loop splitting
[gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2016 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2016 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 @c man end
125
126 @xref{Option Index}, for an index to GCC's options.
127
128 @menu
129 * Option Summary:: Brief list of all options, without explanations.
130 * Overall Options:: Controlling the kind of output:
131 an executable, object files, assembler files,
132 or preprocessed source.
133 * Invoking G++:: Compiling C++ programs.
134 * C Dialect Options:: Controlling the variant of C language compiled.
135 * C++ Dialect Options:: Variations on C++.
136 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
137 and Objective-C++.
138 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
139 be formatted.
140 * Warning Options:: How picky should the compiler be?
141 * Debugging Options:: Producing debuggable code.
142 * Optimize Options:: How much optimization?
143 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
144 * Preprocessor Options:: Controlling header files and macro definitions.
145 Also, getting dependency information for Make.
146 * Assembler Options:: Passing options to the assembler.
147 * Link Options:: Specifying libraries and so on.
148 * Directory Options:: Where to find header files and libraries.
149 Where to find the compiler executable files.
150 * Code Gen Options:: Specifying conventions for function calls, data layout
151 and register usage.
152 * Developer Options:: Printing GCC configuration info, statistics, and
153 debugging dumps.
154 * Submodel Options:: Target-specific options, such as compiling for a
155 specific processor variant.
156 * Spec Files:: How to pass switches to sub-processes.
157 * Environment Variables:: Env vars that affect GCC.
158 * Precompiled Headers:: Compiling a header once, and using it many times.
159 @end menu
160
161 @c man begin OPTIONS
162
163 @node Option Summary
164 @section Option Summary
165
166 Here is a summary of all the options, grouped by type. Explanations are
167 in the following sections.
168
169 @table @emph
170 @item Overall Options
171 @xref{Overall Options,,Options Controlling the Kind of Output}.
172 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
173 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
174 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
175 @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
176 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
177
178 @item C Language Options
179 @xref{C Dialect Options,,Options Controlling C Dialect}.
180 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
181 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
182 -fno-asm -fno-builtin -fno-builtin-@var{function} @gol
183 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
184 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness}
185 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
186 -fsigned-bitfields -fsigned-char @gol
187 -funsigned-bitfields -funsigned-char @gol
188 -trigraphs -traditional -traditional-cpp}
189
190 @item C++ Language Options
191 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
192 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
193 -faligned-new=@var{n} -fargs-in-order=@var{n} -fcheck-new @gol
194 -fconstexpr-depth=@var{n} -fconstexpr-loop-limit=@var{n} @gol
195 -ffriend-injection @gol
196 -fno-elide-constructors @gol
197 -fno-enforce-eh-specs @gol
198 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
199 -fno-implicit-templates @gol
200 -fno-implicit-inline-templates @gol
201 -fno-implement-inlines -fms-extensions @gol
202 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
203 -fno-optional-diags -fpermissive @gol
204 -fno-pretty-templates @gol
205 -frepo -fno-rtti -fsized-deallocation @gol
206 -ftemplate-backtrace-limit=@var{n} @gol
207 -ftemplate-depth=@var{n} @gol
208 -fno-threadsafe-statics -fuse-cxa-atexit @gol
209 -fno-weak -nostdinc++ @gol
210 -fvisibility-inlines-hidden @gol
211 -fvisibility-ms-compat @gol
212 -fext-numeric-literals @gol
213 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
214 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
215 -Wnamespaces -Wnarrowing @gol
216 -Wnoexcept -Wnon-virtual-dtor -Wreorder -Wregister @gol
217 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
218 -Wno-non-template-friend -Wold-style-cast @gol
219 -Woverloaded-virtual -Wno-pmf-conversions @gol
220 -Wsign-promo -Wvirtual-inheritance}
221
222 @item Objective-C and Objective-C++ Language Options
223 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
224 Objective-C and Objective-C++ Dialects}.
225 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
226 -fgnu-runtime -fnext-runtime @gol
227 -fno-nil-receivers @gol
228 -fobjc-abi-version=@var{n} @gol
229 -fobjc-call-cxx-cdtors @gol
230 -fobjc-direct-dispatch @gol
231 -fobjc-exceptions @gol
232 -fobjc-gc @gol
233 -fobjc-nilcheck @gol
234 -fobjc-std=objc1 @gol
235 -fno-local-ivars @gol
236 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
237 -freplace-objc-classes @gol
238 -fzero-link @gol
239 -gen-decls @gol
240 -Wassign-intercept @gol
241 -Wno-protocol -Wselector @gol
242 -Wstrict-selector-match @gol
243 -Wundeclared-selector}
244
245 @item Diagnostic Message Formatting Options
246 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
247 @gccoptlist{-fmessage-length=@var{n} @gol
248 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
249 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
250 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
251 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch}
252
253 @item Warning Options
254 @xref{Warning Options,,Options to Request or Suppress Warnings}.
255 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
256 -pedantic-errors @gol
257 -w -Wextra -Wall -Waddress -Waggregate-return @gol
258 -Walloca -Walloca-larger-than=@var{n} @gol
259 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
260 -Wno-attributes -Wbool-compare -Wbool-operation @gol
261 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
262 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
263 -Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported @gol
264 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
265 -Wdelete-incomplete @gol
266 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
267 -Wdisabled-optimization @gol
268 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
269 -Wno-div-by-zero -Wdouble-promotion -Wduplicated-cond @gol
270 -Wempty-body -Wenum-compare -Wno-endif-labels @gol
271 -Werror -Werror=* -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
272 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-length=@var{n} @gol
273 -Wformat-nonliteral @gol
274 -Wformat-security -Wformat-signedness -Wformat-y2k -Wframe-address @gol
275 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
276 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
277 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
278 -Wimplicit-function-declaration -Wimplicit-int @gol
279 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
280 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
281 -Winvalid-pch -Wlarger-than=@var{len} @gol
282 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
283 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
284 -Wmisleading-indentation -Wmissing-braces @gol
285 -Wmissing-field-initializers -Wmissing-include-dirs @gol
286 -Wno-multichar -Wnonnull -Wnonnull-compare @gol
287 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
288 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
289 -Woverride-init-side-effects -Woverlength-strings @gol
290 -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
291 -Wparentheses -Wno-pedantic-ms-format @gol
292 -Wplacement-new -Wplacement-new=@var{n} @gol
293 -Wpointer-arith -Wno-pointer-to-int-cast @gol
294 -Wno-pragmas -Wredundant-decls -Wno-return-local-addr @gol
295 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
296 -Wshift-overflow -Wshift-overflow=@var{n} @gol
297 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
298 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
299 -Wno-scalar-storage-order @gol
300 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
301 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
302 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
303 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
304 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
305 -Wmissing-format-attribute -Wsubobject-linkage @gol
306 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
307 -Wswitch-unreachable -Wsync-nand @gol
308 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
309 -Wtype-limits -Wundef @gol
310 -Wuninitialized -Wunknown-pragmas -Wunsafe-loop-optimizations @gol
311 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
312 -Wunused-label -Wunused-local-typedefs -Wunused-parameter @gol
313 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
314 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
315 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
316 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
317 -Wvla -Wvla-larger-than=@var{n} -Wvolatile-register-var -Wwrite-strings @gol
318 -Wzero-as-null-pointer-constant -Whsa}
319
320 @item C and Objective-C-only Warning Options
321 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
322 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
323 -Wold-style-declaration -Wold-style-definition @gol
324 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
325 -Wdeclaration-after-statement -Wpointer-sign}
326
327 @item Debugging Options
328 @xref{Debugging Options,,Options for Debugging Your Program}.
329 @gccoptlist{-g -g@var{level} -gcoff -gdwarf -gdwarf-@var{version} @gol
330 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
331 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
332 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
333 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
334 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
335 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
336 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
337 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
338 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
339 -fvar-tracking -fvar-tracking-assignments}
340
341 @item Optimization Options
342 @xref{Optimize Options,,Options that Control Optimization}.
343 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
344 -falign-jumps[=@var{n}] @gol
345 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
346 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
347 -fauto-inc-dec -fbranch-probabilities @gol
348 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
349 -fbtr-bb-exclusive -fcaller-saves @gol
350 -fcombine-stack-adjustments -fconserve-stack @gol
351 -fcompare-elim -fcprop-registers -fcrossjumping @gol
352 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
353 -fcx-limited-range @gol
354 -fdata-sections -fdce -fdelayed-branch @gol
355 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
356 -fdevirtualize-at-ltrans -fdse @gol
357 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
358 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
359 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
360 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
361 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
362 -fif-conversion2 -findirect-inlining @gol
363 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
364 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment -fipa-bit-cp @gol
365 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
366 -fira-algorithm=@var{algorithm} @gol
367 -fira-region=@var{region} -fira-hoist-pressure @gol
368 -fira-loop-pressure -fno-ira-share-save-slots @gol
369 -fno-ira-share-spill-slots @gol
370 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
371 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
372 -fkeep-static-consts -flive-range-shrinkage @gol
373 -floop-block -floop-interchange -floop-strip-mine @gol
374 -floop-unroll-and-jam -floop-nest-optimize @gol
375 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
376 -flto-partition=@var{alg} -fmerge-all-constants @gol
377 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
378 -fmove-loop-invariants -fno-branch-count-reg @gol
379 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
380 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
381 -fno-peephole2 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
382 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
383 -fomit-frame-pointer -foptimize-sibling-calls @gol
384 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
385 -fprefetch-loop-arrays -fprintf-return-value @gol
386 -fprofile-correction @gol
387 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
388 -fprofile-reorder-functions @gol
389 -freciprocal-math -free -frename-registers -freorder-blocks @gol
390 -freorder-blocks-algorithm=@var{algorithm} @gol
391 -freorder-blocks-and-partition -freorder-functions @gol
392 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
393 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
394 -fsched-spec-load -fsched-spec-load-dangerous @gol
395 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
396 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
397 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
398 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
399 -fschedule-fusion @gol
400 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
401 -fselective-scheduling -fselective-scheduling2 @gol
402 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
403 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
404 -fsignaling-nans @gol
405 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
406 -fsplit-paths @gol
407 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
408 -fstdarg-opt -fstrict-aliasing @gol
409 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
410 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
411 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
412 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting -ftree-loop-if-convert @gol
413 -ftree-loop-if-convert-stores -ftree-loop-im @gol
414 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
415 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
416 -ftree-loop-vectorize @gol
417 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
418 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
419 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
420 -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
421 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
422 -funsafe-math-optimizations -funswitch-loops @gol
423 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
424 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
425 --param @var{name}=@var{value}
426 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
427
428 @item Program Instrumentation Options
429 @xref{Instrumentation Options,,Program Instrumentation Options}.
430 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
431 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
432 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
433 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
434 -fsanitize-undefined-trap-on-error -fbounds-check @gol
435 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
436 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
437 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
438 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
439 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
440 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
441 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
442 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
443 -fchkp-use-wrappers @gol
444 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
445 -fstack-protector-explicit -fstack-check @gol
446 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
447 -fno-stack-limit -fsplit-stack @gol
448 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
449 -fvtv-counts -fvtv-debug @gol
450 -finstrument-functions @gol
451 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
452 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
453
454 @item Preprocessor Options
455 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
456 @gccoptlist{-A@var{question}=@var{answer} @gol
457 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
458 -C -dD -dI -dM -dN @gol
459 -D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol
460 -idirafter @var{dir} @gol
461 -include @var{file} -imacros @var{file} @gol
462 -iprefix @var{file} -iwithprefix @var{dir} @gol
463 -iwithprefixbefore @var{dir} -isystem @var{dir} @gol
464 -imultilib @var{dir} -isysroot @var{dir} @gol
465 -M -MM -MF -MG -MP -MQ -MT -nostdinc @gol
466 -P -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
467 -remap -trigraphs -undef -U@var{macro} @gol
468 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
469
470 @item Assembler Option
471 @xref{Assembler Options,,Passing Options to the Assembler}.
472 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
473
474 @item Linker Options
475 @xref{Link Options,,Options for Linking}.
476 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
477 -nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol
478 -s -static -static-libgcc -static-libstdc++ @gol
479 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
480 -static-libmpx -static-libmpxwrappers @gol
481 -shared -shared-libgcc -symbolic @gol
482 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
483 -u @var{symbol} -z @var{keyword}}
484
485 @item Directory Options
486 @xref{Directory Options,,Options for Directory Search}.
487 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
488 -iquote@var{dir} -L@var{dir} -no-canonical-prefixes -I- @gol
489 --sysroot=@var{dir} --no-sysroot-suffix}
490
491 @item Code Generation Options
492 @xref{Code Gen Options,,Options for Code Generation Conventions}.
493 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
494 -ffixed-@var{reg} -fexceptions @gol
495 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
496 -fasynchronous-unwind-tables @gol
497 -fno-gnu-unique @gol
498 -finhibit-size-directive -fno-common -fno-ident @gol
499 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
500 -fno-jump-tables @gol
501 -frecord-gcc-switches @gol
502 -freg-struct-return -fshort-enums -fshort-wchar @gol
503 -fverbose-asm -fpack-struct[=@var{n}] @gol
504 -fleading-underscore -ftls-model=@var{model} @gol
505 -fstack-reuse=@var{reuse_level} @gol
506 -ftrampolines -ftrapv -fwrapv @gol
507 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
508 -fstrict-volatile-bitfields -fsync-libcalls}
509
510 @item Developer Options
511 @xref{Developer Options,,GCC Developer Options}.
512 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
513 -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
514 -fdbg-cnt=@var{counter-value-list} @gol
515 -fdisable-ipa-@var{pass_name} @gol
516 -fdisable-rtl-@var{pass_name} @gol
517 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
518 -fdisable-tree-@var{pass_name} @gol
519 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
520 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
521 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
522 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
523 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
524 -fdump-passes @gol
525 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
526 -fdump-statistics @gol
527 -fdump-tree-all @gol
528 -fdump-tree-original@r{[}-@var{n}@r{]} @gol
529 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
530 -fdump-tree-cfg -fdump-tree-alias @gol
531 -fdump-tree-ch @gol
532 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
533 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
534 -fdump-tree-gimple@r{[}-raw@r{]} @gol
535 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
536 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
537 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
538 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
539 -fdump-tree-backprop@r{[}-@var{n}@r{]} @gol
540 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
541 -fdump-tree-nrv -fdump-tree-vect @gol
542 -fdump-tree-sink @gol
543 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
544 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
545 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
546 -fdump-tree-vtable-verify @gol
547 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
548 -fdump-tree-split-paths@r{[}-@var{n}@r{]} @gol
549 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
550 -fdump-final-insns=@var{file} @gol
551 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
552 -fenable-@var{kind}-@var{pass} @gol
553 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
554 -fira-verbose=@var{n} @gol
555 -flto-report -flto-report-wpa -fmem-report-wpa @gol
556 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
557 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
558 -fprofile-report @gol
559 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
560 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
561 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
562 -fvar-tracking-assignments-toggle -gtoggle @gol
563 -print-file-name=@var{library} -print-libgcc-file-name @gol
564 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
565 -print-prog-name=@var{program} -print-search-dirs -Q @gol
566 -print-sysroot -print-sysroot-headers-suffix @gol
567 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
568
569 @item Machine-Dependent Options
570 @xref{Submodel Options,,Machine-Dependent Options}.
571 @c This list is ordered alphanumerically by subsection name.
572 @c Try and put the significant identifier (CPU or system) first,
573 @c so users have a clue at guessing where the ones they want will be.
574
575 @emph{AArch64 Options}
576 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
577 -mgeneral-regs-only @gol
578 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
579 -mstrict-align @gol
580 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
581 -mtls-dialect=desc -mtls-dialect=traditional @gol
582 -mtls-size=@var{size} @gol
583 -mfix-cortex-a53-835769 -mno-fix-cortex-a53-835769 @gol
584 -mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419 @gol
585 -mlow-precision-recip-sqrt -mno-low-precision-recip-sqrt@gol
586 -mlow-precision-sqrt -mno-low-precision-sqrt@gol
587 -mlow-precision-div -mno-low-precision-div @gol
588 -march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
589
590 @emph{Adapteva Epiphany Options}
591 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
592 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
593 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
594 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
595 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
596 -msplit-vecmove-early -m1reg-@var{reg}}
597
598 @emph{ARC Options}
599 @gccoptlist{-mbarrel-shifter @gol
600 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
601 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
602 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
603 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
604 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
605 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
606 -mlong-calls -mmedium-calls -msdata @gol
607 -mucb-mcount -mvolatile-cache -mtp-regno=@var{regno} @gol
608 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
609 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
610 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
611 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
612 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
613 -mtune=@var{cpu} -mmultcost=@var{num} @gol
614 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
615 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu}}
616
617 @emph{ARM Options}
618 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
619 -mabi=@var{name} @gol
620 -mapcs-stack-check -mno-apcs-stack-check @gol
621 -mapcs-float -mno-apcs-float @gol
622 -mapcs-reentrant -mno-apcs-reentrant @gol
623 -msched-prolog -mno-sched-prolog @gol
624 -mlittle-endian -mbig-endian @gol
625 -mfloat-abi=@var{name} @gol
626 -mfp16-format=@var{name}
627 -mthumb-interwork -mno-thumb-interwork @gol
628 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
629 -mtune=@var{name} -mprint-tune-info @gol
630 -mstructure-size-boundary=@var{n} @gol
631 -mabort-on-noreturn @gol
632 -mlong-calls -mno-long-calls @gol
633 -msingle-pic-base -mno-single-pic-base @gol
634 -mpic-register=@var{reg} @gol
635 -mnop-fun-dllimport @gol
636 -mpoke-function-name @gol
637 -mthumb -marm @gol
638 -mtpcs-frame -mtpcs-leaf-frame @gol
639 -mcaller-super-interworking -mcallee-super-interworking @gol
640 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
641 -mword-relocations @gol
642 -mfix-cortex-m3-ldrd @gol
643 -munaligned-access @gol
644 -mneon-for-64bits @gol
645 -mslow-flash-data @gol
646 -masm-syntax-unified @gol
647 -mrestrict-it @gol
648 -mpure-code}
649
650 @emph{AVR Options}
651 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
652 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
653 -mrelax -mrmw -mstrict-X -mtiny-stack -mfract-convert-truncate -nodevicelib @gol
654 -Waddr-space-convert -Wmisspelled-isr}
655
656 @emph{Blackfin Options}
657 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
658 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
659 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
660 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
661 -mno-id-shared-library -mshared-library-id=@var{n} @gol
662 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
663 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
664 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
665 -micplb}
666
667 @emph{C6X Options}
668 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
669 -msim -msdata=@var{sdata-type}}
670
671 @emph{CRIS Options}
672 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
673 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
674 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
675 -mstack-align -mdata-align -mconst-align @gol
676 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
677 -melf -maout -melinux -mlinux -sim -sim2 @gol
678 -mmul-bug-workaround -mno-mul-bug-workaround}
679
680 @emph{CR16 Options}
681 @gccoptlist{-mmac @gol
682 -mcr16cplus -mcr16c @gol
683 -msim -mint32 -mbit-ops
684 -mdata-model=@var{model}}
685
686 @emph{Darwin Options}
687 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
688 -arch_only -bind_at_load -bundle -bundle_loader @gol
689 -client_name -compatibility_version -current_version @gol
690 -dead_strip @gol
691 -dependency-file -dylib_file -dylinker_install_name @gol
692 -dynamic -dynamiclib -exported_symbols_list @gol
693 -filelist -flat_namespace -force_cpusubtype_ALL @gol
694 -force_flat_namespace -headerpad_max_install_names @gol
695 -iframework @gol
696 -image_base -init -install_name -keep_private_externs @gol
697 -multi_module -multiply_defined -multiply_defined_unused @gol
698 -noall_load -no_dead_strip_inits_and_terms @gol
699 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
700 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
701 -private_bundle -read_only_relocs -sectalign @gol
702 -sectobjectsymbols -whyload -seg1addr @gol
703 -sectcreate -sectobjectsymbols -sectorder @gol
704 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
705 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
706 -segprot -segs_read_only_addr -segs_read_write_addr @gol
707 -single_module -static -sub_library -sub_umbrella @gol
708 -twolevel_namespace -umbrella -undefined @gol
709 -unexported_symbols_list -weak_reference_mismatches @gol
710 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
711 -mkernel -mone-byte-bool}
712
713 @emph{DEC Alpha Options}
714 @gccoptlist{-mno-fp-regs -msoft-float @gol
715 -mieee -mieee-with-inexact -mieee-conformant @gol
716 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
717 -mtrap-precision=@var{mode} -mbuild-constants @gol
718 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
719 -mbwx -mmax -mfix -mcix @gol
720 -mfloat-vax -mfloat-ieee @gol
721 -mexplicit-relocs -msmall-data -mlarge-data @gol
722 -msmall-text -mlarge-text @gol
723 -mmemory-latency=@var{time}}
724
725 @emph{FR30 Options}
726 @gccoptlist{-msmall-model -mno-lsim}
727
728 @emph{FT32 Options}
729 @gccoptlist{-msim -mlra -mnodiv}
730
731 @emph{FRV Options}
732 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
733 -mhard-float -msoft-float @gol
734 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
735 -mdouble -mno-double @gol
736 -mmedia -mno-media -mmuladd -mno-muladd @gol
737 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
738 -mlinked-fp -mlong-calls -malign-labels @gol
739 -mlibrary-pic -macc-4 -macc-8 @gol
740 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
741 -moptimize-membar -mno-optimize-membar @gol
742 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
743 -mvliw-branch -mno-vliw-branch @gol
744 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
745 -mno-nested-cond-exec -mtomcat-stats @gol
746 -mTLS -mtls @gol
747 -mcpu=@var{cpu}}
748
749 @emph{GNU/Linux Options}
750 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
751 -tno-android-cc -tno-android-ld}
752
753 @emph{H8/300 Options}
754 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
755
756 @emph{HPPA Options}
757 @gccoptlist{-march=@var{architecture-type} @gol
758 -mdisable-fpregs -mdisable-indexing @gol
759 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
760 -mfixed-range=@var{register-range} @gol
761 -mjump-in-delay -mlinker-opt -mlong-calls @gol
762 -mlong-load-store -mno-disable-fpregs @gol
763 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
764 -mno-jump-in-delay -mno-long-load-store @gol
765 -mno-portable-runtime -mno-soft-float @gol
766 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
767 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
768 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
769 -munix=@var{unix-std} -nolibdld -static -threads}
770
771 @emph{IA-64 Options}
772 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
773 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
774 -mconstant-gp -mauto-pic -mfused-madd @gol
775 -minline-float-divide-min-latency @gol
776 -minline-float-divide-max-throughput @gol
777 -mno-inline-float-divide @gol
778 -minline-int-divide-min-latency @gol
779 -minline-int-divide-max-throughput @gol
780 -mno-inline-int-divide @gol
781 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
782 -mno-inline-sqrt @gol
783 -mdwarf2-asm -mearly-stop-bits @gol
784 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
785 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
786 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
787 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
788 -msched-spec-ldc -msched-spec-control-ldc @gol
789 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
790 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
791 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
792 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
793
794 @emph{LM32 Options}
795 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
796 -msign-extend-enabled -muser-enabled}
797
798 @emph{M32R/D Options}
799 @gccoptlist{-m32r2 -m32rx -m32r @gol
800 -mdebug @gol
801 -malign-loops -mno-align-loops @gol
802 -missue-rate=@var{number} @gol
803 -mbranch-cost=@var{number} @gol
804 -mmodel=@var{code-size-model-type} @gol
805 -msdata=@var{sdata-type} @gol
806 -mno-flush-func -mflush-func=@var{name} @gol
807 -mno-flush-trap -mflush-trap=@var{number} @gol
808 -G @var{num}}
809
810 @emph{M32C Options}
811 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
812
813 @emph{M680x0 Options}
814 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
815 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
816 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
817 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
818 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
819 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
820 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
821 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
822 -mxgot -mno-xgot}
823
824 @emph{MCore Options}
825 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
826 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
827 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
828 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
829 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
830
831 @emph{MeP Options}
832 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
833 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
834 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
835 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
836 -mtiny=@var{n}}
837
838 @emph{MicroBlaze Options}
839 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
840 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
841 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
842 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
843 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
844
845 @emph{MIPS Options}
846 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
847 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
848 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
849 -mips16 -mno-mips16 -mflip-mips16 @gol
850 -minterlink-compressed -mno-interlink-compressed @gol
851 -minterlink-mips16 -mno-interlink-mips16 @gol
852 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
853 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
854 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
855 -mno-float -msingle-float -mdouble-float @gol
856 -modd-spreg -mno-odd-spreg @gol
857 -mabs=@var{mode} -mnan=@var{encoding} @gol
858 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
859 -mmcu -mmno-mcu @gol
860 -meva -mno-eva @gol
861 -mvirt -mno-virt @gol
862 -mxpa -mno-xpa @gol
863 -mmicromips -mno-micromips @gol
864 -mmsa -mno-msa @gol
865 -mfpu=@var{fpu-type} @gol
866 -msmartmips -mno-smartmips @gol
867 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
868 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
869 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
870 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
871 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
872 -membedded-data -mno-embedded-data @gol
873 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
874 -mcode-readable=@var{setting} @gol
875 -msplit-addresses -mno-split-addresses @gol
876 -mexplicit-relocs -mno-explicit-relocs @gol
877 -mcheck-zero-division -mno-check-zero-division @gol
878 -mdivide-traps -mdivide-breaks @gol
879 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
880 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
881 -mfix-24k -mno-fix-24k @gol
882 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
883 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
884 -mfix-vr4120 -mno-fix-vr4120 @gol
885 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
886 -mflush-func=@var{func} -mno-flush-func @gol
887 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
888 -mcompact-branches=@var{policy} @gol
889 -mfp-exceptions -mno-fp-exceptions @gol
890 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
891 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
892 -mframe-header-opt -mno-frame-header-opt}
893
894 @emph{MMIX Options}
895 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
896 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
897 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
898 -mno-base-addresses -msingle-exit -mno-single-exit}
899
900 @emph{MN10300 Options}
901 @gccoptlist{-mmult-bug -mno-mult-bug @gol
902 -mno-am33 -mam33 -mam33-2 -mam34 @gol
903 -mtune=@var{cpu-type} @gol
904 -mreturn-pointer-on-d0 @gol
905 -mno-crt0 -mrelax -mliw -msetlb}
906
907 @emph{Moxie Options}
908 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
909
910 @emph{MSP430 Options}
911 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
912 -mwarn-mcu @gol
913 -mcode-region= -mdata-region= @gol
914 -msilicon-errata= -msilicon-errata-warn= @gol
915 -mhwmult= -minrt}
916
917 @emph{NDS32 Options}
918 @gccoptlist{-mbig-endian -mlittle-endian @gol
919 -mreduced-regs -mfull-regs @gol
920 -mcmov -mno-cmov @gol
921 -mperf-ext -mno-perf-ext @gol
922 -mv3push -mno-v3push @gol
923 -m16bit -mno-16bit @gol
924 -misr-vector-size=@var{num} @gol
925 -mcache-block-size=@var{num} @gol
926 -march=@var{arch} @gol
927 -mcmodel=@var{code-model} @gol
928 -mctor-dtor -mrelax}
929
930 @emph{Nios II Options}
931 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
932 -mel -meb @gol
933 -mno-bypass-cache -mbypass-cache @gol
934 -mno-cache-volatile -mcache-volatile @gol
935 -mno-fast-sw-div -mfast-sw-div @gol
936 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
937 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
938 -mcustom-fpu-cfg=@var{name} @gol
939 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
940 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
941
942 @emph{Nvidia PTX Options}
943 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
944
945 @emph{PDP-11 Options}
946 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
947 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
948 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
949 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
950 -mbranch-expensive -mbranch-cheap @gol
951 -munix-asm -mdec-asm}
952
953 @emph{picoChip Options}
954 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
955 -msymbol-as-address -mno-inefficient-warnings}
956
957 @emph{PowerPC Options}
958 See RS/6000 and PowerPC Options.
959
960 @emph{RL78 Options}
961 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
962 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
963 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
964
965 @emph{RS/6000 and PowerPC Options}
966 @gccoptlist{-mcpu=@var{cpu-type} @gol
967 -mtune=@var{cpu-type} @gol
968 -mcmodel=@var{code-model} @gol
969 -mpowerpc64 @gol
970 -maltivec -mno-altivec @gol
971 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
972 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
973 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
974 -mfprnd -mno-fprnd @gol
975 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
976 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
977 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
978 -malign-power -malign-natural @gol
979 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
980 -msingle-float -mdouble-float -msimple-fpu @gol
981 -mstring -mno-string -mupdate -mno-update @gol
982 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
983 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
984 -mstrict-align -mno-strict-align -mrelocatable @gol
985 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
986 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
987 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
988 -mprioritize-restricted-insns=@var{priority} @gol
989 -msched-costly-dep=@var{dependence_type} @gol
990 -minsert-sched-nops=@var{scheme} @gol
991 -mcall-sysv -mcall-netbsd @gol
992 -maix-struct-return -msvr4-struct-return @gol
993 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
994 -mblock-move-inline-limit=@var{num} @gol
995 -misel -mno-isel @gol
996 -misel=yes -misel=no @gol
997 -mspe -mno-spe @gol
998 -mspe=yes -mspe=no @gol
999 -mpaired @gol
1000 -mgen-cell-microcode -mwarn-cell-microcode @gol
1001 -mvrsave -mno-vrsave @gol
1002 -mmulhw -mno-mulhw @gol
1003 -mdlmzb -mno-dlmzb @gol
1004 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
1005 -mprototype -mno-prototype @gol
1006 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1007 -msdata=@var{opt} -mvxworks -G @var{num} -pthread @gol
1008 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1009 -mno-recip-precision @gol
1010 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1011 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1012 -msave-toc-indirect -mno-save-toc-indirect @gol
1013 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1014 -mcrypto -mno-crypto -mhtm -mno-htm -mdirect-move -mno-direct-move @gol
1015 -mquad-memory -mno-quad-memory @gol
1016 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1017 -mcompat-align-parm -mno-compat-align-parm @gol
1018 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
1019 -mupper-regs-di -mno-upper-regs-di @gol
1020 -mupper-regs -mno-upper-regs @gol
1021 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1022 -mgnu-attribute -mno-gnu-attribute @gol
1023 -mlra -mno-lra}
1024
1025 @emph{RX Options}
1026 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1027 -mcpu=@gol
1028 -mbig-endian-data -mlittle-endian-data @gol
1029 -msmall-data @gol
1030 -msim -mno-sim@gol
1031 -mas100-syntax -mno-as100-syntax@gol
1032 -mrelax@gol
1033 -mmax-constant-size=@gol
1034 -mint-register=@gol
1035 -mpid@gol
1036 -mallow-string-insns -mno-allow-string-insns@gol
1037 -mjsr@gol
1038 -mno-warn-multiple-fast-interrupts@gol
1039 -msave-acc-in-interrupts}
1040
1041 @emph{S/390 and zSeries Options}
1042 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1043 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1044 -mlong-double-64 -mlong-double-128 @gol
1045 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1046 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1047 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1048 -mhtm -mvx -mzvector @gol
1049 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1050 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1051 -mhotpatch=@var{halfwords},@var{halfwords}}
1052
1053 @emph{Score Options}
1054 @gccoptlist{-meb -mel @gol
1055 -mnhwloop @gol
1056 -muls @gol
1057 -mmac @gol
1058 -mscore5 -mscore5u -mscore7 -mscore7d}
1059
1060 @emph{SH Options}
1061 @gccoptlist{-m1 -m2 -m2e @gol
1062 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1063 -m3 -m3e @gol
1064 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1065 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1066 -mb -ml -mdalign -mrelax @gol
1067 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1068 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1069 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1070 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1071 -maccumulate-outgoing-args @gol
1072 -matomic-model=@var{atomic-model} @gol
1073 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1074 -mcbranch-force-delay-slot @gol
1075 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1076 -mpretend-cmove -mtas}
1077
1078 @emph{Solaris 2 Options}
1079 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1080 -pthreads -pthread}
1081
1082 @emph{SPARC Options}
1083 @gccoptlist{-mcpu=@var{cpu-type} @gol
1084 -mtune=@var{cpu-type} @gol
1085 -mcmodel=@var{code-model} @gol
1086 -mmemory-model=@var{mem-model} @gol
1087 -m32 -m64 -mapp-regs -mno-app-regs @gol
1088 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1089 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1090 -mhard-quad-float -msoft-quad-float @gol
1091 -mstack-bias -mno-stack-bias @gol
1092 -mstd-struct-return -mno-std-struct-return @gol
1093 -munaligned-doubles -mno-unaligned-doubles @gol
1094 -muser-mode -mno-user-mode @gol
1095 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1096 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1097 -mcbcond -mno-cbcond -mfmaf -mno-fmaf @gol
1098 -mpopc -mno-popc -msubxc -mno-subxc@gol
1099 -mfix-at697f -mfix-ut699}
1100
1101 @emph{SPU Options}
1102 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1103 -msafe-dma -munsafe-dma @gol
1104 -mbranch-hints @gol
1105 -msmall-mem -mlarge-mem -mstdmain @gol
1106 -mfixed-range=@var{register-range} @gol
1107 -mea32 -mea64 @gol
1108 -maddress-space-conversion -mno-address-space-conversion @gol
1109 -mcache-size=@var{cache-size} @gol
1110 -matomic-updates -mno-atomic-updates}
1111
1112 @emph{System V Options}
1113 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1114
1115 @emph{TILE-Gx Options}
1116 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1117 -mcmodel=@var{code-model}}
1118
1119 @emph{TILEPro Options}
1120 @gccoptlist{-mcpu=@var{cpu} -m32}
1121
1122 @emph{V850 Options}
1123 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1124 -mprolog-function -mno-prolog-function -mspace @gol
1125 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1126 -mapp-regs -mno-app-regs @gol
1127 -mdisable-callt -mno-disable-callt @gol
1128 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1129 -mv850e -mv850 -mv850e3v5 @gol
1130 -mloop @gol
1131 -mrelax @gol
1132 -mlong-jumps @gol
1133 -msoft-float @gol
1134 -mhard-float @gol
1135 -mgcc-abi @gol
1136 -mrh850-abi @gol
1137 -mbig-switch}
1138
1139 @emph{VAX Options}
1140 @gccoptlist{-mg -mgnu -munix}
1141
1142 @emph{Visium Options}
1143 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1144 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1145
1146 @emph{VMS Options}
1147 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1148 -mpointer-size=@var{size}}
1149
1150 @emph{VxWorks Options}
1151 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1152 -Xbind-lazy -Xbind-now}
1153
1154 @emph{x86 Options}
1155 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1156 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1157 -mfpmath=@var{unit} @gol
1158 -masm=@var{dialect} -mno-fancy-math-387 @gol
1159 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1160 -mno-wide-multiply -mrtd -malign-double @gol
1161 -mpreferred-stack-boundary=@var{num} @gol
1162 -mincoming-stack-boundary=@var{num} @gol
1163 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1164 -mrecip -mrecip=@var{opt} @gol
1165 -mvzeroupper -mprefer-avx128 @gol
1166 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1167 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1168 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1169 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma @gol
1170 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves @gol
1171 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1172 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mmwaitx -mclzero
1173 -mpku -mthreads @gol
1174 -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1175 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1176 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1177 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1178 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1179 -mregparm=@var{num} -msseregparm @gol
1180 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1181 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1182 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1183 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1184 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1185 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1186 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1187 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1188 -mmitigate-rop -mgeneral-regs-only}
1189
1190 @emph{x86 Windows Options}
1191 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1192 -mnop-fun-dllimport -mthread @gol
1193 -municode -mwin32 -mwindows -fno-set-stack-executable}
1194
1195 @emph{Xstormy16 Options}
1196 @gccoptlist{-msim}
1197
1198 @emph{Xtensa Options}
1199 @gccoptlist{-mconst16 -mno-const16 @gol
1200 -mfused-madd -mno-fused-madd @gol
1201 -mforce-no-pic @gol
1202 -mserialize-volatile -mno-serialize-volatile @gol
1203 -mtext-section-literals -mno-text-section-literals @gol
1204 -mauto-litpools -mno-auto-litpools @gol
1205 -mtarget-align -mno-target-align @gol
1206 -mlongcalls -mno-longcalls}
1207
1208 @emph{zSeries Options}
1209 See S/390 and zSeries Options.
1210 @end table
1211
1212
1213 @node Overall Options
1214 @section Options Controlling the Kind of Output
1215
1216 Compilation can involve up to four stages: preprocessing, compilation
1217 proper, assembly and linking, always in that order. GCC is capable of
1218 preprocessing and compiling several files either into several
1219 assembler input files, or into one assembler input file; then each
1220 assembler input file produces an object file, and linking combines all
1221 the object files (those newly compiled, and those specified as input)
1222 into an executable file.
1223
1224 @cindex file name suffix
1225 For any given input file, the file name suffix determines what kind of
1226 compilation is done:
1227
1228 @table @gcctabopt
1229 @item @var{file}.c
1230 C source code that must be preprocessed.
1231
1232 @item @var{file}.i
1233 C source code that should not be preprocessed.
1234
1235 @item @var{file}.ii
1236 C++ source code that should not be preprocessed.
1237
1238 @item @var{file}.m
1239 Objective-C source code. Note that you must link with the @file{libobjc}
1240 library to make an Objective-C program work.
1241
1242 @item @var{file}.mi
1243 Objective-C source code that should not be preprocessed.
1244
1245 @item @var{file}.mm
1246 @itemx @var{file}.M
1247 Objective-C++ source code. Note that you must link with the @file{libobjc}
1248 library to make an Objective-C++ program work. Note that @samp{.M} refers
1249 to a literal capital M@.
1250
1251 @item @var{file}.mii
1252 Objective-C++ source code that should not be preprocessed.
1253
1254 @item @var{file}.h
1255 C, C++, Objective-C or Objective-C++ header file to be turned into a
1256 precompiled header (default), or C, C++ header file to be turned into an
1257 Ada spec (via the @option{-fdump-ada-spec} switch).
1258
1259 @item @var{file}.cc
1260 @itemx @var{file}.cp
1261 @itemx @var{file}.cxx
1262 @itemx @var{file}.cpp
1263 @itemx @var{file}.CPP
1264 @itemx @var{file}.c++
1265 @itemx @var{file}.C
1266 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1267 the last two letters must both be literally @samp{x}. Likewise,
1268 @samp{.C} refers to a literal capital C@.
1269
1270 @item @var{file}.mm
1271 @itemx @var{file}.M
1272 Objective-C++ source code that must be preprocessed.
1273
1274 @item @var{file}.mii
1275 Objective-C++ source code that should not be preprocessed.
1276
1277 @item @var{file}.hh
1278 @itemx @var{file}.H
1279 @itemx @var{file}.hp
1280 @itemx @var{file}.hxx
1281 @itemx @var{file}.hpp
1282 @itemx @var{file}.HPP
1283 @itemx @var{file}.h++
1284 @itemx @var{file}.tcc
1285 C++ header file to be turned into a precompiled header or Ada spec.
1286
1287 @item @var{file}.f
1288 @itemx @var{file}.for
1289 @itemx @var{file}.ftn
1290 Fixed form Fortran source code that should not be preprocessed.
1291
1292 @item @var{file}.F
1293 @itemx @var{file}.FOR
1294 @itemx @var{file}.fpp
1295 @itemx @var{file}.FPP
1296 @itemx @var{file}.FTN
1297 Fixed form Fortran source code that must be preprocessed (with the traditional
1298 preprocessor).
1299
1300 @item @var{file}.f90
1301 @itemx @var{file}.f95
1302 @itemx @var{file}.f03
1303 @itemx @var{file}.f08
1304 Free form Fortran source code that should not be preprocessed.
1305
1306 @item @var{file}.F90
1307 @itemx @var{file}.F95
1308 @itemx @var{file}.F03
1309 @itemx @var{file}.F08
1310 Free form Fortran source code that must be preprocessed (with the
1311 traditional preprocessor).
1312
1313 @item @var{file}.go
1314 Go source code.
1315
1316 @c FIXME: Descriptions of Java file types.
1317 @c @var{file}.java
1318 @c @var{file}.class
1319 @c @var{file}.zip
1320 @c @var{file}.jar
1321
1322 @item @var{file}.ads
1323 Ada source code file that contains a library unit declaration (a
1324 declaration of a package, subprogram, or generic, or a generic
1325 instantiation), or a library unit renaming declaration (a package,
1326 generic, or subprogram renaming declaration). Such files are also
1327 called @dfn{specs}.
1328
1329 @item @var{file}.adb
1330 Ada source code file containing a library unit body (a subprogram or
1331 package body). Such files are also called @dfn{bodies}.
1332
1333 @c GCC also knows about some suffixes for languages not yet included:
1334 @c Pascal:
1335 @c @var{file}.p
1336 @c @var{file}.pas
1337 @c Ratfor:
1338 @c @var{file}.r
1339
1340 @item @var{file}.s
1341 Assembler code.
1342
1343 @item @var{file}.S
1344 @itemx @var{file}.sx
1345 Assembler code that must be preprocessed.
1346
1347 @item @var{other}
1348 An object file to be fed straight into linking.
1349 Any file name with no recognized suffix is treated this way.
1350 @end table
1351
1352 @opindex x
1353 You can specify the input language explicitly with the @option{-x} option:
1354
1355 @table @gcctabopt
1356 @item -x @var{language}
1357 Specify explicitly the @var{language} for the following input files
1358 (rather than letting the compiler choose a default based on the file
1359 name suffix). This option applies to all following input files until
1360 the next @option{-x} option. Possible values for @var{language} are:
1361 @smallexample
1362 c c-header cpp-output
1363 c++ c++-header c++-cpp-output
1364 objective-c objective-c-header objective-c-cpp-output
1365 objective-c++ objective-c++-header objective-c++-cpp-output
1366 assembler assembler-with-cpp
1367 ada
1368 f77 f77-cpp-input f95 f95-cpp-input
1369 go
1370 java
1371 @end smallexample
1372
1373 @item -x none
1374 Turn off any specification of a language, so that subsequent files are
1375 handled according to their file name suffixes (as they are if @option{-x}
1376 has not been used at all).
1377 @end table
1378
1379 If you only want some of the stages of compilation, you can use
1380 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1381 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1382 @command{gcc} is to stop. Note that some combinations (for example,
1383 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1384
1385 @table @gcctabopt
1386 @item -c
1387 @opindex c
1388 Compile or assemble the source files, but do not link. The linking
1389 stage simply is not done. The ultimate output is in the form of an
1390 object file for each source file.
1391
1392 By default, the object file name for a source file is made by replacing
1393 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1394
1395 Unrecognized input files, not requiring compilation or assembly, are
1396 ignored.
1397
1398 @item -S
1399 @opindex S
1400 Stop after the stage of compilation proper; do not assemble. The output
1401 is in the form of an assembler code file for each non-assembler input
1402 file specified.
1403
1404 By default, the assembler file name for a source file is made by
1405 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1406
1407 Input files that don't require compilation are ignored.
1408
1409 @item -E
1410 @opindex E
1411 Stop after the preprocessing stage; do not run the compiler proper. The
1412 output is in the form of preprocessed source code, which is sent to the
1413 standard output.
1414
1415 Input files that don't require preprocessing are ignored.
1416
1417 @cindex output file option
1418 @item -o @var{file}
1419 @opindex o
1420 Place output in file @var{file}. This applies to whatever
1421 sort of output is being produced, whether it be an executable file,
1422 an object file, an assembler file or preprocessed C code.
1423
1424 If @option{-o} is not specified, the default is to put an executable
1425 file in @file{a.out}, the object file for
1426 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1427 assembler file in @file{@var{source}.s}, a precompiled header file in
1428 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1429 standard output.
1430
1431 @item -v
1432 @opindex v
1433 Print (on standard error output) the commands executed to run the stages
1434 of compilation. Also print the version number of the compiler driver
1435 program and of the preprocessor and the compiler proper.
1436
1437 @item -###
1438 @opindex ###
1439 Like @option{-v} except the commands are not executed and arguments
1440 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1441 This is useful for shell scripts to capture the driver-generated command lines.
1442
1443 @item --help
1444 @opindex help
1445 Print (on the standard output) a description of the command-line options
1446 understood by @command{gcc}. If the @option{-v} option is also specified
1447 then @option{--help} is also passed on to the various processes
1448 invoked by @command{gcc}, so that they can display the command-line options
1449 they accept. If the @option{-Wextra} option has also been specified
1450 (prior to the @option{--help} option), then command-line options that
1451 have no documentation associated with them are also displayed.
1452
1453 @item --target-help
1454 @opindex target-help
1455 Print (on the standard output) a description of target-specific command-line
1456 options for each tool. For some targets extra target-specific
1457 information may also be printed.
1458
1459 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1460 Print (on the standard output) a description of the command-line
1461 options understood by the compiler that fit into all specified classes
1462 and qualifiers. These are the supported classes:
1463
1464 @table @asis
1465 @item @samp{optimizers}
1466 Display all of the optimization options supported by the
1467 compiler.
1468
1469 @item @samp{warnings}
1470 Display all of the options controlling warning messages
1471 produced by the compiler.
1472
1473 @item @samp{target}
1474 Display target-specific options. Unlike the
1475 @option{--target-help} option however, target-specific options of the
1476 linker and assembler are not displayed. This is because those
1477 tools do not currently support the extended @option{--help=} syntax.
1478
1479 @item @samp{params}
1480 Display the values recognized by the @option{--param}
1481 option.
1482
1483 @item @var{language}
1484 Display the options supported for @var{language}, where
1485 @var{language} is the name of one of the languages supported in this
1486 version of GCC@.
1487
1488 @item @samp{common}
1489 Display the options that are common to all languages.
1490 @end table
1491
1492 These are the supported qualifiers:
1493
1494 @table @asis
1495 @item @samp{undocumented}
1496 Display only those options that are undocumented.
1497
1498 @item @samp{joined}
1499 Display options taking an argument that appears after an equal
1500 sign in the same continuous piece of text, such as:
1501 @samp{--help=target}.
1502
1503 @item @samp{separate}
1504 Display options taking an argument that appears as a separate word
1505 following the original option, such as: @samp{-o output-file}.
1506 @end table
1507
1508 Thus for example to display all the undocumented target-specific
1509 switches supported by the compiler, use:
1510
1511 @smallexample
1512 --help=target,undocumented
1513 @end smallexample
1514
1515 The sense of a qualifier can be inverted by prefixing it with the
1516 @samp{^} character, so for example to display all binary warning
1517 options (i.e., ones that are either on or off and that do not take an
1518 argument) that have a description, use:
1519
1520 @smallexample
1521 --help=warnings,^joined,^undocumented
1522 @end smallexample
1523
1524 The argument to @option{--help=} should not consist solely of inverted
1525 qualifiers.
1526
1527 Combining several classes is possible, although this usually
1528 restricts the output so much that there is nothing to display. One
1529 case where it does work, however, is when one of the classes is
1530 @var{target}. For example, to display all the target-specific
1531 optimization options, use:
1532
1533 @smallexample
1534 --help=target,optimizers
1535 @end smallexample
1536
1537 The @option{--help=} option can be repeated on the command line. Each
1538 successive use displays its requested class of options, skipping
1539 those that have already been displayed.
1540
1541 If the @option{-Q} option appears on the command line before the
1542 @option{--help=} option, then the descriptive text displayed by
1543 @option{--help=} is changed. Instead of describing the displayed
1544 options, an indication is given as to whether the option is enabled,
1545 disabled or set to a specific value (assuming that the compiler
1546 knows this at the point where the @option{--help=} option is used).
1547
1548 Here is a truncated example from the ARM port of @command{gcc}:
1549
1550 @smallexample
1551 % gcc -Q -mabi=2 --help=target -c
1552 The following options are target specific:
1553 -mabi= 2
1554 -mabort-on-noreturn [disabled]
1555 -mapcs [disabled]
1556 @end smallexample
1557
1558 The output is sensitive to the effects of previous command-line
1559 options, so for example it is possible to find out which optimizations
1560 are enabled at @option{-O2} by using:
1561
1562 @smallexample
1563 -Q -O2 --help=optimizers
1564 @end smallexample
1565
1566 Alternatively you can discover which binary optimizations are enabled
1567 by @option{-O3} by using:
1568
1569 @smallexample
1570 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1571 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1572 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1573 @end smallexample
1574
1575 @item --version
1576 @opindex version
1577 Display the version number and copyrights of the invoked GCC@.
1578
1579 @item -pass-exit-codes
1580 @opindex pass-exit-codes
1581 Normally the @command{gcc} program exits with the code of 1 if any
1582 phase of the compiler returns a non-success return code. If you specify
1583 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1584 the numerically highest error produced by any phase returning an error
1585 indication. The C, C++, and Fortran front ends return 4 if an internal
1586 compiler error is encountered.
1587
1588 @item -pipe
1589 @opindex pipe
1590 Use pipes rather than temporary files for communication between the
1591 various stages of compilation. This fails to work on some systems where
1592 the assembler is unable to read from a pipe; but the GNU assembler has
1593 no trouble.
1594
1595 @item -specs=@var{file}
1596 @opindex specs
1597 Process @var{file} after the compiler reads in the standard @file{specs}
1598 file, in order to override the defaults which the @command{gcc} driver
1599 program uses when determining what switches to pass to @command{cc1},
1600 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1601 @option{-specs=@var{file}} can be specified on the command line, and they
1602 are processed in order, from left to right. @xref{Spec Files}, for
1603 information about the format of the @var{file}.
1604
1605 @item -wrapper
1606 @opindex wrapper
1607 Invoke all subcommands under a wrapper program. The name of the
1608 wrapper program and its parameters are passed as a comma separated
1609 list.
1610
1611 @smallexample
1612 gcc -c t.c -wrapper gdb,--args
1613 @end smallexample
1614
1615 @noindent
1616 This invokes all subprograms of @command{gcc} under
1617 @samp{gdb --args}, thus the invocation of @command{cc1} is
1618 @samp{gdb --args cc1 @dots{}}.
1619
1620 @item -fplugin=@var{name}.so
1621 @opindex fplugin
1622 Load the plugin code in file @var{name}.so, assumed to be a
1623 shared object to be dlopen'd by the compiler. The base name of
1624 the shared object file is used to identify the plugin for the
1625 purposes of argument parsing (See
1626 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1627 Each plugin should define the callback functions specified in the
1628 Plugins API.
1629
1630 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1631 @opindex fplugin-arg
1632 Define an argument called @var{key} with a value of @var{value}
1633 for the plugin called @var{name}.
1634
1635 @item -fdump-ada-spec@r{[}-slim@r{]}
1636 @opindex fdump-ada-spec
1637 For C and C++ source and include files, generate corresponding Ada specs.
1638 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1639 GNAT User's Guide}, which provides detailed documentation on this feature.
1640
1641 @item -fada-spec-parent=@var{unit}
1642 @opindex fada-spec-parent
1643 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1644 Ada specs as child units of parent @var{unit}.
1645
1646 @item -fdump-go-spec=@var{file}
1647 @opindex fdump-go-spec
1648 For input files in any language, generate corresponding Go
1649 declarations in @var{file}. This generates Go @code{const},
1650 @code{type}, @code{var}, and @code{func} declarations which may be a
1651 useful way to start writing a Go interface to code written in some
1652 other language.
1653
1654 @include @value{srcdir}/../libiberty/at-file.texi
1655 @end table
1656
1657 @node Invoking G++
1658 @section Compiling C++ Programs
1659
1660 @cindex suffixes for C++ source
1661 @cindex C++ source file suffixes
1662 C++ source files conventionally use one of the suffixes @samp{.C},
1663 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1664 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1665 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1666 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1667 files with these names and compiles them as C++ programs even if you
1668 call the compiler the same way as for compiling C programs (usually
1669 with the name @command{gcc}).
1670
1671 @findex g++
1672 @findex c++
1673 However, the use of @command{gcc} does not add the C++ library.
1674 @command{g++} is a program that calls GCC and automatically specifies linking
1675 against the C++ library. It treats @samp{.c},
1676 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1677 files unless @option{-x} is used. This program is also useful when
1678 precompiling a C header file with a @samp{.h} extension for use in C++
1679 compilations. On many systems, @command{g++} is also installed with
1680 the name @command{c++}.
1681
1682 @cindex invoking @command{g++}
1683 When you compile C++ programs, you may specify many of the same
1684 command-line options that you use for compiling programs in any
1685 language; or command-line options meaningful for C and related
1686 languages; or options that are meaningful only for C++ programs.
1687 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1688 explanations of options for languages related to C@.
1689 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1690 explanations of options that are meaningful only for C++ programs.
1691
1692 @node C Dialect Options
1693 @section Options Controlling C Dialect
1694 @cindex dialect options
1695 @cindex language dialect options
1696 @cindex options, dialect
1697
1698 The following options control the dialect of C (or languages derived
1699 from C, such as C++, Objective-C and Objective-C++) that the compiler
1700 accepts:
1701
1702 @table @gcctabopt
1703 @cindex ANSI support
1704 @cindex ISO support
1705 @item -ansi
1706 @opindex ansi
1707 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1708 equivalent to @option{-std=c++98}.
1709
1710 This turns off certain features of GCC that are incompatible with ISO
1711 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1712 such as the @code{asm} and @code{typeof} keywords, and
1713 predefined macros such as @code{unix} and @code{vax} that identify the
1714 type of system you are using. It also enables the undesirable and
1715 rarely used ISO trigraph feature. For the C compiler,
1716 it disables recognition of C++ style @samp{//} comments as well as
1717 the @code{inline} keyword.
1718
1719 The alternate keywords @code{__asm__}, @code{__extension__},
1720 @code{__inline__} and @code{__typeof__} continue to work despite
1721 @option{-ansi}. You would not want to use them in an ISO C program, of
1722 course, but it is useful to put them in header files that might be included
1723 in compilations done with @option{-ansi}. Alternate predefined macros
1724 such as @code{__unix__} and @code{__vax__} are also available, with or
1725 without @option{-ansi}.
1726
1727 The @option{-ansi} option does not cause non-ISO programs to be
1728 rejected gratuitously. For that, @option{-Wpedantic} is required in
1729 addition to @option{-ansi}. @xref{Warning Options}.
1730
1731 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1732 option is used. Some header files may notice this macro and refrain
1733 from declaring certain functions or defining certain macros that the
1734 ISO standard doesn't call for; this is to avoid interfering with any
1735 programs that might use these names for other things.
1736
1737 Functions that are normally built in but do not have semantics
1738 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1739 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1740 built-in functions provided by GCC}, for details of the functions
1741 affected.
1742
1743 @item -std=
1744 @opindex std
1745 Determine the language standard. @xref{Standards,,Language Standards
1746 Supported by GCC}, for details of these standard versions. This option
1747 is currently only supported when compiling C or C++.
1748
1749 The compiler can accept several base standards, such as @samp{c90} or
1750 @samp{c++98}, and GNU dialects of those standards, such as
1751 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1752 compiler accepts all programs following that standard plus those
1753 using GNU extensions that do not contradict it. For example,
1754 @option{-std=c90} turns off certain features of GCC that are
1755 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1756 keywords, but not other GNU extensions that do not have a meaning in
1757 ISO C90, such as omitting the middle term of a @code{?:}
1758 expression. On the other hand, when a GNU dialect of a standard is
1759 specified, all features supported by the compiler are enabled, even when
1760 those features change the meaning of the base standard. As a result, some
1761 strict-conforming programs may be rejected. The particular standard
1762 is used by @option{-Wpedantic} to identify which features are GNU
1763 extensions given that version of the standard. For example
1764 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1765 comments, while @option{-std=gnu99 -Wpedantic} does not.
1766
1767 A value for this option must be provided; possible values are
1768
1769 @table @samp
1770 @item c90
1771 @itemx c89
1772 @itemx iso9899:1990
1773 Support all ISO C90 programs (certain GNU extensions that conflict
1774 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1775
1776 @item iso9899:199409
1777 ISO C90 as modified in amendment 1.
1778
1779 @item c99
1780 @itemx c9x
1781 @itemx iso9899:1999
1782 @itemx iso9899:199x
1783 ISO C99. This standard is substantially completely supported, modulo
1784 bugs and floating-point issues
1785 (mainly but not entirely relating to optional C99 features from
1786 Annexes F and G). See
1787 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1788 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1789
1790 @item c11
1791 @itemx c1x
1792 @itemx iso9899:2011
1793 ISO C11, the 2011 revision of the ISO C standard. This standard is
1794 substantially completely supported, modulo bugs, floating-point issues
1795 (mainly but not entirely relating to optional C11 features from
1796 Annexes F and G) and the optional Annexes K (Bounds-checking
1797 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1798
1799 @item gnu90
1800 @itemx gnu89
1801 GNU dialect of ISO C90 (including some C99 features).
1802
1803 @item gnu99
1804 @itemx gnu9x
1805 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1806
1807 @item gnu11
1808 @itemx gnu1x
1809 GNU dialect of ISO C11. This is the default for C code.
1810 The name @samp{gnu1x} is deprecated.
1811
1812 @item c++98
1813 @itemx c++03
1814 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1815 additional defect reports. Same as @option{-ansi} for C++ code.
1816
1817 @item gnu++98
1818 @itemx gnu++03
1819 GNU dialect of @option{-std=c++98}.
1820
1821 @item c++11
1822 @itemx c++0x
1823 The 2011 ISO C++ standard plus amendments.
1824 The name @samp{c++0x} is deprecated.
1825
1826 @item gnu++11
1827 @itemx gnu++0x
1828 GNU dialect of @option{-std=c++11}.
1829 The name @samp{gnu++0x} is deprecated.
1830
1831 @item c++14
1832 @itemx c++1y
1833 The 2014 ISO C++ standard plus amendments.
1834 The name @samp{c++1y} is deprecated.
1835
1836 @item gnu++14
1837 @itemx gnu++1y
1838 GNU dialect of @option{-std=c++14}.
1839 This is the default for C++ code.
1840 The name @samp{gnu++1y} is deprecated.
1841
1842 @item c++1z
1843 The next revision of the ISO C++ standard, tentatively planned for
1844 2017. Support is highly experimental, and will almost certainly
1845 change in incompatible ways in future releases.
1846
1847 @item gnu++1z
1848 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1849 and will almost certainly change in incompatible ways in future
1850 releases.
1851 @end table
1852
1853 @item -fgnu89-inline
1854 @opindex fgnu89-inline
1855 The option @option{-fgnu89-inline} tells GCC to use the traditional
1856 GNU semantics for @code{inline} functions when in C99 mode.
1857 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1858 Using this option is roughly equivalent to adding the
1859 @code{gnu_inline} function attribute to all inline functions
1860 (@pxref{Function Attributes}).
1861
1862 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1863 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1864 specifies the default behavior).
1865 This option is not supported in @option{-std=c90} or
1866 @option{-std=gnu90} mode.
1867
1868 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1869 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1870 in effect for @code{inline} functions. @xref{Common Predefined
1871 Macros,,,cpp,The C Preprocessor}.
1872
1873 @item -aux-info @var{filename}
1874 @opindex aux-info
1875 Output to the given filename prototyped declarations for all functions
1876 declared and/or defined in a translation unit, including those in header
1877 files. This option is silently ignored in any language other than C@.
1878
1879 Besides declarations, the file indicates, in comments, the origin of
1880 each declaration (source file and line), whether the declaration was
1881 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1882 @samp{O} for old, respectively, in the first character after the line
1883 number and the colon), and whether it came from a declaration or a
1884 definition (@samp{C} or @samp{F}, respectively, in the following
1885 character). In the case of function definitions, a K&R-style list of
1886 arguments followed by their declarations is also provided, inside
1887 comments, after the declaration.
1888
1889 @item -fallow-parameterless-variadic-functions
1890 @opindex fallow-parameterless-variadic-functions
1891 Accept variadic functions without named parameters.
1892
1893 Although it is possible to define such a function, this is not very
1894 useful as it is not possible to read the arguments. This is only
1895 supported for C as this construct is allowed by C++.
1896
1897 @item -fno-asm
1898 @opindex fno-asm
1899 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1900 keyword, so that code can use these words as identifiers. You can use
1901 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1902 instead. @option{-ansi} implies @option{-fno-asm}.
1903
1904 In C++, this switch only affects the @code{typeof} keyword, since
1905 @code{asm} and @code{inline} are standard keywords. You may want to
1906 use the @option{-fno-gnu-keywords} flag instead, which has the same
1907 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1908 switch only affects the @code{asm} and @code{typeof} keywords, since
1909 @code{inline} is a standard keyword in ISO C99.
1910
1911 @item -fno-builtin
1912 @itemx -fno-builtin-@var{function}
1913 @opindex fno-builtin
1914 @cindex built-in functions
1915 Don't recognize built-in functions that do not begin with
1916 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1917 functions provided by GCC}, for details of the functions affected,
1918 including those which are not built-in functions when @option{-ansi} or
1919 @option{-std} options for strict ISO C conformance are used because they
1920 do not have an ISO standard meaning.
1921
1922 GCC normally generates special code to handle certain built-in functions
1923 more efficiently; for instance, calls to @code{alloca} may become single
1924 instructions which adjust the stack directly, and calls to @code{memcpy}
1925 may become inline copy loops. The resulting code is often both smaller
1926 and faster, but since the function calls no longer appear as such, you
1927 cannot set a breakpoint on those calls, nor can you change the behavior
1928 of the functions by linking with a different library. In addition,
1929 when a function is recognized as a built-in function, GCC may use
1930 information about that function to warn about problems with calls to
1931 that function, or to generate more efficient code, even if the
1932 resulting code still contains calls to that function. For example,
1933 warnings are given with @option{-Wformat} for bad calls to
1934 @code{printf} when @code{printf} is built in and @code{strlen} is
1935 known not to modify global memory.
1936
1937 With the @option{-fno-builtin-@var{function}} option
1938 only the built-in function @var{function} is
1939 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1940 function is named that is not built-in in this version of GCC, this
1941 option is ignored. There is no corresponding
1942 @option{-fbuiltin-@var{function}} option; if you wish to enable
1943 built-in functions selectively when using @option{-fno-builtin} or
1944 @option{-ffreestanding}, you may define macros such as:
1945
1946 @smallexample
1947 #define abs(n) __builtin_abs ((n))
1948 #define strcpy(d, s) __builtin_strcpy ((d), (s))
1949 @end smallexample
1950
1951 @item -fhosted
1952 @opindex fhosted
1953 @cindex hosted environment
1954
1955 Assert that compilation targets a hosted environment. This implies
1956 @option{-fbuiltin}. A hosted environment is one in which the
1957 entire standard library is available, and in which @code{main} has a return
1958 type of @code{int}. Examples are nearly everything except a kernel.
1959 This is equivalent to @option{-fno-freestanding}.
1960
1961 @item -ffreestanding
1962 @opindex ffreestanding
1963 @cindex hosted environment
1964
1965 Assert that compilation targets a freestanding environment. This
1966 implies @option{-fno-builtin}. A freestanding environment
1967 is one in which the standard library may not exist, and program startup may
1968 not necessarily be at @code{main}. The most obvious example is an OS kernel.
1969 This is equivalent to @option{-fno-hosted}.
1970
1971 @xref{Standards,,Language Standards Supported by GCC}, for details of
1972 freestanding and hosted environments.
1973
1974 @item -fopenacc
1975 @opindex fopenacc
1976 @cindex OpenACC accelerator programming
1977 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1978 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
1979 compiler generates accelerated code according to the OpenACC Application
1980 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
1981 implies @option{-pthread}, and thus is only supported on targets that
1982 have support for @option{-pthread}.
1983
1984 @item -fopenacc-dim=@var{geom}
1985 @opindex fopenacc-dim
1986 @cindex OpenACC accelerator programming
1987 Specify default compute dimensions for parallel offload regions that do
1988 not explicitly specify. The @var{geom} value is a triple of
1989 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
1990 can be omitted, to use a target-specific default value.
1991
1992 @item -fopenmp
1993 @opindex fopenmp
1994 @cindex OpenMP parallel
1995 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1996 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
1997 compiler generates parallel code according to the OpenMP Application
1998 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}. This option
1999 implies @option{-pthread}, and thus is only supported on targets that
2000 have support for @option{-pthread}. @option{-fopenmp} implies
2001 @option{-fopenmp-simd}.
2002
2003 @item -fopenmp-simd
2004 @opindex fopenmp-simd
2005 @cindex OpenMP SIMD
2006 @cindex SIMD
2007 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2008 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2009 are ignored.
2010
2011 @item -fcilkplus
2012 @opindex fcilkplus
2013 @cindex Enable Cilk Plus
2014 Enable the usage of Cilk Plus language extension features for C/C++.
2015 When the option @option{-fcilkplus} is specified, enable the usage of
2016 the Cilk Plus Language extension features for C/C++. The present
2017 implementation follows ABI version 1.2. This is an experimental
2018 feature that is only partially complete, and whose interface may
2019 change in future versions of GCC as the official specification
2020 changes. Currently, all features but @code{_Cilk_for} have been
2021 implemented.
2022
2023 @item -fgnu-tm
2024 @opindex fgnu-tm
2025 When the option @option{-fgnu-tm} is specified, the compiler
2026 generates code for the Linux variant of Intel's current Transactional
2027 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2028 an experimental feature whose interface may change in future versions
2029 of GCC, as the official specification changes. Please note that not
2030 all architectures are supported for this feature.
2031
2032 For more information on GCC's support for transactional memory,
2033 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2034 Transactional Memory Library}.
2035
2036 Note that the transactional memory feature is not supported with
2037 non-call exceptions (@option{-fnon-call-exceptions}).
2038
2039 @item -fms-extensions
2040 @opindex fms-extensions
2041 Accept some non-standard constructs used in Microsoft header files.
2042
2043 In C++ code, this allows member names in structures to be similar
2044 to previous types declarations.
2045
2046 @smallexample
2047 typedef int UOW;
2048 struct ABC @{
2049 UOW UOW;
2050 @};
2051 @end smallexample
2052
2053 Some cases of unnamed fields in structures and unions are only
2054 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2055 fields within structs/unions}, for details.
2056
2057 Note that this option is off for all targets but x86
2058 targets using ms-abi.
2059
2060 @item -fplan9-extensions
2061 @opindex fplan9-extensions
2062 Accept some non-standard constructs used in Plan 9 code.
2063
2064 This enables @option{-fms-extensions}, permits passing pointers to
2065 structures with anonymous fields to functions that expect pointers to
2066 elements of the type of the field, and permits referring to anonymous
2067 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2068 struct/union fields within structs/unions}, for details. This is only
2069 supported for C, not C++.
2070
2071 @item -trigraphs
2072 @opindex trigraphs
2073 Support ISO C trigraphs. The @option{-ansi} option (and @option{-std}
2074 options for strict ISO C conformance) implies @option{-trigraphs}.
2075
2076 @cindex traditional C language
2077 @cindex C language, traditional
2078 @item -traditional
2079 @itemx -traditional-cpp
2080 @opindex traditional-cpp
2081 @opindex traditional
2082 Formerly, these options caused GCC to attempt to emulate a pre-standard
2083 C compiler. They are now only supported with the @option{-E} switch.
2084 The preprocessor continues to support a pre-standard mode. See the GNU
2085 CPP manual for details.
2086
2087 @item -fcond-mismatch
2088 @opindex fcond-mismatch
2089 Allow conditional expressions with mismatched types in the second and
2090 third arguments. The value of such an expression is void. This option
2091 is not supported for C++.
2092
2093 @item -flax-vector-conversions
2094 @opindex flax-vector-conversions
2095 Allow implicit conversions between vectors with differing numbers of
2096 elements and/or incompatible element types. This option should not be
2097 used for new code.
2098
2099 @item -funsigned-char
2100 @opindex funsigned-char
2101 Let the type @code{char} be unsigned, like @code{unsigned char}.
2102
2103 Each kind of machine has a default for what @code{char} should
2104 be. It is either like @code{unsigned char} by default or like
2105 @code{signed char} by default.
2106
2107 Ideally, a portable program should always use @code{signed char} or
2108 @code{unsigned char} when it depends on the signedness of an object.
2109 But many programs have been written to use plain @code{char} and
2110 expect it to be signed, or expect it to be unsigned, depending on the
2111 machines they were written for. This option, and its inverse, let you
2112 make such a program work with the opposite default.
2113
2114 The type @code{char} is always a distinct type from each of
2115 @code{signed char} or @code{unsigned char}, even though its behavior
2116 is always just like one of those two.
2117
2118 @item -fsigned-char
2119 @opindex fsigned-char
2120 Let the type @code{char} be signed, like @code{signed char}.
2121
2122 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2123 the negative form of @option{-funsigned-char}. Likewise, the option
2124 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2125
2126 @item -fsigned-bitfields
2127 @itemx -funsigned-bitfields
2128 @itemx -fno-signed-bitfields
2129 @itemx -fno-unsigned-bitfields
2130 @opindex fsigned-bitfields
2131 @opindex funsigned-bitfields
2132 @opindex fno-signed-bitfields
2133 @opindex fno-unsigned-bitfields
2134 These options control whether a bit-field is signed or unsigned, when the
2135 declaration does not use either @code{signed} or @code{unsigned}. By
2136 default, such a bit-field is signed, because this is consistent: the
2137 basic integer types such as @code{int} are signed types.
2138
2139 @item -fsso-struct=@var{endianness}
2140 @opindex fsso-struct
2141 Set the default scalar storage order of structures and unions to the
2142 specified endianness. The accepted values are @samp{big-endian} and
2143 @samp{little-endian}. If the option is not passed, the compiler uses
2144 the native endianness of the target. This option is not supported for C++.
2145
2146 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2147 code that is not binary compatible with code generated without it if the
2148 specified endianness is not the native endianness of the target.
2149 @end table
2150
2151 @node C++ Dialect Options
2152 @section Options Controlling C++ Dialect
2153
2154 @cindex compiler options, C++
2155 @cindex C++ options, command-line
2156 @cindex options, C++
2157 This section describes the command-line options that are only meaningful
2158 for C++ programs. You can also use most of the GNU compiler options
2159 regardless of what language your program is in. For example, you
2160 might compile a file @file{firstClass.C} like this:
2161
2162 @smallexample
2163 g++ -g -fstrict-enums -O -c firstClass.C
2164 @end smallexample
2165
2166 @noindent
2167 In this example, only @option{-fstrict-enums} is an option meant
2168 only for C++ programs; you can use the other options with any
2169 language supported by GCC@.
2170
2171 Some options for compiling C programs, such as @option{-std}, are also
2172 relevant for C++ programs.
2173 @xref{C Dialect Options,,Options Controlling C Dialect}.
2174
2175 Here is a list of options that are @emph{only} for compiling C++ programs:
2176
2177 @table @gcctabopt
2178
2179 @item -fabi-version=@var{n}
2180 @opindex fabi-version
2181 Use version @var{n} of the C++ ABI@. The default is version 0.
2182
2183 Version 0 refers to the version conforming most closely to
2184 the C++ ABI specification. Therefore, the ABI obtained using version 0
2185 will change in different versions of G++ as ABI bugs are fixed.
2186
2187 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2188
2189 Version 2 is the version of the C++ ABI that first appeared in G++
2190 3.4, and was the default through G++ 4.9.
2191
2192 Version 3 corrects an error in mangling a constant address as a
2193 template argument.
2194
2195 Version 4, which first appeared in G++ 4.5, implements a standard
2196 mangling for vector types.
2197
2198 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2199 attribute const/volatile on function pointer types, decltype of a
2200 plain decl, and use of a function parameter in the declaration of
2201 another parameter.
2202
2203 Version 6, which first appeared in G++ 4.7, corrects the promotion
2204 behavior of C++11 scoped enums and the mangling of template argument
2205 packs, const/static_cast, prefix ++ and --, and a class scope function
2206 used as a template argument.
2207
2208 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2209 builtin type and corrects the mangling of lambdas in default argument
2210 scope.
2211
2212 Version 8, which first appeared in G++ 4.9, corrects the substitution
2213 behavior of function types with function-cv-qualifiers.
2214
2215 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2216 @code{nullptr_t}.
2217
2218 Version 10, which first appeared in G++ 6.1, adds mangling of
2219 attributes that affect type identity, such as ia32 calling convention
2220 attributes (e.g. @samp{stdcall}).
2221
2222 See also @option{-Wabi}.
2223
2224 @item -fabi-compat-version=@var{n}
2225 @opindex fabi-compat-version
2226 On targets that support strong aliases, G++
2227 works around mangling changes by creating an alias with the correct
2228 mangled name when defining a symbol with an incorrect mangled name.
2229 This switch specifies which ABI version to use for the alias.
2230
2231 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2232 compatibility). If another ABI version is explicitly selected, this
2233 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2234 use @option{-fabi-compat-version=2}.
2235
2236 If this option is not provided but @option{-Wabi=@var{n}} is, that
2237 version is used for compatibility aliases. If this option is provided
2238 along with @option{-Wabi} (without the version), the version from this
2239 option is used for the warning.
2240
2241 @item -fno-access-control
2242 @opindex fno-access-control
2243 Turn off all access checking. This switch is mainly useful for working
2244 around bugs in the access control code.
2245
2246 @item -faligned-new
2247 @opindex faligned-new
2248 Enable support for C++17 @code{new} of types that require more
2249 alignment than @code{void* ::operator new(std::size_t)} provides. A
2250 numeric argument such as @code{-faligned-new=32} can be used to
2251 specify how much alignment (in bytes) is provided by that function,
2252 but few users will need to override the default of
2253 @code{alignof(std::max_align_t)}.
2254
2255 @item -fcheck-new
2256 @opindex fcheck-new
2257 Check that the pointer returned by @code{operator new} is non-null
2258 before attempting to modify the storage allocated. This check is
2259 normally unnecessary because the C++ standard specifies that
2260 @code{operator new} only returns @code{0} if it is declared
2261 @code{throw()}, in which case the compiler always checks the
2262 return value even without this option. In all other cases, when
2263 @code{operator new} has a non-empty exception specification, memory
2264 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2265 @samp{new (nothrow)}.
2266
2267 @item -fconcepts
2268 @opindex fconcepts
2269 Enable support for the C++ Extensions for Concepts Technical
2270 Specification, ISO 19217 (2015), which allows code like
2271
2272 @smallexample
2273 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2274 template <Addable T> T add (T a, T b) @{ return a + b; @}
2275 @end smallexample
2276
2277 @item -fconstexpr-depth=@var{n}
2278 @opindex fconstexpr-depth
2279 Set the maximum nested evaluation depth for C++11 constexpr functions
2280 to @var{n}. A limit is needed to detect endless recursion during
2281 constant expression evaluation. The minimum specified by the standard
2282 is 512.
2283
2284 @item -fconstexpr-loop-limit=@var{n}
2285 @opindex fconstexpr-loop-limit
2286 Set the maximum number of iterations for a loop in C++14 constexpr functions
2287 to @var{n}. A limit is needed to detect infinite loops during
2288 constant expression evaluation. The default is 262144 (1<<18).
2289
2290 @item -fdeduce-init-list
2291 @opindex fdeduce-init-list
2292 Enable deduction of a template type parameter as
2293 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2294
2295 @smallexample
2296 template <class T> auto forward(T t) -> decltype (realfn (t))
2297 @{
2298 return realfn (t);
2299 @}
2300
2301 void f()
2302 @{
2303 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2304 @}
2305 @end smallexample
2306
2307 This deduction was implemented as a possible extension to the
2308 originally proposed semantics for the C++11 standard, but was not part
2309 of the final standard, so it is disabled by default. This option is
2310 deprecated, and may be removed in a future version of G++.
2311
2312 @item -ffriend-injection
2313 @opindex ffriend-injection
2314 Inject friend functions into the enclosing namespace, so that they are
2315 visible outside the scope of the class in which they are declared.
2316 Friend functions were documented to work this way in the old Annotated
2317 C++ Reference Manual.
2318 However, in ISO C++ a friend function that is not declared
2319 in an enclosing scope can only be found using argument dependent
2320 lookup. GCC defaults to the standard behavior.
2321
2322 This option is for compatibility, and may be removed in a future
2323 release of G++.
2324
2325 @item -fno-elide-constructors
2326 @opindex fno-elide-constructors
2327 The C++ standard allows an implementation to omit creating a temporary
2328 that is only used to initialize another object of the same type.
2329 Specifying this option disables that optimization, and forces G++ to
2330 call the copy constructor in all cases. This option also causes G++
2331 to call trivial member functions which otherwise would be expanded inline.
2332
2333 In C++17, the compiler is required to omit these temporaries, but this
2334 option still affects trivial member functions.
2335
2336 @item -fno-enforce-eh-specs
2337 @opindex fno-enforce-eh-specs
2338 Don't generate code to check for violation of exception specifications
2339 at run time. This option violates the C++ standard, but may be useful
2340 for reducing code size in production builds, much like defining
2341 @code{NDEBUG}. This does not give user code permission to throw
2342 exceptions in violation of the exception specifications; the compiler
2343 still optimizes based on the specifications, so throwing an
2344 unexpected exception results in undefined behavior at run time.
2345
2346 @item -fextern-tls-init
2347 @itemx -fno-extern-tls-init
2348 @opindex fextern-tls-init
2349 @opindex fno-extern-tls-init
2350 The C++11 and OpenMP standards allow @code{thread_local} and
2351 @code{threadprivate} variables to have dynamic (runtime)
2352 initialization. To support this, any use of such a variable goes
2353 through a wrapper function that performs any necessary initialization.
2354 When the use and definition of the variable are in the same
2355 translation unit, this overhead can be optimized away, but when the
2356 use is in a different translation unit there is significant overhead
2357 even if the variable doesn't actually need dynamic initialization. If
2358 the programmer can be sure that no use of the variable in a
2359 non-defining TU needs to trigger dynamic initialization (either
2360 because the variable is statically initialized, or a use of the
2361 variable in the defining TU will be executed before any uses in
2362 another TU), they can avoid this overhead with the
2363 @option{-fno-extern-tls-init} option.
2364
2365 On targets that support symbol aliases, the default is
2366 @option{-fextern-tls-init}. On targets that do not support symbol
2367 aliases, the default is @option{-fno-extern-tls-init}.
2368
2369 @item -ffor-scope
2370 @itemx -fno-for-scope
2371 @opindex ffor-scope
2372 @opindex fno-for-scope
2373 If @option{-ffor-scope} is specified, the scope of variables declared in
2374 a @i{for-init-statement} is limited to the @code{for} loop itself,
2375 as specified by the C++ standard.
2376 If @option{-fno-for-scope} is specified, the scope of variables declared in
2377 a @i{for-init-statement} extends to the end of the enclosing scope,
2378 as was the case in old versions of G++, and other (traditional)
2379 implementations of C++.
2380
2381 If neither flag is given, the default is to follow the standard,
2382 but to allow and give a warning for old-style code that would
2383 otherwise be invalid, or have different behavior.
2384
2385 @item -fno-gnu-keywords
2386 @opindex fno-gnu-keywords
2387 Do not recognize @code{typeof} as a keyword, so that code can use this
2388 word as an identifier. You can use the keyword @code{__typeof__} instead.
2389 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2390 @option{-std=c++98}, @option{-std=c++11}, etc.
2391
2392 @item -fno-implicit-templates
2393 @opindex fno-implicit-templates
2394 Never emit code for non-inline templates that are instantiated
2395 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2396 @xref{Template Instantiation}, for more information.
2397
2398 @item -fno-implicit-inline-templates
2399 @opindex fno-implicit-inline-templates
2400 Don't emit code for implicit instantiations of inline templates, either.
2401 The default is to handle inlines differently so that compiles with and
2402 without optimization need the same set of explicit instantiations.
2403
2404 @item -fno-implement-inlines
2405 @opindex fno-implement-inlines
2406 To save space, do not emit out-of-line copies of inline functions
2407 controlled by @code{#pragma implementation}. This causes linker
2408 errors if these functions are not inlined everywhere they are called.
2409
2410 @item -fms-extensions
2411 @opindex fms-extensions
2412 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2413 int and getting a pointer to member function via non-standard syntax.
2414
2415 @item -fno-nonansi-builtins
2416 @opindex fno-nonansi-builtins
2417 Disable built-in declarations of functions that are not mandated by
2418 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2419 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2420
2421 @item -fnothrow-opt
2422 @opindex fnothrow-opt
2423 Treat a @code{throw()} exception specification as if it were a
2424 @code{noexcept} specification to reduce or eliminate the text size
2425 overhead relative to a function with no exception specification. If
2426 the function has local variables of types with non-trivial
2427 destructors, the exception specification actually makes the
2428 function smaller because the EH cleanups for those variables can be
2429 optimized away. The semantic effect is that an exception thrown out of
2430 a function with such an exception specification results in a call
2431 to @code{terminate} rather than @code{unexpected}.
2432
2433 @item -fno-operator-names
2434 @opindex fno-operator-names
2435 Do not treat the operator name keywords @code{and}, @code{bitand},
2436 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2437 synonyms as keywords.
2438
2439 @item -fno-optional-diags
2440 @opindex fno-optional-diags
2441 Disable diagnostics that the standard says a compiler does not need to
2442 issue. Currently, the only such diagnostic issued by G++ is the one for
2443 a name having multiple meanings within a class.
2444
2445 @item -fpermissive
2446 @opindex fpermissive
2447 Downgrade some diagnostics about nonconformant code from errors to
2448 warnings. Thus, using @option{-fpermissive} allows some
2449 nonconforming code to compile.
2450
2451 @item -fno-pretty-templates
2452 @opindex fno-pretty-templates
2453 When an error message refers to a specialization of a function
2454 template, the compiler normally prints the signature of the
2455 template followed by the template arguments and any typedefs or
2456 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2457 rather than @code{void f(int)}) so that it's clear which template is
2458 involved. When an error message refers to a specialization of a class
2459 template, the compiler omits any template arguments that match
2460 the default template arguments for that template. If either of these
2461 behaviors make it harder to understand the error message rather than
2462 easier, you can use @option{-fno-pretty-templates} to disable them.
2463
2464 @item -frepo
2465 @opindex frepo
2466 Enable automatic template instantiation at link time. This option also
2467 implies @option{-fno-implicit-templates}. @xref{Template
2468 Instantiation}, for more information.
2469
2470 @item -fno-rtti
2471 @opindex fno-rtti
2472 Disable generation of information about every class with virtual
2473 functions for use by the C++ run-time type identification features
2474 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2475 of the language, you can save some space by using this flag. Note that
2476 exception handling uses the same information, but G++ generates it as
2477 needed. The @code{dynamic_cast} operator can still be used for casts that
2478 do not require run-time type information, i.e.@: casts to @code{void *} or to
2479 unambiguous base classes.
2480
2481 @item -fsized-deallocation
2482 @opindex fsized-deallocation
2483 Enable the built-in global declarations
2484 @smallexample
2485 void operator delete (void *, std::size_t) noexcept;
2486 void operator delete[] (void *, std::size_t) noexcept;
2487 @end smallexample
2488 as introduced in C++14. This is useful for user-defined replacement
2489 deallocation functions that, for example, use the size of the object
2490 to make deallocation faster. Enabled by default under
2491 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2492 warns about places that might want to add a definition.
2493
2494 @item -fstrict-enums
2495 @opindex fstrict-enums
2496 Allow the compiler to optimize using the assumption that a value of
2497 enumerated type can only be one of the values of the enumeration (as
2498 defined in the C++ standard; basically, a value that can be
2499 represented in the minimum number of bits needed to represent all the
2500 enumerators). This assumption may not be valid if the program uses a
2501 cast to convert an arbitrary integer value to the enumerated type.
2502
2503 @item -fstrong-eval-order
2504 @opindex fstrong-eval-order
2505 Evaluate member access, array subscripting, and shift expressions in
2506 left-to-right order, and evaluate assignment in right-to-left order,
2507 as adopted for C++17. Enabled by default with @option{-std=c++1z}.
2508 @option{-fstrong-eval-order=some} enables just the ordering of member
2509 access and shift expressions, and is the default without
2510 @option{-std=c++1z}.
2511
2512 @item -ftemplate-backtrace-limit=@var{n}
2513 @opindex ftemplate-backtrace-limit
2514 Set the maximum number of template instantiation notes for a single
2515 warning or error to @var{n}. The default value is 10.
2516
2517 @item -ftemplate-depth=@var{n}
2518 @opindex ftemplate-depth
2519 Set the maximum instantiation depth for template classes to @var{n}.
2520 A limit on the template instantiation depth is needed to detect
2521 endless recursions during template class instantiation. ANSI/ISO C++
2522 conforming programs must not rely on a maximum depth greater than 17
2523 (changed to 1024 in C++11). The default value is 900, as the compiler
2524 can run out of stack space before hitting 1024 in some situations.
2525
2526 @item -fno-threadsafe-statics
2527 @opindex fno-threadsafe-statics
2528 Do not emit the extra code to use the routines specified in the C++
2529 ABI for thread-safe initialization of local statics. You can use this
2530 option to reduce code size slightly in code that doesn't need to be
2531 thread-safe.
2532
2533 @item -fuse-cxa-atexit
2534 @opindex fuse-cxa-atexit
2535 Register destructors for objects with static storage duration with the
2536 @code{__cxa_atexit} function rather than the @code{atexit} function.
2537 This option is required for fully standards-compliant handling of static
2538 destructors, but only works if your C library supports
2539 @code{__cxa_atexit}.
2540
2541 @item -fno-use-cxa-get-exception-ptr
2542 @opindex fno-use-cxa-get-exception-ptr
2543 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2544 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2545 if the runtime routine is not available.
2546
2547 @item -fvisibility-inlines-hidden
2548 @opindex fvisibility-inlines-hidden
2549 This switch declares that the user does not attempt to compare
2550 pointers to inline functions or methods where the addresses of the two functions
2551 are taken in different shared objects.
2552
2553 The effect of this is that GCC may, effectively, mark inline methods with
2554 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2555 appear in the export table of a DSO and do not require a PLT indirection
2556 when used within the DSO@. Enabling this option can have a dramatic effect
2557 on load and link times of a DSO as it massively reduces the size of the
2558 dynamic export table when the library makes heavy use of templates.
2559
2560 The behavior of this switch is not quite the same as marking the
2561 methods as hidden directly, because it does not affect static variables
2562 local to the function or cause the compiler to deduce that
2563 the function is defined in only one shared object.
2564
2565 You may mark a method as having a visibility explicitly to negate the
2566 effect of the switch for that method. For example, if you do want to
2567 compare pointers to a particular inline method, you might mark it as
2568 having default visibility. Marking the enclosing class with explicit
2569 visibility has no effect.
2570
2571 Explicitly instantiated inline methods are unaffected by this option
2572 as their linkage might otherwise cross a shared library boundary.
2573 @xref{Template Instantiation}.
2574
2575 @item -fvisibility-ms-compat
2576 @opindex fvisibility-ms-compat
2577 This flag attempts to use visibility settings to make GCC's C++
2578 linkage model compatible with that of Microsoft Visual Studio.
2579
2580 The flag makes these changes to GCC's linkage model:
2581
2582 @enumerate
2583 @item
2584 It sets the default visibility to @code{hidden}, like
2585 @option{-fvisibility=hidden}.
2586
2587 @item
2588 Types, but not their members, are not hidden by default.
2589
2590 @item
2591 The One Definition Rule is relaxed for types without explicit
2592 visibility specifications that are defined in more than one
2593 shared object: those declarations are permitted if they are
2594 permitted when this option is not used.
2595 @end enumerate
2596
2597 In new code it is better to use @option{-fvisibility=hidden} and
2598 export those classes that are intended to be externally visible.
2599 Unfortunately it is possible for code to rely, perhaps accidentally,
2600 on the Visual Studio behavior.
2601
2602 Among the consequences of these changes are that static data members
2603 of the same type with the same name but defined in different shared
2604 objects are different, so changing one does not change the other;
2605 and that pointers to function members defined in different shared
2606 objects may not compare equal. When this flag is given, it is a
2607 violation of the ODR to define types with the same name differently.
2608
2609 @item -fno-weak
2610 @opindex fno-weak
2611 Do not use weak symbol support, even if it is provided by the linker.
2612 By default, G++ uses weak symbols if they are available. This
2613 option exists only for testing, and should not be used by end-users;
2614 it results in inferior code and has no benefits. This option may
2615 be removed in a future release of G++.
2616
2617 @item -nostdinc++
2618 @opindex nostdinc++
2619 Do not search for header files in the standard directories specific to
2620 C++, but do still search the other standard directories. (This option
2621 is used when building the C++ library.)
2622 @end table
2623
2624 In addition, these optimization, warning, and code generation options
2625 have meanings only for C++ programs:
2626
2627 @table @gcctabopt
2628 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2629 @opindex Wabi
2630 @opindex Wno-abi
2631 Warn when G++ it generates code that is probably not compatible with
2632 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2633 ABI with each major release, normally @option{-Wabi} will warn only if
2634 there is a check added later in a release series for an ABI issue
2635 discovered since the initial release. @option{-Wabi} will warn about
2636 more things if an older ABI version is selected (with
2637 @option{-fabi-version=@var{n}}).
2638
2639 @option{-Wabi} can also be used with an explicit version number to
2640 warn about compatibility with a particular @option{-fabi-version}
2641 level, e.g. @option{-Wabi=2} to warn about changes relative to
2642 @option{-fabi-version=2}.
2643
2644 If an explicit version number is provided and
2645 @option{-fabi-compat-version} is not specified, the version number
2646 from this option is used for compatibility aliases. If no explicit
2647 version number is provided with this option, but
2648 @option{-fabi-compat-version} is specified, that version number is
2649 used for ABI warnings.
2650
2651 Although an effort has been made to warn about
2652 all such cases, there are probably some cases that are not warned about,
2653 even though G++ is generating incompatible code. There may also be
2654 cases where warnings are emitted even though the code that is generated
2655 is compatible.
2656
2657 You should rewrite your code to avoid these warnings if you are
2658 concerned about the fact that code generated by G++ may not be binary
2659 compatible with code generated by other compilers.
2660
2661 Known incompatibilities in @option{-fabi-version=2} (which was the
2662 default from GCC 3.4 to 4.9) include:
2663
2664 @itemize @bullet
2665
2666 @item
2667 A template with a non-type template parameter of reference type was
2668 mangled incorrectly:
2669 @smallexample
2670 extern int N;
2671 template <int &> struct S @{@};
2672 void n (S<N>) @{2@}
2673 @end smallexample
2674
2675 This was fixed in @option{-fabi-version=3}.
2676
2677 @item
2678 SIMD vector types declared using @code{__attribute ((vector_size))} were
2679 mangled in a non-standard way that does not allow for overloading of
2680 functions taking vectors of different sizes.
2681
2682 The mangling was changed in @option{-fabi-version=4}.
2683
2684 @item
2685 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2686 qualifiers, and @code{decltype} of a plain declaration was folded away.
2687
2688 These mangling issues were fixed in @option{-fabi-version=5}.
2689
2690 @item
2691 Scoped enumerators passed as arguments to a variadic function are
2692 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2693 On most targets this does not actually affect the parameter passing
2694 ABI, as there is no way to pass an argument smaller than @code{int}.
2695
2696 Also, the ABI changed the mangling of template argument packs,
2697 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2698 a class scope function used as a template argument.
2699
2700 These issues were corrected in @option{-fabi-version=6}.
2701
2702 @item
2703 Lambdas in default argument scope were mangled incorrectly, and the
2704 ABI changed the mangling of @code{nullptr_t}.
2705
2706 These issues were corrected in @option{-fabi-version=7}.
2707
2708 @item
2709 When mangling a function type with function-cv-qualifiers, the
2710 un-qualified function type was incorrectly treated as a substitution
2711 candidate.
2712
2713 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2714
2715 @item
2716 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2717 unaligned accesses. Note that this did not affect the ABI of a
2718 function with a @code{nullptr_t} parameter, as parameters have a
2719 minimum alignment.
2720
2721 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2722
2723 @item
2724 Target-specific attributes that affect the identity of a type, such as
2725 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2726 did not affect the mangled name, leading to name collisions when
2727 function pointers were used as template arguments.
2728
2729 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2730
2731 @end itemize
2732
2733 It also warns about psABI-related changes. The known psABI changes at this
2734 point include:
2735
2736 @itemize @bullet
2737
2738 @item
2739 For SysV/x86-64, unions with @code{long double} members are
2740 passed in memory as specified in psABI. For example:
2741
2742 @smallexample
2743 union U @{
2744 long double ld;
2745 int i;
2746 @};
2747 @end smallexample
2748
2749 @noindent
2750 @code{union U} is always passed in memory.
2751
2752 @end itemize
2753
2754 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2755 @opindex Wabi-tag
2756 @opindex -Wabi-tag
2757 Warn when a type with an ABI tag is used in a context that does not
2758 have that ABI tag. See @ref{C++ Attributes} for more information
2759 about ABI tags.
2760
2761 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2762 @opindex Wctor-dtor-privacy
2763 @opindex Wno-ctor-dtor-privacy
2764 Warn when a class seems unusable because all the constructors or
2765 destructors in that class are private, and it has neither friends nor
2766 public static member functions. Also warn if there are no non-private
2767 methods, and there's at least one private member function that isn't
2768 a constructor or destructor.
2769
2770 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2771 @opindex Wdelete-non-virtual-dtor
2772 @opindex Wno-delete-non-virtual-dtor
2773 Warn when @code{delete} is used to destroy an instance of a class that
2774 has virtual functions and non-virtual destructor. It is unsafe to delete
2775 an instance of a derived class through a pointer to a base class if the
2776 base class does not have a virtual destructor. This warning is enabled
2777 by @option{-Wall}.
2778
2779 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2780 @opindex Wliteral-suffix
2781 @opindex Wno-literal-suffix
2782 Warn when a string or character literal is followed by a ud-suffix which does
2783 not begin with an underscore. As a conforming extension, GCC treats such
2784 suffixes as separate preprocessing tokens in order to maintain backwards
2785 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2786 For example:
2787
2788 @smallexample
2789 #define __STDC_FORMAT_MACROS
2790 #include <inttypes.h>
2791 #include <stdio.h>
2792
2793 int main() @{
2794 int64_t i64 = 123;
2795 printf("My int64: %" PRId64"\n", i64);
2796 @}
2797 @end smallexample
2798
2799 In this case, @code{PRId64} is treated as a separate preprocessing token.
2800
2801 This warning is enabled by default.
2802
2803 @item -Wlto-type-mismatch
2804 @opindex Wlto-type-mismatch
2805 @opindex Wno-lto-type-mismatch
2806
2807 During the link-time optimization warn about type mismatches in
2808 global declarations from different compilation units.
2809 Requires @option{-flto} to be enabled. Enabled by default.
2810
2811 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2812 @opindex Wnarrowing
2813 @opindex Wno-narrowing
2814 With @option{-std=gnu++98} or @option{-std=c++98}, warn when a narrowing
2815 conversion prohibited by C++11 occurs within
2816 @samp{@{ @}}, e.g.
2817
2818 @smallexample
2819 int i = @{ 2.2 @}; // error: narrowing from double to int
2820 @end smallexample
2821
2822 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2823
2824 When a later standard is in effect, e.g. when using @option{-std=c++11},
2825 narrowing conversions are diagnosed by default, as required by the standard.
2826 A narrowing conversion from a constant produces an error,
2827 and a narrowing conversion from a non-constant produces a warning,
2828 but @option{-Wno-narrowing} suppresses the diagnostic.
2829 Note that this does not affect the meaning of well-formed code;
2830 narrowing conversions are still considered ill-formed in SFINAE contexts.
2831
2832 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2833 @opindex Wnoexcept
2834 @opindex Wno-noexcept
2835 Warn when a noexcept-expression evaluates to false because of a call
2836 to a function that does not have a non-throwing exception
2837 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2838 the compiler to never throw an exception.
2839
2840 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2841 @opindex Wnon-virtual-dtor
2842 @opindex Wno-non-virtual-dtor
2843 Warn when a class has virtual functions and an accessible non-virtual
2844 destructor itself or in an accessible polymorphic base class, in which
2845 case it is possible but unsafe to delete an instance of a derived
2846 class through a pointer to the class itself or base class. This
2847 warning is automatically enabled if @option{-Weffc++} is specified.
2848
2849 @item -Wregister @r{(C++ and Objective-C++ only)}
2850 @opindex Wregister
2851 @opindex Wno-register
2852 Warn on uses of the @code{register} storage class specifier, except
2853 when it is part of the GNU @ref{Explicit Register Variables} extension.
2854 The use of the @code{register} keyword as storage class specifier has
2855 been deprecated in C++11 and removed in C++17.
2856 Enabled by default with @option{-std=c++1z}.
2857
2858 @item -Wreorder @r{(C++ and Objective-C++ only)}
2859 @opindex Wreorder
2860 @opindex Wno-reorder
2861 @cindex reordering, warning
2862 @cindex warning for reordering of member initializers
2863 Warn when the order of member initializers given in the code does not
2864 match the order in which they must be executed. For instance:
2865
2866 @smallexample
2867 struct A @{
2868 int i;
2869 int j;
2870 A(): j (0), i (1) @{ @}
2871 @};
2872 @end smallexample
2873
2874 @noindent
2875 The compiler rearranges the member initializers for @code{i}
2876 and @code{j} to match the declaration order of the members, emitting
2877 a warning to that effect. This warning is enabled by @option{-Wall}.
2878
2879 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2880 @opindex fext-numeric-literals
2881 @opindex fno-ext-numeric-literals
2882 Accept imaginary, fixed-point, or machine-defined
2883 literal number suffixes as GNU extensions.
2884 When this option is turned off these suffixes are treated
2885 as C++11 user-defined literal numeric suffixes.
2886 This is on by default for all pre-C++11 dialects and all GNU dialects:
2887 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2888 @option{-std=gnu++14}.
2889 This option is off by default
2890 for ISO C++11 onwards (@option{-std=c++11}, ...).
2891 @end table
2892
2893 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2894
2895 @table @gcctabopt
2896 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2897 @opindex Weffc++
2898 @opindex Wno-effc++
2899 Warn about violations of the following style guidelines from Scott Meyers'
2900 @cite{Effective C++} series of books:
2901
2902 @itemize @bullet
2903 @item
2904 Define a copy constructor and an assignment operator for classes
2905 with dynamically-allocated memory.
2906
2907 @item
2908 Prefer initialization to assignment in constructors.
2909
2910 @item
2911 Have @code{operator=} return a reference to @code{*this}.
2912
2913 @item
2914 Don't try to return a reference when you must return an object.
2915
2916 @item
2917 Distinguish between prefix and postfix forms of increment and
2918 decrement operators.
2919
2920 @item
2921 Never overload @code{&&}, @code{||}, or @code{,}.
2922
2923 @end itemize
2924
2925 This option also enables @option{-Wnon-virtual-dtor}, which is also
2926 one of the effective C++ recommendations. However, the check is
2927 extended to warn about the lack of virtual destructor in accessible
2928 non-polymorphic bases classes too.
2929
2930 When selecting this option, be aware that the standard library
2931 headers do not obey all of these guidelines; use @samp{grep -v}
2932 to filter out those warnings.
2933
2934 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2935 @opindex Wstrict-null-sentinel
2936 @opindex Wno-strict-null-sentinel
2937 Warn about the use of an uncasted @code{NULL} as sentinel. When
2938 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2939 to @code{__null}. Although it is a null pointer constant rather than a
2940 null pointer, it is guaranteed to be of the same size as a pointer.
2941 But this use is not portable across different compilers.
2942
2943 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2944 @opindex Wno-non-template-friend
2945 @opindex Wnon-template-friend
2946 Disable warnings when non-templatized friend functions are declared
2947 within a template. Since the advent of explicit template specification
2948 support in G++, if the name of the friend is an unqualified-id (i.e.,
2949 @samp{friend foo(int)}), the C++ language specification demands that the
2950 friend declare or define an ordinary, nontemplate function. (Section
2951 14.5.3). Before G++ implemented explicit specification, unqualified-ids
2952 could be interpreted as a particular specialization of a templatized
2953 function. Because this non-conforming behavior is no longer the default
2954 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2955 check existing code for potential trouble spots and is on by default.
2956 This new compiler behavior can be turned off with
2957 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2958 but disables the helpful warning.
2959
2960 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2961 @opindex Wold-style-cast
2962 @opindex Wno-old-style-cast
2963 Warn if an old-style (C-style) cast to a non-void type is used within
2964 a C++ program. The new-style casts (@code{dynamic_cast},
2965 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2966 less vulnerable to unintended effects and much easier to search for.
2967
2968 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2969 @opindex Woverloaded-virtual
2970 @opindex Wno-overloaded-virtual
2971 @cindex overloaded virtual function, warning
2972 @cindex warning for overloaded virtual function
2973 Warn when a function declaration hides virtual functions from a
2974 base class. For example, in:
2975
2976 @smallexample
2977 struct A @{
2978 virtual void f();
2979 @};
2980
2981 struct B: public A @{
2982 void f(int);
2983 @};
2984 @end smallexample
2985
2986 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2987 like:
2988
2989 @smallexample
2990 B* b;
2991 b->f();
2992 @end smallexample
2993
2994 @noindent
2995 fails to compile.
2996
2997 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2998 @opindex Wno-pmf-conversions
2999 @opindex Wpmf-conversions
3000 Disable the diagnostic for converting a bound pointer to member function
3001 to a plain pointer.
3002
3003 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3004 @opindex Wsign-promo
3005 @opindex Wno-sign-promo
3006 Warn when overload resolution chooses a promotion from unsigned or
3007 enumerated type to a signed type, over a conversion to an unsigned type of
3008 the same size. Previous versions of G++ tried to preserve
3009 unsignedness, but the standard mandates the current behavior.
3010
3011 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3012 @opindex Wtemplates
3013 Warn when a primary template declaration is encountered. Some coding
3014 rules disallow templates, and this may be used to enforce that rule.
3015 The warning is inactive inside a system header file, such as the STL, so
3016 one can still use the STL. One may also instantiate or specialize
3017 templates.
3018
3019 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3020 @opindex Wmultiple-inheritance
3021 Warn when a class is defined with multiple direct base classes. Some
3022 coding rules disallow multiple inheritance, and this may be used to
3023 enforce that rule. The warning is inactive inside a system header file,
3024 such as the STL, so one can still use the STL. One may also define
3025 classes that indirectly use multiple inheritance.
3026
3027 @item -Wvirtual-inheritance
3028 @opindex Wvirtual-inheritance
3029 Warn when a class is defined with a virtual direct base classe. Some
3030 coding rules disallow multiple inheritance, and this may be used to
3031 enforce that rule. The warning is inactive inside a system header file,
3032 such as the STL, so one can still use the STL. One may also define
3033 classes that indirectly use virtual inheritance.
3034
3035 @item -Wnamespaces
3036 @opindex Wnamespaces
3037 Warn when a namespace definition is opened. Some coding rules disallow
3038 namespaces, and this may be used to enforce that rule. The warning is
3039 inactive inside a system header file, such as the STL, so one can still
3040 use the STL. One may also use using directives and qualified names.
3041
3042 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3043 @opindex Wterminate
3044 @opindex Wno-terminate
3045 Disable the warning about a throw-expression that will immediately
3046 result in a call to @code{terminate}.
3047 @end table
3048
3049 @node Objective-C and Objective-C++ Dialect Options
3050 @section Options Controlling Objective-C and Objective-C++ Dialects
3051
3052 @cindex compiler options, Objective-C and Objective-C++
3053 @cindex Objective-C and Objective-C++ options, command-line
3054 @cindex options, Objective-C and Objective-C++
3055 (NOTE: This manual does not describe the Objective-C and Objective-C++
3056 languages themselves. @xref{Standards,,Language Standards
3057 Supported by GCC}, for references.)
3058
3059 This section describes the command-line options that are only meaningful
3060 for Objective-C and Objective-C++ programs. You can also use most of
3061 the language-independent GNU compiler options.
3062 For example, you might compile a file @file{some_class.m} like this:
3063
3064 @smallexample
3065 gcc -g -fgnu-runtime -O -c some_class.m
3066 @end smallexample
3067
3068 @noindent
3069 In this example, @option{-fgnu-runtime} is an option meant only for
3070 Objective-C and Objective-C++ programs; you can use the other options with
3071 any language supported by GCC@.
3072
3073 Note that since Objective-C is an extension of the C language, Objective-C
3074 compilations may also use options specific to the C front-end (e.g.,
3075 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3076 C++-specific options (e.g., @option{-Wabi}).
3077
3078 Here is a list of options that are @emph{only} for compiling Objective-C
3079 and Objective-C++ programs:
3080
3081 @table @gcctabopt
3082 @item -fconstant-string-class=@var{class-name}
3083 @opindex fconstant-string-class
3084 Use @var{class-name} as the name of the class to instantiate for each
3085 literal string specified with the syntax @code{@@"@dots{}"}. The default
3086 class name is @code{NXConstantString} if the GNU runtime is being used, and
3087 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3088 @option{-fconstant-cfstrings} option, if also present, overrides the
3089 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3090 to be laid out as constant CoreFoundation strings.
3091
3092 @item -fgnu-runtime
3093 @opindex fgnu-runtime
3094 Generate object code compatible with the standard GNU Objective-C
3095 runtime. This is the default for most types of systems.
3096
3097 @item -fnext-runtime
3098 @opindex fnext-runtime
3099 Generate output compatible with the NeXT runtime. This is the default
3100 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3101 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3102 used.
3103
3104 @item -fno-nil-receivers
3105 @opindex fno-nil-receivers
3106 Assume that all Objective-C message dispatches (@code{[receiver
3107 message:arg]}) in this translation unit ensure that the receiver is
3108 not @code{nil}. This allows for more efficient entry points in the
3109 runtime to be used. This option is only available in conjunction with
3110 the NeXT runtime and ABI version 0 or 1.
3111
3112 @item -fobjc-abi-version=@var{n}
3113 @opindex fobjc-abi-version
3114 Use version @var{n} of the Objective-C ABI for the selected runtime.
3115 This option is currently supported only for the NeXT runtime. In that
3116 case, Version 0 is the traditional (32-bit) ABI without support for
3117 properties and other Objective-C 2.0 additions. Version 1 is the
3118 traditional (32-bit) ABI with support for properties and other
3119 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3120 nothing is specified, the default is Version 0 on 32-bit target
3121 machines, and Version 2 on 64-bit target machines.
3122
3123 @item -fobjc-call-cxx-cdtors
3124 @opindex fobjc-call-cxx-cdtors
3125 For each Objective-C class, check if any of its instance variables is a
3126 C++ object with a non-trivial default constructor. If so, synthesize a
3127 special @code{- (id) .cxx_construct} instance method which runs
3128 non-trivial default constructors on any such instance variables, in order,
3129 and then return @code{self}. Similarly, check if any instance variable
3130 is a C++ object with a non-trivial destructor, and if so, synthesize a
3131 special @code{- (void) .cxx_destruct} method which runs
3132 all such default destructors, in reverse order.
3133
3134 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3135 methods thusly generated only operate on instance variables
3136 declared in the current Objective-C class, and not those inherited
3137 from superclasses. It is the responsibility of the Objective-C
3138 runtime to invoke all such methods in an object's inheritance
3139 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3140 by the runtime immediately after a new object instance is allocated;
3141 the @code{- (void) .cxx_destruct} methods are invoked immediately
3142 before the runtime deallocates an object instance.
3143
3144 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3145 support for invoking the @code{- (id) .cxx_construct} and
3146 @code{- (void) .cxx_destruct} methods.
3147
3148 @item -fobjc-direct-dispatch
3149 @opindex fobjc-direct-dispatch
3150 Allow fast jumps to the message dispatcher. On Darwin this is
3151 accomplished via the comm page.
3152
3153 @item -fobjc-exceptions
3154 @opindex fobjc-exceptions
3155 Enable syntactic support for structured exception handling in
3156 Objective-C, similar to what is offered by C++ and Java. This option
3157 is required to use the Objective-C keywords @code{@@try},
3158 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3159 @code{@@synchronized}. This option is available with both the GNU
3160 runtime and the NeXT runtime (but not available in conjunction with
3161 the NeXT runtime on Mac OS X 10.2 and earlier).
3162
3163 @item -fobjc-gc
3164 @opindex fobjc-gc
3165 Enable garbage collection (GC) in Objective-C and Objective-C++
3166 programs. This option is only available with the NeXT runtime; the
3167 GNU runtime has a different garbage collection implementation that
3168 does not require special compiler flags.
3169
3170 @item -fobjc-nilcheck
3171 @opindex fobjc-nilcheck
3172 For the NeXT runtime with version 2 of the ABI, check for a nil
3173 receiver in method invocations before doing the actual method call.
3174 This is the default and can be disabled using
3175 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3176 checked for nil in this way no matter what this flag is set to.
3177 Currently this flag does nothing when the GNU runtime, or an older
3178 version of the NeXT runtime ABI, is used.
3179
3180 @item -fobjc-std=objc1
3181 @opindex fobjc-std
3182 Conform to the language syntax of Objective-C 1.0, the language
3183 recognized by GCC 4.0. This only affects the Objective-C additions to
3184 the C/C++ language; it does not affect conformance to C/C++ standards,
3185 which is controlled by the separate C/C++ dialect option flags. When
3186 this option is used with the Objective-C or Objective-C++ compiler,
3187 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3188 This is useful if you need to make sure that your Objective-C code can
3189 be compiled with older versions of GCC@.
3190
3191 @item -freplace-objc-classes
3192 @opindex freplace-objc-classes
3193 Emit a special marker instructing @command{ld(1)} not to statically link in
3194 the resulting object file, and allow @command{dyld(1)} to load it in at
3195 run time instead. This is used in conjunction with the Fix-and-Continue
3196 debugging mode, where the object file in question may be recompiled and
3197 dynamically reloaded in the course of program execution, without the need
3198 to restart the program itself. Currently, Fix-and-Continue functionality
3199 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3200 and later.
3201
3202 @item -fzero-link
3203 @opindex fzero-link
3204 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3205 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3206 compile time) with static class references that get initialized at load time,
3207 which improves run-time performance. Specifying the @option{-fzero-link} flag
3208 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3209 to be retained. This is useful in Zero-Link debugging mode, since it allows
3210 for individual class implementations to be modified during program execution.
3211 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3212 regardless of command-line options.
3213
3214 @item -fno-local-ivars
3215 @opindex fno-local-ivars
3216 @opindex flocal-ivars
3217 By default instance variables in Objective-C can be accessed as if
3218 they were local variables from within the methods of the class they're
3219 declared in. This can lead to shadowing between instance variables
3220 and other variables declared either locally inside a class method or
3221 globally with the same name. Specifying the @option{-fno-local-ivars}
3222 flag disables this behavior thus avoiding variable shadowing issues.
3223
3224 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3225 @opindex fivar-visibility
3226 Set the default instance variable visibility to the specified option
3227 so that instance variables declared outside the scope of any access
3228 modifier directives default to the specified visibility.
3229
3230 @item -gen-decls
3231 @opindex gen-decls
3232 Dump interface declarations for all classes seen in the source file to a
3233 file named @file{@var{sourcename}.decl}.
3234
3235 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3236 @opindex Wassign-intercept
3237 @opindex Wno-assign-intercept
3238 Warn whenever an Objective-C assignment is being intercepted by the
3239 garbage collector.
3240
3241 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3242 @opindex Wno-protocol
3243 @opindex Wprotocol
3244 If a class is declared to implement a protocol, a warning is issued for
3245 every method in the protocol that is not implemented by the class. The
3246 default behavior is to issue a warning for every method not explicitly
3247 implemented in the class, even if a method implementation is inherited
3248 from the superclass. If you use the @option{-Wno-protocol} option, then
3249 methods inherited from the superclass are considered to be implemented,
3250 and no warning is issued for them.
3251
3252 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3253 @opindex Wselector
3254 @opindex Wno-selector
3255 Warn if multiple methods of different types for the same selector are
3256 found during compilation. The check is performed on the list of methods
3257 in the final stage of compilation. Additionally, a check is performed
3258 for each selector appearing in a @code{@@selector(@dots{})}
3259 expression, and a corresponding method for that selector has been found
3260 during compilation. Because these checks scan the method table only at
3261 the end of compilation, these warnings are not produced if the final
3262 stage of compilation is not reached, for example because an error is
3263 found during compilation, or because the @option{-fsyntax-only} option is
3264 being used.
3265
3266 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3267 @opindex Wstrict-selector-match
3268 @opindex Wno-strict-selector-match
3269 Warn if multiple methods with differing argument and/or return types are
3270 found for a given selector when attempting to send a message using this
3271 selector to a receiver of type @code{id} or @code{Class}. When this flag
3272 is off (which is the default behavior), the compiler omits such warnings
3273 if any differences found are confined to types that share the same size
3274 and alignment.
3275
3276 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3277 @opindex Wundeclared-selector
3278 @opindex Wno-undeclared-selector
3279 Warn if a @code{@@selector(@dots{})} expression referring to an
3280 undeclared selector is found. A selector is considered undeclared if no
3281 method with that name has been declared before the
3282 @code{@@selector(@dots{})} expression, either explicitly in an
3283 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3284 an @code{@@implementation} section. This option always performs its
3285 checks as soon as a @code{@@selector(@dots{})} expression is found,
3286 while @option{-Wselector} only performs its checks in the final stage of
3287 compilation. This also enforces the coding style convention
3288 that methods and selectors must be declared before being used.
3289
3290 @item -print-objc-runtime-info
3291 @opindex print-objc-runtime-info
3292 Generate C header describing the largest structure that is passed by
3293 value, if any.
3294
3295 @end table
3296
3297 @node Diagnostic Message Formatting Options
3298 @section Options to Control Diagnostic Messages Formatting
3299 @cindex options to control diagnostics formatting
3300 @cindex diagnostic messages
3301 @cindex message formatting
3302
3303 Traditionally, diagnostic messages have been formatted irrespective of
3304 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3305 options described below
3306 to control the formatting algorithm for diagnostic messages,
3307 e.g.@: how many characters per line, how often source location
3308 information should be reported. Note that some language front ends may not
3309 honor these options.
3310
3311 @table @gcctabopt
3312 @item -fmessage-length=@var{n}
3313 @opindex fmessage-length
3314 Try to format error messages so that they fit on lines of about
3315 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3316 done; each error message appears on a single line. This is the
3317 default for all front ends.
3318
3319 @item -fdiagnostics-show-location=once
3320 @opindex fdiagnostics-show-location
3321 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3322 reporter to emit source location information @emph{once}; that is, in
3323 case the message is too long to fit on a single physical line and has to
3324 be wrapped, the source location won't be emitted (as prefix) again,
3325 over and over, in subsequent continuation lines. This is the default
3326 behavior.
3327
3328 @item -fdiagnostics-show-location=every-line
3329 Only meaningful in line-wrapping mode. Instructs the diagnostic
3330 messages reporter to emit the same source location information (as
3331 prefix) for physical lines that result from the process of breaking
3332 a message which is too long to fit on a single line.
3333
3334 @item -fdiagnostics-color[=@var{WHEN}]
3335 @itemx -fno-diagnostics-color
3336 @opindex fdiagnostics-color
3337 @cindex highlight, color
3338 @vindex GCC_COLORS @r{environment variable}
3339 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3340 or @samp{auto}. The default depends on how the compiler has been configured,
3341 it can be any of the above @var{WHEN} options or also @samp{never}
3342 if @env{GCC_COLORS} environment variable isn't present in the environment,
3343 and @samp{auto} otherwise.
3344 @samp{auto} means to use color only when the standard error is a terminal.
3345 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3346 aliases for @option{-fdiagnostics-color=always} and
3347 @option{-fdiagnostics-color=never}, respectively.
3348
3349 The colors are defined by the environment variable @env{GCC_COLORS}.
3350 Its value is a colon-separated list of capabilities and Select Graphic
3351 Rendition (SGR) substrings. SGR commands are interpreted by the
3352 terminal or terminal emulator. (See the section in the documentation
3353 of your text terminal for permitted values and their meanings as
3354 character attributes.) These substring values are integers in decimal
3355 representation and can be concatenated with semicolons.
3356 Common values to concatenate include
3357 @samp{1} for bold,
3358 @samp{4} for underline,
3359 @samp{5} for blink,
3360 @samp{7} for inverse,
3361 @samp{39} for default foreground color,
3362 @samp{30} to @samp{37} for foreground colors,
3363 @samp{90} to @samp{97} for 16-color mode foreground colors,
3364 @samp{38;5;0} to @samp{38;5;255}
3365 for 88-color and 256-color modes foreground colors,
3366 @samp{49} for default background color,
3367 @samp{40} to @samp{47} for background colors,
3368 @samp{100} to @samp{107} for 16-color mode background colors,
3369 and @samp{48;5;0} to @samp{48;5;255}
3370 for 88-color and 256-color modes background colors.
3371
3372 The default @env{GCC_COLORS} is
3373 @smallexample
3374 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:quote=01:\
3375 fixit-insert=32:fixit-delete=31:\
3376 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32
3377 @end smallexample
3378 @noindent
3379 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3380 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3381 @samp{01} is bold, and @samp{31} is red.
3382 Setting @env{GCC_COLORS} to the empty string disables colors.
3383 Supported capabilities are as follows.
3384
3385 @table @code
3386 @item error=
3387 @vindex error GCC_COLORS @r{capability}
3388 SGR substring for error: markers.
3389
3390 @item warning=
3391 @vindex warning GCC_COLORS @r{capability}
3392 SGR substring for warning: markers.
3393
3394 @item note=
3395 @vindex note GCC_COLORS @r{capability}
3396 SGR substring for note: markers.
3397
3398 @item range1=
3399 @vindex range1 GCC_COLORS @r{capability}
3400 SGR substring for first additional range.
3401
3402 @item range2=
3403 @vindex range2 GCC_COLORS @r{capability}
3404 SGR substring for second additional range.
3405
3406 @item locus=
3407 @vindex locus GCC_COLORS @r{capability}
3408 SGR substring for location information, @samp{file:line} or
3409 @samp{file:line:column} etc.
3410
3411 @item quote=
3412 @vindex quote GCC_COLORS @r{capability}
3413 SGR substring for information printed within quotes.
3414
3415 @item fixit-insert=
3416 @vindex fixit-insert GCC_COLORS @r{capability}
3417 SGR substring for fix-it hints suggesting text to
3418 be inserted or replaced.
3419
3420 @item fixit-delete=
3421 @vindex fixit-delete GCC_COLORS @r{capability}
3422 SGR substring for fix-it hints suggesting text to
3423 be deleted.
3424
3425 @item diff-filename=
3426 @vindex diff-filename GCC_COLORS @r{capability}
3427 SGR substring for filename headers within generated patches.
3428
3429 @item diff-hunk=
3430 @vindex diff-hunk GCC_COLORS @r{capability}
3431 SGR substring for the starts of hunks within generated patches.
3432
3433 @item diff-delete=
3434 @vindex diff-delete GCC_COLORS @r{capability}
3435 SGR substring for deleted lines within generated patches.
3436
3437 @item diff-insert=
3438 @vindex diff-insert GCC_COLORS @r{capability}
3439 SGR substring for inserted lines within generated patches.
3440 @end table
3441
3442 @item -fno-diagnostics-show-option
3443 @opindex fno-diagnostics-show-option
3444 @opindex fdiagnostics-show-option
3445 By default, each diagnostic emitted includes text indicating the
3446 command-line option that directly controls the diagnostic (if such an
3447 option is known to the diagnostic machinery). Specifying the
3448 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3449
3450 @item -fno-diagnostics-show-caret
3451 @opindex fno-diagnostics-show-caret
3452 @opindex fdiagnostics-show-caret
3453 By default, each diagnostic emitted includes the original source line
3454 and a caret @samp{^} indicating the column. This option suppresses this
3455 information. The source line is truncated to @var{n} characters, if
3456 the @option{-fmessage-length=n} option is given. When the output is done
3457 to the terminal, the width is limited to the width given by the
3458 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3459
3460 @item -fdiagnostics-parseable-fixits
3461 @opindex fdiagnostics-parseable-fixits
3462 Emit fix-it hints in a machine-parseable format, suitable for consumption
3463 by IDEs. For each fix-it, a line will be printed after the relevant
3464 diagnostic, starting with the string ``fix-it:''. For example:
3465
3466 @smallexample
3467 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3468 @end smallexample
3469
3470 The location is expressed as a half-open range, expressed as a count of
3471 bytes, starting at byte 1 for the initial column. In the above example,
3472 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3473 given string:
3474
3475 @smallexample
3476 00000000011111111112222222222
3477 12345678901234567890123456789
3478 gtk_widget_showall (dlg);
3479 ^^^^^^^^^^^^^^^^^^
3480 gtk_widget_show_all
3481 @end smallexample
3482
3483 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3484 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3485 (e.g. vertical tab as ``\013'').
3486
3487 An empty replacement string indicates that the given range is to be removed.
3488 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3489 be inserted at the given position.
3490
3491 @item -fdiagnostics-generate-patch
3492 @opindex fdiagnostics-generate-patch
3493 Print fix-it hints to stderr in unified diff format, after any diagnostics
3494 are printed. For example:
3495
3496 @smallexample
3497 --- test.c
3498 +++ test.c
3499 @@ -42,5 +42,5 @@
3500
3501 void show_cb(GtkDialog *dlg)
3502 @{
3503 - gtk_widget_showall(dlg);
3504 + gtk_widget_show_all(dlg);
3505 @}
3506
3507 @end smallexample
3508
3509 The diff may or may not be colorized, following the same rules
3510 as for diagnostics (see @option{-fdiagnostics-color}).
3511
3512 @end table
3513
3514 @node Warning Options
3515 @section Options to Request or Suppress Warnings
3516 @cindex options to control warnings
3517 @cindex warning messages
3518 @cindex messages, warning
3519 @cindex suppressing warnings
3520
3521 Warnings are diagnostic messages that report constructions that
3522 are not inherently erroneous but that are risky or suggest there
3523 may have been an error.
3524
3525 The following language-independent options do not enable specific
3526 warnings but control the kinds of diagnostics produced by GCC@.
3527
3528 @table @gcctabopt
3529 @cindex syntax checking
3530 @item -fsyntax-only
3531 @opindex fsyntax-only
3532 Check the code for syntax errors, but don't do anything beyond that.
3533
3534 @item -fmax-errors=@var{n}
3535 @opindex fmax-errors
3536 Limits the maximum number of error messages to @var{n}, at which point
3537 GCC bails out rather than attempting to continue processing the source
3538 code. If @var{n} is 0 (the default), there is no limit on the number
3539 of error messages produced. If @option{-Wfatal-errors} is also
3540 specified, then @option{-Wfatal-errors} takes precedence over this
3541 option.
3542
3543 @item -w
3544 @opindex w
3545 Inhibit all warning messages.
3546
3547 @item -Werror
3548 @opindex Werror
3549 @opindex Wno-error
3550 Make all warnings into errors.
3551
3552 @item -Werror=
3553 @opindex Werror=
3554 @opindex Wno-error=
3555 Make the specified warning into an error. The specifier for a warning
3556 is appended; for example @option{-Werror=switch} turns the warnings
3557 controlled by @option{-Wswitch} into errors. This switch takes a
3558 negative form, to be used to negate @option{-Werror} for specific
3559 warnings; for example @option{-Wno-error=switch} makes
3560 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3561 is in effect.
3562
3563 The warning message for each controllable warning includes the
3564 option that controls the warning. That option can then be used with
3565 @option{-Werror=} and @option{-Wno-error=} as described above.
3566 (Printing of the option in the warning message can be disabled using the
3567 @option{-fno-diagnostics-show-option} flag.)
3568
3569 Note that specifying @option{-Werror=}@var{foo} automatically implies
3570 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3571 imply anything.
3572
3573 @item -Wfatal-errors
3574 @opindex Wfatal-errors
3575 @opindex Wno-fatal-errors
3576 This option causes the compiler to abort compilation on the first error
3577 occurred rather than trying to keep going and printing further error
3578 messages.
3579
3580 @end table
3581
3582 You can request many specific warnings with options beginning with
3583 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3584 implicit declarations. Each of these specific warning options also
3585 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3586 example, @option{-Wno-implicit}. This manual lists only one of the
3587 two forms, whichever is not the default. For further
3588 language-specific options also refer to @ref{C++ Dialect Options} and
3589 @ref{Objective-C and Objective-C++ Dialect Options}.
3590
3591 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3592 options, such as @option{-Wunused}, which may turn on further options,
3593 such as @option{-Wunused-value}. The combined effect of positive and
3594 negative forms is that more specific options have priority over less
3595 specific ones, independently of their position in the command-line. For
3596 options of the same specificity, the last one takes effect. Options
3597 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3598 as if they appeared at the end of the command-line.
3599
3600 When an unrecognized warning option is requested (e.g.,
3601 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3602 that the option is not recognized. However, if the @option{-Wno-} form
3603 is used, the behavior is slightly different: no diagnostic is
3604 produced for @option{-Wno-unknown-warning} unless other diagnostics
3605 are being produced. This allows the use of new @option{-Wno-} options
3606 with old compilers, but if something goes wrong, the compiler
3607 warns that an unrecognized option is present.
3608
3609 @table @gcctabopt
3610 @item -Wpedantic
3611 @itemx -pedantic
3612 @opindex pedantic
3613 @opindex Wpedantic
3614 Issue all the warnings demanded by strict ISO C and ISO C++;
3615 reject all programs that use forbidden extensions, and some other
3616 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3617 version of the ISO C standard specified by any @option{-std} option used.
3618
3619 Valid ISO C and ISO C++ programs should compile properly with or without
3620 this option (though a rare few require @option{-ansi} or a
3621 @option{-std} option specifying the required version of ISO C)@. However,
3622 without this option, certain GNU extensions and traditional C and C++
3623 features are supported as well. With this option, they are rejected.
3624
3625 @option{-Wpedantic} does not cause warning messages for use of the
3626 alternate keywords whose names begin and end with @samp{__}. Pedantic
3627 warnings are also disabled in the expression that follows
3628 @code{__extension__}. However, only system header files should use
3629 these escape routes; application programs should avoid them.
3630 @xref{Alternate Keywords}.
3631
3632 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3633 C conformance. They soon find that it does not do quite what they want:
3634 it finds some non-ISO practices, but not all---only those for which
3635 ISO C @emph{requires} a diagnostic, and some others for which
3636 diagnostics have been added.
3637
3638 A feature to report any failure to conform to ISO C might be useful in
3639 some instances, but would require considerable additional work and would
3640 be quite different from @option{-Wpedantic}. We don't have plans to
3641 support such a feature in the near future.
3642
3643 Where the standard specified with @option{-std} represents a GNU
3644 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3645 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3646 extended dialect is based. Warnings from @option{-Wpedantic} are given
3647 where they are required by the base standard. (It does not make sense
3648 for such warnings to be given only for features not in the specified GNU
3649 C dialect, since by definition the GNU dialects of C include all
3650 features the compiler supports with the given option, and there would be
3651 nothing to warn about.)
3652
3653 @item -pedantic-errors
3654 @opindex pedantic-errors
3655 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3656 requires a diagnostic, in some cases where there is undefined behavior
3657 at compile-time and in some other cases that do not prevent compilation
3658 of programs that are valid according to the standard. This is not
3659 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3660 by this option and not enabled by the latter and vice versa.
3661
3662 @item -Wall
3663 @opindex Wall
3664 @opindex Wno-all
3665 This enables all the warnings about constructions that some users
3666 consider questionable, and that are easy to avoid (or modify to
3667 prevent the warning), even in conjunction with macros. This also
3668 enables some language-specific warnings described in @ref{C++ Dialect
3669 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3670
3671 @option{-Wall} turns on the following warning flags:
3672
3673 @gccoptlist{-Waddress @gol
3674 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3675 -Wbool-compare @gol
3676 -Wbool-operation @gol
3677 -Wc++11-compat -Wc++14-compat@gol
3678 -Wchar-subscripts @gol
3679 -Wcomment @gol
3680 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
3681 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3682 -Wformat @gol
3683 -Wint-in-bool-context @gol
3684 -Wimplicit @r{(C and Objective-C only)} @gol
3685 -Wimplicit-int @r{(C and Objective-C only)} @gol
3686 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3687 -Winit-self @r{(only for C++)} @gol
3688 -Wlogical-not-parentheses
3689 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3690 -Wmaybe-uninitialized @gol
3691 -Wmemset-elt-size @gol
3692 -Wmemset-transposed-args @gol
3693 -Wmisleading-indentation @r{(only for C/C++)} @gol
3694 -Wmissing-braces @r{(only for C/ObjC)} @gol
3695 -Wnarrowing @r{(only for C++)} @gol
3696 -Wnonnull @gol
3697 -Wnonnull-compare @gol
3698 -Wopenmp-simd @gol
3699 -Wparentheses @gol
3700 -Wpointer-sign @gol
3701 -Wreorder @gol
3702 -Wreturn-type @gol
3703 -Wsequence-point @gol
3704 -Wsign-compare @r{(only in C++)} @gol
3705 -Wsizeof-pointer-memaccess @gol
3706 -Wstrict-aliasing @gol
3707 -Wstrict-overflow=1 @gol
3708 -Wswitch @gol
3709 -Wtautological-compare @gol
3710 -Wtrigraphs @gol
3711 -Wuninitialized @gol
3712 -Wunknown-pragmas @gol
3713 -Wunused-function @gol
3714 -Wunused-label @gol
3715 -Wunused-value @gol
3716 -Wunused-variable @gol
3717 -Wvolatile-register-var @gol
3718 }
3719
3720 Note that some warning flags are not implied by @option{-Wall}. Some of
3721 them warn about constructions that users generally do not consider
3722 questionable, but which occasionally you might wish to check for;
3723 others warn about constructions that are necessary or hard to avoid in
3724 some cases, and there is no simple way to modify the code to suppress
3725 the warning. Some of them are enabled by @option{-Wextra} but many of
3726 them must be enabled individually.
3727
3728 @item -Wextra
3729 @opindex W
3730 @opindex Wextra
3731 @opindex Wno-extra
3732 This enables some extra warning flags that are not enabled by
3733 @option{-Wall}. (This option used to be called @option{-W}. The older
3734 name is still supported, but the newer name is more descriptive.)
3735
3736 @gccoptlist{-Wclobbered @gol
3737 -Wempty-body @gol
3738 -Wignored-qualifiers @gol
3739 -Wimplicit-fallthrough=3 @gol
3740 -Wmissing-field-initializers @gol
3741 -Wmissing-parameter-type @r{(C only)} @gol
3742 -Wold-style-declaration @r{(C only)} @gol
3743 -Woverride-init @gol
3744 -Wsign-compare @r{(C only)} @gol
3745 -Wtype-limits @gol
3746 -Wuninitialized @gol
3747 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
3748 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3749 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3750 }
3751
3752 The option @option{-Wextra} also prints warning messages for the
3753 following cases:
3754
3755 @itemize @bullet
3756
3757 @item
3758 A pointer is compared against integer zero with @code{<}, @code{<=},
3759 @code{>}, or @code{>=}.
3760
3761 @item
3762 (C++ only) An enumerator and a non-enumerator both appear in a
3763 conditional expression.
3764
3765 @item
3766 (C++ only) Ambiguous virtual bases.
3767
3768 @item
3769 (C++ only) Subscripting an array that has been declared @code{register}.
3770
3771 @item
3772 (C++ only) Taking the address of a variable that has been declared
3773 @code{register}.
3774
3775 @item
3776 (C++ only) A base class is not initialized in the copy constructor
3777 of a derived class.
3778
3779 @end itemize
3780
3781 @item -Wchar-subscripts
3782 @opindex Wchar-subscripts
3783 @opindex Wno-char-subscripts
3784 Warn if an array subscript has type @code{char}. This is a common cause
3785 of error, as programmers often forget that this type is signed on some
3786 machines.
3787 This warning is enabled by @option{-Wall}.
3788
3789 @item -Wcomment
3790 @opindex Wcomment
3791 @opindex Wno-comment
3792 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3793 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3794 This warning is enabled by @option{-Wall}.
3795
3796 @item -Wno-coverage-mismatch
3797 @opindex Wno-coverage-mismatch
3798 Warn if feedback profiles do not match when using the
3799 @option{-fprofile-use} option.
3800 If a source file is changed between compiling with @option{-fprofile-gen} and
3801 with @option{-fprofile-use}, the files with the profile feedback can fail
3802 to match the source file and GCC cannot use the profile feedback
3803 information. By default, this warning is enabled and is treated as an
3804 error. @option{-Wno-coverage-mismatch} can be used to disable the
3805 warning or @option{-Wno-error=coverage-mismatch} can be used to
3806 disable the error. Disabling the error for this warning can result in
3807 poorly optimized code and is useful only in the
3808 case of very minor changes such as bug fixes to an existing code-base.
3809 Completely disabling the warning is not recommended.
3810
3811 @item -Wno-cpp
3812 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3813
3814 Suppress warning messages emitted by @code{#warning} directives.
3815
3816 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3817 @opindex Wdouble-promotion
3818 @opindex Wno-double-promotion
3819 Give a warning when a value of type @code{float} is implicitly
3820 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3821 floating-point unit implement @code{float} in hardware, but emulate
3822 @code{double} in software. On such a machine, doing computations
3823 using @code{double} values is much more expensive because of the
3824 overhead required for software emulation.
3825
3826 It is easy to accidentally do computations with @code{double} because
3827 floating-point literals are implicitly of type @code{double}. For
3828 example, in:
3829 @smallexample
3830 @group
3831 float area(float radius)
3832 @{
3833 return 3.14159 * radius * radius;
3834 @}
3835 @end group
3836 @end smallexample
3837 the compiler performs the entire computation with @code{double}
3838 because the floating-point literal is a @code{double}.
3839
3840 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
3841 @opindex Wduplicate-decl-specifier
3842 @opindex Wno-duplicate-decl-specifier
3843 Warn if a declaration has duplicate @code{const}, @code{volatile},
3844 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
3845 @option{-Wall}.
3846
3847 @item -Wformat
3848 @itemx -Wformat=@var{n}
3849 @opindex Wformat
3850 @opindex Wno-format
3851 @opindex ffreestanding
3852 @opindex fno-builtin
3853 @opindex Wformat=
3854 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3855 the arguments supplied have types appropriate to the format string
3856 specified, and that the conversions specified in the format string make
3857 sense. This includes standard functions, and others specified by format
3858 attributes (@pxref{Function Attributes}), in the @code{printf},
3859 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3860 not in the C standard) families (or other target-specific families).
3861 Which functions are checked without format attributes having been
3862 specified depends on the standard version selected, and such checks of
3863 functions without the attribute specified are disabled by
3864 @option{-ffreestanding} or @option{-fno-builtin}.
3865
3866 The formats are checked against the format features supported by GNU
3867 libc version 2.2. These include all ISO C90 and C99 features, as well
3868 as features from the Single Unix Specification and some BSD and GNU
3869 extensions. Other library implementations may not support all these
3870 features; GCC does not support warning about features that go beyond a
3871 particular library's limitations. However, if @option{-Wpedantic} is used
3872 with @option{-Wformat}, warnings are given about format features not
3873 in the selected standard version (but not for @code{strfmon} formats,
3874 since those are not in any version of the C standard). @xref{C Dialect
3875 Options,,Options Controlling C Dialect}.
3876
3877 @table @gcctabopt
3878 @item -Wformat=1
3879 @itemx -Wformat
3880 @opindex Wformat
3881 @opindex Wformat=1
3882 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3883 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
3884 @option{-Wformat} also checks for null format arguments for several
3885 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
3886 aspects of this level of format checking can be disabled by the
3887 options: @option{-Wno-format-contains-nul},
3888 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3889 @option{-Wformat} is enabled by @option{-Wall}.
3890
3891 @item -Wno-format-contains-nul
3892 @opindex Wno-format-contains-nul
3893 @opindex Wformat-contains-nul
3894 If @option{-Wformat} is specified, do not warn about format strings that
3895 contain NUL bytes.
3896
3897 @item -Wno-format-extra-args
3898 @opindex Wno-format-extra-args
3899 @opindex Wformat-extra-args
3900 If @option{-Wformat} is specified, do not warn about excess arguments to a
3901 @code{printf} or @code{scanf} format function. The C standard specifies
3902 that such arguments are ignored.
3903
3904 Where the unused arguments lie between used arguments that are
3905 specified with @samp{$} operand number specifications, normally
3906 warnings are still given, since the implementation could not know what
3907 type to pass to @code{va_arg} to skip the unused arguments. However,
3908 in the case of @code{scanf} formats, this option suppresses the
3909 warning if the unused arguments are all pointers, since the Single
3910 Unix Specification says that such unused arguments are allowed.
3911
3912 @item -Wformat-length
3913 @itemx -Wformat-length=@var{level}
3914 @opindex Wformat-length
3915 @opindex Wno-format-length
3916 Warn about calls to formatted input/output functions such as @code{sprintf}
3917 that might overflow the destination buffer, or about bounded functions such
3918 as @code{snprintf} that might result in output truncation. When the exact
3919 number of bytes written by a format directive cannot be determined at
3920 compile-time it is estimated based on heuristics that depend on the
3921 @var{level} argument and on optimization. While enabling optimization
3922 will in most cases improve the accuracy of the warning, it may also
3923 result in false positives.
3924
3925 @table @gcctabopt
3926 @item -Wformat-length
3927 @item -Wformat-length=1
3928 @opindex Wformat-length
3929 @opindex Wno-format-length
3930 Level @var{1} of @option{-Wformat-length} enabled by @option{-Wformat}
3931 employs a conservative approach that warns only about calls that most
3932 likely overflow the buffer or result in output truncation. At this
3933 level, numeric arguments to format directives with unknown values are
3934 assumed to have the value of one, and strings of unknown length to be
3935 empty. Numeric arguments that are known to be bounded to a subrange
3936 of their type, or string arguments whose output is bounded either by
3937 their directive's precision or by a finite set of string literals, are
3938 assumed to take on the value within the range that results in the most
3939 bytes on output. For example, the call to @code{sprintf} below is
3940 diagnosed because even with both @var{a} and @var{b} equal to zero,
3941 the terminating NUL character (@code{'\0'}) appended by the function
3942 to the destination buffer will be written past its end. Increasing
3943 the size of the buffer by a single byte is sufficient to avoid the
3944 warning, though it may not be sufficient to avoid the overflow.
3945
3946 @smallexample
3947 void f (int a, int b)
3948 @{
3949 char buf [12];
3950 sprintf (buf, "a = %i, b = %i\n", a, b);
3951 @}
3952 @end smallexample
3953
3954 @item -Wformat-length=2
3955 Level @var{2} warns also about calls that might overflow the destination
3956 buffer or result in truncation given an argument of sufficient length
3957 or magnitude. At level @var{2}, unknown numeric arguments are assumed
3958 to have the minimum representable value for signed types with a precision
3959 greater than 1, and the maximum representable value otherwise. Unknown
3960 string arguments whose length cannot be assumed to be bounded either by
3961 the directive's precision, or by a finite set of string literals they
3962 may evaluate to, or the character array they may point to, are assumed
3963 to be 1 character long.
3964
3965 At level @var{2}, the call in the example above is again diagnosed, but
3966 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
3967 @code{%i} directive will write some of its digits beyond the end of
3968 the destination buffer. To make the call safe regardless of the values
3969 of the two variables, the size of the destination buffer must be increased
3970 to at least 34 bytes. GCC includes the minimum size of the buffer in
3971 an informational note following the warning.
3972
3973 An alternative to increasing the size of the destination buffer is to
3974 constrain the range of formatted values. The maximum length of string
3975 arguments can be bounded by specifying the precision in the format
3976 directive. When numeric arguments of format directives can be assumed
3977 to be bounded by less than the precision of their type, choosing
3978 an appropriate length modifier to the format specifier will reduce
3979 the required buffer size. For example, if @var{a} and @var{b} in the
3980 example above can be assumed to be within the precision of
3981 the @code{short int} type then using either the @code{%hi} format
3982 directive or casting the argument to @code{short} reduces the maximum
3983 required size of the buffer to 24 bytes.
3984
3985 @smallexample
3986 void f (int a, int b)
3987 @{
3988 char buf [23];
3989 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
3990 @}
3991 @end smallexample
3992 @end table
3993
3994 @item -Wno-format-zero-length
3995 @opindex Wno-format-zero-length
3996 @opindex Wformat-zero-length
3997 If @option{-Wformat} is specified, do not warn about zero-length formats.
3998 The C standard specifies that zero-length formats are allowed.
3999
4000
4001 @item -Wformat=2
4002 @opindex Wformat=2
4003 Enable @option{-Wformat} plus additional format checks. Currently
4004 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4005 -Wformat-y2k}.
4006
4007 @item -Wformat-nonliteral
4008 @opindex Wformat-nonliteral
4009 @opindex Wno-format-nonliteral
4010 If @option{-Wformat} is specified, also warn if the format string is not a
4011 string literal and so cannot be checked, unless the format function
4012 takes its format arguments as a @code{va_list}.
4013
4014 @item -Wformat-security
4015 @opindex Wformat-security
4016 @opindex Wno-format-security
4017 If @option{-Wformat} is specified, also warn about uses of format
4018 functions that represent possible security problems. At present, this
4019 warns about calls to @code{printf} and @code{scanf} functions where the
4020 format string is not a string literal and there are no format arguments,
4021 as in @code{printf (foo);}. This may be a security hole if the format
4022 string came from untrusted input and contains @samp{%n}. (This is
4023 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4024 in future warnings may be added to @option{-Wformat-security} that are not
4025 included in @option{-Wformat-nonliteral}.)
4026
4027 @item -Wformat-signedness
4028 @opindex Wformat-signedness
4029 @opindex Wno-format-signedness
4030 If @option{-Wformat} is specified, also warn if the format string
4031 requires an unsigned argument and the argument is signed and vice versa.
4032
4033 @item -Wformat-y2k
4034 @opindex Wformat-y2k
4035 @opindex Wno-format-y2k
4036 If @option{-Wformat} is specified, also warn about @code{strftime}
4037 formats that may yield only a two-digit year.
4038 @end table
4039
4040 @item -Wnonnull
4041 @opindex Wnonnull
4042 @opindex Wno-nonnull
4043 Warn about passing a null pointer for arguments marked as
4044 requiring a non-null value by the @code{nonnull} function attribute.
4045
4046 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4047 can be disabled with the @option{-Wno-nonnull} option.
4048
4049 @item -Wnonnull-compare
4050 @opindex Wnonnull-compare
4051 @opindex Wno-nonnull-compare
4052 Warn when comparing an argument marked with the @code{nonnull}
4053 function attribute against null inside the function.
4054
4055 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4056 can be disabled with the @option{-Wno-nonnull-compare} option.
4057
4058 @item -Wnull-dereference
4059 @opindex Wnull-dereference
4060 @opindex Wno-null-dereference
4061 Warn if the compiler detects paths that trigger erroneous or
4062 undefined behavior due to dereferencing a null pointer. This option
4063 is only active when @option{-fdelete-null-pointer-checks} is active,
4064 which is enabled by optimizations in most targets. The precision of
4065 the warnings depends on the optimization options used.
4066
4067 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4068 @opindex Winit-self
4069 @opindex Wno-init-self
4070 Warn about uninitialized variables that are initialized with themselves.
4071 Note this option can only be used with the @option{-Wuninitialized} option.
4072
4073 For example, GCC warns about @code{i} being uninitialized in the
4074 following snippet only when @option{-Winit-self} has been specified:
4075 @smallexample
4076 @group
4077 int f()
4078 @{
4079 int i = i;
4080 return i;
4081 @}
4082 @end group
4083 @end smallexample
4084
4085 This warning is enabled by @option{-Wall} in C++.
4086
4087 @item -Wimplicit-int @r{(C and Objective-C only)}
4088 @opindex Wimplicit-int
4089 @opindex Wno-implicit-int
4090 Warn when a declaration does not specify a type.
4091 This warning is enabled by @option{-Wall}.
4092
4093 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4094 @opindex Wimplicit-function-declaration
4095 @opindex Wno-implicit-function-declaration
4096 Give a warning whenever a function is used before being declared. In
4097 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4098 enabled by default and it is made into an error by
4099 @option{-pedantic-errors}. This warning is also enabled by
4100 @option{-Wall}.
4101
4102 @item -Wimplicit @r{(C and Objective-C only)}
4103 @opindex Wimplicit
4104 @opindex Wno-implicit
4105 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4106 This warning is enabled by @option{-Wall}.
4107
4108 @item -Wimplicit-fallthrough
4109 @opindex Wimplicit-fallthrough
4110 @opindex Wno-implicit-fallthrough
4111 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4112 and @option{-Wno-implicit-fallthrough} is the same as
4113 @option{-Wimplicit-fallthrough=0}.
4114
4115 @item -Wimplicit-fallthrough=@var{n}
4116 @opindex Wimplicit-fallthrough=
4117 Warn when a switch case falls through. For example:
4118
4119 @smallexample
4120 @group
4121 switch (cond)
4122 @{
4123 case 1:
4124 a = 1;
4125 break;
4126 case 2:
4127 a = 2;
4128 case 3:
4129 a = 3;
4130 break;
4131 @}
4132 @end group
4133 @end smallexample
4134
4135 This warning does not warn when the last statement of a case cannot
4136 fall through, e.g. when there is a return statement or a call to function
4137 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4138 also takes into account control flow statements, such as ifs, and only
4139 warns when appropriate. E.g.@:
4140
4141 @smallexample
4142 @group
4143 switch (cond)
4144 @{
4145 case 1:
4146 if (i > 3) @{
4147 bar (5);
4148 break;
4149 @} else if (i < 1) @{
4150 bar (0);
4151 @} else
4152 return;
4153 default:
4154 @dots{}
4155 @}
4156 @end group
4157 @end smallexample
4158
4159 Since there are occasions where a switch case fall through is desirable,
4160 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4161 to be used along with a null statement to suppress this warning that
4162 would normally occur:
4163
4164 @smallexample
4165 @group
4166 switch (cond)
4167 @{
4168 case 1:
4169 bar (0);
4170 __attribute__ ((fallthrough));
4171 default:
4172 @dots{}
4173 @}
4174 @end group
4175 @end smallexample
4176
4177 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4178 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4179 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4180 Instead of the these attributes, it is also possible to add a fallthrough
4181 comment to silence the warning. The whole body of the C or C++ style comment
4182 should match the given regular expressions listed below. The option argument
4183 @var{n} specifies what kind of comments are accepted:
4184
4185 @itemize @bullet
4186
4187 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4188
4189 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4190 expression, any comment is used as fallthrough comment.
4191
4192 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4193 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4194
4195 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4196 following regular expressions:
4197
4198 @itemize @bullet
4199
4200 @item @code{-fallthrough}
4201
4202 @item @code{@@fallthrough@@}
4203
4204 @item @code{lint -fallthrough[ \t]*}
4205
4206 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4207
4208 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4209
4210 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4211
4212 @end itemize
4213
4214 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4215 following regular expressions:
4216
4217 @itemize @bullet
4218
4219 @item @code{-fallthrough}
4220
4221 @item @code{@@fallthrough@@}
4222
4223 @item @code{lint -fallthrough[ \t]*}
4224
4225 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4226
4227 @end itemize
4228
4229 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4230 fallthrough comments, only attributes disable the warning.
4231
4232 @end itemize
4233
4234 The comment needs to be followed after optional whitespace and other comments
4235 by @code{case} or @code{default} keywords or by a user label that preceeds some
4236 @code{case} or @code{default} label.
4237
4238 @smallexample
4239 @group
4240 switch (cond)
4241 @{
4242 case 1:
4243 bar (0);
4244 /* FALLTHRU */
4245 default:
4246 @dots{}
4247 @}
4248 @end group
4249 @end smallexample
4250
4251 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4252
4253 @item -Wignored-qualifiers @r{(C and C++ only)}
4254 @opindex Wignored-qualifiers
4255 @opindex Wno-ignored-qualifiers
4256 Warn if the return type of a function has a type qualifier
4257 such as @code{const}. For ISO C such a type qualifier has no effect,
4258 since the value returned by a function is not an lvalue.
4259 For C++, the warning is only emitted for scalar types or @code{void}.
4260 ISO C prohibits qualified @code{void} return types on function
4261 definitions, so such return types always receive a warning
4262 even without this option.
4263
4264 This warning is also enabled by @option{-Wextra}.
4265
4266 @item -Wignored-attributes @r{(C and C++ only)}
4267 @opindex Wignored-attributes
4268 @opindex Wno-ignored-attributes
4269 Warn when an attribute is ignored. This is different from the
4270 @option{-Wattributes} option in that it warns whenever the compiler decides
4271 to drop an attribute, not that the attribute is either unknown, used in a
4272 wrong place, etc. This warning is enabled by default.
4273
4274 @item -Wmain
4275 @opindex Wmain
4276 @opindex Wno-main
4277 Warn if the type of @code{main} is suspicious. @code{main} should be
4278 a function with external linkage, returning int, taking either zero
4279 arguments, two, or three arguments of appropriate types. This warning
4280 is enabled by default in C++ and is enabled by either @option{-Wall}
4281 or @option{-Wpedantic}.
4282
4283 @item -Wmisleading-indentation @r{(C and C++ only)}
4284 @opindex Wmisleading-indentation
4285 @opindex Wno-misleading-indentation
4286 Warn when the indentation of the code does not reflect the block structure.
4287 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
4288 @code{for} clauses with a guarded statement that does not use braces,
4289 followed by an unguarded statement with the same indentation.
4290
4291 In the following example, the call to ``bar'' is misleadingly indented as
4292 if it were guarded by the ``if'' conditional.
4293
4294 @smallexample
4295 if (some_condition ())
4296 foo ();
4297 bar (); /* Gotcha: this is not guarded by the "if". */
4298 @end smallexample
4299
4300 In the case of mixed tabs and spaces, the warning uses the
4301 @option{-ftabstop=} option to determine if the statements line up
4302 (defaulting to 8).
4303
4304 The warning is not issued for code involving multiline preprocessor logic
4305 such as the following example.
4306
4307 @smallexample
4308 if (flagA)
4309 foo (0);
4310 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
4311 if (flagB)
4312 #endif
4313 foo (1);
4314 @end smallexample
4315
4316 The warning is not issued after a @code{#line} directive, since this
4317 typically indicates autogenerated code, and no assumptions can be made
4318 about the layout of the file that the directive references.
4319
4320 This warning is enabled by @option{-Wall} in C and C++.
4321
4322 @item -Wmissing-braces
4323 @opindex Wmissing-braces
4324 @opindex Wno-missing-braces
4325 Warn if an aggregate or union initializer is not fully bracketed. In
4326 the following example, the initializer for @code{a} is not fully
4327 bracketed, but that for @code{b} is fully bracketed. This warning is
4328 enabled by @option{-Wall} in C.
4329
4330 @smallexample
4331 int a[2][2] = @{ 0, 1, 2, 3 @};
4332 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
4333 @end smallexample
4334
4335 This warning is enabled by @option{-Wall}.
4336
4337 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
4338 @opindex Wmissing-include-dirs
4339 @opindex Wno-missing-include-dirs
4340 Warn if a user-supplied include directory does not exist.
4341
4342 @item -Wparentheses
4343 @opindex Wparentheses
4344 @opindex Wno-parentheses
4345 Warn if parentheses are omitted in certain contexts, such
4346 as when there is an assignment in a context where a truth value
4347 is expected, or when operators are nested whose precedence people
4348 often get confused about.
4349
4350 Also warn if a comparison like @code{x<=y<=z} appears; this is
4351 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
4352 interpretation from that of ordinary mathematical notation.
4353
4354 Also warn for dangerous uses of the GNU extension to
4355 @code{?:} with omitted middle operand. When the condition
4356 in the @code{?}: operator is a boolean expression, the omitted value is
4357 always 1. Often programmers expect it to be a value computed
4358 inside the conditional expression instead.
4359
4360 This warning is enabled by @option{-Wall}.
4361
4362 @item -Wsequence-point
4363 @opindex Wsequence-point
4364 @opindex Wno-sequence-point
4365 Warn about code that may have undefined semantics because of violations
4366 of sequence point rules in the C and C++ standards.
4367
4368 The C and C++ standards define the order in which expressions in a C/C++
4369 program are evaluated in terms of @dfn{sequence points}, which represent
4370 a partial ordering between the execution of parts of the program: those
4371 executed before the sequence point, and those executed after it. These
4372 occur after the evaluation of a full expression (one which is not part
4373 of a larger expression), after the evaluation of the first operand of a
4374 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4375 function is called (but after the evaluation of its arguments and the
4376 expression denoting the called function), and in certain other places.
4377 Other than as expressed by the sequence point rules, the order of
4378 evaluation of subexpressions of an expression is not specified. All
4379 these rules describe only a partial order rather than a total order,
4380 since, for example, if two functions are called within one expression
4381 with no sequence point between them, the order in which the functions
4382 are called is not specified. However, the standards committee have
4383 ruled that function calls do not overlap.
4384
4385 It is not specified when between sequence points modifications to the
4386 values of objects take effect. Programs whose behavior depends on this
4387 have undefined behavior; the C and C++ standards specify that ``Between
4388 the previous and next sequence point an object shall have its stored
4389 value modified at most once by the evaluation of an expression.
4390 Furthermore, the prior value shall be read only to determine the value
4391 to be stored.''. If a program breaks these rules, the results on any
4392 particular implementation are entirely unpredictable.
4393
4394 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4395 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
4396 diagnosed by this option, and it may give an occasional false positive
4397 result, but in general it has been found fairly effective at detecting
4398 this sort of problem in programs.
4399
4400 The C++17 standard will define the order of evaluation of operands in
4401 more cases: in particular it requires that the right-hand side of an
4402 assignment be evaluated before the left-hand side, so the above
4403 examples are no longer undefined. But this warning will still warn
4404 about them, to help people avoid writing code that is undefined in C
4405 and earlier revisions of C++.
4406
4407 The standard is worded confusingly, therefore there is some debate
4408 over the precise meaning of the sequence point rules in subtle cases.
4409 Links to discussions of the problem, including proposed formal
4410 definitions, may be found on the GCC readings page, at
4411 @uref{http://gcc.gnu.org/@/readings.html}.
4412
4413 This warning is enabled by @option{-Wall} for C and C++.
4414
4415 @item -Wno-return-local-addr
4416 @opindex Wno-return-local-addr
4417 @opindex Wreturn-local-addr
4418 Do not warn about returning a pointer (or in C++, a reference) to a
4419 variable that goes out of scope after the function returns.
4420
4421 @item -Wreturn-type
4422 @opindex Wreturn-type
4423 @opindex Wno-return-type
4424 Warn whenever a function is defined with a return type that defaults
4425 to @code{int}. Also warn about any @code{return} statement with no
4426 return value in a function whose return type is not @code{void}
4427 (falling off the end of the function body is considered returning
4428 without a value).
4429
4430 For C only, warn about a @code{return} statement with an expression in a
4431 function whose return type is @code{void}, unless the expression type is
4432 also @code{void}. As a GNU extension, the latter case is accepted
4433 without a warning unless @option{-Wpedantic} is used.
4434
4435 For C++, a function without return type always produces a diagnostic
4436 message, even when @option{-Wno-return-type} is specified. The only
4437 exceptions are @code{main} and functions defined in system headers.
4438
4439 This warning is enabled by @option{-Wall}.
4440
4441 @item -Wshift-count-negative
4442 @opindex Wshift-count-negative
4443 @opindex Wno-shift-count-negative
4444 Warn if shift count is negative. This warning is enabled by default.
4445
4446 @item -Wshift-count-overflow
4447 @opindex Wshift-count-overflow
4448 @opindex Wno-shift-count-overflow
4449 Warn if shift count >= width of type. This warning is enabled by default.
4450
4451 @item -Wshift-negative-value
4452 @opindex Wshift-negative-value
4453 @opindex Wno-shift-negative-value
4454 Warn if left shifting a negative value. This warning is enabled by
4455 @option{-Wextra} in C99 and C++11 modes (and newer).
4456
4457 @item -Wshift-overflow
4458 @itemx -Wshift-overflow=@var{n}
4459 @opindex Wshift-overflow
4460 @opindex Wno-shift-overflow
4461 Warn about left shift overflows. This warning is enabled by
4462 default in C99 and C++11 modes (and newer).
4463
4464 @table @gcctabopt
4465 @item -Wshift-overflow=1
4466 This is the warning level of @option{-Wshift-overflow} and is enabled
4467 by default in C99 and C++11 modes (and newer). This warning level does
4468 not warn about left-shifting 1 into the sign bit. (However, in C, such
4469 an overflow is still rejected in contexts where an integer constant expression
4470 is required.)
4471
4472 @item -Wshift-overflow=2
4473 This warning level also warns about left-shifting 1 into the sign bit,
4474 unless C++14 mode is active.
4475 @end table
4476
4477 @item -Wswitch
4478 @opindex Wswitch
4479 @opindex Wno-switch
4480 Warn whenever a @code{switch} statement has an index of enumerated type
4481 and lacks a @code{case} for one or more of the named codes of that
4482 enumeration. (The presence of a @code{default} label prevents this
4483 warning.) @code{case} labels outside the enumeration range also
4484 provoke warnings when this option is used (even if there is a
4485 @code{default} label).
4486 This warning is enabled by @option{-Wall}.
4487
4488 @item -Wswitch-default
4489 @opindex Wswitch-default
4490 @opindex Wno-switch-default
4491 Warn whenever a @code{switch} statement does not have a @code{default}
4492 case.
4493
4494 @item -Wswitch-enum
4495 @opindex Wswitch-enum
4496 @opindex Wno-switch-enum
4497 Warn whenever a @code{switch} statement has an index of enumerated type
4498 and lacks a @code{case} for one or more of the named codes of that
4499 enumeration. @code{case} labels outside the enumeration range also
4500 provoke warnings when this option is used. The only difference
4501 between @option{-Wswitch} and this option is that this option gives a
4502 warning about an omitted enumeration code even if there is a
4503 @code{default} label.
4504
4505 @item -Wswitch-bool
4506 @opindex Wswitch-bool
4507 @opindex Wno-switch-bool
4508 Warn whenever a @code{switch} statement has an index of boolean type
4509 and the case values are outside the range of a boolean type.
4510 It is possible to suppress this warning by casting the controlling
4511 expression to a type other than @code{bool}. For example:
4512 @smallexample
4513 @group
4514 switch ((int) (a == 4))
4515 @{
4516 @dots{}
4517 @}
4518 @end group
4519 @end smallexample
4520 This warning is enabled by default for C and C++ programs.
4521
4522 @item -Wswitch-unreachable
4523 @opindex Wswitch-unreachable
4524 @opindex Wno-switch-unreachable
4525 Warn whenever a @code{switch} statement contains statements between the
4526 controlling expression and the first case label, which will never be
4527 executed. For example:
4528 @smallexample
4529 @group
4530 switch (cond)
4531 @{
4532 i = 15;
4533 @dots{}
4534 case 5:
4535 @dots{}
4536 @}
4537 @end group
4538 @end smallexample
4539 @option{-Wswitch-unreachable} does not warn if the statement between the
4540 controlling expression and the first case label is just a declaration:
4541 @smallexample
4542 @group
4543 switch (cond)
4544 @{
4545 int i;
4546 @dots{}
4547 case 5:
4548 i = 5;
4549 @dots{}
4550 @}
4551 @end group
4552 @end smallexample
4553 This warning is enabled by default for C and C++ programs.
4554
4555 @item -Wsync-nand @r{(C and C++ only)}
4556 @opindex Wsync-nand
4557 @opindex Wno-sync-nand
4558 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4559 built-in functions are used. These functions changed semantics in GCC 4.4.
4560
4561 @item -Wtrigraphs
4562 @opindex Wtrigraphs
4563 @opindex Wno-trigraphs
4564 Warn if any trigraphs are encountered that might change the meaning of
4565 the program (trigraphs within comments are not warned about).
4566 This warning is enabled by @option{-Wall}.
4567
4568 @item -Wunused-but-set-parameter
4569 @opindex Wunused-but-set-parameter
4570 @opindex Wno-unused-but-set-parameter
4571 Warn whenever a function parameter is assigned to, but otherwise unused
4572 (aside from its declaration).
4573
4574 To suppress this warning use the @code{unused} attribute
4575 (@pxref{Variable Attributes}).
4576
4577 This warning is also enabled by @option{-Wunused} together with
4578 @option{-Wextra}.
4579
4580 @item -Wunused-but-set-variable
4581 @opindex Wunused-but-set-variable
4582 @opindex Wno-unused-but-set-variable
4583 Warn whenever a local variable is assigned to, but otherwise unused
4584 (aside from its declaration).
4585 This warning is enabled by @option{-Wall}.
4586
4587 To suppress this warning use the @code{unused} attribute
4588 (@pxref{Variable Attributes}).
4589
4590 This warning is also enabled by @option{-Wunused}, which is enabled
4591 by @option{-Wall}.
4592
4593 @item -Wunused-function
4594 @opindex Wunused-function
4595 @opindex Wno-unused-function
4596 Warn whenever a static function is declared but not defined or a
4597 non-inline static function is unused.
4598 This warning is enabled by @option{-Wall}.
4599
4600 @item -Wunused-label
4601 @opindex Wunused-label
4602 @opindex Wno-unused-label
4603 Warn whenever a label is declared but not used.
4604 This warning is enabled by @option{-Wall}.
4605
4606 To suppress this warning use the @code{unused} attribute
4607 (@pxref{Variable Attributes}).
4608
4609 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4610 @opindex Wunused-local-typedefs
4611 Warn when a typedef locally defined in a function is not used.
4612 This warning is enabled by @option{-Wall}.
4613
4614 @item -Wunused-parameter
4615 @opindex Wunused-parameter
4616 @opindex Wno-unused-parameter
4617 Warn whenever a function parameter is unused aside from its declaration.
4618
4619 To suppress this warning use the @code{unused} attribute
4620 (@pxref{Variable Attributes}).
4621
4622 @item -Wno-unused-result
4623 @opindex Wunused-result
4624 @opindex Wno-unused-result
4625 Do not warn if a caller of a function marked with attribute
4626 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4627 its return value. The default is @option{-Wunused-result}.
4628
4629 @item -Wunused-variable
4630 @opindex Wunused-variable
4631 @opindex Wno-unused-variable
4632 Warn whenever a local or static variable is unused aside from its
4633 declaration. This option implies @option{-Wunused-const-variable=1} for C,
4634 but not for C++. This warning is enabled by @option{-Wall}.
4635
4636 To suppress this warning use the @code{unused} attribute
4637 (@pxref{Variable Attributes}).
4638
4639 @item -Wunused-const-variable
4640 @itemx -Wunused-const-variable=@var{n}
4641 @opindex Wunused-const-variable
4642 @opindex Wno-unused-const-variable
4643 Warn whenever a constant static variable is unused aside from its declaration.
4644 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
4645 for C, but not for C++. In C this declares variable storage, but in C++ this
4646 is not an error since const variables take the place of @code{#define}s.
4647
4648 To suppress this warning use the @code{unused} attribute
4649 (@pxref{Variable Attributes}).
4650
4651 @table @gcctabopt
4652 @item -Wunused-const-variable=1
4653 This is the warning level that is enabled by @option{-Wunused-variable} for
4654 C. It warns only about unused static const variables defined in the main
4655 compilation unit, but not about static const variables declared in any
4656 header included.
4657
4658 @item -Wunused-const-variable=2
4659 This warning level also warns for unused constant static variables in
4660 headers (excluding system headers). This is the warning level of
4661 @option{-Wunused-const-variable} and must be explicitly requested since
4662 in C++ this isn't an error and in C it might be harder to clean up all
4663 headers included.
4664 @end table
4665
4666 @item -Wunused-value
4667 @opindex Wunused-value
4668 @opindex Wno-unused-value
4669 Warn whenever a statement computes a result that is explicitly not
4670 used. To suppress this warning cast the unused expression to
4671 @code{void}. This includes an expression-statement or the left-hand
4672 side of a comma expression that contains no side effects. For example,
4673 an expression such as @code{x[i,j]} causes a warning, while
4674 @code{x[(void)i,j]} does not.
4675
4676 This warning is enabled by @option{-Wall}.
4677
4678 @item -Wunused
4679 @opindex Wunused
4680 @opindex Wno-unused
4681 All the above @option{-Wunused} options combined.
4682
4683 In order to get a warning about an unused function parameter, you must
4684 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4685 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4686
4687 @item -Wuninitialized
4688 @opindex Wuninitialized
4689 @opindex Wno-uninitialized
4690 Warn if an automatic variable is used without first being initialized
4691 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4692 warn if a non-static reference or non-static @code{const} member
4693 appears in a class without constructors.
4694
4695 If you want to warn about code that uses the uninitialized value of the
4696 variable in its own initializer, use the @option{-Winit-self} option.
4697
4698 These warnings occur for individual uninitialized or clobbered
4699 elements of structure, union or array variables as well as for
4700 variables that are uninitialized or clobbered as a whole. They do
4701 not occur for variables or elements declared @code{volatile}. Because
4702 these warnings depend on optimization, the exact variables or elements
4703 for which there are warnings depends on the precise optimization
4704 options and version of GCC used.
4705
4706 Note that there may be no warning about a variable that is used only
4707 to compute a value that itself is never used, because such
4708 computations may be deleted by data flow analysis before the warnings
4709 are printed.
4710
4711 @item -Winvalid-memory-model
4712 @opindex Winvalid-memory-model
4713 @opindex Wno-invalid-memory-model
4714 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
4715 and the C11 atomic generic functions with a memory consistency argument
4716 that is either invalid for the operation or outside the range of values
4717 of the @code{memory_order} enumeration. For example, since the
4718 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
4719 defined for the relaxed, release, and sequentially consistent memory
4720 orders the following code is diagnosed:
4721
4722 @smallexample
4723 void store (int *i)
4724 @{
4725 __atomic_store_n (i, 0, memory_order_consume);
4726 @}
4727 @end smallexample
4728
4729 @option{-Winvalid-memory-model} is enabled by default.
4730
4731 @item -Wmaybe-uninitialized
4732 @opindex Wmaybe-uninitialized
4733 @opindex Wno-maybe-uninitialized
4734 For an automatic variable, if there exists a path from the function
4735 entry to a use of the variable that is initialized, but there exist
4736 some other paths for which the variable is not initialized, the compiler
4737 emits a warning if it cannot prove the uninitialized paths are not
4738 executed at run time. These warnings are made optional because GCC is
4739 not smart enough to see all the reasons why the code might be correct
4740 in spite of appearing to have an error. Here is one example of how
4741 this can happen:
4742
4743 @smallexample
4744 @group
4745 @{
4746 int x;
4747 switch (y)
4748 @{
4749 case 1: x = 1;
4750 break;
4751 case 2: x = 4;
4752 break;
4753 case 3: x = 5;
4754 @}
4755 foo (x);
4756 @}
4757 @end group
4758 @end smallexample
4759
4760 @noindent
4761 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4762 always initialized, but GCC doesn't know this. To suppress the
4763 warning, you need to provide a default case with assert(0) or
4764 similar code.
4765
4766 @cindex @code{longjmp} warnings
4767 This option also warns when a non-volatile automatic variable might be
4768 changed by a call to @code{longjmp}. These warnings as well are possible
4769 only in optimizing compilation.
4770
4771 The compiler sees only the calls to @code{setjmp}. It cannot know
4772 where @code{longjmp} will be called; in fact, a signal handler could
4773 call it at any point in the code. As a result, you may get a warning
4774 even when there is in fact no problem because @code{longjmp} cannot
4775 in fact be called at the place that would cause a problem.
4776
4777 Some spurious warnings can be avoided if you declare all the functions
4778 you use that never return as @code{noreturn}. @xref{Function
4779 Attributes}.
4780
4781 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4782
4783 @item -Wunknown-pragmas
4784 @opindex Wunknown-pragmas
4785 @opindex Wno-unknown-pragmas
4786 @cindex warning for unknown pragmas
4787 @cindex unknown pragmas, warning
4788 @cindex pragmas, warning of unknown
4789 Warn when a @code{#pragma} directive is encountered that is not understood by
4790 GCC@. If this command-line option is used, warnings are even issued
4791 for unknown pragmas in system header files. This is not the case if
4792 the warnings are only enabled by the @option{-Wall} command-line option.
4793
4794 @item -Wno-pragmas
4795 @opindex Wno-pragmas
4796 @opindex Wpragmas
4797 Do not warn about misuses of pragmas, such as incorrect parameters,
4798 invalid syntax, or conflicts between pragmas. See also
4799 @option{-Wunknown-pragmas}.
4800
4801 @item -Wstrict-aliasing
4802 @opindex Wstrict-aliasing
4803 @opindex Wno-strict-aliasing
4804 This option is only active when @option{-fstrict-aliasing} is active.
4805 It warns about code that might break the strict aliasing rules that the
4806 compiler is using for optimization. The warning does not catch all
4807 cases, but does attempt to catch the more common pitfalls. It is
4808 included in @option{-Wall}.
4809 It is equivalent to @option{-Wstrict-aliasing=3}
4810
4811 @item -Wstrict-aliasing=n
4812 @opindex Wstrict-aliasing=n
4813 This option is only active when @option{-fstrict-aliasing} is active.
4814 It warns about code that might break the strict aliasing rules that the
4815 compiler is using for optimization.
4816 Higher levels correspond to higher accuracy (fewer false positives).
4817 Higher levels also correspond to more effort, similar to the way @option{-O}
4818 works.
4819 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4820
4821 Level 1: Most aggressive, quick, least accurate.
4822 Possibly useful when higher levels
4823 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4824 false negatives. However, it has many false positives.
4825 Warns for all pointer conversions between possibly incompatible types,
4826 even if never dereferenced. Runs in the front end only.
4827
4828 Level 2: Aggressive, quick, not too precise.
4829 May still have many false positives (not as many as level 1 though),
4830 and few false negatives (but possibly more than level 1).
4831 Unlike level 1, it only warns when an address is taken. Warns about
4832 incomplete types. Runs in the front end only.
4833
4834 Level 3 (default for @option{-Wstrict-aliasing}):
4835 Should have very few false positives and few false
4836 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
4837 Takes care of the common pun+dereference pattern in the front end:
4838 @code{*(int*)&some_float}.
4839 If optimization is enabled, it also runs in the back end, where it deals
4840 with multiple statement cases using flow-sensitive points-to information.
4841 Only warns when the converted pointer is dereferenced.
4842 Does not warn about incomplete types.
4843
4844 @item -Wstrict-overflow
4845 @itemx -Wstrict-overflow=@var{n}
4846 @opindex Wstrict-overflow
4847 @opindex Wno-strict-overflow
4848 This option is only active when @option{-fstrict-overflow} is active.
4849 It warns about cases where the compiler optimizes based on the
4850 assumption that signed overflow does not occur. Note that it does not
4851 warn about all cases where the code might overflow: it only warns
4852 about cases where the compiler implements some optimization. Thus
4853 this warning depends on the optimization level.
4854
4855 An optimization that assumes that signed overflow does not occur is
4856 perfectly safe if the values of the variables involved are such that
4857 overflow never does, in fact, occur. Therefore this warning can
4858 easily give a false positive: a warning about code that is not
4859 actually a problem. To help focus on important issues, several
4860 warning levels are defined. No warnings are issued for the use of
4861 undefined signed overflow when estimating how many iterations a loop
4862 requires, in particular when determining whether a loop will be
4863 executed at all.
4864
4865 @table @gcctabopt
4866 @item -Wstrict-overflow=1
4867 Warn about cases that are both questionable and easy to avoid. For
4868 example, with @option{-fstrict-overflow}, the compiler simplifies
4869 @code{x + 1 > x} to @code{1}. This level of
4870 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4871 are not, and must be explicitly requested.
4872
4873 @item -Wstrict-overflow=2
4874 Also warn about other cases where a comparison is simplified to a
4875 constant. For example: @code{abs (x) >= 0}. This can only be
4876 simplified when @option{-fstrict-overflow} is in effect, because
4877 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4878 zero. @option{-Wstrict-overflow} (with no level) is the same as
4879 @option{-Wstrict-overflow=2}.
4880
4881 @item -Wstrict-overflow=3
4882 Also warn about other cases where a comparison is simplified. For
4883 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4884
4885 @item -Wstrict-overflow=4
4886 Also warn about other simplifications not covered by the above cases.
4887 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4888
4889 @item -Wstrict-overflow=5
4890 Also warn about cases where the compiler reduces the magnitude of a
4891 constant involved in a comparison. For example: @code{x + 2 > y} is
4892 simplified to @code{x + 1 >= y}. This is reported only at the
4893 highest warning level because this simplification applies to many
4894 comparisons, so this warning level gives a very large number of
4895 false positives.
4896 @end table
4897
4898 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4899 @opindex Wsuggest-attribute=
4900 @opindex Wno-suggest-attribute=
4901 Warn for cases where adding an attribute may be beneficial. The
4902 attributes currently supported are listed below.
4903
4904 @table @gcctabopt
4905 @item -Wsuggest-attribute=pure
4906 @itemx -Wsuggest-attribute=const
4907 @itemx -Wsuggest-attribute=noreturn
4908 @opindex Wsuggest-attribute=pure
4909 @opindex Wno-suggest-attribute=pure
4910 @opindex Wsuggest-attribute=const
4911 @opindex Wno-suggest-attribute=const
4912 @opindex Wsuggest-attribute=noreturn
4913 @opindex Wno-suggest-attribute=noreturn
4914
4915 Warn about functions that might be candidates for attributes
4916 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
4917 functions visible in other compilation units or (in the case of @code{pure} and
4918 @code{const}) if it cannot prove that the function returns normally. A function
4919 returns normally if it doesn't contain an infinite loop or return abnormally
4920 by throwing, calling @code{abort} or trapping. This analysis requires option
4921 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4922 higher. Higher optimization levels improve the accuracy of the analysis.
4923
4924 @item -Wsuggest-attribute=format
4925 @itemx -Wmissing-format-attribute
4926 @opindex Wsuggest-attribute=format
4927 @opindex Wmissing-format-attribute
4928 @opindex Wno-suggest-attribute=format
4929 @opindex Wno-missing-format-attribute
4930 @opindex Wformat
4931 @opindex Wno-format
4932
4933 Warn about function pointers that might be candidates for @code{format}
4934 attributes. Note these are only possible candidates, not absolute ones.
4935 GCC guesses that function pointers with @code{format} attributes that
4936 are used in assignment, initialization, parameter passing or return
4937 statements should have a corresponding @code{format} attribute in the
4938 resulting type. I.e.@: the left-hand side of the assignment or
4939 initialization, the type of the parameter variable, or the return type
4940 of the containing function respectively should also have a @code{format}
4941 attribute to avoid the warning.
4942
4943 GCC also warns about function definitions that might be
4944 candidates for @code{format} attributes. Again, these are only
4945 possible candidates. GCC guesses that @code{format} attributes
4946 might be appropriate for any function that calls a function like
4947 @code{vprintf} or @code{vscanf}, but this might not always be the
4948 case, and some functions for which @code{format} attributes are
4949 appropriate may not be detected.
4950 @end table
4951
4952 @item -Wsuggest-final-types
4953 @opindex Wno-suggest-final-types
4954 @opindex Wsuggest-final-types
4955 Warn about types with virtual methods where code quality would be improved
4956 if the type were declared with the C++11 @code{final} specifier,
4957 or, if possible,
4958 declared in an anonymous namespace. This allows GCC to more aggressively
4959 devirtualize the polymorphic calls. This warning is more effective with link
4960 time optimization, where the information about the class hierarchy graph is
4961 more complete.
4962
4963 @item -Wsuggest-final-methods
4964 @opindex Wno-suggest-final-methods
4965 @opindex Wsuggest-final-methods
4966 Warn about virtual methods where code quality would be improved if the method
4967 were declared with the C++11 @code{final} specifier,
4968 or, if possible, its type were
4969 declared in an anonymous namespace or with the @code{final} specifier.
4970 This warning is
4971 more effective with link time optimization, where the information about the
4972 class hierarchy graph is more complete. It is recommended to first consider
4973 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4974 annotations.
4975
4976 @item -Wsuggest-override
4977 Warn about overriding virtual functions that are not marked with the override
4978 keyword.
4979
4980 @item -Walloca
4981 @opindex Wno-alloca
4982 @opindex Walloca
4983 This option warns on all uses of @code{alloca} in the source.
4984
4985 @item -Walloca-larger-than=@var{n}
4986 This option warns on calls to @code{alloca} that are not bounded by a
4987 controlling predicate limiting its size to @var{n} bytes, or calls to
4988 @code{alloca} where the bound is unknown.
4989
4990 For example, a bounded case of @code{alloca} could be:
4991
4992 @smallexample
4993 void func (size_t n)
4994 @{
4995 void *p;
4996 if (n <= 1000)
4997 p = alloca (n);
4998 else
4999 p = malloc (n);
5000 f (p);
5001 @}
5002 @end smallexample
5003
5004 In the above example, passing @code{-Walloca=1000} would not issue a
5005 warning because the call to @code{alloca} is known to be at most 1000
5006 bytes. However, if @code{-Walloca=500} was passed, the compiler would
5007 have emitted a warning.
5008
5009 Unbounded uses, on the other hand, are uses of @code{alloca} with no
5010 controlling predicate verifying its size. For example:
5011
5012 @smallexample
5013 void func ()
5014 @{
5015 void *p = alloca (n);
5016 f (p);
5017 @}
5018 @end smallexample
5019
5020 If @code{-Walloca=500} was passed, the above would trigger a warning,
5021 but this time because of the lack of bounds checking.
5022
5023 Note, that even seemingly correct code involving signed integers could
5024 cause a warning:
5025
5026 @smallexample
5027 void func (signed int n)
5028 @{
5029 if (n < 500)
5030 @{
5031 p = alloca (n);
5032 f (p);
5033 @}
5034 @}
5035 @end smallexample
5036
5037 In the above example, @var{n} could be negative, causing a larger than
5038 expected argument to be implicitly casted into the @code{alloca} call.
5039
5040 This option also warns when @code{alloca} is used in a loop.
5041
5042 This warning is not enabled by @option{-Wall}, and is only active when
5043 @option{-ftree-vrp} is active (default for @option{-O2} and above).
5044
5045 See also @option{-Wvla-larger-than=@var{n}}.
5046
5047 @item -Warray-bounds
5048 @itemx -Warray-bounds=@var{n}
5049 @opindex Wno-array-bounds
5050 @opindex Warray-bounds
5051 This option is only active when @option{-ftree-vrp} is active
5052 (default for @option{-O2} and above). It warns about subscripts to arrays
5053 that are always out of bounds. This warning is enabled by @option{-Wall}.
5054
5055 @table @gcctabopt
5056 @item -Warray-bounds=1
5057 This is the warning level of @option{-Warray-bounds} and is enabled
5058 by @option{-Wall}; higher levels are not, and must be explicitly requested.
5059
5060 @item -Warray-bounds=2
5061 This warning level also warns about out of bounds access for
5062 arrays at the end of a struct and for arrays accessed through
5063 pointers. This warning level may give a larger number of
5064 false positives and is deactivated by default.
5065 @end table
5066
5067 @item -Wbool-compare
5068 @opindex Wno-bool-compare
5069 @opindex Wbool-compare
5070 Warn about boolean expression compared with an integer value different from
5071 @code{true}/@code{false}. For instance, the following comparison is
5072 always false:
5073 @smallexample
5074 int n = 5;
5075 @dots{}
5076 if ((n > 1) == 2) @{ @dots{} @}
5077 @end smallexample
5078 This warning is enabled by @option{-Wall}.
5079
5080 @item -Wbool-operation
5081 @opindex Wno-bool-operation
5082 @opindex Wbool-operation
5083 Warn about suspicious operations on expressions of a boolean type. For
5084 instance, bitwise negation of a boolean is very likely a bug in the program.
5085 For C, this warning also warns about incrementing or decrementing a boolean,
5086 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
5087 Incrementing a boolean is invalid in C++1z, and deprecated otherwise.)
5088
5089 This warning is enabled by @option{-Wall}.
5090
5091 @item -Wduplicated-cond
5092 @opindex Wno-duplicated-cond
5093 @opindex Wduplicated-cond
5094 Warn about duplicated conditions in an if-else-if chain. For instance,
5095 warn for the following code:
5096 @smallexample
5097 if (p->q != NULL) @{ @dots{} @}
5098 else if (p->q != NULL) @{ @dots{} @}
5099 @end smallexample
5100
5101 @item -Wframe-address
5102 @opindex Wno-frame-address
5103 @opindex Wframe-address
5104 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
5105 is called with an argument greater than 0. Such calls may return indeterminate
5106 values or crash the program. The warning is included in @option{-Wall}.
5107
5108 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
5109 @opindex Wno-discarded-qualifiers
5110 @opindex Wdiscarded-qualifiers
5111 Do not warn if type qualifiers on pointers are being discarded.
5112 Typically, the compiler warns if a @code{const char *} variable is
5113 passed to a function that takes a @code{char *} parameter. This option
5114 can be used to suppress such a warning.
5115
5116 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
5117 @opindex Wno-discarded-array-qualifiers
5118 @opindex Wdiscarded-array-qualifiers
5119 Do not warn if type qualifiers on arrays which are pointer targets
5120 are being discarded. Typically, the compiler warns if a
5121 @code{const int (*)[]} variable is passed to a function that
5122 takes a @code{int (*)[]} parameter. This option can be used to
5123 suppress such a warning.
5124
5125 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
5126 @opindex Wno-incompatible-pointer-types
5127 @opindex Wincompatible-pointer-types
5128 Do not warn when there is a conversion between pointers that have incompatible
5129 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
5130 which warns for pointer argument passing or assignment with different
5131 signedness.
5132
5133 @item -Wno-int-conversion @r{(C and Objective-C only)}
5134 @opindex Wno-int-conversion
5135 @opindex Wint-conversion
5136 Do not warn about incompatible integer to pointer and pointer to integer
5137 conversions. This warning is about implicit conversions; for explicit
5138 conversions the warnings @option{-Wno-int-to-pointer-cast} and
5139 @option{-Wno-pointer-to-int-cast} may be used.
5140
5141 @item -Wno-div-by-zero
5142 @opindex Wno-div-by-zero
5143 @opindex Wdiv-by-zero
5144 Do not warn about compile-time integer division by zero. Floating-point
5145 division by zero is not warned about, as it can be a legitimate way of
5146 obtaining infinities and NaNs.
5147
5148 @item -Wsystem-headers
5149 @opindex Wsystem-headers
5150 @opindex Wno-system-headers
5151 @cindex warnings from system headers
5152 @cindex system headers, warnings from
5153 Print warning messages for constructs found in system header files.
5154 Warnings from system headers are normally suppressed, on the assumption
5155 that they usually do not indicate real problems and would only make the
5156 compiler output harder to read. Using this command-line option tells
5157 GCC to emit warnings from system headers as if they occurred in user
5158 code. However, note that using @option{-Wall} in conjunction with this
5159 option does @emph{not} warn about unknown pragmas in system
5160 headers---for that, @option{-Wunknown-pragmas} must also be used.
5161
5162 @item -Wtautological-compare
5163 @opindex Wtautological-compare
5164 @opindex Wno-tautological-compare
5165 Warn if a self-comparison always evaluates to true or false. This
5166 warning detects various mistakes such as:
5167 @smallexample
5168 int i = 1;
5169 @dots{}
5170 if (i > i) @{ @dots{} @}
5171 @end smallexample
5172 This warning is enabled by @option{-Wall}.
5173
5174 @item -Wtrampolines
5175 @opindex Wtrampolines
5176 @opindex Wno-trampolines
5177 Warn about trampolines generated for pointers to nested functions.
5178 A trampoline is a small piece of data or code that is created at run
5179 time on the stack when the address of a nested function is taken, and is
5180 used to call the nested function indirectly. For some targets, it is
5181 made up of data only and thus requires no special treatment. But, for
5182 most targets, it is made up of code and thus requires the stack to be
5183 made executable in order for the program to work properly.
5184
5185 @item -Wfloat-equal
5186 @opindex Wfloat-equal
5187 @opindex Wno-float-equal
5188 Warn if floating-point values are used in equality comparisons.
5189
5190 The idea behind this is that sometimes it is convenient (for the
5191 programmer) to consider floating-point values as approximations to
5192 infinitely precise real numbers. If you are doing this, then you need
5193 to compute (by analyzing the code, or in some other way) the maximum or
5194 likely maximum error that the computation introduces, and allow for it
5195 when performing comparisons (and when producing output, but that's a
5196 different problem). In particular, instead of testing for equality, you
5197 should check to see whether the two values have ranges that overlap; and
5198 this is done with the relational operators, so equality comparisons are
5199 probably mistaken.
5200
5201 @item -Wtraditional @r{(C and Objective-C only)}
5202 @opindex Wtraditional
5203 @opindex Wno-traditional
5204 Warn about certain constructs that behave differently in traditional and
5205 ISO C@. Also warn about ISO C constructs that have no traditional C
5206 equivalent, and/or problematic constructs that should be avoided.
5207
5208 @itemize @bullet
5209 @item
5210 Macro parameters that appear within string literals in the macro body.
5211 In traditional C macro replacement takes place within string literals,
5212 but in ISO C it does not.
5213
5214 @item
5215 In traditional C, some preprocessor directives did not exist.
5216 Traditional preprocessors only considered a line to be a directive
5217 if the @samp{#} appeared in column 1 on the line. Therefore
5218 @option{-Wtraditional} warns about directives that traditional C
5219 understands but ignores because the @samp{#} does not appear as the
5220 first character on the line. It also suggests you hide directives like
5221 @code{#pragma} not understood by traditional C by indenting them. Some
5222 traditional implementations do not recognize @code{#elif}, so this option
5223 suggests avoiding it altogether.
5224
5225 @item
5226 A function-like macro that appears without arguments.
5227
5228 @item
5229 The unary plus operator.
5230
5231 @item
5232 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
5233 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
5234 constants.) Note, these suffixes appear in macros defined in the system
5235 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
5236 Use of these macros in user code might normally lead to spurious
5237 warnings, however GCC's integrated preprocessor has enough context to
5238 avoid warning in these cases.
5239
5240 @item
5241 A function declared external in one block and then used after the end of
5242 the block.
5243
5244 @item
5245 A @code{switch} statement has an operand of type @code{long}.
5246
5247 @item
5248 A non-@code{static} function declaration follows a @code{static} one.
5249 This construct is not accepted by some traditional C compilers.
5250
5251 @item
5252 The ISO type of an integer constant has a different width or
5253 signedness from its traditional type. This warning is only issued if
5254 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
5255 typically represent bit patterns, are not warned about.
5256
5257 @item
5258 Usage of ISO string concatenation is detected.
5259
5260 @item
5261 Initialization of automatic aggregates.
5262
5263 @item
5264 Identifier conflicts with labels. Traditional C lacks a separate
5265 namespace for labels.
5266
5267 @item
5268 Initialization of unions. If the initializer is zero, the warning is
5269 omitted. This is done under the assumption that the zero initializer in
5270 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
5271 initializer warnings and relies on default initialization to zero in the
5272 traditional C case.
5273
5274 @item
5275 Conversions by prototypes between fixed/floating-point values and vice
5276 versa. The absence of these prototypes when compiling with traditional
5277 C causes serious problems. This is a subset of the possible
5278 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
5279
5280 @item
5281 Use of ISO C style function definitions. This warning intentionally is
5282 @emph{not} issued for prototype declarations or variadic functions
5283 because these ISO C features appear in your code when using
5284 libiberty's traditional C compatibility macros, @code{PARAMS} and
5285 @code{VPARAMS}. This warning is also bypassed for nested functions
5286 because that feature is already a GCC extension and thus not relevant to
5287 traditional C compatibility.
5288 @end itemize
5289
5290 @item -Wtraditional-conversion @r{(C and Objective-C only)}
5291 @opindex Wtraditional-conversion
5292 @opindex Wno-traditional-conversion
5293 Warn if a prototype causes a type conversion that is different from what
5294 would happen to the same argument in the absence of a prototype. This
5295 includes conversions of fixed point to floating and vice versa, and
5296 conversions changing the width or signedness of a fixed-point argument
5297 except when the same as the default promotion.
5298
5299 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
5300 @opindex Wdeclaration-after-statement
5301 @opindex Wno-declaration-after-statement
5302 Warn when a declaration is found after a statement in a block. This
5303 construct, known from C++, was introduced with ISO C99 and is by default
5304 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
5305
5306 @item -Wundef
5307 @opindex Wundef
5308 @opindex Wno-undef
5309 Warn if an undefined identifier is evaluated in an @code{#if} directive.
5310
5311 @item -Wno-endif-labels
5312 @opindex Wno-endif-labels
5313 @opindex Wendif-labels
5314 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
5315
5316 @item -Wshadow
5317 @opindex Wshadow
5318 @opindex Wno-shadow
5319 Warn whenever a local variable or type declaration shadows another
5320 variable, parameter, type, class member (in C++), or instance variable
5321 (in Objective-C) or whenever a built-in function is shadowed. Note
5322 that in C++, the compiler warns if a local variable shadows an
5323 explicit typedef, but not if it shadows a struct/class/enum.
5324
5325 @item -Wno-shadow-ivar @r{(Objective-C only)}
5326 @opindex Wno-shadow-ivar
5327 @opindex Wshadow-ivar
5328 Do not warn whenever a local variable shadows an instance variable in an
5329 Objective-C method.
5330
5331 @item -Wlarger-than=@var{len}
5332 @opindex Wlarger-than=@var{len}
5333 @opindex Wlarger-than-@var{len}
5334 Warn whenever an object of larger than @var{len} bytes is defined.
5335
5336 @item -Wframe-larger-than=@var{len}
5337 @opindex Wframe-larger-than
5338 Warn if the size of a function frame is larger than @var{len} bytes.
5339 The computation done to determine the stack frame size is approximate
5340 and not conservative.
5341 The actual requirements may be somewhat greater than @var{len}
5342 even if you do not get a warning. In addition, any space allocated
5343 via @code{alloca}, variable-length arrays, or related constructs
5344 is not included by the compiler when determining
5345 whether or not to issue a warning.
5346
5347 @item -Wno-free-nonheap-object
5348 @opindex Wno-free-nonheap-object
5349 @opindex Wfree-nonheap-object
5350 Do not warn when attempting to free an object that was not allocated
5351 on the heap.
5352
5353 @item -Wstack-usage=@var{len}
5354 @opindex Wstack-usage
5355 Warn if the stack usage of a function might be larger than @var{len} bytes.
5356 The computation done to determine the stack usage is conservative.
5357 Any space allocated via @code{alloca}, variable-length arrays, or related
5358 constructs is included by the compiler when determining whether or not to
5359 issue a warning.
5360
5361 The message is in keeping with the output of @option{-fstack-usage}.
5362
5363 @itemize
5364 @item
5365 If the stack usage is fully static but exceeds the specified amount, it's:
5366
5367 @smallexample
5368 warning: stack usage is 1120 bytes
5369 @end smallexample
5370 @item
5371 If the stack usage is (partly) dynamic but bounded, it's:
5372
5373 @smallexample
5374 warning: stack usage might be 1648 bytes
5375 @end smallexample
5376 @item
5377 If the stack usage is (partly) dynamic and not bounded, it's:
5378
5379 @smallexample
5380 warning: stack usage might be unbounded
5381 @end smallexample
5382 @end itemize
5383
5384 @item -Wunsafe-loop-optimizations
5385 @opindex Wunsafe-loop-optimizations
5386 @opindex Wno-unsafe-loop-optimizations
5387 Warn if the loop cannot be optimized because the compiler cannot
5388 assume anything on the bounds of the loop indices. With
5389 @option{-funsafe-loop-optimizations} warn if the compiler makes
5390 such assumptions.
5391
5392 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
5393 @opindex Wno-pedantic-ms-format
5394 @opindex Wpedantic-ms-format
5395 When used in combination with @option{-Wformat}
5396 and @option{-pedantic} without GNU extensions, this option
5397 disables the warnings about non-ISO @code{printf} / @code{scanf} format
5398 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
5399 which depend on the MS runtime.
5400
5401 @item -Waligned-new
5402 @opindex Waligned-new
5403 @opindex Wno-aligned-new
5404 Warn about a new-expression of a type that requires greater alignment
5405 than the @code{alignof(std::max_align_t)} but uses an allocation
5406 function without an explicit alignment parameter. This option is
5407 enabled by @option{-Wall}.
5408
5409 Normally this only warns about global allocation functions, but
5410 @option{-Waligned-new=all} also warns about class member allocation
5411 functions.
5412
5413 @item -Wplacement-new
5414 @itemx -Wplacement-new=@var{n}
5415 @opindex Wplacement-new
5416 @opindex Wno-placement-new
5417 Warn about placement new expressions with undefined behavior, such as
5418 constructing an object in a buffer that is smaller than the type of
5419 the object. For example, the placement new expression below is diagnosed
5420 because it attempts to construct an array of 64 integers in a buffer only
5421 64 bytes large.
5422 @smallexample
5423 char buf [64];
5424 new (buf) int[64];
5425 @end smallexample
5426 This warning is enabled by default.
5427
5428 @table @gcctabopt
5429 @item -Wplacement-new=1
5430 This is the default warning level of @option{-Wplacement-new}. At this
5431 level the warning is not issued for some strictly undefined constructs that
5432 GCC allows as extensions for compatibility with legacy code. For example,
5433 the following @code{new} expression is not diagnosed at this level even
5434 though it has undefined behavior according to the C++ standard because
5435 it writes past the end of the one-element array.
5436 @smallexample
5437 struct S @{ int n, a[1]; @};
5438 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
5439 new (s->a)int [32]();
5440 @end smallexample
5441
5442 @item -Wplacement-new=2
5443 At this level, in addition to diagnosing all the same constructs as at level
5444 1, a diagnostic is also issued for placement new expressions that construct
5445 an object in the last member of structure whose type is an array of a single
5446 element and whose size is less than the size of the object being constructed.
5447 While the previous example would be diagnosed, the following construct makes
5448 use of the flexible member array extension to avoid the warning at level 2.
5449 @smallexample
5450 struct S @{ int n, a[]; @};
5451 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
5452 new (s->a)int [32]();
5453 @end smallexample
5454
5455 @end table
5456
5457 @item -Wpointer-arith
5458 @opindex Wpointer-arith
5459 @opindex Wno-pointer-arith
5460 Warn about anything that depends on the ``size of'' a function type or
5461 of @code{void}. GNU C assigns these types a size of 1, for
5462 convenience in calculations with @code{void *} pointers and pointers
5463 to functions. In C++, warn also when an arithmetic operation involves
5464 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
5465
5466 @item -Wtype-limits
5467 @opindex Wtype-limits
5468 @opindex Wno-type-limits
5469 Warn if a comparison is always true or always false due to the limited
5470 range of the data type, but do not warn for constant expressions. For
5471 example, warn if an unsigned variable is compared against zero with
5472 @code{<} or @code{>=}. This warning is also enabled by
5473 @option{-Wextra}.
5474
5475 @item -Wbad-function-cast @r{(C and Objective-C only)}
5476 @opindex Wbad-function-cast
5477 @opindex Wno-bad-function-cast
5478 Warn when a function call is cast to a non-matching type.
5479 For example, warn if a call to a function returning an integer type
5480 is cast to a pointer type.
5481
5482 @item -Wc90-c99-compat @r{(C and Objective-C only)}
5483 @opindex Wc90-c99-compat
5484 @opindex Wno-c90-c99-compat
5485 Warn about features not present in ISO C90, but present in ISO C99.
5486 For instance, warn about use of variable length arrays, @code{long long}
5487 type, @code{bool} type, compound literals, designated initializers, and so
5488 on. This option is independent of the standards mode. Warnings are disabled
5489 in the expression that follows @code{__extension__}.
5490
5491 @item -Wc99-c11-compat @r{(C and Objective-C only)}
5492 @opindex Wc99-c11-compat
5493 @opindex Wno-c99-c11-compat
5494 Warn about features not present in ISO C99, but present in ISO C11.
5495 For instance, warn about use of anonymous structures and unions,
5496 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
5497 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
5498 and so on. This option is independent of the standards mode. Warnings are
5499 disabled in the expression that follows @code{__extension__}.
5500
5501 @item -Wc++-compat @r{(C and Objective-C only)}
5502 @opindex Wc++-compat
5503 Warn about ISO C constructs that are outside of the common subset of
5504 ISO C and ISO C++, e.g.@: request for implicit conversion from
5505 @code{void *} to a pointer to non-@code{void} type.
5506
5507 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
5508 @opindex Wc++11-compat
5509 Warn about C++ constructs whose meaning differs between ISO C++ 1998
5510 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
5511 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
5512 enabled by @option{-Wall}.
5513
5514 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
5515 @opindex Wc++14-compat
5516 Warn about C++ constructs whose meaning differs between ISO C++ 2011
5517 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
5518
5519 @item -Wcast-qual
5520 @opindex Wcast-qual
5521 @opindex Wno-cast-qual
5522 Warn whenever a pointer is cast so as to remove a type qualifier from
5523 the target type. For example, warn if a @code{const char *} is cast
5524 to an ordinary @code{char *}.
5525
5526 Also warn when making a cast that introduces a type qualifier in an
5527 unsafe way. For example, casting @code{char **} to @code{const char **}
5528 is unsafe, as in this example:
5529
5530 @smallexample
5531 /* p is char ** value. */
5532 const char **q = (const char **) p;
5533 /* Assignment of readonly string to const char * is OK. */
5534 *q = "string";
5535 /* Now char** pointer points to read-only memory. */
5536 **p = 'b';
5537 @end smallexample
5538
5539 @item -Wcast-align
5540 @opindex Wcast-align
5541 @opindex Wno-cast-align
5542 Warn whenever a pointer is cast such that the required alignment of the
5543 target is increased. For example, warn if a @code{char *} is cast to
5544 an @code{int *} on machines where integers can only be accessed at
5545 two- or four-byte boundaries.
5546
5547 @item -Wwrite-strings
5548 @opindex Wwrite-strings
5549 @opindex Wno-write-strings
5550 When compiling C, give string constants the type @code{const
5551 char[@var{length}]} so that copying the address of one into a
5552 non-@code{const} @code{char *} pointer produces a warning. These
5553 warnings help you find at compile time code that can try to write
5554 into a string constant, but only if you have been very careful about
5555 using @code{const} in declarations and prototypes. Otherwise, it is
5556 just a nuisance. This is why we did not make @option{-Wall} request
5557 these warnings.
5558
5559 When compiling C++, warn about the deprecated conversion from string
5560 literals to @code{char *}. This warning is enabled by default for C++
5561 programs.
5562
5563 @item -Wclobbered
5564 @opindex Wclobbered
5565 @opindex Wno-clobbered
5566 Warn for variables that might be changed by @code{longjmp} or
5567 @code{vfork}. This warning is also enabled by @option{-Wextra}.
5568
5569 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
5570 @opindex Wconditionally-supported
5571 @opindex Wno-conditionally-supported
5572 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
5573
5574 @item -Wconversion
5575 @opindex Wconversion
5576 @opindex Wno-conversion
5577 Warn for implicit conversions that may alter a value. This includes
5578 conversions between real and integer, like @code{abs (x)} when
5579 @code{x} is @code{double}; conversions between signed and unsigned,
5580 like @code{unsigned ui = -1}; and conversions to smaller types, like
5581 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
5582 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
5583 changed by the conversion like in @code{abs (2.0)}. Warnings about
5584 conversions between signed and unsigned integers can be disabled by
5585 using @option{-Wno-sign-conversion}.
5586
5587 For C++, also warn for confusing overload resolution for user-defined
5588 conversions; and conversions that never use a type conversion
5589 operator: conversions to @code{void}, the same type, a base class or a
5590 reference to them. Warnings about conversions between signed and
5591 unsigned integers are disabled by default in C++ unless
5592 @option{-Wsign-conversion} is explicitly enabled.
5593
5594 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
5595 @opindex Wconversion-null
5596 @opindex Wno-conversion-null
5597 Do not warn for conversions between @code{NULL} and non-pointer
5598 types. @option{-Wconversion-null} is enabled by default.
5599
5600 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
5601 @opindex Wzero-as-null-pointer-constant
5602 @opindex Wno-zero-as-null-pointer-constant
5603 Warn when a literal @samp{0} is used as null pointer constant. This can
5604 be useful to facilitate the conversion to @code{nullptr} in C++11.
5605
5606 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
5607 @opindex Wsubobject-linkage
5608 @opindex Wno-subobject-linkage
5609 Warn if a class type has a base or a field whose type uses the anonymous
5610 namespace or depends on a type with no linkage. If a type A depends on
5611 a type B with no or internal linkage, defining it in multiple
5612 translation units would be an ODR violation because the meaning of B
5613 is different in each translation unit. If A only appears in a single
5614 translation unit, the best way to silence the warning is to give it
5615 internal linkage by putting it in an anonymous namespace as well. The
5616 compiler doesn't give this warning for types defined in the main .C
5617 file, as those are unlikely to have multiple definitions.
5618 @option{-Wsubobject-linkage} is enabled by default.
5619
5620 @item -Wdangling-else
5621 @opindex Wdangling-else
5622 @opindex Wno-dangling-else
5623 Warn about constructions where there may be confusion to which
5624 @code{if} statement an @code{else} branch belongs. Here is an example of
5625 such a case:
5626
5627 @smallexample
5628 @group
5629 @{
5630 if (a)
5631 if (b)
5632 foo ();
5633 else
5634 bar ();
5635 @}
5636 @end group
5637 @end smallexample
5638
5639 In C/C++, every @code{else} branch belongs to the innermost possible
5640 @code{if} statement, which in this example is @code{if (b)}. This is
5641 often not what the programmer expected, as illustrated in the above
5642 example by indentation the programmer chose. When there is the
5643 potential for this confusion, GCC issues a warning when this flag
5644 is specified. To eliminate the warning, add explicit braces around
5645 the innermost @code{if} statement so there is no way the @code{else}
5646 can belong to the enclosing @code{if}. The resulting code
5647 looks like this:
5648
5649 @smallexample
5650 @group
5651 @{
5652 if (a)
5653 @{
5654 if (b)
5655 foo ();
5656 else
5657 bar ();
5658 @}
5659 @}
5660 @end group
5661 @end smallexample
5662
5663 This warning is enabled by @option{-Wparentheses}.
5664
5665 @item -Wdate-time
5666 @opindex Wdate-time
5667 @opindex Wno-date-time
5668 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
5669 are encountered as they might prevent bit-wise-identical reproducible
5670 compilations.
5671
5672 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
5673 @opindex Wdelete-incomplete
5674 @opindex Wno-delete-incomplete
5675 Warn when deleting a pointer to incomplete type, which may cause
5676 undefined behavior at runtime. This warning is enabled by default.
5677
5678 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
5679 @opindex Wuseless-cast
5680 @opindex Wno-useless-cast
5681 Warn when an expression is casted to its own type.
5682
5683 @item -Wempty-body
5684 @opindex Wempty-body
5685 @opindex Wno-empty-body
5686 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
5687 while} statement. This warning is also enabled by @option{-Wextra}.
5688
5689 @item -Wenum-compare
5690 @opindex Wenum-compare
5691 @opindex Wno-enum-compare
5692 Warn about a comparison between values of different enumerated types.
5693 In C++ enumeral mismatches in conditional expressions are also
5694 diagnosed and the warning is enabled by default. In C this warning is
5695 enabled by @option{-Wall}.
5696
5697 @item -Wjump-misses-init @r{(C, Objective-C only)}
5698 @opindex Wjump-misses-init
5699 @opindex Wno-jump-misses-init
5700 Warn if a @code{goto} statement or a @code{switch} statement jumps
5701 forward across the initialization of a variable, or jumps backward to a
5702 label after the variable has been initialized. This only warns about
5703 variables that are initialized when they are declared. This warning is
5704 only supported for C and Objective-C; in C++ this sort of branch is an
5705 error in any case.
5706
5707 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
5708 can be disabled with the @option{-Wno-jump-misses-init} option.
5709
5710 @item -Wsign-compare
5711 @opindex Wsign-compare
5712 @opindex Wno-sign-compare
5713 @cindex warning for comparison of signed and unsigned values
5714 @cindex comparison of signed and unsigned values, warning
5715 @cindex signed and unsigned values, comparison warning
5716 Warn when a comparison between signed and unsigned values could produce
5717 an incorrect result when the signed value is converted to unsigned.
5718 In C++, this warning is also enabled by @option{-Wall}. In C, it is
5719 also enabled by @option{-Wextra}.
5720
5721 @item -Wsign-conversion
5722 @opindex Wsign-conversion
5723 @opindex Wno-sign-conversion
5724 Warn for implicit conversions that may change the sign of an integer
5725 value, like assigning a signed integer expression to an unsigned
5726 integer variable. An explicit cast silences the warning. In C, this
5727 option is enabled also by @option{-Wconversion}.
5728
5729 @item -Wfloat-conversion
5730 @opindex Wfloat-conversion
5731 @opindex Wno-float-conversion
5732 Warn for implicit conversions that reduce the precision of a real value.
5733 This includes conversions from real to integer, and from higher precision
5734 real to lower precision real values. This option is also enabled by
5735 @option{-Wconversion}.
5736
5737 @item -Wno-scalar-storage-order
5738 @opindex -Wno-scalar-storage-order
5739 @opindex -Wscalar-storage-order
5740 Do not warn on suspicious constructs involving reverse scalar storage order.
5741
5742 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
5743 @opindex Wsized-deallocation
5744 @opindex Wno-sized-deallocation
5745 Warn about a definition of an unsized deallocation function
5746 @smallexample
5747 void operator delete (void *) noexcept;
5748 void operator delete[] (void *) noexcept;
5749 @end smallexample
5750 without a definition of the corresponding sized deallocation function
5751 @smallexample
5752 void operator delete (void *, std::size_t) noexcept;
5753 void operator delete[] (void *, std::size_t) noexcept;
5754 @end smallexample
5755 or vice versa. Enabled by @option{-Wextra} along with
5756 @option{-fsized-deallocation}.
5757
5758 @item -Wsizeof-pointer-memaccess
5759 @opindex Wsizeof-pointer-memaccess
5760 @opindex Wno-sizeof-pointer-memaccess
5761 Warn for suspicious length parameters to certain string and memory built-in
5762 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
5763 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
5764 but a pointer, and suggests a possible fix, or about
5765 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
5766 @option{-Wall}.
5767
5768 @item -Wsizeof-array-argument
5769 @opindex Wsizeof-array-argument
5770 @opindex Wno-sizeof-array-argument
5771 Warn when the @code{sizeof} operator is applied to a parameter that is
5772 declared as an array in a function definition. This warning is enabled by
5773 default for C and C++ programs.
5774
5775 @item -Wmemset-elt-size
5776 @opindex Wmemset-elt-size
5777 @opindex Wno-memset-elt-size
5778 Warn for suspicious calls to the @code{memset} built-in function, if the
5779 first argument references an array, and the third argument is a number
5780 equal to the number of elements, but not equal to the size of the array
5781 in memory. This indicates that the user has omitted a multiplication by
5782 the element size. This warning is enabled by @option{-Wall}.
5783
5784 @item -Wmemset-transposed-args
5785 @opindex Wmemset-transposed-args
5786 @opindex Wno-memset-transposed-args
5787 Warn for suspicious calls to the @code{memset} built-in function, if the
5788 second argument is not zero and the third argument is zero. This warns e.g.@
5789 about @code{memset (buf, sizeof buf, 0)} where most probably
5790 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
5791 is only emitted if the third argument is literal zero. If it is some
5792 expression that is folded to zero, a cast of zero to some type, etc.,
5793 it is far less likely that the user has mistakenly exchanged the arguments
5794 and no warning is emitted. This warning is enabled by @option{-Wall}.
5795
5796 @item -Waddress
5797 @opindex Waddress
5798 @opindex Wno-address
5799 Warn about suspicious uses of memory addresses. These include using
5800 the address of a function in a conditional expression, such as
5801 @code{void func(void); if (func)}, and comparisons against the memory
5802 address of a string literal, such as @code{if (x == "abc")}. Such
5803 uses typically indicate a programmer error: the address of a function
5804 always evaluates to true, so their use in a conditional usually
5805 indicate that the programmer forgot the parentheses in a function
5806 call; and comparisons against string literals result in unspecified
5807 behavior and are not portable in C, so they usually indicate that the
5808 programmer intended to use @code{strcmp}. This warning is enabled by
5809 @option{-Wall}.
5810
5811 @item -Wlogical-op
5812 @opindex Wlogical-op
5813 @opindex Wno-logical-op
5814 Warn about suspicious uses of logical operators in expressions.
5815 This includes using logical operators in contexts where a
5816 bit-wise operator is likely to be expected. Also warns when
5817 the operands of a logical operator are the same:
5818 @smallexample
5819 extern int a;
5820 if (a < 0 && a < 0) @{ @dots{} @}
5821 @end smallexample
5822
5823 @item -Wlogical-not-parentheses
5824 @opindex Wlogical-not-parentheses
5825 @opindex Wno-logical-not-parentheses
5826 Warn about logical not used on the left hand side operand of a comparison.
5827 This option does not warn if the right operand is considered to be a boolean
5828 expression. Its purpose is to detect suspicious code like the following:
5829 @smallexample
5830 int a;
5831 @dots{}
5832 if (!a > 1) @{ @dots{} @}
5833 @end smallexample
5834
5835 It is possible to suppress the warning by wrapping the LHS into
5836 parentheses:
5837 @smallexample
5838 if ((!a) > 1) @{ @dots{} @}
5839 @end smallexample
5840
5841 This warning is enabled by @option{-Wall}.
5842
5843 @item -Waggregate-return
5844 @opindex Waggregate-return
5845 @opindex Wno-aggregate-return
5846 Warn if any functions that return structures or unions are defined or
5847 called. (In languages where you can return an array, this also elicits
5848 a warning.)
5849
5850 @item -Wno-aggressive-loop-optimizations
5851 @opindex Wno-aggressive-loop-optimizations
5852 @opindex Waggressive-loop-optimizations
5853 Warn if in a loop with constant number of iterations the compiler detects
5854 undefined behavior in some statement during one or more of the iterations.
5855
5856 @item -Wno-attributes
5857 @opindex Wno-attributes
5858 @opindex Wattributes
5859 Do not warn if an unexpected @code{__attribute__} is used, such as
5860 unrecognized attributes, function attributes applied to variables,
5861 etc. This does not stop errors for incorrect use of supported
5862 attributes.
5863
5864 @item -Wno-builtin-macro-redefined
5865 @opindex Wno-builtin-macro-redefined
5866 @opindex Wbuiltin-macro-redefined
5867 Do not warn if certain built-in macros are redefined. This suppresses
5868 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5869 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5870
5871 @item -Wstrict-prototypes @r{(C and Objective-C only)}
5872 @opindex Wstrict-prototypes
5873 @opindex Wno-strict-prototypes
5874 Warn if a function is declared or defined without specifying the
5875 argument types. (An old-style function definition is permitted without
5876 a warning if preceded by a declaration that specifies the argument
5877 types.)
5878
5879 @item -Wold-style-declaration @r{(C and Objective-C only)}
5880 @opindex Wold-style-declaration
5881 @opindex Wno-old-style-declaration
5882 Warn for obsolescent usages, according to the C Standard, in a
5883 declaration. For example, warn if storage-class specifiers like
5884 @code{static} are not the first things in a declaration. This warning
5885 is also enabled by @option{-Wextra}.
5886
5887 @item -Wold-style-definition @r{(C and Objective-C only)}
5888 @opindex Wold-style-definition
5889 @opindex Wno-old-style-definition
5890 Warn if an old-style function definition is used. A warning is given
5891 even if there is a previous prototype.
5892
5893 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5894 @opindex Wmissing-parameter-type
5895 @opindex Wno-missing-parameter-type
5896 A function parameter is declared without a type specifier in K&R-style
5897 functions:
5898
5899 @smallexample
5900 void foo(bar) @{ @}
5901 @end smallexample
5902
5903 This warning is also enabled by @option{-Wextra}.
5904
5905 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5906 @opindex Wmissing-prototypes
5907 @opindex Wno-missing-prototypes
5908 Warn if a global function is defined without a previous prototype
5909 declaration. This warning is issued even if the definition itself
5910 provides a prototype. Use this option to detect global functions
5911 that do not have a matching prototype declaration in a header file.
5912 This option is not valid for C++ because all function declarations
5913 provide prototypes and a non-matching declaration declares an
5914 overload rather than conflict with an earlier declaration.
5915 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5916
5917 @item -Wmissing-declarations
5918 @opindex Wmissing-declarations
5919 @opindex Wno-missing-declarations
5920 Warn if a global function is defined without a previous declaration.
5921 Do so even if the definition itself provides a prototype.
5922 Use this option to detect global functions that are not declared in
5923 header files. In C, no warnings are issued for functions with previous
5924 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5925 missing prototypes. In C++, no warnings are issued for function templates,
5926 or for inline functions, or for functions in anonymous namespaces.
5927
5928 @item -Wmissing-field-initializers
5929 @opindex Wmissing-field-initializers
5930 @opindex Wno-missing-field-initializers
5931 @opindex W
5932 @opindex Wextra
5933 @opindex Wno-extra
5934 Warn if a structure's initializer has some fields missing. For
5935 example, the following code causes such a warning, because
5936 @code{x.h} is implicitly zero:
5937
5938 @smallexample
5939 struct s @{ int f, g, h; @};
5940 struct s x = @{ 3, 4 @};
5941 @end smallexample
5942
5943 This option does not warn about designated initializers, so the following
5944 modification does not trigger a warning:
5945
5946 @smallexample
5947 struct s @{ int f, g, h; @};
5948 struct s x = @{ .f = 3, .g = 4 @};
5949 @end smallexample
5950
5951 In C++ this option does not warn either about the empty @{ @}
5952 initializer, for example:
5953
5954 @smallexample
5955 struct s @{ int f, g, h; @};
5956 s x = @{ @};
5957 @end smallexample
5958
5959 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
5960 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5961
5962 @item -Wno-multichar
5963 @opindex Wno-multichar
5964 @opindex Wmultichar
5965 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5966 Usually they indicate a typo in the user's code, as they have
5967 implementation-defined values, and should not be used in portable code.
5968
5969 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5970 @opindex Wnormalized=
5971 @opindex Wnormalized
5972 @opindex Wno-normalized
5973 @cindex NFC
5974 @cindex NFKC
5975 @cindex character set, input normalization
5976 In ISO C and ISO C++, two identifiers are different if they are
5977 different sequences of characters. However, sometimes when characters
5978 outside the basic ASCII character set are used, you can have two
5979 different character sequences that look the same. To avoid confusion,
5980 the ISO 10646 standard sets out some @dfn{normalization rules} which
5981 when applied ensure that two sequences that look the same are turned into
5982 the same sequence. GCC can warn you if you are using identifiers that
5983 have not been normalized; this option controls that warning.
5984
5985 There are four levels of warning supported by GCC@. The default is
5986 @option{-Wnormalized=nfc}, which warns about any identifier that is
5987 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
5988 recommended form for most uses. It is equivalent to
5989 @option{-Wnormalized}.
5990
5991 Unfortunately, there are some characters allowed in identifiers by
5992 ISO C and ISO C++ that, when turned into NFC, are not allowed in
5993 identifiers. That is, there's no way to use these symbols in portable
5994 ISO C or C++ and have all your identifiers in NFC@.
5995 @option{-Wnormalized=id} suppresses the warning for these characters.
5996 It is hoped that future versions of the standards involved will correct
5997 this, which is why this option is not the default.
5998
5999 You can switch the warning off for all characters by writing
6000 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
6001 only do this if you are using some other normalization scheme (like
6002 ``D''), because otherwise you can easily create bugs that are
6003 literally impossible to see.
6004
6005 Some characters in ISO 10646 have distinct meanings but look identical
6006 in some fonts or display methodologies, especially once formatting has
6007 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
6008 LETTER N'', displays just like a regular @code{n} that has been
6009 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
6010 normalization scheme to convert all these into a standard form as
6011 well, and GCC warns if your code is not in NFKC if you use
6012 @option{-Wnormalized=nfkc}. This warning is comparable to warning
6013 about every identifier that contains the letter O because it might be
6014 confused with the digit 0, and so is not the default, but may be
6015 useful as a local coding convention if the programming environment
6016 cannot be fixed to display these characters distinctly.
6017
6018 @item -Wno-deprecated
6019 @opindex Wno-deprecated
6020 @opindex Wdeprecated
6021 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
6022
6023 @item -Wno-deprecated-declarations
6024 @opindex Wno-deprecated-declarations
6025 @opindex Wdeprecated-declarations
6026 Do not warn about uses of functions (@pxref{Function Attributes}),
6027 variables (@pxref{Variable Attributes}), and types (@pxref{Type
6028 Attributes}) marked as deprecated by using the @code{deprecated}
6029 attribute.
6030
6031 @item -Wno-overflow
6032 @opindex Wno-overflow
6033 @opindex Woverflow
6034 Do not warn about compile-time overflow in constant expressions.
6035
6036 @item -Wno-odr
6037 @opindex Wno-odr
6038 @opindex Wodr
6039 Warn about One Definition Rule violations during link-time optimization.
6040 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
6041
6042 @item -Wopenmp-simd
6043 @opindex Wopenm-simd
6044 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
6045 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
6046 option can be used to relax the cost model.
6047
6048 @item -Woverride-init @r{(C and Objective-C only)}
6049 @opindex Woverride-init
6050 @opindex Wno-override-init
6051 @opindex W
6052 @opindex Wextra
6053 @opindex Wno-extra
6054 Warn if an initialized field without side effects is overridden when
6055 using designated initializers (@pxref{Designated Inits, , Designated
6056 Initializers}).
6057
6058 This warning is included in @option{-Wextra}. To get other
6059 @option{-Wextra} warnings without this one, use @option{-Wextra
6060 -Wno-override-init}.
6061
6062 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
6063 @opindex Woverride-init-side-effects
6064 @opindex Wno-override-init-side-effects
6065 Warn if an initialized field with side effects is overridden when
6066 using designated initializers (@pxref{Designated Inits, , Designated
6067 Initializers}). This warning is enabled by default.
6068
6069 @item -Wpacked
6070 @opindex Wpacked
6071 @opindex Wno-packed
6072 Warn if a structure is given the packed attribute, but the packed
6073 attribute has no effect on the layout or size of the structure.
6074 Such structures may be mis-aligned for little benefit. For
6075 instance, in this code, the variable @code{f.x} in @code{struct bar}
6076 is misaligned even though @code{struct bar} does not itself
6077 have the packed attribute:
6078
6079 @smallexample
6080 @group
6081 struct foo @{
6082 int x;
6083 char a, b, c, d;
6084 @} __attribute__((packed));
6085 struct bar @{
6086 char z;
6087 struct foo f;
6088 @};
6089 @end group
6090 @end smallexample
6091
6092 @item -Wpacked-bitfield-compat
6093 @opindex Wpacked-bitfield-compat
6094 @opindex Wno-packed-bitfield-compat
6095 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
6096 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
6097 the change can lead to differences in the structure layout. GCC
6098 informs you when the offset of such a field has changed in GCC 4.4.
6099 For example there is no longer a 4-bit padding between field @code{a}
6100 and @code{b} in this structure:
6101
6102 @smallexample
6103 struct foo
6104 @{
6105 char a:4;
6106 char b:8;
6107 @} __attribute__ ((packed));
6108 @end smallexample
6109
6110 This warning is enabled by default. Use
6111 @option{-Wno-packed-bitfield-compat} to disable this warning.
6112
6113 @item -Wpadded
6114 @opindex Wpadded
6115 @opindex Wno-padded
6116 Warn if padding is included in a structure, either to align an element
6117 of the structure or to align the whole structure. Sometimes when this
6118 happens it is possible to rearrange the fields of the structure to
6119 reduce the padding and so make the structure smaller.
6120
6121 @item -Wredundant-decls
6122 @opindex Wredundant-decls
6123 @opindex Wno-redundant-decls
6124 Warn if anything is declared more than once in the same scope, even in
6125 cases where multiple declaration is valid and changes nothing.
6126
6127 @item -Wnested-externs @r{(C and Objective-C only)}
6128 @opindex Wnested-externs
6129 @opindex Wno-nested-externs
6130 Warn if an @code{extern} declaration is encountered within a function.
6131
6132 @item -Wno-inherited-variadic-ctor
6133 @opindex Winherited-variadic-ctor
6134 @opindex Wno-inherited-variadic-ctor
6135 Suppress warnings about use of C++11 inheriting constructors when the
6136 base class inherited from has a C variadic constructor; the warning is
6137 on by default because the ellipsis is not inherited.
6138
6139 @item -Winline
6140 @opindex Winline
6141 @opindex Wno-inline
6142 Warn if a function that is declared as inline cannot be inlined.
6143 Even with this option, the compiler does not warn about failures to
6144 inline functions declared in system headers.
6145
6146 The compiler uses a variety of heuristics to determine whether or not
6147 to inline a function. For example, the compiler takes into account
6148 the size of the function being inlined and the amount of inlining
6149 that has already been done in the current function. Therefore,
6150 seemingly insignificant changes in the source program can cause the
6151 warnings produced by @option{-Winline} to appear or disappear.
6152
6153 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
6154 @opindex Wno-invalid-offsetof
6155 @opindex Winvalid-offsetof
6156 Suppress warnings from applying the @code{offsetof} macro to a non-POD
6157 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
6158 to a non-standard-layout type is undefined. In existing C++ implementations,
6159 however, @code{offsetof} typically gives meaningful results.
6160 This flag is for users who are aware that they are
6161 writing nonportable code and who have deliberately chosen to ignore the
6162 warning about it.
6163
6164 The restrictions on @code{offsetof} may be relaxed in a future version
6165 of the C++ standard.
6166
6167 @item -Wint-in-bool-context
6168 @opindex Wint-in-bool-context
6169 @opindex Wno-int-in-bool-context
6170 Warn for suspicious use of integer values where boolean values are expected,
6171 such as conditional expressions (?:) using non-boolean integer constants in
6172 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting in
6173 boolean context, like @code{for (a = 0; 1 << a; a++);}.
6174 This warning is enabled by @option{-Wall}.
6175
6176 @item -Wno-int-to-pointer-cast
6177 @opindex Wno-int-to-pointer-cast
6178 @opindex Wint-to-pointer-cast
6179 Suppress warnings from casts to pointer type of an integer of a
6180 different size. In C++, casting to a pointer type of smaller size is
6181 an error. @option{Wint-to-pointer-cast} is enabled by default.
6182
6183
6184 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
6185 @opindex Wno-pointer-to-int-cast
6186 @opindex Wpointer-to-int-cast
6187 Suppress warnings from casts from a pointer to an integer type of a
6188 different size.
6189
6190 @item -Winvalid-pch
6191 @opindex Winvalid-pch
6192 @opindex Wno-invalid-pch
6193 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
6194 the search path but can't be used.
6195
6196 @item -Wlong-long
6197 @opindex Wlong-long
6198 @opindex Wno-long-long
6199 Warn if @code{long long} type is used. This is enabled by either
6200 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
6201 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
6202
6203 @item -Wvariadic-macros
6204 @opindex Wvariadic-macros
6205 @opindex Wno-variadic-macros
6206 Warn if variadic macros are used in ISO C90 mode, or if the GNU
6207 alternate syntax is used in ISO C99 mode. This is enabled by either
6208 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
6209 messages, use @option{-Wno-variadic-macros}.
6210
6211 @item -Wvarargs
6212 @opindex Wvarargs
6213 @opindex Wno-varargs
6214 Warn upon questionable usage of the macros used to handle variable
6215 arguments like @code{va_start}. This is default. To inhibit the
6216 warning messages, use @option{-Wno-varargs}.
6217
6218 @item -Wvector-operation-performance
6219 @opindex Wvector-operation-performance
6220 @opindex Wno-vector-operation-performance
6221 Warn if vector operation is not implemented via SIMD capabilities of the
6222 architecture. Mainly useful for the performance tuning.
6223 Vector operation can be implemented @code{piecewise}, which means that the
6224 scalar operation is performed on every vector element;
6225 @code{in parallel}, which means that the vector operation is implemented
6226 using scalars of wider type, which normally is more performance efficient;
6227 and @code{as a single scalar}, which means that vector fits into a
6228 scalar type.
6229
6230 @item -Wno-virtual-move-assign
6231 @opindex Wvirtual-move-assign
6232 @opindex Wno-virtual-move-assign
6233 Suppress warnings about inheriting from a virtual base with a
6234 non-trivial C++11 move assignment operator. This is dangerous because
6235 if the virtual base is reachable along more than one path, it is
6236 moved multiple times, which can mean both objects end up in the
6237 moved-from state. If the move assignment operator is written to avoid
6238 moving from a moved-from object, this warning can be disabled.
6239
6240 @item -Wvla
6241 @opindex Wvla
6242 @opindex Wno-vla
6243 Warn if a variable-length array is used in the code.
6244 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
6245 the variable-length array.
6246
6247 @item -Wvla-larger-than=@var{n}
6248 If this option is used, the compiler will warn on uses of
6249 variable-length arrays where the size is either unbounded, or bounded
6250 by an argument that can be larger than @var{n} bytes. This is similar
6251 to how @option{-Walloca-larger-than=@var{n}} works, but with
6252 variable-length arrays.
6253
6254 Note that GCC may optimize small variable-length arrays of a known
6255 value into plain arrays, so this warning may not get triggered for
6256 such arrays.
6257
6258 This warning is not enabled by @option{-Wall}, and is only active when
6259 @option{-ftree-vrp} is active (default for @option{-O2} and above).
6260
6261 See also @option{-Walloca-larger-than=@var{n}}.
6262
6263 @item -Wvolatile-register-var
6264 @opindex Wvolatile-register-var
6265 @opindex Wno-volatile-register-var
6266 Warn if a register variable is declared volatile. The volatile
6267 modifier does not inhibit all optimizations that may eliminate reads
6268 and/or writes to register variables. This warning is enabled by
6269 @option{-Wall}.
6270
6271 @item -Wdisabled-optimization
6272 @opindex Wdisabled-optimization
6273 @opindex Wno-disabled-optimization
6274 Warn if a requested optimization pass is disabled. This warning does
6275 not generally indicate that there is anything wrong with your code; it
6276 merely indicates that GCC's optimizers are unable to handle the code
6277 effectively. Often, the problem is that your code is too big or too
6278 complex; GCC refuses to optimize programs when the optimization
6279 itself is likely to take inordinate amounts of time.
6280
6281 @item -Wpointer-sign @r{(C and Objective-C only)}
6282 @opindex Wpointer-sign
6283 @opindex Wno-pointer-sign
6284 Warn for pointer argument passing or assignment with different signedness.
6285 This option is only supported for C and Objective-C@. It is implied by
6286 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
6287 @option{-Wno-pointer-sign}.
6288
6289 @item -Wstack-protector
6290 @opindex Wstack-protector
6291 @opindex Wno-stack-protector
6292 This option is only active when @option{-fstack-protector} is active. It
6293 warns about functions that are not protected against stack smashing.
6294
6295 @item -Woverlength-strings
6296 @opindex Woverlength-strings
6297 @opindex Wno-overlength-strings
6298 Warn about string constants that are longer than the ``minimum
6299 maximum'' length specified in the C standard. Modern compilers
6300 generally allow string constants that are much longer than the
6301 standard's minimum limit, but very portable programs should avoid
6302 using longer strings.
6303
6304 The limit applies @emph{after} string constant concatenation, and does
6305 not count the trailing NUL@. In C90, the limit was 509 characters; in
6306 C99, it was raised to 4095. C++98 does not specify a normative
6307 minimum maximum, so we do not diagnose overlength strings in C++@.
6308
6309 This option is implied by @option{-Wpedantic}, and can be disabled with
6310 @option{-Wno-overlength-strings}.
6311
6312 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
6313 @opindex Wunsuffixed-float-constants
6314
6315 Issue a warning for any floating constant that does not have
6316 a suffix. When used together with @option{-Wsystem-headers} it
6317 warns about such constants in system header files. This can be useful
6318 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
6319 from the decimal floating-point extension to C99.
6320
6321 @item -Wno-designated-init @r{(C and Objective-C only)}
6322 Suppress warnings when a positional initializer is used to initialize
6323 a structure that has been marked with the @code{designated_init}
6324 attribute.
6325
6326 @item -Whsa
6327 Issue a warning when HSAIL cannot be emitted for the compiled function or
6328 OpenMP construct.
6329
6330 @end table
6331
6332 @node Debugging Options
6333 @section Options for Debugging Your Program
6334 @cindex options, debugging
6335 @cindex debugging information options
6336
6337 To tell GCC to emit extra information for use by a debugger, in almost
6338 all cases you need only to add @option{-g} to your other options.
6339
6340 GCC allows you to use @option{-g} with
6341 @option{-O}. The shortcuts taken by optimized code may occasionally
6342 be surprising: some variables you declared may not exist
6343 at all; flow of control may briefly move where you did not expect it;
6344 some statements may not be executed because they compute constant
6345 results or their values are already at hand; some statements may
6346 execute in different places because they have been moved out of loops.
6347 Nevertheless it is possible to debug optimized output. This makes
6348 it reasonable to use the optimizer for programs that might have bugs.
6349
6350 If you are not using some other optimization option, consider
6351 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
6352 With no @option{-O} option at all, some compiler passes that collect
6353 information useful for debugging do not run at all, so that
6354 @option{-Og} may result in a better debugging experience.
6355
6356 @table @gcctabopt
6357 @item -g
6358 @opindex g
6359 Produce debugging information in the operating system's native format
6360 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
6361 information.
6362
6363 On most systems that use stabs format, @option{-g} enables use of extra
6364 debugging information that only GDB can use; this extra information
6365 makes debugging work better in GDB but probably makes other debuggers
6366 crash or
6367 refuse to read the program. If you want to control for certain whether
6368 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
6369 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
6370
6371 @item -ggdb
6372 @opindex ggdb
6373 Produce debugging information for use by GDB@. This means to use the
6374 most expressive format available (DWARF, stabs, or the native format
6375 if neither of those are supported), including GDB extensions if at all
6376 possible.
6377
6378 @item -gdwarf
6379 @itemx -gdwarf-@var{version}
6380 @opindex gdwarf
6381 Produce debugging information in DWARF format (if that is supported).
6382 The value of @var{version} may be either 2, 3, 4 or 5; the default version
6383 for most targets is 4. DWARF Version 5 is only experimental.
6384
6385 Note that with DWARF Version 2, some ports require and always
6386 use some non-conflicting DWARF 3 extensions in the unwind tables.
6387
6388 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
6389 for maximum benefit.
6390
6391 GCC no longer supports DWARF Version 1, which is substantially
6392 different than Version 2 and later. For historical reasons, some
6393 other DWARF-related options (including @option{-feliminate-dwarf2-dups}
6394 and @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
6395 in their names, but apply to all currently-supported versions of DWARF.
6396
6397 @item -gstabs
6398 @opindex gstabs
6399 Produce debugging information in stabs format (if that is supported),
6400 without GDB extensions. This is the format used by DBX on most BSD
6401 systems. On MIPS, Alpha and System V Release 4 systems this option
6402 produces stabs debugging output that is not understood by DBX or SDB@.
6403 On System V Release 4 systems this option requires the GNU assembler.
6404
6405 @item -gstabs+
6406 @opindex gstabs+
6407 Produce debugging information in stabs format (if that is supported),
6408 using GNU extensions understood only by the GNU debugger (GDB)@. The
6409 use of these extensions is likely to make other debuggers crash or
6410 refuse to read the program.
6411
6412 @item -gcoff
6413 @opindex gcoff
6414 Produce debugging information in COFF format (if that is supported).
6415 This is the format used by SDB on most System V systems prior to
6416 System V Release 4.
6417
6418 @item -gxcoff
6419 @opindex gxcoff
6420 Produce debugging information in XCOFF format (if that is supported).
6421 This is the format used by the DBX debugger on IBM RS/6000 systems.
6422
6423 @item -gxcoff+
6424 @opindex gxcoff+
6425 Produce debugging information in XCOFF format (if that is supported),
6426 using GNU extensions understood only by the GNU debugger (GDB)@. The
6427 use of these extensions is likely to make other debuggers crash or
6428 refuse to read the program, and may cause assemblers other than the GNU
6429 assembler (GAS) to fail with an error.
6430
6431 @item -gvms
6432 @opindex gvms
6433 Produce debugging information in Alpha/VMS debug format (if that is
6434 supported). This is the format used by DEBUG on Alpha/VMS systems.
6435
6436 @item -g@var{level}
6437 @itemx -ggdb@var{level}
6438 @itemx -gstabs@var{level}
6439 @itemx -gcoff@var{level}
6440 @itemx -gxcoff@var{level}
6441 @itemx -gvms@var{level}
6442 Request debugging information and also use @var{level} to specify how
6443 much information. The default level is 2.
6444
6445 Level 0 produces no debug information at all. Thus, @option{-g0} negates
6446 @option{-g}.
6447
6448 Level 1 produces minimal information, enough for making backtraces in
6449 parts of the program that you don't plan to debug. This includes
6450 descriptions of functions and external variables, and line number
6451 tables, but no information about local variables.
6452
6453 Level 3 includes extra information, such as all the macro definitions
6454 present in the program. Some debuggers support macro expansion when
6455 you use @option{-g3}.
6456
6457 @option{-gdwarf} does not accept a concatenated debug level, to avoid
6458 confusion with @option{-gdwarf-@var{level}}.
6459 Instead use an additional @option{-g@var{level}} option to change the
6460 debug level for DWARF.
6461
6462 @item -feliminate-unused-debug-symbols
6463 @opindex feliminate-unused-debug-symbols
6464 Produce debugging information in stabs format (if that is supported),
6465 for only symbols that are actually used.
6466
6467 @item -femit-class-debug-always
6468 @opindex femit-class-debug-always
6469 Instead of emitting debugging information for a C++ class in only one
6470 object file, emit it in all object files using the class. This option
6471 should be used only with debuggers that are unable to handle the way GCC
6472 normally emits debugging information for classes because using this
6473 option increases the size of debugging information by as much as a
6474 factor of two.
6475
6476 @item -fno-merge-debug-strings
6477 @opindex fmerge-debug-strings
6478 @opindex fno-merge-debug-strings
6479 Direct the linker to not merge together strings in the debugging
6480 information that are identical in different object files. Merging is
6481 not supported by all assemblers or linkers. Merging decreases the size
6482 of the debug information in the output file at the cost of increasing
6483 link processing time. Merging is enabled by default.
6484
6485 @item -fdebug-prefix-map=@var{old}=@var{new}
6486 @opindex fdebug-prefix-map
6487 When compiling files in directory @file{@var{old}}, record debugging
6488 information describing them as in @file{@var{new}} instead.
6489
6490 @item -fvar-tracking
6491 @opindex fvar-tracking
6492 Run variable tracking pass. It computes where variables are stored at each
6493 position in code. Better debugging information is then generated
6494 (if the debugging information format supports this information).
6495
6496 It is enabled by default when compiling with optimization (@option{-Os},
6497 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
6498 the debug info format supports it.
6499
6500 @item -fvar-tracking-assignments
6501 @opindex fvar-tracking-assignments
6502 @opindex fno-var-tracking-assignments
6503 Annotate assignments to user variables early in the compilation and
6504 attempt to carry the annotations over throughout the compilation all the
6505 way to the end, in an attempt to improve debug information while
6506 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
6507
6508 It can be enabled even if var-tracking is disabled, in which case
6509 annotations are created and maintained, but discarded at the end.
6510 By default, this flag is enabled together with @option{-fvar-tracking},
6511 except when selective scheduling is enabled.
6512
6513 @item -gsplit-dwarf
6514 @opindex gsplit-dwarf
6515 Separate as much DWARF debugging information as possible into a
6516 separate output file with the extension @file{.dwo}. This option allows
6517 the build system to avoid linking files with debug information. To
6518 be useful, this option requires a debugger capable of reading @file{.dwo}
6519 files.
6520
6521 @item -gpubnames
6522 @opindex gpubnames
6523 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
6524
6525 @item -ggnu-pubnames
6526 @opindex ggnu-pubnames
6527 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
6528 suitable for conversion into a GDB@ index. This option is only useful
6529 with a linker that can produce GDB@ index version 7.
6530
6531 @item -fdebug-types-section
6532 @opindex fdebug-types-section
6533 @opindex fno-debug-types-section
6534 When using DWARF Version 4 or higher, type DIEs can be put into
6535 their own @code{.debug_types} section instead of making them part of the
6536 @code{.debug_info} section. It is more efficient to put them in a separate
6537 comdat sections since the linker can then remove duplicates.
6538 But not all DWARF consumers support @code{.debug_types} sections yet
6539 and on some objects @code{.debug_types} produces larger instead of smaller
6540 debugging information.
6541
6542 @item -grecord-gcc-switches
6543 @item -gno-record-gcc-switches
6544 @opindex grecord-gcc-switches
6545 @opindex gno-record-gcc-switches
6546 This switch causes the command-line options used to invoke the
6547 compiler that may affect code generation to be appended to the
6548 DW_AT_producer attribute in DWARF debugging information. The options
6549 are concatenated with spaces separating them from each other and from
6550 the compiler version.
6551 It is enabled by default.
6552 See also @option{-frecord-gcc-switches} for another
6553 way of storing compiler options into the object file.
6554
6555 @item -gstrict-dwarf
6556 @opindex gstrict-dwarf
6557 Disallow using extensions of later DWARF standard version than selected
6558 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
6559 DWARF extensions from later standard versions is allowed.
6560
6561 @item -gno-strict-dwarf
6562 @opindex gno-strict-dwarf
6563 Allow using extensions of later DWARF standard version than selected with
6564 @option{-gdwarf-@var{version}}.
6565
6566 @item -gz@r{[}=@var{type}@r{]}
6567 @opindex gz
6568 Produce compressed debug sections in DWARF format, if that is supported.
6569 If @var{type} is not given, the default type depends on the capabilities
6570 of the assembler and linker used. @var{type} may be one of
6571 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
6572 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
6573 compression in traditional GNU format). If the linker doesn't support
6574 writing compressed debug sections, the option is rejected. Otherwise,
6575 if the assembler does not support them, @option{-gz} is silently ignored
6576 when producing object files.
6577
6578 @item -feliminate-dwarf2-dups
6579 @opindex feliminate-dwarf2-dups
6580 Compress DWARF debugging information by eliminating duplicated
6581 information about each symbol. This option only makes sense when
6582 generating DWARF debugging information.
6583
6584 @item -femit-struct-debug-baseonly
6585 @opindex femit-struct-debug-baseonly
6586 Emit debug information for struct-like types
6587 only when the base name of the compilation source file
6588 matches the base name of file in which the struct is defined.
6589
6590 This option substantially reduces the size of debugging information,
6591 but at significant potential loss in type information to the debugger.
6592 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6593 See @option{-femit-struct-debug-detailed} for more detailed control.
6594
6595 This option works only with DWARF debug output.
6596
6597 @item -femit-struct-debug-reduced
6598 @opindex femit-struct-debug-reduced
6599 Emit debug information for struct-like types
6600 only when the base name of the compilation source file
6601 matches the base name of file in which the type is defined,
6602 unless the struct is a template or defined in a system header.
6603
6604 This option significantly reduces the size of debugging information,
6605 with some potential loss in type information to the debugger.
6606 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6607 See @option{-femit-struct-debug-detailed} for more detailed control.
6608
6609 This option works only with DWARF debug output.
6610
6611 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6612 @opindex femit-struct-debug-detailed
6613 Specify the struct-like types
6614 for which the compiler generates debug information.
6615 The intent is to reduce duplicate struct debug information
6616 between different object files within the same program.
6617
6618 This option is a detailed version of
6619 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6620 which serves for most needs.
6621
6622 A specification has the syntax@*
6623 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6624
6625 The optional first word limits the specification to
6626 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6627 A struct type is used directly when it is the type of a variable, member.
6628 Indirect uses arise through pointers to structs.
6629 That is, when use of an incomplete struct is valid, the use is indirect.
6630 An example is
6631 @samp{struct one direct; struct two * indirect;}.
6632
6633 The optional second word limits the specification to
6634 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6635 Generic structs are a bit complicated to explain.
6636 For C++, these are non-explicit specializations of template classes,
6637 or non-template classes within the above.
6638 Other programming languages have generics,
6639 but @option{-femit-struct-debug-detailed} does not yet implement them.
6640
6641 The third word specifies the source files for those
6642 structs for which the compiler should emit debug information.
6643 The values @samp{none} and @samp{any} have the normal meaning.
6644 The value @samp{base} means that
6645 the base of name of the file in which the type declaration appears
6646 must match the base of the name of the main compilation file.
6647 In practice, this means that when compiling @file{foo.c}, debug information
6648 is generated for types declared in that file and @file{foo.h},
6649 but not other header files.
6650 The value @samp{sys} means those types satisfying @samp{base}
6651 or declared in system or compiler headers.
6652
6653 You may need to experiment to determine the best settings for your application.
6654
6655 The default is @option{-femit-struct-debug-detailed=all}.
6656
6657 This option works only with DWARF debug output.
6658
6659 @item -fno-dwarf2-cfi-asm
6660 @opindex fdwarf2-cfi-asm
6661 @opindex fno-dwarf2-cfi-asm
6662 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
6663 instead of using GAS @code{.cfi_*} directives.
6664
6665 @item -fno-eliminate-unused-debug-types
6666 @opindex feliminate-unused-debug-types
6667 @opindex fno-eliminate-unused-debug-types
6668 Normally, when producing DWARF output, GCC avoids producing debug symbol
6669 output for types that are nowhere used in the source file being compiled.
6670 Sometimes it is useful to have GCC emit debugging
6671 information for all types declared in a compilation
6672 unit, regardless of whether or not they are actually used
6673 in that compilation unit, for example
6674 if, in the debugger, you want to cast a value to a type that is
6675 not actually used in your program (but is declared). More often,
6676 however, this results in a significant amount of wasted space.
6677 @end table
6678
6679 @node Optimize Options
6680 @section Options That Control Optimization
6681 @cindex optimize options
6682 @cindex options, optimization
6683
6684 These options control various sorts of optimizations.
6685
6686 Without any optimization option, the compiler's goal is to reduce the
6687 cost of compilation and to make debugging produce the expected
6688 results. Statements are independent: if you stop the program with a
6689 breakpoint between statements, you can then assign a new value to any
6690 variable or change the program counter to any other statement in the
6691 function and get exactly the results you expect from the source
6692 code.
6693
6694 Turning on optimization flags makes the compiler attempt to improve
6695 the performance and/or code size at the expense of compilation time
6696 and possibly the ability to debug the program.
6697
6698 The compiler performs optimization based on the knowledge it has of the
6699 program. Compiling multiple files at once to a single output file mode allows
6700 the compiler to use information gained from all of the files when compiling
6701 each of them.
6702
6703 Not all optimizations are controlled directly by a flag. Only
6704 optimizations that have a flag are listed in this section.
6705
6706 Most optimizations are only enabled if an @option{-O} level is set on
6707 the command line. Otherwise they are disabled, even if individual
6708 optimization flags are specified.
6709
6710 Depending on the target and how GCC was configured, a slightly different
6711 set of optimizations may be enabled at each @option{-O} level than
6712 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
6713 to find out the exact set of optimizations that are enabled at each level.
6714 @xref{Overall Options}, for examples.
6715
6716 @table @gcctabopt
6717 @item -O
6718 @itemx -O1
6719 @opindex O
6720 @opindex O1
6721 Optimize. Optimizing compilation takes somewhat more time, and a lot
6722 more memory for a large function.
6723
6724 With @option{-O}, the compiler tries to reduce code size and execution
6725 time, without performing any optimizations that take a great deal of
6726 compilation time.
6727
6728 @option{-O} turns on the following optimization flags:
6729 @gccoptlist{
6730 -fauto-inc-dec @gol
6731 -fbranch-count-reg @gol
6732 -fcombine-stack-adjustments @gol
6733 -fcompare-elim @gol
6734 -fcprop-registers @gol
6735 -fdce @gol
6736 -fdefer-pop @gol
6737 -fdelayed-branch @gol
6738 -fdse @gol
6739 -fforward-propagate @gol
6740 -fguess-branch-probability @gol
6741 -fif-conversion2 @gol
6742 -fif-conversion @gol
6743 -finline-functions-called-once @gol
6744 -fipa-pure-const @gol
6745 -fipa-profile @gol
6746 -fipa-reference @gol
6747 -fmerge-constants @gol
6748 -fmove-loop-invariants @gol
6749 -freorder-blocks @gol
6750 -fshrink-wrap @gol
6751 -fshrink-wrap-separate @gol
6752 -fsplit-wide-types @gol
6753 -fssa-backprop @gol
6754 -fssa-phiopt @gol
6755 -ftree-bit-ccp @gol
6756 -ftree-ccp @gol
6757 -ftree-ch @gol
6758 -ftree-coalesce-vars @gol
6759 -ftree-copy-prop @gol
6760 -ftree-dce @gol
6761 -ftree-dominator-opts @gol
6762 -ftree-dse @gol
6763 -ftree-forwprop @gol
6764 -ftree-fre @gol
6765 -ftree-phiprop @gol
6766 -ftree-sink @gol
6767 -ftree-slsr @gol
6768 -ftree-sra @gol
6769 -ftree-pta @gol
6770 -ftree-ter @gol
6771 -funit-at-a-time}
6772
6773 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
6774 where doing so does not interfere with debugging.
6775
6776 @item -O2
6777 @opindex O2
6778 Optimize even more. GCC performs nearly all supported optimizations
6779 that do not involve a space-speed tradeoff.
6780 As compared to @option{-O}, this option increases both compilation time
6781 and the performance of the generated code.
6782
6783 @option{-O2} turns on all optimization flags specified by @option{-O}. It
6784 also turns on the following optimization flags:
6785 @gccoptlist{-fthread-jumps @gol
6786 -falign-functions -falign-jumps @gol
6787 -falign-loops -falign-labels @gol
6788 -fcaller-saves @gol
6789 -fcrossjumping @gol
6790 -fcse-follow-jumps -fcse-skip-blocks @gol
6791 -fdelete-null-pointer-checks @gol
6792 -fdevirtualize -fdevirtualize-speculatively @gol
6793 -fexpensive-optimizations @gol
6794 -fgcse -fgcse-lm @gol
6795 -fhoist-adjacent-loads @gol
6796 -finline-small-functions @gol
6797 -findirect-inlining @gol
6798 -fipa-cp @gol
6799 -fipa-cp-alignment @gol
6800 -fipa-bit-cp @gol
6801 -fipa-sra @gol
6802 -fipa-icf @gol
6803 -fisolate-erroneous-paths-dereference @gol
6804 -flra-remat @gol
6805 -foptimize-sibling-calls @gol
6806 -foptimize-strlen @gol
6807 -fpartial-inlining @gol
6808 -fpeephole2 @gol
6809 -freorder-blocks-algorithm=stc @gol
6810 -freorder-blocks-and-partition -freorder-functions @gol
6811 -frerun-cse-after-loop @gol
6812 -fsched-interblock -fsched-spec @gol
6813 -fschedule-insns -fschedule-insns2 @gol
6814 -fstrict-aliasing -fstrict-overflow @gol
6815 -ftree-builtin-call-dce @gol
6816 -ftree-switch-conversion -ftree-tail-merge @gol
6817 -fcode-hoisting @gol
6818 -ftree-pre @gol
6819 -ftree-vrp @gol
6820 -fipa-ra}
6821
6822 Please note the warning under @option{-fgcse} about
6823 invoking @option{-O2} on programs that use computed gotos.
6824
6825 @item -O3
6826 @opindex O3
6827 Optimize yet more. @option{-O3} turns on all optimizations specified
6828 by @option{-O2} and also turns on the @option{-finline-functions},
6829 @option{-funswitch-loops}, @option{-fpredictive-commoning},
6830 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
6831 @option{-ftree-loop-distribute-patterns}, @option{-fsplit-paths}
6832 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
6833 @option{-ftree-partial-pre}, @option{-fpeel-loops}
6834 and @option{-fipa-cp-clone} options.
6835
6836 @item -O0
6837 @opindex O0
6838 Reduce compilation time and make debugging produce the expected
6839 results. This is the default.
6840
6841 @item -Os
6842 @opindex Os
6843 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
6844 do not typically increase code size. It also performs further
6845 optimizations designed to reduce code size.
6846
6847 @option{-Os} disables the following optimization flags:
6848 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
6849 -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc @gol
6850 -freorder-blocks-and-partition -fprefetch-loop-arrays}
6851
6852 @item -Ofast
6853 @opindex Ofast
6854 Disregard strict standards compliance. @option{-Ofast} enables all
6855 @option{-O3} optimizations. It also enables optimizations that are not
6856 valid for all standard-compliant programs.
6857 It turns on @option{-ffast-math} and the Fortran-specific
6858 @option{-fno-protect-parens} and @option{-fstack-arrays}.
6859
6860 @item -Og
6861 @opindex Og
6862 Optimize debugging experience. @option{-Og} enables optimizations
6863 that do not interfere with debugging. It should be the optimization
6864 level of choice for the standard edit-compile-debug cycle, offering
6865 a reasonable level of optimization while maintaining fast compilation
6866 and a good debugging experience.
6867 @end table
6868
6869 If you use multiple @option{-O} options, with or without level numbers,
6870 the last such option is the one that is effective.
6871
6872 Options of the form @option{-f@var{flag}} specify machine-independent
6873 flags. Most flags have both positive and negative forms; the negative
6874 form of @option{-ffoo} is @option{-fno-foo}. In the table
6875 below, only one of the forms is listed---the one you typically
6876 use. You can figure out the other form by either removing @samp{no-}
6877 or adding it.
6878
6879 The following options control specific optimizations. They are either
6880 activated by @option{-O} options or are related to ones that are. You
6881 can use the following flags in the rare cases when ``fine-tuning'' of
6882 optimizations to be performed is desired.
6883
6884 @table @gcctabopt
6885 @item -fno-defer-pop
6886 @opindex fno-defer-pop
6887 Always pop the arguments to each function call as soon as that function
6888 returns. For machines that must pop arguments after a function call,
6889 the compiler normally lets arguments accumulate on the stack for several
6890 function calls and pops them all at once.
6891
6892 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
6893
6894 @item -fforward-propagate
6895 @opindex fforward-propagate
6896 Perform a forward propagation pass on RTL@. The pass tries to combine two
6897 instructions and checks if the result can be simplified. If loop unrolling
6898 is active, two passes are performed and the second is scheduled after
6899 loop unrolling.
6900
6901 This option is enabled by default at optimization levels @option{-O},
6902 @option{-O2}, @option{-O3}, @option{-Os}.
6903
6904 @item -ffp-contract=@var{style}
6905 @opindex ffp-contract
6906 @option{-ffp-contract=off} disables floating-point expression contraction.
6907 @option{-ffp-contract=fast} enables floating-point expression contraction
6908 such as forming of fused multiply-add operations if the target has
6909 native support for them.
6910 @option{-ffp-contract=on} enables floating-point expression contraction
6911 if allowed by the language standard. This is currently not implemented
6912 and treated equal to @option{-ffp-contract=off}.
6913
6914 The default is @option{-ffp-contract=fast}.
6915
6916 @item -fomit-frame-pointer
6917 @opindex fomit-frame-pointer
6918 Don't keep the frame pointer in a register for functions that
6919 don't need one. This avoids the instructions to save, set up and
6920 restore frame pointers; it also makes an extra register available
6921 in many functions. @strong{It also makes debugging impossible on
6922 some machines.}
6923
6924 On some machines, such as the VAX, this flag has no effect, because
6925 the standard calling sequence automatically handles the frame pointer
6926 and nothing is saved by pretending it doesn't exist. The
6927 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
6928 whether a target machine supports this flag. @xref{Registers,,Register
6929 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
6930
6931 The default setting (when not optimizing for
6932 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
6933 @option{-fomit-frame-pointer}. You can configure GCC with the
6934 @option{--enable-frame-pointer} configure option to change the default.
6935
6936 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
6937
6938 @item -foptimize-sibling-calls
6939 @opindex foptimize-sibling-calls
6940 Optimize sibling and tail recursive calls.
6941
6942 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
6943
6944 @item -foptimize-strlen
6945 @opindex foptimize-strlen
6946 Optimize various standard C string functions (e.g. @code{strlen},
6947 @code{strchr} or @code{strcpy}) and
6948 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
6949
6950 Enabled at levels @option{-O2}, @option{-O3}.
6951
6952 @item -fno-inline
6953 @opindex fno-inline
6954 Do not expand any functions inline apart from those marked with
6955 the @code{always_inline} attribute. This is the default when not
6956 optimizing.
6957
6958 Single functions can be exempted from inlining by marking them
6959 with the @code{noinline} attribute.
6960
6961 @item -finline-small-functions
6962 @opindex finline-small-functions
6963 Integrate functions into their callers when their body is smaller than expected
6964 function call code (so overall size of program gets smaller). The compiler
6965 heuristically decides which functions are simple enough to be worth integrating
6966 in this way. This inlining applies to all functions, even those not declared
6967 inline.
6968
6969 Enabled at level @option{-O2}.
6970
6971 @item -findirect-inlining
6972 @opindex findirect-inlining
6973 Inline also indirect calls that are discovered to be known at compile
6974 time thanks to previous inlining. This option has any effect only
6975 when inlining itself is turned on by the @option{-finline-functions}
6976 or @option{-finline-small-functions} options.
6977
6978 Enabled at level @option{-O2}.
6979
6980 @item -finline-functions
6981 @opindex finline-functions
6982 Consider all functions for inlining, even if they are not declared inline.
6983 The compiler heuristically decides which functions are worth integrating
6984 in this way.
6985
6986 If all calls to a given function are integrated, and the function is
6987 declared @code{static}, then the function is normally not output as
6988 assembler code in its own right.
6989
6990 Enabled at level @option{-O3}.
6991
6992 @item -finline-functions-called-once
6993 @opindex finline-functions-called-once
6994 Consider all @code{static} functions called once for inlining into their
6995 caller even if they are not marked @code{inline}. If a call to a given
6996 function is integrated, then the function is not output as assembler code
6997 in its own right.
6998
6999 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7000
7001 @item -fearly-inlining
7002 @opindex fearly-inlining
7003 Inline functions marked by @code{always_inline} and functions whose body seems
7004 smaller than the function call overhead early before doing
7005 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7006 makes profiling significantly cheaper and usually inlining faster on programs
7007 having large chains of nested wrapper functions.
7008
7009 Enabled by default.
7010
7011 @item -fipa-sra
7012 @opindex fipa-sra
7013 Perform interprocedural scalar replacement of aggregates, removal of
7014 unused parameters and replacement of parameters passed by reference
7015 by parameters passed by value.
7016
7017 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7018
7019 @item -finline-limit=@var{n}
7020 @opindex finline-limit
7021 By default, GCC limits the size of functions that can be inlined. This flag
7022 allows coarse control of this limit. @var{n} is the size of functions that
7023 can be inlined in number of pseudo instructions.
7024
7025 Inlining is actually controlled by a number of parameters, which may be
7026 specified individually by using @option{--param @var{name}=@var{value}}.
7027 The @option{-finline-limit=@var{n}} option sets some of these parameters
7028 as follows:
7029
7030 @table @gcctabopt
7031 @item max-inline-insns-single
7032 is set to @var{n}/2.
7033 @item max-inline-insns-auto
7034 is set to @var{n}/2.
7035 @end table
7036
7037 See below for a documentation of the individual
7038 parameters controlling inlining and for the defaults of these parameters.
7039
7040 @emph{Note:} there may be no value to @option{-finline-limit} that results
7041 in default behavior.
7042
7043 @emph{Note:} pseudo instruction represents, in this particular context, an
7044 abstract measurement of function's size. In no way does it represent a count
7045 of assembly instructions and as such its exact meaning might change from one
7046 release to an another.
7047
7048 @item -fno-keep-inline-dllexport
7049 @opindex fno-keep-inline-dllexport
7050 This is a more fine-grained version of @option{-fkeep-inline-functions},
7051 which applies only to functions that are declared using the @code{dllexport}
7052 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
7053 Functions}.)
7054
7055 @item -fkeep-inline-functions
7056 @opindex fkeep-inline-functions
7057 In C, emit @code{static} functions that are declared @code{inline}
7058 into the object file, even if the function has been inlined into all
7059 of its callers. This switch does not affect functions using the
7060 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7061 inline functions into the object file.
7062
7063 @item -fkeep-static-functions
7064 @opindex fkeep-static-functions
7065 Emit @code{static} functions into the object file, even if the function
7066 is never used.
7067
7068 @item -fkeep-static-consts
7069 @opindex fkeep-static-consts
7070 Emit variables declared @code{static const} when optimization isn't turned
7071 on, even if the variables aren't referenced.
7072
7073 GCC enables this option by default. If you want to force the compiler to
7074 check if a variable is referenced, regardless of whether or not
7075 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7076
7077 @item -fmerge-constants
7078 @opindex fmerge-constants
7079 Attempt to merge identical constants (string constants and floating-point
7080 constants) across compilation units.
7081
7082 This option is the default for optimized compilation if the assembler and
7083 linker support it. Use @option{-fno-merge-constants} to inhibit this
7084 behavior.
7085
7086 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7087
7088 @item -fmerge-all-constants
7089 @opindex fmerge-all-constants
7090 Attempt to merge identical constants and identical variables.
7091
7092 This option implies @option{-fmerge-constants}. In addition to
7093 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7094 arrays or initialized constant variables with integral or floating-point
7095 types. Languages like C or C++ require each variable, including multiple
7096 instances of the same variable in recursive calls, to have distinct locations,
7097 so using this option results in non-conforming
7098 behavior.
7099
7100 @item -fmodulo-sched
7101 @opindex fmodulo-sched
7102 Perform swing modulo scheduling immediately before the first scheduling
7103 pass. This pass looks at innermost loops and reorders their
7104 instructions by overlapping different iterations.
7105
7106 @item -fmodulo-sched-allow-regmoves
7107 @opindex fmodulo-sched-allow-regmoves
7108 Perform more aggressive SMS-based modulo scheduling with register moves
7109 allowed. By setting this flag certain anti-dependences edges are
7110 deleted, which triggers the generation of reg-moves based on the
7111 life-range analysis. This option is effective only with
7112 @option{-fmodulo-sched} enabled.
7113
7114 @item -fno-branch-count-reg
7115 @opindex fno-branch-count-reg
7116 Avoid running a pass scanning for opportunities to use ``decrement and
7117 branch'' instructions on a count register instead of generating sequences
7118 of instructions that decrement a register, compare it against zero, and
7119 then branch based upon the result. This option is only meaningful on
7120 architectures that support such instructions, which include x86, PowerPC,
7121 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
7122 doesn't remove the decrement and branch instructions from the generated
7123 instruction stream introduced by other optimization passes.
7124
7125 Enabled by default at @option{-O1} and higher.
7126
7127 The default is @option{-fbranch-count-reg}.
7128
7129 @item -fno-function-cse
7130 @opindex fno-function-cse
7131 Do not put function addresses in registers; make each instruction that
7132 calls a constant function contain the function's address explicitly.
7133
7134 This option results in less efficient code, but some strange hacks
7135 that alter the assembler output may be confused by the optimizations
7136 performed when this option is not used.
7137
7138 The default is @option{-ffunction-cse}
7139
7140 @item -fno-zero-initialized-in-bss
7141 @opindex fno-zero-initialized-in-bss
7142 If the target supports a BSS section, GCC by default puts variables that
7143 are initialized to zero into BSS@. This can save space in the resulting
7144 code.
7145
7146 This option turns off this behavior because some programs explicitly
7147 rely on variables going to the data section---e.g., so that the
7148 resulting executable can find the beginning of that section and/or make
7149 assumptions based on that.
7150
7151 The default is @option{-fzero-initialized-in-bss}.
7152
7153 @item -fthread-jumps
7154 @opindex fthread-jumps
7155 Perform optimizations that check to see if a jump branches to a
7156 location where another comparison subsumed by the first is found. If
7157 so, the first branch is redirected to either the destination of the
7158 second branch or a point immediately following it, depending on whether
7159 the condition is known to be true or false.
7160
7161 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7162
7163 @item -fsplit-wide-types
7164 @opindex fsplit-wide-types
7165 When using a type that occupies multiple registers, such as @code{long
7166 long} on a 32-bit system, split the registers apart and allocate them
7167 independently. This normally generates better code for those types,
7168 but may make debugging more difficult.
7169
7170 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7171 @option{-Os}.
7172
7173 @item -fcse-follow-jumps
7174 @opindex fcse-follow-jumps
7175 In common subexpression elimination (CSE), scan through jump instructions
7176 when the target of the jump is not reached by any other path. For
7177 example, when CSE encounters an @code{if} statement with an
7178 @code{else} clause, CSE follows the jump when the condition
7179 tested is false.
7180
7181 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7182
7183 @item -fcse-skip-blocks
7184 @opindex fcse-skip-blocks
7185 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7186 follow jumps that conditionally skip over blocks. When CSE
7187 encounters a simple @code{if} statement with no else clause,
7188 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7189 body of the @code{if}.
7190
7191 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7192
7193 @item -frerun-cse-after-loop
7194 @opindex frerun-cse-after-loop
7195 Re-run common subexpression elimination after loop optimizations are
7196 performed.
7197
7198 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7199
7200 @item -fgcse
7201 @opindex fgcse
7202 Perform a global common subexpression elimination pass.
7203 This pass also performs global constant and copy propagation.
7204
7205 @emph{Note:} When compiling a program using computed gotos, a GCC
7206 extension, you may get better run-time performance if you disable
7207 the global common subexpression elimination pass by adding
7208 @option{-fno-gcse} to the command line.
7209
7210 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7211
7212 @item -fgcse-lm
7213 @opindex fgcse-lm
7214 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7215 attempts to move loads that are only killed by stores into themselves. This
7216 allows a loop containing a load/store sequence to be changed to a load outside
7217 the loop, and a copy/store within the loop.
7218
7219 Enabled by default when @option{-fgcse} is enabled.
7220
7221 @item -fgcse-sm
7222 @opindex fgcse-sm
7223 When @option{-fgcse-sm} is enabled, a store motion pass is run after
7224 global common subexpression elimination. This pass attempts to move
7225 stores out of loops. When used in conjunction with @option{-fgcse-lm},
7226 loops containing a load/store sequence can be changed to a load before
7227 the loop and a store after the loop.
7228
7229 Not enabled at any optimization level.
7230
7231 @item -fgcse-las
7232 @opindex fgcse-las
7233 When @option{-fgcse-las} is enabled, the global common subexpression
7234 elimination pass eliminates redundant loads that come after stores to the
7235 same memory location (both partial and full redundancies).
7236
7237 Not enabled at any optimization level.
7238
7239 @item -fgcse-after-reload
7240 @opindex fgcse-after-reload
7241 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7242 pass is performed after reload. The purpose of this pass is to clean up
7243 redundant spilling.
7244
7245 @item -faggressive-loop-optimizations
7246 @opindex faggressive-loop-optimizations
7247 This option tells the loop optimizer to use language constraints to
7248 derive bounds for the number of iterations of a loop. This assumes that
7249 loop code does not invoke undefined behavior by for example causing signed
7250 integer overflows or out-of-bound array accesses. The bounds for the
7251 number of iterations of a loop are used to guide loop unrolling and peeling
7252 and loop exit test optimizations.
7253 This option is enabled by default.
7254
7255 @item -funconstrained-commons
7256 @opindex funconstrained-commons
7257 This option tells the compiler that variables declared in common blocks
7258 (e.g. Fortran) may later be overridden with longer trailing arrays. This
7259 prevents certain optimizations that depend on knowing the array bounds.
7260
7261 @item -fcrossjumping
7262 @opindex fcrossjumping
7263 Perform cross-jumping transformation.
7264 This transformation unifies equivalent code and saves code size. The
7265 resulting code may or may not perform better than without cross-jumping.
7266
7267 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7268
7269 @item -fauto-inc-dec
7270 @opindex fauto-inc-dec
7271 Combine increments or decrements of addresses with memory accesses.
7272 This pass is always skipped on architectures that do not have
7273 instructions to support this. Enabled by default at @option{-O} and
7274 higher on architectures that support this.
7275
7276 @item -fdce
7277 @opindex fdce
7278 Perform dead code elimination (DCE) on RTL@.
7279 Enabled by default at @option{-O} and higher.
7280
7281 @item -fdse
7282 @opindex fdse
7283 Perform dead store elimination (DSE) on RTL@.
7284 Enabled by default at @option{-O} and higher.
7285
7286 @item -fif-conversion
7287 @opindex fif-conversion
7288 Attempt to transform conditional jumps into branch-less equivalents. This
7289 includes use of conditional moves, min, max, set flags and abs instructions, and
7290 some tricks doable by standard arithmetics. The use of conditional execution
7291 on chips where it is available is controlled by @option{-fif-conversion2}.
7292
7293 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7294
7295 @item -fif-conversion2
7296 @opindex fif-conversion2
7297 Use conditional execution (where available) to transform conditional jumps into
7298 branch-less equivalents.
7299
7300 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7301
7302 @item -fdeclone-ctor-dtor
7303 @opindex fdeclone-ctor-dtor
7304 The C++ ABI requires multiple entry points for constructors and
7305 destructors: one for a base subobject, one for a complete object, and
7306 one for a virtual destructor that calls operator delete afterwards.
7307 For a hierarchy with virtual bases, the base and complete variants are
7308 clones, which means two copies of the function. With this option, the
7309 base and complete variants are changed to be thunks that call a common
7310 implementation.
7311
7312 Enabled by @option{-Os}.
7313
7314 @item -fdelete-null-pointer-checks
7315 @opindex fdelete-null-pointer-checks
7316 Assume that programs cannot safely dereference null pointers, and that
7317 no code or data element resides at address zero.
7318 This option enables simple constant
7319 folding optimizations at all optimization levels. In addition, other
7320 optimization passes in GCC use this flag to control global dataflow
7321 analyses that eliminate useless checks for null pointers; these assume
7322 that a memory access to address zero always results in a trap, so
7323 that if a pointer is checked after it has already been dereferenced,
7324 it cannot be null.
7325
7326 Note however that in some environments this assumption is not true.
7327 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
7328 for programs that depend on that behavior.
7329
7330 This option is enabled by default on most targets. On Nios II ELF, it
7331 defaults to off. On AVR and CR16, this option is completely disabled.
7332
7333 Passes that use the dataflow information
7334 are enabled independently at different optimization levels.
7335
7336 @item -fdevirtualize
7337 @opindex fdevirtualize
7338 Attempt to convert calls to virtual functions to direct calls. This
7339 is done both within a procedure and interprocedurally as part of
7340 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
7341 propagation (@option{-fipa-cp}).
7342 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7343
7344 @item -fdevirtualize-speculatively
7345 @opindex fdevirtualize-speculatively
7346 Attempt to convert calls to virtual functions to speculative direct calls.
7347 Based on the analysis of the type inheritance graph, determine for a given call
7348 the set of likely targets. If the set is small, preferably of size 1, change
7349 the call into a conditional deciding between direct and indirect calls. The
7350 speculative calls enable more optimizations, such as inlining. When they seem
7351 useless after further optimization, they are converted back into original form.
7352
7353 @item -fdevirtualize-at-ltrans
7354 @opindex fdevirtualize-at-ltrans
7355 Stream extra information needed for aggressive devirtualization when running
7356 the link-time optimizer in local transformation mode.
7357 This option enables more devirtualization but
7358 significantly increases the size of streamed data. For this reason it is
7359 disabled by default.
7360
7361 @item -fexpensive-optimizations
7362 @opindex fexpensive-optimizations
7363 Perform a number of minor optimizations that are relatively expensive.
7364
7365 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7366
7367 @item -free
7368 @opindex free
7369 Attempt to remove redundant extension instructions. This is especially
7370 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
7371 registers after writing to their lower 32-bit half.
7372
7373 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
7374 @option{-O3}, @option{-Os}.
7375
7376 @item -fno-lifetime-dse
7377 @opindex fno-lifetime-dse
7378 In C++ the value of an object is only affected by changes within its
7379 lifetime: when the constructor begins, the object has an indeterminate
7380 value, and any changes during the lifetime of the object are dead when
7381 the object is destroyed. Normally dead store elimination will take
7382 advantage of this; if your code relies on the value of the object
7383 storage persisting beyond the lifetime of the object, you can use this
7384 flag to disable this optimization. To preserve stores before the
7385 constructor starts (e.g. because your operator new clears the object
7386 storage) but still treat the object as dead after the destructor you,
7387 can use @option{-flifetime-dse=1}. The default behavior can be
7388 explicitly selected with @option{-flifetime-dse=2}.
7389 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
7390
7391 @item -flive-range-shrinkage
7392 @opindex flive-range-shrinkage
7393 Attempt to decrease register pressure through register live range
7394 shrinkage. This is helpful for fast processors with small or moderate
7395 size register sets.
7396
7397 @item -fira-algorithm=@var{algorithm}
7398 @opindex fira-algorithm
7399 Use the specified coloring algorithm for the integrated register
7400 allocator. The @var{algorithm} argument can be @samp{priority}, which
7401 specifies Chow's priority coloring, or @samp{CB}, which specifies
7402 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
7403 for all architectures, but for those targets that do support it, it is
7404 the default because it generates better code.
7405
7406 @item -fira-region=@var{region}
7407 @opindex fira-region
7408 Use specified regions for the integrated register allocator. The
7409 @var{region} argument should be one of the following:
7410
7411 @table @samp
7412
7413 @item all
7414 Use all loops as register allocation regions.
7415 This can give the best results for machines with a small and/or
7416 irregular register set.
7417
7418 @item mixed
7419 Use all loops except for loops with small register pressure
7420 as the regions. This value usually gives
7421 the best results in most cases and for most architectures,
7422 and is enabled by default when compiling with optimization for speed
7423 (@option{-O}, @option{-O2}, @dots{}).
7424
7425 @item one
7426 Use all functions as a single region.
7427 This typically results in the smallest code size, and is enabled by default for
7428 @option{-Os} or @option{-O0}.
7429
7430 @end table
7431
7432 @item -fira-hoist-pressure
7433 @opindex fira-hoist-pressure
7434 Use IRA to evaluate register pressure in the code hoisting pass for
7435 decisions to hoist expressions. This option usually results in smaller
7436 code, but it can slow the compiler down.
7437
7438 This option is enabled at level @option{-Os} for all targets.
7439
7440 @item -fira-loop-pressure
7441 @opindex fira-loop-pressure
7442 Use IRA to evaluate register pressure in loops for decisions to move
7443 loop invariants. This option usually results in generation
7444 of faster and smaller code on machines with large register files (>= 32
7445 registers), but it can slow the compiler down.
7446
7447 This option is enabled at level @option{-O3} for some targets.
7448
7449 @item -fno-ira-share-save-slots
7450 @opindex fno-ira-share-save-slots
7451 Disable sharing of stack slots used for saving call-used hard
7452 registers living through a call. Each hard register gets a
7453 separate stack slot, and as a result function stack frames are
7454 larger.
7455
7456 @item -fno-ira-share-spill-slots
7457 @opindex fno-ira-share-spill-slots
7458 Disable sharing of stack slots allocated for pseudo-registers. Each
7459 pseudo-register that does not get a hard register gets a separate
7460 stack slot, and as a result function stack frames are larger.
7461
7462 @item -flra-remat
7463 @opindex flra-remat
7464 Enable CFG-sensitive rematerialization in LRA. Instead of loading
7465 values of spilled pseudos, LRA tries to rematerialize (recalculate)
7466 values if it is profitable.
7467
7468 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7469
7470 @item -fdelayed-branch
7471 @opindex fdelayed-branch
7472 If supported for the target machine, attempt to reorder instructions
7473 to exploit instruction slots available after delayed branch
7474 instructions.
7475
7476 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7477
7478 @item -fschedule-insns
7479 @opindex fschedule-insns
7480 If supported for the target machine, attempt to reorder instructions to
7481 eliminate execution stalls due to required data being unavailable. This
7482 helps machines that have slow floating point or memory load instructions
7483 by allowing other instructions to be issued until the result of the load
7484 or floating-point instruction is required.
7485
7486 Enabled at levels @option{-O2}, @option{-O3}.
7487
7488 @item -fschedule-insns2
7489 @opindex fschedule-insns2
7490 Similar to @option{-fschedule-insns}, but requests an additional pass of
7491 instruction scheduling after register allocation has been done. This is
7492 especially useful on machines with a relatively small number of
7493 registers and where memory load instructions take more than one cycle.
7494
7495 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7496
7497 @item -fno-sched-interblock
7498 @opindex fno-sched-interblock
7499 Don't schedule instructions across basic blocks. This is normally
7500 enabled by default when scheduling before register allocation, i.e.@:
7501 with @option{-fschedule-insns} or at @option{-O2} or higher.
7502
7503 @item -fno-sched-spec
7504 @opindex fno-sched-spec
7505 Don't allow speculative motion of non-load instructions. This is normally
7506 enabled by default when scheduling before register allocation, i.e.@:
7507 with @option{-fschedule-insns} or at @option{-O2} or higher.
7508
7509 @item -fsched-pressure
7510 @opindex fsched-pressure
7511 Enable register pressure sensitive insn scheduling before register
7512 allocation. This only makes sense when scheduling before register
7513 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
7514 @option{-O2} or higher. Usage of this option can improve the
7515 generated code and decrease its size by preventing register pressure
7516 increase above the number of available hard registers and subsequent
7517 spills in register allocation.
7518
7519 @item -fsched-spec-load
7520 @opindex fsched-spec-load
7521 Allow speculative motion of some load instructions. This only makes
7522 sense when scheduling before register allocation, i.e.@: with
7523 @option{-fschedule-insns} or at @option{-O2} or higher.
7524
7525 @item -fsched-spec-load-dangerous
7526 @opindex fsched-spec-load-dangerous
7527 Allow speculative motion of more load instructions. This only makes
7528 sense when scheduling before register allocation, i.e.@: with
7529 @option{-fschedule-insns} or at @option{-O2} or higher.
7530
7531 @item -fsched-stalled-insns
7532 @itemx -fsched-stalled-insns=@var{n}
7533 @opindex fsched-stalled-insns
7534 Define how many insns (if any) can be moved prematurely from the queue
7535 of stalled insns into the ready list during the second scheduling pass.
7536 @option{-fno-sched-stalled-insns} means that no insns are moved
7537 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
7538 on how many queued insns can be moved prematurely.
7539 @option{-fsched-stalled-insns} without a value is equivalent to
7540 @option{-fsched-stalled-insns=1}.
7541
7542 @item -fsched-stalled-insns-dep
7543 @itemx -fsched-stalled-insns-dep=@var{n}
7544 @opindex fsched-stalled-insns-dep
7545 Define how many insn groups (cycles) are examined for a dependency
7546 on a stalled insn that is a candidate for premature removal from the queue
7547 of stalled insns. This has an effect only during the second scheduling pass,
7548 and only if @option{-fsched-stalled-insns} is used.
7549 @option{-fno-sched-stalled-insns-dep} is equivalent to
7550 @option{-fsched-stalled-insns-dep=0}.
7551 @option{-fsched-stalled-insns-dep} without a value is equivalent to
7552 @option{-fsched-stalled-insns-dep=1}.
7553
7554 @item -fsched2-use-superblocks
7555 @opindex fsched2-use-superblocks
7556 When scheduling after register allocation, use superblock scheduling.
7557 This allows motion across basic block boundaries,
7558 resulting in faster schedules. This option is experimental, as not all machine
7559 descriptions used by GCC model the CPU closely enough to avoid unreliable
7560 results from the algorithm.
7561
7562 This only makes sense when scheduling after register allocation, i.e.@: with
7563 @option{-fschedule-insns2} or at @option{-O2} or higher.
7564
7565 @item -fsched-group-heuristic
7566 @opindex fsched-group-heuristic
7567 Enable the group heuristic in the scheduler. This heuristic favors
7568 the instruction that belongs to a schedule group. This is enabled
7569 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
7570 or @option{-fschedule-insns2} or at @option{-O2} or higher.
7571
7572 @item -fsched-critical-path-heuristic
7573 @opindex fsched-critical-path-heuristic
7574 Enable the critical-path heuristic in the scheduler. This heuristic favors
7575 instructions on the critical path. This is enabled by default when
7576 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
7577 or @option{-fschedule-insns2} or at @option{-O2} or higher.
7578
7579 @item -fsched-spec-insn-heuristic
7580 @opindex fsched-spec-insn-heuristic
7581 Enable the speculative instruction heuristic in the scheduler. This
7582 heuristic favors speculative instructions with greater dependency weakness.
7583 This is enabled by default when scheduling is enabled, i.e.@:
7584 with @option{-fschedule-insns} or @option{-fschedule-insns2}
7585 or at @option{-O2} or higher.
7586
7587 @item -fsched-rank-heuristic
7588 @opindex fsched-rank-heuristic
7589 Enable the rank heuristic in the scheduler. This heuristic favors
7590 the instruction belonging to a basic block with greater size or frequency.
7591 This is enabled by default when scheduling is enabled, i.e.@:
7592 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
7593 at @option{-O2} or higher.
7594
7595 @item -fsched-last-insn-heuristic
7596 @opindex fsched-last-insn-heuristic
7597 Enable the last-instruction heuristic in the scheduler. This heuristic
7598 favors the instruction that is less dependent on the last instruction
7599 scheduled. This is enabled by default when scheduling is enabled,
7600 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
7601 at @option{-O2} or higher.
7602
7603 @item -fsched-dep-count-heuristic
7604 @opindex fsched-dep-count-heuristic
7605 Enable the dependent-count heuristic in the scheduler. This heuristic
7606 favors the instruction that has more instructions depending on it.
7607 This is enabled by default when scheduling is enabled, i.e.@:
7608 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
7609 at @option{-O2} or higher.
7610
7611 @item -freschedule-modulo-scheduled-loops
7612 @opindex freschedule-modulo-scheduled-loops
7613 Modulo scheduling is performed before traditional scheduling. If a loop
7614 is modulo scheduled, later scheduling passes may change its schedule.
7615 Use this option to control that behavior.
7616
7617 @item -fselective-scheduling
7618 @opindex fselective-scheduling
7619 Schedule instructions using selective scheduling algorithm. Selective
7620 scheduling runs instead of the first scheduler pass.
7621
7622 @item -fselective-scheduling2
7623 @opindex fselective-scheduling2
7624 Schedule instructions using selective scheduling algorithm. Selective
7625 scheduling runs instead of the second scheduler pass.
7626
7627 @item -fsel-sched-pipelining
7628 @opindex fsel-sched-pipelining
7629 Enable software pipelining of innermost loops during selective scheduling.
7630 This option has no effect unless one of @option{-fselective-scheduling} or
7631 @option{-fselective-scheduling2} is turned on.
7632
7633 @item -fsel-sched-pipelining-outer-loops
7634 @opindex fsel-sched-pipelining-outer-loops
7635 When pipelining loops during selective scheduling, also pipeline outer loops.
7636 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
7637
7638 @item -fsemantic-interposition
7639 @opindex fsemantic-interposition
7640 Some object formats, like ELF, allow interposing of symbols by the
7641 dynamic linker.
7642 This means that for symbols exported from the DSO, the compiler cannot perform
7643 interprocedural propagation, inlining and other optimizations in anticipation
7644 that the function or variable in question may change. While this feature is
7645 useful, for example, to rewrite memory allocation functions by a debugging
7646 implementation, it is expensive in the terms of code quality.
7647 With @option{-fno-semantic-interposition} the compiler assumes that
7648 if interposition happens for functions the overwriting function will have
7649 precisely the same semantics (and side effects).
7650 Similarly if interposition happens
7651 for variables, the constructor of the variable will be the same. The flag
7652 has no effect for functions explicitly declared inline
7653 (where it is never allowed for interposition to change semantics)
7654 and for symbols explicitly declared weak.
7655
7656 @item -fshrink-wrap
7657 @opindex fshrink-wrap
7658 Emit function prologues only before parts of the function that need it,
7659 rather than at the top of the function. This flag is enabled by default at
7660 @option{-O} and higher.
7661
7662 @item -fshrink-wrap-separate
7663 @opindex fshrink-wrap-separate
7664 Shrink-wrap separate parts of the prologue and epilogue separately, so that
7665 those parts are only executed when needed.
7666 This option is on by default, but has no effect unless @option{-fshrink-wrap}
7667 is also turned on and the target supports this.
7668
7669 @item -fcaller-saves
7670 @opindex fcaller-saves
7671 Enable allocation of values to registers that are clobbered by
7672 function calls, by emitting extra instructions to save and restore the
7673 registers around such calls. Such allocation is done only when it
7674 seems to result in better code.
7675
7676 This option is always enabled by default on certain machines, usually
7677 those which have no call-preserved registers to use instead.
7678
7679 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7680
7681 @item -fcombine-stack-adjustments
7682 @opindex fcombine-stack-adjustments
7683 Tracks stack adjustments (pushes and pops) and stack memory references
7684 and then tries to find ways to combine them.
7685
7686 Enabled by default at @option{-O1} and higher.
7687
7688 @item -fipa-ra
7689 @opindex fipa-ra
7690 Use caller save registers for allocation if those registers are not used by
7691 any called function. In that case it is not necessary to save and restore
7692 them around calls. This is only possible if called functions are part of
7693 same compilation unit as current function and they are compiled before it.
7694
7695 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
7696 is disabled if generated code will be instrumented for profiling
7697 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
7698 exactly (this happens on targets that do not expose prologues
7699 and epilogues in RTL).
7700
7701 @item -fconserve-stack
7702 @opindex fconserve-stack
7703 Attempt to minimize stack usage. The compiler attempts to use less
7704 stack space, even if that makes the program slower. This option
7705 implies setting the @option{large-stack-frame} parameter to 100
7706 and the @option{large-stack-frame-growth} parameter to 400.
7707
7708 @item -ftree-reassoc
7709 @opindex ftree-reassoc
7710 Perform reassociation on trees. This flag is enabled by default
7711 at @option{-O} and higher.
7712
7713 @item -fcode-hoisting
7714 @opindex fcode-hoisting
7715 Perform code hoisting. Code hoisting tries to move the
7716 evaluation of expressions executed on all paths to the function exit
7717 as early as possible. This is especially useful as a code size
7718 optimization, but it often helps for code speed as well.
7719 This flag is enabled by default at @option{-O2} and higher.
7720
7721 @item -ftree-pre
7722 @opindex ftree-pre
7723 Perform partial redundancy elimination (PRE) on trees. This flag is
7724 enabled by default at @option{-O2} and @option{-O3}.
7725
7726 @item -ftree-partial-pre
7727 @opindex ftree-partial-pre
7728 Make partial redundancy elimination (PRE) more aggressive. This flag is
7729 enabled by default at @option{-O3}.
7730
7731 @item -ftree-forwprop
7732 @opindex ftree-forwprop
7733 Perform forward propagation on trees. This flag is enabled by default
7734 at @option{-O} and higher.
7735
7736 @item -ftree-fre
7737 @opindex ftree-fre
7738 Perform full redundancy elimination (FRE) on trees. The difference
7739 between FRE and PRE is that FRE only considers expressions
7740 that are computed on all paths leading to the redundant computation.
7741 This analysis is faster than PRE, though it exposes fewer redundancies.
7742 This flag is enabled by default at @option{-O} and higher.
7743
7744 @item -ftree-phiprop
7745 @opindex ftree-phiprop
7746 Perform hoisting of loads from conditional pointers on trees. This
7747 pass is enabled by default at @option{-O} and higher.
7748
7749 @item -fhoist-adjacent-loads
7750 @opindex fhoist-adjacent-loads
7751 Speculatively hoist loads from both branches of an if-then-else if the
7752 loads are from adjacent locations in the same structure and the target
7753 architecture has a conditional move instruction. This flag is enabled
7754 by default at @option{-O2} and higher.
7755
7756 @item -ftree-copy-prop
7757 @opindex ftree-copy-prop
7758 Perform copy propagation on trees. This pass eliminates unnecessary
7759 copy operations. This flag is enabled by default at @option{-O} and
7760 higher.
7761
7762 @item -fipa-pure-const
7763 @opindex fipa-pure-const
7764 Discover which functions are pure or constant.
7765 Enabled by default at @option{-O} and higher.
7766
7767 @item -fipa-reference
7768 @opindex fipa-reference
7769 Discover which static variables do not escape the
7770 compilation unit.
7771 Enabled by default at @option{-O} and higher.
7772
7773 @item -fipa-pta
7774 @opindex fipa-pta
7775 Perform interprocedural pointer analysis and interprocedural modification
7776 and reference analysis. This option can cause excessive memory and
7777 compile-time usage on large compilation units. It is not enabled by
7778 default at any optimization level.
7779
7780 @item -fipa-profile
7781 @opindex fipa-profile
7782 Perform interprocedural profile propagation. The functions called only from
7783 cold functions are marked as cold. Also functions executed once (such as
7784 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
7785 functions and loop less parts of functions executed once are then optimized for
7786 size.
7787 Enabled by default at @option{-O} and higher.
7788
7789 @item -fipa-cp
7790 @opindex fipa-cp
7791 Perform interprocedural constant propagation.
7792 This optimization analyzes the program to determine when values passed
7793 to functions are constants and then optimizes accordingly.
7794 This optimization can substantially increase performance
7795 if the application has constants passed to functions.
7796 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
7797
7798 @item -fipa-cp-clone
7799 @opindex fipa-cp-clone
7800 Perform function cloning to make interprocedural constant propagation stronger.
7801 When enabled, interprocedural constant propagation performs function cloning
7802 when externally visible function can be called with constant arguments.
7803 Because this optimization can create multiple copies of functions,
7804 it may significantly increase code size
7805 (see @option{--param ipcp-unit-growth=@var{value}}).
7806 This flag is enabled by default at @option{-O3}.
7807
7808 @item -fipa-cp-alignment
7809 @opindex -fipa-cp-alignment
7810 When enabled, this optimization propagates alignment of function
7811 parameters to support better vectorization and string operations.
7812
7813 This flag is enabled by default at @option{-O2} and @option{-Os}. It
7814 requires that @option{-fipa-cp} is enabled.
7815 @option{-fipa-cp-alignment} is obsolete, use @option{-fipa-bit-cp} instead.
7816
7817 @item -fipa-bit-cp
7818 @opindex -fipa-bit-cp
7819 When enabled, perform ipa bitwise constant propagation. This flag is
7820 enabled by default at @option{-O2}. It requires that @option{-fipa-cp}
7821 is enabled.
7822
7823 @item -fipa-icf
7824 @opindex fipa-icf
7825 Perform Identical Code Folding for functions and read-only variables.
7826 The optimization reduces code size and may disturb unwind stacks by replacing
7827 a function by equivalent one with a different name. The optimization works
7828 more effectively with link time optimization enabled.
7829
7830 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
7831 works on different levels and thus the optimizations are not same - there are
7832 equivalences that are found only by GCC and equivalences found only by Gold.
7833
7834 This flag is enabled by default at @option{-O2} and @option{-Os}.
7835
7836 @item -fisolate-erroneous-paths-dereference
7837 @opindex fisolate-erroneous-paths-dereference
7838 Detect paths that trigger erroneous or undefined behavior due to
7839 dereferencing a null pointer. Isolate those paths from the main control
7840 flow and turn the statement with erroneous or undefined behavior into a trap.
7841 This flag is enabled by default at @option{-O2} and higher and depends on
7842 @option{-fdelete-null-pointer-checks} also being enabled.
7843
7844 @item -fisolate-erroneous-paths-attribute
7845 @opindex fisolate-erroneous-paths-attribute
7846 Detect paths that trigger erroneous or undefined behavior due a null value
7847 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
7848 attribute. Isolate those paths from the main control flow and turn the
7849 statement with erroneous or undefined behavior into a trap. This is not
7850 currently enabled, but may be enabled by @option{-O2} in the future.
7851
7852 @item -ftree-sink
7853 @opindex ftree-sink
7854 Perform forward store motion on trees. This flag is
7855 enabled by default at @option{-O} and higher.
7856
7857 @item -ftree-bit-ccp
7858 @opindex ftree-bit-ccp
7859 Perform sparse conditional bit constant propagation on trees and propagate
7860 pointer alignment information.
7861 This pass only operates on local scalar variables and is enabled by default
7862 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
7863
7864 @item -ftree-ccp
7865 @opindex ftree-ccp
7866 Perform sparse conditional constant propagation (CCP) on trees. This
7867 pass only operates on local scalar variables and is enabled by default
7868 at @option{-O} and higher.
7869
7870 @item -fssa-backprop
7871 @opindex fssa-backprop
7872 Propagate information about uses of a value up the definition chain
7873 in order to simplify the definitions. For example, this pass strips
7874 sign operations if the sign of a value never matters. The flag is
7875 enabled by default at @option{-O} and higher.
7876
7877 @item -fssa-phiopt
7878 @opindex fssa-phiopt
7879 Perform pattern matching on SSA PHI nodes to optimize conditional
7880 code. This pass is enabled by default at @option{-O} and higher.
7881
7882 @item -ftree-switch-conversion
7883 @opindex ftree-switch-conversion
7884 Perform conversion of simple initializations in a switch to
7885 initializations from a scalar array. This flag is enabled by default
7886 at @option{-O2} and higher.
7887
7888 @item -ftree-tail-merge
7889 @opindex ftree-tail-merge
7890 Look for identical code sequences. When found, replace one with a jump to the
7891 other. This optimization is known as tail merging or cross jumping. This flag
7892 is enabled by default at @option{-O2} and higher. The compilation time
7893 in this pass can
7894 be limited using @option{max-tail-merge-comparisons} parameter and
7895 @option{max-tail-merge-iterations} parameter.
7896
7897 @item -ftree-dce
7898 @opindex ftree-dce
7899 Perform dead code elimination (DCE) on trees. This flag is enabled by
7900 default at @option{-O} and higher.
7901
7902 @item -ftree-builtin-call-dce
7903 @opindex ftree-builtin-call-dce
7904 Perform conditional dead code elimination (DCE) for calls to built-in functions
7905 that may set @code{errno} but are otherwise side-effect free. This flag is
7906 enabled by default at @option{-O2} and higher if @option{-Os} is not also
7907 specified.
7908
7909 @item -ftree-dominator-opts
7910 @opindex ftree-dominator-opts
7911 Perform a variety of simple scalar cleanups (constant/copy
7912 propagation, redundancy elimination, range propagation and expression
7913 simplification) based on a dominator tree traversal. This also
7914 performs jump threading (to reduce jumps to jumps). This flag is
7915 enabled by default at @option{-O} and higher.
7916
7917 @item -ftree-dse
7918 @opindex ftree-dse
7919 Perform dead store elimination (DSE) on trees. A dead store is a store into
7920 a memory location that is later overwritten by another store without
7921 any intervening loads. In this case the earlier store can be deleted. This
7922 flag is enabled by default at @option{-O} and higher.
7923
7924 @item -ftree-ch
7925 @opindex ftree-ch
7926 Perform loop header copying on trees. This is beneficial since it increases
7927 effectiveness of code motion optimizations. It also saves one jump. This flag
7928 is enabled by default at @option{-O} and higher. It is not enabled
7929 for @option{-Os}, since it usually increases code size.
7930
7931 @item -ftree-loop-optimize
7932 @opindex ftree-loop-optimize
7933 Perform loop optimizations on trees. This flag is enabled by default
7934 at @option{-O} and higher.
7935
7936 @item -ftree-loop-linear
7937 @itemx -floop-interchange
7938 @itemx -floop-strip-mine
7939 @itemx -floop-block
7940 @itemx -floop-unroll-and-jam
7941 @opindex ftree-loop-linear
7942 @opindex floop-interchange
7943 @opindex floop-strip-mine
7944 @opindex floop-block
7945 @opindex floop-unroll-and-jam
7946 Perform loop nest optimizations. Same as
7947 @option{-floop-nest-optimize}. To use this code transformation, GCC has
7948 to be configured with @option{--with-isl} to enable the Graphite loop
7949 transformation infrastructure.
7950
7951 @item -fgraphite-identity
7952 @opindex fgraphite-identity
7953 Enable the identity transformation for graphite. For every SCoP we generate
7954 the polyhedral representation and transform it back to gimple. Using
7955 @option{-fgraphite-identity} we can check the costs or benefits of the
7956 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
7957 are also performed by the code generator isl, like index splitting and
7958 dead code elimination in loops.
7959
7960 @item -floop-nest-optimize
7961 @opindex floop-nest-optimize
7962 Enable the isl based loop nest optimizer. This is a generic loop nest
7963 optimizer based on the Pluto optimization algorithms. It calculates a loop
7964 structure optimized for data-locality and parallelism. This option
7965 is experimental.
7966
7967 @item -floop-parallelize-all
7968 @opindex floop-parallelize-all
7969 Use the Graphite data dependence analysis to identify loops that can
7970 be parallelized. Parallelize all the loops that can be analyzed to
7971 not contain loop carried dependences without checking that it is
7972 profitable to parallelize the loops.
7973
7974 @item -ftree-coalesce-vars
7975 @opindex ftree-coalesce-vars
7976 While transforming the program out of the SSA representation, attempt to
7977 reduce copying by coalescing versions of different user-defined
7978 variables, instead of just compiler temporaries. This may severely
7979 limit the ability to debug an optimized program compiled with
7980 @option{-fno-var-tracking-assignments}. In the negated form, this flag
7981 prevents SSA coalescing of user variables. This option is enabled by
7982 default if optimization is enabled, and it does very little otherwise.
7983
7984 @item -ftree-loop-if-convert
7985 @opindex ftree-loop-if-convert
7986 Attempt to transform conditional jumps in the innermost loops to
7987 branch-less equivalents. The intent is to remove control-flow from
7988 the innermost loops in order to improve the ability of the
7989 vectorization pass to handle these loops. This is enabled by default
7990 if vectorization is enabled.
7991
7992 @item -ftree-loop-if-convert-stores
7993 @opindex ftree-loop-if-convert-stores
7994 Attempt to also if-convert conditional jumps containing memory writes.
7995 This transformation can be unsafe for multi-threaded programs as it
7996 transforms conditional memory writes into unconditional memory writes.
7997 For example,
7998 @smallexample
7999 for (i = 0; i < N; i++)
8000 if (cond)
8001 A[i] = expr;
8002 @end smallexample
8003 is transformed to
8004 @smallexample
8005 for (i = 0; i < N; i++)
8006 A[i] = cond ? expr : A[i];
8007 @end smallexample
8008 potentially producing data races.
8009
8010 @item -ftree-loop-distribution
8011 @opindex ftree-loop-distribution
8012 Perform loop distribution. This flag can improve cache performance on
8013 big loop bodies and allow further loop optimizations, like
8014 parallelization or vectorization, to take place. For example, the loop
8015 @smallexample
8016 DO I = 1, N
8017 A(I) = B(I) + C
8018 D(I) = E(I) * F
8019 ENDDO
8020 @end smallexample
8021 is transformed to
8022 @smallexample
8023 DO I = 1, N
8024 A(I) = B(I) + C
8025 ENDDO
8026 DO I = 1, N
8027 D(I) = E(I) * F
8028 ENDDO
8029 @end smallexample
8030
8031 @item -ftree-loop-distribute-patterns
8032 @opindex ftree-loop-distribute-patterns
8033 Perform loop distribution of patterns that can be code generated with
8034 calls to a library. This flag is enabled by default at @option{-O3}.
8035
8036 This pass distributes the initialization loops and generates a call to
8037 memset zero. For example, the loop
8038 @smallexample
8039 DO I = 1, N
8040 A(I) = 0
8041 B(I) = A(I) + I
8042 ENDDO
8043 @end smallexample
8044 is transformed to
8045 @smallexample
8046 DO I = 1, N
8047 A(I) = 0
8048 ENDDO
8049 DO I = 1, N
8050 B(I) = A(I) + I
8051 ENDDO
8052 @end smallexample
8053 and the initialization loop is transformed into a call to memset zero.
8054
8055 @item -ftree-loop-im
8056 @opindex ftree-loop-im
8057 Perform loop invariant motion on trees. This pass moves only invariants that
8058 are hard to handle at RTL level (function calls, operations that expand to
8059 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8060 operands of conditions that are invariant out of the loop, so that we can use
8061 just trivial invariantness analysis in loop unswitching. The pass also includes
8062 store motion.
8063
8064 @item -ftree-loop-ivcanon
8065 @opindex ftree-loop-ivcanon
8066 Create a canonical counter for number of iterations in loops for which
8067 determining number of iterations requires complicated analysis. Later
8068 optimizations then may determine the number easily. Useful especially
8069 in connection with unrolling.
8070
8071 @item -fivopts
8072 @opindex fivopts
8073 Perform induction variable optimizations (strength reduction, induction
8074 variable merging and induction variable elimination) on trees.
8075
8076 @item -ftree-parallelize-loops=n
8077 @opindex ftree-parallelize-loops
8078 Parallelize loops, i.e., split their iteration space to run in n threads.
8079 This is only possible for loops whose iterations are independent
8080 and can be arbitrarily reordered. The optimization is only
8081 profitable on multiprocessor machines, for loops that are CPU-intensive,
8082 rather than constrained e.g.@: by memory bandwidth. This option
8083 implies @option{-pthread}, and thus is only supported on targets
8084 that have support for @option{-pthread}.
8085
8086 @item -ftree-pta
8087 @opindex ftree-pta
8088 Perform function-local points-to analysis on trees. This flag is
8089 enabled by default at @option{-O} and higher.
8090
8091 @item -ftree-sra
8092 @opindex ftree-sra
8093 Perform scalar replacement of aggregates. This pass replaces structure
8094 references with scalars to prevent committing structures to memory too
8095 early. This flag is enabled by default at @option{-O} and higher.
8096
8097 @item -ftree-ter
8098 @opindex ftree-ter
8099 Perform temporary expression replacement during the SSA->normal phase. Single
8100 use/single def temporaries are replaced at their use location with their
8101 defining expression. This results in non-GIMPLE code, but gives the expanders
8102 much more complex trees to work on resulting in better RTL generation. This is
8103 enabled by default at @option{-O} and higher.
8104
8105 @item -ftree-slsr
8106 @opindex ftree-slsr
8107 Perform straight-line strength reduction on trees. This recognizes related
8108 expressions involving multiplications and replaces them by less expensive
8109 calculations when possible. This is enabled by default at @option{-O} and
8110 higher.
8111
8112 @item -ftree-vectorize
8113 @opindex ftree-vectorize
8114 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8115 and @option{-ftree-slp-vectorize} if not explicitly specified.
8116
8117 @item -ftree-loop-vectorize
8118 @opindex ftree-loop-vectorize
8119 Perform loop vectorization on trees. This flag is enabled by default at
8120 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8121
8122 @item -ftree-slp-vectorize
8123 @opindex ftree-slp-vectorize
8124 Perform basic block vectorization on trees. This flag is enabled by default at
8125 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8126
8127 @item -fvect-cost-model=@var{model}
8128 @opindex fvect-cost-model
8129 Alter the cost model used for vectorization. The @var{model} argument
8130 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8131 With the @samp{unlimited} model the vectorized code-path is assumed
8132 to be profitable while with the @samp{dynamic} model a runtime check
8133 guards the vectorized code-path to enable it only for iteration
8134 counts that will likely execute faster than when executing the original
8135 scalar loop. The @samp{cheap} model disables vectorization of
8136 loops where doing so would be cost prohibitive for example due to
8137 required runtime checks for data dependence or alignment but otherwise
8138 is equal to the @samp{dynamic} model.
8139 The default cost model depends on other optimization flags and is
8140 either @samp{dynamic} or @samp{cheap}.
8141
8142 @item -fsimd-cost-model=@var{model}
8143 @opindex fsimd-cost-model
8144 Alter the cost model used for vectorization of loops marked with the OpenMP
8145 or Cilk Plus simd directive. The @var{model} argument should be one of
8146 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
8147 have the same meaning as described in @option{-fvect-cost-model} and by
8148 default a cost model defined with @option{-fvect-cost-model} is used.
8149
8150 @item -ftree-vrp
8151 @opindex ftree-vrp
8152 Perform Value Range Propagation on trees. This is similar to the
8153 constant propagation pass, but instead of values, ranges of values are
8154 propagated. This allows the optimizers to remove unnecessary range
8155 checks like array bound checks and null pointer checks. This is
8156 enabled by default at @option{-O2} and higher. Null pointer check
8157 elimination is only done if @option{-fdelete-null-pointer-checks} is
8158 enabled.
8159
8160 @item -fsplit-paths
8161 @opindex fsplit-paths
8162 Split paths leading to loop backedges. This can improve dead code
8163 elimination and common subexpression elimination. This is enabled by
8164 default at @option{-O2} and above.
8165
8166 @item -fsplit-ivs-in-unroller
8167 @opindex fsplit-ivs-in-unroller
8168 Enables expression of values of induction variables in later iterations
8169 of the unrolled loop using the value in the first iteration. This breaks
8170 long dependency chains, thus improving efficiency of the scheduling passes.
8171
8172 A combination of @option{-fweb} and CSE is often sufficient to obtain the
8173 same effect. However, that is not reliable in cases where the loop body
8174 is more complicated than a single basic block. It also does not work at all
8175 on some architectures due to restrictions in the CSE pass.
8176
8177 This optimization is enabled by default.
8178
8179 @item -fvariable-expansion-in-unroller
8180 @opindex fvariable-expansion-in-unroller
8181 With this option, the compiler creates multiple copies of some
8182 local variables when unrolling a loop, which can result in superior code.
8183
8184 @item -fpartial-inlining
8185 @opindex fpartial-inlining
8186 Inline parts of functions. This option has any effect only
8187 when inlining itself is turned on by the @option{-finline-functions}
8188 or @option{-finline-small-functions} options.
8189
8190 Enabled at level @option{-O2}.
8191
8192 @item -fpredictive-commoning
8193 @opindex fpredictive-commoning
8194 Perform predictive commoning optimization, i.e., reusing computations
8195 (especially memory loads and stores) performed in previous
8196 iterations of loops.
8197
8198 This option is enabled at level @option{-O3}.
8199
8200 @item -fprefetch-loop-arrays
8201 @opindex fprefetch-loop-arrays
8202 If supported by the target machine, generate instructions to prefetch
8203 memory to improve the performance of loops that access large arrays.
8204
8205 This option may generate better or worse code; results are highly
8206 dependent on the structure of loops within the source code.
8207
8208 Disabled at level @option{-Os}.
8209
8210 @item -fprintf-return-value
8211 @opindex fprintf-return-value
8212 Substitute constants for known return value of formatted output functions
8213 such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and @code{vsnprintf}
8214 (but not @code{printf} of @code{fprintf}). This transformation allows GCC
8215 to optimize or even eliminate branches based on the known return value of
8216 these functions called with arguments that are either constant, or whose
8217 values are known to be in a range that makes determining the exact return
8218 value possible. For example, both the branch and the body of the @code{if}
8219 statement (but not the call to @code{snprint}) can be optimized away when
8220 @code{i} is a 32-bit or smaller integer because the return value is guaranteed
8221 to be at most 8.
8222
8223 @smallexample
8224 char buf[9];
8225 if (snprintf (buf, "%08x", i) >= sizeof buf)
8226 @dots{}
8227 @end smallexample
8228
8229 The @option{-fprintf-return-value} option relies on other optimizations
8230 and yields best results with @option{-O2}. It works in tandem with the
8231 @option{-Wformat-length} option. The @option{-fprintf-return-value}
8232 option is disabled by default.
8233
8234 @item -fno-peephole
8235 @itemx -fno-peephole2
8236 @opindex fno-peephole
8237 @opindex fno-peephole2
8238 Disable any machine-specific peephole optimizations. The difference
8239 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
8240 are implemented in the compiler; some targets use one, some use the
8241 other, a few use both.
8242
8243 @option{-fpeephole} is enabled by default.
8244 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8245
8246 @item -fno-guess-branch-probability
8247 @opindex fno-guess-branch-probability
8248 Do not guess branch probabilities using heuristics.
8249
8250 GCC uses heuristics to guess branch probabilities if they are
8251 not provided by profiling feedback (@option{-fprofile-arcs}). These
8252 heuristics are based on the control flow graph. If some branch probabilities
8253 are specified by @code{__builtin_expect}, then the heuristics are
8254 used to guess branch probabilities for the rest of the control flow graph,
8255 taking the @code{__builtin_expect} info into account. The interactions
8256 between the heuristics and @code{__builtin_expect} can be complex, and in
8257 some cases, it may be useful to disable the heuristics so that the effects
8258 of @code{__builtin_expect} are easier to understand.
8259
8260 The default is @option{-fguess-branch-probability} at levels
8261 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8262
8263 @item -freorder-blocks
8264 @opindex freorder-blocks
8265 Reorder basic blocks in the compiled function in order to reduce number of
8266 taken branches and improve code locality.
8267
8268 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8269
8270 @item -freorder-blocks-algorithm=@var{algorithm}
8271 @opindex freorder-blocks-algorithm
8272 Use the specified algorithm for basic block reordering. The
8273 @var{algorithm} argument can be @samp{simple}, which does not increase
8274 code size (except sometimes due to secondary effects like alignment),
8275 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
8276 put all often executed code together, minimizing the number of branches
8277 executed by making extra copies of code.
8278
8279 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
8280 @samp{stc} at levels @option{-O2}, @option{-O3}.
8281
8282 @item -freorder-blocks-and-partition
8283 @opindex freorder-blocks-and-partition
8284 In addition to reordering basic blocks in the compiled function, in order
8285 to reduce number of taken branches, partitions hot and cold basic blocks
8286 into separate sections of the assembly and @file{.o} files, to improve
8287 paging and cache locality performance.
8288
8289 This optimization is automatically turned off in the presence of
8290 exception handling, for linkonce sections, for functions with a user-defined
8291 section attribute and on any architecture that does not support named
8292 sections.
8293
8294 Enabled for x86 at levels @option{-O2}, @option{-O3}.
8295
8296 @item -freorder-functions
8297 @opindex freorder-functions
8298 Reorder functions in the object file in order to
8299 improve code locality. This is implemented by using special
8300 subsections @code{.text.hot} for most frequently executed functions and
8301 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
8302 the linker so object file format must support named sections and linker must
8303 place them in a reasonable way.
8304
8305 Also profile feedback must be available to make this option effective. See
8306 @option{-fprofile-arcs} for details.
8307
8308 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8309
8310 @item -fstrict-aliasing
8311 @opindex fstrict-aliasing
8312 Allow the compiler to assume the strictest aliasing rules applicable to
8313 the language being compiled. For C (and C++), this activates
8314 optimizations based on the type of expressions. In particular, an
8315 object of one type is assumed never to reside at the same address as an
8316 object of a different type, unless the types are almost the same. For
8317 example, an @code{unsigned int} can alias an @code{int}, but not a
8318 @code{void*} or a @code{double}. A character type may alias any other
8319 type.
8320
8321 @anchor{Type-punning}Pay special attention to code like this:
8322 @smallexample
8323 union a_union @{
8324 int i;
8325 double d;
8326 @};
8327
8328 int f() @{
8329 union a_union t;
8330 t.d = 3.0;
8331 return t.i;
8332 @}
8333 @end smallexample
8334 The practice of reading from a different union member than the one most
8335 recently written to (called ``type-punning'') is common. Even with
8336 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
8337 is accessed through the union type. So, the code above works as
8338 expected. @xref{Structures unions enumerations and bit-fields
8339 implementation}. However, this code might not:
8340 @smallexample
8341 int f() @{
8342 union a_union t;
8343 int* ip;
8344 t.d = 3.0;
8345 ip = &t.i;
8346 return *ip;
8347 @}
8348 @end smallexample
8349
8350 Similarly, access by taking the address, casting the resulting pointer
8351 and dereferencing the result has undefined behavior, even if the cast
8352 uses a union type, e.g.:
8353 @smallexample
8354 int f() @{
8355 double d = 3.0;
8356 return ((union a_union *) &d)->i;
8357 @}
8358 @end smallexample
8359
8360 The @option{-fstrict-aliasing} option is enabled at levels
8361 @option{-O2}, @option{-O3}, @option{-Os}.
8362
8363 @item -fstrict-overflow
8364 @opindex fstrict-overflow
8365 Allow the compiler to assume strict signed overflow rules, depending
8366 on the language being compiled. For C (and C++) this means that
8367 overflow when doing arithmetic with signed numbers is undefined, which
8368 means that the compiler may assume that it does not happen. This
8369 permits various optimizations. For example, the compiler assumes
8370 that an expression like @code{i + 10 > i} is always true for
8371 signed @code{i}. This assumption is only valid if signed overflow is
8372 undefined, as the expression is false if @code{i + 10} overflows when
8373 using twos complement arithmetic. When this option is in effect any
8374 attempt to determine whether an operation on signed numbers
8375 overflows must be written carefully to not actually involve overflow.
8376
8377 This option also allows the compiler to assume strict pointer
8378 semantics: given a pointer to an object, if adding an offset to that
8379 pointer does not produce a pointer to the same object, the addition is
8380 undefined. This permits the compiler to conclude that @code{p + u >
8381 p} is always true for a pointer @code{p} and unsigned integer
8382 @code{u}. This assumption is only valid because pointer wraparound is
8383 undefined, as the expression is false if @code{p + u} overflows using
8384 twos complement arithmetic.
8385
8386 See also the @option{-fwrapv} option. Using @option{-fwrapv} means
8387 that integer signed overflow is fully defined: it wraps. When
8388 @option{-fwrapv} is used, there is no difference between
8389 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
8390 integers. With @option{-fwrapv} certain types of overflow are
8391 permitted. For example, if the compiler gets an overflow when doing
8392 arithmetic on constants, the overflowed value can still be used with
8393 @option{-fwrapv}, but not otherwise.
8394
8395 The @option{-fstrict-overflow} option is enabled at levels
8396 @option{-O2}, @option{-O3}, @option{-Os}.
8397
8398 @item -falign-functions
8399 @itemx -falign-functions=@var{n}
8400 @opindex falign-functions
8401 Align the start of functions to the next power-of-two greater than
8402 @var{n}, skipping up to @var{n} bytes. For instance,
8403 @option{-falign-functions=32} aligns functions to the next 32-byte
8404 boundary, but @option{-falign-functions=24} aligns to the next
8405 32-byte boundary only if this can be done by skipping 23 bytes or less.
8406
8407 @option{-fno-align-functions} and @option{-falign-functions=1} are
8408 equivalent and mean that functions are not aligned.
8409
8410 Some assemblers only support this flag when @var{n} is a power of two;
8411 in that case, it is rounded up.
8412
8413 If @var{n} is not specified or is zero, use a machine-dependent default.
8414
8415 Enabled at levels @option{-O2}, @option{-O3}.
8416
8417 @item -falign-labels
8418 @itemx -falign-labels=@var{n}
8419 @opindex falign-labels
8420 Align all branch targets to a power-of-two boundary, skipping up to
8421 @var{n} bytes like @option{-falign-functions}. This option can easily
8422 make code slower, because it must insert dummy operations for when the
8423 branch target is reached in the usual flow of the code.
8424
8425 @option{-fno-align-labels} and @option{-falign-labels=1} are
8426 equivalent and mean that labels are not aligned.
8427
8428 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
8429 are greater than this value, then their values are used instead.
8430
8431 If @var{n} is not specified or is zero, use a machine-dependent default
8432 which is very likely to be @samp{1}, meaning no alignment.
8433
8434 Enabled at levels @option{-O2}, @option{-O3}.
8435
8436 @item -falign-loops
8437 @itemx -falign-loops=@var{n}
8438 @opindex falign-loops
8439 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
8440 like @option{-falign-functions}. If the loops are
8441 executed many times, this makes up for any execution of the dummy
8442 operations.
8443
8444 @option{-fno-align-loops} and @option{-falign-loops=1} are
8445 equivalent and mean that loops are not aligned.
8446
8447 If @var{n} is not specified or is zero, use a machine-dependent default.
8448
8449 Enabled at levels @option{-O2}, @option{-O3}.
8450
8451 @item -falign-jumps
8452 @itemx -falign-jumps=@var{n}
8453 @opindex falign-jumps
8454 Align branch targets to a power-of-two boundary, for branch targets
8455 where the targets can only be reached by jumping, skipping up to @var{n}
8456 bytes like @option{-falign-functions}. In this case, no dummy operations
8457 need be executed.
8458
8459 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
8460 equivalent and mean that loops are not aligned.
8461
8462 If @var{n} is not specified or is zero, use a machine-dependent default.
8463
8464 Enabled at levels @option{-O2}, @option{-O3}.
8465
8466 @item -funit-at-a-time
8467 @opindex funit-at-a-time
8468 This option is left for compatibility reasons. @option{-funit-at-a-time}
8469 has no effect, while @option{-fno-unit-at-a-time} implies
8470 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
8471
8472 Enabled by default.
8473
8474 @item -fno-toplevel-reorder
8475 @opindex fno-toplevel-reorder
8476 Do not reorder top-level functions, variables, and @code{asm}
8477 statements. Output them in the same order that they appear in the
8478 input file. When this option is used, unreferenced static variables
8479 are not removed. This option is intended to support existing code
8480 that relies on a particular ordering. For new code, it is better to
8481 use attributes when possible.
8482
8483 Enabled at level @option{-O0}. When disabled explicitly, it also implies
8484 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
8485 targets.
8486
8487 @item -fweb
8488 @opindex fweb
8489 Constructs webs as commonly used for register allocation purposes and assign
8490 each web individual pseudo register. This allows the register allocation pass
8491 to operate on pseudos directly, but also strengthens several other optimization
8492 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
8493 however, make debugging impossible, since variables no longer stay in a
8494 ``home register''.
8495
8496 Enabled by default with @option{-funroll-loops}.
8497
8498 @item -fwhole-program
8499 @opindex fwhole-program
8500 Assume that the current compilation unit represents the whole program being
8501 compiled. All public functions and variables with the exception of @code{main}
8502 and those merged by attribute @code{externally_visible} become static functions
8503 and in effect are optimized more aggressively by interprocedural optimizers.
8504
8505 This option should not be used in combination with @option{-flto}.
8506 Instead relying on a linker plugin should provide safer and more precise
8507 information.
8508
8509 @item -flto[=@var{n}]
8510 @opindex flto
8511 This option runs the standard link-time optimizer. When invoked
8512 with source code, it generates GIMPLE (one of GCC's internal
8513 representations) and writes it to special ELF sections in the object
8514 file. When the object files are linked together, all the function
8515 bodies are read from these ELF sections and instantiated as if they
8516 had been part of the same translation unit.
8517
8518 To use the link-time optimizer, @option{-flto} and optimization
8519 options should be specified at compile time and during the final link.
8520 It is recommended that you compile all the files participating in the
8521 same link with the same options and also specify those options at
8522 link time.
8523 For example:
8524
8525 @smallexample
8526 gcc -c -O2 -flto foo.c
8527 gcc -c -O2 -flto bar.c
8528 gcc -o myprog -flto -O2 foo.o bar.o
8529 @end smallexample
8530
8531 The first two invocations to GCC save a bytecode representation
8532 of GIMPLE into special ELF sections inside @file{foo.o} and
8533 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
8534 @file{foo.o} and @file{bar.o}, merges the two files into a single
8535 internal image, and compiles the result as usual. Since both
8536 @file{foo.o} and @file{bar.o} are merged into a single image, this
8537 causes all the interprocedural analyses and optimizations in GCC to
8538 work across the two files as if they were a single one. This means,
8539 for example, that the inliner is able to inline functions in
8540 @file{bar.o} into functions in @file{foo.o} and vice-versa.
8541
8542 Another (simpler) way to enable link-time optimization is:
8543
8544 @smallexample
8545 gcc -o myprog -flto -O2 foo.c bar.c
8546 @end smallexample
8547
8548 The above generates bytecode for @file{foo.c} and @file{bar.c},
8549 merges them together into a single GIMPLE representation and optimizes
8550 them as usual to produce @file{myprog}.
8551
8552 The only important thing to keep in mind is that to enable link-time
8553 optimizations you need to use the GCC driver to perform the link step.
8554 GCC then automatically performs link-time optimization if any of the
8555 objects involved were compiled with the @option{-flto} command-line option.
8556 You generally
8557 should specify the optimization options to be used for link-time
8558 optimization though GCC tries to be clever at guessing an
8559 optimization level to use from the options used at compile time
8560 if you fail to specify one at link time. You can always override
8561 the automatic decision to do link-time optimization at link time
8562 by passing @option{-fno-lto} to the link command.
8563
8564 To make whole program optimization effective, it is necessary to make
8565 certain whole program assumptions. The compiler needs to know
8566 what functions and variables can be accessed by libraries and runtime
8567 outside of the link-time optimized unit. When supported by the linker,
8568 the linker plugin (see @option{-fuse-linker-plugin}) passes information
8569 to the compiler about used and externally visible symbols. When
8570 the linker plugin is not available, @option{-fwhole-program} should be
8571 used to allow the compiler to make these assumptions, which leads
8572 to more aggressive optimization decisions.
8573
8574 When @option{-fuse-linker-plugin} is not enabled, when a file is
8575 compiled with @option{-flto}, the generated object file is larger than
8576 a regular object file because it contains GIMPLE bytecodes and the usual
8577 final code (see @option{-ffat-lto-objects}. This means that
8578 object files with LTO information can be linked as normal object
8579 files; if @option{-fno-lto} is passed to the linker, no
8580 interprocedural optimizations are applied. Note that when
8581 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
8582 but you cannot perform a regular, non-LTO link on them.
8583
8584 Additionally, the optimization flags used to compile individual files
8585 are not necessarily related to those used at link time. For instance,
8586
8587 @smallexample
8588 gcc -c -O0 -ffat-lto-objects -flto foo.c
8589 gcc -c -O0 -ffat-lto-objects -flto bar.c
8590 gcc -o myprog -O3 foo.o bar.o
8591 @end smallexample
8592
8593 This produces individual object files with unoptimized assembler
8594 code, but the resulting binary @file{myprog} is optimized at
8595 @option{-O3}. If, instead, the final binary is generated with
8596 @option{-fno-lto}, then @file{myprog} is not optimized.
8597
8598 When producing the final binary, GCC only
8599 applies link-time optimizations to those files that contain bytecode.
8600 Therefore, you can mix and match object files and libraries with
8601 GIMPLE bytecodes and final object code. GCC automatically selects
8602 which files to optimize in LTO mode and which files to link without
8603 further processing.
8604
8605 There are some code generation flags preserved by GCC when
8606 generating bytecodes, as they need to be used during the final link
8607 stage. Generally options specified at link time override those
8608 specified at compile time.
8609
8610 If you do not specify an optimization level option @option{-O} at
8611 link time, then GCC uses the highest optimization level
8612 used when compiling the object files.
8613
8614 Currently, the following options and their settings are taken from
8615 the first object file that explicitly specifies them:
8616 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
8617 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
8618 and all the @option{-m} target flags.
8619
8620 Certain ABI-changing flags are required to match in all compilation units,
8621 and trying to override this at link time with a conflicting value
8622 is ignored. This includes options such as @option{-freg-struct-return}
8623 and @option{-fpcc-struct-return}.
8624
8625 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
8626 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
8627 are passed through to the link stage and merged conservatively for
8628 conflicting translation units. Specifically
8629 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
8630 precedence; and for example @option{-ffp-contract=off} takes precedence
8631 over @option{-ffp-contract=fast}. You can override them at link time.
8632
8633 If LTO encounters objects with C linkage declared with incompatible
8634 types in separate translation units to be linked together (undefined
8635 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
8636 issued. The behavior is still undefined at run time. Similar
8637 diagnostics may be raised for other languages.
8638
8639 Another feature of LTO is that it is possible to apply interprocedural
8640 optimizations on files written in different languages:
8641
8642 @smallexample
8643 gcc -c -flto foo.c
8644 g++ -c -flto bar.cc
8645 gfortran -c -flto baz.f90
8646 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
8647 @end smallexample
8648
8649 Notice that the final link is done with @command{g++} to get the C++
8650 runtime libraries and @option{-lgfortran} is added to get the Fortran
8651 runtime libraries. In general, when mixing languages in LTO mode, you
8652 should use the same link command options as when mixing languages in a
8653 regular (non-LTO) compilation.
8654
8655 If object files containing GIMPLE bytecode are stored in a library archive, say
8656 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
8657 are using a linker with plugin support. To create static libraries suitable
8658 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
8659 and @command{ranlib};
8660 to show the symbols of object files with GIMPLE bytecode, use
8661 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
8662 and @command{nm} have been compiled with plugin support. At link time, use the the
8663 flag @option{-fuse-linker-plugin} to ensure that the library participates in
8664 the LTO optimization process:
8665
8666 @smallexample
8667 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
8668 @end smallexample
8669
8670 With the linker plugin enabled, the linker extracts the needed
8671 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
8672 to make them part of the aggregated GIMPLE image to be optimized.
8673
8674 If you are not using a linker with plugin support and/or do not
8675 enable the linker plugin, then the objects inside @file{libfoo.a}
8676 are extracted and linked as usual, but they do not participate
8677 in the LTO optimization process. In order to make a static library suitable
8678 for both LTO optimization and usual linkage, compile its object files with
8679 @option{-flto} @option{-ffat-lto-objects}.
8680
8681 Link-time optimizations do not require the presence of the whole program to
8682 operate. If the program does not require any symbols to be exported, it is
8683 possible to combine @option{-flto} and @option{-fwhole-program} to allow
8684 the interprocedural optimizers to use more aggressive assumptions which may
8685 lead to improved optimization opportunities.
8686 Use of @option{-fwhole-program} is not needed when linker plugin is
8687 active (see @option{-fuse-linker-plugin}).
8688
8689 The current implementation of LTO makes no
8690 attempt to generate bytecode that is portable between different
8691 types of hosts. The bytecode files are versioned and there is a
8692 strict version check, so bytecode files generated in one version of
8693 GCC do not work with an older or newer version of GCC.
8694
8695 Link-time optimization does not work well with generation of debugging
8696 information. Combining @option{-flto} with
8697 @option{-g} is currently experimental and expected to produce unexpected
8698 results.
8699
8700 If you specify the optional @var{n}, the optimization and code
8701 generation done at link time is executed in parallel using @var{n}
8702 parallel jobs by utilizing an installed @command{make} program. The
8703 environment variable @env{MAKE} may be used to override the program
8704 used. The default value for @var{n} is 1.
8705
8706 You can also specify @option{-flto=jobserver} to use GNU make's
8707 job server mode to determine the number of parallel jobs. This
8708 is useful when the Makefile calling GCC is already executing in parallel.
8709 You must prepend a @samp{+} to the command recipe in the parent Makefile
8710 for this to work. This option likely only works if @env{MAKE} is
8711 GNU make.
8712
8713 @item -flto-partition=@var{alg}
8714 @opindex flto-partition
8715 Specify the partitioning algorithm used by the link-time optimizer.
8716 The value is either @samp{1to1} to specify a partitioning mirroring
8717 the original source files or @samp{balanced} to specify partitioning
8718 into equally sized chunks (whenever possible) or @samp{max} to create
8719 new partition for every symbol where possible. Specifying @samp{none}
8720 as an algorithm disables partitioning and streaming completely.
8721 The default value is @samp{balanced}. While @samp{1to1} can be used
8722 as an workaround for various code ordering issues, the @samp{max}
8723 partitioning is intended for internal testing only.
8724 The value @samp{one} specifies that exactly one partition should be
8725 used while the value @samp{none} bypasses partitioning and executes
8726 the link-time optimization step directly from the WPA phase.
8727
8728 @item -flto-odr-type-merging
8729 @opindex flto-odr-type-merging
8730 Enable streaming of mangled types names of C++ types and their unification
8731 at link time. This increases size of LTO object files, but enables
8732 diagnostics about One Definition Rule violations.
8733
8734 @item -flto-compression-level=@var{n}
8735 @opindex flto-compression-level
8736 This option specifies the level of compression used for intermediate
8737 language written to LTO object files, and is only meaningful in
8738 conjunction with LTO mode (@option{-flto}). Valid
8739 values are 0 (no compression) to 9 (maximum compression). Values
8740 outside this range are clamped to either 0 or 9. If the option is not
8741 given, a default balanced compression setting is used.
8742
8743 @item -fuse-linker-plugin
8744 @opindex fuse-linker-plugin
8745 Enables the use of a linker plugin during link-time optimization. This
8746 option relies on plugin support in the linker, which is available in gold
8747 or in GNU ld 2.21 or newer.
8748
8749 This option enables the extraction of object files with GIMPLE bytecode out
8750 of library archives. This improves the quality of optimization by exposing
8751 more code to the link-time optimizer. This information specifies what
8752 symbols can be accessed externally (by non-LTO object or during dynamic
8753 linking). Resulting code quality improvements on binaries (and shared
8754 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
8755 See @option{-flto} for a description of the effect of this flag and how to
8756 use it.
8757
8758 This option is enabled by default when LTO support in GCC is enabled
8759 and GCC was configured for use with
8760 a linker supporting plugins (GNU ld 2.21 or newer or gold).
8761
8762 @item -ffat-lto-objects
8763 @opindex ffat-lto-objects
8764 Fat LTO objects are object files that contain both the intermediate language
8765 and the object code. This makes them usable for both LTO linking and normal
8766 linking. This option is effective only when compiling with @option{-flto}
8767 and is ignored at link time.
8768
8769 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
8770 requires the complete toolchain to be aware of LTO. It requires a linker with
8771 linker plugin support for basic functionality. Additionally,
8772 @command{nm}, @command{ar} and @command{ranlib}
8773 need to support linker plugins to allow a full-featured build environment
8774 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
8775 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
8776 to these tools. With non fat LTO makefiles need to be modified to use them.
8777
8778 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
8779 support.
8780
8781 @item -fcompare-elim
8782 @opindex fcompare-elim
8783 After register allocation and post-register allocation instruction splitting,
8784 identify arithmetic instructions that compute processor flags similar to a
8785 comparison operation based on that arithmetic. If possible, eliminate the
8786 explicit comparison operation.
8787
8788 This pass only applies to certain targets that cannot explicitly represent
8789 the comparison operation before register allocation is complete.
8790
8791 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8792
8793 @item -fcprop-registers
8794 @opindex fcprop-registers
8795 After register allocation and post-register allocation instruction splitting,
8796 perform a copy-propagation pass to try to reduce scheduling dependencies
8797 and occasionally eliminate the copy.
8798
8799 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8800
8801 @item -fprofile-correction
8802 @opindex fprofile-correction
8803 Profiles collected using an instrumented binary for multi-threaded programs may
8804 be inconsistent due to missed counter updates. When this option is specified,
8805 GCC uses heuristics to correct or smooth out such inconsistencies. By
8806 default, GCC emits an error message when an inconsistent profile is detected.
8807
8808 @item -fprofile-use
8809 @itemx -fprofile-use=@var{path}
8810 @opindex fprofile-use
8811 Enable profile feedback-directed optimizations,
8812 and the following optimizations
8813 which are generally profitable only with profile feedback available:
8814 @option{-fbranch-probabilities}, @option{-fvpt},
8815 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
8816 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
8817
8818 Before you can use this option, you must first generate profiling information.
8819 @xref{Optimize Options}, for information about the @option{-fprofile-generate}
8820 option.
8821
8822 By default, GCC emits an error message if the feedback profiles do not
8823 match the source code. This error can be turned into a warning by using
8824 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
8825 code.
8826
8827 If @var{path} is specified, GCC looks at the @var{path} to find
8828 the profile feedback data files. See @option{-fprofile-dir}.
8829
8830 @item -fauto-profile
8831 @itemx -fauto-profile=@var{path}
8832 @opindex fauto-profile
8833 Enable sampling-based feedback-directed optimizations,
8834 and the following optimizations
8835 which are generally profitable only with profile feedback available:
8836 @option{-fbranch-probabilities}, @option{-fvpt},
8837 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
8838 @option{-ftree-vectorize},
8839 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
8840 @option{-fpredictive-commoning}, @option{-funswitch-loops},
8841 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
8842
8843 @var{path} is the name of a file containing AutoFDO profile information.
8844 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
8845
8846 Producing an AutoFDO profile data file requires running your program
8847 with the @command{perf} utility on a supported GNU/Linux target system.
8848 For more information, see @uref{https://perf.wiki.kernel.org/}.
8849
8850 E.g.
8851 @smallexample
8852 perf record -e br_inst_retired:near_taken -b -o perf.data \
8853 -- your_program
8854 @end smallexample
8855
8856 Then use the @command{create_gcov} tool to convert the raw profile data
8857 to a format that can be used by GCC.@ You must also supply the
8858 unstripped binary for your program to this tool.
8859 See @uref{https://github.com/google/autofdo}.
8860
8861 E.g.
8862 @smallexample
8863 create_gcov --binary=your_program.unstripped --profile=perf.data \
8864 --gcov=profile.afdo
8865 @end smallexample
8866 @end table
8867
8868 The following options control compiler behavior regarding floating-point
8869 arithmetic. These options trade off between speed and
8870 correctness. All must be specifically enabled.
8871
8872 @table @gcctabopt
8873 @item -ffloat-store
8874 @opindex ffloat-store
8875 Do not store floating-point variables in registers, and inhibit other
8876 options that might change whether a floating-point value is taken from a
8877 register or memory.
8878
8879 @cindex floating-point precision
8880 This option prevents undesirable excess precision on machines such as
8881 the 68000 where the floating registers (of the 68881) keep more
8882 precision than a @code{double} is supposed to have. Similarly for the
8883 x86 architecture. For most programs, the excess precision does only
8884 good, but a few programs rely on the precise definition of IEEE floating
8885 point. Use @option{-ffloat-store} for such programs, after modifying
8886 them to store all pertinent intermediate computations into variables.
8887
8888 @item -fexcess-precision=@var{style}
8889 @opindex fexcess-precision
8890 This option allows further control over excess precision on machines
8891 where floating-point registers have more precision than the IEEE
8892 @code{float} and @code{double} types and the processor does not
8893 support operations rounding to those types. By default,
8894 @option{-fexcess-precision=fast} is in effect; this means that
8895 operations are carried out in the precision of the registers and that
8896 it is unpredictable when rounding to the types specified in the source
8897 code takes place. When compiling C, if
8898 @option{-fexcess-precision=standard} is specified then excess
8899 precision follows the rules specified in ISO C99; in particular,
8900 both casts and assignments cause values to be rounded to their
8901 semantic types (whereas @option{-ffloat-store} only affects
8902 assignments). This option is enabled by default for C if a strict
8903 conformance option such as @option{-std=c99} is used.
8904
8905 @opindex mfpmath
8906 @option{-fexcess-precision=standard} is not implemented for languages
8907 other than C, and has no effect if
8908 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
8909 specified. On the x86, it also has no effect if @option{-mfpmath=sse}
8910 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
8911 semantics apply without excess precision, and in the latter, rounding
8912 is unpredictable.
8913
8914 @item -ffast-math
8915 @opindex ffast-math
8916 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
8917 @option{-ffinite-math-only}, @option{-fno-rounding-math},
8918 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
8919
8920 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
8921
8922 This option is not turned on by any @option{-O} option besides
8923 @option{-Ofast} since it can result in incorrect output for programs
8924 that depend on an exact implementation of IEEE or ISO rules/specifications
8925 for math functions. It may, however, yield faster code for programs
8926 that do not require the guarantees of these specifications.
8927
8928 @item -fno-math-errno
8929 @opindex fno-math-errno
8930 Do not set @code{errno} after calling math functions that are executed
8931 with a single instruction, e.g., @code{sqrt}. A program that relies on
8932 IEEE exceptions for math error handling may want to use this flag
8933 for speed while maintaining IEEE arithmetic compatibility.
8934
8935 This option is not turned on by any @option{-O} option since
8936 it can result in incorrect output for programs that depend on
8937 an exact implementation of IEEE or ISO rules/specifications for
8938 math functions. It may, however, yield faster code for programs
8939 that do not require the guarantees of these specifications.
8940
8941 The default is @option{-fmath-errno}.
8942
8943 On Darwin systems, the math library never sets @code{errno}. There is
8944 therefore no reason for the compiler to consider the possibility that
8945 it might, and @option{-fno-math-errno} is the default.
8946
8947 @item -funsafe-math-optimizations
8948 @opindex funsafe-math-optimizations
8949
8950 Allow optimizations for floating-point arithmetic that (a) assume
8951 that arguments and results are valid and (b) may violate IEEE or
8952 ANSI standards. When used at link time, it may include libraries
8953 or startup files that change the default FPU control word or other
8954 similar optimizations.
8955
8956 This option is not turned on by any @option{-O} option since
8957 it can result in incorrect output for programs that depend on
8958 an exact implementation of IEEE or ISO rules/specifications for
8959 math functions. It may, however, yield faster code for programs
8960 that do not require the guarantees of these specifications.
8961 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
8962 @option{-fassociative-math} and @option{-freciprocal-math}.
8963
8964 The default is @option{-fno-unsafe-math-optimizations}.
8965
8966 @item -fassociative-math
8967 @opindex fassociative-math
8968
8969 Allow re-association of operands in series of floating-point operations.
8970 This violates the ISO C and C++ language standard by possibly changing
8971 computation result. NOTE: re-ordering may change the sign of zero as
8972 well as ignore NaNs and inhibit or create underflow or overflow (and
8973 thus cannot be used on code that relies on rounding behavior like
8974 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
8975 and thus may not be used when ordered comparisons are required.
8976 This option requires that both @option{-fno-signed-zeros} and
8977 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
8978 much sense with @option{-frounding-math}. For Fortran the option
8979 is automatically enabled when both @option{-fno-signed-zeros} and
8980 @option{-fno-trapping-math} are in effect.
8981
8982 The default is @option{-fno-associative-math}.
8983
8984 @item -freciprocal-math
8985 @opindex freciprocal-math
8986
8987 Allow the reciprocal of a value to be used instead of dividing by
8988 the value if this enables optimizations. For example @code{x / y}
8989 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
8990 is subject to common subexpression elimination. Note that this loses
8991 precision and increases the number of flops operating on the value.
8992
8993 The default is @option{-fno-reciprocal-math}.
8994
8995 @item -ffinite-math-only
8996 @opindex ffinite-math-only
8997 Allow optimizations for floating-point arithmetic that assume
8998 that arguments and results are not NaNs or +-Infs.
8999
9000 This option is not turned on by any @option{-O} option since
9001 it can result in incorrect output for programs that depend on
9002 an exact implementation of IEEE or ISO rules/specifications for
9003 math functions. It may, however, yield faster code for programs
9004 that do not require the guarantees of these specifications.
9005
9006 The default is @option{-fno-finite-math-only}.
9007
9008 @item -fno-signed-zeros
9009 @opindex fno-signed-zeros
9010 Allow optimizations for floating-point arithmetic that ignore the
9011 signedness of zero. IEEE arithmetic specifies the behavior of
9012 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9013 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9014 This option implies that the sign of a zero result isn't significant.
9015
9016 The default is @option{-fsigned-zeros}.
9017
9018 @item -fno-trapping-math
9019 @opindex fno-trapping-math
9020 Compile code assuming that floating-point operations cannot generate
9021 user-visible traps. These traps include division by zero, overflow,
9022 underflow, inexact result and invalid operation. This option requires
9023 that @option{-fno-signaling-nans} be in effect. Setting this option may
9024 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9025
9026 This option should never be turned on by any @option{-O} option since
9027 it can result in incorrect output for programs that depend on
9028 an exact implementation of IEEE or ISO rules/specifications for
9029 math functions.
9030
9031 The default is @option{-ftrapping-math}.
9032
9033 @item -frounding-math
9034 @opindex frounding-math
9035 Disable transformations and optimizations that assume default floating-point
9036 rounding behavior. This is round-to-zero for all floating point
9037 to integer conversions, and round-to-nearest for all other arithmetic
9038 truncations. This option should be specified for programs that change
9039 the FP rounding mode dynamically, or that may be executed with a
9040 non-default rounding mode. This option disables constant folding of
9041 floating-point expressions at compile time (which may be affected by
9042 rounding mode) and arithmetic transformations that are unsafe in the
9043 presence of sign-dependent rounding modes.
9044
9045 The default is @option{-fno-rounding-math}.
9046
9047 This option is experimental and does not currently guarantee to
9048 disable all GCC optimizations that are affected by rounding mode.
9049 Future versions of GCC may provide finer control of this setting
9050 using C99's @code{FENV_ACCESS} pragma. This command-line option
9051 will be used to specify the default state for @code{FENV_ACCESS}.
9052
9053 @item -fsignaling-nans
9054 @opindex fsignaling-nans
9055 Compile code assuming that IEEE signaling NaNs may generate user-visible
9056 traps during floating-point operations. Setting this option disables
9057 optimizations that may change the number of exceptions visible with
9058 signaling NaNs. This option implies @option{-ftrapping-math}.
9059
9060 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9061 be defined.
9062
9063 The default is @option{-fno-signaling-nans}.
9064
9065 This option is experimental and does not currently guarantee to
9066 disable all GCC optimizations that affect signaling NaN behavior.
9067
9068 @item -fno-fp-int-builtin-inexact
9069 @opindex fno-fp-int-builtin-inexact
9070 Do not allow the built-in functions @code{ceil}, @code{floor},
9071 @code{round} and @code{trunc}, and their @code{float} and @code{long
9072 double} variants, to generate code that raises the ``inexact''
9073 floating-point exception for noninteger arguments. ISO C99 and C11
9074 allow these functions to raise the ``inexact'' exception, but ISO/IEC
9075 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
9076 functions to do so.
9077
9078 The default is @option{-ffp-int-builtin-inexact}, allowing the
9079 exception to be raised. This option does nothing unless
9080 @option{-ftrapping-math} is in effect.
9081
9082 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
9083 generate a call to a library function then the ``inexact'' exception
9084 may be raised if the library implementation does not follow TS 18661.
9085
9086 @item -fsingle-precision-constant
9087 @opindex fsingle-precision-constant
9088 Treat floating-point constants as single precision instead of
9089 implicitly converting them to double-precision constants.
9090
9091 @item -fcx-limited-range
9092 @opindex fcx-limited-range
9093 When enabled, this option states that a range reduction step is not
9094 needed when performing complex division. Also, there is no checking
9095 whether the result of a complex multiplication or division is @code{NaN
9096 + I*NaN}, with an attempt to rescue the situation in that case. The
9097 default is @option{-fno-cx-limited-range}, but is enabled by
9098 @option{-ffast-math}.
9099
9100 This option controls the default setting of the ISO C99
9101 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9102 all languages.
9103
9104 @item -fcx-fortran-rules
9105 @opindex fcx-fortran-rules
9106 Complex multiplication and division follow Fortran rules. Range
9107 reduction is done as part of complex division, but there is no checking
9108 whether the result of a complex multiplication or division is @code{NaN
9109 + I*NaN}, with an attempt to rescue the situation in that case.
9110
9111 The default is @option{-fno-cx-fortran-rules}.
9112
9113 @end table
9114
9115 The following options control optimizations that may improve
9116 performance, but are not enabled by any @option{-O} options. This
9117 section includes experimental options that may produce broken code.
9118
9119 @table @gcctabopt
9120 @item -fbranch-probabilities
9121 @opindex fbranch-probabilities
9122 After running a program compiled with @option{-fprofile-arcs}
9123 (@pxref{Instrumentation Options}),
9124 you can compile it a second time using
9125 @option{-fbranch-probabilities}, to improve optimizations based on
9126 the number of times each branch was taken. When a program
9127 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9128 counts to a file called @file{@var{sourcename}.gcda} for each source
9129 file. The information in this data file is very dependent on the
9130 structure of the generated code, so you must use the same source code
9131 and the same optimization options for both compilations.
9132
9133 With @option{-fbranch-probabilities}, GCC puts a
9134 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9135 These can be used to improve optimization. Currently, they are only
9136 used in one place: in @file{reorg.c}, instead of guessing which path a
9137 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9138 exactly determine which path is taken more often.
9139
9140 @item -fprofile-values
9141 @opindex fprofile-values
9142 If combined with @option{-fprofile-arcs}, it adds code so that some
9143 data about values of expressions in the program is gathered.
9144
9145 With @option{-fbranch-probabilities}, it reads back the data gathered
9146 from profiling values of expressions for usage in optimizations.
9147
9148 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9149
9150 @item -fprofile-reorder-functions
9151 @opindex fprofile-reorder-functions
9152 Function reordering based on profile instrumentation collects
9153 first time of execution of a function and orders these functions
9154 in ascending order.
9155
9156 Enabled with @option{-fprofile-use}.
9157
9158 @item -fvpt
9159 @opindex fvpt
9160 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9161 to add code to gather information about values of expressions.
9162
9163 With @option{-fbranch-probabilities}, it reads back the data gathered
9164 and actually performs the optimizations based on them.
9165 Currently the optimizations include specialization of division operations
9166 using the knowledge about the value of the denominator.
9167
9168 @item -frename-registers
9169 @opindex frename-registers
9170 Attempt to avoid false dependencies in scheduled code by making use
9171 of registers left over after register allocation. This optimization
9172 most benefits processors with lots of registers. Depending on the
9173 debug information format adopted by the target, however, it can
9174 make debugging impossible, since variables no longer stay in
9175 a ``home register''.
9176
9177 Enabled by default with @option{-funroll-loops}.
9178
9179 @item -fschedule-fusion
9180 @opindex fschedule-fusion
9181 Performs a target dependent pass over the instruction stream to schedule
9182 instructions of same type together because target machine can execute them
9183 more efficiently if they are adjacent to each other in the instruction flow.
9184
9185 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9186
9187 @item -ftracer
9188 @opindex ftracer
9189 Perform tail duplication to enlarge superblock size. This transformation
9190 simplifies the control flow of the function allowing other optimizations to do
9191 a better job.
9192
9193 Enabled with @option{-fprofile-use}.
9194
9195 @item -funroll-loops
9196 @opindex funroll-loops
9197 Unroll loops whose number of iterations can be determined at compile time or
9198 upon entry to the loop. @option{-funroll-loops} implies
9199 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9200 It also turns on complete loop peeling (i.e.@: complete removal of loops with
9201 a small constant number of iterations). This option makes code larger, and may
9202 or may not make it run faster.
9203
9204 Enabled with @option{-fprofile-use}.
9205
9206 @item -funroll-all-loops
9207 @opindex funroll-all-loops
9208 Unroll all loops, even if their number of iterations is uncertain when
9209 the loop is entered. This usually makes programs run more slowly.
9210 @option{-funroll-all-loops} implies the same options as
9211 @option{-funroll-loops}.
9212
9213 @item -fpeel-loops
9214 @opindex fpeel-loops
9215 Peels loops for which there is enough information that they do not
9216 roll much (from profile feedback or static analysis). It also turns on
9217 complete loop peeling (i.e.@: complete removal of loops with small constant
9218 number of iterations).
9219
9220 Enabled with @option{-O3} and/or @option{-fprofile-use}.
9221
9222 @item -fmove-loop-invariants
9223 @opindex fmove-loop-invariants
9224 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
9225 at level @option{-O1}
9226
9227 @item -fsplit-loops
9228 @opindex fsplit-loops
9229 Split a loop into two if it contains a condition that's always true
9230 for one side of the iteration space and false for the other.
9231
9232 @item -funswitch-loops
9233 @opindex funswitch-loops
9234 Move branches with loop invariant conditions out of the loop, with duplicates
9235 of the loop on both branches (modified according to result of the condition).
9236
9237 @item -ffunction-sections
9238 @itemx -fdata-sections
9239 @opindex ffunction-sections
9240 @opindex fdata-sections
9241 Place each function or data item into its own section in the output
9242 file if the target supports arbitrary sections. The name of the
9243 function or the name of the data item determines the section's name
9244 in the output file.
9245
9246 Use these options on systems where the linker can perform optimizations
9247 to improve locality of reference in the instruction space. Most systems
9248 using the ELF object format and SPARC processors running Solaris 2 have
9249 linkers with such optimizations. AIX may have these optimizations in
9250 the future.
9251
9252 Only use these options when there are significant benefits from doing
9253 so. When you specify these options, the assembler and linker
9254 create larger object and executable files and are also slower.
9255 You cannot use @command{gprof} on all systems if you
9256 specify this option, and you may have problems with debugging if
9257 you specify both this option and @option{-g}.
9258
9259 @item -fbranch-target-load-optimize
9260 @opindex fbranch-target-load-optimize
9261 Perform branch target register load optimization before prologue / epilogue
9262 threading.
9263 The use of target registers can typically be exposed only during reload,
9264 thus hoisting loads out of loops and doing inter-block scheduling needs
9265 a separate optimization pass.
9266
9267 @item -fbranch-target-load-optimize2
9268 @opindex fbranch-target-load-optimize2
9269 Perform branch target register load optimization after prologue / epilogue
9270 threading.
9271
9272 @item -fbtr-bb-exclusive
9273 @opindex fbtr-bb-exclusive
9274 When performing branch target register load optimization, don't reuse
9275 branch target registers within any basic block.
9276
9277 @item -fstdarg-opt
9278 @opindex fstdarg-opt
9279 Optimize the prologue of variadic argument functions with respect to usage of
9280 those arguments.
9281
9282 @item -fsection-anchors
9283 @opindex fsection-anchors
9284 Try to reduce the number of symbolic address calculations by using
9285 shared ``anchor'' symbols to address nearby objects. This transformation
9286 can help to reduce the number of GOT entries and GOT accesses on some
9287 targets.
9288
9289 For example, the implementation of the following function @code{foo}:
9290
9291 @smallexample
9292 static int a, b, c;
9293 int foo (void) @{ return a + b + c; @}
9294 @end smallexample
9295
9296 @noindent
9297 usually calculates the addresses of all three variables, but if you
9298 compile it with @option{-fsection-anchors}, it accesses the variables
9299 from a common anchor point instead. The effect is similar to the
9300 following pseudocode (which isn't valid C):
9301
9302 @smallexample
9303 int foo (void)
9304 @{
9305 register int *xr = &x;
9306 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
9307 @}
9308 @end smallexample
9309
9310 Not all targets support this option.
9311
9312 @item --param @var{name}=@var{value}
9313 @opindex param
9314 In some places, GCC uses various constants to control the amount of
9315 optimization that is done. For example, GCC does not inline functions
9316 that contain more than a certain number of instructions. You can
9317 control some of these constants on the command line using the
9318 @option{--param} option.
9319
9320 The names of specific parameters, and the meaning of the values, are
9321 tied to the internals of the compiler, and are subject to change
9322 without notice in future releases.
9323
9324 In each case, the @var{value} is an integer. The allowable choices for
9325 @var{name} are:
9326
9327 @table @gcctabopt
9328 @item predictable-branch-outcome
9329 When branch is predicted to be taken with probability lower than this threshold
9330 (in percent), then it is considered well predictable. The default is 10.
9331
9332 @item max-rtl-if-conversion-insns
9333 RTL if-conversion tries to remove conditional branches around a block and
9334 replace them with conditionally executed instructions. This parameter
9335 gives the maximum number of instructions in a block which should be
9336 considered for if-conversion. The default is 10, though the compiler will
9337 also use other heuristics to decide whether if-conversion is likely to be
9338 profitable.
9339
9340 @item max-rtl-if-conversion-predictable-cost
9341 @item max-rtl-if-conversion-unpredictable-cost
9342 RTL if-conversion will try to remove conditional branches around a block
9343 and replace them with conditionally executed instructions. These parameters
9344 give the maximum permissible cost for the sequence that would be generated
9345 by if-conversion depending on whether the branch is statically determined
9346 to be predictable or not. The units for this parameter are the same as
9347 those for the GCC internal seq_cost metric. The compiler will try to
9348 provide a reasonable default for this parameter using the BRANCH_COST
9349 target macro.
9350
9351 @item max-crossjump-edges
9352 The maximum number of incoming edges to consider for cross-jumping.
9353 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
9354 the number of edges incoming to each block. Increasing values mean
9355 more aggressive optimization, making the compilation time increase with
9356 probably small improvement in executable size.
9357
9358 @item min-crossjump-insns
9359 The minimum number of instructions that must be matched at the end
9360 of two blocks before cross-jumping is performed on them. This
9361 value is ignored in the case where all instructions in the block being
9362 cross-jumped from are matched. The default value is 5.
9363
9364 @item max-grow-copy-bb-insns
9365 The maximum code size expansion factor when copying basic blocks
9366 instead of jumping. The expansion is relative to a jump instruction.
9367 The default value is 8.
9368
9369 @item max-goto-duplication-insns
9370 The maximum number of instructions to duplicate to a block that jumps
9371 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
9372 passes, GCC factors computed gotos early in the compilation process,
9373 and unfactors them as late as possible. Only computed jumps at the
9374 end of a basic blocks with no more than max-goto-duplication-insns are
9375 unfactored. The default value is 8.
9376
9377 @item max-delay-slot-insn-search
9378 The maximum number of instructions to consider when looking for an
9379 instruction to fill a delay slot. If more than this arbitrary number of
9380 instructions are searched, the time savings from filling the delay slot
9381 are minimal, so stop searching. Increasing values mean more
9382 aggressive optimization, making the compilation time increase with probably
9383 small improvement in execution time.
9384
9385 @item max-delay-slot-live-search
9386 When trying to fill delay slots, the maximum number of instructions to
9387 consider when searching for a block with valid live register
9388 information. Increasing this arbitrarily chosen value means more
9389 aggressive optimization, increasing the compilation time. This parameter
9390 should be removed when the delay slot code is rewritten to maintain the
9391 control-flow graph.
9392
9393 @item max-gcse-memory
9394 The approximate maximum amount of memory that can be allocated in
9395 order to perform the global common subexpression elimination
9396 optimization. If more memory than specified is required, the
9397 optimization is not done.
9398
9399 @item max-gcse-insertion-ratio
9400 If the ratio of expression insertions to deletions is larger than this value
9401 for any expression, then RTL PRE inserts or removes the expression and thus
9402 leaves partially redundant computations in the instruction stream. The default value is 20.
9403
9404 @item max-pending-list-length
9405 The maximum number of pending dependencies scheduling allows
9406 before flushing the current state and starting over. Large functions
9407 with few branches or calls can create excessively large lists which
9408 needlessly consume memory and resources.
9409
9410 @item max-modulo-backtrack-attempts
9411 The maximum number of backtrack attempts the scheduler should make
9412 when modulo scheduling a loop. Larger values can exponentially increase
9413 compilation time.
9414
9415 @item max-inline-insns-single
9416 Several parameters control the tree inliner used in GCC@.
9417 This number sets the maximum number of instructions (counted in GCC's
9418 internal representation) in a single function that the tree inliner
9419 considers for inlining. This only affects functions declared
9420 inline and methods implemented in a class declaration (C++).
9421 The default value is 400.
9422
9423 @item max-inline-insns-auto
9424 When you use @option{-finline-functions} (included in @option{-O3}),
9425 a lot of functions that would otherwise not be considered for inlining
9426 by the compiler are investigated. To those functions, a different
9427 (more restrictive) limit compared to functions declared inline can
9428 be applied.
9429 The default value is 40.
9430
9431 @item inline-min-speedup
9432 When estimated performance improvement of caller + callee runtime exceeds this
9433 threshold (in precent), the function can be inlined regardless the limit on
9434 @option{--param max-inline-insns-single} and @option{--param
9435 max-inline-insns-auto}.
9436
9437 @item large-function-insns
9438 The limit specifying really large functions. For functions larger than this
9439 limit after inlining, inlining is constrained by
9440 @option{--param large-function-growth}. This parameter is useful primarily
9441 to avoid extreme compilation time caused by non-linear algorithms used by the
9442 back end.
9443 The default value is 2700.
9444
9445 @item large-function-growth
9446 Specifies maximal growth of large function caused by inlining in percents.
9447 The default value is 100 which limits large function growth to 2.0 times
9448 the original size.
9449
9450 @item large-unit-insns
9451 The limit specifying large translation unit. Growth caused by inlining of
9452 units larger than this limit is limited by @option{--param inline-unit-growth}.
9453 For small units this might be too tight.
9454 For example, consider a unit consisting of function A
9455 that is inline and B that just calls A three times. If B is small relative to
9456 A, the growth of unit is 300\% and yet such inlining is very sane. For very
9457 large units consisting of small inlineable functions, however, the overall unit
9458 growth limit is needed to avoid exponential explosion of code size. Thus for
9459 smaller units, the size is increased to @option{--param large-unit-insns}
9460 before applying @option{--param inline-unit-growth}. The default is 10000.
9461
9462 @item inline-unit-growth
9463 Specifies maximal overall growth of the compilation unit caused by inlining.
9464 The default value is 20 which limits unit growth to 1.2 times the original
9465 size. Cold functions (either marked cold via an attribute or by profile
9466 feedback) are not accounted into the unit size.
9467
9468 @item ipcp-unit-growth
9469 Specifies maximal overall growth of the compilation unit caused by
9470 interprocedural constant propagation. The default value is 10 which limits
9471 unit growth to 1.1 times the original size.
9472
9473 @item large-stack-frame
9474 The limit specifying large stack frames. While inlining the algorithm is trying
9475 to not grow past this limit too much. The default value is 256 bytes.
9476
9477 @item large-stack-frame-growth
9478 Specifies maximal growth of large stack frames caused by inlining in percents.
9479 The default value is 1000 which limits large stack frame growth to 11 times
9480 the original size.
9481
9482 @item max-inline-insns-recursive
9483 @itemx max-inline-insns-recursive-auto
9484 Specifies the maximum number of instructions an out-of-line copy of a
9485 self-recursive inline
9486 function can grow into by performing recursive inlining.
9487
9488 @option{--param max-inline-insns-recursive} applies to functions
9489 declared inline.
9490 For functions not declared inline, recursive inlining
9491 happens only when @option{-finline-functions} (included in @option{-O3}) is
9492 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
9493 default value is 450.
9494
9495 @item max-inline-recursive-depth
9496 @itemx max-inline-recursive-depth-auto
9497 Specifies the maximum recursion depth used for recursive inlining.
9498
9499 @option{--param max-inline-recursive-depth} applies to functions
9500 declared inline. For functions not declared inline, recursive inlining
9501 happens only when @option{-finline-functions} (included in @option{-O3}) is
9502 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
9503 default value is 8.
9504
9505 @item min-inline-recursive-probability
9506 Recursive inlining is profitable only for function having deep recursion
9507 in average and can hurt for function having little recursion depth by
9508 increasing the prologue size or complexity of function body to other
9509 optimizers.
9510
9511 When profile feedback is available (see @option{-fprofile-generate}) the actual
9512 recursion depth can be guessed from the probability that function recurses
9513 via a given call expression. This parameter limits inlining only to call
9514 expressions whose probability exceeds the given threshold (in percents).
9515 The default value is 10.
9516
9517 @item early-inlining-insns
9518 Specify growth that the early inliner can make. In effect it increases
9519 the amount of inlining for code having a large abstraction penalty.
9520 The default value is 14.
9521
9522 @item max-early-inliner-iterations
9523 Limit of iterations of the early inliner. This basically bounds
9524 the number of nested indirect calls the early inliner can resolve.
9525 Deeper chains are still handled by late inlining.
9526
9527 @item comdat-sharing-probability
9528 Probability (in percent) that C++ inline function with comdat visibility
9529 are shared across multiple compilation units. The default value is 20.
9530
9531 @item profile-func-internal-id
9532 A parameter to control whether to use function internal id in profile
9533 database lookup. If the value is 0, the compiler uses an id that
9534 is based on function assembler name and filename, which makes old profile
9535 data more tolerant to source changes such as function reordering etc.
9536 The default value is 0.
9537
9538 @item min-vect-loop-bound
9539 The minimum number of iterations under which loops are not vectorized
9540 when @option{-ftree-vectorize} is used. The number of iterations after
9541 vectorization needs to be greater than the value specified by this option
9542 to allow vectorization. The default value is 0.
9543
9544 @item gcse-cost-distance-ratio
9545 Scaling factor in calculation of maximum distance an expression
9546 can be moved by GCSE optimizations. This is currently supported only in the
9547 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
9548 is with simple expressions, i.e., the expressions that have cost
9549 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
9550 hoisting of simple expressions. The default value is 10.
9551
9552 @item gcse-unrestricted-cost
9553 Cost, roughly measured as the cost of a single typical machine
9554 instruction, at which GCSE optimizations do not constrain
9555 the distance an expression can travel. This is currently
9556 supported only in the code hoisting pass. The lesser the cost,
9557 the more aggressive code hoisting is. Specifying 0
9558 allows all expressions to travel unrestricted distances.
9559 The default value is 3.
9560
9561 @item max-hoist-depth
9562 The depth of search in the dominator tree for expressions to hoist.
9563 This is used to avoid quadratic behavior in hoisting algorithm.
9564 The value of 0 does not limit on the search, but may slow down compilation
9565 of huge functions. The default value is 30.
9566
9567 @item max-tail-merge-comparisons
9568 The maximum amount of similar bbs to compare a bb with. This is used to
9569 avoid quadratic behavior in tree tail merging. The default value is 10.
9570
9571 @item max-tail-merge-iterations
9572 The maximum amount of iterations of the pass over the function. This is used to
9573 limit compilation time in tree tail merging. The default value is 2.
9574
9575 @item max-unrolled-insns
9576 The maximum number of instructions that a loop may have to be unrolled.
9577 If a loop is unrolled, this parameter also determines how many times
9578 the loop code is unrolled.
9579
9580 @item max-average-unrolled-insns
9581 The maximum number of instructions biased by probabilities of their execution
9582 that a loop may have to be unrolled. If a loop is unrolled,
9583 this parameter also determines how many times the loop code is unrolled.
9584
9585 @item max-unroll-times
9586 The maximum number of unrollings of a single loop.
9587
9588 @item max-peeled-insns
9589 The maximum number of instructions that a loop may have to be peeled.
9590 If a loop is peeled, this parameter also determines how many times
9591 the loop code is peeled.
9592
9593 @item max-peel-times
9594 The maximum number of peelings of a single loop.
9595
9596 @item max-peel-branches
9597 The maximum number of branches on the hot path through the peeled sequence.
9598
9599 @item max-completely-peeled-insns
9600 The maximum number of insns of a completely peeled loop.
9601
9602 @item max-completely-peel-times
9603 The maximum number of iterations of a loop to be suitable for complete peeling.
9604
9605 @item max-completely-peel-loop-nest-depth
9606 The maximum depth of a loop nest suitable for complete peeling.
9607
9608 @item max-unswitch-insns
9609 The maximum number of insns of an unswitched loop.
9610
9611 @item max-unswitch-level
9612 The maximum number of branches unswitched in a single loop.
9613
9614 @item max-loop-headers-insns
9615 The maximum number of insns in loop header duplicated by he copy loop headers
9616 pass.
9617
9618 @item lim-expensive
9619 The minimum cost of an expensive expression in the loop invariant motion.
9620
9621 @item iv-consider-all-candidates-bound
9622 Bound on number of candidates for induction variables, below which
9623 all candidates are considered for each use in induction variable
9624 optimizations. If there are more candidates than this,
9625 only the most relevant ones are considered to avoid quadratic time complexity.
9626
9627 @item iv-max-considered-uses
9628 The induction variable optimizations give up on loops that contain more
9629 induction variable uses.
9630
9631 @item iv-always-prune-cand-set-bound
9632 If the number of candidates in the set is smaller than this value,
9633 always try to remove unnecessary ivs from the set
9634 when adding a new one.
9635
9636 @item avg-loop-niter
9637 Average number of iterations of a loop.
9638
9639 @item scev-max-expr-size
9640 Bound on size of expressions used in the scalar evolutions analyzer.
9641 Large expressions slow the analyzer.
9642
9643 @item scev-max-expr-complexity
9644 Bound on the complexity of the expressions in the scalar evolutions analyzer.
9645 Complex expressions slow the analyzer.
9646
9647 @item max-tree-if-conversion-phi-args
9648 Maximum number of arguments in a PHI supported by TREE if conversion
9649 unless the loop is marked with simd pragma.
9650
9651 @item vect-max-version-for-alignment-checks
9652 The maximum number of run-time checks that can be performed when
9653 doing loop versioning for alignment in the vectorizer.
9654
9655 @item vect-max-version-for-alias-checks
9656 The maximum number of run-time checks that can be performed when
9657 doing loop versioning for alias in the vectorizer.
9658
9659 @item vect-max-peeling-for-alignment
9660 The maximum number of loop peels to enhance access alignment
9661 for vectorizer. Value -1 means no limit.
9662
9663 @item max-iterations-to-track
9664 The maximum number of iterations of a loop the brute-force algorithm
9665 for analysis of the number of iterations of the loop tries to evaluate.
9666
9667 @item hot-bb-count-ws-permille
9668 A basic block profile count is considered hot if it contributes to
9669 the given permillage (i.e. 0...1000) of the entire profiled execution.
9670
9671 @item hot-bb-frequency-fraction
9672 Select fraction of the entry block frequency of executions of basic block in
9673 function given basic block needs to have to be considered hot.
9674
9675 @item max-predicted-iterations
9676 The maximum number of loop iterations we predict statically. This is useful
9677 in cases where a function contains a single loop with known bound and
9678 another loop with unknown bound.
9679 The known number of iterations is predicted correctly, while
9680 the unknown number of iterations average to roughly 10. This means that the
9681 loop without bounds appears artificially cold relative to the other one.
9682
9683 @item builtin-expect-probability
9684 Control the probability of the expression having the specified value. This
9685 parameter takes a percentage (i.e. 0 ... 100) as input.
9686 The default probability of 90 is obtained empirically.
9687
9688 @item align-threshold
9689
9690 Select fraction of the maximal frequency of executions of a basic block in
9691 a function to align the basic block.
9692
9693 @item align-loop-iterations
9694
9695 A loop expected to iterate at least the selected number of iterations is
9696 aligned.
9697
9698 @item tracer-dynamic-coverage
9699 @itemx tracer-dynamic-coverage-feedback
9700
9701 This value is used to limit superblock formation once the given percentage of
9702 executed instructions is covered. This limits unnecessary code size
9703 expansion.
9704
9705 The @option{tracer-dynamic-coverage-feedback} parameter
9706 is used only when profile
9707 feedback is available. The real profiles (as opposed to statically estimated
9708 ones) are much less balanced allowing the threshold to be larger value.
9709
9710 @item tracer-max-code-growth
9711 Stop tail duplication once code growth has reached given percentage. This is
9712 a rather artificial limit, as most of the duplicates are eliminated later in
9713 cross jumping, so it may be set to much higher values than is the desired code
9714 growth.
9715
9716 @item tracer-min-branch-ratio
9717
9718 Stop reverse growth when the reverse probability of best edge is less than this
9719 threshold (in percent).
9720
9721 @item tracer-min-branch-probability
9722 @itemx tracer-min-branch-probability-feedback
9723
9724 Stop forward growth if the best edge has probability lower than this
9725 threshold.
9726
9727 Similarly to @option{tracer-dynamic-coverage} two parameters are
9728 provided. @option{tracer-min-branch-probability-feedback} is used for
9729 compilation with profile feedback and @option{tracer-min-branch-probability}
9730 compilation without. The value for compilation with profile feedback
9731 needs to be more conservative (higher) in order to make tracer
9732 effective.
9733
9734 @item max-cse-path-length
9735
9736 The maximum number of basic blocks on path that CSE considers.
9737 The default is 10.
9738
9739 @item max-cse-insns
9740 The maximum number of instructions CSE processes before flushing.
9741 The default is 1000.
9742
9743 @item ggc-min-expand
9744
9745 GCC uses a garbage collector to manage its own memory allocation. This
9746 parameter specifies the minimum percentage by which the garbage
9747 collector's heap should be allowed to expand between collections.
9748 Tuning this may improve compilation speed; it has no effect on code
9749 generation.
9750
9751 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
9752 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
9753 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
9754 GCC is not able to calculate RAM on a particular platform, the lower
9755 bound of 30% is used. Setting this parameter and
9756 @option{ggc-min-heapsize} to zero causes a full collection to occur at
9757 every opportunity. This is extremely slow, but can be useful for
9758 debugging.
9759
9760 @item ggc-min-heapsize
9761
9762 Minimum size of the garbage collector's heap before it begins bothering
9763 to collect garbage. The first collection occurs after the heap expands
9764 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
9765 tuning this may improve compilation speed, and has no effect on code
9766 generation.
9767
9768 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
9769 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
9770 with a lower bound of 4096 (four megabytes) and an upper bound of
9771 131072 (128 megabytes). If GCC is not able to calculate RAM on a
9772 particular platform, the lower bound is used. Setting this parameter
9773 very large effectively disables garbage collection. Setting this
9774 parameter and @option{ggc-min-expand} to zero causes a full collection
9775 to occur at every opportunity.
9776
9777 @item max-reload-search-insns
9778 The maximum number of instruction reload should look backward for equivalent
9779 register. Increasing values mean more aggressive optimization, making the
9780 compilation time increase with probably slightly better performance.
9781 The default value is 100.
9782
9783 @item max-cselib-memory-locations
9784 The maximum number of memory locations cselib should take into account.
9785 Increasing values mean more aggressive optimization, making the compilation time
9786 increase with probably slightly better performance. The default value is 500.
9787
9788 @item max-sched-ready-insns
9789 The maximum number of instructions ready to be issued the scheduler should
9790 consider at any given time during the first scheduling pass. Increasing
9791 values mean more thorough searches, making the compilation time increase
9792 with probably little benefit. The default value is 100.
9793
9794 @item max-sched-region-blocks
9795 The maximum number of blocks in a region to be considered for
9796 interblock scheduling. The default value is 10.
9797
9798 @item max-pipeline-region-blocks
9799 The maximum number of blocks in a region to be considered for
9800 pipelining in the selective scheduler. The default value is 15.
9801
9802 @item max-sched-region-insns
9803 The maximum number of insns in a region to be considered for
9804 interblock scheduling. The default value is 100.
9805
9806 @item max-pipeline-region-insns
9807 The maximum number of insns in a region to be considered for
9808 pipelining in the selective scheduler. The default value is 200.
9809
9810 @item min-spec-prob
9811 The minimum probability (in percents) of reaching a source block
9812 for interblock speculative scheduling. The default value is 40.
9813
9814 @item max-sched-extend-regions-iters
9815 The maximum number of iterations through CFG to extend regions.
9816 A value of 0 (the default) disables region extensions.
9817
9818 @item max-sched-insn-conflict-delay
9819 The maximum conflict delay for an insn to be considered for speculative motion.
9820 The default value is 3.
9821
9822 @item sched-spec-prob-cutoff
9823 The minimal probability of speculation success (in percents), so that
9824 speculative insns are scheduled.
9825 The default value is 40.
9826
9827 @item sched-state-edge-prob-cutoff
9828 The minimum probability an edge must have for the scheduler to save its
9829 state across it.
9830 The default value is 10.
9831
9832 @item sched-mem-true-dep-cost
9833 Minimal distance (in CPU cycles) between store and load targeting same
9834 memory locations. The default value is 1.
9835
9836 @item selsched-max-lookahead
9837 The maximum size of the lookahead window of selective scheduling. It is a
9838 depth of search for available instructions.
9839 The default value is 50.
9840
9841 @item selsched-max-sched-times
9842 The maximum number of times that an instruction is scheduled during
9843 selective scheduling. This is the limit on the number of iterations
9844 through which the instruction may be pipelined. The default value is 2.
9845
9846 @item selsched-insns-to-rename
9847 The maximum number of best instructions in the ready list that are considered
9848 for renaming in the selective scheduler. The default value is 2.
9849
9850 @item sms-min-sc
9851 The minimum value of stage count that swing modulo scheduler
9852 generates. The default value is 2.
9853
9854 @item max-last-value-rtl
9855 The maximum size measured as number of RTLs that can be recorded in an expression
9856 in combiner for a pseudo register as last known value of that register. The default
9857 is 10000.
9858
9859 @item max-combine-insns
9860 The maximum number of instructions the RTL combiner tries to combine.
9861 The default value is 2 at @option{-Og} and 4 otherwise.
9862
9863 @item integer-share-limit
9864 Small integer constants can use a shared data structure, reducing the
9865 compiler's memory usage and increasing its speed. This sets the maximum
9866 value of a shared integer constant. The default value is 256.
9867
9868 @item ssp-buffer-size
9869 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
9870 protection when @option{-fstack-protection} is used.
9871
9872 @item min-size-for-stack-sharing
9873 The minimum size of variables taking part in stack slot sharing when not
9874 optimizing. The default value is 32.
9875
9876 @item max-jump-thread-duplication-stmts
9877 Maximum number of statements allowed in a block that needs to be
9878 duplicated when threading jumps.
9879
9880 @item max-fields-for-field-sensitive
9881 Maximum number of fields in a structure treated in
9882 a field sensitive manner during pointer analysis. The default is zero
9883 for @option{-O0} and @option{-O1},
9884 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
9885
9886 @item prefetch-latency
9887 Estimate on average number of instructions that are executed before
9888 prefetch finishes. The distance prefetched ahead is proportional
9889 to this constant. Increasing this number may also lead to less
9890 streams being prefetched (see @option{simultaneous-prefetches}).
9891
9892 @item simultaneous-prefetches
9893 Maximum number of prefetches that can run at the same time.
9894
9895 @item l1-cache-line-size
9896 The size of cache line in L1 cache, in bytes.
9897
9898 @item l1-cache-size
9899 The size of L1 cache, in kilobytes.
9900
9901 @item l2-cache-size
9902 The size of L2 cache, in kilobytes.
9903
9904 @item min-insn-to-prefetch-ratio
9905 The minimum ratio between the number of instructions and the
9906 number of prefetches to enable prefetching in a loop.
9907
9908 @item prefetch-min-insn-to-mem-ratio
9909 The minimum ratio between the number of instructions and the
9910 number of memory references to enable prefetching in a loop.
9911
9912 @item use-canonical-types
9913 Whether the compiler should use the ``canonical'' type system. By
9914 default, this should always be 1, which uses a more efficient internal
9915 mechanism for comparing types in C++ and Objective-C++. However, if
9916 bugs in the canonical type system are causing compilation failures,
9917 set this value to 0 to disable canonical types.
9918
9919 @item switch-conversion-max-branch-ratio
9920 Switch initialization conversion refuses to create arrays that are
9921 bigger than @option{switch-conversion-max-branch-ratio} times the number of
9922 branches in the switch.
9923
9924 @item max-partial-antic-length
9925 Maximum length of the partial antic set computed during the tree
9926 partial redundancy elimination optimization (@option{-ftree-pre}) when
9927 optimizing at @option{-O3} and above. For some sorts of source code
9928 the enhanced partial redundancy elimination optimization can run away,
9929 consuming all of the memory available on the host machine. This
9930 parameter sets a limit on the length of the sets that are computed,
9931 which prevents the runaway behavior. Setting a value of 0 for
9932 this parameter allows an unlimited set length.
9933
9934 @item sccvn-max-scc-size
9935 Maximum size of a strongly connected component (SCC) during SCCVN
9936 processing. If this limit is hit, SCCVN processing for the whole
9937 function is not done and optimizations depending on it are
9938 disabled. The default maximum SCC size is 10000.
9939
9940 @item sccvn-max-alias-queries-per-access
9941 Maximum number of alias-oracle queries we perform when looking for
9942 redundancies for loads and stores. If this limit is hit the search
9943 is aborted and the load or store is not considered redundant. The
9944 number of queries is algorithmically limited to the number of
9945 stores on all paths from the load to the function entry.
9946 The default maximum number of queries is 1000.
9947
9948 @item ira-max-loops-num
9949 IRA uses regional register allocation by default. If a function
9950 contains more loops than the number given by this parameter, only at most
9951 the given number of the most frequently-executed loops form regions
9952 for regional register allocation. The default value of the
9953 parameter is 100.
9954
9955 @item ira-max-conflict-table-size
9956 Although IRA uses a sophisticated algorithm to compress the conflict
9957 table, the table can still require excessive amounts of memory for
9958 huge functions. If the conflict table for a function could be more
9959 than the size in MB given by this parameter, the register allocator
9960 instead uses a faster, simpler, and lower-quality
9961 algorithm that does not require building a pseudo-register conflict table.
9962 The default value of the parameter is 2000.
9963
9964 @item ira-loop-reserved-regs
9965 IRA can be used to evaluate more accurate register pressure in loops
9966 for decisions to move loop invariants (see @option{-O3}). The number
9967 of available registers reserved for some other purposes is given
9968 by this parameter. The default value of the parameter is 2, which is
9969 the minimal number of registers needed by typical instructions.
9970 This value is the best found from numerous experiments.
9971
9972 @item lra-inheritance-ebb-probability-cutoff
9973 LRA tries to reuse values reloaded in registers in subsequent insns.
9974 This optimization is called inheritance. EBB is used as a region to
9975 do this optimization. The parameter defines a minimal fall-through
9976 edge probability in percentage used to add BB to inheritance EBB in
9977 LRA. The default value of the parameter is 40. The value was chosen
9978 from numerous runs of SPEC2000 on x86-64.
9979
9980 @item loop-invariant-max-bbs-in-loop
9981 Loop invariant motion can be very expensive, both in compilation time and
9982 in amount of needed compile-time memory, with very large loops. Loops
9983 with more basic blocks than this parameter won't have loop invariant
9984 motion optimization performed on them. The default value of the
9985 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
9986
9987 @item loop-max-datarefs-for-datadeps
9988 Building data dependencies is expensive for very large loops. This
9989 parameter limits the number of data references in loops that are
9990 considered for data dependence analysis. These large loops are no
9991 handled by the optimizations using loop data dependencies.
9992 The default value is 1000.
9993
9994 @item max-vartrack-size
9995 Sets a maximum number of hash table slots to use during variable
9996 tracking dataflow analysis of any function. If this limit is exceeded
9997 with variable tracking at assignments enabled, analysis for that
9998 function is retried without it, after removing all debug insns from
9999 the function. If the limit is exceeded even without debug insns, var
10000 tracking analysis is completely disabled for the function. Setting
10001 the parameter to zero makes it unlimited.
10002
10003 @item max-vartrack-expr-depth
10004 Sets a maximum number of recursion levels when attempting to map
10005 variable names or debug temporaries to value expressions. This trades
10006 compilation time for more complete debug information. If this is set too
10007 low, value expressions that are available and could be represented in
10008 debug information may end up not being used; setting this higher may
10009 enable the compiler to find more complex debug expressions, but compile
10010 time and memory use may grow. The default is 12.
10011
10012 @item min-nondebug-insn-uid
10013 Use uids starting at this parameter for nondebug insns. The range below
10014 the parameter is reserved exclusively for debug insns created by
10015 @option{-fvar-tracking-assignments}, but debug insns may get
10016 (non-overlapping) uids above it if the reserved range is exhausted.
10017
10018 @item ipa-sra-ptr-growth-factor
10019 IPA-SRA replaces a pointer to an aggregate with one or more new
10020 parameters only when their cumulative size is less or equal to
10021 @option{ipa-sra-ptr-growth-factor} times the size of the original
10022 pointer parameter.
10023
10024 @item sra-max-scalarization-size-Ospeed
10025 @item sra-max-scalarization-size-Osize
10026 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10027 replace scalar parts of aggregates with uses of independent scalar
10028 variables. These parameters control the maximum size, in storage units,
10029 of aggregate which is considered for replacement when compiling for
10030 speed
10031 (@option{sra-max-scalarization-size-Ospeed}) or size
10032 (@option{sra-max-scalarization-size-Osize}) respectively.
10033
10034 @item tm-max-aggregate-size
10035 When making copies of thread-local variables in a transaction, this
10036 parameter specifies the size in bytes after which variables are
10037 saved with the logging functions as opposed to save/restore code
10038 sequence pairs. This option only applies when using
10039 @option{-fgnu-tm}.
10040
10041 @item graphite-max-nb-scop-params
10042 To avoid exponential effects in the Graphite loop transforms, the
10043 number of parameters in a Static Control Part (SCoP) is bounded. The
10044 default value is 10 parameters. A variable whose value is unknown at
10045 compilation time and defined outside a SCoP is a parameter of the SCoP.
10046
10047 @item graphite-max-bbs-per-function
10048 To avoid exponential effects in the detection of SCoPs, the size of
10049 the functions analyzed by Graphite is bounded. The default value is
10050 100 basic blocks.
10051
10052 @item loop-block-tile-size
10053 Loop blocking or strip mining transforms, enabled with
10054 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10055 loop in the loop nest by a given number of iterations. The strip
10056 length can be changed using the @option{loop-block-tile-size}
10057 parameter. The default value is 51 iterations.
10058
10059 @item loop-unroll-jam-size
10060 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10061 default value is 4.
10062
10063 @item loop-unroll-jam-depth
10064 Specify the dimension to be unrolled (counting from the most inner loop)
10065 for the @option{-floop-unroll-and-jam}. The default value is 2.
10066
10067 @item ipa-cp-value-list-size
10068 IPA-CP attempts to track all possible values and types passed to a function's
10069 parameter in order to propagate them and perform devirtualization.
10070 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10071 stores per one formal parameter of a function.
10072
10073 @item ipa-cp-eval-threshold
10074 IPA-CP calculates its own score of cloning profitability heuristics
10075 and performs those cloning opportunities with scores that exceed
10076 @option{ipa-cp-eval-threshold}.
10077
10078 @item ipa-cp-recursion-penalty
10079 Percentage penalty the recursive functions will receive when they
10080 are evaluated for cloning.
10081
10082 @item ipa-cp-single-call-penalty
10083 Percentage penalty functions containg a single call to another
10084 function will receive when they are evaluated for cloning.
10085
10086
10087 @item ipa-max-agg-items
10088 IPA-CP is also capable to propagate a number of scalar values passed
10089 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10090 number of such values per one parameter.
10091
10092 @item ipa-cp-loop-hint-bonus
10093 When IPA-CP determines that a cloning candidate would make the number
10094 of iterations of a loop known, it adds a bonus of
10095 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10096 the candidate.
10097
10098 @item ipa-cp-array-index-hint-bonus
10099 When IPA-CP determines that a cloning candidate would make the index of
10100 an array access known, it adds a bonus of
10101 @option{ipa-cp-array-index-hint-bonus} to the profitability
10102 score of the candidate.
10103
10104 @item ipa-max-aa-steps
10105 During its analysis of function bodies, IPA-CP employs alias analysis
10106 in order to track values pointed to by function parameters. In order
10107 not spend too much time analyzing huge functions, it gives up and
10108 consider all memory clobbered after examining
10109 @option{ipa-max-aa-steps} statements modifying memory.
10110
10111 @item lto-partitions
10112 Specify desired number of partitions produced during WHOPR compilation.
10113 The number of partitions should exceed the number of CPUs used for compilation.
10114 The default value is 32.
10115
10116 @item lto-min-partition
10117 Size of minimal partition for WHOPR (in estimated instructions).
10118 This prevents expenses of splitting very small programs into too many
10119 partitions.
10120
10121 @item lto-max-partition
10122 Size of max partition for WHOPR (in estimated instructions).
10123 to provide an upper bound for individual size of partition.
10124 Meant to be used only with balanced partitioning.
10125
10126 @item cxx-max-namespaces-for-diagnostic-help
10127 The maximum number of namespaces to consult for suggestions when C++
10128 name lookup fails for an identifier. The default is 1000.
10129
10130 @item sink-frequency-threshold
10131 The maximum relative execution frequency (in percents) of the target block
10132 relative to a statement's original block to allow statement sinking of a
10133 statement. Larger numbers result in more aggressive statement sinking.
10134 The default value is 75. A small positive adjustment is applied for
10135 statements with memory operands as those are even more profitable so sink.
10136
10137 @item max-stores-to-sink
10138 The maximum number of conditional store pairs that can be sunk. Set to 0
10139 if either vectorization (@option{-ftree-vectorize}) or if-conversion
10140 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
10141
10142 @item allow-store-data-races
10143 Allow optimizers to introduce new data races on stores.
10144 Set to 1 to allow, otherwise to 0. This option is enabled by default
10145 at optimization level @option{-Ofast}.
10146
10147 @item case-values-threshold
10148 The smallest number of different values for which it is best to use a
10149 jump-table instead of a tree of conditional branches. If the value is
10150 0, use the default for the machine. The default is 0.
10151
10152 @item tree-reassoc-width
10153 Set the maximum number of instructions executed in parallel in
10154 reassociated tree. This parameter overrides target dependent
10155 heuristics used by default if has non zero value.
10156
10157 @item sched-pressure-algorithm
10158 Choose between the two available implementations of
10159 @option{-fsched-pressure}. Algorithm 1 is the original implementation
10160 and is the more likely to prevent instructions from being reordered.
10161 Algorithm 2 was designed to be a compromise between the relatively
10162 conservative approach taken by algorithm 1 and the rather aggressive
10163 approach taken by the default scheduler. It relies more heavily on
10164 having a regular register file and accurate register pressure classes.
10165 See @file{haifa-sched.c} in the GCC sources for more details.
10166
10167 The default choice depends on the target.
10168
10169 @item max-slsr-cand-scan
10170 Set the maximum number of existing candidates that are considered when
10171 seeking a basis for a new straight-line strength reduction candidate.
10172
10173 @item asan-globals
10174 Enable buffer overflow detection for global objects. This kind
10175 of protection is enabled by default if you are using
10176 @option{-fsanitize=address} option.
10177 To disable global objects protection use @option{--param asan-globals=0}.
10178
10179 @item asan-stack
10180 Enable buffer overflow detection for stack objects. This kind of
10181 protection is enabled by default when using @option{-fsanitize=address}.
10182 To disable stack protection use @option{--param asan-stack=0} option.
10183
10184 @item asan-instrument-reads
10185 Enable buffer overflow detection for memory reads. This kind of
10186 protection is enabled by default when using @option{-fsanitize=address}.
10187 To disable memory reads protection use
10188 @option{--param asan-instrument-reads=0}.
10189
10190 @item asan-instrument-writes
10191 Enable buffer overflow detection for memory writes. This kind of
10192 protection is enabled by default when using @option{-fsanitize=address}.
10193 To disable memory writes protection use
10194 @option{--param asan-instrument-writes=0} option.
10195
10196 @item asan-memintrin
10197 Enable detection for built-in functions. This kind of protection
10198 is enabled by default when using @option{-fsanitize=address}.
10199 To disable built-in functions protection use
10200 @option{--param asan-memintrin=0}.
10201
10202 @item asan-use-after-return
10203 Enable detection of use-after-return. This kind of protection
10204 is enabled by default when using @option{-fsanitize=address} option.
10205 To disable use-after-return detection use
10206 @option{--param asan-use-after-return=0}.
10207
10208 Note: The check is disabled by default at runtime. To enable the check,
10209 you should set environment variable @env{ASAN_OPTIONS} to
10210 @code{detect_stack_use_after_return=1}.
10211
10212 @item asan-instrumentation-with-call-threshold
10213 If number of memory accesses in function being instrumented
10214 is greater or equal to this number, use callbacks instead of inline checks.
10215 E.g. to disable inline code use
10216 @option{--param asan-instrumentation-with-call-threshold=0}.
10217
10218 @item chkp-max-ctor-size
10219 Static constructors generated by Pointer Bounds Checker may become very
10220 large and significantly increase compile time at optimization level
10221 @option{-O1} and higher. This parameter is a maximum nubmer of statements
10222 in a single generated constructor. Default value is 5000.
10223
10224 @item max-fsm-thread-path-insns
10225 Maximum number of instructions to copy when duplicating blocks on a
10226 finite state automaton jump thread path. The default is 100.
10227
10228 @item max-fsm-thread-length
10229 Maximum number of basic blocks on a finite state automaton jump thread
10230 path. The default is 10.
10231
10232 @item max-fsm-thread-paths
10233 Maximum number of new jump thread paths to create for a finite state
10234 automaton. The default is 50.
10235
10236 @item parloops-chunk-size
10237 Chunk size of omp schedule for loops parallelized by parloops. The default
10238 is 0.
10239
10240 @item parloops-schedule
10241 Schedule type of omp schedule for loops parallelized by parloops (static,
10242 dynamic, guided, auto, runtime). The default is static.
10243
10244 @item max-ssa-name-query-depth
10245 Maximum depth of recursion when querying properties of SSA names in things
10246 like fold routines. One level of recursion corresponds to following a
10247 use-def chain.
10248
10249 @item hsa-gen-debug-stores
10250 Enable emission of special debug stores within HSA kernels which are
10251 then read and reported by libgomp plugin. Generation of these stores
10252 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
10253 enable it.
10254
10255 @item max-speculative-devirt-maydefs
10256 The maximum number of may-defs we analyze when looking for a must-def
10257 specifying the dynamic type of an object that invokes a virtual call
10258 we may be able to devirtualize speculatively.
10259
10260 @item max-vrp-switch-assertions
10261 The maximum number of assertions to add along the default edge of a switch
10262 statement during VRP. The default is 10.
10263 @end table
10264 @end table
10265
10266 @node Instrumentation Options
10267 @section Program Instrumentation Options
10268 @cindex instrumentation options
10269 @cindex program instrumentation options
10270 @cindex run-time error checking options
10271 @cindex profiling options
10272 @cindex options, program instrumentation
10273 @cindex options, run-time error checking
10274 @cindex options, profiling
10275
10276 GCC supports a number of command-line options that control adding
10277 run-time instrumentation to the code it normally generates.
10278 For example, one purpose of instrumentation is collect profiling
10279 statistics for use in finding program hot spots, code coverage
10280 analysis, or profile-guided optimizations.
10281 Another class of program instrumentation is adding run-time checking
10282 to detect programming errors like invalid pointer
10283 dereferences or out-of-bounds array accesses, as well as deliberately
10284 hostile attacks such as stack smashing or C++ vtable hijacking.
10285 There is also a general hook which can be used to implement other
10286 forms of tracing or function-level instrumentation for debug or
10287 program analysis purposes.
10288
10289 @table @gcctabopt
10290 @cindex @command{prof}
10291 @item -p
10292 @opindex p
10293 Generate extra code to write profile information suitable for the
10294 analysis program @command{prof}. You must use this option when compiling
10295 the source files you want data about, and you must also use it when
10296 linking.
10297
10298 @cindex @command{gprof}
10299 @item -pg
10300 @opindex pg
10301 Generate extra code to write profile information suitable for the
10302 analysis program @command{gprof}. You must use this option when compiling
10303 the source files you want data about, and you must also use it when
10304 linking.
10305
10306 @item -fprofile-arcs
10307 @opindex fprofile-arcs
10308 Add code so that program flow @dfn{arcs} are instrumented. During
10309 execution the program records how many times each branch and call is
10310 executed and how many times it is taken or returns. When the compiled
10311 program exits it saves this data to a file called
10312 @file{@var{auxname}.gcda} for each source file. The data may be used for
10313 profile-directed optimizations (@option{-fbranch-probabilities}), or for
10314 test coverage analysis (@option{-ftest-coverage}). Each object file's
10315 @var{auxname} is generated from the name of the output file, if
10316 explicitly specified and it is not the final executable, otherwise it is
10317 the basename of the source file. In both cases any suffix is removed
10318 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
10319 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
10320 @xref{Cross-profiling}.
10321
10322 @cindex @command{gcov}
10323 @item --coverage
10324 @opindex coverage
10325
10326 This option is used to compile and link code instrumented for coverage
10327 analysis. The option is a synonym for @option{-fprofile-arcs}
10328 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
10329 linking). See the documentation for those options for more details.
10330
10331 @itemize
10332
10333 @item
10334 Compile the source files with @option{-fprofile-arcs} plus optimization
10335 and code generation options. For test coverage analysis, use the
10336 additional @option{-ftest-coverage} option. You do not need to profile
10337 every source file in a program.
10338
10339 @item
10340 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
10341 (the latter implies the former).
10342
10343 @item
10344 Run the program on a representative workload to generate the arc profile
10345 information. This may be repeated any number of times. You can run
10346 concurrent instances of your program, and provided that the file system
10347 supports locking, the data files will be correctly updated. Also
10348 @code{fork} calls are detected and correctly handled (double counting
10349 will not happen).
10350
10351 @item
10352 For profile-directed optimizations, compile the source files again with
10353 the same optimization and code generation options plus
10354 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
10355 Control Optimization}).
10356
10357 @item
10358 For test coverage analysis, use @command{gcov} to produce human readable
10359 information from the @file{.gcno} and @file{.gcda} files. Refer to the
10360 @command{gcov} documentation for further information.
10361
10362 @end itemize
10363
10364 With @option{-fprofile-arcs}, for each function of your program GCC
10365 creates a program flow graph, then finds a spanning tree for the graph.
10366 Only arcs that are not on the spanning tree have to be instrumented: the
10367 compiler adds code to count the number of times that these arcs are
10368 executed. When an arc is the only exit or only entrance to a block, the
10369 instrumentation code can be added to the block; otherwise, a new basic
10370 block must be created to hold the instrumentation code.
10371
10372 @need 2000
10373 @item -ftest-coverage
10374 @opindex ftest-coverage
10375 Produce a notes file that the @command{gcov} code-coverage utility
10376 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
10377 show program coverage. Each source file's note file is called
10378 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
10379 above for a description of @var{auxname} and instructions on how to
10380 generate test coverage data. Coverage data matches the source files
10381 more closely if you do not optimize.
10382
10383 @item -fprofile-dir=@var{path}
10384 @opindex fprofile-dir
10385
10386 Set the directory to search for the profile data files in to @var{path}.
10387 This option affects only the profile data generated by
10388 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
10389 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
10390 and its related options. Both absolute and relative paths can be used.
10391 By default, GCC uses the current directory as @var{path}, thus the
10392 profile data file appears in the same directory as the object file.
10393
10394 @item -fprofile-generate
10395 @itemx -fprofile-generate=@var{path}
10396 @opindex fprofile-generate
10397
10398 Enable options usually used for instrumenting application to produce
10399 profile useful for later recompilation with profile feedback based
10400 optimization. You must use @option{-fprofile-generate} both when
10401 compiling and when linking your program.
10402
10403 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
10404
10405 If @var{path} is specified, GCC looks at the @var{path} to find
10406 the profile feedback data files. See @option{-fprofile-dir}.
10407
10408 To optimize the program based on the collected profile information, use
10409 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
10410
10411 @item -fprofile-update=@var{method}
10412 @opindex fprofile-update
10413
10414 Alter the update method for an application instrumented for profile
10415 feedback based optimization. The @var{method} argument should be one of
10416 @samp{single} or @samp{atomic}. The first one is useful for single-threaded
10417 applications, while the second one prevents profile corruption by emitting
10418 thread-safe code.
10419
10420 @strong{Warning:} When an application does not properly join all threads
10421 (or creates an detached thread), a profile file can be still corrupted.
10422
10423 @item -fsanitize=address
10424 @opindex fsanitize=address
10425 Enable AddressSanitizer, a fast memory error detector.
10426 Memory access instructions are instrumented to detect
10427 out-of-bounds and use-after-free bugs.
10428 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
10429 more details. The run-time behavior can be influenced using the
10430 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
10431 the available options are shown at startup of the instrumented program. See
10432 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
10433 for a list of supported options.
10434 The option can't be combined with @option{-fsanitize=thread}.
10435
10436 @item -fsanitize=kernel-address
10437 @opindex fsanitize=kernel-address
10438 Enable AddressSanitizer for Linux kernel.
10439 See @uref{https://github.com/google/kasan/wiki} for more details.
10440
10441 @item -fsanitize=thread
10442 @opindex fsanitize=thread
10443 Enable ThreadSanitizer, a fast data race detector.
10444 Memory access instructions are instrumented to detect
10445 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
10446 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
10447 environment variable; see
10448 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
10449 supported options.
10450 The option can't be combined with @option{-fsanitize=address}
10451 and/or @option{-fsanitize=leak}.
10452
10453 @item -fsanitize=leak
10454 @opindex fsanitize=leak
10455 Enable LeakSanitizer, a memory leak detector.
10456 This option only matters for linking of executables and
10457 the executable is linked against a library that overrides @code{malloc}
10458 and other allocator functions. See
10459 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
10460 details. The run-time behavior can be influenced using the
10461 @env{LSAN_OPTIONS} environment variable.
10462 The option can't be combined with @option{-fsanitize=thread}.
10463
10464 @item -fsanitize=undefined
10465 @opindex fsanitize=undefined
10466 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
10467 Various computations are instrumented to detect undefined behavior
10468 at runtime. Current suboptions are:
10469
10470 @table @gcctabopt
10471
10472 @item -fsanitize=shift
10473 @opindex fsanitize=shift
10474 This option enables checking that the result of a shift operation is
10475 not undefined. Note that what exactly is considered undefined differs
10476 slightly between C and C++, as well as between ISO C90 and C99, etc.
10477
10478 @item -fsanitize=integer-divide-by-zero
10479 @opindex fsanitize=integer-divide-by-zero
10480 Detect integer division by zero as well as @code{INT_MIN / -1} division.
10481
10482 @item -fsanitize=unreachable
10483 @opindex fsanitize=unreachable
10484 With this option, the compiler turns the @code{__builtin_unreachable}
10485 call into a diagnostics message call instead. When reaching the
10486 @code{__builtin_unreachable} call, the behavior is undefined.
10487
10488 @item -fsanitize=vla-bound
10489 @opindex fsanitize=vla-bound
10490 This option instructs the compiler to check that the size of a variable
10491 length array is positive.
10492
10493 @item -fsanitize=null
10494 @opindex fsanitize=null
10495 This option enables pointer checking. Particularly, the application
10496 built with this option turned on will issue an error message when it
10497 tries to dereference a NULL pointer, or if a reference (possibly an
10498 rvalue reference) is bound to a NULL pointer, or if a method is invoked
10499 on an object pointed by a NULL pointer.
10500
10501 @item -fsanitize=return
10502 @opindex fsanitize=return
10503 This option enables return statement checking. Programs
10504 built with this option turned on will issue an error message
10505 when the end of a non-void function is reached without actually
10506 returning a value. This option works in C++ only.
10507
10508 @item -fsanitize=signed-integer-overflow
10509 @opindex fsanitize=signed-integer-overflow
10510 This option enables signed integer overflow checking. We check that
10511 the result of @code{+}, @code{*}, and both unary and binary @code{-}
10512 does not overflow in the signed arithmetics. Note, integer promotion
10513 rules must be taken into account. That is, the following is not an
10514 overflow:
10515 @smallexample
10516 signed char a = SCHAR_MAX;
10517 a++;
10518 @end smallexample
10519
10520 @item -fsanitize=bounds
10521 @opindex fsanitize=bounds
10522 This option enables instrumentation of array bounds. Various out of bounds
10523 accesses are detected. Flexible array members, flexible array member-like
10524 arrays, and initializers of variables with static storage are not instrumented.
10525
10526 @item -fsanitize=bounds-strict
10527 @opindex fsanitize=bounds-strict
10528 This option enables strict instrumentation of array bounds. Most out of bounds
10529 accesses are detected, including flexible array members and flexible array
10530 member-like arrays. Initializers of variables with static storage are not
10531 instrumented.
10532
10533 @item -fsanitize=alignment
10534 @opindex fsanitize=alignment
10535
10536 This option enables checking of alignment of pointers when they are
10537 dereferenced, or when a reference is bound to insufficiently aligned target,
10538 or when a method or constructor is invoked on insufficiently aligned object.
10539
10540 @item -fsanitize=object-size
10541 @opindex fsanitize=object-size
10542 This option enables instrumentation of memory references using the
10543 @code{__builtin_object_size} function. Various out of bounds pointer
10544 accesses are detected.
10545
10546 @item -fsanitize=float-divide-by-zero
10547 @opindex fsanitize=float-divide-by-zero
10548 Detect floating-point division by zero. Unlike other similar options,
10549 @option{-fsanitize=float-divide-by-zero} is not enabled by
10550 @option{-fsanitize=undefined}, since floating-point division by zero can
10551 be a legitimate way of obtaining infinities and NaNs.
10552
10553 @item -fsanitize=float-cast-overflow
10554 @opindex fsanitize=float-cast-overflow
10555 This option enables floating-point type to integer conversion checking.
10556 We check that the result of the conversion does not overflow.
10557 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
10558 not enabled by @option{-fsanitize=undefined}.
10559 This option does not work well with @code{FE_INVALID} exceptions enabled.
10560
10561 @item -fsanitize=nonnull-attribute
10562 @opindex fsanitize=nonnull-attribute
10563
10564 This option enables instrumentation of calls, checking whether null values
10565 are not passed to arguments marked as requiring a non-null value by the
10566 @code{nonnull} function attribute.
10567
10568 @item -fsanitize=returns-nonnull-attribute
10569 @opindex fsanitize=returns-nonnull-attribute
10570
10571 This option enables instrumentation of return statements in functions
10572 marked with @code{returns_nonnull} function attribute, to detect returning
10573 of null values from such functions.
10574
10575 @item -fsanitize=bool
10576 @opindex fsanitize=bool
10577
10578 This option enables instrumentation of loads from bool. If a value other
10579 than 0/1 is loaded, a run-time error is issued.
10580
10581 @item -fsanitize=enum
10582 @opindex fsanitize=enum
10583
10584 This option enables instrumentation of loads from an enum type. If
10585 a value outside the range of values for the enum type is loaded,
10586 a run-time error is issued.
10587
10588 @item -fsanitize=vptr
10589 @opindex fsanitize=vptr
10590
10591 This option enables instrumentation of C++ member function calls, member
10592 accesses and some conversions between pointers to base and derived classes,
10593 to verify the referenced object has the correct dynamic type.
10594
10595 @end table
10596
10597 While @option{-ftrapv} causes traps for signed overflows to be emitted,
10598 @option{-fsanitize=undefined} gives a diagnostic message.
10599 This currently works only for the C family of languages.
10600
10601 @item -fno-sanitize=all
10602 @opindex fno-sanitize=all
10603
10604 This option disables all previously enabled sanitizers.
10605 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
10606 together.
10607
10608 @item -fasan-shadow-offset=@var{number}
10609 @opindex fasan-shadow-offset
10610 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
10611 It is useful for experimenting with different shadow memory layouts in
10612 Kernel AddressSanitizer.
10613
10614 @item -fsanitize-sections=@var{s1},@var{s2},...
10615 @opindex fsanitize-sections
10616 Sanitize global variables in selected user-defined sections. @var{si} may
10617 contain wildcards.
10618
10619 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
10620 @opindex fsanitize-recover
10621 @opindex fno-sanitize-recover
10622 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
10623 mentioned in comma-separated list of @var{opts}. Enabling this option
10624 for a sanitizer component causes it to attempt to continue
10625 running the program as if no error happened. This means multiple
10626 runtime errors can be reported in a single program run, and the exit
10627 code of the program may indicate success even when errors
10628 have been reported. The @option{-fno-sanitize-recover=} option
10629 can be used to alter
10630 this behavior: only the first detected error is reported
10631 and program then exits with a non-zero exit code.
10632
10633 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
10634 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
10635 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
10636 @option{-fsanitize=bounds-strict},
10637 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
10638 For these sanitizers error recovery is turned on by default, except @option{-fsanitize=address},
10639 for which this feature is experimental.
10640 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
10641 accepted, the former enables recovery for all sanitizers that support it,
10642 the latter disables recovery for all sanitizers that support it.
10643
10644 Even if a recovery mode is turned on the compiler side, it needs to be also
10645 enabled on the runtime library side, otherwise the failures are still fatal.
10646 The runtime library defaults to @code{halt_on_error=0} for
10647 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
10648 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
10649 setting the @code{halt_on_error} flag in the corresponding environment variable.
10650
10651 Syntax without explicit @var{opts} parameter is deprecated. It is equivalent to
10652 @smallexample
10653 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
10654 @end smallexample
10655 @noindent
10656 Similarly @option{-fno-sanitize-recover} is equivalent to
10657 @smallexample
10658 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
10659 @end smallexample
10660
10661 @item -fsanitize-undefined-trap-on-error
10662 @opindex fsanitize-undefined-trap-on-error
10663 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
10664 report undefined behavior using @code{__builtin_trap} rather than
10665 a @code{libubsan} library routine. The advantage of this is that the
10666 @code{libubsan} library is not needed and is not linked in, so this
10667 is usable even in freestanding environments.
10668
10669 @item -fsanitize-coverage=trace-pc
10670 @opindex fsanitize-coverage=trace-pc
10671 Enable coverage-guided fuzzing code instrumentation.
10672 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
10673
10674 @item -fbounds-check
10675 @opindex fbounds-check
10676 For front ends that support it, generate additional code to check that
10677 indices used to access arrays are within the declared range. This is
10678 currently only supported by the Java and Fortran front ends, where
10679 this option defaults to true and false respectively.
10680
10681 @item -fcheck-pointer-bounds
10682 @opindex fcheck-pointer-bounds
10683 @opindex fno-check-pointer-bounds
10684 @cindex Pointer Bounds Checker options
10685 Enable Pointer Bounds Checker instrumentation. Each memory reference
10686 is instrumented with checks of the pointer used for memory access against
10687 bounds associated with that pointer.
10688
10689 Currently there
10690 is only an implementation for Intel MPX available, thus x86 GNU/Linux target
10691 and @option{-mmpx} are required to enable this feature.
10692 MPX-based instrumentation requires
10693 a runtime library to enable MPX in hardware and handle bounds
10694 violation signals. By default when @option{-fcheck-pointer-bounds}
10695 and @option{-mmpx} options are used to link a program, the GCC driver
10696 links against the @file{libmpx} and @file{libmpxwrappers} libraries.
10697 Bounds checking on calls to dynamic libraries requires a linker
10698 with @option{-z bndplt} support; if GCC was configured with a linker
10699 without support for this option (including the Gold linker and older
10700 versions of ld), a warning is given if you link with @option{-mmpx}
10701 without also specifying @option{-static}, since the overall effectiveness
10702 of the bounds checking protection is reduced.
10703 See also @option{-static-libmpxwrappers}.
10704
10705 MPX-based instrumentation
10706 may be used for debugging and also may be included in production code
10707 to increase program security. Depending on usage, you may
10708 have different requirements for the runtime library. The current version
10709 of the MPX runtime library is more oriented for use as a debugging
10710 tool. MPX runtime library usage implies @option{-lpthread}. See
10711 also @option{-static-libmpx}. The runtime library behavior can be
10712 influenced using various @env{CHKP_RT_*} environment variables. See
10713 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
10714 for more details.
10715
10716 Generated instrumentation may be controlled by various
10717 @option{-fchkp-*} options and by the @code{bnd_variable_size}
10718 structure field attribute (@pxref{Type Attributes}) and
10719 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
10720 (@pxref{Function Attributes}). GCC also provides a number of built-in
10721 functions for controlling the Pointer Bounds Checker. @xref{Pointer
10722 Bounds Checker builtins}, for more information.
10723
10724 @item -fchkp-check-incomplete-type
10725 @opindex fchkp-check-incomplete-type
10726 @opindex fno-chkp-check-incomplete-type
10727 Generate pointer bounds checks for variables with incomplete type.
10728 Enabled by default.
10729
10730 @item -fchkp-narrow-bounds
10731 @opindex fchkp-narrow-bounds
10732 @opindex fno-chkp-narrow-bounds
10733 Controls bounds used by Pointer Bounds Checker for pointers to object
10734 fields. If narrowing is enabled then field bounds are used. Otherwise
10735 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
10736 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
10737
10738 @item -fchkp-first-field-has-own-bounds
10739 @opindex fchkp-first-field-has-own-bounds
10740 @opindex fno-chkp-first-field-has-own-bounds
10741 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
10742 first field in the structure. By default a pointer to the first field has
10743 the same bounds as a pointer to the whole structure.
10744
10745 @item -fchkp-narrow-to-innermost-array
10746 @opindex fchkp-narrow-to-innermost-array
10747 @opindex fno-chkp-narrow-to-innermost-array
10748 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
10749 case of nested static array access. By default this option is disabled and
10750 bounds of the outermost array are used.
10751
10752 @item -fchkp-optimize
10753 @opindex fchkp-optimize
10754 @opindex fno-chkp-optimize
10755 Enables Pointer Bounds Checker optimizations. Enabled by default at
10756 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
10757
10758 @item -fchkp-use-fast-string-functions
10759 @opindex fchkp-use-fast-string-functions
10760 @opindex fno-chkp-use-fast-string-functions
10761 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
10762 by Pointer Bounds Checker. Disabled by default.
10763
10764 @item -fchkp-use-nochk-string-functions
10765 @opindex fchkp-use-nochk-string-functions
10766 @opindex fno-chkp-use-nochk-string-functions
10767 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
10768 by Pointer Bounds Checker. Disabled by default.
10769
10770 @item -fchkp-use-static-bounds
10771 @opindex fchkp-use-static-bounds
10772 @opindex fno-chkp-use-static-bounds
10773 Allow Pointer Bounds Checker to generate static bounds holding
10774 bounds of static variables. Enabled by default.
10775
10776 @item -fchkp-use-static-const-bounds
10777 @opindex fchkp-use-static-const-bounds
10778 @opindex fno-chkp-use-static-const-bounds
10779 Use statically-initialized bounds for constant bounds instead of
10780 generating them each time they are required. By default enabled when
10781 @option{-fchkp-use-static-bounds} is enabled.
10782
10783 @item -fchkp-treat-zero-dynamic-size-as-infinite
10784 @opindex fchkp-treat-zero-dynamic-size-as-infinite
10785 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
10786 With this option, objects with incomplete type whose
10787 dynamically-obtained size is zero are treated as having infinite size
10788 instead by Pointer Bounds
10789 Checker. This option may be helpful if a program is linked with a library
10790 missing size information for some symbols. Disabled by default.
10791
10792 @item -fchkp-check-read
10793 @opindex fchkp-check-read
10794 @opindex fno-chkp-check-read
10795 Instructs Pointer Bounds Checker to generate checks for all read
10796 accesses to memory. Enabled by default.
10797
10798 @item -fchkp-check-write
10799 @opindex fchkp-check-write
10800 @opindex fno-chkp-check-write
10801 Instructs Pointer Bounds Checker to generate checks for all write
10802 accesses to memory. Enabled by default.
10803
10804 @item -fchkp-store-bounds
10805 @opindex fchkp-store-bounds
10806 @opindex fno-chkp-store-bounds
10807 Instructs Pointer Bounds Checker to generate bounds stores for
10808 pointer writes. Enabled by default.
10809
10810 @item -fchkp-instrument-calls
10811 @opindex fchkp-instrument-calls
10812 @opindex fno-chkp-instrument-calls
10813 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
10814 Enabled by default.
10815
10816 @item -fchkp-instrument-marked-only
10817 @opindex fchkp-instrument-marked-only
10818 @opindex fno-chkp-instrument-marked-only
10819 Instructs Pointer Bounds Checker to instrument only functions
10820 marked with the @code{bnd_instrument} attribute
10821 (@pxref{Function Attributes}). Disabled by default.
10822
10823 @item -fchkp-use-wrappers
10824 @opindex fchkp-use-wrappers
10825 @opindex fno-chkp-use-wrappers
10826 Allows Pointer Bounds Checker to replace calls to built-in functions
10827 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
10828 is used to link a program, the GCC driver automatically links
10829 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
10830 Enabled by default.
10831
10832 @item -fstack-protector
10833 @opindex fstack-protector
10834 Emit extra code to check for buffer overflows, such as stack smashing
10835 attacks. This is done by adding a guard variable to functions with
10836 vulnerable objects. This includes functions that call @code{alloca}, and
10837 functions with buffers larger than 8 bytes. The guards are initialized
10838 when a function is entered and then checked when the function exits.
10839 If a guard check fails, an error message is printed and the program exits.
10840
10841 @item -fstack-protector-all
10842 @opindex fstack-protector-all
10843 Like @option{-fstack-protector} except that all functions are protected.
10844
10845 @item -fstack-protector-strong
10846 @opindex fstack-protector-strong
10847 Like @option{-fstack-protector} but includes additional functions to
10848 be protected --- those that have local array definitions, or have
10849 references to local frame addresses.
10850
10851 @item -fstack-protector-explicit
10852 @opindex fstack-protector-explicit
10853 Like @option{-fstack-protector} but only protects those functions which
10854 have the @code{stack_protect} attribute.
10855
10856 @item -fstack-check
10857 @opindex fstack-check
10858 Generate code to verify that you do not go beyond the boundary of the
10859 stack. You should specify this flag if you are running in an
10860 environment with multiple threads, but you only rarely need to specify it in
10861 a single-threaded environment since stack overflow is automatically
10862 detected on nearly all systems if there is only one stack.
10863
10864 Note that this switch does not actually cause checking to be done; the
10865 operating system or the language runtime must do that. The switch causes
10866 generation of code to ensure that they see the stack being extended.
10867
10868 You can additionally specify a string parameter: @samp{no} means no
10869 checking, @samp{generic} means force the use of old-style checking,
10870 @samp{specific} means use the best checking method and is equivalent
10871 to bare @option{-fstack-check}.
10872
10873 Old-style checking is a generic mechanism that requires no specific
10874 target support in the compiler but comes with the following drawbacks:
10875
10876 @enumerate
10877 @item
10878 Modified allocation strategy for large objects: they are always
10879 allocated dynamically if their size exceeds a fixed threshold.
10880
10881 @item
10882 Fixed limit on the size of the static frame of functions: when it is
10883 topped by a particular function, stack checking is not reliable and
10884 a warning is issued by the compiler.
10885
10886 @item
10887 Inefficiency: because of both the modified allocation strategy and the
10888 generic implementation, code performance is hampered.
10889 @end enumerate
10890
10891 Note that old-style stack checking is also the fallback method for
10892 @samp{specific} if no target support has been added in the compiler.
10893
10894 @item -fstack-limit-register=@var{reg}
10895 @itemx -fstack-limit-symbol=@var{sym}
10896 @itemx -fno-stack-limit
10897 @opindex fstack-limit-register
10898 @opindex fstack-limit-symbol
10899 @opindex fno-stack-limit
10900 Generate code to ensure that the stack does not grow beyond a certain value,
10901 either the value of a register or the address of a symbol. If a larger
10902 stack is required, a signal is raised at run time. For most targets,
10903 the signal is raised before the stack overruns the boundary, so
10904 it is possible to catch the signal without taking special precautions.
10905
10906 For instance, if the stack starts at absolute address @samp{0x80000000}
10907 and grows downwards, you can use the flags
10908 @option{-fstack-limit-symbol=__stack_limit} and
10909 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
10910 of 128KB@. Note that this may only work with the GNU linker.
10911
10912 You can locally override stack limit checking by using the
10913 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
10914
10915 @item -fsplit-stack
10916 @opindex fsplit-stack
10917 Generate code to automatically split the stack before it overflows.
10918 The resulting program has a discontiguous stack which can only
10919 overflow if the program is unable to allocate any more memory. This
10920 is most useful when running threaded programs, as it is no longer
10921 necessary to calculate a good stack size to use for each thread. This
10922 is currently only implemented for the x86 targets running
10923 GNU/Linux.
10924
10925 When code compiled with @option{-fsplit-stack} calls code compiled
10926 without @option{-fsplit-stack}, there may not be much stack space
10927 available for the latter code to run. If compiling all code,
10928 including library code, with @option{-fsplit-stack} is not an option,
10929 then the linker can fix up these calls so that the code compiled
10930 without @option{-fsplit-stack} always has a large stack. Support for
10931 this is implemented in the gold linker in GNU binutils release 2.21
10932 and later.
10933
10934 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
10935 @opindex fvtable-verify
10936 This option is only available when compiling C++ code.
10937 It turns on (or off, if using @option{-fvtable-verify=none}) the security
10938 feature that verifies at run time, for every virtual call, that
10939 the vtable pointer through which the call is made is valid for the type of
10940 the object, and has not been corrupted or overwritten. If an invalid vtable
10941 pointer is detected at run time, an error is reported and execution of the
10942 program is immediately halted.
10943
10944 This option causes run-time data structures to be built at program startup,
10945 which are used for verifying the vtable pointers.
10946 The options @samp{std} and @samp{preinit}
10947 control the timing of when these data structures are built. In both cases the
10948 data structures are built before execution reaches @code{main}. Using
10949 @option{-fvtable-verify=std} causes the data structures to be built after
10950 shared libraries have been loaded and initialized.
10951 @option{-fvtable-verify=preinit} causes them to be built before shared
10952 libraries have been loaded and initialized.
10953
10954 If this option appears multiple times in the command line with different
10955 values specified, @samp{none} takes highest priority over both @samp{std} and
10956 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
10957
10958 @item -fvtv-debug
10959 @opindex fvtv-debug
10960 When used in conjunction with @option{-fvtable-verify=std} or
10961 @option{-fvtable-verify=preinit}, causes debug versions of the
10962 runtime functions for the vtable verification feature to be called.
10963 This flag also causes the compiler to log information about which
10964 vtable pointers it finds for each class.
10965 This information is written to a file named @file{vtv_set_ptr_data.log}
10966 in the directory named by the environment variable @env{VTV_LOGS_DIR}
10967 if that is defined or the current working directory otherwise.
10968
10969 Note: This feature @emph{appends} data to the log file. If you want a fresh log
10970 file, be sure to delete any existing one.
10971
10972 @item -fvtv-counts
10973 @opindex fvtv-counts
10974 This is a debugging flag. When used in conjunction with
10975 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
10976 causes the compiler to keep track of the total number of virtual calls
10977 it encounters and the number of verifications it inserts. It also
10978 counts the number of calls to certain run-time library functions
10979 that it inserts and logs this information for each compilation unit.
10980 The compiler writes this information to a file named
10981 @file{vtv_count_data.log} in the directory named by the environment
10982 variable @env{VTV_LOGS_DIR} if that is defined or the current working
10983 directory otherwise. It also counts the size of the vtable pointer sets
10984 for each class, and writes this information to @file{vtv_class_set_sizes.log}
10985 in the same directory.
10986
10987 Note: This feature @emph{appends} data to the log files. To get fresh log
10988 files, be sure to delete any existing ones.
10989
10990 @item -finstrument-functions
10991 @opindex finstrument-functions
10992 Generate instrumentation calls for entry and exit to functions. Just
10993 after function entry and just before function exit, the following
10994 profiling functions are called with the address of the current
10995 function and its call site. (On some platforms,
10996 @code{__builtin_return_address} does not work beyond the current
10997 function, so the call site information may not be available to the
10998 profiling functions otherwise.)
10999
11000 @smallexample
11001 void __cyg_profile_func_enter (void *this_fn,
11002 void *call_site);
11003 void __cyg_profile_func_exit (void *this_fn,
11004 void *call_site);
11005 @end smallexample
11006
11007 The first argument is the address of the start of the current function,
11008 which may be looked up exactly in the symbol table.
11009
11010 This instrumentation is also done for functions expanded inline in other
11011 functions. The profiling calls indicate where, conceptually, the
11012 inline function is entered and exited. This means that addressable
11013 versions of such functions must be available. If all your uses of a
11014 function are expanded inline, this may mean an additional expansion of
11015 code size. If you use @code{extern inline} in your C code, an
11016 addressable version of such functions must be provided. (This is
11017 normally the case anyway, but if you get lucky and the optimizer always
11018 expands the functions inline, you might have gotten away without
11019 providing static copies.)
11020
11021 A function may be given the attribute @code{no_instrument_function}, in
11022 which case this instrumentation is not done. This can be used, for
11023 example, for the profiling functions listed above, high-priority
11024 interrupt routines, and any functions from which the profiling functions
11025 cannot safely be called (perhaps signal handlers, if the profiling
11026 routines generate output or allocate memory).
11027
11028 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
11029 @opindex finstrument-functions-exclude-file-list
11030
11031 Set the list of functions that are excluded from instrumentation (see
11032 the description of @option{-finstrument-functions}). If the file that
11033 contains a function definition matches with one of @var{file}, then
11034 that function is not instrumented. The match is done on substrings:
11035 if the @var{file} parameter is a substring of the file name, it is
11036 considered to be a match.
11037
11038 For example:
11039
11040 @smallexample
11041 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
11042 @end smallexample
11043
11044 @noindent
11045 excludes any inline function defined in files whose pathnames
11046 contain @file{/bits/stl} or @file{include/sys}.
11047
11048 If, for some reason, you want to include letter @samp{,} in one of
11049 @var{sym}, write @samp{\,}. For example,
11050 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
11051 (note the single quote surrounding the option).
11052
11053 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
11054 @opindex finstrument-functions-exclude-function-list
11055
11056 This is similar to @option{-finstrument-functions-exclude-file-list},
11057 but this option sets the list of function names to be excluded from
11058 instrumentation. The function name to be matched is its user-visible
11059 name, such as @code{vector<int> blah(const vector<int> &)}, not the
11060 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
11061 match is done on substrings: if the @var{sym} parameter is a substring
11062 of the function name, it is considered to be a match. For C99 and C++
11063 extended identifiers, the function name must be given in UTF-8, not
11064 using universal character names.
11065
11066 @end table
11067
11068
11069 @node Preprocessor Options
11070 @section Options Controlling the Preprocessor
11071 @cindex preprocessor options
11072 @cindex options, preprocessor
11073
11074 These options control the C preprocessor, which is run on each C source
11075 file before actual compilation.
11076
11077 If you use the @option{-E} option, nothing is done except preprocessing.
11078 Some of these options make sense only together with @option{-E} because
11079 they cause the preprocessor output to be unsuitable for actual
11080 compilation.
11081
11082 @table @gcctabopt
11083 @item -Wp,@var{option}
11084 @opindex Wp
11085 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11086 and pass @var{option} directly through to the preprocessor. If
11087 @var{option} contains commas, it is split into multiple options at the
11088 commas. However, many options are modified, translated or interpreted
11089 by the compiler driver before being passed to the preprocessor, and
11090 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11091 interface is undocumented and subject to change, so whenever possible
11092 you should avoid using @option{-Wp} and let the driver handle the
11093 options instead.
11094
11095 @item -Xpreprocessor @var{option}
11096 @opindex Xpreprocessor
11097 Pass @var{option} as an option to the preprocessor. You can use this to
11098 supply system-specific preprocessor options that GCC does not
11099 recognize.
11100
11101 If you want to pass an option that takes an argument, you must use
11102 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11103
11104 @item -no-integrated-cpp
11105 @opindex no-integrated-cpp
11106 Perform preprocessing as a separate pass before compilation.
11107 By default, GCC performs preprocessing as an integrated part of
11108 input tokenization and parsing.
11109 If this option is provided, the appropriate language front end
11110 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11111 and Objective-C, respectively) is instead invoked twice,
11112 once for preprocessing only and once for actual compilation
11113 of the preprocessed input.
11114 This option may be useful in conjunction with the @option{-B} or
11115 @option{-wrapper} options to specify an alternate preprocessor or
11116 perform additional processing of the program source between
11117 normal preprocessing and compilation.
11118 @end table
11119
11120 @include cppopts.texi
11121
11122 @node Assembler Options
11123 @section Passing Options to the Assembler
11124
11125 @c prevent bad page break with this line
11126 You can pass options to the assembler.
11127
11128 @table @gcctabopt
11129 @item -Wa,@var{option}
11130 @opindex Wa
11131 Pass @var{option} as an option to the assembler. If @var{option}
11132 contains commas, it is split into multiple options at the commas.
11133
11134 @item -Xassembler @var{option}
11135 @opindex Xassembler
11136 Pass @var{option} as an option to the assembler. You can use this to
11137 supply system-specific assembler options that GCC does not
11138 recognize.
11139
11140 If you want to pass an option that takes an argument, you must use
11141 @option{-Xassembler} twice, once for the option and once for the argument.
11142
11143 @end table
11144
11145 @node Link Options
11146 @section Options for Linking
11147 @cindex link options
11148 @cindex options, linking
11149
11150 These options come into play when the compiler links object files into
11151 an executable output file. They are meaningless if the compiler is
11152 not doing a link step.
11153
11154 @table @gcctabopt
11155 @cindex file names
11156 @item @var{object-file-name}
11157 A file name that does not end in a special recognized suffix is
11158 considered to name an object file or library. (Object files are
11159 distinguished from libraries by the linker according to the file
11160 contents.) If linking is done, these object files are used as input
11161 to the linker.
11162
11163 @item -c
11164 @itemx -S
11165 @itemx -E
11166 @opindex c
11167 @opindex S
11168 @opindex E
11169 If any of these options is used, then the linker is not run, and
11170 object file names should not be used as arguments. @xref{Overall
11171 Options}.
11172
11173 @item -fuse-ld=bfd
11174 @opindex fuse-ld=bfd
11175 Use the @command{bfd} linker instead of the default linker.
11176
11177 @item -fuse-ld=gold
11178 @opindex fuse-ld=gold
11179 Use the @command{gold} linker instead of the default linker.
11180
11181 @cindex Libraries
11182 @item -l@var{library}
11183 @itemx -l @var{library}
11184 @opindex l
11185 Search the library named @var{library} when linking. (The second
11186 alternative with the library as a separate argument is only for
11187 POSIX compliance and is not recommended.)
11188
11189 It makes a difference where in the command you write this option; the
11190 linker searches and processes libraries and object files in the order they
11191 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11192 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11193 to functions in @samp{z}, those functions may not be loaded.
11194
11195 The linker searches a standard list of directories for the library,
11196 which is actually a file named @file{lib@var{library}.a}. The linker
11197 then uses this file as if it had been specified precisely by name.
11198
11199 The directories searched include several standard system directories
11200 plus any that you specify with @option{-L}.
11201
11202 Normally the files found this way are library files---archive files
11203 whose members are object files. The linker handles an archive file by
11204 scanning through it for members which define symbols that have so far
11205 been referenced but not defined. But if the file that is found is an
11206 ordinary object file, it is linked in the usual fashion. The only
11207 difference between using an @option{-l} option and specifying a file name
11208 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11209 and searches several directories.
11210
11211 @item -lobjc
11212 @opindex lobjc
11213 You need this special case of the @option{-l} option in order to
11214 link an Objective-C or Objective-C++ program.
11215
11216 @item -nostartfiles
11217 @opindex nostartfiles
11218 Do not use the standard system startup files when linking.
11219 The standard system libraries are used normally, unless @option{-nostdlib}
11220 or @option{-nodefaultlibs} is used.
11221
11222 @item -nodefaultlibs
11223 @opindex nodefaultlibs
11224 Do not use the standard system libraries when linking.
11225 Only the libraries you specify are passed to the linker, and options
11226 specifying linkage of the system libraries, such as @option{-static-libgcc}
11227 or @option{-shared-libgcc}, are ignored.
11228 The standard startup files are used normally, unless @option{-nostartfiles}
11229 is used.
11230
11231 The compiler may generate calls to @code{memcmp},
11232 @code{memset}, @code{memcpy} and @code{memmove}.
11233 These entries are usually resolved by entries in
11234 libc. These entry points should be supplied through some other
11235 mechanism when this option is specified.
11236
11237 @item -nostdlib
11238 @opindex nostdlib
11239 Do not use the standard system startup files or libraries when linking.
11240 No startup files and only the libraries you specify are passed to
11241 the linker, and options specifying linkage of the system libraries, such as
11242 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11243
11244 The compiler may generate calls to @code{memcmp}, @code{memset},
11245 @code{memcpy} and @code{memmove}.
11246 These entries are usually resolved by entries in
11247 libc. These entry points should be supplied through some other
11248 mechanism when this option is specified.
11249
11250 @cindex @option{-lgcc}, use with @option{-nostdlib}
11251 @cindex @option{-nostdlib} and unresolved references
11252 @cindex unresolved references and @option{-nostdlib}
11253 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11254 @cindex @option{-nodefaultlibs} and unresolved references
11255 @cindex unresolved references and @option{-nodefaultlibs}
11256 One of the standard libraries bypassed by @option{-nostdlib} and
11257 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11258 which GCC uses to overcome shortcomings of particular machines, or special
11259 needs for some languages.
11260 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11261 Collection (GCC) Internals},
11262 for more discussion of @file{libgcc.a}.)
11263 In most cases, you need @file{libgcc.a} even when you want to avoid
11264 other standard libraries. In other words, when you specify @option{-nostdlib}
11265 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11266 This ensures that you have no unresolved references to internal GCC
11267 library subroutines.
11268 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11269 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11270 GNU Compiler Collection (GCC) Internals}.)
11271
11272 @item -pie
11273 @opindex pie
11274 Produce a position independent executable on targets that support it.
11275 For predictable results, you must also specify the same set of options
11276 used for compilation (@option{-fpie}, @option{-fPIE},
11277 or model suboptions) when you specify this linker option.
11278
11279 @item -no-pie
11280 @opindex no-pie
11281 Don't produce a position independent executable.
11282
11283 @item -rdynamic
11284 @opindex rdynamic
11285 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11286 that support it. This instructs the linker to add all symbols, not
11287 only used ones, to the dynamic symbol table. This option is needed
11288 for some uses of @code{dlopen} or to allow obtaining backtraces
11289 from within a program.
11290
11291 @item -s
11292 @opindex s
11293 Remove all symbol table and relocation information from the executable.
11294
11295 @item -static
11296 @opindex static
11297 On systems that support dynamic linking, this prevents linking with the shared
11298 libraries. On other systems, this option has no effect.
11299
11300 @item -shared
11301 @opindex shared
11302 Produce a shared object which can then be linked with other objects to
11303 form an executable. Not all systems support this option. For predictable
11304 results, you must also specify the same set of options used for compilation
11305 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11306 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11307 needs to build supplementary stub code for constructors to work. On
11308 multi-libbed systems, @samp{gcc -shared} must select the correct support
11309 libraries to link against. Failing to supply the correct flags may lead
11310 to subtle defects. Supplying them in cases where they are not necessary
11311 is innocuous.}
11312
11313 @item -shared-libgcc
11314 @itemx -static-libgcc
11315 @opindex shared-libgcc
11316 @opindex static-libgcc
11317 On systems that provide @file{libgcc} as a shared library, these options
11318 force the use of either the shared or static version, respectively.
11319 If no shared version of @file{libgcc} was built when the compiler was
11320 configured, these options have no effect.
11321
11322 There are several situations in which an application should use the
11323 shared @file{libgcc} instead of the static version. The most common
11324 of these is when the application wishes to throw and catch exceptions
11325 across different shared libraries. In that case, each of the libraries
11326 as well as the application itself should use the shared @file{libgcc}.
11327
11328 Therefore, the G++ and GCJ drivers automatically add
11329 @option{-shared-libgcc} whenever you build a shared library or a main
11330 executable, because C++ and Java programs typically use exceptions, so
11331 this is the right thing to do.
11332
11333 If, instead, you use the GCC driver to create shared libraries, you may
11334 find that they are not always linked with the shared @file{libgcc}.
11335 If GCC finds, at its configuration time, that you have a non-GNU linker
11336 or a GNU linker that does not support option @option{--eh-frame-hdr},
11337 it links the shared version of @file{libgcc} into shared libraries
11338 by default. Otherwise, it takes advantage of the linker and optimizes
11339 away the linking with the shared version of @file{libgcc}, linking with
11340 the static version of libgcc by default. This allows exceptions to
11341 propagate through such shared libraries, without incurring relocation
11342 costs at library load time.
11343
11344 However, if a library or main executable is supposed to throw or catch
11345 exceptions, you must link it using the G++ or GCJ driver, as appropriate
11346 for the languages used in the program, or using the option
11347 @option{-shared-libgcc}, such that it is linked with the shared
11348 @file{libgcc}.
11349
11350 @item -static-libasan
11351 @opindex static-libasan
11352 When the @option{-fsanitize=address} option is used to link a program,
11353 the GCC driver automatically links against @option{libasan}. If
11354 @file{libasan} is available as a shared library, and the @option{-static}
11355 option is not used, then this links against the shared version of
11356 @file{libasan}. The @option{-static-libasan} option directs the GCC
11357 driver to link @file{libasan} statically, without necessarily linking
11358 other libraries statically.
11359
11360 @item -static-libtsan
11361 @opindex static-libtsan
11362 When the @option{-fsanitize=thread} option is used to link a program,
11363 the GCC driver automatically links against @option{libtsan}. If
11364 @file{libtsan} is available as a shared library, and the @option{-static}
11365 option is not used, then this links against the shared version of
11366 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11367 driver to link @file{libtsan} statically, without necessarily linking
11368 other libraries statically.
11369
11370 @item -static-liblsan
11371 @opindex static-liblsan
11372 When the @option{-fsanitize=leak} option is used to link a program,
11373 the GCC driver automatically links against @option{liblsan}. If
11374 @file{liblsan} is available as a shared library, and the @option{-static}
11375 option is not used, then this links against the shared version of
11376 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11377 driver to link @file{liblsan} statically, without necessarily linking
11378 other libraries statically.
11379
11380 @item -static-libubsan
11381 @opindex static-libubsan
11382 When the @option{-fsanitize=undefined} option is used to link a program,
11383 the GCC driver automatically links against @option{libubsan}. If
11384 @file{libubsan} is available as a shared library, and the @option{-static}
11385 option is not used, then this links against the shared version of
11386 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11387 driver to link @file{libubsan} statically, without necessarily linking
11388 other libraries statically.
11389
11390 @item -static-libmpx
11391 @opindex static-libmpx
11392 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11393 used to link a program, the GCC driver automatically links against
11394 @file{libmpx}. If @file{libmpx} is available as a shared library,
11395 and the @option{-static} option is not used, then this links against
11396 the shared version of @file{libmpx}. The @option{-static-libmpx}
11397 option directs the GCC driver to link @file{libmpx} statically,
11398 without necessarily linking other libraries statically.
11399
11400 @item -static-libmpxwrappers
11401 @opindex static-libmpxwrappers
11402 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11403 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11404 GCC driver automatically links against @file{libmpxwrappers}. If
11405 @file{libmpxwrappers} is available as a shared library, and the
11406 @option{-static} option is not used, then this links against the shared
11407 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11408 option directs the GCC driver to link @file{libmpxwrappers} statically,
11409 without necessarily linking other libraries statically.
11410
11411 @item -static-libstdc++
11412 @opindex static-libstdc++
11413 When the @command{g++} program is used to link a C++ program, it
11414 normally automatically links against @option{libstdc++}. If
11415 @file{libstdc++} is available as a shared library, and the
11416 @option{-static} option is not used, then this links against the
11417 shared version of @file{libstdc++}. That is normally fine. However, it
11418 is sometimes useful to freeze the version of @file{libstdc++} used by
11419 the program without going all the way to a fully static link. The
11420 @option{-static-libstdc++} option directs the @command{g++} driver to
11421 link @file{libstdc++} statically, without necessarily linking other
11422 libraries statically.
11423
11424 @item -symbolic
11425 @opindex symbolic
11426 Bind references to global symbols when building a shared object. Warn
11427 about any unresolved references (unless overridden by the link editor
11428 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11429 this option.
11430
11431 @item -T @var{script}
11432 @opindex T
11433 @cindex linker script
11434 Use @var{script} as the linker script. This option is supported by most
11435 systems using the GNU linker. On some targets, such as bare-board
11436 targets without an operating system, the @option{-T} option may be required
11437 when linking to avoid references to undefined symbols.
11438
11439 @item -Xlinker @var{option}
11440 @opindex Xlinker
11441 Pass @var{option} as an option to the linker. You can use this to
11442 supply system-specific linker options that GCC does not recognize.
11443
11444 If you want to pass an option that takes a separate argument, you must use
11445 @option{-Xlinker} twice, once for the option and once for the argument.
11446 For example, to pass @option{-assert definitions}, you must write
11447 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11448 @option{-Xlinker "-assert definitions"}, because this passes the entire
11449 string as a single argument, which is not what the linker expects.
11450
11451 When using the GNU linker, it is usually more convenient to pass
11452 arguments to linker options using the @option{@var{option}=@var{value}}
11453 syntax than as separate arguments. For example, you can specify
11454 @option{-Xlinker -Map=output.map} rather than
11455 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11456 this syntax for command-line options.
11457
11458 @item -Wl,@var{option}
11459 @opindex Wl
11460 Pass @var{option} as an option to the linker. If @var{option} contains
11461 commas, it is split into multiple options at the commas. You can use this
11462 syntax to pass an argument to the option.
11463 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11464 linker. When using the GNU linker, you can also get the same effect with
11465 @option{-Wl,-Map=output.map}.
11466
11467 @item -u @var{symbol}
11468 @opindex u
11469 Pretend the symbol @var{symbol} is undefined, to force linking of
11470 library modules to define it. You can use @option{-u} multiple times with
11471 different symbols to force loading of additional library modules.
11472
11473 @item -z @var{keyword}
11474 @opindex z
11475 @option{-z} is passed directly on to the linker along with the keyword
11476 @var{keyword}. See the section in the documentation of your linker for
11477 permitted values and their meanings.
11478 @end table
11479
11480 @node Directory Options
11481 @section Options for Directory Search
11482 @cindex directory options
11483 @cindex options, directory search
11484 @cindex search path
11485
11486 These options specify directories to search for header files, for
11487 libraries and for parts of the compiler:
11488
11489 @table @gcctabopt
11490 @item -I@var{dir}
11491 @opindex I
11492 Add the directory @var{dir} to the head of the list of directories to be
11493 searched for header files. This can be used to override a system header
11494 file, substituting your own version, since these directories are
11495 searched before the system header file directories. However, you should
11496 not use this option to add directories that contain vendor-supplied
11497 system header files (use @option{-isystem} for that). If you use more than
11498 one @option{-I} option, the directories are scanned in left-to-right
11499 order; the standard system directories come after.
11500
11501 If a standard system include directory, or a directory specified with
11502 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
11503 option is ignored. The directory is still searched but as a
11504 system directory at its normal position in the system include chain.
11505 This is to ensure that GCC's procedure to fix buggy system headers and
11506 the ordering for the @code{include_next} directive are not inadvertently changed.
11507 If you really need to change the search order for system directories,
11508 use the @option{-nostdinc} and/or @option{-isystem} options.
11509
11510 @item -iplugindir=@var{dir}
11511 @opindex iplugindir=
11512 Set the directory to search for plugins that are passed
11513 by @option{-fplugin=@var{name}} instead of
11514 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11515 to be used by the user, but only passed by the driver.
11516
11517 @item -iquote@var{dir}
11518 @opindex iquote
11519 Add the directory @var{dir} to the head of the list of directories to
11520 be searched for header files only for the case of @code{#include
11521 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
11522 otherwise just like @option{-I}.
11523
11524 @item -L@var{dir}
11525 @opindex L
11526 Add directory @var{dir} to the list of directories to be searched
11527 for @option{-l}.
11528
11529 @item -B@var{prefix}
11530 @opindex B
11531 This option specifies where to find the executables, libraries,
11532 include files, and data files of the compiler itself.
11533
11534 The compiler driver program runs one or more of the subprograms
11535 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11536 @var{prefix} as a prefix for each program it tries to run, both with and
11537 without @samp{@var{machine}/@var{version}/} for the corresponding target
11538 machine and compiler version.
11539
11540 For each subprogram to be run, the compiler driver first tries the
11541 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11542 is not specified, the driver tries two standard prefixes,
11543 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11544 those results in a file name that is found, the unmodified program
11545 name is searched for using the directories specified in your
11546 @env{PATH} environment variable.
11547
11548 The compiler checks to see if the path provided by @option{-B}
11549 refers to a directory, and if necessary it adds a directory
11550 separator character at the end of the path.
11551
11552 @option{-B} prefixes that effectively specify directory names also apply
11553 to libraries in the linker, because the compiler translates these
11554 options into @option{-L} options for the linker. They also apply to
11555 include files in the preprocessor, because the compiler translates these
11556 options into @option{-isystem} options for the preprocessor. In this case,
11557 the compiler appends @samp{include} to the prefix.
11558
11559 The runtime support file @file{libgcc.a} can also be searched for using
11560 the @option{-B} prefix, if needed. If it is not found there, the two
11561 standard prefixes above are tried, and that is all. The file is left
11562 out of the link if it is not found by those means.
11563
11564 Another way to specify a prefix much like the @option{-B} prefix is to use
11565 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
11566 Variables}.
11567
11568 As a special kludge, if the path provided by @option{-B} is
11569 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11570 9, then it is replaced by @file{[dir/]include}. This is to help
11571 with boot-strapping the compiler.
11572
11573 @item -no-canonical-prefixes
11574 @opindex no-canonical-prefixes
11575 Do not expand any symbolic links, resolve references to @samp{/../}
11576 or @samp{/./}, or make the path absolute when generating a relative
11577 prefix.
11578
11579 @item --sysroot=@var{dir}
11580 @opindex sysroot
11581 Use @var{dir} as the logical root directory for headers and libraries.
11582 For example, if the compiler normally searches for headers in
11583 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11584 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11585
11586 If you use both this option and the @option{-isysroot} option, then
11587 the @option{--sysroot} option applies to libraries, but the
11588 @option{-isysroot} option applies to header files.
11589
11590 The GNU linker (beginning with version 2.16) has the necessary support
11591 for this option. If your linker does not support this option, the
11592 header file aspect of @option{--sysroot} still works, but the
11593 library aspect does not.
11594
11595 @item --no-sysroot-suffix
11596 @opindex no-sysroot-suffix
11597 For some targets, a suffix is added to the root directory specified
11598 with @option{--sysroot}, depending on the other options used, so that
11599 headers may for example be found in
11600 @file{@var{dir}/@var{suffix}/usr/include} instead of
11601 @file{@var{dir}/usr/include}. This option disables the addition of
11602 such a suffix.
11603
11604 @item -I-
11605 @opindex I-
11606 This option has been deprecated. Please use @option{-iquote} instead for
11607 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11608 option.
11609 Any directories you specify with @option{-I} options before the @option{-I-}
11610 option are searched only for the case of @code{#include "@var{file}"};
11611 they are not searched for @code{#include <@var{file}>}.
11612
11613 If additional directories are specified with @option{-I} options after
11614 the @option{-I-} option, these directories are searched for all @code{#include}
11615 directives. (Ordinarily @emph{all} @option{-I} directories are used
11616 this way.)
11617
11618 In addition, the @option{-I-} option inhibits the use of the current
11619 directory (where the current input file came from) as the first search
11620 directory for @code{#include "@var{file}"}. There is no way to
11621 override this effect of @option{-I-}. With @option{-I.} you can specify
11622 searching the directory that is current when the compiler is
11623 invoked. That is not exactly the same as what the preprocessor does
11624 by default, but it is often satisfactory.
11625
11626 @option{-I-} does not inhibit the use of the standard system directories
11627 for header files. Thus, @option{-I-} and @option{-nostdinc} are
11628 independent.
11629 @end table
11630
11631 @node Code Gen Options
11632 @section Options for Code Generation Conventions
11633 @cindex code generation conventions
11634 @cindex options, code generation
11635 @cindex run-time options
11636
11637 These machine-independent options control the interface conventions
11638 used in code generation.
11639
11640 Most of them have both positive and negative forms; the negative form
11641 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
11642 one of the forms is listed---the one that is not the default. You
11643 can figure out the other form by either removing @samp{no-} or adding
11644 it.
11645
11646 @table @gcctabopt
11647 @item -fstack-reuse=@var{reuse-level}
11648 @opindex fstack_reuse
11649 This option controls stack space reuse for user declared local/auto variables
11650 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
11651 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
11652 local variables and temporaries, @samp{named_vars} enables the reuse only for
11653 user defined local variables with names, and @samp{none} disables stack reuse
11654 completely. The default value is @samp{all}. The option is needed when the
11655 program extends the lifetime of a scoped local variable or a compiler generated
11656 temporary beyond the end point defined by the language. When a lifetime of
11657 a variable ends, and if the variable lives in memory, the optimizing compiler
11658 has the freedom to reuse its stack space with other temporaries or scoped
11659 local variables whose live range does not overlap with it. Legacy code extending
11660 local lifetime is likely to break with the stack reuse optimization.
11661
11662 For example,
11663
11664 @smallexample
11665 int *p;
11666 @{
11667 int local1;
11668
11669 p = &local1;
11670 local1 = 10;
11671 ....
11672 @}
11673 @{
11674 int local2;
11675 local2 = 20;
11676 ...
11677 @}
11678
11679 if (*p == 10) // out of scope use of local1
11680 @{
11681
11682 @}
11683 @end smallexample
11684
11685 Another example:
11686 @smallexample
11687
11688 struct A
11689 @{
11690 A(int k) : i(k), j(k) @{ @}
11691 int i;
11692 int j;
11693 @};
11694
11695 A *ap;
11696
11697 void foo(const A& ar)
11698 @{
11699 ap = &ar;
11700 @}
11701
11702 void bar()
11703 @{
11704 foo(A(10)); // temp object's lifetime ends when foo returns
11705
11706 @{
11707 A a(20);
11708 ....
11709 @}
11710 ap->i+= 10; // ap references out of scope temp whose space
11711 // is reused with a. What is the value of ap->i?
11712 @}
11713
11714 @end smallexample
11715
11716 The lifetime of a compiler generated temporary is well defined by the C++
11717 standard. When a lifetime of a temporary ends, and if the temporary lives
11718 in memory, the optimizing compiler has the freedom to reuse its stack
11719 space with other temporaries or scoped local variables whose live range
11720 does not overlap with it. However some of the legacy code relies on
11721 the behavior of older compilers in which temporaries' stack space is
11722 not reused, the aggressive stack reuse can lead to runtime errors. This
11723 option is used to control the temporary stack reuse optimization.
11724
11725 @item -ftrapv
11726 @opindex ftrapv
11727 This option generates traps for signed overflow on addition, subtraction,
11728 multiplication operations.
11729 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
11730 @option{-ftrapv} @option{-fwrapv} on the command-line results in
11731 @option{-fwrapv} being effective. Note that only active options override, so
11732 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
11733 results in @option{-ftrapv} being effective.
11734
11735 @item -fwrapv
11736 @opindex fwrapv
11737 This option instructs the compiler to assume that signed arithmetic
11738 overflow of addition, subtraction and multiplication wraps around
11739 using twos-complement representation. This flag enables some optimizations
11740 and disables others. This option is enabled by default for the Java
11741 front end, as required by the Java language specification.
11742 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
11743 @option{-ftrapv} @option{-fwrapv} on the command-line results in
11744 @option{-fwrapv} being effective. Note that only active options override, so
11745 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
11746 results in @option{-ftrapv} being effective.
11747
11748 @item -fexceptions
11749 @opindex fexceptions
11750 Enable exception handling. Generates extra code needed to propagate
11751 exceptions. For some targets, this implies GCC generates frame
11752 unwind information for all functions, which can produce significant data
11753 size overhead, although it does not affect execution. If you do not
11754 specify this option, GCC enables it by default for languages like
11755 C++ that normally require exception handling, and disables it for
11756 languages like C that do not normally require it. However, you may need
11757 to enable this option when compiling C code that needs to interoperate
11758 properly with exception handlers written in C++. You may also wish to
11759 disable this option if you are compiling older C++ programs that don't
11760 use exception handling.
11761
11762 @item -fnon-call-exceptions
11763 @opindex fnon-call-exceptions
11764 Generate code that allows trapping instructions to throw exceptions.
11765 Note that this requires platform-specific runtime support that does
11766 not exist everywhere. Moreover, it only allows @emph{trapping}
11767 instructions to throw exceptions, i.e.@: memory references or floating-point
11768 instructions. It does not allow exceptions to be thrown from
11769 arbitrary signal handlers such as @code{SIGALRM}.
11770
11771 @item -fdelete-dead-exceptions
11772 @opindex fdelete-dead-exceptions
11773 Consider that instructions that may throw exceptions but don't otherwise
11774 contribute to the execution of the program can be optimized away.
11775 This option is enabled by default for the Ada front end, as permitted by
11776 the Ada language specification.
11777 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
11778
11779 @item -funwind-tables
11780 @opindex funwind-tables
11781 Similar to @option{-fexceptions}, except that it just generates any needed
11782 static data, but does not affect the generated code in any other way.
11783 You normally do not need to enable this option; instead, a language processor
11784 that needs this handling enables it on your behalf.
11785
11786 @item -fasynchronous-unwind-tables
11787 @opindex fasynchronous-unwind-tables
11788 Generate unwind table in DWARF format, if supported by target machine. The
11789 table is exact at each instruction boundary, so it can be used for stack
11790 unwinding from asynchronous events (such as debugger or garbage collector).
11791
11792 @item -fno-gnu-unique
11793 @opindex fno-gnu-unique
11794 On systems with recent GNU assembler and C library, the C++ compiler
11795 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
11796 of template static data members and static local variables in inline
11797 functions are unique even in the presence of @code{RTLD_LOCAL}; this
11798 is necessary to avoid problems with a library used by two different
11799 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
11800 therefore disagreeing with the other one about the binding of the
11801 symbol. But this causes @code{dlclose} to be ignored for affected
11802 DSOs; if your program relies on reinitialization of a DSO via
11803 @code{dlclose} and @code{dlopen}, you can use
11804 @option{-fno-gnu-unique}.
11805
11806 @item -fpcc-struct-return
11807 @opindex fpcc-struct-return
11808 Return ``short'' @code{struct} and @code{union} values in memory like
11809 longer ones, rather than in registers. This convention is less
11810 efficient, but it has the advantage of allowing intercallability between
11811 GCC-compiled files and files compiled with other compilers, particularly
11812 the Portable C Compiler (pcc).
11813
11814 The precise convention for returning structures in memory depends
11815 on the target configuration macros.
11816
11817 Short structures and unions are those whose size and alignment match
11818 that of some integer type.
11819
11820 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
11821 switch is not binary compatible with code compiled with the
11822 @option{-freg-struct-return} switch.
11823 Use it to conform to a non-default application binary interface.
11824
11825 @item -freg-struct-return
11826 @opindex freg-struct-return
11827 Return @code{struct} and @code{union} values in registers when possible.
11828 This is more efficient for small structures than
11829 @option{-fpcc-struct-return}.
11830
11831 If you specify neither @option{-fpcc-struct-return} nor
11832 @option{-freg-struct-return}, GCC defaults to whichever convention is
11833 standard for the target. If there is no standard convention, GCC
11834 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
11835 the principal compiler. In those cases, we can choose the standard, and
11836 we chose the more efficient register return alternative.
11837
11838 @strong{Warning:} code compiled with the @option{-freg-struct-return}
11839 switch is not binary compatible with code compiled with the
11840 @option{-fpcc-struct-return} switch.
11841 Use it to conform to a non-default application binary interface.
11842
11843 @item -fshort-enums
11844 @opindex fshort-enums
11845 Allocate to an @code{enum} type only as many bytes as it needs for the
11846 declared range of possible values. Specifically, the @code{enum} type
11847 is equivalent to the smallest integer type that has enough room.
11848
11849 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
11850 code that is not binary compatible with code generated without that switch.
11851 Use it to conform to a non-default application binary interface.
11852
11853 @item -fshort-wchar
11854 @opindex fshort-wchar
11855 Override the underlying type for @code{wchar_t} to be @code{short
11856 unsigned int} instead of the default for the target. This option is
11857 useful for building programs to run under WINE@.
11858
11859 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
11860 code that is not binary compatible with code generated without that switch.
11861 Use it to conform to a non-default application binary interface.
11862
11863 @item -fno-common
11864 @opindex fno-common
11865 In C code, controls the placement of uninitialized global variables.
11866 Unix C compilers have traditionally permitted multiple definitions of
11867 such variables in different compilation units by placing the variables
11868 in a common block.
11869 This is the behavior specified by @option{-fcommon}, and is the default
11870 for GCC on most targets.
11871 On the other hand, this behavior is not required by ISO C, and on some
11872 targets may carry a speed or code size penalty on variable references.
11873 The @option{-fno-common} option specifies that the compiler should place
11874 uninitialized global variables in the data section of the object file,
11875 rather than generating them as common blocks.
11876 This has the effect that if the same variable is declared
11877 (without @code{extern}) in two different compilations,
11878 you get a multiple-definition error when you link them.
11879 In this case, you must compile with @option{-fcommon} instead.
11880 Compiling with @option{-fno-common} is useful on targets for which
11881 it provides better performance, or if you wish to verify that the
11882 program will work on other systems that always treat uninitialized
11883 variable declarations this way.
11884
11885 @item -fno-ident
11886 @opindex fno-ident
11887 Ignore the @code{#ident} directive.
11888
11889 @item -finhibit-size-directive
11890 @opindex finhibit-size-directive
11891 Don't output a @code{.size} assembler directive, or anything else that
11892 would cause trouble if the function is split in the middle, and the
11893 two halves are placed at locations far apart in memory. This option is
11894 used when compiling @file{crtstuff.c}; you should not need to use it
11895 for anything else.
11896
11897 @item -fverbose-asm
11898 @opindex fverbose-asm
11899 Put extra commentary information in the generated assembly code to
11900 make it more readable. This option is generally only of use to those
11901 who actually need to read the generated assembly code (perhaps while
11902 debugging the compiler itself).
11903
11904 @option{-fno-verbose-asm}, the default, causes the
11905 extra information to be omitted and is useful when comparing two assembler
11906 files.
11907
11908 The added comments include:
11909
11910 @itemize @bullet
11911
11912 @item
11913 information on the compiler version and command-line options,
11914
11915 @item
11916 the source code lines associated with the assembly instructions,
11917 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
11918
11919 @item
11920 hints on which high-level expressions correspond to
11921 the various assembly instruction operands.
11922
11923 @end itemize
11924
11925 For example, given this C source file:
11926
11927 @smallexample
11928 int test (int n)
11929 @{
11930 int i;
11931 int total = 0;
11932
11933 for (i = 0; i < n; i++)
11934 total += i * i;
11935
11936 return total;
11937 @}
11938 @end smallexample
11939
11940 compiling to (x86_64) assembly via @option{-S} and emitting the result
11941 direct to stdout via @option{-o} @option{-}
11942
11943 @smallexample
11944 gcc -S test.c -fverbose-asm -Os -o -
11945 @end smallexample
11946
11947 gives output similar to this:
11948
11949 @smallexample
11950 .file "test.c"
11951 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
11952 [...snip...]
11953 # options passed:
11954 [...snip...]
11955
11956 .text
11957 .globl test
11958 .type test, @@function
11959 test:
11960 .LFB0:
11961 .cfi_startproc
11962 # test.c:4: int total = 0;
11963 xorl %eax, %eax # <retval>
11964 # test.c:6: for (i = 0; i < n; i++)
11965 xorl %edx, %edx # i
11966 .L2:
11967 # test.c:6: for (i = 0; i < n; i++)
11968 cmpl %edi, %edx # n, i
11969 jge .L5 #,
11970 # test.c:7: total += i * i;
11971 movl %edx, %ecx # i, tmp92
11972 imull %edx, %ecx # i, tmp92
11973 # test.c:6: for (i = 0; i < n; i++)
11974 incl %edx # i
11975 # test.c:7: total += i * i;
11976 addl %ecx, %eax # tmp92, <retval>
11977 jmp .L2 #
11978 .L5:
11979 # test.c:10: @}
11980 ret
11981 .cfi_endproc
11982 .LFE0:
11983 .size test, .-test
11984 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
11985 .section .note.GNU-stack,"",@@progbits
11986 @end smallexample
11987
11988 The comments are intended for humans rather than machines and hence the
11989 precise format of the comments is subject to change.
11990
11991 @item -frecord-gcc-switches
11992 @opindex frecord-gcc-switches
11993 This switch causes the command line used to invoke the
11994 compiler to be recorded into the object file that is being created.
11995 This switch is only implemented on some targets and the exact format
11996 of the recording is target and binary file format dependent, but it
11997 usually takes the form of a section containing ASCII text. This
11998 switch is related to the @option{-fverbose-asm} switch, but that
11999 switch only records information in the assembler output file as
12000 comments, so it never reaches the object file.
12001 See also @option{-grecord-gcc-switches} for another
12002 way of storing compiler options into the object file.
12003
12004 @item -fpic
12005 @opindex fpic
12006 @cindex global offset table
12007 @cindex PIC
12008 Generate position-independent code (PIC) suitable for use in a shared
12009 library, if supported for the target machine. Such code accesses all
12010 constant addresses through a global offset table (GOT)@. The dynamic
12011 loader resolves the GOT entries when the program starts (the dynamic
12012 loader is not part of GCC; it is part of the operating system). If
12013 the GOT size for the linked executable exceeds a machine-specific
12014 maximum size, you get an error message from the linker indicating that
12015 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
12016 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
12017 on the m68k and RS/6000. The x86 has no such limit.)
12018
12019 Position-independent code requires special support, and therefore works
12020 only on certain machines. For the x86, GCC supports PIC for System V
12021 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
12022 position-independent.
12023
12024 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12025 are defined to 1.
12026
12027 @item -fPIC
12028 @opindex fPIC
12029 If supported for the target machine, emit position-independent code,
12030 suitable for dynamic linking and avoiding any limit on the size of the
12031 global offset table. This option makes a difference on AArch64, m68k,
12032 PowerPC and SPARC@.
12033
12034 Position-independent code requires special support, and therefore works
12035 only on certain machines.
12036
12037 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12038 are defined to 2.
12039
12040 @item -fpie
12041 @itemx -fPIE
12042 @opindex fpie
12043 @opindex fPIE
12044 These options are similar to @option{-fpic} and @option{-fPIC}, but
12045 generated position independent code can be only linked into executables.
12046 Usually these options are used when @option{-pie} GCC option is
12047 used during linking.
12048
12049 @option{-fpie} and @option{-fPIE} both define the macros
12050 @code{__pie__} and @code{__PIE__}. The macros have the value 1
12051 for @option{-fpie} and 2 for @option{-fPIE}.
12052
12053 @item -fno-plt
12054 @opindex fno-plt
12055 Do not use the PLT for external function calls in position-independent code.
12056 Instead, load the callee address at call sites from the GOT and branch to it.
12057 This leads to more efficient code by eliminating PLT stubs and exposing
12058 GOT loads to optimizations. On architectures such as 32-bit x86 where
12059 PLT stubs expect the GOT pointer in a specific register, this gives more
12060 register allocation freedom to the compiler.
12061 Lazy binding requires use of the PLT;
12062 with @option{-fno-plt} all external symbols are resolved at load time.
12063
12064 Alternatively, the function attribute @code{noplt} can be used to avoid calls
12065 through the PLT for specific external functions.
12066
12067 In position-dependent code, a few targets also convert calls to
12068 functions that are marked to not use the PLT to use the GOT instead.
12069
12070 @item -fno-jump-tables
12071 @opindex fno-jump-tables
12072 Do not use jump tables for switch statements even where it would be
12073 more efficient than other code generation strategies. This option is
12074 of use in conjunction with @option{-fpic} or @option{-fPIC} for
12075 building code that forms part of a dynamic linker and cannot
12076 reference the address of a jump table. On some targets, jump tables
12077 do not require a GOT and this option is not needed.
12078
12079 @item -ffixed-@var{reg}
12080 @opindex ffixed
12081 Treat the register named @var{reg} as a fixed register; generated code
12082 should never refer to it (except perhaps as a stack pointer, frame
12083 pointer or in some other fixed role).
12084
12085 @var{reg} must be the name of a register. The register names accepted
12086 are machine-specific and are defined in the @code{REGISTER_NAMES}
12087 macro in the machine description macro file.
12088
12089 This flag does not have a negative form, because it specifies a
12090 three-way choice.
12091
12092 @item -fcall-used-@var{reg}
12093 @opindex fcall-used
12094 Treat the register named @var{reg} as an allocable register that is
12095 clobbered by function calls. It may be allocated for temporaries or
12096 variables that do not live across a call. Functions compiled this way
12097 do not save and restore the register @var{reg}.
12098
12099 It is an error to use this flag with the frame pointer or stack pointer.
12100 Use of this flag for other registers that have fixed pervasive roles in
12101 the machine's execution model produces disastrous results.
12102
12103 This flag does not have a negative form, because it specifies a
12104 three-way choice.
12105
12106 @item -fcall-saved-@var{reg}
12107 @opindex fcall-saved
12108 Treat the register named @var{reg} as an allocable register saved by
12109 functions. It may be allocated even for temporaries or variables that
12110 live across a call. Functions compiled this way save and restore
12111 the register @var{reg} if they use it.
12112
12113 It is an error to use this flag with the frame pointer or stack pointer.
12114 Use of this flag for other registers that have fixed pervasive roles in
12115 the machine's execution model produces disastrous results.
12116
12117 A different sort of disaster results from the use of this flag for
12118 a register in which function values may be returned.
12119
12120 This flag does not have a negative form, because it specifies a
12121 three-way choice.
12122
12123 @item -fpack-struct[=@var{n}]
12124 @opindex fpack-struct
12125 Without a value specified, pack all structure members together without
12126 holes. When a value is specified (which must be a small power of two), pack
12127 structure members according to this value, representing the maximum
12128 alignment (that is, objects with default alignment requirements larger than
12129 this are output potentially unaligned at the next fitting location.
12130
12131 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
12132 code that is not binary compatible with code generated without that switch.
12133 Additionally, it makes the code suboptimal.
12134 Use it to conform to a non-default application binary interface.
12135
12136 @item -fleading-underscore
12137 @opindex fleading-underscore
12138 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
12139 change the way C symbols are represented in the object file. One use
12140 is to help link with legacy assembly code.
12141
12142 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
12143 generate code that is not binary compatible with code generated without that
12144 switch. Use it to conform to a non-default application binary interface.
12145 Not all targets provide complete support for this switch.
12146
12147 @item -ftls-model=@var{model}
12148 @opindex ftls-model
12149 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
12150 The @var{model} argument should be one of @samp{global-dynamic},
12151 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
12152 Note that the choice is subject to optimization: the compiler may use
12153 a more efficient model for symbols not visible outside of the translation
12154 unit, or if @option{-fpic} is not given on the command line.
12155
12156 The default without @option{-fpic} is @samp{initial-exec}; with
12157 @option{-fpic} the default is @samp{global-dynamic}.
12158
12159 @item -ftrampolines
12160 @opindex ftrampolines
12161 For targets that normally need trampolines for nested functions, always
12162 generate them instead of using descriptors. Otherwise, for targets that
12163 do not need them, like for example HP-PA or IA-64, do nothing.
12164
12165 A trampoline is a small piece of code that is created at run time on the
12166 stack when the address of a nested function is taken, and is used to call
12167 the nested function indirectly. Therefore, it requires the stack to be
12168 made executable in order for the program to work properly.
12169
12170 @option{-fno-trampolines} is enabled by default on a language by language
12171 basis to let the compiler avoid generating them, if it computes that this
12172 is safe, and replace them with descriptors. Descriptors are made up of data
12173 only, but the generated code must be prepared to deal with them. As of this
12174 writing, @option{-fno-trampolines} is enabled by default only for Ada.
12175
12176 Moreover, code compiled with @option{-ftrampolines} and code compiled with
12177 @option{-fno-trampolines} are not binary compatible if nested functions are
12178 present. This option must therefore be used on a program-wide basis and be
12179 manipulated with extreme care.
12180
12181 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
12182 @opindex fvisibility
12183 Set the default ELF image symbol visibility to the specified option---all
12184 symbols are marked with this unless overridden within the code.
12185 Using this feature can very substantially improve linking and
12186 load times of shared object libraries, produce more optimized
12187 code, provide near-perfect API export and prevent symbol clashes.
12188 It is @strong{strongly} recommended that you use this in any shared objects
12189 you distribute.
12190
12191 Despite the nomenclature, @samp{default} always means public; i.e.,
12192 available to be linked against from outside the shared object.
12193 @samp{protected} and @samp{internal} are pretty useless in real-world
12194 usage so the only other commonly used option is @samp{hidden}.
12195 The default if @option{-fvisibility} isn't specified is
12196 @samp{default}, i.e., make every symbol public.
12197
12198 A good explanation of the benefits offered by ensuring ELF
12199 symbols have the correct visibility is given by ``How To Write
12200 Shared Libraries'' by Ulrich Drepper (which can be found at
12201 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
12202 solution made possible by this option to marking things hidden when
12203 the default is public is to make the default hidden and mark things
12204 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
12205 and @code{__attribute__ ((visibility("default")))} instead of
12206 @code{__declspec(dllexport)} you get almost identical semantics with
12207 identical syntax. This is a great boon to those working with
12208 cross-platform projects.
12209
12210 For those adding visibility support to existing code, you may find
12211 @code{#pragma GCC visibility} of use. This works by you enclosing
12212 the declarations you wish to set visibility for with (for example)
12213 @code{#pragma GCC visibility push(hidden)} and
12214 @code{#pragma GCC visibility pop}.
12215 Bear in mind that symbol visibility should be viewed @strong{as
12216 part of the API interface contract} and thus all new code should
12217 always specify visibility when it is not the default; i.e., declarations
12218 only for use within the local DSO should @strong{always} be marked explicitly
12219 as hidden as so to avoid PLT indirection overheads---making this
12220 abundantly clear also aids readability and self-documentation of the code.
12221 Note that due to ISO C++ specification requirements, @code{operator new} and
12222 @code{operator delete} must always be of default visibility.
12223
12224 Be aware that headers from outside your project, in particular system
12225 headers and headers from any other library you use, may not be
12226 expecting to be compiled with visibility other than the default. You
12227 may need to explicitly say @code{#pragma GCC visibility push(default)}
12228 before including any such headers.
12229
12230 @code{extern} declarations are not affected by @option{-fvisibility}, so
12231 a lot of code can be recompiled with @option{-fvisibility=hidden} with
12232 no modifications. However, this means that calls to @code{extern}
12233 functions with no explicit visibility use the PLT, so it is more
12234 effective to use @code{__attribute ((visibility))} and/or
12235 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
12236 declarations should be treated as hidden.
12237
12238 Note that @option{-fvisibility} does affect C++ vague linkage
12239 entities. This means that, for instance, an exception class that is
12240 be thrown between DSOs must be explicitly marked with default
12241 visibility so that the @samp{type_info} nodes are unified between
12242 the DSOs.
12243
12244 An overview of these techniques, their benefits and how to use them
12245 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
12246
12247 @item -fstrict-volatile-bitfields
12248 @opindex fstrict-volatile-bitfields
12249 This option should be used if accesses to volatile bit-fields (or other
12250 structure fields, although the compiler usually honors those types
12251 anyway) should use a single access of the width of the
12252 field's type, aligned to a natural alignment if possible. For
12253 example, targets with memory-mapped peripheral registers might require
12254 all such accesses to be 16 bits wide; with this flag you can
12255 declare all peripheral bit-fields as @code{unsigned short} (assuming short
12256 is 16 bits on these targets) to force GCC to use 16-bit accesses
12257 instead of, perhaps, a more efficient 32-bit access.
12258
12259 If this option is disabled, the compiler uses the most efficient
12260 instruction. In the previous example, that might be a 32-bit load
12261 instruction, even though that accesses bytes that do not contain
12262 any portion of the bit-field, or memory-mapped registers unrelated to
12263 the one being updated.
12264
12265 In some cases, such as when the @code{packed} attribute is applied to a
12266 structure field, it may not be possible to access the field with a single
12267 read or write that is correctly aligned for the target machine. In this
12268 case GCC falls back to generating multiple accesses rather than code that
12269 will fault or truncate the result at run time.
12270
12271 Note: Due to restrictions of the C/C++11 memory model, write accesses are
12272 not allowed to touch non bit-field members. It is therefore recommended
12273 to define all bits of the field's type as bit-field members.
12274
12275 The default value of this option is determined by the application binary
12276 interface for the target processor.
12277
12278 @item -fsync-libcalls
12279 @opindex fsync-libcalls
12280 This option controls whether any out-of-line instance of the @code{__sync}
12281 family of functions may be used to implement the C++11 @code{__atomic}
12282 family of functions.
12283
12284 The default value of this option is enabled, thus the only useful form
12285 of the option is @option{-fno-sync-libcalls}. This option is used in
12286 the implementation of the @file{libatomic} runtime library.
12287
12288 @end table
12289
12290 @node Developer Options
12291 @section GCC Developer Options
12292 @cindex developer options
12293 @cindex debugging GCC
12294 @cindex debug dump options
12295 @cindex dump options
12296 @cindex compilation statistics
12297
12298 This section describes command-line options that are primarily of
12299 interest to GCC developers, including options to support compiler
12300 testing and investigation of compiler bugs and compile-time
12301 performance problems. This includes options that produce debug dumps
12302 at various points in the compilation; that print statistics such as
12303 memory use and execution time; and that print information about GCC's
12304 configuration, such as where it searches for libraries. You should
12305 rarely need to use any of these options for ordinary compilation and
12306 linking tasks.
12307
12308 @table @gcctabopt
12309
12310 @item -d@var{letters}
12311 @itemx -fdump-rtl-@var{pass}
12312 @itemx -fdump-rtl-@var{pass}=@var{filename}
12313 @opindex d
12314 @opindex fdump-rtl-@var{pass}
12315 Says to make debugging dumps during compilation at times specified by
12316 @var{letters}. This is used for debugging the RTL-based passes of the
12317 compiler. The file names for most of the dumps are made by appending
12318 a pass number and a word to the @var{dumpname}, and the files are
12319 created in the directory of the output file. In case of
12320 @option{=@var{filename}} option, the dump is output on the given file
12321 instead of the pass numbered dump files. Note that the pass number is
12322 assigned as passes are registered into the pass manager. Most passes
12323 are registered in the order that they will execute and for these passes
12324 the number corresponds to the pass execution order. However, passes
12325 registered by plugins, passes specific to compilation targets, or
12326 passes that are otherwise registered after all the other passes are
12327 numbered higher than a pass named "final", even if they are executed
12328 earlier. @var{dumpname} is generated from the name of the output
12329 file if explicitly specified and not an executable, otherwise it is
12330 the basename of the source file. These switches may have different
12331 effects when @option{-E} is used for preprocessing.
12332
12333 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
12334 @option{-d} option @var{letters}. Here are the possible
12335 letters for use in @var{pass} and @var{letters}, and their meanings:
12336
12337 @table @gcctabopt
12338
12339 @item -fdump-rtl-alignments
12340 @opindex fdump-rtl-alignments
12341 Dump after branch alignments have been computed.
12342
12343 @item -fdump-rtl-asmcons
12344 @opindex fdump-rtl-asmcons
12345 Dump after fixing rtl statements that have unsatisfied in/out constraints.
12346
12347 @item -fdump-rtl-auto_inc_dec
12348 @opindex fdump-rtl-auto_inc_dec
12349 Dump after auto-inc-dec discovery. This pass is only run on
12350 architectures that have auto inc or auto dec instructions.
12351
12352 @item -fdump-rtl-barriers
12353 @opindex fdump-rtl-barriers
12354 Dump after cleaning up the barrier instructions.
12355
12356 @item -fdump-rtl-bbpart
12357 @opindex fdump-rtl-bbpart
12358 Dump after partitioning hot and cold basic blocks.
12359
12360 @item -fdump-rtl-bbro
12361 @opindex fdump-rtl-bbro
12362 Dump after block reordering.
12363
12364 @item -fdump-rtl-btl1
12365 @itemx -fdump-rtl-btl2
12366 @opindex fdump-rtl-btl2
12367 @opindex fdump-rtl-btl2
12368 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
12369 after the two branch
12370 target load optimization passes.
12371
12372 @item -fdump-rtl-bypass
12373 @opindex fdump-rtl-bypass
12374 Dump after jump bypassing and control flow optimizations.
12375
12376 @item -fdump-rtl-combine
12377 @opindex fdump-rtl-combine
12378 Dump after the RTL instruction combination pass.
12379
12380 @item -fdump-rtl-compgotos
12381 @opindex fdump-rtl-compgotos
12382 Dump after duplicating the computed gotos.
12383
12384 @item -fdump-rtl-ce1
12385 @itemx -fdump-rtl-ce2
12386 @itemx -fdump-rtl-ce3
12387 @opindex fdump-rtl-ce1
12388 @opindex fdump-rtl-ce2
12389 @opindex fdump-rtl-ce3
12390 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
12391 @option{-fdump-rtl-ce3} enable dumping after the three
12392 if conversion passes.
12393
12394 @item -fdump-rtl-cprop_hardreg
12395 @opindex fdump-rtl-cprop_hardreg
12396 Dump after hard register copy propagation.
12397
12398 @item -fdump-rtl-csa
12399 @opindex fdump-rtl-csa
12400 Dump after combining stack adjustments.
12401
12402 @item -fdump-rtl-cse1
12403 @itemx -fdump-rtl-cse2
12404 @opindex fdump-rtl-cse1
12405 @opindex fdump-rtl-cse2
12406 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
12407 the two common subexpression elimination passes.
12408
12409 @item -fdump-rtl-dce
12410 @opindex fdump-rtl-dce
12411 Dump after the standalone dead code elimination passes.
12412
12413 @item -fdump-rtl-dbr
12414 @opindex fdump-rtl-dbr
12415 Dump after delayed branch scheduling.
12416
12417 @item -fdump-rtl-dce1
12418 @itemx -fdump-rtl-dce2
12419 @opindex fdump-rtl-dce1
12420 @opindex fdump-rtl-dce2
12421 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
12422 the two dead store elimination passes.
12423
12424 @item -fdump-rtl-eh
12425 @opindex fdump-rtl-eh
12426 Dump after finalization of EH handling code.
12427
12428 @item -fdump-rtl-eh_ranges
12429 @opindex fdump-rtl-eh_ranges
12430 Dump after conversion of EH handling range regions.
12431
12432 @item -fdump-rtl-expand
12433 @opindex fdump-rtl-expand
12434 Dump after RTL generation.
12435
12436 @item -fdump-rtl-fwprop1
12437 @itemx -fdump-rtl-fwprop2
12438 @opindex fdump-rtl-fwprop1
12439 @opindex fdump-rtl-fwprop2
12440 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
12441 dumping after the two forward propagation passes.
12442
12443 @item -fdump-rtl-gcse1
12444 @itemx -fdump-rtl-gcse2
12445 @opindex fdump-rtl-gcse1
12446 @opindex fdump-rtl-gcse2
12447 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
12448 after global common subexpression elimination.
12449
12450 @item -fdump-rtl-init-regs
12451 @opindex fdump-rtl-init-regs
12452 Dump after the initialization of the registers.
12453
12454 @item -fdump-rtl-initvals
12455 @opindex fdump-rtl-initvals
12456 Dump after the computation of the initial value sets.
12457
12458 @item -fdump-rtl-into_cfglayout
12459 @opindex fdump-rtl-into_cfglayout
12460 Dump after converting to cfglayout mode.
12461
12462 @item -fdump-rtl-ira
12463 @opindex fdump-rtl-ira
12464 Dump after iterated register allocation.
12465
12466 @item -fdump-rtl-jump
12467 @opindex fdump-rtl-jump
12468 Dump after the second jump optimization.
12469
12470 @item -fdump-rtl-loop2
12471 @opindex fdump-rtl-loop2
12472 @option{-fdump-rtl-loop2} enables dumping after the rtl
12473 loop optimization passes.
12474
12475 @item -fdump-rtl-mach
12476 @opindex fdump-rtl-mach
12477 Dump after performing the machine dependent reorganization pass, if that
12478 pass exists.
12479
12480 @item -fdump-rtl-mode_sw
12481 @opindex fdump-rtl-mode_sw
12482 Dump after removing redundant mode switches.
12483
12484 @item -fdump-rtl-rnreg
12485 @opindex fdump-rtl-rnreg
12486 Dump after register renumbering.
12487
12488 @item -fdump-rtl-outof_cfglayout
12489 @opindex fdump-rtl-outof_cfglayout
12490 Dump after converting from cfglayout mode.
12491
12492 @item -fdump-rtl-peephole2
12493 @opindex fdump-rtl-peephole2
12494 Dump after the peephole pass.
12495
12496 @item -fdump-rtl-postreload
12497 @opindex fdump-rtl-postreload
12498 Dump after post-reload optimizations.
12499
12500 @item -fdump-rtl-pro_and_epilogue
12501 @opindex fdump-rtl-pro_and_epilogue
12502 Dump after generating the function prologues and epilogues.
12503
12504 @item -fdump-rtl-sched1
12505 @itemx -fdump-rtl-sched2
12506 @opindex fdump-rtl-sched1
12507 @opindex fdump-rtl-sched2
12508 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
12509 after the basic block scheduling passes.
12510
12511 @item -fdump-rtl-ree
12512 @opindex fdump-rtl-ree
12513 Dump after sign/zero extension elimination.
12514
12515 @item -fdump-rtl-seqabstr
12516 @opindex fdump-rtl-seqabstr
12517 Dump after common sequence discovery.
12518
12519 @item -fdump-rtl-shorten
12520 @opindex fdump-rtl-shorten
12521 Dump after shortening branches.
12522
12523 @item -fdump-rtl-sibling
12524 @opindex fdump-rtl-sibling
12525 Dump after sibling call optimizations.
12526
12527 @item -fdump-rtl-split1
12528 @itemx -fdump-rtl-split2
12529 @itemx -fdump-rtl-split3
12530 @itemx -fdump-rtl-split4
12531 @itemx -fdump-rtl-split5
12532 @opindex fdump-rtl-split1
12533 @opindex fdump-rtl-split2
12534 @opindex fdump-rtl-split3
12535 @opindex fdump-rtl-split4
12536 @opindex fdump-rtl-split5
12537 These options enable dumping after five rounds of
12538 instruction splitting.
12539
12540 @item -fdump-rtl-sms
12541 @opindex fdump-rtl-sms
12542 Dump after modulo scheduling. This pass is only run on some
12543 architectures.
12544
12545 @item -fdump-rtl-stack
12546 @opindex fdump-rtl-stack
12547 Dump after conversion from GCC's ``flat register file'' registers to the
12548 x87's stack-like registers. This pass is only run on x86 variants.
12549
12550 @item -fdump-rtl-subreg1
12551 @itemx -fdump-rtl-subreg2
12552 @opindex fdump-rtl-subreg1
12553 @opindex fdump-rtl-subreg2
12554 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
12555 the two subreg expansion passes.
12556
12557 @item -fdump-rtl-unshare
12558 @opindex fdump-rtl-unshare
12559 Dump after all rtl has been unshared.
12560
12561 @item -fdump-rtl-vartrack
12562 @opindex fdump-rtl-vartrack
12563 Dump after variable tracking.
12564
12565 @item -fdump-rtl-vregs
12566 @opindex fdump-rtl-vregs
12567 Dump after converting virtual registers to hard registers.
12568
12569 @item -fdump-rtl-web
12570 @opindex fdump-rtl-web
12571 Dump after live range splitting.
12572
12573 @item -fdump-rtl-regclass
12574 @itemx -fdump-rtl-subregs_of_mode_init
12575 @itemx -fdump-rtl-subregs_of_mode_finish
12576 @itemx -fdump-rtl-dfinit
12577 @itemx -fdump-rtl-dfinish
12578 @opindex fdump-rtl-regclass
12579 @opindex fdump-rtl-subregs_of_mode_init
12580 @opindex fdump-rtl-subregs_of_mode_finish
12581 @opindex fdump-rtl-dfinit
12582 @opindex fdump-rtl-dfinish
12583 These dumps are defined but always produce empty files.
12584
12585 @item -da
12586 @itemx -fdump-rtl-all
12587 @opindex da
12588 @opindex fdump-rtl-all
12589 Produce all the dumps listed above.
12590
12591 @item -dA
12592 @opindex dA
12593 Annotate the assembler output with miscellaneous debugging information.
12594
12595 @item -dD
12596 @opindex dD
12597 Dump all macro definitions, at the end of preprocessing, in addition to
12598 normal output.
12599
12600 @item -dH
12601 @opindex dH
12602 Produce a core dump whenever an error occurs.
12603
12604 @item -dp
12605 @opindex dp
12606 Annotate the assembler output with a comment indicating which
12607 pattern and alternative is used. The length of each instruction is
12608 also printed.
12609
12610 @item -dP
12611 @opindex dP
12612 Dump the RTL in the assembler output as a comment before each instruction.
12613 Also turns on @option{-dp} annotation.
12614
12615 @item -dx
12616 @opindex dx
12617 Just generate RTL for a function instead of compiling it. Usually used
12618 with @option{-fdump-rtl-expand}.
12619 @end table
12620
12621 @item -fdump-noaddr
12622 @opindex fdump-noaddr
12623 When doing debugging dumps, suppress address output. This makes it more
12624 feasible to use diff on debugging dumps for compiler invocations with
12625 different compiler binaries and/or different
12626 text / bss / data / heap / stack / dso start locations.
12627
12628 @item -freport-bug
12629 @opindex freport-bug
12630 Collect and dump debug information into a temporary file if an
12631 internal compiler error (ICE) occurs.
12632
12633 @item -fdump-unnumbered
12634 @opindex fdump-unnumbered
12635 When doing debugging dumps, suppress instruction numbers and address output.
12636 This makes it more feasible to use diff on debugging dumps for compiler
12637 invocations with different options, in particular with and without
12638 @option{-g}.
12639
12640 @item -fdump-unnumbered-links
12641 @opindex fdump-unnumbered-links
12642 When doing debugging dumps (see @option{-d} option above), suppress
12643 instruction numbers for the links to the previous and next instructions
12644 in a sequence.
12645
12646 @item -fdump-translation-unit @r{(C++ only)}
12647 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
12648 @opindex fdump-translation-unit
12649 Dump a representation of the tree structure for the entire translation
12650 unit to a file. The file name is made by appending @file{.tu} to the
12651 source file name, and the file is created in the same directory as the
12652 output file. If the @samp{-@var{options}} form is used, @var{options}
12653 controls the details of the dump as described for the
12654 @option{-fdump-tree} options.
12655
12656 @item -fdump-class-hierarchy @r{(C++ only)}
12657 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
12658 @opindex fdump-class-hierarchy
12659 Dump a representation of each class's hierarchy and virtual function
12660 table layout to a file. The file name is made by appending
12661 @file{.class} to the source file name, and the file is created in the
12662 same directory as the output file. If the @samp{-@var{options}} form
12663 is used, @var{options} controls the details of the dump as described
12664 for the @option{-fdump-tree} options.
12665
12666 @item -fdump-ipa-@var{switch}
12667 @opindex fdump-ipa
12668 Control the dumping at various stages of inter-procedural analysis
12669 language tree to a file. The file name is generated by appending a
12670 switch specific suffix to the source file name, and the file is created
12671 in the same directory as the output file. The following dumps are
12672 possible:
12673
12674 @table @samp
12675 @item all
12676 Enables all inter-procedural analysis dumps.
12677
12678 @item cgraph
12679 Dumps information about call-graph optimization, unused function removal,
12680 and inlining decisions.
12681
12682 @item inline
12683 Dump after function inlining.
12684
12685 @end table
12686
12687 @item -fdump-passes
12688 @opindex fdump-passes
12689 Dump the list of optimization passes that are turned on and off by
12690 the current command-line options.
12691
12692 @item -fdump-statistics-@var{option}
12693 @opindex fdump-statistics
12694 Enable and control dumping of pass statistics in a separate file. The
12695 file name is generated by appending a suffix ending in
12696 @samp{.statistics} to the source file name, and the file is created in
12697 the same directory as the output file. If the @samp{-@var{option}}
12698 form is used, @samp{-stats} causes counters to be summed over the
12699 whole compilation unit while @samp{-details} dumps every event as
12700 the passes generate them. The default with no option is to sum
12701 counters for each function compiled.
12702
12703 @item -fdump-tree-@var{switch}
12704 @itemx -fdump-tree-@var{switch}-@var{options}
12705 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
12706 @opindex fdump-tree
12707 Control the dumping at various stages of processing the intermediate
12708 language tree to a file. The file name is generated by appending a
12709 switch-specific suffix to the source file name, and the file is
12710 created in the same directory as the output file. In case of
12711 @option{=@var{filename}} option, the dump is output on the given file
12712 instead of the auto named dump files. If the @samp{-@var{options}}
12713 form is used, @var{options} is a list of @samp{-} separated options
12714 which control the details of the dump. Not all options are applicable
12715 to all dumps; those that are not meaningful are ignored. The
12716 following options are available
12717
12718 @table @samp
12719 @item address
12720 Print the address of each node. Usually this is not meaningful as it
12721 changes according to the environment and source file. Its primary use
12722 is for tying up a dump file with a debug environment.
12723 @item asmname
12724 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
12725 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
12726 use working backward from mangled names in the assembly file.
12727 @item slim
12728 When dumping front-end intermediate representations, inhibit dumping
12729 of members of a scope or body of a function merely because that scope
12730 has been reached. Only dump such items when they are directly reachable
12731 by some other path.
12732
12733 When dumping pretty-printed trees, this option inhibits dumping the
12734 bodies of control structures.
12735
12736 When dumping RTL, print the RTL in slim (condensed) form instead of
12737 the default LISP-like representation.
12738 @item raw
12739 Print a raw representation of the tree. By default, trees are
12740 pretty-printed into a C-like representation.
12741 @item details
12742 Enable more detailed dumps (not honored by every dump option). Also
12743 include information from the optimization passes.
12744 @item stats
12745 Enable dumping various statistics about the pass (not honored by every dump
12746 option).
12747 @item blocks
12748 Enable showing basic block boundaries (disabled in raw dumps).
12749 @item graph
12750 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
12751 dump a representation of the control flow graph suitable for viewing with
12752 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
12753 the file is pretty-printed as a subgraph, so that GraphViz can render them
12754 all in a single plot.
12755
12756 This option currently only works for RTL dumps, and the RTL is always
12757 dumped in slim form.
12758 @item vops
12759 Enable showing virtual operands for every statement.
12760 @item lineno
12761 Enable showing line numbers for statements.
12762 @item uid
12763 Enable showing the unique ID (@code{DECL_UID}) for each variable.
12764 @item verbose
12765 Enable showing the tree dump for each statement.
12766 @item eh
12767 Enable showing the EH region number holding each statement.
12768 @item scev
12769 Enable showing scalar evolution analysis details.
12770 @item optimized
12771 Enable showing optimization information (only available in certain
12772 passes).
12773 @item missed
12774 Enable showing missed optimization information (only available in certain
12775 passes).
12776 @item note
12777 Enable other detailed optimization information (only available in
12778 certain passes).
12779 @item =@var{filename}
12780 Instead of an auto named dump file, output into the given file
12781 name. The file names @file{stdout} and @file{stderr} are treated
12782 specially and are considered already open standard streams. For
12783 example,
12784
12785 @smallexample
12786 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
12787 -fdump-tree-pre=stderr file.c
12788 @end smallexample
12789
12790 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
12791 output on to @file{stderr}. If two conflicting dump filenames are
12792 given for the same pass, then the latter option overrides the earlier
12793 one.
12794
12795 @item split-paths
12796 @opindex fdump-tree-split-paths
12797 Dump each function after splitting paths to loop backedges. The file
12798 name is made by appending @file{.split-paths} to the source file name.
12799
12800 @item all
12801 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
12802 and @option{lineno}.
12803
12804 @item optall
12805 Turn on all optimization options, i.e., @option{optimized},
12806 @option{missed}, and @option{note}.
12807 @end table
12808
12809 The following tree dumps are possible:
12810 @table @samp
12811
12812 @item original
12813 @opindex fdump-tree-original
12814 Dump before any tree based optimization, to @file{@var{file}.original}.
12815
12816 @item optimized
12817 @opindex fdump-tree-optimized
12818 Dump after all tree based optimization, to @file{@var{file}.optimized}.
12819
12820 @item gimple
12821 @opindex fdump-tree-gimple
12822 Dump each function before and after the gimplification pass to a file. The
12823 file name is made by appending @file{.gimple} to the source file name.
12824
12825 @item cfg
12826 @opindex fdump-tree-cfg
12827 Dump the control flow graph of each function to a file. The file name is
12828 made by appending @file{.cfg} to the source file name.
12829
12830 @item ch
12831 @opindex fdump-tree-ch
12832 Dump each function after copying loop headers. The file name is made by
12833 appending @file{.ch} to the source file name.
12834
12835 @item ssa
12836 @opindex fdump-tree-ssa
12837 Dump SSA related information to a file. The file name is made by appending
12838 @file{.ssa} to the source file name.
12839
12840 @item alias
12841 @opindex fdump-tree-alias
12842 Dump aliasing information for each function. The file name is made by
12843 appending @file{.alias} to the source file name.
12844
12845 @item ccp
12846 @opindex fdump-tree-ccp
12847 Dump each function after CCP@. The file name is made by appending
12848 @file{.ccp} to the source file name.
12849
12850 @item storeccp
12851 @opindex fdump-tree-storeccp
12852 Dump each function after STORE-CCP@. The file name is made by appending
12853 @file{.storeccp} to the source file name.
12854
12855 @item pre
12856 @opindex fdump-tree-pre
12857 Dump trees after partial redundancy elimination and/or code hoisting.
12858 The file name is made by appending @file{.pre} to the source file name.
12859
12860 @item fre
12861 @opindex fdump-tree-fre
12862 Dump trees after full redundancy elimination. The file name is made
12863 by appending @file{.fre} to the source file name.
12864
12865 @item copyprop
12866 @opindex fdump-tree-copyprop
12867 Dump trees after copy propagation. The file name is made
12868 by appending @file{.copyprop} to the source file name.
12869
12870 @item store_copyprop
12871 @opindex fdump-tree-store_copyprop
12872 Dump trees after store copy-propagation. The file name is made
12873 by appending @file{.store_copyprop} to the source file name.
12874
12875 @item dce
12876 @opindex fdump-tree-dce
12877 Dump each function after dead code elimination. The file name is made by
12878 appending @file{.dce} to the source file name.
12879
12880 @item sra
12881 @opindex fdump-tree-sra
12882 Dump each function after performing scalar replacement of aggregates. The
12883 file name is made by appending @file{.sra} to the source file name.
12884
12885 @item sink
12886 @opindex fdump-tree-sink
12887 Dump each function after performing code sinking. The file name is made
12888 by appending @file{.sink} to the source file name.
12889
12890 @item dom
12891 @opindex fdump-tree-dom
12892 Dump each function after applying dominator tree optimizations. The file
12893 name is made by appending @file{.dom} to the source file name.
12894
12895 @item dse
12896 @opindex fdump-tree-dse
12897 Dump each function after applying dead store elimination. The file
12898 name is made by appending @file{.dse} to the source file name.
12899
12900 @item phiopt
12901 @opindex fdump-tree-phiopt
12902 Dump each function after optimizing PHI nodes into straightline code. The file
12903 name is made by appending @file{.phiopt} to the source file name.
12904
12905 @item backprop
12906 @opindex fdump-tree-backprop
12907 Dump each function after back-propagating use information up the definition
12908 chain. The file name is made by appending @file{.backprop} to the
12909 source file name.
12910
12911 @item forwprop
12912 @opindex fdump-tree-forwprop
12913 Dump each function after forward propagating single use variables. The file
12914 name is made by appending @file{.forwprop} to the source file name.
12915
12916 @item nrv
12917 @opindex fdump-tree-nrv
12918 Dump each function after applying the named return value optimization on
12919 generic trees. The file name is made by appending @file{.nrv} to the source
12920 file name.
12921
12922 @item vect
12923 @opindex fdump-tree-vect
12924 Dump each function after applying vectorization of loops. The file name is
12925 made by appending @file{.vect} to the source file name.
12926
12927 @item slp
12928 @opindex fdump-tree-slp
12929 Dump each function after applying vectorization of basic blocks. The file name
12930 is made by appending @file{.slp} to the source file name.
12931
12932 @item vrp
12933 @opindex fdump-tree-vrp
12934 Dump each function after Value Range Propagation (VRP). The file name
12935 is made by appending @file{.vrp} to the source file name.
12936
12937 @item early vrp
12938 @opindex fdump-tree-evrp
12939 Dump each function after Early Value Range Propagation (EVRP). The file name
12940 is made by appending @file{.evrp} to the source file name.
12941
12942 @item oaccdevlow
12943 @opindex fdump-tree-oaccdevlow
12944 Dump each function after applying device-specific OpenACC transformations.
12945 The file name is made by appending @file{.oaccdevlow} to the source file name.
12946
12947 @item all
12948 @opindex fdump-tree-all
12949 Enable all the available tree dumps with the flags provided in this option.
12950 @end table
12951
12952 @item -fopt-info
12953 @itemx -fopt-info-@var{options}
12954 @itemx -fopt-info-@var{options}=@var{filename}
12955 @opindex fopt-info
12956 Controls optimization dumps from various optimization passes. If the
12957 @samp{-@var{options}} form is used, @var{options} is a list of
12958 @samp{-} separated option keywords to select the dump details and
12959 optimizations.
12960
12961 The @var{options} can be divided into two groups: options describing the
12962 verbosity of the dump, and options describing which optimizations
12963 should be included. The options from both the groups can be freely
12964 mixed as they are non-overlapping. However, in case of any conflicts,
12965 the later options override the earlier options on the command
12966 line.
12967
12968 The following options control the dump verbosity:
12969
12970 @table @samp
12971 @item optimized
12972 Print information when an optimization is successfully applied. It is
12973 up to a pass to decide which information is relevant. For example, the
12974 vectorizer passes print the source location of loops which are
12975 successfully vectorized.
12976 @item missed
12977 Print information about missed optimizations. Individual passes
12978 control which information to include in the output.
12979 @item note
12980 Print verbose information about optimizations, such as certain
12981 transformations, more detailed messages about decisions etc.
12982 @item all
12983 Print detailed optimization information. This includes
12984 @samp{optimized}, @samp{missed}, and @samp{note}.
12985 @end table
12986
12987 One or more of the following option keywords can be used to describe a
12988 group of optimizations:
12989
12990 @table @samp
12991 @item ipa
12992 Enable dumps from all interprocedural optimizations.
12993 @item loop
12994 Enable dumps from all loop optimizations.
12995 @item inline
12996 Enable dumps from all inlining optimizations.
12997 @item vec
12998 Enable dumps from all vectorization optimizations.
12999 @item optall
13000 Enable dumps from all optimizations. This is a superset of
13001 the optimization groups listed above.
13002 @end table
13003
13004 If @var{options} is
13005 omitted, it defaults to @samp{optimized-optall}, which means to dump all
13006 info about successful optimizations from all the passes.
13007
13008 If the @var{filename} is provided, then the dumps from all the
13009 applicable optimizations are concatenated into the @var{filename}.
13010 Otherwise the dump is output onto @file{stderr}. Though multiple
13011 @option{-fopt-info} options are accepted, only one of them can include
13012 a @var{filename}. If other filenames are provided then all but the
13013 first such option are ignored.
13014
13015 Note that the output @var{filename} is overwritten
13016 in case of multiple translation units. If a combined output from
13017 multiple translation units is desired, @file{stderr} should be used
13018 instead.
13019
13020 In the following example, the optimization info is output to
13021 @file{stderr}:
13022
13023 @smallexample
13024 gcc -O3 -fopt-info
13025 @end smallexample
13026
13027 This example:
13028 @smallexample
13029 gcc -O3 -fopt-info-missed=missed.all
13030 @end smallexample
13031
13032 @noindent
13033 outputs missed optimization report from all the passes into
13034 @file{missed.all}, and this one:
13035
13036 @smallexample
13037 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
13038 @end smallexample
13039
13040 @noindent
13041 prints information about missed optimization opportunities from
13042 vectorization passes on @file{stderr}.
13043 Note that @option{-fopt-info-vec-missed} is equivalent to
13044 @option{-fopt-info-missed-vec}.
13045
13046 As another example,
13047 @smallexample
13048 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
13049 @end smallexample
13050
13051 @noindent
13052 outputs information about missed optimizations as well as
13053 optimized locations from all the inlining passes into
13054 @file{inline.txt}.
13055
13056 Finally, consider:
13057
13058 @smallexample
13059 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
13060 @end smallexample
13061
13062 @noindent
13063 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
13064 in conflict since only one output file is allowed. In this case, only
13065 the first option takes effect and the subsequent options are
13066 ignored. Thus only @file{vec.miss} is produced which contains
13067 dumps from the vectorizer about missed opportunities.
13068
13069 @item -fsched-verbose=@var{n}
13070 @opindex fsched-verbose
13071 On targets that use instruction scheduling, this option controls the
13072 amount of debugging output the scheduler prints to the dump files.
13073
13074 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
13075 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
13076 For @var{n} greater than one, it also output basic block probabilities,
13077 detailed ready list information and unit/insn info. For @var{n} greater
13078 than two, it includes RTL at abort point, control-flow and regions info.
13079 And for @var{n} over four, @option{-fsched-verbose} also includes
13080 dependence info.
13081
13082
13083
13084 @item -fenable-@var{kind}-@var{pass}
13085 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
13086 @opindex fdisable-
13087 @opindex fenable-
13088
13089 This is a set of options that are used to explicitly disable/enable
13090 optimization passes. These options are intended for use for debugging GCC.
13091 Compiler users should use regular options for enabling/disabling
13092 passes instead.
13093
13094 @table @gcctabopt
13095
13096 @item -fdisable-ipa-@var{pass}
13097 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13098 statically invoked in the compiler multiple times, the pass name should be
13099 appended with a sequential number starting from 1.
13100
13101 @item -fdisable-rtl-@var{pass}
13102 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
13103 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
13104 statically invoked in the compiler multiple times, the pass name should be
13105 appended with a sequential number starting from 1. @var{range-list} is a
13106 comma-separated list of function ranges or assembler names. Each range is a number
13107 pair separated by a colon. The range is inclusive in both ends. If the range
13108 is trivial, the number pair can be simplified as a single number. If the
13109 function's call graph node's @var{uid} falls within one of the specified ranges,
13110 the @var{pass} is disabled for that function. The @var{uid} is shown in the
13111 function header of a dump file, and the pass names can be dumped by using
13112 option @option{-fdump-passes}.
13113
13114 @item -fdisable-tree-@var{pass}
13115 @itemx -fdisable-tree-@var{pass}=@var{range-list}
13116 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
13117 option arguments.
13118
13119 @item -fenable-ipa-@var{pass}
13120 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13121 statically invoked in the compiler multiple times, the pass name should be
13122 appended with a sequential number starting from 1.
13123
13124 @item -fenable-rtl-@var{pass}
13125 @itemx -fenable-rtl-@var{pass}=@var{range-list}
13126 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
13127 description and examples.
13128
13129 @item -fenable-tree-@var{pass}
13130 @itemx -fenable-tree-@var{pass}=@var{range-list}
13131 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
13132 of option arguments.
13133
13134 @end table
13135
13136 Here are some examples showing uses of these options.
13137
13138 @smallexample
13139
13140 # disable ccp1 for all functions
13141 -fdisable-tree-ccp1
13142 # disable complete unroll for function whose cgraph node uid is 1
13143 -fenable-tree-cunroll=1
13144 # disable gcse2 for functions at the following ranges [1,1],
13145 # [300,400], and [400,1000]
13146 # disable gcse2 for functions foo and foo2
13147 -fdisable-rtl-gcse2=foo,foo2
13148 # disable early inlining
13149 -fdisable-tree-einline
13150 # disable ipa inlining
13151 -fdisable-ipa-inline
13152 # enable tree full unroll
13153 -fenable-tree-unroll
13154
13155 @end smallexample
13156
13157 @item -fchecking
13158 @itemx -fchecking=@var{n}
13159 @opindex fchecking
13160 @opindex fno-checking
13161 Enable internal consistency checking. The default depends on
13162 the compiler configuration. @option{-fchecking=2} enables further
13163 internal consistency checking that might affect code generation.
13164
13165 @item -frandom-seed=@var{string}
13166 @opindex frandom-seed
13167 This option provides a seed that GCC uses in place of
13168 random numbers in generating certain symbol names
13169 that have to be different in every compiled file. It is also used to
13170 place unique stamps in coverage data files and the object files that
13171 produce them. You can use the @option{-frandom-seed} option to produce
13172 reproducibly identical object files.
13173
13174 The @var{string} can either be a number (decimal, octal or hex) or an
13175 arbitrary string (in which case it's converted to a number by
13176 computing CRC32).
13177
13178 The @var{string} should be different for every file you compile.
13179
13180 @item -save-temps
13181 @itemx -save-temps=cwd
13182 @opindex save-temps
13183 Store the usual ``temporary'' intermediate files permanently; place them
13184 in the current directory and name them based on the source file. Thus,
13185 compiling @file{foo.c} with @option{-c -save-temps} produces files
13186 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
13187 preprocessed @file{foo.i} output file even though the compiler now
13188 normally uses an integrated preprocessor.
13189
13190 When used in combination with the @option{-x} command-line option,
13191 @option{-save-temps} is sensible enough to avoid over writing an
13192 input source file with the same extension as an intermediate file.
13193 The corresponding intermediate file may be obtained by renaming the
13194 source file before using @option{-save-temps}.
13195
13196 If you invoke GCC in parallel, compiling several different source
13197 files that share a common base name in different subdirectories or the
13198 same source file compiled for multiple output destinations, it is
13199 likely that the different parallel compilers will interfere with each
13200 other, and overwrite the temporary files. For instance:
13201
13202 @smallexample
13203 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
13204 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
13205 @end smallexample
13206
13207 may result in @file{foo.i} and @file{foo.o} being written to
13208 simultaneously by both compilers.
13209
13210 @item -save-temps=obj
13211 @opindex save-temps=obj
13212 Store the usual ``temporary'' intermediate files permanently. If the
13213 @option{-o} option is used, the temporary files are based on the
13214 object file. If the @option{-o} option is not used, the
13215 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
13216
13217 For example:
13218
13219 @smallexample
13220 gcc -save-temps=obj -c foo.c
13221 gcc -save-temps=obj -c bar.c -o dir/xbar.o
13222 gcc -save-temps=obj foobar.c -o dir2/yfoobar
13223 @end smallexample
13224
13225 @noindent
13226 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
13227 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
13228 @file{dir2/yfoobar.o}.
13229
13230 @item -time@r{[}=@var{file}@r{]}
13231 @opindex time
13232 Report the CPU time taken by each subprocess in the compilation
13233 sequence. For C source files, this is the compiler proper and assembler
13234 (plus the linker if linking is done).
13235
13236 Without the specification of an output file, the output looks like this:
13237
13238 @smallexample
13239 # cc1 0.12 0.01
13240 # as 0.00 0.01
13241 @end smallexample
13242
13243 The first number on each line is the ``user time'', that is time spent
13244 executing the program itself. The second number is ``system time'',
13245 time spent executing operating system routines on behalf of the program.
13246 Both numbers are in seconds.
13247
13248 With the specification of an output file, the output is appended to the
13249 named file, and it looks like this:
13250
13251 @smallexample
13252 0.12 0.01 cc1 @var{options}
13253 0.00 0.01 as @var{options}
13254 @end smallexample
13255
13256 The ``user time'' and the ``system time'' are moved before the program
13257 name, and the options passed to the program are displayed, so that one
13258 can later tell what file was being compiled, and with which options.
13259
13260 @item -fdump-final-insns@r{[}=@var{file}@r{]}
13261 @opindex fdump-final-insns
13262 Dump the final internal representation (RTL) to @var{file}. If the
13263 optional argument is omitted (or if @var{file} is @code{.}), the name
13264 of the dump file is determined by appending @code{.gkd} to the
13265 compilation output file name.
13266
13267 @item -fcompare-debug@r{[}=@var{opts}@r{]}
13268 @opindex fcompare-debug
13269 @opindex fno-compare-debug
13270 If no error occurs during compilation, run the compiler a second time,
13271 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
13272 passed to the second compilation. Dump the final internal
13273 representation in both compilations, and print an error if they differ.
13274
13275 If the equal sign is omitted, the default @option{-gtoggle} is used.
13276
13277 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
13278 and nonzero, implicitly enables @option{-fcompare-debug}. If
13279 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
13280 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
13281 is used.
13282
13283 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
13284 is equivalent to @option{-fno-compare-debug}, which disables the dumping
13285 of the final representation and the second compilation, preventing even
13286 @env{GCC_COMPARE_DEBUG} from taking effect.
13287
13288 To verify full coverage during @option{-fcompare-debug} testing, set
13289 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
13290 which GCC rejects as an invalid option in any actual compilation
13291 (rather than preprocessing, assembly or linking). To get just a
13292 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
13293 not overridden} will do.
13294
13295 @item -fcompare-debug-second
13296 @opindex fcompare-debug-second
13297 This option is implicitly passed to the compiler for the second
13298 compilation requested by @option{-fcompare-debug}, along with options to
13299 silence warnings, and omitting other options that would cause
13300 side-effect compiler outputs to files or to the standard output. Dump
13301 files and preserved temporary files are renamed so as to contain the
13302 @code{.gk} additional extension during the second compilation, to avoid
13303 overwriting those generated by the first.
13304
13305 When this option is passed to the compiler driver, it causes the
13306 @emph{first} compilation to be skipped, which makes it useful for little
13307 other than debugging the compiler proper.
13308
13309 @item -gtoggle
13310 @opindex gtoggle
13311 Turn off generation of debug info, if leaving out this option
13312 generates it, or turn it on at level 2 otherwise. The position of this
13313 argument in the command line does not matter; it takes effect after all
13314 other options are processed, and it does so only once, no matter how
13315 many times it is given. This is mainly intended to be used with
13316 @option{-fcompare-debug}.
13317
13318 @item -fvar-tracking-assignments-toggle
13319 @opindex fvar-tracking-assignments-toggle
13320 @opindex fno-var-tracking-assignments-toggle
13321 Toggle @option{-fvar-tracking-assignments}, in the same way that
13322 @option{-gtoggle} toggles @option{-g}.
13323
13324 @item -Q
13325 @opindex Q
13326 Makes the compiler print out each function name as it is compiled, and
13327 print some statistics about each pass when it finishes.
13328
13329 @item -ftime-report
13330 @opindex ftime-report
13331 Makes the compiler print some statistics about the time consumed by each
13332 pass when it finishes.
13333
13334 @item -ftime-report-details
13335 @opindex ftime-report-details
13336 Record the time consumed by infrastructure parts separately for each pass.
13337
13338 @item -fira-verbose=@var{n}
13339 @opindex fira-verbose
13340 Control the verbosity of the dump file for the integrated register allocator.
13341 The default value is 5. If the value @var{n} is greater or equal to 10,
13342 the dump output is sent to stderr using the same format as @var{n} minus 10.
13343
13344 @item -flto-report
13345 @opindex flto-report
13346 Prints a report with internal details on the workings of the link-time
13347 optimizer. The contents of this report vary from version to version.
13348 It is meant to be useful to GCC developers when processing object
13349 files in LTO mode (via @option{-flto}).
13350
13351 Disabled by default.
13352
13353 @item -flto-report-wpa
13354 @opindex flto-report-wpa
13355 Like @option{-flto-report}, but only print for the WPA phase of Link
13356 Time Optimization.
13357
13358 @item -fmem-report
13359 @opindex fmem-report
13360 Makes the compiler print some statistics about permanent memory
13361 allocation when it finishes.
13362
13363 @item -fmem-report-wpa
13364 @opindex fmem-report-wpa
13365 Makes the compiler print some statistics about permanent memory
13366 allocation for the WPA phase only.
13367
13368 @item -fpre-ipa-mem-report
13369 @opindex fpre-ipa-mem-report
13370 @item -fpost-ipa-mem-report
13371 @opindex fpost-ipa-mem-report
13372 Makes the compiler print some statistics about permanent memory
13373 allocation before or after interprocedural optimization.
13374
13375 @item -fprofile-report
13376 @opindex fprofile-report
13377 Makes the compiler print some statistics about consistency of the
13378 (estimated) profile and effect of individual passes.
13379
13380 @item -fstack-usage
13381 @opindex fstack-usage
13382 Makes the compiler output stack usage information for the program, on a
13383 per-function basis. The filename for the dump is made by appending
13384 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
13385 the output file, if explicitly specified and it is not an executable,
13386 otherwise it is the basename of the source file. An entry is made up
13387 of three fields:
13388
13389 @itemize
13390 @item
13391 The name of the function.
13392 @item
13393 A number of bytes.
13394 @item
13395 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
13396 @end itemize
13397
13398 The qualifier @code{static} means that the function manipulates the stack
13399 statically: a fixed number of bytes are allocated for the frame on function
13400 entry and released on function exit; no stack adjustments are otherwise made
13401 in the function. The second field is this fixed number of bytes.
13402
13403 The qualifier @code{dynamic} means that the function manipulates the stack
13404 dynamically: in addition to the static allocation described above, stack
13405 adjustments are made in the body of the function, for example to push/pop
13406 arguments around function calls. If the qualifier @code{bounded} is also
13407 present, the amount of these adjustments is bounded at compile time and
13408 the second field is an upper bound of the total amount of stack used by
13409 the function. If it is not present, the amount of these adjustments is
13410 not bounded at compile time and the second field only represents the
13411 bounded part.
13412
13413 @item -fstats
13414 @opindex fstats
13415 Emit statistics about front-end processing at the end of the compilation.
13416 This option is supported only by the C++ front end, and
13417 the information is generally only useful to the G++ development team.
13418
13419 @item -fdbg-cnt-list
13420 @opindex fdbg-cnt-list
13421 Print the name and the counter upper bound for all debug counters.
13422
13423
13424 @item -fdbg-cnt=@var{counter-value-list}
13425 @opindex fdbg-cnt
13426 Set the internal debug counter upper bound. @var{counter-value-list}
13427 is a comma-separated list of @var{name}:@var{value} pairs
13428 which sets the upper bound of each debug counter @var{name} to @var{value}.
13429 All debug counters have the initial upper bound of @code{UINT_MAX};
13430 thus @code{dbg_cnt} returns true always unless the upper bound
13431 is set by this option.
13432 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
13433 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
13434
13435 @item -print-file-name=@var{library}
13436 @opindex print-file-name
13437 Print the full absolute name of the library file @var{library} that
13438 would be used when linking---and don't do anything else. With this
13439 option, GCC does not compile or link anything; it just prints the
13440 file name.
13441
13442 @item -print-multi-directory
13443 @opindex print-multi-directory
13444 Print the directory name corresponding to the multilib selected by any
13445 other switches present in the command line. This directory is supposed
13446 to exist in @env{GCC_EXEC_PREFIX}.
13447
13448 @item -print-multi-lib
13449 @opindex print-multi-lib
13450 Print the mapping from multilib directory names to compiler switches
13451 that enable them. The directory name is separated from the switches by
13452 @samp{;}, and each switch starts with an @samp{@@} instead of the
13453 @samp{-}, without spaces between multiple switches. This is supposed to
13454 ease shell processing.
13455
13456 @item -print-multi-os-directory
13457 @opindex print-multi-os-directory
13458 Print the path to OS libraries for the selected
13459 multilib, relative to some @file{lib} subdirectory. If OS libraries are
13460 present in the @file{lib} subdirectory and no multilibs are used, this is
13461 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
13462 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
13463 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
13464 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
13465
13466 @item -print-multiarch
13467 @opindex print-multiarch
13468 Print the path to OS libraries for the selected multiarch,
13469 relative to some @file{lib} subdirectory.
13470
13471 @item -print-prog-name=@var{program}
13472 @opindex print-prog-name
13473 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
13474
13475 @item -print-libgcc-file-name
13476 @opindex print-libgcc-file-name
13477 Same as @option{-print-file-name=libgcc.a}.
13478
13479 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
13480 but you do want to link with @file{libgcc.a}. You can do:
13481
13482 @smallexample
13483 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
13484 @end smallexample
13485
13486 @item -print-search-dirs
13487 @opindex print-search-dirs
13488 Print the name of the configured installation directory and a list of
13489 program and library directories @command{gcc} searches---and don't do anything else.
13490
13491 This is useful when @command{gcc} prints the error message
13492 @samp{installation problem, cannot exec cpp0: No such file or directory}.
13493 To resolve this you either need to put @file{cpp0} and the other compiler
13494 components where @command{gcc} expects to find them, or you can set the environment
13495 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
13496 Don't forget the trailing @samp{/}.
13497 @xref{Environment Variables}.
13498
13499 @item -print-sysroot
13500 @opindex print-sysroot
13501 Print the target sysroot directory that is used during
13502 compilation. This is the target sysroot specified either at configure
13503 time or using the @option{--sysroot} option, possibly with an extra
13504 suffix that depends on compilation options. If no target sysroot is
13505 specified, the option prints nothing.
13506
13507 @item -print-sysroot-headers-suffix
13508 @opindex print-sysroot-headers-suffix
13509 Print the suffix added to the target sysroot when searching for
13510 headers, or give an error if the compiler is not configured with such
13511 a suffix---and don't do anything else.
13512
13513 @item -dumpmachine
13514 @opindex dumpmachine
13515 Print the compiler's target machine (for example,
13516 @samp{i686-pc-linux-gnu})---and don't do anything else.
13517
13518 @item -dumpversion
13519 @opindex dumpversion
13520 Print the compiler version (for example, @code{3.0})---and don't do
13521 anything else.
13522
13523 @item -dumpspecs
13524 @opindex dumpspecs
13525 Print the compiler's built-in specs---and don't do anything else. (This
13526 is used when GCC itself is being built.) @xref{Spec Files}.
13527 @end table
13528
13529 @node Submodel Options
13530 @section Machine-Dependent Options
13531 @cindex submodel options
13532 @cindex specifying hardware config
13533 @cindex hardware models and configurations, specifying
13534 @cindex target-dependent options
13535 @cindex machine-dependent options
13536
13537 Each target machine supported by GCC can have its own options---for
13538 example, to allow you to compile for a particular processor variant or
13539 ABI, or to control optimizations specific to that machine. By
13540 convention, the names of machine-specific options start with
13541 @samp{-m}.
13542
13543 Some configurations of the compiler also support additional target-specific
13544 options, usually for compatibility with other compilers on the same
13545 platform.
13546
13547 @c This list is ordered alphanumerically by subsection name.
13548 @c It should be the same order and spelling as these options are listed
13549 @c in Machine Dependent Options
13550
13551 @menu
13552 * AArch64 Options::
13553 * Adapteva Epiphany Options::
13554 * ARC Options::
13555 * ARM Options::
13556 * AVR Options::
13557 * Blackfin Options::
13558 * C6X Options::
13559 * CRIS Options::
13560 * CR16 Options::
13561 * Darwin Options::
13562 * DEC Alpha Options::
13563 * FR30 Options::
13564 * FT32 Options::
13565 * FRV Options::
13566 * GNU/Linux Options::
13567 * H8/300 Options::
13568 * HPPA Options::
13569 * IA-64 Options::
13570 * LM32 Options::
13571 * M32C Options::
13572 * M32R/D Options::
13573 * M680x0 Options::
13574 * MCore Options::
13575 * MeP Options::
13576 * MicroBlaze Options::
13577 * MIPS Options::
13578 * MMIX Options::
13579 * MN10300 Options::
13580 * Moxie Options::
13581 * MSP430 Options::
13582 * NDS32 Options::
13583 * Nios II Options::
13584 * Nvidia PTX Options::
13585 * PDP-11 Options::
13586 * picoChip Options::
13587 * PowerPC Options::
13588 * RL78 Options::
13589 * RS/6000 and PowerPC Options::
13590 * RX Options::
13591 * S/390 and zSeries Options::
13592 * Score Options::
13593 * SH Options::
13594 * Solaris 2 Options::
13595 * SPARC Options::
13596 * SPU Options::
13597 * System V Options::
13598 * TILE-Gx Options::
13599 * TILEPro Options::
13600 * V850 Options::
13601 * VAX Options::
13602 * Visium Options::
13603 * VMS Options::
13604 * VxWorks Options::
13605 * x86 Options::
13606 * x86 Windows Options::
13607 * Xstormy16 Options::
13608 * Xtensa Options::
13609 * zSeries Options::
13610 @end menu
13611
13612 @node AArch64 Options
13613 @subsection AArch64 Options
13614 @cindex AArch64 Options
13615
13616 These options are defined for AArch64 implementations:
13617
13618 @table @gcctabopt
13619
13620 @item -mabi=@var{name}
13621 @opindex mabi
13622 Generate code for the specified data model. Permissible values
13623 are @samp{ilp32} for SysV-like data model where int, long int and pointers
13624 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
13625 but long int and pointers are 64 bits.
13626
13627 The default depends on the specific target configuration. Note that
13628 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
13629 entire program with the same ABI, and link with a compatible set of libraries.
13630
13631 @item -mbig-endian
13632 @opindex mbig-endian
13633 Generate big-endian code. This is the default when GCC is configured for an
13634 @samp{aarch64_be-*-*} target.
13635
13636 @item -mgeneral-regs-only
13637 @opindex mgeneral-regs-only
13638 Generate code which uses only the general-purpose registers. This will prevent
13639 the compiler from using floating-point and Advanced SIMD registers but will not
13640 impose any restrictions on the assembler.
13641
13642 @item -mlittle-endian
13643 @opindex mlittle-endian
13644 Generate little-endian code. This is the default when GCC is configured for an
13645 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
13646
13647 @item -mcmodel=tiny
13648 @opindex mcmodel=tiny
13649 Generate code for the tiny code model. The program and its statically defined
13650 symbols must be within 1MB of each other. Programs can be statically or
13651 dynamically linked.
13652
13653 @item -mcmodel=small
13654 @opindex mcmodel=small
13655 Generate code for the small code model. The program and its statically defined
13656 symbols must be within 4GB of each other. Programs can be statically or
13657 dynamically linked. This is the default code model.
13658
13659 @item -mcmodel=large
13660 @opindex mcmodel=large
13661 Generate code for the large code model. This makes no assumptions about
13662 addresses and sizes of sections. Programs can be statically linked only.
13663
13664 @item -mstrict-align
13665 @opindex mstrict-align
13666 Avoid generating memory accesses that may not be aligned on a natural object
13667 boundary as described in the architecture specification.
13668
13669 @item -momit-leaf-frame-pointer
13670 @itemx -mno-omit-leaf-frame-pointer
13671 @opindex momit-leaf-frame-pointer
13672 @opindex mno-omit-leaf-frame-pointer
13673 Omit or keep the frame pointer in leaf functions. The former behavior is the
13674 default.
13675
13676 @item -mtls-dialect=desc
13677 @opindex mtls-dialect=desc
13678 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
13679 of TLS variables. This is the default.
13680
13681 @item -mtls-dialect=traditional
13682 @opindex mtls-dialect=traditional
13683 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
13684 of TLS variables.
13685
13686 @item -mtls-size=@var{size}
13687 @opindex mtls-size
13688 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
13689 This option requires binutils 2.26 or newer.
13690
13691 @item -mfix-cortex-a53-835769
13692 @itemx -mno-fix-cortex-a53-835769
13693 @opindex mfix-cortex-a53-835769
13694 @opindex mno-fix-cortex-a53-835769
13695 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
13696 This involves inserting a NOP instruction between memory instructions and
13697 64-bit integer multiply-accumulate instructions.
13698
13699 @item -mfix-cortex-a53-843419
13700 @itemx -mno-fix-cortex-a53-843419
13701 @opindex mfix-cortex-a53-843419
13702 @opindex mno-fix-cortex-a53-843419
13703 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
13704 This erratum workaround is made at link time and this will only pass the
13705 corresponding flag to the linker.
13706
13707 @item -mlow-precision-recip-sqrt
13708 @item -mno-low-precision-recip-sqrt
13709 @opindex mlow-precision-recip-sqrt
13710 @opindex mno-low-precision-recip-sqrt
13711 Enable or disable the reciprocal square root approximation.
13712 This option only has an effect if @option{-ffast-math} or
13713 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
13714 precision of reciprocal square root results to about 16 bits for
13715 single precision and to 32 bits for double precision.
13716
13717 @item -mlow-precision-sqrt
13718 @item -mno-low-precision-sqrt
13719 @opindex -mlow-precision-sqrt
13720 @opindex -mno-low-precision-sqrt
13721 Enable or disable the square root approximation.
13722 This option only has an effect if @option{-ffast-math} or
13723 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
13724 precision of square root results to about 16 bits for
13725 single precision and to 32 bits for double precision.
13726 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
13727
13728 @item -mlow-precision-div
13729 @item -mno-low-precision-div
13730 @opindex -mlow-precision-div
13731 @opindex -mno-low-precision-div
13732 Enable or disable the division approximation.
13733 This option only has an effect if @option{-ffast-math} or
13734 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
13735 precision of division results to about 16 bits for
13736 single precision and to 32 bits for double precision.
13737
13738 @item -march=@var{name}
13739 @opindex march
13740 Specify the name of the target architecture and, optionally, one or
13741 more feature modifiers. This option has the form
13742 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
13743
13744 The permissible values for @var{arch} are @samp{armv8-a},
13745 @samp{armv8.1-a}, @samp{armv8.2-a} or @var{native}.
13746
13747 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
13748 support for the ARMv8.2-A architecture extensions.
13749
13750 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
13751 support for the ARMv8.1-A architecture extension. In particular, it
13752 enables the @samp{+crc} and @samp{+lse} features.
13753
13754 The value @samp{native} is available on native AArch64 GNU/Linux and
13755 causes the compiler to pick the architecture of the host system. This
13756 option has no effect if the compiler is unable to recognize the
13757 architecture of the host system,
13758
13759 The permissible values for @var{feature} are listed in the sub-section
13760 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
13761 Feature Modifiers}. Where conflicting feature modifiers are
13762 specified, the right-most feature is used.
13763
13764 GCC uses @var{name} to determine what kind of instructions it can emit
13765 when generating assembly code. If @option{-march} is specified
13766 without either of @option{-mtune} or @option{-mcpu} also being
13767 specified, the code is tuned to perform well across a range of target
13768 processors implementing the target architecture.
13769
13770 @item -mtune=@var{name}
13771 @opindex mtune
13772 Specify the name of the target processor for which GCC should tune the
13773 performance of the code. Permissible values for this option are:
13774 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a57},
13775 @samp{cortex-a72}, @samp{cortex-a73}, @samp{exynos-m1}, @samp{qdf24xx},
13776 @samp{thunderx}, @samp{xgene1}, @samp{vulcan}, @samp{cortex-a57.cortex-a53},
13777 @samp{cortex-a72.cortex-a53}, @samp{cortex-a73.cortex-a35},
13778 @samp{cortex-a73.cortex-a53}, @samp{native}.
13779
13780 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
13781 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53}
13782 specify that GCC should tune for a big.LITTLE system.
13783
13784 Additionally on native AArch64 GNU/Linux systems the value
13785 @samp{native} tunes performance to the host system. This option has no effect
13786 if the compiler is unable to recognize the processor of the host system.
13787
13788 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
13789 are specified, the code is tuned to perform well across a range
13790 of target processors.
13791
13792 This option cannot be suffixed by feature modifiers.
13793
13794 @item -mcpu=@var{name}
13795 @opindex mcpu
13796 Specify the name of the target processor, optionally suffixed by one
13797 or more feature modifiers. This option has the form
13798 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
13799 the permissible values for @var{cpu} are the same as those available
13800 for @option{-mtune}. The permissible values for @var{feature} are
13801 documented in the sub-section on
13802 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
13803 Feature Modifiers}. Where conflicting feature modifiers are
13804 specified, the right-most feature is used.
13805
13806 GCC uses @var{name} to determine what kind of instructions it can emit when
13807 generating assembly code (as if by @option{-march}) and to determine
13808 the target processor for which to tune for performance (as if
13809 by @option{-mtune}). Where this option is used in conjunction
13810 with @option{-march} or @option{-mtune}, those options take precedence
13811 over the appropriate part of this option.
13812
13813 @item -moverride=@var{string}
13814 @opindex moverride
13815 Override tuning decisions made by the back-end in response to a
13816 @option{-mtune=} switch. The syntax, semantics, and accepted values
13817 for @var{string} in this option are not guaranteed to be consistent
13818 across releases.
13819
13820 This option is only intended to be useful when developing GCC.
13821
13822 @item -mpc-relative-literal-loads
13823 @opindex mpc-relative-literal-loads
13824 Enable PC-relative literal loads. With this option literal pools are
13825 accessed using a single instruction and emitted after each function. This
13826 limits the maximum size of functions to 1MB. This is enabled by default for
13827 @option{-mcmodel=tiny}.
13828
13829 @end table
13830
13831 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
13832 @anchor{aarch64-feature-modifiers}
13833 @cindex @option{-march} feature modifiers
13834 @cindex @option{-mcpu} feature modifiers
13835 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
13836 the following and their inverses @option{no@var{feature}}:
13837
13838 @table @samp
13839 @item crc
13840 Enable CRC extension. This is on by default for
13841 @option{-march=armv8.1-a}.
13842 @item crypto
13843 Enable Crypto extension. This also enables Advanced SIMD and floating-point
13844 instructions.
13845 @item fp
13846 Enable floating-point instructions. This is on by default for all possible
13847 values for options @option{-march} and @option{-mcpu}.
13848 @item simd
13849 Enable Advanced SIMD instructions. This also enables floating-point
13850 instructions. This is on by default for all possible values for options
13851 @option{-march} and @option{-mcpu}.
13852 @item lse
13853 Enable Large System Extension instructions. This is on by default for
13854 @option{-march=armv8.1-a}.
13855 @item fp16
13856 Enable FP16 extension. This also enables floating-point instructions.
13857
13858 @end table
13859
13860 Feature @option{crypto} implies @option{simd}, which implies @option{fp}.
13861 Conversely, @option{nofp} implies @option{nosimd}, which implies
13862 @option{nocrypto}.
13863
13864 @node Adapteva Epiphany Options
13865 @subsection Adapteva Epiphany Options
13866
13867 These @samp{-m} options are defined for Adapteva Epiphany:
13868
13869 @table @gcctabopt
13870 @item -mhalf-reg-file
13871 @opindex mhalf-reg-file
13872 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
13873 That allows code to run on hardware variants that lack these registers.
13874
13875 @item -mprefer-short-insn-regs
13876 @opindex mprefer-short-insn-regs
13877 Preferentially allocate registers that allow short instruction generation.
13878 This can result in increased instruction count, so this may either reduce or
13879 increase overall code size.
13880
13881 @item -mbranch-cost=@var{num}
13882 @opindex mbranch-cost
13883 Set the cost of branches to roughly @var{num} ``simple'' instructions.
13884 This cost is only a heuristic and is not guaranteed to produce
13885 consistent results across releases.
13886
13887 @item -mcmove
13888 @opindex mcmove
13889 Enable the generation of conditional moves.
13890
13891 @item -mnops=@var{num}
13892 @opindex mnops
13893 Emit @var{num} NOPs before every other generated instruction.
13894
13895 @item -mno-soft-cmpsf
13896 @opindex mno-soft-cmpsf
13897 For single-precision floating-point comparisons, emit an @code{fsub} instruction
13898 and test the flags. This is faster than a software comparison, but can
13899 get incorrect results in the presence of NaNs, or when two different small
13900 numbers are compared such that their difference is calculated as zero.
13901 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
13902 software comparisons.
13903
13904 @item -mstack-offset=@var{num}
13905 @opindex mstack-offset
13906 Set the offset between the top of the stack and the stack pointer.
13907 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
13908 can be used by leaf functions without stack allocation.
13909 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
13910 Note also that this option changes the ABI; compiling a program with a
13911 different stack offset than the libraries have been compiled with
13912 generally does not work.
13913 This option can be useful if you want to evaluate if a different stack
13914 offset would give you better code, but to actually use a different stack
13915 offset to build working programs, it is recommended to configure the
13916 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
13917
13918 @item -mno-round-nearest
13919 @opindex mno-round-nearest
13920 Make the scheduler assume that the rounding mode has been set to
13921 truncating. The default is @option{-mround-nearest}.
13922
13923 @item -mlong-calls
13924 @opindex mlong-calls
13925 If not otherwise specified by an attribute, assume all calls might be beyond
13926 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
13927 function address into a register before performing a (otherwise direct) call.
13928 This is the default.
13929
13930 @item -mshort-calls
13931 @opindex short-calls
13932 If not otherwise specified by an attribute, assume all direct calls are
13933 in the range of the @code{b} / @code{bl} instructions, so use these instructions
13934 for direct calls. The default is @option{-mlong-calls}.
13935
13936 @item -msmall16
13937 @opindex msmall16
13938 Assume addresses can be loaded as 16-bit unsigned values. This does not
13939 apply to function addresses for which @option{-mlong-calls} semantics
13940 are in effect.
13941
13942 @item -mfp-mode=@var{mode}
13943 @opindex mfp-mode
13944 Set the prevailing mode of the floating-point unit.
13945 This determines the floating-point mode that is provided and expected
13946 at function call and return time. Making this mode match the mode you
13947 predominantly need at function start can make your programs smaller and
13948 faster by avoiding unnecessary mode switches.
13949
13950 @var{mode} can be set to one the following values:
13951
13952 @table @samp
13953 @item caller
13954 Any mode at function entry is valid, and retained or restored when
13955 the function returns, and when it calls other functions.
13956 This mode is useful for compiling libraries or other compilation units
13957 you might want to incorporate into different programs with different
13958 prevailing FPU modes, and the convenience of being able to use a single
13959 object file outweighs the size and speed overhead for any extra
13960 mode switching that might be needed, compared with what would be needed
13961 with a more specific choice of prevailing FPU mode.
13962
13963 @item truncate
13964 This is the mode used for floating-point calculations with
13965 truncating (i.e.@: round towards zero) rounding mode. That includes
13966 conversion from floating point to integer.
13967
13968 @item round-nearest
13969 This is the mode used for floating-point calculations with
13970 round-to-nearest-or-even rounding mode.
13971
13972 @item int
13973 This is the mode used to perform integer calculations in the FPU, e.g.@:
13974 integer multiply, or integer multiply-and-accumulate.
13975 @end table
13976
13977 The default is @option{-mfp-mode=caller}
13978
13979 @item -mnosplit-lohi
13980 @itemx -mno-postinc
13981 @itemx -mno-postmodify
13982 @opindex mnosplit-lohi
13983 @opindex mno-postinc
13984 @opindex mno-postmodify
13985 Code generation tweaks that disable, respectively, splitting of 32-bit
13986 loads, generation of post-increment addresses, and generation of
13987 post-modify addresses. The defaults are @option{msplit-lohi},
13988 @option{-mpost-inc}, and @option{-mpost-modify}.
13989
13990 @item -mnovect-double
13991 @opindex mno-vect-double
13992 Change the preferred SIMD mode to SImode. The default is
13993 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
13994
13995 @item -max-vect-align=@var{num}
13996 @opindex max-vect-align
13997 The maximum alignment for SIMD vector mode types.
13998 @var{num} may be 4 or 8. The default is 8.
13999 Note that this is an ABI change, even though many library function
14000 interfaces are unaffected if they don't use SIMD vector modes
14001 in places that affect size and/or alignment of relevant types.
14002
14003 @item -msplit-vecmove-early
14004 @opindex msplit-vecmove-early
14005 Split vector moves into single word moves before reload. In theory this
14006 can give better register allocation, but so far the reverse seems to be
14007 generally the case.
14008
14009 @item -m1reg-@var{reg}
14010 @opindex m1reg-
14011 Specify a register to hold the constant @minus{}1, which makes loading small negative
14012 constants and certain bitmasks faster.
14013 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
14014 which specify use of that register as a fixed register,
14015 and @samp{none}, which means that no register is used for this
14016 purpose. The default is @option{-m1reg-none}.
14017
14018 @end table
14019
14020 @node ARC Options
14021 @subsection ARC Options
14022 @cindex ARC options
14023
14024 The following options control the architecture variant for which code
14025 is being compiled:
14026
14027 @c architecture variants
14028 @table @gcctabopt
14029
14030 @item -mbarrel-shifter
14031 @opindex mbarrel-shifter
14032 Generate instructions supported by barrel shifter. This is the default
14033 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
14034
14035 @item -mcpu=@var{cpu}
14036 @opindex mcpu
14037 Set architecture type, register usage, and instruction scheduling
14038 parameters for @var{cpu}. There are also shortcut alias options
14039 available for backward compatibility and convenience. Supported
14040 values for @var{cpu} are
14041
14042 @table @samp
14043 @opindex mA6
14044 @opindex mARC600
14045 @item ARC600
14046 @item arc600
14047 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
14048
14049 @item ARC601
14050 @item arc601
14051 @opindex mARC601
14052 Compile for ARC601. Alias: @option{-mARC601}.
14053
14054 @item ARC700
14055 @item arc700
14056 @opindex mA7
14057 @opindex mARC700
14058 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
14059 This is the default when configured with @option{--with-cpu=arc700}@.
14060
14061 @item ARCEM
14062 @item arcem
14063 Compile for ARC EM.
14064
14065 @item ARCHS
14066 @item archs
14067 Compile for ARC HS.
14068 @end table
14069
14070 @item -mdpfp
14071 @opindex mdpfp
14072 @itemx -mdpfp-compact
14073 @opindex mdpfp-compact
14074 FPX: Generate Double Precision FPX instructions, tuned for the compact
14075 implementation.
14076
14077 @item -mdpfp-fast
14078 @opindex mdpfp-fast
14079 FPX: Generate Double Precision FPX instructions, tuned for the fast
14080 implementation.
14081
14082 @item -mno-dpfp-lrsr
14083 @opindex mno-dpfp-lrsr
14084 Disable LR and SR instructions from using FPX extension aux registers.
14085
14086 @item -mea
14087 @opindex mea
14088 Generate Extended arithmetic instructions. Currently only
14089 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
14090 supported. This is always enabled for @option{-mcpu=ARC700}.
14091
14092 @item -mno-mpy
14093 @opindex mno-mpy
14094 Do not generate mpy instructions for ARC700.
14095
14096 @item -mmul32x16
14097 @opindex mmul32x16
14098 Generate 32x16 bit multiply and mac instructions.
14099
14100 @item -mmul64
14101 @opindex mmul64
14102 Generate mul64 and mulu64 instructions. Only valid for @option{-mcpu=ARC600}.
14103
14104 @item -mnorm
14105 @opindex mnorm
14106 Generate norm instruction. This is the default if @option{-mcpu=ARC700}
14107 is in effect.
14108
14109 @item -mspfp
14110 @opindex mspfp
14111 @itemx -mspfp-compact
14112 @opindex mspfp-compact
14113 FPX: Generate Single Precision FPX instructions, tuned for the compact
14114 implementation.
14115
14116 @item -mspfp-fast
14117 @opindex mspfp-fast
14118 FPX: Generate Single Precision FPX instructions, tuned for the fast
14119 implementation.
14120
14121 @item -msimd
14122 @opindex msimd
14123 Enable generation of ARC SIMD instructions via target-specific
14124 builtins. Only valid for @option{-mcpu=ARC700}.
14125
14126 @item -msoft-float
14127 @opindex msoft-float
14128 This option ignored; it is provided for compatibility purposes only.
14129 Software floating point code is emitted by default, and this default
14130 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
14131 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
14132 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
14133
14134 @item -mswap
14135 @opindex mswap
14136 Generate swap instructions.
14137
14138 @item -matomic
14139 @opindex matomic
14140 This enables Locked Load/Store Conditional extension to implement
14141 atomic memopry built-in functions. Not available for ARC 6xx or ARC
14142 EM cores.
14143
14144 @item -mdiv-rem
14145 @opindex mdiv-rem
14146 Enable DIV/REM instructions for ARCv2 cores.
14147
14148 @item -mcode-density
14149 @opindex mcode-density
14150 Enable code density instructions for ARC EM, default on for ARC HS.
14151
14152 @item -mll64
14153 @opindex mll64
14154 Enable double load/store operations for ARC HS cores.
14155
14156 @item -mtp-regno=@var{regno}
14157 @opindex mtp-regno
14158 Specify thread pointer register number.
14159
14160 @item -mmpy-option=@var{multo}
14161 @opindex mmpy-option
14162 Compile ARCv2 code with a multiplier design option. @samp{wlh1} is
14163 the default value. The recognized values for @var{multo} are:
14164
14165 @table @samp
14166 @item 0
14167 No multiplier available.
14168
14169 @item 1
14170 @opindex w
14171 The multiply option is set to w: 16x16 multiplier, fully pipelined.
14172 The following instructions are enabled: MPYW, and MPYUW.
14173
14174 @item 2
14175 @opindex wlh1
14176 The multiply option is set to wlh1: 32x32 multiplier, fully
14177 pipelined (1 stage). The following instructions are additionally
14178 enabled: MPY, MPYU, MPYM, MPYMU, and MPY_S.
14179
14180 @item 3
14181 @opindex wlh2
14182 The multiply option is set to wlh2: 32x32 multiplier, fully pipelined
14183 (2 stages). The following instructions are additionally enabled: MPY,
14184 MPYU, MPYM, MPYMU, and MPY_S.
14185
14186 @item 4
14187 @opindex wlh3
14188 The multiply option is set to wlh3: Two 16x16 multiplier, blocking,
14189 sequential. The following instructions are additionally enabled: MPY,
14190 MPYU, MPYM, MPYMU, and MPY_S.
14191
14192 @item 5
14193 @opindex wlh4
14194 The multiply option is set to wlh4: One 16x16 multiplier, blocking,
14195 sequential. The following instructions are additionally enabled: MPY,
14196 MPYU, MPYM, MPYMU, and MPY_S.
14197
14198 @item 6
14199 @opindex wlh5
14200 The multiply option is set to wlh5: One 32x4 multiplier, blocking,
14201 sequential. The following instructions are additionally enabled: MPY,
14202 MPYU, MPYM, MPYMU, and MPY_S.
14203
14204 @end table
14205
14206 This option is only available for ARCv2 cores@.
14207
14208 @item -mfpu=@var{fpu}
14209 @opindex mfpu
14210 Enables specific floating-point hardware extension for ARCv2
14211 core. Supported values for @var{fpu} are:
14212
14213 @table @samp
14214
14215 @item fpus
14216 @opindex fpus
14217 Enables support for single precision floating point hardware
14218 extensions@.
14219
14220 @item fpud
14221 @opindex fpud
14222 Enables support for double precision floating point hardware
14223 extensions. The single precision floating point extension is also
14224 enabled. Not available for ARC EM@.
14225
14226 @item fpuda
14227 @opindex fpuda
14228 Enables support for double precision floating point hardware
14229 extensions using double precision assist instructions. The single
14230 precision floating point extension is also enabled. This option is
14231 only available for ARC EM@.
14232
14233 @item fpuda_div
14234 @opindex fpuda_div
14235 Enables support for double precision floating point hardware
14236 extensions using double precision assist instructions, and simple
14237 precision square-root and divide hardware extensions. The single
14238 precision floating point extension is also enabled. This option is
14239 only available for ARC EM@.
14240
14241 @item fpuda_fma
14242 @opindex fpuda_fma
14243 Enables support for double precision floating point hardware
14244 extensions using double precision assist instructions, and simple
14245 precision fused multiple and add hardware extension. The single
14246 precision floating point extension is also enabled. This option is
14247 only available for ARC EM@.
14248
14249 @item fpuda_all
14250 @opindex fpuda_all
14251 Enables support for double precision floating point hardware
14252 extensions using double precision assist instructions, and all simple
14253 precision hardware extensions. The single precision floating point
14254 extension is also enabled. This option is only available for ARC EM@.
14255
14256 @item fpus_div
14257 @opindex fpus_div
14258 Enables support for single precision floating point, and single
14259 precision square-root and divide hardware extensions@.
14260
14261 @item fpud_div
14262 @opindex fpud_div
14263 Enables support for double precision floating point, and double
14264 precision square-root and divide hardware extensions. This option
14265 includes option @samp{fpus_div}. Not available for ARC EM@.
14266
14267 @item fpus_fma
14268 @opindex fpus_fma
14269 Enables support for single precision floating point, and single
14270 precision fused multiple and add hardware extensions@.
14271
14272 @item fpud_fma
14273 @opindex fpud_fma
14274 Enables support for double precision floating point, and double
14275 precision fused multiple and add hardware extensions. This option
14276 includes option @samp{fpus_fma}. Not available for ARC EM@.
14277
14278 @item fpus_all
14279 @opindex fpus_all
14280 Enables support for all single precision floating point hardware
14281 extensions@.
14282
14283 @item fpud_all
14284 @opindex fpud_all
14285 Enables support for all single and double precision floating point
14286 hardware extensions. Not available for ARC EM@.
14287
14288 @end table
14289
14290 @end table
14291
14292 The following options are passed through to the assembler, and also
14293 define preprocessor macro symbols.
14294
14295 @c Flags used by the assembler, but for which we define preprocessor
14296 @c macro symbols as well.
14297 @table @gcctabopt
14298 @item -mdsp-packa
14299 @opindex mdsp-packa
14300 Passed down to the assembler to enable the DSP Pack A extensions.
14301 Also sets the preprocessor symbol @code{__Xdsp_packa}.
14302
14303 @item -mdvbf
14304 @opindex mdvbf
14305 Passed down to the assembler to enable the dual viterbi butterfly
14306 extension. Also sets the preprocessor symbol @code{__Xdvbf}.
14307
14308 @c ARC700 4.10 extension instruction
14309 @item -mlock
14310 @opindex mlock
14311 Passed down to the assembler to enable the Locked Load/Store
14312 Conditional extension. Also sets the preprocessor symbol
14313 @code{__Xlock}.
14314
14315 @item -mmac-d16
14316 @opindex mmac-d16
14317 Passed down to the assembler. Also sets the preprocessor symbol
14318 @code{__Xxmac_d16}.
14319
14320 @item -mmac-24
14321 @opindex mmac-24
14322 Passed down to the assembler. Also sets the preprocessor symbol
14323 @code{__Xxmac_24}.
14324
14325 @c ARC700 4.10 extension instruction
14326 @item -mrtsc
14327 @opindex mrtsc
14328 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
14329 extension instruction. Also sets the preprocessor symbol
14330 @code{__Xrtsc}.
14331
14332 @c ARC700 4.10 extension instruction
14333 @item -mswape
14334 @opindex mswape
14335 Passed down to the assembler to enable the swap byte ordering
14336 extension instruction. Also sets the preprocessor symbol
14337 @code{__Xswape}.
14338
14339 @item -mtelephony
14340 @opindex mtelephony
14341 Passed down to the assembler to enable dual and single operand
14342 instructions for telephony. Also sets the preprocessor symbol
14343 @code{__Xtelephony}.
14344
14345 @item -mxy
14346 @opindex mxy
14347 Passed down to the assembler to enable the XY Memory extension. Also
14348 sets the preprocessor symbol @code{__Xxy}.
14349
14350 @end table
14351
14352 The following options control how the assembly code is annotated:
14353
14354 @c Assembly annotation options
14355 @table @gcctabopt
14356 @item -misize
14357 @opindex misize
14358 Annotate assembler instructions with estimated addresses.
14359
14360 @item -mannotate-align
14361 @opindex mannotate-align
14362 Explain what alignment considerations lead to the decision to make an
14363 instruction short or long.
14364
14365 @end table
14366
14367 The following options are passed through to the linker:
14368
14369 @c options passed through to the linker
14370 @table @gcctabopt
14371 @item -marclinux
14372 @opindex marclinux
14373 Passed through to the linker, to specify use of the @code{arclinux} emulation.
14374 This option is enabled by default in tool chains built for
14375 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
14376 when profiling is not requested.
14377
14378 @item -marclinux_prof
14379 @opindex marclinux_prof
14380 Passed through to the linker, to specify use of the
14381 @code{arclinux_prof} emulation. This option is enabled by default in
14382 tool chains built for @w{@code{arc-linux-uclibc}} and
14383 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
14384
14385 @end table
14386
14387 The following options control the semantics of generated code:
14388
14389 @c semantically relevant code generation options
14390 @table @gcctabopt
14391 @item -mlong-calls
14392 @opindex mlong-calls
14393 Generate call insns as register indirect calls, thus providing access
14394 to the full 32-bit address range.
14395
14396 @item -mmedium-calls
14397 @opindex mmedium-calls
14398 Don't use less than 25 bit addressing range for calls, which is the
14399 offset available for an unconditional branch-and-link
14400 instruction. Conditional execution of function calls is suppressed, to
14401 allow use of the 25-bit range, rather than the 21-bit range with
14402 conditional branch-and-link. This is the default for tool chains built
14403 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
14404
14405 @item -mno-sdata
14406 @opindex mno-sdata
14407 Do not generate sdata references. This is the default for tool chains
14408 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
14409 targets.
14410
14411 @item -mucb-mcount
14412 @opindex mucb-mcount
14413 Instrument with mcount calls as used in UCB code. I.e. do the
14414 counting in the callee, not the caller. By default ARC instrumentation
14415 counts in the caller.
14416
14417 @item -mvolatile-cache
14418 @opindex mvolatile-cache
14419 Use ordinarily cached memory accesses for volatile references. This is the
14420 default.
14421
14422 @item -mno-volatile-cache
14423 @opindex mno-volatile-cache
14424 Enable cache bypass for volatile references.
14425
14426 @end table
14427
14428 The following options fine tune code generation:
14429 @c code generation tuning options
14430 @table @gcctabopt
14431 @item -malign-call
14432 @opindex malign-call
14433 Do alignment optimizations for call instructions.
14434
14435 @item -mauto-modify-reg
14436 @opindex mauto-modify-reg
14437 Enable the use of pre/post modify with register displacement.
14438
14439 @item -mbbit-peephole
14440 @opindex mbbit-peephole
14441 Enable bbit peephole2.
14442
14443 @item -mno-brcc
14444 @opindex mno-brcc
14445 This option disables a target-specific pass in @file{arc_reorg} to
14446 generate @code{BRcc} instructions. It has no effect on @code{BRcc}
14447 generation driven by the combiner pass.
14448
14449 @item -mcase-vector-pcrel
14450 @opindex mcase-vector-pcrel
14451 Use pc-relative switch case tables - this enables case table shortening.
14452 This is the default for @option{-Os}.
14453
14454 @item -mcompact-casesi
14455 @opindex mcompact-casesi
14456 Enable compact casesi pattern. This is the default for @option{-Os},
14457 and only available for ARCv1 cores.
14458
14459 @item -mno-cond-exec
14460 @opindex mno-cond-exec
14461 Disable ARCompact specific pass to generate conditional execution instructions.
14462 Due to delay slot scheduling and interactions between operand numbers,
14463 literal sizes, instruction lengths, and the support for conditional execution,
14464 the target-independent pass to generate conditional execution is often lacking,
14465 so the ARC port has kept a special pass around that tries to find more
14466 conditional execution generating opportunities after register allocation,
14467 branch shortening, and delay slot scheduling have been done. This pass
14468 generally, but not always, improves performance and code size, at the cost of
14469 extra compilation time, which is why there is an option to switch it off.
14470 If you have a problem with call instructions exceeding their allowable
14471 offset range because they are conditionalized, you should consider using
14472 @option{-mmedium-calls} instead.
14473
14474 @item -mearly-cbranchsi
14475 @opindex mearly-cbranchsi
14476 Enable pre-reload use of the cbranchsi pattern.
14477
14478 @item -mexpand-adddi
14479 @opindex mexpand-adddi
14480 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
14481 @code{add.f}, @code{adc} etc.
14482
14483 @item -mindexed-loads
14484 @opindex mindexed-loads
14485 Enable the use of indexed loads. This can be problematic because some
14486 optimizers then assume that indexed stores exist, which is not
14487 the case.
14488
14489 @opindex mlra
14490 Enable Local Register Allocation. This is still experimental for ARC,
14491 so by default the compiler uses standard reload
14492 (i.e. @option{-mno-lra}).
14493
14494 @item -mlra-priority-none
14495 @opindex mlra-priority-none
14496 Don't indicate any priority for target registers.
14497
14498 @item -mlra-priority-compact
14499 @opindex mlra-priority-compact
14500 Indicate target register priority for r0..r3 / r12..r15.
14501
14502 @item -mlra-priority-noncompact
14503 @opindex mlra-priority-noncompact
14504 Reduce target register priority for r0..r3 / r12..r15.
14505
14506 @item -mno-millicode
14507 @opindex mno-millicode
14508 When optimizing for size (using @option{-Os}), prologues and epilogues
14509 that have to save or restore a large number of registers are often
14510 shortened by using call to a special function in libgcc; this is
14511 referred to as a @emph{millicode} call. As these calls can pose
14512 performance issues, and/or cause linking issues when linking in a
14513 nonstandard way, this option is provided to turn off millicode call
14514 generation.
14515
14516 @item -mmixed-code
14517 @opindex mmixed-code
14518 Tweak register allocation to help 16-bit instruction generation.
14519 This generally has the effect of decreasing the average instruction size
14520 while increasing the instruction count.
14521
14522 @item -mq-class
14523 @opindex mq-class
14524 Enable 'q' instruction alternatives.
14525 This is the default for @option{-Os}.
14526
14527 @item -mRcq
14528 @opindex mRcq
14529 Enable Rcq constraint handling - most short code generation depends on this.
14530 This is the default.
14531
14532 @item -mRcw
14533 @opindex mRcw
14534 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
14535 This is the default.
14536
14537 @item -msize-level=@var{level}
14538 @opindex msize-level
14539 Fine-tune size optimization with regards to instruction lengths and alignment.
14540 The recognized values for @var{level} are:
14541 @table @samp
14542 @item 0
14543 No size optimization. This level is deprecated and treated like @samp{1}.
14544
14545 @item 1
14546 Short instructions are used opportunistically.
14547
14548 @item 2
14549 In addition, alignment of loops and of code after barriers are dropped.
14550
14551 @item 3
14552 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
14553
14554 @end table
14555
14556 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
14557 the behavior when this is not set is equivalent to level @samp{1}.
14558
14559 @item -mtune=@var{cpu}
14560 @opindex mtune
14561 Set instruction scheduling parameters for @var{cpu}, overriding any implied
14562 by @option{-mcpu=}.
14563
14564 Supported values for @var{cpu} are
14565
14566 @table @samp
14567 @item ARC600
14568 Tune for ARC600 cpu.
14569
14570 @item ARC601
14571 Tune for ARC601 cpu.
14572
14573 @item ARC700
14574 Tune for ARC700 cpu with standard multiplier block.
14575
14576 @item ARC700-xmac
14577 Tune for ARC700 cpu with XMAC block.
14578
14579 @item ARC725D
14580 Tune for ARC725D cpu.
14581
14582 @item ARC750D
14583 Tune for ARC750D cpu.
14584
14585 @end table
14586
14587 @item -mmultcost=@var{num}
14588 @opindex mmultcost
14589 Cost to assume for a multiply instruction, with @samp{4} being equal to a
14590 normal instruction.
14591
14592 @item -munalign-prob-threshold=@var{probability}
14593 @opindex munalign-prob-threshold
14594 Set probability threshold for unaligning branches.
14595 When tuning for @samp{ARC700} and optimizing for speed, branches without
14596 filled delay slot are preferably emitted unaligned and long, unless
14597 profiling indicates that the probability for the branch to be taken
14598 is below @var{probability}. @xref{Cross-profiling}.
14599 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
14600
14601 @end table
14602
14603 The following options are maintained for backward compatibility, but
14604 are now deprecated and will be removed in a future release:
14605
14606 @c Deprecated options
14607 @table @gcctabopt
14608
14609 @item -margonaut
14610 @opindex margonaut
14611 Obsolete FPX.
14612
14613 @item -mbig-endian
14614 @opindex mbig-endian
14615 @itemx -EB
14616 @opindex EB
14617 Compile code for big endian targets. Use of these options is now
14618 deprecated. Users wanting big-endian code, should use the
14619 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
14620 building the tool chain, for which big-endian is the default.
14621
14622 @item -mlittle-endian
14623 @opindex mlittle-endian
14624 @itemx -EL
14625 @opindex EL
14626 Compile code for little endian targets. Use of these options is now
14627 deprecated. Users wanting little-endian code should use the
14628 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
14629 building the tool chain, for which little-endian is the default.
14630
14631 @item -mbarrel_shifter
14632 @opindex mbarrel_shifter
14633 Replaced by @option{-mbarrel-shifter}.
14634
14635 @item -mdpfp_compact
14636 @opindex mdpfp_compact
14637 Replaced by @option{-mdpfp-compact}.
14638
14639 @item -mdpfp_fast
14640 @opindex mdpfp_fast
14641 Replaced by @option{-mdpfp-fast}.
14642
14643 @item -mdsp_packa
14644 @opindex mdsp_packa
14645 Replaced by @option{-mdsp-packa}.
14646
14647 @item -mEA
14648 @opindex mEA
14649 Replaced by @option{-mea}.
14650
14651 @item -mmac_24
14652 @opindex mmac_24
14653 Replaced by @option{-mmac-24}.
14654
14655 @item -mmac_d16
14656 @opindex mmac_d16
14657 Replaced by @option{-mmac-d16}.
14658
14659 @item -mspfp_compact
14660 @opindex mspfp_compact
14661 Replaced by @option{-mspfp-compact}.
14662
14663 @item -mspfp_fast
14664 @opindex mspfp_fast
14665 Replaced by @option{-mspfp-fast}.
14666
14667 @item -mtune=@var{cpu}
14668 @opindex mtune
14669 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
14670 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
14671 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
14672
14673 @item -multcost=@var{num}
14674 @opindex multcost
14675 Replaced by @option{-mmultcost}.
14676
14677 @end table
14678
14679 @node ARM Options
14680 @subsection ARM Options
14681 @cindex ARM options
14682
14683 These @samp{-m} options are defined for the ARM port:
14684
14685 @table @gcctabopt
14686 @item -mabi=@var{name}
14687 @opindex mabi
14688 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
14689 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
14690
14691 @item -mapcs-frame
14692 @opindex mapcs-frame
14693 Generate a stack frame that is compliant with the ARM Procedure Call
14694 Standard for all functions, even if this is not strictly necessary for
14695 correct execution of the code. Specifying @option{-fomit-frame-pointer}
14696 with this option causes the stack frames not to be generated for
14697 leaf functions. The default is @option{-mno-apcs-frame}.
14698 This option is deprecated.
14699
14700 @item -mapcs
14701 @opindex mapcs
14702 This is a synonym for @option{-mapcs-frame} and is deprecated.
14703
14704 @ignore
14705 @c not currently implemented
14706 @item -mapcs-stack-check
14707 @opindex mapcs-stack-check
14708 Generate code to check the amount of stack space available upon entry to
14709 every function (that actually uses some stack space). If there is
14710 insufficient space available then either the function
14711 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
14712 called, depending upon the amount of stack space required. The runtime
14713 system is required to provide these functions. The default is
14714 @option{-mno-apcs-stack-check}, since this produces smaller code.
14715
14716 @c not currently implemented
14717 @item -mapcs-float
14718 @opindex mapcs-float
14719 Pass floating-point arguments using the floating-point registers. This is
14720 one of the variants of the APCS@. This option is recommended if the
14721 target hardware has a floating-point unit or if a lot of floating-point
14722 arithmetic is going to be performed by the code. The default is
14723 @option{-mno-apcs-float}, since the size of integer-only code is
14724 slightly increased if @option{-mapcs-float} is used.
14725
14726 @c not currently implemented
14727 @item -mapcs-reentrant
14728 @opindex mapcs-reentrant
14729 Generate reentrant, position-independent code. The default is
14730 @option{-mno-apcs-reentrant}.
14731 @end ignore
14732
14733 @item -mthumb-interwork
14734 @opindex mthumb-interwork
14735 Generate code that supports calling between the ARM and Thumb
14736 instruction sets. Without this option, on pre-v5 architectures, the
14737 two instruction sets cannot be reliably used inside one program. The
14738 default is @option{-mno-thumb-interwork}, since slightly larger code
14739 is generated when @option{-mthumb-interwork} is specified. In AAPCS
14740 configurations this option is meaningless.
14741
14742 @item -mno-sched-prolog
14743 @opindex mno-sched-prolog
14744 Prevent the reordering of instructions in the function prologue, or the
14745 merging of those instruction with the instructions in the function's
14746 body. This means that all functions start with a recognizable set
14747 of instructions (or in fact one of a choice from a small set of
14748 different function prologues), and this information can be used to
14749 locate the start of functions inside an executable piece of code. The
14750 default is @option{-msched-prolog}.
14751
14752 @item -mfloat-abi=@var{name}
14753 @opindex mfloat-abi
14754 Specifies which floating-point ABI to use. Permissible values
14755 are: @samp{soft}, @samp{softfp} and @samp{hard}.
14756
14757 Specifying @samp{soft} causes GCC to generate output containing
14758 library calls for floating-point operations.
14759 @samp{softfp} allows the generation of code using hardware floating-point
14760 instructions, but still uses the soft-float calling conventions.
14761 @samp{hard} allows generation of floating-point instructions
14762 and uses FPU-specific calling conventions.
14763
14764 The default depends on the specific target configuration. Note that
14765 the hard-float and soft-float ABIs are not link-compatible; you must
14766 compile your entire program with the same ABI, and link with a
14767 compatible set of libraries.
14768
14769 @item -mlittle-endian
14770 @opindex mlittle-endian
14771 Generate code for a processor running in little-endian mode. This is
14772 the default for all standard configurations.
14773
14774 @item -mbig-endian
14775 @opindex mbig-endian
14776 Generate code for a processor running in big-endian mode; the default is
14777 to compile code for a little-endian processor.
14778
14779 @item -march=@var{name}
14780 @opindex march
14781 This specifies the name of the target ARM architecture. GCC uses this
14782 name to determine what kind of instructions it can emit when generating
14783 assembly code. This option can be used in conjunction with or instead
14784 of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
14785 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
14786 @samp{armv5}, @samp{armv5e}, @samp{armv5t}, @samp{armv5te},
14787 @samp{armv6}, @samp{armv6-m}, @samp{armv6j}, @samp{armv6k},
14788 @samp{armv6kz}, @samp{armv6s-m},
14789 @samp{armv6t2}, @samp{armv6z}, @samp{armv6zk},
14790 @samp{armv7}, @samp{armv7-a}, @samp{armv7-m}, @samp{armv7-r}, @samp{armv7e-m},
14791 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc}, @samp{armv8.1-a},
14792 @samp{armv8.1-a+crc}, @samp{armv8-m.base}, @samp{armv8-m.main},
14793 @samp{armv8-m.main+dsp}, @samp{iwmmxt}, @samp{iwmmxt2}.
14794
14795 Architecture revisions older than @samp{armv4t} are deprecated.
14796
14797 @option{-march=armv6s-m} is the @samp{armv6-m} architecture with support for
14798 the (now mandatory) SVC instruction.
14799
14800 @option{-march=armv6zk} is an alias for @samp{armv6kz}, existing for backwards
14801 compatibility.
14802
14803 @option{-march=armv7ve} is the @samp{armv7-a} architecture with virtualization
14804 extensions.
14805
14806 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
14807 architecture together with the optional CRC32 extensions.
14808
14809 @option{-march=armv8.1-a} enables compiler support for the ARMv8.1-A
14810 architecture. This also enables the features provided by
14811 @option{-march=armv8-a+crc}.
14812
14813 @option{-march=armv8.2-a} enables compiler support for the ARMv8.2-A
14814 architecture. This also enables the features provided by
14815 @option{-march=armv8.1-a}.
14816
14817 @option{-march=armv8.2-a+fp16} enables compiler support for the
14818 ARMv8.2-A architecture with the optional FP16 instructions extension.
14819 This also enables the features provided by @option{-march=armv8.1-a}
14820 and implies @option{-mfp16-format=ieee}.
14821
14822 @option{-march=native} causes the compiler to auto-detect the architecture
14823 of the build computer. At present, this feature is only supported on
14824 GNU/Linux, and not all architectures are recognized. If the auto-detect
14825 is unsuccessful the option has no effect.
14826
14827 @item -mtune=@var{name}
14828 @opindex mtune
14829 This option specifies the name of the target ARM processor for
14830 which GCC should tune the performance of the code.
14831 For some ARM implementations better performance can be obtained by using
14832 this option.
14833 Permissible names are: @samp{arm2}, @samp{arm250},
14834 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
14835 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
14836 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
14837 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
14838 @samp{arm720},
14839 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
14840 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
14841 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
14842 @samp{strongarm1110},
14843 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
14844 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
14845 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
14846 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
14847 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
14848 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
14849 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
14850 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
14851 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
14852 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a57},
14853 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-r4},
14854 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
14855 @samp{cortex-m7},
14856 @samp{cortex-m4},
14857 @samp{cortex-m3},
14858 @samp{cortex-m1},
14859 @samp{cortex-m0},
14860 @samp{cortex-m0plus},
14861 @samp{cortex-m1.small-multiply},
14862 @samp{cortex-m0.small-multiply},
14863 @samp{cortex-m0plus.small-multiply},
14864 @samp{exynos-m1},
14865 @samp{qdf24xx},
14866 @samp{marvell-pj4},
14867 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
14868 @samp{fa526}, @samp{fa626},
14869 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
14870 @samp{xgene1}.
14871
14872 Additionally, this option can specify that GCC should tune the performance
14873 of the code for a big.LITTLE system. Permissible names are:
14874 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
14875 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
14876 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53}.
14877
14878 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
14879 performance for a blend of processors within architecture @var{arch}.
14880 The aim is to generate code that run well on the current most popular
14881 processors, balancing between optimizations that benefit some CPUs in the
14882 range, and avoiding performance pitfalls of other CPUs. The effects of
14883 this option may change in future GCC versions as CPU models come and go.
14884
14885 @option{-mtune=native} causes the compiler to auto-detect the CPU
14886 of the build computer. At present, this feature is only supported on
14887 GNU/Linux, and not all architectures are recognized. If the auto-detect is
14888 unsuccessful the option has no effect.
14889
14890 @item -mcpu=@var{name}
14891 @opindex mcpu
14892 This specifies the name of the target ARM processor. GCC uses this name
14893 to derive the name of the target ARM architecture (as if specified
14894 by @option{-march}) and the ARM processor type for which to tune for
14895 performance (as if specified by @option{-mtune}). Where this option
14896 is used in conjunction with @option{-march} or @option{-mtune},
14897 those options take precedence over the appropriate part of this option.
14898
14899 Permissible names for this option are the same as those for
14900 @option{-mtune}.
14901
14902 @option{-mcpu=generic-@var{arch}} is also permissible, and is
14903 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
14904 See @option{-mtune} for more information.
14905
14906 @option{-mcpu=native} causes the compiler to auto-detect the CPU
14907 of the build computer. At present, this feature is only supported on
14908 GNU/Linux, and not all architectures are recognized. If the auto-detect
14909 is unsuccessful the option has no effect.
14910
14911 @item -mfpu=@var{name}
14912 @opindex mfpu
14913 This specifies what floating-point hardware (or hardware emulation) is
14914 available on the target. Permissible names are: @samp{vfp}, @samp{vfpv3},
14915 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
14916 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
14917 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
14918 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
14919 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
14920
14921 If @option{-msoft-float} is specified this specifies the format of
14922 floating-point values.
14923
14924 If the selected floating-point hardware includes the NEON extension
14925 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
14926 operations are not generated by GCC's auto-vectorization pass unless
14927 @option{-funsafe-math-optimizations} is also specified. This is
14928 because NEON hardware does not fully implement the IEEE 754 standard for
14929 floating-point arithmetic (in particular denormal values are treated as
14930 zero), so the use of NEON instructions may lead to a loss of precision.
14931
14932 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
14933
14934 @item -mfp16-format=@var{name}
14935 @opindex mfp16-format
14936 Specify the format of the @code{__fp16} half-precision floating-point type.
14937 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
14938 the default is @samp{none}, in which case the @code{__fp16} type is not
14939 defined. @xref{Half-Precision}, for more information.
14940
14941 @item -mstructure-size-boundary=@var{n}
14942 @opindex mstructure-size-boundary
14943 The sizes of all structures and unions are rounded up to a multiple
14944 of the number of bits set by this option. Permissible values are 8, 32
14945 and 64. The default value varies for different toolchains. For the COFF
14946 targeted toolchain the default value is 8. A value of 64 is only allowed
14947 if the underlying ABI supports it.
14948
14949 Specifying a larger number can produce faster, more efficient code, but
14950 can also increase the size of the program. Different values are potentially
14951 incompatible. Code compiled with one value cannot necessarily expect to
14952 work with code or libraries compiled with another value, if they exchange
14953 information using structures or unions.
14954
14955 @item -mabort-on-noreturn
14956 @opindex mabort-on-noreturn
14957 Generate a call to the function @code{abort} at the end of a
14958 @code{noreturn} function. It is executed if the function tries to
14959 return.
14960
14961 @item -mlong-calls
14962 @itemx -mno-long-calls
14963 @opindex mlong-calls
14964 @opindex mno-long-calls
14965 Tells the compiler to perform function calls by first loading the
14966 address of the function into a register and then performing a subroutine
14967 call on this register. This switch is needed if the target function
14968 lies outside of the 64-megabyte addressing range of the offset-based
14969 version of subroutine call instruction.
14970
14971 Even if this switch is enabled, not all function calls are turned
14972 into long calls. The heuristic is that static functions, functions
14973 that have the @code{short_call} attribute, functions that are inside
14974 the scope of a @code{#pragma no_long_calls} directive, and functions whose
14975 definitions have already been compiled within the current compilation
14976 unit are not turned into long calls. The exceptions to this rule are
14977 that weak function definitions, functions with the @code{long_call}
14978 attribute or the @code{section} attribute, and functions that are within
14979 the scope of a @code{#pragma long_calls} directive are always
14980 turned into long calls.
14981
14982 This feature is not enabled by default. Specifying
14983 @option{-mno-long-calls} restores the default behavior, as does
14984 placing the function calls within the scope of a @code{#pragma
14985 long_calls_off} directive. Note these switches have no effect on how
14986 the compiler generates code to handle function calls via function
14987 pointers.
14988
14989 @item -msingle-pic-base
14990 @opindex msingle-pic-base
14991 Treat the register used for PIC addressing as read-only, rather than
14992 loading it in the prologue for each function. The runtime system is
14993 responsible for initializing this register with an appropriate value
14994 before execution begins.
14995
14996 @item -mpic-register=@var{reg}
14997 @opindex mpic-register
14998 Specify the register to be used for PIC addressing.
14999 For standard PIC base case, the default is any suitable register
15000 determined by compiler. For single PIC base case, the default is
15001 @samp{R9} if target is EABI based or stack-checking is enabled,
15002 otherwise the default is @samp{R10}.
15003
15004 @item -mpic-data-is-text-relative
15005 @opindex mpic-data-is-text-relative
15006 Assume that the displacement between the text and data segments is fixed
15007 at static link time. This permits using PC-relative addressing
15008 operations to access data known to be in the data segment. For
15009 non-VxWorks RTP targets, this option is enabled by default. When
15010 disabled on such targets, it will enable @option{-msingle-pic-base} by
15011 default.
15012
15013 @item -mpoke-function-name
15014 @opindex mpoke-function-name
15015 Write the name of each function into the text section, directly
15016 preceding the function prologue. The generated code is similar to this:
15017
15018 @smallexample
15019 t0
15020 .ascii "arm_poke_function_name", 0
15021 .align
15022 t1
15023 .word 0xff000000 + (t1 - t0)
15024 arm_poke_function_name
15025 mov ip, sp
15026 stmfd sp!, @{fp, ip, lr, pc@}
15027 sub fp, ip, #4
15028 @end smallexample
15029
15030 When performing a stack backtrace, code can inspect the value of
15031 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
15032 location @code{pc - 12} and the top 8 bits are set, then we know that
15033 there is a function name embedded immediately preceding this location
15034 and has length @code{((pc[-3]) & 0xff000000)}.
15035
15036 @item -mthumb
15037 @itemx -marm
15038 @opindex marm
15039 @opindex mthumb
15040
15041 Select between generating code that executes in ARM and Thumb
15042 states. The default for most configurations is to generate code
15043 that executes in ARM state, but the default can be changed by
15044 configuring GCC with the @option{--with-mode=}@var{state}
15045 configure option.
15046
15047 You can also override the ARM and Thumb mode for each function
15048 by using the @code{target("thumb")} and @code{target("arm")} function attributes
15049 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
15050
15051 @item -mtpcs-frame
15052 @opindex mtpcs-frame
15053 Generate a stack frame that is compliant with the Thumb Procedure Call
15054 Standard for all non-leaf functions. (A leaf function is one that does
15055 not call any other functions.) The default is @option{-mno-tpcs-frame}.
15056
15057 @item -mtpcs-leaf-frame
15058 @opindex mtpcs-leaf-frame
15059 Generate a stack frame that is compliant with the Thumb Procedure Call
15060 Standard for all leaf functions. (A leaf function is one that does
15061 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
15062
15063 @item -mcallee-super-interworking
15064 @opindex mcallee-super-interworking
15065 Gives all externally visible functions in the file being compiled an ARM
15066 instruction set header which switches to Thumb mode before executing the
15067 rest of the function. This allows these functions to be called from
15068 non-interworking code. This option is not valid in AAPCS configurations
15069 because interworking is enabled by default.
15070
15071 @item -mcaller-super-interworking
15072 @opindex mcaller-super-interworking
15073 Allows calls via function pointers (including virtual functions) to
15074 execute correctly regardless of whether the target code has been
15075 compiled for interworking or not. There is a small overhead in the cost
15076 of executing a function pointer if this option is enabled. This option
15077 is not valid in AAPCS configurations because interworking is enabled
15078 by default.
15079
15080 @item -mtp=@var{name}
15081 @opindex mtp
15082 Specify the access model for the thread local storage pointer. The valid
15083 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
15084 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
15085 (supported in the arm6k architecture), and @samp{auto}, which uses the
15086 best available method for the selected processor. The default setting is
15087 @samp{auto}.
15088
15089 @item -mtls-dialect=@var{dialect}
15090 @opindex mtls-dialect
15091 Specify the dialect to use for accessing thread local storage. Two
15092 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
15093 @samp{gnu} dialect selects the original GNU scheme for supporting
15094 local and global dynamic TLS models. The @samp{gnu2} dialect
15095 selects the GNU descriptor scheme, which provides better performance
15096 for shared libraries. The GNU descriptor scheme is compatible with
15097 the original scheme, but does require new assembler, linker and
15098 library support. Initial and local exec TLS models are unaffected by
15099 this option and always use the original scheme.
15100
15101 @item -mword-relocations
15102 @opindex mword-relocations
15103 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
15104 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
15105 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
15106 is specified.
15107
15108 @item -mfix-cortex-m3-ldrd
15109 @opindex mfix-cortex-m3-ldrd
15110 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
15111 with overlapping destination and base registers are used. This option avoids
15112 generating these instructions. This option is enabled by default when
15113 @option{-mcpu=cortex-m3} is specified.
15114
15115 @item -munaligned-access
15116 @itemx -mno-unaligned-access
15117 @opindex munaligned-access
15118 @opindex mno-unaligned-access
15119 Enables (or disables) reading and writing of 16- and 32- bit values
15120 from addresses that are not 16- or 32- bit aligned. By default
15121 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
15122 ARMv8-M Baseline architectures, and enabled for all other
15123 architectures. If unaligned access is not enabled then words in packed
15124 data structures are accessed a byte at a time.
15125
15126 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
15127 generated object file to either true or false, depending upon the
15128 setting of this option. If unaligned access is enabled then the
15129 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
15130 defined.
15131
15132 @item -mneon-for-64bits
15133 @opindex mneon-for-64bits
15134 Enables using Neon to handle scalar 64-bits operations. This is
15135 disabled by default since the cost of moving data from core registers
15136 to Neon is high.
15137
15138 @item -mslow-flash-data
15139 @opindex mslow-flash-data
15140 Assume loading data from flash is slower than fetching instruction.
15141 Therefore literal load is minimized for better performance.
15142 This option is only supported when compiling for ARMv7 M-profile and
15143 off by default.
15144
15145 @item -masm-syntax-unified
15146 @opindex masm-syntax-unified
15147 Assume inline assembler is using unified asm syntax. The default is
15148 currently off which implies divided syntax. This option has no impact
15149 on Thumb2. However, this may change in future releases of GCC.
15150 Divided syntax should be considered deprecated.
15151
15152 @item -mrestrict-it
15153 @opindex mrestrict-it
15154 Restricts generation of IT blocks to conform to the rules of ARMv8.
15155 IT blocks can only contain a single 16-bit instruction from a select
15156 set of instructions. This option is on by default for ARMv8 Thumb mode.
15157
15158 @item -mprint-tune-info
15159 @opindex mprint-tune-info
15160 Print CPU tuning information as comment in assembler file. This is
15161 an option used only for regression testing of the compiler and not
15162 intended for ordinary use in compiling code. This option is disabled
15163 by default.
15164
15165 @item -mpure-code
15166 @opindex mpure-code
15167 Do not allow constant data to be placed in code sections.
15168 Additionally, when compiling for ELF object format give all text sections the
15169 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
15170 is only available when generating non-pic code for ARMv7-M targets.
15171
15172 @end table
15173
15174 @node AVR Options
15175 @subsection AVR Options
15176 @cindex AVR Options
15177
15178 These options are defined for AVR implementations:
15179
15180 @table @gcctabopt
15181 @item -mmcu=@var{mcu}
15182 @opindex mmcu
15183 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
15184
15185 The default for this option is@tie{}@samp{avr2}.
15186
15187 GCC supports the following AVR devices and ISAs:
15188
15189 @include avr-mmcu.texi
15190
15191 @item -maccumulate-args
15192 @opindex maccumulate-args
15193 Accumulate outgoing function arguments and acquire/release the needed
15194 stack space for outgoing function arguments once in function
15195 prologue/epilogue. Without this option, outgoing arguments are pushed
15196 before calling a function and popped afterwards.
15197
15198 Popping the arguments after the function call can be expensive on
15199 AVR so that accumulating the stack space might lead to smaller
15200 executables because arguments need not to be removed from the
15201 stack after such a function call.
15202
15203 This option can lead to reduced code size for functions that perform
15204 several calls to functions that get their arguments on the stack like
15205 calls to printf-like functions.
15206
15207 @item -mbranch-cost=@var{cost}
15208 @opindex mbranch-cost
15209 Set the branch costs for conditional branch instructions to
15210 @var{cost}. Reasonable values for @var{cost} are small, non-negative
15211 integers. The default branch cost is 0.
15212
15213 @item -mcall-prologues
15214 @opindex mcall-prologues
15215 Functions prologues/epilogues are expanded as calls to appropriate
15216 subroutines. Code size is smaller.
15217
15218 @item -mint8
15219 @opindex mint8
15220 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
15221 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
15222 and @code{long long} is 4 bytes. Please note that this option does not
15223 conform to the C standards, but it results in smaller code
15224 size.
15225
15226 @item -mn-flash=@var{num}
15227 @opindex mn-flash
15228 Assume that the flash memory has a size of
15229 @var{num} times 64@tie{}KiB.
15230
15231 @item -mno-interrupts
15232 @opindex mno-interrupts
15233 Generated code is not compatible with hardware interrupts.
15234 Code size is smaller.
15235
15236 @item -mrelax
15237 @opindex mrelax
15238 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
15239 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
15240 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
15241 the assembler's command line and the @option{--relax} option to the
15242 linker's command line.
15243
15244 Jump relaxing is performed by the linker because jump offsets are not
15245 known before code is located. Therefore, the assembler code generated by the
15246 compiler is the same, but the instructions in the executable may
15247 differ from instructions in the assembler code.
15248
15249 Relaxing must be turned on if linker stubs are needed, see the
15250 section on @code{EIND} and linker stubs below.
15251
15252 @item -mrmw
15253 @opindex mrmw
15254 Assume that the device supports the Read-Modify-Write
15255 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
15256
15257 @item -msp8
15258 @opindex msp8
15259 Treat the stack pointer register as an 8-bit register,
15260 i.e.@: assume the high byte of the stack pointer is zero.
15261 In general, you don't need to set this option by hand.
15262
15263 This option is used internally by the compiler to select and
15264 build multilibs for architectures @code{avr2} and @code{avr25}.
15265 These architectures mix devices with and without @code{SPH}.
15266 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
15267 the compiler driver adds or removes this option from the compiler
15268 proper's command line, because the compiler then knows if the device
15269 or architecture has an 8-bit stack pointer and thus no @code{SPH}
15270 register or not.
15271
15272 @item -mstrict-X
15273 @opindex mstrict-X
15274 Use address register @code{X} in a way proposed by the hardware. This means
15275 that @code{X} is only used in indirect, post-increment or
15276 pre-decrement addressing.
15277
15278 Without this option, the @code{X} register may be used in the same way
15279 as @code{Y} or @code{Z} which then is emulated by additional
15280 instructions.
15281 For example, loading a value with @code{X+const} addressing with a
15282 small non-negative @code{const < 64} to a register @var{Rn} is
15283 performed as
15284
15285 @example
15286 adiw r26, const ; X += const
15287 ld @var{Rn}, X ; @var{Rn} = *X
15288 sbiw r26, const ; X -= const
15289 @end example
15290
15291 @item -mtiny-stack
15292 @opindex mtiny-stack
15293 Only change the lower 8@tie{}bits of the stack pointer.
15294
15295 @item -mfract-convert-truncate
15296 @opindex mfract-convert-truncate
15297 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
15298
15299 @item -nodevicelib
15300 @opindex nodevicelib
15301 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
15302
15303 @item -Waddr-space-convert
15304 @opindex Waddr-space-convert
15305 Warn about conversions between address spaces in the case where the
15306 resulting address space is not contained in the incoming address space.
15307
15308 @item -Wmisspelled-isr
15309 @opindex Wmisspelled-isr
15310 Warn if the ISR is misspelled, i.e. without __vector prefix.
15311 Enabled by default.
15312 @end table
15313
15314 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
15315 @cindex @code{EIND}
15316 Pointers in the implementation are 16@tie{}bits wide.
15317 The address of a function or label is represented as word address so
15318 that indirect jumps and calls can target any code address in the
15319 range of 64@tie{}Ki words.
15320
15321 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
15322 bytes of program memory space, there is a special function register called
15323 @code{EIND} that serves as most significant part of the target address
15324 when @code{EICALL} or @code{EIJMP} instructions are used.
15325
15326 Indirect jumps and calls on these devices are handled as follows by
15327 the compiler and are subject to some limitations:
15328
15329 @itemize @bullet
15330
15331 @item
15332 The compiler never sets @code{EIND}.
15333
15334 @item
15335 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
15336 instructions or might read @code{EIND} directly in order to emulate an
15337 indirect call/jump by means of a @code{RET} instruction.
15338
15339 @item
15340 The compiler assumes that @code{EIND} never changes during the startup
15341 code or during the application. In particular, @code{EIND} is not
15342 saved/restored in function or interrupt service routine
15343 prologue/epilogue.
15344
15345 @item
15346 For indirect calls to functions and computed goto, the linker
15347 generates @emph{stubs}. Stubs are jump pads sometimes also called
15348 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
15349 The stub contains a direct jump to the desired address.
15350
15351 @item
15352 Linker relaxation must be turned on so that the linker generates
15353 the stubs correctly in all situations. See the compiler option
15354 @option{-mrelax} and the linker option @option{--relax}.
15355 There are corner cases where the linker is supposed to generate stubs
15356 but aborts without relaxation and without a helpful error message.
15357
15358 @item
15359 The default linker script is arranged for code with @code{EIND = 0}.
15360 If code is supposed to work for a setup with @code{EIND != 0}, a custom
15361 linker script has to be used in order to place the sections whose
15362 name start with @code{.trampolines} into the segment where @code{EIND}
15363 points to.
15364
15365 @item
15366 The startup code from libgcc never sets @code{EIND}.
15367 Notice that startup code is a blend of code from libgcc and AVR-LibC.
15368 For the impact of AVR-LibC on @code{EIND}, see the
15369 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
15370
15371 @item
15372 It is legitimate for user-specific startup code to set up @code{EIND}
15373 early, for example by means of initialization code located in
15374 section @code{.init3}. Such code runs prior to general startup code
15375 that initializes RAM and calls constructors, but after the bit
15376 of startup code from AVR-LibC that sets @code{EIND} to the segment
15377 where the vector table is located.
15378 @example
15379 #include <avr/io.h>
15380
15381 static void
15382 __attribute__((section(".init3"),naked,used,no_instrument_function))
15383 init3_set_eind (void)
15384 @{
15385 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
15386 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
15387 @}
15388 @end example
15389
15390 @noindent
15391 The @code{__trampolines_start} symbol is defined in the linker script.
15392
15393 @item
15394 Stubs are generated automatically by the linker if
15395 the following two conditions are met:
15396 @itemize @minus
15397
15398 @item The address of a label is taken by means of the @code{gs} modifier
15399 (short for @emph{generate stubs}) like so:
15400 @example
15401 LDI r24, lo8(gs(@var{func}))
15402 LDI r25, hi8(gs(@var{func}))
15403 @end example
15404 @item The final location of that label is in a code segment
15405 @emph{outside} the segment where the stubs are located.
15406 @end itemize
15407
15408 @item
15409 The compiler emits such @code{gs} modifiers for code labels in the
15410 following situations:
15411 @itemize @minus
15412 @item Taking address of a function or code label.
15413 @item Computed goto.
15414 @item If prologue-save function is used, see @option{-mcall-prologues}
15415 command-line option.
15416 @item Switch/case dispatch tables. If you do not want such dispatch
15417 tables you can specify the @option{-fno-jump-tables} command-line option.
15418 @item C and C++ constructors/destructors called during startup/shutdown.
15419 @item If the tools hit a @code{gs()} modifier explained above.
15420 @end itemize
15421
15422 @item
15423 Jumping to non-symbolic addresses like so is @emph{not} supported:
15424
15425 @example
15426 int main (void)
15427 @{
15428 /* Call function at word address 0x2 */
15429 return ((int(*)(void)) 0x2)();
15430 @}
15431 @end example
15432
15433 Instead, a stub has to be set up, i.e.@: the function has to be called
15434 through a symbol (@code{func_4} in the example):
15435
15436 @example
15437 int main (void)
15438 @{
15439 extern int func_4 (void);
15440
15441 /* Call function at byte address 0x4 */
15442 return func_4();
15443 @}
15444 @end example
15445
15446 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
15447 Alternatively, @code{func_4} can be defined in the linker script.
15448 @end itemize
15449
15450 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
15451 @cindex @code{RAMPD}
15452 @cindex @code{RAMPX}
15453 @cindex @code{RAMPY}
15454 @cindex @code{RAMPZ}
15455 Some AVR devices support memories larger than the 64@tie{}KiB range
15456 that can be accessed with 16-bit pointers. To access memory locations
15457 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
15458 register is used as high part of the address:
15459 The @code{X}, @code{Y}, @code{Z} address register is concatenated
15460 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
15461 register, respectively, to get a wide address. Similarly,
15462 @code{RAMPD} is used together with direct addressing.
15463
15464 @itemize
15465 @item
15466 The startup code initializes the @code{RAMP} special function
15467 registers with zero.
15468
15469 @item
15470 If a @ref{AVR Named Address Spaces,named address space} other than
15471 generic or @code{__flash} is used, then @code{RAMPZ} is set
15472 as needed before the operation.
15473
15474 @item
15475 If the device supports RAM larger than 64@tie{}KiB and the compiler
15476 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
15477 is reset to zero after the operation.
15478
15479 @item
15480 If the device comes with a specific @code{RAMP} register, the ISR
15481 prologue/epilogue saves/restores that SFR and initializes it with
15482 zero in case the ISR code might (implicitly) use it.
15483
15484 @item
15485 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
15486 If you use inline assembler to read from locations outside the
15487 16-bit address range and change one of the @code{RAMP} registers,
15488 you must reset it to zero after the access.
15489
15490 @end itemize
15491
15492 @subsubsection AVR Built-in Macros
15493
15494 GCC defines several built-in macros so that the user code can test
15495 for the presence or absence of features. Almost any of the following
15496 built-in macros are deduced from device capabilities and thus
15497 triggered by the @option{-mmcu=} command-line option.
15498
15499 For even more AVR-specific built-in macros see
15500 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
15501
15502 @table @code
15503
15504 @item __AVR_ARCH__
15505 Build-in macro that resolves to a decimal number that identifies the
15506 architecture and depends on the @option{-mmcu=@var{mcu}} option.
15507 Possible values are:
15508
15509 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
15510 @code{4}, @code{5}, @code{51}, @code{6}
15511
15512 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
15513 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
15514
15515 respectively and
15516
15517 @code{100}, @code{102}, @code{104},
15518 @code{105}, @code{106}, @code{107}
15519
15520 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
15521 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
15522 If @var{mcu} specifies a device, this built-in macro is set
15523 accordingly. For example, with @option{-mmcu=atmega8} the macro is
15524 defined to @code{4}.
15525
15526 @item __AVR_@var{Device}__
15527 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
15528 the device's name. For example, @option{-mmcu=atmega8} defines the
15529 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
15530 @code{__AVR_ATtiny261A__}, etc.
15531
15532 The built-in macros' names follow
15533 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
15534 the device name as from the AVR user manual. The difference between
15535 @var{Device} in the built-in macro and @var{device} in
15536 @option{-mmcu=@var{device}} is that the latter is always lowercase.
15537
15538 If @var{device} is not a device but only a core architecture like
15539 @samp{avr51}, this macro is not defined.
15540
15541 @item __AVR_DEVICE_NAME__
15542 Setting @option{-mmcu=@var{device}} defines this built-in macro to
15543 the device's name. For example, with @option{-mmcu=atmega8} the macro
15544 is defined to @code{atmega8}.
15545
15546 If @var{device} is not a device but only a core architecture like
15547 @samp{avr51}, this macro is not defined.
15548
15549 @item __AVR_XMEGA__
15550 The device / architecture belongs to the XMEGA family of devices.
15551
15552 @item __AVR_HAVE_ELPM__
15553 The device has the @code{ELPM} instruction.
15554
15555 @item __AVR_HAVE_ELPMX__
15556 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
15557 R@var{n},Z+} instructions.
15558
15559 @item __AVR_HAVE_MOVW__
15560 The device has the @code{MOVW} instruction to perform 16-bit
15561 register-register moves.
15562
15563 @item __AVR_HAVE_LPMX__
15564 The device has the @code{LPM R@var{n},Z} and
15565 @code{LPM R@var{n},Z+} instructions.
15566
15567 @item __AVR_HAVE_MUL__
15568 The device has a hardware multiplier.
15569
15570 @item __AVR_HAVE_JMP_CALL__
15571 The device has the @code{JMP} and @code{CALL} instructions.
15572 This is the case for devices with at least 16@tie{}KiB of program
15573 memory.
15574
15575 @item __AVR_HAVE_EIJMP_EICALL__
15576 @itemx __AVR_3_BYTE_PC__
15577 The device has the @code{EIJMP} and @code{EICALL} instructions.
15578 This is the case for devices with more than 128@tie{}KiB of program memory.
15579 This also means that the program counter
15580 (PC) is 3@tie{}bytes wide.
15581
15582 @item __AVR_2_BYTE_PC__
15583 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
15584 with up to 128@tie{}KiB of program memory.
15585
15586 @item __AVR_HAVE_8BIT_SP__
15587 @itemx __AVR_HAVE_16BIT_SP__
15588 The stack pointer (SP) register is treated as 8-bit respectively
15589 16-bit register by the compiler.
15590 The definition of these macros is affected by @option{-mtiny-stack}.
15591
15592 @item __AVR_HAVE_SPH__
15593 @itemx __AVR_SP8__
15594 The device has the SPH (high part of stack pointer) special function
15595 register or has an 8-bit stack pointer, respectively.
15596 The definition of these macros is affected by @option{-mmcu=} and
15597 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
15598 by @option{-msp8}.
15599
15600 @item __AVR_HAVE_RAMPD__
15601 @itemx __AVR_HAVE_RAMPX__
15602 @itemx __AVR_HAVE_RAMPY__
15603 @itemx __AVR_HAVE_RAMPZ__
15604 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
15605 @code{RAMPZ} special function register, respectively.
15606
15607 @item __NO_INTERRUPTS__
15608 This macro reflects the @option{-mno-interrupts} command-line option.
15609
15610 @item __AVR_ERRATA_SKIP__
15611 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
15612 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
15613 instructions because of a hardware erratum. Skip instructions are
15614 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
15615 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
15616 set.
15617
15618 @item __AVR_ISA_RMW__
15619 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
15620
15621 @item __AVR_SFR_OFFSET__=@var{offset}
15622 Instructions that can address I/O special function registers directly
15623 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
15624 address as if addressed by an instruction to access RAM like @code{LD}
15625 or @code{STS}. This offset depends on the device architecture and has
15626 to be subtracted from the RAM address in order to get the
15627 respective I/O@tie{}address.
15628
15629 @item __WITH_AVRLIBC__
15630 The compiler is configured to be used together with AVR-Libc.
15631 See the @option{--with-avrlibc} configure option.
15632
15633 @end table
15634
15635 @node Blackfin Options
15636 @subsection Blackfin Options
15637 @cindex Blackfin Options
15638
15639 @table @gcctabopt
15640 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
15641 @opindex mcpu=
15642 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
15643 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
15644 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
15645 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
15646 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
15647 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
15648 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
15649 @samp{bf561}, @samp{bf592}.
15650
15651 The optional @var{sirevision} specifies the silicon revision of the target
15652 Blackfin processor. Any workarounds available for the targeted silicon revision
15653 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
15654 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
15655 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
15656 hexadecimal digits representing the major and minor numbers in the silicon
15657 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
15658 is not defined. If @var{sirevision} is @samp{any}, the
15659 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
15660 If this optional @var{sirevision} is not used, GCC assumes the latest known
15661 silicon revision of the targeted Blackfin processor.
15662
15663 GCC defines a preprocessor macro for the specified @var{cpu}.
15664 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
15665 provided by libgloss to be linked in if @option{-msim} is not given.
15666
15667 Without this option, @samp{bf532} is used as the processor by default.
15668
15669 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
15670 only the preprocessor macro is defined.
15671
15672 @item -msim
15673 @opindex msim
15674 Specifies that the program will be run on the simulator. This causes
15675 the simulator BSP provided by libgloss to be linked in. This option
15676 has effect only for @samp{bfin-elf} toolchain.
15677 Certain other options, such as @option{-mid-shared-library} and
15678 @option{-mfdpic}, imply @option{-msim}.
15679
15680 @item -momit-leaf-frame-pointer
15681 @opindex momit-leaf-frame-pointer
15682 Don't keep the frame pointer in a register for leaf functions. This
15683 avoids the instructions to save, set up and restore frame pointers and
15684 makes an extra register available in leaf functions. The option
15685 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
15686 which might make debugging harder.
15687
15688 @item -mspecld-anomaly
15689 @opindex mspecld-anomaly
15690 When enabled, the compiler ensures that the generated code does not
15691 contain speculative loads after jump instructions. If this option is used,
15692 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
15693
15694 @item -mno-specld-anomaly
15695 @opindex mno-specld-anomaly
15696 Don't generate extra code to prevent speculative loads from occurring.
15697
15698 @item -mcsync-anomaly
15699 @opindex mcsync-anomaly
15700 When enabled, the compiler ensures that the generated code does not
15701 contain CSYNC or SSYNC instructions too soon after conditional branches.
15702 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
15703
15704 @item -mno-csync-anomaly
15705 @opindex mno-csync-anomaly
15706 Don't generate extra code to prevent CSYNC or SSYNC instructions from
15707 occurring too soon after a conditional branch.
15708
15709 @item -mlow-64k
15710 @opindex mlow-64k
15711 When enabled, the compiler is free to take advantage of the knowledge that
15712 the entire program fits into the low 64k of memory.
15713
15714 @item -mno-low-64k
15715 @opindex mno-low-64k
15716 Assume that the program is arbitrarily large. This is the default.
15717
15718 @item -mstack-check-l1
15719 @opindex mstack-check-l1
15720 Do stack checking using information placed into L1 scratchpad memory by the
15721 uClinux kernel.
15722
15723 @item -mid-shared-library
15724 @opindex mid-shared-library
15725 Generate code that supports shared libraries via the library ID method.
15726 This allows for execute in place and shared libraries in an environment
15727 without virtual memory management. This option implies @option{-fPIC}.
15728 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15729
15730 @item -mno-id-shared-library
15731 @opindex mno-id-shared-library
15732 Generate code that doesn't assume ID-based shared libraries are being used.
15733 This is the default.
15734
15735 @item -mleaf-id-shared-library
15736 @opindex mleaf-id-shared-library
15737 Generate code that supports shared libraries via the library ID method,
15738 but assumes that this library or executable won't link against any other
15739 ID shared libraries. That allows the compiler to use faster code for jumps
15740 and calls.
15741
15742 @item -mno-leaf-id-shared-library
15743 @opindex mno-leaf-id-shared-library
15744 Do not assume that the code being compiled won't link against any ID shared
15745 libraries. Slower code is generated for jump and call insns.
15746
15747 @item -mshared-library-id=n
15748 @opindex mshared-library-id
15749 Specifies the identification number of the ID-based shared library being
15750 compiled. Specifying a value of 0 generates more compact code; specifying
15751 other values forces the allocation of that number to the current
15752 library but is no more space- or time-efficient than omitting this option.
15753
15754 @item -msep-data
15755 @opindex msep-data
15756 Generate code that allows the data segment to be located in a different
15757 area of memory from the text segment. This allows for execute in place in
15758 an environment without virtual memory management by eliminating relocations
15759 against the text section.
15760
15761 @item -mno-sep-data
15762 @opindex mno-sep-data
15763 Generate code that assumes that the data segment follows the text segment.
15764 This is the default.
15765
15766 @item -mlong-calls
15767 @itemx -mno-long-calls
15768 @opindex mlong-calls
15769 @opindex mno-long-calls
15770 Tells the compiler to perform function calls by first loading the
15771 address of the function into a register and then performing a subroutine
15772 call on this register. This switch is needed if the target function
15773 lies outside of the 24-bit addressing range of the offset-based
15774 version of subroutine call instruction.
15775
15776 This feature is not enabled by default. Specifying
15777 @option{-mno-long-calls} restores the default behavior. Note these
15778 switches have no effect on how the compiler generates code to handle
15779 function calls via function pointers.
15780
15781 @item -mfast-fp
15782 @opindex mfast-fp
15783 Link with the fast floating-point library. This library relaxes some of
15784 the IEEE floating-point standard's rules for checking inputs against
15785 Not-a-Number (NAN), in the interest of performance.
15786
15787 @item -minline-plt
15788 @opindex minline-plt
15789 Enable inlining of PLT entries in function calls to functions that are
15790 not known to bind locally. It has no effect without @option{-mfdpic}.
15791
15792 @item -mmulticore
15793 @opindex mmulticore
15794 Build a standalone application for multicore Blackfin processors.
15795 This option causes proper start files and link scripts supporting
15796 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
15797 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
15798
15799 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
15800 selects the one-application-per-core programming model. Without
15801 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
15802 programming model is used. In this model, the main function of Core B
15803 should be named as @code{coreb_main}.
15804
15805 If this option is not used, the single-core application programming
15806 model is used.
15807
15808 @item -mcorea
15809 @opindex mcorea
15810 Build a standalone application for Core A of BF561 when using
15811 the one-application-per-core programming model. Proper start files
15812 and link scripts are used to support Core A, and the macro
15813 @code{__BFIN_COREA} is defined.
15814 This option can only be used in conjunction with @option{-mmulticore}.
15815
15816 @item -mcoreb
15817 @opindex mcoreb
15818 Build a standalone application for Core B of BF561 when using
15819 the one-application-per-core programming model. Proper start files
15820 and link scripts are used to support Core B, and the macro
15821 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
15822 should be used instead of @code{main}.
15823 This option can only be used in conjunction with @option{-mmulticore}.
15824
15825 @item -msdram
15826 @opindex msdram
15827 Build a standalone application for SDRAM. Proper start files and
15828 link scripts are used to put the application into SDRAM, and the macro
15829 @code{__BFIN_SDRAM} is defined.
15830 The loader should initialize SDRAM before loading the application.
15831
15832 @item -micplb
15833 @opindex micplb
15834 Assume that ICPLBs are enabled at run time. This has an effect on certain
15835 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
15836 are enabled; for standalone applications the default is off.
15837 @end table
15838
15839 @node C6X Options
15840 @subsection C6X Options
15841 @cindex C6X Options
15842
15843 @table @gcctabopt
15844 @item -march=@var{name}
15845 @opindex march
15846 This specifies the name of the target architecture. GCC uses this
15847 name to determine what kind of instructions it can emit when generating
15848 assembly code. Permissible names are: @samp{c62x},
15849 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
15850
15851 @item -mbig-endian
15852 @opindex mbig-endian
15853 Generate code for a big-endian target.
15854
15855 @item -mlittle-endian
15856 @opindex mlittle-endian
15857 Generate code for a little-endian target. This is the default.
15858
15859 @item -msim
15860 @opindex msim
15861 Choose startup files and linker script suitable for the simulator.
15862
15863 @item -msdata=default
15864 @opindex msdata=default
15865 Put small global and static data in the @code{.neardata} section,
15866 which is pointed to by register @code{B14}. Put small uninitialized
15867 global and static data in the @code{.bss} section, which is adjacent
15868 to the @code{.neardata} section. Put small read-only data into the
15869 @code{.rodata} section. The corresponding sections used for large
15870 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
15871
15872 @item -msdata=all
15873 @opindex msdata=all
15874 Put all data, not just small objects, into the sections reserved for
15875 small data, and use addressing relative to the @code{B14} register to
15876 access them.
15877
15878 @item -msdata=none
15879 @opindex msdata=none
15880 Make no use of the sections reserved for small data, and use absolute
15881 addresses to access all data. Put all initialized global and static
15882 data in the @code{.fardata} section, and all uninitialized data in the
15883 @code{.far} section. Put all constant data into the @code{.const}
15884 section.
15885 @end table
15886
15887 @node CRIS Options
15888 @subsection CRIS Options
15889 @cindex CRIS Options
15890
15891 These options are defined specifically for the CRIS ports.
15892
15893 @table @gcctabopt
15894 @item -march=@var{architecture-type}
15895 @itemx -mcpu=@var{architecture-type}
15896 @opindex march
15897 @opindex mcpu
15898 Generate code for the specified architecture. The choices for
15899 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
15900 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
15901 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
15902 @samp{v10}.
15903
15904 @item -mtune=@var{architecture-type}
15905 @opindex mtune
15906 Tune to @var{architecture-type} everything applicable about the generated
15907 code, except for the ABI and the set of available instructions. The
15908 choices for @var{architecture-type} are the same as for
15909 @option{-march=@var{architecture-type}}.
15910
15911 @item -mmax-stack-frame=@var{n}
15912 @opindex mmax-stack-frame
15913 Warn when the stack frame of a function exceeds @var{n} bytes.
15914
15915 @item -metrax4
15916 @itemx -metrax100
15917 @opindex metrax4
15918 @opindex metrax100
15919 The options @option{-metrax4} and @option{-metrax100} are synonyms for
15920 @option{-march=v3} and @option{-march=v8} respectively.
15921
15922 @item -mmul-bug-workaround
15923 @itemx -mno-mul-bug-workaround
15924 @opindex mmul-bug-workaround
15925 @opindex mno-mul-bug-workaround
15926 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
15927 models where it applies. This option is active by default.
15928
15929 @item -mpdebug
15930 @opindex mpdebug
15931 Enable CRIS-specific verbose debug-related information in the assembly
15932 code. This option also has the effect of turning off the @samp{#NO_APP}
15933 formatted-code indicator to the assembler at the beginning of the
15934 assembly file.
15935
15936 @item -mcc-init
15937 @opindex mcc-init
15938 Do not use condition-code results from previous instruction; always emit
15939 compare and test instructions before use of condition codes.
15940
15941 @item -mno-side-effects
15942 @opindex mno-side-effects
15943 Do not emit instructions with side effects in addressing modes other than
15944 post-increment.
15945
15946 @item -mstack-align
15947 @itemx -mno-stack-align
15948 @itemx -mdata-align
15949 @itemx -mno-data-align
15950 @itemx -mconst-align
15951 @itemx -mno-const-align
15952 @opindex mstack-align
15953 @opindex mno-stack-align
15954 @opindex mdata-align
15955 @opindex mno-data-align
15956 @opindex mconst-align
15957 @opindex mno-const-align
15958 These options (@samp{no-} options) arrange (eliminate arrangements) for the
15959 stack frame, individual data and constants to be aligned for the maximum
15960 single data access size for the chosen CPU model. The default is to
15961 arrange for 32-bit alignment. ABI details such as structure layout are
15962 not affected by these options.
15963
15964 @item -m32-bit
15965 @itemx -m16-bit
15966 @itemx -m8-bit
15967 @opindex m32-bit
15968 @opindex m16-bit
15969 @opindex m8-bit
15970 Similar to the stack- data- and const-align options above, these options
15971 arrange for stack frame, writable data and constants to all be 32-bit,
15972 16-bit or 8-bit aligned. The default is 32-bit alignment.
15973
15974 @item -mno-prologue-epilogue
15975 @itemx -mprologue-epilogue
15976 @opindex mno-prologue-epilogue
15977 @opindex mprologue-epilogue
15978 With @option{-mno-prologue-epilogue}, the normal function prologue and
15979 epilogue which set up the stack frame are omitted and no return
15980 instructions or return sequences are generated in the code. Use this
15981 option only together with visual inspection of the compiled code: no
15982 warnings or errors are generated when call-saved registers must be saved,
15983 or storage for local variables needs to be allocated.
15984
15985 @item -mno-gotplt
15986 @itemx -mgotplt
15987 @opindex mno-gotplt
15988 @opindex mgotplt
15989 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
15990 instruction sequences that load addresses for functions from the PLT part
15991 of the GOT rather than (traditional on other architectures) calls to the
15992 PLT@. The default is @option{-mgotplt}.
15993
15994 @item -melf
15995 @opindex melf
15996 Legacy no-op option only recognized with the cris-axis-elf and
15997 cris-axis-linux-gnu targets.
15998
15999 @item -mlinux
16000 @opindex mlinux
16001 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
16002
16003 @item -sim
16004 @opindex sim
16005 This option, recognized for the cris-axis-elf, arranges
16006 to link with input-output functions from a simulator library. Code,
16007 initialized data and zero-initialized data are allocated consecutively.
16008
16009 @item -sim2
16010 @opindex sim2
16011 Like @option{-sim}, but pass linker options to locate initialized data at
16012 0x40000000 and zero-initialized data at 0x80000000.
16013 @end table
16014
16015 @node CR16 Options
16016 @subsection CR16 Options
16017 @cindex CR16 Options
16018
16019 These options are defined specifically for the CR16 ports.
16020
16021 @table @gcctabopt
16022
16023 @item -mmac
16024 @opindex mmac
16025 Enable the use of multiply-accumulate instructions. Disabled by default.
16026
16027 @item -mcr16cplus
16028 @itemx -mcr16c
16029 @opindex mcr16cplus
16030 @opindex mcr16c
16031 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
16032 is default.
16033
16034 @item -msim
16035 @opindex msim
16036 Links the library libsim.a which is in compatible with simulator. Applicable
16037 to ELF compiler only.
16038
16039 @item -mint32
16040 @opindex mint32
16041 Choose integer type as 32-bit wide.
16042
16043 @item -mbit-ops
16044 @opindex mbit-ops
16045 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
16046
16047 @item -mdata-model=@var{model}
16048 @opindex mdata-model
16049 Choose a data model. The choices for @var{model} are @samp{near},
16050 @samp{far} or @samp{medium}. @samp{medium} is default.
16051 However, @samp{far} is not valid with @option{-mcr16c}, as the
16052 CR16C architecture does not support the far data model.
16053 @end table
16054
16055 @node Darwin Options
16056 @subsection Darwin Options
16057 @cindex Darwin options
16058
16059 These options are defined for all architectures running the Darwin operating
16060 system.
16061
16062 FSF GCC on Darwin does not create ``fat'' object files; it creates
16063 an object file for the single architecture that GCC was built to
16064 target. Apple's GCC on Darwin does create ``fat'' files if multiple
16065 @option{-arch} options are used; it does so by running the compiler or
16066 linker multiple times and joining the results together with
16067 @file{lipo}.
16068
16069 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
16070 @samp{i686}) is determined by the flags that specify the ISA
16071 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
16072 @option{-force_cpusubtype_ALL} option can be used to override this.
16073
16074 The Darwin tools vary in their behavior when presented with an ISA
16075 mismatch. The assembler, @file{as}, only permits instructions to
16076 be used that are valid for the subtype of the file it is generating,
16077 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
16078 The linker for shared libraries, @file{/usr/bin/libtool}, fails
16079 and prints an error if asked to create a shared library with a less
16080 restrictive subtype than its input files (for instance, trying to put
16081 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
16082 for executables, @command{ld}, quietly gives the executable the most
16083 restrictive subtype of any of its input files.
16084
16085 @table @gcctabopt
16086 @item -F@var{dir}
16087 @opindex F
16088 Add the framework directory @var{dir} to the head of the list of
16089 directories to be searched for header files. These directories are
16090 interleaved with those specified by @option{-I} options and are
16091 scanned in a left-to-right order.
16092
16093 A framework directory is a directory with frameworks in it. A
16094 framework is a directory with a @file{Headers} and/or
16095 @file{PrivateHeaders} directory contained directly in it that ends
16096 in @file{.framework}. The name of a framework is the name of this
16097 directory excluding the @file{.framework}. Headers associated with
16098 the framework are found in one of those two directories, with
16099 @file{Headers} being searched first. A subframework is a framework
16100 directory that is in a framework's @file{Frameworks} directory.
16101 Includes of subframework headers can only appear in a header of a
16102 framework that contains the subframework, or in a sibling subframework
16103 header. Two subframeworks are siblings if they occur in the same
16104 framework. A subframework should not have the same name as a
16105 framework; a warning is issued if this is violated. Currently a
16106 subframework cannot have subframeworks; in the future, the mechanism
16107 may be extended to support this. The standard frameworks can be found
16108 in @file{/System/Library/Frameworks} and
16109 @file{/Library/Frameworks}. An example include looks like
16110 @code{#include <Framework/header.h>}, where @file{Framework} denotes
16111 the name of the framework and @file{header.h} is found in the
16112 @file{PrivateHeaders} or @file{Headers} directory.
16113
16114 @item -iframework@var{dir}
16115 @opindex iframework
16116 Like @option{-F} except the directory is a treated as a system
16117 directory. The main difference between this @option{-iframework} and
16118 @option{-F} is that with @option{-iframework} the compiler does not
16119 warn about constructs contained within header files found via
16120 @var{dir}. This option is valid only for the C family of languages.
16121
16122 @item -gused
16123 @opindex gused
16124 Emit debugging information for symbols that are used. For stabs
16125 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
16126 This is by default ON@.
16127
16128 @item -gfull
16129 @opindex gfull
16130 Emit debugging information for all symbols and types.
16131
16132 @item -mmacosx-version-min=@var{version}
16133 The earliest version of MacOS X that this executable will run on
16134 is @var{version}. Typical values of @var{version} include @code{10.1},
16135 @code{10.2}, and @code{10.3.9}.
16136
16137 If the compiler was built to use the system's headers by default,
16138 then the default for this option is the system version on which the
16139 compiler is running, otherwise the default is to make choices that
16140 are compatible with as many systems and code bases as possible.
16141
16142 @item -mkernel
16143 @opindex mkernel
16144 Enable kernel development mode. The @option{-mkernel} option sets
16145 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
16146 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
16147 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
16148 applicable. This mode also sets @option{-mno-altivec},
16149 @option{-msoft-float}, @option{-fno-builtin} and
16150 @option{-mlong-branch} for PowerPC targets.
16151
16152 @item -mone-byte-bool
16153 @opindex mone-byte-bool
16154 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
16155 By default @code{sizeof(bool)} is @code{4} when compiling for
16156 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
16157 option has no effect on x86.
16158
16159 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
16160 to generate code that is not binary compatible with code generated
16161 without that switch. Using this switch may require recompiling all
16162 other modules in a program, including system libraries. Use this
16163 switch to conform to a non-default data model.
16164
16165 @item -mfix-and-continue
16166 @itemx -ffix-and-continue
16167 @itemx -findirect-data
16168 @opindex mfix-and-continue
16169 @opindex ffix-and-continue
16170 @opindex findirect-data
16171 Generate code suitable for fast turnaround development, such as to
16172 allow GDB to dynamically load @file{.o} files into already-running
16173 programs. @option{-findirect-data} and @option{-ffix-and-continue}
16174 are provided for backwards compatibility.
16175
16176 @item -all_load
16177 @opindex all_load
16178 Loads all members of static archive libraries.
16179 See man ld(1) for more information.
16180
16181 @item -arch_errors_fatal
16182 @opindex arch_errors_fatal
16183 Cause the errors having to do with files that have the wrong architecture
16184 to be fatal.
16185
16186 @item -bind_at_load
16187 @opindex bind_at_load
16188 Causes the output file to be marked such that the dynamic linker will
16189 bind all undefined references when the file is loaded or launched.
16190
16191 @item -bundle
16192 @opindex bundle
16193 Produce a Mach-o bundle format file.
16194 See man ld(1) for more information.
16195
16196 @item -bundle_loader @var{executable}
16197 @opindex bundle_loader
16198 This option specifies the @var{executable} that will load the build
16199 output file being linked. See man ld(1) for more information.
16200
16201 @item -dynamiclib
16202 @opindex dynamiclib
16203 When passed this option, GCC produces a dynamic library instead of
16204 an executable when linking, using the Darwin @file{libtool} command.
16205
16206 @item -force_cpusubtype_ALL
16207 @opindex force_cpusubtype_ALL
16208 This causes GCC's output file to have the @samp{ALL} subtype, instead of
16209 one controlled by the @option{-mcpu} or @option{-march} option.
16210
16211 @item -allowable_client @var{client_name}
16212 @itemx -client_name
16213 @itemx -compatibility_version
16214 @itemx -current_version
16215 @itemx -dead_strip
16216 @itemx -dependency-file
16217 @itemx -dylib_file
16218 @itemx -dylinker_install_name
16219 @itemx -dynamic
16220 @itemx -exported_symbols_list
16221 @itemx -filelist
16222 @need 800
16223 @itemx -flat_namespace
16224 @itemx -force_flat_namespace
16225 @itemx -headerpad_max_install_names
16226 @itemx -image_base
16227 @itemx -init
16228 @itemx -install_name
16229 @itemx -keep_private_externs
16230 @itemx -multi_module
16231 @itemx -multiply_defined
16232 @itemx -multiply_defined_unused
16233 @need 800
16234 @itemx -noall_load
16235 @itemx -no_dead_strip_inits_and_terms
16236 @itemx -nofixprebinding
16237 @itemx -nomultidefs
16238 @itemx -noprebind
16239 @itemx -noseglinkedit
16240 @itemx -pagezero_size
16241 @itemx -prebind
16242 @itemx -prebind_all_twolevel_modules
16243 @itemx -private_bundle
16244 @need 800
16245 @itemx -read_only_relocs
16246 @itemx -sectalign
16247 @itemx -sectobjectsymbols
16248 @itemx -whyload
16249 @itemx -seg1addr
16250 @itemx -sectcreate
16251 @itemx -sectobjectsymbols
16252 @itemx -sectorder
16253 @itemx -segaddr
16254 @itemx -segs_read_only_addr
16255 @need 800
16256 @itemx -segs_read_write_addr
16257 @itemx -seg_addr_table
16258 @itemx -seg_addr_table_filename
16259 @itemx -seglinkedit
16260 @itemx -segprot
16261 @itemx -segs_read_only_addr
16262 @itemx -segs_read_write_addr
16263 @itemx -single_module
16264 @itemx -static
16265 @itemx -sub_library
16266 @need 800
16267 @itemx -sub_umbrella
16268 @itemx -twolevel_namespace
16269 @itemx -umbrella
16270 @itemx -undefined
16271 @itemx -unexported_symbols_list
16272 @itemx -weak_reference_mismatches
16273 @itemx -whatsloaded
16274 @opindex allowable_client
16275 @opindex client_name
16276 @opindex compatibility_version
16277 @opindex current_version
16278 @opindex dead_strip
16279 @opindex dependency-file
16280 @opindex dylib_file
16281 @opindex dylinker_install_name
16282 @opindex dynamic
16283 @opindex exported_symbols_list
16284 @opindex filelist
16285 @opindex flat_namespace
16286 @opindex force_flat_namespace
16287 @opindex headerpad_max_install_names
16288 @opindex image_base
16289 @opindex init
16290 @opindex install_name
16291 @opindex keep_private_externs
16292 @opindex multi_module
16293 @opindex multiply_defined
16294 @opindex multiply_defined_unused
16295 @opindex noall_load
16296 @opindex no_dead_strip_inits_and_terms
16297 @opindex nofixprebinding
16298 @opindex nomultidefs
16299 @opindex noprebind
16300 @opindex noseglinkedit
16301 @opindex pagezero_size
16302 @opindex prebind
16303 @opindex prebind_all_twolevel_modules
16304 @opindex private_bundle
16305 @opindex read_only_relocs
16306 @opindex sectalign
16307 @opindex sectobjectsymbols
16308 @opindex whyload
16309 @opindex seg1addr
16310 @opindex sectcreate
16311 @opindex sectobjectsymbols
16312 @opindex sectorder
16313 @opindex segaddr
16314 @opindex segs_read_only_addr
16315 @opindex segs_read_write_addr
16316 @opindex seg_addr_table
16317 @opindex seg_addr_table_filename
16318 @opindex seglinkedit
16319 @opindex segprot
16320 @opindex segs_read_only_addr
16321 @opindex segs_read_write_addr
16322 @opindex single_module
16323 @opindex static
16324 @opindex sub_library
16325 @opindex sub_umbrella
16326 @opindex twolevel_namespace
16327 @opindex umbrella
16328 @opindex undefined
16329 @opindex unexported_symbols_list
16330 @opindex weak_reference_mismatches
16331 @opindex whatsloaded
16332 These options are passed to the Darwin linker. The Darwin linker man page
16333 describes them in detail.
16334 @end table
16335
16336 @node DEC Alpha Options
16337 @subsection DEC Alpha Options
16338
16339 These @samp{-m} options are defined for the DEC Alpha implementations:
16340
16341 @table @gcctabopt
16342 @item -mno-soft-float
16343 @itemx -msoft-float
16344 @opindex mno-soft-float
16345 @opindex msoft-float
16346 Use (do not use) the hardware floating-point instructions for
16347 floating-point operations. When @option{-msoft-float} is specified,
16348 functions in @file{libgcc.a} are used to perform floating-point
16349 operations. Unless they are replaced by routines that emulate the
16350 floating-point operations, or compiled in such a way as to call such
16351 emulations routines, these routines issue floating-point
16352 operations. If you are compiling for an Alpha without floating-point
16353 operations, you must ensure that the library is built so as not to call
16354 them.
16355
16356 Note that Alpha implementations without floating-point operations are
16357 required to have floating-point registers.
16358
16359 @item -mfp-reg
16360 @itemx -mno-fp-regs
16361 @opindex mfp-reg
16362 @opindex mno-fp-regs
16363 Generate code that uses (does not use) the floating-point register set.
16364 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
16365 register set is not used, floating-point operands are passed in integer
16366 registers as if they were integers and floating-point results are passed
16367 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
16368 so any function with a floating-point argument or return value called by code
16369 compiled with @option{-mno-fp-regs} must also be compiled with that
16370 option.
16371
16372 A typical use of this option is building a kernel that does not use,
16373 and hence need not save and restore, any floating-point registers.
16374
16375 @item -mieee
16376 @opindex mieee
16377 The Alpha architecture implements floating-point hardware optimized for
16378 maximum performance. It is mostly compliant with the IEEE floating-point
16379 standard. However, for full compliance, software assistance is
16380 required. This option generates code fully IEEE-compliant code
16381 @emph{except} that the @var{inexact-flag} is not maintained (see below).
16382 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
16383 defined during compilation. The resulting code is less efficient but is
16384 able to correctly support denormalized numbers and exceptional IEEE
16385 values such as not-a-number and plus/minus infinity. Other Alpha
16386 compilers call this option @option{-ieee_with_no_inexact}.
16387
16388 @item -mieee-with-inexact
16389 @opindex mieee-with-inexact
16390 This is like @option{-mieee} except the generated code also maintains
16391 the IEEE @var{inexact-flag}. Turning on this option causes the
16392 generated code to implement fully-compliant IEEE math. In addition to
16393 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
16394 macro. On some Alpha implementations the resulting code may execute
16395 significantly slower than the code generated by default. Since there is
16396 very little code that depends on the @var{inexact-flag}, you should
16397 normally not specify this option. Other Alpha compilers call this
16398 option @option{-ieee_with_inexact}.
16399
16400 @item -mfp-trap-mode=@var{trap-mode}
16401 @opindex mfp-trap-mode
16402 This option controls what floating-point related traps are enabled.
16403 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
16404 The trap mode can be set to one of four values:
16405
16406 @table @samp
16407 @item n
16408 This is the default (normal) setting. The only traps that are enabled
16409 are the ones that cannot be disabled in software (e.g., division by zero
16410 trap).
16411
16412 @item u
16413 In addition to the traps enabled by @samp{n}, underflow traps are enabled
16414 as well.
16415
16416 @item su
16417 Like @samp{u}, but the instructions are marked to be safe for software
16418 completion (see Alpha architecture manual for details).
16419
16420 @item sui
16421 Like @samp{su}, but inexact traps are enabled as well.
16422 @end table
16423
16424 @item -mfp-rounding-mode=@var{rounding-mode}
16425 @opindex mfp-rounding-mode
16426 Selects the IEEE rounding mode. Other Alpha compilers call this option
16427 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
16428 of:
16429
16430 @table @samp
16431 @item n
16432 Normal IEEE rounding mode. Floating-point numbers are rounded towards
16433 the nearest machine number or towards the even machine number in case
16434 of a tie.
16435
16436 @item m
16437 Round towards minus infinity.
16438
16439 @item c
16440 Chopped rounding mode. Floating-point numbers are rounded towards zero.
16441
16442 @item d
16443 Dynamic rounding mode. A field in the floating-point control register
16444 (@var{fpcr}, see Alpha architecture reference manual) controls the
16445 rounding mode in effect. The C library initializes this register for
16446 rounding towards plus infinity. Thus, unless your program modifies the
16447 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
16448 @end table
16449
16450 @item -mtrap-precision=@var{trap-precision}
16451 @opindex mtrap-precision
16452 In the Alpha architecture, floating-point traps are imprecise. This
16453 means without software assistance it is impossible to recover from a
16454 floating trap and program execution normally needs to be terminated.
16455 GCC can generate code that can assist operating system trap handlers
16456 in determining the exact location that caused a floating-point trap.
16457 Depending on the requirements of an application, different levels of
16458 precisions can be selected:
16459
16460 @table @samp
16461 @item p
16462 Program precision. This option is the default and means a trap handler
16463 can only identify which program caused a floating-point exception.
16464
16465 @item f
16466 Function precision. The trap handler can determine the function that
16467 caused a floating-point exception.
16468
16469 @item i
16470 Instruction precision. The trap handler can determine the exact
16471 instruction that caused a floating-point exception.
16472 @end table
16473
16474 Other Alpha compilers provide the equivalent options called
16475 @option{-scope_safe} and @option{-resumption_safe}.
16476
16477 @item -mieee-conformant
16478 @opindex mieee-conformant
16479 This option marks the generated code as IEEE conformant. You must not
16480 use this option unless you also specify @option{-mtrap-precision=i} and either
16481 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
16482 is to emit the line @samp{.eflag 48} in the function prologue of the
16483 generated assembly file.
16484
16485 @item -mbuild-constants
16486 @opindex mbuild-constants
16487 Normally GCC examines a 32- or 64-bit integer constant to
16488 see if it can construct it from smaller constants in two or three
16489 instructions. If it cannot, it outputs the constant as a literal and
16490 generates code to load it from the data segment at run time.
16491
16492 Use this option to require GCC to construct @emph{all} integer constants
16493 using code, even if it takes more instructions (the maximum is six).
16494
16495 You typically use this option to build a shared library dynamic
16496 loader. Itself a shared library, it must relocate itself in memory
16497 before it can find the variables and constants in its own data segment.
16498
16499 @item -mbwx
16500 @itemx -mno-bwx
16501 @itemx -mcix
16502 @itemx -mno-cix
16503 @itemx -mfix
16504 @itemx -mno-fix
16505 @itemx -mmax
16506 @itemx -mno-max
16507 @opindex mbwx
16508 @opindex mno-bwx
16509 @opindex mcix
16510 @opindex mno-cix
16511 @opindex mfix
16512 @opindex mno-fix
16513 @opindex mmax
16514 @opindex mno-max
16515 Indicate whether GCC should generate code to use the optional BWX,
16516 CIX, FIX and MAX instruction sets. The default is to use the instruction
16517 sets supported by the CPU type specified via @option{-mcpu=} option or that
16518 of the CPU on which GCC was built if none is specified.
16519
16520 @item -mfloat-vax
16521 @itemx -mfloat-ieee
16522 @opindex mfloat-vax
16523 @opindex mfloat-ieee
16524 Generate code that uses (does not use) VAX F and G floating-point
16525 arithmetic instead of IEEE single and double precision.
16526
16527 @item -mexplicit-relocs
16528 @itemx -mno-explicit-relocs
16529 @opindex mexplicit-relocs
16530 @opindex mno-explicit-relocs
16531 Older Alpha assemblers provided no way to generate symbol relocations
16532 except via assembler macros. Use of these macros does not allow
16533 optimal instruction scheduling. GNU binutils as of version 2.12
16534 supports a new syntax that allows the compiler to explicitly mark
16535 which relocations should apply to which instructions. This option
16536 is mostly useful for debugging, as GCC detects the capabilities of
16537 the assembler when it is built and sets the default accordingly.
16538
16539 @item -msmall-data
16540 @itemx -mlarge-data
16541 @opindex msmall-data
16542 @opindex mlarge-data
16543 When @option{-mexplicit-relocs} is in effect, static data is
16544 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
16545 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
16546 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
16547 16-bit relocations off of the @code{$gp} register. This limits the
16548 size of the small data area to 64KB, but allows the variables to be
16549 directly accessed via a single instruction.
16550
16551 The default is @option{-mlarge-data}. With this option the data area
16552 is limited to just below 2GB@. Programs that require more than 2GB of
16553 data must use @code{malloc} or @code{mmap} to allocate the data in the
16554 heap instead of in the program's data segment.
16555
16556 When generating code for shared libraries, @option{-fpic} implies
16557 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
16558
16559 @item -msmall-text
16560 @itemx -mlarge-text
16561 @opindex msmall-text
16562 @opindex mlarge-text
16563 When @option{-msmall-text} is used, the compiler assumes that the
16564 code of the entire program (or shared library) fits in 4MB, and is
16565 thus reachable with a branch instruction. When @option{-msmall-data}
16566 is used, the compiler can assume that all local symbols share the
16567 same @code{$gp} value, and thus reduce the number of instructions
16568 required for a function call from 4 to 1.
16569
16570 The default is @option{-mlarge-text}.
16571
16572 @item -mcpu=@var{cpu_type}
16573 @opindex mcpu
16574 Set the instruction set and instruction scheduling parameters for
16575 machine type @var{cpu_type}. You can specify either the @samp{EV}
16576 style name or the corresponding chip number. GCC supports scheduling
16577 parameters for the EV4, EV5 and EV6 family of processors and
16578 chooses the default values for the instruction set from the processor
16579 you specify. If you do not specify a processor type, GCC defaults
16580 to the processor on which the compiler was built.
16581
16582 Supported values for @var{cpu_type} are
16583
16584 @table @samp
16585 @item ev4
16586 @itemx ev45
16587 @itemx 21064
16588 Schedules as an EV4 and has no instruction set extensions.
16589
16590 @item ev5
16591 @itemx 21164
16592 Schedules as an EV5 and has no instruction set extensions.
16593
16594 @item ev56
16595 @itemx 21164a
16596 Schedules as an EV5 and supports the BWX extension.
16597
16598 @item pca56
16599 @itemx 21164pc
16600 @itemx 21164PC
16601 Schedules as an EV5 and supports the BWX and MAX extensions.
16602
16603 @item ev6
16604 @itemx 21264
16605 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
16606
16607 @item ev67
16608 @itemx 21264a
16609 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
16610 @end table
16611
16612 Native toolchains also support the value @samp{native},
16613 which selects the best architecture option for the host processor.
16614 @option{-mcpu=native} has no effect if GCC does not recognize
16615 the processor.
16616
16617 @item -mtune=@var{cpu_type}
16618 @opindex mtune
16619 Set only the instruction scheduling parameters for machine type
16620 @var{cpu_type}. The instruction set is not changed.
16621
16622 Native toolchains also support the value @samp{native},
16623 which selects the best architecture option for the host processor.
16624 @option{-mtune=native} has no effect if GCC does not recognize
16625 the processor.
16626
16627 @item -mmemory-latency=@var{time}
16628 @opindex mmemory-latency
16629 Sets the latency the scheduler should assume for typical memory
16630 references as seen by the application. This number is highly
16631 dependent on the memory access patterns used by the application
16632 and the size of the external cache on the machine.
16633
16634 Valid options for @var{time} are
16635
16636 @table @samp
16637 @item @var{number}
16638 A decimal number representing clock cycles.
16639
16640 @item L1
16641 @itemx L2
16642 @itemx L3
16643 @itemx main
16644 The compiler contains estimates of the number of clock cycles for
16645 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
16646 (also called Dcache, Scache, and Bcache), as well as to main memory.
16647 Note that L3 is only valid for EV5.
16648
16649 @end table
16650 @end table
16651
16652 @node FR30 Options
16653 @subsection FR30 Options
16654 @cindex FR30 Options
16655
16656 These options are defined specifically for the FR30 port.
16657
16658 @table @gcctabopt
16659
16660 @item -msmall-model
16661 @opindex msmall-model
16662 Use the small address space model. This can produce smaller code, but
16663 it does assume that all symbolic values and addresses fit into a
16664 20-bit range.
16665
16666 @item -mno-lsim
16667 @opindex mno-lsim
16668 Assume that runtime support has been provided and so there is no need
16669 to include the simulator library (@file{libsim.a}) on the linker
16670 command line.
16671
16672 @end table
16673
16674 @node FT32 Options
16675 @subsection FT32 Options
16676 @cindex FT32 Options
16677
16678 These options are defined specifically for the FT32 port.
16679
16680 @table @gcctabopt
16681
16682 @item -msim
16683 @opindex msim
16684 Specifies that the program will be run on the simulator. This causes
16685 an alternate runtime startup and library to be linked.
16686 You must not use this option when generating programs that will run on
16687 real hardware; you must provide your own runtime library for whatever
16688 I/O functions are needed.
16689
16690 @item -mlra
16691 @opindex mlra
16692 Enable Local Register Allocation. This is still experimental for FT32,
16693 so by default the compiler uses standard reload.
16694
16695 @item -mnodiv
16696 @opindex mnodiv
16697 Do not use div and mod instructions.
16698
16699 @end table
16700
16701 @node FRV Options
16702 @subsection FRV Options
16703 @cindex FRV Options
16704
16705 @table @gcctabopt
16706 @item -mgpr-32
16707 @opindex mgpr-32
16708
16709 Only use the first 32 general-purpose registers.
16710
16711 @item -mgpr-64
16712 @opindex mgpr-64
16713
16714 Use all 64 general-purpose registers.
16715
16716 @item -mfpr-32
16717 @opindex mfpr-32
16718
16719 Use only the first 32 floating-point registers.
16720
16721 @item -mfpr-64
16722 @opindex mfpr-64
16723
16724 Use all 64 floating-point registers.
16725
16726 @item -mhard-float
16727 @opindex mhard-float
16728
16729 Use hardware instructions for floating-point operations.
16730
16731 @item -msoft-float
16732 @opindex msoft-float
16733
16734 Use library routines for floating-point operations.
16735
16736 @item -malloc-cc
16737 @opindex malloc-cc
16738
16739 Dynamically allocate condition code registers.
16740
16741 @item -mfixed-cc
16742 @opindex mfixed-cc
16743
16744 Do not try to dynamically allocate condition code registers, only
16745 use @code{icc0} and @code{fcc0}.
16746
16747 @item -mdword
16748 @opindex mdword
16749
16750 Change ABI to use double word insns.
16751
16752 @item -mno-dword
16753 @opindex mno-dword
16754
16755 Do not use double word instructions.
16756
16757 @item -mdouble
16758 @opindex mdouble
16759
16760 Use floating-point double instructions.
16761
16762 @item -mno-double
16763 @opindex mno-double
16764
16765 Do not use floating-point double instructions.
16766
16767 @item -mmedia
16768 @opindex mmedia
16769
16770 Use media instructions.
16771
16772 @item -mno-media
16773 @opindex mno-media
16774
16775 Do not use media instructions.
16776
16777 @item -mmuladd
16778 @opindex mmuladd
16779
16780 Use multiply and add/subtract instructions.
16781
16782 @item -mno-muladd
16783 @opindex mno-muladd
16784
16785 Do not use multiply and add/subtract instructions.
16786
16787 @item -mfdpic
16788 @opindex mfdpic
16789
16790 Select the FDPIC ABI, which uses function descriptors to represent
16791 pointers to functions. Without any PIC/PIE-related options, it
16792 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
16793 assumes GOT entries and small data are within a 12-bit range from the
16794 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
16795 are computed with 32 bits.
16796 With a @samp{bfin-elf} target, this option implies @option{-msim}.
16797
16798 @item -minline-plt
16799 @opindex minline-plt
16800
16801 Enable inlining of PLT entries in function calls to functions that are
16802 not known to bind locally. It has no effect without @option{-mfdpic}.
16803 It's enabled by default if optimizing for speed and compiling for
16804 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
16805 optimization option such as @option{-O3} or above is present in the
16806 command line.
16807
16808 @item -mTLS
16809 @opindex mTLS
16810
16811 Assume a large TLS segment when generating thread-local code.
16812
16813 @item -mtls
16814 @opindex mtls
16815
16816 Do not assume a large TLS segment when generating thread-local code.
16817
16818 @item -mgprel-ro
16819 @opindex mgprel-ro
16820
16821 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
16822 that is known to be in read-only sections. It's enabled by default,
16823 except for @option{-fpic} or @option{-fpie}: even though it may help
16824 make the global offset table smaller, it trades 1 instruction for 4.
16825 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
16826 one of which may be shared by multiple symbols, and it avoids the need
16827 for a GOT entry for the referenced symbol, so it's more likely to be a
16828 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
16829
16830 @item -multilib-library-pic
16831 @opindex multilib-library-pic
16832
16833 Link with the (library, not FD) pic libraries. It's implied by
16834 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
16835 @option{-fpic} without @option{-mfdpic}. You should never have to use
16836 it explicitly.
16837
16838 @item -mlinked-fp
16839 @opindex mlinked-fp
16840
16841 Follow the EABI requirement of always creating a frame pointer whenever
16842 a stack frame is allocated. This option is enabled by default and can
16843 be disabled with @option{-mno-linked-fp}.
16844
16845 @item -mlong-calls
16846 @opindex mlong-calls
16847
16848 Use indirect addressing to call functions outside the current
16849 compilation unit. This allows the functions to be placed anywhere
16850 within the 32-bit address space.
16851
16852 @item -malign-labels
16853 @opindex malign-labels
16854
16855 Try to align labels to an 8-byte boundary by inserting NOPs into the
16856 previous packet. This option only has an effect when VLIW packing
16857 is enabled. It doesn't create new packets; it merely adds NOPs to
16858 existing ones.
16859
16860 @item -mlibrary-pic
16861 @opindex mlibrary-pic
16862
16863 Generate position-independent EABI code.
16864
16865 @item -macc-4
16866 @opindex macc-4
16867
16868 Use only the first four media accumulator registers.
16869
16870 @item -macc-8
16871 @opindex macc-8
16872
16873 Use all eight media accumulator registers.
16874
16875 @item -mpack
16876 @opindex mpack
16877
16878 Pack VLIW instructions.
16879
16880 @item -mno-pack
16881 @opindex mno-pack
16882
16883 Do not pack VLIW instructions.
16884
16885 @item -mno-eflags
16886 @opindex mno-eflags
16887
16888 Do not mark ABI switches in e_flags.
16889
16890 @item -mcond-move
16891 @opindex mcond-move
16892
16893 Enable the use of conditional-move instructions (default).
16894
16895 This switch is mainly for debugging the compiler and will likely be removed
16896 in a future version.
16897
16898 @item -mno-cond-move
16899 @opindex mno-cond-move
16900
16901 Disable the use of conditional-move instructions.
16902
16903 This switch is mainly for debugging the compiler and will likely be removed
16904 in a future version.
16905
16906 @item -mscc
16907 @opindex mscc
16908
16909 Enable the use of conditional set instructions (default).
16910
16911 This switch is mainly for debugging the compiler and will likely be removed
16912 in a future version.
16913
16914 @item -mno-scc
16915 @opindex mno-scc
16916
16917 Disable the use of conditional set instructions.
16918
16919 This switch is mainly for debugging the compiler and will likely be removed
16920 in a future version.
16921
16922 @item -mcond-exec
16923 @opindex mcond-exec
16924
16925 Enable the use of conditional execution (default).
16926
16927 This switch is mainly for debugging the compiler and will likely be removed
16928 in a future version.
16929
16930 @item -mno-cond-exec
16931 @opindex mno-cond-exec
16932
16933 Disable the use of conditional execution.
16934
16935 This switch is mainly for debugging the compiler and will likely be removed
16936 in a future version.
16937
16938 @item -mvliw-branch
16939 @opindex mvliw-branch
16940
16941 Run a pass to pack branches into VLIW instructions (default).
16942
16943 This switch is mainly for debugging the compiler and will likely be removed
16944 in a future version.
16945
16946 @item -mno-vliw-branch
16947 @opindex mno-vliw-branch
16948
16949 Do not run a pass to pack branches into VLIW instructions.
16950
16951 This switch is mainly for debugging the compiler and will likely be removed
16952 in a future version.
16953
16954 @item -mmulti-cond-exec
16955 @opindex mmulti-cond-exec
16956
16957 Enable optimization of @code{&&} and @code{||} in conditional execution
16958 (default).
16959
16960 This switch is mainly for debugging the compiler and will likely be removed
16961 in a future version.
16962
16963 @item -mno-multi-cond-exec
16964 @opindex mno-multi-cond-exec
16965
16966 Disable optimization of @code{&&} and @code{||} in conditional execution.
16967
16968 This switch is mainly for debugging the compiler and will likely be removed
16969 in a future version.
16970
16971 @item -mnested-cond-exec
16972 @opindex mnested-cond-exec
16973
16974 Enable nested conditional execution optimizations (default).
16975
16976 This switch is mainly for debugging the compiler and will likely be removed
16977 in a future version.
16978
16979 @item -mno-nested-cond-exec
16980 @opindex mno-nested-cond-exec
16981
16982 Disable nested conditional execution optimizations.
16983
16984 This switch is mainly for debugging the compiler and will likely be removed
16985 in a future version.
16986
16987 @item -moptimize-membar
16988 @opindex moptimize-membar
16989
16990 This switch removes redundant @code{membar} instructions from the
16991 compiler-generated code. It is enabled by default.
16992
16993 @item -mno-optimize-membar
16994 @opindex mno-optimize-membar
16995
16996 This switch disables the automatic removal of redundant @code{membar}
16997 instructions from the generated code.
16998
16999 @item -mtomcat-stats
17000 @opindex mtomcat-stats
17001
17002 Cause gas to print out tomcat statistics.
17003
17004 @item -mcpu=@var{cpu}
17005 @opindex mcpu
17006
17007 Select the processor type for which to generate code. Possible values are
17008 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
17009 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
17010
17011 @end table
17012
17013 @node GNU/Linux Options
17014 @subsection GNU/Linux Options
17015
17016 These @samp{-m} options are defined for GNU/Linux targets:
17017
17018 @table @gcctabopt
17019 @item -mglibc
17020 @opindex mglibc
17021 Use the GNU C library. This is the default except
17022 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
17023 @samp{*-*-linux-*android*} targets.
17024
17025 @item -muclibc
17026 @opindex muclibc
17027 Use uClibc C library. This is the default on
17028 @samp{*-*-linux-*uclibc*} targets.
17029
17030 @item -mmusl
17031 @opindex mmusl
17032 Use the musl C library. This is the default on
17033 @samp{*-*-linux-*musl*} targets.
17034
17035 @item -mbionic
17036 @opindex mbionic
17037 Use Bionic C library. This is the default on
17038 @samp{*-*-linux-*android*} targets.
17039
17040 @item -mandroid
17041 @opindex mandroid
17042 Compile code compatible with Android platform. This is the default on
17043 @samp{*-*-linux-*android*} targets.
17044
17045 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
17046 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
17047 this option makes the GCC driver pass Android-specific options to the linker.
17048 Finally, this option causes the preprocessor macro @code{__ANDROID__}
17049 to be defined.
17050
17051 @item -tno-android-cc
17052 @opindex tno-android-cc
17053 Disable compilation effects of @option{-mandroid}, i.e., do not enable
17054 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
17055 @option{-fno-rtti} by default.
17056
17057 @item -tno-android-ld
17058 @opindex tno-android-ld
17059 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
17060 linking options to the linker.
17061
17062 @end table
17063
17064 @node H8/300 Options
17065 @subsection H8/300 Options
17066
17067 These @samp{-m} options are defined for the H8/300 implementations:
17068
17069 @table @gcctabopt
17070 @item -mrelax
17071 @opindex mrelax
17072 Shorten some address references at link time, when possible; uses the
17073 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
17074 ld, Using ld}, for a fuller description.
17075
17076 @item -mh
17077 @opindex mh
17078 Generate code for the H8/300H@.
17079
17080 @item -ms
17081 @opindex ms
17082 Generate code for the H8S@.
17083
17084 @item -mn
17085 @opindex mn
17086 Generate code for the H8S and H8/300H in the normal mode. This switch
17087 must be used either with @option{-mh} or @option{-ms}.
17088
17089 @item -ms2600
17090 @opindex ms2600
17091 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
17092
17093 @item -mexr
17094 @opindex mexr
17095 Extended registers are stored on stack before execution of function
17096 with monitor attribute. Default option is @option{-mexr}.
17097 This option is valid only for H8S targets.
17098
17099 @item -mno-exr
17100 @opindex mno-exr
17101 Extended registers are not stored on stack before execution of function
17102 with monitor attribute. Default option is @option{-mno-exr}.
17103 This option is valid only for H8S targets.
17104
17105 @item -mint32
17106 @opindex mint32
17107 Make @code{int} data 32 bits by default.
17108
17109 @item -malign-300
17110 @opindex malign-300
17111 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
17112 The default for the H8/300H and H8S is to align longs and floats on
17113 4-byte boundaries.
17114 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
17115 This option has no effect on the H8/300.
17116 @end table
17117
17118 @node HPPA Options
17119 @subsection HPPA Options
17120 @cindex HPPA Options
17121
17122 These @samp{-m} options are defined for the HPPA family of computers:
17123
17124 @table @gcctabopt
17125 @item -march=@var{architecture-type}
17126 @opindex march
17127 Generate code for the specified architecture. The choices for
17128 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
17129 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
17130 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
17131 architecture option for your machine. Code compiled for lower numbered
17132 architectures runs on higher numbered architectures, but not the
17133 other way around.
17134
17135 @item -mpa-risc-1-0
17136 @itemx -mpa-risc-1-1
17137 @itemx -mpa-risc-2-0
17138 @opindex mpa-risc-1-0
17139 @opindex mpa-risc-1-1
17140 @opindex mpa-risc-2-0
17141 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
17142
17143 @item -mjump-in-delay
17144 @opindex mjump-in-delay
17145 This option is ignored and provided for compatibility purposes only.
17146
17147 @item -mdisable-fpregs
17148 @opindex mdisable-fpregs
17149 Prevent floating-point registers from being used in any manner. This is
17150 necessary for compiling kernels that perform lazy context switching of
17151 floating-point registers. If you use this option and attempt to perform
17152 floating-point operations, the compiler aborts.
17153
17154 @item -mdisable-indexing
17155 @opindex mdisable-indexing
17156 Prevent the compiler from using indexing address modes. This avoids some
17157 rather obscure problems when compiling MIG generated code under MACH@.
17158
17159 @item -mno-space-regs
17160 @opindex mno-space-regs
17161 Generate code that assumes the target has no space registers. This allows
17162 GCC to generate faster indirect calls and use unscaled index address modes.
17163
17164 Such code is suitable for level 0 PA systems and kernels.
17165
17166 @item -mfast-indirect-calls
17167 @opindex mfast-indirect-calls
17168 Generate code that assumes calls never cross space boundaries. This
17169 allows GCC to emit code that performs faster indirect calls.
17170
17171 This option does not work in the presence of shared libraries or nested
17172 functions.
17173
17174 @item -mfixed-range=@var{register-range}
17175 @opindex mfixed-range
17176 Generate code treating the given register range as fixed registers.
17177 A fixed register is one that the register allocator cannot use. This is
17178 useful when compiling kernel code. A register range is specified as
17179 two registers separated by a dash. Multiple register ranges can be
17180 specified separated by a comma.
17181
17182 @item -mlong-load-store
17183 @opindex mlong-load-store
17184 Generate 3-instruction load and store sequences as sometimes required by
17185 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
17186 the HP compilers.
17187
17188 @item -mportable-runtime
17189 @opindex mportable-runtime
17190 Use the portable calling conventions proposed by HP for ELF systems.
17191
17192 @item -mgas
17193 @opindex mgas
17194 Enable the use of assembler directives only GAS understands.
17195
17196 @item -mschedule=@var{cpu-type}
17197 @opindex mschedule
17198 Schedule code according to the constraints for the machine type
17199 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
17200 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
17201 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
17202 proper scheduling option for your machine. The default scheduling is
17203 @samp{8000}.
17204
17205 @item -mlinker-opt
17206 @opindex mlinker-opt
17207 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
17208 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
17209 linkers in which they give bogus error messages when linking some programs.
17210
17211 @item -msoft-float
17212 @opindex msoft-float
17213 Generate output containing library calls for floating point.
17214 @strong{Warning:} the requisite libraries are not available for all HPPA
17215 targets. Normally the facilities of the machine's usual C compiler are
17216 used, but this cannot be done directly in cross-compilation. You must make
17217 your own arrangements to provide suitable library functions for
17218 cross-compilation.
17219
17220 @option{-msoft-float} changes the calling convention in the output file;
17221 therefore, it is only useful if you compile @emph{all} of a program with
17222 this option. In particular, you need to compile @file{libgcc.a}, the
17223 library that comes with GCC, with @option{-msoft-float} in order for
17224 this to work.
17225
17226 @item -msio
17227 @opindex msio
17228 Generate the predefine, @code{_SIO}, for server IO@. The default is
17229 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
17230 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
17231 options are available under HP-UX and HI-UX@.
17232
17233 @item -mgnu-ld
17234 @opindex mgnu-ld
17235 Use options specific to GNU @command{ld}.
17236 This passes @option{-shared} to @command{ld} when
17237 building a shared library. It is the default when GCC is configured,
17238 explicitly or implicitly, with the GNU linker. This option does not
17239 affect which @command{ld} is called; it only changes what parameters
17240 are passed to that @command{ld}.
17241 The @command{ld} that is called is determined by the
17242 @option{--with-ld} configure option, GCC's program search path, and
17243 finally by the user's @env{PATH}. The linker used by GCC can be printed
17244 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
17245 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
17246
17247 @item -mhp-ld
17248 @opindex mhp-ld
17249 Use options specific to HP @command{ld}.
17250 This passes @option{-b} to @command{ld} when building
17251 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
17252 links. It is the default when GCC is configured, explicitly or
17253 implicitly, with the HP linker. This option does not affect
17254 which @command{ld} is called; it only changes what parameters are passed to that
17255 @command{ld}.
17256 The @command{ld} that is called is determined by the @option{--with-ld}
17257 configure option, GCC's program search path, and finally by the user's
17258 @env{PATH}. The linker used by GCC can be printed using @samp{which
17259 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
17260 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
17261
17262 @item -mlong-calls
17263 @opindex mno-long-calls
17264 Generate code that uses long call sequences. This ensures that a call
17265 is always able to reach linker generated stubs. The default is to generate
17266 long calls only when the distance from the call site to the beginning
17267 of the function or translation unit, as the case may be, exceeds a
17268 predefined limit set by the branch type being used. The limits for
17269 normal calls are 7,600,000 and 240,000 bytes, respectively for the
17270 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
17271 240,000 bytes.
17272
17273 Distances are measured from the beginning of functions when using the
17274 @option{-ffunction-sections} option, or when using the @option{-mgas}
17275 and @option{-mno-portable-runtime} options together under HP-UX with
17276 the SOM linker.
17277
17278 It is normally not desirable to use this option as it degrades
17279 performance. However, it may be useful in large applications,
17280 particularly when partial linking is used to build the application.
17281
17282 The types of long calls used depends on the capabilities of the
17283 assembler and linker, and the type of code being generated. The
17284 impact on systems that support long absolute calls, and long pic
17285 symbol-difference or pc-relative calls should be relatively small.
17286 However, an indirect call is used on 32-bit ELF systems in pic code
17287 and it is quite long.
17288
17289 @item -munix=@var{unix-std}
17290 @opindex march
17291 Generate compiler predefines and select a startfile for the specified
17292 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
17293 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
17294 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
17295 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
17296 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
17297 and later.
17298
17299 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
17300 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
17301 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
17302 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
17303 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
17304 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
17305
17306 It is @emph{important} to note that this option changes the interfaces
17307 for various library routines. It also affects the operational behavior
17308 of the C library. Thus, @emph{extreme} care is needed in using this
17309 option.
17310
17311 Library code that is intended to operate with more than one UNIX
17312 standard must test, set and restore the variable @code{__xpg4_extended_mask}
17313 as appropriate. Most GNU software doesn't provide this capability.
17314
17315 @item -nolibdld
17316 @opindex nolibdld
17317 Suppress the generation of link options to search libdld.sl when the
17318 @option{-static} option is specified on HP-UX 10 and later.
17319
17320 @item -static
17321 @opindex static
17322 The HP-UX implementation of setlocale in libc has a dependency on
17323 libdld.sl. There isn't an archive version of libdld.sl. Thus,
17324 when the @option{-static} option is specified, special link options
17325 are needed to resolve this dependency.
17326
17327 On HP-UX 10 and later, the GCC driver adds the necessary options to
17328 link with libdld.sl when the @option{-static} option is specified.
17329 This causes the resulting binary to be dynamic. On the 64-bit port,
17330 the linkers generate dynamic binaries by default in any case. The
17331 @option{-nolibdld} option can be used to prevent the GCC driver from
17332 adding these link options.
17333
17334 @item -threads
17335 @opindex threads
17336 Add support for multithreading with the @dfn{dce thread} library
17337 under HP-UX@. This option sets flags for both the preprocessor and
17338 linker.
17339 @end table
17340
17341 @node IA-64 Options
17342 @subsection IA-64 Options
17343 @cindex IA-64 Options
17344
17345 These are the @samp{-m} options defined for the Intel IA-64 architecture.
17346
17347 @table @gcctabopt
17348 @item -mbig-endian
17349 @opindex mbig-endian
17350 Generate code for a big-endian target. This is the default for HP-UX@.
17351
17352 @item -mlittle-endian
17353 @opindex mlittle-endian
17354 Generate code for a little-endian target. This is the default for AIX5
17355 and GNU/Linux.
17356
17357 @item -mgnu-as
17358 @itemx -mno-gnu-as
17359 @opindex mgnu-as
17360 @opindex mno-gnu-as
17361 Generate (or don't) code for the GNU assembler. This is the default.
17362 @c Also, this is the default if the configure option @option{--with-gnu-as}
17363 @c is used.
17364
17365 @item -mgnu-ld
17366 @itemx -mno-gnu-ld
17367 @opindex mgnu-ld
17368 @opindex mno-gnu-ld
17369 Generate (or don't) code for the GNU linker. This is the default.
17370 @c Also, this is the default if the configure option @option{--with-gnu-ld}
17371 @c is used.
17372
17373 @item -mno-pic
17374 @opindex mno-pic
17375 Generate code that does not use a global pointer register. The result
17376 is not position independent code, and violates the IA-64 ABI@.
17377
17378 @item -mvolatile-asm-stop
17379 @itemx -mno-volatile-asm-stop
17380 @opindex mvolatile-asm-stop
17381 @opindex mno-volatile-asm-stop
17382 Generate (or don't) a stop bit immediately before and after volatile asm
17383 statements.
17384
17385 @item -mregister-names
17386 @itemx -mno-register-names
17387 @opindex mregister-names
17388 @opindex mno-register-names
17389 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
17390 the stacked registers. This may make assembler output more readable.
17391
17392 @item -mno-sdata
17393 @itemx -msdata
17394 @opindex mno-sdata
17395 @opindex msdata
17396 Disable (or enable) optimizations that use the small data section. This may
17397 be useful for working around optimizer bugs.
17398
17399 @item -mconstant-gp
17400 @opindex mconstant-gp
17401 Generate code that uses a single constant global pointer value. This is
17402 useful when compiling kernel code.
17403
17404 @item -mauto-pic
17405 @opindex mauto-pic
17406 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
17407 This is useful when compiling firmware code.
17408
17409 @item -minline-float-divide-min-latency
17410 @opindex minline-float-divide-min-latency
17411 Generate code for inline divides of floating-point values
17412 using the minimum latency algorithm.
17413
17414 @item -minline-float-divide-max-throughput
17415 @opindex minline-float-divide-max-throughput
17416 Generate code for inline divides of floating-point values
17417 using the maximum throughput algorithm.
17418
17419 @item -mno-inline-float-divide
17420 @opindex mno-inline-float-divide
17421 Do not generate inline code for divides of floating-point values.
17422
17423 @item -minline-int-divide-min-latency
17424 @opindex minline-int-divide-min-latency
17425 Generate code for inline divides of integer values
17426 using the minimum latency algorithm.
17427
17428 @item -minline-int-divide-max-throughput
17429 @opindex minline-int-divide-max-throughput
17430 Generate code for inline divides of integer values
17431 using the maximum throughput algorithm.
17432
17433 @item -mno-inline-int-divide
17434 @opindex mno-inline-int-divide
17435 Do not generate inline code for divides of integer values.
17436
17437 @item -minline-sqrt-min-latency
17438 @opindex minline-sqrt-min-latency
17439 Generate code for inline square roots
17440 using the minimum latency algorithm.
17441
17442 @item -minline-sqrt-max-throughput
17443 @opindex minline-sqrt-max-throughput
17444 Generate code for inline square roots
17445 using the maximum throughput algorithm.
17446
17447 @item -mno-inline-sqrt
17448 @opindex mno-inline-sqrt
17449 Do not generate inline code for @code{sqrt}.
17450
17451 @item -mfused-madd
17452 @itemx -mno-fused-madd
17453 @opindex mfused-madd
17454 @opindex mno-fused-madd
17455 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
17456 instructions. The default is to use these instructions.
17457
17458 @item -mno-dwarf2-asm
17459 @itemx -mdwarf2-asm
17460 @opindex mno-dwarf2-asm
17461 @opindex mdwarf2-asm
17462 Don't (or do) generate assembler code for the DWARF line number debugging
17463 info. This may be useful when not using the GNU assembler.
17464
17465 @item -mearly-stop-bits
17466 @itemx -mno-early-stop-bits
17467 @opindex mearly-stop-bits
17468 @opindex mno-early-stop-bits
17469 Allow stop bits to be placed earlier than immediately preceding the
17470 instruction that triggered the stop bit. This can improve instruction
17471 scheduling, but does not always do so.
17472
17473 @item -mfixed-range=@var{register-range}
17474 @opindex mfixed-range
17475 Generate code treating the given register range as fixed registers.
17476 A fixed register is one that the register allocator cannot use. This is
17477 useful when compiling kernel code. A register range is specified as
17478 two registers separated by a dash. Multiple register ranges can be
17479 specified separated by a comma.
17480
17481 @item -mtls-size=@var{tls-size}
17482 @opindex mtls-size
17483 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
17484 64.
17485
17486 @item -mtune=@var{cpu-type}
17487 @opindex mtune
17488 Tune the instruction scheduling for a particular CPU, Valid values are
17489 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
17490 and @samp{mckinley}.
17491
17492 @item -milp32
17493 @itemx -mlp64
17494 @opindex milp32
17495 @opindex mlp64
17496 Generate code for a 32-bit or 64-bit environment.
17497 The 32-bit environment sets int, long and pointer to 32 bits.
17498 The 64-bit environment sets int to 32 bits and long and pointer
17499 to 64 bits. These are HP-UX specific flags.
17500
17501 @item -mno-sched-br-data-spec
17502 @itemx -msched-br-data-spec
17503 @opindex mno-sched-br-data-spec
17504 @opindex msched-br-data-spec
17505 (Dis/En)able data speculative scheduling before reload.
17506 This results in generation of @code{ld.a} instructions and
17507 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
17508 The default setting is disabled.
17509
17510 @item -msched-ar-data-spec
17511 @itemx -mno-sched-ar-data-spec
17512 @opindex msched-ar-data-spec
17513 @opindex mno-sched-ar-data-spec
17514 (En/Dis)able data speculative scheduling after reload.
17515 This results in generation of @code{ld.a} instructions and
17516 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
17517 The default setting is enabled.
17518
17519 @item -mno-sched-control-spec
17520 @itemx -msched-control-spec
17521 @opindex mno-sched-control-spec
17522 @opindex msched-control-spec
17523 (Dis/En)able control speculative scheduling. This feature is
17524 available only during region scheduling (i.e.@: before reload).
17525 This results in generation of the @code{ld.s} instructions and
17526 the corresponding check instructions @code{chk.s}.
17527 The default setting is disabled.
17528
17529 @item -msched-br-in-data-spec
17530 @itemx -mno-sched-br-in-data-spec
17531 @opindex msched-br-in-data-spec
17532 @opindex mno-sched-br-in-data-spec
17533 (En/Dis)able speculative scheduling of the instructions that
17534 are dependent on the data speculative loads before reload.
17535 This is effective only with @option{-msched-br-data-spec} enabled.
17536 The default setting is enabled.
17537
17538 @item -msched-ar-in-data-spec
17539 @itemx -mno-sched-ar-in-data-spec
17540 @opindex msched-ar-in-data-spec
17541 @opindex mno-sched-ar-in-data-spec
17542 (En/Dis)able speculative scheduling of the instructions that
17543 are dependent on the data speculative loads after reload.
17544 This is effective only with @option{-msched-ar-data-spec} enabled.
17545 The default setting is enabled.
17546
17547 @item -msched-in-control-spec
17548 @itemx -mno-sched-in-control-spec
17549 @opindex msched-in-control-spec
17550 @opindex mno-sched-in-control-spec
17551 (En/Dis)able speculative scheduling of the instructions that
17552 are dependent on the control speculative loads.
17553 This is effective only with @option{-msched-control-spec} enabled.
17554 The default setting is enabled.
17555
17556 @item -mno-sched-prefer-non-data-spec-insns
17557 @itemx -msched-prefer-non-data-spec-insns
17558 @opindex mno-sched-prefer-non-data-spec-insns
17559 @opindex msched-prefer-non-data-spec-insns
17560 If enabled, data-speculative instructions are chosen for schedule
17561 only if there are no other choices at the moment. This makes
17562 the use of the data speculation much more conservative.
17563 The default setting is disabled.
17564
17565 @item -mno-sched-prefer-non-control-spec-insns
17566 @itemx -msched-prefer-non-control-spec-insns
17567 @opindex mno-sched-prefer-non-control-spec-insns
17568 @opindex msched-prefer-non-control-spec-insns
17569 If enabled, control-speculative instructions are chosen for schedule
17570 only if there are no other choices at the moment. This makes
17571 the use of the control speculation much more conservative.
17572 The default setting is disabled.
17573
17574 @item -mno-sched-count-spec-in-critical-path
17575 @itemx -msched-count-spec-in-critical-path
17576 @opindex mno-sched-count-spec-in-critical-path
17577 @opindex msched-count-spec-in-critical-path
17578 If enabled, speculative dependencies are considered during
17579 computation of the instructions priorities. This makes the use of the
17580 speculation a bit more conservative.
17581 The default setting is disabled.
17582
17583 @item -msched-spec-ldc
17584 @opindex msched-spec-ldc
17585 Use a simple data speculation check. This option is on by default.
17586
17587 @item -msched-control-spec-ldc
17588 @opindex msched-spec-ldc
17589 Use a simple check for control speculation. This option is on by default.
17590
17591 @item -msched-stop-bits-after-every-cycle
17592 @opindex msched-stop-bits-after-every-cycle
17593 Place a stop bit after every cycle when scheduling. This option is on
17594 by default.
17595
17596 @item -msched-fp-mem-deps-zero-cost
17597 @opindex msched-fp-mem-deps-zero-cost
17598 Assume that floating-point stores and loads are not likely to cause a conflict
17599 when placed into the same instruction group. This option is disabled by
17600 default.
17601
17602 @item -msel-sched-dont-check-control-spec
17603 @opindex msel-sched-dont-check-control-spec
17604 Generate checks for control speculation in selective scheduling.
17605 This flag is disabled by default.
17606
17607 @item -msched-max-memory-insns=@var{max-insns}
17608 @opindex msched-max-memory-insns
17609 Limit on the number of memory insns per instruction group, giving lower
17610 priority to subsequent memory insns attempting to schedule in the same
17611 instruction group. Frequently useful to prevent cache bank conflicts.
17612 The default value is 1.
17613
17614 @item -msched-max-memory-insns-hard-limit
17615 @opindex msched-max-memory-insns-hard-limit
17616 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
17617 disallowing more than that number in an instruction group.
17618 Otherwise, the limit is ``soft'', meaning that non-memory operations
17619 are preferred when the limit is reached, but memory operations may still
17620 be scheduled.
17621
17622 @end table
17623
17624 @node LM32 Options
17625 @subsection LM32 Options
17626 @cindex LM32 options
17627
17628 These @option{-m} options are defined for the LatticeMico32 architecture:
17629
17630 @table @gcctabopt
17631 @item -mbarrel-shift-enabled
17632 @opindex mbarrel-shift-enabled
17633 Enable barrel-shift instructions.
17634
17635 @item -mdivide-enabled
17636 @opindex mdivide-enabled
17637 Enable divide and modulus instructions.
17638
17639 @item -mmultiply-enabled
17640 @opindex multiply-enabled
17641 Enable multiply instructions.
17642
17643 @item -msign-extend-enabled
17644 @opindex msign-extend-enabled
17645 Enable sign extend instructions.
17646
17647 @item -muser-enabled
17648 @opindex muser-enabled
17649 Enable user-defined instructions.
17650
17651 @end table
17652
17653 @node M32C Options
17654 @subsection M32C Options
17655 @cindex M32C options
17656
17657 @table @gcctabopt
17658 @item -mcpu=@var{name}
17659 @opindex mcpu=
17660 Select the CPU for which code is generated. @var{name} may be one of
17661 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
17662 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
17663 the M32C/80 series.
17664
17665 @item -msim
17666 @opindex msim
17667 Specifies that the program will be run on the simulator. This causes
17668 an alternate runtime library to be linked in which supports, for
17669 example, file I/O@. You must not use this option when generating
17670 programs that will run on real hardware; you must provide your own
17671 runtime library for whatever I/O functions are needed.
17672
17673 @item -memregs=@var{number}
17674 @opindex memregs=
17675 Specifies the number of memory-based pseudo-registers GCC uses
17676 during code generation. These pseudo-registers are used like real
17677 registers, so there is a tradeoff between GCC's ability to fit the
17678 code into available registers, and the performance penalty of using
17679 memory instead of registers. Note that all modules in a program must
17680 be compiled with the same value for this option. Because of that, you
17681 must not use this option with GCC's default runtime libraries.
17682
17683 @end table
17684
17685 @node M32R/D Options
17686 @subsection M32R/D Options
17687 @cindex M32R/D options
17688
17689 These @option{-m} options are defined for Renesas M32R/D architectures:
17690
17691 @table @gcctabopt
17692 @item -m32r2
17693 @opindex m32r2
17694 Generate code for the M32R/2@.
17695
17696 @item -m32rx
17697 @opindex m32rx
17698 Generate code for the M32R/X@.
17699
17700 @item -m32r
17701 @opindex m32r
17702 Generate code for the M32R@. This is the default.
17703
17704 @item -mmodel=small
17705 @opindex mmodel=small
17706 Assume all objects live in the lower 16MB of memory (so that their addresses
17707 can be loaded with the @code{ld24} instruction), and assume all subroutines
17708 are reachable with the @code{bl} instruction.
17709 This is the default.
17710
17711 The addressability of a particular object can be set with the
17712 @code{model} attribute.
17713
17714 @item -mmodel=medium
17715 @opindex mmodel=medium
17716 Assume objects may be anywhere in the 32-bit address space (the compiler
17717 generates @code{seth/add3} instructions to load their addresses), and
17718 assume all subroutines are reachable with the @code{bl} instruction.
17719
17720 @item -mmodel=large
17721 @opindex mmodel=large
17722 Assume objects may be anywhere in the 32-bit address space (the compiler
17723 generates @code{seth/add3} instructions to load their addresses), and
17724 assume subroutines may not be reachable with the @code{bl} instruction
17725 (the compiler generates the much slower @code{seth/add3/jl}
17726 instruction sequence).
17727
17728 @item -msdata=none
17729 @opindex msdata=none
17730 Disable use of the small data area. Variables are put into
17731 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
17732 @code{section} attribute has been specified).
17733 This is the default.
17734
17735 The small data area consists of sections @code{.sdata} and @code{.sbss}.
17736 Objects may be explicitly put in the small data area with the
17737 @code{section} attribute using one of these sections.
17738
17739 @item -msdata=sdata
17740 @opindex msdata=sdata
17741 Put small global and static data in the small data area, but do not
17742 generate special code to reference them.
17743
17744 @item -msdata=use
17745 @opindex msdata=use
17746 Put small global and static data in the small data area, and generate
17747 special instructions to reference them.
17748
17749 @item -G @var{num}
17750 @opindex G
17751 @cindex smaller data references
17752 Put global and static objects less than or equal to @var{num} bytes
17753 into the small data or BSS sections instead of the normal data or BSS
17754 sections. The default value of @var{num} is 8.
17755 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
17756 for this option to have any effect.
17757
17758 All modules should be compiled with the same @option{-G @var{num}} value.
17759 Compiling with different values of @var{num} may or may not work; if it
17760 doesn't the linker gives an error message---incorrect code is not
17761 generated.
17762
17763 @item -mdebug
17764 @opindex mdebug
17765 Makes the M32R-specific code in the compiler display some statistics
17766 that might help in debugging programs.
17767
17768 @item -malign-loops
17769 @opindex malign-loops
17770 Align all loops to a 32-byte boundary.
17771
17772 @item -mno-align-loops
17773 @opindex mno-align-loops
17774 Do not enforce a 32-byte alignment for loops. This is the default.
17775
17776 @item -missue-rate=@var{number}
17777 @opindex missue-rate=@var{number}
17778 Issue @var{number} instructions per cycle. @var{number} can only be 1
17779 or 2.
17780
17781 @item -mbranch-cost=@var{number}
17782 @opindex mbranch-cost=@var{number}
17783 @var{number} can only be 1 or 2. If it is 1 then branches are
17784 preferred over conditional code, if it is 2, then the opposite applies.
17785
17786 @item -mflush-trap=@var{number}
17787 @opindex mflush-trap=@var{number}
17788 Specifies the trap number to use to flush the cache. The default is
17789 12. Valid numbers are between 0 and 15 inclusive.
17790
17791 @item -mno-flush-trap
17792 @opindex mno-flush-trap
17793 Specifies that the cache cannot be flushed by using a trap.
17794
17795 @item -mflush-func=@var{name}
17796 @opindex mflush-func=@var{name}
17797 Specifies the name of the operating system function to call to flush
17798 the cache. The default is @samp{_flush_cache}, but a function call
17799 is only used if a trap is not available.
17800
17801 @item -mno-flush-func
17802 @opindex mno-flush-func
17803 Indicates that there is no OS function for flushing the cache.
17804
17805 @end table
17806
17807 @node M680x0 Options
17808 @subsection M680x0 Options
17809 @cindex M680x0 options
17810
17811 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
17812 The default settings depend on which architecture was selected when
17813 the compiler was configured; the defaults for the most common choices
17814 are given below.
17815
17816 @table @gcctabopt
17817 @item -march=@var{arch}
17818 @opindex march
17819 Generate code for a specific M680x0 or ColdFire instruction set
17820 architecture. Permissible values of @var{arch} for M680x0
17821 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
17822 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
17823 architectures are selected according to Freescale's ISA classification
17824 and the permissible values are: @samp{isaa}, @samp{isaaplus},
17825 @samp{isab} and @samp{isac}.
17826
17827 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
17828 code for a ColdFire target. The @var{arch} in this macro is one of the
17829 @option{-march} arguments given above.
17830
17831 When used together, @option{-march} and @option{-mtune} select code
17832 that runs on a family of similar processors but that is optimized
17833 for a particular microarchitecture.
17834
17835 @item -mcpu=@var{cpu}
17836 @opindex mcpu
17837 Generate code for a specific M680x0 or ColdFire processor.
17838 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
17839 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
17840 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
17841 below, which also classifies the CPUs into families:
17842
17843 @multitable @columnfractions 0.20 0.80
17844 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
17845 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
17846 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
17847 @item @samp{5206e} @tab @samp{5206e}
17848 @item @samp{5208} @tab @samp{5207} @samp{5208}
17849 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
17850 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
17851 @item @samp{5216} @tab @samp{5214} @samp{5216}
17852 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
17853 @item @samp{5225} @tab @samp{5224} @samp{5225}
17854 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
17855 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
17856 @item @samp{5249} @tab @samp{5249}
17857 @item @samp{5250} @tab @samp{5250}
17858 @item @samp{5271} @tab @samp{5270} @samp{5271}
17859 @item @samp{5272} @tab @samp{5272}
17860 @item @samp{5275} @tab @samp{5274} @samp{5275}
17861 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
17862 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
17863 @item @samp{5307} @tab @samp{5307}
17864 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
17865 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
17866 @item @samp{5407} @tab @samp{5407}
17867 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
17868 @end multitable
17869
17870 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
17871 @var{arch} is compatible with @var{cpu}. Other combinations of
17872 @option{-mcpu} and @option{-march} are rejected.
17873
17874 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
17875 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
17876 where the value of @var{family} is given by the table above.
17877
17878 @item -mtune=@var{tune}
17879 @opindex mtune
17880 Tune the code for a particular microarchitecture within the
17881 constraints set by @option{-march} and @option{-mcpu}.
17882 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
17883 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
17884 and @samp{cpu32}. The ColdFire microarchitectures
17885 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
17886
17887 You can also use @option{-mtune=68020-40} for code that needs
17888 to run relatively well on 68020, 68030 and 68040 targets.
17889 @option{-mtune=68020-60} is similar but includes 68060 targets
17890 as well. These two options select the same tuning decisions as
17891 @option{-m68020-40} and @option{-m68020-60} respectively.
17892
17893 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
17894 when tuning for 680x0 architecture @var{arch}. It also defines
17895 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
17896 option is used. If GCC is tuning for a range of architectures,
17897 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
17898 it defines the macros for every architecture in the range.
17899
17900 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
17901 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
17902 of the arguments given above.
17903
17904 @item -m68000
17905 @itemx -mc68000
17906 @opindex m68000
17907 @opindex mc68000
17908 Generate output for a 68000. This is the default
17909 when the compiler is configured for 68000-based systems.
17910 It is equivalent to @option{-march=68000}.
17911
17912 Use this option for microcontrollers with a 68000 or EC000 core,
17913 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
17914
17915 @item -m68010
17916 @opindex m68010
17917 Generate output for a 68010. This is the default
17918 when the compiler is configured for 68010-based systems.
17919 It is equivalent to @option{-march=68010}.
17920
17921 @item -m68020
17922 @itemx -mc68020
17923 @opindex m68020
17924 @opindex mc68020
17925 Generate output for a 68020. This is the default
17926 when the compiler is configured for 68020-based systems.
17927 It is equivalent to @option{-march=68020}.
17928
17929 @item -m68030
17930 @opindex m68030
17931 Generate output for a 68030. This is the default when the compiler is
17932 configured for 68030-based systems. It is equivalent to
17933 @option{-march=68030}.
17934
17935 @item -m68040
17936 @opindex m68040
17937 Generate output for a 68040. This is the default when the compiler is
17938 configured for 68040-based systems. It is equivalent to
17939 @option{-march=68040}.
17940
17941 This option inhibits the use of 68881/68882 instructions that have to be
17942 emulated by software on the 68040. Use this option if your 68040 does not
17943 have code to emulate those instructions.
17944
17945 @item -m68060
17946 @opindex m68060
17947 Generate output for a 68060. This is the default when the compiler is
17948 configured for 68060-based systems. It is equivalent to
17949 @option{-march=68060}.
17950
17951 This option inhibits the use of 68020 and 68881/68882 instructions that
17952 have to be emulated by software on the 68060. Use this option if your 68060
17953 does not have code to emulate those instructions.
17954
17955 @item -mcpu32
17956 @opindex mcpu32
17957 Generate output for a CPU32. This is the default
17958 when the compiler is configured for CPU32-based systems.
17959 It is equivalent to @option{-march=cpu32}.
17960
17961 Use this option for microcontrollers with a
17962 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
17963 68336, 68340, 68341, 68349 and 68360.
17964
17965 @item -m5200
17966 @opindex m5200
17967 Generate output for a 520X ColdFire CPU@. This is the default
17968 when the compiler is configured for 520X-based systems.
17969 It is equivalent to @option{-mcpu=5206}, and is now deprecated
17970 in favor of that option.
17971
17972 Use this option for microcontroller with a 5200 core, including
17973 the MCF5202, MCF5203, MCF5204 and MCF5206.
17974
17975 @item -m5206e
17976 @opindex m5206e
17977 Generate output for a 5206e ColdFire CPU@. The option is now
17978 deprecated in favor of the equivalent @option{-mcpu=5206e}.
17979
17980 @item -m528x
17981 @opindex m528x
17982 Generate output for a member of the ColdFire 528X family.
17983 The option is now deprecated in favor of the equivalent
17984 @option{-mcpu=528x}.
17985
17986 @item -m5307
17987 @opindex m5307
17988 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
17989 in favor of the equivalent @option{-mcpu=5307}.
17990
17991 @item -m5407
17992 @opindex m5407
17993 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
17994 in favor of the equivalent @option{-mcpu=5407}.
17995
17996 @item -mcfv4e
17997 @opindex mcfv4e
17998 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
17999 This includes use of hardware floating-point instructions.
18000 The option is equivalent to @option{-mcpu=547x}, and is now
18001 deprecated in favor of that option.
18002
18003 @item -m68020-40
18004 @opindex m68020-40
18005 Generate output for a 68040, without using any of the new instructions.
18006 This results in code that can run relatively efficiently on either a
18007 68020/68881 or a 68030 or a 68040. The generated code does use the
18008 68881 instructions that are emulated on the 68040.
18009
18010 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
18011
18012 @item -m68020-60
18013 @opindex m68020-60
18014 Generate output for a 68060, without using any of the new instructions.
18015 This results in code that can run relatively efficiently on either a
18016 68020/68881 or a 68030 or a 68040. The generated code does use the
18017 68881 instructions that are emulated on the 68060.
18018
18019 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
18020
18021 @item -mhard-float
18022 @itemx -m68881
18023 @opindex mhard-float
18024 @opindex m68881
18025 Generate floating-point instructions. This is the default for 68020
18026 and above, and for ColdFire devices that have an FPU@. It defines the
18027 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
18028 on ColdFire targets.
18029
18030 @item -msoft-float
18031 @opindex msoft-float
18032 Do not generate floating-point instructions; use library calls instead.
18033 This is the default for 68000, 68010, and 68832 targets. It is also
18034 the default for ColdFire devices that have no FPU.
18035
18036 @item -mdiv
18037 @itemx -mno-div
18038 @opindex mdiv
18039 @opindex mno-div
18040 Generate (do not generate) ColdFire hardware divide and remainder
18041 instructions. If @option{-march} is used without @option{-mcpu},
18042 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
18043 architectures. Otherwise, the default is taken from the target CPU
18044 (either the default CPU, or the one specified by @option{-mcpu}). For
18045 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
18046 @option{-mcpu=5206e}.
18047
18048 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
18049
18050 @item -mshort
18051 @opindex mshort
18052 Consider type @code{int} to be 16 bits wide, like @code{short int}.
18053 Additionally, parameters passed on the stack are also aligned to a
18054 16-bit boundary even on targets whose API mandates promotion to 32-bit.
18055
18056 @item -mno-short
18057 @opindex mno-short
18058 Do not consider type @code{int} to be 16 bits wide. This is the default.
18059
18060 @item -mnobitfield
18061 @itemx -mno-bitfield
18062 @opindex mnobitfield
18063 @opindex mno-bitfield
18064 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
18065 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
18066
18067 @item -mbitfield
18068 @opindex mbitfield
18069 Do use the bit-field instructions. The @option{-m68020} option implies
18070 @option{-mbitfield}. This is the default if you use a configuration
18071 designed for a 68020.
18072
18073 @item -mrtd
18074 @opindex mrtd
18075 Use a different function-calling convention, in which functions
18076 that take a fixed number of arguments return with the @code{rtd}
18077 instruction, which pops their arguments while returning. This
18078 saves one instruction in the caller since there is no need to pop
18079 the arguments there.
18080
18081 This calling convention is incompatible with the one normally
18082 used on Unix, so you cannot use it if you need to call libraries
18083 compiled with the Unix compiler.
18084
18085 Also, you must provide function prototypes for all functions that
18086 take variable numbers of arguments (including @code{printf});
18087 otherwise incorrect code is generated for calls to those
18088 functions.
18089
18090 In addition, seriously incorrect code results if you call a
18091 function with too many arguments. (Normally, extra arguments are
18092 harmlessly ignored.)
18093
18094 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
18095 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
18096
18097 @item -mno-rtd
18098 @opindex mno-rtd
18099 Do not use the calling conventions selected by @option{-mrtd}.
18100 This is the default.
18101
18102 @item -malign-int
18103 @itemx -mno-align-int
18104 @opindex malign-int
18105 @opindex mno-align-int
18106 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
18107 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
18108 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
18109 Aligning variables on 32-bit boundaries produces code that runs somewhat
18110 faster on processors with 32-bit busses at the expense of more memory.
18111
18112 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
18113 aligns structures containing the above types differently than
18114 most published application binary interface specifications for the m68k.
18115
18116 @item -mpcrel
18117 @opindex mpcrel
18118 Use the pc-relative addressing mode of the 68000 directly, instead of
18119 using a global offset table. At present, this option implies @option{-fpic},
18120 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
18121 not presently supported with @option{-mpcrel}, though this could be supported for
18122 68020 and higher processors.
18123
18124 @item -mno-strict-align
18125 @itemx -mstrict-align
18126 @opindex mno-strict-align
18127 @opindex mstrict-align
18128 Do not (do) assume that unaligned memory references are handled by
18129 the system.
18130
18131 @item -msep-data
18132 Generate code that allows the data segment to be located in a different
18133 area of memory from the text segment. This allows for execute-in-place in
18134 an environment without virtual memory management. This option implies
18135 @option{-fPIC}.
18136
18137 @item -mno-sep-data
18138 Generate code that assumes that the data segment follows the text segment.
18139 This is the default.
18140
18141 @item -mid-shared-library
18142 Generate code that supports shared libraries via the library ID method.
18143 This allows for execute-in-place and shared libraries in an environment
18144 without virtual memory management. This option implies @option{-fPIC}.
18145
18146 @item -mno-id-shared-library
18147 Generate code that doesn't assume ID-based shared libraries are being used.
18148 This is the default.
18149
18150 @item -mshared-library-id=n
18151 Specifies the identification number of the ID-based shared library being
18152 compiled. Specifying a value of 0 generates more compact code; specifying
18153 other values forces the allocation of that number to the current
18154 library, but is no more space- or time-efficient than omitting this option.
18155
18156 @item -mxgot
18157 @itemx -mno-xgot
18158 @opindex mxgot
18159 @opindex mno-xgot
18160 When generating position-independent code for ColdFire, generate code
18161 that works if the GOT has more than 8192 entries. This code is
18162 larger and slower than code generated without this option. On M680x0
18163 processors, this option is not needed; @option{-fPIC} suffices.
18164
18165 GCC normally uses a single instruction to load values from the GOT@.
18166 While this is relatively efficient, it only works if the GOT
18167 is smaller than about 64k. Anything larger causes the linker
18168 to report an error such as:
18169
18170 @cindex relocation truncated to fit (ColdFire)
18171 @smallexample
18172 relocation truncated to fit: R_68K_GOT16O foobar
18173 @end smallexample
18174
18175 If this happens, you should recompile your code with @option{-mxgot}.
18176 It should then work with very large GOTs. However, code generated with
18177 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
18178 the value of a global symbol.
18179
18180 Note that some linkers, including newer versions of the GNU linker,
18181 can create multiple GOTs and sort GOT entries. If you have such a linker,
18182 you should only need to use @option{-mxgot} when compiling a single
18183 object file that accesses more than 8192 GOT entries. Very few do.
18184
18185 These options have no effect unless GCC is generating
18186 position-independent code.
18187
18188 @end table
18189
18190 @node MCore Options
18191 @subsection MCore Options
18192 @cindex MCore options
18193
18194 These are the @samp{-m} options defined for the Motorola M*Core
18195 processors.
18196
18197 @table @gcctabopt
18198
18199 @item -mhardlit
18200 @itemx -mno-hardlit
18201 @opindex mhardlit
18202 @opindex mno-hardlit
18203 Inline constants into the code stream if it can be done in two
18204 instructions or less.
18205
18206 @item -mdiv
18207 @itemx -mno-div
18208 @opindex mdiv
18209 @opindex mno-div
18210 Use the divide instruction. (Enabled by default).
18211
18212 @item -mrelax-immediate
18213 @itemx -mno-relax-immediate
18214 @opindex mrelax-immediate
18215 @opindex mno-relax-immediate
18216 Allow arbitrary-sized immediates in bit operations.
18217
18218 @item -mwide-bitfields
18219 @itemx -mno-wide-bitfields
18220 @opindex mwide-bitfields
18221 @opindex mno-wide-bitfields
18222 Always treat bit-fields as @code{int}-sized.
18223
18224 @item -m4byte-functions
18225 @itemx -mno-4byte-functions
18226 @opindex m4byte-functions
18227 @opindex mno-4byte-functions
18228 Force all functions to be aligned to a 4-byte boundary.
18229
18230 @item -mcallgraph-data
18231 @itemx -mno-callgraph-data
18232 @opindex mcallgraph-data
18233 @opindex mno-callgraph-data
18234 Emit callgraph information.
18235
18236 @item -mslow-bytes
18237 @itemx -mno-slow-bytes
18238 @opindex mslow-bytes
18239 @opindex mno-slow-bytes
18240 Prefer word access when reading byte quantities.
18241
18242 @item -mlittle-endian
18243 @itemx -mbig-endian
18244 @opindex mlittle-endian
18245 @opindex mbig-endian
18246 Generate code for a little-endian target.
18247
18248 @item -m210
18249 @itemx -m340
18250 @opindex m210
18251 @opindex m340
18252 Generate code for the 210 processor.
18253
18254 @item -mno-lsim
18255 @opindex mno-lsim
18256 Assume that runtime support has been provided and so omit the
18257 simulator library (@file{libsim.a)} from the linker command line.
18258
18259 @item -mstack-increment=@var{size}
18260 @opindex mstack-increment
18261 Set the maximum amount for a single stack increment operation. Large
18262 values can increase the speed of programs that contain functions
18263 that need a large amount of stack space, but they can also trigger a
18264 segmentation fault if the stack is extended too much. The default
18265 value is 0x1000.
18266
18267 @end table
18268
18269 @node MeP Options
18270 @subsection MeP Options
18271 @cindex MeP options
18272
18273 @table @gcctabopt
18274
18275 @item -mabsdiff
18276 @opindex mabsdiff
18277 Enables the @code{abs} instruction, which is the absolute difference
18278 between two registers.
18279
18280 @item -mall-opts
18281 @opindex mall-opts
18282 Enables all the optional instructions---average, multiply, divide, bit
18283 operations, leading zero, absolute difference, min/max, clip, and
18284 saturation.
18285
18286
18287 @item -maverage
18288 @opindex maverage
18289 Enables the @code{ave} instruction, which computes the average of two
18290 registers.
18291
18292 @item -mbased=@var{n}
18293 @opindex mbased=
18294 Variables of size @var{n} bytes or smaller are placed in the
18295 @code{.based} section by default. Based variables use the @code{$tp}
18296 register as a base register, and there is a 128-byte limit to the
18297 @code{.based} section.
18298
18299 @item -mbitops
18300 @opindex mbitops
18301 Enables the bit operation instructions---bit test (@code{btstm}), set
18302 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
18303 test-and-set (@code{tas}).
18304
18305 @item -mc=@var{name}
18306 @opindex mc=
18307 Selects which section constant data is placed in. @var{name} may
18308 be @samp{tiny}, @samp{near}, or @samp{far}.
18309
18310 @item -mclip
18311 @opindex mclip
18312 Enables the @code{clip} instruction. Note that @option{-mclip} is not
18313 useful unless you also provide @option{-mminmax}.
18314
18315 @item -mconfig=@var{name}
18316 @opindex mconfig=
18317 Selects one of the built-in core configurations. Each MeP chip has
18318 one or more modules in it; each module has a core CPU and a variety of
18319 coprocessors, optional instructions, and peripherals. The
18320 @code{MeP-Integrator} tool, not part of GCC, provides these
18321 configurations through this option; using this option is the same as
18322 using all the corresponding command-line options. The default
18323 configuration is @samp{default}.
18324
18325 @item -mcop
18326 @opindex mcop
18327 Enables the coprocessor instructions. By default, this is a 32-bit
18328 coprocessor. Note that the coprocessor is normally enabled via the
18329 @option{-mconfig=} option.
18330
18331 @item -mcop32
18332 @opindex mcop32
18333 Enables the 32-bit coprocessor's instructions.
18334
18335 @item -mcop64
18336 @opindex mcop64
18337 Enables the 64-bit coprocessor's instructions.
18338
18339 @item -mivc2
18340 @opindex mivc2
18341 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
18342
18343 @item -mdc
18344 @opindex mdc
18345 Causes constant variables to be placed in the @code{.near} section.
18346
18347 @item -mdiv
18348 @opindex mdiv
18349 Enables the @code{div} and @code{divu} instructions.
18350
18351 @item -meb
18352 @opindex meb
18353 Generate big-endian code.
18354
18355 @item -mel
18356 @opindex mel
18357 Generate little-endian code.
18358
18359 @item -mio-volatile
18360 @opindex mio-volatile
18361 Tells the compiler that any variable marked with the @code{io}
18362 attribute is to be considered volatile.
18363
18364 @item -ml
18365 @opindex ml
18366 Causes variables to be assigned to the @code{.far} section by default.
18367
18368 @item -mleadz
18369 @opindex mleadz
18370 Enables the @code{leadz} (leading zero) instruction.
18371
18372 @item -mm
18373 @opindex mm
18374 Causes variables to be assigned to the @code{.near} section by default.
18375
18376 @item -mminmax
18377 @opindex mminmax
18378 Enables the @code{min} and @code{max} instructions.
18379
18380 @item -mmult
18381 @opindex mmult
18382 Enables the multiplication and multiply-accumulate instructions.
18383
18384 @item -mno-opts
18385 @opindex mno-opts
18386 Disables all the optional instructions enabled by @option{-mall-opts}.
18387
18388 @item -mrepeat
18389 @opindex mrepeat
18390 Enables the @code{repeat} and @code{erepeat} instructions, used for
18391 low-overhead looping.
18392
18393 @item -ms
18394 @opindex ms
18395 Causes all variables to default to the @code{.tiny} section. Note
18396 that there is a 65536-byte limit to this section. Accesses to these
18397 variables use the @code{%gp} base register.
18398
18399 @item -msatur
18400 @opindex msatur
18401 Enables the saturation instructions. Note that the compiler does not
18402 currently generate these itself, but this option is included for
18403 compatibility with other tools, like @code{as}.
18404
18405 @item -msdram
18406 @opindex msdram
18407 Link the SDRAM-based runtime instead of the default ROM-based runtime.
18408
18409 @item -msim
18410 @opindex msim
18411 Link the simulator run-time libraries.
18412
18413 @item -msimnovec
18414 @opindex msimnovec
18415 Link the simulator runtime libraries, excluding built-in support
18416 for reset and exception vectors and tables.
18417
18418 @item -mtf
18419 @opindex mtf
18420 Causes all functions to default to the @code{.far} section. Without
18421 this option, functions default to the @code{.near} section.
18422
18423 @item -mtiny=@var{n}
18424 @opindex mtiny=
18425 Variables that are @var{n} bytes or smaller are allocated to the
18426 @code{.tiny} section. These variables use the @code{$gp} base
18427 register. The default for this option is 4, but note that there's a
18428 65536-byte limit to the @code{.tiny} section.
18429
18430 @end table
18431
18432 @node MicroBlaze Options
18433 @subsection MicroBlaze Options
18434 @cindex MicroBlaze Options
18435
18436 @table @gcctabopt
18437
18438 @item -msoft-float
18439 @opindex msoft-float
18440 Use software emulation for floating point (default).
18441
18442 @item -mhard-float
18443 @opindex mhard-float
18444 Use hardware floating-point instructions.
18445
18446 @item -mmemcpy
18447 @opindex mmemcpy
18448 Do not optimize block moves, use @code{memcpy}.
18449
18450 @item -mno-clearbss
18451 @opindex mno-clearbss
18452 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
18453
18454 @item -mcpu=@var{cpu-type}
18455 @opindex mcpu=
18456 Use features of, and schedule code for, the given CPU.
18457 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
18458 where @var{X} is a major version, @var{YY} is the minor version, and
18459 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
18460 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
18461
18462 @item -mxl-soft-mul
18463 @opindex mxl-soft-mul
18464 Use software multiply emulation (default).
18465
18466 @item -mxl-soft-div
18467 @opindex mxl-soft-div
18468 Use software emulation for divides (default).
18469
18470 @item -mxl-barrel-shift
18471 @opindex mxl-barrel-shift
18472 Use the hardware barrel shifter.
18473
18474 @item -mxl-pattern-compare
18475 @opindex mxl-pattern-compare
18476 Use pattern compare instructions.
18477
18478 @item -msmall-divides
18479 @opindex msmall-divides
18480 Use table lookup optimization for small signed integer divisions.
18481
18482 @item -mxl-stack-check
18483 @opindex mxl-stack-check
18484 This option is deprecated. Use @option{-fstack-check} instead.
18485
18486 @item -mxl-gp-opt
18487 @opindex mxl-gp-opt
18488 Use GP-relative @code{.sdata}/@code{.sbss} sections.
18489
18490 @item -mxl-multiply-high
18491 @opindex mxl-multiply-high
18492 Use multiply high instructions for high part of 32x32 multiply.
18493
18494 @item -mxl-float-convert
18495 @opindex mxl-float-convert
18496 Use hardware floating-point conversion instructions.
18497
18498 @item -mxl-float-sqrt
18499 @opindex mxl-float-sqrt
18500 Use hardware floating-point square root instruction.
18501
18502 @item -mbig-endian
18503 @opindex mbig-endian
18504 Generate code for a big-endian target.
18505
18506 @item -mlittle-endian
18507 @opindex mlittle-endian
18508 Generate code for a little-endian target.
18509
18510 @item -mxl-reorder
18511 @opindex mxl-reorder
18512 Use reorder instructions (swap and byte reversed load/store).
18513
18514 @item -mxl-mode-@var{app-model}
18515 Select application model @var{app-model}. Valid models are
18516 @table @samp
18517 @item executable
18518 normal executable (default), uses startup code @file{crt0.o}.
18519
18520 @item xmdstub
18521 for use with Xilinx Microprocessor Debugger (XMD) based
18522 software intrusive debug agent called xmdstub. This uses startup file
18523 @file{crt1.o} and sets the start address of the program to 0x800.
18524
18525 @item bootstrap
18526 for applications that are loaded using a bootloader.
18527 This model uses startup file @file{crt2.o} which does not contain a processor
18528 reset vector handler. This is suitable for transferring control on a
18529 processor reset to the bootloader rather than the application.
18530
18531 @item novectors
18532 for applications that do not require any of the
18533 MicroBlaze vectors. This option may be useful for applications running
18534 within a monitoring application. This model uses @file{crt3.o} as a startup file.
18535 @end table
18536
18537 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
18538 @option{-mxl-mode-@var{app-model}}.
18539
18540 @end table
18541
18542 @node MIPS Options
18543 @subsection MIPS Options
18544 @cindex MIPS options
18545
18546 @table @gcctabopt
18547
18548 @item -EB
18549 @opindex EB
18550 Generate big-endian code.
18551
18552 @item -EL
18553 @opindex EL
18554 Generate little-endian code. This is the default for @samp{mips*el-*-*}
18555 configurations.
18556
18557 @item -march=@var{arch}
18558 @opindex march
18559 Generate code that runs on @var{arch}, which can be the name of a
18560 generic MIPS ISA, or the name of a particular processor.
18561 The ISA names are:
18562 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
18563 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
18564 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
18565 @samp{mips64r5} and @samp{mips64r6}.
18566 The processor names are:
18567 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
18568 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
18569 @samp{5kc}, @samp{5kf},
18570 @samp{20kc},
18571 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
18572 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
18573 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
18574 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
18575 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
18576 @samp{i6400},
18577 @samp{interaptiv},
18578 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
18579 @samp{m4k},
18580 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
18581 @samp{m5100}, @samp{m5101},
18582 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
18583 @samp{orion},
18584 @samp{p5600},
18585 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
18586 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
18587 @samp{rm7000}, @samp{rm9000},
18588 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
18589 @samp{sb1},
18590 @samp{sr71000},
18591 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
18592 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
18593 @samp{xlr} and @samp{xlp}.
18594 The special value @samp{from-abi} selects the
18595 most compatible architecture for the selected ABI (that is,
18596 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
18597
18598 The native Linux/GNU toolchain also supports the value @samp{native},
18599 which selects the best architecture option for the host processor.
18600 @option{-march=native} has no effect if GCC does not recognize
18601 the processor.
18602
18603 In processor names, a final @samp{000} can be abbreviated as @samp{k}
18604 (for example, @option{-march=r2k}). Prefixes are optional, and
18605 @samp{vr} may be written @samp{r}.
18606
18607 Names of the form @samp{@var{n}f2_1} refer to processors with
18608 FPUs clocked at half the rate of the core, names of the form
18609 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
18610 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
18611 processors with FPUs clocked a ratio of 3:2 with respect to the core.
18612 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
18613 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
18614 accepted as synonyms for @samp{@var{n}f1_1}.
18615
18616 GCC defines two macros based on the value of this option. The first
18617 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
18618 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
18619 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
18620 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
18621 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
18622
18623 Note that the @code{_MIPS_ARCH} macro uses the processor names given
18624 above. In other words, it has the full prefix and does not
18625 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
18626 the macro names the resolved architecture (either @code{"mips1"} or
18627 @code{"mips3"}). It names the default architecture when no
18628 @option{-march} option is given.
18629
18630 @item -mtune=@var{arch}
18631 @opindex mtune
18632 Optimize for @var{arch}. Among other things, this option controls
18633 the way instructions are scheduled, and the perceived cost of arithmetic
18634 operations. The list of @var{arch} values is the same as for
18635 @option{-march}.
18636
18637 When this option is not used, GCC optimizes for the processor
18638 specified by @option{-march}. By using @option{-march} and
18639 @option{-mtune} together, it is possible to generate code that
18640 runs on a family of processors, but optimize the code for one
18641 particular member of that family.
18642
18643 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
18644 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
18645 @option{-march} ones described above.
18646
18647 @item -mips1
18648 @opindex mips1
18649 Equivalent to @option{-march=mips1}.
18650
18651 @item -mips2
18652 @opindex mips2
18653 Equivalent to @option{-march=mips2}.
18654
18655 @item -mips3
18656 @opindex mips3
18657 Equivalent to @option{-march=mips3}.
18658
18659 @item -mips4
18660 @opindex mips4
18661 Equivalent to @option{-march=mips4}.
18662
18663 @item -mips32
18664 @opindex mips32
18665 Equivalent to @option{-march=mips32}.
18666
18667 @item -mips32r3
18668 @opindex mips32r3
18669 Equivalent to @option{-march=mips32r3}.
18670
18671 @item -mips32r5
18672 @opindex mips32r5
18673 Equivalent to @option{-march=mips32r5}.
18674
18675 @item -mips32r6
18676 @opindex mips32r6
18677 Equivalent to @option{-march=mips32r6}.
18678
18679 @item -mips64
18680 @opindex mips64
18681 Equivalent to @option{-march=mips64}.
18682
18683 @item -mips64r2
18684 @opindex mips64r2
18685 Equivalent to @option{-march=mips64r2}.
18686
18687 @item -mips64r3
18688 @opindex mips64r3
18689 Equivalent to @option{-march=mips64r3}.
18690
18691 @item -mips64r5
18692 @opindex mips64r5
18693 Equivalent to @option{-march=mips64r5}.
18694
18695 @item -mips64r6
18696 @opindex mips64r6
18697 Equivalent to @option{-march=mips64r6}.
18698
18699 @item -mips16
18700 @itemx -mno-mips16
18701 @opindex mips16
18702 @opindex mno-mips16
18703 Generate (do not generate) MIPS16 code. If GCC is targeting a
18704 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
18705
18706 MIPS16 code generation can also be controlled on a per-function basis
18707 by means of @code{mips16} and @code{nomips16} attributes.
18708 @xref{Function Attributes}, for more information.
18709
18710 @item -mflip-mips16
18711 @opindex mflip-mips16
18712 Generate MIPS16 code on alternating functions. This option is provided
18713 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
18714 not intended for ordinary use in compiling user code.
18715
18716 @item -minterlink-compressed
18717 @item -mno-interlink-compressed
18718 @opindex minterlink-compressed
18719 @opindex mno-interlink-compressed
18720 Require (do not require) that code using the standard (uncompressed) MIPS ISA
18721 be link-compatible with MIPS16 and microMIPS code, and vice versa.
18722
18723 For example, code using the standard ISA encoding cannot jump directly
18724 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
18725 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
18726 knows that the target of the jump is not compressed.
18727
18728 @item -minterlink-mips16
18729 @itemx -mno-interlink-mips16
18730 @opindex minterlink-mips16
18731 @opindex mno-interlink-mips16
18732 Aliases of @option{-minterlink-compressed} and
18733 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
18734 and are retained for backwards compatibility.
18735
18736 @item -mabi=32
18737 @itemx -mabi=o64
18738 @itemx -mabi=n32
18739 @itemx -mabi=64
18740 @itemx -mabi=eabi
18741 @opindex mabi=32
18742 @opindex mabi=o64
18743 @opindex mabi=n32
18744 @opindex mabi=64
18745 @opindex mabi=eabi
18746 Generate code for the given ABI@.
18747
18748 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
18749 generates 64-bit code when you select a 64-bit architecture, but you
18750 can use @option{-mgp32} to get 32-bit code instead.
18751
18752 For information about the O64 ABI, see
18753 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
18754
18755 GCC supports a variant of the o32 ABI in which floating-point registers
18756 are 64 rather than 32 bits wide. You can select this combination with
18757 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
18758 and @code{mfhc1} instructions and is therefore only supported for
18759 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
18760
18761 The register assignments for arguments and return values remain the
18762 same, but each scalar value is passed in a single 64-bit register
18763 rather than a pair of 32-bit registers. For example, scalar
18764 floating-point values are returned in @samp{$f0} only, not a
18765 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
18766 remains the same in that the even-numbered double-precision registers
18767 are saved.
18768
18769 Two additional variants of the o32 ABI are supported to enable
18770 a transition from 32-bit to 64-bit registers. These are FPXX
18771 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
18772 The FPXX extension mandates that all code must execute correctly
18773 when run using 32-bit or 64-bit registers. The code can be interlinked
18774 with either FP32 or FP64, but not both.
18775 The FP64A extension is similar to the FP64 extension but forbids the
18776 use of odd-numbered single-precision registers. This can be used
18777 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
18778 processors and allows both FP32 and FP64A code to interlink and
18779 run in the same process without changing FPU modes.
18780
18781 @item -mabicalls
18782 @itemx -mno-abicalls
18783 @opindex mabicalls
18784 @opindex mno-abicalls
18785 Generate (do not generate) code that is suitable for SVR4-style
18786 dynamic objects. @option{-mabicalls} is the default for SVR4-based
18787 systems.
18788
18789 @item -mshared
18790 @itemx -mno-shared
18791 Generate (do not generate) code that is fully position-independent,
18792 and that can therefore be linked into shared libraries. This option
18793 only affects @option{-mabicalls}.
18794
18795 All @option{-mabicalls} code has traditionally been position-independent,
18796 regardless of options like @option{-fPIC} and @option{-fpic}. However,
18797 as an extension, the GNU toolchain allows executables to use absolute
18798 accesses for locally-binding symbols. It can also use shorter GP
18799 initialization sequences and generate direct calls to locally-defined
18800 functions. This mode is selected by @option{-mno-shared}.
18801
18802 @option{-mno-shared} depends on binutils 2.16 or higher and generates
18803 objects that can only be linked by the GNU linker. However, the option
18804 does not affect the ABI of the final executable; it only affects the ABI
18805 of relocatable objects. Using @option{-mno-shared} generally makes
18806 executables both smaller and quicker.
18807
18808 @option{-mshared} is the default.
18809
18810 @item -mplt
18811 @itemx -mno-plt
18812 @opindex mplt
18813 @opindex mno-plt
18814 Assume (do not assume) that the static and dynamic linkers
18815 support PLTs and copy relocations. This option only affects
18816 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
18817 has no effect without @option{-msym32}.
18818
18819 You can make @option{-mplt} the default by configuring
18820 GCC with @option{--with-mips-plt}. The default is
18821 @option{-mno-plt} otherwise.
18822
18823 @item -mxgot
18824 @itemx -mno-xgot
18825 @opindex mxgot
18826 @opindex mno-xgot
18827 Lift (do not lift) the usual restrictions on the size of the global
18828 offset table.
18829
18830 GCC normally uses a single instruction to load values from the GOT@.
18831 While this is relatively efficient, it only works if the GOT
18832 is smaller than about 64k. Anything larger causes the linker
18833 to report an error such as:
18834
18835 @cindex relocation truncated to fit (MIPS)
18836 @smallexample
18837 relocation truncated to fit: R_MIPS_GOT16 foobar
18838 @end smallexample
18839
18840 If this happens, you should recompile your code with @option{-mxgot}.
18841 This works with very large GOTs, although the code is also
18842 less efficient, since it takes three instructions to fetch the
18843 value of a global symbol.
18844
18845 Note that some linkers can create multiple GOTs. If you have such a
18846 linker, you should only need to use @option{-mxgot} when a single object
18847 file accesses more than 64k's worth of GOT entries. Very few do.
18848
18849 These options have no effect unless GCC is generating position
18850 independent code.
18851
18852 @item -mgp32
18853 @opindex mgp32
18854 Assume that general-purpose registers are 32 bits wide.
18855
18856 @item -mgp64
18857 @opindex mgp64
18858 Assume that general-purpose registers are 64 bits wide.
18859
18860 @item -mfp32
18861 @opindex mfp32
18862 Assume that floating-point registers are 32 bits wide.
18863
18864 @item -mfp64
18865 @opindex mfp64
18866 Assume that floating-point registers are 64 bits wide.
18867
18868 @item -mfpxx
18869 @opindex mfpxx
18870 Do not assume the width of floating-point registers.
18871
18872 @item -mhard-float
18873 @opindex mhard-float
18874 Use floating-point coprocessor instructions.
18875
18876 @item -msoft-float
18877 @opindex msoft-float
18878 Do not use floating-point coprocessor instructions. Implement
18879 floating-point calculations using library calls instead.
18880
18881 @item -mno-float
18882 @opindex mno-float
18883 Equivalent to @option{-msoft-float}, but additionally asserts that the
18884 program being compiled does not perform any floating-point operations.
18885 This option is presently supported only by some bare-metal MIPS
18886 configurations, where it may select a special set of libraries
18887 that lack all floating-point support (including, for example, the
18888 floating-point @code{printf} formats).
18889 If code compiled with @option{-mno-float} accidentally contains
18890 floating-point operations, it is likely to suffer a link-time
18891 or run-time failure.
18892
18893 @item -msingle-float
18894 @opindex msingle-float
18895 Assume that the floating-point coprocessor only supports single-precision
18896 operations.
18897
18898 @item -mdouble-float
18899 @opindex mdouble-float
18900 Assume that the floating-point coprocessor supports double-precision
18901 operations. This is the default.
18902
18903 @item -modd-spreg
18904 @itemx -mno-odd-spreg
18905 @opindex modd-spreg
18906 @opindex mno-odd-spreg
18907 Enable the use of odd-numbered single-precision floating-point registers
18908 for the o32 ABI. This is the default for processors that are known to
18909 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
18910 is set by default.
18911
18912 @item -mabs=2008
18913 @itemx -mabs=legacy
18914 @opindex mabs=2008
18915 @opindex mabs=legacy
18916 These options control the treatment of the special not-a-number (NaN)
18917 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
18918 @code{neg.@i{fmt}} machine instructions.
18919
18920 By default or when @option{-mabs=legacy} is used the legacy
18921 treatment is selected. In this case these instructions are considered
18922 arithmetic and avoided where correct operation is required and the
18923 input operand might be a NaN. A longer sequence of instructions that
18924 manipulate the sign bit of floating-point datum manually is used
18925 instead unless the @option{-ffinite-math-only} option has also been
18926 specified.
18927
18928 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
18929 this case these instructions are considered non-arithmetic and therefore
18930 operating correctly in all cases, including in particular where the
18931 input operand is a NaN. These instructions are therefore always used
18932 for the respective operations.
18933
18934 @item -mnan=2008
18935 @itemx -mnan=legacy
18936 @opindex mnan=2008
18937 @opindex mnan=legacy
18938 These options control the encoding of the special not-a-number (NaN)
18939 IEEE 754 floating-point data.
18940
18941 The @option{-mnan=legacy} option selects the legacy encoding. In this
18942 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
18943 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
18944 by the first bit of their trailing significand field being 1.
18945
18946 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
18947 this case qNaNs are denoted by the first bit of their trailing
18948 significand field being 1, whereas sNaNs are denoted by the first bit of
18949 their trailing significand field being 0.
18950
18951 The default is @option{-mnan=legacy} unless GCC has been configured with
18952 @option{--with-nan=2008}.
18953
18954 @item -mllsc
18955 @itemx -mno-llsc
18956 @opindex mllsc
18957 @opindex mno-llsc
18958 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
18959 implement atomic memory built-in functions. When neither option is
18960 specified, GCC uses the instructions if the target architecture
18961 supports them.
18962
18963 @option{-mllsc} is useful if the runtime environment can emulate the
18964 instructions and @option{-mno-llsc} can be useful when compiling for
18965 nonstandard ISAs. You can make either option the default by
18966 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
18967 respectively. @option{--with-llsc} is the default for some
18968 configurations; see the installation documentation for details.
18969
18970 @item -mdsp
18971 @itemx -mno-dsp
18972 @opindex mdsp
18973 @opindex mno-dsp
18974 Use (do not use) revision 1 of the MIPS DSP ASE@.
18975 @xref{MIPS DSP Built-in Functions}. This option defines the
18976 preprocessor macro @code{__mips_dsp}. It also defines
18977 @code{__mips_dsp_rev} to 1.
18978
18979 @item -mdspr2
18980 @itemx -mno-dspr2
18981 @opindex mdspr2
18982 @opindex mno-dspr2
18983 Use (do not use) revision 2 of the MIPS DSP ASE@.
18984 @xref{MIPS DSP Built-in Functions}. This option defines the
18985 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
18986 It also defines @code{__mips_dsp_rev} to 2.
18987
18988 @item -msmartmips
18989 @itemx -mno-smartmips
18990 @opindex msmartmips
18991 @opindex mno-smartmips
18992 Use (do not use) the MIPS SmartMIPS ASE.
18993
18994 @item -mpaired-single
18995 @itemx -mno-paired-single
18996 @opindex mpaired-single
18997 @opindex mno-paired-single
18998 Use (do not use) paired-single floating-point instructions.
18999 @xref{MIPS Paired-Single Support}. This option requires
19000 hardware floating-point support to be enabled.
19001
19002 @item -mdmx
19003 @itemx -mno-mdmx
19004 @opindex mdmx
19005 @opindex mno-mdmx
19006 Use (do not use) MIPS Digital Media Extension instructions.
19007 This option can only be used when generating 64-bit code and requires
19008 hardware floating-point support to be enabled.
19009
19010 @item -mips3d
19011 @itemx -mno-mips3d
19012 @opindex mips3d
19013 @opindex mno-mips3d
19014 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
19015 The option @option{-mips3d} implies @option{-mpaired-single}.
19016
19017 @item -mmicromips
19018 @itemx -mno-micromips
19019 @opindex mmicromips
19020 @opindex mno-mmicromips
19021 Generate (do not generate) microMIPS code.
19022
19023 MicroMIPS code generation can also be controlled on a per-function basis
19024 by means of @code{micromips} and @code{nomicromips} attributes.
19025 @xref{Function Attributes}, for more information.
19026
19027 @item -mmt
19028 @itemx -mno-mt
19029 @opindex mmt
19030 @opindex mno-mt
19031 Use (do not use) MT Multithreading instructions.
19032
19033 @item -mmcu
19034 @itemx -mno-mcu
19035 @opindex mmcu
19036 @opindex mno-mcu
19037 Use (do not use) the MIPS MCU ASE instructions.
19038
19039 @item -meva
19040 @itemx -mno-eva
19041 @opindex meva
19042 @opindex mno-eva
19043 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
19044
19045 @item -mvirt
19046 @itemx -mno-virt
19047 @opindex mvirt
19048 @opindex mno-virt
19049 Use (do not use) the MIPS Virtualization Application Specific instructions.
19050
19051 @item -mxpa
19052 @itemx -mno-xpa
19053 @opindex mxpa
19054 @opindex mno-xpa
19055 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
19056
19057 @item -mlong64
19058 @opindex mlong64
19059 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
19060 an explanation of the default and the way that the pointer size is
19061 determined.
19062
19063 @item -mlong32
19064 @opindex mlong32
19065 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
19066
19067 The default size of @code{int}s, @code{long}s and pointers depends on
19068 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
19069 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
19070 32-bit @code{long}s. Pointers are the same size as @code{long}s,
19071 or the same size as integer registers, whichever is smaller.
19072
19073 @item -msym32
19074 @itemx -mno-sym32
19075 @opindex msym32
19076 @opindex mno-sym32
19077 Assume (do not assume) that all symbols have 32-bit values, regardless
19078 of the selected ABI@. This option is useful in combination with
19079 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
19080 to generate shorter and faster references to symbolic addresses.
19081
19082 @item -G @var{num}
19083 @opindex G
19084 Put definitions of externally-visible data in a small data section
19085 if that data is no bigger than @var{num} bytes. GCC can then generate
19086 more efficient accesses to the data; see @option{-mgpopt} for details.
19087
19088 The default @option{-G} option depends on the configuration.
19089
19090 @item -mlocal-sdata
19091 @itemx -mno-local-sdata
19092 @opindex mlocal-sdata
19093 @opindex mno-local-sdata
19094 Extend (do not extend) the @option{-G} behavior to local data too,
19095 such as to static variables in C@. @option{-mlocal-sdata} is the
19096 default for all configurations.
19097
19098 If the linker complains that an application is using too much small data,
19099 you might want to try rebuilding the less performance-critical parts with
19100 @option{-mno-local-sdata}. You might also want to build large
19101 libraries with @option{-mno-local-sdata}, so that the libraries leave
19102 more room for the main program.
19103
19104 @item -mextern-sdata
19105 @itemx -mno-extern-sdata
19106 @opindex mextern-sdata
19107 @opindex mno-extern-sdata
19108 Assume (do not assume) that externally-defined data is in
19109 a small data section if the size of that data is within the @option{-G} limit.
19110 @option{-mextern-sdata} is the default for all configurations.
19111
19112 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
19113 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
19114 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
19115 is placed in a small data section. If @var{Var} is defined by another
19116 module, you must either compile that module with a high-enough
19117 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
19118 definition. If @var{Var} is common, you must link the application
19119 with a high-enough @option{-G} setting.
19120
19121 The easiest way of satisfying these restrictions is to compile
19122 and link every module with the same @option{-G} option. However,
19123 you may wish to build a library that supports several different
19124 small data limits. You can do this by compiling the library with
19125 the highest supported @option{-G} setting and additionally using
19126 @option{-mno-extern-sdata} to stop the library from making assumptions
19127 about externally-defined data.
19128
19129 @item -mgpopt
19130 @itemx -mno-gpopt
19131 @opindex mgpopt
19132 @opindex mno-gpopt
19133 Use (do not use) GP-relative accesses for symbols that are known to be
19134 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
19135 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
19136 configurations.
19137
19138 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
19139 might not hold the value of @code{_gp}. For example, if the code is
19140 part of a library that might be used in a boot monitor, programs that
19141 call boot monitor routines pass an unknown value in @code{$gp}.
19142 (In such situations, the boot monitor itself is usually compiled
19143 with @option{-G0}.)
19144
19145 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
19146 @option{-mno-extern-sdata}.
19147
19148 @item -membedded-data
19149 @itemx -mno-embedded-data
19150 @opindex membedded-data
19151 @opindex mno-embedded-data
19152 Allocate variables to the read-only data section first if possible, then
19153 next in the small data section if possible, otherwise in data. This gives
19154 slightly slower code than the default, but reduces the amount of RAM required
19155 when executing, and thus may be preferred for some embedded systems.
19156
19157 @item -muninit-const-in-rodata
19158 @itemx -mno-uninit-const-in-rodata
19159 @opindex muninit-const-in-rodata
19160 @opindex mno-uninit-const-in-rodata
19161 Put uninitialized @code{const} variables in the read-only data section.
19162 This option is only meaningful in conjunction with @option{-membedded-data}.
19163
19164 @item -mcode-readable=@var{setting}
19165 @opindex mcode-readable
19166 Specify whether GCC may generate code that reads from executable sections.
19167 There are three possible settings:
19168
19169 @table @gcctabopt
19170 @item -mcode-readable=yes
19171 Instructions may freely access executable sections. This is the
19172 default setting.
19173
19174 @item -mcode-readable=pcrel
19175 MIPS16 PC-relative load instructions can access executable sections,
19176 but other instructions must not do so. This option is useful on 4KSc
19177 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
19178 It is also useful on processors that can be configured to have a dual
19179 instruction/data SRAM interface and that, like the M4K, automatically
19180 redirect PC-relative loads to the instruction RAM.
19181
19182 @item -mcode-readable=no
19183 Instructions must not access executable sections. This option can be
19184 useful on targets that are configured to have a dual instruction/data
19185 SRAM interface but that (unlike the M4K) do not automatically redirect
19186 PC-relative loads to the instruction RAM.
19187 @end table
19188
19189 @item -msplit-addresses
19190 @itemx -mno-split-addresses
19191 @opindex msplit-addresses
19192 @opindex mno-split-addresses
19193 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
19194 relocation operators. This option has been superseded by
19195 @option{-mexplicit-relocs} but is retained for backwards compatibility.
19196
19197 @item -mexplicit-relocs
19198 @itemx -mno-explicit-relocs
19199 @opindex mexplicit-relocs
19200 @opindex mno-explicit-relocs
19201 Use (do not use) assembler relocation operators when dealing with symbolic
19202 addresses. The alternative, selected by @option{-mno-explicit-relocs},
19203 is to use assembler macros instead.
19204
19205 @option{-mexplicit-relocs} is the default if GCC was configured
19206 to use an assembler that supports relocation operators.
19207
19208 @item -mcheck-zero-division
19209 @itemx -mno-check-zero-division
19210 @opindex mcheck-zero-division
19211 @opindex mno-check-zero-division
19212 Trap (do not trap) on integer division by zero.
19213
19214 The default is @option{-mcheck-zero-division}.
19215
19216 @item -mdivide-traps
19217 @itemx -mdivide-breaks
19218 @opindex mdivide-traps
19219 @opindex mdivide-breaks
19220 MIPS systems check for division by zero by generating either a
19221 conditional trap or a break instruction. Using traps results in
19222 smaller code, but is only supported on MIPS II and later. Also, some
19223 versions of the Linux kernel have a bug that prevents trap from
19224 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
19225 allow conditional traps on architectures that support them and
19226 @option{-mdivide-breaks} to force the use of breaks.
19227
19228 The default is usually @option{-mdivide-traps}, but this can be
19229 overridden at configure time using @option{--with-divide=breaks}.
19230 Divide-by-zero checks can be completely disabled using
19231 @option{-mno-check-zero-division}.
19232
19233 @item -mmemcpy
19234 @itemx -mno-memcpy
19235 @opindex mmemcpy
19236 @opindex mno-memcpy
19237 Force (do not force) the use of @code{memcpy} for non-trivial block
19238 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
19239 most constant-sized copies.
19240
19241 @item -mlong-calls
19242 @itemx -mno-long-calls
19243 @opindex mlong-calls
19244 @opindex mno-long-calls
19245 Disable (do not disable) use of the @code{jal} instruction. Calling
19246 functions using @code{jal} is more efficient but requires the caller
19247 and callee to be in the same 256 megabyte segment.
19248
19249 This option has no effect on abicalls code. The default is
19250 @option{-mno-long-calls}.
19251
19252 @item -mmad
19253 @itemx -mno-mad
19254 @opindex mmad
19255 @opindex mno-mad
19256 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
19257 instructions, as provided by the R4650 ISA@.
19258
19259 @item -mimadd
19260 @itemx -mno-imadd
19261 @opindex mimadd
19262 @opindex mno-imadd
19263 Enable (disable) use of the @code{madd} and @code{msub} integer
19264 instructions. The default is @option{-mimadd} on architectures
19265 that support @code{madd} and @code{msub} except for the 74k
19266 architecture where it was found to generate slower code.
19267
19268 @item -mfused-madd
19269 @itemx -mno-fused-madd
19270 @opindex mfused-madd
19271 @opindex mno-fused-madd
19272 Enable (disable) use of the floating-point multiply-accumulate
19273 instructions, when they are available. The default is
19274 @option{-mfused-madd}.
19275
19276 On the R8000 CPU when multiply-accumulate instructions are used,
19277 the intermediate product is calculated to infinite precision
19278 and is not subject to the FCSR Flush to Zero bit. This may be
19279 undesirable in some circumstances. On other processors the result
19280 is numerically identical to the equivalent computation using
19281 separate multiply, add, subtract and negate instructions.
19282
19283 @item -nocpp
19284 @opindex nocpp
19285 Tell the MIPS assembler to not run its preprocessor over user
19286 assembler files (with a @samp{.s} suffix) when assembling them.
19287
19288 @item -mfix-24k
19289 @item -mno-fix-24k
19290 @opindex mfix-24k
19291 @opindex mno-fix-24k
19292 Work around the 24K E48 (lost data on stores during refill) errata.
19293 The workarounds are implemented by the assembler rather than by GCC@.
19294
19295 @item -mfix-r4000
19296 @itemx -mno-fix-r4000
19297 @opindex mfix-r4000
19298 @opindex mno-fix-r4000
19299 Work around certain R4000 CPU errata:
19300 @itemize @minus
19301 @item
19302 A double-word or a variable shift may give an incorrect result if executed
19303 immediately after starting an integer division.
19304 @item
19305 A double-word or a variable shift may give an incorrect result if executed
19306 while an integer multiplication is in progress.
19307 @item
19308 An integer division may give an incorrect result if started in a delay slot
19309 of a taken branch or a jump.
19310 @end itemize
19311
19312 @item -mfix-r4400
19313 @itemx -mno-fix-r4400
19314 @opindex mfix-r4400
19315 @opindex mno-fix-r4400
19316 Work around certain R4400 CPU errata:
19317 @itemize @minus
19318 @item
19319 A double-word or a variable shift may give an incorrect result if executed
19320 immediately after starting an integer division.
19321 @end itemize
19322
19323 @item -mfix-r10000
19324 @itemx -mno-fix-r10000
19325 @opindex mfix-r10000
19326 @opindex mno-fix-r10000
19327 Work around certain R10000 errata:
19328 @itemize @minus
19329 @item
19330 @code{ll}/@code{sc} sequences may not behave atomically on revisions
19331 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
19332 @end itemize
19333
19334 This option can only be used if the target architecture supports
19335 branch-likely instructions. @option{-mfix-r10000} is the default when
19336 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
19337 otherwise.
19338
19339 @item -mfix-rm7000
19340 @itemx -mno-fix-rm7000
19341 @opindex mfix-rm7000
19342 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
19343 workarounds are implemented by the assembler rather than by GCC@.
19344
19345 @item -mfix-vr4120
19346 @itemx -mno-fix-vr4120
19347 @opindex mfix-vr4120
19348 Work around certain VR4120 errata:
19349 @itemize @minus
19350 @item
19351 @code{dmultu} does not always produce the correct result.
19352 @item
19353 @code{div} and @code{ddiv} do not always produce the correct result if one
19354 of the operands is negative.
19355 @end itemize
19356 The workarounds for the division errata rely on special functions in
19357 @file{libgcc.a}. At present, these functions are only provided by
19358 the @code{mips64vr*-elf} configurations.
19359
19360 Other VR4120 errata require a NOP to be inserted between certain pairs of
19361 instructions. These errata are handled by the assembler, not by GCC itself.
19362
19363 @item -mfix-vr4130
19364 @opindex mfix-vr4130
19365 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
19366 workarounds are implemented by the assembler rather than by GCC,
19367 although GCC avoids using @code{mflo} and @code{mfhi} if the
19368 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
19369 instructions are available instead.
19370
19371 @item -mfix-sb1
19372 @itemx -mno-fix-sb1
19373 @opindex mfix-sb1
19374 Work around certain SB-1 CPU core errata.
19375 (This flag currently works around the SB-1 revision 2
19376 ``F1'' and ``F2'' floating-point errata.)
19377
19378 @item -mr10k-cache-barrier=@var{setting}
19379 @opindex mr10k-cache-barrier
19380 Specify whether GCC should insert cache barriers to avoid the
19381 side-effects of speculation on R10K processors.
19382
19383 In common with many processors, the R10K tries to predict the outcome
19384 of a conditional branch and speculatively executes instructions from
19385 the ``taken'' branch. It later aborts these instructions if the
19386 predicted outcome is wrong. However, on the R10K, even aborted
19387 instructions can have side effects.
19388
19389 This problem only affects kernel stores and, depending on the system,
19390 kernel loads. As an example, a speculatively-executed store may load
19391 the target memory into cache and mark the cache line as dirty, even if
19392 the store itself is later aborted. If a DMA operation writes to the
19393 same area of memory before the ``dirty'' line is flushed, the cached
19394 data overwrites the DMA-ed data. See the R10K processor manual
19395 for a full description, including other potential problems.
19396
19397 One workaround is to insert cache barrier instructions before every memory
19398 access that might be speculatively executed and that might have side
19399 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
19400 controls GCC's implementation of this workaround. It assumes that
19401 aborted accesses to any byte in the following regions does not have
19402 side effects:
19403
19404 @enumerate
19405 @item
19406 the memory occupied by the current function's stack frame;
19407
19408 @item
19409 the memory occupied by an incoming stack argument;
19410
19411 @item
19412 the memory occupied by an object with a link-time-constant address.
19413 @end enumerate
19414
19415 It is the kernel's responsibility to ensure that speculative
19416 accesses to these regions are indeed safe.
19417
19418 If the input program contains a function declaration such as:
19419
19420 @smallexample
19421 void foo (void);
19422 @end smallexample
19423
19424 then the implementation of @code{foo} must allow @code{j foo} and
19425 @code{jal foo} to be executed speculatively. GCC honors this
19426 restriction for functions it compiles itself. It expects non-GCC
19427 functions (such as hand-written assembly code) to do the same.
19428
19429 The option has three forms:
19430
19431 @table @gcctabopt
19432 @item -mr10k-cache-barrier=load-store
19433 Insert a cache barrier before a load or store that might be
19434 speculatively executed and that might have side effects even
19435 if aborted.
19436
19437 @item -mr10k-cache-barrier=store
19438 Insert a cache barrier before a store that might be speculatively
19439 executed and that might have side effects even if aborted.
19440
19441 @item -mr10k-cache-barrier=none
19442 Disable the insertion of cache barriers. This is the default setting.
19443 @end table
19444
19445 @item -mflush-func=@var{func}
19446 @itemx -mno-flush-func
19447 @opindex mflush-func
19448 Specifies the function to call to flush the I and D caches, or to not
19449 call any such function. If called, the function must take the same
19450 arguments as the common @code{_flush_func}, that is, the address of the
19451 memory range for which the cache is being flushed, the size of the
19452 memory range, and the number 3 (to flush both caches). The default
19453 depends on the target GCC was configured for, but commonly is either
19454 @code{_flush_func} or @code{__cpu_flush}.
19455
19456 @item mbranch-cost=@var{num}
19457 @opindex mbranch-cost
19458 Set the cost of branches to roughly @var{num} ``simple'' instructions.
19459 This cost is only a heuristic and is not guaranteed to produce
19460 consistent results across releases. A zero cost redundantly selects
19461 the default, which is based on the @option{-mtune} setting.
19462
19463 @item -mbranch-likely
19464 @itemx -mno-branch-likely
19465 @opindex mbranch-likely
19466 @opindex mno-branch-likely
19467 Enable or disable use of Branch Likely instructions, regardless of the
19468 default for the selected architecture. By default, Branch Likely
19469 instructions may be generated if they are supported by the selected
19470 architecture. An exception is for the MIPS32 and MIPS64 architectures
19471 and processors that implement those architectures; for those, Branch
19472 Likely instructions are not be generated by default because the MIPS32
19473 and MIPS64 architectures specifically deprecate their use.
19474
19475 @item -mcompact-branches=never
19476 @itemx -mcompact-branches=optimal
19477 @itemx -mcompact-branches=always
19478 @opindex mcompact-branches=never
19479 @opindex mcompact-branches=optimal
19480 @opindex mcompact-branches=always
19481 These options control which form of branches will be generated. The
19482 default is @option{-mcompact-branches=optimal}.
19483
19484 The @option{-mcompact-branches=never} option ensures that compact branch
19485 instructions will never be generated.
19486
19487 The @option{-mcompact-branches=always} option ensures that a compact
19488 branch instruction will be generated if available. If a compact branch
19489 instruction is not available, a delay slot form of the branch will be
19490 used instead.
19491
19492 This option is supported from MIPS Release 6 onwards.
19493
19494 The @option{-mcompact-branches=optimal} option will cause a delay slot
19495 branch to be used if one is available in the current ISA and the delay
19496 slot is successfully filled. If the delay slot is not filled, a compact
19497 branch will be chosen if one is available.
19498
19499 @item -mfp-exceptions
19500 @itemx -mno-fp-exceptions
19501 @opindex mfp-exceptions
19502 Specifies whether FP exceptions are enabled. This affects how
19503 FP instructions are scheduled for some processors.
19504 The default is that FP exceptions are
19505 enabled.
19506
19507 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
19508 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
19509 FP pipe.
19510
19511 @item -mvr4130-align
19512 @itemx -mno-vr4130-align
19513 @opindex mvr4130-align
19514 The VR4130 pipeline is two-way superscalar, but can only issue two
19515 instructions together if the first one is 8-byte aligned. When this
19516 option is enabled, GCC aligns pairs of instructions that it
19517 thinks should execute in parallel.
19518
19519 This option only has an effect when optimizing for the VR4130.
19520 It normally makes code faster, but at the expense of making it bigger.
19521 It is enabled by default at optimization level @option{-O3}.
19522
19523 @item -msynci
19524 @itemx -mno-synci
19525 @opindex msynci
19526 Enable (disable) generation of @code{synci} instructions on
19527 architectures that support it. The @code{synci} instructions (if
19528 enabled) are generated when @code{__builtin___clear_cache} is
19529 compiled.
19530
19531 This option defaults to @option{-mno-synci}, but the default can be
19532 overridden by configuring GCC with @option{--with-synci}.
19533
19534 When compiling code for single processor systems, it is generally safe
19535 to use @code{synci}. However, on many multi-core (SMP) systems, it
19536 does not invalidate the instruction caches on all cores and may lead
19537 to undefined behavior.
19538
19539 @item -mrelax-pic-calls
19540 @itemx -mno-relax-pic-calls
19541 @opindex mrelax-pic-calls
19542 Try to turn PIC calls that are normally dispatched via register
19543 @code{$25} into direct calls. This is only possible if the linker can
19544 resolve the destination at link time and if the destination is within
19545 range for a direct call.
19546
19547 @option{-mrelax-pic-calls} is the default if GCC was configured to use
19548 an assembler and a linker that support the @code{.reloc} assembly
19549 directive and @option{-mexplicit-relocs} is in effect. With
19550 @option{-mno-explicit-relocs}, this optimization can be performed by the
19551 assembler and the linker alone without help from the compiler.
19552
19553 @item -mmcount-ra-address
19554 @itemx -mno-mcount-ra-address
19555 @opindex mmcount-ra-address
19556 @opindex mno-mcount-ra-address
19557 Emit (do not emit) code that allows @code{_mcount} to modify the
19558 calling function's return address. When enabled, this option extends
19559 the usual @code{_mcount} interface with a new @var{ra-address}
19560 parameter, which has type @code{intptr_t *} and is passed in register
19561 @code{$12}. @code{_mcount} can then modify the return address by
19562 doing both of the following:
19563 @itemize
19564 @item
19565 Returning the new address in register @code{$31}.
19566 @item
19567 Storing the new address in @code{*@var{ra-address}},
19568 if @var{ra-address} is nonnull.
19569 @end itemize
19570
19571 The default is @option{-mno-mcount-ra-address}.
19572
19573 @item -mframe-header-opt
19574 @itemx -mno-frame-header-opt
19575 @opindex mframe-header-opt
19576 Enable (disable) frame header optimization in the o32 ABI. When using the
19577 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
19578 function to write out register arguments. When enabled, this optimization
19579 will suppress the allocation of the frame header if it can be determined that
19580 it is unused.
19581
19582 This optimization is off by default at all optimization levels.
19583
19584 @end table
19585
19586 @node MMIX Options
19587 @subsection MMIX Options
19588 @cindex MMIX Options
19589
19590 These options are defined for the MMIX:
19591
19592 @table @gcctabopt
19593 @item -mlibfuncs
19594 @itemx -mno-libfuncs
19595 @opindex mlibfuncs
19596 @opindex mno-libfuncs
19597 Specify that intrinsic library functions are being compiled, passing all
19598 values in registers, no matter the size.
19599
19600 @item -mepsilon
19601 @itemx -mno-epsilon
19602 @opindex mepsilon
19603 @opindex mno-epsilon
19604 Generate floating-point comparison instructions that compare with respect
19605 to the @code{rE} epsilon register.
19606
19607 @item -mabi=mmixware
19608 @itemx -mabi=gnu
19609 @opindex mabi=mmixware
19610 @opindex mabi=gnu
19611 Generate code that passes function parameters and return values that (in
19612 the called function) are seen as registers @code{$0} and up, as opposed to
19613 the GNU ABI which uses global registers @code{$231} and up.
19614
19615 @item -mzero-extend
19616 @itemx -mno-zero-extend
19617 @opindex mzero-extend
19618 @opindex mno-zero-extend
19619 When reading data from memory in sizes shorter than 64 bits, use (do not
19620 use) zero-extending load instructions by default, rather than
19621 sign-extending ones.
19622
19623 @item -mknuthdiv
19624 @itemx -mno-knuthdiv
19625 @opindex mknuthdiv
19626 @opindex mno-knuthdiv
19627 Make the result of a division yielding a remainder have the same sign as
19628 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
19629 remainder follows the sign of the dividend. Both methods are
19630 arithmetically valid, the latter being almost exclusively used.
19631
19632 @item -mtoplevel-symbols
19633 @itemx -mno-toplevel-symbols
19634 @opindex mtoplevel-symbols
19635 @opindex mno-toplevel-symbols
19636 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
19637 code can be used with the @code{PREFIX} assembly directive.
19638
19639 @item -melf
19640 @opindex melf
19641 Generate an executable in the ELF format, rather than the default
19642 @samp{mmo} format used by the @command{mmix} simulator.
19643
19644 @item -mbranch-predict
19645 @itemx -mno-branch-predict
19646 @opindex mbranch-predict
19647 @opindex mno-branch-predict
19648 Use (do not use) the probable-branch instructions, when static branch
19649 prediction indicates a probable branch.
19650
19651 @item -mbase-addresses
19652 @itemx -mno-base-addresses
19653 @opindex mbase-addresses
19654 @opindex mno-base-addresses
19655 Generate (do not generate) code that uses @emph{base addresses}. Using a
19656 base address automatically generates a request (handled by the assembler
19657 and the linker) for a constant to be set up in a global register. The
19658 register is used for one or more base address requests within the range 0
19659 to 255 from the value held in the register. The generally leads to short
19660 and fast code, but the number of different data items that can be
19661 addressed is limited. This means that a program that uses lots of static
19662 data may require @option{-mno-base-addresses}.
19663
19664 @item -msingle-exit
19665 @itemx -mno-single-exit
19666 @opindex msingle-exit
19667 @opindex mno-single-exit
19668 Force (do not force) generated code to have a single exit point in each
19669 function.
19670 @end table
19671
19672 @node MN10300 Options
19673 @subsection MN10300 Options
19674 @cindex MN10300 options
19675
19676 These @option{-m} options are defined for Matsushita MN10300 architectures:
19677
19678 @table @gcctabopt
19679 @item -mmult-bug
19680 @opindex mmult-bug
19681 Generate code to avoid bugs in the multiply instructions for the MN10300
19682 processors. This is the default.
19683
19684 @item -mno-mult-bug
19685 @opindex mno-mult-bug
19686 Do not generate code to avoid bugs in the multiply instructions for the
19687 MN10300 processors.
19688
19689 @item -mam33
19690 @opindex mam33
19691 Generate code using features specific to the AM33 processor.
19692
19693 @item -mno-am33
19694 @opindex mno-am33
19695 Do not generate code using features specific to the AM33 processor. This
19696 is the default.
19697
19698 @item -mam33-2
19699 @opindex mam33-2
19700 Generate code using features specific to the AM33/2.0 processor.
19701
19702 @item -mam34
19703 @opindex mam34
19704 Generate code using features specific to the AM34 processor.
19705
19706 @item -mtune=@var{cpu-type}
19707 @opindex mtune
19708 Use the timing characteristics of the indicated CPU type when
19709 scheduling instructions. This does not change the targeted processor
19710 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
19711 @samp{am33-2} or @samp{am34}.
19712
19713 @item -mreturn-pointer-on-d0
19714 @opindex mreturn-pointer-on-d0
19715 When generating a function that returns a pointer, return the pointer
19716 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
19717 only in @code{a0}, and attempts to call such functions without a prototype
19718 result in errors. Note that this option is on by default; use
19719 @option{-mno-return-pointer-on-d0} to disable it.
19720
19721 @item -mno-crt0
19722 @opindex mno-crt0
19723 Do not link in the C run-time initialization object file.
19724
19725 @item -mrelax
19726 @opindex mrelax
19727 Indicate to the linker that it should perform a relaxation optimization pass
19728 to shorten branches, calls and absolute memory addresses. This option only
19729 has an effect when used on the command line for the final link step.
19730
19731 This option makes symbolic debugging impossible.
19732
19733 @item -mliw
19734 @opindex mliw
19735 Allow the compiler to generate @emph{Long Instruction Word}
19736 instructions if the target is the @samp{AM33} or later. This is the
19737 default. This option defines the preprocessor macro @code{__LIW__}.
19738
19739 @item -mnoliw
19740 @opindex mnoliw
19741 Do not allow the compiler to generate @emph{Long Instruction Word}
19742 instructions. This option defines the preprocessor macro
19743 @code{__NO_LIW__}.
19744
19745 @item -msetlb
19746 @opindex msetlb
19747 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
19748 instructions if the target is the @samp{AM33} or later. This is the
19749 default. This option defines the preprocessor macro @code{__SETLB__}.
19750
19751 @item -mnosetlb
19752 @opindex mnosetlb
19753 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
19754 instructions. This option defines the preprocessor macro
19755 @code{__NO_SETLB__}.
19756
19757 @end table
19758
19759 @node Moxie Options
19760 @subsection Moxie Options
19761 @cindex Moxie Options
19762
19763 @table @gcctabopt
19764
19765 @item -meb
19766 @opindex meb
19767 Generate big-endian code. This is the default for @samp{moxie-*-*}
19768 configurations.
19769
19770 @item -mel
19771 @opindex mel
19772 Generate little-endian code.
19773
19774 @item -mmul.x
19775 @opindex mmul.x
19776 Generate mul.x and umul.x instructions. This is the default for
19777 @samp{moxiebox-*-*} configurations.
19778
19779 @item -mno-crt0
19780 @opindex mno-crt0
19781 Do not link in the C run-time initialization object file.
19782
19783 @end table
19784
19785 @node MSP430 Options
19786 @subsection MSP430 Options
19787 @cindex MSP430 Options
19788
19789 These options are defined for the MSP430:
19790
19791 @table @gcctabopt
19792
19793 @item -masm-hex
19794 @opindex masm-hex
19795 Force assembly output to always use hex constants. Normally such
19796 constants are signed decimals, but this option is available for
19797 testsuite and/or aesthetic purposes.
19798
19799 @item -mmcu=
19800 @opindex mmcu=
19801 Select the MCU to target. This is used to create a C preprocessor
19802 symbol based upon the MCU name, converted to upper case and pre- and
19803 post-fixed with @samp{__}. This in turn is used by the
19804 @file{msp430.h} header file to select an MCU-specific supplementary
19805 header file.
19806
19807 The option also sets the ISA to use. If the MCU name is one that is
19808 known to only support the 430 ISA then that is selected, otherwise the
19809 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
19810 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
19811 name selects the 430X ISA.
19812
19813 In addition an MCU-specific linker script is added to the linker
19814 command line. The script's name is the name of the MCU with
19815 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
19816 command line defines the C preprocessor symbol @code{__XXX__} and
19817 cause the linker to search for a script called @file{xxx.ld}.
19818
19819 This option is also passed on to the assembler.
19820
19821 @item -mwarn-mcu
19822 @itemx -mno-warn-mcu
19823 @opindex mwarn-mcu
19824 @opindex mno-warn-mcu
19825 This option enables or disables warnings about conflicts between the
19826 MCU name specified by the @option{-mmcu} option and the ISA set by the
19827 @option{-mcpu} option and/or the hardware multiply support set by the
19828 @option{-mhwmult} option. It also toggles warnings about unrecognized
19829 MCU names. This option is on by default.
19830
19831 @item -mcpu=
19832 @opindex mcpu=
19833 Specifies the ISA to use. Accepted values are @samp{msp430},
19834 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
19835 @option{-mmcu=} option should be used to select the ISA.
19836
19837 @item -msim
19838 @opindex msim
19839 Link to the simulator runtime libraries and linker script. Overrides
19840 any scripts that would be selected by the @option{-mmcu=} option.
19841
19842 @item -mlarge
19843 @opindex mlarge
19844 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
19845
19846 @item -msmall
19847 @opindex msmall
19848 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
19849
19850 @item -mrelax
19851 @opindex mrelax
19852 This option is passed to the assembler and linker, and allows the
19853 linker to perform certain optimizations that cannot be done until
19854 the final link.
19855
19856 @item mhwmult=
19857 @opindex mhwmult=
19858 Describes the type of hardware multiply supported by the target.
19859 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
19860 for the original 16-bit-only multiply supported by early MCUs.
19861 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
19862 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
19863 A value of @samp{auto} can also be given. This tells GCC to deduce
19864 the hardware multiply support based upon the MCU name provided by the
19865 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
19866 the MCU name is not recognized then no hardware multiply support is
19867 assumed. @code{auto} is the default setting.
19868
19869 Hardware multiplies are normally performed by calling a library
19870 routine. This saves space in the generated code. When compiling at
19871 @option{-O3} or higher however the hardware multiplier is invoked
19872 inline. This makes for bigger, but faster code.
19873
19874 The hardware multiply routines disable interrupts whilst running and
19875 restore the previous interrupt state when they finish. This makes
19876 them safe to use inside interrupt handlers as well as in normal code.
19877
19878 @item -minrt
19879 @opindex minrt
19880 Enable the use of a minimum runtime environment - no static
19881 initializers or constructors. This is intended for memory-constrained
19882 devices. The compiler includes special symbols in some objects
19883 that tell the linker and runtime which code fragments are required.
19884
19885 @item -mcode-region=
19886 @itemx -mdata-region=
19887 @opindex mcode-region
19888 @opindex mdata-region
19889 These options tell the compiler where to place functions and data that
19890 do not have one of the @code{lower}, @code{upper}, @code{either} or
19891 @code{section} attributes. Possible values are @code{lower},
19892 @code{upper}, @code{either} or @code{any}. The first three behave
19893 like the corresponding attribute. The fourth possible value -
19894 @code{any} - is the default. It leaves placement entirely up to the
19895 linker script and how it assigns the standard sections
19896 (@code{.text}, @code{.data}, etc) to the memory regions.
19897
19898 @item -msilicon-errata=
19899 @opindex msilicon-errata
19900 This option passes on a request to assembler to enable the fixes for
19901 the named silicon errata.
19902
19903 @item -msilicon-errata-warn=
19904 @opindex msilicon-errata-warn
19905 This option passes on a request to the assembler to enable warning
19906 messages when a silicon errata might need to be applied.
19907
19908 @end table
19909
19910 @node NDS32 Options
19911 @subsection NDS32 Options
19912 @cindex NDS32 Options
19913
19914 These options are defined for NDS32 implementations:
19915
19916 @table @gcctabopt
19917
19918 @item -mbig-endian
19919 @opindex mbig-endian
19920 Generate code in big-endian mode.
19921
19922 @item -mlittle-endian
19923 @opindex mlittle-endian
19924 Generate code in little-endian mode.
19925
19926 @item -mreduced-regs
19927 @opindex mreduced-regs
19928 Use reduced-set registers for register allocation.
19929
19930 @item -mfull-regs
19931 @opindex mfull-regs
19932 Use full-set registers for register allocation.
19933
19934 @item -mcmov
19935 @opindex mcmov
19936 Generate conditional move instructions.
19937
19938 @item -mno-cmov
19939 @opindex mno-cmov
19940 Do not generate conditional move instructions.
19941
19942 @item -mperf-ext
19943 @opindex mperf-ext
19944 Generate performance extension instructions.
19945
19946 @item -mno-perf-ext
19947 @opindex mno-perf-ext
19948 Do not generate performance extension instructions.
19949
19950 @item -mv3push
19951 @opindex mv3push
19952 Generate v3 push25/pop25 instructions.
19953
19954 @item -mno-v3push
19955 @opindex mno-v3push
19956 Do not generate v3 push25/pop25 instructions.
19957
19958 @item -m16-bit
19959 @opindex m16-bit
19960 Generate 16-bit instructions.
19961
19962 @item -mno-16-bit
19963 @opindex mno-16-bit
19964 Do not generate 16-bit instructions.
19965
19966 @item -misr-vector-size=@var{num}
19967 @opindex misr-vector-size
19968 Specify the size of each interrupt vector, which must be 4 or 16.
19969
19970 @item -mcache-block-size=@var{num}
19971 @opindex mcache-block-size
19972 Specify the size of each cache block,
19973 which must be a power of 2 between 4 and 512.
19974
19975 @item -march=@var{arch}
19976 @opindex march
19977 Specify the name of the target architecture.
19978
19979 @item -mcmodel=@var{code-model}
19980 @opindex mcmodel
19981 Set the code model to one of
19982 @table @asis
19983 @item @samp{small}
19984 All the data and read-only data segments must be within 512KB addressing space.
19985 The text segment must be within 16MB addressing space.
19986 @item @samp{medium}
19987 The data segment must be within 512KB while the read-only data segment can be
19988 within 4GB addressing space. The text segment should be still within 16MB
19989 addressing space.
19990 @item @samp{large}
19991 All the text and data segments can be within 4GB addressing space.
19992 @end table
19993
19994 @item -mctor-dtor
19995 @opindex mctor-dtor
19996 Enable constructor/destructor feature.
19997
19998 @item -mrelax
19999 @opindex mrelax
20000 Guide linker to relax instructions.
20001
20002 @end table
20003
20004 @node Nios II Options
20005 @subsection Nios II Options
20006 @cindex Nios II options
20007 @cindex Altera Nios II options
20008
20009 These are the options defined for the Altera Nios II processor.
20010
20011 @table @gcctabopt
20012
20013 @item -G @var{num}
20014 @opindex G
20015 @cindex smaller data references
20016 Put global and static objects less than or equal to @var{num} bytes
20017 into the small data or BSS sections instead of the normal data or BSS
20018 sections. The default value of @var{num} is 8.
20019
20020 @item -mgpopt=@var{option}
20021 @item -mgpopt
20022 @itemx -mno-gpopt
20023 @opindex mgpopt
20024 @opindex mno-gpopt
20025 Generate (do not generate) GP-relative accesses. The following
20026 @var{option} names are recognized:
20027
20028 @table @samp
20029
20030 @item none
20031 Do not generate GP-relative accesses.
20032
20033 @item local
20034 Generate GP-relative accesses for small data objects that are not
20035 external, weak, or uninitialized common symbols.
20036 Also use GP-relative addressing for objects that
20037 have been explicitly placed in a small data section via a @code{section}
20038 attribute.
20039
20040 @item global
20041 As for @samp{local}, but also generate GP-relative accesses for
20042 small data objects that are external, weak, or common. If you use this option,
20043 you must ensure that all parts of your program (including libraries) are
20044 compiled with the same @option{-G} setting.
20045
20046 @item data
20047 Generate GP-relative accesses for all data objects in the program. If you
20048 use this option, the entire data and BSS segments
20049 of your program must fit in 64K of memory and you must use an appropriate
20050 linker script to allocate them within the addressable range of the
20051 global pointer.
20052
20053 @item all
20054 Generate GP-relative addresses for function pointers as well as data
20055 pointers. If you use this option, the entire text, data, and BSS segments
20056 of your program must fit in 64K of memory and you must use an appropriate
20057 linker script to allocate them within the addressable range of the
20058 global pointer.
20059
20060 @end table
20061
20062 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
20063 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
20064
20065 The default is @option{-mgpopt} except when @option{-fpic} or
20066 @option{-fPIC} is specified to generate position-independent code.
20067 Note that the Nios II ABI does not permit GP-relative accesses from
20068 shared libraries.
20069
20070 You may need to specify @option{-mno-gpopt} explicitly when building
20071 programs that include large amounts of small data, including large
20072 GOT data sections. In this case, the 16-bit offset for GP-relative
20073 addressing may not be large enough to allow access to the entire
20074 small data section.
20075
20076 @item -mel
20077 @itemx -meb
20078 @opindex mel
20079 @opindex meb
20080 Generate little-endian (default) or big-endian (experimental) code,
20081 respectively.
20082
20083 @item -march=@var{arch}
20084 @opindex march
20085 This specifies the name of the target Nios II architecture. GCC uses this
20086 name to determine what kind of instructions it can emit when generating
20087 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
20088
20089 The preprocessor macro @code{__nios2_arch__} is available to programs,
20090 with value 1 or 2, indicating the targeted ISA level.
20091
20092 @item -mbypass-cache
20093 @itemx -mno-bypass-cache
20094 @opindex mno-bypass-cache
20095 @opindex mbypass-cache
20096 Force all load and store instructions to always bypass cache by
20097 using I/O variants of the instructions. The default is not to
20098 bypass the cache.
20099
20100 @item -mno-cache-volatile
20101 @itemx -mcache-volatile
20102 @opindex mcache-volatile
20103 @opindex mno-cache-volatile
20104 Volatile memory access bypass the cache using the I/O variants of
20105 the load and store instructions. The default is not to bypass the cache.
20106
20107 @item -mno-fast-sw-div
20108 @itemx -mfast-sw-div
20109 @opindex mno-fast-sw-div
20110 @opindex mfast-sw-div
20111 Do not use table-based fast divide for small numbers. The default
20112 is to use the fast divide at @option{-O3} and above.
20113
20114 @item -mno-hw-mul
20115 @itemx -mhw-mul
20116 @itemx -mno-hw-mulx
20117 @itemx -mhw-mulx
20118 @itemx -mno-hw-div
20119 @itemx -mhw-div
20120 @opindex mno-hw-mul
20121 @opindex mhw-mul
20122 @opindex mno-hw-mulx
20123 @opindex mhw-mulx
20124 @opindex mno-hw-div
20125 @opindex mhw-div
20126 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
20127 instructions by the compiler. The default is to emit @code{mul}
20128 and not emit @code{div} and @code{mulx}.
20129
20130 @item -mbmx
20131 @itemx -mno-bmx
20132 @itemx -mcdx
20133 @itemx -mno-cdx
20134 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
20135 CDX (code density) instructions. Enabling these instructions also
20136 requires @option{-march=r2}. Since these instructions are optional
20137 extensions to the R2 architecture, the default is not to emit them.
20138
20139 @item -mcustom-@var{insn}=@var{N}
20140 @itemx -mno-custom-@var{insn}
20141 @opindex mcustom-@var{insn}
20142 @opindex mno-custom-@var{insn}
20143 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
20144 custom instruction with encoding @var{N} when generating code that uses
20145 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
20146 instruction 253 for single-precision floating-point add operations instead
20147 of the default behavior of using a library call.
20148
20149 The following values of @var{insn} are supported. Except as otherwise
20150 noted, floating-point operations are expected to be implemented with
20151 normal IEEE 754 semantics and correspond directly to the C operators or the
20152 equivalent GCC built-in functions (@pxref{Other Builtins}).
20153
20154 Single-precision floating point:
20155 @table @asis
20156
20157 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
20158 Binary arithmetic operations.
20159
20160 @item @samp{fnegs}
20161 Unary negation.
20162
20163 @item @samp{fabss}
20164 Unary absolute value.
20165
20166 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
20167 Comparison operations.
20168
20169 @item @samp{fmins}, @samp{fmaxs}
20170 Floating-point minimum and maximum. These instructions are only
20171 generated if @option{-ffinite-math-only} is specified.
20172
20173 @item @samp{fsqrts}
20174 Unary square root operation.
20175
20176 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
20177 Floating-point trigonometric and exponential functions. These instructions
20178 are only generated if @option{-funsafe-math-optimizations} is also specified.
20179
20180 @end table
20181
20182 Double-precision floating point:
20183 @table @asis
20184
20185 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
20186 Binary arithmetic operations.
20187
20188 @item @samp{fnegd}
20189 Unary negation.
20190
20191 @item @samp{fabsd}
20192 Unary absolute value.
20193
20194 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
20195 Comparison operations.
20196
20197 @item @samp{fmind}, @samp{fmaxd}
20198 Double-precision minimum and maximum. These instructions are only
20199 generated if @option{-ffinite-math-only} is specified.
20200
20201 @item @samp{fsqrtd}
20202 Unary square root operation.
20203
20204 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
20205 Double-precision trigonometric and exponential functions. These instructions
20206 are only generated if @option{-funsafe-math-optimizations} is also specified.
20207
20208 @end table
20209
20210 Conversions:
20211 @table @asis
20212 @item @samp{fextsd}
20213 Conversion from single precision to double precision.
20214
20215 @item @samp{ftruncds}
20216 Conversion from double precision to single precision.
20217
20218 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
20219 Conversion from floating point to signed or unsigned integer types, with
20220 truncation towards zero.
20221
20222 @item @samp{round}
20223 Conversion from single-precision floating point to signed integer,
20224 rounding to the nearest integer and ties away from zero.
20225 This corresponds to the @code{__builtin_lroundf} function when
20226 @option{-fno-math-errno} is used.
20227
20228 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
20229 Conversion from signed or unsigned integer types to floating-point types.
20230
20231 @end table
20232
20233 In addition, all of the following transfer instructions for internal
20234 registers X and Y must be provided to use any of the double-precision
20235 floating-point instructions. Custom instructions taking two
20236 double-precision source operands expect the first operand in the
20237 64-bit register X. The other operand (or only operand of a unary
20238 operation) is given to the custom arithmetic instruction with the
20239 least significant half in source register @var{src1} and the most
20240 significant half in @var{src2}. A custom instruction that returns a
20241 double-precision result returns the most significant 32 bits in the
20242 destination register and the other half in 32-bit register Y.
20243 GCC automatically generates the necessary code sequences to write
20244 register X and/or read register Y when double-precision floating-point
20245 instructions are used.
20246
20247 @table @asis
20248
20249 @item @samp{fwrx}
20250 Write @var{src1} into the least significant half of X and @var{src2} into
20251 the most significant half of X.
20252
20253 @item @samp{fwry}
20254 Write @var{src1} into Y.
20255
20256 @item @samp{frdxhi}, @samp{frdxlo}
20257 Read the most or least (respectively) significant half of X and store it in
20258 @var{dest}.
20259
20260 @item @samp{frdy}
20261 Read the value of Y and store it into @var{dest}.
20262 @end table
20263
20264 Note that you can gain more local control over generation of Nios II custom
20265 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
20266 and @code{target("no-custom-@var{insn}")} function attributes
20267 (@pxref{Function Attributes})
20268 or pragmas (@pxref{Function Specific Option Pragmas}).
20269
20270 @item -mcustom-fpu-cfg=@var{name}
20271 @opindex mcustom-fpu-cfg
20272
20273 This option enables a predefined, named set of custom instruction encodings
20274 (see @option{-mcustom-@var{insn}} above).
20275 Currently, the following sets are defined:
20276
20277 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
20278 @gccoptlist{-mcustom-fmuls=252 @gol
20279 -mcustom-fadds=253 @gol
20280 -mcustom-fsubs=254 @gol
20281 -fsingle-precision-constant}
20282
20283 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
20284 @gccoptlist{-mcustom-fmuls=252 @gol
20285 -mcustom-fadds=253 @gol
20286 -mcustom-fsubs=254 @gol
20287 -mcustom-fdivs=255 @gol
20288 -fsingle-precision-constant}
20289
20290 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
20291 @gccoptlist{-mcustom-floatus=243 @gol
20292 -mcustom-fixsi=244 @gol
20293 -mcustom-floatis=245 @gol
20294 -mcustom-fcmpgts=246 @gol
20295 -mcustom-fcmples=249 @gol
20296 -mcustom-fcmpeqs=250 @gol
20297 -mcustom-fcmpnes=251 @gol
20298 -mcustom-fmuls=252 @gol
20299 -mcustom-fadds=253 @gol
20300 -mcustom-fsubs=254 @gol
20301 -mcustom-fdivs=255 @gol
20302 -fsingle-precision-constant}
20303
20304 Custom instruction assignments given by individual
20305 @option{-mcustom-@var{insn}=} options override those given by
20306 @option{-mcustom-fpu-cfg=}, regardless of the
20307 order of the options on the command line.
20308
20309 Note that you can gain more local control over selection of a FPU
20310 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
20311 function attribute (@pxref{Function Attributes})
20312 or pragma (@pxref{Function Specific Option Pragmas}).
20313
20314 @end table
20315
20316 These additional @samp{-m} options are available for the Altera Nios II
20317 ELF (bare-metal) target:
20318
20319 @table @gcctabopt
20320
20321 @item -mhal
20322 @opindex mhal
20323 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
20324 startup and termination code, and is typically used in conjunction with
20325 @option{-msys-crt0=} to specify the location of the alternate startup code
20326 provided by the HAL BSP.
20327
20328 @item -msmallc
20329 @opindex msmallc
20330 Link with a limited version of the C library, @option{-lsmallc}, rather than
20331 Newlib.
20332
20333 @item -msys-crt0=@var{startfile}
20334 @opindex msys-crt0
20335 @var{startfile} is the file name of the startfile (crt0) to use
20336 when linking. This option is only useful in conjunction with @option{-mhal}.
20337
20338 @item -msys-lib=@var{systemlib}
20339 @opindex msys-lib
20340 @var{systemlib} is the library name of the library that provides
20341 low-level system calls required by the C library,
20342 e.g. @code{read} and @code{write}.
20343 This option is typically used to link with a library provided by a HAL BSP.
20344
20345 @end table
20346
20347 @node Nvidia PTX Options
20348 @subsection Nvidia PTX Options
20349 @cindex Nvidia PTX options
20350 @cindex nvptx options
20351
20352 These options are defined for Nvidia PTX:
20353
20354 @table @gcctabopt
20355
20356 @item -m32
20357 @itemx -m64
20358 @opindex m32
20359 @opindex m64
20360 Generate code for 32-bit or 64-bit ABI.
20361
20362 @item -mmainkernel
20363 @opindex mmainkernel
20364 Link in code for a __main kernel. This is for stand-alone instead of
20365 offloading execution.
20366
20367 @item -moptimize
20368 @opindex moptimize
20369 Apply partitioned execution optimizations. This is the default when any
20370 level of optimization is selected.
20371
20372 @end table
20373
20374 @node PDP-11 Options
20375 @subsection PDP-11 Options
20376 @cindex PDP-11 Options
20377
20378 These options are defined for the PDP-11:
20379
20380 @table @gcctabopt
20381 @item -mfpu
20382 @opindex mfpu
20383 Use hardware FPP floating point. This is the default. (FIS floating
20384 point on the PDP-11/40 is not supported.)
20385
20386 @item -msoft-float
20387 @opindex msoft-float
20388 Do not use hardware floating point.
20389
20390 @item -mac0
20391 @opindex mac0
20392 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
20393
20394 @item -mno-ac0
20395 @opindex mno-ac0
20396 Return floating-point results in memory. This is the default.
20397
20398 @item -m40
20399 @opindex m40
20400 Generate code for a PDP-11/40.
20401
20402 @item -m45
20403 @opindex m45
20404 Generate code for a PDP-11/45. This is the default.
20405
20406 @item -m10
20407 @opindex m10
20408 Generate code for a PDP-11/10.
20409
20410 @item -mbcopy-builtin
20411 @opindex mbcopy-builtin
20412 Use inline @code{movmemhi} patterns for copying memory. This is the
20413 default.
20414
20415 @item -mbcopy
20416 @opindex mbcopy
20417 Do not use inline @code{movmemhi} patterns for copying memory.
20418
20419 @item -mint16
20420 @itemx -mno-int32
20421 @opindex mint16
20422 @opindex mno-int32
20423 Use 16-bit @code{int}. This is the default.
20424
20425 @item -mint32
20426 @itemx -mno-int16
20427 @opindex mint32
20428 @opindex mno-int16
20429 Use 32-bit @code{int}.
20430
20431 @item -mfloat64
20432 @itemx -mno-float32
20433 @opindex mfloat64
20434 @opindex mno-float32
20435 Use 64-bit @code{float}. This is the default.
20436
20437 @item -mfloat32
20438 @itemx -mno-float64
20439 @opindex mfloat32
20440 @opindex mno-float64
20441 Use 32-bit @code{float}.
20442
20443 @item -mabshi
20444 @opindex mabshi
20445 Use @code{abshi2} pattern. This is the default.
20446
20447 @item -mno-abshi
20448 @opindex mno-abshi
20449 Do not use @code{abshi2} pattern.
20450
20451 @item -mbranch-expensive
20452 @opindex mbranch-expensive
20453 Pretend that branches are expensive. This is for experimenting with
20454 code generation only.
20455
20456 @item -mbranch-cheap
20457 @opindex mbranch-cheap
20458 Do not pretend that branches are expensive. This is the default.
20459
20460 @item -munix-asm
20461 @opindex munix-asm
20462 Use Unix assembler syntax. This is the default when configured for
20463 @samp{pdp11-*-bsd}.
20464
20465 @item -mdec-asm
20466 @opindex mdec-asm
20467 Use DEC assembler syntax. This is the default when configured for any
20468 PDP-11 target other than @samp{pdp11-*-bsd}.
20469 @end table
20470
20471 @node picoChip Options
20472 @subsection picoChip Options
20473 @cindex picoChip options
20474
20475 These @samp{-m} options are defined for picoChip implementations:
20476
20477 @table @gcctabopt
20478
20479 @item -mae=@var{ae_type}
20480 @opindex mcpu
20481 Set the instruction set, register set, and instruction scheduling
20482 parameters for array element type @var{ae_type}. Supported values
20483 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
20484
20485 @option{-mae=ANY} selects a completely generic AE type. Code
20486 generated with this option runs on any of the other AE types. The
20487 code is not as efficient as it would be if compiled for a specific
20488 AE type, and some types of operation (e.g., multiplication) do not
20489 work properly on all types of AE.
20490
20491 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
20492 for compiled code, and is the default.
20493
20494 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
20495 option may suffer from poor performance of byte (char) manipulation,
20496 since the DSP AE does not provide hardware support for byte load/stores.
20497
20498 @item -msymbol-as-address
20499 Enable the compiler to directly use a symbol name as an address in a
20500 load/store instruction, without first loading it into a
20501 register. Typically, the use of this option generates larger
20502 programs, which run faster than when the option isn't used. However, the
20503 results vary from program to program, so it is left as a user option,
20504 rather than being permanently enabled.
20505
20506 @item -mno-inefficient-warnings
20507 Disables warnings about the generation of inefficient code. These
20508 warnings can be generated, for example, when compiling code that
20509 performs byte-level memory operations on the MAC AE type. The MAC AE has
20510 no hardware support for byte-level memory operations, so all byte
20511 load/stores must be synthesized from word load/store operations. This is
20512 inefficient and a warning is generated to indicate
20513 that you should rewrite the code to avoid byte operations, or to target
20514 an AE type that has the necessary hardware support. This option disables
20515 these warnings.
20516
20517 @end table
20518
20519 @node PowerPC Options
20520 @subsection PowerPC Options
20521 @cindex PowerPC options
20522
20523 These are listed under @xref{RS/6000 and PowerPC Options}.
20524
20525 @node RL78 Options
20526 @subsection RL78 Options
20527 @cindex RL78 Options
20528
20529 @table @gcctabopt
20530
20531 @item -msim
20532 @opindex msim
20533 Links in additional target libraries to support operation within a
20534 simulator.
20535
20536 @item -mmul=none
20537 @itemx -mmul=g10
20538 @itemx -mmul=g13
20539 @itemx -mmul=g14
20540 @itemx -mmul=rl78
20541 @opindex mmul
20542 Specifies the type of hardware multiplication and division support to
20543 be used. The simplest is @code{none}, which uses software for both
20544 multiplication and division. This is the default. The @code{g13}
20545 value is for the hardware multiply/divide peripheral found on the
20546 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
20547 the multiplication and division instructions supported by the RL78/G14
20548 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
20549 the value @code{mg10} is an alias for @code{none}.
20550
20551 In addition a C preprocessor macro is defined, based upon the setting
20552 of this option. Possible values are: @code{__RL78_MUL_NONE__},
20553 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
20554
20555 @item -mcpu=g10
20556 @itemx -mcpu=g13
20557 @itemx -mcpu=g14
20558 @itemx -mcpu=rl78
20559 @opindex mcpu
20560 Specifies the RL78 core to target. The default is the G14 core, also
20561 known as an S3 core or just RL78. The G13 or S2 core does not have
20562 multiply or divide instructions, instead it uses a hardware peripheral
20563 for these operations. The G10 or S1 core does not have register
20564 banks, so it uses a different calling convention.
20565
20566 If this option is set it also selects the type of hardware multiply
20567 support to use, unless this is overridden by an explicit
20568 @option{-mmul=none} option on the command line. Thus specifying
20569 @option{-mcpu=g13} enables the use of the G13 hardware multiply
20570 peripheral and specifying @option{-mcpu=g10} disables the use of
20571 hardware multiplications altogether.
20572
20573 Note, although the RL78/G14 core is the default target, specifying
20574 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
20575 change the behavior of the toolchain since it also enables G14
20576 hardware multiply support. If these options are not specified on the
20577 command line then software multiplication routines will be used even
20578 though the code targets the RL78 core. This is for backwards
20579 compatibility with older toolchains which did not have hardware
20580 multiply and divide support.
20581
20582 In addition a C preprocessor macro is defined, based upon the setting
20583 of this option. Possible values are: @code{__RL78_G10__},
20584 @code{__RL78_G13__} or @code{__RL78_G14__}.
20585
20586 @item -mg10
20587 @itemx -mg13
20588 @itemx -mg14
20589 @itemx -mrl78
20590 @opindex mg10
20591 @opindex mg13
20592 @opindex mg14
20593 @opindex mrl78
20594 These are aliases for the corresponding @option{-mcpu=} option. They
20595 are provided for backwards compatibility.
20596
20597 @item -mallregs
20598 @opindex mallregs
20599 Allow the compiler to use all of the available registers. By default
20600 registers @code{r24..r31} are reserved for use in interrupt handlers.
20601 With this option enabled these registers can be used in ordinary
20602 functions as well.
20603
20604 @item -m64bit-doubles
20605 @itemx -m32bit-doubles
20606 @opindex m64bit-doubles
20607 @opindex m32bit-doubles
20608 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
20609 or 32 bits (@option{-m32bit-doubles}) in size. The default is
20610 @option{-m32bit-doubles}.
20611
20612 @item -msave-mduc-in-interrupts
20613 @item -mno-save-mduc-in-interrupts
20614 @opindex msave-mduc-in-interrupts
20615 @opindex mno-save-mduc-in-interrupts
20616 Specifies that interrupt handler functions should preserve the
20617 MDUC registers. This is only necessary if normal code might use
20618 the MDUC registers, for example because it performs multiplication
20619 and division operations. The default is to ignore the MDUC registers
20620 as this makes the interrupt handlers faster. The target option -mg13
20621 needs to be passed for this to work as this feature is only available
20622 on the G13 target (S2 core). The MDUC registers will only be saved
20623 if the interrupt handler performs a multiplication or division
20624 operation or it calls another function.
20625
20626 @end table
20627
20628 @node RS/6000 and PowerPC Options
20629 @subsection IBM RS/6000 and PowerPC Options
20630 @cindex RS/6000 and PowerPC Options
20631 @cindex IBM RS/6000 and PowerPC Options
20632
20633 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
20634 @table @gcctabopt
20635 @item -mpowerpc-gpopt
20636 @itemx -mno-powerpc-gpopt
20637 @itemx -mpowerpc-gfxopt
20638 @itemx -mno-powerpc-gfxopt
20639 @need 800
20640 @itemx -mpowerpc64
20641 @itemx -mno-powerpc64
20642 @itemx -mmfcrf
20643 @itemx -mno-mfcrf
20644 @itemx -mpopcntb
20645 @itemx -mno-popcntb
20646 @itemx -mpopcntd
20647 @itemx -mno-popcntd
20648 @itemx -mfprnd
20649 @itemx -mno-fprnd
20650 @need 800
20651 @itemx -mcmpb
20652 @itemx -mno-cmpb
20653 @itemx -mmfpgpr
20654 @itemx -mno-mfpgpr
20655 @itemx -mhard-dfp
20656 @itemx -mno-hard-dfp
20657 @opindex mpowerpc-gpopt
20658 @opindex mno-powerpc-gpopt
20659 @opindex mpowerpc-gfxopt
20660 @opindex mno-powerpc-gfxopt
20661 @opindex mpowerpc64
20662 @opindex mno-powerpc64
20663 @opindex mmfcrf
20664 @opindex mno-mfcrf
20665 @opindex mpopcntb
20666 @opindex mno-popcntb
20667 @opindex mpopcntd
20668 @opindex mno-popcntd
20669 @opindex mfprnd
20670 @opindex mno-fprnd
20671 @opindex mcmpb
20672 @opindex mno-cmpb
20673 @opindex mmfpgpr
20674 @opindex mno-mfpgpr
20675 @opindex mhard-dfp
20676 @opindex mno-hard-dfp
20677 You use these options to specify which instructions are available on the
20678 processor you are using. The default value of these options is
20679 determined when configuring GCC@. Specifying the
20680 @option{-mcpu=@var{cpu_type}} overrides the specification of these
20681 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
20682 rather than the options listed above.
20683
20684 Specifying @option{-mpowerpc-gpopt} allows
20685 GCC to use the optional PowerPC architecture instructions in the
20686 General Purpose group, including floating-point square root. Specifying
20687 @option{-mpowerpc-gfxopt} allows GCC to
20688 use the optional PowerPC architecture instructions in the Graphics
20689 group, including floating-point select.
20690
20691 The @option{-mmfcrf} option allows GCC to generate the move from
20692 condition register field instruction implemented on the POWER4
20693 processor and other processors that support the PowerPC V2.01
20694 architecture.
20695 The @option{-mpopcntb} option allows GCC to generate the popcount and
20696 double-precision FP reciprocal estimate instruction implemented on the
20697 POWER5 processor and other processors that support the PowerPC V2.02
20698 architecture.
20699 The @option{-mpopcntd} option allows GCC to generate the popcount
20700 instruction implemented on the POWER7 processor and other processors
20701 that support the PowerPC V2.06 architecture.
20702 The @option{-mfprnd} option allows GCC to generate the FP round to
20703 integer instructions implemented on the POWER5+ processor and other
20704 processors that support the PowerPC V2.03 architecture.
20705 The @option{-mcmpb} option allows GCC to generate the compare bytes
20706 instruction implemented on the POWER6 processor and other processors
20707 that support the PowerPC V2.05 architecture.
20708 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
20709 general-purpose register instructions implemented on the POWER6X
20710 processor and other processors that support the extended PowerPC V2.05
20711 architecture.
20712 The @option{-mhard-dfp} option allows GCC to generate the decimal
20713 floating-point instructions implemented on some POWER processors.
20714
20715 The @option{-mpowerpc64} option allows GCC to generate the additional
20716 64-bit instructions that are found in the full PowerPC64 architecture
20717 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
20718 @option{-mno-powerpc64}.
20719
20720 @item -mcpu=@var{cpu_type}
20721 @opindex mcpu
20722 Set architecture type, register usage, and
20723 instruction scheduling parameters for machine type @var{cpu_type}.
20724 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
20725 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
20726 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
20727 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
20728 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
20729 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
20730 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
20731 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
20732 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
20733 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
20734 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
20735 and @samp{rs64}.
20736
20737 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
20738 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
20739 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
20740 architecture machine types, with an appropriate, generic processor
20741 model assumed for scheduling purposes.
20742
20743 The other options specify a specific processor. Code generated under
20744 those options runs best on that processor, and may not run at all on
20745 others.
20746
20747 The @option{-mcpu} options automatically enable or disable the
20748 following options:
20749
20750 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
20751 -mpopcntb -mpopcntd -mpowerpc64 @gol
20752 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
20753 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
20754 -mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector @gol
20755 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
20756
20757 The particular options set for any particular CPU varies between
20758 compiler versions, depending on what setting seems to produce optimal
20759 code for that CPU; it doesn't necessarily reflect the actual hardware's
20760 capabilities. If you wish to set an individual option to a particular
20761 value, you may specify it after the @option{-mcpu} option, like
20762 @option{-mcpu=970 -mno-altivec}.
20763
20764 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
20765 not enabled or disabled by the @option{-mcpu} option at present because
20766 AIX does not have full support for these options. You may still
20767 enable or disable them individually if you're sure it'll work in your
20768 environment.
20769
20770 @item -mtune=@var{cpu_type}
20771 @opindex mtune
20772 Set the instruction scheduling parameters for machine type
20773 @var{cpu_type}, but do not set the architecture type or register usage,
20774 as @option{-mcpu=@var{cpu_type}} does. The same
20775 values for @var{cpu_type} are used for @option{-mtune} as for
20776 @option{-mcpu}. If both are specified, the code generated uses the
20777 architecture and registers set by @option{-mcpu}, but the
20778 scheduling parameters set by @option{-mtune}.
20779
20780 @item -mcmodel=small
20781 @opindex mcmodel=small
20782 Generate PowerPC64 code for the small model: The TOC is limited to
20783 64k.
20784
20785 @item -mcmodel=medium
20786 @opindex mcmodel=medium
20787 Generate PowerPC64 code for the medium model: The TOC and other static
20788 data may be up to a total of 4G in size.
20789
20790 @item -mcmodel=large
20791 @opindex mcmodel=large
20792 Generate PowerPC64 code for the large model: The TOC may be up to 4G
20793 in size. Other data and code is only limited by the 64-bit address
20794 space.
20795
20796 @item -maltivec
20797 @itemx -mno-altivec
20798 @opindex maltivec
20799 @opindex mno-altivec
20800 Generate code that uses (does not use) AltiVec instructions, and also
20801 enable the use of built-in functions that allow more direct access to
20802 the AltiVec instruction set. You may also need to set
20803 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
20804 enhancements.
20805
20806 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
20807 @option{-maltivec=be}, the element order for AltiVec intrinsics such
20808 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
20809 match array element order corresponding to the endianness of the
20810 target. That is, element zero identifies the leftmost element in a
20811 vector register when targeting a big-endian platform, and identifies
20812 the rightmost element in a vector register when targeting a
20813 little-endian platform.
20814
20815 @item -maltivec=be
20816 @opindex maltivec=be
20817 Generate AltiVec instructions using big-endian element order,
20818 regardless of whether the target is big- or little-endian. This is
20819 the default when targeting a big-endian platform.
20820
20821 The element order is used to interpret element numbers in AltiVec
20822 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
20823 @code{vec_insert}. By default, these match array element order
20824 corresponding to the endianness for the target.
20825
20826 @item -maltivec=le
20827 @opindex maltivec=le
20828 Generate AltiVec instructions using little-endian element order,
20829 regardless of whether the target is big- or little-endian. This is
20830 the default when targeting a little-endian platform. This option is
20831 currently ignored when targeting a big-endian platform.
20832
20833 The element order is used to interpret element numbers in AltiVec
20834 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
20835 @code{vec_insert}. By default, these match array element order
20836 corresponding to the endianness for the target.
20837
20838 @item -mvrsave
20839 @itemx -mno-vrsave
20840 @opindex mvrsave
20841 @opindex mno-vrsave
20842 Generate VRSAVE instructions when generating AltiVec code.
20843
20844 @item -mgen-cell-microcode
20845 @opindex mgen-cell-microcode
20846 Generate Cell microcode instructions.
20847
20848 @item -mwarn-cell-microcode
20849 @opindex mwarn-cell-microcode
20850 Warn when a Cell microcode instruction is emitted. An example
20851 of a Cell microcode instruction is a variable shift.
20852
20853 @item -msecure-plt
20854 @opindex msecure-plt
20855 Generate code that allows @command{ld} and @command{ld.so}
20856 to build executables and shared
20857 libraries with non-executable @code{.plt} and @code{.got} sections.
20858 This is a PowerPC
20859 32-bit SYSV ABI option.
20860
20861 @item -mbss-plt
20862 @opindex mbss-plt
20863 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
20864 fills in, and
20865 requires @code{.plt} and @code{.got}
20866 sections that are both writable and executable.
20867 This is a PowerPC 32-bit SYSV ABI option.
20868
20869 @item -misel
20870 @itemx -mno-isel
20871 @opindex misel
20872 @opindex mno-isel
20873 This switch enables or disables the generation of ISEL instructions.
20874
20875 @item -misel=@var{yes/no}
20876 This switch has been deprecated. Use @option{-misel} and
20877 @option{-mno-isel} instead.
20878
20879 @item -mlra
20880 @opindex mlra
20881 Enable Local Register Allocation. This is still experimental for PowerPC,
20882 so by default the compiler uses standard reload
20883 (i.e. @option{-mno-lra}).
20884
20885 @item -mspe
20886 @itemx -mno-spe
20887 @opindex mspe
20888 @opindex mno-spe
20889 This switch enables or disables the generation of SPE simd
20890 instructions.
20891
20892 @item -mpaired
20893 @itemx -mno-paired
20894 @opindex mpaired
20895 @opindex mno-paired
20896 This switch enables or disables the generation of PAIRED simd
20897 instructions.
20898
20899 @item -mspe=@var{yes/no}
20900 This option has been deprecated. Use @option{-mspe} and
20901 @option{-mno-spe} instead.
20902
20903 @item -mvsx
20904 @itemx -mno-vsx
20905 @opindex mvsx
20906 @opindex mno-vsx
20907 Generate code that uses (does not use) vector/scalar (VSX)
20908 instructions, and also enable the use of built-in functions that allow
20909 more direct access to the VSX instruction set.
20910
20911 @item -mcrypto
20912 @itemx -mno-crypto
20913 @opindex mcrypto
20914 @opindex mno-crypto
20915 Enable the use (disable) of the built-in functions that allow direct
20916 access to the cryptographic instructions that were added in version
20917 2.07 of the PowerPC ISA.
20918
20919 @item -mdirect-move
20920 @itemx -mno-direct-move
20921 @opindex mdirect-move
20922 @opindex mno-direct-move
20923 Generate code that uses (does not use) the instructions to move data
20924 between the general purpose registers and the vector/scalar (VSX)
20925 registers that were added in version 2.07 of the PowerPC ISA.
20926
20927 @item -mhtm
20928 @itemx -mno-htm
20929 @opindex mhtm
20930 @opindex mno-htm
20931 Enable (disable) the use of the built-in functions that allow direct
20932 access to the Hardware Transactional Memory (HTM) instructions that
20933 were added in version 2.07 of the PowerPC ISA.
20934
20935 @item -mpower8-fusion
20936 @itemx -mno-power8-fusion
20937 @opindex mpower8-fusion
20938 @opindex mno-power8-fusion
20939 Generate code that keeps (does not keeps) some integer operations
20940 adjacent so that the instructions can be fused together on power8 and
20941 later processors.
20942
20943 @item -mpower8-vector
20944 @itemx -mno-power8-vector
20945 @opindex mpower8-vector
20946 @opindex mno-power8-vector
20947 Generate code that uses (does not use) the vector and scalar
20948 instructions that were added in version 2.07 of the PowerPC ISA. Also
20949 enable the use of built-in functions that allow more direct access to
20950 the vector instructions.
20951
20952 @item -mquad-memory
20953 @itemx -mno-quad-memory
20954 @opindex mquad-memory
20955 @opindex mno-quad-memory
20956 Generate code that uses (does not use) the non-atomic quad word memory
20957 instructions. The @option{-mquad-memory} option requires use of
20958 64-bit mode.
20959
20960 @item -mquad-memory-atomic
20961 @itemx -mno-quad-memory-atomic
20962 @opindex mquad-memory-atomic
20963 @opindex mno-quad-memory-atomic
20964 Generate code that uses (does not use) the atomic quad word memory
20965 instructions. The @option{-mquad-memory-atomic} option requires use of
20966 64-bit mode.
20967
20968 @item -mupper-regs-di
20969 @itemx -mno-upper-regs-di
20970 @opindex mupper-regs-di
20971 @opindex mno-upper-regs-di
20972 Generate code that uses (does not use) the scalar instructions that
20973 target all 64 registers in the vector/scalar floating point register
20974 set that were added in version 2.06 of the PowerPC ISA when processing
20975 integers. @option{-mupper-regs-di} is turned on by default if you use
20976 any of the @option{-mcpu=power7}, @option{-mcpu=power8},
20977 @option{-mcpu=power9}, or @option{-mvsx} options.
20978
20979 @item -mupper-regs-df
20980 @itemx -mno-upper-regs-df
20981 @opindex mupper-regs-df
20982 @opindex mno-upper-regs-df
20983 Generate code that uses (does not use) the scalar double precision
20984 instructions that target all 64 registers in the vector/scalar
20985 floating point register set that were added in version 2.06 of the
20986 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
20987 use any of the @option{-mcpu=power7}, @option{-mcpu=power8},
20988 @option{-mcpu=power9}, or @option{-mvsx} options.
20989
20990 @item -mupper-regs-sf
20991 @itemx -mno-upper-regs-sf
20992 @opindex mupper-regs-sf
20993 @opindex mno-upper-regs-sf
20994 Generate code that uses (does not use) the scalar single precision
20995 instructions that target all 64 registers in the vector/scalar
20996 floating point register set that were added in version 2.07 of the
20997 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
20998 use either of the @option{-mcpu=power8}, @option{-mpower8-vector}, or
20999 @option{-mcpu=power9} options.
21000
21001 @item -mupper-regs
21002 @itemx -mno-upper-regs
21003 @opindex mupper-regs
21004 @opindex mno-upper-regs
21005 Generate code that uses (does not use) the scalar
21006 instructions that target all 64 registers in the vector/scalar
21007 floating point register set, depending on the model of the machine.
21008
21009 If the @option{-mno-upper-regs} option is used, it turns off both
21010 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
21011
21012 @item -mfloat128
21013 @itemx -mno-float128
21014 @opindex mfloat128
21015 @opindex mno-float128
21016 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
21017 and use either software emulation for IEEE 128-bit floating point or
21018 hardware instructions.
21019
21020 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7}, or
21021 @option{-mcpu=power8}) must be enabled to use the @option{-mfloat128}
21022 option. The @option{-mfloat128} option only works on PowerPC 64-bit
21023 Linux systems.
21024
21025 If you use the ISA 3.0 instruction set (@option{-mcpu=power9}), the
21026 @option{-mfloat128} option will also enable the generation of ISA 3.0
21027 IEEE 128-bit floating point instructions. Otherwise, IEEE 128-bit
21028 floating point will be done with software emulation.
21029
21030 @item -mfloat128-hardware
21031 @itemx -mno-float128-hardware
21032 @opindex mfloat128-hardware
21033 @opindex mno-float128-hardware
21034 Enable/disable using ISA 3.0 hardware instructions to support the
21035 @var{__float128} data type.
21036
21037 If you use @option{-mfloat128-hardware}, it will enable the option
21038 @option{-mfloat128} as well.
21039
21040 If you select ISA 3.0 instructions with @option{-mcpu=power9}, but do
21041 not use either @option{-mfloat128} or @option{-mfloat128-hardware},
21042 the IEEE 128-bit floating point support will not be enabled.
21043
21044 @item -mfloat-gprs=@var{yes/single/double/no}
21045 @itemx -mfloat-gprs
21046 @opindex mfloat-gprs
21047 This switch enables or disables the generation of floating-point
21048 operations on the general-purpose registers for architectures that
21049 support it.
21050
21051 The argument @samp{yes} or @samp{single} enables the use of
21052 single-precision floating-point operations.
21053
21054 The argument @samp{double} enables the use of single and
21055 double-precision floating-point operations.
21056
21057 The argument @samp{no} disables floating-point operations on the
21058 general-purpose registers.
21059
21060 This option is currently only available on the MPC854x.
21061
21062 @item -m32
21063 @itemx -m64
21064 @opindex m32
21065 @opindex m64
21066 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
21067 targets (including GNU/Linux). The 32-bit environment sets int, long
21068 and pointer to 32 bits and generates code that runs on any PowerPC
21069 variant. The 64-bit environment sets int to 32 bits and long and
21070 pointer to 64 bits, and generates code for PowerPC64, as for
21071 @option{-mpowerpc64}.
21072
21073 @item -mfull-toc
21074 @itemx -mno-fp-in-toc
21075 @itemx -mno-sum-in-toc
21076 @itemx -mminimal-toc
21077 @opindex mfull-toc
21078 @opindex mno-fp-in-toc
21079 @opindex mno-sum-in-toc
21080 @opindex mminimal-toc
21081 Modify generation of the TOC (Table Of Contents), which is created for
21082 every executable file. The @option{-mfull-toc} option is selected by
21083 default. In that case, GCC allocates at least one TOC entry for
21084 each unique non-automatic variable reference in your program. GCC
21085 also places floating-point constants in the TOC@. However, only
21086 16,384 entries are available in the TOC@.
21087
21088 If you receive a linker error message that saying you have overflowed
21089 the available TOC space, you can reduce the amount of TOC space used
21090 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
21091 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
21092 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
21093 generate code to calculate the sum of an address and a constant at
21094 run time instead of putting that sum into the TOC@. You may specify one
21095 or both of these options. Each causes GCC to produce very slightly
21096 slower and larger code at the expense of conserving TOC space.
21097
21098 If you still run out of space in the TOC even when you specify both of
21099 these options, specify @option{-mminimal-toc} instead. This option causes
21100 GCC to make only one TOC entry for every file. When you specify this
21101 option, GCC produces code that is slower and larger but which
21102 uses extremely little TOC space. You may wish to use this option
21103 only on files that contain less frequently-executed code.
21104
21105 @item -maix64
21106 @itemx -maix32
21107 @opindex maix64
21108 @opindex maix32
21109 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
21110 @code{long} type, and the infrastructure needed to support them.
21111 Specifying @option{-maix64} implies @option{-mpowerpc64},
21112 while @option{-maix32} disables the 64-bit ABI and
21113 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
21114
21115 @item -mxl-compat
21116 @itemx -mno-xl-compat
21117 @opindex mxl-compat
21118 @opindex mno-xl-compat
21119 Produce code that conforms more closely to IBM XL compiler semantics
21120 when using AIX-compatible ABI@. Pass floating-point arguments to
21121 prototyped functions beyond the register save area (RSA) on the stack
21122 in addition to argument FPRs. Do not assume that most significant
21123 double in 128-bit long double value is properly rounded when comparing
21124 values and converting to double. Use XL symbol names for long double
21125 support routines.
21126
21127 The AIX calling convention was extended but not initially documented to
21128 handle an obscure K&R C case of calling a function that takes the
21129 address of its arguments with fewer arguments than declared. IBM XL
21130 compilers access floating-point arguments that do not fit in the
21131 RSA from the stack when a subroutine is compiled without
21132 optimization. Because always storing floating-point arguments on the
21133 stack is inefficient and rarely needed, this option is not enabled by
21134 default and only is necessary when calling subroutines compiled by IBM
21135 XL compilers without optimization.
21136
21137 @item -mpe
21138 @opindex mpe
21139 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
21140 application written to use message passing with special startup code to
21141 enable the application to run. The system must have PE installed in the
21142 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
21143 must be overridden with the @option{-specs=} option to specify the
21144 appropriate directory location. The Parallel Environment does not
21145 support threads, so the @option{-mpe} option and the @option{-pthread}
21146 option are incompatible.
21147
21148 @item -malign-natural
21149 @itemx -malign-power
21150 @opindex malign-natural
21151 @opindex malign-power
21152 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
21153 @option{-malign-natural} overrides the ABI-defined alignment of larger
21154 types, such as floating-point doubles, on their natural size-based boundary.
21155 The option @option{-malign-power} instructs GCC to follow the ABI-specified
21156 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
21157
21158 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
21159 is not supported.
21160
21161 @item -msoft-float
21162 @itemx -mhard-float
21163 @opindex msoft-float
21164 @opindex mhard-float
21165 Generate code that does not use (uses) the floating-point register set.
21166 Software floating-point emulation is provided if you use the
21167 @option{-msoft-float} option, and pass the option to GCC when linking.
21168
21169 @item -msingle-float
21170 @itemx -mdouble-float
21171 @opindex msingle-float
21172 @opindex mdouble-float
21173 Generate code for single- or double-precision floating-point operations.
21174 @option{-mdouble-float} implies @option{-msingle-float}.
21175
21176 @item -msimple-fpu
21177 @opindex msimple-fpu
21178 Do not generate @code{sqrt} and @code{div} instructions for hardware
21179 floating-point unit.
21180
21181 @item -mfpu=@var{name}
21182 @opindex mfpu
21183 Specify type of floating-point unit. Valid values for @var{name} are
21184 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
21185 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
21186 @samp{sp_full} (equivalent to @option{-msingle-float}),
21187 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
21188
21189 @item -mxilinx-fpu
21190 @opindex mxilinx-fpu
21191 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
21192
21193 @item -mmultiple
21194 @itemx -mno-multiple
21195 @opindex mmultiple
21196 @opindex mno-multiple
21197 Generate code that uses (does not use) the load multiple word
21198 instructions and the store multiple word instructions. These
21199 instructions are generated by default on POWER systems, and not
21200 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
21201 PowerPC systems, since those instructions do not work when the
21202 processor is in little-endian mode. The exceptions are PPC740 and
21203 PPC750 which permit these instructions in little-endian mode.
21204
21205 @item -mstring
21206 @itemx -mno-string
21207 @opindex mstring
21208 @opindex mno-string
21209 Generate code that uses (does not use) the load string instructions
21210 and the store string word instructions to save multiple registers and
21211 do small block moves. These instructions are generated by default on
21212 POWER systems, and not generated on PowerPC systems. Do not use
21213 @option{-mstring} on little-endian PowerPC systems, since those
21214 instructions do not work when the processor is in little-endian mode.
21215 The exceptions are PPC740 and PPC750 which permit these instructions
21216 in little-endian mode.
21217
21218 @item -mupdate
21219 @itemx -mno-update
21220 @opindex mupdate
21221 @opindex mno-update
21222 Generate code that uses (does not use) the load or store instructions
21223 that update the base register to the address of the calculated memory
21224 location. These instructions are generated by default. If you use
21225 @option{-mno-update}, there is a small window between the time that the
21226 stack pointer is updated and the address of the previous frame is
21227 stored, which means code that walks the stack frame across interrupts or
21228 signals may get corrupted data.
21229
21230 @item -mavoid-indexed-addresses
21231 @itemx -mno-avoid-indexed-addresses
21232 @opindex mavoid-indexed-addresses
21233 @opindex mno-avoid-indexed-addresses
21234 Generate code that tries to avoid (not avoid) the use of indexed load
21235 or store instructions. These instructions can incur a performance
21236 penalty on Power6 processors in certain situations, such as when
21237 stepping through large arrays that cross a 16M boundary. This option
21238 is enabled by default when targeting Power6 and disabled otherwise.
21239
21240 @item -mfused-madd
21241 @itemx -mno-fused-madd
21242 @opindex mfused-madd
21243 @opindex mno-fused-madd
21244 Generate code that uses (does not use) the floating-point multiply and
21245 accumulate instructions. These instructions are generated by default
21246 if hardware floating point is used. The machine-dependent
21247 @option{-mfused-madd} option is now mapped to the machine-independent
21248 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
21249 mapped to @option{-ffp-contract=off}.
21250
21251 @item -mmulhw
21252 @itemx -mno-mulhw
21253 @opindex mmulhw
21254 @opindex mno-mulhw
21255 Generate code that uses (does not use) the half-word multiply and
21256 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
21257 These instructions are generated by default when targeting those
21258 processors.
21259
21260 @item -mdlmzb
21261 @itemx -mno-dlmzb
21262 @opindex mdlmzb
21263 @opindex mno-dlmzb
21264 Generate code that uses (does not use) the string-search @samp{dlmzb}
21265 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
21266 generated by default when targeting those processors.
21267
21268 @item -mno-bit-align
21269 @itemx -mbit-align
21270 @opindex mno-bit-align
21271 @opindex mbit-align
21272 On System V.4 and embedded PowerPC systems do not (do) force structures
21273 and unions that contain bit-fields to be aligned to the base type of the
21274 bit-field.
21275
21276 For example, by default a structure containing nothing but 8
21277 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
21278 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
21279 the structure is aligned to a 1-byte boundary and is 1 byte in
21280 size.
21281
21282 @item -mno-strict-align
21283 @itemx -mstrict-align
21284 @opindex mno-strict-align
21285 @opindex mstrict-align
21286 On System V.4 and embedded PowerPC systems do not (do) assume that
21287 unaligned memory references are handled by the system.
21288
21289 @item -mrelocatable
21290 @itemx -mno-relocatable
21291 @opindex mrelocatable
21292 @opindex mno-relocatable
21293 Generate code that allows (does not allow) a static executable to be
21294 relocated to a different address at run time. A simple embedded
21295 PowerPC system loader should relocate the entire contents of
21296 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
21297 a table of 32-bit addresses generated by this option. For this to
21298 work, all objects linked together must be compiled with
21299 @option{-mrelocatable} or @option{-mrelocatable-lib}.
21300 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
21301
21302 @item -mrelocatable-lib
21303 @itemx -mno-relocatable-lib
21304 @opindex mrelocatable-lib
21305 @opindex mno-relocatable-lib
21306 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
21307 @code{.fixup} section to allow static executables to be relocated at
21308 run time, but @option{-mrelocatable-lib} does not use the smaller stack
21309 alignment of @option{-mrelocatable}. Objects compiled with
21310 @option{-mrelocatable-lib} may be linked with objects compiled with
21311 any combination of the @option{-mrelocatable} options.
21312
21313 @item -mno-toc
21314 @itemx -mtoc
21315 @opindex mno-toc
21316 @opindex mtoc
21317 On System V.4 and embedded PowerPC systems do not (do) assume that
21318 register 2 contains a pointer to a global area pointing to the addresses
21319 used in the program.
21320
21321 @item -mlittle
21322 @itemx -mlittle-endian
21323 @opindex mlittle
21324 @opindex mlittle-endian
21325 On System V.4 and embedded PowerPC systems compile code for the
21326 processor in little-endian mode. The @option{-mlittle-endian} option is
21327 the same as @option{-mlittle}.
21328
21329 @item -mbig
21330 @itemx -mbig-endian
21331 @opindex mbig
21332 @opindex mbig-endian
21333 On System V.4 and embedded PowerPC systems compile code for the
21334 processor in big-endian mode. The @option{-mbig-endian} option is
21335 the same as @option{-mbig}.
21336
21337 @item -mdynamic-no-pic
21338 @opindex mdynamic-no-pic
21339 On Darwin and Mac OS X systems, compile code so that it is not
21340 relocatable, but that its external references are relocatable. The
21341 resulting code is suitable for applications, but not shared
21342 libraries.
21343
21344 @item -msingle-pic-base
21345 @opindex msingle-pic-base
21346 Treat the register used for PIC addressing as read-only, rather than
21347 loading it in the prologue for each function. The runtime system is
21348 responsible for initializing this register with an appropriate value
21349 before execution begins.
21350
21351 @item -mprioritize-restricted-insns=@var{priority}
21352 @opindex mprioritize-restricted-insns
21353 This option controls the priority that is assigned to
21354 dispatch-slot restricted instructions during the second scheduling
21355 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
21356 or @samp{2} to assign no, highest, or second-highest (respectively)
21357 priority to dispatch-slot restricted
21358 instructions.
21359
21360 @item -msched-costly-dep=@var{dependence_type}
21361 @opindex msched-costly-dep
21362 This option controls which dependences are considered costly
21363 by the target during instruction scheduling. The argument
21364 @var{dependence_type} takes one of the following values:
21365
21366 @table @asis
21367 @item @samp{no}
21368 No dependence is costly.
21369
21370 @item @samp{all}
21371 All dependences are costly.
21372
21373 @item @samp{true_store_to_load}
21374 A true dependence from store to load is costly.
21375
21376 @item @samp{store_to_load}
21377 Any dependence from store to load is costly.
21378
21379 @item @var{number}
21380 Any dependence for which the latency is greater than or equal to
21381 @var{number} is costly.
21382 @end table
21383
21384 @item -minsert-sched-nops=@var{scheme}
21385 @opindex minsert-sched-nops
21386 This option controls which NOP insertion scheme is used during
21387 the second scheduling pass. The argument @var{scheme} takes one of the
21388 following values:
21389
21390 @table @asis
21391 @item @samp{no}
21392 Don't insert NOPs.
21393
21394 @item @samp{pad}
21395 Pad with NOPs any dispatch group that has vacant issue slots,
21396 according to the scheduler's grouping.
21397
21398 @item @samp{regroup_exact}
21399 Insert NOPs to force costly dependent insns into
21400 separate groups. Insert exactly as many NOPs as needed to force an insn
21401 to a new group, according to the estimated processor grouping.
21402
21403 @item @var{number}
21404 Insert NOPs to force costly dependent insns into
21405 separate groups. Insert @var{number} NOPs to force an insn to a new group.
21406 @end table
21407
21408 @item -mcall-sysv
21409 @opindex mcall-sysv
21410 On System V.4 and embedded PowerPC systems compile code using calling
21411 conventions that adhere to the March 1995 draft of the System V
21412 Application Binary Interface, PowerPC processor supplement. This is the
21413 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
21414
21415 @item -mcall-sysv-eabi
21416 @itemx -mcall-eabi
21417 @opindex mcall-sysv-eabi
21418 @opindex mcall-eabi
21419 Specify both @option{-mcall-sysv} and @option{-meabi} options.
21420
21421 @item -mcall-sysv-noeabi
21422 @opindex mcall-sysv-noeabi
21423 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
21424
21425 @item -mcall-aixdesc
21426 @opindex m
21427 On System V.4 and embedded PowerPC systems compile code for the AIX
21428 operating system.
21429
21430 @item -mcall-linux
21431 @opindex mcall-linux
21432 On System V.4 and embedded PowerPC systems compile code for the
21433 Linux-based GNU system.
21434
21435 @item -mcall-freebsd
21436 @opindex mcall-freebsd
21437 On System V.4 and embedded PowerPC systems compile code for the
21438 FreeBSD operating system.
21439
21440 @item -mcall-netbsd
21441 @opindex mcall-netbsd
21442 On System V.4 and embedded PowerPC systems compile code for the
21443 NetBSD operating system.
21444
21445 @item -mcall-openbsd
21446 @opindex mcall-netbsd
21447 On System V.4 and embedded PowerPC systems compile code for the
21448 OpenBSD operating system.
21449
21450 @item -maix-struct-return
21451 @opindex maix-struct-return
21452 Return all structures in memory (as specified by the AIX ABI)@.
21453
21454 @item -msvr4-struct-return
21455 @opindex msvr4-struct-return
21456 Return structures smaller than 8 bytes in registers (as specified by the
21457 SVR4 ABI)@.
21458
21459 @item -mabi=@var{abi-type}
21460 @opindex mabi
21461 Extend the current ABI with a particular extension, or remove such extension.
21462 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
21463 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
21464 @samp{elfv1}, @samp{elfv2}@.
21465
21466 @item -mabi=spe
21467 @opindex mabi=spe
21468 Extend the current ABI with SPE ABI extensions. This does not change
21469 the default ABI, instead it adds the SPE ABI extensions to the current
21470 ABI@.
21471
21472 @item -mabi=no-spe
21473 @opindex mabi=no-spe
21474 Disable Book-E SPE ABI extensions for the current ABI@.
21475
21476 @item -mabi=ibmlongdouble
21477 @opindex mabi=ibmlongdouble
21478 Change the current ABI to use IBM extended-precision long double.
21479 This is a PowerPC 32-bit SYSV ABI option.
21480
21481 @item -mabi=ieeelongdouble
21482 @opindex mabi=ieeelongdouble
21483 Change the current ABI to use IEEE extended-precision long double.
21484 This is a PowerPC 32-bit Linux ABI option.
21485
21486 @item -mabi=elfv1
21487 @opindex mabi=elfv1
21488 Change the current ABI to use the ELFv1 ABI.
21489 This is the default ABI for big-endian PowerPC 64-bit Linux.
21490 Overriding the default ABI requires special system support and is
21491 likely to fail in spectacular ways.
21492
21493 @item -mabi=elfv2
21494 @opindex mabi=elfv2
21495 Change the current ABI to use the ELFv2 ABI.
21496 This is the default ABI for little-endian PowerPC 64-bit Linux.
21497 Overriding the default ABI requires special system support and is
21498 likely to fail in spectacular ways.
21499
21500 @item -mgnu-attribute
21501 @itemx -mno-gnu-attribute
21502 @opindex mgnu-attribute
21503 @opindex mno-gnu-attribute
21504 Emit .gnu_attribute assembly directives to set tag/value pairs in a
21505 .gnu.attributes section that specify ABI variations in function
21506 parameters or return values.
21507
21508 @item -mprototype
21509 @itemx -mno-prototype
21510 @opindex mprototype
21511 @opindex mno-prototype
21512 On System V.4 and embedded PowerPC systems assume that all calls to
21513 variable argument functions are properly prototyped. Otherwise, the
21514 compiler must insert an instruction before every non-prototyped call to
21515 set or clear bit 6 of the condition code register (@code{CR}) to
21516 indicate whether floating-point values are passed in the floating-point
21517 registers in case the function takes variable arguments. With
21518 @option{-mprototype}, only calls to prototyped variable argument functions
21519 set or clear the bit.
21520
21521 @item -msim
21522 @opindex msim
21523 On embedded PowerPC systems, assume that the startup module is called
21524 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
21525 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
21526 configurations.
21527
21528 @item -mmvme
21529 @opindex mmvme
21530 On embedded PowerPC systems, assume that the startup module is called
21531 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
21532 @file{libc.a}.
21533
21534 @item -mads
21535 @opindex mads
21536 On embedded PowerPC systems, assume that the startup module is called
21537 @file{crt0.o} and the standard C libraries are @file{libads.a} and
21538 @file{libc.a}.
21539
21540 @item -myellowknife
21541 @opindex myellowknife
21542 On embedded PowerPC systems, assume that the startup module is called
21543 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
21544 @file{libc.a}.
21545
21546 @item -mvxworks
21547 @opindex mvxworks
21548 On System V.4 and embedded PowerPC systems, specify that you are
21549 compiling for a VxWorks system.
21550
21551 @item -memb
21552 @opindex memb
21553 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
21554 header to indicate that @samp{eabi} extended relocations are used.
21555
21556 @item -meabi
21557 @itemx -mno-eabi
21558 @opindex meabi
21559 @opindex mno-eabi
21560 On System V.4 and embedded PowerPC systems do (do not) adhere to the
21561 Embedded Applications Binary Interface (EABI), which is a set of
21562 modifications to the System V.4 specifications. Selecting @option{-meabi}
21563 means that the stack is aligned to an 8-byte boundary, a function
21564 @code{__eabi} is called from @code{main} to set up the EABI
21565 environment, and the @option{-msdata} option can use both @code{r2} and
21566 @code{r13} to point to two separate small data areas. Selecting
21567 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
21568 no EABI initialization function is called from @code{main}, and the
21569 @option{-msdata} option only uses @code{r13} to point to a single
21570 small data area. The @option{-meabi} option is on by default if you
21571 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
21572
21573 @item -msdata=eabi
21574 @opindex msdata=eabi
21575 On System V.4 and embedded PowerPC systems, put small initialized
21576 @code{const} global and static data in the @code{.sdata2} section, which
21577 is pointed to by register @code{r2}. Put small initialized
21578 non-@code{const} global and static data in the @code{.sdata} section,
21579 which is pointed to by register @code{r13}. Put small uninitialized
21580 global and static data in the @code{.sbss} section, which is adjacent to
21581 the @code{.sdata} section. The @option{-msdata=eabi} option is
21582 incompatible with the @option{-mrelocatable} option. The
21583 @option{-msdata=eabi} option also sets the @option{-memb} option.
21584
21585 @item -msdata=sysv
21586 @opindex msdata=sysv
21587 On System V.4 and embedded PowerPC systems, put small global and static
21588 data in the @code{.sdata} section, which is pointed to by register
21589 @code{r13}. Put small uninitialized global and static data in the
21590 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
21591 The @option{-msdata=sysv} option is incompatible with the
21592 @option{-mrelocatable} option.
21593
21594 @item -msdata=default
21595 @itemx -msdata
21596 @opindex msdata=default
21597 @opindex msdata
21598 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
21599 compile code the same as @option{-msdata=eabi}, otherwise compile code the
21600 same as @option{-msdata=sysv}.
21601
21602 @item -msdata=data
21603 @opindex msdata=data
21604 On System V.4 and embedded PowerPC systems, put small global
21605 data in the @code{.sdata} section. Put small uninitialized global
21606 data in the @code{.sbss} section. Do not use register @code{r13}
21607 to address small data however. This is the default behavior unless
21608 other @option{-msdata} options are used.
21609
21610 @item -msdata=none
21611 @itemx -mno-sdata
21612 @opindex msdata=none
21613 @opindex mno-sdata
21614 On embedded PowerPC systems, put all initialized global and static data
21615 in the @code{.data} section, and all uninitialized data in the
21616 @code{.bss} section.
21617
21618 @item -mblock-move-inline-limit=@var{num}
21619 @opindex mblock-move-inline-limit
21620 Inline all block moves (such as calls to @code{memcpy} or structure
21621 copies) less than or equal to @var{num} bytes. The minimum value for
21622 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
21623 targets. The default value is target-specific.
21624
21625 @item -G @var{num}
21626 @opindex G
21627 @cindex smaller data references (PowerPC)
21628 @cindex .sdata/.sdata2 references (PowerPC)
21629 On embedded PowerPC systems, put global and static items less than or
21630 equal to @var{num} bytes into the small data or BSS sections instead of
21631 the normal data or BSS section. By default, @var{num} is 8. The
21632 @option{-G @var{num}} switch is also passed to the linker.
21633 All modules should be compiled with the same @option{-G @var{num}} value.
21634
21635 @item -mregnames
21636 @itemx -mno-regnames
21637 @opindex mregnames
21638 @opindex mno-regnames
21639 On System V.4 and embedded PowerPC systems do (do not) emit register
21640 names in the assembly language output using symbolic forms.
21641
21642 @item -mlongcall
21643 @itemx -mno-longcall
21644 @opindex mlongcall
21645 @opindex mno-longcall
21646 By default assume that all calls are far away so that a longer and more
21647 expensive calling sequence is required. This is required for calls
21648 farther than 32 megabytes (33,554,432 bytes) from the current location.
21649 A short call is generated if the compiler knows
21650 the call cannot be that far away. This setting can be overridden by
21651 the @code{shortcall} function attribute, or by @code{#pragma
21652 longcall(0)}.
21653
21654 Some linkers are capable of detecting out-of-range calls and generating
21655 glue code on the fly. On these systems, long calls are unnecessary and
21656 generate slower code. As of this writing, the AIX linker can do this,
21657 as can the GNU linker for PowerPC/64. It is planned to add this feature
21658 to the GNU linker for 32-bit PowerPC systems as well.
21659
21660 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
21661 callee, L42}, plus a @dfn{branch island} (glue code). The two target
21662 addresses represent the callee and the branch island. The
21663 Darwin/PPC linker prefers the first address and generates a @code{bl
21664 callee} if the PPC @code{bl} instruction reaches the callee directly;
21665 otherwise, the linker generates @code{bl L42} to call the branch
21666 island. The branch island is appended to the body of the
21667 calling function; it computes the full 32-bit address of the callee
21668 and jumps to it.
21669
21670 On Mach-O (Darwin) systems, this option directs the compiler emit to
21671 the glue for every direct call, and the Darwin linker decides whether
21672 to use or discard it.
21673
21674 In the future, GCC may ignore all longcall specifications
21675 when the linker is known to generate glue.
21676
21677 @item -mtls-markers
21678 @itemx -mno-tls-markers
21679 @opindex mtls-markers
21680 @opindex mno-tls-markers
21681 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
21682 specifying the function argument. The relocation allows the linker to
21683 reliably associate function call with argument setup instructions for
21684 TLS optimization, which in turn allows GCC to better schedule the
21685 sequence.
21686
21687 @item -pthread
21688 @opindex pthread
21689 Adds support for multithreading with the @dfn{pthreads} library.
21690 This option sets flags for both the preprocessor and linker.
21691
21692 @item -mrecip
21693 @itemx -mno-recip
21694 @opindex mrecip
21695 This option enables use of the reciprocal estimate and
21696 reciprocal square root estimate instructions with additional
21697 Newton-Raphson steps to increase precision instead of doing a divide or
21698 square root and divide for floating-point arguments. You should use
21699 the @option{-ffast-math} option when using @option{-mrecip} (or at
21700 least @option{-funsafe-math-optimizations},
21701 @option{-ffinite-math-only}, @option{-freciprocal-math} and
21702 @option{-fno-trapping-math}). Note that while the throughput of the
21703 sequence is generally higher than the throughput of the non-reciprocal
21704 instruction, the precision of the sequence can be decreased by up to 2
21705 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
21706 roots.
21707
21708 @item -mrecip=@var{opt}
21709 @opindex mrecip=opt
21710 This option controls which reciprocal estimate instructions
21711 may be used. @var{opt} is a comma-separated list of options, which may
21712 be preceded by a @code{!} to invert the option:
21713
21714 @table @samp
21715
21716 @item all
21717 Enable all estimate instructions.
21718
21719 @item default
21720 Enable the default instructions, equivalent to @option{-mrecip}.
21721
21722 @item none
21723 Disable all estimate instructions, equivalent to @option{-mno-recip}.
21724
21725 @item div
21726 Enable the reciprocal approximation instructions for both
21727 single and double precision.
21728
21729 @item divf
21730 Enable the single-precision reciprocal approximation instructions.
21731
21732 @item divd
21733 Enable the double-precision reciprocal approximation instructions.
21734
21735 @item rsqrt
21736 Enable the reciprocal square root approximation instructions for both
21737 single and double precision.
21738
21739 @item rsqrtf
21740 Enable the single-precision reciprocal square root approximation instructions.
21741
21742 @item rsqrtd
21743 Enable the double-precision reciprocal square root approximation instructions.
21744
21745 @end table
21746
21747 So, for example, @option{-mrecip=all,!rsqrtd} enables
21748 all of the reciprocal estimate instructions, except for the
21749 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
21750 which handle the double-precision reciprocal square root calculations.
21751
21752 @item -mrecip-precision
21753 @itemx -mno-recip-precision
21754 @opindex mrecip-precision
21755 Assume (do not assume) that the reciprocal estimate instructions
21756 provide higher-precision estimates than is mandated by the PowerPC
21757 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
21758 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
21759 The double-precision square root estimate instructions are not generated by
21760 default on low-precision machines, since they do not provide an
21761 estimate that converges after three steps.
21762
21763 @item -mveclibabi=@var{type}
21764 @opindex mveclibabi
21765 Specifies the ABI type to use for vectorizing intrinsics using an
21766 external library. The only type supported at present is @samp{mass},
21767 which specifies to use IBM's Mathematical Acceleration Subsystem
21768 (MASS) libraries for vectorizing intrinsics using external libraries.
21769 GCC currently emits calls to @code{acosd2}, @code{acosf4},
21770 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
21771 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
21772 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
21773 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
21774 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
21775 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
21776 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
21777 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
21778 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
21779 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
21780 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
21781 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
21782 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
21783 for power7. Both @option{-ftree-vectorize} and
21784 @option{-funsafe-math-optimizations} must also be enabled. The MASS
21785 libraries must be specified at link time.
21786
21787 @item -mfriz
21788 @itemx -mno-friz
21789 @opindex mfriz
21790 Generate (do not generate) the @code{friz} instruction when the
21791 @option{-funsafe-math-optimizations} option is used to optimize
21792 rounding of floating-point values to 64-bit integer and back to floating
21793 point. The @code{friz} instruction does not return the same value if
21794 the floating-point number is too large to fit in an integer.
21795
21796 @item -mpointers-to-nested-functions
21797 @itemx -mno-pointers-to-nested-functions
21798 @opindex mpointers-to-nested-functions
21799 Generate (do not generate) code to load up the static chain register
21800 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
21801 systems where a function pointer points to a 3-word descriptor giving
21802 the function address, TOC value to be loaded in register @code{r2}, and
21803 static chain value to be loaded in register @code{r11}. The
21804 @option{-mpointers-to-nested-functions} is on by default. You cannot
21805 call through pointers to nested functions or pointers
21806 to functions compiled in other languages that use the static chain if
21807 you use @option{-mno-pointers-to-nested-functions}.
21808
21809 @item -msave-toc-indirect
21810 @itemx -mno-save-toc-indirect
21811 @opindex msave-toc-indirect
21812 Generate (do not generate) code to save the TOC value in the reserved
21813 stack location in the function prologue if the function calls through
21814 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
21815 saved in the prologue, it is saved just before the call through the
21816 pointer. The @option{-mno-save-toc-indirect} option is the default.
21817
21818 @item -mcompat-align-parm
21819 @itemx -mno-compat-align-parm
21820 @opindex mcompat-align-parm
21821 Generate (do not generate) code to pass structure parameters with a
21822 maximum alignment of 64 bits, for compatibility with older versions
21823 of GCC.
21824
21825 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
21826 structure parameter on a 128-bit boundary when that structure contained
21827 a member requiring 128-bit alignment. This is corrected in more
21828 recent versions of GCC. This option may be used to generate code
21829 that is compatible with functions compiled with older versions of
21830 GCC.
21831
21832 The @option{-mno-compat-align-parm} option is the default.
21833 @end table
21834
21835 @node RX Options
21836 @subsection RX Options
21837 @cindex RX Options
21838
21839 These command-line options are defined for RX targets:
21840
21841 @table @gcctabopt
21842 @item -m64bit-doubles
21843 @itemx -m32bit-doubles
21844 @opindex m64bit-doubles
21845 @opindex m32bit-doubles
21846 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
21847 or 32 bits (@option{-m32bit-doubles}) in size. The default is
21848 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
21849 works on 32-bit values, which is why the default is
21850 @option{-m32bit-doubles}.
21851
21852 @item -fpu
21853 @itemx -nofpu
21854 @opindex fpu
21855 @opindex nofpu
21856 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
21857 floating-point hardware. The default is enabled for the RX600
21858 series and disabled for the RX200 series.
21859
21860 Floating-point instructions are only generated for 32-bit floating-point
21861 values, however, so the FPU hardware is not used for doubles if the
21862 @option{-m64bit-doubles} option is used.
21863
21864 @emph{Note} If the @option{-fpu} option is enabled then
21865 @option{-funsafe-math-optimizations} is also enabled automatically.
21866 This is because the RX FPU instructions are themselves unsafe.
21867
21868 @item -mcpu=@var{name}
21869 @opindex mcpu
21870 Selects the type of RX CPU to be targeted. Currently three types are
21871 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
21872 the specific @samp{RX610} CPU. The default is @samp{RX600}.
21873
21874 The only difference between @samp{RX600} and @samp{RX610} is that the
21875 @samp{RX610} does not support the @code{MVTIPL} instruction.
21876
21877 The @samp{RX200} series does not have a hardware floating-point unit
21878 and so @option{-nofpu} is enabled by default when this type is
21879 selected.
21880
21881 @item -mbig-endian-data
21882 @itemx -mlittle-endian-data
21883 @opindex mbig-endian-data
21884 @opindex mlittle-endian-data
21885 Store data (but not code) in the big-endian format. The default is
21886 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
21887 format.
21888
21889 @item -msmall-data-limit=@var{N}
21890 @opindex msmall-data-limit
21891 Specifies the maximum size in bytes of global and static variables
21892 which can be placed into the small data area. Using the small data
21893 area can lead to smaller and faster code, but the size of area is
21894 limited and it is up to the programmer to ensure that the area does
21895 not overflow. Also when the small data area is used one of the RX's
21896 registers (usually @code{r13}) is reserved for use pointing to this
21897 area, so it is no longer available for use by the compiler. This
21898 could result in slower and/or larger code if variables are pushed onto
21899 the stack instead of being held in this register.
21900
21901 Note, common variables (variables that have not been initialized) and
21902 constants are not placed into the small data area as they are assigned
21903 to other sections in the output executable.
21904
21905 The default value is zero, which disables this feature. Note, this
21906 feature is not enabled by default with higher optimization levels
21907 (@option{-O2} etc) because of the potentially detrimental effects of
21908 reserving a register. It is up to the programmer to experiment and
21909 discover whether this feature is of benefit to their program. See the
21910 description of the @option{-mpid} option for a description of how the
21911 actual register to hold the small data area pointer is chosen.
21912
21913 @item -msim
21914 @itemx -mno-sim
21915 @opindex msim
21916 @opindex mno-sim
21917 Use the simulator runtime. The default is to use the libgloss
21918 board-specific runtime.
21919
21920 @item -mas100-syntax
21921 @itemx -mno-as100-syntax
21922 @opindex mas100-syntax
21923 @opindex mno-as100-syntax
21924 When generating assembler output use a syntax that is compatible with
21925 Renesas's AS100 assembler. This syntax can also be handled by the GAS
21926 assembler, but it has some restrictions so it is not generated by default.
21927
21928 @item -mmax-constant-size=@var{N}
21929 @opindex mmax-constant-size
21930 Specifies the maximum size, in bytes, of a constant that can be used as
21931 an operand in a RX instruction. Although the RX instruction set does
21932 allow constants of up to 4 bytes in length to be used in instructions,
21933 a longer value equates to a longer instruction. Thus in some
21934 circumstances it can be beneficial to restrict the size of constants
21935 that are used in instructions. Constants that are too big are instead
21936 placed into a constant pool and referenced via register indirection.
21937
21938 The value @var{N} can be between 0 and 4. A value of 0 (the default)
21939 or 4 means that constants of any size are allowed.
21940
21941 @item -mrelax
21942 @opindex mrelax
21943 Enable linker relaxation. Linker relaxation is a process whereby the
21944 linker attempts to reduce the size of a program by finding shorter
21945 versions of various instructions. Disabled by default.
21946
21947 @item -mint-register=@var{N}
21948 @opindex mint-register
21949 Specify the number of registers to reserve for fast interrupt handler
21950 functions. The value @var{N} can be between 0 and 4. A value of 1
21951 means that register @code{r13} is reserved for the exclusive use
21952 of fast interrupt handlers. A value of 2 reserves @code{r13} and
21953 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
21954 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
21955 A value of 0, the default, does not reserve any registers.
21956
21957 @item -msave-acc-in-interrupts
21958 @opindex msave-acc-in-interrupts
21959 Specifies that interrupt handler functions should preserve the
21960 accumulator register. This is only necessary if normal code might use
21961 the accumulator register, for example because it performs 64-bit
21962 multiplications. The default is to ignore the accumulator as this
21963 makes the interrupt handlers faster.
21964
21965 @item -mpid
21966 @itemx -mno-pid
21967 @opindex mpid
21968 @opindex mno-pid
21969 Enables the generation of position independent data. When enabled any
21970 access to constant data is done via an offset from a base address
21971 held in a register. This allows the location of constant data to be
21972 determined at run time without requiring the executable to be
21973 relocated, which is a benefit to embedded applications with tight
21974 memory constraints. Data that can be modified is not affected by this
21975 option.
21976
21977 Note, using this feature reserves a register, usually @code{r13}, for
21978 the constant data base address. This can result in slower and/or
21979 larger code, especially in complicated functions.
21980
21981 The actual register chosen to hold the constant data base address
21982 depends upon whether the @option{-msmall-data-limit} and/or the
21983 @option{-mint-register} command-line options are enabled. Starting
21984 with register @code{r13} and proceeding downwards, registers are
21985 allocated first to satisfy the requirements of @option{-mint-register},
21986 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
21987 is possible for the small data area register to be @code{r8} if both
21988 @option{-mint-register=4} and @option{-mpid} are specified on the
21989 command line.
21990
21991 By default this feature is not enabled. The default can be restored
21992 via the @option{-mno-pid} command-line option.
21993
21994 @item -mno-warn-multiple-fast-interrupts
21995 @itemx -mwarn-multiple-fast-interrupts
21996 @opindex mno-warn-multiple-fast-interrupts
21997 @opindex mwarn-multiple-fast-interrupts
21998 Prevents GCC from issuing a warning message if it finds more than one
21999 fast interrupt handler when it is compiling a file. The default is to
22000 issue a warning for each extra fast interrupt handler found, as the RX
22001 only supports one such interrupt.
22002
22003 @item -mallow-string-insns
22004 @itemx -mno-allow-string-insns
22005 @opindex mallow-string-insns
22006 @opindex mno-allow-string-insns
22007 Enables or disables the use of the string manipulation instructions
22008 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
22009 @code{SWHILE} and also the @code{RMPA} instruction. These
22010 instructions may prefetch data, which is not safe to do if accessing
22011 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
22012 for more information).
22013
22014 The default is to allow these instructions, but it is not possible for
22015 GCC to reliably detect all circumstances where a string instruction
22016 might be used to access an I/O register, so their use cannot be
22017 disabled automatically. Instead it is reliant upon the programmer to
22018 use the @option{-mno-allow-string-insns} option if their program
22019 accesses I/O space.
22020
22021 When the instructions are enabled GCC defines the C preprocessor
22022 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
22023 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
22024
22025 @item -mjsr
22026 @itemx -mno-jsr
22027 @opindex mjsr
22028 @opindex mno-jsr
22029 Use only (or not only) @code{JSR} instructions to access functions.
22030 This option can be used when code size exceeds the range of @code{BSR}
22031 instructions. Note that @option{-mno-jsr} does not mean to not use
22032 @code{JSR} but instead means that any type of branch may be used.
22033 @end table
22034
22035 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
22036 has special significance to the RX port when used with the
22037 @code{interrupt} function attribute. This attribute indicates a
22038 function intended to process fast interrupts. GCC ensures
22039 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
22040 and/or @code{r13} and only provided that the normal use of the
22041 corresponding registers have been restricted via the
22042 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
22043 options.
22044
22045 @node S/390 and zSeries Options
22046 @subsection S/390 and zSeries Options
22047 @cindex S/390 and zSeries Options
22048
22049 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
22050
22051 @table @gcctabopt
22052 @item -mhard-float
22053 @itemx -msoft-float
22054 @opindex mhard-float
22055 @opindex msoft-float
22056 Use (do not use) the hardware floating-point instructions and registers
22057 for floating-point operations. When @option{-msoft-float} is specified,
22058 functions in @file{libgcc.a} are used to perform floating-point
22059 operations. When @option{-mhard-float} is specified, the compiler
22060 generates IEEE floating-point instructions. This is the default.
22061
22062 @item -mhard-dfp
22063 @itemx -mno-hard-dfp
22064 @opindex mhard-dfp
22065 @opindex mno-hard-dfp
22066 Use (do not use) the hardware decimal-floating-point instructions for
22067 decimal-floating-point operations. When @option{-mno-hard-dfp} is
22068 specified, functions in @file{libgcc.a} are used to perform
22069 decimal-floating-point operations. When @option{-mhard-dfp} is
22070 specified, the compiler generates decimal-floating-point hardware
22071 instructions. This is the default for @option{-march=z9-ec} or higher.
22072
22073 @item -mlong-double-64
22074 @itemx -mlong-double-128
22075 @opindex mlong-double-64
22076 @opindex mlong-double-128
22077 These switches control the size of @code{long double} type. A size
22078 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22079 type. This is the default.
22080
22081 @item -mbackchain
22082 @itemx -mno-backchain
22083 @opindex mbackchain
22084 @opindex mno-backchain
22085 Store (do not store) the address of the caller's frame as backchain pointer
22086 into the callee's stack frame.
22087 A backchain may be needed to allow debugging using tools that do not understand
22088 DWARF call frame information.
22089 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
22090 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
22091 the backchain is placed into the topmost word of the 96/160 byte register
22092 save area.
22093
22094 In general, code compiled with @option{-mbackchain} is call-compatible with
22095 code compiled with @option{-mmo-backchain}; however, use of the backchain
22096 for debugging purposes usually requires that the whole binary is built with
22097 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
22098 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
22099 to build a linux kernel use @option{-msoft-float}.
22100
22101 The default is to not maintain the backchain.
22102
22103 @item -mpacked-stack
22104 @itemx -mno-packed-stack
22105 @opindex mpacked-stack
22106 @opindex mno-packed-stack
22107 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
22108 specified, the compiler uses the all fields of the 96/160 byte register save
22109 area only for their default purpose; unused fields still take up stack space.
22110 When @option{-mpacked-stack} is specified, register save slots are densely
22111 packed at the top of the register save area; unused space is reused for other
22112 purposes, allowing for more efficient use of the available stack space.
22113 However, when @option{-mbackchain} is also in effect, the topmost word of
22114 the save area is always used to store the backchain, and the return address
22115 register is always saved two words below the backchain.
22116
22117 As long as the stack frame backchain is not used, code generated with
22118 @option{-mpacked-stack} is call-compatible with code generated with
22119 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
22120 S/390 or zSeries generated code that uses the stack frame backchain at run
22121 time, not just for debugging purposes. Such code is not call-compatible
22122 with code compiled with @option{-mpacked-stack}. Also, note that the
22123 combination of @option{-mbackchain},
22124 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
22125 to build a linux kernel use @option{-msoft-float}.
22126
22127 The default is to not use the packed stack layout.
22128
22129 @item -msmall-exec
22130 @itemx -mno-small-exec
22131 @opindex msmall-exec
22132 @opindex mno-small-exec
22133 Generate (or do not generate) code using the @code{bras} instruction
22134 to do subroutine calls.
22135 This only works reliably if the total executable size does not
22136 exceed 64k. The default is to use the @code{basr} instruction instead,
22137 which does not have this limitation.
22138
22139 @item -m64
22140 @itemx -m31
22141 @opindex m64
22142 @opindex m31
22143 When @option{-m31} is specified, generate code compliant to the
22144 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
22145 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
22146 particular to generate 64-bit instructions. For the @samp{s390}
22147 targets, the default is @option{-m31}, while the @samp{s390x}
22148 targets default to @option{-m64}.
22149
22150 @item -mzarch
22151 @itemx -mesa
22152 @opindex mzarch
22153 @opindex mesa
22154 When @option{-mzarch} is specified, generate code using the
22155 instructions available on z/Architecture.
22156 When @option{-mesa} is specified, generate code using the
22157 instructions available on ESA/390. Note that @option{-mesa} is
22158 not possible with @option{-m64}.
22159 When generating code compliant to the GNU/Linux for S/390 ABI,
22160 the default is @option{-mesa}. When generating code compliant
22161 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
22162
22163 @item -mhtm
22164 @itemx -mno-htm
22165 @opindex mhtm
22166 @opindex mno-htm
22167 The @option{-mhtm} option enables a set of builtins making use of
22168 instructions available with the transactional execution facility
22169 introduced with the IBM zEnterprise EC12 machine generation
22170 @ref{S/390 System z Built-in Functions}.
22171 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
22172
22173 @item -mvx
22174 @itemx -mno-vx
22175 @opindex mvx
22176 @opindex mno-vx
22177 When @option{-mvx} is specified, generate code using the instructions
22178 available with the vector extension facility introduced with the IBM
22179 z13 machine generation.
22180 This option changes the ABI for some vector type values with regard to
22181 alignment and calling conventions. In case vector type values are
22182 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
22183 command will be added to mark the resulting binary with the ABI used.
22184 @option{-mvx} is enabled by default when using @option{-march=z13}.
22185
22186 @item -mzvector
22187 @itemx -mno-zvector
22188 @opindex mzvector
22189 @opindex mno-zvector
22190 The @option{-mzvector} option enables vector language extensions and
22191 builtins using instructions available with the vector extension
22192 facility introduced with the IBM z13 machine generation.
22193 This option adds support for @samp{vector} to be used as a keyword to
22194 define vector type variables and arguments. @samp{vector} is only
22195 available when GNU extensions are enabled. It will not be expanded
22196 when requesting strict standard compliance e.g. with @option{-std=c99}.
22197 In addition to the GCC low-level builtins @option{-mzvector} enables
22198 a set of builtins added for compatibility with AltiVec-style
22199 implementations like Power and Cell. In order to make use of these
22200 builtins the header file @file{vecintrin.h} needs to be included.
22201 @option{-mzvector} is disabled by default.
22202
22203 @item -mmvcle
22204 @itemx -mno-mvcle
22205 @opindex mmvcle
22206 @opindex mno-mvcle
22207 Generate (or do not generate) code using the @code{mvcle} instruction
22208 to perform block moves. When @option{-mno-mvcle} is specified,
22209 use a @code{mvc} loop instead. This is the default unless optimizing for
22210 size.
22211
22212 @item -mdebug
22213 @itemx -mno-debug
22214 @opindex mdebug
22215 @opindex mno-debug
22216 Print (or do not print) additional debug information when compiling.
22217 The default is to not print debug information.
22218
22219 @item -march=@var{cpu-type}
22220 @opindex march
22221 Generate code that runs on @var{cpu-type}, which is the name of a
22222 system representing a certain processor type. Possible values for
22223 @var{cpu-type} are @samp{z900}, @samp{z990}, @samp{z9-109},
22224 @samp{z9-ec}, @samp{z10}, @samp{z196}, @samp{zEC12}, and @samp{z13}.
22225 The default is @option{-march=z900}. @samp{g5} and @samp{g6} are
22226 deprecated and will be removed with future releases.
22227
22228 @item -mtune=@var{cpu-type}
22229 @opindex mtune
22230 Tune to @var{cpu-type} everything applicable about the generated code,
22231 except for the ABI and the set of available instructions.
22232 The list of @var{cpu-type} values is the same as for @option{-march}.
22233 The default is the value used for @option{-march}.
22234
22235 @item -mtpf-trace
22236 @itemx -mno-tpf-trace
22237 @opindex mtpf-trace
22238 @opindex mno-tpf-trace
22239 Generate code that adds (does not add) in TPF OS specific branches to trace
22240 routines in the operating system. This option is off by default, even
22241 when compiling for the TPF OS@.
22242
22243 @item -mfused-madd
22244 @itemx -mno-fused-madd
22245 @opindex mfused-madd
22246 @opindex mno-fused-madd
22247 Generate code that uses (does not use) the floating-point multiply and
22248 accumulate instructions. These instructions are generated by default if
22249 hardware floating point is used.
22250
22251 @item -mwarn-framesize=@var{framesize}
22252 @opindex mwarn-framesize
22253 Emit a warning if the current function exceeds the given frame size. Because
22254 this is a compile-time check it doesn't need to be a real problem when the program
22255 runs. It is intended to identify functions that most probably cause
22256 a stack overflow. It is useful to be used in an environment with limited stack
22257 size e.g.@: the linux kernel.
22258
22259 @item -mwarn-dynamicstack
22260 @opindex mwarn-dynamicstack
22261 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
22262 arrays. This is generally a bad idea with a limited stack size.
22263
22264 @item -mstack-guard=@var{stack-guard}
22265 @itemx -mstack-size=@var{stack-size}
22266 @opindex mstack-guard
22267 @opindex mstack-size
22268 If these options are provided the S/390 back end emits additional instructions in
22269 the function prologue that trigger a trap if the stack size is @var{stack-guard}
22270 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
22271 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
22272 the frame size of the compiled function is chosen.
22273 These options are intended to be used to help debugging stack overflow problems.
22274 The additionally emitted code causes only little overhead and hence can also be
22275 used in production-like systems without greater performance degradation. The given
22276 values have to be exact powers of 2 and @var{stack-size} has to be greater than
22277 @var{stack-guard} without exceeding 64k.
22278 In order to be efficient the extra code makes the assumption that the stack starts
22279 at an address aligned to the value given by @var{stack-size}.
22280 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
22281
22282 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
22283 @opindex mhotpatch
22284 If the hotpatch option is enabled, a ``hot-patching'' function
22285 prologue is generated for all functions in the compilation unit.
22286 The funtion label is prepended with the given number of two-byte
22287 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
22288 the label, 2 * @var{post-halfwords} bytes are appended, using the
22289 largest NOP like instructions the architecture allows (maximum
22290 1000000).
22291
22292 If both arguments are zero, hotpatching is disabled.
22293
22294 This option can be overridden for individual functions with the
22295 @code{hotpatch} attribute.
22296 @end table
22297
22298 @node Score Options
22299 @subsection Score Options
22300 @cindex Score Options
22301
22302 These options are defined for Score implementations:
22303
22304 @table @gcctabopt
22305 @item -meb
22306 @opindex meb
22307 Compile code for big-endian mode. This is the default.
22308
22309 @item -mel
22310 @opindex mel
22311 Compile code for little-endian mode.
22312
22313 @item -mnhwloop
22314 @opindex mnhwloop
22315 Disable generation of @code{bcnz} instructions.
22316
22317 @item -muls
22318 @opindex muls
22319 Enable generation of unaligned load and store instructions.
22320
22321 @item -mmac
22322 @opindex mmac
22323 Enable the use of multiply-accumulate instructions. Disabled by default.
22324
22325 @item -mscore5
22326 @opindex mscore5
22327 Specify the SCORE5 as the target architecture.
22328
22329 @item -mscore5u
22330 @opindex mscore5u
22331 Specify the SCORE5U of the target architecture.
22332
22333 @item -mscore7
22334 @opindex mscore7
22335 Specify the SCORE7 as the target architecture. This is the default.
22336
22337 @item -mscore7d
22338 @opindex mscore7d
22339 Specify the SCORE7D as the target architecture.
22340 @end table
22341
22342 @node SH Options
22343 @subsection SH Options
22344
22345 These @samp{-m} options are defined for the SH implementations:
22346
22347 @table @gcctabopt
22348 @item -m1
22349 @opindex m1
22350 Generate code for the SH1.
22351
22352 @item -m2
22353 @opindex m2
22354 Generate code for the SH2.
22355
22356 @item -m2e
22357 Generate code for the SH2e.
22358
22359 @item -m2a-nofpu
22360 @opindex m2a-nofpu
22361 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
22362 that the floating-point unit is not used.
22363
22364 @item -m2a-single-only
22365 @opindex m2a-single-only
22366 Generate code for the SH2a-FPU, in such a way that no double-precision
22367 floating-point operations are used.
22368
22369 @item -m2a-single
22370 @opindex m2a-single
22371 Generate code for the SH2a-FPU assuming the floating-point unit is in
22372 single-precision mode by default.
22373
22374 @item -m2a
22375 @opindex m2a
22376 Generate code for the SH2a-FPU assuming the floating-point unit is in
22377 double-precision mode by default.
22378
22379 @item -m3
22380 @opindex m3
22381 Generate code for the SH3.
22382
22383 @item -m3e
22384 @opindex m3e
22385 Generate code for the SH3e.
22386
22387 @item -m4-nofpu
22388 @opindex m4-nofpu
22389 Generate code for the SH4 without a floating-point unit.
22390
22391 @item -m4-single-only
22392 @opindex m4-single-only
22393 Generate code for the SH4 with a floating-point unit that only
22394 supports single-precision arithmetic.
22395
22396 @item -m4-single
22397 @opindex m4-single
22398 Generate code for the SH4 assuming the floating-point unit is in
22399 single-precision mode by default.
22400
22401 @item -m4
22402 @opindex m4
22403 Generate code for the SH4.
22404
22405 @item -m4-100
22406 @opindex m4-100
22407 Generate code for SH4-100.
22408
22409 @item -m4-100-nofpu
22410 @opindex m4-100-nofpu
22411 Generate code for SH4-100 in such a way that the
22412 floating-point unit is not used.
22413
22414 @item -m4-100-single
22415 @opindex m4-100-single
22416 Generate code for SH4-100 assuming the floating-point unit is in
22417 single-precision mode by default.
22418
22419 @item -m4-100-single-only
22420 @opindex m4-100-single-only
22421 Generate code for SH4-100 in such a way that no double-precision
22422 floating-point operations are used.
22423
22424 @item -m4-200
22425 @opindex m4-200
22426 Generate code for SH4-200.
22427
22428 @item -m4-200-nofpu
22429 @opindex m4-200-nofpu
22430 Generate code for SH4-200 without in such a way that the
22431 floating-point unit is not used.
22432
22433 @item -m4-200-single
22434 @opindex m4-200-single
22435 Generate code for SH4-200 assuming the floating-point unit is in
22436 single-precision mode by default.
22437
22438 @item -m4-200-single-only
22439 @opindex m4-200-single-only
22440 Generate code for SH4-200 in such a way that no double-precision
22441 floating-point operations are used.
22442
22443 @item -m4-300
22444 @opindex m4-300
22445 Generate code for SH4-300.
22446
22447 @item -m4-300-nofpu
22448 @opindex m4-300-nofpu
22449 Generate code for SH4-300 without in such a way that the
22450 floating-point unit is not used.
22451
22452 @item -m4-300-single
22453 @opindex m4-300-single
22454 Generate code for SH4-300 in such a way that no double-precision
22455 floating-point operations are used.
22456
22457 @item -m4-300-single-only
22458 @opindex m4-300-single-only
22459 Generate code for SH4-300 in such a way that no double-precision
22460 floating-point operations are used.
22461
22462 @item -m4-340
22463 @opindex m4-340
22464 Generate code for SH4-340 (no MMU, no FPU).
22465
22466 @item -m4-500
22467 @opindex m4-500
22468 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
22469 assembler.
22470
22471 @item -m4a-nofpu
22472 @opindex m4a-nofpu
22473 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
22474 floating-point unit is not used.
22475
22476 @item -m4a-single-only
22477 @opindex m4a-single-only
22478 Generate code for the SH4a, in such a way that no double-precision
22479 floating-point operations are used.
22480
22481 @item -m4a-single
22482 @opindex m4a-single
22483 Generate code for the SH4a assuming the floating-point unit is in
22484 single-precision mode by default.
22485
22486 @item -m4a
22487 @opindex m4a
22488 Generate code for the SH4a.
22489
22490 @item -m4al
22491 @opindex m4al
22492 Same as @option{-m4a-nofpu}, except that it implicitly passes
22493 @option{-dsp} to the assembler. GCC doesn't generate any DSP
22494 instructions at the moment.
22495
22496 @item -mb
22497 @opindex mb
22498 Compile code for the processor in big-endian mode.
22499
22500 @item -ml
22501 @opindex ml
22502 Compile code for the processor in little-endian mode.
22503
22504 @item -mdalign
22505 @opindex mdalign
22506 Align doubles at 64-bit boundaries. Note that this changes the calling
22507 conventions, and thus some functions from the standard C library do
22508 not work unless you recompile it first with @option{-mdalign}.
22509
22510 @item -mrelax
22511 @opindex mrelax
22512 Shorten some address references at link time, when possible; uses the
22513 linker option @option{-relax}.
22514
22515 @item -mbigtable
22516 @opindex mbigtable
22517 Use 32-bit offsets in @code{switch} tables. The default is to use
22518 16-bit offsets.
22519
22520 @item -mbitops
22521 @opindex mbitops
22522 Enable the use of bit manipulation instructions on SH2A.
22523
22524 @item -mfmovd
22525 @opindex mfmovd
22526 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
22527 alignment constraints.
22528
22529 @item -mrenesas
22530 @opindex mrenesas
22531 Comply with the calling conventions defined by Renesas.
22532
22533 @item -mno-renesas
22534 @opindex mno-renesas
22535 Comply with the calling conventions defined for GCC before the Renesas
22536 conventions were available. This option is the default for all
22537 targets of the SH toolchain.
22538
22539 @item -mnomacsave
22540 @opindex mnomacsave
22541 Mark the @code{MAC} register as call-clobbered, even if
22542 @option{-mrenesas} is given.
22543
22544 @item -mieee
22545 @itemx -mno-ieee
22546 @opindex mieee
22547 @opindex mno-ieee
22548 Control the IEEE compliance of floating-point comparisons, which affects the
22549 handling of cases where the result of a comparison is unordered. By default
22550 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
22551 enabled @option{-mno-ieee} is implicitly set, which results in faster
22552 floating-point greater-equal and less-equal comparisons. The implicit settings
22553 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
22554
22555 @item -minline-ic_invalidate
22556 @opindex minline-ic_invalidate
22557 Inline code to invalidate instruction cache entries after setting up
22558 nested function trampolines.
22559 This option has no effect if @option{-musermode} is in effect and the selected
22560 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
22561 instruction.
22562 If the selected code generation option does not allow the use of the @code{icbi}
22563 instruction, and @option{-musermode} is not in effect, the inlined code
22564 manipulates the instruction cache address array directly with an associative
22565 write. This not only requires privileged mode at run time, but it also
22566 fails if the cache line had been mapped via the TLB and has become unmapped.
22567
22568 @item -misize
22569 @opindex misize
22570 Dump instruction size and location in the assembly code.
22571
22572 @item -mpadstruct
22573 @opindex mpadstruct
22574 This option is deprecated. It pads structures to multiple of 4 bytes,
22575 which is incompatible with the SH ABI@.
22576
22577 @item -matomic-model=@var{model}
22578 @opindex matomic-model=@var{model}
22579 Sets the model of atomic operations and additional parameters as a comma
22580 separated list. For details on the atomic built-in functions see
22581 @ref{__atomic Builtins}. The following models and parameters are supported:
22582
22583 @table @samp
22584
22585 @item none
22586 Disable compiler generated atomic sequences and emit library calls for atomic
22587 operations. This is the default if the target is not @code{sh*-*-linux*}.
22588
22589 @item soft-gusa
22590 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
22591 built-in functions. The generated atomic sequences require additional support
22592 from the interrupt/exception handling code of the system and are only suitable
22593 for SH3* and SH4* single-core systems. This option is enabled by default when
22594 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
22595 this option also partially utilizes the hardware atomic instructions
22596 @code{movli.l} and @code{movco.l} to create more efficient code, unless
22597 @samp{strict} is specified.
22598
22599 @item soft-tcb
22600 Generate software atomic sequences that use a variable in the thread control
22601 block. This is a variation of the gUSA sequences which can also be used on
22602 SH1* and SH2* targets. The generated atomic sequences require additional
22603 support from the interrupt/exception handling code of the system and are only
22604 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
22605 parameter has to be specified as well.
22606
22607 @item soft-imask
22608 Generate software atomic sequences that temporarily disable interrupts by
22609 setting @code{SR.IMASK = 1111}. This model works only when the program runs
22610 in privileged mode and is only suitable for single-core systems. Additional
22611 support from the interrupt/exception handling code of the system is not
22612 required. This model is enabled by default when the target is
22613 @code{sh*-*-linux*} and SH1* or SH2*.
22614
22615 @item hard-llcs
22616 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
22617 instructions only. This is only available on SH4A and is suitable for
22618 multi-core systems. Since the hardware instructions support only 32 bit atomic
22619 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
22620 Code compiled with this option is also compatible with other software
22621 atomic model interrupt/exception handling systems if executed on an SH4A
22622 system. Additional support from the interrupt/exception handling code of the
22623 system is not required for this model.
22624
22625 @item gbr-offset=
22626 This parameter specifies the offset in bytes of the variable in the thread
22627 control block structure that should be used by the generated atomic sequences
22628 when the @samp{soft-tcb} model has been selected. For other models this
22629 parameter is ignored. The specified value must be an integer multiple of four
22630 and in the range 0-1020.
22631
22632 @item strict
22633 This parameter prevents mixed usage of multiple atomic models, even if they
22634 are compatible, and makes the compiler generate atomic sequences of the
22635 specified model only.
22636
22637 @end table
22638
22639 @item -mtas
22640 @opindex mtas
22641 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
22642 Notice that depending on the particular hardware and software configuration
22643 this can degrade overall performance due to the operand cache line flushes
22644 that are implied by the @code{tas.b} instruction. On multi-core SH4A
22645 processors the @code{tas.b} instruction must be used with caution since it
22646 can result in data corruption for certain cache configurations.
22647
22648 @item -mprefergot
22649 @opindex mprefergot
22650 When generating position-independent code, emit function calls using
22651 the Global Offset Table instead of the Procedure Linkage Table.
22652
22653 @item -musermode
22654 @itemx -mno-usermode
22655 @opindex musermode
22656 @opindex mno-usermode
22657 Don't allow (allow) the compiler generating privileged mode code. Specifying
22658 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
22659 inlined code would not work in user mode. @option{-musermode} is the default
22660 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
22661 @option{-musermode} has no effect, since there is no user mode.
22662
22663 @item -multcost=@var{number}
22664 @opindex multcost=@var{number}
22665 Set the cost to assume for a multiply insn.
22666
22667 @item -mdiv=@var{strategy}
22668 @opindex mdiv=@var{strategy}
22669 Set the division strategy to be used for integer division operations.
22670 @var{strategy} can be one of:
22671
22672 @table @samp
22673
22674 @item call-div1
22675 Calls a library function that uses the single-step division instruction
22676 @code{div1} to perform the operation. Division by zero calculates an
22677 unspecified result and does not trap. This is the default except for SH4,
22678 SH2A and SHcompact.
22679
22680 @item call-fp
22681 Calls a library function that performs the operation in double precision
22682 floating point. Division by zero causes a floating-point exception. This is
22683 the default for SHcompact with FPU. Specifying this for targets that do not
22684 have a double precision FPU defaults to @code{call-div1}.
22685
22686 @item call-table
22687 Calls a library function that uses a lookup table for small divisors and
22688 the @code{div1} instruction with case distinction for larger divisors. Division
22689 by zero calculates an unspecified result and does not trap. This is the default
22690 for SH4. Specifying this for targets that do not have dynamic shift
22691 instructions defaults to @code{call-div1}.
22692
22693 @end table
22694
22695 When a division strategy has not been specified the default strategy is
22696 selected based on the current target. For SH2A the default strategy is to
22697 use the @code{divs} and @code{divu} instructions instead of library function
22698 calls.
22699
22700 @item -maccumulate-outgoing-args
22701 @opindex maccumulate-outgoing-args
22702 Reserve space once for outgoing arguments in the function prologue rather
22703 than around each call. Generally beneficial for performance and size. Also
22704 needed for unwinding to avoid changing the stack frame around conditional code.
22705
22706 @item -mdivsi3_libfunc=@var{name}
22707 @opindex mdivsi3_libfunc=@var{name}
22708 Set the name of the library function used for 32-bit signed division to
22709 @var{name}.
22710 This only affects the name used in the @samp{call} division strategies, and
22711 the compiler still expects the same sets of input/output/clobbered registers as
22712 if this option were not present.
22713
22714 @item -mfixed-range=@var{register-range}
22715 @opindex mfixed-range
22716 Generate code treating the given register range as fixed registers.
22717 A fixed register is one that the register allocator can not use. This is
22718 useful when compiling kernel code. A register range is specified as
22719 two registers separated by a dash. Multiple register ranges can be
22720 specified separated by a comma.
22721
22722 @item -mbranch-cost=@var{num}
22723 @opindex mbranch-cost=@var{num}
22724 Assume @var{num} to be the cost for a branch instruction. Higher numbers
22725 make the compiler try to generate more branch-free code if possible.
22726 If not specified the value is selected depending on the processor type that
22727 is being compiled for.
22728
22729 @item -mzdcbranch
22730 @itemx -mno-zdcbranch
22731 @opindex mzdcbranch
22732 @opindex mno-zdcbranch
22733 Assume (do not assume) that zero displacement conditional branch instructions
22734 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
22735 compiler prefers zero displacement branch code sequences. This is
22736 enabled by default when generating code for SH4 and SH4A. It can be explicitly
22737 disabled by specifying @option{-mno-zdcbranch}.
22738
22739 @item -mcbranch-force-delay-slot
22740 @opindex mcbranch-force-delay-slot
22741 Force the usage of delay slots for conditional branches, which stuffs the delay
22742 slot with a @code{nop} if a suitable instruction can't be found. By default
22743 this option is disabled. It can be enabled to work around hardware bugs as
22744 found in the original SH7055.
22745
22746 @item -mfused-madd
22747 @itemx -mno-fused-madd
22748 @opindex mfused-madd
22749 @opindex mno-fused-madd
22750 Generate code that uses (does not use) the floating-point multiply and
22751 accumulate instructions. These instructions are generated by default
22752 if hardware floating point is used. The machine-dependent
22753 @option{-mfused-madd} option is now mapped to the machine-independent
22754 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
22755 mapped to @option{-ffp-contract=off}.
22756
22757 @item -mfsca
22758 @itemx -mno-fsca
22759 @opindex mfsca
22760 @opindex mno-fsca
22761 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
22762 and cosine approximations. The option @option{-mfsca} must be used in
22763 combination with @option{-funsafe-math-optimizations}. It is enabled by default
22764 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
22765 approximations even if @option{-funsafe-math-optimizations} is in effect.
22766
22767 @item -mfsrra
22768 @itemx -mno-fsrra
22769 @opindex mfsrra
22770 @opindex mno-fsrra
22771 Allow or disallow the compiler to emit the @code{fsrra} instruction for
22772 reciprocal square root approximations. The option @option{-mfsrra} must be used
22773 in combination with @option{-funsafe-math-optimizations} and
22774 @option{-ffinite-math-only}. It is enabled by default when generating code for
22775 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
22776 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
22777 in effect.
22778
22779 @item -mpretend-cmove
22780 @opindex mpretend-cmove
22781 Prefer zero-displacement conditional branches for conditional move instruction
22782 patterns. This can result in faster code on the SH4 processor.
22783
22784 @item -mfdpic
22785 @opindex fdpic
22786 Generate code using the FDPIC ABI.
22787
22788 @end table
22789
22790 @node Solaris 2 Options
22791 @subsection Solaris 2 Options
22792 @cindex Solaris 2 options
22793
22794 These @samp{-m} options are supported on Solaris 2:
22795
22796 @table @gcctabopt
22797 @item -mclear-hwcap
22798 @opindex mclear-hwcap
22799 @option{-mclear-hwcap} tells the compiler to remove the hardware
22800 capabilities generated by the Solaris assembler. This is only necessary
22801 when object files use ISA extensions not supported by the current
22802 machine, but check at runtime whether or not to use them.
22803
22804 @item -mimpure-text
22805 @opindex mimpure-text
22806 @option{-mimpure-text}, used in addition to @option{-shared}, tells
22807 the compiler to not pass @option{-z text} to the linker when linking a
22808 shared object. Using this option, you can link position-dependent
22809 code into a shared object.
22810
22811 @option{-mimpure-text} suppresses the ``relocations remain against
22812 allocatable but non-writable sections'' linker error message.
22813 However, the necessary relocations trigger copy-on-write, and the
22814 shared object is not actually shared across processes. Instead of
22815 using @option{-mimpure-text}, you should compile all source code with
22816 @option{-fpic} or @option{-fPIC}.
22817
22818 @end table
22819
22820 These switches are supported in addition to the above on Solaris 2:
22821
22822 @table @gcctabopt
22823 @item -pthreads
22824 @opindex pthreads
22825 Add support for multithreading using the POSIX threads library. This
22826 option sets flags for both the preprocessor and linker. This option does
22827 not affect the thread safety of object code produced by the compiler or
22828 that of libraries supplied with it.
22829
22830 @item -pthread
22831 @opindex pthread
22832 This is a synonym for @option{-pthreads}.
22833 @end table
22834
22835 @node SPARC Options
22836 @subsection SPARC Options
22837 @cindex SPARC options
22838
22839 These @samp{-m} options are supported on the SPARC:
22840
22841 @table @gcctabopt
22842 @item -mno-app-regs
22843 @itemx -mapp-regs
22844 @opindex mno-app-regs
22845 @opindex mapp-regs
22846 Specify @option{-mapp-regs} to generate output using the global registers
22847 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
22848 global register 1, each global register 2 through 4 is then treated as an
22849 allocable register that is clobbered by function calls. This is the default.
22850
22851 To be fully SVR4 ABI-compliant at the cost of some performance loss,
22852 specify @option{-mno-app-regs}. You should compile libraries and system
22853 software with this option.
22854
22855 @item -mflat
22856 @itemx -mno-flat
22857 @opindex mflat
22858 @opindex mno-flat
22859 With @option{-mflat}, the compiler does not generate save/restore instructions
22860 and uses a ``flat'' or single register window model. This model is compatible
22861 with the regular register window model. The local registers and the input
22862 registers (0--5) are still treated as ``call-saved'' registers and are
22863 saved on the stack as needed.
22864
22865 With @option{-mno-flat} (the default), the compiler generates save/restore
22866 instructions (except for leaf functions). This is the normal operating mode.
22867
22868 @item -mfpu
22869 @itemx -mhard-float
22870 @opindex mfpu
22871 @opindex mhard-float
22872 Generate output containing floating-point instructions. This is the
22873 default.
22874
22875 @item -mno-fpu
22876 @itemx -msoft-float
22877 @opindex mno-fpu
22878 @opindex msoft-float
22879 Generate output containing library calls for floating point.
22880 @strong{Warning:} the requisite libraries are not available for all SPARC
22881 targets. Normally the facilities of the machine's usual C compiler are
22882 used, but this cannot be done directly in cross-compilation. You must make
22883 your own arrangements to provide suitable library functions for
22884 cross-compilation. The embedded targets @samp{sparc-*-aout} and
22885 @samp{sparclite-*-*} do provide software floating-point support.
22886
22887 @option{-msoft-float} changes the calling convention in the output file;
22888 therefore, it is only useful if you compile @emph{all} of a program with
22889 this option. In particular, you need to compile @file{libgcc.a}, the
22890 library that comes with GCC, with @option{-msoft-float} in order for
22891 this to work.
22892
22893 @item -mhard-quad-float
22894 @opindex mhard-quad-float
22895 Generate output containing quad-word (long double) floating-point
22896 instructions.
22897
22898 @item -msoft-quad-float
22899 @opindex msoft-quad-float
22900 Generate output containing library calls for quad-word (long double)
22901 floating-point instructions. The functions called are those specified
22902 in the SPARC ABI@. This is the default.
22903
22904 As of this writing, there are no SPARC implementations that have hardware
22905 support for the quad-word floating-point instructions. They all invoke
22906 a trap handler for one of these instructions, and then the trap handler
22907 emulates the effect of the instruction. Because of the trap handler overhead,
22908 this is much slower than calling the ABI library routines. Thus the
22909 @option{-msoft-quad-float} option is the default.
22910
22911 @item -mno-unaligned-doubles
22912 @itemx -munaligned-doubles
22913 @opindex mno-unaligned-doubles
22914 @opindex munaligned-doubles
22915 Assume that doubles have 8-byte alignment. This is the default.
22916
22917 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
22918 alignment only if they are contained in another type, or if they have an
22919 absolute address. Otherwise, it assumes they have 4-byte alignment.
22920 Specifying this option avoids some rare compatibility problems with code
22921 generated by other compilers. It is not the default because it results
22922 in a performance loss, especially for floating-point code.
22923
22924 @item -muser-mode
22925 @itemx -mno-user-mode
22926 @opindex muser-mode
22927 @opindex mno-user-mode
22928 Do not generate code that can only run in supervisor mode. This is relevant
22929 only for the @code{casa} instruction emitted for the LEON3 processor. This
22930 is the default.
22931
22932 @item -mfaster-structs
22933 @itemx -mno-faster-structs
22934 @opindex mfaster-structs
22935 @opindex mno-faster-structs
22936 With @option{-mfaster-structs}, the compiler assumes that structures
22937 should have 8-byte alignment. This enables the use of pairs of
22938 @code{ldd} and @code{std} instructions for copies in structure
22939 assignment, in place of twice as many @code{ld} and @code{st} pairs.
22940 However, the use of this changed alignment directly violates the SPARC
22941 ABI@. Thus, it's intended only for use on targets where the developer
22942 acknowledges that their resulting code is not directly in line with
22943 the rules of the ABI@.
22944
22945 @item -mstd-struct-return
22946 @itemx -mno-std-struct-return
22947 @opindex mstd-struct-return
22948 @opindex mno-std-struct-return
22949 With @option{-mstd-struct-return}, the compiler generates checking code
22950 in functions returning structures or unions to detect size mismatches
22951 between the two sides of function calls, as per the 32-bit ABI@.
22952
22953 The default is @option{-mno-std-struct-return}. This option has no effect
22954 in 64-bit mode.
22955
22956 @item -mcpu=@var{cpu_type}
22957 @opindex mcpu
22958 Set the instruction set, register set, and instruction scheduling parameters
22959 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
22960 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
22961 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
22962 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
22963 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
22964 @samp{niagara3}, @samp{niagara4} and @samp{niagara7}.
22965
22966 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
22967 which selects the best architecture option for the host processor.
22968 @option{-mcpu=native} has no effect if GCC does not recognize
22969 the processor.
22970
22971 Default instruction scheduling parameters are used for values that select
22972 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
22973 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
22974
22975 Here is a list of each supported architecture and their supported
22976 implementations.
22977
22978 @table @asis
22979 @item v7
22980 cypress, leon3v7
22981
22982 @item v8
22983 supersparc, hypersparc, leon, leon3
22984
22985 @item sparclite
22986 f930, f934, sparclite86x
22987
22988 @item sparclet
22989 tsc701
22990
22991 @item v9
22992 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4, niagara7
22993 @end table
22994
22995 By default (unless configured otherwise), GCC generates code for the V7
22996 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
22997 additionally optimizes it for the Cypress CY7C602 chip, as used in the
22998 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
22999 SPARCStation 1, 2, IPX etc.
23000
23001 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
23002 architecture. The only difference from V7 code is that the compiler emits
23003 the integer multiply and integer divide instructions which exist in SPARC-V8
23004 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
23005 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
23006 2000 series.
23007
23008 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
23009 the SPARC architecture. This adds the integer multiply, integer divide step
23010 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
23011 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
23012 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
23013 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
23014 MB86934 chip, which is the more recent SPARClite with FPU@.
23015
23016 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
23017 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
23018 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
23019 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
23020 optimizes it for the TEMIC SPARClet chip.
23021
23022 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
23023 architecture. This adds 64-bit integer and floating-point move instructions,
23024 3 additional floating-point condition code registers and conditional move
23025 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
23026 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
23027 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
23028 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
23029 @option{-mcpu=niagara}, the compiler additionally optimizes it for
23030 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
23031 additionally optimizes it for Sun UltraSPARC T2 chips. With
23032 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
23033 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
23034 additionally optimizes it for Sun UltraSPARC T4 chips. With
23035 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
23036 Oracle SPARC M7 chips.
23037
23038 @item -mtune=@var{cpu_type}
23039 @opindex mtune
23040 Set the instruction scheduling parameters for machine type
23041 @var{cpu_type}, but do not set the instruction set or register set that the
23042 option @option{-mcpu=@var{cpu_type}} does.
23043
23044 The same values for @option{-mcpu=@var{cpu_type}} can be used for
23045 @option{-mtune=@var{cpu_type}}, but the only useful values are those
23046 that select a particular CPU implementation. Those are
23047 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
23048 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
23049 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
23050 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
23051 @samp{niagara4} and @samp{niagara7}. With native Solaris and
23052 GNU/Linux toolchains, @samp{native} can also be used.
23053
23054 @item -mv8plus
23055 @itemx -mno-v8plus
23056 @opindex mv8plus
23057 @opindex mno-v8plus
23058 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
23059 difference from the V8 ABI is that the global and out registers are
23060 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
23061 mode for all SPARC-V9 processors.
23062
23063 @item -mvis
23064 @itemx -mno-vis
23065 @opindex mvis
23066 @opindex mno-vis
23067 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
23068 Visual Instruction Set extensions. The default is @option{-mno-vis}.
23069
23070 @item -mvis2
23071 @itemx -mno-vis2
23072 @opindex mvis2
23073 @opindex mno-vis2
23074 With @option{-mvis2}, GCC generates code that takes advantage of
23075 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
23076 default is @option{-mvis2} when targeting a cpu that supports such
23077 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
23078 also sets @option{-mvis}.
23079
23080 @item -mvis3
23081 @itemx -mno-vis3
23082 @opindex mvis3
23083 @opindex mno-vis3
23084 With @option{-mvis3}, GCC generates code that takes advantage of
23085 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
23086 default is @option{-mvis3} when targeting a cpu that supports such
23087 instructions, such as niagara-3 and later. Setting @option{-mvis3}
23088 also sets @option{-mvis2} and @option{-mvis}.
23089
23090 @item -mvis4
23091 @itemx -mno-vis4
23092 @opindex mvis4
23093 @opindex mno-vis4
23094 With @option{-mvis4}, GCC generates code that takes advantage of
23095 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
23096 default is @option{-mvis4} when targeting a cpu that supports such
23097 instructions, such as niagara-7 and later. Setting @option{-mvis4}
23098 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
23099
23100 @item -mcbcond
23101 @itemx -mno-cbcond
23102 @opindex mcbcond
23103 @opindex mno-cbcond
23104 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
23105 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
23106 when targeting a CPU that supports such instructions, such as Niagara-4 and
23107 later.
23108
23109 @item -mfmaf
23110 @itemx -mno-fmaf
23111 @opindex mfmaf
23112 @opindex mno-fmaf
23113 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
23114 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
23115 when targeting a CPU that supports such instructions, such as Niagara-3 and
23116 later.
23117
23118 @item -mpopc
23119 @itemx -mno-popc
23120 @opindex mpopc
23121 @opindex mno-popc
23122 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
23123 Population Count instruction. The default is @option{-mpopc}
23124 when targeting a CPU that supports such an instruction, such as Niagara-2 and
23125 later.
23126
23127 @item -msubxc
23128 @itemx -mno-subxc
23129 @opindex msubxc
23130 @opindex mno-subxc
23131 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
23132 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
23133 when targeting a CPU that supports such an instruction, such as Niagara-7 and
23134 later.
23135
23136 @item -mfix-at697f
23137 @opindex mfix-at697f
23138 Enable the documented workaround for the single erratum of the Atmel AT697F
23139 processor (which corresponds to erratum #13 of the AT697E processor).
23140
23141 @item -mfix-ut699
23142 @opindex mfix-ut699
23143 Enable the documented workarounds for the floating-point errata and the data
23144 cache nullify errata of the UT699 processor.
23145 @end table
23146
23147 These @samp{-m} options are supported in addition to the above
23148 on SPARC-V9 processors in 64-bit environments:
23149
23150 @table @gcctabopt
23151 @item -m32
23152 @itemx -m64
23153 @opindex m32
23154 @opindex m64
23155 Generate code for a 32-bit or 64-bit environment.
23156 The 32-bit environment sets int, long and pointer to 32 bits.
23157 The 64-bit environment sets int to 32 bits and long and pointer
23158 to 64 bits.
23159
23160 @item -mcmodel=@var{which}
23161 @opindex mcmodel
23162 Set the code model to one of
23163
23164 @table @samp
23165 @item medlow
23166 The Medium/Low code model: 64-bit addresses, programs
23167 must be linked in the low 32 bits of memory. Programs can be statically
23168 or dynamically linked.
23169
23170 @item medmid
23171 The Medium/Middle code model: 64-bit addresses, programs
23172 must be linked in the low 44 bits of memory, the text and data segments must
23173 be less than 2GB in size and the data segment must be located within 2GB of
23174 the text segment.
23175
23176 @item medany
23177 The Medium/Anywhere code model: 64-bit addresses, programs
23178 may be linked anywhere in memory, the text and data segments must be less
23179 than 2GB in size and the data segment must be located within 2GB of the
23180 text segment.
23181
23182 @item embmedany
23183 The Medium/Anywhere code model for embedded systems:
23184 64-bit addresses, the text and data segments must be less than 2GB in
23185 size, both starting anywhere in memory (determined at link time). The
23186 global register %g4 points to the base of the data segment. Programs
23187 are statically linked and PIC is not supported.
23188 @end table
23189
23190 @item -mmemory-model=@var{mem-model}
23191 @opindex mmemory-model
23192 Set the memory model in force on the processor to one of
23193
23194 @table @samp
23195 @item default
23196 The default memory model for the processor and operating system.
23197
23198 @item rmo
23199 Relaxed Memory Order
23200
23201 @item pso
23202 Partial Store Order
23203
23204 @item tso
23205 Total Store Order
23206
23207 @item sc
23208 Sequential Consistency
23209 @end table
23210
23211 These memory models are formally defined in Appendix D of the Sparc V9
23212 architecture manual, as set in the processor's @code{PSTATE.MM} field.
23213
23214 @item -mstack-bias
23215 @itemx -mno-stack-bias
23216 @opindex mstack-bias
23217 @opindex mno-stack-bias
23218 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
23219 frame pointer if present, are offset by @minus{}2047 which must be added back
23220 when making stack frame references. This is the default in 64-bit mode.
23221 Otherwise, assume no such offset is present.
23222 @end table
23223
23224 @node SPU Options
23225 @subsection SPU Options
23226 @cindex SPU options
23227
23228 These @samp{-m} options are supported on the SPU:
23229
23230 @table @gcctabopt
23231 @item -mwarn-reloc
23232 @itemx -merror-reloc
23233 @opindex mwarn-reloc
23234 @opindex merror-reloc
23235
23236 The loader for SPU does not handle dynamic relocations. By default, GCC
23237 gives an error when it generates code that requires a dynamic
23238 relocation. @option{-mno-error-reloc} disables the error,
23239 @option{-mwarn-reloc} generates a warning instead.
23240
23241 @item -msafe-dma
23242 @itemx -munsafe-dma
23243 @opindex msafe-dma
23244 @opindex munsafe-dma
23245
23246 Instructions that initiate or test completion of DMA must not be
23247 reordered with respect to loads and stores of the memory that is being
23248 accessed.
23249 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
23250 memory accesses, but that can lead to inefficient code in places where the
23251 memory is known to not change. Rather than mark the memory as volatile,
23252 you can use @option{-msafe-dma} to tell the compiler to treat
23253 the DMA instructions as potentially affecting all memory.
23254
23255 @item -mbranch-hints
23256 @opindex mbranch-hints
23257
23258 By default, GCC generates a branch hint instruction to avoid
23259 pipeline stalls for always-taken or probably-taken branches. A hint
23260 is not generated closer than 8 instructions away from its branch.
23261 There is little reason to disable them, except for debugging purposes,
23262 or to make an object a little bit smaller.
23263
23264 @item -msmall-mem
23265 @itemx -mlarge-mem
23266 @opindex msmall-mem
23267 @opindex mlarge-mem
23268
23269 By default, GCC generates code assuming that addresses are never larger
23270 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
23271 a full 32-bit address.
23272
23273 @item -mstdmain
23274 @opindex mstdmain
23275
23276 By default, GCC links against startup code that assumes the SPU-style
23277 main function interface (which has an unconventional parameter list).
23278 With @option{-mstdmain}, GCC links your program against startup
23279 code that assumes a C99-style interface to @code{main}, including a
23280 local copy of @code{argv} strings.
23281
23282 @item -mfixed-range=@var{register-range}
23283 @opindex mfixed-range
23284 Generate code treating the given register range as fixed registers.
23285 A fixed register is one that the register allocator cannot use. This is
23286 useful when compiling kernel code. A register range is specified as
23287 two registers separated by a dash. Multiple register ranges can be
23288 specified separated by a comma.
23289
23290 @item -mea32
23291 @itemx -mea64
23292 @opindex mea32
23293 @opindex mea64
23294 Compile code assuming that pointers to the PPU address space accessed
23295 via the @code{__ea} named address space qualifier are either 32 or 64
23296 bits wide. The default is 32 bits. As this is an ABI-changing option,
23297 all object code in an executable must be compiled with the same setting.
23298
23299 @item -maddress-space-conversion
23300 @itemx -mno-address-space-conversion
23301 @opindex maddress-space-conversion
23302 @opindex mno-address-space-conversion
23303 Allow/disallow treating the @code{__ea} address space as superset
23304 of the generic address space. This enables explicit type casts
23305 between @code{__ea} and generic pointer as well as implicit
23306 conversions of generic pointers to @code{__ea} pointers. The
23307 default is to allow address space pointer conversions.
23308
23309 @item -mcache-size=@var{cache-size}
23310 @opindex mcache-size
23311 This option controls the version of libgcc that the compiler links to an
23312 executable and selects a software-managed cache for accessing variables
23313 in the @code{__ea} address space with a particular cache size. Possible
23314 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
23315 and @samp{128}. The default cache size is 64KB.
23316
23317 @item -matomic-updates
23318 @itemx -mno-atomic-updates
23319 @opindex matomic-updates
23320 @opindex mno-atomic-updates
23321 This option controls the version of libgcc that the compiler links to an
23322 executable and selects whether atomic updates to the software-managed
23323 cache of PPU-side variables are used. If you use atomic updates, changes
23324 to a PPU variable from SPU code using the @code{__ea} named address space
23325 qualifier do not interfere with changes to other PPU variables residing
23326 in the same cache line from PPU code. If you do not use atomic updates,
23327 such interference may occur; however, writing back cache lines is
23328 more efficient. The default behavior is to use atomic updates.
23329
23330 @item -mdual-nops
23331 @itemx -mdual-nops=@var{n}
23332 @opindex mdual-nops
23333 By default, GCC inserts NOPs to increase dual issue when it expects
23334 it to increase performance. @var{n} can be a value from 0 to 10. A
23335 smaller @var{n} inserts fewer NOPs. 10 is the default, 0 is the
23336 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
23337
23338 @item -mhint-max-nops=@var{n}
23339 @opindex mhint-max-nops
23340 Maximum number of NOPs to insert for a branch hint. A branch hint must
23341 be at least 8 instructions away from the branch it is affecting. GCC
23342 inserts up to @var{n} NOPs to enforce this, otherwise it does not
23343 generate the branch hint.
23344
23345 @item -mhint-max-distance=@var{n}
23346 @opindex mhint-max-distance
23347 The encoding of the branch hint instruction limits the hint to be within
23348 256 instructions of the branch it is affecting. By default, GCC makes
23349 sure it is within 125.
23350
23351 @item -msafe-hints
23352 @opindex msafe-hints
23353 Work around a hardware bug that causes the SPU to stall indefinitely.
23354 By default, GCC inserts the @code{hbrp} instruction to make sure
23355 this stall won't happen.
23356
23357 @end table
23358
23359 @node System V Options
23360 @subsection Options for System V
23361
23362 These additional options are available on System V Release 4 for
23363 compatibility with other compilers on those systems:
23364
23365 @table @gcctabopt
23366 @item -G
23367 @opindex G
23368 Create a shared object.
23369 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
23370
23371 @item -Qy
23372 @opindex Qy
23373 Identify the versions of each tool used by the compiler, in a
23374 @code{.ident} assembler directive in the output.
23375
23376 @item -Qn
23377 @opindex Qn
23378 Refrain from adding @code{.ident} directives to the output file (this is
23379 the default).
23380
23381 @item -YP,@var{dirs}
23382 @opindex YP
23383 Search the directories @var{dirs}, and no others, for libraries
23384 specified with @option{-l}.
23385
23386 @item -Ym,@var{dir}
23387 @opindex Ym
23388 Look in the directory @var{dir} to find the M4 preprocessor.
23389 The assembler uses this option.
23390 @c This is supposed to go with a -Yd for predefined M4 macro files, but
23391 @c the generic assembler that comes with Solaris takes just -Ym.
23392 @end table
23393
23394 @node TILE-Gx Options
23395 @subsection TILE-Gx Options
23396 @cindex TILE-Gx options
23397
23398 These @samp{-m} options are supported on the TILE-Gx:
23399
23400 @table @gcctabopt
23401 @item -mcmodel=small
23402 @opindex mcmodel=small
23403 Generate code for the small model. The distance for direct calls is
23404 limited to 500M in either direction. PC-relative addresses are 32
23405 bits. Absolute addresses support the full address range.
23406
23407 @item -mcmodel=large
23408 @opindex mcmodel=large
23409 Generate code for the large model. There is no limitation on call
23410 distance, pc-relative addresses, or absolute addresses.
23411
23412 @item -mcpu=@var{name}
23413 @opindex mcpu
23414 Selects the type of CPU to be targeted. Currently the only supported
23415 type is @samp{tilegx}.
23416
23417 @item -m32
23418 @itemx -m64
23419 @opindex m32
23420 @opindex m64
23421 Generate code for a 32-bit or 64-bit environment. The 32-bit
23422 environment sets int, long, and pointer to 32 bits. The 64-bit
23423 environment sets int to 32 bits and long and pointer to 64 bits.
23424
23425 @item -mbig-endian
23426 @itemx -mlittle-endian
23427 @opindex mbig-endian
23428 @opindex mlittle-endian
23429 Generate code in big/little endian mode, respectively.
23430 @end table
23431
23432 @node TILEPro Options
23433 @subsection TILEPro Options
23434 @cindex TILEPro options
23435
23436 These @samp{-m} options are supported on the TILEPro:
23437
23438 @table @gcctabopt
23439 @item -mcpu=@var{name}
23440 @opindex mcpu
23441 Selects the type of CPU to be targeted. Currently the only supported
23442 type is @samp{tilepro}.
23443
23444 @item -m32
23445 @opindex m32
23446 Generate code for a 32-bit environment, which sets int, long, and
23447 pointer to 32 bits. This is the only supported behavior so the flag
23448 is essentially ignored.
23449 @end table
23450
23451 @node V850 Options
23452 @subsection V850 Options
23453 @cindex V850 Options
23454
23455 These @samp{-m} options are defined for V850 implementations:
23456
23457 @table @gcctabopt
23458 @item -mlong-calls
23459 @itemx -mno-long-calls
23460 @opindex mlong-calls
23461 @opindex mno-long-calls
23462 Treat all calls as being far away (near). If calls are assumed to be
23463 far away, the compiler always loads the function's address into a
23464 register, and calls indirect through the pointer.
23465
23466 @item -mno-ep
23467 @itemx -mep
23468 @opindex mno-ep
23469 @opindex mep
23470 Do not optimize (do optimize) basic blocks that use the same index
23471 pointer 4 or more times to copy pointer into the @code{ep} register, and
23472 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
23473 option is on by default if you optimize.
23474
23475 @item -mno-prolog-function
23476 @itemx -mprolog-function
23477 @opindex mno-prolog-function
23478 @opindex mprolog-function
23479 Do not use (do use) external functions to save and restore registers
23480 at the prologue and epilogue of a function. The external functions
23481 are slower, but use less code space if more than one function saves
23482 the same number of registers. The @option{-mprolog-function} option
23483 is on by default if you optimize.
23484
23485 @item -mspace
23486 @opindex mspace
23487 Try to make the code as small as possible. At present, this just turns
23488 on the @option{-mep} and @option{-mprolog-function} options.
23489
23490 @item -mtda=@var{n}
23491 @opindex mtda
23492 Put static or global variables whose size is @var{n} bytes or less into
23493 the tiny data area that register @code{ep} points to. The tiny data
23494 area can hold up to 256 bytes in total (128 bytes for byte references).
23495
23496 @item -msda=@var{n}
23497 @opindex msda
23498 Put static or global variables whose size is @var{n} bytes or less into
23499 the small data area that register @code{gp} points to. The small data
23500 area can hold up to 64 kilobytes.
23501
23502 @item -mzda=@var{n}
23503 @opindex mzda
23504 Put static or global variables whose size is @var{n} bytes or less into
23505 the first 32 kilobytes of memory.
23506
23507 @item -mv850
23508 @opindex mv850
23509 Specify that the target processor is the V850.
23510
23511 @item -mv850e3v5
23512 @opindex mv850e3v5
23513 Specify that the target processor is the V850E3V5. The preprocessor
23514 constant @code{__v850e3v5__} is defined if this option is used.
23515
23516 @item -mv850e2v4
23517 @opindex mv850e2v4
23518 Specify that the target processor is the V850E3V5. This is an alias for
23519 the @option{-mv850e3v5} option.
23520
23521 @item -mv850e2v3
23522 @opindex mv850e2v3
23523 Specify that the target processor is the V850E2V3. The preprocessor
23524 constant @code{__v850e2v3__} is defined if this option is used.
23525
23526 @item -mv850e2
23527 @opindex mv850e2
23528 Specify that the target processor is the V850E2. The preprocessor
23529 constant @code{__v850e2__} is defined if this option is used.
23530
23531 @item -mv850e1
23532 @opindex mv850e1
23533 Specify that the target processor is the V850E1. The preprocessor
23534 constants @code{__v850e1__} and @code{__v850e__} are defined if
23535 this option is used.
23536
23537 @item -mv850es
23538 @opindex mv850es
23539 Specify that the target processor is the V850ES. This is an alias for
23540 the @option{-mv850e1} option.
23541
23542 @item -mv850e
23543 @opindex mv850e
23544 Specify that the target processor is the V850E@. The preprocessor
23545 constant @code{__v850e__} is defined if this option is used.
23546
23547 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
23548 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
23549 are defined then a default target processor is chosen and the
23550 relevant @samp{__v850*__} preprocessor constant is defined.
23551
23552 The preprocessor constants @code{__v850} and @code{__v851__} are always
23553 defined, regardless of which processor variant is the target.
23554
23555 @item -mdisable-callt
23556 @itemx -mno-disable-callt
23557 @opindex mdisable-callt
23558 @opindex mno-disable-callt
23559 This option suppresses generation of the @code{CALLT} instruction for the
23560 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
23561 architecture.
23562
23563 This option is enabled by default when the RH850 ABI is
23564 in use (see @option{-mrh850-abi}), and disabled by default when the
23565 GCC ABI is in use. If @code{CALLT} instructions are being generated
23566 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
23567
23568 @item -mrelax
23569 @itemx -mno-relax
23570 @opindex mrelax
23571 @opindex mno-relax
23572 Pass on (or do not pass on) the @option{-mrelax} command-line option
23573 to the assembler.
23574
23575 @item -mlong-jumps
23576 @itemx -mno-long-jumps
23577 @opindex mlong-jumps
23578 @opindex mno-long-jumps
23579 Disable (or re-enable) the generation of PC-relative jump instructions.
23580
23581 @item -msoft-float
23582 @itemx -mhard-float
23583 @opindex msoft-float
23584 @opindex mhard-float
23585 Disable (or re-enable) the generation of hardware floating point
23586 instructions. This option is only significant when the target
23587 architecture is @samp{V850E2V3} or higher. If hardware floating point
23588 instructions are being generated then the C preprocessor symbol
23589 @code{__FPU_OK__} is defined, otherwise the symbol
23590 @code{__NO_FPU__} is defined.
23591
23592 @item -mloop
23593 @opindex mloop
23594 Enables the use of the e3v5 LOOP instruction. The use of this
23595 instruction is not enabled by default when the e3v5 architecture is
23596 selected because its use is still experimental.
23597
23598 @item -mrh850-abi
23599 @itemx -mghs
23600 @opindex mrh850-abi
23601 @opindex mghs
23602 Enables support for the RH850 version of the V850 ABI. This is the
23603 default. With this version of the ABI the following rules apply:
23604
23605 @itemize
23606 @item
23607 Integer sized structures and unions are returned via a memory pointer
23608 rather than a register.
23609
23610 @item
23611 Large structures and unions (more than 8 bytes in size) are passed by
23612 value.
23613
23614 @item
23615 Functions are aligned to 16-bit boundaries.
23616
23617 @item
23618 The @option{-m8byte-align} command-line option is supported.
23619
23620 @item
23621 The @option{-mdisable-callt} command-line option is enabled by
23622 default. The @option{-mno-disable-callt} command-line option is not
23623 supported.
23624 @end itemize
23625
23626 When this version of the ABI is enabled the C preprocessor symbol
23627 @code{__V850_RH850_ABI__} is defined.
23628
23629 @item -mgcc-abi
23630 @opindex mgcc-abi
23631 Enables support for the old GCC version of the V850 ABI. With this
23632 version of the ABI the following rules apply:
23633
23634 @itemize
23635 @item
23636 Integer sized structures and unions are returned in register @code{r10}.
23637
23638 @item
23639 Large structures and unions (more than 8 bytes in size) are passed by
23640 reference.
23641
23642 @item
23643 Functions are aligned to 32-bit boundaries, unless optimizing for
23644 size.
23645
23646 @item
23647 The @option{-m8byte-align} command-line option is not supported.
23648
23649 @item
23650 The @option{-mdisable-callt} command-line option is supported but not
23651 enabled by default.
23652 @end itemize
23653
23654 When this version of the ABI is enabled the C preprocessor symbol
23655 @code{__V850_GCC_ABI__} is defined.
23656
23657 @item -m8byte-align
23658 @itemx -mno-8byte-align
23659 @opindex m8byte-align
23660 @opindex mno-8byte-align
23661 Enables support for @code{double} and @code{long long} types to be
23662 aligned on 8-byte boundaries. The default is to restrict the
23663 alignment of all objects to at most 4-bytes. When
23664 @option{-m8byte-align} is in effect the C preprocessor symbol
23665 @code{__V850_8BYTE_ALIGN__} is defined.
23666
23667 @item -mbig-switch
23668 @opindex mbig-switch
23669 Generate code suitable for big switch tables. Use this option only if
23670 the assembler/linker complain about out of range branches within a switch
23671 table.
23672
23673 @item -mapp-regs
23674 @opindex mapp-regs
23675 This option causes r2 and r5 to be used in the code generated by
23676 the compiler. This setting is the default.
23677
23678 @item -mno-app-regs
23679 @opindex mno-app-regs
23680 This option causes r2 and r5 to be treated as fixed registers.
23681
23682 @end table
23683
23684 @node VAX Options
23685 @subsection VAX Options
23686 @cindex VAX options
23687
23688 These @samp{-m} options are defined for the VAX:
23689
23690 @table @gcctabopt
23691 @item -munix
23692 @opindex munix
23693 Do not output certain jump instructions (@code{aobleq} and so on)
23694 that the Unix assembler for the VAX cannot handle across long
23695 ranges.
23696
23697 @item -mgnu
23698 @opindex mgnu
23699 Do output those jump instructions, on the assumption that the
23700 GNU assembler is being used.
23701
23702 @item -mg
23703 @opindex mg
23704 Output code for G-format floating-point numbers instead of D-format.
23705 @end table
23706
23707 @node Visium Options
23708 @subsection Visium Options
23709 @cindex Visium options
23710
23711 @table @gcctabopt
23712
23713 @item -mdebug
23714 @opindex mdebug
23715 A program which performs file I/O and is destined to run on an MCM target
23716 should be linked with this option. It causes the libraries libc.a and
23717 libdebug.a to be linked. The program should be run on the target under
23718 the control of the GDB remote debugging stub.
23719
23720 @item -msim
23721 @opindex msim
23722 A program which performs file I/O and is destined to run on the simulator
23723 should be linked with option. This causes libraries libc.a and libsim.a to
23724 be linked.
23725
23726 @item -mfpu
23727 @itemx -mhard-float
23728 @opindex mfpu
23729 @opindex mhard-float
23730 Generate code containing floating-point instructions. This is the
23731 default.
23732
23733 @item -mno-fpu
23734 @itemx -msoft-float
23735 @opindex mno-fpu
23736 @opindex msoft-float
23737 Generate code containing library calls for floating-point.
23738
23739 @option{-msoft-float} changes the calling convention in the output file;
23740 therefore, it is only useful if you compile @emph{all} of a program with
23741 this option. In particular, you need to compile @file{libgcc.a}, the
23742 library that comes with GCC, with @option{-msoft-float} in order for
23743 this to work.
23744
23745 @item -mcpu=@var{cpu_type}
23746 @opindex mcpu
23747 Set the instruction set, register set, and instruction scheduling parameters
23748 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
23749 @samp{mcm}, @samp{gr5} and @samp{gr6}.
23750
23751 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
23752
23753 By default (unless configured otherwise), GCC generates code for the GR5
23754 variant of the Visium architecture.
23755
23756 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
23757 architecture. The only difference from GR5 code is that the compiler will
23758 generate block move instructions.
23759
23760 @item -mtune=@var{cpu_type}
23761 @opindex mtune
23762 Set the instruction scheduling parameters for machine type @var{cpu_type},
23763 but do not set the instruction set or register set that the option
23764 @option{-mcpu=@var{cpu_type}} would.
23765
23766 @item -msv-mode
23767 @opindex msv-mode
23768 Generate code for the supervisor mode, where there are no restrictions on
23769 the access to general registers. This is the default.
23770
23771 @item -muser-mode
23772 @opindex muser-mode
23773 Generate code for the user mode, where the access to some general registers
23774 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
23775 mode; on the GR6, only registers r29 to r31 are affected.
23776 @end table
23777
23778 @node VMS Options
23779 @subsection VMS Options
23780
23781 These @samp{-m} options are defined for the VMS implementations:
23782
23783 @table @gcctabopt
23784 @item -mvms-return-codes
23785 @opindex mvms-return-codes
23786 Return VMS condition codes from @code{main}. The default is to return POSIX-style
23787 condition (e.g.@ error) codes.
23788
23789 @item -mdebug-main=@var{prefix}
23790 @opindex mdebug-main=@var{prefix}
23791 Flag the first routine whose name starts with @var{prefix} as the main
23792 routine for the debugger.
23793
23794 @item -mmalloc64
23795 @opindex mmalloc64
23796 Default to 64-bit memory allocation routines.
23797
23798 @item -mpointer-size=@var{size}
23799 @opindex mpointer-size=@var{size}
23800 Set the default size of pointers. Possible options for @var{size} are
23801 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
23802 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
23803 The later option disables @code{pragma pointer_size}.
23804 @end table
23805
23806 @node VxWorks Options
23807 @subsection VxWorks Options
23808 @cindex VxWorks Options
23809
23810 The options in this section are defined for all VxWorks targets.
23811 Options specific to the target hardware are listed with the other
23812 options for that target.
23813
23814 @table @gcctabopt
23815 @item -mrtp
23816 @opindex mrtp
23817 GCC can generate code for both VxWorks kernels and real time processes
23818 (RTPs). This option switches from the former to the latter. It also
23819 defines the preprocessor macro @code{__RTP__}.
23820
23821 @item -non-static
23822 @opindex non-static
23823 Link an RTP executable against shared libraries rather than static
23824 libraries. The options @option{-static} and @option{-shared} can
23825 also be used for RTPs (@pxref{Link Options}); @option{-static}
23826 is the default.
23827
23828 @item -Bstatic
23829 @itemx -Bdynamic
23830 @opindex Bstatic
23831 @opindex Bdynamic
23832 These options are passed down to the linker. They are defined for
23833 compatibility with Diab.
23834
23835 @item -Xbind-lazy
23836 @opindex Xbind-lazy
23837 Enable lazy binding of function calls. This option is equivalent to
23838 @option{-Wl,-z,now} and is defined for compatibility with Diab.
23839
23840 @item -Xbind-now
23841 @opindex Xbind-now
23842 Disable lazy binding of function calls. This option is the default and
23843 is defined for compatibility with Diab.
23844 @end table
23845
23846 @node x86 Options
23847 @subsection x86 Options
23848 @cindex x86 Options
23849
23850 These @samp{-m} options are defined for the x86 family of computers.
23851
23852 @table @gcctabopt
23853
23854 @item -march=@var{cpu-type}
23855 @opindex march
23856 Generate instructions for the machine type @var{cpu-type}. In contrast to
23857 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
23858 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
23859 to generate code that may not run at all on processors other than the one
23860 indicated. Specifying @option{-march=@var{cpu-type}} implies
23861 @option{-mtune=@var{cpu-type}}.
23862
23863 The choices for @var{cpu-type} are:
23864
23865 @table @samp
23866 @item native
23867 This selects the CPU to generate code for at compilation time by determining
23868 the processor type of the compiling machine. Using @option{-march=native}
23869 enables all instruction subsets supported by the local machine (hence
23870 the result might not run on different machines). Using @option{-mtune=native}
23871 produces code optimized for the local machine under the constraints
23872 of the selected instruction set.
23873
23874 @item i386
23875 Original Intel i386 CPU@.
23876
23877 @item i486
23878 Intel i486 CPU@. (No scheduling is implemented for this chip.)
23879
23880 @item i586
23881 @itemx pentium
23882 Intel Pentium CPU with no MMX support.
23883
23884 @item lakemont
23885 Intel Lakemont MCU, based on Intel Pentium CPU.
23886
23887 @item pentium-mmx
23888 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
23889
23890 @item pentiumpro
23891 Intel Pentium Pro CPU@.
23892
23893 @item i686
23894 When used with @option{-march}, the Pentium Pro
23895 instruction set is used, so the code runs on all i686 family chips.
23896 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
23897
23898 @item pentium2
23899 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
23900 support.
23901
23902 @item pentium3
23903 @itemx pentium3m
23904 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
23905 set support.
23906
23907 @item pentium-m
23908 Intel Pentium M; low-power version of Intel Pentium III CPU
23909 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
23910
23911 @item pentium4
23912 @itemx pentium4m
23913 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
23914
23915 @item prescott
23916 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
23917 set support.
23918
23919 @item nocona
23920 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
23921 SSE2 and SSE3 instruction set support.
23922
23923 @item core2
23924 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
23925 instruction set support.
23926
23927 @item nehalem
23928 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
23929 SSE4.1, SSE4.2 and POPCNT instruction set support.
23930
23931 @item westmere
23932 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
23933 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
23934
23935 @item sandybridge
23936 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
23937 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
23938
23939 @item ivybridge
23940 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
23941 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
23942 instruction set support.
23943
23944 @item haswell
23945 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
23946 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
23947 BMI, BMI2 and F16C instruction set support.
23948
23949 @item broadwell
23950 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
23951 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
23952 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
23953
23954 @item skylake
23955 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
23956 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
23957 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
23958 XSAVES instruction set support.
23959
23960 @item bonnell
23961 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
23962 instruction set support.
23963
23964 @item silvermont
23965 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
23966 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
23967
23968 @item knl
23969 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
23970 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
23971 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
23972 AVX512CD instruction set support.
23973
23974 @item skylake-avx512
23975 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
23976 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
23977 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
23978 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
23979
23980 @item k6
23981 AMD K6 CPU with MMX instruction set support.
23982
23983 @item k6-2
23984 @itemx k6-3
23985 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
23986
23987 @item athlon
23988 @itemx athlon-tbird
23989 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
23990 support.
23991
23992 @item athlon-4
23993 @itemx athlon-xp
23994 @itemx athlon-mp
23995 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
23996 instruction set support.
23997
23998 @item k8
23999 @itemx opteron
24000 @itemx athlon64
24001 @itemx athlon-fx
24002 Processors based on the AMD K8 core with x86-64 instruction set support,
24003 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
24004 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
24005 instruction set extensions.)
24006
24007 @item k8-sse3
24008 @itemx opteron-sse3
24009 @itemx athlon64-sse3
24010 Improved versions of AMD K8 cores with SSE3 instruction set support.
24011
24012 @item amdfam10
24013 @itemx barcelona
24014 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
24015 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
24016 instruction set extensions.)
24017
24018 @item bdver1
24019 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
24020 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
24021 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
24022 @item bdver2
24023 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
24024 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
24025 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
24026 extensions.)
24027 @item bdver3
24028 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
24029 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
24030 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
24031 64-bit instruction set extensions.
24032 @item bdver4
24033 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
24034 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
24035 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
24036 SSE4.2, ABM and 64-bit instruction set extensions.
24037
24038 @item znver1
24039 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
24040 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
24041 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
24042 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
24043 instruction set extensions.
24044
24045 @item btver1
24046 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
24047 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
24048 instruction set extensions.)
24049
24050 @item btver2
24051 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
24052 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
24053 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
24054
24055 @item winchip-c6
24056 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
24057 set support.
24058
24059 @item winchip2
24060 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
24061 instruction set support.
24062
24063 @item c3
24064 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
24065 (No scheduling is implemented for this chip.)
24066
24067 @item c3-2
24068 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
24069 (No scheduling is implemented for this chip.)
24070
24071 @item c7
24072 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
24073 (No scheduling is implemented for this chip.)
24074
24075 @item samuel-2
24076 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
24077 (No scheduling is implemented for this chip.)
24078
24079 @item nehemiah
24080 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
24081 (No scheduling is implemented for this chip.)
24082
24083 @item esther
24084 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
24085 (No scheduling is implemented for this chip.)
24086
24087 @item eden-x2
24088 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
24089 (No scheduling is implemented for this chip.)
24090
24091 @item eden-x4
24092 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
24093 AVX and AVX2 instruction set support.
24094 (No scheduling is implemented for this chip.)
24095
24096 @item nano
24097 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
24098 instruction set support.
24099 (No scheduling is implemented for this chip.)
24100
24101 @item nano-1000
24102 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
24103 instruction set support.
24104 (No scheduling is implemented for this chip.)
24105
24106 @item nano-2000
24107 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
24108 instruction set support.
24109 (No scheduling is implemented for this chip.)
24110
24111 @item nano-3000
24112 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
24113 instruction set support.
24114 (No scheduling is implemented for this chip.)
24115
24116 @item nano-x2
24117 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
24118 instruction set support.
24119 (No scheduling is implemented for this chip.)
24120
24121 @item nano-x4
24122 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
24123 instruction set support.
24124 (No scheduling is implemented for this chip.)
24125
24126 @item geode
24127 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
24128 @end table
24129
24130 @item -mtune=@var{cpu-type}
24131 @opindex mtune
24132 Tune to @var{cpu-type} everything applicable about the generated code, except
24133 for the ABI and the set of available instructions.
24134 While picking a specific @var{cpu-type} schedules things appropriately
24135 for that particular chip, the compiler does not generate any code that
24136 cannot run on the default machine type unless you use a
24137 @option{-march=@var{cpu-type}} option.
24138 For example, if GCC is configured for i686-pc-linux-gnu
24139 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
24140 but still runs on i686 machines.
24141
24142 The choices for @var{cpu-type} are the same as for @option{-march}.
24143 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
24144
24145 @table @samp
24146 @item generic
24147 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
24148 If you know the CPU on which your code will run, then you should use
24149 the corresponding @option{-mtune} or @option{-march} option instead of
24150 @option{-mtune=generic}. But, if you do not know exactly what CPU users
24151 of your application will have, then you should use this option.
24152
24153 As new processors are deployed in the marketplace, the behavior of this
24154 option will change. Therefore, if you upgrade to a newer version of
24155 GCC, code generation controlled by this option will change to reflect
24156 the processors
24157 that are most common at the time that version of GCC is released.
24158
24159 There is no @option{-march=generic} option because @option{-march}
24160 indicates the instruction set the compiler can use, and there is no
24161 generic instruction set applicable to all processors. In contrast,
24162 @option{-mtune} indicates the processor (or, in this case, collection of
24163 processors) for which the code is optimized.
24164
24165 @item intel
24166 Produce code optimized for the most current Intel processors, which are
24167 Haswell and Silvermont for this version of GCC. If you know the CPU
24168 on which your code will run, then you should use the corresponding
24169 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
24170 But, if you want your application performs better on both Haswell and
24171 Silvermont, then you should use this option.
24172
24173 As new Intel processors are deployed in the marketplace, the behavior of
24174 this option will change. Therefore, if you upgrade to a newer version of
24175 GCC, code generation controlled by this option will change to reflect
24176 the most current Intel processors at the time that version of GCC is
24177 released.
24178
24179 There is no @option{-march=intel} option because @option{-march} indicates
24180 the instruction set the compiler can use, and there is no common
24181 instruction set applicable to all processors. In contrast,
24182 @option{-mtune} indicates the processor (or, in this case, collection of
24183 processors) for which the code is optimized.
24184 @end table
24185
24186 @item -mcpu=@var{cpu-type}
24187 @opindex mcpu
24188 A deprecated synonym for @option{-mtune}.
24189
24190 @item -mfpmath=@var{unit}
24191 @opindex mfpmath
24192 Generate floating-point arithmetic for selected unit @var{unit}. The choices
24193 for @var{unit} are:
24194
24195 @table @samp
24196 @item 387
24197 Use the standard 387 floating-point coprocessor present on the majority of chips and
24198 emulated otherwise. Code compiled with this option runs almost everywhere.
24199 The temporary results are computed in 80-bit precision instead of the precision
24200 specified by the type, resulting in slightly different results compared to most
24201 of other chips. See @option{-ffloat-store} for more detailed description.
24202
24203 This is the default choice for x86-32 targets.
24204
24205 @item sse
24206 Use scalar floating-point instructions present in the SSE instruction set.
24207 This instruction set is supported by Pentium III and newer chips,
24208 and in the AMD line
24209 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
24210 instruction set supports only single-precision arithmetic, thus the double and
24211 extended-precision arithmetic are still done using 387. A later version, present
24212 only in Pentium 4 and AMD x86-64 chips, supports double-precision
24213 arithmetic too.
24214
24215 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
24216 or @option{-msse2} switches to enable SSE extensions and make this option
24217 effective. For the x86-64 compiler, these extensions are enabled by default.
24218
24219 The resulting code should be considerably faster in the majority of cases and avoid
24220 the numerical instability problems of 387 code, but may break some existing
24221 code that expects temporaries to be 80 bits.
24222
24223 This is the default choice for the x86-64 compiler.
24224
24225 @item sse,387
24226 @itemx sse+387
24227 @itemx both
24228 Attempt to utilize both instruction sets at once. This effectively doubles the
24229 amount of available registers, and on chips with separate execution units for
24230 387 and SSE the execution resources too. Use this option with care, as it is
24231 still experimental, because the GCC register allocator does not model separate
24232 functional units well, resulting in unstable performance.
24233 @end table
24234
24235 @item -masm=@var{dialect}
24236 @opindex masm=@var{dialect}
24237 Output assembly instructions using selected @var{dialect}. Also affects
24238 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
24239 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
24240 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
24241 not support @samp{intel}.
24242
24243 @item -mieee-fp
24244 @itemx -mno-ieee-fp
24245 @opindex mieee-fp
24246 @opindex mno-ieee-fp
24247 Control whether or not the compiler uses IEEE floating-point
24248 comparisons. These correctly handle the case where the result of a
24249 comparison is unordered.
24250
24251 @item -m80387
24252 @item -mhard-float
24253 @opindex 80387
24254 @opindex mhard-float
24255 Generate output containing 80387 instructions for floating point.
24256
24257 @item -mno-80387
24258 @item -msoft-float
24259 @opindex no-80387
24260 @opindex msoft-float
24261 Generate output containing library calls for floating point.
24262
24263 @strong{Warning:} the requisite libraries are not part of GCC@.
24264 Normally the facilities of the machine's usual C compiler are used, but
24265 this can't be done directly in cross-compilation. You must make your
24266 own arrangements to provide suitable library functions for
24267 cross-compilation.
24268
24269 On machines where a function returns floating-point results in the 80387
24270 register stack, some floating-point opcodes may be emitted even if
24271 @option{-msoft-float} is used.
24272
24273 @item -mno-fp-ret-in-387
24274 @opindex mno-fp-ret-in-387
24275 Do not use the FPU registers for return values of functions.
24276
24277 The usual calling convention has functions return values of types
24278 @code{float} and @code{double} in an FPU register, even if there
24279 is no FPU@. The idea is that the operating system should emulate
24280 an FPU@.
24281
24282 The option @option{-mno-fp-ret-in-387} causes such values to be returned
24283 in ordinary CPU registers instead.
24284
24285 @item -mno-fancy-math-387
24286 @opindex mno-fancy-math-387
24287 Some 387 emulators do not support the @code{sin}, @code{cos} and
24288 @code{sqrt} instructions for the 387. Specify this option to avoid
24289 generating those instructions. This option is the default on
24290 OpenBSD and NetBSD@. This option is overridden when @option{-march}
24291 indicates that the target CPU always has an FPU and so the
24292 instruction does not need emulation. These
24293 instructions are not generated unless you also use the
24294 @option{-funsafe-math-optimizations} switch.
24295
24296 @item -malign-double
24297 @itemx -mno-align-double
24298 @opindex malign-double
24299 @opindex mno-align-double
24300 Control whether GCC aligns @code{double}, @code{long double}, and
24301 @code{long long} variables on a two-word boundary or a one-word
24302 boundary. Aligning @code{double} variables on a two-word boundary
24303 produces code that runs somewhat faster on a Pentium at the
24304 expense of more memory.
24305
24306 On x86-64, @option{-malign-double} is enabled by default.
24307
24308 @strong{Warning:} if you use the @option{-malign-double} switch,
24309 structures containing the above types are aligned differently than
24310 the published application binary interface specifications for the x86-32
24311 and are not binary compatible with structures in code compiled
24312 without that switch.
24313
24314 @item -m96bit-long-double
24315 @itemx -m128bit-long-double
24316 @opindex m96bit-long-double
24317 @opindex m128bit-long-double
24318 These switches control the size of @code{long double} type. The x86-32
24319 application binary interface specifies the size to be 96 bits,
24320 so @option{-m96bit-long-double} is the default in 32-bit mode.
24321
24322 Modern architectures (Pentium and newer) prefer @code{long double}
24323 to be aligned to an 8- or 16-byte boundary. In arrays or structures
24324 conforming to the ABI, this is not possible. So specifying
24325 @option{-m128bit-long-double} aligns @code{long double}
24326 to a 16-byte boundary by padding the @code{long double} with an additional
24327 32-bit zero.
24328
24329 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
24330 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
24331
24332 Notice that neither of these options enable any extra precision over the x87
24333 standard of 80 bits for a @code{long double}.
24334
24335 @strong{Warning:} if you override the default value for your target ABI, this
24336 changes the size of
24337 structures and arrays containing @code{long double} variables,
24338 as well as modifying the function calling convention for functions taking
24339 @code{long double}. Hence they are not binary-compatible
24340 with code compiled without that switch.
24341
24342 @item -mlong-double-64
24343 @itemx -mlong-double-80
24344 @itemx -mlong-double-128
24345 @opindex mlong-double-64
24346 @opindex mlong-double-80
24347 @opindex mlong-double-128
24348 These switches control the size of @code{long double} type. A size
24349 of 64 bits makes the @code{long double} type equivalent to the @code{double}
24350 type. This is the default for 32-bit Bionic C library. A size
24351 of 128 bits makes the @code{long double} type equivalent to the
24352 @code{__float128} type. This is the default for 64-bit Bionic C library.
24353
24354 @strong{Warning:} if you override the default value for your target ABI, this
24355 changes the size of
24356 structures and arrays containing @code{long double} variables,
24357 as well as modifying the function calling convention for functions taking
24358 @code{long double}. Hence they are not binary-compatible
24359 with code compiled without that switch.
24360
24361 @item -malign-data=@var{type}
24362 @opindex malign-data
24363 Control how GCC aligns variables. Supported values for @var{type} are
24364 @samp{compat} uses increased alignment value compatible uses GCC 4.8
24365 and earlier, @samp{abi} uses alignment value as specified by the
24366 psABI, and @samp{cacheline} uses increased alignment value to match
24367 the cache line size. @samp{compat} is the default.
24368
24369 @item -mlarge-data-threshold=@var{threshold}
24370 @opindex mlarge-data-threshold
24371 When @option{-mcmodel=medium} is specified, data objects larger than
24372 @var{threshold} are placed in the large data section. This value must be the
24373 same across all objects linked into the binary, and defaults to 65535.
24374
24375 @item -mrtd
24376 @opindex mrtd
24377 Use a different function-calling convention, in which functions that
24378 take a fixed number of arguments return with the @code{ret @var{num}}
24379 instruction, which pops their arguments while returning. This saves one
24380 instruction in the caller since there is no need to pop the arguments
24381 there.
24382
24383 You can specify that an individual function is called with this calling
24384 sequence with the function attribute @code{stdcall}. You can also
24385 override the @option{-mrtd} option by using the function attribute
24386 @code{cdecl}. @xref{Function Attributes}.
24387
24388 @strong{Warning:} this calling convention is incompatible with the one
24389 normally used on Unix, so you cannot use it if you need to call
24390 libraries compiled with the Unix compiler.
24391
24392 Also, you must provide function prototypes for all functions that
24393 take variable numbers of arguments (including @code{printf});
24394 otherwise incorrect code is generated for calls to those
24395 functions.
24396
24397 In addition, seriously incorrect code results if you call a
24398 function with too many arguments. (Normally, extra arguments are
24399 harmlessly ignored.)
24400
24401 @item -mregparm=@var{num}
24402 @opindex mregparm
24403 Control how many registers are used to pass integer arguments. By
24404 default, no registers are used to pass arguments, and at most 3
24405 registers can be used. You can control this behavior for a specific
24406 function by using the function attribute @code{regparm}.
24407 @xref{Function Attributes}.
24408
24409 @strong{Warning:} if you use this switch, and
24410 @var{num} is nonzero, then you must build all modules with the same
24411 value, including any libraries. This includes the system libraries and
24412 startup modules.
24413
24414 @item -msseregparm
24415 @opindex msseregparm
24416 Use SSE register passing conventions for float and double arguments
24417 and return values. You can control this behavior for a specific
24418 function by using the function attribute @code{sseregparm}.
24419 @xref{Function Attributes}.
24420
24421 @strong{Warning:} if you use this switch then you must build all
24422 modules with the same value, including any libraries. This includes
24423 the system libraries and startup modules.
24424
24425 @item -mvect8-ret-in-mem
24426 @opindex mvect8-ret-in-mem
24427 Return 8-byte vectors in memory instead of MMX registers. This is the
24428 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
24429 Studio compilers until version 12. Later compiler versions (starting
24430 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
24431 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
24432 you need to remain compatible with existing code produced by those
24433 previous compiler versions or older versions of GCC@.
24434
24435 @item -mpc32
24436 @itemx -mpc64
24437 @itemx -mpc80
24438 @opindex mpc32
24439 @opindex mpc64
24440 @opindex mpc80
24441
24442 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
24443 is specified, the significands of results of floating-point operations are
24444 rounded to 24 bits (single precision); @option{-mpc64} rounds the
24445 significands of results of floating-point operations to 53 bits (double
24446 precision) and @option{-mpc80} rounds the significands of results of
24447 floating-point operations to 64 bits (extended double precision), which is
24448 the default. When this option is used, floating-point operations in higher
24449 precisions are not available to the programmer without setting the FPU
24450 control word explicitly.
24451
24452 Setting the rounding of floating-point operations to less than the default
24453 80 bits can speed some programs by 2% or more. Note that some mathematical
24454 libraries assume that extended-precision (80-bit) floating-point operations
24455 are enabled by default; routines in such libraries could suffer significant
24456 loss of accuracy, typically through so-called ``catastrophic cancellation'',
24457 when this option is used to set the precision to less than extended precision.
24458
24459 @item -mstackrealign
24460 @opindex mstackrealign
24461 Realign the stack at entry. On the x86, the @option{-mstackrealign}
24462 option generates an alternate prologue and epilogue that realigns the
24463 run-time stack if necessary. This supports mixing legacy codes that keep
24464 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
24465 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
24466 applicable to individual functions.
24467
24468 @item -mpreferred-stack-boundary=@var{num}
24469 @opindex mpreferred-stack-boundary
24470 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
24471 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
24472 the default is 4 (16 bytes or 128 bits).
24473
24474 @strong{Warning:} When generating code for the x86-64 architecture with
24475 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
24476 used to keep the stack boundary aligned to 8 byte boundary. Since
24477 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
24478 intended to be used in controlled environment where stack space is
24479 important limitation. This option leads to wrong code when functions
24480 compiled with 16 byte stack alignment (such as functions from a standard
24481 library) are called with misaligned stack. In this case, SSE
24482 instructions may lead to misaligned memory access traps. In addition,
24483 variable arguments are handled incorrectly for 16 byte aligned
24484 objects (including x87 long double and __int128), leading to wrong
24485 results. You must build all modules with
24486 @option{-mpreferred-stack-boundary=3}, including any libraries. This
24487 includes the system libraries and startup modules.
24488
24489 @item -mincoming-stack-boundary=@var{num}
24490 @opindex mincoming-stack-boundary
24491 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
24492 boundary. If @option{-mincoming-stack-boundary} is not specified,
24493 the one specified by @option{-mpreferred-stack-boundary} is used.
24494
24495 On Pentium and Pentium Pro, @code{double} and @code{long double} values
24496 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
24497 suffer significant run time performance penalties. On Pentium III, the
24498 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
24499 properly if it is not 16-byte aligned.
24500
24501 To ensure proper alignment of this values on the stack, the stack boundary
24502 must be as aligned as that required by any value stored on the stack.
24503 Further, every function must be generated such that it keeps the stack
24504 aligned. Thus calling a function compiled with a higher preferred
24505 stack boundary from a function compiled with a lower preferred stack
24506 boundary most likely misaligns the stack. It is recommended that
24507 libraries that use callbacks always use the default setting.
24508
24509 This extra alignment does consume extra stack space, and generally
24510 increases code size. Code that is sensitive to stack space usage, such
24511 as embedded systems and operating system kernels, may want to reduce the
24512 preferred alignment to @option{-mpreferred-stack-boundary=2}.
24513
24514 @need 200
24515 @item -mmmx
24516 @opindex mmmx
24517 @need 200
24518 @itemx -msse
24519 @opindex msse
24520 @need 200
24521 @itemx -msse2
24522 @opindex msse2
24523 @need 200
24524 @itemx -msse3
24525 @opindex msse3
24526 @need 200
24527 @itemx -mssse3
24528 @opindex mssse3
24529 @need 200
24530 @itemx -msse4
24531 @opindex msse4
24532 @need 200
24533 @itemx -msse4a
24534 @opindex msse4a
24535 @need 200
24536 @itemx -msse4.1
24537 @opindex msse4.1
24538 @need 200
24539 @itemx -msse4.2
24540 @opindex msse4.2
24541 @need 200
24542 @itemx -mavx
24543 @opindex mavx
24544 @need 200
24545 @itemx -mavx2
24546 @opindex mavx2
24547 @need 200
24548 @itemx -mavx512f
24549 @opindex mavx512f
24550 @need 200
24551 @itemx -mavx512pf
24552 @opindex mavx512pf
24553 @need 200
24554 @itemx -mavx512er
24555 @opindex mavx512er
24556 @need 200
24557 @itemx -mavx512cd
24558 @opindex mavx512cd
24559 @need 200
24560 @itemx -mavx512vl
24561 @opindex mavx512vl
24562 @need 200
24563 @itemx -mavx512bw
24564 @opindex mavx512bw
24565 @need 200
24566 @itemx -mavx512dq
24567 @opindex mavx512dq
24568 @need 200
24569 @itemx -mavx512ifma
24570 @opindex mavx512ifma
24571 @need 200
24572 @itemx -mavx512vbmi
24573 @opindex mavx512vbmi
24574 @need 200
24575 @itemx -msha
24576 @opindex msha
24577 @need 200
24578 @itemx -maes
24579 @opindex maes
24580 @need 200
24581 @itemx -mpclmul
24582 @opindex mpclmul
24583 @need 200
24584 @itemx -mclfushopt
24585 @opindex mclfushopt
24586 @need 200
24587 @itemx -mfsgsbase
24588 @opindex mfsgsbase
24589 @need 200
24590 @itemx -mrdrnd
24591 @opindex mrdrnd
24592 @need 200
24593 @itemx -mf16c
24594 @opindex mf16c
24595 @need 200
24596 @itemx -mfma
24597 @opindex mfma
24598 @need 200
24599 @itemx -mfma4
24600 @opindex mfma4
24601 @need 200
24602 @itemx -mprefetchwt1
24603 @opindex mprefetchwt1
24604 @need 200
24605 @itemx -mxop
24606 @opindex mxop
24607 @need 200
24608 @itemx -mlwp
24609 @opindex mlwp
24610 @need 200
24611 @itemx -m3dnow
24612 @opindex m3dnow
24613 @need 200
24614 @itemx -mpopcnt
24615 @opindex mpopcnt
24616 @need 200
24617 @itemx -mabm
24618 @opindex mabm
24619 @need 200
24620 @itemx -mbmi
24621 @opindex mbmi
24622 @need 200
24623 @itemx -mbmi2
24624 @need 200
24625 @itemx -mlzcnt
24626 @opindex mlzcnt
24627 @need 200
24628 @itemx -mfxsr
24629 @opindex mfxsr
24630 @need 200
24631 @itemx -mxsave
24632 @opindex mxsave
24633 @need 200
24634 @itemx -mxsaveopt
24635 @opindex mxsaveopt
24636 @need 200
24637 @itemx -mxsavec
24638 @opindex mxsavec
24639 @need 200
24640 @itemx -mxsaves
24641 @opindex mxsaves
24642 @need 200
24643 @itemx -mrtm
24644 @opindex mrtm
24645 @need 200
24646 @itemx -mtbm
24647 @opindex mtbm
24648 @need 200
24649 @itemx -mmpx
24650 @opindex mmpx
24651 @need 200
24652 @itemx -mmwaitx
24653 @opindex mmwaitx
24654 @need 200
24655 @itemx -mclzero
24656 @opindex mclzero
24657 @itemx -mpku
24658 @opindex mpku
24659 These switches enable the use of instructions in the MMX, SSE,
24660 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
24661 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
24662 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA AVX512VBMI, BMI, BMI2, FXSR,
24663 XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU or 3DNow!@:
24664 extended instruction sets. Each has a corresponding @option{-mno-} option
24665 to disable use of these instructions.
24666
24667 These extensions are also available as built-in functions: see
24668 @ref{x86 Built-in Functions}, for details of the functions enabled and
24669 disabled by these switches.
24670
24671 To generate SSE/SSE2 instructions automatically from floating-point
24672 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
24673
24674 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
24675 generates new AVX instructions or AVX equivalence for all SSEx instructions
24676 when needed.
24677
24678 These options enable GCC to use these extended instructions in
24679 generated code, even without @option{-mfpmath=sse}. Applications that
24680 perform run-time CPU detection must compile separate files for each
24681 supported architecture, using the appropriate flags. In particular,
24682 the file containing the CPU detection code should be compiled without
24683 these options.
24684
24685 @item -mdump-tune-features
24686 @opindex mdump-tune-features
24687 This option instructs GCC to dump the names of the x86 performance
24688 tuning features and default settings. The names can be used in
24689 @option{-mtune-ctrl=@var{feature-list}}.
24690
24691 @item -mtune-ctrl=@var{feature-list}
24692 @opindex mtune-ctrl=@var{feature-list}
24693 This option is used to do fine grain control of x86 code generation features.
24694 @var{feature-list} is a comma separated list of @var{feature} names. See also
24695 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
24696 on if it is not preceded with @samp{^}, otherwise, it is turned off.
24697 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
24698 developers. Using it may lead to code paths not covered by testing and can
24699 potentially result in compiler ICEs or runtime errors.
24700
24701 @item -mno-default
24702 @opindex mno-default
24703 This option instructs GCC to turn off all tunable features. See also
24704 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
24705
24706 @item -mcld
24707 @opindex mcld
24708 This option instructs GCC to emit a @code{cld} instruction in the prologue
24709 of functions that use string instructions. String instructions depend on
24710 the DF flag to select between autoincrement or autodecrement mode. While the
24711 ABI specifies the DF flag to be cleared on function entry, some operating
24712 systems violate this specification by not clearing the DF flag in their
24713 exception dispatchers. The exception handler can be invoked with the DF flag
24714 set, which leads to wrong direction mode when string instructions are used.
24715 This option can be enabled by default on 32-bit x86 targets by configuring
24716 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
24717 instructions can be suppressed with the @option{-mno-cld} compiler option
24718 in this case.
24719
24720 @item -mvzeroupper
24721 @opindex mvzeroupper
24722 This option instructs GCC to emit a @code{vzeroupper} instruction
24723 before a transfer of control flow out of the function to minimize
24724 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
24725 intrinsics.
24726
24727 @item -mprefer-avx128
24728 @opindex mprefer-avx128
24729 This option instructs GCC to use 128-bit AVX instructions instead of
24730 256-bit AVX instructions in the auto-vectorizer.
24731
24732 @item -mcx16
24733 @opindex mcx16
24734 This option enables GCC to generate @code{CMPXCHG16B} instructions.
24735 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
24736 (or oword) data types.
24737 This is useful for high-resolution counters that can be updated
24738 by multiple processors (or cores). This instruction is generated as part of
24739 atomic built-in functions: see @ref{__sync Builtins} or
24740 @ref{__atomic Builtins} for details.
24741
24742 @item -msahf
24743 @opindex msahf
24744 This option enables generation of @code{SAHF} instructions in 64-bit code.
24745 Early Intel Pentium 4 CPUs with Intel 64 support,
24746 prior to the introduction of Pentium 4 G1 step in December 2005,
24747 lacked the @code{LAHF} and @code{SAHF} instructions
24748 which are supported by AMD64.
24749 These are load and store instructions, respectively, for certain status flags.
24750 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
24751 @code{drem}, and @code{remainder} built-in functions;
24752 see @ref{Other Builtins} for details.
24753
24754 @item -mmovbe
24755 @opindex mmovbe
24756 This option enables use of the @code{movbe} instruction to implement
24757 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
24758
24759 @item -mcrc32
24760 @opindex mcrc32
24761 This option enables built-in functions @code{__builtin_ia32_crc32qi},
24762 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
24763 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
24764
24765 @item -mrecip
24766 @opindex mrecip
24767 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
24768 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
24769 with an additional Newton-Raphson step
24770 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
24771 (and their vectorized
24772 variants) for single-precision floating-point arguments. These instructions
24773 are generated only when @option{-funsafe-math-optimizations} is enabled
24774 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
24775 Note that while the throughput of the sequence is higher than the throughput
24776 of the non-reciprocal instruction, the precision of the sequence can be
24777 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
24778
24779 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
24780 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
24781 combination), and doesn't need @option{-mrecip}.
24782
24783 Also note that GCC emits the above sequence with additional Newton-Raphson step
24784 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
24785 already with @option{-ffast-math} (or the above option combination), and
24786 doesn't need @option{-mrecip}.
24787
24788 @item -mrecip=@var{opt}
24789 @opindex mrecip=opt
24790 This option controls which reciprocal estimate instructions
24791 may be used. @var{opt} is a comma-separated list of options, which may
24792 be preceded by a @samp{!} to invert the option:
24793
24794 @table @samp
24795 @item all
24796 Enable all estimate instructions.
24797
24798 @item default
24799 Enable the default instructions, equivalent to @option{-mrecip}.
24800
24801 @item none
24802 Disable all estimate instructions, equivalent to @option{-mno-recip}.
24803
24804 @item div
24805 Enable the approximation for scalar division.
24806
24807 @item vec-div
24808 Enable the approximation for vectorized division.
24809
24810 @item sqrt
24811 Enable the approximation for scalar square root.
24812
24813 @item vec-sqrt
24814 Enable the approximation for vectorized square root.
24815 @end table
24816
24817 So, for example, @option{-mrecip=all,!sqrt} enables
24818 all of the reciprocal approximations, except for square root.
24819
24820 @item -mveclibabi=@var{type}
24821 @opindex mveclibabi
24822 Specifies the ABI type to use for vectorizing intrinsics using an
24823 external library. Supported values for @var{type} are @samp{svml}
24824 for the Intel short
24825 vector math library and @samp{acml} for the AMD math core library.
24826 To use this option, both @option{-ftree-vectorize} and
24827 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
24828 ABI-compatible library must be specified at link time.
24829
24830 GCC currently emits calls to @code{vmldExp2},
24831 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
24832 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
24833 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
24834 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
24835 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
24836 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
24837 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
24838 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
24839 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
24840 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
24841 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
24842 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
24843 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
24844 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
24845 when @option{-mveclibabi=acml} is used.
24846
24847 @item -mabi=@var{name}
24848 @opindex mabi
24849 Generate code for the specified calling convention. Permissible values
24850 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
24851 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
24852 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
24853 You can control this behavior for specific functions by
24854 using the function attributes @code{ms_abi} and @code{sysv_abi}.
24855 @xref{Function Attributes}.
24856
24857 @item -mtls-dialect=@var{type}
24858 @opindex mtls-dialect
24859 Generate code to access thread-local storage using the @samp{gnu} or
24860 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
24861 @samp{gnu2} is more efficient, but it may add compile- and run-time
24862 requirements that cannot be satisfied on all systems.
24863
24864 @item -mpush-args
24865 @itemx -mno-push-args
24866 @opindex mpush-args
24867 @opindex mno-push-args
24868 Use PUSH operations to store outgoing parameters. This method is shorter
24869 and usually equally fast as method using SUB/MOV operations and is enabled
24870 by default. In some cases disabling it may improve performance because of
24871 improved scheduling and reduced dependencies.
24872
24873 @item -maccumulate-outgoing-args
24874 @opindex maccumulate-outgoing-args
24875 If enabled, the maximum amount of space required for outgoing arguments is
24876 computed in the function prologue. This is faster on most modern CPUs
24877 because of reduced dependencies, improved scheduling and reduced stack usage
24878 when the preferred stack boundary is not equal to 2. The drawback is a notable
24879 increase in code size. This switch implies @option{-mno-push-args}.
24880
24881 @item -mthreads
24882 @opindex mthreads
24883 Support thread-safe exception handling on MinGW. Programs that rely
24884 on thread-safe exception handling must compile and link all code with the
24885 @option{-mthreads} option. When compiling, @option{-mthreads} defines
24886 @option{-D_MT}; when linking, it links in a special thread helper library
24887 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
24888
24889 @item -mms-bitfields
24890 @itemx -mno-ms-bitfields
24891 @opindex mms-bitfields
24892 @opindex mno-ms-bitfields
24893
24894 Enable/disable bit-field layout compatible with the native Microsoft
24895 Windows compiler.
24896
24897 If @code{packed} is used on a structure, or if bit-fields are used,
24898 it may be that the Microsoft ABI lays out the structure differently
24899 than the way GCC normally does. Particularly when moving packed
24900 data between functions compiled with GCC and the native Microsoft compiler
24901 (either via function call or as data in a file), it may be necessary to access
24902 either format.
24903
24904 This option is enabled by default for Microsoft Windows
24905 targets. This behavior can also be controlled locally by use of variable
24906 or type attributes. For more information, see @ref{x86 Variable Attributes}
24907 and @ref{x86 Type Attributes}.
24908
24909 The Microsoft structure layout algorithm is fairly simple with the exception
24910 of the bit-field packing.
24911 The padding and alignment of members of structures and whether a bit-field
24912 can straddle a storage-unit boundary are determine by these rules:
24913
24914 @enumerate
24915 @item Structure members are stored sequentially in the order in which they are
24916 declared: the first member has the lowest memory address and the last member
24917 the highest.
24918
24919 @item Every data object has an alignment requirement. The alignment requirement
24920 for all data except structures, unions, and arrays is either the size of the
24921 object or the current packing size (specified with either the
24922 @code{aligned} attribute or the @code{pack} pragma),
24923 whichever is less. For structures, unions, and arrays,
24924 the alignment requirement is the largest alignment requirement of its members.
24925 Every object is allocated an offset so that:
24926
24927 @smallexample
24928 offset % alignment_requirement == 0
24929 @end smallexample
24930
24931 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
24932 unit if the integral types are the same size and if the next bit-field fits
24933 into the current allocation unit without crossing the boundary imposed by the
24934 common alignment requirements of the bit-fields.
24935 @end enumerate
24936
24937 MSVC interprets zero-length bit-fields in the following ways:
24938
24939 @enumerate
24940 @item If a zero-length bit-field is inserted between two bit-fields that
24941 are normally coalesced, the bit-fields are not coalesced.
24942
24943 For example:
24944
24945 @smallexample
24946 struct
24947 @{
24948 unsigned long bf_1 : 12;
24949 unsigned long : 0;
24950 unsigned long bf_2 : 12;
24951 @} t1;
24952 @end smallexample
24953
24954 @noindent
24955 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
24956 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
24957
24958 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
24959 alignment of the zero-length bit-field is greater than the member that follows it,
24960 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
24961
24962 For example:
24963
24964 @smallexample
24965 struct
24966 @{
24967 char foo : 4;
24968 short : 0;
24969 char bar;
24970 @} t2;
24971
24972 struct
24973 @{
24974 char foo : 4;
24975 short : 0;
24976 double bar;
24977 @} t3;
24978 @end smallexample
24979
24980 @noindent
24981 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
24982 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
24983 bit-field does not affect the alignment of @code{bar} or, as a result, the size
24984 of the structure.
24985
24986 Taking this into account, it is important to note the following:
24987
24988 @enumerate
24989 @item If a zero-length bit-field follows a normal bit-field, the type of the
24990 zero-length bit-field may affect the alignment of the structure as whole. For
24991 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
24992 normal bit-field, and is of type short.
24993
24994 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
24995 still affect the alignment of the structure:
24996
24997 @smallexample
24998 struct
24999 @{
25000 char foo : 6;
25001 long : 0;
25002 @} t4;
25003 @end smallexample
25004
25005 @noindent
25006 Here, @code{t4} takes up 4 bytes.
25007 @end enumerate
25008
25009 @item Zero-length bit-fields following non-bit-field members are ignored:
25010
25011 @smallexample
25012 struct
25013 @{
25014 char foo;
25015 long : 0;
25016 char bar;
25017 @} t5;
25018 @end smallexample
25019
25020 @noindent
25021 Here, @code{t5} takes up 2 bytes.
25022 @end enumerate
25023
25024
25025 @item -mno-align-stringops
25026 @opindex mno-align-stringops
25027 Do not align the destination of inlined string operations. This switch reduces
25028 code size and improves performance in case the destination is already aligned,
25029 but GCC doesn't know about it.
25030
25031 @item -minline-all-stringops
25032 @opindex minline-all-stringops
25033 By default GCC inlines string operations only when the destination is
25034 known to be aligned to least a 4-byte boundary.
25035 This enables more inlining and increases code
25036 size, but may improve performance of code that depends on fast
25037 @code{memcpy}, @code{strlen},
25038 and @code{memset} for short lengths.
25039
25040 @item -minline-stringops-dynamically
25041 @opindex minline-stringops-dynamically
25042 For string operations of unknown size, use run-time checks with
25043 inline code for small blocks and a library call for large blocks.
25044
25045 @item -mstringop-strategy=@var{alg}
25046 @opindex mstringop-strategy=@var{alg}
25047 Override the internal decision heuristic for the particular algorithm to use
25048 for inlining string operations. The allowed values for @var{alg} are:
25049
25050 @table @samp
25051 @item rep_byte
25052 @itemx rep_4byte
25053 @itemx rep_8byte
25054 Expand using i386 @code{rep} prefix of the specified size.
25055
25056 @item byte_loop
25057 @itemx loop
25058 @itemx unrolled_loop
25059 Expand into an inline loop.
25060
25061 @item libcall
25062 Always use a library call.
25063 @end table
25064
25065 @item -mmemcpy-strategy=@var{strategy}
25066 @opindex mmemcpy-strategy=@var{strategy}
25067 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
25068 should be inlined and what inline algorithm to use when the expected size
25069 of the copy operation is known. @var{strategy}
25070 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
25071 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
25072 the max byte size with which inline algorithm @var{alg} is allowed. For the last
25073 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
25074 in the list must be specified in increasing order. The minimal byte size for
25075 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
25076 preceding range.
25077
25078 @item -mmemset-strategy=@var{strategy}
25079 @opindex mmemset-strategy=@var{strategy}
25080 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
25081 @code{__builtin_memset} expansion.
25082
25083 @item -momit-leaf-frame-pointer
25084 @opindex momit-leaf-frame-pointer
25085 Don't keep the frame pointer in a register for leaf functions. This
25086 avoids the instructions to save, set up, and restore frame pointers and
25087 makes an extra register available in leaf functions. The option
25088 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
25089 which might make debugging harder.
25090
25091 @item -mtls-direct-seg-refs
25092 @itemx -mno-tls-direct-seg-refs
25093 @opindex mtls-direct-seg-refs
25094 Controls whether TLS variables may be accessed with offsets from the
25095 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
25096 or whether the thread base pointer must be added. Whether or not this
25097 is valid depends on the operating system, and whether it maps the
25098 segment to cover the entire TLS area.
25099
25100 For systems that use the GNU C Library, the default is on.
25101
25102 @item -msse2avx
25103 @itemx -mno-sse2avx
25104 @opindex msse2avx
25105 Specify that the assembler should encode SSE instructions with VEX
25106 prefix. The option @option{-mavx} turns this on by default.
25107
25108 @item -mfentry
25109 @itemx -mno-fentry
25110 @opindex mfentry
25111 If profiling is active (@option{-pg}), put the profiling
25112 counter call before the prologue.
25113 Note: On x86 architectures the attribute @code{ms_hook_prologue}
25114 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
25115
25116 @item -mrecord-mcount
25117 @itemx -mno-record-mcount
25118 @opindex mrecord-mcount
25119 If profiling is active (@option{-pg}), generate a __mcount_loc section
25120 that contains pointers to each profiling call. This is useful for
25121 automatically patching and out calls.
25122
25123 @item -mnop-mcount
25124 @itemx -mno-nop-mcount
25125 @opindex mnop-mcount
25126 If profiling is active (@option{-pg}), generate the calls to
25127 the profiling functions as NOPs. This is useful when they
25128 should be patched in later dynamically. This is likely only
25129 useful together with @option{-mrecord-mcount}.
25130
25131 @item -mskip-rax-setup
25132 @itemx -mno-skip-rax-setup
25133 @opindex mskip-rax-setup
25134 When generating code for the x86-64 architecture with SSE extensions
25135 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
25136 register when there are no variable arguments passed in vector registers.
25137
25138 @strong{Warning:} Since RAX register is used to avoid unnecessarily
25139 saving vector registers on stack when passing variable arguments, the
25140 impacts of this option are callees may waste some stack space,
25141 misbehave or jump to a random location. GCC 4.4 or newer don't have
25142 those issues, regardless the RAX register value.
25143
25144 @item -m8bit-idiv
25145 @itemx -mno-8bit-idiv
25146 @opindex m8bit-idiv
25147 On some processors, like Intel Atom, 8-bit unsigned integer divide is
25148 much faster than 32-bit/64-bit integer divide. This option generates a
25149 run-time check. If both dividend and divisor are within range of 0
25150 to 255, 8-bit unsigned integer divide is used instead of
25151 32-bit/64-bit integer divide.
25152
25153 @item -mavx256-split-unaligned-load
25154 @itemx -mavx256-split-unaligned-store
25155 @opindex mavx256-split-unaligned-load
25156 @opindex mavx256-split-unaligned-store
25157 Split 32-byte AVX unaligned load and store.
25158
25159 @item -mstack-protector-guard=@var{guard}
25160 @opindex mstack-protector-guard=@var{guard}
25161 Generate stack protection code using canary at @var{guard}. Supported
25162 locations are @samp{global} for global canary or @samp{tls} for per-thread
25163 canary in the TLS block (the default). This option has effect only when
25164 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
25165
25166 @item -mmitigate-rop
25167 @opindex mmitigate-rop
25168 Try to avoid generating code sequences that contain unintended return
25169 opcodes, to mitigate against certain forms of attack. At the moment,
25170 this option is limited in what it can do and should not be relied
25171 on to provide serious protection.
25172
25173 @item -mgeneral-regs-only
25174 @opindex mgeneral-regs-only
25175 Generate code that uses only the general-purpose registers. This
25176 prevents the compiler from using floating-point, vector, mask and bound
25177 registers.
25178
25179 @end table
25180
25181 These @samp{-m} switches are supported in addition to the above
25182 on x86-64 processors in 64-bit environments.
25183
25184 @table @gcctabopt
25185 @item -m32
25186 @itemx -m64
25187 @itemx -mx32
25188 @itemx -m16
25189 @itemx -miamcu
25190 @opindex m32
25191 @opindex m64
25192 @opindex mx32
25193 @opindex m16
25194 @opindex miamcu
25195 Generate code for a 16-bit, 32-bit or 64-bit environment.
25196 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
25197 to 32 bits, and
25198 generates code that runs on any i386 system.
25199
25200 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
25201 types to 64 bits, and generates code for the x86-64 architecture.
25202 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
25203 and @option{-mdynamic-no-pic} options.
25204
25205 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
25206 to 32 bits, and
25207 generates code for the x86-64 architecture.
25208
25209 The @option{-m16} option is the same as @option{-m32}, except for that
25210 it outputs the @code{.code16gcc} assembly directive at the beginning of
25211 the assembly output so that the binary can run in 16-bit mode.
25212
25213 The @option{-miamcu} option generates code which conforms to Intel MCU
25214 psABI. It requires the @option{-m32} option to be turned on.
25215
25216 @item -mno-red-zone
25217 @opindex mno-red-zone
25218 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
25219 by the x86-64 ABI; it is a 128-byte area beyond the location of the
25220 stack pointer that is not modified by signal or interrupt handlers
25221 and therefore can be used for temporary data without adjusting the stack
25222 pointer. The flag @option{-mno-red-zone} disables this red zone.
25223
25224 @item -mcmodel=small
25225 @opindex mcmodel=small
25226 Generate code for the small code model: the program and its symbols must
25227 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
25228 Programs can be statically or dynamically linked. This is the default
25229 code model.
25230
25231 @item -mcmodel=kernel
25232 @opindex mcmodel=kernel
25233 Generate code for the kernel code model. The kernel runs in the
25234 negative 2 GB of the address space.
25235 This model has to be used for Linux kernel code.
25236
25237 @item -mcmodel=medium
25238 @opindex mcmodel=medium
25239 Generate code for the medium model: the program is linked in the lower 2
25240 GB of the address space. Small symbols are also placed there. Symbols
25241 with sizes larger than @option{-mlarge-data-threshold} are put into
25242 large data or BSS sections and can be located above 2GB. Programs can
25243 be statically or dynamically linked.
25244
25245 @item -mcmodel=large
25246 @opindex mcmodel=large
25247 Generate code for the large model. This model makes no assumptions
25248 about addresses and sizes of sections.
25249
25250 @item -maddress-mode=long
25251 @opindex maddress-mode=long
25252 Generate code for long address mode. This is only supported for 64-bit
25253 and x32 environments. It is the default address mode for 64-bit
25254 environments.
25255
25256 @item -maddress-mode=short
25257 @opindex maddress-mode=short
25258 Generate code for short address mode. This is only supported for 32-bit
25259 and x32 environments. It is the default address mode for 32-bit and
25260 x32 environments.
25261 @end table
25262
25263 @node x86 Windows Options
25264 @subsection x86 Windows Options
25265 @cindex x86 Windows Options
25266 @cindex Windows Options for x86
25267
25268 These additional options are available for Microsoft Windows targets:
25269
25270 @table @gcctabopt
25271 @item -mconsole
25272 @opindex mconsole
25273 This option
25274 specifies that a console application is to be generated, by
25275 instructing the linker to set the PE header subsystem type
25276 required for console applications.
25277 This option is available for Cygwin and MinGW targets and is
25278 enabled by default on those targets.
25279
25280 @item -mdll
25281 @opindex mdll
25282 This option is available for Cygwin and MinGW targets. It
25283 specifies that a DLL---a dynamic link library---is to be
25284 generated, enabling the selection of the required runtime
25285 startup object and entry point.
25286
25287 @item -mnop-fun-dllimport
25288 @opindex mnop-fun-dllimport
25289 This option is available for Cygwin and MinGW targets. It
25290 specifies that the @code{dllimport} attribute should be ignored.
25291
25292 @item -mthread
25293 @opindex mthread
25294 This option is available for MinGW targets. It specifies
25295 that MinGW-specific thread support is to be used.
25296
25297 @item -municode
25298 @opindex municode
25299 This option is available for MinGW-w64 targets. It causes
25300 the @code{UNICODE} preprocessor macro to be predefined, and
25301 chooses Unicode-capable runtime startup code.
25302
25303 @item -mwin32
25304 @opindex mwin32
25305 This option is available for Cygwin and MinGW targets. It
25306 specifies that the typical Microsoft Windows predefined macros are to
25307 be set in the pre-processor, but does not influence the choice
25308 of runtime library/startup code.
25309
25310 @item -mwindows
25311 @opindex mwindows
25312 This option is available for Cygwin and MinGW targets. It
25313 specifies that a GUI application is to be generated by
25314 instructing the linker to set the PE header subsystem type
25315 appropriately.
25316
25317 @item -fno-set-stack-executable
25318 @opindex fno-set-stack-executable
25319 This option is available for MinGW targets. It specifies that
25320 the executable flag for the stack used by nested functions isn't
25321 set. This is necessary for binaries running in kernel mode of
25322 Microsoft Windows, as there the User32 API, which is used to set executable
25323 privileges, isn't available.
25324
25325 @item -fwritable-relocated-rdata
25326 @opindex fno-writable-relocated-rdata
25327 This option is available for MinGW and Cygwin targets. It specifies
25328 that relocated-data in read-only section is put into the @code{.data}
25329 section. This is a necessary for older runtimes not supporting
25330 modification of @code{.rdata} sections for pseudo-relocation.
25331
25332 @item -mpe-aligned-commons
25333 @opindex mpe-aligned-commons
25334 This option is available for Cygwin and MinGW targets. It
25335 specifies that the GNU extension to the PE file format that
25336 permits the correct alignment of COMMON variables should be
25337 used when generating code. It is enabled by default if
25338 GCC detects that the target assembler found during configuration
25339 supports the feature.
25340 @end table
25341
25342 See also under @ref{x86 Options} for standard options.
25343
25344 @node Xstormy16 Options
25345 @subsection Xstormy16 Options
25346 @cindex Xstormy16 Options
25347
25348 These options are defined for Xstormy16:
25349
25350 @table @gcctabopt
25351 @item -msim
25352 @opindex msim
25353 Choose startup files and linker script suitable for the simulator.
25354 @end table
25355
25356 @node Xtensa Options
25357 @subsection Xtensa Options
25358 @cindex Xtensa Options
25359
25360 These options are supported for Xtensa targets:
25361
25362 @table @gcctabopt
25363 @item -mconst16
25364 @itemx -mno-const16
25365 @opindex mconst16
25366 @opindex mno-const16
25367 Enable or disable use of @code{CONST16} instructions for loading
25368 constant values. The @code{CONST16} instruction is currently not a
25369 standard option from Tensilica. When enabled, @code{CONST16}
25370 instructions are always used in place of the standard @code{L32R}
25371 instructions. The use of @code{CONST16} is enabled by default only if
25372 the @code{L32R} instruction is not available.
25373
25374 @item -mfused-madd
25375 @itemx -mno-fused-madd
25376 @opindex mfused-madd
25377 @opindex mno-fused-madd
25378 Enable or disable use of fused multiply/add and multiply/subtract
25379 instructions in the floating-point option. This has no effect if the
25380 floating-point option is not also enabled. Disabling fused multiply/add
25381 and multiply/subtract instructions forces the compiler to use separate
25382 instructions for the multiply and add/subtract operations. This may be
25383 desirable in some cases where strict IEEE 754-compliant results are
25384 required: the fused multiply add/subtract instructions do not round the
25385 intermediate result, thereby producing results with @emph{more} bits of
25386 precision than specified by the IEEE standard. Disabling fused multiply
25387 add/subtract instructions also ensures that the program output is not
25388 sensitive to the compiler's ability to combine multiply and add/subtract
25389 operations.
25390
25391 @item -mserialize-volatile
25392 @itemx -mno-serialize-volatile
25393 @opindex mserialize-volatile
25394 @opindex mno-serialize-volatile
25395 When this option is enabled, GCC inserts @code{MEMW} instructions before
25396 @code{volatile} memory references to guarantee sequential consistency.
25397 The default is @option{-mserialize-volatile}. Use
25398 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
25399
25400 @item -mforce-no-pic
25401 @opindex mforce-no-pic
25402 For targets, like GNU/Linux, where all user-mode Xtensa code must be
25403 position-independent code (PIC), this option disables PIC for compiling
25404 kernel code.
25405
25406 @item -mtext-section-literals
25407 @itemx -mno-text-section-literals
25408 @opindex mtext-section-literals
25409 @opindex mno-text-section-literals
25410 These options control the treatment of literal pools. The default is
25411 @option{-mno-text-section-literals}, which places literals in a separate
25412 section in the output file. This allows the literal pool to be placed
25413 in a data RAM/ROM, and it also allows the linker to combine literal
25414 pools from separate object files to remove redundant literals and
25415 improve code size. With @option{-mtext-section-literals}, the literals
25416 are interspersed in the text section in order to keep them as close as
25417 possible to their references. This may be necessary for large assembly
25418 files. Literals for each function are placed right before that function.
25419
25420 @item -mauto-litpools
25421 @itemx -mno-auto-litpools
25422 @opindex mauto-litpools
25423 @opindex mno-auto-litpools
25424 These options control the treatment of literal pools. The default is
25425 @option{-mno-auto-litpools}, which places literals in a separate
25426 section in the output file unless @option{-mtext-section-literals} is
25427 used. With @option{-mauto-litpools} the literals are interspersed in
25428 the text section by the assembler. Compiler does not produce explicit
25429 @code{.literal} directives and loads literals into registers with
25430 @code{MOVI} instructions instead of @code{L32R} to let the assembler
25431 do relaxation and place literals as necessary. This option allows
25432 assembler to create several literal pools per function and assemble
25433 very big functions, which may not be possible with
25434 @option{-mtext-section-literals}.
25435
25436 @item -mtarget-align
25437 @itemx -mno-target-align
25438 @opindex mtarget-align
25439 @opindex mno-target-align
25440 When this option is enabled, GCC instructs the assembler to
25441 automatically align instructions to reduce branch penalties at the
25442 expense of some code density. The assembler attempts to widen density
25443 instructions to align branch targets and the instructions following call
25444 instructions. If there are not enough preceding safe density
25445 instructions to align a target, no widening is performed. The
25446 default is @option{-mtarget-align}. These options do not affect the
25447 treatment of auto-aligned instructions like @code{LOOP}, which the
25448 assembler always aligns, either by widening density instructions or
25449 by inserting NOP instructions.
25450
25451 @item -mlongcalls
25452 @itemx -mno-longcalls
25453 @opindex mlongcalls
25454 @opindex mno-longcalls
25455 When this option is enabled, GCC instructs the assembler to translate
25456 direct calls to indirect calls unless it can determine that the target
25457 of a direct call is in the range allowed by the call instruction. This
25458 translation typically occurs for calls to functions in other source
25459 files. Specifically, the assembler translates a direct @code{CALL}
25460 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
25461 The default is @option{-mno-longcalls}. This option should be used in
25462 programs where the call target can potentially be out of range. This
25463 option is implemented in the assembler, not the compiler, so the
25464 assembly code generated by GCC still shows direct call
25465 instructions---look at the disassembled object code to see the actual
25466 instructions. Note that the assembler uses an indirect call for
25467 every cross-file call, not just those that really are out of range.
25468 @end table
25469
25470 @node zSeries Options
25471 @subsection zSeries Options
25472 @cindex zSeries options
25473
25474 These are listed under @xref{S/390 and zSeries Options}.
25475
25476
25477 @c man end
25478
25479 @node Spec Files
25480 @section Specifying Subprocesses and the Switches to Pass to Them
25481 @cindex Spec Files
25482
25483 @command{gcc} is a driver program. It performs its job by invoking a
25484 sequence of other programs to do the work of compiling, assembling and
25485 linking. GCC interprets its command-line parameters and uses these to
25486 deduce which programs it should invoke, and which command-line options
25487 it ought to place on their command lines. This behavior is controlled
25488 by @dfn{spec strings}. In most cases there is one spec string for each
25489 program that GCC can invoke, but a few programs have multiple spec
25490 strings to control their behavior. The spec strings built into GCC can
25491 be overridden by using the @option{-specs=} command-line switch to specify
25492 a spec file.
25493
25494 @dfn{Spec files} are plain-text files that are used to construct spec
25495 strings. They consist of a sequence of directives separated by blank
25496 lines. The type of directive is determined by the first non-whitespace
25497 character on the line, which can be one of the following:
25498
25499 @table @code
25500 @item %@var{command}
25501 Issues a @var{command} to the spec file processor. The commands that can
25502 appear here are:
25503
25504 @table @code
25505 @item %include <@var{file}>
25506 @cindex @code{%include}
25507 Search for @var{file} and insert its text at the current point in the
25508 specs file.
25509
25510 @item %include_noerr <@var{file}>
25511 @cindex @code{%include_noerr}
25512 Just like @samp{%include}, but do not generate an error message if the include
25513 file cannot be found.
25514
25515 @item %rename @var{old_name} @var{new_name}
25516 @cindex @code{%rename}
25517 Rename the spec string @var{old_name} to @var{new_name}.
25518
25519 @end table
25520
25521 @item *[@var{spec_name}]:
25522 This tells the compiler to create, override or delete the named spec
25523 string. All lines after this directive up to the next directive or
25524 blank line are considered to be the text for the spec string. If this
25525 results in an empty string then the spec is deleted. (Or, if the
25526 spec did not exist, then nothing happens.) Otherwise, if the spec
25527 does not currently exist a new spec is created. If the spec does
25528 exist then its contents are overridden by the text of this
25529 directive, unless the first character of that text is the @samp{+}
25530 character, in which case the text is appended to the spec.
25531
25532 @item [@var{suffix}]:
25533 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
25534 and up to the next directive or blank line are considered to make up the
25535 spec string for the indicated suffix. When the compiler encounters an
25536 input file with the named suffix, it processes the spec string in
25537 order to work out how to compile that file. For example:
25538
25539 @smallexample
25540 .ZZ:
25541 z-compile -input %i
25542 @end smallexample
25543
25544 This says that any input file whose name ends in @samp{.ZZ} should be
25545 passed to the program @samp{z-compile}, which should be invoked with the
25546 command-line switch @option{-input} and with the result of performing the
25547 @samp{%i} substitution. (See below.)
25548
25549 As an alternative to providing a spec string, the text following a
25550 suffix directive can be one of the following:
25551
25552 @table @code
25553 @item @@@var{language}
25554 This says that the suffix is an alias for a known @var{language}. This is
25555 similar to using the @option{-x} command-line switch to GCC to specify a
25556 language explicitly. For example:
25557
25558 @smallexample
25559 .ZZ:
25560 @@c++
25561 @end smallexample
25562
25563 Says that .ZZ files are, in fact, C++ source files.
25564
25565 @item #@var{name}
25566 This causes an error messages saying:
25567
25568 @smallexample
25569 @var{name} compiler not installed on this system.
25570 @end smallexample
25571 @end table
25572
25573 GCC already has an extensive list of suffixes built into it.
25574 This directive adds an entry to the end of the list of suffixes, but
25575 since the list is searched from the end backwards, it is effectively
25576 possible to override earlier entries using this technique.
25577
25578 @end table
25579
25580 GCC has the following spec strings built into it. Spec files can
25581 override these strings or create their own. Note that individual
25582 targets can also add their own spec strings to this list.
25583
25584 @smallexample
25585 asm Options to pass to the assembler
25586 asm_final Options to pass to the assembler post-processor
25587 cpp Options to pass to the C preprocessor
25588 cc1 Options to pass to the C compiler
25589 cc1plus Options to pass to the C++ compiler
25590 endfile Object files to include at the end of the link
25591 link Options to pass to the linker
25592 lib Libraries to include on the command line to the linker
25593 libgcc Decides which GCC support library to pass to the linker
25594 linker Sets the name of the linker
25595 predefines Defines to be passed to the C preprocessor
25596 signed_char Defines to pass to CPP to say whether @code{char} is signed
25597 by default
25598 startfile Object files to include at the start of the link
25599 @end smallexample
25600
25601 Here is a small example of a spec file:
25602
25603 @smallexample
25604 %rename lib old_lib
25605
25606 *lib:
25607 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
25608 @end smallexample
25609
25610 This example renames the spec called @samp{lib} to @samp{old_lib} and
25611 then overrides the previous definition of @samp{lib} with a new one.
25612 The new definition adds in some extra command-line options before
25613 including the text of the old definition.
25614
25615 @dfn{Spec strings} are a list of command-line options to be passed to their
25616 corresponding program. In addition, the spec strings can contain
25617 @samp{%}-prefixed sequences to substitute variable text or to
25618 conditionally insert text into the command line. Using these constructs
25619 it is possible to generate quite complex command lines.
25620
25621 Here is a table of all defined @samp{%}-sequences for spec
25622 strings. Note that spaces are not generated automatically around the
25623 results of expanding these sequences. Therefore you can concatenate them
25624 together or combine them with constant text in a single argument.
25625
25626 @table @code
25627 @item %%
25628 Substitute one @samp{%} into the program name or argument.
25629
25630 @item %i
25631 Substitute the name of the input file being processed.
25632
25633 @item %b
25634 Substitute the basename of the input file being processed.
25635 This is the substring up to (and not including) the last period
25636 and not including the directory.
25637
25638 @item %B
25639 This is the same as @samp{%b}, but include the file suffix (text after
25640 the last period).
25641
25642 @item %d
25643 Marks the argument containing or following the @samp{%d} as a
25644 temporary file name, so that that file is deleted if GCC exits
25645 successfully. Unlike @samp{%g}, this contributes no text to the
25646 argument.
25647
25648 @item %g@var{suffix}
25649 Substitute a file name that has suffix @var{suffix} and is chosen
25650 once per compilation, and mark the argument in the same way as
25651 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
25652 name is now chosen in a way that is hard to predict even when previously
25653 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
25654 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
25655 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
25656 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
25657 was simply substituted with a file name chosen once per compilation,
25658 without regard to any appended suffix (which was therefore treated
25659 just like ordinary text), making such attacks more likely to succeed.
25660
25661 @item %u@var{suffix}
25662 Like @samp{%g}, but generates a new temporary file name
25663 each time it appears instead of once per compilation.
25664
25665 @item %U@var{suffix}
25666 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
25667 new one if there is no such last file name. In the absence of any
25668 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
25669 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
25670 involves the generation of two distinct file names, one
25671 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
25672 simply substituted with a file name chosen for the previous @samp{%u},
25673 without regard to any appended suffix.
25674
25675 @item %j@var{suffix}
25676 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
25677 writable, and if @option{-save-temps} is not used;
25678 otherwise, substitute the name
25679 of a temporary file, just like @samp{%u}. This temporary file is not
25680 meant for communication between processes, but rather as a junk
25681 disposal mechanism.
25682
25683 @item %|@var{suffix}
25684 @itemx %m@var{suffix}
25685 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
25686 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
25687 all. These are the two most common ways to instruct a program that it
25688 should read from standard input or write to standard output. If you
25689 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
25690 construct: see for example @file{f/lang-specs.h}.
25691
25692 @item %.@var{SUFFIX}
25693 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
25694 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
25695 terminated by the next space or %.
25696
25697 @item %w
25698 Marks the argument containing or following the @samp{%w} as the
25699 designated output file of this compilation. This puts the argument
25700 into the sequence of arguments that @samp{%o} substitutes.
25701
25702 @item %o
25703 Substitutes the names of all the output files, with spaces
25704 automatically placed around them. You should write spaces
25705 around the @samp{%o} as well or the results are undefined.
25706 @samp{%o} is for use in the specs for running the linker.
25707 Input files whose names have no recognized suffix are not compiled
25708 at all, but they are included among the output files, so they are
25709 linked.
25710
25711 @item %O
25712 Substitutes the suffix for object files. Note that this is
25713 handled specially when it immediately follows @samp{%g, %u, or %U},
25714 because of the need for those to form complete file names. The
25715 handling is such that @samp{%O} is treated exactly as if it had already
25716 been substituted, except that @samp{%g, %u, and %U} do not currently
25717 support additional @var{suffix} characters following @samp{%O} as they do
25718 following, for example, @samp{.o}.
25719
25720 @item %p
25721 Substitutes the standard macro predefinitions for the
25722 current target machine. Use this when running @command{cpp}.
25723
25724 @item %P
25725 Like @samp{%p}, but puts @samp{__} before and after the name of each
25726 predefined macro, except for macros that start with @samp{__} or with
25727 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
25728 C@.
25729
25730 @item %I
25731 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
25732 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
25733 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
25734 and @option{-imultilib} as necessary.
25735
25736 @item %s
25737 Current argument is the name of a library or startup file of some sort.
25738 Search for that file in a standard list of directories and substitute
25739 the full name found. The current working directory is included in the
25740 list of directories scanned.
25741
25742 @item %T
25743 Current argument is the name of a linker script. Search for that file
25744 in the current list of directories to scan for libraries. If the file
25745 is located insert a @option{--script} option into the command line
25746 followed by the full path name found. If the file is not found then
25747 generate an error message. Note: the current working directory is not
25748 searched.
25749
25750 @item %e@var{str}
25751 Print @var{str} as an error message. @var{str} is terminated by a newline.
25752 Use this when inconsistent options are detected.
25753
25754 @item %(@var{name})
25755 Substitute the contents of spec string @var{name} at this point.
25756
25757 @item %x@{@var{option}@}
25758 Accumulate an option for @samp{%X}.
25759
25760 @item %X
25761 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
25762 spec string.
25763
25764 @item %Y
25765 Output the accumulated assembler options specified by @option{-Wa}.
25766
25767 @item %Z
25768 Output the accumulated preprocessor options specified by @option{-Wp}.
25769
25770 @item %a
25771 Process the @code{asm} spec. This is used to compute the
25772 switches to be passed to the assembler.
25773
25774 @item %A
25775 Process the @code{asm_final} spec. This is a spec string for
25776 passing switches to an assembler post-processor, if such a program is
25777 needed.
25778
25779 @item %l
25780 Process the @code{link} spec. This is the spec for computing the
25781 command line passed to the linker. Typically it makes use of the
25782 @samp{%L %G %S %D and %E} sequences.
25783
25784 @item %D
25785 Dump out a @option{-L} option for each directory that GCC believes might
25786 contain startup files. If the target supports multilibs then the
25787 current multilib directory is prepended to each of these paths.
25788
25789 @item %L
25790 Process the @code{lib} spec. This is a spec string for deciding which
25791 libraries are included on the command line to the linker.
25792
25793 @item %G
25794 Process the @code{libgcc} spec. This is a spec string for deciding
25795 which GCC support library is included on the command line to the linker.
25796
25797 @item %S
25798 Process the @code{startfile} spec. This is a spec for deciding which
25799 object files are the first ones passed to the linker. Typically
25800 this might be a file named @file{crt0.o}.
25801
25802 @item %E
25803 Process the @code{endfile} spec. This is a spec string that specifies
25804 the last object files that are passed to the linker.
25805
25806 @item %C
25807 Process the @code{cpp} spec. This is used to construct the arguments
25808 to be passed to the C preprocessor.
25809
25810 @item %1
25811 Process the @code{cc1} spec. This is used to construct the options to be
25812 passed to the actual C compiler (@command{cc1}).
25813
25814 @item %2
25815 Process the @code{cc1plus} spec. This is used to construct the options to be
25816 passed to the actual C++ compiler (@command{cc1plus}).
25817
25818 @item %*
25819 Substitute the variable part of a matched option. See below.
25820 Note that each comma in the substituted string is replaced by
25821 a single space.
25822
25823 @item %<@code{S}
25824 Remove all occurrences of @code{-S} from the command line. Note---this
25825 command is position dependent. @samp{%} commands in the spec string
25826 before this one see @code{-S}, @samp{%} commands in the spec string
25827 after this one do not.
25828
25829 @item %:@var{function}(@var{args})
25830 Call the named function @var{function}, passing it @var{args}.
25831 @var{args} is first processed as a nested spec string, then split
25832 into an argument vector in the usual fashion. The function returns
25833 a string which is processed as if it had appeared literally as part
25834 of the current spec.
25835
25836 The following built-in spec functions are provided:
25837
25838 @table @code
25839 @item @code{getenv}
25840 The @code{getenv} spec function takes two arguments: an environment
25841 variable name and a string. If the environment variable is not
25842 defined, a fatal error is issued. Otherwise, the return value is the
25843 value of the environment variable concatenated with the string. For
25844 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
25845
25846 @smallexample
25847 %:getenv(TOPDIR /include)
25848 @end smallexample
25849
25850 expands to @file{/path/to/top/include}.
25851
25852 @item @code{if-exists}
25853 The @code{if-exists} spec function takes one argument, an absolute
25854 pathname to a file. If the file exists, @code{if-exists} returns the
25855 pathname. Here is a small example of its usage:
25856
25857 @smallexample
25858 *startfile:
25859 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
25860 @end smallexample
25861
25862 @item @code{if-exists-else}
25863 The @code{if-exists-else} spec function is similar to the @code{if-exists}
25864 spec function, except that it takes two arguments. The first argument is
25865 an absolute pathname to a file. If the file exists, @code{if-exists-else}
25866 returns the pathname. If it does not exist, it returns the second argument.
25867 This way, @code{if-exists-else} can be used to select one file or another,
25868 based on the existence of the first. Here is a small example of its usage:
25869
25870 @smallexample
25871 *startfile:
25872 crt0%O%s %:if-exists(crti%O%s) \
25873 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
25874 @end smallexample
25875
25876 @item @code{replace-outfile}
25877 The @code{replace-outfile} spec function takes two arguments. It looks for the
25878 first argument in the outfiles array and replaces it with the second argument. Here
25879 is a small example of its usage:
25880
25881 @smallexample
25882 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
25883 @end smallexample
25884
25885 @item @code{remove-outfile}
25886 The @code{remove-outfile} spec function takes one argument. It looks for the
25887 first argument in the outfiles array and removes it. Here is a small example
25888 its usage:
25889
25890 @smallexample
25891 %:remove-outfile(-lm)
25892 @end smallexample
25893
25894 @item @code{pass-through-libs}
25895 The @code{pass-through-libs} spec function takes any number of arguments. It
25896 finds any @option{-l} options and any non-options ending in @file{.a} (which it
25897 assumes are the names of linker input library archive files) and returns a
25898 result containing all the found arguments each prepended by
25899 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
25900 intended to be passed to the LTO linker plugin.
25901
25902 @smallexample
25903 %:pass-through-libs(%G %L %G)
25904 @end smallexample
25905
25906 @item @code{print-asm-header}
25907 The @code{print-asm-header} function takes no arguments and simply
25908 prints a banner like:
25909
25910 @smallexample
25911 Assembler options
25912 =================
25913
25914 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
25915 @end smallexample
25916
25917 It is used to separate compiler options from assembler options
25918 in the @option{--target-help} output.
25919 @end table
25920
25921 @item %@{@code{S}@}
25922 Substitutes the @code{-S} switch, if that switch is given to GCC@.
25923 If that switch is not specified, this substitutes nothing. Note that
25924 the leading dash is omitted when specifying this option, and it is
25925 automatically inserted if the substitution is performed. Thus the spec
25926 string @samp{%@{foo@}} matches the command-line option @option{-foo}
25927 and outputs the command-line option @option{-foo}.
25928
25929 @item %W@{@code{S}@}
25930 Like %@{@code{S}@} but mark last argument supplied within as a file to be
25931 deleted on failure.
25932
25933 @item %@{@code{S}*@}
25934 Substitutes all the switches specified to GCC whose names start
25935 with @code{-S}, but which also take an argument. This is used for
25936 switches like @option{-o}, @option{-D}, @option{-I}, etc.
25937 GCC considers @option{-o foo} as being
25938 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
25939 text, including the space. Thus two arguments are generated.
25940
25941 @item %@{@code{S}*&@code{T}*@}
25942 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
25943 (the order of @code{S} and @code{T} in the spec is not significant).
25944 There can be any number of ampersand-separated variables; for each the
25945 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
25946
25947 @item %@{@code{S}:@code{X}@}
25948 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
25949
25950 @item %@{!@code{S}:@code{X}@}
25951 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
25952
25953 @item %@{@code{S}*:@code{X}@}
25954 Substitutes @code{X} if one or more switches whose names start with
25955 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
25956 once, no matter how many such switches appeared. However, if @code{%*}
25957 appears somewhere in @code{X}, then @code{X} is substituted once
25958 for each matching switch, with the @code{%*} replaced by the part of
25959 that switch matching the @code{*}.
25960
25961 If @code{%*} appears as the last part of a spec sequence then a space
25962 is added after the end of the last substitution. If there is more
25963 text in the sequence, however, then a space is not generated. This
25964 allows the @code{%*} substitution to be used as part of a larger
25965 string. For example, a spec string like this:
25966
25967 @smallexample
25968 %@{mcu=*:--script=%*/memory.ld@}
25969 @end smallexample
25970
25971 @noindent
25972 when matching an option like @option{-mcu=newchip} produces:
25973
25974 @smallexample
25975 --script=newchip/memory.ld
25976 @end smallexample
25977
25978 @item %@{.@code{S}:@code{X}@}
25979 Substitutes @code{X}, if processing a file with suffix @code{S}.
25980
25981 @item %@{!.@code{S}:@code{X}@}
25982 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
25983
25984 @item %@{,@code{S}:@code{X}@}
25985 Substitutes @code{X}, if processing a file for language @code{S}.
25986
25987 @item %@{!,@code{S}:@code{X}@}
25988 Substitutes @code{X}, if not processing a file for language @code{S}.
25989
25990 @item %@{@code{S}|@code{P}:@code{X}@}
25991 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
25992 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
25993 @code{*} sequences as well, although they have a stronger binding than
25994 the @samp{|}. If @code{%*} appears in @code{X}, all of the
25995 alternatives must be starred, and only the first matching alternative
25996 is substituted.
25997
25998 For example, a spec string like this:
25999
26000 @smallexample
26001 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
26002 @end smallexample
26003
26004 @noindent
26005 outputs the following command-line options from the following input
26006 command-line options:
26007
26008 @smallexample
26009 fred.c -foo -baz
26010 jim.d -bar -boggle
26011 -d fred.c -foo -baz -boggle
26012 -d jim.d -bar -baz -boggle
26013 @end smallexample
26014
26015 @item %@{S:X; T:Y; :D@}
26016
26017 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
26018 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
26019 be as many clauses as you need. This may be combined with @code{.},
26020 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
26021
26022
26023 @end table
26024
26025 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
26026 construct may contain other nested @samp{%} constructs or spaces, or
26027 even newlines. They are processed as usual, as described above.
26028 Trailing white space in @code{X} is ignored. White space may also
26029 appear anywhere on the left side of the colon in these constructs,
26030 except between @code{.} or @code{*} and the corresponding word.
26031
26032 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
26033 handled specifically in these constructs. If another value of
26034 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
26035 @option{-W} switch is found later in the command line, the earlier
26036 switch value is ignored, except with @{@code{S}*@} where @code{S} is
26037 just one letter, which passes all matching options.
26038
26039 The character @samp{|} at the beginning of the predicate text is used to
26040 indicate that a command should be piped to the following command, but
26041 only if @option{-pipe} is specified.
26042
26043 It is built into GCC which switches take arguments and which do not.
26044 (You might think it would be useful to generalize this to allow each
26045 compiler's spec to say which switches take arguments. But this cannot
26046 be done in a consistent fashion. GCC cannot even decide which input
26047 files have been specified without knowing which switches take arguments,
26048 and it must know which input files to compile in order to tell which
26049 compilers to run).
26050
26051 GCC also knows implicitly that arguments starting in @option{-l} are to be
26052 treated as compiler output files, and passed to the linker in their
26053 proper position among the other output files.
26054
26055 @node Environment Variables
26056 @section Environment Variables Affecting GCC
26057 @cindex environment variables
26058
26059 @c man begin ENVIRONMENT
26060 This section describes several environment variables that affect how GCC
26061 operates. Some of them work by specifying directories or prefixes to use
26062 when searching for various kinds of files. Some are used to specify other
26063 aspects of the compilation environment.
26064
26065 Note that you can also specify places to search using options such as
26066 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
26067 take precedence over places specified using environment variables, which
26068 in turn take precedence over those specified by the configuration of GCC@.
26069 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
26070 GNU Compiler Collection (GCC) Internals}.
26071
26072 @table @env
26073 @item LANG
26074 @itemx LC_CTYPE
26075 @c @itemx LC_COLLATE
26076 @itemx LC_MESSAGES
26077 @c @itemx LC_MONETARY
26078 @c @itemx LC_NUMERIC
26079 @c @itemx LC_TIME
26080 @itemx LC_ALL
26081 @findex LANG
26082 @findex LC_CTYPE
26083 @c @findex LC_COLLATE
26084 @findex LC_MESSAGES
26085 @c @findex LC_MONETARY
26086 @c @findex LC_NUMERIC
26087 @c @findex LC_TIME
26088 @findex LC_ALL
26089 @cindex locale
26090 These environment variables control the way that GCC uses
26091 localization information which allows GCC to work with different
26092 national conventions. GCC inspects the locale categories
26093 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
26094 so. These locale categories can be set to any value supported by your
26095 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
26096 Kingdom encoded in UTF-8.
26097
26098 The @env{LC_CTYPE} environment variable specifies character
26099 classification. GCC uses it to determine the character boundaries in
26100 a string; this is needed for some multibyte encodings that contain quote
26101 and escape characters that are otherwise interpreted as a string
26102 end or escape.
26103
26104 The @env{LC_MESSAGES} environment variable specifies the language to
26105 use in diagnostic messages.
26106
26107 If the @env{LC_ALL} environment variable is set, it overrides the value
26108 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
26109 and @env{LC_MESSAGES} default to the value of the @env{LANG}
26110 environment variable. If none of these variables are set, GCC
26111 defaults to traditional C English behavior.
26112
26113 @item TMPDIR
26114 @findex TMPDIR
26115 If @env{TMPDIR} is set, it specifies the directory to use for temporary
26116 files. GCC uses temporary files to hold the output of one stage of
26117 compilation which is to be used as input to the next stage: for example,
26118 the output of the preprocessor, which is the input to the compiler
26119 proper.
26120
26121 @item GCC_COMPARE_DEBUG
26122 @findex GCC_COMPARE_DEBUG
26123 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
26124 @option{-fcompare-debug} to the compiler driver. See the documentation
26125 of this option for more details.
26126
26127 @item GCC_EXEC_PREFIX
26128 @findex GCC_EXEC_PREFIX
26129 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
26130 names of the subprograms executed by the compiler. No slash is added
26131 when this prefix is combined with the name of a subprogram, but you can
26132 specify a prefix that ends with a slash if you wish.
26133
26134 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
26135 an appropriate prefix to use based on the pathname it is invoked with.
26136
26137 If GCC cannot find the subprogram using the specified prefix, it
26138 tries looking in the usual places for the subprogram.
26139
26140 The default value of @env{GCC_EXEC_PREFIX} is
26141 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
26142 the installed compiler. In many cases @var{prefix} is the value
26143 of @code{prefix} when you ran the @file{configure} script.
26144
26145 Other prefixes specified with @option{-B} take precedence over this prefix.
26146
26147 This prefix is also used for finding files such as @file{crt0.o} that are
26148 used for linking.
26149
26150 In addition, the prefix is used in an unusual way in finding the
26151 directories to search for header files. For each of the standard
26152 directories whose name normally begins with @samp{/usr/local/lib/gcc}
26153 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
26154 replacing that beginning with the specified prefix to produce an
26155 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
26156 @file{foo/bar} just before it searches the standard directory
26157 @file{/usr/local/lib/bar}.
26158 If a standard directory begins with the configured
26159 @var{prefix} then the value of @var{prefix} is replaced by
26160 @env{GCC_EXEC_PREFIX} when looking for header files.
26161
26162 @item COMPILER_PATH
26163 @findex COMPILER_PATH
26164 The value of @env{COMPILER_PATH} is a colon-separated list of
26165 directories, much like @env{PATH}. GCC tries the directories thus
26166 specified when searching for subprograms, if it can't find the
26167 subprograms using @env{GCC_EXEC_PREFIX}.
26168
26169 @item LIBRARY_PATH
26170 @findex LIBRARY_PATH
26171 The value of @env{LIBRARY_PATH} is a colon-separated list of
26172 directories, much like @env{PATH}. When configured as a native compiler,
26173 GCC tries the directories thus specified when searching for special
26174 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking
26175 using GCC also uses these directories when searching for ordinary
26176 libraries for the @option{-l} option (but directories specified with
26177 @option{-L} come first).
26178
26179 @item LANG
26180 @findex LANG
26181 @cindex locale definition
26182 This variable is used to pass locale information to the compiler. One way in
26183 which this information is used is to determine the character set to be used
26184 when character literals, string literals and comments are parsed in C and C++.
26185 When the compiler is configured to allow multibyte characters,
26186 the following values for @env{LANG} are recognized:
26187
26188 @table @samp
26189 @item C-JIS
26190 Recognize JIS characters.
26191 @item C-SJIS
26192 Recognize SJIS characters.
26193 @item C-EUCJP
26194 Recognize EUCJP characters.
26195 @end table
26196
26197 If @env{LANG} is not defined, or if it has some other value, then the
26198 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
26199 recognize and translate multibyte characters.
26200 @end table
26201
26202 @noindent
26203 Some additional environment variables affect the behavior of the
26204 preprocessor.
26205
26206 @include cppenv.texi
26207
26208 @c man end
26209
26210 @node Precompiled Headers
26211 @section Using Precompiled Headers
26212 @cindex precompiled headers
26213 @cindex speed of compilation
26214
26215 Often large projects have many header files that are included in every
26216 source file. The time the compiler takes to process these header files
26217 over and over again can account for nearly all of the time required to
26218 build the project. To make builds faster, GCC allows you to
26219 @dfn{precompile} a header file.
26220
26221 To create a precompiled header file, simply compile it as you would any
26222 other file, if necessary using the @option{-x} option to make the driver
26223 treat it as a C or C++ header file. You may want to use a
26224 tool like @command{make} to keep the precompiled header up-to-date when
26225 the headers it contains change.
26226
26227 A precompiled header file is searched for when @code{#include} is
26228 seen in the compilation. As it searches for the included file
26229 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
26230 compiler looks for a precompiled header in each directory just before it
26231 looks for the include file in that directory. The name searched for is
26232 the name specified in the @code{#include} with @samp{.gch} appended. If
26233 the precompiled header file can't be used, it is ignored.
26234
26235 For instance, if you have @code{#include "all.h"}, and you have
26236 @file{all.h.gch} in the same directory as @file{all.h}, then the
26237 precompiled header file is used if possible, and the original
26238 header is used otherwise.
26239
26240 Alternatively, you might decide to put the precompiled header file in a
26241 directory and use @option{-I} to ensure that directory is searched
26242 before (or instead of) the directory containing the original header.
26243 Then, if you want to check that the precompiled header file is always
26244 used, you can put a file of the same name as the original header in this
26245 directory containing an @code{#error} command.
26246
26247 This also works with @option{-include}. So yet another way to use
26248 precompiled headers, good for projects not designed with precompiled
26249 header files in mind, is to simply take most of the header files used by
26250 a project, include them from another header file, precompile that header
26251 file, and @option{-include} the precompiled header. If the header files
26252 have guards against multiple inclusion, they are skipped because
26253 they've already been included (in the precompiled header).
26254
26255 If you need to precompile the same header file for different
26256 languages, targets, or compiler options, you can instead make a
26257 @emph{directory} named like @file{all.h.gch}, and put each precompiled
26258 header in the directory, perhaps using @option{-o}. It doesn't matter
26259 what you call the files in the directory; every precompiled header in
26260 the directory is considered. The first precompiled header
26261 encountered in the directory that is valid for this compilation is
26262 used; they're searched in no particular order.
26263
26264 There are many other possibilities, limited only by your imagination,
26265 good sense, and the constraints of your build system.
26266
26267 A precompiled header file can be used only when these conditions apply:
26268
26269 @itemize
26270 @item
26271 Only one precompiled header can be used in a particular compilation.
26272
26273 @item
26274 A precompiled header can't be used once the first C token is seen. You
26275 can have preprocessor directives before a precompiled header; you cannot
26276 include a precompiled header from inside another header.
26277
26278 @item
26279 The precompiled header file must be produced for the same language as
26280 the current compilation. You can't use a C precompiled header for a C++
26281 compilation.
26282
26283 @item
26284 The precompiled header file must have been produced by the same compiler
26285 binary as the current compilation is using.
26286
26287 @item
26288 Any macros defined before the precompiled header is included must
26289 either be defined in the same way as when the precompiled header was
26290 generated, or must not affect the precompiled header, which usually
26291 means that they don't appear in the precompiled header at all.
26292
26293 The @option{-D} option is one way to define a macro before a
26294 precompiled header is included; using a @code{#define} can also do it.
26295 There are also some options that define macros implicitly, like
26296 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
26297 defined this way.
26298
26299 @item If debugging information is output when using the precompiled
26300 header, using @option{-g} or similar, the same kind of debugging information
26301 must have been output when building the precompiled header. However,
26302 a precompiled header built using @option{-g} can be used in a compilation
26303 when no debugging information is being output.
26304
26305 @item The same @option{-m} options must generally be used when building
26306 and using the precompiled header. @xref{Submodel Options},
26307 for any cases where this rule is relaxed.
26308
26309 @item Each of the following options must be the same when building and using
26310 the precompiled header:
26311
26312 @gccoptlist{-fexceptions}
26313
26314 @item
26315 Some other command-line options starting with @option{-f},
26316 @option{-p}, or @option{-O} must be defined in the same way as when
26317 the precompiled header was generated. At present, it's not clear
26318 which options are safe to change and which are not; the safest choice
26319 is to use exactly the same options when generating and using the
26320 precompiled header. The following are known to be safe:
26321
26322 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
26323 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
26324 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
26325 -pedantic-errors}
26326
26327 @end itemize
26328
26329 For all of these except the last, the compiler automatically
26330 ignores the precompiled header if the conditions aren't met. If you
26331 find an option combination that doesn't work and doesn't cause the
26332 precompiled header to be ignored, please consider filing a bug report,
26333 see @ref{Bugs}.
26334
26335 If you do use differing options when generating and using the
26336 precompiled header, the actual behavior is a mixture of the
26337 behavior for the options. For instance, if you use @option{-g} to
26338 generate the precompiled header but not when using it, you may or may
26339 not get debugging information for routines in the precompiled header.