindex mstack-bias
21572 @opindex mno-stack-bias
21573 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
21574 frame pointer if present, are offset by @minus{}2047 which must be added back
21575 when making stack frame references. This is the default in 64-bit mode.
21576 Otherwise, assume no such offset is present.
21577 @end table
21578
21579 @node SPU Options
21580 @subsection SPU Options
21581 @cindex SPU options
21582
21583 These @samp{-m} options are supported on the SPU:
21584
21585 @table @gcctabopt
21586 @item -mwarn-reloc
21587 @itemx -merror-reloc
21588 @opindex mwarn-reloc
21589 @opindex merror-reloc
21590
21591 The loader for SPU does not handle dynamic relocations. By default, GCC
21592 gives an error when it generates code that requires a dynamic
21593 relocation. @option{-mno-error-reloc} disables the error,
21594 @option{-mwarn-reloc} generates a warning instead.
21595
21596 @item -msafe-dma
21597 @itemx -munsafe-dma
21598 @opindex msafe-dma
21599 @opindex munsafe-dma
21600
21601 Instructions that initiate or test completion of DMA must not be
21602 reordered with respect to loads and stores of the memory that is being
21603 accessed.
21604 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
21605 memory accesses, but that can lead to inefficient code in places where the
21606 memory is known to not change. Rather than mark the memory as volatile,
21607 you can use @option{-msafe-dma} to tell the compiler to treat
21608 the DMA instructions as potentially affecting all memory.
21609
21610 @item -mbranch-hints
21611 @opindex mbranch-hints
21612
21613 By default, GCC generates a branch hint instruction to avoid
21614 pipeline stalls for always-taken or probably-taken branches. A hint
21615 is not generated closer than 8 instructions away from its branch.
21616 There is little reason to disable them, except for debugging purposes,
21617 or to make an object a little bit smaller.
21618
21619 @item -msmall-mem
21620 @itemx -mlarge-mem
21621 @opindex msmall-mem
21622 @opindex mlarge-mem
21623
21624 By default, GCC generates code assuming that addresses are never larger
21625 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
21626 a full 32-bit address.
21627
21628 @item -mstdmain
21629 @opindex mstdmain
21630
21631 By default, GCC links against startup code that assumes the SPU-style
21632 main function interface (which has an unconventional parameter list).
21633 With @option{-mstdmain}, GCC links your program against startup
21634 code that assumes a C99-style interface to @code{main}, including a
21635 local copy of @code{argv} strings.
21636
21637 @item -mfixed-range=@var{register-range}
21638 @opindex mfixed-range
21639 Generate code treating the given register range as fixed registers.
21640 A fixed register is one that the register allocator cannot use. This is
21641 useful when compiling kernel code. A register range is specified as
21642 two registers separated by a dash. Multiple register ranges can be
21643 specified separated by a comma.
21644
21645 @item -mea32
21646 @itemx -mea64
21647 @opindex mea32
21648 @opindex mea64
21649 Compile code assuming that pointers to the PPU address space accessed
21650 via the @code{__ea} named address space qualifier are either 32 or 64
21651 bits wide. The default is 32 bits. As this is an ABI-changing option,
21652 all object code in an executable must be compiled with the same setting.
21653
21654 @item -maddress-space-conversion
21655 @itemx -mno-address-space-conversion
21656 @opindex maddress-space-conversion
21657 @opindex mno-address-space-conversion
21658 Allow/disallow treating the @code{__ea} address space as superset
21659 of the generic address space. This enables explicit type casts
21660 between @code{__ea} and generic pointer as well as implicit
21661 conversions of generic pointers to @code{__ea} pointers. The
21662 default is to allow address space pointer conversions.
21663
21664 @item -mcache-size=@var{cache-size}
21665 @opindex mcache-size
21666 This option controls the version of libgcc that the compiler links to an
21667 executable and selects a software-managed cache for accessing variables
21668 in the @code{__ea} address space with a particular cache size. Possible
21669 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
21670 and @samp{128}. The default cache size is 64KB.
21671
21672 @item -matomic-updates
21673 @itemx -mno-atomic-updates
21674 @opindex matomic-updates
21675 @opindex mno-atomic-updates
21676 This option controls the version of libgcc that the compiler links to an
21677 executable and selects whether atomic updates to the software-managed
21678 cache of PPU-side variables are used. If you use atomic updates, changes
21679 to a PPU variable from SPU code using the @code{__ea} named address space
21680 qualifier do not interfere with changes to other PPU variables residing
21681 in the same cache line from PPU code. If you do not use atomic updates,
21682 such interference may occur; however, writing back cache lines is
21683 more efficient. The default behavior is to use atomic updates.
21684
21685 @item -mdual-nops
21686 @itemx -mdual-nops=@var{n}
21687 @opindex mdual-nops
21688 By default, GCC inserts nops to increase dual issue when it expects
21689 it to increase performance. @var{n} can be a value from 0 to 10. A
21690 smaller @var{n} inserts fewer nops. 10 is the default, 0 is the
21691 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
21692
21693 @item -mhint-max-nops=@var{n}
21694 @opindex mhint-max-nops
21695 Maximum number of nops to insert for a branch hint. A branch hint must
21696 be at least 8 instructions away from the branch it is affecting. GCC
21697 inserts up to @var{n} nops to enforce this, otherwise it does not
21698 generate the branch hint.
21699
21700 @item -mhint-max-distance=@var{n}
21701 @opindex mhint-max-distance
21702 The encoding of the branch hint instruction limits the hint to be within
21703 256 instructions of the branch it is affecting. By default, GCC makes
21704 sure it is within 125.
21705
21706 @item -msafe-hints
21707 @opindex msafe-hints
21708 Work around a hardware bug that causes the SPU to stall indefinitely.
21709 By default, GCC inserts the @code{hbrp} instruction to make sure
21710 this stall won't happen.
21711
21712 @end table
21713
21714 @node System V Options
21715 @subsection Options for System V
21716
21717 These additional options are available on System V Release 4 for
21718 compatibility with other compilers on those systems:
21719
21720 @table @gcctabopt
21721 @item -G
21722 @opindex G
21723 Create a shared object.
21724 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
21725
21726 @item -Qy
21727 @opindex Qy
21728 Identify the versions of each tool used by the compiler, in a
21729 @code{.ident} assembler directive in the output.
21730
21731 @item -Qn
21732 @opindex Qn
21733 Refrain from adding @code{.ident} directives to the output file (this is
21734 the default).
21735
21736 @item -YP,@var{dirs}
21737 @opindex YP
21738 Search the directories @var{dirs}, and no others, for libraries
21739 specified with @option{-l}.
21740
21741 @item -Ym,@var{dir}
21742 @opindex Ym
21743 Look in the directory @var{dir} to find the M4 preprocessor.
21744 The assembler uses this option.
21745 @c This is supposed to go with a -Yd for predefined M4 macro files, but
21746 @c the generic assembler that comes with Solaris takes just -Ym.
21747 @end table
21748
21749 @node TILE-Gx Options
21750 @subsection TILE-Gx Options
21751 @cindex TILE-Gx options
21752
21753 These @samp{-m} options are supported on the TILE-Gx:
21754
21755 @table @gcctabopt
21756 @item -mcmodel=small
21757 @opindex mcmodel=small
21758 Generate code for the small model. The distance for direct calls is
21759 limited to 500M in either direction. PC-relative addresses are 32
21760 bits. Absolute addresses support the full address range.
21761
21762 @item -mcmodel=large
21763 @opindex mcmodel=large
21764 Generate code for the large model. There is no limitation on call
21765 distance, pc-relative addresses, or absolute addresses.
21766
21767 @item -mcpu=@var{name}
21768 @opindex mcpu
21769 Selects the type of CPU to be targeted. Currently the only supported
21770 type is @samp{tilegx}.
21771
21772 @item -m32
21773 @itemx -m64
21774 @opindex m32
21775 @opindex m64
21776 Generate code for a 32-bit or 64-bit environment. The 32-bit
21777 environment sets int, long, and pointer to 32 bits. The 64-bit
21778 environment sets int to 32 bits and long and pointer to 64 bits.
21779
21780 @item -mbig-endian
21781 @itemx -mlittle-endian
21782 @opindex mbig-endian
21783 @opindex mlittle-endian
21784 Generate code in big/little endian mode, respectively.
21785 @end table
21786
21787 @node TILEPro Options
21788 @subsection TILEPro Options
21789 @cindex TILEPro options
21790
21791 These @samp{-m} options are supported on the TILEPro:
21792
21793 @table @gcctabopt
21794 @item -mcpu=@var{name}
21795 @opindex mcpu
21796 Selects the type of CPU to be targeted. Currently the only supported
21797 type is @samp{tilepro}.
21798
21799 @item -m32
21800 @opindex m32
21801 Generate code for a 32-bit environment, which sets int, long, and
21802 pointer to 32 bits. This is the only supported behavior so the flag
21803 is essentially ignored.
21804 @end table
21805
21806 @node V850 Options
21807 @subsection V850 Options
21808 @cindex V850 Options
21809
21810 These @samp{-m} options are defined for V850 implementations:
21811
21812 @table @gcctabopt
21813 @item -mlong-calls
21814 @itemx -mno-long-calls
21815 @opindex mlong-calls
21816 @opindex mno-long-calls
21817 Treat all calls as being far away (near). If calls are assumed to be
21818 far away, the compiler always loads the function's address into a
21819 register, and calls indirect through the pointer.
21820
21821 @item -mno-ep
21822 @itemx -mep
21823 @opindex mno-ep
21824 @opindex mep
21825 Do not optimize (do optimize) basic blocks that use the same index
21826 pointer 4 or more times to copy pointer into the @code{ep} register, and
21827 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
21828 option is on by default if you optimize.
21829
21830 @item -mno-prolog-function
21831 @itemx -mprolog-function
21832 @opindex mno-prolog-function
21833 @opindex mprolog-function
21834 Do not use (do use) external functions to save and restore registers
21835 at the prologue and epilogue of a function. The external functions
21836 are slower, but use less code space if more than one function saves
21837 the same number of registers. The @option{-mprolog-function} option
21838 is on by default if you optimize.
21839
21840 @item -mspace
21841 @opindex mspace
21842 Try to make the code as small as possible. At present, this just turns
21843 on the @option{-mep} and @option{-mprolog-function} options.
21844
21845 @item -mtda=@var{n}
21846 @opindex mtda
21847 Put static or global variables whose size is @var{n} bytes or less into
21848 the tiny data area that register @code{ep} points to. The tiny data
21849 area can hold up to 256 bytes in total (128 bytes for byte references).
21850
21851 @item -msda=@var{n}
21852 @opindex msda
21853 Put static or global variables whose size is @var{n} bytes or less into
21854 the small data area that register @code{gp} points to. The small data
21855 area can hold up to 64 kilobytes.
21856
21857 @item -mzda=@var{n}
21858 @opindex mzda
21859 Put static or global variables whose size is @var{n} bytes or less into
21860 the first 32 kilobytes of memory.
21861
21862 @item -mv850
21863 @opindex mv850
21864 Specify that the target processor is the V850.
21865
21866 @item -mv850e3v5
21867 @opindex mv850e3v5
21868 Specify that the target processor is the V850E3V5. The preprocessor
21869 constant @code{__v850e3v5__} is defined if this option is used.
21870
21871 @item -mv850e2v4
21872 @opindex mv850e2v4
21873 Specify that the target processor is the V850E3V5. This is an alias for
21874 the @option{-mv850e3v5} option.
21875
21876 @item -mv850e2v3
21877 @opindex mv850e2v3
21878 Specify that the target processor is the V850E2V3. The preprocessor
21879 constant @code{__v850e2v3__} is defined if this option is used.
21880
21881 @item -mv850e2
21882 @opindex mv850e2
21883 Specify that the target processor is the V850E2. The preprocessor
21884 constant @code{__v850e2__} is defined if this option is used.
21885
21886 @item -mv850e1
21887 @opindex mv850e1
21888 Specify that the target processor is the V850E1. The preprocessor
21889 constants @code{__v850e1__} and @code{__v850e__} are defined if
21890 this option is used.
21891
21892 @item -mv850es
21893 @opindex mv850es
21894 Specify that the target processor is the V850ES. This is an alias for
21895 the @option{-mv850e1} option.
21896
21897 @item -mv850e
21898 @opindex mv850e
21899 Specify that the target processor is the V850E@. The preprocessor
21900 constant @code{__v850e__} is defined if this option is used.
21901
21902 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
21903 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
21904 are defined then a default target processor is chosen and the
21905 relevant @samp{__v850*__} preprocessor constant is defined.
21906
21907 The preprocessor constants @code{__v850} and @code{__v851__} are always
21908 defined, regardless of which processor variant is the target.
21909
21910 @item -mdisable-callt
21911 @itemx -mno-disable-callt
21912 @opindex mdisable-callt
21913 @opindex mno-disable-callt
21914 This option suppresses generation of the @code{CALLT} instruction for the
21915 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
21916 architecture.
21917
21918 This option is enabled by default when the RH850 ABI is
21919 in use (see @option{-mrh850-abi}), and disabled by default when the
21920 GCC ABI is in use. If @code{CALLT} instructions are being generated
21921 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
21922
21923 @item -mrelax
21924 @itemx -mno-relax
21925 @opindex mrelax
21926 @opindex mno-relax
21927 Pass on (or do not pass on) the @option{-mrelax} command-line option
21928 to the assembler.
21929
21930 @item -mlong-jumps
21931 @itemx -mno-long-jumps
21932 @opindex mlong-jumps
21933 @opindex mno-long-jumps
21934 Disable (or re-enable) the generation of PC-relative jump instructions.
21935
21936 @item -msoft-float
21937 @itemx -mhard-float
21938 @opindex msoft-float
21939 @opindex mhard-float
21940 Disable (or re-enable) the generation of hardware floating point
21941 instructions. This option is only significant when the target
21942 architecture is @samp{V850E2V3} or higher. If hardware floating point
21943 instructions are being generated then the C preprocessor symbol
21944 @code{__FPU_OK__} is defined, otherwise the symbol
21945 @code{__NO_FPU__} is defined.
21946
21947 @item -mloop
21948 @opindex mloop
21949 Enables the use of the e3v5 LOOP instruction. The use of this
21950 instruction is not enabled by default when the e3v5 architecture is
21951 selected because its use is still experimental.
21952
21953 @item -mrh850-abi
21954 @itemx -mghs
21955 @opindex mrh850-abi
21956 @opindex mghs
21957 Enables support for the RH850 version of the V850 ABI. This is the
21958 default. With this version of the ABI the following rules apply:
21959
21960 @itemize
21961 @item
21962 Integer sized structures and unions are returned via a memory pointer
21963 rather than a register.
21964
21965 @item
21966 Large structures and unions (more than 8 bytes in size) are passed by
21967 value.
21968
21969 @item
21970 Functions are aligned to 16-bit boundaries.
21971
21972 @item
21973 The @option{-m8byte-align} command-line option is supported.
21974
21975 @item
21976 The @option{-mdisable-callt} command-line option is enabled by
21977 default. The @option{-mno-disable-callt} command-line option is not
21978 supported.
21979 @end itemize
21980
21981 When this version of the ABI is enabled the C preprocessor symbol
21982 @code{__V850_RH850_ABI__} is defined.
21983
21984 @item -mgcc-abi
21985 @opindex mgcc-abi
21986 Enables support for the old GCC version of the V850 ABI. With this
21987 version of the ABI the following rules apply:
21988
21989 @itemize
21990 @item
21991 Integer sized structures and unions are returned in register @code{r10}.
21992
21993 @item
21994 Large structures and unions (more than 8 bytes in size) are passed by
21995 reference.
21996
21997 @item
21998 Functions are aligned to 32-bit boundaries, unless optimizing for
21999 size.
22000
22001 @item
22002 The @option{-m8byte-align} command-line option is not supported.
22003
22004 @item
22005 The @option{-mdisable-callt} command-line option is supported but not
22006 enabled by default.
22007 @end itemize
22008
22009 When this version of the ABI is enabled the C preprocessor symbol
22010 @code{__V850_GCC_ABI__} is defined.
22011
22012 @item -m8byte-align
22013 @itemx -mno-8byte-align
22014 @opindex m8byte-align
22015 @opindex mno-8byte-align
22016 Enables support for @code{double} and @code{long long} types to be
22017 aligned on 8-byte boundaries. The default is to restrict the
22018 alignment of all objects to at most 4-bytes. When
22019 @option{-m8byte-align} is in effect the C preprocessor symbol
22020 @code{__V850_8BYTE_ALIGN__} is defined.
22021
22022 @item -mbig-switch
22023 @opindex mbig-switch
22024 Generate code suitable for big switch tables. Use this option only if
22025 the assembler/linker complain about out of range branches within a switch
22026 table.
22027
22028 @item -mapp-regs
22029 @opindex mapp-regs
22030 This option causes r2 and r5 to be used in the code generated by
22031 the compiler. This setting is the default.
22032
22033 @item -mno-app-regs
22034 @opindex mno-app-regs
22035 This option causes r2 and r5 to be treated as fixed registers.
22036
22037 @end table
22038
22039 @node VAX Options
22040 @subsection VAX Options
22041 @cindex VAX options
22042
22043 These @samp{-m} options are defined for the VAX:
22044
22045 @table @gcctabopt
22046 @item -munix
22047 @opindex munix
22048 Do not output certain jump instructions (@code{aobleq} and so on)
22049 that the Unix assembler for the VAX cannot handle across long
22050 ranges.
22051
22052 @item -mgnu
22053 @opindex mgnu
22054 Do output those jump instructions, on the assumption that the
22055 GNU assembler is being used.
22056
22057 @item -mg
22058 @opindex mg
22059 Output code for G-format floating-point numbers instead of D-format.
22060 @end table
22061
22062 @node Visium Options
22063 @subsection Visium Options
22064 @cindex Visium options
22065
22066 @table @gcctabopt
22067
22068 @item -mdebug
22069 @opindex mdebug
22070 A program which performs file I/O and is destined to run on an MCM target
22071 should be linked with this option. It causes the libraries libc.a and
22072 libdebug.a to be linked. The program should be run on the target under
22073 the control of the GDB remote debugging stub.
22074
22075 @item -msim
22076 @opindex msim
22077 A program which performs file I/O and is destined to run on the simulator
22078 should be linked with option. This causes libraries libc.a and libsim.a to
22079 be linked.
22080
22081 @item -mfpu
22082 @itemx -mhard-float
22083 @opindex mfpu
22084 @opindex mhard-float
22085 Generate code containing floating-point instructions. This is the
22086 default.
22087
22088 @item -mno-fpu
22089 @itemx -msoft-float
22090 @opindex mno-fpu
22091 @opindex msoft-float
22092 Generate code containing library calls for floating-point.
22093
22094 @option{-msoft-float} changes the calling convention in the output file;
22095 therefore, it is only useful if you compile @emph{all} of a program with
22096 this option. In particular, you need to compile @file{libgcc.a}, the
22097 library that comes with GCC, with @option{-msoft-float} in order for
22098 this to work.
22099
22100 @item -mcpu=@var{cpu_type}
22101 @opindex mcpu
22102 Set the instruction set, register set, and instruction scheduling parameters
22103 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
22104 @samp{mcm}, @samp{gr5} and @samp{gr6}.
22105
22106 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
22107
22108 By default (unless configured otherwise), GCC generates code for the GR5
22109 variant of the Visium architecture.
22110
22111 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
22112 architecture. The only difference from GR5 code is that the compiler will
22113 generate block move instructions.
22114
22115 @item -mtune=@var{cpu_type}
22116 @opindex mtune
22117 Set the instruction scheduling parameters for machine type @var{cpu_type},
22118 but do not set the instruction set or register set that the option
22119 @option{-mcpu=@var{cpu_type}} would.
22120
22121 @item -msv-mode
22122 @opindex msv-mode
22123 Generate code for the supervisor mode, where there are no restrictions on
22124 the access to general registers. This is the default.
22125
22126 @item -muser-mode
22127 @opindex muser-mode
22128 Generate code for the user mode, where the access to some general registers
22129 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
22130 mode; on the GR6, only registers r29 to r31 are affected.
22131 @end table
22132
22133 @node VMS Options
22134 @subsection VMS Options
22135
22136 These @samp{-m} options are defined for the VMS implementations:
22137
22138 @table @gcctabopt
22139 @item -mvms-return-codes
22140 @opindex mvms-return-codes
22141 Return VMS condition codes from @code{main}. The default is to return POSIX-style
22142 condition (e.g.@ error) codes.
22143
22144 @item -mdebug-main=@var{prefix}
22145 @opindex mdebug-main=@var{prefix}
22146 Flag the first routine whose name starts with @var{prefix} as the main
22147 routine for the debugger.
22148
22149 @item -mmalloc64
22150 @opindex mmalloc64
22151 Default to 64-bit memory allocation routines.
22152
22153 @item -mpointer-size=@var{size}
22154 @opindex mpointer-size=@var{size}
22155 Set the default size of pointers. Possible options for @var{size} are
22156 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
22157 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
22158 The later option disables @code{pragma pointer_size}.
22159 @end table
22160
22161 @node VxWorks Options
22162 @subsection VxWorks Options
22163 @cindex VxWorks Options
22164
22165 The options in this section are defined for all VxWorks targets.
22166 Options specific to the target hardware are listed with the other
22167 options for that target.
22168
22169 @table @gcctabopt
22170 @item -mrtp
22171 @opindex mrtp
22172 GCC can generate code for both VxWorks kernels and real time processes
22173 (RTPs). This option switches from the former to the latter. It also
22174 defines the preprocessor macro @code{__RTP__}.
22175
22176 @item -non-static
22177 @opindex non-static
22178 Link an RTP executable against shared libraries rather than static
22179 libraries. The options @option{-static} and @option{-shared} can
22180 also be used for RTPs (@pxref{Link Options}); @option{-static}
22181 is the default.
22182
22183 @item -Bstatic
22184 @itemx -Bdynamic
22185 @opindex Bstatic
22186 @opindex Bdynamic
22187 These options are passed down to the linker. They are defined for
22188 compatibility with Diab.
22189
22190 @item -Xbind-lazy
22191 @opindex Xbind-lazy
22192 Enable lazy binding of function calls. This option is equivalent to
22193 @option{-Wl,-z,now} and is defined for compatibility with Diab.
22194
22195 @item -Xbind-now
22196 @opindex Xbind-now
22197 Disable lazy binding of function calls. This option is the default and
22198 is defined for compatibility with Diab.
22199 @end table
22200
22201 @node x86 Options
22202 @subsection x86 Options
22203 @cindex x86 Options
22204
22205 These @samp{-m} options are defined for the x86 family of computers.
22206
22207 @table @gcctabopt
22208
22209 @item -march=@var{cpu-type}
22210 @opindex march
22211 Generate instructions for the machine type @var{cpu-type}. In contrast to
22212 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
22213 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
22214 to generate code that may not run at all on processors other than the one
22215 indicated. Specifying @option{-march=@var{cpu-type}} implies
22216 @option{-mtune=@var{cpu-type}}.
22217
22218 The choices for @var{cpu-type} are:
22219
22220 @table @samp
22221 @item native
22222 This selects the CPU to generate code for at compilation time by determining
22223 the processor type of the compiling machine. Using @option{-march=native}
22224 enables all instruction subsets supported by the local machine (hence
22225 the result might not run on different machines). Using @option{-mtune=native}
22226 produces code optimized for the local machine under the constraints
22227 of the selected instruction set.
22228
22229 @item i386
22230 Original Intel i386 CPU@.
22231
22232 @item i486
22233 Intel i486 CPU@. (No scheduling is implemented for this chip.)
22234
22235 @item i586
22236 @itemx pentium
22237 Intel Pentium CPU with no MMX support.
22238
22239 @item pentium-mmx
22240 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
22241
22242 @item pentiumpro
22243 Intel Pentium Pro CPU@.
22244
22245 @item i686
22246 When used with @option{-march}, the Pentium Pro
22247 instruction set is used, so the code runs on all i686 family chips.
22248 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22249
22250 @item pentium2
22251 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22252 support.
22253
22254 @item pentium3
22255 @itemx pentium3m
22256 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22257 set support.
22258
22259 @item pentium-m
22260 Intel Pentium M; low-power version of Intel Pentium III CPU
22261 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
22262
22263 @item pentium4
22264 @itemx pentium4m
22265 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22266
22267 @item prescott
22268 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22269 set support.
22270
22271 @item nocona
22272 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22273 SSE2 and SSE3 instruction set support.
22274
22275 @item core2
22276 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22277 instruction set support.
22278
22279 @item nehalem
22280 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22281 SSE4.1, SSE4.2 and POPCNT instruction set support.
22282
22283 @item westmere
22284 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22285 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22286
22287 @item sandybridge
22288 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22289 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22290
22291 @item ivybridge
22292 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22293 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22294 instruction set support.
22295
22296 @item haswell
22297 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22298 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22299 BMI, BMI2 and F16C instruction set support.
22300
22301 @item broadwell
22302 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22303 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22304 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22305
22306 @item bonnell
22307 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22308 instruction set support.
22309
22310 @item silvermont
22311 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22312 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22313
22314 @item knl
22315 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22316 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22317 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22318 AVX512CD instruction set support.
22319
22320 @item k6
22321 AMD K6 CPU with MMX instruction set support.
22322
22323 @item k6-2
22324 @itemx k6-3
22325 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22326
22327 @item athlon
22328 @itemx athlon-tbird
22329 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22330 support.
22331
22332 @item athlon-4
22333 @itemx athlon-xp
22334 @itemx athlon-mp
22335 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22336 instruction set support.
22337
22338 @item k8
22339 @itemx opteron
22340 @itemx athlon64
22341 @itemx athlon-fx
22342 Processors based on the AMD K8 core with x86-64 instruction set support,
22343 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22344 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22345 instruction set extensions.)
22346
22347 @item k8-sse3
22348 @itemx opteron-sse3
22349 @itemx athlon64-sse3
22350 Improved versions of AMD K8 cores with SSE3 instruction set support.
22351
22352 @item amdfam10
22353 @itemx barcelona
22354 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
22355 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22356 instruction set extensions.)
22357
22358 @item bdver1
22359 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
22360 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22361 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22362 @item bdver2
22363 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22364 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22365 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
22366 extensions.)
22367 @item bdver3
22368 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22369 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
22370 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
22371 64-bit instruction set extensions.
22372 @item bdver4
22373 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22374 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
22375 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
22376 SSE4.2, ABM and 64-bit instruction set extensions.
22377
22378 @item btver1
22379 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
22380 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22381 instruction set extensions.)
22382
22383 @item btver2
22384 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22385 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22386 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22387
22388 @item winchip-c6
22389 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22390 set support.
22391
22392 @item winchip2
22393 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22394 instruction set support.
22395
22396 @item c3
22397 VIA C3 CPU with MMX and 3DNow!@: instruction set support. (No scheduling is
22398 implemented for this chip.)
22399
22400 @item c3-2
22401 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22402 (No scheduling is
22403 implemented for this chip.)
22404
22405 @item geode
22406 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22407 @end table
22408
22409 @item -mtune=@var{cpu-type}
22410 @opindex mtune
22411 Tune to @var{cpu-type} everything applicable about the generated code, except
22412 for the ABI and the set of available instructions.
22413 While picking a specific @var{cpu-type} schedules things appropriately
22414 for that particular chip, the compiler does not generate any code that
22415 cannot run on the default machine type unless you use a
22416 @option{-march=@var{cpu-type}} option.
22417 For example, if GCC is configured for i686-pc-linux-gnu
22418 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22419 but still runs on i686 machines.
22420
22421 The choices for @var{cpu-type} are the same as for @option{-march}.
22422 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22423
22424 @table @samp
22425 @item generic
22426 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22427 If you know the CPU on which your code will run, then you should use
22428 the corresponding @option{-mtune} or @option{-march} option instead of
22429 @option{-mtune=generic}. But, if you do not know exactly what CPU users
22430 of your application will have, then you should use this option.
22431
22432 As new processors are deployed in the marketplace, the behavior of this
22433 option will change. Therefore, if you upgrade to a newer version of
22434 GCC, code generation controlled by this option will change to reflect
22435 the processors
22436 that are most common at the time that version of GCC is released.
22437
22438 There is no @option{-march=generic} option because @option{-march}
22439 indicates the instruction set the compiler can use, and there is no
22440 generic instruction set applicable to all processors. In contrast,
22441 @option{-mtune} indicates the processor (or, in this case, collection of
22442 processors) for which the code is optimized.
22443
22444 @item intel
22445 Produce code optimized for the most current Intel processors, which are
22446 Haswell and Silvermont for this version of GCC. If you know the CPU
22447 on which your code will run, then you should use the corresponding
22448 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22449 But, if you want your application performs better on both Haswell and
22450 Silvermont, then you should use this option.
22451
22452 As new Intel processors are deployed in the marketplace, the behavior of
22453 this option will change. Therefore, if you upgrade to a newer version of
22454 GCC, code generation controlled by this option will change to reflect
22455 the most current Intel processors at the time that version of GCC is
22456 released.
22457
22458 There is no @option{-march=intel} option because @option{-march} indicates
22459 the instruction set the compiler can use, and there is no common
22460 instruction set applicable to all processors. In contrast,
22461 @option{-mtune} indicates the processor (or, in this case, collection of
22462 processors) for which the code is optimized.
22463 @end table
22464
22465 @item -mcpu=@var{cpu-type}
22466 @opindex mcpu
22467 A deprecated synonym for @option{-mtune}.
22468
22469 @item -mfpmath=@var{unit}
22470 @opindex mfpmath
22471 Generate floating-point arithmetic for selected unit @var{unit}. The choices
22472 for @var{unit} are:
22473
22474 @table @samp
22475 @item 387
22476 Use the standard 387 floating-point coprocessor present on the majority of chips and
22477 emulated otherwise. Code compiled with this option runs almost everywhere.
22478 The temporary results are computed in 80-bit precision instead of the precision
22479 specified by the type, resulting in slightly different results compared to most
22480 of other chips. See @option{-ffloat-store} for more detailed description.
22481
22482 This is the default choice for x86-32 targets.
22483
22484 @item sse
22485 Use scalar floating-point instructions present in the SSE instruction set.
22486 This instruction set is supported by Pentium III and newer chips,
22487 and in the AMD line
22488 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
22489 instruction set supports only single-precision arithmetic, thus the double and
22490 extended-precision arithmetic are still done using 387. A later version, present
22491 only in Pentium 4 and AMD x86-64 chips, supports double-precision
22492 arithmetic too.
22493
22494 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22495 or @option{-msse2} switches to enable SSE extensions and make this option
22496 effective. For the x86-64 compiler, these extensions are enabled by default.
22497
22498 The resulting code should be considerably faster in the majority of cases and avoid
22499 the numerical instability problems of 387 code, but may break some existing
22500 code that expects temporaries to be 80 bits.
22501
22502 This is the default choice for the x86-64 compiler.
22503
22504 @item sse,387
22505 @itemx sse+387
22506 @itemx both
22507 Attempt to utilize both instruction sets at once. This effectively doubles the
22508 amount of available registers, and on chips with separate execution units for
22509 387 and SSE the execution resources too. Use this option with care, as it is
22510 still experimental, because the GCC register allocator does not model separate
22511 functional units well, resulting in unstable performance.
22512 @end table
22513
22514 @item -masm=@var{dialect}
22515 @opindex masm=@var{dialect}
22516 Output assembly instructions using selected @var{dialect}. Also affects
22517 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
22518 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
22519 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
22520 not support @samp{intel}.
22521
22522 @item -mieee-fp
22523 @itemx -mno-ieee-fp
22524 @opindex mieee-fp
22525 @opindex mno-ieee-fp
22526 Control whether or not the compiler uses IEEE floating-point
22527 comparisons. These correctly handle the case where the result of a
22528 comparison is unordered.
22529
22530 @item -msoft-float
22531 @opindex msoft-float
22532 Generate output containing library calls for floating point.
22533
22534 @strong{Warning:} the requisite libraries are not part of GCC@.
22535 Normally the facilities of the machine's usual C compiler are used, but
22536 this can't be done directly in cross-compilation. You must make your
22537 own arrangements to provide suitable library functions for
22538 cross-compilation.
22539
22540 On machines where a function returns floating-point results in the 80387
22541 register stack, some floating-point opcodes may be emitted even if
22542 @option{-msoft-float} is used.
22543
22544 @item -mno-fp-ret-in-387
22545 @opindex mno-fp-ret-in-387
22546 Do not use the FPU registers for return values of functions.
22547
22548 The usual calling convention has functions return values of types
22549 @code{float} and @code{double} in an FPU register, even if there
22550 is no FPU@. The idea is that the operating system should emulate
22551 an FPU@.
22552
22553 The option @option{-mno-fp-ret-in-387} causes such values to be returned
22554 in ordinary CPU registers instead.
22555
22556 @item -mno-fancy-math-387
22557 @opindex mno-fancy-math-387
22558 Some 387 emulators do not support the @code{sin}, @code{cos} and
22559 @code{sqrt} instructions for the 387. Specify this option to avoid
22560 generating those instructions. This option is the default on FreeBSD,
22561 OpenBSD and NetBSD@. This option is overridden when @option{-march}
22562 indicates that the target CPU always has an FPU and so the
22563 instruction does not need emulation. These
22564 instructions are not generated unless you also use the
22565 @option{-funsafe-math-optimizations} switch.
22566
22567 @item -malign-double
22568 @itemx -mno-align-double
22569 @opindex malign-double
22570 @opindex mno-align-double
22571 Control whether GCC aligns @code{double}, @code{long double}, and
22572 @code{long long} variables on a two-word boundary or a one-word
22573 boundary. Aligning @code{double} variables on a two-word boundary
22574 produces code that runs somewhat faster on a Pentium at the
22575 expense of more memory.
22576
22577 On x86-64, @option{-malign-double} is enabled by default.
22578
22579 @strong{Warning:} if you use the @option{-malign-double} switch,
22580 structures containing the above types are aligned differently than
22581 the published application binary interface specifications for the x86-32
22582 and are not binary compatible with structures in code compiled
22583 without that switch.
22584
22585 @item -m96bit-long-double
22586 @itemx -m128bit-long-double
22587 @opindex m96bit-long-double
22588 @opindex m128bit-long-double
22589 These switches control the size of @code{long double} type. The x86-32
22590 application binary interface specifies the size to be 96 bits,
22591 so @option{-m96bit-long-double} is the default in 32-bit mode.
22592
22593 Modern architectures (Pentium and newer) prefer @code{long double}
22594 to be aligned to an 8- or 16-byte boundary. In arrays or structures
22595 conforming to the ABI, this is not possible. So specifying
22596 @option{-m128bit-long-double} aligns @code{long double}
22597 to a 16-byte boundary by padding the @code{long double} with an additional
22598 32-bit zero.
22599
22600 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
22601 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
22602
22603 Notice that neither of these options enable any extra precision over the x87
22604 standard of 80 bits for a @code{long double}.
22605
22606 @strong{Warning:} if you override the default value for your target ABI, this
22607 changes the size of
22608 structures and arrays containing @code{long double} variables,
22609 as well as modifying the function calling convention for functions taking
22610 @code{long double}. Hence they are not binary-compatible
22611 with code compiled without that switch.
22612
22613 @item -mlong-double-64
22614 @itemx -mlong-double-80
22615 @itemx -mlong-double-128
22616 @opindex mlong-double-64
22617 @opindex mlong-double-80
22618 @opindex mlong-double-128
22619 These switches control the size of @code{long double} type. A size
22620 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22621 type. This is the default for 32-bit Bionic C library. A size
22622 of 128 bits makes the @code{long double} type equivalent to the
22623 @code{__float128} type. This is the default for 64-bit Bionic C library.
22624
22625 @strong{Warning:} if you override the default value for your target ABI, this
22626 changes the size of
22627 structures and arrays containing @code{long double} variables,
22628 as well as modifying the function calling convention for functions taking
22629 @code{long double}. Hence they are not binary-compatible
22630 with code compiled without that switch.
22631
22632 @item -malign-data=@var{type}
22633 @opindex malign-data
22634 Control how GCC aligns variables. Supported values for @var{type} are
22635 @samp{compat} uses increased alignment value compatible uses GCC 4.8
22636 and earlier, @samp{abi} uses alignment value as specified by the
22637 psABI, and @samp{cacheline} uses increased alignment value to match
22638 the cache line size. @samp{compat} is the default.
22639
22640 @item -mlarge-data-threshold=@var{threshold}
22641 @opindex mlarge-data-threshold
22642 When @option{-mcmodel=medium} is specified, data objects larger than
22643 @var{threshold} are placed in the large data section. This value must be the
22644 same across all objects linked into the binary, and defaults to 65535.
22645
22646 @item -mrtd
22647 @opindex mrtd
22648 Use a different function-calling convention, in which functions that
22649 take a fixed number of arguments return with the @code{ret @var{num}}
22650 instruction, which pops their arguments while returning. This saves one
22651 instruction in the caller since there is no need to pop the arguments
22652 there.
22653
22654 You can specify that an individual function is called with this calling
22655 sequence with the function attribute @code{stdcall}. You can also
22656 override the @option{-mrtd} option by using the function attribute
22657 @code{cdecl}. @xref{Function Attributes}.
22658
22659 @strong{Warning:} this calling convention is incompatible with the one
22660 normally used on Unix, so you cannot use it if you need to call
22661 libraries compiled with the Unix compiler.
22662
22663 Also, you must provide function prototypes for all functions that
22664 take variable numbers of arguments (including @code{printf});
22665 otherwise incorrect code is generated for calls to those
22666 functions.
22667
22668 In addition, seriously incorrect code results if you call a
22669 function with too many arguments. (Normally, extra arguments are
22670 harmlessly ignored.)
22671
22672 @item -mregparm=@var{num}
22673 @opindex mregparm
22674 Control how many registers are used to pass integer arguments. By
22675 default, no registers are used to pass arguments, and at most 3
22676 registers can be used. You can control this behavior for a specific
22677 function by using the function attribute @code{regparm}.
22678 @xref{Function Attributes}.
22679
22680 @strong{Warning:} if you use this switch, and
22681 @var{num} is nonzero, then you must build all modules with the same
22682 value, including any libraries. This includes the system libraries and
22683 startup modules.
22684
22685 @item -msseregparm
22686 @opindex msseregparm
22687 Use SSE register passing conventions for float and double arguments
22688 and return values. You can control this behavior for a specific
22689 function by using the function attribute @code{sseregparm}.
22690 @xref{Function Attributes}.
22691
22692 @strong{Warning:} if you use this switch then you must build all
22693 modules with the same value, including any libraries. This includes
22694 the system libraries and startup modules.
22695
22696 @item -mvect8-ret-in-mem
22697 @opindex mvect8-ret-in-mem
22698 Return 8-byte vectors in memory instead of MMX registers. This is the
22699 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
22700 Studio compilers until version 12. Later compiler versions (starting
22701 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
22702 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
22703 you need to remain compatible with existing code produced by those
22704 previous compiler versions or older versions of GCC@.
22705
22706 @item -mpc32
22707 @itemx -mpc64
22708 @itemx -mpc80
22709 @opindex mpc32
22710 @opindex mpc64
22711 @opindex mpc80
22712
22713 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
22714 is specified, the significands of results of floating-point operations are
22715 rounded to 24 bits (single precision); @option{-mpc64} rounds the
22716 significands of results of floating-point operations to 53 bits (double
22717 precision) and @option{-mpc80} rounds the significands of results of
22718 floating-point operations to 64 bits (extended double precision), which is
22719 the default. When this option is used, floating-point operations in higher
22720 precisions are not available to the programmer without setting the FPU
22721 control word explicitly.
22722
22723 Setting the rounding of floating-point operations to less than the default
22724 80 bits can speed some programs by 2% or more. Note that some mathematical
22725 libraries assume that extended-precision (80-bit) floating-point operations
22726 are enabled by default; routines in such libraries could suffer significant
22727 loss of accuracy, typically through so-called ``catastrophic cancellation'',
22728 when this option is used to set the precision to less than extended precision.
22729
22730 @item -mstackrealign
22731 @opindex mstackrealign
22732 Realign the stack at entry. On the x86, the @option{-mstackrealign}
22733 option generates an alternate prologue and epilogue that realigns the
22734 run-time stack if necessary. This supports mixing legacy codes that keep
22735 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
22736 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
22737 applicable to individual functions.
22738
22739 @item -mpreferred-stack-boundary=@var{num}
22740 @opindex mpreferred-stack-boundary
22741 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22742 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
22743 the default is 4 (16 bytes or 128 bits).
22744
22745 @strong{Warning:} When generating code for the x86-64 architecture with
22746 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
22747 used to keep the stack boundary aligned to 8 byte boundary. Since
22748 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
22749 intended to be used in controlled environment where stack space is
22750 important limitation. This option leads to wrong code when functions
22751 compiled with 16 byte stack alignment (such as functions from a standard
22752 library) are called with misaligned stack. In this case, SSE
22753 instructions may lead to misaligned memory access traps. In addition,
22754 variable arguments are handled incorrectly for 16 byte aligned
22755 objects (including x87 long double and __int128), leading to wrong
22756 results. You must build all modules with
22757 @option{-mpreferred-stack-boundary=3}, including any libraries. This
22758 includes the system libraries and startup modules.
22759
22760 @item -mincoming-stack-boundary=@var{num}
22761 @opindex mincoming-stack-boundary
22762 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
22763 boundary. If @option{-mincoming-stack-boundary} is not specified,
22764 the one specified by @option{-mpreferred-stack-boundary} is used.
22765
22766 On Pentium and Pentium Pro, @code{double} and @code{long double} values
22767 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
22768 suffer significant run time performance penalties. On Pentium III, the
22769 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
22770 properly if it is not 16-byte aligned.
22771
22772 To ensure proper alignment of this values on the stack, the stack boundary
22773 must be as aligned as that required by any value stored on the stack.
22774 Further, every function must be generated such that it keeps the stack
22775 aligned. Thus calling a function compiled with a higher preferred
22776 stack boundary from a function compiled with a lower preferred stack
22777 boundary most likely misaligns the stack. It is recommended that
22778 libraries that use callbacks always use the default setting.
22779
22780 This extra alignment does consume extra stack space, and generally
22781 increases code size. Code that is sensitive to stack space usage, such
22782 as embedded systems and operating system kernels, may want to reduce the
22783 preferred alignment to @option{-mpreferred-stack-boundary=2}.
22784
22785 @need 200
22786 @item -mmmx
22787 @opindex mmmx
22788 @need 200
22789 @itemx -msse
22790 @opindex msse
22791 @need 200
22792 @itemx -msse2
22793 @need 200
22794 @itemx -msse3
22795 @need 200
22796 @itemx -mssse3
22797 @need 200
22798 @itemx -msse4
22799 @need 200
22800 @itemx -msse4a
22801 @need 200
22802 @itemx -msse4.1
22803 @need 200
22804 @itemx -msse4.2
22805 @need 200
22806 @itemx -mavx
22807 @opindex mavx
22808 @need 200
22809 @itemx -mavx2
22810 @need 200
22811 @itemx -mavx512f
22812 @need 200
22813 @itemx -mavx512pf
22814 @need 200
22815 @itemx -mavx512er
22816 @need 200
22817 @itemx -mavx512cd
22818 @need 200
22819 @itemx -msha
22820 @opindex msha
22821 @need 200
22822 @itemx -maes
22823 @opindex maes
22824 @need 200
22825 @itemx -mpclmul
22826 @opindex mpclmul
22827 @need 200
22828 @itemx -mclfushopt
22829 @opindex mclfushopt
22830 @need 200
22831 @itemx -mfsgsbase
22832 @opindex mfsgsbase
22833 @need 200
22834 @itemx -mrdrnd
22835 @opindex mrdrnd
22836 @need 200
22837 @itemx -mf16c
22838 @opindex mf16c
22839 @need 200
22840 @itemx -mfma
22841 @opindex mfma
22842 @need 200
22843 @itemx -mfma4
22844 @need 200
22845 @itemx -mno-fma4
22846 @need 200
22847 @itemx -mprefetchwt1
22848 @opindex mprefetchwt1
22849 @need 200
22850 @itemx -mxop
22851 @opindex mxop
22852 @need 200
22853 @itemx -mlwp
22854 @opindex mlwp
22855 @need 200
22856 @itemx -m3dnow
22857 @opindex m3dnow
22858 @need 200
22859 @itemx -mpopcnt
22860 @opindex mpopcnt
22861 @need 200
22862 @itemx -mabm
22863 @opindex mabm
22864 @need 200
22865 @itemx -mbmi
22866 @opindex mbmi
22867 @need 200
22868 @itemx -mbmi2
22869 @need 200
22870 @itemx -mlzcnt
22871 @opindex mlzcnt
22872 @need 200
22873 @itemx -mfxsr
22874 @opindex mfxsr
22875 @need 200
22876 @itemx -mxsave
22877 @opindex mxsave
22878 @need 200
22879 @itemx -mxsaveopt
22880 @opindex mxsaveopt
22881 @need 200
22882 @itemx -mxsavec
22883 @opindex mxsavec
22884 @need 200
22885 @itemx -mxsaves
22886 @opindex mxsaves
22887 @need 200
22888 @itemx -mrtm
22889 @opindex mrtm
22890 @need 200
22891 @itemx -mtbm
22892 @opindex mtbm
22893 @need 200
22894 @itemx -mmpx
22895 @opindex mmpx
22896 @need 200
22897 @itemx -mmwaitx
22898 @opindex mmwaitx
22899 These switches enable the use of instructions in the MMX, SSE,
22900 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
22901 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
22902 BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX or 3DNow!@:
22903 extended instruction sets. Each has a corresponding @option{-mno-} option
22904 to disable use of these instructions.
22905
22906 These extensions are also available as built-in functions: see
22907 @ref{x86 Built-in Functions}, for details of the functions enabled and
22908 disabled by these switches.
22909
22910 To generate SSE/SSE2 instructions automatically from floating-point
22911 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
22912
22913 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
22914 generates new AVX instructions or AVX equivalence for all SSEx instructions
22915 when needed.
22916
22917 These options enable GCC to use these extended instructions in
22918 generated code, even without @option{-mfpmath=sse}. Applications that
22919 perform run-time CPU detection must compile separate files for each
22920 supported architecture, using the appropriate flags. In particular,
22921 the file containing the CPU detection code should be compiled without
22922 these options.
22923
22924 @item -mdump-tune-features
22925 @opindex mdump-tune-features
22926 This option instructs GCC to dump the names of the x86 performance
22927 tuning features and default settings. The names can be used in
22928 @option{-mtune-ctrl=@var{feature-list}}.
22929
22930 @item -mtune-ctrl=@var{feature-list}
22931 @opindex mtune-ctrl=@var{feature-list}
22932 This option is used to do fine grain control of x86 code generation features.
22933 @var{feature-list} is a comma separated list of @var{feature} names. See also
22934 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
22935 on if it is not preceded with @samp{^}, otherwise, it is turned off.
22936 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
22937 developers. Using it may lead to code paths not covered by testing and can
22938 potentially result in compiler ICEs or runtime errors.
22939
22940 @item -mno-default
22941 @opindex mno-default
22942 This option instructs GCC to turn off all tunable features. See also
22943 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
22944
22945 @item -mcld
22946 @opindex mcld
22947 This option instructs GCC to emit a @code{cld} instruction in the prologue
22948 of functions that use string instructions. String instructions depend on
22949 the DF flag to select between autoincrement or autodecrement mode. While the
22950 ABI specifies the DF flag to be cleared on function entry, some operating
22951 systems violate this specification by not clearing the DF flag in their
22952 exception dispatchers. The exception handler can be invoked with the DF flag
22953 set, which leads to wrong direction mode when string instructions are used.
22954 This option can be enabled by default on 32-bit x86 targets by configuring
22955 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
22956 instructions can be suppressed with the @option{-mno-cld} compiler option
22957 in this case.
22958
22959 @item -mvzeroupper
22960 @opindex mvzeroupper
22961 This option instructs GCC to emit a @code{vzeroupper} instruction
22962 before a transfer of control flow out of the function to minimize
22963 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
22964 intrinsics.
22965
22966 @item -mprefer-avx128
22967 @opindex mprefer-avx128
22968 This option instructs GCC to use 128-bit AVX instructions instead of
22969 256-bit AVX instructions in the auto-vectorizer.
22970
22971 @item -mcx16
22972 @opindex mcx16
22973 This option enables GCC to generate @code{CMPXCHG16B} instructions.
22974 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
22975 (or oword) data types.
22976 This is useful for high-resolution counters that can be updated
22977 by multiple processors (or cores). This instruction is generated as part of
22978 atomic built-in functions: see @ref{__sync Builtins} or
22979 @ref{__atomic Builtins} for details.
22980
22981 @item -msahf
22982 @opindex msahf
22983 This option enables generation of @code{SAHF} instructions in 64-bit code.
22984 Early Intel Pentium 4 CPUs with Intel 64 support,
22985 prior to the introduction of Pentium 4 G1 step in December 2005,
22986 lacked the @code{LAHF} and @code{SAHF} instructions
22987 which are supported by AMD64.
22988 These are load and store instructions, respectively, for certain status flags.
22989 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
22990 @code{drem}, and @code{remainder} built-in functions;
22991 see @ref{Other Builtins} for details.
22992
22993 @item -mmovbe
22994 @opindex mmovbe
22995 This option enables use of the @code{movbe} instruction to implement
22996 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
22997
22998 @item -mcrc32
22999 @opindex mcrc32
23000 This option enables built-in functions @code{__builtin_ia32_crc32qi},
23001 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
23002 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
23003
23004 @item -mrecip
23005 @opindex mrecip
23006 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
23007 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
23008 with an additional Newton-Raphson step
23009 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
23010 (and their vectorized
23011 variants) for single-precision floating-point arguments. These instructions
23012 are generated only when @option{-funsafe-math-optimizations} is enabled
23013 together with @option{-finite-math-only} and @option{-fno-trapping-math}.
23014 Note that while the throughput of the sequence is higher than the throughput
23015 of the non-reciprocal instruction, the precision of the sequence can be
23016 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
23017
23018 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
23019 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
23020 combination), and doesn't need @option{-mrecip}.
23021
23022 Also note that GCC emits the above sequence with additional Newton-Raphson step
23023 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
23024 already with @option{-ffast-math} (or the above option combination), and
23025 doesn't need @option{-mrecip}.
23026
23027 @item -mrecip=@var{opt}
23028 @opindex mrecip=opt
23029 This option controls which reciprocal estimate instructions
23030 may be used. @var{opt} is a comma-separated list of options, which may
23031 be preceded by a @samp{!} to invert the option:
23032
23033 @table @samp
23034 @item all
23035 Enable all estimate instructions.
23036
23037 @item default
23038 Enable the default instructions, equivalent to @option{-mrecip}.
23039
23040 @item none
23041 Disable all estimate instructions, equivalent to @option{-mno-recip}.
23042
23043 @item div
23044 Enable the approximation for scalar division.
23045
23046 @item vec-div
23047 Enable the approximation for vectorized division.
23048
23049 @item sqrt
23050 Enable the approximation for scalar square root.
23051
23052 @item vec-sqrt
23053 Enable the approximation for vectorized square root.
23054 @end table
23055
23056 So, for example, @option{-mrecip=all,!sqrt} enables
23057 all of the reciprocal approximations, except for square root.
23058
23059 @item -mveclibabi=@var{type}
23060 @opindex mveclibabi
23061 Specifies the ABI type to use for vectorizing intrinsics using an
23062 external library. Supported values for @var{type} are @samp{svml}
23063 for the Intel short
23064 vector math library and @samp{acml} for the AMD math core library.
23065 To use this option, both @option{-ftree-vectorize} and
23066 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
23067 ABI-compatible library must be specified at link time.
23068
23069 GCC currently emits calls to @code{vmldExp2},
23070 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
23071 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
23072 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
23073 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
23074 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
23075 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
23076 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
23077 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
23078 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
23079 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
23080 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
23081 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
23082 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
23083 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
23084 when @option{-mveclibabi=acml} is used.
23085
23086 @item -mabi=@var{name}
23087 @opindex mabi
23088 Generate code for the specified calling convention. Permissible values
23089 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
23090 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
23091 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
23092 You can control this behavior for specific functions by
23093 using the function attributes @code{ms_abi} and @code{sysv_abi}.
23094 @xref{Function Attributes}.
23095
23096 @item -mtls-dialect=@var{type}
23097 @opindex mtls-dialect
23098 Generate code to access thread-local storage using the @samp{gnu} or
23099 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
23100 @samp{gnu2} is more efficient, but it may add compile- and run-time
23101 requirements that cannot be satisfied on all systems.
23102
23103 @item -mpush-args
23104 @itemx -mno-push-args
23105 @opindex mpush-args
23106 @opindex mno-push-args
23107 Use PUSH operations to store outgoing parameters. This method is shorter
23108 and usually equally fast as method using SUB/MOV operations and is enabled
23109 by default. In some cases disabling it may improve performance because of
23110 improved scheduling and reduced dependencies.
23111
23112 @item -maccumulate-outgoing-args
23113 @opindex maccumulate-outgoing-args
23114 If enabled, the maximum amount of space required for outgoing arguments is
23115 computed in the function prologue. This is faster on most modern CPUs
23116 because of reduced dependencies, improved scheduling and reduced stack usage
23117 when the preferred stack boundary is not equal to 2. The drawback is a notable
23118 increase in code size. This switch implies @option{-mno-push-args}.
23119
23120 @item -mthreads
23121 @opindex mthreads
23122 Support thread-safe exception handling on MinGW. Programs that rely
23123 on thread-safe exception handling must compile and link all code with the
23124 @option{-mthreads} option. When compiling, @option{-mthreads} defines
23125 @option{-D_MT}; when linking, it links in a special thread helper library
23126 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
23127
23128 @item -mno-align-stringops
23129 @opindex mno-align-stringops
23130 Do not align the destination of inlined string operations. This switch reduces
23131 code size and improves performance in case the destination is already aligned,
23132 but GCC doesn't know about it.
23133
23134 @item -minline-all-stringops
23135 @opindex minline-all-stringops
23136 By default GCC inlines string operations only when the destination is
23137 known to be aligned to least a 4-byte boundary.
23138 This enables more inlining and increases code
23139 size, but may improve performance of code that depends on fast
23140 @code{memcpy}, @code{strlen},
23141 and @code{memset} for short lengths.
23142
23143 @item -minline-stringops-dynamically
23144 @opindex minline-stringops-dynamically
23145 For string operations of unknown size, use run-time checks with
23146 inline code for small blocks and a library call for large blocks.
23147
23148 @item -mstringop-strategy=@var{alg}
23149 @opindex mstringop-strategy=@var{alg}
23150 Override the internal decision heuristic for the particular algorithm to use
23151 for inlining string operations. The allowed values for @var{alg} are:
23152
23153 @table @samp
23154 @item rep_byte
23155 @itemx rep_4byte
23156 @itemx rep_8byte
23157 Expand using i386 @code{rep} prefix of the specified size.
23158
23159 @item byte_loop
23160 @itemx loop
23161 @itemx unrolled_loop
23162 Expand into an inline loop.
23163
23164 @item libcall
23165 Always use a library call.
23166 @end table
23167
23168 @item -mmemcpy-strategy=@var{strategy}
23169 @opindex mmemcpy-strategy=@var{strategy}
23170 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
23171 should be inlined and what inline algorithm to use when the expected size
23172 of the copy operation is known. @var{strategy}
23173 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
23174 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
23175 the max byte size with which inline algorithm @var{alg} is allowed. For the last
23176 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
23177 in the list must be specified in increasing order. The minimal byte size for
23178 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
23179 preceding range.
23180
23181 @item -mmemset-strategy=@var{strategy}
23182 @opindex mmemset-strategy=@var{strategy}
23183 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
23184 @code{__builtin_memset} expansion.
23185
23186 @item -momit-leaf-frame-pointer
23187 @opindex momit-leaf-frame-pointer
23188 Don't keep the frame pointer in a register for leaf functions. This
23189 avoids the instructions to save, set up, and restore frame pointers and
23190 makes an extra register available in leaf functions. The option
23191 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
23192 which might make debugging harder.
23193
23194 @item -mtls-direct-seg-refs
23195 @itemx -mno-tls-direct-seg-refs
23196 @opindex mtls-direct-seg-refs
23197 Controls whether TLS variables may be accessed with offsets from the
23198 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
23199 or whether the thread base pointer must be added. Whether or not this
23200 is valid depends on the operating system, and whether it maps the
23201 segment to cover the entire TLS area.
23202
23203 For systems that use the GNU C Library, the default is on.
23204
23205 @item -msse2avx
23206 @itemx -mno-sse2avx
23207 @opindex msse2avx
23208 Specify that the assembler should encode SSE instructions with VEX
23209 prefix. The option @option{-mavx} turns this on by default.
23210
23211 @item -mfentry
23212 @itemx -mno-fentry
23213 @opindex mfentry
23214 If profiling is active (@option{-pg}), put the profiling
23215 counter call before the prologue.
23216 Note: On x86 architectures the attribute @code{ms_hook_prologue}
23217 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
23218
23219 @item -mrecord-mcount
23220 @itemx -mno-record-mcount
23221 @opindex mrecord-mcount
23222 If profiling is active (@option{-pg}), generate a __mcount_loc section
23223 that contains pointers to each profiling call. This is useful for
23224 automatically patching and out calls.
23225
23226 @item -mnop-mcount
23227 @itemx -mno-nop-mcount
23228 @opindex mnop-mcount
23229 If profiling is active (@option{-pg}), generate the calls to
23230 the profiling functions as nops. This is useful when they
23231 should be patched in later dynamically. This is likely only
23232 useful together with @option{-mrecord-mcount}.
23233
23234 @item -mskip-rax-setup
23235 @itemx -mno-skip-rax-setup
23236 @opindex mskip-rax-setup
23237 When generating code for the x86-64 architecture with SSE extensions
23238 disabled, @option{-skip-rax-setup} can be used to skip setting up RAX
23239 register when there are no variable arguments passed in vector registers.
23240
23241 @strong{Warning:} Since RAX register is used to avoid unnecessarily
23242 saving vector registers on stack when passing variable arguments, the
23243 impacts of this option are callees may waste some stack space,
23244 misbehave or jump to a random location. GCC 4.4 or newer don't have
23245 those issues, regardless the RAX register value.
23246
23247 @item -m8bit-idiv
23248 @itemx -mno-8bit-idiv
23249 @opindex m8bit-idiv
23250 On some processors, like Intel Atom, 8-bit unsigned integer divide is
23251 much faster than 32-bit/64-bit integer divide. This option generates a
23252 run-time check. If both dividend and divisor are within range of 0
23253 to 255, 8-bit unsigned integer divide is used instead of
23254 32-bit/64-bit integer divide.
23255
23256 @item -mavx256-split-unaligned-load
23257 @itemx -mavx256-split-unaligned-store
23258 @opindex mavx256-split-unaligned-load
23259 @opindex mavx256-split-unaligned-store
23260 Split 32-byte AVX unaligned load and store.
23261
23262 @item -mstack-protector-guard=@var{guard}
23263 @opindex mstack-protector-guard=@var{guard}
23264 Generate stack protection code using canary at @var{guard}. Supported
23265 locations are @samp{global} for global canary or @samp{tls} for per-thread
23266 canary in the TLS block (the default). This option has effect only when
23267 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23268
23269 @end table
23270
23271 These @samp{-m} switches are supported in addition to the above
23272 on x86-64 processors in 64-bit environments.
23273
23274 @table @gcctabopt
23275 @item -m32
23276 @itemx -m64
23277 @itemx -mx32
23278 @itemx -m16
23279 @opindex m32
23280 @opindex m64
23281 @opindex mx32
23282 @opindex m16
23283 Generate code for a 16-bit, 32-bit or 64-bit environment.
23284 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23285 to 32 bits, and
23286 generates code that runs on any i386 system.
23287
23288 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23289 types to 64 bits, and generates code for the x86-64 architecture.
23290 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23291 and @option{-mdynamic-no-pic} options.
23292
23293 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23294 to 32 bits, and
23295 generates code for the x86-64 architecture.
23296
23297 The @option{-m16} option is the same as @option{-m32}, except for that
23298 it outputs the @code{.code16gcc} assembly directive at the beginning of
23299 the assembly output so that the binary can run in 16-bit mode.
23300
23301 @item -mno-red-zone
23302 @opindex mno-red-zone
23303 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
23304 by the x86-64 ABI; it is a 128-byte area beyond the location of the
23305 stack pointer that is not modified by signal or interrupt handlers
23306 and therefore can be used for temporary data without adjusting the stack
23307 pointer. The flag @option{-mno-red-zone} disables this red zone.
23308
23309 @item -mcmodel=small
23310 @opindex mcmodel=small
23311 Generate code for the small code model: the program and its symbols must
23312 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
23313 Programs can be statically or dynamically linked. This is the default
23314 code model.
23315
23316 @item -mcmodel=kernel
23317 @opindex mcmodel=kernel
23318 Generate code for the kernel code model. The kernel runs in the
23319 negative 2 GB of the address space.
23320 This model has to be used for Linux kernel code.
23321
23322 @item -mcmodel=medium
23323 @opindex mcmodel=medium
23324 Generate code for the medium model: the program is linked in the lower 2
23325 GB of the address space. Small symbols are also placed there. Symbols
23326 with sizes larger than @option{-mlarge-data-threshold} are put into
23327 large data or BSS sections and can be located above 2GB. Programs can
23328 be statically or dynamically linked.
23329
23330 @item -mcmodel=large
23331 @opindex mcmodel=large
23332 Generate code for the large model. This model makes no assumptions
23333 about addresses and sizes of sections.
23334
23335 @item -maddress-mode=long
23336 @opindex maddress-mode=long
23337 Generate code for long address mode. This is only supported for 64-bit
23338 and x32 environments. It is the default address mode for 64-bit
23339 environments.
23340
23341 @item -maddress-mode=short
23342 @opindex maddress-mode=short
23343 Generate code for short address mode. This is only supported for 32-bit
23344 and x32 environments. It is the default address mode for 32-bit and
23345 x32 environments.
23346 @end table
23347
23348 @node x86 Windows Options
23349 @subsection x86 Windows Options
23350 @cindex x86 Windows Options
23351 @cindex Windows Options for x86
23352
23353 These additional options are available for Microsoft Windows targets:
23354
23355 @table @gcctabopt
23356 @item -mconsole
23357 @opindex mconsole
23358 This option
23359 specifies that a console application is to be generated, by
23360 instructing the linker to set the PE header subsystem type
23361 required for console applications.
23362 This option is available for Cygwin and MinGW targets and is
23363 enabled by default on those targets.
23364
23365 @item -mdll
23366 @opindex mdll
23367 This option is available for Cygwin and MinGW targets. It
23368 specifies that a DLL---a dynamic link library---is to be
23369 generated, enabling the selection of the required runtime
23370 startup object and entry point.
23371
23372 @item -mnop-fun-dllimport
23373 @opindex mnop-fun-dllimport
23374 This option is available for Cygwin and MinGW targets. It
23375 specifies that the @code{dllimport} attribute should be ignored.
23376
23377 @item -mthread
23378 @opindex mthread
23379 This option is available for MinGW targets. It specifies
23380 that MinGW-specific thread support is to be used.
23381
23382 @item -municode
23383 @opindex municode
23384 This option is available for MinGW-w64 targets. It causes
23385 the @code{UNICODE} preprocessor macro to be predefined, and
23386 chooses Unicode-capable runtime startup code.
23387
23388 @item -mwin32
23389 @opindex mwin32
23390 This option is available for Cygwin and MinGW targets. It
23391 specifies that the typical Microsoft Windows predefined macros are to
23392 be set in the pre-processor, but does not influence the choice
23393 of runtime library/startup code.
23394
23395 @item -mwindows
23396 @opindex mwindows
23397 This option is available for Cygwin and MinGW targets. It
23398 specifies that a GUI application is to be generated by
23399 instructing the linker to set the PE header subsystem type
23400 appropriately.
23401
23402 @item -fno-set-stack-executable
23403 @opindex fno-set-stack-executable
23404 This option is available for MinGW targets. It specifies that
23405 the executable flag for the stack used by nested functions isn't
23406 set. This is necessary for binaries running in kernel mode of
23407 Microsoft Windows, as there the User32 API, which is used to set executable
23408 privileges, isn't available.
23409
23410 @item -fwritable-relocated-rdata
23411 @opindex fno-writable-relocated-rdata
23412 This option is available for MinGW and Cygwin targets. It specifies
23413 that relocated-data in read-only section is put into .data
23414 section. This is a necessary for older runtimes not supporting
23415 modification of .rdata sections for pseudo-relocation.
23416
23417 @item -mpe-aligned-commons
23418 @opindex mpe-aligned-commons
23419 This option is available for Cygwin and MinGW targets. It
23420 specifies that the GNU extension to the PE file format that
23421 permits the correct alignment of COMMON variables should be
23422 used when generating code. It is enabled by default if
23423 GCC detects that the target assembler found during configuration
23424 supports the feature.
23425 @end table
23426
23427 See also under @ref{x86 Options} for standard options.
23428
23429 @node Xstormy16 Options
23430 @subsection Xstormy16 Options
23431 @cindex Xstormy16 Options
23432
23433 These options are defined for Xstormy16:
23434
23435 @table @gcctabopt
23436 @item -msim
23437 @opindex msim
23438 Choose startup files and linker script suitable for the simulator.
23439 @end table
23440
23441 @node Xtensa Options
23442 @subsection Xtensa Options
23443 @cindex Xtensa Options
23444
23445 These options are supported for Xtensa targets:
23446
23447 @table @gcctabopt
23448 @item -mconst16
23449 @itemx -mno-const16
23450 @opindex mconst16
23451 @opindex mno-const16
23452 Enable or disable use of @code{CONST16} instructions for loading
23453 constant values. The @code{CONST16} instruction is currently not a
23454 standard option from Tensilica. When enabled, @code{CONST16}
23455 instructions are always used in place of the standard @code{L32R}
23456 instructions. The use of @code{CONST16} is enabled by default only if
23457 the @code{L32R} instruction is not available.
23458
23459 @item -mfused-madd
23460 @itemx -mno-fused-madd
23461 @opindex mfused-madd
23462 @opindex mno-fused-madd
23463 Enable or disable use of fused multiply/add and multiply/subtract
23464 instructions in the floating-point option. This has no effect if the
23465 floating-point option is not also enabled. Disabling fused multiply/add
23466 and multiply/subtract instructions forces the compiler to use separate
23467 instructions for the multiply and add/subtract operations. This may be
23468 desirable in some cases where strict IEEE 754-compliant results are
23469 required: the fused multiply add/subtract instructions do not round the
23470 intermediate result, thereby producing results with @emph{more} bits of
23471 precision than specified by the IEEE standard. Disabling fused multiply
23472 add/subtract instructions also ensures that the program output is not
23473 sensitive to the compiler's ability to combine multiply and add/subtract
23474 operations.
23475
23476 @item -mserialize-volatile
23477 @itemx -mno-serialize-volatile
23478 @opindex mserialize-volatile
23479 @opindex mno-serialize-volatile
23480 When this option is enabled, GCC inserts @code{MEMW} instructions before
23481 @code{volatile} memory references to guarantee sequential consistency.
23482 The default is @option{-mserialize-volatile}. Use
23483 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
23484
23485 @item -mforce-no-pic
23486 @opindex mforce-no-pic
23487 For targets, like GNU/Linux, where all user-mode Xtensa code must be
23488 position-independent code (PIC), this option disables PIC for compiling
23489 kernel code.
23490
23491 @item -mtext-section-literals
23492 @itemx -mno-text-section-literals
23493 @opindex mtext-section-literals
23494 @opindex mno-text-section-literals
23495 These options control the treatment of literal pools. The default is
23496 @option{-mno-text-section-literals}, which places literals in a separate
23497 section in the output file. This allows the literal pool to be placed
23498 in a data RAM/ROM, and it also allows the linker to combine literal
23499 pools from separate object files to remove redundant literals and
23500 improve code size. With @option{-mtext-section-literals}, the literals
23501 are interspersed in the text section in order to keep them as close as
23502 possible to their references. This may be necessary for large assembly
23503 files.
23504
23505 @item -mtarget-align
23506 @itemx -mno-target-align
23507 @opindex mtarget-align
23508 @opindex mno-target-align
23509 When this option is enabled, GCC instructs the assembler to
23510 automatically align instructions to reduce branch penalties at the
23511 expense of some code density. The assembler attempts to widen density
23512 instructions to align branch targets and the instructions following call
23513 instructions. If there are not enough preceding safe density
23514 instructions to align a target, no widening is performed. The
23515 default is @option{-mtarget-align}. These options do not affect the
23516 treatment of auto-aligned instructions like @code{LOOP}, which the
23517 assembler always aligns, either by widening density instructions or
23518 by inserting NOP instructions.
23519
23520 @item -mlongcalls
23521 @itemx -mno-longcalls
23522 @opindex mlongcalls
23523 @opindex mno-longcalls
23524 When this option is enabled, GCC instructs the assembler to translate
23525 direct calls to indirect calls unless it can determine that the target
23526 of a direct call is in the range allowed by the call instruction. This
23527 translation typically occurs for calls to functions in other source
23528 files. Specifically, the assembler translates a direct @code{CALL}
23529 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
23530 The default is @option{-mno-longcalls}. This option should be used in
23531 programs where the call target can potentially be out of range. This
23532 option is implemented in the assembler, not the compiler, so the
23533 assembly code generated by GCC still shows direct call
23534 instructions---look at the disassembled object code to see the actual
23535 instructions. Note that the assembler uses an indirect call for
23536 every cross-file call, not just those that really are out of range.
23537 @end table
23538
23539 @node zSeries Options
23540 @subsection zSeries Options
23541 @cindex zSeries options
23542
23543 These are listed under @xref{S/390 and zSeries Options}.
23544
23545 @node Code Gen Options
23546 @section Options for Code Generation Conventions
23547 @cindex code generation conventions
23548 @cindex options, code generation
23549 @cindex run-time options
23550
23551 These machine-independent options control the interface conventions
23552 used in code generation.
23553
23554 Most of them have both positive and negative forms; the negative form
23555 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
23556 one of the forms is listed---the one that is not the default. You
23557 can figure out the other form by either removing @samp{no-} or adding
23558 it.
23559
23560 @table @gcctabopt
23561 @item -fbounds-check
23562 @opindex fbounds-check
23563 For front ends that support it, generate additional code to check that
23564 indices used to access arrays are within the declared range. This is
23565 currently only supported by the Java and Fortran front ends, where
23566 this option defaults to true and false respectively.
23567
23568 @item -fstack-reuse=@var{reuse-level}
23569 @opindex fstack_reuse
23570 This option controls stack space reuse for user declared local/auto variables
23571 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
23572 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
23573 local variables and temporaries, @samp{named_vars} enables the reuse only for
23574 user defined local variables with names, and @samp{none} disables stack reuse
23575 completely. The default value is @samp{all}. The option is needed when the
23576 program extends the lifetime of a scoped local variable or a compiler generated
23577 temporary beyond the end point defined by the language. When a lifetime of
23578 a variable ends, and if the variable lives in memory, the optimizing compiler
23579 has the freedom to reuse its stack space with other temporaries or scoped
23580 local variables whose live range does not overlap with it. Legacy code extending
23581 local lifetime is likely to break with the stack reuse optimization.
23582
23583 For example,
23584
23585 @smallexample
23586 int *p;
23587 @{
23588 int local1;
23589
23590 p = &local1;
23591 local1 = 10;
23592 ....
23593 @}
23594 @{
23595 int local2;
23596 local2 = 20;
23597 ...
23598 @}
23599
23600 if (*p == 10) // out of scope use of local1
23601 @{
23602
23603 @}
23604 @end smallexample
23605
23606 Another example:
23607 @smallexample
23608
23609 struct A
23610 @{
23611 A(int k) : i(k), j(k) @{ @}
23612 int i;
23613 int j;
23614 @};
23615
23616 A *ap;
23617
23618 void foo(const A& ar)
23619 @{
23620 ap = &ar;
23621 @}
23622
23623 void bar()
23624 @{
23625 foo(A(10)); // temp object's lifetime ends when foo returns
23626
23627 @{
23628 A a(20);
23629 ....
23630 @}
23631 ap->i+= 10; // ap references out of scope temp whose space
23632 // is reused with a. What is the value of ap->i?
23633 @}
23634
23635 @end smallexample
23636
23637 The lifetime of a compiler generated temporary is well defined by the C++
23638 standard. When a lifetime of a temporary ends, and if the temporary lives
23639 in memory, the optimizing compiler has the freedom to reuse its stack
23640 space with other temporaries or scoped local variables whose live range
23641 does not overlap with it. However some of the legacy code relies on
23642 the behavior of older compilers in which temporaries' stack space is
23643 not reused, the aggressive stack reuse can lead to runtime errors. This
23644 option is used to control the temporary stack reuse optimization.
23645
23646 @item -ftrapv
23647 @opindex ftrapv
23648 This option generates traps for signed overflow on addition, subtraction,
23649 multiplication operations.
23650
23651 @item -fwrapv
23652 @opindex fwrapv
23653 This option instructs the compiler to assume that signed arithmetic
23654 overflow of addition, subtraction and multiplication wraps around
23655 using twos-complement representation. This flag enables some optimizations
23656 and disables others. This option is enabled by default for the Java
23657 front end, as required by the Java language specification.
23658
23659 @item -fexceptions
23660 @opindex fexceptions
23661 Enable exception handling. Generates extra code needed to propagate
23662 exceptions. For some targets, this implies GCC generates frame
23663 unwind information for all functions, which can produce significant data
23664 size overhead, although it does not affect execution. If you do not
23665 specify this option, GCC enables it by default for languages like
23666 C++ that normally require exception handling, and disables it for
23667 languages like C that do not normally require it. However, you may need
23668 to enable this option when compiling C code that needs to interoperate
23669 properly with exception handlers written in C++. You may also wish to
23670 disable this option if you are compiling older C++ programs that don't
23671 use exception handling.
23672
23673 @item -fnon-call-exceptions
23674 @opindex fnon-call-exceptions
23675 Generate code that allows trapping instructions to throw exceptions.
23676 Note that this requires platform-specific runtime support that does
23677 not exist everywhere. Moreover, it only allows @emph{trapping}
23678 instructions to throw exceptions, i.e.@: memory references or floating-point
23679 instructions. It does not allow exceptions to be thrown from
23680 arbitrary signal handlers such as @code{SIGALRM}.
23681
23682 @item -fdelete-dead-exceptions
23683 @opindex fdelete-dead-exceptions
23684 Consider that instructions that may throw exceptions but don't otherwise
23685 contribute to the execution of the program can be optimized away.
23686 This option is enabled by default for the Ada front end, as permitted by
23687 the Ada language specification.
23688 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
23689
23690 @item -funwind-tables
23691 @opindex funwind-tables
23692 Similar to @option{-fexceptions}, except that it just generates any needed
23693 static data, but does not affect the generated code in any other way.
23694 You normally do not need to enable this option; instead, a language processor
23695 that needs this handling enables it on your behalf.
23696
23697 @item -fasynchronous-unwind-tables
23698 @opindex fasynchronous-unwind-tables
23699 Generate unwind table in DWARF 2 format, if supported by target machine. The
23700 table is exact at each instruction boundary, so it can be used for stack
23701 unwinding from asynchronous events (such as debugger or garbage collector).
23702
23703 @item -fno-gnu-unique
23704 @opindex fno-gnu-unique
23705 On systems with recent GNU assembler and C library, the C++ compiler
23706 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
23707 of template static data members and static local variables in inline
23708 functions are unique even in the presence of @code{RTLD_LOCAL}; this
23709 is necessary to avoid problems with a library used by two different
23710 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
23711 therefore disagreeing with the other one about the binding of the
23712 symbol. But this causes @code{dlclose} to be ignored for affected
23713 DSOs; if your program relies on reinitialization of a DSO via
23714 @code{dlclose} and @code{dlopen}, you can use
23715 @option{-fno-gnu-unique}.
23716
23717 @item -fpcc-struct-return
23718 @opindex fpcc-struct-return
23719 Return ``short'' @code{struct} and @code{union} values in memory like
23720 longer ones, rather than in registers. This convention is less
23721 efficient, but it has the advantage of allowing intercallability between
23722 GCC-compiled files and files compiled with other compilers, particularly
23723 the Portable C Compiler (pcc).
23724
23725 The precise convention for returning structures in memory depends
23726 on the target configuration macros.
23727
23728 Short structures and unions are those whose size and alignment match
23729 that of some integer type.
23730
23731 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
23732 switch is not binary compatible with code compiled with the
23733 @option{-freg-struct-return} switch.
23734 Use it to conform to a non-default application binary interface.
23735
23736 @item -freg-struct-return
23737 @opindex freg-struct-return
23738 Return @code{struct} and @code{union} values in registers when possible.
23739 This is more efficient for small structures than
23740 @option{-fpcc-struct-return}.
23741
23742 If you specify neither @option{-fpcc-struct-return} nor
23743 @option{-freg-struct-return}, GCC defaults to whichever convention is
23744 standard for the target. If there is no standard convention, GCC
23745 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
23746 the principal compiler. In those cases, we can choose the standard, and
23747 we chose the more efficient register return alternative.
23748
23749 @strong{Warning:} code compiled with the @option{-freg-struct-return}
23750 switch is not binary compatible with code compiled with the
23751 @option{-fpcc-struct-return} switch.
23752 Use it to conform to a non-default application binary interface.
23753
23754 @item -fshort-enums
23755 @opindex fshort-enums
23756 Allocate to an @code{enum} type only as many bytes as it needs for the
23757 declared range of possible values. Specifically, the @code{enum} type
23758 is equivalent to the smallest integer type that has enough room.
23759
23760 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
23761 code that is not binary compatible with code generated without that switch.
23762 Use it to conform to a non-default application binary interface.
23763
23764 @item -fshort-double
23765 @opindex fshort-double
23766 Use the same size for @code{double} as for @code{float}.
23767
23768 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
23769 code that is not binary compatible with code generated without that switch.
23770 Use it to conform to a non-default application binary interface.
23771
23772 @item -fshort-wchar
23773 @opindex fshort-wchar
23774 Override the underlying type for @code{wchar_t} to be @code{short
23775 unsigned int} instead of the default for the target. This option is
23776 useful for building programs to run under WINE@.
23777
23778 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
23779 code that is not binary compatible with code generated without that switch.
23780 Use it to conform to a non-default application binary interface.
23781
23782 @item -fno-common
23783 @opindex fno-common
23784 In C code, controls the placement of uninitialized global variables.
23785 Unix C compilers have traditionally permitted multiple definitions of
23786 such variables in different compilation units by placing the variables
23787 in a common block.
23788 This is the behavior specified by @option{-fcommon}, and is the default
23789 for GCC on most targets.
23790 On the other hand, this behavior is not required by ISO C, and on some
23791 targets may carry a speed or code size penalty on variable references.
23792 The @option{-fno-common} option specifies that the compiler should place
23793 uninitialized global variables in the data section of the object file,
23794 rather than generating them as common blocks.
23795 This has the effect that if the same variable is declared
23796 (without @code{extern}) in two different compilations,
23797 you get a multiple-definition error when you link them.
23798 In this case, you must compile with @option{-fcommon} instead.
23799 Compiling with @option{-fno-common} is useful on targets for which
23800 it provides better performance, or if you wish to verify that the
23801 program will work on other systems that always treat uninitialized
23802 variable declarations this way.
23803
23804 @item -fno-ident
23805 @opindex fno-ident
23806 Ignore the @code{#ident} directive.
23807
23808 @item -finhibit-size-directive
23809 @opindex finhibit-size-directive
23810 Don't output a @code{.size} assembler directive, or anything else that
23811 would cause trouble if the function is split in the middle, and the
23812 two halves are placed at locations far apart in memory. This option is
23813 used when compiling @file{crtstuff.c}; you should not need to use it
23814 for anything else.
23815
23816 @item -fverbose-asm
23817 @opindex fverbose-asm
23818 Put extra commentary information in the generated assembly code to
23819 make it more readable. This option is generally only of use to those
23820 who actually need to read the generated assembly code (perhaps while
23821 debugging the compiler itself).
23822
23823 @option{-fno-verbose-asm}, the default, causes the
23824 extra information to be omitted and is useful when comparing two assembler
23825 files.
23826
23827 @item -frecord-gcc-switches
23828 @opindex frecord-gcc-switches
23829 This switch causes the command line used to invoke the
23830 compiler to be recorded into the object file that is being created.
23831 This switch is only implemented on some targets and the exact format
23832 of the recording is target and binary file format dependent, but it
23833 usually takes the form of a section containing ASCII text. This
23834 switch is related to the @option{-fverbose-asm} switch, but that
23835 switch only records information in the assembler output file as
23836 comments, so it never reaches the object file.
23837 See also @option{-grecord-gcc-switches} for another
23838 way of storing compiler options into the object file.
23839
23840 @item -fpic
23841 @opindex fpic
23842 @cindex global offset table
23843 @cindex PIC
23844 Generate position-independent code (PIC) suitable for use in a shared
23845 library, if supported for the target machine. Such code accesses all
23846 constant addresses through a global offset table (GOT)@. The dynamic
23847 loader resolves the GOT entries when the program starts (the dynamic
23848 loader is not part of GCC; it is part of the operating system). If
23849 the GOT size for the linked executable exceeds a machine-specific
23850 maximum size, you get an error message from the linker indicating that
23851 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
23852 instead. (These maximums are 8k on the SPARC and 32k
23853 on the m68k and RS/6000. The x86 has no such limit.)
23854
23855 Position-independent code requires special support, and therefore works
23856 only on certain machines. For the x86, GCC supports PIC for System V
23857 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
23858 position-independent.
23859
23860 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23861 are defined to 1.
23862
23863 @item -fPIC
23864 @opindex fPIC
23865 If supported for the target machine, emit position-independent code,
23866 suitable for dynamic linking and avoiding any limit on the size of the
23867 global offset table. This option makes a difference on the m68k,
23868 PowerPC and SPARC@.
23869
23870 Position-independent code requires special support, and therefore works
23871 only on certain machines.
23872
23873 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23874 are defined to 2.
23875
23876 @item -fpie
23877 @itemx -fPIE
23878 @opindex fpie
23879 @opindex fPIE
23880 These options are similar to @option{-fpic} and @option{-fPIC}, but
23881 generated position independent code can be only linked into executables.
23882 Usually these options are used when @option{-pie} GCC option is
23883 used during linking.
23884
23885 @option{-fpie} and @option{-fPIE} both define the macros
23886 @code{__pie__} and @code{__PIE__}. The macros have the value 1
23887 for @option{-fpie} and 2 for @option{-fPIE}.
23888
23889 @item -fno-plt
23890 @opindex fno-plt
23891 Do not use PLT for external function calls in position-independent code.
23892 Instead, load callee address at call site from GOT and branch to it.
23893 This leads to more efficient code by eliminating PLT stubs and exposing
23894 GOT load to optimizations. On architectures such as 32-bit x86 where
23895 PLT stubs expect GOT pointer in a specific register, this gives more
23896 register allocation freedom to the compiler. Lazy binding requires PLT:
23897 with @option{-fno-plt} all external symbols are resolved at load time.
23898
23899 Alternatively, function attribute @code{noplt} can be used to avoid PLT
23900 for calls to specific external functions by marking those functions with
23901 this attribute.
23902
23903 Additionally, a few targets also convert calls to those functions that are
23904 marked to not use the PLT to use the GOT instead for non-position independent
23905 code.
23906
23907 @item -fno-jump-tables
23908 @opindex fno-jump-tables
23909 Do not use jump tables for switch statements even where it would be
23910 more efficient than other code generation strategies. This option is
23911 of use in conjunction with @option{-fpic} or @option{-fPIC} for
23912 building code that forms part of a dynamic linker and cannot
23913 reference the address of a jump table. On some targets, jump tables
23914 do not require a GOT and this option is not needed.
23915
23916 @item -ffixed-@var{reg}
23917 @opindex ffixed
23918 Treat the register named @var{reg} as a fixed register; generated code
23919 should never refer to it (except perhaps as a stack pointer, frame
23920 pointer or in some other fixed role).
23921
23922 @var{reg} must be the name of a register. The register names accepted
23923 are machine-specific and are defined in the @code{REGISTER_NAMES}
23924 macro in the machine description macro file.
23925
23926 This flag does not have a negative form, because it specifies a
23927 three-way choice.
23928
23929 @item -fcall-used-@var{reg}
23930 @opindex fcall-used
23931 Treat the register named @var{reg} as an allocable register that is
23932 clobbered by function calls. It may be allocated for temporaries or
23933 variables that do not live across a call. Functions compiled this way
23934 do not save and restore the register @var{reg}.
23935
23936 It is an error to use this flag with the frame pointer or stack pointer.
23937 Use of this flag for other registers that have fixed pervasive roles in
23938 the machine's execution model produces disastrous results.
23939
23940 This flag does not have a negative form, because it specifies a
23941 three-way choice.
23942
23943 @item -fcall-saved-@var{reg}
23944 @opindex fcall-saved
23945 Treat the register named @var{reg} as an allocable register saved by
23946 functions. It may be allocated even for temporaries or variables that
23947 live across a call. Functions compiled this way save and restore
23948 the register @var{reg} if they use it.
23949
23950 It is an error to use this flag with the frame pointer or stack pointer.
23951 Use of this flag for other registers that have fixed pervasive roles in
23952 the machine's execution model produces disastrous results.
23953
23954 A different sort of disaster results from the use of this flag for
23955 a register in which function values may be returned.
23956
23957 This flag does not have a negative form, because it specifies a
23958 three-way choice.
23959
23960 @item -fpack-struct[=@var{n}]
23961 @opindex fpack-struct
23962 Without a value specified, pack all structure members together without
23963 holes. When a value is specified (which must be a small power of two), pack
23964 structure members according to this value, representing the maximum
23965 alignment (that is, objects with default alignment requirements larger than
23966 this are output potentially unaligned at the next fitting location.
23967
23968 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
23969 code that is not binary compatible with code generated without that switch.
23970 Additionally, it makes the code suboptimal.
23971 Use it to conform to a non-default application binary interface.
23972
23973 @item -finstrument-functions
23974 @opindex finstrument-functions
23975 Generate instrumentation calls for entry and exit to functions. Just
23976 after function entry and just before function exit, the following
23977 profiling functions are called with the address of the current
23978 function and its call site. (On some platforms,
23979 @code{__builtin_return_address} does not work beyond the current
23980 function, so the call site information may not be available to the
23981 profiling functions otherwise.)
23982
23983 @smallexample
23984 void __cyg_profile_func_enter (void *this_fn,
23985 void *call_site);
23986 void __cyg_profile_func_exit (void *this_fn,
23987 void *call_site);
23988 @end smallexample
23989
23990 The first argument is the address of the start of the current function,
23991 which may be looked up exactly in the symbol table.
23992
23993 This instrumentation is also done for functions expanded inline in other
23994 functions. The profiling calls indicate where, conceptually, the
23995 inline function is entered and exited. This means that addressable
23996 versions of such functions must be available. If all your uses of a
23997 function are expanded inline, this may mean an additional expansion of
23998 code size. If you use @code{extern inline} in your C code, an
23999 addressable version of such functions must be provided. (This is
24000 normally the case anyway, but if you get lucky and the optimizer always
24001 expands the functions inline, you might have gotten away without
24002 providing static copies.)
24003
24004 A function may be given the attribute @code{no_instrument_function}, in
24005 which case this instrumentation is not done. This can be used, for
24006 example, for the profiling functions listed above, high-priority
24007 interrupt routines, and any functions from which the profiling functions
24008 cannot safely be called (perhaps signal handlers, if the profiling
24009 routines generate output or allocate memory).
24010
24011 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
24012 @opindex finstrument-functions-exclude-file-list
24013
24014 Set the list of functions that are excluded from instrumentation (see
24015 the description of @option{-finstrument-functions}). If the file that
24016 contains a function definition matches with one of @var{file}, then
24017 that function is not instrumented. The match is done on substrings:
24018 if the @var{file} parameter is a substring of the file name, it is
24019 considered to be a match.
24020
24021 For example:
24022
24023 @smallexample
24024 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
24025 @end smallexample
24026
24027 @noindent
24028 excludes any inline function defined in files whose pathnames
24029 contain @file{/bits/stl} or @file{include/sys}.
24030
24031 If, for some reason, you want to include letter @samp{,} in one of
24032 @var{sym}, write @samp{\,}. For example,
24033 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
24034 (note the single quote surrounding the option).
24035
24036 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
24037 @opindex finstrument-functions-exclude-function-list
24038
24039 This is similar to @option{-finstrument-functions-exclude-file-list},
24040 but this option sets the list of function names to be excluded from
24041 instrumentation. The function name to be matched is its user-visible
24042 name, such as @code{vector<int> blah(const vector<int> &)}, not the
24043 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
24044 match is done on substrings: if the @var{sym} parameter is a substring
24045 of the function name, it is considered to be a match. For C99 and C++
24046 extended identifiers, the function name must be given in UTF-8, not
24047 using universal character names.
24048
24049 @item -fstack-check
24050 @opindex fstack-check
24051 Generate code to verify that you do not go beyond the boundary of the
24052 stack. You should specify this flag if you are running in an
24053 environment with multiple threads, but you only rarely need to specify it in
24054 a single-threaded environment since stack overflow is automatically
24055 detected on nearly all systems if there is only one stack.
24056
24057 Note that this switch does not actually cause checking to be done; the
24058 operating system or the language runtime must do that. The switch causes
24059 generation of code to ensure that they see the stack being extended.
24060
24061 You can additionally specify a string parameter: @samp{no} means no
24062 checking, @samp{generic} means force the use of old-style checking,
24063 @samp{specific} means use the best checking method and is equivalent
24064 to bare @option{-fstack-check}.
24065
24066 Old-style checking is a generic mechanism that requires no specific
24067 target support in the compiler but comes with the following drawbacks:
24068
24069 @enumerate
24070 @item
24071 Modified allocation strategy for large objects: they are always
24072 allocated dynamically if their size exceeds a fixed threshold.
24073
24074 @item
24075 Fixed limit on the size of the static frame of functions: when it is
24076 topped by a particular function, stack checking is not reliable and
24077 a warning is issued by the compiler.
24078
24079 @item
24080 Inefficiency: because of both the modified allocation strategy and the
24081 generic implementation, code performance is hampered.
24082 @end enumerate
24083
24084 Note that old-style stack checking is also the fallback method for
24085 @samp{specific} if no target support has been added in the compiler.
24086
24087 @item -fstack-limit-register=@var{reg}
24088 @itemx -fstack-limit-symbol=@var{sym}
24089 @itemx -fno-stack-limit
24090 @opindex fstack-limit-register
24091 @opindex fstack-limit-symbol
24092 @opindex fno-stack-limit
24093 Generate code to ensure that the stack does not grow beyond a certain value,
24094 either the value of a register or the address of a symbol. If a larger
24095 stack is required, a signal is raised at run time. For most targets,
24096 the signal is raised before the stack overruns the boundary, so
24097 it is possible to catch the signal without taking special precautions.
24098
24099 For instance, if the stack starts at absolute address @samp{0x80000000}
24100 and grows downwards, you can use the flags
24101 @option{-fstack-limit-symbol=__stack_limit} and
24102 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
24103 of 128KB@. Note that this may only work with the GNU linker.
24104
24105 @item -fsplit-stack
24106 @opindex fsplit-stack
24107 Generate code to automatically split the stack before it overflows.
24108 The resulting program has a discontiguous stack which can only
24109 overflow if the program is unable to allocate any more memory. This
24110 is most useful when running threaded programs, as it is no longer
24111 necessary to calculate a good stack size to use for each thread. This
24112 is currently only implemented for the x86 targets running
24113 GNU/Linux.
24114
24115 When code compiled with @option{-fsplit-stack} calls code compiled
24116 without @option{-fsplit-stack}, there may not be much stack space
24117 available for the latter code to run. If compiling all code,
24118 including library code, with @option{-fsplit-stack} is not an option,
24119 then the linker can fix up these calls so that the code compiled
24120 without @option{-fsplit-stack} always has a large stack. Support for
24121 this is implemented in the gold linker in GNU binutils release 2.21
24122 and later.
24123
24124 @item -fleading-underscore
24125 @opindex fleading-underscore
24126 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
24127 change the way C symbols are represented in the object file. One use
24128 is to help link with legacy assembly code.
24129
24130 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
24131 generate code that is not binary compatible with code generated without that
24132 switch. Use it to conform to a non-default application binary interface.
24133 Not all targets provide complete support for this switch.
24134
24135 @item -ftls-model=@var{model}
24136 @opindex ftls-model
24137 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
24138 The @var{model} argument should be one of @samp{global-dynamic},
24139 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
24140 Note that the choice is subject to optimization: the compiler may use
24141 a more efficient model for symbols not visible outside of the translation
24142 unit, or if @option{-fpic} is not given on the command line.
24143
24144 The default without @option{-fpic} is @samp{initial-exec}; with
24145 @option{-fpic} the default is @samp{global-dynamic}.
24146
24147 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
24148 @opindex fvisibility
24149 Set the default ELF image symbol visibility to the specified option---all
24150 symbols are marked with this unless overridden within the code.
24151 Using this feature can very substantially improve linking and
24152 load times of shared object libraries, produce more optimized
24153 code, provide near-perfect API export and prevent symbol clashes.
24154 It is @strong{strongly} recommended that you use this in any shared objects
24155 you distribute.
24156
24157 Despite the nomenclature, @samp{default} always means public; i.e.,
24158 available to be linked against from outside the shared object.
24159 @samp{protected} and @samp{internal} are pretty useless in real-world
24160 usage so the only other commonly used option is @samp{hidden}.
24161 The default if @option{-fvisibility} isn't specified is
24162 @samp{default}, i.e., make every symbol public.
24163
24164 A good explanation of the benefits offered by ensuring ELF
24165 symbols have the correct visibility is given by ``How To Write
24166 Shared Libraries'' by Ulrich Drepper (which can be found at
24167 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
24168 solution made possible by this option to marking things hidden when
24169 the default is public is to make the default hidden and mark things
24170 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
24171 and @code{__attribute__ ((visibility("default")))} instead of
24172 @code{__declspec(dllexport)} you get almost identical semantics with
24173 identical syntax. This is a great boon to those working with
24174 cross-platform projects.
24175
24176 For those adding visibility support to existing code, you may find
24177 @code{#pragma GCC visibility} of use. This works by you enclosing
24178 the declarations you wish to set visibility for with (for example)
24179 @code{#pragma GCC visibility push(hidden)} and
24180 @code{#pragma GCC visibility pop}.
24181 Bear in mind that symbol visibility should be viewed @strong{as
24182 part of the API interface contract} and thus all new code should
24183 always specify visibility when it is not the default; i.e., declarations
24184 only for use within the local DSO should @strong{always} be marked explicitly
24185 as hidden as so to avoid PLT indirection overheads---making this
24186 abundantly clear also aids readability and self-documentation of the code.
24187 Note that due to ISO C++ specification requirements, @code{operator new} and
24188 @code{operator delete} must always be of default visibility.
24189
24190 Be aware that headers from outside your project, in particular system
24191 headers and headers from any other library you use, may not be
24192 expecting to be compiled with visibility other than the default. You
24193 may need to explicitly say @code{#pragma GCC visibility push(default)}
24194 before including any such headers.
24195
24196 @code{extern} declarations are not affected by @option{-fvisibility}, so
24197 a lot of code can be recompiled with @option{-fvisibility=hidden} with
24198 no modifications. However, this means that calls to @code{extern}
24199 functions with no explicit visibility use the PLT, so it is more
24200 effective to use @code{__attribute ((visibility))} and/or
24201 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
24202 declarations should be treated as hidden.
24203
24204 Note that @option{-fvisibility} does affect C++ vague linkage
24205 entities. This means that, for instance, an exception class that is
24206 be thrown between DSOs must be explicitly marked with default
24207 visibility so that the @samp{type_info} nodes are unified between
24208 the DSOs.
24209
24210 An overview of these techniques, their benefits and how to use them
24211 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
24212
24213 @item -fstrict-volatile-bitfields
24214 @opindex fstrict-volatile-bitfields
24215 This option should be used if accesses to volatile bit-fields (or other
24216 structure fields, although the compiler usually honors those types
24217 anyway) should use a single access of the width of the
24218 field's type, aligned to a natural alignment if possible. For
24219 example, targets with memory-mapped peripheral registers might require
24220 all such accesses to be 16 bits wide; with this flag you can
24221 declare all peripheral bit-fields as @code{unsigned short} (assuming short
24222 is 16 bits on these targets) to force GCC to use 16-bit accesses
24223 instead of, perhaps, a more efficient 32-bit access.
24224
24225 If this option is disabled, the compiler uses the most efficient
24226 instruction. In the previous example, that might be a 32-bit load
24227 instruction, even though that accesses bytes that do not contain
24228 any portion of the bit-field, or memory-mapped registers unrelated to
24229 the one being updated.
24230
24231 In some cases, such as when the @code{packed} attribute is applied to a
24232 structure field, it may not be possible to access the field with a single
24233 read or write that is correctly aligned for the target machine. In this
24234 case GCC falls back to generating multiple accesses rather than code that
24235 will fault or truncate the result at run time.
24236
24237 Note: Due to restrictions of the C/C++11 memory model, write accesses are
24238 not allowed to touch non bit-field members. It is therefore recommended
24239 to define all bits of the field's type as bit-field members.
24240
24241 The default value of this option is determined by the application binary
24242 interface for the target processor.
24243
24244 @item -fsync-libcalls
24245 @opindex fsync-libcalls
24246 This option controls whether any out-of-line instance of the @code{__sync}
24247 family of functions may be used to implement the C++11 @code{__atomic}
24248 family of functions.
24249
24250 The default value of this option is enabled, thus the only useful form
24251 of the option is @option{-fno-sync-libcalls}. This option is used in
24252 the implementation of the @file{libatomic} runtime library.
24253
24254 @end table
24255
24256 @c man end
24257
24258 @node Environment Variables
24259 @section Environment Variables Affecting GCC
24260 @cindex environment variables
24261
24262 @c man begin ENVIRONMENT
24263 This section describes several environment variables that affect how GCC
24264 operates. Some of them work by specifying directories or prefixes to use
24265 when searching for various kinds of files. Some are used to specify other
24266 aspects of the compilation environment.
24267
24268 Note that you can also specify places to search using options such as
24269 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
24270 take precedence over places specified using environment variables, which
24271 in turn take precedence over those specified by the configuration of GCC@.
24272 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24273 GNU Compiler Collection (GCC) Internals}.
24274
24275 @table @env
24276 @item LANG
24277 @itemx LC_CTYPE
24278 @c @itemx LC_COLLATE
24279 @itemx LC_MESSAGES
24280 @c @itemx LC_MONETARY
24281 @c @itemx LC_NUMERIC
24282 @c @itemx LC_TIME
24283 @itemx LC_ALL
24284 @findex LANG
24285 @findex LC_CTYPE
24286 @c @findex LC_COLLATE
24287 @findex LC_MESSAGES
24288 @c @findex LC_MONETARY
24289 @c @findex LC_NUMERIC
24290 @c @findex LC_TIME
24291 @findex LC_ALL
24292 @cindex locale
24293 These environment variables control the way that GCC uses
24294 localization information which allows GCC to work with different
24295 national conventions. GCC inspects the locale categories
24296 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24297 so. These locale categories can be set to any value supported by your
24298 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
24299 Kingdom encoded in UTF-8.
24300
24301 The @env{LC_CTYPE} environment variable specifies character
24302 classification. GCC uses it to determine the character boundaries in
24303 a string; this is needed for some multibyte encodings that contain quote
24304 and escape characters that are otherwise interpreted as a string
24305 end or escape.
24306
24307 The @env{LC_MESSAGES} environment variable specifies the language to
24308 use in diagnostic messages.
24309
24310 If the @env{LC_ALL} environment variable is set, it overrides the value
24311 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24312 and @env{LC_MESSAGES} default to the value of the @env{LANG}
24313 environment variable. If none of these variables are set, GCC
24314 defaults to traditional C English behavior.
24315
24316 @item TMPDIR
24317 @findex TMPDIR
24318 If @env{TMPDIR} is set, it specifies the directory to use for temporary
24319 files. GCC uses temporary files to hold the output of one stage of
24320 compilation which is to be used as input to the next stage: for example,
24321 the output of the preprocessor, which is the input to the compiler
24322 proper.
24323
24324 @item GCC_COMPARE_DEBUG
24325 @findex GCC_COMPARE_DEBUG
24326 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24327 @option{-fcompare-debug} to the compiler driver. See the documentation
24328 of this option for more details.
24329
24330 @item GCC_EXEC_PREFIX
24331 @findex GCC_EXEC_PREFIX
24332 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24333 names of the subprograms executed by the compiler. No slash is added
24334 when this prefix is combined with the name of a subprogram, but you can
24335 specify a prefix that ends with a slash if you wish.
24336
24337 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24338 an appropriate prefix to use based on the pathname it is invoked with.
24339
24340 If GCC cannot find the subprogram using the specified prefix, it
24341 tries looking in the usual places for the subprogram.
24342
24343 The default value of @env{GCC_EXEC_PREFIX} is
24344 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24345 the installed compiler. In many cases @var{prefix} is the value
24346 of @code{prefix} when you ran the @file{configure} script.
24347
24348 Other prefixes specified with @option{-B} take precedence over this prefix.
24349
24350 This prefix is also used for finding files such as @file{crt0.o} that are
24351 used for linking.
24352
24353 In addition, the prefix is used in an unusual way in finding the
24354 directories to search for header files. For each of the standard
24355 directories whose name normally begins with @samp{/usr/local/lib/gcc}
24356 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24357 replacing that beginning with the specified prefix to produce an
24358 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
24359 @file{foo/bar} just before it searches the standard directory
24360 @file{/usr/local/lib/bar}.
24361 If a standard directory begins with the configured
24362 @var{prefix} then the value of @var{prefix} is replaced by
24363 @env{GCC_EXEC_PREFIX} when looking for header files.
24364
24365 @item COMPILER_PATH
24366 @findex COMPILER_PATH
24367 The value of @env{COMPILER_PATH} is a colon-separated list of
24368 directories, much like @env{PATH}. GCC tries the directories thus
24369 specified when searching for subprograms, if it can't find the
24370 subprograms using @env{GCC_EXEC_PREFIX}.
24371
24372 @item LIBRARY_PATH
24373 @findex LIBRARY_PATH
24374 The value of @env{LIBRARY_PATH} is a colon-separated list of
24375 directories, much like @env{PATH}. When configured as a native compiler,
24376 GCC tries the directories thus specified when searching for special
24377 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking
24378 using GCC also uses these directories when searching for ordinary
24379 libraries for the @option{-l} option (but directories specified with
24380 @option{-L} come first).
24381
24382 @item LANG
24383 @findex LANG
24384 @cindex locale definition
24385 This variable is used to pass locale information to the compiler. One way in
24386 which this information is used is to determine the character set to be used
24387 when character literals, string literals and comments are parsed in C and C++.
24388 When the compiler is configured to allow multibyte characters,
24389 the following values for @env{LANG} are recognized:
24390
24391 @table @samp
24392 @item C-JIS
24393 Recognize JIS characters.
24394 @item C-SJIS
24395 Recognize SJIS characters.
24396 @item C-EUCJP
24397 Recognize EUCJP characters.
24398 @end table
24399
24400 If @env{LANG} is not defined, or if it has some other value, then the
24401 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24402 recognize and translate multibyte characters.
24403 @end table
24404
24405 @noindent
24406 Some additional environment variables affect the behavior of the
24407 preprocessor.
24408
24409 @include cppenv.texi
24410
24411 @c man end
24412
24413 @node Precompiled Headers
24414 @section Using Precompiled Headers
24415 @cindex precompiled headers
24416 @cindex speed of compilation
24417
24418 Often large projects have many header files that are included in every
24419 source file. The time the compiler takes to process these header files
24420 over and over again can account for nearly all of the time required to
24421 build the project. To make builds faster, GCC allows you to
24422 @dfn{precompile} a header file.
24423
24424 To create a precompiled header file, simply compile it as you would any
24425 other file, if necessary using the @option{-x} option to make the driver
24426 treat it as a C or C++ header file. You may want to use a
24427 tool like @command{make} to keep the precompiled header up-to-date when
24428 the headers it contains change.
24429
24430 A precompiled header file is searched for when @code{#include} is
24431 seen in the compilation. As it searches for the included file
24432 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24433 compiler looks for a precompiled header in each directory just before it
24434 looks for the include file in that directory. The name searched for is
24435 the name specified in the @code{#include} with @samp{.gch} appended. If
24436 the precompiled header file can't be used, it is ignored.
24437
24438 For instance, if you have @code{#include "all.h"}, and you have
24439 @file{all.h.gch} in the same directory as @file{all.h}, then the
24440 precompiled header file is used if possible, and the original
24441 header is used otherwise.
24442
24443 Alternatively, you might decide to put the precompiled header file in a
24444 directory and use @option{-I} to ensure that directory is searched
24445 before (or instead of) the directory containing the original header.
24446 Then, if you want to check that the precompiled header file is always
24447 used, you can put a file of the same name as the original header in this
24448 directory containing an @code{#error} command.
24449
24450 This also works with @option{-include}. So yet another way to use
24451 precompiled headers, good for projects not designed with precompiled
24452 header files in mind, is to simply take most of the header files used by
24453 a project, include them from another header file, precompile that header
24454 file, and @option{-include} the precompiled header. If the header files
24455 have guards against multiple inclusion, they are skipped because
24456 they've already been included (in the precompiled header).
24457
24458 If you need to precompile the same header file for different
24459 languages, targets, or compiler options, you can instead make a
24460 @emph{directory} named like @file{all.h.gch}, and put each precompiled
24461 header in the directory, perhaps using @option{-o}. It doesn't matter
24462 what you call the files in the directory; every precompiled header in
24463 the directory is considered. The first precompiled header
24464 encountered in the directory that is valid for this compilation is
24465 used; they're searched in no particular order.
24466
24467 There are many other possibilities, limited only by your imagination,
24468 good sense, and the constraints of your build system.
24469
24470 A precompiled header file can be used only when these conditions apply:
24471
24472 @itemize
24473 @item
24474 Only one precompiled header can be used in a particular compilation.
24475
24476 @item
24477 A precompiled header can't be used once the first C token is seen. You
24478 can have preprocessor directives before a precompiled header; you cannot
24479 include a precompiled header from inside another header.
24480
24481 @item
24482 The precompiled header file must be produced for the same language as
24483 the current compilation. You can't use a C precompiled header for a C++
24484 compilation.
24485
24486 @item
24487 The precompiled header file must have been produced by the same compiler
24488 binary as the current compilation is using.
24489
24490 @item
24491 Any macros defined before the precompiled header is included must
24492 either be defined in the same way as when the precompiled header was
24493 generated, or must not affect the precompiled header, which usually
24494 means that they don't appear in the precompiled header at all.
24495
24496 The @option{-D} option is one way to define a macro before a
24497 precompiled header is included; using a @code{#define} can also do it.
24498 There are also some options that define macros implicitly, like
24499 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
24500 defined this way.
24501
24502 @item If debugging information is output when using the precompiled
24503 header, using @option{-g} or similar, the same kind of debugging information
24504 must have been output when building the precompiled header. However,
24505 a precompiled header built using @option{-g} can be used in a compilation
24506 when no debugging information is being output.
24507
24508 @item The same @option{-m} options must generally be used when building
24509 and using the precompiled header. @xref{Submodel Options},
24510 for any cases where this rule is relaxed.
24511
24512 @item Each of the following options must be the same when building and using
24513 the precompiled header:
24514
24515 @gccoptlist{-fexceptions}
24516
24517 @item
24518 Some other command-line options starting with @option{-f},
24519 @option{-p}, or @option{-O} must be defined in the same way as when
24520 the precompiled header was generated. At present, it's not clear
24521 which options are safe to change and which are not; the safest choice
24522 is to use exactly the same options when generating and using the
24523 precompiled header. The following are known to be safe:
24524
24525 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
24526 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
24527 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
24528 -pedantic-errors}
24529
24530 @end itemize
24531
24532 For all of these except the last, the compiler automatically
24533 ignores the precompiled header if the conditions aren't met. If you
24534 find an option combination that doesn't work and doesn't cause the
24535 precompiled header to be ignored, please consider filing a bug report,
24536 see @ref{Bugs}.
24537
24538 If you do use differing options when generating and using the
24539 precompiled header, the actual behavior is a mixture of the
24540 behavior for the options. For instance, if you use @option{-g} to
24541 generate the precompiled header but not when using it, you may or may
24542 not get debugging information for routines in the precompiled header.