Cherry-pick libsanitizer pointer-pair tristate option.
[gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2018 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2018 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 @c man end
125
126 @xref{Option Index}, for an index to GCC's options.
127
128 @menu
129 * Option Summary:: Brief list of all options, without explanations.
130 * Overall Options:: Controlling the kind of output:
131 an executable, object files, assembler files,
132 or preprocessed source.
133 * Invoking G++:: Compiling C++ programs.
134 * C Dialect Options:: Controlling the variant of C language compiled.
135 * C++ Dialect Options:: Variations on C++.
136 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
137 and Objective-C++.
138 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
139 be formatted.
140 * Warning Options:: How picky should the compiler be?
141 * Debugging Options:: Producing debuggable code.
142 * Optimize Options:: How much optimization?
143 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
144 * Preprocessor Options:: Controlling header files and macro definitions.
145 Also, getting dependency information for Make.
146 * Assembler Options:: Passing options to the assembler.
147 * Link Options:: Specifying libraries and so on.
148 * Directory Options:: Where to find header files and libraries.
149 Where to find the compiler executable files.
150 * Code Gen Options:: Specifying conventions for function calls, data layout
151 and register usage.
152 * Developer Options:: Printing GCC configuration info, statistics, and
153 debugging dumps.
154 * Submodel Options:: Target-specific options, such as compiling for a
155 specific processor variant.
156 * Spec Files:: How to pass switches to sub-processes.
157 * Environment Variables:: Env vars that affect GCC.
158 * Precompiled Headers:: Compiling a header once, and using it many times.
159 @end menu
160
161 @c man begin OPTIONS
162
163 @node Option Summary
164 @section Option Summary
165
166 Here is a summary of all the options, grouped by type. Explanations are
167 in the following sections.
168
169 @table @emph
170 @item Overall Options
171 @xref{Overall Options,,Options Controlling the Kind of Output}.
172 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
173 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
174 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
175 @@@var{file} -ffile-prefix-map=@var{old}=@var{new} @gol
176 -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
177 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
178
179 @item C Language Options
180 @xref{C Dialect Options,,Options Controlling C Dialect}.
181 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
182 -fpermitted-flt-eval-methods=@var{standard} @gol
183 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
184 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
185 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
186 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
187 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
188 -fsigned-bitfields -fsigned-char @gol
189 -funsigned-bitfields -funsigned-char}
190
191 @item C++ Language Options
192 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
193 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
194 -faligned-new=@var{n} -fargs-in-order=@var{n} -fcheck-new @gol
195 -fconstexpr-depth=@var{n} -fconstexpr-loop-limit=@var{n} @gol
196 -ffriend-injection @gol
197 -fno-elide-constructors @gol
198 -fno-enforce-eh-specs @gol
199 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
200 -fno-implicit-templates @gol
201 -fno-implicit-inline-templates @gol
202 -fno-implement-inlines -fms-extensions @gol
203 -fnew-inheriting-ctors @gol
204 -fnew-ttp-matching @gol
205 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
206 -fno-optional-diags -fpermissive @gol
207 -fno-pretty-templates @gol
208 -frepo -fno-rtti -fsized-deallocation @gol
209 -ftemplate-backtrace-limit=@var{n} @gol
210 -ftemplate-depth=@var{n} @gol
211 -fno-threadsafe-statics -fuse-cxa-atexit @gol
212 -fno-weak -nostdinc++ @gol
213 -fvisibility-inlines-hidden @gol
214 -fvisibility-ms-compat @gol
215 -fext-numeric-literals @gol
216 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
217 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
218 -Wnamespaces -Wnarrowing @gol
219 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
220 -Wnon-virtual-dtor -Wreorder -Wregister @gol
221 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
222 -Wno-non-template-friend -Wold-style-cast @gol
223 -Woverloaded-virtual -Wno-pmf-conversions @gol
224 -Wsign-promo -Wvirtual-inheritance}
225
226 @item Objective-C and Objective-C++ Language Options
227 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
228 Objective-C and Objective-C++ Dialects}.
229 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
230 -fgnu-runtime -fnext-runtime @gol
231 -fno-nil-receivers @gol
232 -fobjc-abi-version=@var{n} @gol
233 -fobjc-call-cxx-cdtors @gol
234 -fobjc-direct-dispatch @gol
235 -fobjc-exceptions @gol
236 -fobjc-gc @gol
237 -fobjc-nilcheck @gol
238 -fobjc-std=objc1 @gol
239 -fno-local-ivars @gol
240 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
241 -freplace-objc-classes @gol
242 -fzero-link @gol
243 -gen-decls @gol
244 -Wassign-intercept @gol
245 -Wno-protocol -Wselector @gol
246 -Wstrict-selector-match @gol
247 -Wundeclared-selector}
248
249 @item Diagnostic Message Formatting Options
250 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
251 @gccoptlist{-fmessage-length=@var{n} @gol
252 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
253 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
254 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
255 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
256 -fdiagnostics-show-template-tree -fno-elide-type @gol
257 -fno-show-column}
258
259 @item Warning Options
260 @xref{Warning Options,,Options to Request or Suppress Warnings}.
261 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
262 -pedantic-errors @gol
263 -w -Wextra -Wall -Waddress -Waggregate-return @gol
264 -Walloc-zero -Walloc-size-larger-than=@var{n}
265 -Walloca -Walloca-larger-than=@var{n} @gol
266 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
267 -Wno-attributes -Wbool-compare -Wbool-operation @gol
268 -Wno-builtin-declaration-mismatch @gol
269 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
270 -Wc++-compat -Wc++11-compat -Wc++14-compat @gol
271 -Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual @gol
272 -Wchar-subscripts -Wchkp -Wcatch-value -Wcatch-value=@var{n} @gol
273 -Wclobbered -Wcomment -Wconditionally-supported @gol
274 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
275 -Wdelete-incomplete @gol
276 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
277 -Wdisabled-optimization @gol
278 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
279 -Wno-div-by-zero -Wdouble-promotion @gol
280 -Wduplicated-branches -Wduplicated-cond @gol
281 -Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined @gol
282 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
283 -Wfloat-equal -Wformat -Wformat=2 @gol
284 -Wno-format-contains-nul -Wno-format-extra-args @gol
285 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
286 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
287 -Wformat-y2k -Wframe-address @gol
288 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
289 -Wif-not-aligned @gol
290 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
291 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
292 -Wimplicit-function-declaration -Wimplicit-int @gol
293 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
294 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
295 -Winvalid-pch -Wlarger-than=@var{len} @gol
296 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
297 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
298 -Wmisleading-indentation -Wmissing-braces @gol
299 -Wmissing-field-initializers -Wmissing-include-dirs @gol
300 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
301 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
302 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
303 -Woverride-init-side-effects -Woverlength-strings @gol
304 -Wpacked -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded @gol
305 -Wparentheses -Wno-pedantic-ms-format @gol
306 -Wplacement-new -Wplacement-new=@var{n} @gol
307 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
308 -Wno-pragmas -Wredundant-decls -Wrestrict -Wno-return-local-addr @gol
309 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
310 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
311 -Wshift-overflow -Wshift-overflow=@var{n} @gol
312 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
313 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
314 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
315 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
316 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
317 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
318 -Wstringop-overflow=@var{n} -Wstringop-truncation @gol
319 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
320 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
321 -Wmissing-format-attribute -Wsubobject-linkage @gol
322 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
323 -Wswitch-unreachable -Wsync-nand @gol
324 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
325 -Wtype-limits -Wundef @gol
326 -Wuninitialized -Wunknown-pragmas -Wunsafe-loop-optimizations @gol
327 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
328 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
329 -Wunused-parameter -Wno-unused-result @gol
330 -Wunused-value -Wunused-variable @gol
331 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
332 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
333 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
334 -Wvla -Wvla-larger-than=@var{n} -Wvolatile-register-var -Wwrite-strings @gol
335 -Wzero-as-null-pointer-constant -Whsa}
336
337 @item C and Objective-C-only Warning Options
338 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
339 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
340 -Wold-style-declaration -Wold-style-definition @gol
341 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
342 -Wdeclaration-after-statement -Wpointer-sign}
343
344 @item Debugging Options
345 @xref{Debugging Options,,Options for Debugging Your Program}.
346 @gccoptlist{-g -g@var{level} -gdwarf -gdwarf-@var{version} @gol
347 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
348 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
349 -gcolumn-info -gno-column-info @gol
350 -gstatement-frontiers -gno-statement-frontiers @gol
351 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
352 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
353 -fno-eliminate-unused-debug-types @gol
354 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
355 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
356 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
357 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
358 -fvar-tracking -fvar-tracking-assignments}
359
360 @item Optimization Options
361 @xref{Optimize Options,,Options that Control Optimization}.
362 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
363 -falign-jumps[=@var{n}] @gol
364 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
365 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
366 -fauto-inc-dec -fbranch-probabilities @gol
367 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
368 -fbtr-bb-exclusive -fcaller-saves @gol
369 -fcombine-stack-adjustments -fconserve-stack @gol
370 -fcompare-elim -fcprop-registers -fcrossjumping @gol
371 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
372 -fcx-limited-range @gol
373 -fdata-sections -fdce -fdelayed-branch @gol
374 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
375 -fdevirtualize-at-ltrans -fdse @gol
376 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
377 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
378 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
379 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
380 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
381 -fif-conversion2 -findirect-inlining @gol
382 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
383 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
384 -fipa-bit-cp -fipa-vrp @gol
385 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
386 -fira-algorithm=@var{algorithm} @gol
387 -fira-region=@var{region} -fira-hoist-pressure @gol
388 -fira-loop-pressure -fno-ira-share-save-slots @gol
389 -fno-ira-share-spill-slots @gol
390 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
391 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
392 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
393 -floop-block -floop-interchange -floop-strip-mine @gol
394 -floop-unroll-and-jam -floop-nest-optimize @gol
395 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
396 -flto-partition=@var{alg} -fmerge-all-constants @gol
397 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
398 -fmove-loop-invariants -fno-branch-count-reg @gol
399 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
400 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
401 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
402 -fno-sched-spec -fno-signed-zeros @gol
403 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
404 -fomit-frame-pointer -foptimize-sibling-calls @gol
405 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
406 -fprefetch-loop-arrays @gol
407 -fprofile-correction @gol
408 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
409 -fprofile-reorder-functions @gol
410 -freciprocal-math -free -frename-registers -freorder-blocks @gol
411 -freorder-blocks-algorithm=@var{algorithm} @gol
412 -freorder-blocks-and-partition -freorder-functions @gol
413 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
414 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
415 -fsched-spec-load -fsched-spec-load-dangerous @gol
416 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
417 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
418 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
419 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
420 -fschedule-fusion @gol
421 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
422 -fselective-scheduling -fselective-scheduling2 @gol
423 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
424 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
425 -fsignaling-nans @gol
426 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
427 -fsplit-paths @gol
428 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
429 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
430 -fthread-jumps -ftracer -ftree-bit-ccp @gol
431 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
432 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
433 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
434 -ftree-loop-if-convert -ftree-loop-im @gol
435 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
436 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
437 -ftree-loop-vectorize @gol
438 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
439 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
440 -ftree-switch-conversion -ftree-tail-merge @gol
441 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
442 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
443 -funsafe-math-optimizations -funswitch-loops @gol
444 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
445 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
446 --param @var{name}=@var{value}
447 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
448
449 @item Program Instrumentation Options
450 @xref{Instrumentation Options,,Program Instrumentation Options}.
451 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
452 -fprofile-abs-path @gol
453 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
454 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
455 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
456 -fsanitize-undefined-trap-on-error -fbounds-check @gol
457 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
458 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
459 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
460 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
461 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
462 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
463 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
464 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
465 -fchkp-use-wrappers -fchkp-flexible-struct-trailing-arrays@gol
466 -fcf-protection==@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
467 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
468 -fstack-protector-explicit -fstack-check @gol
469 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
470 -fno-stack-limit -fsplit-stack @gol
471 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
472 -fvtv-counts -fvtv-debug @gol
473 -finstrument-functions @gol
474 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
475 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
476
477 @item Preprocessor Options
478 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
479 @gccoptlist{-A@var{question}=@var{answer} @gol
480 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
481 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
482 -dD -dI -dM -dN -dU @gol
483 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
484 -fexec-charset=@var{charset} -fextended-identifiers @gol
485 -finput-charset=@var{charset} -fmacro-prefix-map=@var{old}=@var{new} @gol
486 -fno-canonical-system-headers @gol -fpch-deps -fpch-preprocess @gol
487 -fpreprocessed -ftabstop=@var{width} -ftrack-macro-expansion @gol
488 -fwide-exec-charset=@var{charset} -fworking-directory @gol
489 -H -imacros @var{file} -include @var{file} @gol
490 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
491 -no-integrated-cpp -P -pthread -remap @gol
492 -traditional -traditional-cpp -trigraphs @gol
493 -U@var{macro} -undef @gol
494 -Wp,@var{option} -Xpreprocessor @var{option}}
495
496 @item Assembler Options
497 @xref{Assembler Options,,Passing Options to the Assembler}.
498 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
499
500 @item Linker Options
501 @xref{Link Options,,Options for Linking}.
502 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
503 -nostartfiles -nodefaultlibs -nostdlib -pie -pthread -rdynamic @gol
504 -s -static -static-pie -static-libgcc -static-libstdc++ @gol
505 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
506 -static-libmpx -static-libmpxwrappers @gol
507 -shared -shared-libgcc -symbolic @gol
508 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
509 -u @var{symbol} -z @var{keyword}}
510
511 @item Directory Options
512 @xref{Directory Options,,Options for Directory Search}.
513 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
514 -idirafter @var{dir} @gol
515 -imacros @var{file} -imultilib @var{dir} @gol
516 -iplugindir=@var{dir} -iprefix @var{file} @gol
517 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
518 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
519 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
520 -nostdinc -nostdinc++ --sysroot=@var{dir}}
521
522 @item Code Generation Options
523 @xref{Code Gen Options,,Options for Code Generation Conventions}.
524 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
525 -ffixed-@var{reg} -fexceptions @gol
526 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
527 -fasynchronous-unwind-tables @gol
528 -fno-gnu-unique @gol
529 -finhibit-size-directive -fno-common -fno-ident @gol
530 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
531 -fno-jump-tables @gol
532 -frecord-gcc-switches @gol
533 -freg-struct-return -fshort-enums -fshort-wchar @gol
534 -fverbose-asm -fpack-struct[=@var{n}] @gol
535 -fleading-underscore -ftls-model=@var{model} @gol
536 -fstack-reuse=@var{reuse_level} @gol
537 -ftrampolines -ftrapv -fwrapv @gol
538 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
539 -fstrict-volatile-bitfields -fsync-libcalls}
540
541 @item Developer Options
542 @xref{Developer Options,,GCC Developer Options}.
543 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
544 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
545 -fdbg-cnt=@var{counter-value-list} @gol
546 -fdisable-ipa-@var{pass_name} @gol
547 -fdisable-rtl-@var{pass_name} @gol
548 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
549 -fdisable-tree-@var{pass_name} @gol
550 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
551 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
552 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
553 -fdump-final-insns@r{[}=@var{file}@r{]} @gol
554 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
555 -fdump-lang-all @gol
556 -fdump-lang-@var{switch} @gol
557 -fdump-lang-@var{switch}-@var{options} @gol
558 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
559 -fdump-passes @gol
560 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
561 -fdump-statistics @gol
562 -fdump-tree-all @gol
563 -fdump-tree-@var{switch} @gol
564 -fdump-tree-@var{switch}-@var{options} @gol
565 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
566 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
567 -fenable-@var{kind}-@var{pass} @gol
568 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
569 -fira-verbose=@var{n} @gol
570 -flto-report -flto-report-wpa -fmem-report-wpa @gol
571 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
572 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
573 -fprofile-report @gol
574 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
575 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
576 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
577 -fvar-tracking-assignments-toggle -gtoggle @gol
578 -print-file-name=@var{library} -print-libgcc-file-name @gol
579 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
580 -print-prog-name=@var{program} -print-search-dirs -Q @gol
581 -print-sysroot -print-sysroot-headers-suffix @gol
582 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
583
584 @item Machine-Dependent Options
585 @xref{Submodel Options,,Machine-Dependent Options}.
586 @c This list is ordered alphanumerically by subsection name.
587 @c Try and put the significant identifier (CPU or system) first,
588 @c so users have a clue at guessing where the ones they want will be.
589
590 @emph{AArch64 Options}
591 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
592 -mgeneral-regs-only @gol
593 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
594 -mstrict-align @gol
595 -momit-leaf-frame-pointer @gol
596 -mtls-dialect=desc -mtls-dialect=traditional @gol
597 -mtls-size=@var{size} @gol
598 -mfix-cortex-a53-835769 -mfix-cortex-a53-843419 @gol
599 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div @gol
600 -mpc-relative-literal-loads @gol
601 -msign-return-address=@var{scope} @gol
602 -march=@var{name} -mcpu=@var{name} -mtune=@var{name} @gol
603 -moverride=@var{string} -mverbose-cost-dump}
604
605 @emph{Adapteva Epiphany Options}
606 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
607 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
608 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
609 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
610 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
611 -msplit-vecmove-early -m1reg-@var{reg}}
612
613 @emph{ARC Options}
614 @gccoptlist{-mbarrel-shifter -mjli-always @gol
615 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
616 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
617 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
618 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
619 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
620 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
621 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
622 -mrgf-banked-regs -mlpc-width=@var{width} -G @var{num} @gol
623 -mvolatile-cache -mtp-regno=@var{regno} @gol
624 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
625 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
626 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
627 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
628 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
629 -mtune=@var{cpu} -mmultcost=@var{num} @gol
630 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
631 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu} -mrf16}
632
633 @emph{ARM Options}
634 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
635 -mabi=@var{name} @gol
636 -mapcs-stack-check -mno-apcs-stack-check @gol
637 -mapcs-reentrant -mno-apcs-reentrant @gol
638 -msched-prolog -mno-sched-prolog @gol
639 -mlittle-endian -mbig-endian @gol
640 -mbe8 -mbe32 @gol
641 -mfloat-abi=@var{name} @gol
642 -mfp16-format=@var{name}
643 -mthumb-interwork -mno-thumb-interwork @gol
644 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
645 -mtune=@var{name} -mprint-tune-info @gol
646 -mstructure-size-boundary=@var{n} @gol
647 -mabort-on-noreturn @gol
648 -mlong-calls -mno-long-calls @gol
649 -msingle-pic-base -mno-single-pic-base @gol
650 -mpic-register=@var{reg} @gol
651 -mnop-fun-dllimport @gol
652 -mpoke-function-name @gol
653 -mthumb -marm -mflip-thumb @gol
654 -mtpcs-frame -mtpcs-leaf-frame @gol
655 -mcaller-super-interworking -mcallee-super-interworking @gol
656 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
657 -mword-relocations @gol
658 -mfix-cortex-m3-ldrd @gol
659 -munaligned-access @gol
660 -mneon-for-64bits @gol
661 -mslow-flash-data @gol
662 -masm-syntax-unified @gol
663 -mrestrict-it @gol
664 -mverbose-cost-dump @gol
665 -mpure-code @gol
666 -mcmse}
667
668 @emph{AVR Options}
669 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
670 -mbranch-cost=@var{cost} @gol
671 -mcall-prologues -mgas-isr-prologues -mint8 @gol
672 -mn_flash=@var{size} -mno-interrupts @gol
673 -mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack @gol
674 -mfract-convert-truncate @gol
675 -mshort-calls -nodevicelib @gol
676 -Waddr-space-convert -Wmisspelled-isr}
677
678 @emph{Blackfin Options}
679 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
680 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
681 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
682 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
683 -mno-id-shared-library -mshared-library-id=@var{n} @gol
684 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
685 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
686 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
687 -micplb}
688
689 @emph{C6X Options}
690 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
691 -msim -msdata=@var{sdata-type}}
692
693 @emph{CRIS Options}
694 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
695 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
696 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
697 -mstack-align -mdata-align -mconst-align @gol
698 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
699 -melf -maout -melinux -mlinux -sim -sim2 @gol
700 -mmul-bug-workaround -mno-mul-bug-workaround}
701
702 @emph{CR16 Options}
703 @gccoptlist{-mmac @gol
704 -mcr16cplus -mcr16c @gol
705 -msim -mint32 -mbit-ops
706 -mdata-model=@var{model}}
707
708 @emph{Darwin Options}
709 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
710 -arch_only -bind_at_load -bundle -bundle_loader @gol
711 -client_name -compatibility_version -current_version @gol
712 -dead_strip @gol
713 -dependency-file -dylib_file -dylinker_install_name @gol
714 -dynamic -dynamiclib -exported_symbols_list @gol
715 -filelist -flat_namespace -force_cpusubtype_ALL @gol
716 -force_flat_namespace -headerpad_max_install_names @gol
717 -iframework @gol
718 -image_base -init -install_name -keep_private_externs @gol
719 -multi_module -multiply_defined -multiply_defined_unused @gol
720 -noall_load -no_dead_strip_inits_and_terms @gol
721 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
722 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
723 -private_bundle -read_only_relocs -sectalign @gol
724 -sectobjectsymbols -whyload -seg1addr @gol
725 -sectcreate -sectobjectsymbols -sectorder @gol
726 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
727 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
728 -segprot -segs_read_only_addr -segs_read_write_addr @gol
729 -single_module -static -sub_library -sub_umbrella @gol
730 -twolevel_namespace -umbrella -undefined @gol
731 -unexported_symbols_list -weak_reference_mismatches @gol
732 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
733 -mkernel -mone-byte-bool}
734
735 @emph{DEC Alpha Options}
736 @gccoptlist{-mno-fp-regs -msoft-float @gol
737 -mieee -mieee-with-inexact -mieee-conformant @gol
738 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
739 -mtrap-precision=@var{mode} -mbuild-constants @gol
740 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
741 -mbwx -mmax -mfix -mcix @gol
742 -mfloat-vax -mfloat-ieee @gol
743 -mexplicit-relocs -msmall-data -mlarge-data @gol
744 -msmall-text -mlarge-text @gol
745 -mmemory-latency=@var{time}}
746
747 @emph{FR30 Options}
748 @gccoptlist{-msmall-model -mno-lsim}
749
750 @emph{FT32 Options}
751 @gccoptlist{-msim -mlra -mnodiv -mft32b -mcompress -mnopm}
752
753 @emph{FRV Options}
754 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
755 -mhard-float -msoft-float @gol
756 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
757 -mdouble -mno-double @gol
758 -mmedia -mno-media -mmuladd -mno-muladd @gol
759 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
760 -mlinked-fp -mlong-calls -malign-labels @gol
761 -mlibrary-pic -macc-4 -macc-8 @gol
762 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
763 -moptimize-membar -mno-optimize-membar @gol
764 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
765 -mvliw-branch -mno-vliw-branch @gol
766 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
767 -mno-nested-cond-exec -mtomcat-stats @gol
768 -mTLS -mtls @gol
769 -mcpu=@var{cpu}}
770
771 @emph{GNU/Linux Options}
772 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
773 -tno-android-cc -tno-android-ld}
774
775 @emph{H8/300 Options}
776 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
777
778 @emph{HPPA Options}
779 @gccoptlist{-march=@var{architecture-type} @gol
780 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
781 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
782 -mfixed-range=@var{register-range} @gol
783 -mjump-in-delay -mlinker-opt -mlong-calls @gol
784 -mlong-load-store -mno-disable-fpregs @gol
785 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
786 -mno-jump-in-delay -mno-long-load-store @gol
787 -mno-portable-runtime -mno-soft-float @gol
788 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
789 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
790 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
791 -munix=@var{unix-std} -nolibdld -static -threads}
792
793 @emph{IA-64 Options}
794 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
795 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
796 -mconstant-gp -mauto-pic -mfused-madd @gol
797 -minline-float-divide-min-latency @gol
798 -minline-float-divide-max-throughput @gol
799 -mno-inline-float-divide @gol
800 -minline-int-divide-min-latency @gol
801 -minline-int-divide-max-throughput @gol
802 -mno-inline-int-divide @gol
803 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
804 -mno-inline-sqrt @gol
805 -mdwarf2-asm -mearly-stop-bits @gol
806 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
807 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
808 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
809 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
810 -msched-spec-ldc -msched-spec-control-ldc @gol
811 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
812 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
813 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
814 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
815
816 @emph{LM32 Options}
817 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
818 -msign-extend-enabled -muser-enabled}
819
820 @emph{M32R/D Options}
821 @gccoptlist{-m32r2 -m32rx -m32r @gol
822 -mdebug @gol
823 -malign-loops -mno-align-loops @gol
824 -missue-rate=@var{number} @gol
825 -mbranch-cost=@var{number} @gol
826 -mmodel=@var{code-size-model-type} @gol
827 -msdata=@var{sdata-type} @gol
828 -mno-flush-func -mflush-func=@var{name} @gol
829 -mno-flush-trap -mflush-trap=@var{number} @gol
830 -G @var{num}}
831
832 @emph{M32C Options}
833 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
834
835 @emph{M680x0 Options}
836 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
837 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
838 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
839 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
840 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
841 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
842 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
843 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
844 -mxgot -mno-xgot -mlong-jump-table-offsets}
845
846 @emph{MCore Options}
847 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
848 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
849 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
850 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
851 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
852
853 @emph{MeP Options}
854 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
855 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
856 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
857 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
858 -mtiny=@var{n}}
859
860 @emph{MicroBlaze Options}
861 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
862 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
863 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
864 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
865 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
866
867 @emph{MIPS Options}
868 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
869 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
870 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
871 -mips16 -mno-mips16 -mflip-mips16 @gol
872 -minterlink-compressed -mno-interlink-compressed @gol
873 -minterlink-mips16 -mno-interlink-mips16 @gol
874 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
875 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
876 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
877 -mno-float -msingle-float -mdouble-float @gol
878 -modd-spreg -mno-odd-spreg @gol
879 -mabs=@var{mode} -mnan=@var{encoding} @gol
880 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
881 -mmcu -mmno-mcu @gol
882 -meva -mno-eva @gol
883 -mvirt -mno-virt @gol
884 -mxpa -mno-xpa @gol
885 -mmicromips -mno-micromips @gol
886 -mmsa -mno-msa @gol
887 -mfpu=@var{fpu-type} @gol
888 -msmartmips -mno-smartmips @gol
889 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
890 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
891 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
892 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
893 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
894 -membedded-data -mno-embedded-data @gol
895 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
896 -mcode-readable=@var{setting} @gol
897 -msplit-addresses -mno-split-addresses @gol
898 -mexplicit-relocs -mno-explicit-relocs @gol
899 -mcheck-zero-division -mno-check-zero-division @gol
900 -mdivide-traps -mdivide-breaks @gol
901 -mload-store-pairs -mno-load-store-pairs @gol
902 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
903 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
904 -mfix-24k -mno-fix-24k @gol
905 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
906 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
907 -mfix-vr4120 -mno-fix-vr4120 @gol
908 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
909 -mflush-func=@var{func} -mno-flush-func @gol
910 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
911 -mcompact-branches=@var{policy} @gol
912 -mfp-exceptions -mno-fp-exceptions @gol
913 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
914 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
915 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
916 -mframe-header-opt -mno-frame-header-opt}
917
918 @emph{MMIX Options}
919 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
920 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
921 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
922 -mno-base-addresses -msingle-exit -mno-single-exit}
923
924 @emph{MN10300 Options}
925 @gccoptlist{-mmult-bug -mno-mult-bug @gol
926 -mno-am33 -mam33 -mam33-2 -mam34 @gol
927 -mtune=@var{cpu-type} @gol
928 -mreturn-pointer-on-d0 @gol
929 -mno-crt0 -mrelax -mliw -msetlb}
930
931 @emph{Moxie Options}
932 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
933
934 @emph{MSP430 Options}
935 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
936 -mwarn-mcu @gol
937 -mcode-region= -mdata-region= @gol
938 -msilicon-errata= -msilicon-errata-warn= @gol
939 -mhwmult= -minrt}
940
941 @emph{NDS32 Options}
942 @gccoptlist{-mbig-endian -mlittle-endian @gol
943 -mreduced-regs -mfull-regs @gol
944 -mcmov -mno-cmov @gol
945 -mext-perf -mno-ext-perf @gol
946 -mext-perf2 -mno-ext-perf2 @gol
947 -mext-string -mno-ext-string @gol
948 -mv3push -mno-v3push @gol
949 -m16bit -mno-16bit @gol
950 -misr-vector-size=@var{num} @gol
951 -mcache-block-size=@var{num} @gol
952 -march=@var{arch} @gol
953 -mcmodel=@var{code-model} @gol
954 -mctor-dtor -mrelax}
955
956 @emph{Nios II Options}
957 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
958 -mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp} @gol
959 -mel -meb @gol
960 -mno-bypass-cache -mbypass-cache @gol
961 -mno-cache-volatile -mcache-volatile @gol
962 -mno-fast-sw-div -mfast-sw-div @gol
963 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
964 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
965 -mcustom-fpu-cfg=@var{name} @gol
966 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
967 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
968
969 @emph{Nvidia PTX Options}
970 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
971
972 @emph{PDP-11 Options}
973 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
974 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
975 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
976 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
977 -mbranch-expensive -mbranch-cheap @gol
978 -munix-asm -mdec-asm}
979
980 @emph{picoChip Options}
981 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
982 -msymbol-as-address -mno-inefficient-warnings}
983
984 @emph{PowerPC Options}
985 See RS/6000 and PowerPC Options.
986
987 @emph{RISC-V Options}
988 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
989 -mplt -mno-plt @gol
990 -mabi=@var{ABI-string} @gol
991 -mfdiv -mno-fdiv @gol
992 -mdiv -mno-div @gol
993 -march=@var{ISA-string} @gol
994 -mtune=@var{processor-string} @gol
995 -mpreferred-stack-boundary=@var{num} @gol
996 -msmall-data-limit=@var{N-bytes} @gol
997 -msave-restore -mno-save-restore @gol
998 -mstrict-align -mno-strict-align @gol
999 -mcmodel=medlow -mcmodel=medany @gol
1000 -mexplicit-relocs -mno-explicit-relocs @gol}
1001
1002 @emph{RL78 Options}
1003 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
1004 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
1005 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
1006
1007 @emph{RS/6000 and PowerPC Options}
1008 @gccoptlist{-mcpu=@var{cpu-type} @gol
1009 -mtune=@var{cpu-type} @gol
1010 -mcmodel=@var{code-model} @gol
1011 -mpowerpc64 @gol
1012 -maltivec -mno-altivec @gol
1013 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1014 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1015 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1016 -mfprnd -mno-fprnd @gol
1017 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
1018 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1019 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1020 -malign-power -malign-natural @gol
1021 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1022 -msingle-float -mdouble-float -msimple-fpu @gol
1023 -mupdate -mno-update @gol
1024 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1025 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1026 -mstrict-align -mno-strict-align -mrelocatable @gol
1027 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1028 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1029 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
1030 -mprioritize-restricted-insns=@var{priority} @gol
1031 -msched-costly-dep=@var{dependence_type} @gol
1032 -minsert-sched-nops=@var{scheme} @gol
1033 -mcall-sysv -mcall-netbsd @gol
1034 -maix-struct-return -msvr4-struct-return @gol
1035 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1036 -mblock-move-inline-limit=@var{num} @gol
1037 -misel -mno-isel @gol
1038 -misel=yes -misel=no @gol
1039 -mspe -mno-spe @gol
1040 -mspe=yes -mspe=no @gol
1041 -mpaired @gol
1042 -mvrsave -mno-vrsave @gol
1043 -mmulhw -mno-mulhw @gol
1044 -mdlmzb -mno-dlmzb @gol
1045 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
1046 -mprototype -mno-prototype @gol
1047 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1048 -msdata=@var{opt} -mvxworks -G @var{num} @gol
1049 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1050 -mno-recip-precision @gol
1051 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1052 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1053 -msave-toc-indirect -mno-save-toc-indirect @gol
1054 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1055 -mcrypto -mno-crypto -mhtm -mno-htm -mdirect-move -mno-direct-move @gol
1056 -mquad-memory -mno-quad-memory @gol
1057 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1058 -mcompat-align-parm -mno-compat-align-parm @gol
1059 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1060 -mgnu-attribute -mno-gnu-attribute @gol
1061 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1062 -mstack-protector-guard-offset=@var{offset}}
1063
1064 @emph{RX Options}
1065 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1066 -mcpu=@gol
1067 -mbig-endian-data -mlittle-endian-data @gol
1068 -msmall-data @gol
1069 -msim -mno-sim@gol
1070 -mas100-syntax -mno-as100-syntax@gol
1071 -mrelax@gol
1072 -mmax-constant-size=@gol
1073 -mint-register=@gol
1074 -mpid@gol
1075 -mallow-string-insns -mno-allow-string-insns@gol
1076 -mjsr@gol
1077 -mno-warn-multiple-fast-interrupts@gol
1078 -msave-acc-in-interrupts}
1079
1080 @emph{S/390 and zSeries Options}
1081 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1082 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1083 -mlong-double-64 -mlong-double-128 @gol
1084 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1085 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1086 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1087 -mhtm -mvx -mzvector @gol
1088 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1089 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1090 -mhotpatch=@var{halfwords},@var{halfwords}}
1091
1092 @emph{Score Options}
1093 @gccoptlist{-meb -mel @gol
1094 -mnhwloop @gol
1095 -muls @gol
1096 -mmac @gol
1097 -mscore5 -mscore5u -mscore7 -mscore7d}
1098
1099 @emph{SH Options}
1100 @gccoptlist{-m1 -m2 -m2e @gol
1101 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1102 -m3 -m3e @gol
1103 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1104 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1105 -mb -ml -mdalign -mrelax @gol
1106 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1107 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1108 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1109 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1110 -maccumulate-outgoing-args @gol
1111 -matomic-model=@var{atomic-model} @gol
1112 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1113 -mcbranch-force-delay-slot @gol
1114 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1115 -mpretend-cmove -mtas}
1116
1117 @emph{Solaris 2 Options}
1118 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1119 -pthreads}
1120
1121 @emph{SPARC Options}
1122 @gccoptlist{-mcpu=@var{cpu-type} @gol
1123 -mtune=@var{cpu-type} @gol
1124 -mcmodel=@var{code-model} @gol
1125 -mmemory-model=@var{mem-model} @gol
1126 -m32 -m64 -mapp-regs -mno-app-regs @gol
1127 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1128 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1129 -mhard-quad-float -msoft-quad-float @gol
1130 -mstack-bias -mno-stack-bias @gol
1131 -mstd-struct-return -mno-std-struct-return @gol
1132 -munaligned-doubles -mno-unaligned-doubles @gol
1133 -muser-mode -mno-user-mode @gol
1134 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1135 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1136 -mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1137 -mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld @gol
1138 -mpopc -mno-popc -msubxc -mno-subxc @gol
1139 -mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc @gol
1140 -mlra -mno-lra}
1141
1142 @emph{SPU Options}
1143 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1144 -msafe-dma -munsafe-dma @gol
1145 -mbranch-hints @gol
1146 -msmall-mem -mlarge-mem -mstdmain @gol
1147 -mfixed-range=@var{register-range} @gol
1148 -mea32 -mea64 @gol
1149 -maddress-space-conversion -mno-address-space-conversion @gol
1150 -mcache-size=@var{cache-size} @gol
1151 -matomic-updates -mno-atomic-updates}
1152
1153 @emph{System V Options}
1154 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1155
1156 @emph{TILE-Gx Options}
1157 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1158 -mcmodel=@var{code-model}}
1159
1160 @emph{TILEPro Options}
1161 @gccoptlist{-mcpu=@var{cpu} -m32}
1162
1163 @emph{V850 Options}
1164 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1165 -mprolog-function -mno-prolog-function -mspace @gol
1166 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1167 -mapp-regs -mno-app-regs @gol
1168 -mdisable-callt -mno-disable-callt @gol
1169 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1170 -mv850e -mv850 -mv850e3v5 @gol
1171 -mloop @gol
1172 -mrelax @gol
1173 -mlong-jumps @gol
1174 -msoft-float @gol
1175 -mhard-float @gol
1176 -mgcc-abi @gol
1177 -mrh850-abi @gol
1178 -mbig-switch}
1179
1180 @emph{VAX Options}
1181 @gccoptlist{-mg -mgnu -munix}
1182
1183 @emph{Visium Options}
1184 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1185 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1186
1187 @emph{VMS Options}
1188 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1189 -mpointer-size=@var{size}}
1190
1191 @emph{VxWorks Options}
1192 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1193 -Xbind-lazy -Xbind-now}
1194
1195 @emph{x86 Options}
1196 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1197 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1198 -mfpmath=@var{unit} @gol
1199 -masm=@var{dialect} -mno-fancy-math-387 @gol
1200 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1201 -mno-wide-multiply -mrtd -malign-double @gol
1202 -mpreferred-stack-boundary=@var{num} @gol
1203 -mincoming-stack-boundary=@var{num} @gol
1204 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1205 -mrecip -mrecip=@var{opt} @gol
1206 -mvzeroupper -mprefer-avx128 -mprefer-vector-width=@var{opt} @gol
1207 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1208 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1209 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1210 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma @gol
1211 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves @gol
1212 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1213 -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx @gol
1214 -mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes @gol
1215 -mcet -mibt -mshstk -mforce-indirect-call -mavx512vbmi2 @gol
1216 -mvpclmulqdq -mavx512bitalg -mavx512vpopcntdq @gol
1217 -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1218 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1219 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1220 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1221 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1222 -mregparm=@var{num} -msseregparm @gol
1223 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1224 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1225 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1226 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1227 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1228 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1229 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1230 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1231 -mstack-protector-guard-reg=@var{reg} @gol
1232 -mstack-protector-guard-offset=@var{offset} @gol
1233 -mstack-protector-guard-symbol=@var{symbol} -mmitigate-rop @gol
1234 -mgeneral-regs-only -mcall-ms2sysv-xlogues @gol
1235 -mindirect-branch=@var{choice} -mfunction-return=@var{choice} @gol
1236 -mindirect-branch-register}
1237
1238 @emph{x86 Windows Options}
1239 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1240 -mnop-fun-dllimport -mthread @gol
1241 -municode -mwin32 -mwindows -fno-set-stack-executable}
1242
1243 @emph{Xstormy16 Options}
1244 @gccoptlist{-msim}
1245
1246 @emph{Xtensa Options}
1247 @gccoptlist{-mconst16 -mno-const16 @gol
1248 -mfused-madd -mno-fused-madd @gol
1249 -mforce-no-pic @gol
1250 -mserialize-volatile -mno-serialize-volatile @gol
1251 -mtext-section-literals -mno-text-section-literals @gol
1252 -mauto-litpools -mno-auto-litpools @gol
1253 -mtarget-align -mno-target-align @gol
1254 -mlongcalls -mno-longcalls}
1255
1256 @emph{zSeries Options}
1257 See S/390 and zSeries Options.
1258 @end table
1259
1260
1261 @node Overall Options
1262 @section Options Controlling the Kind of Output
1263
1264 Compilation can involve up to four stages: preprocessing, compilation
1265 proper, assembly and linking, always in that order. GCC is capable of
1266 preprocessing and compiling several files either into several
1267 assembler input files, or into one assembler input file; then each
1268 assembler input file produces an object file, and linking combines all
1269 the object files (those newly compiled, and those specified as input)
1270 into an executable file.
1271
1272 @cindex file name suffix
1273 For any given input file, the file name suffix determines what kind of
1274 compilation is done:
1275
1276 @table @gcctabopt
1277 @item @var{file}.c
1278 C source code that must be preprocessed.
1279
1280 @item @var{file}.i
1281 C source code that should not be preprocessed.
1282
1283 @item @var{file}.ii
1284 C++ source code that should not be preprocessed.
1285
1286 @item @var{file}.m
1287 Objective-C source code. Note that you must link with the @file{libobjc}
1288 library to make an Objective-C program work.
1289
1290 @item @var{file}.mi
1291 Objective-C source code that should not be preprocessed.
1292
1293 @item @var{file}.mm
1294 @itemx @var{file}.M
1295 Objective-C++ source code. Note that you must link with the @file{libobjc}
1296 library to make an Objective-C++ program work. Note that @samp{.M} refers
1297 to a literal capital M@.
1298
1299 @item @var{file}.mii
1300 Objective-C++ source code that should not be preprocessed.
1301
1302 @item @var{file}.h
1303 C, C++, Objective-C or Objective-C++ header file to be turned into a
1304 precompiled header (default), or C, C++ header file to be turned into an
1305 Ada spec (via the @option{-fdump-ada-spec} switch).
1306
1307 @item @var{file}.cc
1308 @itemx @var{file}.cp
1309 @itemx @var{file}.cxx
1310 @itemx @var{file}.cpp
1311 @itemx @var{file}.CPP
1312 @itemx @var{file}.c++
1313 @itemx @var{file}.C
1314 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1315 the last two letters must both be literally @samp{x}. Likewise,
1316 @samp{.C} refers to a literal capital C@.
1317
1318 @item @var{file}.mm
1319 @itemx @var{file}.M
1320 Objective-C++ source code that must be preprocessed.
1321
1322 @item @var{file}.mii
1323 Objective-C++ source code that should not be preprocessed.
1324
1325 @item @var{file}.hh
1326 @itemx @var{file}.H
1327 @itemx @var{file}.hp
1328 @itemx @var{file}.hxx
1329 @itemx @var{file}.hpp
1330 @itemx @var{file}.HPP
1331 @itemx @var{file}.h++
1332 @itemx @var{file}.tcc
1333 C++ header file to be turned into a precompiled header or Ada spec.
1334
1335 @item @var{file}.f
1336 @itemx @var{file}.for
1337 @itemx @var{file}.ftn
1338 Fixed form Fortran source code that should not be preprocessed.
1339
1340 @item @var{file}.F
1341 @itemx @var{file}.FOR
1342 @itemx @var{file}.fpp
1343 @itemx @var{file}.FPP
1344 @itemx @var{file}.FTN
1345 Fixed form Fortran source code that must be preprocessed (with the traditional
1346 preprocessor).
1347
1348 @item @var{file}.f90
1349 @itemx @var{file}.f95
1350 @itemx @var{file}.f03
1351 @itemx @var{file}.f08
1352 Free form Fortran source code that should not be preprocessed.
1353
1354 @item @var{file}.F90
1355 @itemx @var{file}.F95
1356 @itemx @var{file}.F03
1357 @itemx @var{file}.F08
1358 Free form Fortran source code that must be preprocessed (with the
1359 traditional preprocessor).
1360
1361 @item @var{file}.go
1362 Go source code.
1363
1364 @item @var{file}.brig
1365 BRIG files (binary representation of HSAIL).
1366
1367 @item @var{file}.ads
1368 Ada source code file that contains a library unit declaration (a
1369 declaration of a package, subprogram, or generic, or a generic
1370 instantiation), or a library unit renaming declaration (a package,
1371 generic, or subprogram renaming declaration). Such files are also
1372 called @dfn{specs}.
1373
1374 @item @var{file}.adb
1375 Ada source code file containing a library unit body (a subprogram or
1376 package body). Such files are also called @dfn{bodies}.
1377
1378 @c GCC also knows about some suffixes for languages not yet included:
1379 @c Pascal:
1380 @c @var{file}.p
1381 @c @var{file}.pas
1382 @c Ratfor:
1383 @c @var{file}.r
1384
1385 @item @var{file}.s
1386 Assembler code.
1387
1388 @item @var{file}.S
1389 @itemx @var{file}.sx
1390 Assembler code that must be preprocessed.
1391
1392 @item @var{other}
1393 An object file to be fed straight into linking.
1394 Any file name with no recognized suffix is treated this way.
1395 @end table
1396
1397 @opindex x
1398 You can specify the input language explicitly with the @option{-x} option:
1399
1400 @table @gcctabopt
1401 @item -x @var{language}
1402 Specify explicitly the @var{language} for the following input files
1403 (rather than letting the compiler choose a default based on the file
1404 name suffix). This option applies to all following input files until
1405 the next @option{-x} option. Possible values for @var{language} are:
1406 @smallexample
1407 c c-header cpp-output
1408 c++ c++-header c++-cpp-output
1409 objective-c objective-c-header objective-c-cpp-output
1410 objective-c++ objective-c++-header objective-c++-cpp-output
1411 assembler assembler-with-cpp
1412 ada
1413 f77 f77-cpp-input f95 f95-cpp-input
1414 go
1415 brig
1416 @end smallexample
1417
1418 @item -x none
1419 Turn off any specification of a language, so that subsequent files are
1420 handled according to their file name suffixes (as they are if @option{-x}
1421 has not been used at all).
1422 @end table
1423
1424 If you only want some of the stages of compilation, you can use
1425 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1426 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1427 @command{gcc} is to stop. Note that some combinations (for example,
1428 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1429
1430 @table @gcctabopt
1431 @item -c
1432 @opindex c
1433 Compile or assemble the source files, but do not link. The linking
1434 stage simply is not done. The ultimate output is in the form of an
1435 object file for each source file.
1436
1437 By default, the object file name for a source file is made by replacing
1438 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1439
1440 Unrecognized input files, not requiring compilation or assembly, are
1441 ignored.
1442
1443 @item -S
1444 @opindex S
1445 Stop after the stage of compilation proper; do not assemble. The output
1446 is in the form of an assembler code file for each non-assembler input
1447 file specified.
1448
1449 By default, the assembler file name for a source file is made by
1450 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1451
1452 Input files that don't require compilation are ignored.
1453
1454 @item -E
1455 @opindex E
1456 Stop after the preprocessing stage; do not run the compiler proper. The
1457 output is in the form of preprocessed source code, which is sent to the
1458 standard output.
1459
1460 Input files that don't require preprocessing are ignored.
1461
1462 @cindex output file option
1463 @item -o @var{file}
1464 @opindex o
1465 Place output in file @var{file}. This applies to whatever
1466 sort of output is being produced, whether it be an executable file,
1467 an object file, an assembler file or preprocessed C code.
1468
1469 If @option{-o} is not specified, the default is to put an executable
1470 file in @file{a.out}, the object file for
1471 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1472 assembler file in @file{@var{source}.s}, a precompiled header file in
1473 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1474 standard output.
1475
1476 @item -v
1477 @opindex v
1478 Print (on standard error output) the commands executed to run the stages
1479 of compilation. Also print the version number of the compiler driver
1480 program and of the preprocessor and the compiler proper.
1481
1482 @item -###
1483 @opindex ###
1484 Like @option{-v} except the commands are not executed and arguments
1485 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1486 This is useful for shell scripts to capture the driver-generated command lines.
1487
1488 @item --help
1489 @opindex help
1490 Print (on the standard output) a description of the command-line options
1491 understood by @command{gcc}. If the @option{-v} option is also specified
1492 then @option{--help} is also passed on to the various processes
1493 invoked by @command{gcc}, so that they can display the command-line options
1494 they accept. If the @option{-Wextra} option has also been specified
1495 (prior to the @option{--help} option), then command-line options that
1496 have no documentation associated with them are also displayed.
1497
1498 @item --target-help
1499 @opindex target-help
1500 Print (on the standard output) a description of target-specific command-line
1501 options for each tool. For some targets extra target-specific
1502 information may also be printed.
1503
1504 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1505 Print (on the standard output) a description of the command-line
1506 options understood by the compiler that fit into all specified classes
1507 and qualifiers. These are the supported classes:
1508
1509 @table @asis
1510 @item @samp{optimizers}
1511 Display all of the optimization options supported by the
1512 compiler.
1513
1514 @item @samp{warnings}
1515 Display all of the options controlling warning messages
1516 produced by the compiler.
1517
1518 @item @samp{target}
1519 Display target-specific options. Unlike the
1520 @option{--target-help} option however, target-specific options of the
1521 linker and assembler are not displayed. This is because those
1522 tools do not currently support the extended @option{--help=} syntax.
1523
1524 @item @samp{params}
1525 Display the values recognized by the @option{--param}
1526 option.
1527
1528 @item @var{language}
1529 Display the options supported for @var{language}, where
1530 @var{language} is the name of one of the languages supported in this
1531 version of GCC@.
1532
1533 @item @samp{common}
1534 Display the options that are common to all languages.
1535 @end table
1536
1537 These are the supported qualifiers:
1538
1539 @table @asis
1540 @item @samp{undocumented}
1541 Display only those options that are undocumented.
1542
1543 @item @samp{joined}
1544 Display options taking an argument that appears after an equal
1545 sign in the same continuous piece of text, such as:
1546 @samp{--help=target}.
1547
1548 @item @samp{separate}
1549 Display options taking an argument that appears as a separate word
1550 following the original option, such as: @samp{-o output-file}.
1551 @end table
1552
1553 Thus for example to display all the undocumented target-specific
1554 switches supported by the compiler, use:
1555
1556 @smallexample
1557 --help=target,undocumented
1558 @end smallexample
1559
1560 The sense of a qualifier can be inverted by prefixing it with the
1561 @samp{^} character, so for example to display all binary warning
1562 options (i.e., ones that are either on or off and that do not take an
1563 argument) that have a description, use:
1564
1565 @smallexample
1566 --help=warnings,^joined,^undocumented
1567 @end smallexample
1568
1569 The argument to @option{--help=} should not consist solely of inverted
1570 qualifiers.
1571
1572 Combining several classes is possible, although this usually
1573 restricts the output so much that there is nothing to display. One
1574 case where it does work, however, is when one of the classes is
1575 @var{target}. For example, to display all the target-specific
1576 optimization options, use:
1577
1578 @smallexample
1579 --help=target,optimizers
1580 @end smallexample
1581
1582 The @option{--help=} option can be repeated on the command line. Each
1583 successive use displays its requested class of options, skipping
1584 those that have already been displayed.
1585
1586 If the @option{-Q} option appears on the command line before the
1587 @option{--help=} option, then the descriptive text displayed by
1588 @option{--help=} is changed. Instead of describing the displayed
1589 options, an indication is given as to whether the option is enabled,
1590 disabled or set to a specific value (assuming that the compiler
1591 knows this at the point where the @option{--help=} option is used).
1592
1593 Here is a truncated example from the ARM port of @command{gcc}:
1594
1595 @smallexample
1596 % gcc -Q -mabi=2 --help=target -c
1597 The following options are target specific:
1598 -mabi= 2
1599 -mabort-on-noreturn [disabled]
1600 -mapcs [disabled]
1601 @end smallexample
1602
1603 The output is sensitive to the effects of previous command-line
1604 options, so for example it is possible to find out which optimizations
1605 are enabled at @option{-O2} by using:
1606
1607 @smallexample
1608 -Q -O2 --help=optimizers
1609 @end smallexample
1610
1611 Alternatively you can discover which binary optimizations are enabled
1612 by @option{-O3} by using:
1613
1614 @smallexample
1615 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1616 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1617 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1618 @end smallexample
1619
1620 @item --version
1621 @opindex version
1622 Display the version number and copyrights of the invoked GCC@.
1623
1624 @item -pass-exit-codes
1625 @opindex pass-exit-codes
1626 Normally the @command{gcc} program exits with the code of 1 if any
1627 phase of the compiler returns a non-success return code. If you specify
1628 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1629 the numerically highest error produced by any phase returning an error
1630 indication. The C, C++, and Fortran front ends return 4 if an internal
1631 compiler error is encountered.
1632
1633 @item -pipe
1634 @opindex pipe
1635 Use pipes rather than temporary files for communication between the
1636 various stages of compilation. This fails to work on some systems where
1637 the assembler is unable to read from a pipe; but the GNU assembler has
1638 no trouble.
1639
1640 @item -specs=@var{file}
1641 @opindex specs
1642 Process @var{file} after the compiler reads in the standard @file{specs}
1643 file, in order to override the defaults which the @command{gcc} driver
1644 program uses when determining what switches to pass to @command{cc1},
1645 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1646 @option{-specs=@var{file}} can be specified on the command line, and they
1647 are processed in order, from left to right. @xref{Spec Files}, for
1648 information about the format of the @var{file}.
1649
1650 @item -wrapper
1651 @opindex wrapper
1652 Invoke all subcommands under a wrapper program. The name of the
1653 wrapper program and its parameters are passed as a comma separated
1654 list.
1655
1656 @smallexample
1657 gcc -c t.c -wrapper gdb,--args
1658 @end smallexample
1659
1660 @noindent
1661 This invokes all subprograms of @command{gcc} under
1662 @samp{gdb --args}, thus the invocation of @command{cc1} is
1663 @samp{gdb --args cc1 @dots{}}.
1664
1665 @item -ffile-prefix-map=@var{old}=@var{new}
1666 @opindex ffile-prefix-map
1667 When compiling files residing in directory @file{@var{old}}, record
1668 any references to them in the result of the compilation as if the
1669 files resided in directory @file{@var{new}} instead. Specifying this
1670 option is equivalent to specifying all the individual
1671 @option{-f*-prefix-map} options. This can be used to make reproducible
1672 builds that are location independent. See also
1673 @option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
1674
1675 @item -fplugin=@var{name}.so
1676 @opindex fplugin
1677 Load the plugin code in file @var{name}.so, assumed to be a
1678 shared object to be dlopen'd by the compiler. The base name of
1679 the shared object file is used to identify the plugin for the
1680 purposes of argument parsing (See
1681 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1682 Each plugin should define the callback functions specified in the
1683 Plugins API.
1684
1685 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1686 @opindex fplugin-arg
1687 Define an argument called @var{key} with a value of @var{value}
1688 for the plugin called @var{name}.
1689
1690 @item -fdump-ada-spec@r{[}-slim@r{]}
1691 @opindex fdump-ada-spec
1692 For C and C++ source and include files, generate corresponding Ada specs.
1693 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1694 GNAT User's Guide}, which provides detailed documentation on this feature.
1695
1696 @item -fada-spec-parent=@var{unit}
1697 @opindex fada-spec-parent
1698 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1699 Ada specs as child units of parent @var{unit}.
1700
1701 @item -fdump-go-spec=@var{file}
1702 @opindex fdump-go-spec
1703 For input files in any language, generate corresponding Go
1704 declarations in @var{file}. This generates Go @code{const},
1705 @code{type}, @code{var}, and @code{func} declarations which may be a
1706 useful way to start writing a Go interface to code written in some
1707 other language.
1708
1709 @include @value{srcdir}/../libiberty/at-file.texi
1710 @end table
1711
1712 @node Invoking G++
1713 @section Compiling C++ Programs
1714
1715 @cindex suffixes for C++ source
1716 @cindex C++ source file suffixes
1717 C++ source files conventionally use one of the suffixes @samp{.C},
1718 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1719 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1720 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1721 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1722 files with these names and compiles them as C++ programs even if you
1723 call the compiler the same way as for compiling C programs (usually
1724 with the name @command{gcc}).
1725
1726 @findex g++
1727 @findex c++
1728 However, the use of @command{gcc} does not add the C++ library.
1729 @command{g++} is a program that calls GCC and automatically specifies linking
1730 against the C++ library. It treats @samp{.c},
1731 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1732 files unless @option{-x} is used. This program is also useful when
1733 precompiling a C header file with a @samp{.h} extension for use in C++
1734 compilations. On many systems, @command{g++} is also installed with
1735 the name @command{c++}.
1736
1737 @cindex invoking @command{g++}
1738 When you compile C++ programs, you may specify many of the same
1739 command-line options that you use for compiling programs in any
1740 language; or command-line options meaningful for C and related
1741 languages; or options that are meaningful only for C++ programs.
1742 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1743 explanations of options for languages related to C@.
1744 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1745 explanations of options that are meaningful only for C++ programs.
1746
1747 @node C Dialect Options
1748 @section Options Controlling C Dialect
1749 @cindex dialect options
1750 @cindex language dialect options
1751 @cindex options, dialect
1752
1753 The following options control the dialect of C (or languages derived
1754 from C, such as C++, Objective-C and Objective-C++) that the compiler
1755 accepts:
1756
1757 @table @gcctabopt
1758 @cindex ANSI support
1759 @cindex ISO support
1760 @item -ansi
1761 @opindex ansi
1762 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1763 equivalent to @option{-std=c++98}.
1764
1765 This turns off certain features of GCC that are incompatible with ISO
1766 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1767 such as the @code{asm} and @code{typeof} keywords, and
1768 predefined macros such as @code{unix} and @code{vax} that identify the
1769 type of system you are using. It also enables the undesirable and
1770 rarely used ISO trigraph feature. For the C compiler,
1771 it disables recognition of C++ style @samp{//} comments as well as
1772 the @code{inline} keyword.
1773
1774 The alternate keywords @code{__asm__}, @code{__extension__},
1775 @code{__inline__} and @code{__typeof__} continue to work despite
1776 @option{-ansi}. You would not want to use them in an ISO C program, of
1777 course, but it is useful to put them in header files that might be included
1778 in compilations done with @option{-ansi}. Alternate predefined macros
1779 such as @code{__unix__} and @code{__vax__} are also available, with or
1780 without @option{-ansi}.
1781
1782 The @option{-ansi} option does not cause non-ISO programs to be
1783 rejected gratuitously. For that, @option{-Wpedantic} is required in
1784 addition to @option{-ansi}. @xref{Warning Options}.
1785
1786 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1787 option is used. Some header files may notice this macro and refrain
1788 from declaring certain functions or defining certain macros that the
1789 ISO standard doesn't call for; this is to avoid interfering with any
1790 programs that might use these names for other things.
1791
1792 Functions that are normally built in but do not have semantics
1793 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1794 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1795 built-in functions provided by GCC}, for details of the functions
1796 affected.
1797
1798 @item -std=
1799 @opindex std
1800 Determine the language standard. @xref{Standards,,Language Standards
1801 Supported by GCC}, for details of these standard versions. This option
1802 is currently only supported when compiling C or C++.
1803
1804 The compiler can accept several base standards, such as @samp{c90} or
1805 @samp{c++98}, and GNU dialects of those standards, such as
1806 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1807 compiler accepts all programs following that standard plus those
1808 using GNU extensions that do not contradict it. For example,
1809 @option{-std=c90} turns off certain features of GCC that are
1810 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1811 keywords, but not other GNU extensions that do not have a meaning in
1812 ISO C90, such as omitting the middle term of a @code{?:}
1813 expression. On the other hand, when a GNU dialect of a standard is
1814 specified, all features supported by the compiler are enabled, even when
1815 those features change the meaning of the base standard. As a result, some
1816 strict-conforming programs may be rejected. The particular standard
1817 is used by @option{-Wpedantic} to identify which features are GNU
1818 extensions given that version of the standard. For example
1819 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1820 comments, while @option{-std=gnu99 -Wpedantic} does not.
1821
1822 A value for this option must be provided; possible values are
1823
1824 @table @samp
1825 @item c90
1826 @itemx c89
1827 @itemx iso9899:1990
1828 Support all ISO C90 programs (certain GNU extensions that conflict
1829 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1830
1831 @item iso9899:199409
1832 ISO C90 as modified in amendment 1.
1833
1834 @item c99
1835 @itemx c9x
1836 @itemx iso9899:1999
1837 @itemx iso9899:199x
1838 ISO C99. This standard is substantially completely supported, modulo
1839 bugs and floating-point issues
1840 (mainly but not entirely relating to optional C99 features from
1841 Annexes F and G). See
1842 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1843 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1844
1845 @item c11
1846 @itemx c1x
1847 @itemx iso9899:2011
1848 ISO C11, the 2011 revision of the ISO C standard. This standard is
1849 substantially completely supported, modulo bugs, floating-point issues
1850 (mainly but not entirely relating to optional C11 features from
1851 Annexes F and G) and the optional Annexes K (Bounds-checking
1852 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1853
1854 @item c17
1855 @itemx c18
1856 @itemx iso9899:2017
1857 @itemx iso9899:2018
1858 ISO C17, the 2017 revision of the ISO C standard (expected to be
1859 published in 2018). This standard is
1860 same as C11 except for corrections of defects (all of which are also
1861 applied with @option{-std=c11}) and a new value of
1862 @code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1863
1864 @item gnu90
1865 @itemx gnu89
1866 GNU dialect of ISO C90 (including some C99 features).
1867
1868 @item gnu99
1869 @itemx gnu9x
1870 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1871
1872 @item gnu11
1873 @itemx gnu1x
1874 GNU dialect of ISO C11.
1875 The name @samp{gnu1x} is deprecated.
1876
1877 @item gnu17
1878 @itemx gnu18
1879 GNU dialect of ISO C17. This is the default for C code.
1880
1881 @item c++98
1882 @itemx c++03
1883 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1884 additional defect reports. Same as @option{-ansi} for C++ code.
1885
1886 @item gnu++98
1887 @itemx gnu++03
1888 GNU dialect of @option{-std=c++98}.
1889
1890 @item c++11
1891 @itemx c++0x
1892 The 2011 ISO C++ standard plus amendments.
1893 The name @samp{c++0x} is deprecated.
1894
1895 @item gnu++11
1896 @itemx gnu++0x
1897 GNU dialect of @option{-std=c++11}.
1898 The name @samp{gnu++0x} is deprecated.
1899
1900 @item c++14
1901 @itemx c++1y
1902 The 2014 ISO C++ standard plus amendments.
1903 The name @samp{c++1y} is deprecated.
1904
1905 @item gnu++14
1906 @itemx gnu++1y
1907 GNU dialect of @option{-std=c++14}.
1908 This is the default for C++ code.
1909 The name @samp{gnu++1y} is deprecated.
1910
1911 @item c++17
1912 @itemx c++1z
1913 The 2017 ISO C++ standard plus amendments.
1914 The name @samp{c++1z} is deprecated.
1915
1916 @item gnu++17
1917 @itemx gnu++1z
1918 GNU dialect of @option{-std=c++17}.
1919 The name @samp{gnu++1z} is deprecated.
1920
1921 @item c++2a
1922 The next revision of the ISO C++ standard, tentatively planned for
1923 2020. Support is highly experimental, and will almost certainly
1924 change in incompatible ways in future releases.
1925
1926 @item gnu++2a
1927 GNU dialect of @option{-std=c++2a}. Support is highly experimental,
1928 and will almost certainly change in incompatible ways in future
1929 releases.
1930 @end table
1931
1932 @item -fgnu89-inline
1933 @opindex fgnu89-inline
1934 The option @option{-fgnu89-inline} tells GCC to use the traditional
1935 GNU semantics for @code{inline} functions when in C99 mode.
1936 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1937 Using this option is roughly equivalent to adding the
1938 @code{gnu_inline} function attribute to all inline functions
1939 (@pxref{Function Attributes}).
1940
1941 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1942 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1943 specifies the default behavior).
1944 This option is not supported in @option{-std=c90} or
1945 @option{-std=gnu90} mode.
1946
1947 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1948 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1949 in effect for @code{inline} functions. @xref{Common Predefined
1950 Macros,,,cpp,The C Preprocessor}.
1951
1952 @item -fpermitted-flt-eval-methods=@var{style}
1953 @opindex fpermitted-flt-eval-methods
1954 @opindex fpermitted-flt-eval-methods=c11
1955 @opindex fpermitted-flt-eval-methods=ts-18661-3
1956 ISO/IEC TS 18661-3 defines new permissible values for
1957 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
1958 a semantic type that is an interchange or extended format should be
1959 evaluated to the precision and range of that type. These new values are
1960 a superset of those permitted under C99/C11, which does not specify the
1961 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
1962 conforming to C11 may not have been written expecting the possibility of
1963 the new values.
1964
1965 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
1966 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
1967 or the extended set of values specified in ISO/IEC TS 18661-3.
1968
1969 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
1970
1971 The default when in a standards compliant mode (@option{-std=c11} or similar)
1972 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
1973 dialect (@option{-std=gnu11} or similar) is
1974 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
1975
1976 @item -aux-info @var{filename}
1977 @opindex aux-info
1978 Output to the given filename prototyped declarations for all functions
1979 declared and/or defined in a translation unit, including those in header
1980 files. This option is silently ignored in any language other than C@.
1981
1982 Besides declarations, the file indicates, in comments, the origin of
1983 each declaration (source file and line), whether the declaration was
1984 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1985 @samp{O} for old, respectively, in the first character after the line
1986 number and the colon), and whether it came from a declaration or a
1987 definition (@samp{C} or @samp{F}, respectively, in the following
1988 character). In the case of function definitions, a K&R-style list of
1989 arguments followed by their declarations is also provided, inside
1990 comments, after the declaration.
1991
1992 @item -fallow-parameterless-variadic-functions
1993 @opindex fallow-parameterless-variadic-functions
1994 Accept variadic functions without named parameters.
1995
1996 Although it is possible to define such a function, this is not very
1997 useful as it is not possible to read the arguments. This is only
1998 supported for C as this construct is allowed by C++.
1999
2000 @item -fno-asm
2001 @opindex fno-asm
2002 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2003 keyword, so that code can use these words as identifiers. You can use
2004 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2005 instead. @option{-ansi} implies @option{-fno-asm}.
2006
2007 In C++, this switch only affects the @code{typeof} keyword, since
2008 @code{asm} and @code{inline} are standard keywords. You may want to
2009 use the @option{-fno-gnu-keywords} flag instead, which has the same
2010 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2011 switch only affects the @code{asm} and @code{typeof} keywords, since
2012 @code{inline} is a standard keyword in ISO C99.
2013
2014 @item -fno-builtin
2015 @itemx -fno-builtin-@var{function}
2016 @opindex fno-builtin
2017 @cindex built-in functions
2018 Don't recognize built-in functions that do not begin with
2019 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
2020 functions provided by GCC}, for details of the functions affected,
2021 including those which are not built-in functions when @option{-ansi} or
2022 @option{-std} options for strict ISO C conformance are used because they
2023 do not have an ISO standard meaning.
2024
2025 GCC normally generates special code to handle certain built-in functions
2026 more efficiently; for instance, calls to @code{alloca} may become single
2027 instructions which adjust the stack directly, and calls to @code{memcpy}
2028 may become inline copy loops. The resulting code is often both smaller
2029 and faster, but since the function calls no longer appear as such, you
2030 cannot set a breakpoint on those calls, nor can you change the behavior
2031 of the functions by linking with a different library. In addition,
2032 when a function is recognized as a built-in function, GCC may use
2033 information about that function to warn about problems with calls to
2034 that function, or to generate more efficient code, even if the
2035 resulting code still contains calls to that function. For example,
2036 warnings are given with @option{-Wformat} for bad calls to
2037 @code{printf} when @code{printf} is built in and @code{strlen} is
2038 known not to modify global memory.
2039
2040 With the @option{-fno-builtin-@var{function}} option
2041 only the built-in function @var{function} is
2042 disabled. @var{function} must not begin with @samp{__builtin_}. If a
2043 function is named that is not built-in in this version of GCC, this
2044 option is ignored. There is no corresponding
2045 @option{-fbuiltin-@var{function}} option; if you wish to enable
2046 built-in functions selectively when using @option{-fno-builtin} or
2047 @option{-ffreestanding}, you may define macros such as:
2048
2049 @smallexample
2050 #define abs(n) __builtin_abs ((n))
2051 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2052 @end smallexample
2053
2054 @item -fgimple
2055 @opindex fgimple
2056
2057 Enable parsing of function definitions marked with @code{__GIMPLE}.
2058 This is an experimental feature that allows unit testing of GIMPLE
2059 passes.
2060
2061 @item -fhosted
2062 @opindex fhosted
2063 @cindex hosted environment
2064
2065 Assert that compilation targets a hosted environment. This implies
2066 @option{-fbuiltin}. A hosted environment is one in which the
2067 entire standard library is available, and in which @code{main} has a return
2068 type of @code{int}. Examples are nearly everything except a kernel.
2069 This is equivalent to @option{-fno-freestanding}.
2070
2071 @item -ffreestanding
2072 @opindex ffreestanding
2073 @cindex hosted environment
2074
2075 Assert that compilation targets a freestanding environment. This
2076 implies @option{-fno-builtin}. A freestanding environment
2077 is one in which the standard library may not exist, and program startup may
2078 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2079 This is equivalent to @option{-fno-hosted}.
2080
2081 @xref{Standards,,Language Standards Supported by GCC}, for details of
2082 freestanding and hosted environments.
2083
2084 @item -fopenacc
2085 @opindex fopenacc
2086 @cindex OpenACC accelerator programming
2087 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2088 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2089 compiler generates accelerated code according to the OpenACC Application
2090 Programming Interface v2.0 @w{@uref{https://www.openacc.org}}. This option
2091 implies @option{-pthread}, and thus is only supported on targets that
2092 have support for @option{-pthread}.
2093
2094 @item -fopenacc-dim=@var{geom}
2095 @opindex fopenacc-dim
2096 @cindex OpenACC accelerator programming
2097 Specify default compute dimensions for parallel offload regions that do
2098 not explicitly specify. The @var{geom} value is a triple of
2099 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2100 can be omitted, to use a target-specific default value.
2101
2102 @item -fopenmp
2103 @opindex fopenmp
2104 @cindex OpenMP parallel
2105 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2106 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2107 compiler generates parallel code according to the OpenMP Application
2108 Program Interface v4.5 @w{@uref{http://www.openmp.org/}}. This option
2109 implies @option{-pthread}, and thus is only supported on targets that
2110 have support for @option{-pthread}. @option{-fopenmp} implies
2111 @option{-fopenmp-simd}.
2112
2113 @item -fopenmp-simd
2114 @opindex fopenmp-simd
2115 @cindex OpenMP SIMD
2116 @cindex SIMD
2117 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2118 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2119 are ignored.
2120
2121 @item -fgnu-tm
2122 @opindex fgnu-tm
2123 When the option @option{-fgnu-tm} is specified, the compiler
2124 generates code for the Linux variant of Intel's current Transactional
2125 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2126 an experimental feature whose interface may change in future versions
2127 of GCC, as the official specification changes. Please note that not
2128 all architectures are supported for this feature.
2129
2130 For more information on GCC's support for transactional memory,
2131 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2132 Transactional Memory Library}.
2133
2134 Note that the transactional memory feature is not supported with
2135 non-call exceptions (@option{-fnon-call-exceptions}).
2136
2137 @item -fms-extensions
2138 @opindex fms-extensions
2139 Accept some non-standard constructs used in Microsoft header files.
2140
2141 In C++ code, this allows member names in structures to be similar
2142 to previous types declarations.
2143
2144 @smallexample
2145 typedef int UOW;
2146 struct ABC @{
2147 UOW UOW;
2148 @};
2149 @end smallexample
2150
2151 Some cases of unnamed fields in structures and unions are only
2152 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2153 fields within structs/unions}, for details.
2154
2155 Note that this option is off for all targets but x86
2156 targets using ms-abi.
2157
2158 @item -fplan9-extensions
2159 @opindex fplan9-extensions
2160 Accept some non-standard constructs used in Plan 9 code.
2161
2162 This enables @option{-fms-extensions}, permits passing pointers to
2163 structures with anonymous fields to functions that expect pointers to
2164 elements of the type of the field, and permits referring to anonymous
2165 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2166 struct/union fields within structs/unions}, for details. This is only
2167 supported for C, not C++.
2168
2169 @item -fcond-mismatch
2170 @opindex fcond-mismatch
2171 Allow conditional expressions with mismatched types in the second and
2172 third arguments. The value of such an expression is void. This option
2173 is not supported for C++.
2174
2175 @item -flax-vector-conversions
2176 @opindex flax-vector-conversions
2177 Allow implicit conversions between vectors with differing numbers of
2178 elements and/or incompatible element types. This option should not be
2179 used for new code.
2180
2181 @item -funsigned-char
2182 @opindex funsigned-char
2183 Let the type @code{char} be unsigned, like @code{unsigned char}.
2184
2185 Each kind of machine has a default for what @code{char} should
2186 be. It is either like @code{unsigned char} by default or like
2187 @code{signed char} by default.
2188
2189 Ideally, a portable program should always use @code{signed char} or
2190 @code{unsigned char} when it depends on the signedness of an object.
2191 But many programs have been written to use plain @code{char} and
2192 expect it to be signed, or expect it to be unsigned, depending on the
2193 machines they were written for. This option, and its inverse, let you
2194 make such a program work with the opposite default.
2195
2196 The type @code{char} is always a distinct type from each of
2197 @code{signed char} or @code{unsigned char}, even though its behavior
2198 is always just like one of those two.
2199
2200 @item -fsigned-char
2201 @opindex fsigned-char
2202 Let the type @code{char} be signed, like @code{signed char}.
2203
2204 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2205 the negative form of @option{-funsigned-char}. Likewise, the option
2206 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2207
2208 @item -fsigned-bitfields
2209 @itemx -funsigned-bitfields
2210 @itemx -fno-signed-bitfields
2211 @itemx -fno-unsigned-bitfields
2212 @opindex fsigned-bitfields
2213 @opindex funsigned-bitfields
2214 @opindex fno-signed-bitfields
2215 @opindex fno-unsigned-bitfields
2216 These options control whether a bit-field is signed or unsigned, when the
2217 declaration does not use either @code{signed} or @code{unsigned}. By
2218 default, such a bit-field is signed, because this is consistent: the
2219 basic integer types such as @code{int} are signed types.
2220
2221 @item -fsso-struct=@var{endianness}
2222 @opindex fsso-struct
2223 Set the default scalar storage order of structures and unions to the
2224 specified endianness. The accepted values are @samp{big-endian},
2225 @samp{little-endian} and @samp{native} for the native endianness of
2226 the target (the default). This option is not supported for C++.
2227
2228 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2229 code that is not binary compatible with code generated without it if the
2230 specified endianness is not the native endianness of the target.
2231 @end table
2232
2233 @node C++ Dialect Options
2234 @section Options Controlling C++ Dialect
2235
2236 @cindex compiler options, C++
2237 @cindex C++ options, command-line
2238 @cindex options, C++
2239 This section describes the command-line options that are only meaningful
2240 for C++ programs. You can also use most of the GNU compiler options
2241 regardless of what language your program is in. For example, you
2242 might compile a file @file{firstClass.C} like this:
2243
2244 @smallexample
2245 g++ -g -fstrict-enums -O -c firstClass.C
2246 @end smallexample
2247
2248 @noindent
2249 In this example, only @option{-fstrict-enums} is an option meant
2250 only for C++ programs; you can use the other options with any
2251 language supported by GCC@.
2252
2253 Some options for compiling C programs, such as @option{-std}, are also
2254 relevant for C++ programs.
2255 @xref{C Dialect Options,,Options Controlling C Dialect}.
2256
2257 Here is a list of options that are @emph{only} for compiling C++ programs:
2258
2259 @table @gcctabopt
2260
2261 @item -fabi-version=@var{n}
2262 @opindex fabi-version
2263 Use version @var{n} of the C++ ABI@. The default is version 0.
2264
2265 Version 0 refers to the version conforming most closely to
2266 the C++ ABI specification. Therefore, the ABI obtained using version 0
2267 will change in different versions of G++ as ABI bugs are fixed.
2268
2269 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2270
2271 Version 2 is the version of the C++ ABI that first appeared in G++
2272 3.4, and was the default through G++ 4.9.
2273
2274 Version 3 corrects an error in mangling a constant address as a
2275 template argument.
2276
2277 Version 4, which first appeared in G++ 4.5, implements a standard
2278 mangling for vector types.
2279
2280 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2281 attribute const/volatile on function pointer types, decltype of a
2282 plain decl, and use of a function parameter in the declaration of
2283 another parameter.
2284
2285 Version 6, which first appeared in G++ 4.7, corrects the promotion
2286 behavior of C++11 scoped enums and the mangling of template argument
2287 packs, const/static_cast, prefix ++ and --, and a class scope function
2288 used as a template argument.
2289
2290 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2291 builtin type and corrects the mangling of lambdas in default argument
2292 scope.
2293
2294 Version 8, which first appeared in G++ 4.9, corrects the substitution
2295 behavior of function types with function-cv-qualifiers.
2296
2297 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2298 @code{nullptr_t}.
2299
2300 Version 10, which first appeared in G++ 6.1, adds mangling of
2301 attributes that affect type identity, such as ia32 calling convention
2302 attributes (e.g. @samp{stdcall}).
2303
2304 Version 11, which first appeared in G++ 7, corrects the mangling of
2305 sizeof... expressions and operator names. For multiple entities with
2306 the same name within a function, that are declared in different scopes,
2307 the mangling now changes starting with the twelfth occurrence. It also
2308 implies @option{-fnew-inheriting-ctors}.
2309
2310 See also @option{-Wabi}.
2311
2312 @item -fabi-compat-version=@var{n}
2313 @opindex fabi-compat-version
2314 On targets that support strong aliases, G++
2315 works around mangling changes by creating an alias with the correct
2316 mangled name when defining a symbol with an incorrect mangled name.
2317 This switch specifies which ABI version to use for the alias.
2318
2319 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2320 compatibility). If another ABI version is explicitly selected, this
2321 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2322 use @option{-fabi-compat-version=2}.
2323
2324 If this option is not provided but @option{-Wabi=@var{n}} is, that
2325 version is used for compatibility aliases. If this option is provided
2326 along with @option{-Wabi} (without the version), the version from this
2327 option is used for the warning.
2328
2329 @item -fno-access-control
2330 @opindex fno-access-control
2331 Turn off all access checking. This switch is mainly useful for working
2332 around bugs in the access control code.
2333
2334 @item -faligned-new
2335 @opindex faligned-new
2336 Enable support for C++17 @code{new} of types that require more
2337 alignment than @code{void* ::operator new(std::size_t)} provides. A
2338 numeric argument such as @code{-faligned-new=32} can be used to
2339 specify how much alignment (in bytes) is provided by that function,
2340 but few users will need to override the default of
2341 @code{alignof(std::max_align_t)}.
2342
2343 This flag is enabled by default for @option{-std=c++17}.
2344
2345 @item -fcheck-new
2346 @opindex fcheck-new
2347 Check that the pointer returned by @code{operator new} is non-null
2348 before attempting to modify the storage allocated. This check is
2349 normally unnecessary because the C++ standard specifies that
2350 @code{operator new} only returns @code{0} if it is declared
2351 @code{throw()}, in which case the compiler always checks the
2352 return value even without this option. In all other cases, when
2353 @code{operator new} has a non-empty exception specification, memory
2354 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2355 @samp{new (nothrow)}.
2356
2357 @item -fconcepts
2358 @opindex fconcepts
2359 Enable support for the C++ Extensions for Concepts Technical
2360 Specification, ISO 19217 (2015), which allows code like
2361
2362 @smallexample
2363 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2364 template <Addable T> T add (T a, T b) @{ return a + b; @}
2365 @end smallexample
2366
2367 @item -fconstexpr-depth=@var{n}
2368 @opindex fconstexpr-depth
2369 Set the maximum nested evaluation depth for C++11 constexpr functions
2370 to @var{n}. A limit is needed to detect endless recursion during
2371 constant expression evaluation. The minimum specified by the standard
2372 is 512.
2373
2374 @item -fconstexpr-loop-limit=@var{n}
2375 @opindex fconstexpr-loop-limit
2376 Set the maximum number of iterations for a loop in C++14 constexpr functions
2377 to @var{n}. A limit is needed to detect infinite loops during
2378 constant expression evaluation. The default is 262144 (1<<18).
2379
2380 @item -fdeduce-init-list
2381 @opindex fdeduce-init-list
2382 Enable deduction of a template type parameter as
2383 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2384
2385 @smallexample
2386 template <class T> auto forward(T t) -> decltype (realfn (t))
2387 @{
2388 return realfn (t);
2389 @}
2390
2391 void f()
2392 @{
2393 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2394 @}
2395 @end smallexample
2396
2397 This deduction was implemented as a possible extension to the
2398 originally proposed semantics for the C++11 standard, but was not part
2399 of the final standard, so it is disabled by default. This option is
2400 deprecated, and may be removed in a future version of G++.
2401
2402 @item -ffriend-injection
2403 @opindex ffriend-injection
2404 Inject friend functions into the enclosing namespace, so that they are
2405 visible outside the scope of the class in which they are declared.
2406 Friend functions were documented to work this way in the old Annotated
2407 C++ Reference Manual.
2408 However, in ISO C++ a friend function that is not declared
2409 in an enclosing scope can only be found using argument dependent
2410 lookup. GCC defaults to the standard behavior.
2411
2412 This option is for compatibility, and may be removed in a future
2413 release of G++.
2414
2415 @item -fno-elide-constructors
2416 @opindex fno-elide-constructors
2417 The C++ standard allows an implementation to omit creating a temporary
2418 that is only used to initialize another object of the same type.
2419 Specifying this option disables that optimization, and forces G++ to
2420 call the copy constructor in all cases. This option also causes G++
2421 to call trivial member functions which otherwise would be expanded inline.
2422
2423 In C++17, the compiler is required to omit these temporaries, but this
2424 option still affects trivial member functions.
2425
2426 @item -fno-enforce-eh-specs
2427 @opindex fno-enforce-eh-specs
2428 Don't generate code to check for violation of exception specifications
2429 at run time. This option violates the C++ standard, but may be useful
2430 for reducing code size in production builds, much like defining
2431 @code{NDEBUG}. This does not give user code permission to throw
2432 exceptions in violation of the exception specifications; the compiler
2433 still optimizes based on the specifications, so throwing an
2434 unexpected exception results in undefined behavior at run time.
2435
2436 @item -fextern-tls-init
2437 @itemx -fno-extern-tls-init
2438 @opindex fextern-tls-init
2439 @opindex fno-extern-tls-init
2440 The C++11 and OpenMP standards allow @code{thread_local} and
2441 @code{threadprivate} variables to have dynamic (runtime)
2442 initialization. To support this, any use of such a variable goes
2443 through a wrapper function that performs any necessary initialization.
2444 When the use and definition of the variable are in the same
2445 translation unit, this overhead can be optimized away, but when the
2446 use is in a different translation unit there is significant overhead
2447 even if the variable doesn't actually need dynamic initialization. If
2448 the programmer can be sure that no use of the variable in a
2449 non-defining TU needs to trigger dynamic initialization (either
2450 because the variable is statically initialized, or a use of the
2451 variable in the defining TU will be executed before any uses in
2452 another TU), they can avoid this overhead with the
2453 @option{-fno-extern-tls-init} option.
2454
2455 On targets that support symbol aliases, the default is
2456 @option{-fextern-tls-init}. On targets that do not support symbol
2457 aliases, the default is @option{-fno-extern-tls-init}.
2458
2459 @item -ffor-scope
2460 @itemx -fno-for-scope
2461 @opindex ffor-scope
2462 @opindex fno-for-scope
2463 If @option{-ffor-scope} is specified, the scope of variables declared in
2464 a @i{for-init-statement} is limited to the @code{for} loop itself,
2465 as specified by the C++ standard.
2466 If @option{-fno-for-scope} is specified, the scope of variables declared in
2467 a @i{for-init-statement} extends to the end of the enclosing scope,
2468 as was the case in old versions of G++, and other (traditional)
2469 implementations of C++.
2470
2471 This option is deprecated and the associated non-standard
2472 functionality will be removed.
2473
2474 @item -fno-gnu-keywords
2475 @opindex fno-gnu-keywords
2476 Do not recognize @code{typeof} as a keyword, so that code can use this
2477 word as an identifier. You can use the keyword @code{__typeof__} instead.
2478 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2479 @option{-std=c++98}, @option{-std=c++11}, etc.
2480
2481 @item -fno-implicit-templates
2482 @opindex fno-implicit-templates
2483 Never emit code for non-inline templates that are instantiated
2484 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2485 @xref{Template Instantiation}, for more information.
2486
2487 @item -fno-implicit-inline-templates
2488 @opindex fno-implicit-inline-templates
2489 Don't emit code for implicit instantiations of inline templates, either.
2490 The default is to handle inlines differently so that compiles with and
2491 without optimization need the same set of explicit instantiations.
2492
2493 @item -fno-implement-inlines
2494 @opindex fno-implement-inlines
2495 To save space, do not emit out-of-line copies of inline functions
2496 controlled by @code{#pragma implementation}. This causes linker
2497 errors if these functions are not inlined everywhere they are called.
2498
2499 @item -fms-extensions
2500 @opindex fms-extensions
2501 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2502 int and getting a pointer to member function via non-standard syntax.
2503
2504 @item -fnew-inheriting-ctors
2505 @opindex fnew-inheriting-ctors
2506 Enable the P0136 adjustment to the semantics of C++11 constructor
2507 inheritance. This is part of C++17 but also considered to be a Defect
2508 Report against C++11 and C++14. This flag is enabled by default
2509 unless @option{-fabi-version=10} or lower is specified.
2510
2511 @item -fnew-ttp-matching
2512 @opindex fnew-ttp-matching
2513 Enable the P0522 resolution to Core issue 150, template template
2514 parameters and default arguments: this allows a template with default
2515 template arguments as an argument for a template template parameter
2516 with fewer template parameters. This flag is enabled by default for
2517 @option{-std=c++17}.
2518
2519 @item -fno-nonansi-builtins
2520 @opindex fno-nonansi-builtins
2521 Disable built-in declarations of functions that are not mandated by
2522 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2523 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2524
2525 @item -fnothrow-opt
2526 @opindex fnothrow-opt
2527 Treat a @code{throw()} exception specification as if it were a
2528 @code{noexcept} specification to reduce or eliminate the text size
2529 overhead relative to a function with no exception specification. If
2530 the function has local variables of types with non-trivial
2531 destructors, the exception specification actually makes the
2532 function smaller because the EH cleanups for those variables can be
2533 optimized away. The semantic effect is that an exception thrown out of
2534 a function with such an exception specification results in a call
2535 to @code{terminate} rather than @code{unexpected}.
2536
2537 @item -fno-operator-names
2538 @opindex fno-operator-names
2539 Do not treat the operator name keywords @code{and}, @code{bitand},
2540 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2541 synonyms as keywords.
2542
2543 @item -fno-optional-diags
2544 @opindex fno-optional-diags
2545 Disable diagnostics that the standard says a compiler does not need to
2546 issue. Currently, the only such diagnostic issued by G++ is the one for
2547 a name having multiple meanings within a class.
2548
2549 @item -fpermissive
2550 @opindex fpermissive
2551 Downgrade some diagnostics about nonconformant code from errors to
2552 warnings. Thus, using @option{-fpermissive} allows some
2553 nonconforming code to compile.
2554
2555 @item -fno-pretty-templates
2556 @opindex fno-pretty-templates
2557 When an error message refers to a specialization of a function
2558 template, the compiler normally prints the signature of the
2559 template followed by the template arguments and any typedefs or
2560 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2561 rather than @code{void f(int)}) so that it's clear which template is
2562 involved. When an error message refers to a specialization of a class
2563 template, the compiler omits any template arguments that match
2564 the default template arguments for that template. If either of these
2565 behaviors make it harder to understand the error message rather than
2566 easier, you can use @option{-fno-pretty-templates} to disable them.
2567
2568 @item -frepo
2569 @opindex frepo
2570 Enable automatic template instantiation at link time. This option also
2571 implies @option{-fno-implicit-templates}. @xref{Template
2572 Instantiation}, for more information.
2573
2574 @item -fno-rtti
2575 @opindex fno-rtti
2576 Disable generation of information about every class with virtual
2577 functions for use by the C++ run-time type identification features
2578 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2579 of the language, you can save some space by using this flag. Note that
2580 exception handling uses the same information, but G++ generates it as
2581 needed. The @code{dynamic_cast} operator can still be used for casts that
2582 do not require run-time type information, i.e.@: casts to @code{void *} or to
2583 unambiguous base classes.
2584
2585 @item -fsized-deallocation
2586 @opindex fsized-deallocation
2587 Enable the built-in global declarations
2588 @smallexample
2589 void operator delete (void *, std::size_t) noexcept;
2590 void operator delete[] (void *, std::size_t) noexcept;
2591 @end smallexample
2592 as introduced in C++14. This is useful for user-defined replacement
2593 deallocation functions that, for example, use the size of the object
2594 to make deallocation faster. Enabled by default under
2595 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2596 warns about places that might want to add a definition.
2597
2598 @item -fstrict-enums
2599 @opindex fstrict-enums
2600 Allow the compiler to optimize using the assumption that a value of
2601 enumerated type can only be one of the values of the enumeration (as
2602 defined in the C++ standard; basically, a value that can be
2603 represented in the minimum number of bits needed to represent all the
2604 enumerators). This assumption may not be valid if the program uses a
2605 cast to convert an arbitrary integer value to the enumerated type.
2606
2607 @item -fstrong-eval-order
2608 @opindex fstrong-eval-order
2609 Evaluate member access, array subscripting, and shift expressions in
2610 left-to-right order, and evaluate assignment in right-to-left order,
2611 as adopted for C++17. Enabled by default with @option{-std=c++17}.
2612 @option{-fstrong-eval-order=some} enables just the ordering of member
2613 access and shift expressions, and is the default without
2614 @option{-std=c++17}.
2615
2616 @item -ftemplate-backtrace-limit=@var{n}
2617 @opindex ftemplate-backtrace-limit
2618 Set the maximum number of template instantiation notes for a single
2619 warning or error to @var{n}. The default value is 10.
2620
2621 @item -ftemplate-depth=@var{n}
2622 @opindex ftemplate-depth
2623 Set the maximum instantiation depth for template classes to @var{n}.
2624 A limit on the template instantiation depth is needed to detect
2625 endless recursions during template class instantiation. ANSI/ISO C++
2626 conforming programs must not rely on a maximum depth greater than 17
2627 (changed to 1024 in C++11). The default value is 900, as the compiler
2628 can run out of stack space before hitting 1024 in some situations.
2629
2630 @item -fno-threadsafe-statics
2631 @opindex fno-threadsafe-statics
2632 Do not emit the extra code to use the routines specified in the C++
2633 ABI for thread-safe initialization of local statics. You can use this
2634 option to reduce code size slightly in code that doesn't need to be
2635 thread-safe.
2636
2637 @item -fuse-cxa-atexit
2638 @opindex fuse-cxa-atexit
2639 Register destructors for objects with static storage duration with the
2640 @code{__cxa_atexit} function rather than the @code{atexit} function.
2641 This option is required for fully standards-compliant handling of static
2642 destructors, but only works if your C library supports
2643 @code{__cxa_atexit}.
2644
2645 @item -fno-use-cxa-get-exception-ptr
2646 @opindex fno-use-cxa-get-exception-ptr
2647 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2648 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2649 if the runtime routine is not available.
2650
2651 @item -fvisibility-inlines-hidden
2652 @opindex fvisibility-inlines-hidden
2653 This switch declares that the user does not attempt to compare
2654 pointers to inline functions or methods where the addresses of the two functions
2655 are taken in different shared objects.
2656
2657 The effect of this is that GCC may, effectively, mark inline methods with
2658 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2659 appear in the export table of a DSO and do not require a PLT indirection
2660 when used within the DSO@. Enabling this option can have a dramatic effect
2661 on load and link times of a DSO as it massively reduces the size of the
2662 dynamic export table when the library makes heavy use of templates.
2663
2664 The behavior of this switch is not quite the same as marking the
2665 methods as hidden directly, because it does not affect static variables
2666 local to the function or cause the compiler to deduce that
2667 the function is defined in only one shared object.
2668
2669 You may mark a method as having a visibility explicitly to negate the
2670 effect of the switch for that method. For example, if you do want to
2671 compare pointers to a particular inline method, you might mark it as
2672 having default visibility. Marking the enclosing class with explicit
2673 visibility has no effect.
2674
2675 Explicitly instantiated inline methods are unaffected by this option
2676 as their linkage might otherwise cross a shared library boundary.
2677 @xref{Template Instantiation}.
2678
2679 @item -fvisibility-ms-compat
2680 @opindex fvisibility-ms-compat
2681 This flag attempts to use visibility settings to make GCC's C++
2682 linkage model compatible with that of Microsoft Visual Studio.
2683
2684 The flag makes these changes to GCC's linkage model:
2685
2686 @enumerate
2687 @item
2688 It sets the default visibility to @code{hidden}, like
2689 @option{-fvisibility=hidden}.
2690
2691 @item
2692 Types, but not their members, are not hidden by default.
2693
2694 @item
2695 The One Definition Rule is relaxed for types without explicit
2696 visibility specifications that are defined in more than one
2697 shared object: those declarations are permitted if they are
2698 permitted when this option is not used.
2699 @end enumerate
2700
2701 In new code it is better to use @option{-fvisibility=hidden} and
2702 export those classes that are intended to be externally visible.
2703 Unfortunately it is possible for code to rely, perhaps accidentally,
2704 on the Visual Studio behavior.
2705
2706 Among the consequences of these changes are that static data members
2707 of the same type with the same name but defined in different shared
2708 objects are different, so changing one does not change the other;
2709 and that pointers to function members defined in different shared
2710 objects may not compare equal. When this flag is given, it is a
2711 violation of the ODR to define types with the same name differently.
2712
2713 @item -fno-weak
2714 @opindex fno-weak
2715 Do not use weak symbol support, even if it is provided by the linker.
2716 By default, G++ uses weak symbols if they are available. This
2717 option exists only for testing, and should not be used by end-users;
2718 it results in inferior code and has no benefits. This option may
2719 be removed in a future release of G++.
2720
2721 @item -nostdinc++
2722 @opindex nostdinc++
2723 Do not search for header files in the standard directories specific to
2724 C++, but do still search the other standard directories. (This option
2725 is used when building the C++ library.)
2726 @end table
2727
2728 In addition, these optimization, warning, and code generation options
2729 have meanings only for C++ programs:
2730
2731 @table @gcctabopt
2732 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2733 @opindex Wabi
2734 @opindex Wno-abi
2735 Warn when G++ it generates code that is probably not compatible with
2736 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2737 ABI with each major release, normally @option{-Wabi} will warn only if
2738 there is a check added later in a release series for an ABI issue
2739 discovered since the initial release. @option{-Wabi} will warn about
2740 more things if an older ABI version is selected (with
2741 @option{-fabi-version=@var{n}}).
2742
2743 @option{-Wabi} can also be used with an explicit version number to
2744 warn about compatibility with a particular @option{-fabi-version}
2745 level, e.g. @option{-Wabi=2} to warn about changes relative to
2746 @option{-fabi-version=2}.
2747
2748 If an explicit version number is provided and
2749 @option{-fabi-compat-version} is not specified, the version number
2750 from this option is used for compatibility aliases. If no explicit
2751 version number is provided with this option, but
2752 @option{-fabi-compat-version} is specified, that version number is
2753 used for ABI warnings.
2754
2755 Although an effort has been made to warn about
2756 all such cases, there are probably some cases that are not warned about,
2757 even though G++ is generating incompatible code. There may also be
2758 cases where warnings are emitted even though the code that is generated
2759 is compatible.
2760
2761 You should rewrite your code to avoid these warnings if you are
2762 concerned about the fact that code generated by G++ may not be binary
2763 compatible with code generated by other compilers.
2764
2765 Known incompatibilities in @option{-fabi-version=2} (which was the
2766 default from GCC 3.4 to 4.9) include:
2767
2768 @itemize @bullet
2769
2770 @item
2771 A template with a non-type template parameter of reference type was
2772 mangled incorrectly:
2773 @smallexample
2774 extern int N;
2775 template <int &> struct S @{@};
2776 void n (S<N>) @{2@}
2777 @end smallexample
2778
2779 This was fixed in @option{-fabi-version=3}.
2780
2781 @item
2782 SIMD vector types declared using @code{__attribute ((vector_size))} were
2783 mangled in a non-standard way that does not allow for overloading of
2784 functions taking vectors of different sizes.
2785
2786 The mangling was changed in @option{-fabi-version=4}.
2787
2788 @item
2789 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2790 qualifiers, and @code{decltype} of a plain declaration was folded away.
2791
2792 These mangling issues were fixed in @option{-fabi-version=5}.
2793
2794 @item
2795 Scoped enumerators passed as arguments to a variadic function are
2796 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2797 On most targets this does not actually affect the parameter passing
2798 ABI, as there is no way to pass an argument smaller than @code{int}.
2799
2800 Also, the ABI changed the mangling of template argument packs,
2801 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2802 a class scope function used as a template argument.
2803
2804 These issues were corrected in @option{-fabi-version=6}.
2805
2806 @item
2807 Lambdas in default argument scope were mangled incorrectly, and the
2808 ABI changed the mangling of @code{nullptr_t}.
2809
2810 These issues were corrected in @option{-fabi-version=7}.
2811
2812 @item
2813 When mangling a function type with function-cv-qualifiers, the
2814 un-qualified function type was incorrectly treated as a substitution
2815 candidate.
2816
2817 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2818
2819 @item
2820 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2821 unaligned accesses. Note that this did not affect the ABI of a
2822 function with a @code{nullptr_t} parameter, as parameters have a
2823 minimum alignment.
2824
2825 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2826
2827 @item
2828 Target-specific attributes that affect the identity of a type, such as
2829 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2830 did not affect the mangled name, leading to name collisions when
2831 function pointers were used as template arguments.
2832
2833 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2834
2835 @end itemize
2836
2837 It also warns about psABI-related changes. The known psABI changes at this
2838 point include:
2839
2840 @itemize @bullet
2841
2842 @item
2843 For SysV/x86-64, unions with @code{long double} members are
2844 passed in memory as specified in psABI. For example:
2845
2846 @smallexample
2847 union U @{
2848 long double ld;
2849 int i;
2850 @};
2851 @end smallexample
2852
2853 @noindent
2854 @code{union U} is always passed in memory.
2855
2856 @end itemize
2857
2858 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2859 @opindex Wabi-tag
2860 @opindex -Wabi-tag
2861 Warn when a type with an ABI tag is used in a context that does not
2862 have that ABI tag. See @ref{C++ Attributes} for more information
2863 about ABI tags.
2864
2865 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2866 @opindex Wctor-dtor-privacy
2867 @opindex Wno-ctor-dtor-privacy
2868 Warn when a class seems unusable because all the constructors or
2869 destructors in that class are private, and it has neither friends nor
2870 public static member functions. Also warn if there are no non-private
2871 methods, and there's at least one private member function that isn't
2872 a constructor or destructor.
2873
2874 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2875 @opindex Wdelete-non-virtual-dtor
2876 @opindex Wno-delete-non-virtual-dtor
2877 Warn when @code{delete} is used to destroy an instance of a class that
2878 has virtual functions and non-virtual destructor. It is unsafe to delete
2879 an instance of a derived class through a pointer to a base class if the
2880 base class does not have a virtual destructor. This warning is enabled
2881 by @option{-Wall}.
2882
2883 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2884 @opindex Wliteral-suffix
2885 @opindex Wno-literal-suffix
2886 Warn when a string or character literal is followed by a ud-suffix which does
2887 not begin with an underscore. As a conforming extension, GCC treats such
2888 suffixes as separate preprocessing tokens in order to maintain backwards
2889 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2890 For example:
2891
2892 @smallexample
2893 #define __STDC_FORMAT_MACROS
2894 #include <inttypes.h>
2895 #include <stdio.h>
2896
2897 int main() @{
2898 int64_t i64 = 123;
2899 printf("My int64: %" PRId64"\n", i64);
2900 @}
2901 @end smallexample
2902
2903 In this case, @code{PRId64} is treated as a separate preprocessing token.
2904
2905 Additionally, warn when a user-defined literal operator is declared with
2906 a literal suffix identifier that doesn't begin with an underscore. Literal
2907 suffix identifiers that don't begin with an underscore are reserved for
2908 future standardization.
2909
2910 This warning is enabled by default.
2911
2912 @item -Wlto-type-mismatch
2913 @opindex Wlto-type-mismatch
2914 @opindex Wno-lto-type-mismatch
2915
2916 During the link-time optimization warn about type mismatches in
2917 global declarations from different compilation units.
2918 Requires @option{-flto} to be enabled. Enabled by default.
2919
2920 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
2921 @opindex Wnarrowing
2922 @opindex Wno-narrowing
2923 For C++11 and later standards, narrowing conversions are diagnosed by default,
2924 as required by the standard. A narrowing conversion from a constant produces
2925 an error, and a narrowing conversion from a non-constant produces a warning,
2926 but @option{-Wno-narrowing} suppresses the diagnostic.
2927 Note that this does not affect the meaning of well-formed code;
2928 narrowing conversions are still considered ill-formed in SFINAE contexts.
2929
2930 With @option{-Wnarrowing} in C++98, warn when a narrowing
2931 conversion prohibited by C++11 occurs within
2932 @samp{@{ @}}, e.g.
2933
2934 @smallexample
2935 int i = @{ 2.2 @}; // error: narrowing from double to int
2936 @end smallexample
2937
2938 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2939
2940 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2941 @opindex Wnoexcept
2942 @opindex Wno-noexcept
2943 Warn when a noexcept-expression evaluates to false because of a call
2944 to a function that does not have a non-throwing exception
2945 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2946 the compiler to never throw an exception.
2947
2948 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
2949 @opindex Wnoexcept-type
2950 @opindex Wno-noexcept-type
2951 Warn if the C++17 feature making @code{noexcept} part of a function
2952 type changes the mangled name of a symbol relative to C++14. Enabled
2953 by @option{-Wabi} and @option{-Wc++17-compat}.
2954
2955 As an example:
2956
2957 @smallexample
2958 template <class T> void f(T t) @{ t(); @};
2959 void g() noexcept;
2960 void h() @{ f(g); @}
2961 @end smallexample
2962
2963 @noindent
2964 In C++14, @code{f} calls calls @code{f<void(*)()>}, but in
2965 C++17 it calls @code{f<void(*)()noexcept>}.
2966
2967 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
2968 @opindex Wclass-memaccess
2969 Warn when the destination of a call to a raw memory function such as
2970 @code{memset} or @code{memcpy} is an object of class type, and when writing
2971 into such an object might bypass the class non-trivial or deleted constructor
2972 or copy assignment, violate const-correctness or encapsulation, or corrupt
2973 virtual table pointers. Modifying the representation of such objects may
2974 violate invariants maintained by member functions of the class. For example,
2975 the call to @code{memset} below is undefined because it modifies a non-trivial
2976 class object and is, therefore, diagnosed. The safe way to either initialize
2977 or clear the storage of objects of such types is by using the appropriate
2978 constructor or assignment operator, if one is available.
2979 @smallexample
2980 std::string str = "abc";
2981 memset (&str, 0, sizeof str);
2982 @end smallexample
2983 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
2984 Explicitly casting the pointer to the class object to @code{void *} or
2985 to a type that can be safely accessed by the raw memory function suppresses
2986 the warning.
2987
2988 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2989 @opindex Wnon-virtual-dtor
2990 @opindex Wno-non-virtual-dtor
2991 Warn when a class has virtual functions and an accessible non-virtual
2992 destructor itself or in an accessible polymorphic base class, in which
2993 case it is possible but unsafe to delete an instance of a derived
2994 class through a pointer to the class itself or base class. This
2995 warning is automatically enabled if @option{-Weffc++} is specified.
2996
2997 @item -Wregister @r{(C++ and Objective-C++ only)}
2998 @opindex Wregister
2999 @opindex Wno-register
3000 Warn on uses of the @code{register} storage class specifier, except
3001 when it is part of the GNU @ref{Explicit Register Variables} extension.
3002 The use of the @code{register} keyword as storage class specifier has
3003 been deprecated in C++11 and removed in C++17.
3004 Enabled by default with @option{-std=c++17}.
3005
3006 @item -Wreorder @r{(C++ and Objective-C++ only)}
3007 @opindex Wreorder
3008 @opindex Wno-reorder
3009 @cindex reordering, warning
3010 @cindex warning for reordering of member initializers
3011 Warn when the order of member initializers given in the code does not
3012 match the order in which they must be executed. For instance:
3013
3014 @smallexample
3015 struct A @{
3016 int i;
3017 int j;
3018 A(): j (0), i (1) @{ @}
3019 @};
3020 @end smallexample
3021
3022 @noindent
3023 The compiler rearranges the member initializers for @code{i}
3024 and @code{j} to match the declaration order of the members, emitting
3025 a warning to that effect. This warning is enabled by @option{-Wall}.
3026
3027 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3028 @opindex fext-numeric-literals
3029 @opindex fno-ext-numeric-literals
3030 Accept imaginary, fixed-point, or machine-defined
3031 literal number suffixes as GNU extensions.
3032 When this option is turned off these suffixes are treated
3033 as C++11 user-defined literal numeric suffixes.
3034 This is on by default for all pre-C++11 dialects and all GNU dialects:
3035 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3036 @option{-std=gnu++14}.
3037 This option is off by default
3038 for ISO C++11 onwards (@option{-std=c++11}, ...).
3039 @end table
3040
3041 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3042
3043 @table @gcctabopt
3044 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3045 @opindex Weffc++
3046 @opindex Wno-effc++
3047 Warn about violations of the following style guidelines from Scott Meyers'
3048 @cite{Effective C++} series of books:
3049
3050 @itemize @bullet
3051 @item
3052 Define a copy constructor and an assignment operator for classes
3053 with dynamically-allocated memory.
3054
3055 @item
3056 Prefer initialization to assignment in constructors.
3057
3058 @item
3059 Have @code{operator=} return a reference to @code{*this}.
3060
3061 @item
3062 Don't try to return a reference when you must return an object.
3063
3064 @item
3065 Distinguish between prefix and postfix forms of increment and
3066 decrement operators.
3067
3068 @item
3069 Never overload @code{&&}, @code{||}, or @code{,}.
3070
3071 @end itemize
3072
3073 This option also enables @option{-Wnon-virtual-dtor}, which is also
3074 one of the effective C++ recommendations. However, the check is
3075 extended to warn about the lack of virtual destructor in accessible
3076 non-polymorphic bases classes too.
3077
3078 When selecting this option, be aware that the standard library
3079 headers do not obey all of these guidelines; use @samp{grep -v}
3080 to filter out those warnings.
3081
3082 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3083 @opindex Wstrict-null-sentinel
3084 @opindex Wno-strict-null-sentinel
3085 Warn about the use of an uncasted @code{NULL} as sentinel. When
3086 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3087 to @code{__null}. Although it is a null pointer constant rather than a
3088 null pointer, it is guaranteed to be of the same size as a pointer.
3089 But this use is not portable across different compilers.
3090
3091 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3092 @opindex Wno-non-template-friend
3093 @opindex Wnon-template-friend
3094 Disable warnings when non-template friend functions are declared
3095 within a template. In very old versions of GCC that predate implementation
3096 of the ISO standard, declarations such as
3097 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3098 could be interpreted as a particular specialization of a template
3099 function; the warning exists to diagnose compatibility problems,
3100 and is enabled by default.
3101
3102 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3103 @opindex Wold-style-cast
3104 @opindex Wno-old-style-cast
3105 Warn if an old-style (C-style) cast to a non-void type is used within
3106 a C++ program. The new-style casts (@code{dynamic_cast},
3107 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3108 less vulnerable to unintended effects and much easier to search for.
3109
3110 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3111 @opindex Woverloaded-virtual
3112 @opindex Wno-overloaded-virtual
3113 @cindex overloaded virtual function, warning
3114 @cindex warning for overloaded virtual function
3115 Warn when a function declaration hides virtual functions from a
3116 base class. For example, in:
3117
3118 @smallexample
3119 struct A @{
3120 virtual void f();
3121 @};
3122
3123 struct B: public A @{
3124 void f(int);
3125 @};
3126 @end smallexample
3127
3128 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3129 like:
3130
3131 @smallexample
3132 B* b;
3133 b->f();
3134 @end smallexample
3135
3136 @noindent
3137 fails to compile.
3138
3139 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3140 @opindex Wno-pmf-conversions
3141 @opindex Wpmf-conversions
3142 Disable the diagnostic for converting a bound pointer to member function
3143 to a plain pointer.
3144
3145 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3146 @opindex Wsign-promo
3147 @opindex Wno-sign-promo
3148 Warn when overload resolution chooses a promotion from unsigned or
3149 enumerated type to a signed type, over a conversion to an unsigned type of
3150 the same size. Previous versions of G++ tried to preserve
3151 unsignedness, but the standard mandates the current behavior.
3152
3153 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3154 @opindex Wtemplates
3155 Warn when a primary template declaration is encountered. Some coding
3156 rules disallow templates, and this may be used to enforce that rule.
3157 The warning is inactive inside a system header file, such as the STL, so
3158 one can still use the STL. One may also instantiate or specialize
3159 templates.
3160
3161 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3162 @opindex Wmultiple-inheritance
3163 Warn when a class is defined with multiple direct base classes. Some
3164 coding rules disallow multiple inheritance, and this may be used to
3165 enforce that rule. The warning is inactive inside a system header file,
3166 such as the STL, so one can still use the STL. One may also define
3167 classes that indirectly use multiple inheritance.
3168
3169 @item -Wvirtual-inheritance
3170 @opindex Wvirtual-inheritance
3171 Warn when a class is defined with a virtual direct base class. Some
3172 coding rules disallow multiple inheritance, and this may be used to
3173 enforce that rule. The warning is inactive inside a system header file,
3174 such as the STL, so one can still use the STL. One may also define
3175 classes that indirectly use virtual inheritance.
3176
3177 @item -Wnamespaces
3178 @opindex Wnamespaces
3179 Warn when a namespace definition is opened. Some coding rules disallow
3180 namespaces, and this may be used to enforce that rule. The warning is
3181 inactive inside a system header file, such as the STL, so one can still
3182 use the STL. One may also use using directives and qualified names.
3183
3184 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3185 @opindex Wterminate
3186 @opindex Wno-terminate
3187 Disable the warning about a throw-expression that will immediately
3188 result in a call to @code{terminate}.
3189 @end table
3190
3191 @node Objective-C and Objective-C++ Dialect Options
3192 @section Options Controlling Objective-C and Objective-C++ Dialects
3193
3194 @cindex compiler options, Objective-C and Objective-C++
3195 @cindex Objective-C and Objective-C++ options, command-line
3196 @cindex options, Objective-C and Objective-C++
3197 (NOTE: This manual does not describe the Objective-C and Objective-C++
3198 languages themselves. @xref{Standards,,Language Standards
3199 Supported by GCC}, for references.)
3200
3201 This section describes the command-line options that are only meaningful
3202 for Objective-C and Objective-C++ programs. You can also use most of
3203 the language-independent GNU compiler options.
3204 For example, you might compile a file @file{some_class.m} like this:
3205
3206 @smallexample
3207 gcc -g -fgnu-runtime -O -c some_class.m
3208 @end smallexample
3209
3210 @noindent
3211 In this example, @option{-fgnu-runtime} is an option meant only for
3212 Objective-C and Objective-C++ programs; you can use the other options with
3213 any language supported by GCC@.
3214
3215 Note that since Objective-C is an extension of the C language, Objective-C
3216 compilations may also use options specific to the C front-end (e.g.,
3217 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3218 C++-specific options (e.g., @option{-Wabi}).
3219
3220 Here is a list of options that are @emph{only} for compiling Objective-C
3221 and Objective-C++ programs:
3222
3223 @table @gcctabopt
3224 @item -fconstant-string-class=@var{class-name}
3225 @opindex fconstant-string-class
3226 Use @var{class-name} as the name of the class to instantiate for each
3227 literal string specified with the syntax @code{@@"@dots{}"}. The default
3228 class name is @code{NXConstantString} if the GNU runtime is being used, and
3229 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3230 @option{-fconstant-cfstrings} option, if also present, overrides the
3231 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3232 to be laid out as constant CoreFoundation strings.
3233
3234 @item -fgnu-runtime
3235 @opindex fgnu-runtime
3236 Generate object code compatible with the standard GNU Objective-C
3237 runtime. This is the default for most types of systems.
3238
3239 @item -fnext-runtime
3240 @opindex fnext-runtime
3241 Generate output compatible with the NeXT runtime. This is the default
3242 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3243 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3244 used.
3245
3246 @item -fno-nil-receivers
3247 @opindex fno-nil-receivers
3248 Assume that all Objective-C message dispatches (@code{[receiver
3249 message:arg]}) in this translation unit ensure that the receiver is
3250 not @code{nil}. This allows for more efficient entry points in the
3251 runtime to be used. This option is only available in conjunction with
3252 the NeXT runtime and ABI version 0 or 1.
3253
3254 @item -fobjc-abi-version=@var{n}
3255 @opindex fobjc-abi-version
3256 Use version @var{n} of the Objective-C ABI for the selected runtime.
3257 This option is currently supported only for the NeXT runtime. In that
3258 case, Version 0 is the traditional (32-bit) ABI without support for
3259 properties and other Objective-C 2.0 additions. Version 1 is the
3260 traditional (32-bit) ABI with support for properties and other
3261 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3262 nothing is specified, the default is Version 0 on 32-bit target
3263 machines, and Version 2 on 64-bit target machines.
3264
3265 @item -fobjc-call-cxx-cdtors
3266 @opindex fobjc-call-cxx-cdtors
3267 For each Objective-C class, check if any of its instance variables is a
3268 C++ object with a non-trivial default constructor. If so, synthesize a
3269 special @code{- (id) .cxx_construct} instance method which runs
3270 non-trivial default constructors on any such instance variables, in order,
3271 and then return @code{self}. Similarly, check if any instance variable
3272 is a C++ object with a non-trivial destructor, and if so, synthesize a
3273 special @code{- (void) .cxx_destruct} method which runs
3274 all such default destructors, in reverse order.
3275
3276 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3277 methods thusly generated only operate on instance variables
3278 declared in the current Objective-C class, and not those inherited
3279 from superclasses. It is the responsibility of the Objective-C
3280 runtime to invoke all such methods in an object's inheritance
3281 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3282 by the runtime immediately after a new object instance is allocated;
3283 the @code{- (void) .cxx_destruct} methods are invoked immediately
3284 before the runtime deallocates an object instance.
3285
3286 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3287 support for invoking the @code{- (id) .cxx_construct} and
3288 @code{- (void) .cxx_destruct} methods.
3289
3290 @item -fobjc-direct-dispatch
3291 @opindex fobjc-direct-dispatch
3292 Allow fast jumps to the message dispatcher. On Darwin this is
3293 accomplished via the comm page.
3294
3295 @item -fobjc-exceptions
3296 @opindex fobjc-exceptions
3297 Enable syntactic support for structured exception handling in
3298 Objective-C, similar to what is offered by C++. This option
3299 is required to use the Objective-C keywords @code{@@try},
3300 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3301 @code{@@synchronized}. This option is available with both the GNU
3302 runtime and the NeXT runtime (but not available in conjunction with
3303 the NeXT runtime on Mac OS X 10.2 and earlier).
3304
3305 @item -fobjc-gc
3306 @opindex fobjc-gc
3307 Enable garbage collection (GC) in Objective-C and Objective-C++
3308 programs. This option is only available with the NeXT runtime; the
3309 GNU runtime has a different garbage collection implementation that
3310 does not require special compiler flags.
3311
3312 @item -fobjc-nilcheck
3313 @opindex fobjc-nilcheck
3314 For the NeXT runtime with version 2 of the ABI, check for a nil
3315 receiver in method invocations before doing the actual method call.
3316 This is the default and can be disabled using
3317 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3318 checked for nil in this way no matter what this flag is set to.
3319 Currently this flag does nothing when the GNU runtime, or an older
3320 version of the NeXT runtime ABI, is used.
3321
3322 @item -fobjc-std=objc1
3323 @opindex fobjc-std
3324 Conform to the language syntax of Objective-C 1.0, the language
3325 recognized by GCC 4.0. This only affects the Objective-C additions to
3326 the C/C++ language; it does not affect conformance to C/C++ standards,
3327 which is controlled by the separate C/C++ dialect option flags. When
3328 this option is used with the Objective-C or Objective-C++ compiler,
3329 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3330 This is useful if you need to make sure that your Objective-C code can
3331 be compiled with older versions of GCC@.
3332
3333 @item -freplace-objc-classes
3334 @opindex freplace-objc-classes
3335 Emit a special marker instructing @command{ld(1)} not to statically link in
3336 the resulting object file, and allow @command{dyld(1)} to load it in at
3337 run time instead. This is used in conjunction with the Fix-and-Continue
3338 debugging mode, where the object file in question may be recompiled and
3339 dynamically reloaded in the course of program execution, without the need
3340 to restart the program itself. Currently, Fix-and-Continue functionality
3341 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3342 and later.
3343
3344 @item -fzero-link
3345 @opindex fzero-link
3346 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3347 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3348 compile time) with static class references that get initialized at load time,
3349 which improves run-time performance. Specifying the @option{-fzero-link} flag
3350 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3351 to be retained. This is useful in Zero-Link debugging mode, since it allows
3352 for individual class implementations to be modified during program execution.
3353 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3354 regardless of command-line options.
3355
3356 @item -fno-local-ivars
3357 @opindex fno-local-ivars
3358 @opindex flocal-ivars
3359 By default instance variables in Objective-C can be accessed as if
3360 they were local variables from within the methods of the class they're
3361 declared in. This can lead to shadowing between instance variables
3362 and other variables declared either locally inside a class method or
3363 globally with the same name. Specifying the @option{-fno-local-ivars}
3364 flag disables this behavior thus avoiding variable shadowing issues.
3365
3366 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3367 @opindex fivar-visibility
3368 Set the default instance variable visibility to the specified option
3369 so that instance variables declared outside the scope of any access
3370 modifier directives default to the specified visibility.
3371
3372 @item -gen-decls
3373 @opindex gen-decls
3374 Dump interface declarations for all classes seen in the source file to a
3375 file named @file{@var{sourcename}.decl}.
3376
3377 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3378 @opindex Wassign-intercept
3379 @opindex Wno-assign-intercept
3380 Warn whenever an Objective-C assignment is being intercepted by the
3381 garbage collector.
3382
3383 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3384 @opindex Wno-protocol
3385 @opindex Wprotocol
3386 If a class is declared to implement a protocol, a warning is issued for
3387 every method in the protocol that is not implemented by the class. The
3388 default behavior is to issue a warning for every method not explicitly
3389 implemented in the class, even if a method implementation is inherited
3390 from the superclass. If you use the @option{-Wno-protocol} option, then
3391 methods inherited from the superclass are considered to be implemented,
3392 and no warning is issued for them.
3393
3394 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3395 @opindex Wselector
3396 @opindex Wno-selector
3397 Warn if multiple methods of different types for the same selector are
3398 found during compilation. The check is performed on the list of methods
3399 in the final stage of compilation. Additionally, a check is performed
3400 for each selector appearing in a @code{@@selector(@dots{})}
3401 expression, and a corresponding method for that selector has been found
3402 during compilation. Because these checks scan the method table only at
3403 the end of compilation, these warnings are not produced if the final
3404 stage of compilation is not reached, for example because an error is
3405 found during compilation, or because the @option{-fsyntax-only} option is
3406 being used.
3407
3408 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3409 @opindex Wstrict-selector-match
3410 @opindex Wno-strict-selector-match
3411 Warn if multiple methods with differing argument and/or return types are
3412 found for a given selector when attempting to send a message using this
3413 selector to a receiver of type @code{id} or @code{Class}. When this flag
3414 is off (which is the default behavior), the compiler omits such warnings
3415 if any differences found are confined to types that share the same size
3416 and alignment.
3417
3418 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3419 @opindex Wundeclared-selector
3420 @opindex Wno-undeclared-selector
3421 Warn if a @code{@@selector(@dots{})} expression referring to an
3422 undeclared selector is found. A selector is considered undeclared if no
3423 method with that name has been declared before the
3424 @code{@@selector(@dots{})} expression, either explicitly in an
3425 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3426 an @code{@@implementation} section. This option always performs its
3427 checks as soon as a @code{@@selector(@dots{})} expression is found,
3428 while @option{-Wselector} only performs its checks in the final stage of
3429 compilation. This also enforces the coding style convention
3430 that methods and selectors must be declared before being used.
3431
3432 @item -print-objc-runtime-info
3433 @opindex print-objc-runtime-info
3434 Generate C header describing the largest structure that is passed by
3435 value, if any.
3436
3437 @end table
3438
3439 @node Diagnostic Message Formatting Options
3440 @section Options to Control Diagnostic Messages Formatting
3441 @cindex options to control diagnostics formatting
3442 @cindex diagnostic messages
3443 @cindex message formatting
3444
3445 Traditionally, diagnostic messages have been formatted irrespective of
3446 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3447 options described below
3448 to control the formatting algorithm for diagnostic messages,
3449 e.g.@: how many characters per line, how often source location
3450 information should be reported. Note that some language front ends may not
3451 honor these options.
3452
3453 @table @gcctabopt
3454 @item -fmessage-length=@var{n}
3455 @opindex fmessage-length
3456 Try to format error messages so that they fit on lines of about
3457 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3458 done; each error message appears on a single line. This is the
3459 default for all front ends.
3460
3461 @item -fdiagnostics-show-location=once
3462 @opindex fdiagnostics-show-location
3463 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3464 reporter to emit source location information @emph{once}; that is, in
3465 case the message is too long to fit on a single physical line and has to
3466 be wrapped, the source location won't be emitted (as prefix) again,
3467 over and over, in subsequent continuation lines. This is the default
3468 behavior.
3469
3470 @item -fdiagnostics-show-location=every-line
3471 Only meaningful in line-wrapping mode. Instructs the diagnostic
3472 messages reporter to emit the same source location information (as
3473 prefix) for physical lines that result from the process of breaking
3474 a message which is too long to fit on a single line.
3475
3476 @item -fdiagnostics-color[=@var{WHEN}]
3477 @itemx -fno-diagnostics-color
3478 @opindex fdiagnostics-color
3479 @cindex highlight, color
3480 @vindex GCC_COLORS @r{environment variable}
3481 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3482 or @samp{auto}. The default depends on how the compiler has been configured,
3483 it can be any of the above @var{WHEN} options or also @samp{never}
3484 if @env{GCC_COLORS} environment variable isn't present in the environment,
3485 and @samp{auto} otherwise.
3486 @samp{auto} means to use color only when the standard error is a terminal.
3487 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3488 aliases for @option{-fdiagnostics-color=always} and
3489 @option{-fdiagnostics-color=never}, respectively.
3490
3491 The colors are defined by the environment variable @env{GCC_COLORS}.
3492 Its value is a colon-separated list of capabilities and Select Graphic
3493 Rendition (SGR) substrings. SGR commands are interpreted by the
3494 terminal or terminal emulator. (See the section in the documentation
3495 of your text terminal for permitted values and their meanings as
3496 character attributes.) These substring values are integers in decimal
3497 representation and can be concatenated with semicolons.
3498 Common values to concatenate include
3499 @samp{1} for bold,
3500 @samp{4} for underline,
3501 @samp{5} for blink,
3502 @samp{7} for inverse,
3503 @samp{39} for default foreground color,
3504 @samp{30} to @samp{37} for foreground colors,
3505 @samp{90} to @samp{97} for 16-color mode foreground colors,
3506 @samp{38;5;0} to @samp{38;5;255}
3507 for 88-color and 256-color modes foreground colors,
3508 @samp{49} for default background color,
3509 @samp{40} to @samp{47} for background colors,
3510 @samp{100} to @samp{107} for 16-color mode background colors,
3511 and @samp{48;5;0} to @samp{48;5;255}
3512 for 88-color and 256-color modes background colors.
3513
3514 The default @env{GCC_COLORS} is
3515 @smallexample
3516 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3517 quote=01:fixit-insert=32:fixit-delete=31:\
3518 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3519 type-diff=01;32
3520 @end smallexample
3521 @noindent
3522 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3523 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3524 @samp{01} is bold, and @samp{31} is red.
3525 Setting @env{GCC_COLORS} to the empty string disables colors.
3526 Supported capabilities are as follows.
3527
3528 @table @code
3529 @item error=
3530 @vindex error GCC_COLORS @r{capability}
3531 SGR substring for error: markers.
3532
3533 @item warning=
3534 @vindex warning GCC_COLORS @r{capability}
3535 SGR substring for warning: markers.
3536
3537 @item note=
3538 @vindex note GCC_COLORS @r{capability}
3539 SGR substring for note: markers.
3540
3541 @item range1=
3542 @vindex range1 GCC_COLORS @r{capability}
3543 SGR substring for first additional range.
3544
3545 @item range2=
3546 @vindex range2 GCC_COLORS @r{capability}
3547 SGR substring for second additional range.
3548
3549 @item locus=
3550 @vindex locus GCC_COLORS @r{capability}
3551 SGR substring for location information, @samp{file:line} or
3552 @samp{file:line:column} etc.
3553
3554 @item quote=
3555 @vindex quote GCC_COLORS @r{capability}
3556 SGR substring for information printed within quotes.
3557
3558 @item fixit-insert=
3559 @vindex fixit-insert GCC_COLORS @r{capability}
3560 SGR substring for fix-it hints suggesting text to
3561 be inserted or replaced.
3562
3563 @item fixit-delete=
3564 @vindex fixit-delete GCC_COLORS @r{capability}
3565 SGR substring for fix-it hints suggesting text to
3566 be deleted.
3567
3568 @item diff-filename=
3569 @vindex diff-filename GCC_COLORS @r{capability}
3570 SGR substring for filename headers within generated patches.
3571
3572 @item diff-hunk=
3573 @vindex diff-hunk GCC_COLORS @r{capability}
3574 SGR substring for the starts of hunks within generated patches.
3575
3576 @item diff-delete=
3577 @vindex diff-delete GCC_COLORS @r{capability}
3578 SGR substring for deleted lines within generated patches.
3579
3580 @item diff-insert=
3581 @vindex diff-insert GCC_COLORS @r{capability}
3582 SGR substring for inserted lines within generated patches.
3583
3584 @item type-diff=
3585 @vindex type-diff GCC_COLORS @r{capability}
3586 SGR substring for highlighting mismatching types within template
3587 arguments in the C++ frontend.
3588 @end table
3589
3590 @item -fno-diagnostics-show-option
3591 @opindex fno-diagnostics-show-option
3592 @opindex fdiagnostics-show-option
3593 By default, each diagnostic emitted includes text indicating the
3594 command-line option that directly controls the diagnostic (if such an
3595 option is known to the diagnostic machinery). Specifying the
3596 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3597
3598 @item -fno-diagnostics-show-caret
3599 @opindex fno-diagnostics-show-caret
3600 @opindex fdiagnostics-show-caret
3601 By default, each diagnostic emitted includes the original source line
3602 and a caret @samp{^} indicating the column. This option suppresses this
3603 information. The source line is truncated to @var{n} characters, if
3604 the @option{-fmessage-length=n} option is given. When the output is done
3605 to the terminal, the width is limited to the width given by the
3606 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3607
3608 @item -fdiagnostics-parseable-fixits
3609 @opindex fdiagnostics-parseable-fixits
3610 Emit fix-it hints in a machine-parseable format, suitable for consumption
3611 by IDEs. For each fix-it, a line will be printed after the relevant
3612 diagnostic, starting with the string ``fix-it:''. For example:
3613
3614 @smallexample
3615 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3616 @end smallexample
3617
3618 The location is expressed as a half-open range, expressed as a count of
3619 bytes, starting at byte 1 for the initial column. In the above example,
3620 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3621 given string:
3622
3623 @smallexample
3624 00000000011111111112222222222
3625 12345678901234567890123456789
3626 gtk_widget_showall (dlg);
3627 ^^^^^^^^^^^^^^^^^^
3628 gtk_widget_show_all
3629 @end smallexample
3630
3631 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3632 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3633 (e.g. vertical tab as ``\013'').
3634
3635 An empty replacement string indicates that the given range is to be removed.
3636 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3637 be inserted at the given position.
3638
3639 @item -fdiagnostics-generate-patch
3640 @opindex fdiagnostics-generate-patch
3641 Print fix-it hints to stderr in unified diff format, after any diagnostics
3642 are printed. For example:
3643
3644 @smallexample
3645 --- test.c
3646 +++ test.c
3647 @@ -42,5 +42,5 @@
3648
3649 void show_cb(GtkDialog *dlg)
3650 @{
3651 - gtk_widget_showall(dlg);
3652 + gtk_widget_show_all(dlg);
3653 @}
3654
3655 @end smallexample
3656
3657 The diff may or may not be colorized, following the same rules
3658 as for diagnostics (see @option{-fdiagnostics-color}).
3659
3660 @item -fdiagnostics-show-template-tree
3661 @opindex fdiagnostics-show-template-tree
3662
3663 In the C++ frontend, when printing diagnostics showing mismatching
3664 template types, such as:
3665
3666 @smallexample
3667 could not convert 'std::map<int, std::vector<double> >()'
3668 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3669 @end smallexample
3670
3671 the @option{-fdiagnostics-show-template-tree} flag enables printing a
3672 tree-like structure showing the common and differing parts of the types,
3673 such as:
3674
3675 @smallexample
3676 map<
3677 [...],
3678 vector<
3679 [double != float]>>
3680 @end smallexample
3681
3682 The parts that differ are highlighted with color (``double'' and
3683 ``float'' in this case).
3684
3685 @item -fno-elide-type
3686 @opindex fno-elide-type
3687 @opindex felide-type
3688 By default when the C++ frontend prints diagnostics showing mismatching
3689 template types, common parts of the types are printed as ``[...]'' to
3690 simplify the error message. For example:
3691
3692 @smallexample
3693 could not convert 'std::map<int, std::vector<double> >()'
3694 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3695 @end smallexample
3696
3697 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
3698 This flag also affects the output of the
3699 @option{-fdiagnostics-show-template-tree} flag.
3700
3701 @item -fno-show-column
3702 @opindex fno-show-column
3703 Do not print column numbers in diagnostics. This may be necessary if
3704 diagnostics are being scanned by a program that does not understand the
3705 column numbers, such as @command{dejagnu}.
3706
3707 @end table
3708
3709 @node Warning Options
3710 @section Options to Request or Suppress Warnings
3711 @cindex options to control warnings
3712 @cindex warning messages
3713 @cindex messages, warning
3714 @cindex suppressing warnings
3715
3716 Warnings are diagnostic messages that report constructions that
3717 are not inherently erroneous but that are risky or suggest there
3718 may have been an error.
3719
3720 The following language-independent options do not enable specific
3721 warnings but control the kinds of diagnostics produced by GCC@.
3722
3723 @table @gcctabopt
3724 @cindex syntax checking
3725 @item -fsyntax-only
3726 @opindex fsyntax-only
3727 Check the code for syntax errors, but don't do anything beyond that.
3728
3729 @item -fmax-errors=@var{n}
3730 @opindex fmax-errors
3731 Limits the maximum number of error messages to @var{n}, at which point
3732 GCC bails out rather than attempting to continue processing the source
3733 code. If @var{n} is 0 (the default), there is no limit on the number
3734 of error messages produced. If @option{-Wfatal-errors} is also
3735 specified, then @option{-Wfatal-errors} takes precedence over this
3736 option.
3737
3738 @item -w
3739 @opindex w
3740 Inhibit all warning messages.
3741
3742 @item -Werror
3743 @opindex Werror
3744 @opindex Wno-error
3745 Make all warnings into errors.
3746
3747 @item -Werror=
3748 @opindex Werror=
3749 @opindex Wno-error=
3750 Make the specified warning into an error. The specifier for a warning
3751 is appended; for example @option{-Werror=switch} turns the warnings
3752 controlled by @option{-Wswitch} into errors. This switch takes a
3753 negative form, to be used to negate @option{-Werror} for specific
3754 warnings; for example @option{-Wno-error=switch} makes
3755 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3756 is in effect.
3757
3758 The warning message for each controllable warning includes the
3759 option that controls the warning. That option can then be used with
3760 @option{-Werror=} and @option{-Wno-error=} as described above.
3761 (Printing of the option in the warning message can be disabled using the
3762 @option{-fno-diagnostics-show-option} flag.)
3763
3764 Note that specifying @option{-Werror=}@var{foo} automatically implies
3765 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3766 imply anything.
3767
3768 @item -Wfatal-errors
3769 @opindex Wfatal-errors
3770 @opindex Wno-fatal-errors
3771 This option causes the compiler to abort compilation on the first error
3772 occurred rather than trying to keep going and printing further error
3773 messages.
3774
3775 @end table
3776
3777 You can request many specific warnings with options beginning with
3778 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3779 implicit declarations. Each of these specific warning options also
3780 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3781 example, @option{-Wno-implicit}. This manual lists only one of the
3782 two forms, whichever is not the default. For further
3783 language-specific options also refer to @ref{C++ Dialect Options} and
3784 @ref{Objective-C and Objective-C++ Dialect Options}.
3785
3786 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3787 options, such as @option{-Wunused}, which may turn on further options,
3788 such as @option{-Wunused-value}. The combined effect of positive and
3789 negative forms is that more specific options have priority over less
3790 specific ones, independently of their position in the command-line. For
3791 options of the same specificity, the last one takes effect. Options
3792 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3793 as if they appeared at the end of the command-line.
3794
3795 When an unrecognized warning option is requested (e.g.,
3796 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3797 that the option is not recognized. However, if the @option{-Wno-} form
3798 is used, the behavior is slightly different: no diagnostic is
3799 produced for @option{-Wno-unknown-warning} unless other diagnostics
3800 are being produced. This allows the use of new @option{-Wno-} options
3801 with old compilers, but if something goes wrong, the compiler
3802 warns that an unrecognized option is present.
3803
3804 @table @gcctabopt
3805 @item -Wpedantic
3806 @itemx -pedantic
3807 @opindex pedantic
3808 @opindex Wpedantic
3809 Issue all the warnings demanded by strict ISO C and ISO C++;
3810 reject all programs that use forbidden extensions, and some other
3811 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3812 version of the ISO C standard specified by any @option{-std} option used.
3813
3814 Valid ISO C and ISO C++ programs should compile properly with or without
3815 this option (though a rare few require @option{-ansi} or a
3816 @option{-std} option specifying the required version of ISO C)@. However,
3817 without this option, certain GNU extensions and traditional C and C++
3818 features are supported as well. With this option, they are rejected.
3819
3820 @option{-Wpedantic} does not cause warning messages for use of the
3821 alternate keywords whose names begin and end with @samp{__}. Pedantic
3822 warnings are also disabled in the expression that follows
3823 @code{__extension__}. However, only system header files should use
3824 these escape routes; application programs should avoid them.
3825 @xref{Alternate Keywords}.
3826
3827 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3828 C conformance. They soon find that it does not do quite what they want:
3829 it finds some non-ISO practices, but not all---only those for which
3830 ISO C @emph{requires} a diagnostic, and some others for which
3831 diagnostics have been added.
3832
3833 A feature to report any failure to conform to ISO C might be useful in
3834 some instances, but would require considerable additional work and would
3835 be quite different from @option{-Wpedantic}. We don't have plans to
3836 support such a feature in the near future.
3837
3838 Where the standard specified with @option{-std} represents a GNU
3839 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3840 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3841 extended dialect is based. Warnings from @option{-Wpedantic} are given
3842 where they are required by the base standard. (It does not make sense
3843 for such warnings to be given only for features not in the specified GNU
3844 C dialect, since by definition the GNU dialects of C include all
3845 features the compiler supports with the given option, and there would be
3846 nothing to warn about.)
3847
3848 @item -pedantic-errors
3849 @opindex pedantic-errors
3850 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3851 requires a diagnostic, in some cases where there is undefined behavior
3852 at compile-time and in some other cases that do not prevent compilation
3853 of programs that are valid according to the standard. This is not
3854 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3855 by this option and not enabled by the latter and vice versa.
3856
3857 @item -Wall
3858 @opindex Wall
3859 @opindex Wno-all
3860 This enables all the warnings about constructions that some users
3861 consider questionable, and that are easy to avoid (or modify to
3862 prevent the warning), even in conjunction with macros. This also
3863 enables some language-specific warnings described in @ref{C++ Dialect
3864 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3865
3866 @option{-Wall} turns on the following warning flags:
3867
3868 @gccoptlist{-Waddress @gol
3869 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3870 -Wbool-compare @gol
3871 -Wbool-operation @gol
3872 -Wc++11-compat -Wc++14-compat @gol
3873 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
3874 -Wchar-subscripts @gol
3875 -Wcomment @gol
3876 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
3877 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3878 -Wformat @gol
3879 -Wint-in-bool-context @gol
3880 -Wimplicit @r{(C and Objective-C only)} @gol
3881 -Wimplicit-int @r{(C and Objective-C only)} @gol
3882 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3883 -Winit-self @r{(only for C++)} @gol
3884 -Wlogical-not-parentheses @gol
3885 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3886 -Wmaybe-uninitialized @gol
3887 -Wmemset-elt-size @gol
3888 -Wmemset-transposed-args @gol
3889 -Wmisleading-indentation @r{(only for C/C++)} @gol
3890 -Wmissing-braces @r{(only for C/ObjC)} @gol
3891 -Wmultistatement-macros @gol
3892 -Wnarrowing @r{(only for C++)} @gol
3893 -Wnonnull @gol
3894 -Wnonnull-compare @gol
3895 -Wopenmp-simd @gol
3896 -Wparentheses @gol
3897 -Wpointer-sign @gol
3898 -Wreorder @gol
3899 -Wrestrict @gol
3900 -Wreturn-type @gol
3901 -Wsequence-point @gol
3902 -Wsign-compare @r{(only in C++)} @gol
3903 -Wsizeof-pointer-div @gol
3904 -Wsizeof-pointer-memaccess @gol
3905 -Wstrict-aliasing @gol
3906 -Wstrict-overflow=1 @gol
3907 -Wswitch @gol
3908 -Wtautological-compare @gol
3909 -Wtrigraphs @gol
3910 -Wuninitialized @gol
3911 -Wunknown-pragmas @gol
3912 -Wunused-function @gol
3913 -Wunused-label @gol
3914 -Wunused-value @gol
3915 -Wunused-variable @gol
3916 -Wvolatile-register-var @gol
3917 }
3918
3919 Note that some warning flags are not implied by @option{-Wall}. Some of
3920 them warn about constructions that users generally do not consider
3921 questionable, but which occasionally you might wish to check for;
3922 others warn about constructions that are necessary or hard to avoid in
3923 some cases, and there is no simple way to modify the code to suppress
3924 the warning. Some of them are enabled by @option{-Wextra} but many of
3925 them must be enabled individually.
3926
3927 @item -Wextra
3928 @opindex W
3929 @opindex Wextra
3930 @opindex Wno-extra
3931 This enables some extra warning flags that are not enabled by
3932 @option{-Wall}. (This option used to be called @option{-W}. The older
3933 name is still supported, but the newer name is more descriptive.)
3934
3935 @gccoptlist{-Wclobbered @gol
3936 -Wcast-function-type @gol
3937 -Wempty-body @gol
3938 -Wignored-qualifiers @gol
3939 -Wimplicit-fallthrough=3 @gol
3940 -Wmissing-field-initializers @gol
3941 -Wmissing-parameter-type @r{(C only)} @gol
3942 -Wold-style-declaration @r{(C only)} @gol
3943 -Woverride-init @gol
3944 -Wsign-compare @r{(C only)} @gol
3945 -Wtype-limits @gol
3946 -Wuninitialized @gol
3947 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
3948 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3949 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3950 }
3951
3952 The option @option{-Wextra} also prints warning messages for the
3953 following cases:
3954
3955 @itemize @bullet
3956
3957 @item
3958 A pointer is compared against integer zero with @code{<}, @code{<=},
3959 @code{>}, or @code{>=}.
3960
3961 @item
3962 (C++ only) An enumerator and a non-enumerator both appear in a
3963 conditional expression.
3964
3965 @item
3966 (C++ only) Ambiguous virtual bases.
3967
3968 @item
3969 (C++ only) Subscripting an array that has been declared @code{register}.
3970
3971 @item
3972 (C++ only) Taking the address of a variable that has been declared
3973 @code{register}.
3974
3975 @item
3976 (C++ only) A base class is not initialized in the copy constructor
3977 of a derived class.
3978
3979 @end itemize
3980
3981 @item -Wchar-subscripts
3982 @opindex Wchar-subscripts
3983 @opindex Wno-char-subscripts
3984 Warn if an array subscript has type @code{char}. This is a common cause
3985 of error, as programmers often forget that this type is signed on some
3986 machines.
3987 This warning is enabled by @option{-Wall}.
3988
3989 @item -Wchkp
3990 @opindex Wchkp
3991 Warn about an invalid memory access that is found by Pointer Bounds Checker
3992 (@option{-fcheck-pointer-bounds}).
3993
3994 @item -Wno-coverage-mismatch
3995 @opindex Wno-coverage-mismatch
3996 Warn if feedback profiles do not match when using the
3997 @option{-fprofile-use} option.
3998 If a source file is changed between compiling with @option{-fprofile-gen} and
3999 with @option{-fprofile-use}, the files with the profile feedback can fail
4000 to match the source file and GCC cannot use the profile feedback
4001 information. By default, this warning is enabled and is treated as an
4002 error. @option{-Wno-coverage-mismatch} can be used to disable the
4003 warning or @option{-Wno-error=coverage-mismatch} can be used to
4004 disable the error. Disabling the error for this warning can result in
4005 poorly optimized code and is useful only in the
4006 case of very minor changes such as bug fixes to an existing code-base.
4007 Completely disabling the warning is not recommended.
4008
4009 @item -Wno-cpp
4010 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
4011
4012 Suppress warning messages emitted by @code{#warning} directives.
4013
4014 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
4015 @opindex Wdouble-promotion
4016 @opindex Wno-double-promotion
4017 Give a warning when a value of type @code{float} is implicitly
4018 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
4019 floating-point unit implement @code{float} in hardware, but emulate
4020 @code{double} in software. On such a machine, doing computations
4021 using @code{double} values is much more expensive because of the
4022 overhead required for software emulation.
4023
4024 It is easy to accidentally do computations with @code{double} because
4025 floating-point literals are implicitly of type @code{double}. For
4026 example, in:
4027 @smallexample
4028 @group
4029 float area(float radius)
4030 @{
4031 return 3.14159 * radius * radius;
4032 @}
4033 @end group
4034 @end smallexample
4035 the compiler performs the entire computation with @code{double}
4036 because the floating-point literal is a @code{double}.
4037
4038 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4039 @opindex Wduplicate-decl-specifier
4040 @opindex Wno-duplicate-decl-specifier
4041 Warn if a declaration has duplicate @code{const}, @code{volatile},
4042 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
4043 @option{-Wall}.
4044
4045 @item -Wformat
4046 @itemx -Wformat=@var{n}
4047 @opindex Wformat
4048 @opindex Wno-format
4049 @opindex ffreestanding
4050 @opindex fno-builtin
4051 @opindex Wformat=
4052 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4053 the arguments supplied have types appropriate to the format string
4054 specified, and that the conversions specified in the format string make
4055 sense. This includes standard functions, and others specified by format
4056 attributes (@pxref{Function Attributes}), in the @code{printf},
4057 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4058 not in the C standard) families (or other target-specific families).
4059 Which functions are checked without format attributes having been
4060 specified depends on the standard version selected, and such checks of
4061 functions without the attribute specified are disabled by
4062 @option{-ffreestanding} or @option{-fno-builtin}.
4063
4064 The formats are checked against the format features supported by GNU
4065 libc version 2.2. These include all ISO C90 and C99 features, as well
4066 as features from the Single Unix Specification and some BSD and GNU
4067 extensions. Other library implementations may not support all these
4068 features; GCC does not support warning about features that go beyond a
4069 particular library's limitations. However, if @option{-Wpedantic} is used
4070 with @option{-Wformat}, warnings are given about format features not
4071 in the selected standard version (but not for @code{strfmon} formats,
4072 since those are not in any version of the C standard). @xref{C Dialect
4073 Options,,Options Controlling C Dialect}.
4074
4075 @table @gcctabopt
4076 @item -Wformat=1
4077 @itemx -Wformat
4078 @opindex Wformat
4079 @opindex Wformat=1
4080 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4081 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4082 @option{-Wformat} also checks for null format arguments for several
4083 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4084 aspects of this level of format checking can be disabled by the
4085 options: @option{-Wno-format-contains-nul},
4086 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4087 @option{-Wformat} is enabled by @option{-Wall}.
4088
4089 @item -Wno-format-contains-nul
4090 @opindex Wno-format-contains-nul
4091 @opindex Wformat-contains-nul
4092 If @option{-Wformat} is specified, do not warn about format strings that
4093 contain NUL bytes.
4094
4095 @item -Wno-format-extra-args
4096 @opindex Wno-format-extra-args
4097 @opindex Wformat-extra-args
4098 If @option{-Wformat} is specified, do not warn about excess arguments to a
4099 @code{printf} or @code{scanf} format function. The C standard specifies
4100 that such arguments are ignored.
4101
4102 Where the unused arguments lie between used arguments that are
4103 specified with @samp{$} operand number specifications, normally
4104 warnings are still given, since the implementation could not know what
4105 type to pass to @code{va_arg} to skip the unused arguments. However,
4106 in the case of @code{scanf} formats, this option suppresses the
4107 warning if the unused arguments are all pointers, since the Single
4108 Unix Specification says that such unused arguments are allowed.
4109
4110 @item -Wformat-overflow
4111 @itemx -Wformat-overflow=@var{level}
4112 @opindex Wformat-overflow
4113 @opindex Wno-format-overflow
4114 Warn about calls to formatted input/output functions such as @code{sprintf}
4115 and @code{vsprintf} that might overflow the destination buffer. When the
4116 exact number of bytes written by a format directive cannot be determined
4117 at compile-time it is estimated based on heuristics that depend on the
4118 @var{level} argument and on optimization. While enabling optimization
4119 will in most cases improve the accuracy of the warning, it may also
4120 result in false positives.
4121
4122 @table @gcctabopt
4123 @item -Wformat-overflow
4124 @item -Wformat-overflow=1
4125 @opindex Wformat-overflow
4126 @opindex Wno-format-overflow
4127 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4128 employs a conservative approach that warns only about calls that most
4129 likely overflow the buffer. At this level, numeric arguments to format
4130 directives with unknown values are assumed to have the value of one, and
4131 strings of unknown length to be empty. Numeric arguments that are known
4132 to be bounded to a subrange of their type, or string arguments whose output
4133 is bounded either by their directive's precision or by a finite set of
4134 string literals, are assumed to take on the value within the range that
4135 results in the most bytes on output. For example, the call to @code{sprintf}
4136 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4137 the terminating NUL character (@code{'\0'}) appended by the function
4138 to the destination buffer will be written past its end. Increasing
4139 the size of the buffer by a single byte is sufficient to avoid the
4140 warning, though it may not be sufficient to avoid the overflow.
4141
4142 @smallexample
4143 void f (int a, int b)
4144 @{
4145 char buf [12];
4146 sprintf (buf, "a = %i, b = %i\n", a, b);
4147 @}
4148 @end smallexample
4149
4150 @item -Wformat-overflow=2
4151 Level @var{2} warns also about calls that might overflow the destination
4152 buffer given an argument of sufficient length or magnitude. At level
4153 @var{2}, unknown numeric arguments are assumed to have the minimum
4154 representable value for signed types with a precision greater than 1, and
4155 the maximum representable value otherwise. Unknown string arguments whose
4156 length cannot be assumed to be bounded either by the directive's precision,
4157 or by a finite set of string literals they may evaluate to, or the character
4158 array they may point to, are assumed to be 1 character long.
4159
4160 At level @var{2}, the call in the example above is again diagnosed, but
4161 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4162 @code{%i} directive will write some of its digits beyond the end of
4163 the destination buffer. To make the call safe regardless of the values
4164 of the two variables, the size of the destination buffer must be increased
4165 to at least 34 bytes. GCC includes the minimum size of the buffer in
4166 an informational note following the warning.
4167
4168 An alternative to increasing the size of the destination buffer is to
4169 constrain the range of formatted values. The maximum length of string
4170 arguments can be bounded by specifying the precision in the format
4171 directive. When numeric arguments of format directives can be assumed
4172 to be bounded by less than the precision of their type, choosing
4173 an appropriate length modifier to the format specifier will reduce
4174 the required buffer size. For example, if @var{a} and @var{b} in the
4175 example above can be assumed to be within the precision of
4176 the @code{short int} type then using either the @code{%hi} format
4177 directive or casting the argument to @code{short} reduces the maximum
4178 required size of the buffer to 24 bytes.
4179
4180 @smallexample
4181 void f (int a, int b)
4182 @{
4183 char buf [23];
4184 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4185 @}
4186 @end smallexample
4187 @end table
4188
4189 @item -Wno-format-zero-length
4190 @opindex Wno-format-zero-length
4191 @opindex Wformat-zero-length
4192 If @option{-Wformat} is specified, do not warn about zero-length formats.
4193 The C standard specifies that zero-length formats are allowed.
4194
4195
4196 @item -Wformat=2
4197 @opindex Wformat=2
4198 Enable @option{-Wformat} plus additional format checks. Currently
4199 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4200 -Wformat-y2k}.
4201
4202 @item -Wformat-nonliteral
4203 @opindex Wformat-nonliteral
4204 @opindex Wno-format-nonliteral
4205 If @option{-Wformat} is specified, also warn if the format string is not a
4206 string literal and so cannot be checked, unless the format function
4207 takes its format arguments as a @code{va_list}.
4208
4209 @item -Wformat-security
4210 @opindex Wformat-security
4211 @opindex Wno-format-security
4212 If @option{-Wformat} is specified, also warn about uses of format
4213 functions that represent possible security problems. At present, this
4214 warns about calls to @code{printf} and @code{scanf} functions where the
4215 format string is not a string literal and there are no format arguments,
4216 as in @code{printf (foo);}. This may be a security hole if the format
4217 string came from untrusted input and contains @samp{%n}. (This is
4218 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4219 in future warnings may be added to @option{-Wformat-security} that are not
4220 included in @option{-Wformat-nonliteral}.)
4221
4222 @item -Wformat-signedness
4223 @opindex Wformat-signedness
4224 @opindex Wno-format-signedness
4225 If @option{-Wformat} is specified, also warn if the format string
4226 requires an unsigned argument and the argument is signed and vice versa.
4227
4228 @item -Wformat-truncation
4229 @itemx -Wformat-truncation=@var{level}
4230 @opindex Wformat-truncation
4231 @opindex Wno-format-truncation
4232 Warn about calls to formatted input/output functions such as @code{snprintf}
4233 and @code{vsnprintf} that might result in output truncation. When the exact
4234 number of bytes written by a format directive cannot be determined at
4235 compile-time it is estimated based on heuristics that depend on
4236 the @var{level} argument and on optimization. While enabling optimization
4237 will in most cases improve the accuracy of the warning, it may also result
4238 in false positives. Except as noted otherwise, the option uses the same
4239 logic @option{-Wformat-overflow}.
4240
4241 @table @gcctabopt
4242 @item -Wformat-truncation
4243 @item -Wformat-truncation=1
4244 @opindex Wformat-truncation
4245 @opindex Wno-format-overflow
4246 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4247 employs a conservative approach that warns only about calls to bounded
4248 functions whose return value is unused and that will most likely result
4249 in output truncation.
4250
4251 @item -Wformat-truncation=2
4252 Level @var{2} warns also about calls to bounded functions whose return
4253 value is used and that might result in truncation given an argument of
4254 sufficient length or magnitude.
4255 @end table
4256
4257 @item -Wformat-y2k
4258 @opindex Wformat-y2k
4259 @opindex Wno-format-y2k
4260 If @option{-Wformat} is specified, also warn about @code{strftime}
4261 formats that may yield only a two-digit year.
4262 @end table
4263
4264 @item -Wnonnull
4265 @opindex Wnonnull
4266 @opindex Wno-nonnull
4267 Warn about passing a null pointer for arguments marked as
4268 requiring a non-null value by the @code{nonnull} function attribute.
4269
4270 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4271 can be disabled with the @option{-Wno-nonnull} option.
4272
4273 @item -Wnonnull-compare
4274 @opindex Wnonnull-compare
4275 @opindex Wno-nonnull-compare
4276 Warn when comparing an argument marked with the @code{nonnull}
4277 function attribute against null inside the function.
4278
4279 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4280 can be disabled with the @option{-Wno-nonnull-compare} option.
4281
4282 @item -Wnull-dereference
4283 @opindex Wnull-dereference
4284 @opindex Wno-null-dereference
4285 Warn if the compiler detects paths that trigger erroneous or
4286 undefined behavior due to dereferencing a null pointer. This option
4287 is only active when @option{-fdelete-null-pointer-checks} is active,
4288 which is enabled by optimizations in most targets. The precision of
4289 the warnings depends on the optimization options used.
4290
4291 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4292 @opindex Winit-self
4293 @opindex Wno-init-self
4294 Warn about uninitialized variables that are initialized with themselves.
4295 Note this option can only be used with the @option{-Wuninitialized} option.
4296
4297 For example, GCC warns about @code{i} being uninitialized in the
4298 following snippet only when @option{-Winit-self} has been specified:
4299 @smallexample
4300 @group
4301 int f()
4302 @{
4303 int i = i;
4304 return i;
4305 @}
4306 @end group
4307 @end smallexample
4308
4309 This warning is enabled by @option{-Wall} in C++.
4310
4311 @item -Wimplicit-int @r{(C and Objective-C only)}
4312 @opindex Wimplicit-int
4313 @opindex Wno-implicit-int
4314 Warn when a declaration does not specify a type.
4315 This warning is enabled by @option{-Wall}.
4316
4317 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4318 @opindex Wimplicit-function-declaration
4319 @opindex Wno-implicit-function-declaration
4320 Give a warning whenever a function is used before being declared. In
4321 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4322 enabled by default and it is made into an error by
4323 @option{-pedantic-errors}. This warning is also enabled by
4324 @option{-Wall}.
4325
4326 @item -Wimplicit @r{(C and Objective-C only)}
4327 @opindex Wimplicit
4328 @opindex Wno-implicit
4329 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4330 This warning is enabled by @option{-Wall}.
4331
4332 @item -Wimplicit-fallthrough
4333 @opindex Wimplicit-fallthrough
4334 @opindex Wno-implicit-fallthrough
4335 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4336 and @option{-Wno-implicit-fallthrough} is the same as
4337 @option{-Wimplicit-fallthrough=0}.
4338
4339 @item -Wimplicit-fallthrough=@var{n}
4340 @opindex Wimplicit-fallthrough=
4341 Warn when a switch case falls through. For example:
4342
4343 @smallexample
4344 @group
4345 switch (cond)
4346 @{
4347 case 1:
4348 a = 1;
4349 break;
4350 case 2:
4351 a = 2;
4352 case 3:
4353 a = 3;
4354 break;
4355 @}
4356 @end group
4357 @end smallexample
4358
4359 This warning does not warn when the last statement of a case cannot
4360 fall through, e.g. when there is a return statement or a call to function
4361 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4362 also takes into account control flow statements, such as ifs, and only
4363 warns when appropriate. E.g.@:
4364
4365 @smallexample
4366 @group
4367 switch (cond)
4368 @{
4369 case 1:
4370 if (i > 3) @{
4371 bar (5);
4372 break;
4373 @} else if (i < 1) @{
4374 bar (0);
4375 @} else
4376 return;
4377 default:
4378 @dots{}
4379 @}
4380 @end group
4381 @end smallexample
4382
4383 Since there are occasions where a switch case fall through is desirable,
4384 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4385 to be used along with a null statement to suppress this warning that
4386 would normally occur:
4387
4388 @smallexample
4389 @group
4390 switch (cond)
4391 @{
4392 case 1:
4393 bar (0);
4394 __attribute__ ((fallthrough));
4395 default:
4396 @dots{}
4397 @}
4398 @end group
4399 @end smallexample
4400
4401 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4402 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4403 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4404 Instead of these attributes, it is also possible to add a fallthrough comment
4405 to silence the warning. The whole body of the C or C++ style comment should
4406 match the given regular expressions listed below. The option argument @var{n}
4407 specifies what kind of comments are accepted:
4408
4409 @itemize @bullet
4410
4411 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4412
4413 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4414 expression, any comment is used as fallthrough comment.
4415
4416 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4417 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4418
4419 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4420 following regular expressions:
4421
4422 @itemize @bullet
4423
4424 @item @code{-fallthrough}
4425
4426 @item @code{@@fallthrough@@}
4427
4428 @item @code{lint -fallthrough[ \t]*}
4429
4430 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4431
4432 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4433
4434 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4435
4436 @end itemize
4437
4438 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4439 following regular expressions:
4440
4441 @itemize @bullet
4442
4443 @item @code{-fallthrough}
4444
4445 @item @code{@@fallthrough@@}
4446
4447 @item @code{lint -fallthrough[ \t]*}
4448
4449 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4450
4451 @end itemize
4452
4453 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4454 fallthrough comments, only attributes disable the warning.
4455
4456 @end itemize
4457
4458 The comment needs to be followed after optional whitespace and other comments
4459 by @code{case} or @code{default} keywords or by a user label that precedes some
4460 @code{case} or @code{default} label.
4461
4462 @smallexample
4463 @group
4464 switch (cond)
4465 @{
4466 case 1:
4467 bar (0);
4468 /* FALLTHRU */
4469 default:
4470 @dots{}
4471 @}
4472 @end group
4473 @end smallexample
4474
4475 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4476
4477 @item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
4478 @opindex Wif-not-aligned
4479 @opindex Wno-if-not-aligned
4480 Control if warning triggered by the @code{warn_if_not_aligned} attribute
4481 should be issued. This is is enabled by default.
4482 Use @option{-Wno-if-not-aligned} to disable it.
4483
4484 @item -Wignored-qualifiers @r{(C and C++ only)}
4485 @opindex Wignored-qualifiers
4486 @opindex Wno-ignored-qualifiers
4487 Warn if the return type of a function has a type qualifier
4488 such as @code{const}. For ISO C such a type qualifier has no effect,
4489 since the value returned by a function is not an lvalue.
4490 For C++, the warning is only emitted for scalar types or @code{void}.
4491 ISO C prohibits qualified @code{void} return types on function
4492 definitions, so such return types always receive a warning
4493 even without this option.
4494
4495 This warning is also enabled by @option{-Wextra}.
4496
4497 @item -Wignored-attributes @r{(C and C++ only)}
4498 @opindex Wignored-attributes
4499 @opindex Wno-ignored-attributes
4500 Warn when an attribute is ignored. This is different from the
4501 @option{-Wattributes} option in that it warns whenever the compiler decides
4502 to drop an attribute, not that the attribute is either unknown, used in a
4503 wrong place, etc. This warning is enabled by default.
4504
4505 @item -Wmain
4506 @opindex Wmain
4507 @opindex Wno-main
4508 Warn if the type of @code{main} is suspicious. @code{main} should be
4509 a function with external linkage, returning int, taking either zero
4510 arguments, two, or three arguments of appropriate types. This warning
4511 is enabled by default in C++ and is enabled by either @option{-Wall}
4512 or @option{-Wpedantic}.
4513
4514 @item -Wmisleading-indentation @r{(C and C++ only)}
4515 @opindex Wmisleading-indentation
4516 @opindex Wno-misleading-indentation
4517 Warn when the indentation of the code does not reflect the block structure.
4518 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
4519 @code{for} clauses with a guarded statement that does not use braces,
4520 followed by an unguarded statement with the same indentation.
4521
4522 In the following example, the call to ``bar'' is misleadingly indented as
4523 if it were guarded by the ``if'' conditional.
4524
4525 @smallexample
4526 if (some_condition ())
4527 foo ();
4528 bar (); /* Gotcha: this is not guarded by the "if". */
4529 @end smallexample
4530
4531 In the case of mixed tabs and spaces, the warning uses the
4532 @option{-ftabstop=} option to determine if the statements line up
4533 (defaulting to 8).
4534
4535 The warning is not issued for code involving multiline preprocessor logic
4536 such as the following example.
4537
4538 @smallexample
4539 if (flagA)
4540 foo (0);
4541 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
4542 if (flagB)
4543 #endif
4544 foo (1);
4545 @end smallexample
4546
4547 The warning is not issued after a @code{#line} directive, since this
4548 typically indicates autogenerated code, and no assumptions can be made
4549 about the layout of the file that the directive references.
4550
4551 This warning is enabled by @option{-Wall} in C and C++.
4552
4553 @item -Wmissing-braces
4554 @opindex Wmissing-braces
4555 @opindex Wno-missing-braces
4556 Warn if an aggregate or union initializer is not fully bracketed. In
4557 the following example, the initializer for @code{a} is not fully
4558 bracketed, but that for @code{b} is fully bracketed. This warning is
4559 enabled by @option{-Wall} in C.
4560
4561 @smallexample
4562 int a[2][2] = @{ 0, 1, 2, 3 @};
4563 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
4564 @end smallexample
4565
4566 This warning is enabled by @option{-Wall}.
4567
4568 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
4569 @opindex Wmissing-include-dirs
4570 @opindex Wno-missing-include-dirs
4571 Warn if a user-supplied include directory does not exist.
4572
4573 @item -Wmultistatement-macros
4574 @opindex Wmultistatement-macros
4575 @opindex Wno-multistatement-macros
4576 Warn about unsafe multiple statement macros that appear to be guarded
4577 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
4578 @code{while}, in which only the first statement is actually guarded after
4579 the macro is expanded.
4580
4581 For example:
4582
4583 @smallexample
4584 #define DOIT x++; y++
4585 if (c)
4586 DOIT;
4587 @end smallexample
4588
4589 will increment @code{y} unconditionally, not just when @code{c} holds.
4590 The can usually be fixed by wrapping the macro in a do-while loop:
4591 @smallexample
4592 #define DOIT do @{ x++; y++; @} while (0)
4593 if (c)
4594 DOIT;
4595 @end smallexample
4596
4597 This warning is enabled by @option{-Wall} in C and C++.
4598
4599 @item -Wparentheses
4600 @opindex Wparentheses
4601 @opindex Wno-parentheses
4602 Warn if parentheses are omitted in certain contexts, such
4603 as when there is an assignment in a context where a truth value
4604 is expected, or when operators are nested whose precedence people
4605 often get confused about.
4606
4607 Also warn if a comparison like @code{x<=y<=z} appears; this is
4608 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
4609 interpretation from that of ordinary mathematical notation.
4610
4611 Also warn for dangerous uses of the GNU extension to
4612 @code{?:} with omitted middle operand. When the condition
4613 in the @code{?}: operator is a boolean expression, the omitted value is
4614 always 1. Often programmers expect it to be a value computed
4615 inside the conditional expression instead.
4616
4617 For C++ this also warns for some cases of unnecessary parentheses in
4618 declarations, which can indicate an attempt at a function call instead
4619 of a declaration:
4620 @smallexample
4621 @{
4622 // Declares a local variable called mymutex.
4623 std::unique_lock<std::mutex> (mymutex);
4624 // User meant std::unique_lock<std::mutex> lock (mymutex);
4625 @}
4626 @end smallexample
4627
4628 This warning is enabled by @option{-Wall}.
4629
4630 @item -Wsequence-point
4631 @opindex Wsequence-point
4632 @opindex Wno-sequence-point
4633 Warn about code that may have undefined semantics because of violations
4634 of sequence point rules in the C and C++ standards.
4635
4636 The C and C++ standards define the order in which expressions in a C/C++
4637 program are evaluated in terms of @dfn{sequence points}, which represent
4638 a partial ordering between the execution of parts of the program: those
4639 executed before the sequence point, and those executed after it. These
4640 occur after the evaluation of a full expression (one which is not part
4641 of a larger expression), after the evaluation of the first operand of a
4642 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4643 function is called (but after the evaluation of its arguments and the
4644 expression denoting the called function), and in certain other places.
4645 Other than as expressed by the sequence point rules, the order of
4646 evaluation of subexpressions of an expression is not specified. All
4647 these rules describe only a partial order rather than a total order,
4648 since, for example, if two functions are called within one expression
4649 with no sequence point between them, the order in which the functions
4650 are called is not specified. However, the standards committee have
4651 ruled that function calls do not overlap.
4652
4653 It is not specified when between sequence points modifications to the
4654 values of objects take effect. Programs whose behavior depends on this
4655 have undefined behavior; the C and C++ standards specify that ``Between
4656 the previous and next sequence point an object shall have its stored
4657 value modified at most once by the evaluation of an expression.
4658 Furthermore, the prior value shall be read only to determine the value
4659 to be stored.''. If a program breaks these rules, the results on any
4660 particular implementation are entirely unpredictable.
4661
4662 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4663 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
4664 diagnosed by this option, and it may give an occasional false positive
4665 result, but in general it has been found fairly effective at detecting
4666 this sort of problem in programs.
4667
4668 The C++17 standard will define the order of evaluation of operands in
4669 more cases: in particular it requires that the right-hand side of an
4670 assignment be evaluated before the left-hand side, so the above
4671 examples are no longer undefined. But this warning will still warn
4672 about them, to help people avoid writing code that is undefined in C
4673 and earlier revisions of C++.
4674
4675 The standard is worded confusingly, therefore there is some debate
4676 over the precise meaning of the sequence point rules in subtle cases.
4677 Links to discussions of the problem, including proposed formal
4678 definitions, may be found on the GCC readings page, at
4679 @uref{http://gcc.gnu.org/@/readings.html}.
4680
4681 This warning is enabled by @option{-Wall} for C and C++.
4682
4683 @item -Wno-return-local-addr
4684 @opindex Wno-return-local-addr
4685 @opindex Wreturn-local-addr
4686 Do not warn about returning a pointer (or in C++, a reference) to a
4687 variable that goes out of scope after the function returns.
4688
4689 @item -Wreturn-type
4690 @opindex Wreturn-type
4691 @opindex Wno-return-type
4692 Warn whenever a function is defined with a return type that defaults
4693 to @code{int}. Also warn about any @code{return} statement with no
4694 return value in a function whose return type is not @code{void}
4695 (falling off the end of the function body is considered returning
4696 without a value).
4697
4698 For C only, warn about a @code{return} statement with an expression in a
4699 function whose return type is @code{void}, unless the expression type is
4700 also @code{void}. As a GNU extension, the latter case is accepted
4701 without a warning unless @option{-Wpedantic} is used.
4702
4703 For C++, a function without return type always produces a diagnostic
4704 message, even when @option{-Wno-return-type} is specified. The only
4705 exceptions are @code{main} and functions defined in system headers.
4706
4707 This warning is enabled by @option{-Wall}.
4708
4709 @item -Wshift-count-negative
4710 @opindex Wshift-count-negative
4711 @opindex Wno-shift-count-negative
4712 Warn if shift count is negative. This warning is enabled by default.
4713
4714 @item -Wshift-count-overflow
4715 @opindex Wshift-count-overflow
4716 @opindex Wno-shift-count-overflow
4717 Warn if shift count >= width of type. This warning is enabled by default.
4718
4719 @item -Wshift-negative-value
4720 @opindex Wshift-negative-value
4721 @opindex Wno-shift-negative-value
4722 Warn if left shifting a negative value. This warning is enabled by
4723 @option{-Wextra} in C99 and C++11 modes (and newer).
4724
4725 @item -Wshift-overflow
4726 @itemx -Wshift-overflow=@var{n}
4727 @opindex Wshift-overflow
4728 @opindex Wno-shift-overflow
4729 Warn about left shift overflows. This warning is enabled by
4730 default in C99 and C++11 modes (and newer).
4731
4732 @table @gcctabopt
4733 @item -Wshift-overflow=1
4734 This is the warning level of @option{-Wshift-overflow} and is enabled
4735 by default in C99 and C++11 modes (and newer). This warning level does
4736 not warn about left-shifting 1 into the sign bit. (However, in C, such
4737 an overflow is still rejected in contexts where an integer constant expression
4738 is required.)
4739
4740 @item -Wshift-overflow=2
4741 This warning level also warns about left-shifting 1 into the sign bit,
4742 unless C++14 mode is active.
4743 @end table
4744
4745 @item -Wswitch
4746 @opindex Wswitch
4747 @opindex Wno-switch
4748 Warn whenever a @code{switch} statement has an index of enumerated type
4749 and lacks a @code{case} for one or more of the named codes of that
4750 enumeration. (The presence of a @code{default} label prevents this
4751 warning.) @code{case} labels outside the enumeration range also
4752 provoke warnings when this option is used (even if there is a
4753 @code{default} label).
4754 This warning is enabled by @option{-Wall}.
4755
4756 @item -Wswitch-default
4757 @opindex Wswitch-default
4758 @opindex Wno-switch-default
4759 Warn whenever a @code{switch} statement does not have a @code{default}
4760 case.
4761
4762 @item -Wswitch-enum
4763 @opindex Wswitch-enum
4764 @opindex Wno-switch-enum
4765 Warn whenever a @code{switch} statement has an index of enumerated type
4766 and lacks a @code{case} for one or more of the named codes of that
4767 enumeration. @code{case} labels outside the enumeration range also
4768 provoke warnings when this option is used. The only difference
4769 between @option{-Wswitch} and this option is that this option gives a
4770 warning about an omitted enumeration code even if there is a
4771 @code{default} label.
4772
4773 @item -Wswitch-bool
4774 @opindex Wswitch-bool
4775 @opindex Wno-switch-bool
4776 Warn whenever a @code{switch} statement has an index of boolean type
4777 and the case values are outside the range of a boolean type.
4778 It is possible to suppress this warning by casting the controlling
4779 expression to a type other than @code{bool}. For example:
4780 @smallexample
4781 @group
4782 switch ((int) (a == 4))
4783 @{
4784 @dots{}
4785 @}
4786 @end group
4787 @end smallexample
4788 This warning is enabled by default for C and C++ programs.
4789
4790 @item -Wswitch-unreachable
4791 @opindex Wswitch-unreachable
4792 @opindex Wno-switch-unreachable
4793 Warn whenever a @code{switch} statement contains statements between the
4794 controlling expression and the first case label, which will never be
4795 executed. For example:
4796 @smallexample
4797 @group
4798 switch (cond)
4799 @{
4800 i = 15;
4801 @dots{}
4802 case 5:
4803 @dots{}
4804 @}
4805 @end group
4806 @end smallexample
4807 @option{-Wswitch-unreachable} does not warn if the statement between the
4808 controlling expression and the first case label is just a declaration:
4809 @smallexample
4810 @group
4811 switch (cond)
4812 @{
4813 int i;
4814 @dots{}
4815 case 5:
4816 i = 5;
4817 @dots{}
4818 @}
4819 @end group
4820 @end smallexample
4821 This warning is enabled by default for C and C++ programs.
4822
4823 @item -Wsync-nand @r{(C and C++ only)}
4824 @opindex Wsync-nand
4825 @opindex Wno-sync-nand
4826 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4827 built-in functions are used. These functions changed semantics in GCC 4.4.
4828
4829 @item -Wunused-but-set-parameter
4830 @opindex Wunused-but-set-parameter
4831 @opindex Wno-unused-but-set-parameter
4832 Warn whenever a function parameter is assigned to, but otherwise unused
4833 (aside from its declaration).
4834
4835 To suppress this warning use the @code{unused} attribute
4836 (@pxref{Variable Attributes}).
4837
4838 This warning is also enabled by @option{-Wunused} together with
4839 @option{-Wextra}.
4840
4841 @item -Wunused-but-set-variable
4842 @opindex Wunused-but-set-variable
4843 @opindex Wno-unused-but-set-variable
4844 Warn whenever a local variable is assigned to, but otherwise unused
4845 (aside from its declaration).
4846 This warning is enabled by @option{-Wall}.
4847
4848 To suppress this warning use the @code{unused} attribute
4849 (@pxref{Variable Attributes}).
4850
4851 This warning is also enabled by @option{-Wunused}, which is enabled
4852 by @option{-Wall}.
4853
4854 @item -Wunused-function
4855 @opindex Wunused-function
4856 @opindex Wno-unused-function
4857 Warn whenever a static function is declared but not defined or a
4858 non-inline static function is unused.
4859 This warning is enabled by @option{-Wall}.
4860
4861 @item -Wunused-label
4862 @opindex Wunused-label
4863 @opindex Wno-unused-label
4864 Warn whenever a label is declared but not used.
4865 This warning is enabled by @option{-Wall}.
4866
4867 To suppress this warning use the @code{unused} attribute
4868 (@pxref{Variable Attributes}).
4869
4870 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4871 @opindex Wunused-local-typedefs
4872 Warn when a typedef locally defined in a function is not used.
4873 This warning is enabled by @option{-Wall}.
4874
4875 @item -Wunused-parameter
4876 @opindex Wunused-parameter
4877 @opindex Wno-unused-parameter
4878 Warn whenever a function parameter is unused aside from its declaration.
4879
4880 To suppress this warning use the @code{unused} attribute
4881 (@pxref{Variable Attributes}).
4882
4883 @item -Wno-unused-result
4884 @opindex Wunused-result
4885 @opindex Wno-unused-result
4886 Do not warn if a caller of a function marked with attribute
4887 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4888 its return value. The default is @option{-Wunused-result}.
4889
4890 @item -Wunused-variable
4891 @opindex Wunused-variable
4892 @opindex Wno-unused-variable
4893 Warn whenever a local or static variable is unused aside from its
4894 declaration. This option implies @option{-Wunused-const-variable=1} for C,
4895 but not for C++. This warning is enabled by @option{-Wall}.
4896
4897 To suppress this warning use the @code{unused} attribute
4898 (@pxref{Variable Attributes}).
4899
4900 @item -Wunused-const-variable
4901 @itemx -Wunused-const-variable=@var{n}
4902 @opindex Wunused-const-variable
4903 @opindex Wno-unused-const-variable
4904 Warn whenever a constant static variable is unused aside from its declaration.
4905 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
4906 for C, but not for C++. In C this declares variable storage, but in C++ this
4907 is not an error since const variables take the place of @code{#define}s.
4908
4909 To suppress this warning use the @code{unused} attribute
4910 (@pxref{Variable Attributes}).
4911
4912 @table @gcctabopt
4913 @item -Wunused-const-variable=1
4914 This is the warning level that is enabled by @option{-Wunused-variable} for
4915 C. It warns only about unused static const variables defined in the main
4916 compilation unit, but not about static const variables declared in any
4917 header included.
4918
4919 @item -Wunused-const-variable=2
4920 This warning level also warns for unused constant static variables in
4921 headers (excluding system headers). This is the warning level of
4922 @option{-Wunused-const-variable} and must be explicitly requested since
4923 in C++ this isn't an error and in C it might be harder to clean up all
4924 headers included.
4925 @end table
4926
4927 @item -Wunused-value
4928 @opindex Wunused-value
4929 @opindex Wno-unused-value
4930 Warn whenever a statement computes a result that is explicitly not
4931 used. To suppress this warning cast the unused expression to
4932 @code{void}. This includes an expression-statement or the left-hand
4933 side of a comma expression that contains no side effects. For example,
4934 an expression such as @code{x[i,j]} causes a warning, while
4935 @code{x[(void)i,j]} does not.
4936
4937 This warning is enabled by @option{-Wall}.
4938
4939 @item -Wunused
4940 @opindex Wunused
4941 @opindex Wno-unused
4942 All the above @option{-Wunused} options combined.
4943
4944 In order to get a warning about an unused function parameter, you must
4945 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4946 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4947
4948 @item -Wuninitialized
4949 @opindex Wuninitialized
4950 @opindex Wno-uninitialized
4951 Warn if an automatic variable is used without first being initialized
4952 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4953 warn if a non-static reference or non-static @code{const} member
4954 appears in a class without constructors.
4955
4956 If you want to warn about code that uses the uninitialized value of the
4957 variable in its own initializer, use the @option{-Winit-self} option.
4958
4959 These warnings occur for individual uninitialized or clobbered
4960 elements of structure, union or array variables as well as for
4961 variables that are uninitialized or clobbered as a whole. They do
4962 not occur for variables or elements declared @code{volatile}. Because
4963 these warnings depend on optimization, the exact variables or elements
4964 for which there are warnings depends on the precise optimization
4965 options and version of GCC used.
4966
4967 Note that there may be no warning about a variable that is used only
4968 to compute a value that itself is never used, because such
4969 computations may be deleted by data flow analysis before the warnings
4970 are printed.
4971
4972 @item -Winvalid-memory-model
4973 @opindex Winvalid-memory-model
4974 @opindex Wno-invalid-memory-model
4975 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
4976 and the C11 atomic generic functions with a memory consistency argument
4977 that is either invalid for the operation or outside the range of values
4978 of the @code{memory_order} enumeration. For example, since the
4979 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
4980 defined for the relaxed, release, and sequentially consistent memory
4981 orders the following code is diagnosed:
4982
4983 @smallexample
4984 void store (int *i)
4985 @{
4986 __atomic_store_n (i, 0, memory_order_consume);
4987 @}
4988 @end smallexample
4989
4990 @option{-Winvalid-memory-model} is enabled by default.
4991
4992 @item -Wmaybe-uninitialized
4993 @opindex Wmaybe-uninitialized
4994 @opindex Wno-maybe-uninitialized
4995 For an automatic (i.e.@ local) variable, if there exists a path from the
4996 function entry to a use of the variable that is initialized, but there exist
4997 some other paths for which the variable is not initialized, the compiler
4998 emits a warning if it cannot prove the uninitialized paths are not
4999 executed at run time.
5000
5001 These warnings are only possible in optimizing compilation, because otherwise
5002 GCC does not keep track of the state of variables.
5003
5004 These warnings are made optional because GCC may not be able to determine when
5005 the code is correct in spite of appearing to have an error. Here is one
5006 example of how this can happen:
5007
5008 @smallexample
5009 @group
5010 @{
5011 int x;
5012 switch (y)
5013 @{
5014 case 1: x = 1;
5015 break;
5016 case 2: x = 4;
5017 break;
5018 case 3: x = 5;
5019 @}
5020 foo (x);
5021 @}
5022 @end group
5023 @end smallexample
5024
5025 @noindent
5026 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
5027 always initialized, but GCC doesn't know this. To suppress the
5028 warning, you need to provide a default case with assert(0) or
5029 similar code.
5030
5031 @cindex @code{longjmp} warnings
5032 This option also warns when a non-volatile automatic variable might be
5033 changed by a call to @code{longjmp}.
5034 The compiler sees only the calls to @code{setjmp}. It cannot know
5035 where @code{longjmp} will be called; in fact, a signal handler could
5036 call it at any point in the code. As a result, you may get a warning
5037 even when there is in fact no problem because @code{longjmp} cannot
5038 in fact be called at the place that would cause a problem.
5039
5040 Some spurious warnings can be avoided if you declare all the functions
5041 you use that never return as @code{noreturn}. @xref{Function
5042 Attributes}.
5043
5044 This warning is enabled by @option{-Wall} or @option{-Wextra}.
5045
5046 @item -Wunknown-pragmas
5047 @opindex Wunknown-pragmas
5048 @opindex Wno-unknown-pragmas
5049 @cindex warning for unknown pragmas
5050 @cindex unknown pragmas, warning
5051 @cindex pragmas, warning of unknown
5052 Warn when a @code{#pragma} directive is encountered that is not understood by
5053 GCC@. If this command-line option is used, warnings are even issued
5054 for unknown pragmas in system header files. This is not the case if
5055 the warnings are only enabled by the @option{-Wall} command-line option.
5056
5057 @item -Wno-pragmas
5058 @opindex Wno-pragmas
5059 @opindex Wpragmas
5060 Do not warn about misuses of pragmas, such as incorrect parameters,
5061 invalid syntax, or conflicts between pragmas. See also
5062 @option{-Wunknown-pragmas}.
5063
5064 @item -Wstrict-aliasing
5065 @opindex Wstrict-aliasing
5066 @opindex Wno-strict-aliasing
5067 This option is only active when @option{-fstrict-aliasing} is active.
5068 It warns about code that might break the strict aliasing rules that the
5069 compiler is using for optimization. The warning does not catch all
5070 cases, but does attempt to catch the more common pitfalls. It is
5071 included in @option{-Wall}.
5072 It is equivalent to @option{-Wstrict-aliasing=3}
5073
5074 @item -Wstrict-aliasing=n
5075 @opindex Wstrict-aliasing=n
5076 This option is only active when @option{-fstrict-aliasing} is active.
5077 It warns about code that might break the strict aliasing rules that the
5078 compiler is using for optimization.
5079 Higher levels correspond to higher accuracy (fewer false positives).
5080 Higher levels also correspond to more effort, similar to the way @option{-O}
5081 works.
5082 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5083
5084 Level 1: Most aggressive, quick, least accurate.
5085 Possibly useful when higher levels
5086 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5087 false negatives. However, it has many false positives.
5088 Warns for all pointer conversions between possibly incompatible types,
5089 even if never dereferenced. Runs in the front end only.
5090
5091 Level 2: Aggressive, quick, not too precise.
5092 May still have many false positives (not as many as level 1 though),
5093 and few false negatives (but possibly more than level 1).
5094 Unlike level 1, it only warns when an address is taken. Warns about
5095 incomplete types. Runs in the front end only.
5096
5097 Level 3 (default for @option{-Wstrict-aliasing}):
5098 Should have very few false positives and few false
5099 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5100 Takes care of the common pun+dereference pattern in the front end:
5101 @code{*(int*)&some_float}.
5102 If optimization is enabled, it also runs in the back end, where it deals
5103 with multiple statement cases using flow-sensitive points-to information.
5104 Only warns when the converted pointer is dereferenced.
5105 Does not warn about incomplete types.
5106
5107 @item -Wstrict-overflow
5108 @itemx -Wstrict-overflow=@var{n}
5109 @opindex Wstrict-overflow
5110 @opindex Wno-strict-overflow
5111 This option is only active when signed overflow is undefined.
5112 It warns about cases where the compiler optimizes based on the
5113 assumption that signed overflow does not occur. Note that it does not
5114 warn about all cases where the code might overflow: it only warns
5115 about cases where the compiler implements some optimization. Thus
5116 this warning depends on the optimization level.
5117
5118 An optimization that assumes that signed overflow does not occur is
5119 perfectly safe if the values of the variables involved are such that
5120 overflow never does, in fact, occur. Therefore this warning can
5121 easily give a false positive: a warning about code that is not
5122 actually a problem. To help focus on important issues, several
5123 warning levels are defined. No warnings are issued for the use of
5124 undefined signed overflow when estimating how many iterations a loop
5125 requires, in particular when determining whether a loop will be
5126 executed at all.
5127
5128 @table @gcctabopt
5129 @item -Wstrict-overflow=1
5130 Warn about cases that are both questionable and easy to avoid. For
5131 example the compiler simplifies
5132 @code{x + 1 > x} to @code{1}. This level of
5133 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5134 are not, and must be explicitly requested.
5135
5136 @item -Wstrict-overflow=2
5137 Also warn about other cases where a comparison is simplified to a
5138 constant. For example: @code{abs (x) >= 0}. This can only be
5139 simplified when signed integer overflow is undefined, because
5140 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5141 zero. @option{-Wstrict-overflow} (with no level) is the same as
5142 @option{-Wstrict-overflow=2}.
5143
5144 @item -Wstrict-overflow=3
5145 Also warn about other cases where a comparison is simplified. For
5146 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5147
5148 @item -Wstrict-overflow=4
5149 Also warn about other simplifications not covered by the above cases.
5150 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5151
5152 @item -Wstrict-overflow=5
5153 Also warn about cases where the compiler reduces the magnitude of a
5154 constant involved in a comparison. For example: @code{x + 2 > y} is
5155 simplified to @code{x + 1 >= y}. This is reported only at the
5156 highest warning level because this simplification applies to many
5157 comparisons, so this warning level gives a very large number of
5158 false positives.
5159 @end table
5160
5161 @item -Wstringop-overflow
5162 @itemx -Wstringop-overflow=@var{type}
5163 @opindex Wstringop-overflow
5164 @opindex Wno-stringop-overflow
5165 Warn for calls to string manipulation functions such as @code{memcpy} and
5166 @code{strcpy} that are determined to overflow the destination buffer. The
5167 optional argument is one greater than the type of Object Size Checking to
5168 perform to determine the size of the destination. @xref{Object Size Checking}.
5169 The argument is meaningful only for functions that operate on character arrays
5170 but not for raw memory functions like @code{memcpy} which always make use
5171 of Object Size type-0. The option also warns for calls that specify a size
5172 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5173 The option produces the best results with optimization enabled but can detect
5174 a small subset of simple buffer overflows even without optimization in
5175 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5176 correspond to the standard functions. In any case, the option warns about
5177 just a subset of buffer overflows detected by the corresponding overflow
5178 checking built-ins. For example, the option will issue a warning for
5179 the @code{strcpy} call below because it copies at least 5 characters
5180 (the string @code{"blue"} including the terminating NUL) into the buffer
5181 of size 4.
5182
5183 @smallexample
5184 enum Color @{ blue, purple, yellow @};
5185 const char* f (enum Color clr)
5186 @{
5187 static char buf [4];
5188 const char *str;
5189 switch (clr)
5190 @{
5191 case blue: str = "blue"; break;
5192 case purple: str = "purple"; break;
5193 case yellow: str = "yellow"; break;
5194 @}
5195
5196 return strcpy (buf, str); // warning here
5197 @}
5198 @end smallexample
5199
5200 Option @option{-Wstringop-overflow=2} is enabled by default.
5201
5202 @table @gcctabopt
5203 @item -Wstringop-overflow
5204 @item -Wstringop-overflow=1
5205 @opindex Wstringop-overflow
5206 @opindex Wno-stringop-overflow
5207 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5208 to determine the sizes of destination objects. This is the default setting
5209 of the option. At this setting the option will not warn for writes past
5210 the end of subobjects of larger objects accessed by pointers unless the
5211 size of the largest surrounding object is known. When the destination may
5212 be one of several objects it is assumed to be the largest one of them. On
5213 Linux systems, when optimization is enabled at this setting the option warns
5214 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5215 a non-zero value.
5216
5217 @item -Wstringop-overflow=2
5218 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5219 to determine the sizes of destination objects. At this setting the option
5220 will warn about overflows when writing to members of the largest complete
5221 objects whose exact size is known. It will, however, not warn for excessive
5222 writes to the same members of unknown objects referenced by pointers since
5223 they may point to arrays containing unknown numbers of elements.
5224
5225 @item -Wstringop-overflow=3
5226 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5227 to determine the sizes of destination objects. At this setting the option
5228 warns about overflowing the smallest object or data member. This is the
5229 most restrictive setting of the option that may result in warnings for safe
5230 code.
5231
5232 @item -Wstringop-overflow=4
5233 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5234 to determine the sizes of destination objects. At this setting the option
5235 will warn about overflowing any data members, and when the destination is
5236 one of several objects it uses the size of the largest of them to decide
5237 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5238 setting of the option may result in warnings for benign code.
5239 @end table
5240
5241 @item -Wstringop-truncation
5242 @opindex Wstringop-truncation
5243 @opindex Wno-stringop-truncation
5244 Warn for calls to bounded string manipulation functions such as @code{strncat},
5245 @code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5246 or leave the destination unchanged.
5247
5248 In the following example, the call to @code{strncat} specifies a bound that
5249 is less than the length of the source string. As a result, the copy of
5250 the source will be truncated and so the call is diagnosed. To avoid the
5251 warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5252
5253 @smallexample
5254 void append (char *buf, size_t bufsize)
5255 @{
5256 strncat (buf, ".txt", 3);
5257 @}
5258 @end smallexample
5259
5260 As another example, the following call to @code{strncpy} results in copying
5261 to @code{d} just the characters preceding the terminating NUL, without
5262 appending the NUL to the end. Assuming the result of @code{strncpy} is
5263 necessarily a NUL-terminated string is a common mistake, and so the call
5264 is diagnosed. To avoid the warning when the result is not expected to be
5265 NUL-terminated, call @code{memcpy} instead.
5266
5267 @smallexample
5268 void copy (char *d, const char *s)
5269 @{
5270 strncpy (d, s, strlen (s));
5271 @}
5272 @end smallexample
5273
5274 In the following example, the call to @code{strncpy} specifies the size
5275 of the destination buffer as the bound. If the length of the source
5276 string is equal to or greater than this size the result of the copy will
5277 not be NUL-terminated. Therefore, the call is also diagnosed. To avoid
5278 the warning, specify @code{sizeof buf - 1} as the bound and set the last
5279 element of the buffer to @code{NUL}.
5280
5281 @smallexample
5282 void copy (const char *s)
5283 @{
5284 char buf[80];
5285 strncpy (buf, s, sizeof buf);
5286 @dots{}
5287 @}
5288 @end smallexample
5289
5290 In situations where a character array is intended to store a sequence
5291 of bytes with no terminating @code{NUL} such an array may be annotated
5292 with attribute @code{nonstring} to avoid this warning. Such arrays,
5293 however, are not suitable arguments to functions that expect
5294 @code{NUL}-terminated strings. To help detect accidental misuses of
5295 such arrays GCC issues warnings unless it can prove that the use is
5296 safe. @xref{Common Variable Attributes}.
5297
5298 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5299 @opindex Wsuggest-attribute=
5300 @opindex Wno-suggest-attribute=
5301 Warn for cases where adding an attribute may be beneficial. The
5302 attributes currently supported are listed below.
5303
5304 @table @gcctabopt
5305 @item -Wsuggest-attribute=pure
5306 @itemx -Wsuggest-attribute=const
5307 @itemx -Wsuggest-attribute=noreturn
5308 @itemx -Wsuggest-attribute=malloc
5309 @opindex Wsuggest-attribute=pure
5310 @opindex Wno-suggest-attribute=pure
5311 @opindex Wsuggest-attribute=const
5312 @opindex Wno-suggest-attribute=const
5313 @opindex Wsuggest-attribute=noreturn
5314 @opindex Wno-suggest-attribute=noreturn
5315 @opindex Wsuggest-attribute=malloc
5316 @opindex Wno-suggest-attribute=malloc
5317
5318 Warn about functions that might be candidates for attributes
5319 @code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5320 only warns for functions visible in other compilation units or (in the case of
5321 @code{pure} and @code{const}) if it cannot prove that the function returns
5322 normally. A function returns normally if it doesn't contain an infinite loop or
5323 return abnormally by throwing, calling @code{abort} or trapping. This analysis
5324 requires option @option{-fipa-pure-const}, which is enabled by default at
5325 @option{-O} and higher. Higher optimization levels improve the accuracy
5326 of the analysis.
5327
5328 @item -Wsuggest-attribute=format
5329 @itemx -Wmissing-format-attribute
5330 @opindex Wsuggest-attribute=format
5331 @opindex Wmissing-format-attribute
5332 @opindex Wno-suggest-attribute=format
5333 @opindex Wno-missing-format-attribute
5334 @opindex Wformat
5335 @opindex Wno-format
5336
5337 Warn about function pointers that might be candidates for @code{format}
5338 attributes. Note these are only possible candidates, not absolute ones.
5339 GCC guesses that function pointers with @code{format} attributes that
5340 are used in assignment, initialization, parameter passing or return
5341 statements should have a corresponding @code{format} attribute in the
5342 resulting type. I.e.@: the left-hand side of the assignment or
5343 initialization, the type of the parameter variable, or the return type
5344 of the containing function respectively should also have a @code{format}
5345 attribute to avoid the warning.
5346
5347 GCC also warns about function definitions that might be
5348 candidates for @code{format} attributes. Again, these are only
5349 possible candidates. GCC guesses that @code{format} attributes
5350 might be appropriate for any function that calls a function like
5351 @code{vprintf} or @code{vscanf}, but this might not always be the
5352 case, and some functions for which @code{format} attributes are
5353 appropriate may not be detected.
5354
5355 @item -Wsuggest-attribute=cold
5356 @opindex Wsuggest-attribute=cold
5357 @opindex Wno-suggest-attribute=cold
5358
5359 Warn about functions that might be candidates for @code{cold} attribute. This
5360 is based on static detection and generally will only warn about functions which
5361 always leads to a call to another @code{cold} function such as wrappers of
5362 C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
5363 @end table
5364
5365 @item -Wsuggest-final-types
5366 @opindex Wno-suggest-final-types
5367 @opindex Wsuggest-final-types
5368 Warn about types with virtual methods where code quality would be improved
5369 if the type were declared with the C++11 @code{final} specifier,
5370 or, if possible,
5371 declared in an anonymous namespace. This allows GCC to more aggressively
5372 devirtualize the polymorphic calls. This warning is more effective with link
5373 time optimization, where the information about the class hierarchy graph is
5374 more complete.
5375
5376 @item -Wsuggest-final-methods
5377 @opindex Wno-suggest-final-methods
5378 @opindex Wsuggest-final-methods
5379 Warn about virtual methods where code quality would be improved if the method
5380 were declared with the C++11 @code{final} specifier,
5381 or, if possible, its type were
5382 declared in an anonymous namespace or with the @code{final} specifier.
5383 This warning is
5384 more effective with link-time optimization, where the information about the
5385 class hierarchy graph is more complete. It is recommended to first consider
5386 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
5387 annotations.
5388
5389 @item -Wsuggest-override
5390 Warn about overriding virtual functions that are not marked with the override
5391 keyword.
5392
5393 @item -Walloc-zero
5394 @opindex Wno-alloc-zero
5395 @opindex Walloc-zero
5396 Warn about calls to allocation functions decorated with attribute
5397 @code{alloc_size} that specify zero bytes, including those to the built-in
5398 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
5399 @code{malloc}, and @code{realloc}. Because the behavior of these functions
5400 when called with a zero size differs among implementations (and in the case
5401 of @code{realloc} has been deprecated) relying on it may result in subtle
5402 portability bugs and should be avoided.
5403
5404 @item -Walloc-size-larger-than=@var{n}
5405 Warn about calls to functions decorated with attribute @code{alloc_size}
5406 that attempt to allocate objects larger than the specified number of bytes,
5407 or where the result of the size computation in an integer type with infinite
5408 precision would exceed @code{SIZE_MAX / 2}. The option argument @var{n}
5409 may end in one of the standard suffixes designating a multiple of bytes
5410 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
5411 @code{MB} and @code{MiB} for megabyte and mebibyte, and so on.
5412 @xref{Function Attributes}.
5413
5414 @item -Walloca
5415 @opindex Wno-alloca
5416 @opindex Walloca
5417 This option warns on all uses of @code{alloca} in the source.
5418
5419 @item -Walloca-larger-than=@var{n}
5420 This option warns on calls to @code{alloca} that are not bounded by a
5421 controlling predicate limiting its argument of integer type to at most
5422 @var{n} bytes, or calls to @code{alloca} where the bound is unknown.
5423 Arguments of non-integer types are considered unbounded even if they
5424 appear to be constrained to the expected range.
5425
5426 For example, a bounded case of @code{alloca} could be:
5427
5428 @smallexample
5429 void func (size_t n)
5430 @{
5431 void *p;
5432 if (n <= 1000)
5433 p = alloca (n);
5434 else
5435 p = malloc (n);
5436 f (p);
5437 @}
5438 @end smallexample
5439
5440 In the above example, passing @code{-Walloca-larger-than=1000} would not
5441 issue a warning because the call to @code{alloca} is known to be at most
5442 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
5443 the compiler would emit a warning.
5444
5445 Unbounded uses, on the other hand, are uses of @code{alloca} with no
5446 controlling predicate constraining its integer argument. For example:
5447
5448 @smallexample
5449 void func ()
5450 @{
5451 void *p = alloca (n);
5452 f (p);
5453 @}
5454 @end smallexample
5455
5456 If @code{-Walloca-larger-than=500} were passed, the above would trigger
5457 a warning, but this time because of the lack of bounds checking.
5458
5459 Note, that even seemingly correct code involving signed integers could
5460 cause a warning:
5461
5462 @smallexample
5463 void func (signed int n)
5464 @{
5465 if (n < 500)
5466 @{
5467 p = alloca (n);
5468 f (p);
5469 @}
5470 @}
5471 @end smallexample
5472
5473 In the above example, @var{n} could be negative, causing a larger than
5474 expected argument to be implicitly cast into the @code{alloca} call.
5475
5476 This option also warns when @code{alloca} is used in a loop.
5477
5478 This warning is not enabled by @option{-Wall}, and is only active when
5479 @option{-ftree-vrp} is active (default for @option{-O2} and above).
5480
5481 See also @option{-Wvla-larger-than=@var{n}}.
5482
5483 @item -Warray-bounds
5484 @itemx -Warray-bounds=@var{n}
5485 @opindex Wno-array-bounds
5486 @opindex Warray-bounds
5487 This option is only active when @option{-ftree-vrp} is active
5488 (default for @option{-O2} and above). It warns about subscripts to arrays
5489 that are always out of bounds. This warning is enabled by @option{-Wall}.
5490
5491 @table @gcctabopt
5492 @item -Warray-bounds=1
5493 This is the warning level of @option{-Warray-bounds} and is enabled
5494 by @option{-Wall}; higher levels are not, and must be explicitly requested.
5495
5496 @item -Warray-bounds=2
5497 This warning level also warns about out of bounds access for
5498 arrays at the end of a struct and for arrays accessed through
5499 pointers. This warning level may give a larger number of
5500 false positives and is deactivated by default.
5501 @end table
5502
5503 @item -Wattribute-alias
5504 Warn about declarations using the @code{alias} and similar attributes whose
5505 target is incompatible with the type of the alias. @xref{Function Attributes,
5506 ,Declaring Attributes of Functions}.
5507
5508 @item -Wbool-compare
5509 @opindex Wno-bool-compare
5510 @opindex Wbool-compare
5511 Warn about boolean expression compared with an integer value different from
5512 @code{true}/@code{false}. For instance, the following comparison is
5513 always false:
5514 @smallexample
5515 int n = 5;
5516 @dots{}
5517 if ((n > 1) == 2) @{ @dots{} @}
5518 @end smallexample
5519 This warning is enabled by @option{-Wall}.
5520
5521 @item -Wbool-operation
5522 @opindex Wno-bool-operation
5523 @opindex Wbool-operation
5524 Warn about suspicious operations on expressions of a boolean type. For
5525 instance, bitwise negation of a boolean is very likely a bug in the program.
5526 For C, this warning also warns about incrementing or decrementing a boolean,
5527 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
5528 Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
5529
5530 This warning is enabled by @option{-Wall}.
5531
5532 @item -Wduplicated-branches
5533 @opindex Wno-duplicated-branches
5534 @opindex Wduplicated-branches
5535 Warn when an if-else has identical branches. This warning detects cases like
5536 @smallexample
5537 if (p != NULL)
5538 return 0;
5539 else
5540 return 0;
5541 @end smallexample
5542 It doesn't warn when both branches contain just a null statement. This warning
5543 also warn for conditional operators:
5544 @smallexample
5545 int i = x ? *p : *p;
5546 @end smallexample
5547
5548 @item -Wduplicated-cond
5549 @opindex Wno-duplicated-cond
5550 @opindex Wduplicated-cond
5551 Warn about duplicated conditions in an if-else-if chain. For instance,
5552 warn for the following code:
5553 @smallexample
5554 if (p->q != NULL) @{ @dots{} @}
5555 else if (p->q != NULL) @{ @dots{} @}
5556 @end smallexample
5557
5558 @item -Wframe-address
5559 @opindex Wno-frame-address
5560 @opindex Wframe-address
5561 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
5562 is called with an argument greater than 0. Such calls may return indeterminate
5563 values or crash the program. The warning is included in @option{-Wall}.
5564
5565 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
5566 @opindex Wno-discarded-qualifiers
5567 @opindex Wdiscarded-qualifiers
5568 Do not warn if type qualifiers on pointers are being discarded.
5569 Typically, the compiler warns if a @code{const char *} variable is
5570 passed to a function that takes a @code{char *} parameter. This option
5571 can be used to suppress such a warning.
5572
5573 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
5574 @opindex Wno-discarded-array-qualifiers
5575 @opindex Wdiscarded-array-qualifiers
5576 Do not warn if type qualifiers on arrays which are pointer targets
5577 are being discarded. Typically, the compiler warns if a
5578 @code{const int (*)[]} variable is passed to a function that
5579 takes a @code{int (*)[]} parameter. This option can be used to
5580 suppress such a warning.
5581
5582 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
5583 @opindex Wno-incompatible-pointer-types
5584 @opindex Wincompatible-pointer-types
5585 Do not warn when there is a conversion between pointers that have incompatible
5586 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
5587 which warns for pointer argument passing or assignment with different
5588 signedness.
5589
5590 @item -Wno-int-conversion @r{(C and Objective-C only)}
5591 @opindex Wno-int-conversion
5592 @opindex Wint-conversion
5593 Do not warn about incompatible integer to pointer and pointer to integer
5594 conversions. This warning is about implicit conversions; for explicit
5595 conversions the warnings @option{-Wno-int-to-pointer-cast} and
5596 @option{-Wno-pointer-to-int-cast} may be used.
5597
5598 @item -Wno-div-by-zero
5599 @opindex Wno-div-by-zero
5600 @opindex Wdiv-by-zero
5601 Do not warn about compile-time integer division by zero. Floating-point
5602 division by zero is not warned about, as it can be a legitimate way of
5603 obtaining infinities and NaNs.
5604
5605 @item -Wsystem-headers
5606 @opindex Wsystem-headers
5607 @opindex Wno-system-headers
5608 @cindex warnings from system headers
5609 @cindex system headers, warnings from
5610 Print warning messages for constructs found in system header files.
5611 Warnings from system headers are normally suppressed, on the assumption
5612 that they usually do not indicate real problems and would only make the
5613 compiler output harder to read. Using this command-line option tells
5614 GCC to emit warnings from system headers as if they occurred in user
5615 code. However, note that using @option{-Wall} in conjunction with this
5616 option does @emph{not} warn about unknown pragmas in system
5617 headers---for that, @option{-Wunknown-pragmas} must also be used.
5618
5619 @item -Wtautological-compare
5620 @opindex Wtautological-compare
5621 @opindex Wno-tautological-compare
5622 Warn if a self-comparison always evaluates to true or false. This
5623 warning detects various mistakes such as:
5624 @smallexample
5625 int i = 1;
5626 @dots{}
5627 if (i > i) @{ @dots{} @}
5628 @end smallexample
5629
5630 This warning also warns about bitwise comparisons that always evaluate
5631 to true or false, for instance:
5632 @smallexample
5633 if ((a & 16) == 10) @{ @dots{} @}
5634 @end smallexample
5635 will always be false.
5636
5637 This warning is enabled by @option{-Wall}.
5638
5639 @item -Wtrampolines
5640 @opindex Wtrampolines
5641 @opindex Wno-trampolines
5642 Warn about trampolines generated for pointers to nested functions.
5643 A trampoline is a small piece of data or code that is created at run
5644 time on the stack when the address of a nested function is taken, and is
5645 used to call the nested function indirectly. For some targets, it is
5646 made up of data only and thus requires no special treatment. But, for
5647 most targets, it is made up of code and thus requires the stack to be
5648 made executable in order for the program to work properly.
5649
5650 @item -Wfloat-equal
5651 @opindex Wfloat-equal
5652 @opindex Wno-float-equal
5653 Warn if floating-point values are used in equality comparisons.
5654
5655 The idea behind this is that sometimes it is convenient (for the
5656 programmer) to consider floating-point values as approximations to
5657 infinitely precise real numbers. If you are doing this, then you need
5658 to compute (by analyzing the code, or in some other way) the maximum or
5659 likely maximum error that the computation introduces, and allow for it
5660 when performing comparisons (and when producing output, but that's a
5661 different problem). In particular, instead of testing for equality, you
5662 should check to see whether the two values have ranges that overlap; and
5663 this is done with the relational operators, so equality comparisons are
5664 probably mistaken.
5665
5666 @item -Wtraditional @r{(C and Objective-C only)}
5667 @opindex Wtraditional
5668 @opindex Wno-traditional
5669 Warn about certain constructs that behave differently in traditional and
5670 ISO C@. Also warn about ISO C constructs that have no traditional C
5671 equivalent, and/or problematic constructs that should be avoided.
5672
5673 @itemize @bullet
5674 @item
5675 Macro parameters that appear within string literals in the macro body.
5676 In traditional C macro replacement takes place within string literals,
5677 but in ISO C it does not.
5678
5679 @item
5680 In traditional C, some preprocessor directives did not exist.
5681 Traditional preprocessors only considered a line to be a directive
5682 if the @samp{#} appeared in column 1 on the line. Therefore
5683 @option{-Wtraditional} warns about directives that traditional C
5684 understands but ignores because the @samp{#} does not appear as the
5685 first character on the line. It also suggests you hide directives like
5686 @code{#pragma} not understood by traditional C by indenting them. Some
5687 traditional implementations do not recognize @code{#elif}, so this option
5688 suggests avoiding it altogether.
5689
5690 @item
5691 A function-like macro that appears without arguments.
5692
5693 @item
5694 The unary plus operator.
5695
5696 @item
5697 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
5698 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
5699 constants.) Note, these suffixes appear in macros defined in the system
5700 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
5701 Use of these macros in user code might normally lead to spurious
5702 warnings, however GCC's integrated preprocessor has enough context to
5703 avoid warning in these cases.
5704
5705 @item
5706 A function declared external in one block and then used after the end of
5707 the block.
5708
5709 @item
5710 A @code{switch} statement has an operand of type @code{long}.
5711
5712 @item
5713 A non-@code{static} function declaration follows a @code{static} one.
5714 This construct is not accepted by some traditional C compilers.
5715
5716 @item
5717 The ISO type of an integer constant has a different width or
5718 signedness from its traditional type. This warning is only issued if
5719 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
5720 typically represent bit patterns, are not warned about.
5721
5722 @item
5723 Usage of ISO string concatenation is detected.
5724
5725 @item
5726 Initialization of automatic aggregates.
5727
5728 @item
5729 Identifier conflicts with labels. Traditional C lacks a separate
5730 namespace for labels.
5731
5732 @item
5733 Initialization of unions. If the initializer is zero, the warning is
5734 omitted. This is done under the assumption that the zero initializer in
5735 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
5736 initializer warnings and relies on default initialization to zero in the
5737 traditional C case.
5738
5739 @item
5740 Conversions by prototypes between fixed/floating-point values and vice
5741 versa. The absence of these prototypes when compiling with traditional
5742 C causes serious problems. This is a subset of the possible
5743 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
5744
5745 @item
5746 Use of ISO C style function definitions. This warning intentionally is
5747 @emph{not} issued for prototype declarations or variadic functions
5748 because these ISO C features appear in your code when using
5749 libiberty's traditional C compatibility macros, @code{PARAMS} and
5750 @code{VPARAMS}. This warning is also bypassed for nested functions
5751 because that feature is already a GCC extension and thus not relevant to
5752 traditional C compatibility.
5753 @end itemize
5754
5755 @item -Wtraditional-conversion @r{(C and Objective-C only)}
5756 @opindex Wtraditional-conversion
5757 @opindex Wno-traditional-conversion
5758 Warn if a prototype causes a type conversion that is different from what
5759 would happen to the same argument in the absence of a prototype. This
5760 includes conversions of fixed point to floating and vice versa, and
5761 conversions changing the width or signedness of a fixed-point argument
5762 except when the same as the default promotion.
5763
5764 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
5765 @opindex Wdeclaration-after-statement
5766 @opindex Wno-declaration-after-statement
5767 Warn when a declaration is found after a statement in a block. This
5768 construct, known from C++, was introduced with ISO C99 and is by default
5769 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
5770
5771 @item -Wshadow
5772 @opindex Wshadow
5773 @opindex Wno-shadow
5774 Warn whenever a local variable or type declaration shadows another
5775 variable, parameter, type, class member (in C++), or instance variable
5776 (in Objective-C) or whenever a built-in function is shadowed. Note
5777 that in C++, the compiler warns if a local variable shadows an
5778 explicit typedef, but not if it shadows a struct/class/enum.
5779 Same as @option{-Wshadow=global}.
5780
5781 @item -Wno-shadow-ivar @r{(Objective-C only)}
5782 @opindex Wno-shadow-ivar
5783 @opindex Wshadow-ivar
5784 Do not warn whenever a local variable shadows an instance variable in an
5785 Objective-C method.
5786
5787 @item -Wshadow=global
5788 @opindex Wshadow=local
5789 The default for @option{-Wshadow}. Warns for any (global) shadowing.
5790
5791 @item -Wshadow=local
5792 @opindex Wshadow=local
5793 Warn when a local variable shadows another local variable or parameter.
5794 This warning is enabled by @option{-Wshadow=global}.
5795
5796 @item -Wshadow=compatible-local
5797 @opindex Wshadow=compatible-local
5798 Warn when a local variable shadows another local variable or parameter
5799 whose type is compatible with that of the shadowing variable. In C++,
5800 type compatibility here means the type of the shadowing variable can be
5801 converted to that of the shadowed variable. The creation of this flag
5802 (in addition to @option{-Wshadow=local}) is based on the idea that when
5803 a local variable shadows another one of incompatible type, it is most
5804 likely intentional, not a bug or typo, as shown in the following example:
5805
5806 @smallexample
5807 @group
5808 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
5809 @{
5810 for (int i = 0; i < N; ++i)
5811 @{
5812 ...
5813 @}
5814 ...
5815 @}
5816 @end group
5817 @end smallexample
5818
5819 Since the two variable @code{i} in the example above have incompatible types,
5820 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
5821 Because their types are incompatible, if a programmer accidentally uses one
5822 in place of the other, type checking will catch that and emit an error or
5823 warning. So not warning (about shadowing) in this case will not lead to
5824 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
5825 possibly reduce the number of warnings triggered by intentional shadowing.
5826
5827 This warning is enabled by @option{-Wshadow=local}.
5828
5829 @item -Wlarger-than=@var{len}
5830 @opindex Wlarger-than=@var{len}
5831 @opindex Wlarger-than-@var{len}
5832 Warn whenever an object of larger than @var{len} bytes is defined.
5833
5834 @item -Wframe-larger-than=@var{len}
5835 @opindex Wframe-larger-than
5836 Warn if the size of a function frame is larger than @var{len} bytes.
5837 The computation done to determine the stack frame size is approximate
5838 and not conservative.
5839 The actual requirements may be somewhat greater than @var{len}
5840 even if you do not get a warning. In addition, any space allocated
5841 via @code{alloca}, variable-length arrays, or related constructs
5842 is not included by the compiler when determining
5843 whether or not to issue a warning.
5844
5845 @item -Wno-free-nonheap-object
5846 @opindex Wno-free-nonheap-object
5847 @opindex Wfree-nonheap-object
5848 Do not warn when attempting to free an object that was not allocated
5849 on the heap.
5850
5851 @item -Wstack-usage=@var{len}
5852 @opindex Wstack-usage
5853 Warn if the stack usage of a function might be larger than @var{len} bytes.
5854 The computation done to determine the stack usage is conservative.
5855 Any space allocated via @code{alloca}, variable-length arrays, or related
5856 constructs is included by the compiler when determining whether or not to
5857 issue a warning.
5858
5859 The message is in keeping with the output of @option{-fstack-usage}.
5860
5861 @itemize
5862 @item
5863 If the stack usage is fully static but exceeds the specified amount, it's:
5864
5865 @smallexample
5866 warning: stack usage is 1120 bytes
5867 @end smallexample
5868 @item
5869 If the stack usage is (partly) dynamic but bounded, it's:
5870
5871 @smallexample
5872 warning: stack usage might be 1648 bytes
5873 @end smallexample
5874 @item
5875 If the stack usage is (partly) dynamic and not bounded, it's:
5876
5877 @smallexample
5878 warning: stack usage might be unbounded
5879 @end smallexample
5880 @end itemize
5881
5882 @item -Wunsafe-loop-optimizations
5883 @opindex Wunsafe-loop-optimizations
5884 @opindex Wno-unsafe-loop-optimizations
5885 Warn if the loop cannot be optimized because the compiler cannot
5886 assume anything on the bounds of the loop indices. With
5887 @option{-funsafe-loop-optimizations} warn if the compiler makes
5888 such assumptions.
5889
5890 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
5891 @opindex Wno-pedantic-ms-format
5892 @opindex Wpedantic-ms-format
5893 When used in combination with @option{-Wformat}
5894 and @option{-pedantic} without GNU extensions, this option
5895 disables the warnings about non-ISO @code{printf} / @code{scanf} format
5896 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
5897 which depend on the MS runtime.
5898
5899 @item -Waligned-new
5900 @opindex Waligned-new
5901 @opindex Wno-aligned-new
5902 Warn about a new-expression of a type that requires greater alignment
5903 than the @code{alignof(std::max_align_t)} but uses an allocation
5904 function without an explicit alignment parameter. This option is
5905 enabled by @option{-Wall}.
5906
5907 Normally this only warns about global allocation functions, but
5908 @option{-Waligned-new=all} also warns about class member allocation
5909 functions.
5910
5911 @item -Wplacement-new
5912 @itemx -Wplacement-new=@var{n}
5913 @opindex Wplacement-new
5914 @opindex Wno-placement-new
5915 Warn about placement new expressions with undefined behavior, such as
5916 constructing an object in a buffer that is smaller than the type of
5917 the object. For example, the placement new expression below is diagnosed
5918 because it attempts to construct an array of 64 integers in a buffer only
5919 64 bytes large.
5920 @smallexample
5921 char buf [64];
5922 new (buf) int[64];
5923 @end smallexample
5924 This warning is enabled by default.
5925
5926 @table @gcctabopt
5927 @item -Wplacement-new=1
5928 This is the default warning level of @option{-Wplacement-new}. At this
5929 level the warning is not issued for some strictly undefined constructs that
5930 GCC allows as extensions for compatibility with legacy code. For example,
5931 the following @code{new} expression is not diagnosed at this level even
5932 though it has undefined behavior according to the C++ standard because
5933 it writes past the end of the one-element array.
5934 @smallexample
5935 struct S @{ int n, a[1]; @};
5936 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
5937 new (s->a)int [32]();
5938 @end smallexample
5939
5940 @item -Wplacement-new=2
5941 At this level, in addition to diagnosing all the same constructs as at level
5942 1, a diagnostic is also issued for placement new expressions that construct
5943 an object in the last member of structure whose type is an array of a single
5944 element and whose size is less than the size of the object being constructed.
5945 While the previous example would be diagnosed, the following construct makes
5946 use of the flexible member array extension to avoid the warning at level 2.
5947 @smallexample
5948 struct S @{ int n, a[]; @};
5949 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
5950 new (s->a)int [32]();
5951 @end smallexample
5952
5953 @end table
5954
5955 @item -Wpointer-arith
5956 @opindex Wpointer-arith
5957 @opindex Wno-pointer-arith
5958 Warn about anything that depends on the ``size of'' a function type or
5959 of @code{void}. GNU C assigns these types a size of 1, for
5960 convenience in calculations with @code{void *} pointers and pointers
5961 to functions. In C++, warn also when an arithmetic operation involves
5962 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
5963
5964 @item -Wpointer-compare
5965 @opindex Wpointer-compare
5966 @opindex Wno-pointer-compare
5967 Warn if a pointer is compared with a zero character constant. This usually
5968 means that the pointer was meant to be dereferenced. For example:
5969
5970 @smallexample
5971 const char *p = foo ();
5972 if (p == '\0')
5973 return 42;
5974 @end smallexample
5975
5976 Note that the code above is invalid in C++11.
5977
5978 This warning is enabled by default.
5979
5980 @item -Wtype-limits
5981 @opindex Wtype-limits
5982 @opindex Wno-type-limits
5983 Warn if a comparison is always true or always false due to the limited
5984 range of the data type, but do not warn for constant expressions. For
5985 example, warn if an unsigned variable is compared against zero with
5986 @code{<} or @code{>=}. This warning is also enabled by
5987 @option{-Wextra}.
5988
5989 @include cppwarnopts.texi
5990
5991 @item -Wbad-function-cast @r{(C and Objective-C only)}
5992 @opindex Wbad-function-cast
5993 @opindex Wno-bad-function-cast
5994 Warn when a function call is cast to a non-matching type.
5995 For example, warn if a call to a function returning an integer type
5996 is cast to a pointer type.
5997
5998 @item -Wc90-c99-compat @r{(C and Objective-C only)}
5999 @opindex Wc90-c99-compat
6000 @opindex Wno-c90-c99-compat
6001 Warn about features not present in ISO C90, but present in ISO C99.
6002 For instance, warn about use of variable length arrays, @code{long long}
6003 type, @code{bool} type, compound literals, designated initializers, and so
6004 on. This option is independent of the standards mode. Warnings are disabled
6005 in the expression that follows @code{__extension__}.
6006
6007 @item -Wc99-c11-compat @r{(C and Objective-C only)}
6008 @opindex Wc99-c11-compat
6009 @opindex Wno-c99-c11-compat
6010 Warn about features not present in ISO C99, but present in ISO C11.
6011 For instance, warn about use of anonymous structures and unions,
6012 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
6013 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
6014 and so on. This option is independent of the standards mode. Warnings are
6015 disabled in the expression that follows @code{__extension__}.
6016
6017 @item -Wc++-compat @r{(C and Objective-C only)}
6018 @opindex Wc++-compat
6019 Warn about ISO C constructs that are outside of the common subset of
6020 ISO C and ISO C++, e.g.@: request for implicit conversion from
6021 @code{void *} to a pointer to non-@code{void} type.
6022
6023 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
6024 @opindex Wc++11-compat
6025 Warn about C++ constructs whose meaning differs between ISO C++ 1998
6026 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
6027 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
6028 enabled by @option{-Wall}.
6029
6030 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6031 @opindex Wc++14-compat
6032 Warn about C++ constructs whose meaning differs between ISO C++ 2011
6033 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
6034
6035 @item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6036 @opindex Wc++17-compat
6037 Warn about C++ constructs whose meaning differs between ISO C++ 2014
6038 and ISO C++ 2017. This warning is enabled by @option{-Wall}.
6039
6040 @item -Wcast-qual
6041 @opindex Wcast-qual
6042 @opindex Wno-cast-qual
6043 Warn whenever a pointer is cast so as to remove a type qualifier from
6044 the target type. For example, warn if a @code{const char *} is cast
6045 to an ordinary @code{char *}.
6046
6047 Also warn when making a cast that introduces a type qualifier in an
6048 unsafe way. For example, casting @code{char **} to @code{const char **}
6049 is unsafe, as in this example:
6050
6051 @smallexample
6052 /* p is char ** value. */
6053 const char **q = (const char **) p;
6054 /* Assignment of readonly string to const char * is OK. */
6055 *q = "string";
6056 /* Now char** pointer points to read-only memory. */
6057 **p = 'b';
6058 @end smallexample
6059
6060 @item -Wcast-align
6061 @opindex Wcast-align
6062 @opindex Wno-cast-align
6063 Warn whenever a pointer is cast such that the required alignment of the
6064 target is increased. For example, warn if a @code{char *} is cast to
6065 an @code{int *} on machines where integers can only be accessed at
6066 two- or four-byte boundaries.
6067
6068 @item -Wcast-align=strict
6069 @opindex Wcast-align=strict
6070 Warn whenever a pointer is cast such that the required alignment of the
6071 target is increased. For example, warn if a @code{char *} is cast to
6072 an @code{int *} regardless of the target machine.
6073
6074 @item -Wcast-function-type
6075 @opindex Wcast-function-type
6076 @opindex Wno-cast-function-type
6077 Warn when a function pointer is cast to an incompatible function pointer.
6078 In a cast involving function types with a variable argument list only
6079 the types of initial arguments that are provided are considered.
6080 Any parameter of pointer-type matches any other pointer-type. Any benign
6081 differences in integral types are ignored, like @code{int} vs. @code{long}
6082 on ILP32 targets. Likewise type qualifiers are ignored. The function
6083 type @code{void (*) (void)} is special and matches everything, which can
6084 be used to suppress this warning.
6085 In a cast involving pointer to member types this warning warns whenever
6086 the type cast is changing the pointer to member type.
6087 This warning is enabled by @option{-Wextra}.
6088
6089 @item -Wwrite-strings
6090 @opindex Wwrite-strings
6091 @opindex Wno-write-strings
6092 When compiling C, give string constants the type @code{const
6093 char[@var{length}]} so that copying the address of one into a
6094 non-@code{const} @code{char *} pointer produces a warning. These
6095 warnings help you find at compile time code that can try to write
6096 into a string constant, but only if you have been very careful about
6097 using @code{const} in declarations and prototypes. Otherwise, it is
6098 just a nuisance. This is why we did not make @option{-Wall} request
6099 these warnings.
6100
6101 When compiling C++, warn about the deprecated conversion from string
6102 literals to @code{char *}. This warning is enabled by default for C++
6103 programs.
6104
6105 @item -Wcatch-value
6106 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6107 @opindex Wcatch-value
6108 @opindex Wno-catch-value
6109 Warn about catch handlers that do not catch via reference.
6110 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6111 warn about polymorphic class types that are caught by value.
6112 With @option{-Wcatch-value=2} warn about all class types that are caught
6113 by value. With @option{-Wcatch-value=3} warn about all types that are
6114 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6115
6116 @item -Wclobbered
6117 @opindex Wclobbered
6118 @opindex Wno-clobbered
6119 Warn for variables that might be changed by @code{longjmp} or
6120 @code{vfork}. This warning is also enabled by @option{-Wextra}.
6121
6122 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6123 @opindex Wconditionally-supported
6124 @opindex Wno-conditionally-supported
6125 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6126
6127 @item -Wconversion
6128 @opindex Wconversion
6129 @opindex Wno-conversion
6130 Warn for implicit conversions that may alter a value. This includes
6131 conversions between real and integer, like @code{abs (x)} when
6132 @code{x} is @code{double}; conversions between signed and unsigned,
6133 like @code{unsigned ui = -1}; and conversions to smaller types, like
6134 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6135 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6136 changed by the conversion like in @code{abs (2.0)}. Warnings about
6137 conversions between signed and unsigned integers can be disabled by
6138 using @option{-Wno-sign-conversion}.
6139
6140 For C++, also warn for confusing overload resolution for user-defined
6141 conversions; and conversions that never use a type conversion
6142 operator: conversions to @code{void}, the same type, a base class or a
6143 reference to them. Warnings about conversions between signed and
6144 unsigned integers are disabled by default in C++ unless
6145 @option{-Wsign-conversion} is explicitly enabled.
6146
6147 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6148 @opindex Wconversion-null
6149 @opindex Wno-conversion-null
6150 Do not warn for conversions between @code{NULL} and non-pointer
6151 types. @option{-Wconversion-null} is enabled by default.
6152
6153 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6154 @opindex Wzero-as-null-pointer-constant
6155 @opindex Wno-zero-as-null-pointer-constant
6156 Warn when a literal @samp{0} is used as null pointer constant. This can
6157 be useful to facilitate the conversion to @code{nullptr} in C++11.
6158
6159 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6160 @opindex Wsubobject-linkage
6161 @opindex Wno-subobject-linkage
6162 Warn if a class type has a base or a field whose type uses the anonymous
6163 namespace or depends on a type with no linkage. If a type A depends on
6164 a type B with no or internal linkage, defining it in multiple
6165 translation units would be an ODR violation because the meaning of B
6166 is different in each translation unit. If A only appears in a single
6167 translation unit, the best way to silence the warning is to give it
6168 internal linkage by putting it in an anonymous namespace as well. The
6169 compiler doesn't give this warning for types defined in the main .C
6170 file, as those are unlikely to have multiple definitions.
6171 @option{-Wsubobject-linkage} is enabled by default.
6172
6173 @item -Wdangling-else
6174 @opindex Wdangling-else
6175 @opindex Wno-dangling-else
6176 Warn about constructions where there may be confusion to which
6177 @code{if} statement an @code{else} branch belongs. Here is an example of
6178 such a case:
6179
6180 @smallexample
6181 @group
6182 @{
6183 if (a)
6184 if (b)
6185 foo ();
6186 else
6187 bar ();
6188 @}
6189 @end group
6190 @end smallexample
6191
6192 In C/C++, every @code{else} branch belongs to the innermost possible
6193 @code{if} statement, which in this example is @code{if (b)}. This is
6194 often not what the programmer expected, as illustrated in the above
6195 example by indentation the programmer chose. When there is the
6196 potential for this confusion, GCC issues a warning when this flag
6197 is specified. To eliminate the warning, add explicit braces around
6198 the innermost @code{if} statement so there is no way the @code{else}
6199 can belong to the enclosing @code{if}. The resulting code
6200 looks like this:
6201
6202 @smallexample
6203 @group
6204 @{
6205 if (a)
6206 @{
6207 if (b)
6208 foo ();
6209 else
6210 bar ();
6211 @}
6212 @}
6213 @end group
6214 @end smallexample
6215
6216 This warning is enabled by @option{-Wparentheses}.
6217
6218 @item -Wdate-time
6219 @opindex Wdate-time
6220 @opindex Wno-date-time
6221 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6222 are encountered as they might prevent bit-wise-identical reproducible
6223 compilations.
6224
6225 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6226 @opindex Wdelete-incomplete
6227 @opindex Wno-delete-incomplete
6228 Warn when deleting a pointer to incomplete type, which may cause
6229 undefined behavior at runtime. This warning is enabled by default.
6230
6231 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6232 @opindex Wuseless-cast
6233 @opindex Wno-useless-cast
6234 Warn when an expression is casted to its own type.
6235
6236 @item -Wempty-body
6237 @opindex Wempty-body
6238 @opindex Wno-empty-body
6239 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6240 while} statement. This warning is also enabled by @option{-Wextra}.
6241
6242 @item -Wenum-compare
6243 @opindex Wenum-compare
6244 @opindex Wno-enum-compare
6245 Warn about a comparison between values of different enumerated types.
6246 In C++ enumerated type mismatches in conditional expressions are also
6247 diagnosed and the warning is enabled by default. In C this warning is
6248 enabled by @option{-Wall}.
6249
6250 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6251 @opindex Wextra-semi
6252 @opindex Wno-extra-semi
6253 Warn about redundant semicolon after in-class function definition.
6254
6255 @item -Wjump-misses-init @r{(C, Objective-C only)}
6256 @opindex Wjump-misses-init
6257 @opindex Wno-jump-misses-init
6258 Warn if a @code{goto} statement or a @code{switch} statement jumps
6259 forward across the initialization of a variable, or jumps backward to a
6260 label after the variable has been initialized. This only warns about
6261 variables that are initialized when they are declared. This warning is
6262 only supported for C and Objective-C; in C++ this sort of branch is an
6263 error in any case.
6264
6265 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
6266 can be disabled with the @option{-Wno-jump-misses-init} option.
6267
6268 @item -Wsign-compare
6269 @opindex Wsign-compare
6270 @opindex Wno-sign-compare
6271 @cindex warning for comparison of signed and unsigned values
6272 @cindex comparison of signed and unsigned values, warning
6273 @cindex signed and unsigned values, comparison warning
6274 Warn when a comparison between signed and unsigned values could produce
6275 an incorrect result when the signed value is converted to unsigned.
6276 In C++, this warning is also enabled by @option{-Wall}. In C, it is
6277 also enabled by @option{-Wextra}.
6278
6279 @item -Wsign-conversion
6280 @opindex Wsign-conversion
6281 @opindex Wno-sign-conversion
6282 Warn for implicit conversions that may change the sign of an integer
6283 value, like assigning a signed integer expression to an unsigned
6284 integer variable. An explicit cast silences the warning. In C, this
6285 option is enabled also by @option{-Wconversion}.
6286
6287 @item -Wfloat-conversion
6288 @opindex Wfloat-conversion
6289 @opindex Wno-float-conversion
6290 Warn for implicit conversions that reduce the precision of a real value.
6291 This includes conversions from real to integer, and from higher precision
6292 real to lower precision real values. This option is also enabled by
6293 @option{-Wconversion}.
6294
6295 @item -Wno-scalar-storage-order
6296 @opindex -Wno-scalar-storage-order
6297 @opindex -Wscalar-storage-order
6298 Do not warn on suspicious constructs involving reverse scalar storage order.
6299
6300 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
6301 @opindex Wsized-deallocation
6302 @opindex Wno-sized-deallocation
6303 Warn about a definition of an unsized deallocation function
6304 @smallexample
6305 void operator delete (void *) noexcept;
6306 void operator delete[] (void *) noexcept;
6307 @end smallexample
6308 without a definition of the corresponding sized deallocation function
6309 @smallexample
6310 void operator delete (void *, std::size_t) noexcept;
6311 void operator delete[] (void *, std::size_t) noexcept;
6312 @end smallexample
6313 or vice versa. Enabled by @option{-Wextra} along with
6314 @option{-fsized-deallocation}.
6315
6316 @item -Wsizeof-pointer-div
6317 @opindex Wsizeof-pointer-div
6318 @opindex Wno-sizeof-pointer-div
6319 Warn for suspicious divisions of two sizeof expressions that divide
6320 the pointer size by the element size, which is the usual way to compute
6321 the array size but won't work out correctly with pointers. This warning
6322 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
6323 not an array, but a pointer. This warning is enabled by @option{-Wall}.
6324
6325 @item -Wsizeof-pointer-memaccess
6326 @opindex Wsizeof-pointer-memaccess
6327 @opindex Wno-sizeof-pointer-memaccess
6328 Warn for suspicious length parameters to certain string and memory built-in
6329 functions if the argument uses @code{sizeof}. This warning triggers for
6330 example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
6331 an array, but a pointer, and suggests a possible fix, or about
6332 @code{memcpy (&foo, ptr, sizeof (&foo));}. @option{-Wsizeof-pointer-memaccess}
6333 also warns about calls to bounded string copy functions like @code{strncat}
6334 or @code{strncpy} that specify as the bound a @code{sizeof} expression of
6335 the source array. For example, in the following function the call to
6336 @code{strncat} specifies the size of the source string as the bound. That
6337 is almost certainly a mistake and so the call is diagnosed.
6338 @smallexample
6339 void make_file (const char *name)
6340 @{
6341 char path[PATH_MAX];
6342 strncpy (path, name, sizeof path - 1);
6343 strncat (path, ".text", sizeof ".text");
6344 @dots{}
6345 @}
6346 @end smallexample
6347
6348 The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
6349
6350 @item -Wsizeof-array-argument
6351 @opindex Wsizeof-array-argument
6352 @opindex Wno-sizeof-array-argument
6353 Warn when the @code{sizeof} operator is applied to a parameter that is
6354 declared as an array in a function definition. This warning is enabled by
6355 default for C and C++ programs.
6356
6357 @item -Wmemset-elt-size
6358 @opindex Wmemset-elt-size
6359 @opindex Wno-memset-elt-size
6360 Warn for suspicious calls to the @code{memset} built-in function, if the
6361 first argument references an array, and the third argument is a number
6362 equal to the number of elements, but not equal to the size of the array
6363 in memory. This indicates that the user has omitted a multiplication by
6364 the element size. This warning is enabled by @option{-Wall}.
6365
6366 @item -Wmemset-transposed-args
6367 @opindex Wmemset-transposed-args
6368 @opindex Wno-memset-transposed-args
6369 Warn for suspicious calls to the @code{memset} built-in function, if the
6370 second argument is not zero and the third argument is zero. This warns e.g.@
6371 about @code{memset (buf, sizeof buf, 0)} where most probably
6372 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
6373 is only emitted if the third argument is literal zero. If it is some
6374 expression that is folded to zero, a cast of zero to some type, etc.,
6375 it is far less likely that the user has mistakenly exchanged the arguments
6376 and no warning is emitted. This warning is enabled by @option{-Wall}.
6377
6378 @item -Waddress
6379 @opindex Waddress
6380 @opindex Wno-address
6381 Warn about suspicious uses of memory addresses. These include using
6382 the address of a function in a conditional expression, such as
6383 @code{void func(void); if (func)}, and comparisons against the memory
6384 address of a string literal, such as @code{if (x == "abc")}. Such
6385 uses typically indicate a programmer error: the address of a function
6386 always evaluates to true, so their use in a conditional usually
6387 indicate that the programmer forgot the parentheses in a function
6388 call; and comparisons against string literals result in unspecified
6389 behavior and are not portable in C, so they usually indicate that the
6390 programmer intended to use @code{strcmp}. This warning is enabled by
6391 @option{-Wall}.
6392
6393 @item -Wlogical-op
6394 @opindex Wlogical-op
6395 @opindex Wno-logical-op
6396 Warn about suspicious uses of logical operators in expressions.
6397 This includes using logical operators in contexts where a
6398 bit-wise operator is likely to be expected. Also warns when
6399 the operands of a logical operator are the same:
6400 @smallexample
6401 extern int a;
6402 if (a < 0 && a < 0) @{ @dots{} @}
6403 @end smallexample
6404
6405 @item -Wlogical-not-parentheses
6406 @opindex Wlogical-not-parentheses
6407 @opindex Wno-logical-not-parentheses
6408 Warn about logical not used on the left hand side operand of a comparison.
6409 This option does not warn if the right operand is considered to be a boolean
6410 expression. Its purpose is to detect suspicious code like the following:
6411 @smallexample
6412 int a;
6413 @dots{}
6414 if (!a > 1) @{ @dots{} @}
6415 @end smallexample
6416
6417 It is possible to suppress the warning by wrapping the LHS into
6418 parentheses:
6419 @smallexample
6420 if ((!a) > 1) @{ @dots{} @}
6421 @end smallexample
6422
6423 This warning is enabled by @option{-Wall}.
6424
6425 @item -Waggregate-return
6426 @opindex Waggregate-return
6427 @opindex Wno-aggregate-return
6428 Warn if any functions that return structures or unions are defined or
6429 called. (In languages where you can return an array, this also elicits
6430 a warning.)
6431
6432 @item -Wno-aggressive-loop-optimizations
6433 @opindex Wno-aggressive-loop-optimizations
6434 @opindex Waggressive-loop-optimizations
6435 Warn if in a loop with constant number of iterations the compiler detects
6436 undefined behavior in some statement during one or more of the iterations.
6437
6438 @item -Wno-attributes
6439 @opindex Wno-attributes
6440 @opindex Wattributes
6441 Do not warn if an unexpected @code{__attribute__} is used, such as
6442 unrecognized attributes, function attributes applied to variables,
6443 etc. This does not stop errors for incorrect use of supported
6444 attributes.
6445
6446 @item -Wno-builtin-declaration-mismatch
6447 @opindex Wno-builtin-declaration-mismatch
6448 @opindex Wbuiltin-declaration-mismatch
6449 Warn if a built-in function is declared with the wrong signature or
6450 as non-function.
6451 This warning is enabled by default.
6452
6453 @item -Wno-builtin-macro-redefined
6454 @opindex Wno-builtin-macro-redefined
6455 @opindex Wbuiltin-macro-redefined
6456 Do not warn if certain built-in macros are redefined. This suppresses
6457 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
6458 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
6459
6460 @item -Wstrict-prototypes @r{(C and Objective-C only)}
6461 @opindex Wstrict-prototypes
6462 @opindex Wno-strict-prototypes
6463 Warn if a function is declared or defined without specifying the
6464 argument types. (An old-style function definition is permitted without
6465 a warning if preceded by a declaration that specifies the argument
6466 types.)
6467
6468 @item -Wold-style-declaration @r{(C and Objective-C only)}
6469 @opindex Wold-style-declaration
6470 @opindex Wno-old-style-declaration
6471 Warn for obsolescent usages, according to the C Standard, in a
6472 declaration. For example, warn if storage-class specifiers like
6473 @code{static} are not the first things in a declaration. This warning
6474 is also enabled by @option{-Wextra}.
6475
6476 @item -Wold-style-definition @r{(C and Objective-C only)}
6477 @opindex Wold-style-definition
6478 @opindex Wno-old-style-definition
6479 Warn if an old-style function definition is used. A warning is given
6480 even if there is a previous prototype.
6481
6482 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
6483 @opindex Wmissing-parameter-type
6484 @opindex Wno-missing-parameter-type
6485 A function parameter is declared without a type specifier in K&R-style
6486 functions:
6487
6488 @smallexample
6489 void foo(bar) @{ @}
6490 @end smallexample
6491
6492 This warning is also enabled by @option{-Wextra}.
6493
6494 @item -Wmissing-prototypes @r{(C and Objective-C only)}
6495 @opindex Wmissing-prototypes
6496 @opindex Wno-missing-prototypes
6497 Warn if a global function is defined without a previous prototype
6498 declaration. This warning is issued even if the definition itself
6499 provides a prototype. Use this option to detect global functions
6500 that do not have a matching prototype declaration in a header file.
6501 This option is not valid for C++ because all function declarations
6502 provide prototypes and a non-matching declaration declares an
6503 overload rather than conflict with an earlier declaration.
6504 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
6505
6506 @item -Wmissing-declarations
6507 @opindex Wmissing-declarations
6508 @opindex Wno-missing-declarations
6509 Warn if a global function is defined without a previous declaration.
6510 Do so even if the definition itself provides a prototype.
6511 Use this option to detect global functions that are not declared in
6512 header files. In C, no warnings are issued for functions with previous
6513 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
6514 missing prototypes. In C++, no warnings are issued for function templates,
6515 or for inline functions, or for functions in anonymous namespaces.
6516
6517 @item -Wmissing-field-initializers
6518 @opindex Wmissing-field-initializers
6519 @opindex Wno-missing-field-initializers
6520 @opindex W
6521 @opindex Wextra
6522 @opindex Wno-extra
6523 Warn if a structure's initializer has some fields missing. For
6524 example, the following code causes such a warning, because
6525 @code{x.h} is implicitly zero:
6526
6527 @smallexample
6528 struct s @{ int f, g, h; @};
6529 struct s x = @{ 3, 4 @};
6530 @end smallexample
6531
6532 This option does not warn about designated initializers, so the following
6533 modification does not trigger a warning:
6534
6535 @smallexample
6536 struct s @{ int f, g, h; @};
6537 struct s x = @{ .f = 3, .g = 4 @};
6538 @end smallexample
6539
6540 In C this option does not warn about the universal zero initializer
6541 @samp{@{ 0 @}}:
6542
6543 @smallexample
6544 struct s @{ int f, g, h; @};
6545 struct s x = @{ 0 @};
6546 @end smallexample
6547
6548 Likewise, in C++ this option does not warn about the empty @{ @}
6549 initializer, for example:
6550
6551 @smallexample
6552 struct s @{ int f, g, h; @};
6553 s x = @{ @};
6554 @end smallexample
6555
6556 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
6557 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
6558
6559 @item -Wno-multichar
6560 @opindex Wno-multichar
6561 @opindex Wmultichar
6562 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
6563 Usually they indicate a typo in the user's code, as they have
6564 implementation-defined values, and should not be used in portable code.
6565
6566 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
6567 @opindex Wnormalized=
6568 @opindex Wnormalized
6569 @opindex Wno-normalized
6570 @cindex NFC
6571 @cindex NFKC
6572 @cindex character set, input normalization
6573 In ISO C and ISO C++, two identifiers are different if they are
6574 different sequences of characters. However, sometimes when characters
6575 outside the basic ASCII character set are used, you can have two
6576 different character sequences that look the same. To avoid confusion,
6577 the ISO 10646 standard sets out some @dfn{normalization rules} which
6578 when applied ensure that two sequences that look the same are turned into
6579 the same sequence. GCC can warn you if you are using identifiers that
6580 have not been normalized; this option controls that warning.
6581
6582 There are four levels of warning supported by GCC@. The default is
6583 @option{-Wnormalized=nfc}, which warns about any identifier that is
6584 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
6585 recommended form for most uses. It is equivalent to
6586 @option{-Wnormalized}.
6587
6588 Unfortunately, there are some characters allowed in identifiers by
6589 ISO C and ISO C++ that, when turned into NFC, are not allowed in
6590 identifiers. That is, there's no way to use these symbols in portable
6591 ISO C or C++ and have all your identifiers in NFC@.
6592 @option{-Wnormalized=id} suppresses the warning for these characters.
6593 It is hoped that future versions of the standards involved will correct
6594 this, which is why this option is not the default.
6595
6596 You can switch the warning off for all characters by writing
6597 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
6598 only do this if you are using some other normalization scheme (like
6599 ``D''), because otherwise you can easily create bugs that are
6600 literally impossible to see.
6601
6602 Some characters in ISO 10646 have distinct meanings but look identical
6603 in some fonts or display methodologies, especially once formatting has
6604 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
6605 LETTER N'', displays just like a regular @code{n} that has been
6606 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
6607 normalization scheme to convert all these into a standard form as
6608 well, and GCC warns if your code is not in NFKC if you use
6609 @option{-Wnormalized=nfkc}. This warning is comparable to warning
6610 about every identifier that contains the letter O because it might be
6611 confused with the digit 0, and so is not the default, but may be
6612 useful as a local coding convention if the programming environment
6613 cannot be fixed to display these characters distinctly.
6614
6615 @item -Wno-deprecated
6616 @opindex Wno-deprecated
6617 @opindex Wdeprecated
6618 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
6619
6620 @item -Wno-deprecated-declarations
6621 @opindex Wno-deprecated-declarations
6622 @opindex Wdeprecated-declarations
6623 Do not warn about uses of functions (@pxref{Function Attributes}),
6624 variables (@pxref{Variable Attributes}), and types (@pxref{Type
6625 Attributes}) marked as deprecated by using the @code{deprecated}
6626 attribute.
6627
6628 @item -Wno-overflow
6629 @opindex Wno-overflow
6630 @opindex Woverflow
6631 Do not warn about compile-time overflow in constant expressions.
6632
6633 @item -Wno-odr
6634 @opindex Wno-odr
6635 @opindex Wodr
6636 Warn about One Definition Rule violations during link-time optimization.
6637 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
6638
6639 @item -Wopenmp-simd
6640 @opindex Wopenm-simd
6641 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
6642 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
6643 option can be used to relax the cost model.
6644
6645 @item -Woverride-init @r{(C and Objective-C only)}
6646 @opindex Woverride-init
6647 @opindex Wno-override-init
6648 @opindex W
6649 @opindex Wextra
6650 @opindex Wno-extra
6651 Warn if an initialized field without side effects is overridden when
6652 using designated initializers (@pxref{Designated Inits, , Designated
6653 Initializers}).
6654
6655 This warning is included in @option{-Wextra}. To get other
6656 @option{-Wextra} warnings without this one, use @option{-Wextra
6657 -Wno-override-init}.
6658
6659 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
6660 @opindex Woverride-init-side-effects
6661 @opindex Wno-override-init-side-effects
6662 Warn if an initialized field with side effects is overridden when
6663 using designated initializers (@pxref{Designated Inits, , Designated
6664 Initializers}). This warning is enabled by default.
6665
6666 @item -Wpacked
6667 @opindex Wpacked
6668 @opindex Wno-packed
6669 Warn if a structure is given the packed attribute, but the packed
6670 attribute has no effect on the layout or size of the structure.
6671 Such structures may be mis-aligned for little benefit. For
6672 instance, in this code, the variable @code{f.x} in @code{struct bar}
6673 is misaligned even though @code{struct bar} does not itself
6674 have the packed attribute:
6675
6676 @smallexample
6677 @group
6678 struct foo @{
6679 int x;
6680 char a, b, c, d;
6681 @} __attribute__((packed));
6682 struct bar @{
6683 char z;
6684 struct foo f;
6685 @};
6686 @end group
6687 @end smallexample
6688
6689 @item -Wpacked-bitfield-compat
6690 @opindex Wpacked-bitfield-compat
6691 @opindex Wno-packed-bitfield-compat
6692 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
6693 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
6694 the change can lead to differences in the structure layout. GCC
6695 informs you when the offset of such a field has changed in GCC 4.4.
6696 For example there is no longer a 4-bit padding between field @code{a}
6697 and @code{b} in this structure:
6698
6699 @smallexample
6700 struct foo
6701 @{
6702 char a:4;
6703 char b:8;
6704 @} __attribute__ ((packed));
6705 @end smallexample
6706
6707 This warning is enabled by default. Use
6708 @option{-Wno-packed-bitfield-compat} to disable this warning.
6709
6710 @item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
6711 @opindex Wpacked-not-aligned
6712 @opindex Wno-packed-not-aligned
6713 Warn if a structure field with explicitly specified alignment in a
6714 packed struct or union is misaligned. For example, a warning will
6715 be issued on @code{struct S}, like, @code{warning: alignment 1 of
6716 'struct S' is less than 8}, in this code:
6717
6718 @smallexample
6719 @group
6720 struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
6721 struct __attribute__ ((packed)) S @{
6722 struct S8 s8;
6723 @};
6724 @end group
6725 @end smallexample
6726
6727 This warning is enabled by @option{-Wall}.
6728
6729 @item -Wpadded
6730 @opindex Wpadded
6731 @opindex Wno-padded
6732 Warn if padding is included in a structure, either to align an element
6733 of the structure or to align the whole structure. Sometimes when this
6734 happens it is possible to rearrange the fields of the structure to
6735 reduce the padding and so make the structure smaller.
6736
6737 @item -Wredundant-decls
6738 @opindex Wredundant-decls
6739 @opindex Wno-redundant-decls
6740 Warn if anything is declared more than once in the same scope, even in
6741 cases where multiple declaration is valid and changes nothing.
6742
6743 @item -Wno-restrict
6744 @opindex Wrestrict
6745 @opindex Wno-restrict
6746 Warn when an object referenced by a @code{restrict}-qualified parameter
6747 (or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
6748 argument, or when copies between such objects overlap. For example,
6749 the call to the @code{strcpy} function below attempts to truncate the string
6750 by replacing its initial characters with the last four. However, because
6751 the call writes the terminating NUL into @code{a[4]}, the copies overlap and
6752 the call is diagnosed.
6753
6754 @smallexample
6755 struct foo
6756 @{
6757 char a[] = "abcd1234";
6758 strcpy (a, a + 4);
6759 @};
6760 @end smallexample
6761 The @option{-Wrestrict} is included in @option{-Wall}.
6762
6763 @item -Wnested-externs @r{(C and Objective-C only)}
6764 @opindex Wnested-externs
6765 @opindex Wno-nested-externs
6766 Warn if an @code{extern} declaration is encountered within a function.
6767
6768 @item -Wno-inherited-variadic-ctor
6769 @opindex Winherited-variadic-ctor
6770 @opindex Wno-inherited-variadic-ctor
6771 Suppress warnings about use of C++11 inheriting constructors when the
6772 base class inherited from has a C variadic constructor; the warning is
6773 on by default because the ellipsis is not inherited.
6774
6775 @item -Winline
6776 @opindex Winline
6777 @opindex Wno-inline
6778 Warn if a function that is declared as inline cannot be inlined.
6779 Even with this option, the compiler does not warn about failures to
6780 inline functions declared in system headers.
6781
6782 The compiler uses a variety of heuristics to determine whether or not
6783 to inline a function. For example, the compiler takes into account
6784 the size of the function being inlined and the amount of inlining
6785 that has already been done in the current function. Therefore,
6786 seemingly insignificant changes in the source program can cause the
6787 warnings produced by @option{-Winline} to appear or disappear.
6788
6789 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
6790 @opindex Wno-invalid-offsetof
6791 @opindex Winvalid-offsetof
6792 Suppress warnings from applying the @code{offsetof} macro to a non-POD
6793 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
6794 to a non-standard-layout type is undefined. In existing C++ implementations,
6795 however, @code{offsetof} typically gives meaningful results.
6796 This flag is for users who are aware that they are
6797 writing nonportable code and who have deliberately chosen to ignore the
6798 warning about it.
6799
6800 The restrictions on @code{offsetof} may be relaxed in a future version
6801 of the C++ standard.
6802
6803 @item -Wint-in-bool-context
6804 @opindex Wint-in-bool-context
6805 @opindex Wno-int-in-bool-context
6806 Warn for suspicious use of integer values where boolean values are expected,
6807 such as conditional expressions (?:) using non-boolean integer constants in
6808 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
6809 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
6810 for all kinds of multiplications regardless of the data type.
6811 This warning is enabled by @option{-Wall}.
6812
6813 @item -Wno-int-to-pointer-cast
6814 @opindex Wno-int-to-pointer-cast
6815 @opindex Wint-to-pointer-cast
6816 Suppress warnings from casts to pointer type of an integer of a
6817 different size. In C++, casting to a pointer type of smaller size is
6818 an error. @option{Wint-to-pointer-cast} is enabled by default.
6819
6820
6821 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
6822 @opindex Wno-pointer-to-int-cast
6823 @opindex Wpointer-to-int-cast
6824 Suppress warnings from casts from a pointer to an integer type of a
6825 different size.
6826
6827 @item -Winvalid-pch
6828 @opindex Winvalid-pch
6829 @opindex Wno-invalid-pch
6830 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
6831 the search path but cannot be used.
6832
6833 @item -Wlong-long
6834 @opindex Wlong-long
6835 @opindex Wno-long-long
6836 Warn if @code{long long} type is used. This is enabled by either
6837 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
6838 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
6839
6840 @item -Wvariadic-macros
6841 @opindex Wvariadic-macros
6842 @opindex Wno-variadic-macros
6843 Warn if variadic macros are used in ISO C90 mode, or if the GNU
6844 alternate syntax is used in ISO C99 mode. This is enabled by either
6845 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
6846 messages, use @option{-Wno-variadic-macros}.
6847
6848 @item -Wvarargs
6849 @opindex Wvarargs
6850 @opindex Wno-varargs
6851 Warn upon questionable usage of the macros used to handle variable
6852 arguments like @code{va_start}. This is default. To inhibit the
6853 warning messages, use @option{-Wno-varargs}.
6854
6855 @item -Wvector-operation-performance
6856 @opindex Wvector-operation-performance
6857 @opindex Wno-vector-operation-performance
6858 Warn if vector operation is not implemented via SIMD capabilities of the
6859 architecture. Mainly useful for the performance tuning.
6860 Vector operation can be implemented @code{piecewise}, which means that the
6861 scalar operation is performed on every vector element;
6862 @code{in parallel}, which means that the vector operation is implemented
6863 using scalars of wider type, which normally is more performance efficient;
6864 and @code{as a single scalar}, which means that vector fits into a
6865 scalar type.
6866
6867 @item -Wno-virtual-move-assign
6868 @opindex Wvirtual-move-assign
6869 @opindex Wno-virtual-move-assign
6870 Suppress warnings about inheriting from a virtual base with a
6871 non-trivial C++11 move assignment operator. This is dangerous because
6872 if the virtual base is reachable along more than one path, it is
6873 moved multiple times, which can mean both objects end up in the
6874 moved-from state. If the move assignment operator is written to avoid
6875 moving from a moved-from object, this warning can be disabled.
6876
6877 @item -Wvla
6878 @opindex Wvla
6879 @opindex Wno-vla
6880 Warn if a variable-length array is used in the code.
6881 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
6882 the variable-length array.
6883
6884 @item -Wvla-larger-than=@var{n}
6885 If this option is used, the compiler will warn on uses of
6886 variable-length arrays where the size is either unbounded, or bounded
6887 by an argument that can be larger than @var{n} bytes. This is similar
6888 to how @option{-Walloca-larger-than=@var{n}} works, but with
6889 variable-length arrays.
6890
6891 Note that GCC may optimize small variable-length arrays of a known
6892 value into plain arrays, so this warning may not get triggered for
6893 such arrays.
6894
6895 This warning is not enabled by @option{-Wall}, and is only active when
6896 @option{-ftree-vrp} is active (default for @option{-O2} and above).
6897
6898 See also @option{-Walloca-larger-than=@var{n}}.
6899
6900 @item -Wvolatile-register-var
6901 @opindex Wvolatile-register-var
6902 @opindex Wno-volatile-register-var
6903 Warn if a register variable is declared volatile. The volatile
6904 modifier does not inhibit all optimizations that may eliminate reads
6905 and/or writes to register variables. This warning is enabled by
6906 @option{-Wall}.
6907
6908 @item -Wdisabled-optimization
6909 @opindex Wdisabled-optimization
6910 @opindex Wno-disabled-optimization
6911 Warn if a requested optimization pass is disabled. This warning does
6912 not generally indicate that there is anything wrong with your code; it
6913 merely indicates that GCC's optimizers are unable to handle the code
6914 effectively. Often, the problem is that your code is too big or too
6915 complex; GCC refuses to optimize programs when the optimization
6916 itself is likely to take inordinate amounts of time.
6917
6918 @item -Wpointer-sign @r{(C and Objective-C only)}
6919 @opindex Wpointer-sign
6920 @opindex Wno-pointer-sign
6921 Warn for pointer argument passing or assignment with different signedness.
6922 This option is only supported for C and Objective-C@. It is implied by
6923 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
6924 @option{-Wno-pointer-sign}.
6925
6926 @item -Wstack-protector
6927 @opindex Wstack-protector
6928 @opindex Wno-stack-protector
6929 This option is only active when @option{-fstack-protector} is active. It
6930 warns about functions that are not protected against stack smashing.
6931
6932 @item -Woverlength-strings
6933 @opindex Woverlength-strings
6934 @opindex Wno-overlength-strings
6935 Warn about string constants that are longer than the ``minimum
6936 maximum'' length specified in the C standard. Modern compilers
6937 generally allow string constants that are much longer than the
6938 standard's minimum limit, but very portable programs should avoid
6939 using longer strings.
6940
6941 The limit applies @emph{after} string constant concatenation, and does
6942 not count the trailing NUL@. In C90, the limit was 509 characters; in
6943 C99, it was raised to 4095. C++98 does not specify a normative
6944 minimum maximum, so we do not diagnose overlength strings in C++@.
6945
6946 This option is implied by @option{-Wpedantic}, and can be disabled with
6947 @option{-Wno-overlength-strings}.
6948
6949 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
6950 @opindex Wunsuffixed-float-constants
6951
6952 Issue a warning for any floating constant that does not have
6953 a suffix. When used together with @option{-Wsystem-headers} it
6954 warns about such constants in system header files. This can be useful
6955 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
6956 from the decimal floating-point extension to C99.
6957
6958 @item -Wno-designated-init @r{(C and Objective-C only)}
6959 Suppress warnings when a positional initializer is used to initialize
6960 a structure that has been marked with the @code{designated_init}
6961 attribute.
6962
6963 @item -Whsa
6964 Issue a warning when HSAIL cannot be emitted for the compiled function or
6965 OpenMP construct.
6966
6967 @end table
6968
6969 @node Debugging Options
6970 @section Options for Debugging Your Program
6971 @cindex options, debugging
6972 @cindex debugging information options
6973
6974 To tell GCC to emit extra information for use by a debugger, in almost
6975 all cases you need only to add @option{-g} to your other options.
6976
6977 GCC allows you to use @option{-g} with
6978 @option{-O}. The shortcuts taken by optimized code may occasionally
6979 be surprising: some variables you declared may not exist
6980 at all; flow of control may briefly move where you did not expect it;
6981 some statements may not be executed because they compute constant
6982 results or their values are already at hand; some statements may
6983 execute in different places because they have been moved out of loops.
6984 Nevertheless it is possible to debug optimized output. This makes
6985 it reasonable to use the optimizer for programs that might have bugs.
6986
6987 If you are not using some other optimization option, consider
6988 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
6989 With no @option{-O} option at all, some compiler passes that collect
6990 information useful for debugging do not run at all, so that
6991 @option{-Og} may result in a better debugging experience.
6992
6993 @table @gcctabopt
6994 @item -g
6995 @opindex g
6996 Produce debugging information in the operating system's native format
6997 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
6998 information.
6999
7000 On most systems that use stabs format, @option{-g} enables use of extra
7001 debugging information that only GDB can use; this extra information
7002 makes debugging work better in GDB but probably makes other debuggers
7003 crash or
7004 refuse to read the program. If you want to control for certain whether
7005 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
7006 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
7007
7008 @item -ggdb
7009 @opindex ggdb
7010 Produce debugging information for use by GDB@. This means to use the
7011 most expressive format available (DWARF, stabs, or the native format
7012 if neither of those are supported), including GDB extensions if at all
7013 possible.
7014
7015 @item -gdwarf
7016 @itemx -gdwarf-@var{version}
7017 @opindex gdwarf
7018 Produce debugging information in DWARF format (if that is supported).
7019 The value of @var{version} may be either 2, 3, 4 or 5; the default version
7020 for most targets is 4. DWARF Version 5 is only experimental.
7021
7022 Note that with DWARF Version 2, some ports require and always
7023 use some non-conflicting DWARF 3 extensions in the unwind tables.
7024
7025 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
7026 for maximum benefit.
7027
7028 GCC no longer supports DWARF Version 1, which is substantially
7029 different than Version 2 and later. For historical reasons, some
7030 other DWARF-related options such as
7031 @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
7032 in their names, but apply to all currently-supported versions of DWARF.
7033
7034 @item -gstabs
7035 @opindex gstabs
7036 Produce debugging information in stabs format (if that is supported),
7037 without GDB extensions. This is the format used by DBX on most BSD
7038 systems. On MIPS, Alpha and System V Release 4 systems this option
7039 produces stabs debugging output that is not understood by DBX@.
7040 On System V Release 4 systems this option requires the GNU assembler.
7041
7042 @item -gstabs+
7043 @opindex gstabs+
7044 Produce debugging information in stabs format (if that is supported),
7045 using GNU extensions understood only by the GNU debugger (GDB)@. The
7046 use of these extensions is likely to make other debuggers crash or
7047 refuse to read the program.
7048
7049 @item -gxcoff
7050 @opindex gxcoff
7051 Produce debugging information in XCOFF format (if that is supported).
7052 This is the format used by the DBX debugger on IBM RS/6000 systems.
7053
7054 @item -gxcoff+
7055 @opindex gxcoff+
7056 Produce debugging information in XCOFF format (if that is supported),
7057 using GNU extensions understood only by the GNU debugger (GDB)@. The
7058 use of these extensions is likely to make other debuggers crash or
7059 refuse to read the program, and may cause assemblers other than the GNU
7060 assembler (GAS) to fail with an error.
7061
7062 @item -gvms
7063 @opindex gvms
7064 Produce debugging information in Alpha/VMS debug format (if that is
7065 supported). This is the format used by DEBUG on Alpha/VMS systems.
7066
7067 @item -g@var{level}
7068 @itemx -ggdb@var{level}
7069 @itemx -gstabs@var{level}
7070 @itemx -gxcoff@var{level}
7071 @itemx -gvms@var{level}
7072 Request debugging information and also use @var{level} to specify how
7073 much information. The default level is 2.
7074
7075 Level 0 produces no debug information at all. Thus, @option{-g0} negates
7076 @option{-g}.
7077
7078 Level 1 produces minimal information, enough for making backtraces in
7079 parts of the program that you don't plan to debug. This includes
7080 descriptions of functions and external variables, and line number
7081 tables, but no information about local variables.
7082
7083 Level 3 includes extra information, such as all the macro definitions
7084 present in the program. Some debuggers support macro expansion when
7085 you use @option{-g3}.
7086
7087 @option{-gdwarf} does not accept a concatenated debug level, to avoid
7088 confusion with @option{-gdwarf-@var{level}}.
7089 Instead use an additional @option{-g@var{level}} option to change the
7090 debug level for DWARF.
7091
7092 @item -feliminate-unused-debug-symbols
7093 @opindex feliminate-unused-debug-symbols
7094 Produce debugging information in stabs format (if that is supported),
7095 for only symbols that are actually used.
7096
7097 @item -femit-class-debug-always
7098 @opindex femit-class-debug-always
7099 Instead of emitting debugging information for a C++ class in only one
7100 object file, emit it in all object files using the class. This option
7101 should be used only with debuggers that are unable to handle the way GCC
7102 normally emits debugging information for classes because using this
7103 option increases the size of debugging information by as much as a
7104 factor of two.
7105
7106 @item -fno-merge-debug-strings
7107 @opindex fmerge-debug-strings
7108 @opindex fno-merge-debug-strings
7109 Direct the linker to not merge together strings in the debugging
7110 information that are identical in different object files. Merging is
7111 not supported by all assemblers or linkers. Merging decreases the size
7112 of the debug information in the output file at the cost of increasing
7113 link processing time. Merging is enabled by default.
7114
7115 @item -fdebug-prefix-map=@var{old}=@var{new}
7116 @opindex fdebug-prefix-map
7117 When compiling files residing in directory @file{@var{old}}, record
7118 debugging information describing them as if the files resided in
7119 directory @file{@var{new}} instead. This can be used to replace a
7120 build-time path with an install-time path in the debug info. It can
7121 also be used to change an absolute path to a relative path by using
7122 @file{.} for @var{new}. This can give more reproducible builds, which
7123 are location independent, but may require an extra command to tell GDB
7124 where to find the source files. See also @option{-ffile-prefix-map}.
7125
7126 @item -fvar-tracking
7127 @opindex fvar-tracking
7128 Run variable tracking pass. It computes where variables are stored at each
7129 position in code. Better debugging information is then generated
7130 (if the debugging information format supports this information).
7131
7132 It is enabled by default when compiling with optimization (@option{-Os},
7133 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7134 the debug info format supports it.
7135
7136 @item -fvar-tracking-assignments
7137 @opindex fvar-tracking-assignments
7138 @opindex fno-var-tracking-assignments
7139 Annotate assignments to user variables early in the compilation and
7140 attempt to carry the annotations over throughout the compilation all the
7141 way to the end, in an attempt to improve debug information while
7142 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7143
7144 It can be enabled even if var-tracking is disabled, in which case
7145 annotations are created and maintained, but discarded at the end.
7146 By default, this flag is enabled together with @option{-fvar-tracking},
7147 except when selective scheduling is enabled.
7148
7149 @item -gsplit-dwarf
7150 @opindex gsplit-dwarf
7151 Separate as much DWARF debugging information as possible into a
7152 separate output file with the extension @file{.dwo}. This option allows
7153 the build system to avoid linking files with debug information. To
7154 be useful, this option requires a debugger capable of reading @file{.dwo}
7155 files.
7156
7157 @item -gpubnames
7158 @opindex gpubnames
7159 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7160
7161 @item -ggnu-pubnames
7162 @opindex ggnu-pubnames
7163 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7164 suitable for conversion into a GDB@ index. This option is only useful
7165 with a linker that can produce GDB@ index version 7.
7166
7167 @item -fdebug-types-section
7168 @opindex fdebug-types-section
7169 @opindex fno-debug-types-section
7170 When using DWARF Version 4 or higher, type DIEs can be put into
7171 their own @code{.debug_types} section instead of making them part of the
7172 @code{.debug_info} section. It is more efficient to put them in a separate
7173 comdat sections since the linker can then remove duplicates.
7174 But not all DWARF consumers support @code{.debug_types} sections yet
7175 and on some objects @code{.debug_types} produces larger instead of smaller
7176 debugging information.
7177
7178 @item -grecord-gcc-switches
7179 @item -gno-record-gcc-switches
7180 @opindex grecord-gcc-switches
7181 @opindex gno-record-gcc-switches
7182 This switch causes the command-line options used to invoke the
7183 compiler that may affect code generation to be appended to the
7184 DW_AT_producer attribute in DWARF debugging information. The options
7185 are concatenated with spaces separating them from each other and from
7186 the compiler version.
7187 It is enabled by default.
7188 See also @option{-frecord-gcc-switches} for another
7189 way of storing compiler options into the object file.
7190
7191 @item -gstrict-dwarf
7192 @opindex gstrict-dwarf
7193 Disallow using extensions of later DWARF standard version than selected
7194 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
7195 DWARF extensions from later standard versions is allowed.
7196
7197 @item -gno-strict-dwarf
7198 @opindex gno-strict-dwarf
7199 Allow using extensions of later DWARF standard version than selected with
7200 @option{-gdwarf-@var{version}}.
7201
7202 @item -gcolumn-info
7203 @item -gno-column-info
7204 @opindex gcolumn-info
7205 @opindex gno-column-info
7206 Emit location column information into DWARF debugging information, rather
7207 than just file and line.
7208 This option is enabled by default.
7209
7210 @item -gstatement-frontiers
7211 @item -gno-statement-frontiers
7212 @opindex gstatement-frontiers
7213 @opindex gno-statement-frontiers
7214 This option causes GCC to create markers in the internal representation
7215 at the beginning of statements, and to keep them roughly in place
7216 throughout compilation, using them to guide the output of @code{is_stmt}
7217 markers in the line number table. This is enabled by default when
7218 compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
7219 @dots{}), and outputting DWARF 2 debug information at the normal level.
7220
7221 @item -gz@r{[}=@var{type}@r{]}
7222 @opindex gz
7223 Produce compressed debug sections in DWARF format, if that is supported.
7224 If @var{type} is not given, the default type depends on the capabilities
7225 of the assembler and linker used. @var{type} may be one of
7226 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
7227 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
7228 compression in traditional GNU format). If the linker doesn't support
7229 writing compressed debug sections, the option is rejected. Otherwise,
7230 if the assembler does not support them, @option{-gz} is silently ignored
7231 when producing object files.
7232
7233 @item -femit-struct-debug-baseonly
7234 @opindex femit-struct-debug-baseonly
7235 Emit debug information for struct-like types
7236 only when the base name of the compilation source file
7237 matches the base name of file in which the struct is defined.
7238
7239 This option substantially reduces the size of debugging information,
7240 but at significant potential loss in type information to the debugger.
7241 See @option{-femit-struct-debug-reduced} for a less aggressive option.
7242 See @option{-femit-struct-debug-detailed} for more detailed control.
7243
7244 This option works only with DWARF debug output.
7245
7246 @item -femit-struct-debug-reduced
7247 @opindex femit-struct-debug-reduced
7248 Emit debug information for struct-like types
7249 only when the base name of the compilation source file
7250 matches the base name of file in which the type is defined,
7251 unless the struct is a template or defined in a system header.
7252
7253 This option significantly reduces the size of debugging information,
7254 with some potential loss in type information to the debugger.
7255 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
7256 See @option{-femit-struct-debug-detailed} for more detailed control.
7257
7258 This option works only with DWARF debug output.
7259
7260 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
7261 @opindex femit-struct-debug-detailed
7262 Specify the struct-like types
7263 for which the compiler generates debug information.
7264 The intent is to reduce duplicate struct debug information
7265 between different object files within the same program.
7266
7267 This option is a detailed version of
7268 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
7269 which serves for most needs.
7270
7271 A specification has the syntax@*
7272 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
7273
7274 The optional first word limits the specification to
7275 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
7276 A struct type is used directly when it is the type of a variable, member.
7277 Indirect uses arise through pointers to structs.
7278 That is, when use of an incomplete struct is valid, the use is indirect.
7279 An example is
7280 @samp{struct one direct; struct two * indirect;}.
7281
7282 The optional second word limits the specification to
7283 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
7284 Generic structs are a bit complicated to explain.
7285 For C++, these are non-explicit specializations of template classes,
7286 or non-template classes within the above.
7287 Other programming languages have generics,
7288 but @option{-femit-struct-debug-detailed} does not yet implement them.
7289
7290 The third word specifies the source files for those
7291 structs for which the compiler should emit debug information.
7292 The values @samp{none} and @samp{any} have the normal meaning.
7293 The value @samp{base} means that
7294 the base of name of the file in which the type declaration appears
7295 must match the base of the name of the main compilation file.
7296 In practice, this means that when compiling @file{foo.c}, debug information
7297 is generated for types declared in that file and @file{foo.h},
7298 but not other header files.
7299 The value @samp{sys} means those types satisfying @samp{base}
7300 or declared in system or compiler headers.
7301
7302 You may need to experiment to determine the best settings for your application.
7303
7304 The default is @option{-femit-struct-debug-detailed=all}.
7305
7306 This option works only with DWARF debug output.
7307
7308 @item -fno-dwarf2-cfi-asm
7309 @opindex fdwarf2-cfi-asm
7310 @opindex fno-dwarf2-cfi-asm
7311 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
7312 instead of using GAS @code{.cfi_*} directives.
7313
7314 @item -fno-eliminate-unused-debug-types
7315 @opindex feliminate-unused-debug-types
7316 @opindex fno-eliminate-unused-debug-types
7317 Normally, when producing DWARF output, GCC avoids producing debug symbol
7318 output for types that are nowhere used in the source file being compiled.
7319 Sometimes it is useful to have GCC emit debugging
7320 information for all types declared in a compilation
7321 unit, regardless of whether or not they are actually used
7322 in that compilation unit, for example
7323 if, in the debugger, you want to cast a value to a type that is
7324 not actually used in your program (but is declared). More often,
7325 however, this results in a significant amount of wasted space.
7326 @end table
7327
7328 @node Optimize Options
7329 @section Options That Control Optimization
7330 @cindex optimize options
7331 @cindex options, optimization
7332
7333 These options control various sorts of optimizations.
7334
7335 Without any optimization option, the compiler's goal is to reduce the
7336 cost of compilation and to make debugging produce the expected
7337 results. Statements are independent: if you stop the program with a
7338 breakpoint between statements, you can then assign a new value to any
7339 variable or change the program counter to any other statement in the
7340 function and get exactly the results you expect from the source
7341 code.
7342
7343 Turning on optimization flags makes the compiler attempt to improve
7344 the performance and/or code size at the expense of compilation time
7345 and possibly the ability to debug the program.
7346
7347 The compiler performs optimization based on the knowledge it has of the
7348 program. Compiling multiple files at once to a single output file mode allows
7349 the compiler to use information gained from all of the files when compiling
7350 each of them.
7351
7352 Not all optimizations are controlled directly by a flag. Only
7353 optimizations that have a flag are listed in this section.
7354
7355 Most optimizations are only enabled if an @option{-O} level is set on
7356 the command line. Otherwise they are disabled, even if individual
7357 optimization flags are specified.
7358
7359 Depending on the target and how GCC was configured, a slightly different
7360 set of optimizations may be enabled at each @option{-O} level than
7361 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7362 to find out the exact set of optimizations that are enabled at each level.
7363 @xref{Overall Options}, for examples.
7364
7365 @table @gcctabopt
7366 @item -O
7367 @itemx -O1
7368 @opindex O
7369 @opindex O1
7370 Optimize. Optimizing compilation takes somewhat more time, and a lot
7371 more memory for a large function.
7372
7373 With @option{-O}, the compiler tries to reduce code size and execution
7374 time, without performing any optimizations that take a great deal of
7375 compilation time.
7376
7377 @option{-O} turns on the following optimization flags:
7378 @gccoptlist{
7379 -fauto-inc-dec @gol
7380 -fbranch-count-reg @gol
7381 -fcombine-stack-adjustments @gol
7382 -fcompare-elim @gol
7383 -fcprop-registers @gol
7384 -fdce @gol
7385 -fdefer-pop @gol
7386 -fdelayed-branch @gol
7387 -fdse @gol
7388 -fforward-propagate @gol
7389 -fguess-branch-probability @gol
7390 -fif-conversion2 @gol
7391 -fif-conversion @gol
7392 -finline-functions-called-once @gol
7393 -fipa-pure-const @gol
7394 -fipa-profile @gol
7395 -fipa-reference @gol
7396 -fmerge-constants @gol
7397 -fmove-loop-invariants @gol
7398 -fomit-frame-pointer @gol
7399 -freorder-blocks @gol
7400 -fshrink-wrap @gol
7401 -fshrink-wrap-separate @gol
7402 -fsplit-wide-types @gol
7403 -fssa-backprop @gol
7404 -fssa-phiopt @gol
7405 -ftree-bit-ccp @gol
7406 -ftree-ccp @gol
7407 -ftree-ch @gol
7408 -ftree-coalesce-vars @gol
7409 -ftree-copy-prop @gol
7410 -ftree-dce @gol
7411 -ftree-dominator-opts @gol
7412 -ftree-dse @gol
7413 -ftree-forwprop @gol
7414 -ftree-fre @gol
7415 -ftree-phiprop @gol
7416 -ftree-sink @gol
7417 -ftree-slsr @gol
7418 -ftree-sra @gol
7419 -ftree-pta @gol
7420 -ftree-ter @gol
7421 -funit-at-a-time}
7422
7423 @item -O2
7424 @opindex O2
7425 Optimize even more. GCC performs nearly all supported optimizations
7426 that do not involve a space-speed tradeoff.
7427 As compared to @option{-O}, this option increases both compilation time
7428 and the performance of the generated code.
7429
7430 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7431 also turns on the following optimization flags:
7432 @gccoptlist{-fthread-jumps @gol
7433 -falign-functions -falign-jumps @gol
7434 -falign-loops -falign-labels @gol
7435 -fcaller-saves @gol
7436 -fcrossjumping @gol
7437 -fcse-follow-jumps -fcse-skip-blocks @gol
7438 -fdelete-null-pointer-checks @gol
7439 -fdevirtualize -fdevirtualize-speculatively @gol
7440 -fexpensive-optimizations @gol
7441 -fgcse -fgcse-lm @gol
7442 -fhoist-adjacent-loads @gol
7443 -finline-small-functions @gol
7444 -findirect-inlining @gol
7445 -fipa-cp @gol
7446 -fipa-bit-cp @gol
7447 -fipa-vrp @gol
7448 -fipa-sra @gol
7449 -fipa-icf @gol
7450 -fisolate-erroneous-paths-dereference @gol
7451 -flra-remat @gol
7452 -foptimize-sibling-calls @gol
7453 -foptimize-strlen @gol
7454 -fpartial-inlining @gol
7455 -fpeephole2 @gol
7456 -freorder-blocks-algorithm=stc @gol
7457 -freorder-blocks-and-partition -freorder-functions @gol
7458 -frerun-cse-after-loop @gol
7459 -fsched-interblock -fsched-spec @gol
7460 -fschedule-insns -fschedule-insns2 @gol
7461 -fstore-merging @gol
7462 -fstrict-aliasing @gol
7463 -ftree-builtin-call-dce @gol
7464 -ftree-switch-conversion -ftree-tail-merge @gol
7465 -fcode-hoisting @gol
7466 -ftree-pre @gol
7467 -ftree-vrp @gol
7468 -fipa-ra}
7469
7470 Please note the warning under @option{-fgcse} about
7471 invoking @option{-O2} on programs that use computed gotos.
7472
7473 @item -O3
7474 @opindex O3
7475 Optimize yet more. @option{-O3} turns on all optimizations specified
7476 by @option{-O2} and also turns on the following optimization flags:
7477 @gccoptlist{-finline-functions @gol
7478 -funswitch-loops @gol
7479 -fpredictive-commoning @gol
7480 -fgcse-after-reload @gol
7481 -ftree-loop-vectorize @gol
7482 -ftree-loop-distribution @gol
7483 -ftree-loop-distribute-patterns @gol
7484 -floop-interchange @gol
7485 -fsplit-paths @gol
7486 -ftree-slp-vectorize @gol
7487 -fvect-cost-model @gol
7488 -ftree-partial-pre @gol
7489 -fpeel-loops @gol
7490 -fipa-cp-clone}
7491
7492 @item -O0
7493 @opindex O0
7494 Reduce compilation time and make debugging produce the expected
7495 results. This is the default.
7496
7497 @item -Os
7498 @opindex Os
7499 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7500 do not typically increase code size. It also performs further
7501 optimizations designed to reduce code size.
7502
7503 @option{-Os} disables the following optimization flags:
7504 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7505 -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc @gol
7506 -freorder-blocks-and-partition -fprefetch-loop-arrays}
7507
7508 @item -Ofast
7509 @opindex Ofast
7510 Disregard strict standards compliance. @option{-Ofast} enables all
7511 @option{-O3} optimizations. It also enables optimizations that are not
7512 valid for all standard-compliant programs.
7513 It turns on @option{-ffast-math} and the Fortran-specific
7514 @option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
7515 specified, and @option{-fno-protect-parens}.
7516
7517 @item -Og
7518 @opindex Og
7519 Optimize debugging experience. @option{-Og} enables optimizations
7520 that do not interfere with debugging. It should be the optimization
7521 level of choice for the standard edit-compile-debug cycle, offering
7522 a reasonable level of optimization while maintaining fast compilation
7523 and a good debugging experience.
7524 @end table
7525
7526 If you use multiple @option{-O} options, with or without level numbers,
7527 the last such option is the one that is effective.
7528
7529 Options of the form @option{-f@var{flag}} specify machine-independent
7530 flags. Most flags have both positive and negative forms; the negative
7531 form of @option{-ffoo} is @option{-fno-foo}. In the table
7532 below, only one of the forms is listed---the one you typically
7533 use. You can figure out the other form by either removing @samp{no-}
7534 or adding it.
7535
7536 The following options control specific optimizations. They are either
7537 activated by @option{-O} options or are related to ones that are. You
7538 can use the following flags in the rare cases when ``fine-tuning'' of
7539 optimizations to be performed is desired.
7540
7541 @table @gcctabopt
7542 @item -fno-defer-pop
7543 @opindex fno-defer-pop
7544 Always pop the arguments to each function call as soon as that function
7545 returns. For machines that must pop arguments after a function call,
7546 the compiler normally lets arguments accumulate on the stack for several
7547 function calls and pops them all at once.
7548
7549 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7550
7551 @item -fforward-propagate
7552 @opindex fforward-propagate
7553 Perform a forward propagation pass on RTL@. The pass tries to combine two
7554 instructions and checks if the result can be simplified. If loop unrolling
7555 is active, two passes are performed and the second is scheduled after
7556 loop unrolling.
7557
7558 This option is enabled by default at optimization levels @option{-O},
7559 @option{-O2}, @option{-O3}, @option{-Os}.
7560
7561 @item -ffp-contract=@var{style}
7562 @opindex ffp-contract
7563 @option{-ffp-contract=off} disables floating-point expression contraction.
7564 @option{-ffp-contract=fast} enables floating-point expression contraction
7565 such as forming of fused multiply-add operations if the target has
7566 native support for them.
7567 @option{-ffp-contract=on} enables floating-point expression contraction
7568 if allowed by the language standard. This is currently not implemented
7569 and treated equal to @option{-ffp-contract=off}.
7570
7571 The default is @option{-ffp-contract=fast}.
7572
7573 @item -fomit-frame-pointer
7574 @opindex fomit-frame-pointer
7575 Omit the frame pointer in functions that don't need one. This avoids the
7576 instructions to save, set up and restore the frame pointer; on many targets
7577 it also makes an extra register available.
7578
7579 On some targets this flag has no effect because the standard calling sequence
7580 always uses a frame pointer, so it cannot be omitted.
7581
7582 Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
7583 is used in all functions. Several targets always omit the frame pointer in
7584 leaf functions.
7585
7586 Enabled by default at @option{-O} and higher.
7587
7588 @item -foptimize-sibling-calls
7589 @opindex foptimize-sibling-calls
7590 Optimize sibling and tail recursive calls.
7591
7592 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7593
7594 @item -foptimize-strlen
7595 @opindex foptimize-strlen
7596 Optimize various standard C string functions (e.g. @code{strlen},
7597 @code{strchr} or @code{strcpy}) and
7598 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7599
7600 Enabled at levels @option{-O2}, @option{-O3}.
7601
7602 @item -fno-inline
7603 @opindex fno-inline
7604 Do not expand any functions inline apart from those marked with
7605 the @code{always_inline} attribute. This is the default when not
7606 optimizing.
7607
7608 Single functions can be exempted from inlining by marking them
7609 with the @code{noinline} attribute.
7610
7611 @item -finline-small-functions
7612 @opindex finline-small-functions
7613 Integrate functions into their callers when their body is smaller than expected
7614 function call code (so overall size of program gets smaller). The compiler
7615 heuristically decides which functions are simple enough to be worth integrating
7616 in this way. This inlining applies to all functions, even those not declared
7617 inline.
7618
7619 Enabled at level @option{-O2}.
7620
7621 @item -findirect-inlining
7622 @opindex findirect-inlining
7623 Inline also indirect calls that are discovered to be known at compile
7624 time thanks to previous inlining. This option has any effect only
7625 when inlining itself is turned on by the @option{-finline-functions}
7626 or @option{-finline-small-functions} options.
7627
7628 Enabled at level @option{-O2}.
7629
7630 @item -finline-functions
7631 @opindex finline-functions
7632 Consider all functions for inlining, even if they are not declared inline.
7633 The compiler heuristically decides which functions are worth integrating
7634 in this way.
7635
7636 If all calls to a given function are integrated, and the function is
7637 declared @code{static}, then the function is normally not output as
7638 assembler code in its own right.
7639
7640 Enabled at level @option{-O3}.
7641
7642 @item -finline-functions-called-once
7643 @opindex finline-functions-called-once
7644 Consider all @code{static} functions called once for inlining into their
7645 caller even if they are not marked @code{inline}. If a call to a given
7646 function is integrated, then the function is not output as assembler code
7647 in its own right.
7648
7649 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7650
7651 @item -fearly-inlining
7652 @opindex fearly-inlining
7653 Inline functions marked by @code{always_inline} and functions whose body seems
7654 smaller than the function call overhead early before doing
7655 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7656 makes profiling significantly cheaper and usually inlining faster on programs
7657 having large chains of nested wrapper functions.
7658
7659 Enabled by default.
7660
7661 @item -fipa-sra
7662 @opindex fipa-sra
7663 Perform interprocedural scalar replacement of aggregates, removal of
7664 unused parameters and replacement of parameters passed by reference
7665 by parameters passed by value.
7666
7667 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7668
7669 @item -finline-limit=@var{n}
7670 @opindex finline-limit
7671 By default, GCC limits the size of functions that can be inlined. This flag
7672 allows coarse control of this limit. @var{n} is the size of functions that
7673 can be inlined in number of pseudo instructions.
7674
7675 Inlining is actually controlled by a number of parameters, which may be
7676 specified individually by using @option{--param @var{name}=@var{value}}.
7677 The @option{-finline-limit=@var{n}} option sets some of these parameters
7678 as follows:
7679
7680 @table @gcctabopt
7681 @item max-inline-insns-single
7682 is set to @var{n}/2.
7683 @item max-inline-insns-auto
7684 is set to @var{n}/2.
7685 @end table
7686
7687 See below for a documentation of the individual
7688 parameters controlling inlining and for the defaults of these parameters.
7689
7690 @emph{Note:} there may be no value to @option{-finline-limit} that results
7691 in default behavior.
7692
7693 @emph{Note:} pseudo instruction represents, in this particular context, an
7694 abstract measurement of function's size. In no way does it represent a count
7695 of assembly instructions and as such its exact meaning might change from one
7696 release to an another.
7697
7698 @item -fno-keep-inline-dllexport
7699 @opindex fno-keep-inline-dllexport
7700 This is a more fine-grained version of @option{-fkeep-inline-functions},
7701 which applies only to functions that are declared using the @code{dllexport}
7702 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
7703 Functions}.
7704
7705 @item -fkeep-inline-functions
7706 @opindex fkeep-inline-functions
7707 In C, emit @code{static} functions that are declared @code{inline}
7708 into the object file, even if the function has been inlined into all
7709 of its callers. This switch does not affect functions using the
7710 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7711 inline functions into the object file.
7712
7713 @item -fkeep-static-functions
7714 @opindex fkeep-static-functions
7715 Emit @code{static} functions into the object file, even if the function
7716 is never used.
7717
7718 @item -fkeep-static-consts
7719 @opindex fkeep-static-consts
7720 Emit variables declared @code{static const} when optimization isn't turned
7721 on, even if the variables aren't referenced.
7722
7723 GCC enables this option by default. If you want to force the compiler to
7724 check if a variable is referenced, regardless of whether or not
7725 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7726
7727 @item -fmerge-constants
7728 @opindex fmerge-constants
7729 Attempt to merge identical constants (string constants and floating-point
7730 constants) across compilation units.
7731
7732 This option is the default for optimized compilation if the assembler and
7733 linker support it. Use @option{-fno-merge-constants} to inhibit this
7734 behavior.
7735
7736 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7737
7738 @item -fmerge-all-constants
7739 @opindex fmerge-all-constants
7740 Attempt to merge identical constants and identical variables.
7741
7742 This option implies @option{-fmerge-constants}. In addition to
7743 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7744 arrays or initialized constant variables with integral or floating-point
7745 types. Languages like C or C++ require each variable, including multiple
7746 instances of the same variable in recursive calls, to have distinct locations,
7747 so using this option results in non-conforming
7748 behavior.
7749
7750 @item -fmodulo-sched
7751 @opindex fmodulo-sched
7752 Perform swing modulo scheduling immediately before the first scheduling
7753 pass. This pass looks at innermost loops and reorders their
7754 instructions by overlapping different iterations.
7755
7756 @item -fmodulo-sched-allow-regmoves
7757 @opindex fmodulo-sched-allow-regmoves
7758 Perform more aggressive SMS-based modulo scheduling with register moves
7759 allowed. By setting this flag certain anti-dependences edges are
7760 deleted, which triggers the generation of reg-moves based on the
7761 life-range analysis. This option is effective only with
7762 @option{-fmodulo-sched} enabled.
7763
7764 @item -fno-branch-count-reg
7765 @opindex fno-branch-count-reg
7766 Avoid running a pass scanning for opportunities to use ``decrement and
7767 branch'' instructions on a count register instead of generating sequences
7768 of instructions that decrement a register, compare it against zero, and
7769 then branch based upon the result. This option is only meaningful on
7770 architectures that support such instructions, which include x86, PowerPC,
7771 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
7772 doesn't remove the decrement and branch instructions from the generated
7773 instruction stream introduced by other optimization passes.
7774
7775 Enabled by default at @option{-O1} and higher.
7776
7777 The default is @option{-fbranch-count-reg}.
7778
7779 @item -fno-function-cse
7780 @opindex fno-function-cse
7781 Do not put function addresses in registers; make each instruction that
7782 calls a constant function contain the function's address explicitly.
7783
7784 This option results in less efficient code, but some strange hacks
7785 that alter the assembler output may be confused by the optimizations
7786 performed when this option is not used.
7787
7788 The default is @option{-ffunction-cse}
7789
7790 @item -fno-zero-initialized-in-bss
7791 @opindex fno-zero-initialized-in-bss
7792 If the target supports a BSS section, GCC by default puts variables that
7793 are initialized to zero into BSS@. This can save space in the resulting
7794 code.
7795
7796 This option turns off this behavior because some programs explicitly
7797 rely on variables going to the data section---e.g., so that the
7798 resulting executable can find the beginning of that section and/or make
7799 assumptions based on that.
7800
7801 The default is @option{-fzero-initialized-in-bss}.
7802
7803 @item -fthread-jumps
7804 @opindex fthread-jumps
7805 Perform optimizations that check to see if a jump branches to a
7806 location where another comparison subsumed by the first is found. If
7807 so, the first branch is redirected to either the destination of the
7808 second branch or a point immediately following it, depending on whether
7809 the condition is known to be true or false.
7810
7811 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7812
7813 @item -fsplit-wide-types
7814 @opindex fsplit-wide-types
7815 When using a type that occupies multiple registers, such as @code{long
7816 long} on a 32-bit system, split the registers apart and allocate them
7817 independently. This normally generates better code for those types,
7818 but may make debugging more difficult.
7819
7820 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7821 @option{-Os}.
7822
7823 @item -fcse-follow-jumps
7824 @opindex fcse-follow-jumps
7825 In common subexpression elimination (CSE), scan through jump instructions
7826 when the target of the jump is not reached by any other path. For
7827 example, when CSE encounters an @code{if} statement with an
7828 @code{else} clause, CSE follows the jump when the condition
7829 tested is false.
7830
7831 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7832
7833 @item -fcse-skip-blocks
7834 @opindex fcse-skip-blocks
7835 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7836 follow jumps that conditionally skip over blocks. When CSE
7837 encounters a simple @code{if} statement with no else clause,
7838 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7839 body of the @code{if}.
7840
7841 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7842
7843 @item -frerun-cse-after-loop
7844 @opindex frerun-cse-after-loop
7845 Re-run common subexpression elimination after loop optimizations are
7846 performed.
7847
7848 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7849
7850 @item -fgcse
7851 @opindex fgcse
7852 Perform a global common subexpression elimination pass.
7853 This pass also performs global constant and copy propagation.
7854
7855 @emph{Note:} When compiling a program using computed gotos, a GCC
7856 extension, you may get better run-time performance if you disable
7857 the global common subexpression elimination pass by adding
7858 @option{-fno-gcse} to the command line.
7859
7860 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7861
7862 @item -fgcse-lm
7863 @opindex fgcse-lm
7864 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7865 attempts to move loads that are only killed by stores into themselves. This
7866 allows a loop containing a load/store sequence to be changed to a load outside
7867 the loop, and a copy/store within the loop.
7868
7869 Enabled by default when @option{-fgcse} is enabled.
7870
7871 @item -fgcse-sm
7872 @opindex fgcse-sm
7873 When @option{-fgcse-sm} is enabled, a store motion pass is run after
7874 global common subexpression elimination. This pass attempts to move
7875 stores out of loops. When used in conjunction with @option{-fgcse-lm},
7876 loops containing a load/store sequence can be changed to a load before
7877 the loop and a store after the loop.
7878
7879 Not enabled at any optimization level.
7880
7881 @item -fgcse-las
7882 @opindex fgcse-las
7883 When @option{-fgcse-las} is enabled, the global common subexpression
7884 elimination pass eliminates redundant loads that come after stores to the
7885 same memory location (both partial and full redundancies).
7886
7887 Not enabled at any optimization level.
7888
7889 @item -fgcse-after-reload
7890 @opindex fgcse-after-reload
7891 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7892 pass is performed after reload. The purpose of this pass is to clean up
7893 redundant spilling.
7894
7895 @item -faggressive-loop-optimizations
7896 @opindex faggressive-loop-optimizations
7897 This option tells the loop optimizer to use language constraints to
7898 derive bounds for the number of iterations of a loop. This assumes that
7899 loop code does not invoke undefined behavior by for example causing signed
7900 integer overflows or out-of-bound array accesses. The bounds for the
7901 number of iterations of a loop are used to guide loop unrolling and peeling
7902 and loop exit test optimizations.
7903 This option is enabled by default.
7904
7905 @item -funconstrained-commons
7906 @opindex funconstrained-commons
7907 This option tells the compiler that variables declared in common blocks
7908 (e.g. Fortran) may later be overridden with longer trailing arrays. This
7909 prevents certain optimizations that depend on knowing the array bounds.
7910
7911 @item -fcrossjumping
7912 @opindex fcrossjumping
7913 Perform cross-jumping transformation.
7914 This transformation unifies equivalent code and saves code size. The
7915 resulting code may or may not perform better than without cross-jumping.
7916
7917 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7918
7919 @item -fauto-inc-dec
7920 @opindex fauto-inc-dec
7921 Combine increments or decrements of addresses with memory accesses.
7922 This pass is always skipped on architectures that do not have
7923 instructions to support this. Enabled by default at @option{-O} and
7924 higher on architectures that support this.
7925
7926 @item -fdce
7927 @opindex fdce
7928 Perform dead code elimination (DCE) on RTL@.
7929 Enabled by default at @option{-O} and higher.
7930
7931 @item -fdse
7932 @opindex fdse
7933 Perform dead store elimination (DSE) on RTL@.
7934 Enabled by default at @option{-O} and higher.
7935
7936 @item -fif-conversion
7937 @opindex fif-conversion
7938 Attempt to transform conditional jumps into branch-less equivalents. This
7939 includes use of conditional moves, min, max, set flags and abs instructions, and
7940 some tricks doable by standard arithmetics. The use of conditional execution
7941 on chips where it is available is controlled by @option{-fif-conversion2}.
7942
7943 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7944
7945 @item -fif-conversion2
7946 @opindex fif-conversion2
7947 Use conditional execution (where available) to transform conditional jumps into
7948 branch-less equivalents.
7949
7950 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7951
7952 @item -fdeclone-ctor-dtor
7953 @opindex fdeclone-ctor-dtor
7954 The C++ ABI requires multiple entry points for constructors and
7955 destructors: one for a base subobject, one for a complete object, and
7956 one for a virtual destructor that calls operator delete afterwards.
7957 For a hierarchy with virtual bases, the base and complete variants are
7958 clones, which means two copies of the function. With this option, the
7959 base and complete variants are changed to be thunks that call a common
7960 implementation.
7961
7962 Enabled by @option{-Os}.
7963
7964 @item -fdelete-null-pointer-checks
7965 @opindex fdelete-null-pointer-checks
7966 Assume that programs cannot safely dereference null pointers, and that
7967 no code or data element resides at address zero.
7968 This option enables simple constant
7969 folding optimizations at all optimization levels. In addition, other
7970 optimization passes in GCC use this flag to control global dataflow
7971 analyses that eliminate useless checks for null pointers; these assume
7972 that a memory access to address zero always results in a trap, so
7973 that if a pointer is checked after it has already been dereferenced,
7974 it cannot be null.
7975
7976 Note however that in some environments this assumption is not true.
7977 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
7978 for programs that depend on that behavior.
7979
7980 This option is enabled by default on most targets. On Nios II ELF, it
7981 defaults to off. On AVR, CR16, and MSP430, this option is completely disabled.
7982
7983 Passes that use the dataflow information
7984 are enabled independently at different optimization levels.
7985
7986 @item -fdevirtualize
7987 @opindex fdevirtualize
7988 Attempt to convert calls to virtual functions to direct calls. This
7989 is done both within a procedure and interprocedurally as part of
7990 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
7991 propagation (@option{-fipa-cp}).
7992 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7993
7994 @item -fdevirtualize-speculatively
7995 @opindex fdevirtualize-speculatively
7996 Attempt to convert calls to virtual functions to speculative direct calls.
7997 Based on the analysis of the type inheritance graph, determine for a given call
7998 the set of likely targets. If the set is small, preferably of size 1, change
7999 the call into a conditional deciding between direct and indirect calls. The
8000 speculative calls enable more optimizations, such as inlining. When they seem
8001 useless after further optimization, they are converted back into original form.
8002
8003 @item -fdevirtualize-at-ltrans
8004 @opindex fdevirtualize-at-ltrans
8005 Stream extra information needed for aggressive devirtualization when running
8006 the link-time optimizer in local transformation mode.
8007 This option enables more devirtualization but
8008 significantly increases the size of streamed data. For this reason it is
8009 disabled by default.
8010
8011 @item -fexpensive-optimizations
8012 @opindex fexpensive-optimizations
8013 Perform a number of minor optimizations that are relatively expensive.
8014
8015 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8016
8017 @item -free
8018 @opindex free
8019 Attempt to remove redundant extension instructions. This is especially
8020 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8021 registers after writing to their lower 32-bit half.
8022
8023 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8024 @option{-O3}, @option{-Os}.
8025
8026 @item -fno-lifetime-dse
8027 @opindex fno-lifetime-dse
8028 In C++ the value of an object is only affected by changes within its
8029 lifetime: when the constructor begins, the object has an indeterminate
8030 value, and any changes during the lifetime of the object are dead when
8031 the object is destroyed. Normally dead store elimination will take
8032 advantage of this; if your code relies on the value of the object
8033 storage persisting beyond the lifetime of the object, you can use this
8034 flag to disable this optimization. To preserve stores before the
8035 constructor starts (e.g. because your operator new clears the object
8036 storage) but still treat the object as dead after the destructor you,
8037 can use @option{-flifetime-dse=1}. The default behavior can be
8038 explicitly selected with @option{-flifetime-dse=2}.
8039 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
8040
8041 @item -flive-range-shrinkage
8042 @opindex flive-range-shrinkage
8043 Attempt to decrease register pressure through register live range
8044 shrinkage. This is helpful for fast processors with small or moderate
8045 size register sets.
8046
8047 @item -fira-algorithm=@var{algorithm}
8048 @opindex fira-algorithm
8049 Use the specified coloring algorithm for the integrated register
8050 allocator. The @var{algorithm} argument can be @samp{priority}, which
8051 specifies Chow's priority coloring, or @samp{CB}, which specifies
8052 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8053 for all architectures, but for those targets that do support it, it is
8054 the default because it generates better code.
8055
8056 @item -fira-region=@var{region}
8057 @opindex fira-region
8058 Use specified regions for the integrated register allocator. The
8059 @var{region} argument should be one of the following:
8060
8061 @table @samp
8062
8063 @item all
8064 Use all loops as register allocation regions.
8065 This can give the best results for machines with a small and/or
8066 irregular register set.
8067
8068 @item mixed
8069 Use all loops except for loops with small register pressure
8070 as the regions. This value usually gives
8071 the best results in most cases and for most architectures,
8072 and is enabled by default when compiling with optimization for speed
8073 (@option{-O}, @option{-O2}, @dots{}).
8074
8075 @item one
8076 Use all functions as a single region.
8077 This typically results in the smallest code size, and is enabled by default for
8078 @option{-Os} or @option{-O0}.
8079
8080 @end table
8081
8082 @item -fira-hoist-pressure
8083 @opindex fira-hoist-pressure
8084 Use IRA to evaluate register pressure in the code hoisting pass for
8085 decisions to hoist expressions. This option usually results in smaller
8086 code, but it can slow the compiler down.
8087
8088 This option is enabled at level @option{-Os} for all targets.
8089
8090 @item -fira-loop-pressure
8091 @opindex fira-loop-pressure
8092 Use IRA to evaluate register pressure in loops for decisions to move
8093 loop invariants. This option usually results in generation
8094 of faster and smaller code on machines with large register files (>= 32
8095 registers), but it can slow the compiler down.
8096
8097 This option is enabled at level @option{-O3} for some targets.
8098
8099 @item -fno-ira-share-save-slots
8100 @opindex fno-ira-share-save-slots
8101 Disable sharing of stack slots used for saving call-used hard
8102 registers living through a call. Each hard register gets a
8103 separate stack slot, and as a result function stack frames are
8104 larger.
8105
8106 @item -fno-ira-share-spill-slots
8107 @opindex fno-ira-share-spill-slots
8108 Disable sharing of stack slots allocated for pseudo-registers. Each
8109 pseudo-register that does not get a hard register gets a separate
8110 stack slot, and as a result function stack frames are larger.
8111
8112 @item -flra-remat
8113 @opindex flra-remat
8114 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8115 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8116 values if it is profitable.
8117
8118 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8119
8120 @item -fdelayed-branch
8121 @opindex fdelayed-branch
8122 If supported for the target machine, attempt to reorder instructions
8123 to exploit instruction slots available after delayed branch
8124 instructions.
8125
8126 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8127
8128 @item -fschedule-insns
8129 @opindex fschedule-insns
8130 If supported for the target machine, attempt to reorder instructions to
8131 eliminate execution stalls due to required data being unavailable. This
8132 helps machines that have slow floating point or memory load instructions
8133 by allowing other instructions to be issued until the result of the load
8134 or floating-point instruction is required.
8135
8136 Enabled at levels @option{-O2}, @option{-O3}.
8137
8138 @item -fschedule-insns2
8139 @opindex fschedule-insns2
8140 Similar to @option{-fschedule-insns}, but requests an additional pass of
8141 instruction scheduling after register allocation has been done. This is
8142 especially useful on machines with a relatively small number of
8143 registers and where memory load instructions take more than one cycle.
8144
8145 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8146
8147 @item -fno-sched-interblock
8148 @opindex fno-sched-interblock
8149 Don't schedule instructions across basic blocks. This is normally
8150 enabled by default when scheduling before register allocation, i.e.@:
8151 with @option{-fschedule-insns} or at @option{-O2} or higher.
8152
8153 @item -fno-sched-spec
8154 @opindex fno-sched-spec
8155 Don't allow speculative motion of non-load instructions. This is normally
8156 enabled by default when scheduling before register allocation, i.e.@:
8157 with @option{-fschedule-insns} or at @option{-O2} or higher.
8158
8159 @item -fsched-pressure
8160 @opindex fsched-pressure
8161 Enable register pressure sensitive insn scheduling before register
8162 allocation. This only makes sense when scheduling before register
8163 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8164 @option{-O2} or higher. Usage of this option can improve the
8165 generated code and decrease its size by preventing register pressure
8166 increase above the number of available hard registers and subsequent
8167 spills in register allocation.
8168
8169 @item -fsched-spec-load
8170 @opindex fsched-spec-load
8171 Allow speculative motion of some load instructions. This only makes
8172 sense when scheduling before register allocation, i.e.@: with
8173 @option{-fschedule-insns} or at @option{-O2} or higher.
8174
8175 @item -fsched-spec-load-dangerous
8176 @opindex fsched-spec-load-dangerous
8177 Allow speculative motion of more load instructions. This only makes
8178 sense when scheduling before register allocation, i.e.@: with
8179 @option{-fschedule-insns} or at @option{-O2} or higher.
8180
8181 @item -fsched-stalled-insns
8182 @itemx -fsched-stalled-insns=@var{n}
8183 @opindex fsched-stalled-insns
8184 Define how many insns (if any) can be moved prematurely from the queue
8185 of stalled insns into the ready list during the second scheduling pass.
8186 @option{-fno-sched-stalled-insns} means that no insns are moved
8187 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8188 on how many queued insns can be moved prematurely.
8189 @option{-fsched-stalled-insns} without a value is equivalent to
8190 @option{-fsched-stalled-insns=1}.
8191
8192 @item -fsched-stalled-insns-dep
8193 @itemx -fsched-stalled-insns-dep=@var{n}
8194 @opindex fsched-stalled-insns-dep
8195 Define how many insn groups (cycles) are examined for a dependency
8196 on a stalled insn that is a candidate for premature removal from the queue
8197 of stalled insns. This has an effect only during the second scheduling pass,
8198 and only if @option{-fsched-stalled-insns} is used.
8199 @option{-fno-sched-stalled-insns-dep} is equivalent to
8200 @option{-fsched-stalled-insns-dep=0}.
8201 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8202 @option{-fsched-stalled-insns-dep=1}.
8203
8204 @item -fsched2-use-superblocks
8205 @opindex fsched2-use-superblocks
8206 When scheduling after register allocation, use superblock scheduling.
8207 This allows motion across basic block boundaries,
8208 resulting in faster schedules. This option is experimental, as not all machine
8209 descriptions used by GCC model the CPU closely enough to avoid unreliable
8210 results from the algorithm.
8211
8212 This only makes sense when scheduling after register allocation, i.e.@: with
8213 @option{-fschedule-insns2} or at @option{-O2} or higher.
8214
8215 @item -fsched-group-heuristic
8216 @opindex fsched-group-heuristic
8217 Enable the group heuristic in the scheduler. This heuristic favors
8218 the instruction that belongs to a schedule group. This is enabled
8219 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8220 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8221
8222 @item -fsched-critical-path-heuristic
8223 @opindex fsched-critical-path-heuristic
8224 Enable the critical-path heuristic in the scheduler. This heuristic favors
8225 instructions on the critical path. This is enabled by default when
8226 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8227 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8228
8229 @item -fsched-spec-insn-heuristic
8230 @opindex fsched-spec-insn-heuristic
8231 Enable the speculative instruction heuristic in the scheduler. This
8232 heuristic favors speculative instructions with greater dependency weakness.
8233 This is enabled by default when scheduling is enabled, i.e.@:
8234 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8235 or at @option{-O2} or higher.
8236
8237 @item -fsched-rank-heuristic
8238 @opindex fsched-rank-heuristic
8239 Enable the rank heuristic in the scheduler. This heuristic favors
8240 the instruction belonging to a basic block with greater size or frequency.
8241 This is enabled by default when scheduling is enabled, i.e.@:
8242 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8243 at @option{-O2} or higher.
8244
8245 @item -fsched-last-insn-heuristic
8246 @opindex fsched-last-insn-heuristic
8247 Enable the last-instruction heuristic in the scheduler. This heuristic
8248 favors the instruction that is less dependent on the last instruction
8249 scheduled. This is enabled by default when scheduling is enabled,
8250 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8251 at @option{-O2} or higher.
8252
8253 @item -fsched-dep-count-heuristic
8254 @opindex fsched-dep-count-heuristic
8255 Enable the dependent-count heuristic in the scheduler. This heuristic
8256 favors the instruction that has more instructions depending on it.
8257 This is enabled by default when scheduling is enabled, i.e.@:
8258 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8259 at @option{-O2} or higher.
8260
8261 @item -freschedule-modulo-scheduled-loops
8262 @opindex freschedule-modulo-scheduled-loops
8263 Modulo scheduling is performed before traditional scheduling. If a loop
8264 is modulo scheduled, later scheduling passes may change its schedule.
8265 Use this option to control that behavior.
8266
8267 @item -fselective-scheduling
8268 @opindex fselective-scheduling
8269 Schedule instructions using selective scheduling algorithm. Selective
8270 scheduling runs instead of the first scheduler pass.
8271
8272 @item -fselective-scheduling2
8273 @opindex fselective-scheduling2
8274 Schedule instructions using selective scheduling algorithm. Selective
8275 scheduling runs instead of the second scheduler pass.
8276
8277 @item -fsel-sched-pipelining
8278 @opindex fsel-sched-pipelining
8279 Enable software pipelining of innermost loops during selective scheduling.
8280 This option has no effect unless one of @option{-fselective-scheduling} or
8281 @option{-fselective-scheduling2} is turned on.
8282
8283 @item -fsel-sched-pipelining-outer-loops
8284 @opindex fsel-sched-pipelining-outer-loops
8285 When pipelining loops during selective scheduling, also pipeline outer loops.
8286 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8287
8288 @item -fsemantic-interposition
8289 @opindex fsemantic-interposition
8290 Some object formats, like ELF, allow interposing of symbols by the
8291 dynamic linker.
8292 This means that for symbols exported from the DSO, the compiler cannot perform
8293 interprocedural propagation, inlining and other optimizations in anticipation
8294 that the function or variable in question may change. While this feature is
8295 useful, for example, to rewrite memory allocation functions by a debugging
8296 implementation, it is expensive in the terms of code quality.
8297 With @option{-fno-semantic-interposition} the compiler assumes that
8298 if interposition happens for functions the overwriting function will have
8299 precisely the same semantics (and side effects).
8300 Similarly if interposition happens
8301 for variables, the constructor of the variable will be the same. The flag
8302 has no effect for functions explicitly declared inline
8303 (where it is never allowed for interposition to change semantics)
8304 and for symbols explicitly declared weak.
8305
8306 @item -fshrink-wrap
8307 @opindex fshrink-wrap
8308 Emit function prologues only before parts of the function that need it,
8309 rather than at the top of the function. This flag is enabled by default at
8310 @option{-O} and higher.
8311
8312 @item -fshrink-wrap-separate
8313 @opindex fshrink-wrap-separate
8314 Shrink-wrap separate parts of the prologue and epilogue separately, so that
8315 those parts are only executed when needed.
8316 This option is on by default, but has no effect unless @option{-fshrink-wrap}
8317 is also turned on and the target supports this.
8318
8319 @item -fcaller-saves
8320 @opindex fcaller-saves
8321 Enable allocation of values to registers that are clobbered by
8322 function calls, by emitting extra instructions to save and restore the
8323 registers around such calls. Such allocation is done only when it
8324 seems to result in better code.
8325
8326 This option is always enabled by default on certain machines, usually
8327 those which have no call-preserved registers to use instead.
8328
8329 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8330
8331 @item -fcombine-stack-adjustments
8332 @opindex fcombine-stack-adjustments
8333 Tracks stack adjustments (pushes and pops) and stack memory references
8334 and then tries to find ways to combine them.
8335
8336 Enabled by default at @option{-O1} and higher.
8337
8338 @item -fipa-ra
8339 @opindex fipa-ra
8340 Use caller save registers for allocation if those registers are not used by
8341 any called function. In that case it is not necessary to save and restore
8342 them around calls. This is only possible if called functions are part of
8343 same compilation unit as current function and they are compiled before it.
8344
8345 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
8346 is disabled if generated code will be instrumented for profiling
8347 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
8348 exactly (this happens on targets that do not expose prologues
8349 and epilogues in RTL).
8350
8351 @item -fconserve-stack
8352 @opindex fconserve-stack
8353 Attempt to minimize stack usage. The compiler attempts to use less
8354 stack space, even if that makes the program slower. This option
8355 implies setting the @option{large-stack-frame} parameter to 100
8356 and the @option{large-stack-frame-growth} parameter to 400.
8357
8358 @item -ftree-reassoc
8359 @opindex ftree-reassoc
8360 Perform reassociation on trees. This flag is enabled by default
8361 at @option{-O} and higher.
8362
8363 @item -fcode-hoisting
8364 @opindex fcode-hoisting
8365 Perform code hoisting. Code hoisting tries to move the
8366 evaluation of expressions executed on all paths to the function exit
8367 as early as possible. This is especially useful as a code size
8368 optimization, but it often helps for code speed as well.
8369 This flag is enabled by default at @option{-O2} and higher.
8370
8371 @item -ftree-pre
8372 @opindex ftree-pre
8373 Perform partial redundancy elimination (PRE) on trees. This flag is
8374 enabled by default at @option{-O2} and @option{-O3}.
8375
8376 @item -ftree-partial-pre
8377 @opindex ftree-partial-pre
8378 Make partial redundancy elimination (PRE) more aggressive. This flag is
8379 enabled by default at @option{-O3}.
8380
8381 @item -ftree-forwprop
8382 @opindex ftree-forwprop
8383 Perform forward propagation on trees. This flag is enabled by default
8384 at @option{-O} and higher.
8385
8386 @item -ftree-fre
8387 @opindex ftree-fre
8388 Perform full redundancy elimination (FRE) on trees. The difference
8389 between FRE and PRE is that FRE only considers expressions
8390 that are computed on all paths leading to the redundant computation.
8391 This analysis is faster than PRE, though it exposes fewer redundancies.
8392 This flag is enabled by default at @option{-O} and higher.
8393
8394 @item -ftree-phiprop
8395 @opindex ftree-phiprop
8396 Perform hoisting of loads from conditional pointers on trees. This
8397 pass is enabled by default at @option{-O} and higher.
8398
8399 @item -fhoist-adjacent-loads
8400 @opindex fhoist-adjacent-loads
8401 Speculatively hoist loads from both branches of an if-then-else if the
8402 loads are from adjacent locations in the same structure and the target
8403 architecture has a conditional move instruction. This flag is enabled
8404 by default at @option{-O2} and higher.
8405
8406 @item -ftree-copy-prop
8407 @opindex ftree-copy-prop
8408 Perform copy propagation on trees. This pass eliminates unnecessary
8409 copy operations. This flag is enabled by default at @option{-O} and
8410 higher.
8411
8412 @item -fipa-pure-const
8413 @opindex fipa-pure-const
8414 Discover which functions are pure or constant.
8415 Enabled by default at @option{-O} and higher.
8416
8417 @item -fipa-reference
8418 @opindex fipa-reference
8419 Discover which static variables do not escape the
8420 compilation unit.
8421 Enabled by default at @option{-O} and higher.
8422
8423 @item -fipa-pta
8424 @opindex fipa-pta
8425 Perform interprocedural pointer analysis and interprocedural modification
8426 and reference analysis. This option can cause excessive memory and
8427 compile-time usage on large compilation units. It is not enabled by
8428 default at any optimization level.
8429
8430 @item -fipa-profile
8431 @opindex fipa-profile
8432 Perform interprocedural profile propagation. The functions called only from
8433 cold functions are marked as cold. Also functions executed once (such as
8434 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8435 functions and loop less parts of functions executed once are then optimized for
8436 size.
8437 Enabled by default at @option{-O} and higher.
8438
8439 @item -fipa-cp
8440 @opindex fipa-cp
8441 Perform interprocedural constant propagation.
8442 This optimization analyzes the program to determine when values passed
8443 to functions are constants and then optimizes accordingly.
8444 This optimization can substantially increase performance
8445 if the application has constants passed to functions.
8446 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8447
8448 @item -fipa-cp-clone
8449 @opindex fipa-cp-clone
8450 Perform function cloning to make interprocedural constant propagation stronger.
8451 When enabled, interprocedural constant propagation performs function cloning
8452 when externally visible function can be called with constant arguments.
8453 Because this optimization can create multiple copies of functions,
8454 it may significantly increase code size
8455 (see @option{--param ipcp-unit-growth=@var{value}}).
8456 This flag is enabled by default at @option{-O3}.
8457
8458 @item -fipa-bit-cp
8459 @opindex -fipa-bit-cp
8460 When enabled, perform interprocedural bitwise constant
8461 propagation. This flag is enabled by default at @option{-O2}. It
8462 requires that @option{-fipa-cp} is enabled.
8463
8464 @item -fipa-vrp
8465 @opindex -fipa-vrp
8466 When enabled, perform interprocedural propagation of value
8467 ranges. This flag is enabled by default at @option{-O2}. It requires
8468 that @option{-fipa-cp} is enabled.
8469
8470 @item -fipa-icf
8471 @opindex fipa-icf
8472 Perform Identical Code Folding for functions and read-only variables.
8473 The optimization reduces code size and may disturb unwind stacks by replacing
8474 a function by equivalent one with a different name. The optimization works
8475 more effectively with link-time optimization enabled.
8476
8477 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8478 works on different levels and thus the optimizations are not same - there are
8479 equivalences that are found only by GCC and equivalences found only by Gold.
8480
8481 This flag is enabled by default at @option{-O2} and @option{-Os}.
8482
8483 @item -fisolate-erroneous-paths-dereference
8484 @opindex fisolate-erroneous-paths-dereference
8485 Detect paths that trigger erroneous or undefined behavior due to
8486 dereferencing a null pointer. Isolate those paths from the main control
8487 flow and turn the statement with erroneous or undefined behavior into a trap.
8488 This flag is enabled by default at @option{-O2} and higher and depends on
8489 @option{-fdelete-null-pointer-checks} also being enabled.
8490
8491 @item -fisolate-erroneous-paths-attribute
8492 @opindex fisolate-erroneous-paths-attribute
8493 Detect paths that trigger erroneous or undefined behavior due a null value
8494 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8495 attribute. Isolate those paths from the main control flow and turn the
8496 statement with erroneous or undefined behavior into a trap. This is not
8497 currently enabled, but may be enabled by @option{-O2} in the future.
8498
8499 @item -ftree-sink
8500 @opindex ftree-sink
8501 Perform forward store motion on trees. This flag is
8502 enabled by default at @option{-O} and higher.
8503
8504 @item -ftree-bit-ccp
8505 @opindex ftree-bit-ccp
8506 Perform sparse conditional bit constant propagation on trees and propagate
8507 pointer alignment information.
8508 This pass only operates on local scalar variables and is enabled by default
8509 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8510
8511 @item -ftree-ccp
8512 @opindex ftree-ccp
8513 Perform sparse conditional constant propagation (CCP) on trees. This
8514 pass only operates on local scalar variables and is enabled by default
8515 at @option{-O} and higher.
8516
8517 @item -fssa-backprop
8518 @opindex fssa-backprop
8519 Propagate information about uses of a value up the definition chain
8520 in order to simplify the definitions. For example, this pass strips
8521 sign operations if the sign of a value never matters. The flag is
8522 enabled by default at @option{-O} and higher.
8523
8524 @item -fssa-phiopt
8525 @opindex fssa-phiopt
8526 Perform pattern matching on SSA PHI nodes to optimize conditional
8527 code. This pass is enabled by default at @option{-O} and higher.
8528
8529 @item -ftree-switch-conversion
8530 @opindex ftree-switch-conversion
8531 Perform conversion of simple initializations in a switch to
8532 initializations from a scalar array. This flag is enabled by default
8533 at @option{-O2} and higher.
8534
8535 @item -ftree-tail-merge
8536 @opindex ftree-tail-merge
8537 Look for identical code sequences. When found, replace one with a jump to the
8538 other. This optimization is known as tail merging or cross jumping. This flag
8539 is enabled by default at @option{-O2} and higher. The compilation time
8540 in this pass can
8541 be limited using @option{max-tail-merge-comparisons} parameter and
8542 @option{max-tail-merge-iterations} parameter.
8543
8544 @item -ftree-dce
8545 @opindex ftree-dce
8546 Perform dead code elimination (DCE) on trees. This flag is enabled by
8547 default at @option{-O} and higher.
8548
8549 @item -ftree-builtin-call-dce
8550 @opindex ftree-builtin-call-dce
8551 Perform conditional dead code elimination (DCE) for calls to built-in functions
8552 that may set @code{errno} but are otherwise side-effect free. This flag is
8553 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8554 specified.
8555
8556 @item -ftree-dominator-opts
8557 @opindex ftree-dominator-opts
8558 Perform a variety of simple scalar cleanups (constant/copy
8559 propagation, redundancy elimination, range propagation and expression
8560 simplification) based on a dominator tree traversal. This also
8561 performs jump threading (to reduce jumps to jumps). This flag is
8562 enabled by default at @option{-O} and higher.
8563
8564 @item -ftree-dse
8565 @opindex ftree-dse
8566 Perform dead store elimination (DSE) on trees. A dead store is a store into
8567 a memory location that is later overwritten by another store without
8568 any intervening loads. In this case the earlier store can be deleted. This
8569 flag is enabled by default at @option{-O} and higher.
8570
8571 @item -ftree-ch
8572 @opindex ftree-ch
8573 Perform loop header copying on trees. This is beneficial since it increases
8574 effectiveness of code motion optimizations. It also saves one jump. This flag
8575 is enabled by default at @option{-O} and higher. It is not enabled
8576 for @option{-Os}, since it usually increases code size.
8577
8578 @item -ftree-loop-optimize
8579 @opindex ftree-loop-optimize
8580 Perform loop optimizations on trees. This flag is enabled by default
8581 at @option{-O} and higher.
8582
8583 @item -ftree-loop-linear
8584 @itemx -floop-strip-mine
8585 @itemx -floop-block
8586 @opindex ftree-loop-linear
8587 @opindex floop-strip-mine
8588 @opindex floop-block
8589 Perform loop nest optimizations. Same as
8590 @option{-floop-nest-optimize}. To use this code transformation, GCC has
8591 to be configured with @option{--with-isl} to enable the Graphite loop
8592 transformation infrastructure.
8593
8594 @item -fgraphite-identity
8595 @opindex fgraphite-identity
8596 Enable the identity transformation for graphite. For every SCoP we generate
8597 the polyhedral representation and transform it back to gimple. Using
8598 @option{-fgraphite-identity} we can check the costs or benefits of the
8599 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8600 are also performed by the code generator isl, like index splitting and
8601 dead code elimination in loops.
8602
8603 @item -floop-nest-optimize
8604 @opindex floop-nest-optimize
8605 Enable the isl based loop nest optimizer. This is a generic loop nest
8606 optimizer based on the Pluto optimization algorithms. It calculates a loop
8607 structure optimized for data-locality and parallelism. This option
8608 is experimental.
8609
8610 @item -floop-parallelize-all
8611 @opindex floop-parallelize-all
8612 Use the Graphite data dependence analysis to identify loops that can
8613 be parallelized. Parallelize all the loops that can be analyzed to
8614 not contain loop carried dependences without checking that it is
8615 profitable to parallelize the loops.
8616
8617 @item -ftree-coalesce-vars
8618 @opindex ftree-coalesce-vars
8619 While transforming the program out of the SSA representation, attempt to
8620 reduce copying by coalescing versions of different user-defined
8621 variables, instead of just compiler temporaries. This may severely
8622 limit the ability to debug an optimized program compiled with
8623 @option{-fno-var-tracking-assignments}. In the negated form, this flag
8624 prevents SSA coalescing of user variables. This option is enabled by
8625 default if optimization is enabled, and it does very little otherwise.
8626
8627 @item -ftree-loop-if-convert
8628 @opindex ftree-loop-if-convert
8629 Attempt to transform conditional jumps in the innermost loops to
8630 branch-less equivalents. The intent is to remove control-flow from
8631 the innermost loops in order to improve the ability of the
8632 vectorization pass to handle these loops. This is enabled by default
8633 if vectorization is enabled.
8634
8635 @item -ftree-loop-distribution
8636 @opindex ftree-loop-distribution
8637 Perform loop distribution. This flag can improve cache performance on
8638 big loop bodies and allow further loop optimizations, like
8639 parallelization or vectorization, to take place. For example, the loop
8640 @smallexample
8641 DO I = 1, N
8642 A(I) = B(I) + C
8643 D(I) = E(I) * F
8644 ENDDO
8645 @end smallexample
8646 is transformed to
8647 @smallexample
8648 DO I = 1, N
8649 A(I) = B(I) + C
8650 ENDDO
8651 DO I = 1, N
8652 D(I) = E(I) * F
8653 ENDDO
8654 @end smallexample
8655
8656 @item -ftree-loop-distribute-patterns
8657 @opindex ftree-loop-distribute-patterns
8658 Perform loop distribution of patterns that can be code generated with
8659 calls to a library. This flag is enabled by default at @option{-O3}.
8660
8661 This pass distributes the initialization loops and generates a call to
8662 memset zero. For example, the loop
8663 @smallexample
8664 DO I = 1, N
8665 A(I) = 0
8666 B(I) = A(I) + I
8667 ENDDO
8668 @end smallexample
8669 is transformed to
8670 @smallexample
8671 DO I = 1, N
8672 A(I) = 0
8673 ENDDO
8674 DO I = 1, N
8675 B(I) = A(I) + I
8676 ENDDO
8677 @end smallexample
8678 and the initialization loop is transformed into a call to memset zero.
8679
8680 @item -floop-interchange
8681 @opindex floop-interchange
8682 Perform loop interchange outside of graphite. This flag can improve cache
8683 performance on loop nest and allow further loop optimizations, like
8684 vectorization, to take place. For example, the loop
8685 @smallexample
8686 for (int i = 0; i < N; i++)
8687 for (int j = 0; j < N; j++)
8688 for (int k = 0; k < N; k++)
8689 c[i][j] = c[i][j] + a[i][k]*b[k][j];
8690 @end smallexample
8691 is transformed to
8692 @smallexample
8693 for (int i = 0; i < N; i++)
8694 for (int k = 0; k < N; k++)
8695 for (int j = 0; j < N; j++)
8696 c[i][j] = c[i][j] + a[i][k]*b[k][j];
8697 @end smallexample
8698
8699 @item -ftree-loop-im
8700 @opindex ftree-loop-im
8701 Perform loop invariant motion on trees. This pass moves only invariants that
8702 are hard to handle at RTL level (function calls, operations that expand to
8703 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8704 operands of conditions that are invariant out of the loop, so that we can use
8705 just trivial invariantness analysis in loop unswitching. The pass also includes
8706 store motion.
8707
8708 @item -ftree-loop-ivcanon
8709 @opindex ftree-loop-ivcanon
8710 Create a canonical counter for number of iterations in loops for which
8711 determining number of iterations requires complicated analysis. Later
8712 optimizations then may determine the number easily. Useful especially
8713 in connection with unrolling.
8714
8715 @item -fivopts
8716 @opindex fivopts
8717 Perform induction variable optimizations (strength reduction, induction
8718 variable merging and induction variable elimination) on trees.
8719
8720 @item -ftree-parallelize-loops=n
8721 @opindex ftree-parallelize-loops
8722 Parallelize loops, i.e., split their iteration space to run in n threads.
8723 This is only possible for loops whose iterations are independent
8724 and can be arbitrarily reordered. The optimization is only
8725 profitable on multiprocessor machines, for loops that are CPU-intensive,
8726 rather than constrained e.g.@: by memory bandwidth. This option
8727 implies @option{-pthread}, and thus is only supported on targets
8728 that have support for @option{-pthread}.
8729
8730 @item -ftree-pta
8731 @opindex ftree-pta
8732 Perform function-local points-to analysis on trees. This flag is
8733 enabled by default at @option{-O} and higher.
8734
8735 @item -ftree-sra
8736 @opindex ftree-sra
8737 Perform scalar replacement of aggregates. This pass replaces structure
8738 references with scalars to prevent committing structures to memory too
8739 early. This flag is enabled by default at @option{-O} and higher.
8740
8741 @item -fstore-merging
8742 @opindex fstore-merging
8743 Perform merging of narrow stores to consecutive memory addresses. This pass
8744 merges contiguous stores of immediate values narrower than a word into fewer
8745 wider stores to reduce the number of instructions. This is enabled by default
8746 at @option{-O2} and higher as well as @option{-Os}.
8747
8748 @item -ftree-ter
8749 @opindex ftree-ter
8750 Perform temporary expression replacement during the SSA->normal phase. Single
8751 use/single def temporaries are replaced at their use location with their
8752 defining expression. This results in non-GIMPLE code, but gives the expanders
8753 much more complex trees to work on resulting in better RTL generation. This is
8754 enabled by default at @option{-O} and higher.
8755
8756 @item -ftree-slsr
8757 @opindex ftree-slsr
8758 Perform straight-line strength reduction on trees. This recognizes related
8759 expressions involving multiplications and replaces them by less expensive
8760 calculations when possible. This is enabled by default at @option{-O} and
8761 higher.
8762
8763 @item -ftree-vectorize
8764 @opindex ftree-vectorize
8765 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8766 and @option{-ftree-slp-vectorize} if not explicitly specified.
8767
8768 @item -ftree-loop-vectorize
8769 @opindex ftree-loop-vectorize
8770 Perform loop vectorization on trees. This flag is enabled by default at
8771 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8772
8773 @item -ftree-slp-vectorize
8774 @opindex ftree-slp-vectorize
8775 Perform basic block vectorization on trees. This flag is enabled by default at
8776 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8777
8778 @item -fvect-cost-model=@var{model}
8779 @opindex fvect-cost-model
8780 Alter the cost model used for vectorization. The @var{model} argument
8781 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8782 With the @samp{unlimited} model the vectorized code-path is assumed
8783 to be profitable while with the @samp{dynamic} model a runtime check
8784 guards the vectorized code-path to enable it only for iteration
8785 counts that will likely execute faster than when executing the original
8786 scalar loop. The @samp{cheap} model disables vectorization of
8787 loops where doing so would be cost prohibitive for example due to
8788 required runtime checks for data dependence or alignment but otherwise
8789 is equal to the @samp{dynamic} model.
8790 The default cost model depends on other optimization flags and is
8791 either @samp{dynamic} or @samp{cheap}.
8792
8793 @item -fsimd-cost-model=@var{model}
8794 @opindex fsimd-cost-model
8795 Alter the cost model used for vectorization of loops marked with the OpenMP
8796 or Cilk Plus simd directive. The @var{model} argument should be one of
8797 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
8798 have the same meaning as described in @option{-fvect-cost-model} and by
8799 default a cost model defined with @option{-fvect-cost-model} is used.
8800
8801 @item -ftree-vrp
8802 @opindex ftree-vrp
8803 Perform Value Range Propagation on trees. This is similar to the
8804 constant propagation pass, but instead of values, ranges of values are
8805 propagated. This allows the optimizers to remove unnecessary range
8806 checks like array bound checks and null pointer checks. This is
8807 enabled by default at @option{-O2} and higher. Null pointer check
8808 elimination is only done if @option{-fdelete-null-pointer-checks} is
8809 enabled.
8810
8811 @item -fsplit-paths
8812 @opindex fsplit-paths
8813 Split paths leading to loop backedges. This can improve dead code
8814 elimination and common subexpression elimination. This is enabled by
8815 default at @option{-O2} and above.
8816
8817 @item -fsplit-ivs-in-unroller
8818 @opindex fsplit-ivs-in-unroller
8819 Enables expression of values of induction variables in later iterations
8820 of the unrolled loop using the value in the first iteration. This breaks
8821 long dependency chains, thus improving efficiency of the scheduling passes.
8822
8823 A combination of @option{-fweb} and CSE is often sufficient to obtain the
8824 same effect. However, that is not reliable in cases where the loop body
8825 is more complicated than a single basic block. It also does not work at all
8826 on some architectures due to restrictions in the CSE pass.
8827
8828 This optimization is enabled by default.
8829
8830 @item -fvariable-expansion-in-unroller
8831 @opindex fvariable-expansion-in-unroller
8832 With this option, the compiler creates multiple copies of some
8833 local variables when unrolling a loop, which can result in superior code.
8834
8835 @item -fpartial-inlining
8836 @opindex fpartial-inlining
8837 Inline parts of functions. This option has any effect only
8838 when inlining itself is turned on by the @option{-finline-functions}
8839 or @option{-finline-small-functions} options.
8840
8841 Enabled at level @option{-O2}.
8842
8843 @item -fpredictive-commoning
8844 @opindex fpredictive-commoning
8845 Perform predictive commoning optimization, i.e., reusing computations
8846 (especially memory loads and stores) performed in previous
8847 iterations of loops.
8848
8849 This option is enabled at level @option{-O3}.
8850
8851 @item -fprefetch-loop-arrays
8852 @opindex fprefetch-loop-arrays
8853 If supported by the target machine, generate instructions to prefetch
8854 memory to improve the performance of loops that access large arrays.
8855
8856 This option may generate better or worse code; results are highly
8857 dependent on the structure of loops within the source code.
8858
8859 Disabled at level @option{-Os}.
8860
8861 @item -fno-printf-return-value
8862 @opindex fno-printf-return-value
8863 Do not substitute constants for known return value of formatted output
8864 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
8865 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
8866 transformation allows GCC to optimize or even eliminate branches based
8867 on the known return value of these functions called with arguments that
8868 are either constant, or whose values are known to be in a range that
8869 makes determining the exact return value possible. For example, when
8870 @option{-fprintf-return-value} is in effect, both the branch and the
8871 body of the @code{if} statement (but not the call to @code{snprint})
8872 can be optimized away when @code{i} is a 32-bit or smaller integer
8873 because the return value is guaranteed to be at most 8.
8874
8875 @smallexample
8876 char buf[9];
8877 if (snprintf (buf, "%08x", i) >= sizeof buf)
8878 @dots{}
8879 @end smallexample
8880
8881 The @option{-fprintf-return-value} option relies on other optimizations
8882 and yields best results with @option{-O2}. It works in tandem with the
8883 @option{-Wformat-overflow} and @option{-Wformat-truncation} options.
8884 The @option{-fprintf-return-value} option is enabled by default.
8885
8886 @item -fno-peephole
8887 @itemx -fno-peephole2
8888 @opindex fno-peephole
8889 @opindex fno-peephole2
8890 Disable any machine-specific peephole optimizations. The difference
8891 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
8892 are implemented in the compiler; some targets use one, some use the
8893 other, a few use both.
8894
8895 @option{-fpeephole} is enabled by default.
8896 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8897
8898 @item -fno-guess-branch-probability
8899 @opindex fno-guess-branch-probability
8900 Do not guess branch probabilities using heuristics.
8901
8902 GCC uses heuristics to guess branch probabilities if they are
8903 not provided by profiling feedback (@option{-fprofile-arcs}). These
8904 heuristics are based on the control flow graph. If some branch probabilities
8905 are specified by @code{__builtin_expect}, then the heuristics are
8906 used to guess branch probabilities for the rest of the control flow graph,
8907 taking the @code{__builtin_expect} info into account. The interactions
8908 between the heuristics and @code{__builtin_expect} can be complex, and in
8909 some cases, it may be useful to disable the heuristics so that the effects
8910 of @code{__builtin_expect} are easier to understand.
8911
8912 The default is @option{-fguess-branch-probability} at levels
8913 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8914
8915 @item -freorder-blocks
8916 @opindex freorder-blocks
8917 Reorder basic blocks in the compiled function in order to reduce number of
8918 taken branches and improve code locality.
8919
8920 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8921
8922 @item -freorder-blocks-algorithm=@var{algorithm}
8923 @opindex freorder-blocks-algorithm
8924 Use the specified algorithm for basic block reordering. The
8925 @var{algorithm} argument can be @samp{simple}, which does not increase
8926 code size (except sometimes due to secondary effects like alignment),
8927 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
8928 put all often executed code together, minimizing the number of branches
8929 executed by making extra copies of code.
8930
8931 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
8932 @samp{stc} at levels @option{-O2}, @option{-O3}.
8933
8934 @item -freorder-blocks-and-partition
8935 @opindex freorder-blocks-and-partition
8936 In addition to reordering basic blocks in the compiled function, in order
8937 to reduce number of taken branches, partitions hot and cold basic blocks
8938 into separate sections of the assembly and @file{.o} files, to improve
8939 paging and cache locality performance.
8940
8941 This optimization is automatically turned off in the presence of
8942 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
8943 section attribute and on any architecture that does not support named
8944 sections. When @option{-fsplit-stack} is used this option is not
8945 enabled by default (to avoid linker errors), but may be enabled
8946 explicitly (if using a working linker).
8947
8948 Enabled for x86 at levels @option{-O2}, @option{-O3}.
8949
8950 @item -freorder-functions
8951 @opindex freorder-functions
8952 Reorder functions in the object file in order to
8953 improve code locality. This is implemented by using special
8954 subsections @code{.text.hot} for most frequently executed functions and
8955 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
8956 the linker so object file format must support named sections and linker must
8957 place them in a reasonable way.
8958
8959 Also profile feedback must be available to make this option effective. See
8960 @option{-fprofile-arcs} for details.
8961
8962 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8963
8964 @item -fstrict-aliasing
8965 @opindex fstrict-aliasing
8966 Allow the compiler to assume the strictest aliasing rules applicable to
8967 the language being compiled. For C (and C++), this activates
8968 optimizations based on the type of expressions. In particular, an
8969 object of one type is assumed never to reside at the same address as an
8970 object of a different type, unless the types are almost the same. For
8971 example, an @code{unsigned int} can alias an @code{int}, but not a
8972 @code{void*} or a @code{double}. A character type may alias any other
8973 type.
8974
8975 @anchor{Type-punning}Pay special attention to code like this:
8976 @smallexample
8977 union a_union @{
8978 int i;
8979 double d;
8980 @};
8981
8982 int f() @{
8983 union a_union t;
8984 t.d = 3.0;
8985 return t.i;
8986 @}
8987 @end smallexample
8988 The practice of reading from a different union member than the one most
8989 recently written to (called ``type-punning'') is common. Even with
8990 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
8991 is accessed through the union type. So, the code above works as
8992 expected. @xref{Structures unions enumerations and bit-fields
8993 implementation}. However, this code might not:
8994 @smallexample
8995 int f() @{
8996 union a_union t;
8997 int* ip;
8998 t.d = 3.0;
8999 ip = &t.i;
9000 return *ip;
9001 @}
9002 @end smallexample
9003
9004 Similarly, access by taking the address, casting the resulting pointer
9005 and dereferencing the result has undefined behavior, even if the cast
9006 uses a union type, e.g.:
9007 @smallexample
9008 int f() @{
9009 double d = 3.0;
9010 return ((union a_union *) &d)->i;
9011 @}
9012 @end smallexample
9013
9014 The @option{-fstrict-aliasing} option is enabled at levels
9015 @option{-O2}, @option{-O3}, @option{-Os}.
9016
9017 @item -falign-functions
9018 @itemx -falign-functions=@var{n}
9019 @opindex falign-functions
9020 Align the start of functions to the next power-of-two greater than
9021 @var{n}, skipping up to @var{n} bytes. For instance,
9022 @option{-falign-functions=32} aligns functions to the next 32-byte
9023 boundary, but @option{-falign-functions=24} aligns to the next
9024 32-byte boundary only if this can be done by skipping 23 bytes or less.
9025
9026 @option{-fno-align-functions} and @option{-falign-functions=1} are
9027 equivalent and mean that functions are not aligned.
9028
9029 Some assemblers only support this flag when @var{n} is a power of two;
9030 in that case, it is rounded up.
9031
9032 If @var{n} is not specified or is zero, use a machine-dependent default.
9033
9034 Enabled at levels @option{-O2}, @option{-O3}.
9035
9036 @item -flimit-function-alignment
9037 If this option is enabled, the compiler tries to avoid unnecessarily
9038 overaligning functions. It attempts to instruct the assembler to align
9039 by the amount specified by @option{-falign-functions}, but not to
9040 skip more bytes than the size of the function.
9041
9042 @item -falign-labels
9043 @itemx -falign-labels=@var{n}
9044 @opindex falign-labels
9045 Align all branch targets to a power-of-two boundary, skipping up to
9046 @var{n} bytes like @option{-falign-functions}. This option can easily
9047 make code slower, because it must insert dummy operations for when the
9048 branch target is reached in the usual flow of the code.
9049
9050 @option{-fno-align-labels} and @option{-falign-labels=1} are
9051 equivalent and mean that labels are not aligned.
9052
9053 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9054 are greater than this value, then their values are used instead.
9055
9056 If @var{n} is not specified or is zero, use a machine-dependent default
9057 which is very likely to be @samp{1}, meaning no alignment.
9058
9059 Enabled at levels @option{-O2}, @option{-O3}.
9060
9061 @item -falign-loops
9062 @itemx -falign-loops=@var{n}
9063 @opindex falign-loops
9064 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9065 like @option{-falign-functions}. If the loops are
9066 executed many times, this makes up for any execution of the dummy
9067 operations.
9068
9069 @option{-fno-align-loops} and @option{-falign-loops=1} are
9070 equivalent and mean that loops are not aligned.
9071
9072 If @var{n} is not specified or is zero, use a machine-dependent default.
9073
9074 Enabled at levels @option{-O2}, @option{-O3}.
9075
9076 @item -falign-jumps
9077 @itemx -falign-jumps=@var{n}
9078 @opindex falign-jumps
9079 Align branch targets to a power-of-two boundary, for branch targets
9080 where the targets can only be reached by jumping, skipping up to @var{n}
9081 bytes like @option{-falign-functions}. In this case, no dummy operations
9082 need be executed.
9083
9084 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9085 equivalent and mean that loops are not aligned.
9086
9087 If @var{n} is not specified or is zero, use a machine-dependent default.
9088
9089 Enabled at levels @option{-O2}, @option{-O3}.
9090
9091 @item -funit-at-a-time
9092 @opindex funit-at-a-time
9093 This option is left for compatibility reasons. @option{-funit-at-a-time}
9094 has no effect, while @option{-fno-unit-at-a-time} implies
9095 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9096
9097 Enabled by default.
9098
9099 @item -fno-toplevel-reorder
9100 @opindex fno-toplevel-reorder
9101 Do not reorder top-level functions, variables, and @code{asm}
9102 statements. Output them in the same order that they appear in the
9103 input file. When this option is used, unreferenced static variables
9104 are not removed. This option is intended to support existing code
9105 that relies on a particular ordering. For new code, it is better to
9106 use attributes when possible.
9107
9108 Enabled at level @option{-O0}. When disabled explicitly, it also implies
9109 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9110 targets.
9111
9112 @item -fweb
9113 @opindex fweb
9114 Constructs webs as commonly used for register allocation purposes and assign
9115 each web individual pseudo register. This allows the register allocation pass
9116 to operate on pseudos directly, but also strengthens several other optimization
9117 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
9118 however, make debugging impossible, since variables no longer stay in a
9119 ``home register''.
9120
9121 Enabled by default with @option{-funroll-loops}.
9122
9123 @item -fwhole-program
9124 @opindex fwhole-program
9125 Assume that the current compilation unit represents the whole program being
9126 compiled. All public functions and variables with the exception of @code{main}
9127 and those merged by attribute @code{externally_visible} become static functions
9128 and in effect are optimized more aggressively by interprocedural optimizers.
9129
9130 This option should not be used in combination with @option{-flto}.
9131 Instead relying on a linker plugin should provide safer and more precise
9132 information.
9133
9134 @item -flto[=@var{n}]
9135 @opindex flto
9136 This option runs the standard link-time optimizer. When invoked
9137 with source code, it generates GIMPLE (one of GCC's internal
9138 representations) and writes it to special ELF sections in the object
9139 file. When the object files are linked together, all the function
9140 bodies are read from these ELF sections and instantiated as if they
9141 had been part of the same translation unit.
9142
9143 To use the link-time optimizer, @option{-flto} and optimization
9144 options should be specified at compile time and during the final link.
9145 It is recommended that you compile all the files participating in the
9146 same link with the same options and also specify those options at
9147 link time.
9148 For example:
9149
9150 @smallexample
9151 gcc -c -O2 -flto foo.c
9152 gcc -c -O2 -flto bar.c
9153 gcc -o myprog -flto -O2 foo.o bar.o
9154 @end smallexample
9155
9156 The first two invocations to GCC save a bytecode representation
9157 of GIMPLE into special ELF sections inside @file{foo.o} and
9158 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
9159 @file{foo.o} and @file{bar.o}, merges the two files into a single
9160 internal image, and compiles the result as usual. Since both
9161 @file{foo.o} and @file{bar.o} are merged into a single image, this
9162 causes all the interprocedural analyses and optimizations in GCC to
9163 work across the two files as if they were a single one. This means,
9164 for example, that the inliner is able to inline functions in
9165 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9166
9167 Another (simpler) way to enable link-time optimization is:
9168
9169 @smallexample
9170 gcc -o myprog -flto -O2 foo.c bar.c
9171 @end smallexample
9172
9173 The above generates bytecode for @file{foo.c} and @file{bar.c},
9174 merges them together into a single GIMPLE representation and optimizes
9175 them as usual to produce @file{myprog}.
9176
9177 The only important thing to keep in mind is that to enable link-time
9178 optimizations you need to use the GCC driver to perform the link step.
9179 GCC then automatically performs link-time optimization if any of the
9180 objects involved were compiled with the @option{-flto} command-line option.
9181 You generally
9182 should specify the optimization options to be used for link-time
9183 optimization though GCC tries to be clever at guessing an
9184 optimization level to use from the options used at compile time
9185 if you fail to specify one at link time. You can always override
9186 the automatic decision to do link-time optimization
9187 by passing @option{-fno-lto} to the link command.
9188
9189 To make whole program optimization effective, it is necessary to make
9190 certain whole program assumptions. The compiler needs to know
9191 what functions and variables can be accessed by libraries and runtime
9192 outside of the link-time optimized unit. When supported by the linker,
9193 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9194 to the compiler about used and externally visible symbols. When
9195 the linker plugin is not available, @option{-fwhole-program} should be
9196 used to allow the compiler to make these assumptions, which leads
9197 to more aggressive optimization decisions.
9198
9199 When @option{-fuse-linker-plugin} is not enabled, when a file is
9200 compiled with @option{-flto}, the generated object file is larger than
9201 a regular object file because it contains GIMPLE bytecodes and the usual
9202 final code (see @option{-ffat-lto-objects}. This means that
9203 object files with LTO information can be linked as normal object
9204 files; if @option{-fno-lto} is passed to the linker, no
9205 interprocedural optimizations are applied. Note that when
9206 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
9207 but you cannot perform a regular, non-LTO link on them.
9208
9209 Additionally, the optimization flags used to compile individual files
9210 are not necessarily related to those used at link time. For instance,
9211
9212 @smallexample
9213 gcc -c -O0 -ffat-lto-objects -flto foo.c
9214 gcc -c -O0 -ffat-lto-objects -flto bar.c
9215 gcc -o myprog -O3 foo.o bar.o
9216 @end smallexample
9217
9218 This produces individual object files with unoptimized assembler
9219 code, but the resulting binary @file{myprog} is optimized at
9220 @option{-O3}. If, instead, the final binary is generated with
9221 @option{-fno-lto}, then @file{myprog} is not optimized.
9222
9223 When producing the final binary, GCC only
9224 applies link-time optimizations to those files that contain bytecode.
9225 Therefore, you can mix and match object files and libraries with
9226 GIMPLE bytecodes and final object code. GCC automatically selects
9227 which files to optimize in LTO mode and which files to link without
9228 further processing.
9229
9230 There are some code generation flags preserved by GCC when
9231 generating bytecodes, as they need to be used during the final link
9232 stage. Generally options specified at link time override those
9233 specified at compile time.
9234
9235 If you do not specify an optimization level option @option{-O} at
9236 link time, then GCC uses the highest optimization level
9237 used when compiling the object files.
9238
9239 Currently, the following options and their settings are taken from
9240 the first object file that explicitly specifies them:
9241 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9242 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9243 and all the @option{-m} target flags.
9244
9245 Certain ABI-changing flags are required to match in all compilation units,
9246 and trying to override this at link time with a conflicting value
9247 is ignored. This includes options such as @option{-freg-struct-return}
9248 and @option{-fpcc-struct-return}.
9249
9250 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9251 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9252 are passed through to the link stage and merged conservatively for
9253 conflicting translation units. Specifically
9254 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9255 precedence; and for example @option{-ffp-contract=off} takes precedence
9256 over @option{-ffp-contract=fast}. You can override them at link time.
9257
9258 If LTO encounters objects with C linkage declared with incompatible
9259 types in separate translation units to be linked together (undefined
9260 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9261 issued. The behavior is still undefined at run time. Similar
9262 diagnostics may be raised for other languages.
9263
9264 Another feature of LTO is that it is possible to apply interprocedural
9265 optimizations on files written in different languages:
9266
9267 @smallexample
9268 gcc -c -flto foo.c
9269 g++ -c -flto bar.cc
9270 gfortran -c -flto baz.f90
9271 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9272 @end smallexample
9273
9274 Notice that the final link is done with @command{g++} to get the C++
9275 runtime libraries and @option{-lgfortran} is added to get the Fortran
9276 runtime libraries. In general, when mixing languages in LTO mode, you
9277 should use the same link command options as when mixing languages in a
9278 regular (non-LTO) compilation.
9279
9280 If object files containing GIMPLE bytecode are stored in a library archive, say
9281 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9282 are using a linker with plugin support. To create static libraries suitable
9283 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9284 and @command{ranlib};
9285 to show the symbols of object files with GIMPLE bytecode, use
9286 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9287 and @command{nm} have been compiled with plugin support. At link time, use the the
9288 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9289 the LTO optimization process:
9290
9291 @smallexample
9292 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9293 @end smallexample
9294
9295 With the linker plugin enabled, the linker extracts the needed
9296 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9297 to make them part of the aggregated GIMPLE image to be optimized.
9298
9299 If you are not using a linker with plugin support and/or do not
9300 enable the linker plugin, then the objects inside @file{libfoo.a}
9301 are extracted and linked as usual, but they do not participate
9302 in the LTO optimization process. In order to make a static library suitable
9303 for both LTO optimization and usual linkage, compile its object files with
9304 @option{-flto} @option{-ffat-lto-objects}.
9305
9306 Link-time optimizations do not require the presence of the whole program to
9307 operate. If the program does not require any symbols to be exported, it is
9308 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9309 the interprocedural optimizers to use more aggressive assumptions which may
9310 lead to improved optimization opportunities.
9311 Use of @option{-fwhole-program} is not needed when linker plugin is
9312 active (see @option{-fuse-linker-plugin}).
9313
9314 The current implementation of LTO makes no
9315 attempt to generate bytecode that is portable between different
9316 types of hosts. The bytecode files are versioned and there is a
9317 strict version check, so bytecode files generated in one version of
9318 GCC do not work with an older or newer version of GCC.
9319
9320 Link-time optimization does not work well with generation of debugging
9321 information. Combining @option{-flto} with
9322 @option{-g} is currently experimental and expected to produce unexpected
9323 results.
9324
9325 If you specify the optional @var{n}, the optimization and code
9326 generation done at link time is executed in parallel using @var{n}
9327 parallel jobs by utilizing an installed @command{make} program. The
9328 environment variable @env{MAKE} may be used to override the program
9329 used. The default value for @var{n} is 1.
9330
9331 You can also specify @option{-flto=jobserver} to use GNU make's
9332 job server mode to determine the number of parallel jobs. This
9333 is useful when the Makefile calling GCC is already executing in parallel.
9334 You must prepend a @samp{+} to the command recipe in the parent Makefile
9335 for this to work. This option likely only works if @env{MAKE} is
9336 GNU make.
9337
9338 @item -flto-partition=@var{alg}
9339 @opindex flto-partition
9340 Specify the partitioning algorithm used by the link-time optimizer.
9341 The value is either @samp{1to1} to specify a partitioning mirroring
9342 the original source files or @samp{balanced} to specify partitioning
9343 into equally sized chunks (whenever possible) or @samp{max} to create
9344 new partition for every symbol where possible. Specifying @samp{none}
9345 as an algorithm disables partitioning and streaming completely.
9346 The default value is @samp{balanced}. While @samp{1to1} can be used
9347 as an workaround for various code ordering issues, the @samp{max}
9348 partitioning is intended for internal testing only.
9349 The value @samp{one} specifies that exactly one partition should be
9350 used while the value @samp{none} bypasses partitioning and executes
9351 the link-time optimization step directly from the WPA phase.
9352
9353 @item -flto-odr-type-merging
9354 @opindex flto-odr-type-merging
9355 Enable streaming of mangled types names of C++ types and their unification
9356 at link time. This increases size of LTO object files, but enables
9357 diagnostics about One Definition Rule violations.
9358
9359 @item -flto-compression-level=@var{n}
9360 @opindex flto-compression-level
9361 This option specifies the level of compression used for intermediate
9362 language written to LTO object files, and is only meaningful in
9363 conjunction with LTO mode (@option{-flto}). Valid
9364 values are 0 (no compression) to 9 (maximum compression). Values
9365 outside this range are clamped to either 0 or 9. If the option is not
9366 given, a default balanced compression setting is used.
9367
9368 @item -fuse-linker-plugin
9369 @opindex fuse-linker-plugin
9370 Enables the use of a linker plugin during link-time optimization. This
9371 option relies on plugin support in the linker, which is available in gold
9372 or in GNU ld 2.21 or newer.
9373
9374 This option enables the extraction of object files with GIMPLE bytecode out
9375 of library archives. This improves the quality of optimization by exposing
9376 more code to the link-time optimizer. This information specifies what
9377 symbols can be accessed externally (by non-LTO object or during dynamic
9378 linking). Resulting code quality improvements on binaries (and shared
9379 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9380 See @option{-flto} for a description of the effect of this flag and how to
9381 use it.
9382
9383 This option is enabled by default when LTO support in GCC is enabled
9384 and GCC was configured for use with
9385 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9386
9387 @item -ffat-lto-objects
9388 @opindex ffat-lto-objects
9389 Fat LTO objects are object files that contain both the intermediate language
9390 and the object code. This makes them usable for both LTO linking and normal
9391 linking. This option is effective only when compiling with @option{-flto}
9392 and is ignored at link time.
9393
9394 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9395 requires the complete toolchain to be aware of LTO. It requires a linker with
9396 linker plugin support for basic functionality. Additionally,
9397 @command{nm}, @command{ar} and @command{ranlib}
9398 need to support linker plugins to allow a full-featured build environment
9399 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9400 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9401 to these tools. With non fat LTO makefiles need to be modified to use them.
9402
9403 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9404 support.
9405
9406 @item -fcompare-elim
9407 @opindex fcompare-elim
9408 After register allocation and post-register allocation instruction splitting,
9409 identify arithmetic instructions that compute processor flags similar to a
9410 comparison operation based on that arithmetic. If possible, eliminate the
9411 explicit comparison operation.
9412
9413 This pass only applies to certain targets that cannot explicitly represent
9414 the comparison operation before register allocation is complete.
9415
9416 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9417
9418 @item -fcprop-registers
9419 @opindex fcprop-registers
9420 After register allocation and post-register allocation instruction splitting,
9421 perform a copy-propagation pass to try to reduce scheduling dependencies
9422 and occasionally eliminate the copy.
9423
9424 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9425
9426 @item -fprofile-correction
9427 @opindex fprofile-correction
9428 Profiles collected using an instrumented binary for multi-threaded programs may
9429 be inconsistent due to missed counter updates. When this option is specified,
9430 GCC uses heuristics to correct or smooth out such inconsistencies. By
9431 default, GCC emits an error message when an inconsistent profile is detected.
9432
9433 @item -fprofile-use
9434 @itemx -fprofile-use=@var{path}
9435 @opindex fprofile-use
9436 Enable profile feedback-directed optimizations,
9437 and the following optimizations
9438 which are generally profitable only with profile feedback available:
9439 @option{-fbranch-probabilities}, @option{-fvpt},
9440 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9441 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9442
9443 Before you can use this option, you must first generate profiling information.
9444 @xref{Instrumentation Options}, for information about the
9445 @option{-fprofile-generate} option.
9446
9447 By default, GCC emits an error message if the feedback profiles do not
9448 match the source code. This error can be turned into a warning by using
9449 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9450 code.
9451
9452 If @var{path} is specified, GCC looks at the @var{path} to find
9453 the profile feedback data files. See @option{-fprofile-dir}.
9454
9455 @item -fauto-profile
9456 @itemx -fauto-profile=@var{path}
9457 @opindex fauto-profile
9458 Enable sampling-based feedback-directed optimizations,
9459 and the following optimizations
9460 which are generally profitable only with profile feedback available:
9461 @option{-fbranch-probabilities}, @option{-fvpt},
9462 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9463 @option{-ftree-vectorize},
9464 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9465 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9466 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9467
9468 @var{path} is the name of a file containing AutoFDO profile information.
9469 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9470
9471 Producing an AutoFDO profile data file requires running your program
9472 with the @command{perf} utility on a supported GNU/Linux target system.
9473 For more information, see @uref{https://perf.wiki.kernel.org/}.
9474
9475 E.g.
9476 @smallexample
9477 perf record -e br_inst_retired:near_taken -b -o perf.data \
9478 -- your_program
9479 @end smallexample
9480
9481 Then use the @command{create_gcov} tool to convert the raw profile data
9482 to a format that can be used by GCC.@ You must also supply the
9483 unstripped binary for your program to this tool.
9484 See @uref{https://github.com/google/autofdo}.
9485
9486 E.g.
9487 @smallexample
9488 create_gcov --binary=your_program.unstripped --profile=perf.data \
9489 --gcov=profile.afdo
9490 @end smallexample
9491 @end table
9492
9493 The following options control compiler behavior regarding floating-point
9494 arithmetic. These options trade off between speed and
9495 correctness. All must be specifically enabled.
9496
9497 @table @gcctabopt
9498 @item -ffloat-store
9499 @opindex ffloat-store
9500 Do not store floating-point variables in registers, and inhibit other
9501 options that might change whether a floating-point value is taken from a
9502 register or memory.
9503
9504 @cindex floating-point precision
9505 This option prevents undesirable excess precision on machines such as
9506 the 68000 where the floating registers (of the 68881) keep more
9507 precision than a @code{double} is supposed to have. Similarly for the
9508 x86 architecture. For most programs, the excess precision does only
9509 good, but a few programs rely on the precise definition of IEEE floating
9510 point. Use @option{-ffloat-store} for such programs, after modifying
9511 them to store all pertinent intermediate computations into variables.
9512
9513 @item -fexcess-precision=@var{style}
9514 @opindex fexcess-precision
9515 This option allows further control over excess precision on machines
9516 where floating-point operations occur in a format with more precision or
9517 range than the IEEE standard and interchange floating-point types. By
9518 default, @option{-fexcess-precision=fast} is in effect; this means that
9519 operations may be carried out in a wider precision than the types specified
9520 in the source if that would result in faster code, and it is unpredictable
9521 when rounding to the types specified in the source code takes place.
9522 When compiling C, if @option{-fexcess-precision=standard} is specified then
9523 excess precision follows the rules specified in ISO C99; in particular,
9524 both casts and assignments cause values to be rounded to their
9525 semantic types (whereas @option{-ffloat-store} only affects
9526 assignments). This option is enabled by default for C if a strict
9527 conformance option such as @option{-std=c99} is used.
9528 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
9529 regardless of whether a strict conformance option is used.
9530
9531 @opindex mfpmath
9532 @option{-fexcess-precision=standard} is not implemented for languages
9533 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
9534 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9535 semantics apply without excess precision, and in the latter, rounding
9536 is unpredictable.
9537
9538 @item -ffast-math
9539 @opindex ffast-math
9540 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9541 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9542 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
9543 @option{-fexcess-precision=fast}.
9544
9545 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9546
9547 This option is not turned on by any @option{-O} option besides
9548 @option{-Ofast} since it can result in incorrect output for programs
9549 that depend on an exact implementation of IEEE or ISO rules/specifications
9550 for math functions. It may, however, yield faster code for programs
9551 that do not require the guarantees of these specifications.
9552
9553 @item -fno-math-errno
9554 @opindex fno-math-errno
9555 Do not set @code{errno} after calling math functions that are executed
9556 with a single instruction, e.g., @code{sqrt}. A program that relies on
9557 IEEE exceptions for math error handling may want to use this flag
9558 for speed while maintaining IEEE arithmetic compatibility.
9559
9560 This option is not turned on by any @option{-O} option since
9561 it can result in incorrect output for programs that depend on
9562 an exact implementation of IEEE or ISO rules/specifications for
9563 math functions. It may, however, yield faster code for programs
9564 that do not require the guarantees of these specifications.
9565
9566 The default is @option{-fmath-errno}.
9567
9568 On Darwin systems, the math library never sets @code{errno}. There is
9569 therefore no reason for the compiler to consider the possibility that
9570 it might, and @option{-fno-math-errno} is the default.
9571
9572 @item -funsafe-math-optimizations
9573 @opindex funsafe-math-optimizations
9574
9575 Allow optimizations for floating-point arithmetic that (a) assume
9576 that arguments and results are valid and (b) may violate IEEE or
9577 ANSI standards. When used at link time, it may include libraries
9578 or startup files that change the default FPU control word or other
9579 similar optimizations.
9580
9581 This option is not turned on by any @option{-O} option since
9582 it can result in incorrect output for programs that depend on
9583 an exact implementation of IEEE or ISO rules/specifications for
9584 math functions. It may, however, yield faster code for programs
9585 that do not require the guarantees of these specifications.
9586 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9587 @option{-fassociative-math} and @option{-freciprocal-math}.
9588
9589 The default is @option{-fno-unsafe-math-optimizations}.
9590
9591 @item -fassociative-math
9592 @opindex fassociative-math
9593
9594 Allow re-association of operands in series of floating-point operations.
9595 This violates the ISO C and C++ language standard by possibly changing
9596 computation result. NOTE: re-ordering may change the sign of zero as
9597 well as ignore NaNs and inhibit or create underflow or overflow (and
9598 thus cannot be used on code that relies on rounding behavior like
9599 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9600 and thus may not be used when ordered comparisons are required.
9601 This option requires that both @option{-fno-signed-zeros} and
9602 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9603 much sense with @option{-frounding-math}. For Fortran the option
9604 is automatically enabled when both @option{-fno-signed-zeros} and
9605 @option{-fno-trapping-math} are in effect.
9606
9607 The default is @option{-fno-associative-math}.
9608
9609 @item -freciprocal-math
9610 @opindex freciprocal-math
9611
9612 Allow the reciprocal of a value to be used instead of dividing by
9613 the value if this enables optimizations. For example @code{x / y}
9614 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9615 is subject to common subexpression elimination. Note that this loses
9616 precision and increases the number of flops operating on the value.
9617
9618 The default is @option{-fno-reciprocal-math}.
9619
9620 @item -ffinite-math-only
9621 @opindex ffinite-math-only
9622 Allow optimizations for floating-point arithmetic that assume
9623 that arguments and results are not NaNs or +-Infs.
9624
9625 This option is not turned on by any @option{-O} option since
9626 it can result in incorrect output for programs that depend on
9627 an exact implementation of IEEE or ISO rules/specifications for
9628 math functions. It may, however, yield faster code for programs
9629 that do not require the guarantees of these specifications.
9630
9631 The default is @option{-fno-finite-math-only}.
9632
9633 @item -fno-signed-zeros
9634 @opindex fno-signed-zeros
9635 Allow optimizations for floating-point arithmetic that ignore the
9636 signedness of zero. IEEE arithmetic specifies the behavior of
9637 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9638 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9639 This option implies that the sign of a zero result isn't significant.
9640
9641 The default is @option{-fsigned-zeros}.
9642
9643 @item -fno-trapping-math
9644 @opindex fno-trapping-math
9645 Compile code assuming that floating-point operations cannot generate
9646 user-visible traps. These traps include division by zero, overflow,
9647 underflow, inexact result and invalid operation. This option requires
9648 that @option{-fno-signaling-nans} be in effect. Setting this option may
9649 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9650
9651 This option should never be turned on by any @option{-O} option since
9652 it can result in incorrect output for programs that depend on
9653 an exact implementation of IEEE or ISO rules/specifications for
9654 math functions.
9655
9656 The default is @option{-ftrapping-math}.
9657
9658 @item -frounding-math
9659 @opindex frounding-math
9660 Disable transformations and optimizations that assume default floating-point
9661 rounding behavior. This is round-to-zero for all floating point
9662 to integer conversions, and round-to-nearest for all other arithmetic
9663 truncations. This option should be specified for programs that change
9664 the FP rounding mode dynamically, or that may be executed with a
9665 non-default rounding mode. This option disables constant folding of
9666 floating-point expressions at compile time (which may be affected by
9667 rounding mode) and arithmetic transformations that are unsafe in the
9668 presence of sign-dependent rounding modes.
9669
9670 The default is @option{-fno-rounding-math}.
9671
9672 This option is experimental and does not currently guarantee to
9673 disable all GCC optimizations that are affected by rounding mode.
9674 Future versions of GCC may provide finer control of this setting
9675 using C99's @code{FENV_ACCESS} pragma. This command-line option
9676 will be used to specify the default state for @code{FENV_ACCESS}.
9677
9678 @item -fsignaling-nans
9679 @opindex fsignaling-nans
9680 Compile code assuming that IEEE signaling NaNs may generate user-visible
9681 traps during floating-point operations. Setting this option disables
9682 optimizations that may change the number of exceptions visible with
9683 signaling NaNs. This option implies @option{-ftrapping-math}.
9684
9685 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9686 be defined.
9687
9688 The default is @option{-fno-signaling-nans}.
9689
9690 This option is experimental and does not currently guarantee to
9691 disable all GCC optimizations that affect signaling NaN behavior.
9692
9693 @item -fno-fp-int-builtin-inexact
9694 @opindex fno-fp-int-builtin-inexact
9695 Do not allow the built-in functions @code{ceil}, @code{floor},
9696 @code{round} and @code{trunc}, and their @code{float} and @code{long
9697 double} variants, to generate code that raises the ``inexact''
9698 floating-point exception for noninteger arguments. ISO C99 and C11
9699 allow these functions to raise the ``inexact'' exception, but ISO/IEC
9700 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
9701 functions to do so.
9702
9703 The default is @option{-ffp-int-builtin-inexact}, allowing the
9704 exception to be raised. This option does nothing unless
9705 @option{-ftrapping-math} is in effect.
9706
9707 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
9708 generate a call to a library function then the ``inexact'' exception
9709 may be raised if the library implementation does not follow TS 18661.
9710
9711 @item -fsingle-precision-constant
9712 @opindex fsingle-precision-constant
9713 Treat floating-point constants as single precision instead of
9714 implicitly converting them to double-precision constants.
9715
9716 @item -fcx-limited-range
9717 @opindex fcx-limited-range
9718 When enabled, this option states that a range reduction step is not
9719 needed when performing complex division. Also, there is no checking
9720 whether the result of a complex multiplication or division is @code{NaN
9721 + I*NaN}, with an attempt to rescue the situation in that case. The
9722 default is @option{-fno-cx-limited-range}, but is enabled by
9723 @option{-ffast-math}.
9724
9725 This option controls the default setting of the ISO C99
9726 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9727 all languages.
9728
9729 @item -fcx-fortran-rules
9730 @opindex fcx-fortran-rules
9731 Complex multiplication and division follow Fortran rules. Range
9732 reduction is done as part of complex division, but there is no checking
9733 whether the result of a complex multiplication or division is @code{NaN
9734 + I*NaN}, with an attempt to rescue the situation in that case.
9735
9736 The default is @option{-fno-cx-fortran-rules}.
9737
9738 @end table
9739
9740 The following options control optimizations that may improve
9741 performance, but are not enabled by any @option{-O} options. This
9742 section includes experimental options that may produce broken code.
9743
9744 @table @gcctabopt
9745 @item -fbranch-probabilities
9746 @opindex fbranch-probabilities
9747 After running a program compiled with @option{-fprofile-arcs}
9748 (@pxref{Instrumentation Options}),
9749 you can compile it a second time using
9750 @option{-fbranch-probabilities}, to improve optimizations based on
9751 the number of times each branch was taken. When a program
9752 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9753 counts to a file called @file{@var{sourcename}.gcda} for each source
9754 file. The information in this data file is very dependent on the
9755 structure of the generated code, so you must use the same source code
9756 and the same optimization options for both compilations.
9757
9758 With @option{-fbranch-probabilities}, GCC puts a
9759 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9760 These can be used to improve optimization. Currently, they are only
9761 used in one place: in @file{reorg.c}, instead of guessing which path a
9762 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9763 exactly determine which path is taken more often.
9764
9765 @item -fprofile-values
9766 @opindex fprofile-values
9767 If combined with @option{-fprofile-arcs}, it adds code so that some
9768 data about values of expressions in the program is gathered.
9769
9770 With @option{-fbranch-probabilities}, it reads back the data gathered
9771 from profiling values of expressions for usage in optimizations.
9772
9773 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9774
9775 @item -fprofile-reorder-functions
9776 @opindex fprofile-reorder-functions
9777 Function reordering based on profile instrumentation collects
9778 first time of execution of a function and orders these functions
9779 in ascending order.
9780
9781 Enabled with @option{-fprofile-use}.
9782
9783 @item -fvpt
9784 @opindex fvpt
9785 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9786 to add code to gather information about values of expressions.
9787
9788 With @option{-fbranch-probabilities}, it reads back the data gathered
9789 and actually performs the optimizations based on them.
9790 Currently the optimizations include specialization of division operations
9791 using the knowledge about the value of the denominator.
9792
9793 @item -frename-registers
9794 @opindex frename-registers
9795 Attempt to avoid false dependencies in scheduled code by making use
9796 of registers left over after register allocation. This optimization
9797 most benefits processors with lots of registers. Depending on the
9798 debug information format adopted by the target, however, it can
9799 make debugging impossible, since variables no longer stay in
9800 a ``home register''.
9801
9802 Enabled by default with @option{-funroll-loops}.
9803
9804 @item -fschedule-fusion
9805 @opindex fschedule-fusion
9806 Performs a target dependent pass over the instruction stream to schedule
9807 instructions of same type together because target machine can execute them
9808 more efficiently if they are adjacent to each other in the instruction flow.
9809
9810 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9811
9812 @item -ftracer
9813 @opindex ftracer
9814 Perform tail duplication to enlarge superblock size. This transformation
9815 simplifies the control flow of the function allowing other optimizations to do
9816 a better job.
9817
9818 Enabled with @option{-fprofile-use}.
9819
9820 @item -funroll-loops
9821 @opindex funroll-loops
9822 Unroll loops whose number of iterations can be determined at compile time or
9823 upon entry to the loop. @option{-funroll-loops} implies
9824 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9825 It also turns on complete loop peeling (i.e.@: complete removal of loops with
9826 a small constant number of iterations). This option makes code larger, and may
9827 or may not make it run faster.
9828
9829 Enabled with @option{-fprofile-use}.
9830
9831 @item -funroll-all-loops
9832 @opindex funroll-all-loops
9833 Unroll all loops, even if their number of iterations is uncertain when
9834 the loop is entered. This usually makes programs run more slowly.
9835 @option{-funroll-all-loops} implies the same options as
9836 @option{-funroll-loops}.
9837
9838 @item -fpeel-loops
9839 @opindex fpeel-loops
9840 Peels loops for which there is enough information that they do not
9841 roll much (from profile feedback or static analysis). It also turns on
9842 complete loop peeling (i.e.@: complete removal of loops with small constant
9843 number of iterations).
9844
9845 Enabled with @option{-O3} and/or @option{-fprofile-use}.
9846
9847 @item -fmove-loop-invariants
9848 @opindex fmove-loop-invariants
9849 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
9850 at level @option{-O1}
9851
9852 @item -fsplit-loops
9853 @opindex fsplit-loops
9854 Split a loop into two if it contains a condition that's always true
9855 for one side of the iteration space and false for the other.
9856
9857 @item -funswitch-loops
9858 @opindex funswitch-loops
9859 Move branches with loop invariant conditions out of the loop, with duplicates
9860 of the loop on both branches (modified according to result of the condition).
9861
9862 @item -floop-unroll-and-jam
9863 @opindex floop-unroll-and-jam
9864 Apply unroll and jam transformations on feasible loops. In a loop
9865 nest this unrolls the outer loop by some factor and fuses the resulting
9866 multiple inner loops.
9867
9868 @item -ffunction-sections
9869 @itemx -fdata-sections
9870 @opindex ffunction-sections
9871 @opindex fdata-sections
9872 Place each function or data item into its own section in the output
9873 file if the target supports arbitrary sections. The name of the
9874 function or the name of the data item determines the section's name
9875 in the output file.
9876
9877 Use these options on systems where the linker can perform optimizations to
9878 improve locality of reference in the instruction space. Most systems using the
9879 ELF object format have linkers with such optimizations. On AIX, the linker
9880 rearranges sections (CSECTs) based on the call graph. The performance impact
9881 varies.
9882
9883 Together with a linker garbage collection (linker @option{--gc-sections}
9884 option) these options may lead to smaller statically-linked executables (after
9885 stripping).
9886
9887 On ELF/DWARF systems these options do not degenerate the quality of the debug
9888 information. There could be issues with other object files/debug info formats.
9889
9890 Only use these options when there are significant benefits from doing so. When
9891 you specify these options, the assembler and linker create larger object and
9892 executable files and are also slower. These options affect code generation.
9893 They prevent optimizations by the compiler and assembler using relative
9894 locations inside a translation unit since the locations are unknown until
9895 link time. An example of such an optimization is relaxing calls to short call
9896 instructions.
9897
9898 @item -fbranch-target-load-optimize
9899 @opindex fbranch-target-load-optimize
9900 Perform branch target register load optimization before prologue / epilogue
9901 threading.
9902 The use of target registers can typically be exposed only during reload,
9903 thus hoisting loads out of loops and doing inter-block scheduling needs
9904 a separate optimization pass.
9905
9906 @item -fbranch-target-load-optimize2
9907 @opindex fbranch-target-load-optimize2
9908 Perform branch target register load optimization after prologue / epilogue
9909 threading.
9910
9911 @item -fbtr-bb-exclusive
9912 @opindex fbtr-bb-exclusive
9913 When performing branch target register load optimization, don't reuse
9914 branch target registers within any basic block.
9915
9916 @item -fstdarg-opt
9917 @opindex fstdarg-opt
9918 Optimize the prologue of variadic argument functions with respect to usage of
9919 those arguments.
9920
9921 @item -fsection-anchors
9922 @opindex fsection-anchors
9923 Try to reduce the number of symbolic address calculations by using
9924 shared ``anchor'' symbols to address nearby objects. This transformation
9925 can help to reduce the number of GOT entries and GOT accesses on some
9926 targets.
9927
9928 For example, the implementation of the following function @code{foo}:
9929
9930 @smallexample
9931 static int a, b, c;
9932 int foo (void) @{ return a + b + c; @}
9933 @end smallexample
9934
9935 @noindent
9936 usually calculates the addresses of all three variables, but if you
9937 compile it with @option{-fsection-anchors}, it accesses the variables
9938 from a common anchor point instead. The effect is similar to the
9939 following pseudocode (which isn't valid C):
9940
9941 @smallexample
9942 int foo (void)
9943 @{
9944 register int *xr = &x;
9945 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
9946 @}
9947 @end smallexample
9948
9949 Not all targets support this option.
9950
9951 @item --param @var{name}=@var{value}
9952 @opindex param
9953 In some places, GCC uses various constants to control the amount of
9954 optimization that is done. For example, GCC does not inline functions
9955 that contain more than a certain number of instructions. You can
9956 control some of these constants on the command line using the
9957 @option{--param} option.
9958
9959 The names of specific parameters, and the meaning of the values, are
9960 tied to the internals of the compiler, and are subject to change
9961 without notice in future releases.
9962
9963 In each case, the @var{value} is an integer. The allowable choices for
9964 @var{name} are:
9965
9966 @table @gcctabopt
9967 @item predictable-branch-outcome
9968 When branch is predicted to be taken with probability lower than this threshold
9969 (in percent), then it is considered well predictable. The default is 10.
9970
9971 @item max-rtl-if-conversion-insns
9972 RTL if-conversion tries to remove conditional branches around a block and
9973 replace them with conditionally executed instructions. This parameter
9974 gives the maximum number of instructions in a block which should be
9975 considered for if-conversion. The default is 10, though the compiler will
9976 also use other heuristics to decide whether if-conversion is likely to be
9977 profitable.
9978
9979 @item max-rtl-if-conversion-predictable-cost
9980 @item max-rtl-if-conversion-unpredictable-cost
9981 RTL if-conversion will try to remove conditional branches around a block
9982 and replace them with conditionally executed instructions. These parameters
9983 give the maximum permissible cost for the sequence that would be generated
9984 by if-conversion depending on whether the branch is statically determined
9985 to be predictable or not. The units for this parameter are the same as
9986 those for the GCC internal seq_cost metric. The compiler will try to
9987 provide a reasonable default for this parameter using the BRANCH_COST
9988 target macro.
9989
9990 @item max-crossjump-edges
9991 The maximum number of incoming edges to consider for cross-jumping.
9992 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
9993 the number of edges incoming to each block. Increasing values mean
9994 more aggressive optimization, making the compilation time increase with
9995 probably small improvement in executable size.
9996
9997 @item min-crossjump-insns
9998 The minimum number of instructions that must be matched at the end
9999 of two blocks before cross-jumping is performed on them. This
10000 value is ignored in the case where all instructions in the block being
10001 cross-jumped from are matched. The default value is 5.
10002
10003 @item max-grow-copy-bb-insns
10004 The maximum code size expansion factor when copying basic blocks
10005 instead of jumping. The expansion is relative to a jump instruction.
10006 The default value is 8.
10007
10008 @item max-goto-duplication-insns
10009 The maximum number of instructions to duplicate to a block that jumps
10010 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
10011 passes, GCC factors computed gotos early in the compilation process,
10012 and unfactors them as late as possible. Only computed jumps at the
10013 end of a basic blocks with no more than max-goto-duplication-insns are
10014 unfactored. The default value is 8.
10015
10016 @item max-delay-slot-insn-search
10017 The maximum number of instructions to consider when looking for an
10018 instruction to fill a delay slot. If more than this arbitrary number of
10019 instructions are searched, the time savings from filling the delay slot
10020 are minimal, so stop searching. Increasing values mean more
10021 aggressive optimization, making the compilation time increase with probably
10022 small improvement in execution time.
10023
10024 @item max-delay-slot-live-search
10025 When trying to fill delay slots, the maximum number of instructions to
10026 consider when searching for a block with valid live register
10027 information. Increasing this arbitrarily chosen value means more
10028 aggressive optimization, increasing the compilation time. This parameter
10029 should be removed when the delay slot code is rewritten to maintain the
10030 control-flow graph.
10031
10032 @item max-gcse-memory
10033 The approximate maximum amount of memory that can be allocated in
10034 order to perform the global common subexpression elimination
10035 optimization. If more memory than specified is required, the
10036 optimization is not done.
10037
10038 @item max-gcse-insertion-ratio
10039 If the ratio of expression insertions to deletions is larger than this value
10040 for any expression, then RTL PRE inserts or removes the expression and thus
10041 leaves partially redundant computations in the instruction stream. The default value is 20.
10042
10043 @item max-pending-list-length
10044 The maximum number of pending dependencies scheduling allows
10045 before flushing the current state and starting over. Large functions
10046 with few branches or calls can create excessively large lists which
10047 needlessly consume memory and resources.
10048
10049 @item max-modulo-backtrack-attempts
10050 The maximum number of backtrack attempts the scheduler should make
10051 when modulo scheduling a loop. Larger values can exponentially increase
10052 compilation time.
10053
10054 @item max-inline-insns-single
10055 Several parameters control the tree inliner used in GCC@.
10056 This number sets the maximum number of instructions (counted in GCC's
10057 internal representation) in a single function that the tree inliner
10058 considers for inlining. This only affects functions declared
10059 inline and methods implemented in a class declaration (C++).
10060 The default value is 400.
10061
10062 @item max-inline-insns-auto
10063 When you use @option{-finline-functions} (included in @option{-O3}),
10064 a lot of functions that would otherwise not be considered for inlining
10065 by the compiler are investigated. To those functions, a different
10066 (more restrictive) limit compared to functions declared inline can
10067 be applied.
10068 The default value is 40.
10069
10070 @item inline-min-speedup
10071 When estimated performance improvement of caller + callee runtime exceeds this
10072 threshold (in percent), the function can be inlined regardless of the limit on
10073 @option{--param max-inline-insns-single} and @option{--param
10074 max-inline-insns-auto}.
10075
10076 @item large-function-insns
10077 The limit specifying really large functions. For functions larger than this
10078 limit after inlining, inlining is constrained by
10079 @option{--param large-function-growth}. This parameter is useful primarily
10080 to avoid extreme compilation time caused by non-linear algorithms used by the
10081 back end.
10082 The default value is 2700.
10083
10084 @item large-function-growth
10085 Specifies maximal growth of large function caused by inlining in percents.
10086 The default value is 100 which limits large function growth to 2.0 times
10087 the original size.
10088
10089 @item large-unit-insns
10090 The limit specifying large translation unit. Growth caused by inlining of
10091 units larger than this limit is limited by @option{--param inline-unit-growth}.
10092 For small units this might be too tight.
10093 For example, consider a unit consisting of function A
10094 that is inline and B that just calls A three times. If B is small relative to
10095 A, the growth of unit is 300\% and yet such inlining is very sane. For very
10096 large units consisting of small inlineable functions, however, the overall unit
10097 growth limit is needed to avoid exponential explosion of code size. Thus for
10098 smaller units, the size is increased to @option{--param large-unit-insns}
10099 before applying @option{--param inline-unit-growth}. The default is 10000.
10100
10101 @item inline-unit-growth
10102 Specifies maximal overall growth of the compilation unit caused by inlining.
10103 The default value is 20 which limits unit growth to 1.2 times the original
10104 size. Cold functions (either marked cold via an attribute or by profile
10105 feedback) are not accounted into the unit size.
10106
10107 @item ipcp-unit-growth
10108 Specifies maximal overall growth of the compilation unit caused by
10109 interprocedural constant propagation. The default value is 10 which limits
10110 unit growth to 1.1 times the original size.
10111
10112 @item large-stack-frame
10113 The limit specifying large stack frames. While inlining the algorithm is trying
10114 to not grow past this limit too much. The default value is 256 bytes.
10115
10116 @item large-stack-frame-growth
10117 Specifies maximal growth of large stack frames caused by inlining in percents.
10118 The default value is 1000 which limits large stack frame growth to 11 times
10119 the original size.
10120
10121 @item max-inline-insns-recursive
10122 @itemx max-inline-insns-recursive-auto
10123 Specifies the maximum number of instructions an out-of-line copy of a
10124 self-recursive inline
10125 function can grow into by performing recursive inlining.
10126
10127 @option{--param max-inline-insns-recursive} applies to functions
10128 declared inline.
10129 For functions not declared inline, recursive inlining
10130 happens only when @option{-finline-functions} (included in @option{-O3}) is
10131 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
10132 default value is 450.
10133
10134 @item max-inline-recursive-depth
10135 @itemx max-inline-recursive-depth-auto
10136 Specifies the maximum recursion depth used for recursive inlining.
10137
10138 @option{--param max-inline-recursive-depth} applies to functions
10139 declared inline. For functions not declared inline, recursive inlining
10140 happens only when @option{-finline-functions} (included in @option{-O3}) is
10141 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
10142 default value is 8.
10143
10144 @item min-inline-recursive-probability
10145 Recursive inlining is profitable only for function having deep recursion
10146 in average and can hurt for function having little recursion depth by
10147 increasing the prologue size or complexity of function body to other
10148 optimizers.
10149
10150 When profile feedback is available (see @option{-fprofile-generate}) the actual
10151 recursion depth can be guessed from the probability that function recurses
10152 via a given call expression. This parameter limits inlining only to call
10153 expressions whose probability exceeds the given threshold (in percents).
10154 The default value is 10.
10155
10156 @item early-inlining-insns
10157 Specify growth that the early inliner can make. In effect it increases
10158 the amount of inlining for code having a large abstraction penalty.
10159 The default value is 14.
10160
10161 @item max-early-inliner-iterations
10162 Limit of iterations of the early inliner. This basically bounds
10163 the number of nested indirect calls the early inliner can resolve.
10164 Deeper chains are still handled by late inlining.
10165
10166 @item comdat-sharing-probability
10167 Probability (in percent) that C++ inline function with comdat visibility
10168 are shared across multiple compilation units. The default value is 20.
10169
10170 @item profile-func-internal-id
10171 A parameter to control whether to use function internal id in profile
10172 database lookup. If the value is 0, the compiler uses an id that
10173 is based on function assembler name and filename, which makes old profile
10174 data more tolerant to source changes such as function reordering etc.
10175 The default value is 0.
10176
10177 @item min-vect-loop-bound
10178 The minimum number of iterations under which loops are not vectorized
10179 when @option{-ftree-vectorize} is used. The number of iterations after
10180 vectorization needs to be greater than the value specified by this option
10181 to allow vectorization. The default value is 0.
10182
10183 @item gcse-cost-distance-ratio
10184 Scaling factor in calculation of maximum distance an expression
10185 can be moved by GCSE optimizations. This is currently supported only in the
10186 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
10187 is with simple expressions, i.e., the expressions that have cost
10188 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
10189 hoisting of simple expressions. The default value is 10.
10190
10191 @item gcse-unrestricted-cost
10192 Cost, roughly measured as the cost of a single typical machine
10193 instruction, at which GCSE optimizations do not constrain
10194 the distance an expression can travel. This is currently
10195 supported only in the code hoisting pass. The lesser the cost,
10196 the more aggressive code hoisting is. Specifying 0
10197 allows all expressions to travel unrestricted distances.
10198 The default value is 3.
10199
10200 @item max-hoist-depth
10201 The depth of search in the dominator tree for expressions to hoist.
10202 This is used to avoid quadratic behavior in hoisting algorithm.
10203 The value of 0 does not limit on the search, but may slow down compilation
10204 of huge functions. The default value is 30.
10205
10206 @item max-tail-merge-comparisons
10207 The maximum amount of similar bbs to compare a bb with. This is used to
10208 avoid quadratic behavior in tree tail merging. The default value is 10.
10209
10210 @item max-tail-merge-iterations
10211 The maximum amount of iterations of the pass over the function. This is used to
10212 limit compilation time in tree tail merging. The default value is 2.
10213
10214 @item store-merging-allow-unaligned
10215 Allow the store merging pass to introduce unaligned stores if it is legal to
10216 do so. The default value is 1.
10217
10218 @item max-stores-to-merge
10219 The maximum number of stores to attempt to merge into wider stores in the store
10220 merging pass. The minimum value is 2 and the default is 64.
10221
10222 @item max-unrolled-insns
10223 The maximum number of instructions that a loop may have to be unrolled.
10224 If a loop is unrolled, this parameter also determines how many times
10225 the loop code is unrolled.
10226
10227 @item max-average-unrolled-insns
10228 The maximum number of instructions biased by probabilities of their execution
10229 that a loop may have to be unrolled. If a loop is unrolled,
10230 this parameter also determines how many times the loop code is unrolled.
10231
10232 @item max-unroll-times
10233 The maximum number of unrollings of a single loop.
10234
10235 @item max-peeled-insns
10236 The maximum number of instructions that a loop may have to be peeled.
10237 If a loop is peeled, this parameter also determines how many times
10238 the loop code is peeled.
10239
10240 @item max-peel-times
10241 The maximum number of peelings of a single loop.
10242
10243 @item max-peel-branches
10244 The maximum number of branches on the hot path through the peeled sequence.
10245
10246 @item max-completely-peeled-insns
10247 The maximum number of insns of a completely peeled loop.
10248
10249 @item max-completely-peel-times
10250 The maximum number of iterations of a loop to be suitable for complete peeling.
10251
10252 @item max-completely-peel-loop-nest-depth
10253 The maximum depth of a loop nest suitable for complete peeling.
10254
10255 @item max-unswitch-insns
10256 The maximum number of insns of an unswitched loop.
10257
10258 @item max-unswitch-level
10259 The maximum number of branches unswitched in a single loop.
10260
10261 @item max-loop-headers-insns
10262 The maximum number of insns in loop header duplicated by the copy loop headers
10263 pass.
10264
10265 @item lim-expensive
10266 The minimum cost of an expensive expression in the loop invariant motion.
10267
10268 @item iv-consider-all-candidates-bound
10269 Bound on number of candidates for induction variables, below which
10270 all candidates are considered for each use in induction variable
10271 optimizations. If there are more candidates than this,
10272 only the most relevant ones are considered to avoid quadratic time complexity.
10273
10274 @item iv-max-considered-uses
10275 The induction variable optimizations give up on loops that contain more
10276 induction variable uses.
10277
10278 @item iv-always-prune-cand-set-bound
10279 If the number of candidates in the set is smaller than this value,
10280 always try to remove unnecessary ivs from the set
10281 when adding a new one.
10282
10283 @item avg-loop-niter
10284 Average number of iterations of a loop.
10285
10286 @item dse-max-object-size
10287 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
10288 Larger values may result in larger compilation times.
10289
10290 @item scev-max-expr-size
10291 Bound on size of expressions used in the scalar evolutions analyzer.
10292 Large expressions slow the analyzer.
10293
10294 @item scev-max-expr-complexity
10295 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10296 Complex expressions slow the analyzer.
10297
10298 @item max-tree-if-conversion-phi-args
10299 Maximum number of arguments in a PHI supported by TREE if conversion
10300 unless the loop is marked with simd pragma.
10301
10302 @item vect-max-version-for-alignment-checks
10303 The maximum number of run-time checks that can be performed when
10304 doing loop versioning for alignment in the vectorizer.
10305
10306 @item vect-max-version-for-alias-checks
10307 The maximum number of run-time checks that can be performed when
10308 doing loop versioning for alias in the vectorizer.
10309
10310 @item vect-max-peeling-for-alignment
10311 The maximum number of loop peels to enhance access alignment
10312 for vectorizer. Value -1 means no limit.
10313
10314 @item max-iterations-to-track
10315 The maximum number of iterations of a loop the brute-force algorithm
10316 for analysis of the number of iterations of the loop tries to evaluate.
10317
10318 @item hot-bb-count-ws-permille
10319 A basic block profile count is considered hot if it contributes to
10320 the given permillage (i.e. 0...1000) of the entire profiled execution.
10321
10322 @item hot-bb-frequency-fraction
10323 Select fraction of the entry block frequency of executions of basic block in
10324 function given basic block needs to have to be considered hot.
10325
10326 @item max-predicted-iterations
10327 The maximum number of loop iterations we predict statically. This is useful
10328 in cases where a function contains a single loop with known bound and
10329 another loop with unknown bound.
10330 The known number of iterations is predicted correctly, while
10331 the unknown number of iterations average to roughly 10. This means that the
10332 loop without bounds appears artificially cold relative to the other one.
10333
10334 @item builtin-expect-probability
10335 Control the probability of the expression having the specified value. This
10336 parameter takes a percentage (i.e. 0 ... 100) as input.
10337 The default probability of 90 is obtained empirically.
10338
10339 @item align-threshold
10340
10341 Select fraction of the maximal frequency of executions of a basic block in
10342 a function to align the basic block.
10343
10344 @item align-loop-iterations
10345
10346 A loop expected to iterate at least the selected number of iterations is
10347 aligned.
10348
10349 @item tracer-dynamic-coverage
10350 @itemx tracer-dynamic-coverage-feedback
10351
10352 This value is used to limit superblock formation once the given percentage of
10353 executed instructions is covered. This limits unnecessary code size
10354 expansion.
10355
10356 The @option{tracer-dynamic-coverage-feedback} parameter
10357 is used only when profile
10358 feedback is available. The real profiles (as opposed to statically estimated
10359 ones) are much less balanced allowing the threshold to be larger value.
10360
10361 @item tracer-max-code-growth
10362 Stop tail duplication once code growth has reached given percentage. This is
10363 a rather artificial limit, as most of the duplicates are eliminated later in
10364 cross jumping, so it may be set to much higher values than is the desired code
10365 growth.
10366
10367 @item tracer-min-branch-ratio
10368
10369 Stop reverse growth when the reverse probability of best edge is less than this
10370 threshold (in percent).
10371
10372 @item tracer-min-branch-probability
10373 @itemx tracer-min-branch-probability-feedback
10374
10375 Stop forward growth if the best edge has probability lower than this
10376 threshold.
10377
10378 Similarly to @option{tracer-dynamic-coverage} two parameters are
10379 provided. @option{tracer-min-branch-probability-feedback} is used for
10380 compilation with profile feedback and @option{tracer-min-branch-probability}
10381 compilation without. The value for compilation with profile feedback
10382 needs to be more conservative (higher) in order to make tracer
10383 effective.
10384
10385 @item stack-clash-protection-guard-size
10386 Specify the size of the operating system provided stack guard as
10387 2 raised to @var{num} bytes. The default value is 12 (4096 bytes).
10388 Acceptable values are between 12 and 30. Higher values may reduce the
10389 number of explicit probes, but a value larger than the operating system
10390 provided guard will leave code vulnerable to stack clash style attacks.
10391
10392 @item stack-clash-protection-probe-interval
10393 Stack clash protection involves probing stack space as it is allocated. This
10394 param controls the maximum distance between probes into the stack as 2 raised
10395 to @var{num} bytes. Acceptable values are between 10 and 16 and defaults to
10396 12. Higher values may reduce the number of explicit probes, but a value
10397 larger than the operating system provided guard will leave code vulnerable to
10398 stack clash style attacks.
10399
10400 @item max-cse-path-length
10401
10402 The maximum number of basic blocks on path that CSE considers.
10403 The default is 10.
10404
10405 @item max-cse-insns
10406 The maximum number of instructions CSE processes before flushing.
10407 The default is 1000.
10408
10409 @item ggc-min-expand
10410
10411 GCC uses a garbage collector to manage its own memory allocation. This
10412 parameter specifies the minimum percentage by which the garbage
10413 collector's heap should be allowed to expand between collections.
10414 Tuning this may improve compilation speed; it has no effect on code
10415 generation.
10416
10417 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10418 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10419 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10420 GCC is not able to calculate RAM on a particular platform, the lower
10421 bound of 30% is used. Setting this parameter and
10422 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10423 every opportunity. This is extremely slow, but can be useful for
10424 debugging.
10425
10426 @item ggc-min-heapsize
10427
10428 Minimum size of the garbage collector's heap before it begins bothering
10429 to collect garbage. The first collection occurs after the heap expands
10430 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10431 tuning this may improve compilation speed, and has no effect on code
10432 generation.
10433
10434 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10435 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10436 with a lower bound of 4096 (four megabytes) and an upper bound of
10437 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10438 particular platform, the lower bound is used. Setting this parameter
10439 very large effectively disables garbage collection. Setting this
10440 parameter and @option{ggc-min-expand} to zero causes a full collection
10441 to occur at every opportunity.
10442
10443 @item max-reload-search-insns
10444 The maximum number of instruction reload should look backward for equivalent
10445 register. Increasing values mean more aggressive optimization, making the
10446 compilation time increase with probably slightly better performance.
10447 The default value is 100.
10448
10449 @item max-cselib-memory-locations
10450 The maximum number of memory locations cselib should take into account.
10451 Increasing values mean more aggressive optimization, making the compilation time
10452 increase with probably slightly better performance. The default value is 500.
10453
10454 @item max-sched-ready-insns
10455 The maximum number of instructions ready to be issued the scheduler should
10456 consider at any given time during the first scheduling pass. Increasing
10457 values mean more thorough searches, making the compilation time increase
10458 with probably little benefit. The default value is 100.
10459
10460 @item max-sched-region-blocks
10461 The maximum number of blocks in a region to be considered for
10462 interblock scheduling. The default value is 10.
10463
10464 @item max-pipeline-region-blocks
10465 The maximum number of blocks in a region to be considered for
10466 pipelining in the selective scheduler. The default value is 15.
10467
10468 @item max-sched-region-insns
10469 The maximum number of insns in a region to be considered for
10470 interblock scheduling. The default value is 100.
10471
10472 @item max-pipeline-region-insns
10473 The maximum number of insns in a region to be considered for
10474 pipelining in the selective scheduler. The default value is 200.
10475
10476 @item min-spec-prob
10477 The minimum probability (in percents) of reaching a source block
10478 for interblock speculative scheduling. The default value is 40.
10479
10480 @item max-sched-extend-regions-iters
10481 The maximum number of iterations through CFG to extend regions.
10482 A value of 0 (the default) disables region extensions.
10483
10484 @item max-sched-insn-conflict-delay
10485 The maximum conflict delay for an insn to be considered for speculative motion.
10486 The default value is 3.
10487
10488 @item sched-spec-prob-cutoff
10489 The minimal probability of speculation success (in percents), so that
10490 speculative insns are scheduled.
10491 The default value is 40.
10492
10493 @item sched-state-edge-prob-cutoff
10494 The minimum probability an edge must have for the scheduler to save its
10495 state across it.
10496 The default value is 10.
10497
10498 @item sched-mem-true-dep-cost
10499 Minimal distance (in CPU cycles) between store and load targeting same
10500 memory locations. The default value is 1.
10501
10502 @item selsched-max-lookahead
10503 The maximum size of the lookahead window of selective scheduling. It is a
10504 depth of search for available instructions.
10505 The default value is 50.
10506
10507 @item selsched-max-sched-times
10508 The maximum number of times that an instruction is scheduled during
10509 selective scheduling. This is the limit on the number of iterations
10510 through which the instruction may be pipelined. The default value is 2.
10511
10512 @item selsched-insns-to-rename
10513 The maximum number of best instructions in the ready list that are considered
10514 for renaming in the selective scheduler. The default value is 2.
10515
10516 @item sms-min-sc
10517 The minimum value of stage count that swing modulo scheduler
10518 generates. The default value is 2.
10519
10520 @item max-last-value-rtl
10521 The maximum size measured as number of RTLs that can be recorded in an expression
10522 in combiner for a pseudo register as last known value of that register. The default
10523 is 10000.
10524
10525 @item max-combine-insns
10526 The maximum number of instructions the RTL combiner tries to combine.
10527 The default value is 2 at @option{-Og} and 4 otherwise.
10528
10529 @item integer-share-limit
10530 Small integer constants can use a shared data structure, reducing the
10531 compiler's memory usage and increasing its speed. This sets the maximum
10532 value of a shared integer constant. The default value is 256.
10533
10534 @item ssp-buffer-size
10535 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10536 protection when @option{-fstack-protection} is used.
10537
10538 @item min-size-for-stack-sharing
10539 The minimum size of variables taking part in stack slot sharing when not
10540 optimizing. The default value is 32.
10541
10542 @item max-jump-thread-duplication-stmts
10543 Maximum number of statements allowed in a block that needs to be
10544 duplicated when threading jumps.
10545
10546 @item max-fields-for-field-sensitive
10547 Maximum number of fields in a structure treated in
10548 a field sensitive manner during pointer analysis. The default is zero
10549 for @option{-O0} and @option{-O1},
10550 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10551
10552 @item prefetch-latency
10553 Estimate on average number of instructions that are executed before
10554 prefetch finishes. The distance prefetched ahead is proportional
10555 to this constant. Increasing this number may also lead to less
10556 streams being prefetched (see @option{simultaneous-prefetches}).
10557
10558 @item simultaneous-prefetches
10559 Maximum number of prefetches that can run at the same time.
10560
10561 @item l1-cache-line-size
10562 The size of cache line in L1 cache, in bytes.
10563
10564 @item l1-cache-size
10565 The size of L1 cache, in kilobytes.
10566
10567 @item l2-cache-size
10568 The size of L2 cache, in kilobytes.
10569
10570 @item loop-interchange-max-num-stmts
10571 The maximum number of stmts in a loop to be interchanged.
10572
10573 @item loop-interchange-stride-ratio
10574 The minimum ratio between stride of two loops for interchange to be profitable.
10575
10576 @item min-insn-to-prefetch-ratio
10577 The minimum ratio between the number of instructions and the
10578 number of prefetches to enable prefetching in a loop.
10579
10580 @item prefetch-min-insn-to-mem-ratio
10581 The minimum ratio between the number of instructions and the
10582 number of memory references to enable prefetching in a loop.
10583
10584 @item use-canonical-types
10585 Whether the compiler should use the ``canonical'' type system. By
10586 default, this should always be 1, which uses a more efficient internal
10587 mechanism for comparing types in C++ and Objective-C++. However, if
10588 bugs in the canonical type system are causing compilation failures,
10589 set this value to 0 to disable canonical types.
10590
10591 @item switch-conversion-max-branch-ratio
10592 Switch initialization conversion refuses to create arrays that are
10593 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10594 branches in the switch.
10595
10596 @item max-partial-antic-length
10597 Maximum length of the partial antic set computed during the tree
10598 partial redundancy elimination optimization (@option{-ftree-pre}) when
10599 optimizing at @option{-O3} and above. For some sorts of source code
10600 the enhanced partial redundancy elimination optimization can run away,
10601 consuming all of the memory available on the host machine. This
10602 parameter sets a limit on the length of the sets that are computed,
10603 which prevents the runaway behavior. Setting a value of 0 for
10604 this parameter allows an unlimited set length.
10605
10606 @item sccvn-max-scc-size
10607 Maximum size of a strongly connected component (SCC) during SCCVN
10608 processing. If this limit is hit, SCCVN processing for the whole
10609 function is not done and optimizations depending on it are
10610 disabled. The default maximum SCC size is 10000.
10611
10612 @item sccvn-max-alias-queries-per-access
10613 Maximum number of alias-oracle queries we perform when looking for
10614 redundancies for loads and stores. If this limit is hit the search
10615 is aborted and the load or store is not considered redundant. The
10616 number of queries is algorithmically limited to the number of
10617 stores on all paths from the load to the function entry.
10618 The default maximum number of queries is 1000.
10619
10620 @item ira-max-loops-num
10621 IRA uses regional register allocation by default. If a function
10622 contains more loops than the number given by this parameter, only at most
10623 the given number of the most frequently-executed loops form regions
10624 for regional register allocation. The default value of the
10625 parameter is 100.
10626
10627 @item ira-max-conflict-table-size
10628 Although IRA uses a sophisticated algorithm to compress the conflict
10629 table, the table can still require excessive amounts of memory for
10630 huge functions. If the conflict table for a function could be more
10631 than the size in MB given by this parameter, the register allocator
10632 instead uses a faster, simpler, and lower-quality
10633 algorithm that does not require building a pseudo-register conflict table.
10634 The default value of the parameter is 2000.
10635
10636 @item ira-loop-reserved-regs
10637 IRA can be used to evaluate more accurate register pressure in loops
10638 for decisions to move loop invariants (see @option{-O3}). The number
10639 of available registers reserved for some other purposes is given
10640 by this parameter. The default value of the parameter is 2, which is
10641 the minimal number of registers needed by typical instructions.
10642 This value is the best found from numerous experiments.
10643
10644 @item lra-inheritance-ebb-probability-cutoff
10645 LRA tries to reuse values reloaded in registers in subsequent insns.
10646 This optimization is called inheritance. EBB is used as a region to
10647 do this optimization. The parameter defines a minimal fall-through
10648 edge probability in percentage used to add BB to inheritance EBB in
10649 LRA. The default value of the parameter is 40. The value was chosen
10650 from numerous runs of SPEC2000 on x86-64.
10651
10652 @item loop-invariant-max-bbs-in-loop
10653 Loop invariant motion can be very expensive, both in compilation time and
10654 in amount of needed compile-time memory, with very large loops. Loops
10655 with more basic blocks than this parameter won't have loop invariant
10656 motion optimization performed on them. The default value of the
10657 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10658
10659 @item loop-max-datarefs-for-datadeps
10660 Building data dependencies is expensive for very large loops. This
10661 parameter limits the number of data references in loops that are
10662 considered for data dependence analysis. These large loops are no
10663 handled by the optimizations using loop data dependencies.
10664 The default value is 1000.
10665
10666 @item max-vartrack-size
10667 Sets a maximum number of hash table slots to use during variable
10668 tracking dataflow analysis of any function. If this limit is exceeded
10669 with variable tracking at assignments enabled, analysis for that
10670 function is retried without it, after removing all debug insns from
10671 the function. If the limit is exceeded even without debug insns, var
10672 tracking analysis is completely disabled for the function. Setting
10673 the parameter to zero makes it unlimited.
10674
10675 @item max-vartrack-expr-depth
10676 Sets a maximum number of recursion levels when attempting to map
10677 variable names or debug temporaries to value expressions. This trades
10678 compilation time for more complete debug information. If this is set too
10679 low, value expressions that are available and could be represented in
10680 debug information may end up not being used; setting this higher may
10681 enable the compiler to find more complex debug expressions, but compile
10682 time and memory use may grow. The default is 12.
10683
10684 @item max-debug-marker-count
10685 Sets a threshold on the number of debug markers (e.g. begin stmt
10686 markers) to avoid complexity explosion at inlining or expanding to RTL.
10687 If a function has more such gimple stmts than the set limit, such stmts
10688 will be dropped from the inlined copy of a function, and from its RTL
10689 expansion. The default is 100000.
10690
10691 @item min-nondebug-insn-uid
10692 Use uids starting at this parameter for nondebug insns. The range below
10693 the parameter is reserved exclusively for debug insns created by
10694 @option{-fvar-tracking-assignments}, but debug insns may get
10695 (non-overlapping) uids above it if the reserved range is exhausted.
10696
10697 @item ipa-sra-ptr-growth-factor
10698 IPA-SRA replaces a pointer to an aggregate with one or more new
10699 parameters only when their cumulative size is less or equal to
10700 @option{ipa-sra-ptr-growth-factor} times the size of the original
10701 pointer parameter.
10702
10703 @item sra-max-scalarization-size-Ospeed
10704 @item sra-max-scalarization-size-Osize
10705 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10706 replace scalar parts of aggregates with uses of independent scalar
10707 variables. These parameters control the maximum size, in storage units,
10708 of aggregate which is considered for replacement when compiling for
10709 speed
10710 (@option{sra-max-scalarization-size-Ospeed}) or size
10711 (@option{sra-max-scalarization-size-Osize}) respectively.
10712
10713 @item tm-max-aggregate-size
10714 When making copies of thread-local variables in a transaction, this
10715 parameter specifies the size in bytes after which variables are
10716 saved with the logging functions as opposed to save/restore code
10717 sequence pairs. This option only applies when using
10718 @option{-fgnu-tm}.
10719
10720 @item graphite-max-nb-scop-params
10721 To avoid exponential effects in the Graphite loop transforms, the
10722 number of parameters in a Static Control Part (SCoP) is bounded. The
10723 default value is 10 parameters, a value of zero can be used to lift
10724 the bound. A variable whose value is unknown at compilation time and
10725 defined outside a SCoP is a parameter of the SCoP.
10726
10727 @item loop-block-tile-size
10728 Loop blocking or strip mining transforms, enabled with
10729 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10730 loop in the loop nest by a given number of iterations. The strip
10731 length can be changed using the @option{loop-block-tile-size}
10732 parameter. The default value is 51 iterations.
10733
10734 @item loop-unroll-jam-size
10735 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10736 default value is 4.
10737
10738 @item loop-unroll-jam-depth
10739 Specify the dimension to be unrolled (counting from the most inner loop)
10740 for the @option{-floop-unroll-and-jam}. The default value is 2.
10741
10742 @item ipa-cp-value-list-size
10743 IPA-CP attempts to track all possible values and types passed to a function's
10744 parameter in order to propagate them and perform devirtualization.
10745 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10746 stores per one formal parameter of a function.
10747
10748 @item ipa-cp-eval-threshold
10749 IPA-CP calculates its own score of cloning profitability heuristics
10750 and performs those cloning opportunities with scores that exceed
10751 @option{ipa-cp-eval-threshold}.
10752
10753 @item ipa-cp-recursion-penalty
10754 Percentage penalty the recursive functions will receive when they
10755 are evaluated for cloning.
10756
10757 @item ipa-cp-single-call-penalty
10758 Percentage penalty functions containing a single call to another
10759 function will receive when they are evaluated for cloning.
10760
10761
10762 @item ipa-max-agg-items
10763 IPA-CP is also capable to propagate a number of scalar values passed
10764 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10765 number of such values per one parameter.
10766
10767 @item ipa-cp-loop-hint-bonus
10768 When IPA-CP determines that a cloning candidate would make the number
10769 of iterations of a loop known, it adds a bonus of
10770 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10771 the candidate.
10772
10773 @item ipa-cp-array-index-hint-bonus
10774 When IPA-CP determines that a cloning candidate would make the index of
10775 an array access known, it adds a bonus of
10776 @option{ipa-cp-array-index-hint-bonus} to the profitability
10777 score of the candidate.
10778
10779 @item ipa-max-aa-steps
10780 During its analysis of function bodies, IPA-CP employs alias analysis
10781 in order to track values pointed to by function parameters. In order
10782 not spend too much time analyzing huge functions, it gives up and
10783 consider all memory clobbered after examining
10784 @option{ipa-max-aa-steps} statements modifying memory.
10785
10786 @item lto-partitions
10787 Specify desired number of partitions produced during WHOPR compilation.
10788 The number of partitions should exceed the number of CPUs used for compilation.
10789 The default value is 32.
10790
10791 @item lto-min-partition
10792 Size of minimal partition for WHOPR (in estimated instructions).
10793 This prevents expenses of splitting very small programs into too many
10794 partitions.
10795
10796 @item lto-max-partition
10797 Size of max partition for WHOPR (in estimated instructions).
10798 to provide an upper bound for individual size of partition.
10799 Meant to be used only with balanced partitioning.
10800
10801 @item cxx-max-namespaces-for-diagnostic-help
10802 The maximum number of namespaces to consult for suggestions when C++
10803 name lookup fails for an identifier. The default is 1000.
10804
10805 @item sink-frequency-threshold
10806 The maximum relative execution frequency (in percents) of the target block
10807 relative to a statement's original block to allow statement sinking of a
10808 statement. Larger numbers result in more aggressive statement sinking.
10809 The default value is 75. A small positive adjustment is applied for
10810 statements with memory operands as those are even more profitable so sink.
10811
10812 @item max-stores-to-sink
10813 The maximum number of conditional store pairs that can be sunk. Set to 0
10814 if either vectorization (@option{-ftree-vectorize}) or if-conversion
10815 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
10816
10817 @item allow-store-data-races
10818 Allow optimizers to introduce new data races on stores.
10819 Set to 1 to allow, otherwise to 0. This option is enabled by default
10820 at optimization level @option{-Ofast}.
10821
10822 @item case-values-threshold
10823 The smallest number of different values for which it is best to use a
10824 jump-table instead of a tree of conditional branches. If the value is
10825 0, use the default for the machine. The default is 0.
10826
10827 @item tree-reassoc-width
10828 Set the maximum number of instructions executed in parallel in
10829 reassociated tree. This parameter overrides target dependent
10830 heuristics used by default if has non zero value.
10831
10832 @item sched-pressure-algorithm
10833 Choose between the two available implementations of
10834 @option{-fsched-pressure}. Algorithm 1 is the original implementation
10835 and is the more likely to prevent instructions from being reordered.
10836 Algorithm 2 was designed to be a compromise between the relatively
10837 conservative approach taken by algorithm 1 and the rather aggressive
10838 approach taken by the default scheduler. It relies more heavily on
10839 having a regular register file and accurate register pressure classes.
10840 See @file{haifa-sched.c} in the GCC sources for more details.
10841
10842 The default choice depends on the target.
10843
10844 @item max-slsr-cand-scan
10845 Set the maximum number of existing candidates that are considered when
10846 seeking a basis for a new straight-line strength reduction candidate.
10847
10848 @item asan-globals
10849 Enable buffer overflow detection for global objects. This kind
10850 of protection is enabled by default if you are using
10851 @option{-fsanitize=address} option.
10852 To disable global objects protection use @option{--param asan-globals=0}.
10853
10854 @item asan-stack
10855 Enable buffer overflow detection for stack objects. This kind of
10856 protection is enabled by default when using @option{-fsanitize=address}.
10857 To disable stack protection use @option{--param asan-stack=0} option.
10858
10859 @item asan-instrument-reads
10860 Enable buffer overflow detection for memory reads. This kind of
10861 protection is enabled by default when using @option{-fsanitize=address}.
10862 To disable memory reads protection use
10863 @option{--param asan-instrument-reads=0}.
10864
10865 @item asan-instrument-writes
10866 Enable buffer overflow detection for memory writes. This kind of
10867 protection is enabled by default when using @option{-fsanitize=address}.
10868 To disable memory writes protection use
10869 @option{--param asan-instrument-writes=0} option.
10870
10871 @item asan-memintrin
10872 Enable detection for built-in functions. This kind of protection
10873 is enabled by default when using @option{-fsanitize=address}.
10874 To disable built-in functions protection use
10875 @option{--param asan-memintrin=0}.
10876
10877 @item asan-use-after-return
10878 Enable detection of use-after-return. This kind of protection
10879 is enabled by default when using the @option{-fsanitize=address} option.
10880 To disable it use @option{--param asan-use-after-return=0}.
10881
10882 Note: By default the check is disabled at run time. To enable it,
10883 add @code{detect_stack_use_after_return=1} to the environment variable
10884 @env{ASAN_OPTIONS}.
10885
10886 @item asan-instrumentation-with-call-threshold
10887 If number of memory accesses in function being instrumented
10888 is greater or equal to this number, use callbacks instead of inline checks.
10889 E.g. to disable inline code use
10890 @option{--param asan-instrumentation-with-call-threshold=0}.
10891
10892 @item use-after-scope-direct-emission-threshold
10893 If the size of a local variable in bytes is smaller or equal to this
10894 number, directly poison (or unpoison) shadow memory instead of using
10895 run-time callbacks. The default value is 256.
10896
10897 @item chkp-max-ctor-size
10898 Static constructors generated by Pointer Bounds Checker may become very
10899 large and significantly increase compile time at optimization level
10900 @option{-O1} and higher. This parameter is a maximum number of statements
10901 in a single generated constructor. Default value is 5000.
10902
10903 @item max-fsm-thread-path-insns
10904 Maximum number of instructions to copy when duplicating blocks on a
10905 finite state automaton jump thread path. The default is 100.
10906
10907 @item max-fsm-thread-length
10908 Maximum number of basic blocks on a finite state automaton jump thread
10909 path. The default is 10.
10910
10911 @item max-fsm-thread-paths
10912 Maximum number of new jump thread paths to create for a finite state
10913 automaton. The default is 50.
10914
10915 @item parloops-chunk-size
10916 Chunk size of omp schedule for loops parallelized by parloops. The default
10917 is 0.
10918
10919 @item parloops-schedule
10920 Schedule type of omp schedule for loops parallelized by parloops (static,
10921 dynamic, guided, auto, runtime). The default is static.
10922
10923 @item parloops-min-per-thread
10924 The minimum number of iterations per thread of an innermost parallelized
10925 loop for which the parallelized variant is prefered over the single threaded
10926 one. The default is 100. Note that for a parallelized loop nest the
10927 minimum number of iterations of the outermost loop per thread is two.
10928
10929 @item max-ssa-name-query-depth
10930 Maximum depth of recursion when querying properties of SSA names in things
10931 like fold routines. One level of recursion corresponds to following a
10932 use-def chain.
10933
10934 @item hsa-gen-debug-stores
10935 Enable emission of special debug stores within HSA kernels which are
10936 then read and reported by libgomp plugin. Generation of these stores
10937 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
10938 enable it.
10939
10940 @item max-speculative-devirt-maydefs
10941 The maximum number of may-defs we analyze when looking for a must-def
10942 specifying the dynamic type of an object that invokes a virtual call
10943 we may be able to devirtualize speculatively.
10944
10945 @item max-vrp-switch-assertions
10946 The maximum number of assertions to add along the default edge of a switch
10947 statement during VRP. The default is 10.
10948
10949 @item unroll-jam-min-percent
10950 The minimum percentage of memory references that must be optimized
10951 away for the unroll-and-jam transformation to be considered profitable.
10952
10953 @item unroll-jam-max-unroll
10954 The maximum number of times the outer loop should be unrolled by
10955 the unroll-and-jam transformation.
10956 @end table
10957 @end table
10958
10959 @node Instrumentation Options
10960 @section Program Instrumentation Options
10961 @cindex instrumentation options
10962 @cindex program instrumentation options
10963 @cindex run-time error checking options
10964 @cindex profiling options
10965 @cindex options, program instrumentation
10966 @cindex options, run-time error checking
10967 @cindex options, profiling
10968
10969 GCC supports a number of command-line options that control adding
10970 run-time instrumentation to the code it normally generates.
10971 For example, one purpose of instrumentation is collect profiling
10972 statistics for use in finding program hot spots, code coverage
10973 analysis, or profile-guided optimizations.
10974 Another class of program instrumentation is adding run-time checking
10975 to detect programming errors like invalid pointer
10976 dereferences or out-of-bounds array accesses, as well as deliberately
10977 hostile attacks such as stack smashing or C++ vtable hijacking.
10978 There is also a general hook which can be used to implement other
10979 forms of tracing or function-level instrumentation for debug or
10980 program analysis purposes.
10981
10982 @table @gcctabopt
10983 @cindex @command{prof}
10984 @item -p
10985 @opindex p
10986 Generate extra code to write profile information suitable for the
10987 analysis program @command{prof}. You must use this option when compiling
10988 the source files you want data about, and you must also use it when
10989 linking.
10990
10991 @cindex @command{gprof}
10992 @item -pg
10993 @opindex pg
10994 Generate extra code to write profile information suitable for the
10995 analysis program @command{gprof}. You must use this option when compiling
10996 the source files you want data about, and you must also use it when
10997 linking.
10998
10999 @item -fprofile-arcs
11000 @opindex fprofile-arcs
11001 Add code so that program flow @dfn{arcs} are instrumented. During
11002 execution the program records how many times each branch and call is
11003 executed and how many times it is taken or returns. On targets that support
11004 constructors with priority support, profiling properly handles constructors,
11005 destructors and C++ constructors (and destructors) of classes which are used
11006 as a type of a global variable.
11007
11008 When the compiled
11009 program exits it saves this data to a file called
11010 @file{@var{auxname}.gcda} for each source file. The data may be used for
11011 profile-directed optimizations (@option{-fbranch-probabilities}), or for
11012 test coverage analysis (@option{-ftest-coverage}). Each object file's
11013 @var{auxname} is generated from the name of the output file, if
11014 explicitly specified and it is not the final executable, otherwise it is
11015 the basename of the source file. In both cases any suffix is removed
11016 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
11017 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
11018 @xref{Cross-profiling}.
11019
11020 @cindex @command{gcov}
11021 @item --coverage
11022 @opindex coverage
11023
11024 This option is used to compile and link code instrumented for coverage
11025 analysis. The option is a synonym for @option{-fprofile-arcs}
11026 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
11027 linking). See the documentation for those options for more details.
11028
11029 @itemize
11030
11031 @item
11032 Compile the source files with @option{-fprofile-arcs} plus optimization
11033 and code generation options. For test coverage analysis, use the
11034 additional @option{-ftest-coverage} option. You do not need to profile
11035 every source file in a program.
11036
11037 @item
11038 Compile the source files additionally with @option{-fprofile-abs-path}
11039 to create absolute path names in the @file{.gcno} files. This allows
11040 @command{gcov} to find the correct sources in projects where compilations
11041 occur with different working directories.
11042
11043 @item
11044 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
11045 (the latter implies the former).
11046
11047 @item
11048 Run the program on a representative workload to generate the arc profile
11049 information. This may be repeated any number of times. You can run
11050 concurrent instances of your program, and provided that the file system
11051 supports locking, the data files will be correctly updated. Unless
11052 a strict ISO C dialect option is in effect, @code{fork} calls are
11053 detected and correctly handled without double counting.
11054
11055 @item
11056 For profile-directed optimizations, compile the source files again with
11057 the same optimization and code generation options plus
11058 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
11059 Control Optimization}).
11060
11061 @item
11062 For test coverage analysis, use @command{gcov} to produce human readable
11063 information from the @file{.gcno} and @file{.gcda} files. Refer to the
11064 @command{gcov} documentation for further information.
11065
11066 @end itemize
11067
11068 With @option{-fprofile-arcs}, for each function of your program GCC
11069 creates a program flow graph, then finds a spanning tree for the graph.
11070 Only arcs that are not on the spanning tree have to be instrumented: the
11071 compiler adds code to count the number of times that these arcs are
11072 executed. When an arc is the only exit or only entrance to a block, the
11073 instrumentation code can be added to the block; otherwise, a new basic
11074 block must be created to hold the instrumentation code.
11075
11076 @need 2000
11077 @item -ftest-coverage
11078 @opindex ftest-coverage
11079 Produce a notes file that the @command{gcov} code-coverage utility
11080 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
11081 show program coverage. Each source file's note file is called
11082 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
11083 above for a description of @var{auxname} and instructions on how to
11084 generate test coverage data. Coverage data matches the source files
11085 more closely if you do not optimize.
11086
11087 @item -fprofile-abs-path
11088 @opindex fprofile-abs-path
11089 Automatically convert relative source file names to absolute path names
11090 in the @file{.gcno} files. This allows @command{gcov} to find the correct
11091 sources in projects where compilations occur with different working
11092 directories.
11093
11094 @item -fprofile-dir=@var{path}
11095 @opindex fprofile-dir
11096
11097 Set the directory to search for the profile data files in to @var{path}.
11098 This option affects only the profile data generated by
11099 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
11100 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
11101 and its related options. Both absolute and relative paths can be used.
11102 By default, GCC uses the current directory as @var{path}, thus the
11103 profile data file appears in the same directory as the object file.
11104
11105 @item -fprofile-generate
11106 @itemx -fprofile-generate=@var{path}
11107 @opindex fprofile-generate
11108
11109 Enable options usually used for instrumenting application to produce
11110 profile useful for later recompilation with profile feedback based
11111 optimization. You must use @option{-fprofile-generate} both when
11112 compiling and when linking your program.
11113
11114 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
11115
11116 If @var{path} is specified, GCC looks at the @var{path} to find
11117 the profile feedback data files. See @option{-fprofile-dir}.
11118
11119 To optimize the program based on the collected profile information, use
11120 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
11121
11122 @item -fprofile-update=@var{method}
11123 @opindex fprofile-update
11124
11125 Alter the update method for an application instrumented for profile
11126 feedback based optimization. The @var{method} argument should be one of
11127 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
11128 The first one is useful for single-threaded applications,
11129 while the second one prevents profile corruption by emitting thread-safe code.
11130
11131 @strong{Warning:} When an application does not properly join all threads
11132 (or creates an detached thread), a profile file can be still corrupted.
11133
11134 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
11135 when supported by a target, or to @samp{single} otherwise. The GCC driver
11136 automatically selects @samp{prefer-atomic} when @option{-pthread}
11137 is present in the command line.
11138
11139 @item -fsanitize=address
11140 @opindex fsanitize=address
11141 Enable AddressSanitizer, a fast memory error detector.
11142 Memory access instructions are instrumented to detect
11143 out-of-bounds and use-after-free bugs.
11144 The option enables @option{-fsanitize-address-use-after-scope}.
11145 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
11146 more details. The run-time behavior can be influenced using the
11147 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
11148 the available options are shown at startup of the instrumented program. See
11149 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
11150 for a list of supported options.
11151 The option cannot be combined with @option{-fsanitize=thread}
11152 and/or @option{-fcheck-pointer-bounds}.
11153
11154 @item -fsanitize=kernel-address
11155 @opindex fsanitize=kernel-address
11156 Enable AddressSanitizer for Linux kernel.
11157 See @uref{https://github.com/google/kasan/wiki} for more details.
11158 The option cannot be combined with @option{-fcheck-pointer-bounds}.
11159
11160 @item -fsanitize=pointer-compare
11161 @opindex fsanitize=pointer-compare
11162 Instrument comparison operation (<, <=, >, >=) with pointer operands.
11163 The option must be combined with either @option{-fsanitize=kernel-address} or
11164 @option{-fsanitize=address}
11165 The option cannot be combined with @option{-fsanitize=thread}
11166 and/or @option{-fcheck-pointer-bounds}.
11167 Note: By default the check is disabled at run time. To enable it,
11168 add @code{detect_invalid_pointer_pairs=2} to the environment variable
11169 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
11170 invalid operation only when both pointers are non-null.
11171
11172 @item -fsanitize=pointer-subtract
11173 @opindex fsanitize=pointer-subtract
11174 Instrument subtraction with pointer operands.
11175 The option must be combined with either @option{-fsanitize=kernel-address} or
11176 @option{-fsanitize=address}
11177 The option cannot be combined with @option{-fsanitize=thread}
11178 and/or @option{-fcheck-pointer-bounds}.
11179 Note: By default the check is disabled at run time. To enable it,
11180 add @code{detect_invalid_pointer_pairs=2} to the environment variable
11181 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
11182 invalid operation only when both pointers are non-null.
11183
11184 @item -fsanitize=thread
11185 @opindex fsanitize=thread
11186 Enable ThreadSanitizer, a fast data race detector.
11187 Memory access instructions are instrumented to detect
11188 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
11189 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
11190 environment variable; see
11191 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
11192 supported options.
11193 The option cannot be combined with @option{-fsanitize=address},
11194 @option{-fsanitize=leak} and/or @option{-fcheck-pointer-bounds}.
11195
11196 Note that sanitized atomic builtins cannot throw exceptions when
11197 operating on invalid memory addresses with non-call exceptions
11198 (@option{-fnon-call-exceptions}).
11199
11200 @item -fsanitize=leak
11201 @opindex fsanitize=leak
11202 Enable LeakSanitizer, a memory leak detector.
11203 This option only matters for linking of executables and
11204 the executable is linked against a library that overrides @code{malloc}
11205 and other allocator functions. See
11206 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
11207 details. The run-time behavior can be influenced using the
11208 @env{LSAN_OPTIONS} environment variable.
11209 The option cannot be combined with @option{-fsanitize=thread}.
11210
11211 @item -fsanitize=undefined
11212 @opindex fsanitize=undefined
11213 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
11214 Various computations are instrumented to detect undefined behavior
11215 at runtime. Current suboptions are:
11216
11217 @table @gcctabopt
11218
11219 @item -fsanitize=shift
11220 @opindex fsanitize=shift
11221 This option enables checking that the result of a shift operation is
11222 not undefined. Note that what exactly is considered undefined differs
11223 slightly between C and C++, as well as between ISO C90 and C99, etc.
11224 This option has two suboptions, @option{-fsanitize=shift-base} and
11225 @option{-fsanitize=shift-exponent}.
11226
11227 @item -fsanitize=shift-exponent
11228 @opindex fsanitize=shift-exponent
11229 This option enables checking that the second argument of a shift operation
11230 is not negative and is smaller than the precision of the promoted first
11231 argument.
11232
11233 @item -fsanitize=shift-base
11234 @opindex fsanitize=shift-base
11235 If the second argument of a shift operation is within range, check that the
11236 result of a shift operation is not undefined. Note that what exactly is
11237 considered undefined differs slightly between C and C++, as well as between
11238 ISO C90 and C99, etc.
11239
11240 @item -fsanitize=integer-divide-by-zero
11241 @opindex fsanitize=integer-divide-by-zero
11242 Detect integer division by zero as well as @code{INT_MIN / -1} division.
11243
11244 @item -fsanitize=unreachable
11245 @opindex fsanitize=unreachable
11246 With this option, the compiler turns the @code{__builtin_unreachable}
11247 call into a diagnostics message call instead. When reaching the
11248 @code{__builtin_unreachable} call, the behavior is undefined.
11249
11250 @item -fsanitize=vla-bound
11251 @opindex fsanitize=vla-bound
11252 This option instructs the compiler to check that the size of a variable
11253 length array is positive.
11254
11255 @item -fsanitize=null
11256 @opindex fsanitize=null
11257 This option enables pointer checking. Particularly, the application
11258 built with this option turned on will issue an error message when it
11259 tries to dereference a NULL pointer, or if a reference (possibly an
11260 rvalue reference) is bound to a NULL pointer, or if a method is invoked
11261 on an object pointed by a NULL pointer.
11262
11263 @item -fsanitize=return
11264 @opindex fsanitize=return
11265 This option enables return statement checking. Programs
11266 built with this option turned on will issue an error message
11267 when the end of a non-void function is reached without actually
11268 returning a value. This option works in C++ only.
11269
11270 @item -fsanitize=signed-integer-overflow
11271 @opindex fsanitize=signed-integer-overflow
11272 This option enables signed integer overflow checking. We check that
11273 the result of @code{+}, @code{*}, and both unary and binary @code{-}
11274 does not overflow in the signed arithmetics. Note, integer promotion
11275 rules must be taken into account. That is, the following is not an
11276 overflow:
11277 @smallexample
11278 signed char a = SCHAR_MAX;
11279 a++;
11280 @end smallexample
11281
11282 @item -fsanitize=bounds
11283 @opindex fsanitize=bounds
11284 This option enables instrumentation of array bounds. Various out of bounds
11285 accesses are detected. Flexible array members, flexible array member-like
11286 arrays, and initializers of variables with static storage are not instrumented.
11287 The option cannot be combined with @option{-fcheck-pointer-bounds}.
11288
11289 @item -fsanitize=bounds-strict
11290 @opindex fsanitize=bounds-strict
11291 This option enables strict instrumentation of array bounds. Most out of bounds
11292 accesses are detected, including flexible array members and flexible array
11293 member-like arrays. Initializers of variables with static storage are not
11294 instrumented. The option cannot be combined
11295 with @option{-fcheck-pointer-bounds}.
11296
11297 @item -fsanitize=alignment
11298 @opindex fsanitize=alignment
11299
11300 This option enables checking of alignment of pointers when they are
11301 dereferenced, or when a reference is bound to insufficiently aligned target,
11302 or when a method or constructor is invoked on insufficiently aligned object.
11303
11304 @item -fsanitize=object-size
11305 @opindex fsanitize=object-size
11306 This option enables instrumentation of memory references using the
11307 @code{__builtin_object_size} function. Various out of bounds pointer
11308 accesses are detected.
11309
11310 @item -fsanitize=float-divide-by-zero
11311 @opindex fsanitize=float-divide-by-zero
11312 Detect floating-point division by zero. Unlike other similar options,
11313 @option{-fsanitize=float-divide-by-zero} is not enabled by
11314 @option{-fsanitize=undefined}, since floating-point division by zero can
11315 be a legitimate way of obtaining infinities and NaNs.
11316
11317 @item -fsanitize=float-cast-overflow
11318 @opindex fsanitize=float-cast-overflow
11319 This option enables floating-point type to integer conversion checking.
11320 We check that the result of the conversion does not overflow.
11321 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
11322 not enabled by @option{-fsanitize=undefined}.
11323 This option does not work well with @code{FE_INVALID} exceptions enabled.
11324
11325 @item -fsanitize=nonnull-attribute
11326 @opindex fsanitize=nonnull-attribute
11327
11328 This option enables instrumentation of calls, checking whether null values
11329 are not passed to arguments marked as requiring a non-null value by the
11330 @code{nonnull} function attribute.
11331
11332 @item -fsanitize=returns-nonnull-attribute
11333 @opindex fsanitize=returns-nonnull-attribute
11334
11335 This option enables instrumentation of return statements in functions
11336 marked with @code{returns_nonnull} function attribute, to detect returning
11337 of null values from such functions.
11338
11339 @item -fsanitize=bool
11340 @opindex fsanitize=bool
11341
11342 This option enables instrumentation of loads from bool. If a value other
11343 than 0/1 is loaded, a run-time error is issued.
11344
11345 @item -fsanitize=enum
11346 @opindex fsanitize=enum
11347
11348 This option enables instrumentation of loads from an enum type. If
11349 a value outside the range of values for the enum type is loaded,
11350 a run-time error is issued.
11351
11352 @item -fsanitize=vptr
11353 @opindex fsanitize=vptr
11354
11355 This option enables instrumentation of C++ member function calls, member
11356 accesses and some conversions between pointers to base and derived classes,
11357 to verify the referenced object has the correct dynamic type.
11358
11359 @item -fsanitize=pointer-overflow
11360 @opindex fsanitize=pointer-overflow
11361
11362 This option enables instrumentation of pointer arithmetics. If the pointer
11363 arithmetics overflows, a run-time error is issued.
11364
11365 @item -fsanitize=builtin
11366 @opindex fsanitize=builtin
11367
11368 This option enables instrumentation of arguments to selected builtin
11369 functions. If an invalid value is passed to such arguments, a run-time
11370 error is issued. E.g.@ passing 0 as the argument to @code{__builtin_ctz}
11371 or @code{__builtin_clz} invokes undefined behavior and is diagnosed
11372 by this option.
11373
11374 @end table
11375
11376 While @option{-ftrapv} causes traps for signed overflows to be emitted,
11377 @option{-fsanitize=undefined} gives a diagnostic message.
11378 This currently works only for the C family of languages.
11379
11380 @item -fno-sanitize=all
11381 @opindex fno-sanitize=all
11382
11383 This option disables all previously enabled sanitizers.
11384 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
11385 together.
11386
11387 @item -fasan-shadow-offset=@var{number}
11388 @opindex fasan-shadow-offset
11389 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
11390 It is useful for experimenting with different shadow memory layouts in
11391 Kernel AddressSanitizer.
11392
11393 @item -fsanitize-sections=@var{s1},@var{s2},...
11394 @opindex fsanitize-sections
11395 Sanitize global variables in selected user-defined sections. @var{si} may
11396 contain wildcards.
11397
11398 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
11399 @opindex fsanitize-recover
11400 @opindex fno-sanitize-recover
11401 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
11402 mentioned in comma-separated list of @var{opts}. Enabling this option
11403 for a sanitizer component causes it to attempt to continue
11404 running the program as if no error happened. This means multiple
11405 runtime errors can be reported in a single program run, and the exit
11406 code of the program may indicate success even when errors
11407 have been reported. The @option{-fno-sanitize-recover=} option
11408 can be used to alter
11409 this behavior: only the first detected error is reported
11410 and program then exits with a non-zero exit code.
11411
11412 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
11413 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
11414 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
11415 @option{-fsanitize=bounds-strict},
11416 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
11417 For these sanitizers error recovery is turned on by default,
11418 except @option{-fsanitize=address}, for which this feature is experimental.
11419 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
11420 accepted, the former enables recovery for all sanitizers that support it,
11421 the latter disables recovery for all sanitizers that support it.
11422
11423 Even if a recovery mode is turned on the compiler side, it needs to be also
11424 enabled on the runtime library side, otherwise the failures are still fatal.
11425 The runtime library defaults to @code{halt_on_error=0} for
11426 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
11427 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
11428 setting the @code{halt_on_error} flag in the corresponding environment variable.
11429
11430 Syntax without an explicit @var{opts} parameter is deprecated. It is
11431 equivalent to specifying an @var{opts} list of:
11432
11433 @smallexample
11434 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
11435 @end smallexample
11436
11437 @item -fsanitize-address-use-after-scope
11438 @opindex fsanitize-address-use-after-scope
11439 Enable sanitization of local variables to detect use-after-scope bugs.
11440 The option sets @option{-fstack-reuse} to @samp{none}.
11441
11442 @item -fsanitize-undefined-trap-on-error
11443 @opindex fsanitize-undefined-trap-on-error
11444 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
11445 report undefined behavior using @code{__builtin_trap} rather than
11446 a @code{libubsan} library routine. The advantage of this is that the
11447 @code{libubsan} library is not needed and is not linked in, so this
11448 is usable even in freestanding environments.
11449
11450 @item -fsanitize-coverage=trace-pc
11451 @opindex fsanitize-coverage=trace-pc
11452 Enable coverage-guided fuzzing code instrumentation.
11453 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
11454
11455 @item -fsanitize-coverage=trace-cmp
11456 @opindex fsanitize-coverage=trace-cmp
11457 Enable dataflow guided fuzzing code instrumentation.
11458 Inserts a call to @code{__sanitizer_cov_trace_cmp1},
11459 @code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
11460 @code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
11461 variable or @code{__sanitizer_cov_trace_const_cmp1},
11462 @code{__sanitizer_cov_trace_const_cmp2},
11463 @code{__sanitizer_cov_trace_const_cmp4} or
11464 @code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
11465 operand constant, @code{__sanitizer_cov_trace_cmpf} or
11466 @code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
11467 @code{__sanitizer_cov_trace_switch} for switch statements.
11468
11469 @item -fbounds-check
11470 @opindex fbounds-check
11471 For front ends that support it, generate additional code to check that
11472 indices used to access arrays are within the declared range. This is
11473 currently only supported by the Fortran front end, where this option
11474 defaults to false.
11475
11476 @item -fcheck-pointer-bounds
11477 @opindex fcheck-pointer-bounds
11478 @opindex fno-check-pointer-bounds
11479 @cindex Pointer Bounds Checker options
11480 Enable Pointer Bounds Checker instrumentation. Each memory reference
11481 is instrumented with checks of the pointer used for memory access against
11482 bounds associated with that pointer.
11483
11484 Currently there
11485 is only an implementation for Intel MPX available, thus x86 GNU/Linux target
11486 and @option{-mmpx} are required to enable this feature.
11487 MPX-based instrumentation requires
11488 a runtime library to enable MPX in hardware and handle bounds
11489 violation signals. By default when @option{-fcheck-pointer-bounds}
11490 and @option{-mmpx} options are used to link a program, the GCC driver
11491 links against the @file{libmpx} and @file{libmpxwrappers} libraries.
11492 Bounds checking on calls to dynamic libraries requires a linker
11493 with @option{-z bndplt} support; if GCC was configured with a linker
11494 without support for this option (including the Gold linker and older
11495 versions of ld), a warning is given if you link with @option{-mmpx}
11496 without also specifying @option{-static}, since the overall effectiveness
11497 of the bounds checking protection is reduced.
11498 See also @option{-static-libmpxwrappers}.
11499
11500 MPX-based instrumentation
11501 may be used for debugging and also may be included in production code
11502 to increase program security. Depending on usage, you may
11503 have different requirements for the runtime library. The current version
11504 of the MPX runtime library is more oriented for use as a debugging
11505 tool. MPX runtime library usage implies @option{-lpthread}. See
11506 also @option{-static-libmpx}. The runtime library behavior can be
11507 influenced using various @env{CHKP_RT_*} environment variables. See
11508 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
11509 for more details.
11510
11511 Generated instrumentation may be controlled by various
11512 @option{-fchkp-*} options and by the @code{bnd_variable_size}
11513 structure field attribute (@pxref{Type Attributes}) and
11514 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
11515 (@pxref{Function Attributes}). GCC also provides a number of built-in
11516 functions for controlling the Pointer Bounds Checker. @xref{Pointer
11517 Bounds Checker builtins}, for more information.
11518
11519 @item -fchkp-check-incomplete-type
11520 @opindex fchkp-check-incomplete-type
11521 @opindex fno-chkp-check-incomplete-type
11522 Generate pointer bounds checks for variables with incomplete type.
11523 Enabled by default.
11524
11525 @item -fchkp-narrow-bounds
11526 @opindex fchkp-narrow-bounds
11527 @opindex fno-chkp-narrow-bounds
11528 Controls bounds used by Pointer Bounds Checker for pointers to object
11529 fields. If narrowing is enabled then field bounds are used. Otherwise
11530 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
11531 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
11532
11533 @item -fchkp-first-field-has-own-bounds
11534 @opindex fchkp-first-field-has-own-bounds
11535 @opindex fno-chkp-first-field-has-own-bounds
11536 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
11537 first field in the structure. By default a pointer to the first field has
11538 the same bounds as a pointer to the whole structure.
11539
11540 @item -fchkp-flexible-struct-trailing-arrays
11541 @opindex fchkp-flexible-struct-trailing-arrays
11542 @opindex fno-chkp-flexible-struct-trailing-arrays
11543 Forces Pointer Bounds Checker to treat all trailing arrays in structures as
11544 possibly flexible. By default only array fields with zero length or that are
11545 marked with attribute bnd_variable_size are treated as flexible.
11546
11547 @item -fchkp-narrow-to-innermost-array
11548 @opindex fchkp-narrow-to-innermost-array
11549 @opindex fno-chkp-narrow-to-innermost-array
11550 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
11551 case of nested static array access. By default this option is disabled and
11552 bounds of the outermost array are used.
11553
11554 @item -fchkp-optimize
11555 @opindex fchkp-optimize
11556 @opindex fno-chkp-optimize
11557 Enables Pointer Bounds Checker optimizations. Enabled by default at
11558 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
11559
11560 @item -fchkp-use-fast-string-functions
11561 @opindex fchkp-use-fast-string-functions
11562 @opindex fno-chkp-use-fast-string-functions
11563 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
11564 by Pointer Bounds Checker. Disabled by default.
11565
11566 @item -fchkp-use-nochk-string-functions
11567 @opindex fchkp-use-nochk-string-functions
11568 @opindex fno-chkp-use-nochk-string-functions
11569 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
11570 by Pointer Bounds Checker. Disabled by default.
11571
11572 @item -fchkp-use-static-bounds
11573 @opindex fchkp-use-static-bounds
11574 @opindex fno-chkp-use-static-bounds
11575 Allow Pointer Bounds Checker to generate static bounds holding
11576 bounds of static variables. Enabled by default.
11577
11578 @item -fchkp-use-static-const-bounds
11579 @opindex fchkp-use-static-const-bounds
11580 @opindex fno-chkp-use-static-const-bounds
11581 Use statically-initialized bounds for constant bounds instead of
11582 generating them each time they are required. By default enabled when
11583 @option{-fchkp-use-static-bounds} is enabled.
11584
11585 @item -fchkp-treat-zero-dynamic-size-as-infinite
11586 @opindex fchkp-treat-zero-dynamic-size-as-infinite
11587 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
11588 With this option, objects with incomplete type whose
11589 dynamically-obtained size is zero are treated as having infinite size
11590 instead by Pointer Bounds
11591 Checker. This option may be helpful if a program is linked with a library
11592 missing size information for some symbols. Disabled by default.
11593
11594 @item -fchkp-check-read
11595 @opindex fchkp-check-read
11596 @opindex fno-chkp-check-read
11597 Instructs Pointer Bounds Checker to generate checks for all read
11598 accesses to memory. Enabled by default.
11599
11600 @item -fchkp-check-write
11601 @opindex fchkp-check-write
11602 @opindex fno-chkp-check-write
11603 Instructs Pointer Bounds Checker to generate checks for all write
11604 accesses to memory. Enabled by default.
11605
11606 @item -fchkp-store-bounds
11607 @opindex fchkp-store-bounds
11608 @opindex fno-chkp-store-bounds
11609 Instructs Pointer Bounds Checker to generate bounds stores for
11610 pointer writes. Enabled by default.
11611
11612 @item -fchkp-instrument-calls
11613 @opindex fchkp-instrument-calls
11614 @opindex fno-chkp-instrument-calls
11615 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
11616 Enabled by default.
11617
11618 @item -fchkp-instrument-marked-only
11619 @opindex fchkp-instrument-marked-only
11620 @opindex fno-chkp-instrument-marked-only
11621 Instructs Pointer Bounds Checker to instrument only functions
11622 marked with the @code{bnd_instrument} attribute
11623 (@pxref{Function Attributes}). Disabled by default.
11624
11625 @item -fchkp-use-wrappers
11626 @opindex fchkp-use-wrappers
11627 @opindex fno-chkp-use-wrappers
11628 Allows Pointer Bounds Checker to replace calls to built-in functions
11629 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
11630 is used to link a program, the GCC driver automatically links
11631 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
11632 Enabled by default.
11633
11634 @item -fcf-protection==@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
11635 @opindex fcf-protection
11636 Enable code instrumentation of control-flow transfers to increase
11637 program security by checking that target addresses of control-flow
11638 transfer instructions (such as indirect function call, function return,
11639 indirect jump) are valid. This prevents diverting the flow of control
11640 to an unexpected target. This is intended to protect against such
11641 threats as Return-oriented Programming (ROP), and similarly
11642 call/jmp-oriented programming (COP/JOP).
11643
11644 The value @code{branch} tells the compiler to implement checking of
11645 validity of control-flow transfer at the point of indirect branch
11646 instructions, i.e. call/jmp instructions. The value @code{return}
11647 implements checking of validity at the point of returning from a
11648 function. The value @code{full} is an alias for specifying both
11649 @code{branch} and @code{return}. The value @code{none} turns off
11650 instrumentation.
11651
11652 You can also use the @code{nocf_check} attribute to identify
11653 which functions and calls should be skipped from instrumentation
11654 (@pxref{Function Attributes}).
11655
11656 Currently the x86 GNU/Linux target provides an implementation based
11657 on Intel Control-flow Enforcement Technology (CET). Instrumentation
11658 for x86 is controlled by target-specific options @option{-mcet},
11659 @option{-mibt} and @option{-mshstk} (@pxref{x86 Options}).
11660
11661 @item -fstack-protector
11662 @opindex fstack-protector
11663 Emit extra code to check for buffer overflows, such as stack smashing
11664 attacks. This is done by adding a guard variable to functions with
11665 vulnerable objects. This includes functions that call @code{alloca}, and
11666 functions with buffers larger than 8 bytes. The guards are initialized
11667 when a function is entered and then checked when the function exits.
11668 If a guard check fails, an error message is printed and the program exits.
11669
11670 @item -fstack-protector-all
11671 @opindex fstack-protector-all
11672 Like @option{-fstack-protector} except that all functions are protected.
11673
11674 @item -fstack-protector-strong
11675 @opindex fstack-protector-strong
11676 Like @option{-fstack-protector} but includes additional functions to
11677 be protected --- those that have local array definitions, or have
11678 references to local frame addresses.
11679
11680 @item -fstack-protector-explicit
11681 @opindex fstack-protector-explicit
11682 Like @option{-fstack-protector} but only protects those functions which
11683 have the @code{stack_protect} attribute.
11684
11685 @item -fstack-check
11686 @opindex fstack-check
11687 Generate code to verify that you do not go beyond the boundary of the
11688 stack. You should specify this flag if you are running in an
11689 environment with multiple threads, but you only rarely need to specify it in
11690 a single-threaded environment since stack overflow is automatically
11691 detected on nearly all systems if there is only one stack.
11692
11693 Note that this switch does not actually cause checking to be done; the
11694 operating system or the language runtime must do that. The switch causes
11695 generation of code to ensure that they see the stack being extended.
11696
11697 You can additionally specify a string parameter: @samp{no} means no
11698 checking, @samp{generic} means force the use of old-style checking,
11699 @samp{specific} means use the best checking method and is equivalent
11700 to bare @option{-fstack-check}.
11701
11702 Old-style checking is a generic mechanism that requires no specific
11703 target support in the compiler but comes with the following drawbacks:
11704
11705 @enumerate
11706 @item
11707 Modified allocation strategy for large objects: they are always
11708 allocated dynamically if their size exceeds a fixed threshold. Note this
11709 may change the semantics of some code.
11710
11711 @item
11712 Fixed limit on the size of the static frame of functions: when it is
11713 topped by a particular function, stack checking is not reliable and
11714 a warning is issued by the compiler.
11715
11716 @item
11717 Inefficiency: because of both the modified allocation strategy and the
11718 generic implementation, code performance is hampered.
11719 @end enumerate
11720
11721 Note that old-style stack checking is also the fallback method for
11722 @samp{specific} if no target support has been added in the compiler.
11723
11724 @samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
11725 and stack overflows. @samp{specific} is an excellent choice when compiling
11726 Ada code. It is not generally sufficient to protect against stack-clash
11727 attacks. To protect against those you want @samp{-fstack-clash-protection}.
11728
11729 @item -fstack-clash-protection
11730 @opindex fstack-clash-protection
11731 Generate code to prevent stack clash style attacks. When this option is
11732 enabled, the compiler will only allocate one page of stack space at a time
11733 and each page is accessed immediately after allocation. Thus, it prevents
11734 allocations from jumping over any stack guard page provided by the
11735 operating system.
11736
11737 Most targets do not fully support stack clash protection. However, on
11738 those targets @option{-fstack-clash-protection} will protect dynamic stack
11739 allocations. @option{-fstack-clash-protection} may also provide limited
11740 protection for static stack allocations if the target supports
11741 @option{-fstack-check=specific}.
11742
11743 @item -fstack-limit-register=@var{reg}
11744 @itemx -fstack-limit-symbol=@var{sym}
11745 @itemx -fno-stack-limit
11746 @opindex fstack-limit-register
11747 @opindex fstack-limit-symbol
11748 @opindex fno-stack-limit
11749 Generate code to ensure that the stack does not grow beyond a certain value,
11750 either the value of a register or the address of a symbol. If a larger
11751 stack is required, a signal is raised at run time. For most targets,
11752 the signal is raised before the stack overruns the boundary, so
11753 it is possible to catch the signal without taking special precautions.
11754
11755 For instance, if the stack starts at absolute address @samp{0x80000000}
11756 and grows downwards, you can use the flags
11757 @option{-fstack-limit-symbol=__stack_limit} and
11758 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
11759 of 128KB@. Note that this may only work with the GNU linker.
11760
11761 You can locally override stack limit checking by using the
11762 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
11763
11764 @item -fsplit-stack
11765 @opindex fsplit-stack
11766 Generate code to automatically split the stack before it overflows.
11767 The resulting program has a discontiguous stack which can only
11768 overflow if the program is unable to allocate any more memory. This
11769 is most useful when running threaded programs, as it is no longer
11770 necessary to calculate a good stack size to use for each thread. This
11771 is currently only implemented for the x86 targets running
11772 GNU/Linux.
11773
11774 When code compiled with @option{-fsplit-stack} calls code compiled
11775 without @option{-fsplit-stack}, there may not be much stack space
11776 available for the latter code to run. If compiling all code,
11777 including library code, with @option{-fsplit-stack} is not an option,
11778 then the linker can fix up these calls so that the code compiled
11779 without @option{-fsplit-stack} always has a large stack. Support for
11780 this is implemented in the gold linker in GNU binutils release 2.21
11781 and later.
11782
11783 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
11784 @opindex fvtable-verify
11785 This option is only available when compiling C++ code.
11786 It turns on (or off, if using @option{-fvtable-verify=none}) the security
11787 feature that verifies at run time, for every virtual call, that
11788 the vtable pointer through which the call is made is valid for the type of
11789 the object, and has not been corrupted or overwritten. If an invalid vtable
11790 pointer is detected at run time, an error is reported and execution of the
11791 program is immediately halted.
11792
11793 This option causes run-time data structures to be built at program startup,
11794 which are used for verifying the vtable pointers.
11795 The options @samp{std} and @samp{preinit}
11796 control the timing of when these data structures are built. In both cases the
11797 data structures are built before execution reaches @code{main}. Using
11798 @option{-fvtable-verify=std} causes the data structures to be built after
11799 shared libraries have been loaded and initialized.
11800 @option{-fvtable-verify=preinit} causes them to be built before shared
11801 libraries have been loaded and initialized.
11802
11803 If this option appears multiple times in the command line with different
11804 values specified, @samp{none} takes highest priority over both @samp{std} and
11805 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
11806
11807 @item -fvtv-debug
11808 @opindex fvtv-debug
11809 When used in conjunction with @option{-fvtable-verify=std} or
11810 @option{-fvtable-verify=preinit}, causes debug versions of the
11811 runtime functions for the vtable verification feature to be called.
11812 This flag also causes the compiler to log information about which
11813 vtable pointers it finds for each class.
11814 This information is written to a file named @file{vtv_set_ptr_data.log}
11815 in the directory named by the environment variable @env{VTV_LOGS_DIR}
11816 if that is defined or the current working directory otherwise.
11817
11818 Note: This feature @emph{appends} data to the log file. If you want a fresh log
11819 file, be sure to delete any existing one.
11820
11821 @item -fvtv-counts
11822 @opindex fvtv-counts
11823 This is a debugging flag. When used in conjunction with
11824 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
11825 causes the compiler to keep track of the total number of virtual calls
11826 it encounters and the number of verifications it inserts. It also
11827 counts the number of calls to certain run-time library functions
11828 that it inserts and logs this information for each compilation unit.
11829 The compiler writes this information to a file named
11830 @file{vtv_count_data.log} in the directory named by the environment
11831 variable @env{VTV_LOGS_DIR} if that is defined or the current working
11832 directory otherwise. It also counts the size of the vtable pointer sets
11833 for each class, and writes this information to @file{vtv_class_set_sizes.log}
11834 in the same directory.
11835
11836 Note: This feature @emph{appends} data to the log files. To get fresh log
11837 files, be sure to delete any existing ones.
11838
11839 @item -finstrument-functions
11840 @opindex finstrument-functions
11841 Generate instrumentation calls for entry and exit to functions. Just
11842 after function entry and just before function exit, the following
11843 profiling functions are called with the address of the current
11844 function and its call site. (On some platforms,
11845 @code{__builtin_return_address} does not work beyond the current
11846 function, so the call site information may not be available to the
11847 profiling functions otherwise.)
11848
11849 @smallexample
11850 void __cyg_profile_func_enter (void *this_fn,
11851 void *call_site);
11852 void __cyg_profile_func_exit (void *this_fn,
11853 void *call_site);
11854 @end smallexample
11855
11856 The first argument is the address of the start of the current function,
11857 which may be looked up exactly in the symbol table.
11858
11859 This instrumentation is also done for functions expanded inline in other
11860 functions. The profiling calls indicate where, conceptually, the
11861 inline function is entered and exited. This means that addressable
11862 versions of such functions must be available. If all your uses of a
11863 function are expanded inline, this may mean an additional expansion of
11864 code size. If you use @code{extern inline} in your C code, an
11865 addressable version of such functions must be provided. (This is
11866 normally the case anyway, but if you get lucky and the optimizer always
11867 expands the functions inline, you might have gotten away without
11868 providing static copies.)
11869
11870 A function may be given the attribute @code{no_instrument_function}, in
11871 which case this instrumentation is not done. This can be used, for
11872 example, for the profiling functions listed above, high-priority
11873 interrupt routines, and any functions from which the profiling functions
11874 cannot safely be called (perhaps signal handlers, if the profiling
11875 routines generate output or allocate memory).
11876
11877 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
11878 @opindex finstrument-functions-exclude-file-list
11879
11880 Set the list of functions that are excluded from instrumentation (see
11881 the description of @option{-finstrument-functions}). If the file that
11882 contains a function definition matches with one of @var{file}, then
11883 that function is not instrumented. The match is done on substrings:
11884 if the @var{file} parameter is a substring of the file name, it is
11885 considered to be a match.
11886
11887 For example:
11888
11889 @smallexample
11890 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
11891 @end smallexample
11892
11893 @noindent
11894 excludes any inline function defined in files whose pathnames
11895 contain @file{/bits/stl} or @file{include/sys}.
11896
11897 If, for some reason, you want to include letter @samp{,} in one of
11898 @var{sym}, write @samp{\,}. For example,
11899 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
11900 (note the single quote surrounding the option).
11901
11902 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
11903 @opindex finstrument-functions-exclude-function-list
11904
11905 This is similar to @option{-finstrument-functions-exclude-file-list},
11906 but this option sets the list of function names to be excluded from
11907 instrumentation. The function name to be matched is its user-visible
11908 name, such as @code{vector<int> blah(const vector<int> &)}, not the
11909 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
11910 match is done on substrings: if the @var{sym} parameter is a substring
11911 of the function name, it is considered to be a match. For C99 and C++
11912 extended identifiers, the function name must be given in UTF-8, not
11913 using universal character names.
11914
11915 @item -fpatchable-function-entry=@var{N}[,@var{M}]
11916 @opindex fpatchable-function-entry
11917 Generate @var{N} NOPs right at the beginning
11918 of each function, with the function entry point before the @var{M}th NOP.
11919 If @var{M} is omitted, it defaults to @code{0} so the
11920 function entry points to the address just at the first NOP.
11921 The NOP instructions reserve extra space which can be used to patch in
11922 any desired instrumentation at run time, provided that the code segment
11923 is writable. The amount of space is controllable indirectly via
11924 the number of NOPs; the NOP instruction used corresponds to the instruction
11925 emitted by the internal GCC back-end interface @code{gen_nop}. This behavior
11926 is target-specific and may also depend on the architecture variant and/or
11927 other compilation options.
11928
11929 For run-time identification, the starting addresses of these areas,
11930 which correspond to their respective function entries minus @var{M},
11931 are additionally collected in the @code{__patchable_function_entries}
11932 section of the resulting binary.
11933
11934 Note that the value of @code{__attribute__ ((patchable_function_entry
11935 (N,M)))} takes precedence over command-line option
11936 @option{-fpatchable-function-entry=N,M}. This can be used to increase
11937 the area size or to remove it completely on a single function.
11938 If @code{N=0}, no pad location is recorded.
11939
11940 The NOP instructions are inserted at---and maybe before, depending on
11941 @var{M}---the function entry address, even before the prologue.
11942
11943 @end table
11944
11945
11946 @node Preprocessor Options
11947 @section Options Controlling the Preprocessor
11948 @cindex preprocessor options
11949 @cindex options, preprocessor
11950
11951 These options control the C preprocessor, which is run on each C source
11952 file before actual compilation.
11953
11954 If you use the @option{-E} option, nothing is done except preprocessing.
11955 Some of these options make sense only together with @option{-E} because
11956 they cause the preprocessor output to be unsuitable for actual
11957 compilation.
11958
11959 In addition to the options listed here, there are a number of options
11960 to control search paths for include files documented in
11961 @ref{Directory Options}.
11962 Options to control preprocessor diagnostics are listed in
11963 @ref{Warning Options}.
11964
11965 @table @gcctabopt
11966 @include cppopts.texi
11967
11968 @item -Wp,@var{option}
11969 @opindex Wp
11970 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11971 and pass @var{option} directly through to the preprocessor. If
11972 @var{option} contains commas, it is split into multiple options at the
11973 commas. However, many options are modified, translated or interpreted
11974 by the compiler driver before being passed to the preprocessor, and
11975 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11976 interface is undocumented and subject to change, so whenever possible
11977 you should avoid using @option{-Wp} and let the driver handle the
11978 options instead.
11979
11980 @item -Xpreprocessor @var{option}
11981 @opindex Xpreprocessor
11982 Pass @var{option} as an option to the preprocessor. You can use this to
11983 supply system-specific preprocessor options that GCC does not
11984 recognize.
11985
11986 If you want to pass an option that takes an argument, you must use
11987 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11988
11989 @item -no-integrated-cpp
11990 @opindex no-integrated-cpp
11991 Perform preprocessing as a separate pass before compilation.
11992 By default, GCC performs preprocessing as an integrated part of
11993 input tokenization and parsing.
11994 If this option is provided, the appropriate language front end
11995 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11996 and Objective-C, respectively) is instead invoked twice,
11997 once for preprocessing only and once for actual compilation
11998 of the preprocessed input.
11999 This option may be useful in conjunction with the @option{-B} or
12000 @option{-wrapper} options to specify an alternate preprocessor or
12001 perform additional processing of the program source between
12002 normal preprocessing and compilation.
12003
12004 @end table
12005
12006 @node Assembler Options
12007 @section Passing Options to the Assembler
12008
12009 @c prevent bad page break with this line
12010 You can pass options to the assembler.
12011
12012 @table @gcctabopt
12013 @item -Wa,@var{option}
12014 @opindex Wa
12015 Pass @var{option} as an option to the assembler. If @var{option}
12016 contains commas, it is split into multiple options at the commas.
12017
12018 @item -Xassembler @var{option}
12019 @opindex Xassembler
12020 Pass @var{option} as an option to the assembler. You can use this to
12021 supply system-specific assembler options that GCC does not
12022 recognize.
12023
12024 If you want to pass an option that takes an argument, you must use
12025 @option{-Xassembler} twice, once for the option and once for the argument.
12026
12027 @end table
12028
12029 @node Link Options
12030 @section Options for Linking
12031 @cindex link options
12032 @cindex options, linking
12033
12034 These options come into play when the compiler links object files into
12035 an executable output file. They are meaningless if the compiler is
12036 not doing a link step.
12037
12038 @table @gcctabopt
12039 @cindex file names
12040 @item @var{object-file-name}
12041 A file name that does not end in a special recognized suffix is
12042 considered to name an object file or library. (Object files are
12043 distinguished from libraries by the linker according to the file
12044 contents.) If linking is done, these object files are used as input
12045 to the linker.
12046
12047 @item -c
12048 @itemx -S
12049 @itemx -E
12050 @opindex c
12051 @opindex S
12052 @opindex E
12053 If any of these options is used, then the linker is not run, and
12054 object file names should not be used as arguments. @xref{Overall
12055 Options}.
12056
12057 @item -fuse-ld=bfd
12058 @opindex fuse-ld=bfd
12059 Use the @command{bfd} linker instead of the default linker.
12060
12061 @item -fuse-ld=gold
12062 @opindex fuse-ld=gold
12063 Use the @command{gold} linker instead of the default linker.
12064
12065 @cindex Libraries
12066 @item -l@var{library}
12067 @itemx -l @var{library}
12068 @opindex l
12069 Search the library named @var{library} when linking. (The second
12070 alternative with the library as a separate argument is only for
12071 POSIX compliance and is not recommended.)
12072
12073 It makes a difference where in the command you write this option; the
12074 linker searches and processes libraries and object files in the order they
12075 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
12076 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
12077 to functions in @samp{z}, those functions may not be loaded.
12078
12079 The linker searches a standard list of directories for the library,
12080 which is actually a file named @file{lib@var{library}.a}. The linker
12081 then uses this file as if it had been specified precisely by name.
12082
12083 The directories searched include several standard system directories
12084 plus any that you specify with @option{-L}.
12085
12086 Normally the files found this way are library files---archive files
12087 whose members are object files. The linker handles an archive file by
12088 scanning through it for members which define symbols that have so far
12089 been referenced but not defined. But if the file that is found is an
12090 ordinary object file, it is linked in the usual fashion. The only
12091 difference between using an @option{-l} option and specifying a file name
12092 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
12093 and searches several directories.
12094
12095 @item -lobjc
12096 @opindex lobjc
12097 You need this special case of the @option{-l} option in order to
12098 link an Objective-C or Objective-C++ program.
12099
12100 @item -nostartfiles
12101 @opindex nostartfiles
12102 Do not use the standard system startup files when linking.
12103 The standard system libraries are used normally, unless @option{-nostdlib}
12104 or @option{-nodefaultlibs} is used.
12105
12106 @item -nodefaultlibs
12107 @opindex nodefaultlibs
12108 Do not use the standard system libraries when linking.
12109 Only the libraries you specify are passed to the linker, and options
12110 specifying linkage of the system libraries, such as @option{-static-libgcc}
12111 or @option{-shared-libgcc}, are ignored.
12112 The standard startup files are used normally, unless @option{-nostartfiles}
12113 is used.
12114
12115 The compiler may generate calls to @code{memcmp},
12116 @code{memset}, @code{memcpy} and @code{memmove}.
12117 These entries are usually resolved by entries in
12118 libc. These entry points should be supplied through some other
12119 mechanism when this option is specified.
12120
12121 @item -nostdlib
12122 @opindex nostdlib
12123 Do not use the standard system startup files or libraries when linking.
12124 No startup files and only the libraries you specify are passed to
12125 the linker, and options specifying linkage of the system libraries, such as
12126 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
12127
12128 The compiler may generate calls to @code{memcmp}, @code{memset},
12129 @code{memcpy} and @code{memmove}.
12130 These entries are usually resolved by entries in
12131 libc. These entry points should be supplied through some other
12132 mechanism when this option is specified.
12133
12134 @cindex @option{-lgcc}, use with @option{-nostdlib}
12135 @cindex @option{-nostdlib} and unresolved references
12136 @cindex unresolved references and @option{-nostdlib}
12137 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
12138 @cindex @option{-nodefaultlibs} and unresolved references
12139 @cindex unresolved references and @option{-nodefaultlibs}
12140 One of the standard libraries bypassed by @option{-nostdlib} and
12141 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
12142 which GCC uses to overcome shortcomings of particular machines, or special
12143 needs for some languages.
12144 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
12145 Collection (GCC) Internals},
12146 for more discussion of @file{libgcc.a}.)
12147 In most cases, you need @file{libgcc.a} even when you want to avoid
12148 other standard libraries. In other words, when you specify @option{-nostdlib}
12149 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
12150 This ensures that you have no unresolved references to internal GCC
12151 library subroutines.
12152 (An example of such an internal subroutine is @code{__main}, used to ensure C++
12153 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
12154 GNU Compiler Collection (GCC) Internals}.)
12155
12156 @item -pie
12157 @opindex pie
12158 Produce a dynamically linked position independent executable on targets
12159 that support it. For predictable results, you must also specify the same
12160 set of options used for compilation (@option{-fpie}, @option{-fPIE},
12161 or model suboptions) when you specify this linker option.
12162
12163 @item -no-pie
12164 @opindex no-pie
12165 Don't produce a dynamically linked position independent executable.
12166
12167 @item -static-pie
12168 @opindex static-pie
12169 Produce a static position independent executable on targets that support
12170 it. A static position independent executable is similar to a static
12171 executable, but can be loaded at any address without a dynamic linker.
12172 For predictable results, you must also specify the same set of options
12173 used for compilation (@option{-fpie}, @option{-fPIE}, or model
12174 suboptions) when you specify this linker option.
12175
12176 @item -pthread
12177 @opindex pthread
12178 Link with the POSIX threads library. This option is supported on
12179 GNU/Linux targets, most other Unix derivatives, and also on
12180 x86 Cygwin and MinGW targets. On some targets this option also sets
12181 flags for the preprocessor, so it should be used consistently for both
12182 compilation and linking.
12183
12184 @item -rdynamic
12185 @opindex rdynamic
12186 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
12187 that support it. This instructs the linker to add all symbols, not
12188 only used ones, to the dynamic symbol table. This option is needed
12189 for some uses of @code{dlopen} or to allow obtaining backtraces
12190 from within a program.
12191
12192 @item -s
12193 @opindex s
12194 Remove all symbol table and relocation information from the executable.
12195
12196 @item -static
12197 @opindex static
12198 On systems that support dynamic linking, this overrides @option{-pie}
12199 and prevents linking with the shared libraries. On other systems, this
12200 option has no effect.
12201
12202 @item -shared
12203 @opindex shared
12204 Produce a shared object which can then be linked with other objects to
12205 form an executable. Not all systems support this option. For predictable
12206 results, you must also specify the same set of options used for compilation
12207 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
12208 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
12209 needs to build supplementary stub code for constructors to work. On
12210 multi-libbed systems, @samp{gcc -shared} must select the correct support
12211 libraries to link against. Failing to supply the correct flags may lead
12212 to subtle defects. Supplying them in cases where they are not necessary
12213 is innocuous.}
12214
12215 @item -shared-libgcc
12216 @itemx -static-libgcc
12217 @opindex shared-libgcc
12218 @opindex static-libgcc
12219 On systems that provide @file{libgcc} as a shared library, these options
12220 force the use of either the shared or static version, respectively.
12221 If no shared version of @file{libgcc} was built when the compiler was
12222 configured, these options have no effect.
12223
12224 There are several situations in which an application should use the
12225 shared @file{libgcc} instead of the static version. The most common
12226 of these is when the application wishes to throw and catch exceptions
12227 across different shared libraries. In that case, each of the libraries
12228 as well as the application itself should use the shared @file{libgcc}.
12229
12230 Therefore, the G++ and driver automatically adds @option{-shared-libgcc}
12231 whenever you build a shared library or a main executable, because C++
12232 programs typically use exceptions, so this is the right thing to do.
12233
12234 If, instead, you use the GCC driver to create shared libraries, you may
12235 find that they are not always linked with the shared @file{libgcc}.
12236 If GCC finds, at its configuration time, that you have a non-GNU linker
12237 or a GNU linker that does not support option @option{--eh-frame-hdr},
12238 it links the shared version of @file{libgcc} into shared libraries
12239 by default. Otherwise, it takes advantage of the linker and optimizes
12240 away the linking with the shared version of @file{libgcc}, linking with
12241 the static version of libgcc by default. This allows exceptions to
12242 propagate through such shared libraries, without incurring relocation
12243 costs at library load time.
12244
12245 However, if a library or main executable is supposed to throw or catch
12246 exceptions, you must link it using the G++ driver, as appropriate
12247 for the languages used in the program, or using the option
12248 @option{-shared-libgcc}, such that it is linked with the shared
12249 @file{libgcc}.
12250
12251 @item -static-libasan
12252 @opindex static-libasan
12253 When the @option{-fsanitize=address} option is used to link a program,
12254 the GCC driver automatically links against @option{libasan}. If
12255 @file{libasan} is available as a shared library, and the @option{-static}
12256 option is not used, then this links against the shared version of
12257 @file{libasan}. The @option{-static-libasan} option directs the GCC
12258 driver to link @file{libasan} statically, without necessarily linking
12259 other libraries statically.
12260
12261 @item -static-libtsan
12262 @opindex static-libtsan
12263 When the @option{-fsanitize=thread} option is used to link a program,
12264 the GCC driver automatically links against @option{libtsan}. If
12265 @file{libtsan} is available as a shared library, and the @option{-static}
12266 option is not used, then this links against the shared version of
12267 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
12268 driver to link @file{libtsan} statically, without necessarily linking
12269 other libraries statically.
12270
12271 @item -static-liblsan
12272 @opindex static-liblsan
12273 When the @option{-fsanitize=leak} option is used to link a program,
12274 the GCC driver automatically links against @option{liblsan}. If
12275 @file{liblsan} is available as a shared library, and the @option{-static}
12276 option is not used, then this links against the shared version of
12277 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
12278 driver to link @file{liblsan} statically, without necessarily linking
12279 other libraries statically.
12280
12281 @item -static-libubsan
12282 @opindex static-libubsan
12283 When the @option{-fsanitize=undefined} option is used to link a program,
12284 the GCC driver automatically links against @option{libubsan}. If
12285 @file{libubsan} is available as a shared library, and the @option{-static}
12286 option is not used, then this links against the shared version of
12287 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
12288 driver to link @file{libubsan} statically, without necessarily linking
12289 other libraries statically.
12290
12291 @item -static-libmpx
12292 @opindex static-libmpx
12293 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
12294 used to link a program, the GCC driver automatically links against
12295 @file{libmpx}. If @file{libmpx} is available as a shared library,
12296 and the @option{-static} option is not used, then this links against
12297 the shared version of @file{libmpx}. The @option{-static-libmpx}
12298 option directs the GCC driver to link @file{libmpx} statically,
12299 without necessarily linking other libraries statically.
12300
12301 @item -static-libmpxwrappers
12302 @opindex static-libmpxwrappers
12303 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
12304 to link a program without also using @option{-fno-chkp-use-wrappers}, the
12305 GCC driver automatically links against @file{libmpxwrappers}. If
12306 @file{libmpxwrappers} is available as a shared library, and the
12307 @option{-static} option is not used, then this links against the shared
12308 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
12309 option directs the GCC driver to link @file{libmpxwrappers} statically,
12310 without necessarily linking other libraries statically.
12311
12312 @item -static-libstdc++
12313 @opindex static-libstdc++
12314 When the @command{g++} program is used to link a C++ program, it
12315 normally automatically links against @option{libstdc++}. If
12316 @file{libstdc++} is available as a shared library, and the
12317 @option{-static} option is not used, then this links against the
12318 shared version of @file{libstdc++}. That is normally fine. However, it
12319 is sometimes useful to freeze the version of @file{libstdc++} used by
12320 the program without going all the way to a fully static link. The
12321 @option{-static-libstdc++} option directs the @command{g++} driver to
12322 link @file{libstdc++} statically, without necessarily linking other
12323 libraries statically.
12324
12325 @item -symbolic
12326 @opindex symbolic
12327 Bind references to global symbols when building a shared object. Warn
12328 about any unresolved references (unless overridden by the link editor
12329 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
12330 this option.
12331
12332 @item -T @var{script}
12333 @opindex T
12334 @cindex linker script
12335 Use @var{script} as the linker script. This option is supported by most
12336 systems using the GNU linker. On some targets, such as bare-board
12337 targets without an operating system, the @option{-T} option may be required
12338 when linking to avoid references to undefined symbols.
12339
12340 @item -Xlinker @var{option}
12341 @opindex Xlinker
12342 Pass @var{option} as an option to the linker. You can use this to
12343 supply system-specific linker options that GCC does not recognize.
12344
12345 If you want to pass an option that takes a separate argument, you must use
12346 @option{-Xlinker} twice, once for the option and once for the argument.
12347 For example, to pass @option{-assert definitions}, you must write
12348 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
12349 @option{-Xlinker "-assert definitions"}, because this passes the entire
12350 string as a single argument, which is not what the linker expects.
12351
12352 When using the GNU linker, it is usually more convenient to pass
12353 arguments to linker options using the @option{@var{option}=@var{value}}
12354 syntax than as separate arguments. For example, you can specify
12355 @option{-Xlinker -Map=output.map} rather than
12356 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
12357 this syntax for command-line options.
12358
12359 @item -Wl,@var{option}
12360 @opindex Wl
12361 Pass @var{option} as an option to the linker. If @var{option} contains
12362 commas, it is split into multiple options at the commas. You can use this
12363 syntax to pass an argument to the option.
12364 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
12365 linker. When using the GNU linker, you can also get the same effect with
12366 @option{-Wl,-Map=output.map}.
12367
12368 @item -u @var{symbol}
12369 @opindex u
12370 Pretend the symbol @var{symbol} is undefined, to force linking of
12371 library modules to define it. You can use @option{-u} multiple times with
12372 different symbols to force loading of additional library modules.
12373
12374 @item -z @var{keyword}
12375 @opindex z
12376 @option{-z} is passed directly on to the linker along with the keyword
12377 @var{keyword}. See the section in the documentation of your linker for
12378 permitted values and their meanings.
12379 @end table
12380
12381 @node Directory Options
12382 @section Options for Directory Search
12383 @cindex directory options
12384 @cindex options, directory search
12385 @cindex search path
12386
12387 These options specify directories to search for header files, for
12388 libraries and for parts of the compiler:
12389
12390 @table @gcctabopt
12391 @include cppdiropts.texi
12392
12393 @item -iplugindir=@var{dir}
12394 @opindex iplugindir=
12395 Set the directory to search for plugins that are passed
12396 by @option{-fplugin=@var{name}} instead of
12397 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
12398 to be used by the user, but only passed by the driver.
12399
12400 @item -L@var{dir}
12401 @opindex L
12402 Add directory @var{dir} to the list of directories to be searched
12403 for @option{-l}.
12404
12405 @item -B@var{prefix}
12406 @opindex B
12407 This option specifies where to find the executables, libraries,
12408 include files, and data files of the compiler itself.
12409
12410 The compiler driver program runs one or more of the subprograms
12411 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
12412 @var{prefix} as a prefix for each program it tries to run, both with and
12413 without @samp{@var{machine}/@var{version}/} for the corresponding target
12414 machine and compiler version.
12415
12416 For each subprogram to be run, the compiler driver first tries the
12417 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
12418 is not specified, the driver tries two standard prefixes,
12419 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
12420 those results in a file name that is found, the unmodified program
12421 name is searched for using the directories specified in your
12422 @env{PATH} environment variable.
12423
12424 The compiler checks to see if the path provided by @option{-B}
12425 refers to a directory, and if necessary it adds a directory
12426 separator character at the end of the path.
12427
12428 @option{-B} prefixes that effectively specify directory names also apply
12429 to libraries in the linker, because the compiler translates these
12430 options into @option{-L} options for the linker. They also apply to
12431 include files in the preprocessor, because the compiler translates these
12432 options into @option{-isystem} options for the preprocessor. In this case,
12433 the compiler appends @samp{include} to the prefix.
12434
12435 The runtime support file @file{libgcc.a} can also be searched for using
12436 the @option{-B} prefix, if needed. If it is not found there, the two
12437 standard prefixes above are tried, and that is all. The file is left
12438 out of the link if it is not found by those means.
12439
12440 Another way to specify a prefix much like the @option{-B} prefix is to use
12441 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
12442 Variables}.
12443
12444 As a special kludge, if the path provided by @option{-B} is
12445 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
12446 9, then it is replaced by @file{[dir/]include}. This is to help
12447 with boot-strapping the compiler.
12448
12449 @item -no-canonical-prefixes
12450 @opindex no-canonical-prefixes
12451 Do not expand any symbolic links, resolve references to @samp{/../}
12452 or @samp{/./}, or make the path absolute when generating a relative
12453 prefix.
12454
12455 @item --sysroot=@var{dir}
12456 @opindex sysroot
12457 Use @var{dir} as the logical root directory for headers and libraries.
12458 For example, if the compiler normally searches for headers in
12459 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
12460 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
12461
12462 If you use both this option and the @option{-isysroot} option, then
12463 the @option{--sysroot} option applies to libraries, but the
12464 @option{-isysroot} option applies to header files.
12465
12466 The GNU linker (beginning with version 2.16) has the necessary support
12467 for this option. If your linker does not support this option, the
12468 header file aspect of @option{--sysroot} still works, but the
12469 library aspect does not.
12470
12471 @item --no-sysroot-suffix
12472 @opindex no-sysroot-suffix
12473 For some targets, a suffix is added to the root directory specified
12474 with @option{--sysroot}, depending on the other options used, so that
12475 headers may for example be found in
12476 @file{@var{dir}/@var{suffix}/usr/include} instead of
12477 @file{@var{dir}/usr/include}. This option disables the addition of
12478 such a suffix.
12479
12480 @end table
12481
12482 @node Code Gen Options
12483 @section Options for Code Generation Conventions
12484 @cindex code generation conventions
12485 @cindex options, code generation
12486 @cindex run-time options
12487
12488 These machine-independent options control the interface conventions
12489 used in code generation.
12490
12491 Most of them have both positive and negative forms; the negative form
12492 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
12493 one of the forms is listed---the one that is not the default. You
12494 can figure out the other form by either removing @samp{no-} or adding
12495 it.
12496
12497 @table @gcctabopt
12498 @item -fstack-reuse=@var{reuse-level}
12499 @opindex fstack_reuse
12500 This option controls stack space reuse for user declared local/auto variables
12501 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
12502 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
12503 local variables and temporaries, @samp{named_vars} enables the reuse only for
12504 user defined local variables with names, and @samp{none} disables stack reuse
12505 completely. The default value is @samp{all}. The option is needed when the
12506 program extends the lifetime of a scoped local variable or a compiler generated
12507 temporary beyond the end point defined by the language. When a lifetime of
12508 a variable ends, and if the variable lives in memory, the optimizing compiler
12509 has the freedom to reuse its stack space with other temporaries or scoped
12510 local variables whose live range does not overlap with it. Legacy code extending
12511 local lifetime is likely to break with the stack reuse optimization.
12512
12513 For example,
12514
12515 @smallexample
12516 int *p;
12517 @{
12518 int local1;
12519
12520 p = &local1;
12521 local1 = 10;
12522 ....
12523 @}
12524 @{
12525 int local2;
12526 local2 = 20;
12527 ...
12528 @}
12529
12530 if (*p == 10) // out of scope use of local1
12531 @{
12532
12533 @}
12534 @end smallexample
12535
12536 Another example:
12537 @smallexample
12538
12539 struct A
12540 @{
12541 A(int k) : i(k), j(k) @{ @}
12542 int i;
12543 int j;
12544 @};
12545
12546 A *ap;
12547
12548 void foo(const A& ar)
12549 @{
12550 ap = &ar;
12551 @}
12552
12553 void bar()
12554 @{
12555 foo(A(10)); // temp object's lifetime ends when foo returns
12556
12557 @{
12558 A a(20);
12559 ....
12560 @}
12561 ap->i+= 10; // ap references out of scope temp whose space
12562 // is reused with a. What is the value of ap->i?
12563 @}
12564
12565 @end smallexample
12566
12567 The lifetime of a compiler generated temporary is well defined by the C++
12568 standard. When a lifetime of a temporary ends, and if the temporary lives
12569 in memory, the optimizing compiler has the freedom to reuse its stack
12570 space with other temporaries or scoped local variables whose live range
12571 does not overlap with it. However some of the legacy code relies on
12572 the behavior of older compilers in which temporaries' stack space is
12573 not reused, the aggressive stack reuse can lead to runtime errors. This
12574 option is used to control the temporary stack reuse optimization.
12575
12576 @item -ftrapv
12577 @opindex ftrapv
12578 This option generates traps for signed overflow on addition, subtraction,
12579 multiplication operations.
12580 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12581 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12582 @option{-fwrapv} being effective. Note that only active options override, so
12583 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12584 results in @option{-ftrapv} being effective.
12585
12586 @item -fwrapv
12587 @opindex fwrapv
12588 This option instructs the compiler to assume that signed arithmetic
12589 overflow of addition, subtraction and multiplication wraps around
12590 using twos-complement representation. This flag enables some optimizations
12591 and disables others.
12592 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12593 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12594 @option{-fwrapv} being effective. Note that only active options override, so
12595 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12596 results in @option{-ftrapv} being effective.
12597
12598 @item -fwrapv-pointer
12599 @opindex fwrapv-pointer
12600 This option instructs the compiler to assume that pointer arithmetic
12601 overflow on addition and subtraction wraps around using twos-complement
12602 representation. This flag disables some optimizations which assume
12603 pointer overflow is invalid.
12604
12605 @item -fstrict-overflow
12606 @opindex fstrict-overflow
12607 This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
12608 negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
12609
12610 @item -fexceptions
12611 @opindex fexceptions
12612 Enable exception handling. Generates extra code needed to propagate
12613 exceptions. For some targets, this implies GCC generates frame
12614 unwind information for all functions, which can produce significant data
12615 size overhead, although it does not affect execution. If you do not
12616 specify this option, GCC enables it by default for languages like
12617 C++ that normally require exception handling, and disables it for
12618 languages like C that do not normally require it. However, you may need
12619 to enable this option when compiling C code that needs to interoperate
12620 properly with exception handlers written in C++. You may also wish to
12621 disable this option if you are compiling older C++ programs that don't
12622 use exception handling.
12623
12624 @item -fnon-call-exceptions
12625 @opindex fnon-call-exceptions
12626 Generate code that allows trapping instructions to throw exceptions.
12627 Note that this requires platform-specific runtime support that does
12628 not exist everywhere. Moreover, it only allows @emph{trapping}
12629 instructions to throw exceptions, i.e.@: memory references or floating-point
12630 instructions. It does not allow exceptions to be thrown from
12631 arbitrary signal handlers such as @code{SIGALRM}.
12632
12633 @item -fdelete-dead-exceptions
12634 @opindex fdelete-dead-exceptions
12635 Consider that instructions that may throw exceptions but don't otherwise
12636 contribute to the execution of the program can be optimized away.
12637 This option is enabled by default for the Ada front end, as permitted by
12638 the Ada language specification.
12639 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
12640
12641 @item -funwind-tables
12642 @opindex funwind-tables
12643 Similar to @option{-fexceptions}, except that it just generates any needed
12644 static data, but does not affect the generated code in any other way.
12645 You normally do not need to enable this option; instead, a language processor
12646 that needs this handling enables it on your behalf.
12647
12648 @item -fasynchronous-unwind-tables
12649 @opindex fasynchronous-unwind-tables
12650 Generate unwind table in DWARF format, if supported by target machine. The
12651 table is exact at each instruction boundary, so it can be used for stack
12652 unwinding from asynchronous events (such as debugger or garbage collector).
12653
12654 @item -fno-gnu-unique
12655 @opindex fno-gnu-unique
12656 On systems with recent GNU assembler and C library, the C++ compiler
12657 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
12658 of template static data members and static local variables in inline
12659 functions are unique even in the presence of @code{RTLD_LOCAL}; this
12660 is necessary to avoid problems with a library used by two different
12661 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
12662 therefore disagreeing with the other one about the binding of the
12663 symbol. But this causes @code{dlclose} to be ignored for affected
12664 DSOs; if your program relies on reinitialization of a DSO via
12665 @code{dlclose} and @code{dlopen}, you can use
12666 @option{-fno-gnu-unique}.
12667
12668 @item -fpcc-struct-return
12669 @opindex fpcc-struct-return
12670 Return ``short'' @code{struct} and @code{union} values in memory like
12671 longer ones, rather than in registers. This convention is less
12672 efficient, but it has the advantage of allowing intercallability between
12673 GCC-compiled files and files compiled with other compilers, particularly
12674 the Portable C Compiler (pcc).
12675
12676 The precise convention for returning structures in memory depends
12677 on the target configuration macros.
12678
12679 Short structures and unions are those whose size and alignment match
12680 that of some integer type.
12681
12682 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
12683 switch is not binary compatible with code compiled with the
12684 @option{-freg-struct-return} switch.
12685 Use it to conform to a non-default application binary interface.
12686
12687 @item -freg-struct-return
12688 @opindex freg-struct-return
12689 Return @code{struct} and @code{union} values in registers when possible.
12690 This is more efficient for small structures than
12691 @option{-fpcc-struct-return}.
12692
12693 If you specify neither @option{-fpcc-struct-return} nor
12694 @option{-freg-struct-return}, GCC defaults to whichever convention is
12695 standard for the target. If there is no standard convention, GCC
12696 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
12697 the principal compiler. In those cases, we can choose the standard, and
12698 we chose the more efficient register return alternative.
12699
12700 @strong{Warning:} code compiled with the @option{-freg-struct-return}
12701 switch is not binary compatible with code compiled with the
12702 @option{-fpcc-struct-return} switch.
12703 Use it to conform to a non-default application binary interface.
12704
12705 @item -fshort-enums
12706 @opindex fshort-enums
12707 Allocate to an @code{enum} type only as many bytes as it needs for the
12708 declared range of possible values. Specifically, the @code{enum} type
12709 is equivalent to the smallest integer type that has enough room.
12710
12711 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
12712 code that is not binary compatible with code generated without that switch.
12713 Use it to conform to a non-default application binary interface.
12714
12715 @item -fshort-wchar
12716 @opindex fshort-wchar
12717 Override the underlying type for @code{wchar_t} to be @code{short
12718 unsigned int} instead of the default for the target. This option is
12719 useful for building programs to run under WINE@.
12720
12721 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
12722 code that is not binary compatible with code generated without that switch.
12723 Use it to conform to a non-default application binary interface.
12724
12725 @item -fno-common
12726 @opindex fno-common
12727 @cindex tentative definitions
12728 In C code, this option controls the placement of global variables
12729 defined without an initializer, known as @dfn{tentative definitions}
12730 in the C standard. Tentative definitions are distinct from declarations
12731 of a variable with the @code{extern} keyword, which do not allocate storage.
12732
12733 Unix C compilers have traditionally allocated storage for
12734 uninitialized global variables in a common block. This allows the
12735 linker to resolve all tentative definitions of the same variable
12736 in different compilation units to the same object, or to a non-tentative
12737 definition.
12738 This is the behavior specified by @option{-fcommon}, and is the default for
12739 GCC on most targets.
12740 On the other hand, this behavior is not required by ISO
12741 C, and on some targets may carry a speed or code size penalty on
12742 variable references.
12743
12744 The @option{-fno-common} option specifies that the compiler should instead
12745 place uninitialized global variables in the data section of the object file.
12746 This inhibits the merging of tentative definitions by the linker so
12747 you get a multiple-definition error if the same
12748 variable is defined in more than one compilation unit.
12749 Compiling with @option{-fno-common} is useful on targets for which
12750 it provides better performance, or if you wish to verify that the
12751 program will work on other systems that always treat uninitialized
12752 variable definitions this way.
12753
12754 @item -fno-ident
12755 @opindex fno-ident
12756 Ignore the @code{#ident} directive.
12757
12758 @item -finhibit-size-directive
12759 @opindex finhibit-size-directive
12760 Don't output a @code{.size} assembler directive, or anything else that
12761 would cause trouble if the function is split in the middle, and the
12762 two halves are placed at locations far apart in memory. This option is
12763 used when compiling @file{crtstuff.c}; you should not need to use it
12764 for anything else.
12765
12766 @item -fverbose-asm
12767 @opindex fverbose-asm
12768 Put extra commentary information in the generated assembly code to
12769 make it more readable. This option is generally only of use to those
12770 who actually need to read the generated assembly code (perhaps while
12771 debugging the compiler itself).
12772
12773 @option{-fno-verbose-asm}, the default, causes the
12774 extra information to be omitted and is useful when comparing two assembler
12775 files.
12776
12777 The added comments include:
12778
12779 @itemize @bullet
12780
12781 @item
12782 information on the compiler version and command-line options,
12783
12784 @item
12785 the source code lines associated with the assembly instructions,
12786 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
12787
12788 @item
12789 hints on which high-level expressions correspond to
12790 the various assembly instruction operands.
12791
12792 @end itemize
12793
12794 For example, given this C source file:
12795
12796 @smallexample
12797 int test (int n)
12798 @{
12799 int i;
12800 int total = 0;
12801
12802 for (i = 0; i < n; i++)
12803 total += i * i;
12804
12805 return total;
12806 @}
12807 @end smallexample
12808
12809 compiling to (x86_64) assembly via @option{-S} and emitting the result
12810 direct to stdout via @option{-o} @option{-}
12811
12812 @smallexample
12813 gcc -S test.c -fverbose-asm -Os -o -
12814 @end smallexample
12815
12816 gives output similar to this:
12817
12818 @smallexample
12819 .file "test.c"
12820 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
12821 [...snip...]
12822 # options passed:
12823 [...snip...]
12824
12825 .text
12826 .globl test
12827 .type test, @@function
12828 test:
12829 .LFB0:
12830 .cfi_startproc
12831 # test.c:4: int total = 0;
12832 xorl %eax, %eax # <retval>
12833 # test.c:6: for (i = 0; i < n; i++)
12834 xorl %edx, %edx # i
12835 .L2:
12836 # test.c:6: for (i = 0; i < n; i++)
12837 cmpl %edi, %edx # n, i
12838 jge .L5 #,
12839 # test.c:7: total += i * i;
12840 movl %edx, %ecx # i, tmp92
12841 imull %edx, %ecx # i, tmp92
12842 # test.c:6: for (i = 0; i < n; i++)
12843 incl %edx # i
12844 # test.c:7: total += i * i;
12845 addl %ecx, %eax # tmp92, <retval>
12846 jmp .L2 #
12847 .L5:
12848 # test.c:10: @}
12849 ret
12850 .cfi_endproc
12851 .LFE0:
12852 .size test, .-test
12853 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
12854 .section .note.GNU-stack,"",@@progbits
12855 @end smallexample
12856
12857 The comments are intended for humans rather than machines and hence the
12858 precise format of the comments is subject to change.
12859
12860 @item -frecord-gcc-switches
12861 @opindex frecord-gcc-switches
12862 This switch causes the command line used to invoke the
12863 compiler to be recorded into the object file that is being created.
12864 This switch is only implemented on some targets and the exact format
12865 of the recording is target and binary file format dependent, but it
12866 usually takes the form of a section containing ASCII text. This
12867 switch is related to the @option{-fverbose-asm} switch, but that
12868 switch only records information in the assembler output file as
12869 comments, so it never reaches the object file.
12870 See also @option{-grecord-gcc-switches} for another
12871 way of storing compiler options into the object file.
12872
12873 @item -fpic
12874 @opindex fpic
12875 @cindex global offset table
12876 @cindex PIC
12877 Generate position-independent code (PIC) suitable for use in a shared
12878 library, if supported for the target machine. Such code accesses all
12879 constant addresses through a global offset table (GOT)@. The dynamic
12880 loader resolves the GOT entries when the program starts (the dynamic
12881 loader is not part of GCC; it is part of the operating system). If
12882 the GOT size for the linked executable exceeds a machine-specific
12883 maximum size, you get an error message from the linker indicating that
12884 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
12885 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
12886 on the m68k and RS/6000. The x86 has no such limit.)
12887
12888 Position-independent code requires special support, and therefore works
12889 only on certain machines. For the x86, GCC supports PIC for System V
12890 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
12891 position-independent.
12892
12893 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12894 are defined to 1.
12895
12896 @item -fPIC
12897 @opindex fPIC
12898 If supported for the target machine, emit position-independent code,
12899 suitable for dynamic linking and avoiding any limit on the size of the
12900 global offset table. This option makes a difference on AArch64, m68k,
12901 PowerPC and SPARC@.
12902
12903 Position-independent code requires special support, and therefore works
12904 only on certain machines.
12905
12906 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12907 are defined to 2.
12908
12909 @item -fpie
12910 @itemx -fPIE
12911 @opindex fpie
12912 @opindex fPIE
12913 These options are similar to @option{-fpic} and @option{-fPIC}, but
12914 generated position independent code can be only linked into executables.
12915 Usually these options are used when @option{-pie} GCC option is
12916 used during linking.
12917
12918 @option{-fpie} and @option{-fPIE} both define the macros
12919 @code{__pie__} and @code{__PIE__}. The macros have the value 1
12920 for @option{-fpie} and 2 for @option{-fPIE}.
12921
12922 @item -fno-plt
12923 @opindex fno-plt
12924 Do not use the PLT for external function calls in position-independent code.
12925 Instead, load the callee address at call sites from the GOT and branch to it.
12926 This leads to more efficient code by eliminating PLT stubs and exposing
12927 GOT loads to optimizations. On architectures such as 32-bit x86 where
12928 PLT stubs expect the GOT pointer in a specific register, this gives more
12929 register allocation freedom to the compiler.
12930 Lazy binding requires use of the PLT;
12931 with @option{-fno-plt} all external symbols are resolved at load time.
12932
12933 Alternatively, the function attribute @code{noplt} can be used to avoid calls
12934 through the PLT for specific external functions.
12935
12936 In position-dependent code, a few targets also convert calls to
12937 functions that are marked to not use the PLT to use the GOT instead.
12938
12939 @item -fno-jump-tables
12940 @opindex fno-jump-tables
12941 Do not use jump tables for switch statements even where it would be
12942 more efficient than other code generation strategies. This option is
12943 of use in conjunction with @option{-fpic} or @option{-fPIC} for
12944 building code that forms part of a dynamic linker and cannot
12945 reference the address of a jump table. On some targets, jump tables
12946 do not require a GOT and this option is not needed.
12947
12948 @item -ffixed-@var{reg}
12949 @opindex ffixed
12950 Treat the register named @var{reg} as a fixed register; generated code
12951 should never refer to it (except perhaps as a stack pointer, frame
12952 pointer or in some other fixed role).
12953
12954 @var{reg} must be the name of a register. The register names accepted
12955 are machine-specific and are defined in the @code{REGISTER_NAMES}
12956 macro in the machine description macro file.
12957
12958 This flag does not have a negative form, because it specifies a
12959 three-way choice.
12960
12961 @item -fcall-used-@var{reg}
12962 @opindex fcall-used
12963 Treat the register named @var{reg} as an allocable register that is
12964 clobbered by function calls. It may be allocated for temporaries or
12965 variables that do not live across a call. Functions compiled this way
12966 do not save and restore the register @var{reg}.
12967
12968 It is an error to use this flag with the frame pointer or stack pointer.
12969 Use of this flag for other registers that have fixed pervasive roles in
12970 the machine's execution model produces disastrous results.
12971
12972 This flag does not have a negative form, because it specifies a
12973 three-way choice.
12974
12975 @item -fcall-saved-@var{reg}
12976 @opindex fcall-saved
12977 Treat the register named @var{reg} as an allocable register saved by
12978 functions. It may be allocated even for temporaries or variables that
12979 live across a call. Functions compiled this way save and restore
12980 the register @var{reg} if they use it.
12981
12982 It is an error to use this flag with the frame pointer or stack pointer.
12983 Use of this flag for other registers that have fixed pervasive roles in
12984 the machine's execution model produces disastrous results.
12985
12986 A different sort of disaster results from the use of this flag for
12987 a register in which function values may be returned.
12988
12989 This flag does not have a negative form, because it specifies a
12990 three-way choice.
12991
12992 @item -fpack-struct[=@var{n}]
12993 @opindex fpack-struct
12994 Without a value specified, pack all structure members together without
12995 holes. When a value is specified (which must be a small power of two), pack
12996 structure members according to this value, representing the maximum
12997 alignment (that is, objects with default alignment requirements larger than
12998 this are output potentially unaligned at the next fitting location.
12999
13000 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
13001 code that is not binary compatible with code generated without that switch.
13002 Additionally, it makes the code suboptimal.
13003 Use it to conform to a non-default application binary interface.
13004
13005 @item -fleading-underscore
13006 @opindex fleading-underscore
13007 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
13008 change the way C symbols are represented in the object file. One use
13009 is to help link with legacy assembly code.
13010
13011 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
13012 generate code that is not binary compatible with code generated without that
13013 switch. Use it to conform to a non-default application binary interface.
13014 Not all targets provide complete support for this switch.
13015
13016 @item -ftls-model=@var{model}
13017 @opindex ftls-model
13018 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
13019 The @var{model} argument should be one of @samp{global-dynamic},
13020 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
13021 Note that the choice is subject to optimization: the compiler may use
13022 a more efficient model for symbols not visible outside of the translation
13023 unit, or if @option{-fpic} is not given on the command line.
13024
13025 The default without @option{-fpic} is @samp{initial-exec}; with
13026 @option{-fpic} the default is @samp{global-dynamic}.
13027
13028 @item -ftrampolines
13029 @opindex ftrampolines
13030 For targets that normally need trampolines for nested functions, always
13031 generate them instead of using descriptors. Otherwise, for targets that
13032 do not need them, like for example HP-PA or IA-64, do nothing.
13033
13034 A trampoline is a small piece of code that is created at run time on the
13035 stack when the address of a nested function is taken, and is used to call
13036 the nested function indirectly. Therefore, it requires the stack to be
13037 made executable in order for the program to work properly.
13038
13039 @option{-fno-trampolines} is enabled by default on a language by language
13040 basis to let the compiler avoid generating them, if it computes that this
13041 is safe, and replace them with descriptors. Descriptors are made up of data
13042 only, but the generated code must be prepared to deal with them. As of this
13043 writing, @option{-fno-trampolines} is enabled by default only for Ada.
13044
13045 Moreover, code compiled with @option{-ftrampolines} and code compiled with
13046 @option{-fno-trampolines} are not binary compatible if nested functions are
13047 present. This option must therefore be used on a program-wide basis and be
13048 manipulated with extreme care.
13049
13050 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
13051 @opindex fvisibility
13052 Set the default ELF image symbol visibility to the specified option---all
13053 symbols are marked with this unless overridden within the code.
13054 Using this feature can very substantially improve linking and
13055 load times of shared object libraries, produce more optimized
13056 code, provide near-perfect API export and prevent symbol clashes.
13057 It is @strong{strongly} recommended that you use this in any shared objects
13058 you distribute.
13059
13060 Despite the nomenclature, @samp{default} always means public; i.e.,
13061 available to be linked against from outside the shared object.
13062 @samp{protected} and @samp{internal} are pretty useless in real-world
13063 usage so the only other commonly used option is @samp{hidden}.
13064 The default if @option{-fvisibility} isn't specified is
13065 @samp{default}, i.e., make every symbol public.
13066
13067 A good explanation of the benefits offered by ensuring ELF
13068 symbols have the correct visibility is given by ``How To Write
13069 Shared Libraries'' by Ulrich Drepper (which can be found at
13070 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
13071 solution made possible by this option to marking things hidden when
13072 the default is public is to make the default hidden and mark things
13073 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
13074 and @code{__attribute__ ((visibility("default")))} instead of
13075 @code{__declspec(dllexport)} you get almost identical semantics with
13076 identical syntax. This is a great boon to those working with
13077 cross-platform projects.
13078
13079 For those adding visibility support to existing code, you may find
13080 @code{#pragma GCC visibility} of use. This works by you enclosing
13081 the declarations you wish to set visibility for with (for example)
13082 @code{#pragma GCC visibility push(hidden)} and
13083 @code{#pragma GCC visibility pop}.
13084 Bear in mind that symbol visibility should be viewed @strong{as
13085 part of the API interface contract} and thus all new code should
13086 always specify visibility when it is not the default; i.e., declarations
13087 only for use within the local DSO should @strong{always} be marked explicitly
13088 as hidden as so to avoid PLT indirection overheads---making this
13089 abundantly clear also aids readability and self-documentation of the code.
13090 Note that due to ISO C++ specification requirements, @code{operator new} and
13091 @code{operator delete} must always be of default visibility.
13092
13093 Be aware that headers from outside your project, in particular system
13094 headers and headers from any other library you use, may not be
13095 expecting to be compiled with visibility other than the default. You
13096 may need to explicitly say @code{#pragma GCC visibility push(default)}
13097 before including any such headers.
13098
13099 @code{extern} declarations are not affected by @option{-fvisibility}, so
13100 a lot of code can be recompiled with @option{-fvisibility=hidden} with
13101 no modifications. However, this means that calls to @code{extern}
13102 functions with no explicit visibility use the PLT, so it is more
13103 effective to use @code{__attribute ((visibility))} and/or
13104 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
13105 declarations should be treated as hidden.
13106
13107 Note that @option{-fvisibility} does affect C++ vague linkage
13108 entities. This means that, for instance, an exception class that is
13109 be thrown between DSOs must be explicitly marked with default
13110 visibility so that the @samp{type_info} nodes are unified between
13111 the DSOs.
13112
13113 An overview of these techniques, their benefits and how to use them
13114 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
13115
13116 @item -fstrict-volatile-bitfields
13117 @opindex fstrict-volatile-bitfields
13118 This option should be used if accesses to volatile bit-fields (or other
13119 structure fields, although the compiler usually honors those types
13120 anyway) should use a single access of the width of the
13121 field's type, aligned to a natural alignment if possible. For
13122 example, targets with memory-mapped peripheral registers might require
13123 all such accesses to be 16 bits wide; with this flag you can
13124 declare all peripheral bit-fields as @code{unsigned short} (assuming short
13125 is 16 bits on these targets) to force GCC to use 16-bit accesses
13126 instead of, perhaps, a more efficient 32-bit access.
13127
13128 If this option is disabled, the compiler uses the most efficient
13129 instruction. In the previous example, that might be a 32-bit load
13130 instruction, even though that accesses bytes that do not contain
13131 any portion of the bit-field, or memory-mapped registers unrelated to
13132 the one being updated.
13133
13134 In some cases, such as when the @code{packed} attribute is applied to a
13135 structure field, it may not be possible to access the field with a single
13136 read or write that is correctly aligned for the target machine. In this
13137 case GCC falls back to generating multiple accesses rather than code that
13138 will fault or truncate the result at run time.
13139
13140 Note: Due to restrictions of the C/C++11 memory model, write accesses are
13141 not allowed to touch non bit-field members. It is therefore recommended
13142 to define all bits of the field's type as bit-field members.
13143
13144 The default value of this option is determined by the application binary
13145 interface for the target processor.
13146
13147 @item -fsync-libcalls
13148 @opindex fsync-libcalls
13149 This option controls whether any out-of-line instance of the @code{__sync}
13150 family of functions may be used to implement the C++11 @code{__atomic}
13151 family of functions.
13152
13153 The default value of this option is enabled, thus the only useful form
13154 of the option is @option{-fno-sync-libcalls}. This option is used in
13155 the implementation of the @file{libatomic} runtime library.
13156
13157 @end table
13158
13159 @node Developer Options
13160 @section GCC Developer Options
13161 @cindex developer options
13162 @cindex debugging GCC
13163 @cindex debug dump options
13164 @cindex dump options
13165 @cindex compilation statistics
13166
13167 This section describes command-line options that are primarily of
13168 interest to GCC developers, including options to support compiler
13169 testing and investigation of compiler bugs and compile-time
13170 performance problems. This includes options that produce debug dumps
13171 at various points in the compilation; that print statistics such as
13172 memory use and execution time; and that print information about GCC's
13173 configuration, such as where it searches for libraries. You should
13174 rarely need to use any of these options for ordinary compilation and
13175 linking tasks.
13176
13177 @table @gcctabopt
13178
13179 @item -d@var{letters}
13180 @itemx -fdump-rtl-@var{pass}
13181 @itemx -fdump-rtl-@var{pass}=@var{filename}
13182 @opindex d
13183 @opindex fdump-rtl-@var{pass}
13184 Says to make debugging dumps during compilation at times specified by
13185 @var{letters}. This is used for debugging the RTL-based passes of the
13186 compiler. The file names for most of the dumps are made by appending
13187 a pass number and a word to the @var{dumpname}, and the files are
13188 created in the directory of the output file. In case of
13189 @option{=@var{filename}} option, the dump is output on the given file
13190 instead of the pass numbered dump files. Note that the pass number is
13191 assigned as passes are registered into the pass manager. Most passes
13192 are registered in the order that they will execute and for these passes
13193 the number corresponds to the pass execution order. However, passes
13194 registered by plugins, passes specific to compilation targets, or
13195 passes that are otherwise registered after all the other passes are
13196 numbered higher than a pass named "final", even if they are executed
13197 earlier. @var{dumpname} is generated from the name of the output
13198 file if explicitly specified and not an executable, otherwise it is
13199 the basename of the source file.
13200
13201 Some @option{-d@var{letters}} switches have different meaning when
13202 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
13203 for information about preprocessor-specific dump options.
13204
13205 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
13206 @option{-d} option @var{letters}. Here are the possible
13207 letters for use in @var{pass} and @var{letters}, and their meanings:
13208
13209 @table @gcctabopt
13210
13211 @item -fdump-rtl-alignments
13212 @opindex fdump-rtl-alignments
13213 Dump after branch alignments have been computed.
13214
13215 @item -fdump-rtl-asmcons
13216 @opindex fdump-rtl-asmcons
13217 Dump after fixing rtl statements that have unsatisfied in/out constraints.
13218
13219 @item -fdump-rtl-auto_inc_dec
13220 @opindex fdump-rtl-auto_inc_dec
13221 Dump after auto-inc-dec discovery. This pass is only run on
13222 architectures that have auto inc or auto dec instructions.
13223
13224 @item -fdump-rtl-barriers
13225 @opindex fdump-rtl-barriers
13226 Dump after cleaning up the barrier instructions.
13227
13228 @item -fdump-rtl-bbpart
13229 @opindex fdump-rtl-bbpart
13230 Dump after partitioning hot and cold basic blocks.
13231
13232 @item -fdump-rtl-bbro
13233 @opindex fdump-rtl-bbro
13234 Dump after block reordering.
13235
13236 @item -fdump-rtl-btl1
13237 @itemx -fdump-rtl-btl2
13238 @opindex fdump-rtl-btl2
13239 @opindex fdump-rtl-btl2
13240 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
13241 after the two branch
13242 target load optimization passes.
13243
13244 @item -fdump-rtl-bypass
13245 @opindex fdump-rtl-bypass
13246 Dump after jump bypassing and control flow optimizations.
13247
13248 @item -fdump-rtl-combine
13249 @opindex fdump-rtl-combine
13250 Dump after the RTL instruction combination pass.
13251
13252 @item -fdump-rtl-compgotos
13253 @opindex fdump-rtl-compgotos
13254 Dump after duplicating the computed gotos.
13255
13256 @item -fdump-rtl-ce1
13257 @itemx -fdump-rtl-ce2
13258 @itemx -fdump-rtl-ce3
13259 @opindex fdump-rtl-ce1
13260 @opindex fdump-rtl-ce2
13261 @opindex fdump-rtl-ce3
13262 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
13263 @option{-fdump-rtl-ce3} enable dumping after the three
13264 if conversion passes.
13265
13266 @item -fdump-rtl-cprop_hardreg
13267 @opindex fdump-rtl-cprop_hardreg
13268 Dump after hard register copy propagation.
13269
13270 @item -fdump-rtl-csa
13271 @opindex fdump-rtl-csa
13272 Dump after combining stack adjustments.
13273
13274 @item -fdump-rtl-cse1
13275 @itemx -fdump-rtl-cse2
13276 @opindex fdump-rtl-cse1
13277 @opindex fdump-rtl-cse2
13278 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
13279 the two common subexpression elimination passes.
13280
13281 @item -fdump-rtl-dce
13282 @opindex fdump-rtl-dce
13283 Dump after the standalone dead code elimination passes.
13284
13285 @item -fdump-rtl-dbr
13286 @opindex fdump-rtl-dbr
13287 Dump after delayed branch scheduling.
13288
13289 @item -fdump-rtl-dce1
13290 @itemx -fdump-rtl-dce2
13291 @opindex fdump-rtl-dce1
13292 @opindex fdump-rtl-dce2
13293 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
13294 the two dead store elimination passes.
13295
13296 @item -fdump-rtl-eh
13297 @opindex fdump-rtl-eh
13298 Dump after finalization of EH handling code.
13299
13300 @item -fdump-rtl-eh_ranges
13301 @opindex fdump-rtl-eh_ranges
13302 Dump after conversion of EH handling range regions.
13303
13304 @item -fdump-rtl-expand
13305 @opindex fdump-rtl-expand
13306 Dump after RTL generation.
13307
13308 @item -fdump-rtl-fwprop1
13309 @itemx -fdump-rtl-fwprop2
13310 @opindex fdump-rtl-fwprop1
13311 @opindex fdump-rtl-fwprop2
13312 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
13313 dumping after the two forward propagation passes.
13314
13315 @item -fdump-rtl-gcse1
13316 @itemx -fdump-rtl-gcse2
13317 @opindex fdump-rtl-gcse1
13318 @opindex fdump-rtl-gcse2
13319 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
13320 after global common subexpression elimination.
13321
13322 @item -fdump-rtl-init-regs
13323 @opindex fdump-rtl-init-regs
13324 Dump after the initialization of the registers.
13325
13326 @item -fdump-rtl-initvals
13327 @opindex fdump-rtl-initvals
13328 Dump after the computation of the initial value sets.
13329
13330 @item -fdump-rtl-into_cfglayout
13331 @opindex fdump-rtl-into_cfglayout
13332 Dump after converting to cfglayout mode.
13333
13334 @item -fdump-rtl-ira
13335 @opindex fdump-rtl-ira
13336 Dump after iterated register allocation.
13337
13338 @item -fdump-rtl-jump
13339 @opindex fdump-rtl-jump
13340 Dump after the second jump optimization.
13341
13342 @item -fdump-rtl-loop2
13343 @opindex fdump-rtl-loop2
13344 @option{-fdump-rtl-loop2} enables dumping after the rtl
13345 loop optimization passes.
13346
13347 @item -fdump-rtl-mach
13348 @opindex fdump-rtl-mach
13349 Dump after performing the machine dependent reorganization pass, if that
13350 pass exists.
13351
13352 @item -fdump-rtl-mode_sw
13353 @opindex fdump-rtl-mode_sw
13354 Dump after removing redundant mode switches.
13355
13356 @item -fdump-rtl-rnreg
13357 @opindex fdump-rtl-rnreg
13358 Dump after register renumbering.
13359
13360 @item -fdump-rtl-outof_cfglayout
13361 @opindex fdump-rtl-outof_cfglayout
13362 Dump after converting from cfglayout mode.
13363
13364 @item -fdump-rtl-peephole2
13365 @opindex fdump-rtl-peephole2
13366 Dump after the peephole pass.
13367
13368 @item -fdump-rtl-postreload
13369 @opindex fdump-rtl-postreload
13370 Dump after post-reload optimizations.
13371
13372 @item -fdump-rtl-pro_and_epilogue
13373 @opindex fdump-rtl-pro_and_epilogue
13374 Dump after generating the function prologues and epilogues.
13375
13376 @item -fdump-rtl-sched1
13377 @itemx -fdump-rtl-sched2
13378 @opindex fdump-rtl-sched1
13379 @opindex fdump-rtl-sched2
13380 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
13381 after the basic block scheduling passes.
13382
13383 @item -fdump-rtl-ree
13384 @opindex fdump-rtl-ree
13385 Dump after sign/zero extension elimination.
13386
13387 @item -fdump-rtl-seqabstr
13388 @opindex fdump-rtl-seqabstr
13389 Dump after common sequence discovery.
13390
13391 @item -fdump-rtl-shorten
13392 @opindex fdump-rtl-shorten
13393 Dump after shortening branches.
13394
13395 @item -fdump-rtl-sibling
13396 @opindex fdump-rtl-sibling
13397 Dump after sibling call optimizations.
13398
13399 @item -fdump-rtl-split1
13400 @itemx -fdump-rtl-split2
13401 @itemx -fdump-rtl-split3
13402 @itemx -fdump-rtl-split4
13403 @itemx -fdump-rtl-split5
13404 @opindex fdump-rtl-split1
13405 @opindex fdump-rtl-split2
13406 @opindex fdump-rtl-split3
13407 @opindex fdump-rtl-split4
13408 @opindex fdump-rtl-split5
13409 These options enable dumping after five rounds of
13410 instruction splitting.
13411
13412 @item -fdump-rtl-sms
13413 @opindex fdump-rtl-sms
13414 Dump after modulo scheduling. This pass is only run on some
13415 architectures.
13416
13417 @item -fdump-rtl-stack
13418 @opindex fdump-rtl-stack
13419 Dump after conversion from GCC's ``flat register file'' registers to the
13420 x87's stack-like registers. This pass is only run on x86 variants.
13421
13422 @item -fdump-rtl-subreg1
13423 @itemx -fdump-rtl-subreg2
13424 @opindex fdump-rtl-subreg1
13425 @opindex fdump-rtl-subreg2
13426 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
13427 the two subreg expansion passes.
13428
13429 @item -fdump-rtl-unshare
13430 @opindex fdump-rtl-unshare
13431 Dump after all rtl has been unshared.
13432
13433 @item -fdump-rtl-vartrack
13434 @opindex fdump-rtl-vartrack
13435 Dump after variable tracking.
13436
13437 @item -fdump-rtl-vregs
13438 @opindex fdump-rtl-vregs
13439 Dump after converting virtual registers to hard registers.
13440
13441 @item -fdump-rtl-web
13442 @opindex fdump-rtl-web
13443 Dump after live range splitting.
13444
13445 @item -fdump-rtl-regclass
13446 @itemx -fdump-rtl-subregs_of_mode_init
13447 @itemx -fdump-rtl-subregs_of_mode_finish
13448 @itemx -fdump-rtl-dfinit
13449 @itemx -fdump-rtl-dfinish
13450 @opindex fdump-rtl-regclass
13451 @opindex fdump-rtl-subregs_of_mode_init
13452 @opindex fdump-rtl-subregs_of_mode_finish
13453 @opindex fdump-rtl-dfinit
13454 @opindex fdump-rtl-dfinish
13455 These dumps are defined but always produce empty files.
13456
13457 @item -da
13458 @itemx -fdump-rtl-all
13459 @opindex da
13460 @opindex fdump-rtl-all
13461 Produce all the dumps listed above.
13462
13463 @item -dA
13464 @opindex dA
13465 Annotate the assembler output with miscellaneous debugging information.
13466
13467 @item -dD
13468 @opindex dD
13469 Dump all macro definitions, at the end of preprocessing, in addition to
13470 normal output.
13471
13472 @item -dH
13473 @opindex dH
13474 Produce a core dump whenever an error occurs.
13475
13476 @item -dp
13477 @opindex dp
13478 Annotate the assembler output with a comment indicating which
13479 pattern and alternative is used. The length and cost of each instruction are
13480 also printed.
13481
13482 @item -dP
13483 @opindex dP
13484 Dump the RTL in the assembler output as a comment before each instruction.
13485 Also turns on @option{-dp} annotation.
13486
13487 @item -dx
13488 @opindex dx
13489 Just generate RTL for a function instead of compiling it. Usually used
13490 with @option{-fdump-rtl-expand}.
13491 @end table
13492
13493 @item -fdump-noaddr
13494 @opindex fdump-noaddr
13495 When doing debugging dumps, suppress address output. This makes it more
13496 feasible to use diff on debugging dumps for compiler invocations with
13497 different compiler binaries and/or different
13498 text / bss / data / heap / stack / dso start locations.
13499
13500 @item -freport-bug
13501 @opindex freport-bug
13502 Collect and dump debug information into a temporary file if an
13503 internal compiler error (ICE) occurs.
13504
13505 @item -fdump-unnumbered
13506 @opindex fdump-unnumbered
13507 When doing debugging dumps, suppress instruction numbers and address output.
13508 This makes it more feasible to use diff on debugging dumps for compiler
13509 invocations with different options, in particular with and without
13510 @option{-g}.
13511
13512 @item -fdump-unnumbered-links
13513 @opindex fdump-unnumbered-links
13514 When doing debugging dumps (see @option{-d} option above), suppress
13515 instruction numbers for the links to the previous and next instructions
13516 in a sequence.
13517
13518 @item -fdump-ipa-@var{switch}
13519 @opindex fdump-ipa
13520 Control the dumping at various stages of inter-procedural analysis
13521 language tree to a file. The file name is generated by appending a
13522 switch specific suffix to the source file name, and the file is created
13523 in the same directory as the output file. The following dumps are
13524 possible:
13525
13526 @table @samp
13527 @item all
13528 Enables all inter-procedural analysis dumps.
13529
13530 @item cgraph
13531 Dumps information about call-graph optimization, unused function removal,
13532 and inlining decisions.
13533
13534 @item inline
13535 Dump after function inlining.
13536
13537 @end table
13538
13539 @item -fdump-lang-all
13540 @itemx -fdump-lang-@var{switch}
13541 @itemx -fdump-lang-@var{switch}-@var{options}
13542 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
13543 @opindex fdump-lang-all
13544 @opindex fdump-lang
13545 Control the dumping of language-specific information. The @var{options}
13546 and @var{filename} portions behave as described in the
13547 @option{-fdump-tree} option. The following @var{switch} values are
13548 accepted:
13549
13550 @table @samp
13551 @item all
13552
13553 Enable all language-specific dumps.
13554
13555 @item class
13556 Dump class hierarchy information. Virtual table information is emitted
13557 unless '@option{slim}' is specified. This option is applicable to C++ only.
13558
13559 @item raw
13560 Dump the raw internal tree data. This option is applicable to C++ only.
13561
13562 @end table
13563
13564 @item -fdump-passes
13565 @opindex fdump-passes
13566 Print on @file{stderr} the list of optimization passes that are turned
13567 on and off by the current command-line options.
13568
13569 @item -fdump-statistics-@var{option}
13570 @opindex fdump-statistics
13571 Enable and control dumping of pass statistics in a separate file. The
13572 file name is generated by appending a suffix ending in
13573 @samp{.statistics} to the source file name, and the file is created in
13574 the same directory as the output file. If the @samp{-@var{option}}
13575 form is used, @samp{-stats} causes counters to be summed over the
13576 whole compilation unit while @samp{-details} dumps every event as
13577 the passes generate them. The default with no option is to sum
13578 counters for each function compiled.
13579
13580 @item -fdump-tree-all
13581 @itemx -fdump-tree-@var{switch}
13582 @itemx -fdump-tree-@var{switch}-@var{options}
13583 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
13584 @opindex fdump-tree-all
13585 @opindex fdump-tree
13586 Control the dumping at various stages of processing the intermediate
13587 language tree to a file. The file name is generated by appending a
13588 switch-specific suffix to the source file name, and the file is
13589 created in the same directory as the output file. In case of
13590 @option{=@var{filename}} option, the dump is output on the given file
13591 instead of the auto named dump files. If the @samp{-@var{options}}
13592 form is used, @var{options} is a list of @samp{-} separated options
13593 which control the details of the dump. Not all options are applicable
13594 to all dumps; those that are not meaningful are ignored. The
13595 following options are available
13596
13597 @table @samp
13598 @item address
13599 Print the address of each node. Usually this is not meaningful as it
13600 changes according to the environment and source file. Its primary use
13601 is for tying up a dump file with a debug environment.
13602 @item asmname
13603 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
13604 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
13605 use working backward from mangled names in the assembly file.
13606 @item slim
13607 When dumping front-end intermediate representations, inhibit dumping
13608 of members of a scope or body of a function merely because that scope
13609 has been reached. Only dump such items when they are directly reachable
13610 by some other path.
13611
13612 When dumping pretty-printed trees, this option inhibits dumping the
13613 bodies of control structures.
13614
13615 When dumping RTL, print the RTL in slim (condensed) form instead of
13616 the default LISP-like representation.
13617 @item raw
13618 Print a raw representation of the tree. By default, trees are
13619 pretty-printed into a C-like representation.
13620 @item details
13621 Enable more detailed dumps (not honored by every dump option). Also
13622 include information from the optimization passes.
13623 @item stats
13624 Enable dumping various statistics about the pass (not honored by every dump
13625 option).
13626 @item blocks
13627 Enable showing basic block boundaries (disabled in raw dumps).
13628 @item graph
13629 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
13630 dump a representation of the control flow graph suitable for viewing with
13631 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
13632 the file is pretty-printed as a subgraph, so that GraphViz can render them
13633 all in a single plot.
13634
13635 This option currently only works for RTL dumps, and the RTL is always
13636 dumped in slim form.
13637 @item vops
13638 Enable showing virtual operands for every statement.
13639 @item lineno
13640 Enable showing line numbers for statements.
13641 @item uid
13642 Enable showing the unique ID (@code{DECL_UID}) for each variable.
13643 @item verbose
13644 Enable showing the tree dump for each statement.
13645 @item eh
13646 Enable showing the EH region number holding each statement.
13647 @item scev
13648 Enable showing scalar evolution analysis details.
13649 @item optimized
13650 Enable showing optimization information (only available in certain
13651 passes).
13652 @item missed
13653 Enable showing missed optimization information (only available in certain
13654 passes).
13655 @item note
13656 Enable other detailed optimization information (only available in
13657 certain passes).
13658 @item =@var{filename}
13659 Instead of an auto named dump file, output into the given file
13660 name. The file names @file{stdout} and @file{stderr} are treated
13661 specially and are considered already open standard streams. For
13662 example,
13663
13664 @smallexample
13665 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
13666 -fdump-tree-pre=/dev/stderr file.c
13667 @end smallexample
13668
13669 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
13670 output on to @file{stderr}. If two conflicting dump filenames are
13671 given for the same pass, then the latter option overrides the earlier
13672 one.
13673
13674 @item all
13675 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
13676 and @option{lineno}.
13677
13678 @item optall
13679 Turn on all optimization options, i.e., @option{optimized},
13680 @option{missed}, and @option{note}.
13681 @end table
13682
13683 To determine what tree dumps are available or find the dump for a pass
13684 of interest follow the steps below.
13685
13686 @enumerate
13687 @item
13688 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
13689 look for a code that corresponds to the pass you are interested in.
13690 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
13691 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
13692 The number at the end distinguishes distinct invocations of the same pass.
13693 @item
13694 To enable the creation of the dump file, append the pass code to
13695 the @option{-fdump-} option prefix and invoke GCC with it. For example,
13696 to enable the dump from the Early Value Range Propagation pass, invoke
13697 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
13698 specify the name of the dump file. If you don't specify one, GCC
13699 creates as described below.
13700 @item
13701 Find the pass dump in a file whose name is composed of three components
13702 separated by a period: the name of the source file GCC was invoked to
13703 compile, a numeric suffix indicating the pass number followed by the
13704 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
13705 and finally the pass code. For example, the Early VRP pass dump might
13706 be in a file named @file{myfile.c.038t.evrp} in the current working
13707 directory. Note that the numeric codes are not stable and may change
13708 from one version of GCC to another.
13709 @end enumerate
13710
13711 @item -fopt-info
13712 @itemx -fopt-info-@var{options}
13713 @itemx -fopt-info-@var{options}=@var{filename}
13714 @opindex fopt-info
13715 Controls optimization dumps from various optimization passes. If the
13716 @samp{-@var{options}} form is used, @var{options} is a list of
13717 @samp{-} separated option keywords to select the dump details and
13718 optimizations.
13719
13720 The @var{options} can be divided into two groups: options describing the
13721 verbosity of the dump, and options describing which optimizations
13722 should be included. The options from both the groups can be freely
13723 mixed as they are non-overlapping. However, in case of any conflicts,
13724 the later options override the earlier options on the command
13725 line.
13726
13727 The following options control the dump verbosity:
13728
13729 @table @samp
13730 @item optimized
13731 Print information when an optimization is successfully applied. It is
13732 up to a pass to decide which information is relevant. For example, the
13733 vectorizer passes print the source location of loops which are
13734 successfully vectorized.
13735 @item missed
13736 Print information about missed optimizations. Individual passes
13737 control which information to include in the output.
13738 @item note
13739 Print verbose information about optimizations, such as certain
13740 transformations, more detailed messages about decisions etc.
13741 @item all
13742 Print detailed optimization information. This includes
13743 @samp{optimized}, @samp{missed}, and @samp{note}.
13744 @end table
13745
13746 One or more of the following option keywords can be used to describe a
13747 group of optimizations:
13748
13749 @table @samp
13750 @item ipa
13751 Enable dumps from all interprocedural optimizations.
13752 @item loop
13753 Enable dumps from all loop optimizations.
13754 @item inline
13755 Enable dumps from all inlining optimizations.
13756 @item omp
13757 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
13758 @item vec
13759 Enable dumps from all vectorization optimizations.
13760 @item optall
13761 Enable dumps from all optimizations. This is a superset of
13762 the optimization groups listed above.
13763 @end table
13764
13765 If @var{options} is
13766 omitted, it defaults to @samp{optimized-optall}, which means to dump all
13767 info about successful optimizations from all the passes.
13768
13769 If the @var{filename} is provided, then the dumps from all the
13770 applicable optimizations are concatenated into the @var{filename}.
13771 Otherwise the dump is output onto @file{stderr}. Though multiple
13772 @option{-fopt-info} options are accepted, only one of them can include
13773 a @var{filename}. If other filenames are provided then all but the
13774 first such option are ignored.
13775
13776 Note that the output @var{filename} is overwritten
13777 in case of multiple translation units. If a combined output from
13778 multiple translation units is desired, @file{stderr} should be used
13779 instead.
13780
13781 In the following example, the optimization info is output to
13782 @file{stderr}:
13783
13784 @smallexample
13785 gcc -O3 -fopt-info
13786 @end smallexample
13787
13788 This example:
13789 @smallexample
13790 gcc -O3 -fopt-info-missed=missed.all
13791 @end smallexample
13792
13793 @noindent
13794 outputs missed optimization report from all the passes into
13795 @file{missed.all}, and this one:
13796
13797 @smallexample
13798 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
13799 @end smallexample
13800
13801 @noindent
13802 prints information about missed optimization opportunities from
13803 vectorization passes on @file{stderr}.
13804 Note that @option{-fopt-info-vec-missed} is equivalent to
13805 @option{-fopt-info-missed-vec}. The order of the optimization group
13806 names and message types listed after @option{-fopt-info} does not matter.
13807
13808 As another example,
13809 @smallexample
13810 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
13811 @end smallexample
13812
13813 @noindent
13814 outputs information about missed optimizations as well as
13815 optimized locations from all the inlining passes into
13816 @file{inline.txt}.
13817
13818 Finally, consider:
13819
13820 @smallexample
13821 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
13822 @end smallexample
13823
13824 @noindent
13825 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
13826 in conflict since only one output file is allowed. In this case, only
13827 the first option takes effect and the subsequent options are
13828 ignored. Thus only @file{vec.miss} is produced which contains
13829 dumps from the vectorizer about missed opportunities.
13830
13831 @item -fsched-verbose=@var{n}
13832 @opindex fsched-verbose
13833 On targets that use instruction scheduling, this option controls the
13834 amount of debugging output the scheduler prints to the dump files.
13835
13836 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
13837 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
13838 For @var{n} greater than one, it also output basic block probabilities,
13839 detailed ready list information and unit/insn info. For @var{n} greater
13840 than two, it includes RTL at abort point, control-flow and regions info.
13841 And for @var{n} over four, @option{-fsched-verbose} also includes
13842 dependence info.
13843
13844
13845
13846 @item -fenable-@var{kind}-@var{pass}
13847 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
13848 @opindex fdisable-
13849 @opindex fenable-
13850
13851 This is a set of options that are used to explicitly disable/enable
13852 optimization passes. These options are intended for use for debugging GCC.
13853 Compiler users should use regular options for enabling/disabling
13854 passes instead.
13855
13856 @table @gcctabopt
13857
13858 @item -fdisable-ipa-@var{pass}
13859 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13860 statically invoked in the compiler multiple times, the pass name should be
13861 appended with a sequential number starting from 1.
13862
13863 @item -fdisable-rtl-@var{pass}
13864 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
13865 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
13866 statically invoked in the compiler multiple times, the pass name should be
13867 appended with a sequential number starting from 1. @var{range-list} is a
13868 comma-separated list of function ranges or assembler names. Each range is a number
13869 pair separated by a colon. The range is inclusive in both ends. If the range
13870 is trivial, the number pair can be simplified as a single number. If the
13871 function's call graph node's @var{uid} falls within one of the specified ranges,
13872 the @var{pass} is disabled for that function. The @var{uid} is shown in the
13873 function header of a dump file, and the pass names can be dumped by using
13874 option @option{-fdump-passes}.
13875
13876 @item -fdisable-tree-@var{pass}
13877 @itemx -fdisable-tree-@var{pass}=@var{range-list}
13878 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
13879 option arguments.
13880
13881 @item -fenable-ipa-@var{pass}
13882 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13883 statically invoked in the compiler multiple times, the pass name should be
13884 appended with a sequential number starting from 1.
13885
13886 @item -fenable-rtl-@var{pass}
13887 @itemx -fenable-rtl-@var{pass}=@var{range-list}
13888 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
13889 description and examples.
13890
13891 @item -fenable-tree-@var{pass}
13892 @itemx -fenable-tree-@var{pass}=@var{range-list}
13893 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
13894 of option arguments.
13895
13896 @end table
13897
13898 Here are some examples showing uses of these options.
13899
13900 @smallexample
13901
13902 # disable ccp1 for all functions
13903 -fdisable-tree-ccp1
13904 # disable complete unroll for function whose cgraph node uid is 1
13905 -fenable-tree-cunroll=1
13906 # disable gcse2 for functions at the following ranges [1,1],
13907 # [300,400], and [400,1000]
13908 # disable gcse2 for functions foo and foo2
13909 -fdisable-rtl-gcse2=foo,foo2
13910 # disable early inlining
13911 -fdisable-tree-einline
13912 # disable ipa inlining
13913 -fdisable-ipa-inline
13914 # enable tree full unroll
13915 -fenable-tree-unroll
13916
13917 @end smallexample
13918
13919 @item -fchecking
13920 @itemx -fchecking=@var{n}
13921 @opindex fchecking
13922 @opindex fno-checking
13923 Enable internal consistency checking. The default depends on
13924 the compiler configuration. @option{-fchecking=2} enables further
13925 internal consistency checking that might affect code generation.
13926
13927 @item -frandom-seed=@var{string}
13928 @opindex frandom-seed
13929 This option provides a seed that GCC uses in place of
13930 random numbers in generating certain symbol names
13931 that have to be different in every compiled file. It is also used to
13932 place unique stamps in coverage data files and the object files that
13933 produce them. You can use the @option{-frandom-seed} option to produce
13934 reproducibly identical object files.
13935
13936 The @var{string} can either be a number (decimal, octal or hex) or an
13937 arbitrary string (in which case it's converted to a number by
13938 computing CRC32).
13939
13940 The @var{string} should be different for every file you compile.
13941
13942 @item -save-temps
13943 @itemx -save-temps=cwd
13944 @opindex save-temps
13945 Store the usual ``temporary'' intermediate files permanently; place them
13946 in the current directory and name them based on the source file. Thus,
13947 compiling @file{foo.c} with @option{-c -save-temps} produces files
13948 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
13949 preprocessed @file{foo.i} output file even though the compiler now
13950 normally uses an integrated preprocessor.
13951
13952 When used in combination with the @option{-x} command-line option,
13953 @option{-save-temps} is sensible enough to avoid over writing an
13954 input source file with the same extension as an intermediate file.
13955 The corresponding intermediate file may be obtained by renaming the
13956 source file before using @option{-save-temps}.
13957
13958 If you invoke GCC in parallel, compiling several different source
13959 files that share a common base name in different subdirectories or the
13960 same source file compiled for multiple output destinations, it is
13961 likely that the different parallel compilers will interfere with each
13962 other, and overwrite the temporary files. For instance:
13963
13964 @smallexample
13965 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
13966 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
13967 @end smallexample
13968
13969 may result in @file{foo.i} and @file{foo.o} being written to
13970 simultaneously by both compilers.
13971
13972 @item -save-temps=obj
13973 @opindex save-temps=obj
13974 Store the usual ``temporary'' intermediate files permanently. If the
13975 @option{-o} option is used, the temporary files are based on the
13976 object file. If the @option{-o} option is not used, the
13977 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
13978
13979 For example:
13980
13981 @smallexample
13982 gcc -save-temps=obj -c foo.c
13983 gcc -save-temps=obj -c bar.c -o dir/xbar.o
13984 gcc -save-temps=obj foobar.c -o dir2/yfoobar
13985 @end smallexample
13986
13987 @noindent
13988 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
13989 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
13990 @file{dir2/yfoobar.o}.
13991
13992 @item -time@r{[}=@var{file}@r{]}
13993 @opindex time
13994 Report the CPU time taken by each subprocess in the compilation
13995 sequence. For C source files, this is the compiler proper and assembler
13996 (plus the linker if linking is done).
13997
13998 Without the specification of an output file, the output looks like this:
13999
14000 @smallexample
14001 # cc1 0.12 0.01
14002 # as 0.00 0.01
14003 @end smallexample
14004
14005 The first number on each line is the ``user time'', that is time spent
14006 executing the program itself. The second number is ``system time'',
14007 time spent executing operating system routines on behalf of the program.
14008 Both numbers are in seconds.
14009
14010 With the specification of an output file, the output is appended to the
14011 named file, and it looks like this:
14012
14013 @smallexample
14014 0.12 0.01 cc1 @var{options}
14015 0.00 0.01 as @var{options}
14016 @end smallexample
14017
14018 The ``user time'' and the ``system time'' are moved before the program
14019 name, and the options passed to the program are displayed, so that one
14020 can later tell what file was being compiled, and with which options.
14021
14022 @item -fdump-final-insns@r{[}=@var{file}@r{]}
14023 @opindex fdump-final-insns
14024 Dump the final internal representation (RTL) to @var{file}. If the
14025 optional argument is omitted (or if @var{file} is @code{.}), the name
14026 of the dump file is determined by appending @code{.gkd} to the
14027 compilation output file name.
14028
14029 @item -fcompare-debug@r{[}=@var{opts}@r{]}
14030 @opindex fcompare-debug
14031 @opindex fno-compare-debug
14032 If no error occurs during compilation, run the compiler a second time,
14033 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
14034 passed to the second compilation. Dump the final internal
14035 representation in both compilations, and print an error if they differ.
14036
14037 If the equal sign is omitted, the default @option{-gtoggle} is used.
14038
14039 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
14040 and nonzero, implicitly enables @option{-fcompare-debug}. If
14041 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
14042 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
14043 is used.
14044
14045 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
14046 is equivalent to @option{-fno-compare-debug}, which disables the dumping
14047 of the final representation and the second compilation, preventing even
14048 @env{GCC_COMPARE_DEBUG} from taking effect.
14049
14050 To verify full coverage during @option{-fcompare-debug} testing, set
14051 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
14052 which GCC rejects as an invalid option in any actual compilation
14053 (rather than preprocessing, assembly or linking). To get just a
14054 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
14055 not overridden} will do.
14056
14057 @item -fcompare-debug-second
14058 @opindex fcompare-debug-second
14059 This option is implicitly passed to the compiler for the second
14060 compilation requested by @option{-fcompare-debug}, along with options to
14061 silence warnings, and omitting other options that would cause
14062 side-effect compiler outputs to files or to the standard output. Dump
14063 files and preserved temporary files are renamed so as to contain the
14064 @code{.gk} additional extension during the second compilation, to avoid
14065 overwriting those generated by the first.
14066
14067 When this option is passed to the compiler driver, it causes the
14068 @emph{first} compilation to be skipped, which makes it useful for little
14069 other than debugging the compiler proper.
14070
14071 @item -gtoggle
14072 @opindex gtoggle
14073 Turn off generation of debug info, if leaving out this option
14074 generates it, or turn it on at level 2 otherwise. The position of this
14075 argument in the command line does not matter; it takes effect after all
14076 other options are processed, and it does so only once, no matter how
14077 many times it is given. This is mainly intended to be used with
14078 @option{-fcompare-debug}.
14079
14080 @item -fvar-tracking-assignments-toggle
14081 @opindex fvar-tracking-assignments-toggle
14082 @opindex fno-var-tracking-assignments-toggle
14083 Toggle @option{-fvar-tracking-assignments}, in the same way that
14084 @option{-gtoggle} toggles @option{-g}.
14085
14086 @item -Q
14087 @opindex Q
14088 Makes the compiler print out each function name as it is compiled, and
14089 print some statistics about each pass when it finishes.
14090
14091 @item -ftime-report
14092 @opindex ftime-report
14093 Makes the compiler print some statistics about the time consumed by each
14094 pass when it finishes.
14095
14096 @item -ftime-report-details
14097 @opindex ftime-report-details
14098 Record the time consumed by infrastructure parts separately for each pass.
14099
14100 @item -fira-verbose=@var{n}
14101 @opindex fira-verbose
14102 Control the verbosity of the dump file for the integrated register allocator.
14103 The default value is 5. If the value @var{n} is greater or equal to 10,
14104 the dump output is sent to stderr using the same format as @var{n} minus 10.
14105
14106 @item -flto-report
14107 @opindex flto-report
14108 Prints a report with internal details on the workings of the link-time
14109 optimizer. The contents of this report vary from version to version.
14110 It is meant to be useful to GCC developers when processing object
14111 files in LTO mode (via @option{-flto}).
14112
14113 Disabled by default.
14114
14115 @item -flto-report-wpa
14116 @opindex flto-report-wpa
14117 Like @option{-flto-report}, but only print for the WPA phase of Link
14118 Time Optimization.
14119
14120 @item -fmem-report
14121 @opindex fmem-report
14122 Makes the compiler print some statistics about permanent memory
14123 allocation when it finishes.
14124
14125 @item -fmem-report-wpa
14126 @opindex fmem-report-wpa
14127 Makes the compiler print some statistics about permanent memory
14128 allocation for the WPA phase only.
14129
14130 @item -fpre-ipa-mem-report
14131 @opindex fpre-ipa-mem-report
14132 @item -fpost-ipa-mem-report
14133 @opindex fpost-ipa-mem-report
14134 Makes the compiler print some statistics about permanent memory
14135 allocation before or after interprocedural optimization.
14136
14137 @item -fprofile-report
14138 @opindex fprofile-report
14139 Makes the compiler print some statistics about consistency of the
14140 (estimated) profile and effect of individual passes.
14141
14142 @item -fstack-usage
14143 @opindex fstack-usage
14144 Makes the compiler output stack usage information for the program, on a
14145 per-function basis. The filename for the dump is made by appending
14146 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
14147 the output file, if explicitly specified and it is not an executable,
14148 otherwise it is the basename of the source file. An entry is made up
14149 of three fields:
14150
14151 @itemize
14152 @item
14153 The name of the function.
14154 @item
14155 A number of bytes.
14156 @item
14157 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
14158 @end itemize
14159
14160 The qualifier @code{static} means that the function manipulates the stack
14161 statically: a fixed number of bytes are allocated for the frame on function
14162 entry and released on function exit; no stack adjustments are otherwise made
14163 in the function. The second field is this fixed number of bytes.
14164
14165 The qualifier @code{dynamic} means that the function manipulates the stack
14166 dynamically: in addition to the static allocation described above, stack
14167 adjustments are made in the body of the function, for example to push/pop
14168 arguments around function calls. If the qualifier @code{bounded} is also
14169 present, the amount of these adjustments is bounded at compile time and
14170 the second field is an upper bound of the total amount of stack used by
14171 the function. If it is not present, the amount of these adjustments is
14172 not bounded at compile time and the second field only represents the
14173 bounded part.
14174
14175 @item -fstats
14176 @opindex fstats
14177 Emit statistics about front-end processing at the end of the compilation.
14178 This option is supported only by the C++ front end, and
14179 the information is generally only useful to the G++ development team.
14180
14181 @item -fdbg-cnt-list
14182 @opindex fdbg-cnt-list
14183 Print the name and the counter upper bound for all debug counters.
14184
14185
14186 @item -fdbg-cnt=@var{counter-value-list}
14187 @opindex fdbg-cnt
14188 Set the internal debug counter upper bound. @var{counter-value-list}
14189 is a comma-separated list of @var{name}:@var{value} pairs
14190 which sets the upper bound of each debug counter @var{name} to @var{value}.
14191 All debug counters have the initial upper bound of @code{UINT_MAX};
14192 thus @code{dbg_cnt} returns true always unless the upper bound
14193 is set by this option.
14194 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
14195 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
14196
14197 @item -print-file-name=@var{library}
14198 @opindex print-file-name
14199 Print the full absolute name of the library file @var{library} that
14200 would be used when linking---and don't do anything else. With this
14201 option, GCC does not compile or link anything; it just prints the
14202 file name.
14203
14204 @item -print-multi-directory
14205 @opindex print-multi-directory
14206 Print the directory name corresponding to the multilib selected by any
14207 other switches present in the command line. This directory is supposed
14208 to exist in @env{GCC_EXEC_PREFIX}.
14209
14210 @item -print-multi-lib
14211 @opindex print-multi-lib
14212 Print the mapping from multilib directory names to compiler switches
14213 that enable them. The directory name is separated from the switches by
14214 @samp{;}, and each switch starts with an @samp{@@} instead of the
14215 @samp{-}, without spaces between multiple switches. This is supposed to
14216 ease shell processing.
14217
14218 @item -print-multi-os-directory
14219 @opindex print-multi-os-directory
14220 Print the path to OS libraries for the selected
14221 multilib, relative to some @file{lib} subdirectory. If OS libraries are
14222 present in the @file{lib} subdirectory and no multilibs are used, this is
14223 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
14224 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
14225 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
14226 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
14227
14228 @item -print-multiarch
14229 @opindex print-multiarch
14230 Print the path to OS libraries for the selected multiarch,
14231 relative to some @file{lib} subdirectory.
14232
14233 @item -print-prog-name=@var{program}
14234 @opindex print-prog-name
14235 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
14236
14237 @item -print-libgcc-file-name
14238 @opindex print-libgcc-file-name
14239 Same as @option{-print-file-name=libgcc.a}.
14240
14241 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
14242 but you do want to link with @file{libgcc.a}. You can do:
14243
14244 @smallexample
14245 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
14246 @end smallexample
14247
14248 @item -print-search-dirs
14249 @opindex print-search-dirs
14250 Print the name of the configured installation directory and a list of
14251 program and library directories @command{gcc} searches---and don't do anything else.
14252
14253 This is useful when @command{gcc} prints the error message
14254 @samp{installation problem, cannot exec cpp0: No such file or directory}.
14255 To resolve this you either need to put @file{cpp0} and the other compiler
14256 components where @command{gcc} expects to find them, or you can set the environment
14257 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
14258 Don't forget the trailing @samp{/}.
14259 @xref{Environment Variables}.
14260
14261 @item -print-sysroot
14262 @opindex print-sysroot
14263 Print the target sysroot directory that is used during
14264 compilation. This is the target sysroot specified either at configure
14265 time or using the @option{--sysroot} option, possibly with an extra
14266 suffix that depends on compilation options. If no target sysroot is
14267 specified, the option prints nothing.
14268
14269 @item -print-sysroot-headers-suffix
14270 @opindex print-sysroot-headers-suffix
14271 Print the suffix added to the target sysroot when searching for
14272 headers, or give an error if the compiler is not configured with such
14273 a suffix---and don't do anything else.
14274
14275 @item -dumpmachine
14276 @opindex dumpmachine
14277 Print the compiler's target machine (for example,
14278 @samp{i686-pc-linux-gnu})---and don't do anything else.
14279
14280 @item -dumpversion
14281 @opindex dumpversion
14282 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
14283 anything else. This is the compiler version used in filesystem paths,
14284 specs, can be depending on how the compiler has been configured just
14285 a single number (major version), two numbers separated by dot (major and
14286 minor version) or three numbers separated by dots (major, minor and patchlevel
14287 version).
14288
14289 @item -dumpfullversion
14290 @opindex dumpfullversion
14291 Print the full compiler version, always 3 numbers separated by dots,
14292 major, minor and patchlevel version.
14293
14294 @item -dumpspecs
14295 @opindex dumpspecs
14296 Print the compiler's built-in specs---and don't do anything else. (This
14297 is used when GCC itself is being built.) @xref{Spec Files}.
14298 @end table
14299
14300 @node Submodel Options
14301 @section Machine-Dependent Options
14302 @cindex submodel options
14303 @cindex specifying hardware config
14304 @cindex hardware models and configurations, specifying
14305 @cindex target-dependent options
14306 @cindex machine-dependent options
14307
14308 Each target machine supported by GCC can have its own options---for
14309 example, to allow you to compile for a particular processor variant or
14310 ABI, or to control optimizations specific to that machine. By
14311 convention, the names of machine-specific options start with
14312 @samp{-m}.
14313
14314 Some configurations of the compiler also support additional target-specific
14315 options, usually for compatibility with other compilers on the same
14316 platform.
14317
14318 @c This list is ordered alphanumerically by subsection name.
14319 @c It should be the same order and spelling as these options are listed
14320 @c in Machine Dependent Options
14321
14322 @menu
14323 * AArch64 Options::
14324 * Adapteva Epiphany Options::
14325 * ARC Options::
14326 * ARM Options::
14327 * AVR Options::
14328 * Blackfin Options::
14329 * C6X Options::
14330 * CRIS Options::
14331 * CR16 Options::
14332 * Darwin Options::
14333 * DEC Alpha Options::
14334 * FR30 Options::
14335 * FT32 Options::
14336 * FRV Options::
14337 * GNU/Linux Options::
14338 * H8/300 Options::
14339 * HPPA Options::
14340 * IA-64 Options::
14341 * LM32 Options::
14342 * M32C Options::
14343 * M32R/D Options::
14344 * M680x0 Options::
14345 * MCore Options::
14346 * MeP Options::
14347 * MicroBlaze Options::
14348 * MIPS Options::
14349 * MMIX Options::
14350 * MN10300 Options::
14351 * Moxie Options::
14352 * MSP430 Options::
14353 * NDS32 Options::
14354 * Nios II Options::
14355 * Nvidia PTX Options::
14356 * PDP-11 Options::
14357 * picoChip Options::
14358 * PowerPC Options::
14359 * RISC-V Options::
14360 * RL78 Options::
14361 * RS/6000 and PowerPC Options::
14362 * RX Options::
14363 * S/390 and zSeries Options::
14364 * Score Options::
14365 * SH Options::
14366 * Solaris 2 Options::
14367 * SPARC Options::
14368 * SPU Options::
14369 * System V Options::
14370 * TILE-Gx Options::
14371 * TILEPro Options::
14372 * V850 Options::
14373 * VAX Options::
14374 * Visium Options::
14375 * VMS Options::
14376 * VxWorks Options::
14377 * x86 Options::
14378 * x86 Windows Options::
14379 * Xstormy16 Options::
14380 * Xtensa Options::
14381 * zSeries Options::
14382 @end menu
14383
14384 @node AArch64 Options
14385 @subsection AArch64 Options
14386 @cindex AArch64 Options
14387
14388 These options are defined for AArch64 implementations:
14389
14390 @table @gcctabopt
14391
14392 @item -mabi=@var{name}
14393 @opindex mabi
14394 Generate code for the specified data model. Permissible values
14395 are @samp{ilp32} for SysV-like data model where int, long int and pointers
14396 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
14397 but long int and pointers are 64 bits.
14398
14399 The default depends on the specific target configuration. Note that
14400 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
14401 entire program with the same ABI, and link with a compatible set of libraries.
14402
14403 @item -mbig-endian
14404 @opindex mbig-endian
14405 Generate big-endian code. This is the default when GCC is configured for an
14406 @samp{aarch64_be-*-*} target.
14407
14408 @item -mgeneral-regs-only
14409 @opindex mgeneral-regs-only
14410 Generate code which uses only the general-purpose registers. This will prevent
14411 the compiler from using floating-point and Advanced SIMD registers but will not
14412 impose any restrictions on the assembler.
14413
14414 @item -mlittle-endian
14415 @opindex mlittle-endian
14416 Generate little-endian code. This is the default when GCC is configured for an
14417 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
14418
14419 @item -mcmodel=tiny
14420 @opindex mcmodel=tiny
14421 Generate code for the tiny code model. The program and its statically defined
14422 symbols must be within 1MB of each other. Programs can be statically or
14423 dynamically linked.
14424
14425 @item -mcmodel=small
14426 @opindex mcmodel=small
14427 Generate code for the small code model. The program and its statically defined
14428 symbols must be within 4GB of each other. Programs can be statically or
14429 dynamically linked. This is the default code model.
14430
14431 @item -mcmodel=large
14432 @opindex mcmodel=large
14433 Generate code for the large code model. This makes no assumptions about
14434 addresses and sizes of sections. Programs can be statically linked only.
14435
14436 @item -mstrict-align
14437 @opindex mstrict-align
14438 Avoid generating memory accesses that may not be aligned on a natural object
14439 boundary as described in the architecture specification.
14440
14441 @item -momit-leaf-frame-pointer
14442 @itemx -mno-omit-leaf-frame-pointer
14443 @opindex momit-leaf-frame-pointer
14444 @opindex mno-omit-leaf-frame-pointer
14445 Omit or keep the frame pointer in leaf functions. The former behavior is the
14446 default.
14447
14448 @item -mtls-dialect=desc
14449 @opindex mtls-dialect=desc
14450 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
14451 of TLS variables. This is the default.
14452
14453 @item -mtls-dialect=traditional
14454 @opindex mtls-dialect=traditional
14455 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
14456 of TLS variables.
14457
14458 @item -mtls-size=@var{size}
14459 @opindex mtls-size
14460 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
14461 This option requires binutils 2.26 or newer.
14462
14463 @item -mfix-cortex-a53-835769
14464 @itemx -mno-fix-cortex-a53-835769
14465 @opindex mfix-cortex-a53-835769
14466 @opindex mno-fix-cortex-a53-835769
14467 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
14468 This involves inserting a NOP instruction between memory instructions and
14469 64-bit integer multiply-accumulate instructions.
14470
14471 @item -mfix-cortex-a53-843419
14472 @itemx -mno-fix-cortex-a53-843419
14473 @opindex mfix-cortex-a53-843419
14474 @opindex mno-fix-cortex-a53-843419
14475 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
14476 This erratum workaround is made at link time and this will only pass the
14477 corresponding flag to the linker.
14478
14479 @item -mlow-precision-recip-sqrt
14480 @item -mno-low-precision-recip-sqrt
14481 @opindex mlow-precision-recip-sqrt
14482 @opindex mno-low-precision-recip-sqrt
14483 Enable or disable the reciprocal square root approximation.
14484 This option only has an effect if @option{-ffast-math} or
14485 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14486 precision of reciprocal square root results to about 16 bits for
14487 single precision and to 32 bits for double precision.
14488
14489 @item -mlow-precision-sqrt
14490 @item -mno-low-precision-sqrt
14491 @opindex -mlow-precision-sqrt
14492 @opindex -mno-low-precision-sqrt
14493 Enable or disable the square root approximation.
14494 This option only has an effect if @option{-ffast-math} or
14495 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14496 precision of square root results to about 16 bits for
14497 single precision and to 32 bits for double precision.
14498 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
14499
14500 @item -mlow-precision-div
14501 @item -mno-low-precision-div
14502 @opindex -mlow-precision-div
14503 @opindex -mno-low-precision-div
14504 Enable or disable the division approximation.
14505 This option only has an effect if @option{-ffast-math} or
14506 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14507 precision of division results to about 16 bits for
14508 single precision and to 32 bits for double precision.
14509
14510 @item -march=@var{name}
14511 @opindex march
14512 Specify the name of the target architecture and, optionally, one or
14513 more feature modifiers. This option has the form
14514 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
14515
14516 The permissible values for @var{arch} are @samp{armv8-a},
14517 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a} or @samp{armv8.4-a}
14518 or @var{native}.
14519
14520 The value @samp{armv8.4-a} implies @samp{armv8.3-a} and enables compiler
14521 support for the ARMv8.4-A architecture extensions.
14522
14523 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
14524 support for the ARMv8.3-A architecture extensions.
14525
14526 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
14527 support for the ARMv8.2-A architecture extensions.
14528
14529 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
14530 support for the ARMv8.1-A architecture extension. In particular, it
14531 enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
14532
14533 The value @samp{native} is available on native AArch64 GNU/Linux and
14534 causes the compiler to pick the architecture of the host system. This
14535 option has no effect if the compiler is unable to recognize the
14536 architecture of the host system,
14537
14538 The permissible values for @var{feature} are listed in the sub-section
14539 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14540 Feature Modifiers}. Where conflicting feature modifiers are
14541 specified, the right-most feature is used.
14542
14543 GCC uses @var{name} to determine what kind of instructions it can emit
14544 when generating assembly code. If @option{-march} is specified
14545 without either of @option{-mtune} or @option{-mcpu} also being
14546 specified, the code is tuned to perform well across a range of target
14547 processors implementing the target architecture.
14548
14549 @item -mtune=@var{name}
14550 @opindex mtune
14551 Specify the name of the target processor for which GCC should tune the
14552 performance of the code. Permissible values for this option are:
14553 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
14554 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
14555 @samp{exynos-m1}, @samp{falkor}, @samp{qdf24xx}, @samp{saphira},
14556 @samp{xgene1}, @samp{vulcan}, @samp{thunderx},
14557 @samp{thunderxt88}, @samp{thunderxt88p1}, @samp{thunderxt81},
14558 @samp{thunderxt83}, @samp{thunderx2t99}, @samp{cortex-a57.cortex-a53},
14559 @samp{cortex-a72.cortex-a53}, @samp{cortex-a73.cortex-a35},
14560 @samp{cortex-a73.cortex-a53}, @samp{cortex-a75.cortex-a55},
14561 @samp{native}.
14562
14563 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
14564 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
14565 @samp{cortex-a75.cortex-a55} specify that GCC should tune for a
14566 big.LITTLE system.
14567
14568 Additionally on native AArch64 GNU/Linux systems the value
14569 @samp{native} tunes performance to the host system. This option has no effect
14570 if the compiler is unable to recognize the processor of the host system.
14571
14572 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
14573 are specified, the code is tuned to perform well across a range
14574 of target processors.
14575
14576 This option cannot be suffixed by feature modifiers.
14577
14578 @item -mcpu=@var{name}
14579 @opindex mcpu
14580 Specify the name of the target processor, optionally suffixed by one
14581 or more feature modifiers. This option has the form
14582 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
14583 the permissible values for @var{cpu} are the same as those available
14584 for @option{-mtune}. The permissible values for @var{feature} are
14585 documented in the sub-section on
14586 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14587 Feature Modifiers}. Where conflicting feature modifiers are
14588 specified, the right-most feature is used.
14589
14590 GCC uses @var{name} to determine what kind of instructions it can emit when
14591 generating assembly code (as if by @option{-march}) and to determine
14592 the target processor for which to tune for performance (as if
14593 by @option{-mtune}). Where this option is used in conjunction
14594 with @option{-march} or @option{-mtune}, those options take precedence
14595 over the appropriate part of this option.
14596
14597 @item -moverride=@var{string}
14598 @opindex moverride
14599 Override tuning decisions made by the back-end in response to a
14600 @option{-mtune=} switch. The syntax, semantics, and accepted values
14601 for @var{string} in this option are not guaranteed to be consistent
14602 across releases.
14603
14604 This option is only intended to be useful when developing GCC.
14605
14606 @item -mverbose-cost-dump
14607 @opindex mverbose-cost-dump
14608 Enable verbose cost model dumping in the debug dump files. This option is
14609 provided for use in debugging the compiler.
14610
14611 @item -mpc-relative-literal-loads
14612 @itemx -mno-pc-relative-literal-loads
14613 @opindex mpc-relative-literal-loads
14614 @opindex mno-pc-relative-literal-loads
14615 Enable or disable PC-relative literal loads. With this option literal pools are
14616 accessed using a single instruction and emitted after each function. This
14617 limits the maximum size of functions to 1MB. This is enabled by default for
14618 @option{-mcmodel=tiny}.
14619
14620 @item -msign-return-address=@var{scope}
14621 @opindex msign-return-address
14622 Select the function scope on which return address signing will be applied.
14623 Permissible values are @samp{none}, which disables return address signing,
14624 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
14625 functions, and @samp{all}, which enables pointer signing for all functions. The
14626 default value is @samp{none}.
14627
14628 @item -msve-vector-bits=@var{bits}
14629 @opindex msve-vector-bits
14630 Specify the number of bits in an SVE vector register. This option only has
14631 an effect when SVE is enabled.
14632
14633 GCC supports two forms of SVE code generation: ``vector-length
14634 agnostic'' output that works with any size of vector register and
14635 ``vector-length specific'' output that only works when the vector
14636 registers are a particular size. Replacing @var{bits} with
14637 @samp{scalable} selects vector-length agnostic output while
14638 replacing it with a number selects vector-length specific output.
14639 The possible lengths in the latter case are: 128, 256, 512, 1024
14640 and 2048. @samp{scalable} is the default.
14641
14642 At present, @samp{-msve-vector-bits=128} produces the same output
14643 as @samp{-msve-vector-bits=scalable}.
14644
14645 @end table
14646
14647 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
14648 @anchor{aarch64-feature-modifiers}
14649 @cindex @option{-march} feature modifiers
14650 @cindex @option{-mcpu} feature modifiers
14651 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
14652 the following and their inverses @option{no@var{feature}}:
14653
14654 @table @samp
14655 @item crc
14656 Enable CRC extension. This is on by default for
14657 @option{-march=armv8.1-a}.
14658 @item crypto
14659 Enable Crypto extension. This also enables Advanced SIMD and floating-point
14660 instructions.
14661 @item fp
14662 Enable floating-point instructions. This is on by default for all possible
14663 values for options @option{-march} and @option{-mcpu}.
14664 @item simd
14665 Enable Advanced SIMD instructions. This also enables floating-point
14666 instructions. This is on by default for all possible values for options
14667 @option{-march} and @option{-mcpu}.
14668 @item sve
14669 Enable Scalable Vector Extension instructions. This also enables Advanced
14670 SIMD and floating-point instructions.
14671 @item lse
14672 Enable Large System Extension instructions. This is on by default for
14673 @option{-march=armv8.1-a}.
14674 @item rdma
14675 Enable Round Double Multiply Accumulate instructions. This is on by default
14676 for @option{-march=armv8.1-a}.
14677 @item fp16
14678 Enable FP16 extension. This also enables floating-point instructions.
14679 @item fp16fml
14680 Enable FP16 fmla extension. This also enables FP16 extensions and
14681 floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
14682
14683 @item rcpc
14684 Enable the RcPc extension. This does not change code generation from GCC,
14685 but is passed on to the assembler, enabling inline asm statements to use
14686 instructions from the RcPc extension.
14687 @item dotprod
14688 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
14689 @item aes
14690 Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced
14691 SIMD instructions.
14692 @item sha2
14693 Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD instructions.
14694 @item sha3
14695 Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD
14696 instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
14697 @item sm4
14698 Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD instructions.
14699 Use of this option with architectures prior to Armv8.2-A is not supported.
14700
14701 @end table
14702
14703 Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
14704 which implies @option{fp}.
14705 Conversely, @option{nofp} implies @option{nosimd}, which implies
14706 @option{nocrypto}, @option{noaes} and @option{nosha2}.
14707
14708 @node Adapteva Epiphany Options
14709 @subsection Adapteva Epiphany Options
14710
14711 These @samp{-m} options are defined for Adapteva Epiphany:
14712
14713 @table @gcctabopt
14714 @item -mhalf-reg-file
14715 @opindex mhalf-reg-file
14716 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
14717 That allows code to run on hardware variants that lack these registers.
14718
14719 @item -mprefer-short-insn-regs
14720 @opindex mprefer-short-insn-regs
14721 Preferentially allocate registers that allow short instruction generation.
14722 This can result in increased instruction count, so this may either reduce or
14723 increase overall code size.
14724
14725 @item -mbranch-cost=@var{num}
14726 @opindex mbranch-cost
14727 Set the cost of branches to roughly @var{num} ``simple'' instructions.
14728 This cost is only a heuristic and is not guaranteed to produce
14729 consistent results across releases.
14730
14731 @item -mcmove
14732 @opindex mcmove
14733 Enable the generation of conditional moves.
14734
14735 @item -mnops=@var{num}
14736 @opindex mnops
14737 Emit @var{num} NOPs before every other generated instruction.
14738
14739 @item -mno-soft-cmpsf
14740 @opindex mno-soft-cmpsf
14741 For single-precision floating-point comparisons, emit an @code{fsub} instruction
14742 and test the flags. This is faster than a software comparison, but can
14743 get incorrect results in the presence of NaNs, or when two different small
14744 numbers are compared such that their difference is calculated as zero.
14745 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
14746 software comparisons.
14747
14748 @item -mstack-offset=@var{num}
14749 @opindex mstack-offset
14750 Set the offset between the top of the stack and the stack pointer.
14751 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
14752 can be used by leaf functions without stack allocation.
14753 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
14754 Note also that this option changes the ABI; compiling a program with a
14755 different stack offset than the libraries have been compiled with
14756 generally does not work.
14757 This option can be useful if you want to evaluate if a different stack
14758 offset would give you better code, but to actually use a different stack
14759 offset to build working programs, it is recommended to configure the
14760 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
14761
14762 @item -mno-round-nearest
14763 @opindex mno-round-nearest
14764 Make the scheduler assume that the rounding mode has been set to
14765 truncating. The default is @option{-mround-nearest}.
14766
14767 @item -mlong-calls
14768 @opindex mlong-calls
14769 If not otherwise specified by an attribute, assume all calls might be beyond
14770 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
14771 function address into a register before performing a (otherwise direct) call.
14772 This is the default.
14773
14774 @item -mshort-calls
14775 @opindex short-calls
14776 If not otherwise specified by an attribute, assume all direct calls are
14777 in the range of the @code{b} / @code{bl} instructions, so use these instructions
14778 for direct calls. The default is @option{-mlong-calls}.
14779
14780 @item -msmall16
14781 @opindex msmall16
14782 Assume addresses can be loaded as 16-bit unsigned values. This does not
14783 apply to function addresses for which @option{-mlong-calls} semantics
14784 are in effect.
14785
14786 @item -mfp-mode=@var{mode}
14787 @opindex mfp-mode
14788 Set the prevailing mode of the floating-point unit.
14789 This determines the floating-point mode that is provided and expected
14790 at function call and return time. Making this mode match the mode you
14791 predominantly need at function start can make your programs smaller and
14792 faster by avoiding unnecessary mode switches.
14793
14794 @var{mode} can be set to one the following values:
14795
14796 @table @samp
14797 @item caller
14798 Any mode at function entry is valid, and retained or restored when
14799 the function returns, and when it calls other functions.
14800 This mode is useful for compiling libraries or other compilation units
14801 you might want to incorporate into different programs with different
14802 prevailing FPU modes, and the convenience of being able to use a single
14803 object file outweighs the size and speed overhead for any extra
14804 mode switching that might be needed, compared with what would be needed
14805 with a more specific choice of prevailing FPU mode.
14806
14807 @item truncate
14808 This is the mode used for floating-point calculations with
14809 truncating (i.e.@: round towards zero) rounding mode. That includes
14810 conversion from floating point to integer.
14811
14812 @item round-nearest
14813 This is the mode used for floating-point calculations with
14814 round-to-nearest-or-even rounding mode.
14815
14816 @item int
14817 This is the mode used to perform integer calculations in the FPU, e.g.@:
14818 integer multiply, or integer multiply-and-accumulate.
14819 @end table
14820
14821 The default is @option{-mfp-mode=caller}
14822
14823 @item -mnosplit-lohi
14824 @itemx -mno-postinc
14825 @itemx -mno-postmodify
14826 @opindex mnosplit-lohi
14827 @opindex mno-postinc
14828 @opindex mno-postmodify
14829 Code generation tweaks that disable, respectively, splitting of 32-bit
14830 loads, generation of post-increment addresses, and generation of
14831 post-modify addresses. The defaults are @option{msplit-lohi},
14832 @option{-mpost-inc}, and @option{-mpost-modify}.
14833
14834 @item -mnovect-double
14835 @opindex mno-vect-double
14836 Change the preferred SIMD mode to SImode. The default is
14837 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
14838
14839 @item -max-vect-align=@var{num}
14840 @opindex max-vect-align
14841 The maximum alignment for SIMD vector mode types.
14842 @var{num} may be 4 or 8. The default is 8.
14843 Note that this is an ABI change, even though many library function
14844 interfaces are unaffected if they don't use SIMD vector modes
14845 in places that affect size and/or alignment of relevant types.
14846
14847 @item -msplit-vecmove-early
14848 @opindex msplit-vecmove-early
14849 Split vector moves into single word moves before reload. In theory this
14850 can give better register allocation, but so far the reverse seems to be
14851 generally the case.
14852
14853 @item -m1reg-@var{reg}
14854 @opindex m1reg-
14855 Specify a register to hold the constant @minus{}1, which makes loading small negative
14856 constants and certain bitmasks faster.
14857 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
14858 which specify use of that register as a fixed register,
14859 and @samp{none}, which means that no register is used for this
14860 purpose. The default is @option{-m1reg-none}.
14861
14862 @end table
14863
14864 @node ARC Options
14865 @subsection ARC Options
14866 @cindex ARC options
14867
14868 The following options control the architecture variant for which code
14869 is being compiled:
14870
14871 @c architecture variants
14872 @table @gcctabopt
14873
14874 @item -mbarrel-shifter
14875 @opindex mbarrel-shifter
14876 Generate instructions supported by barrel shifter. This is the default
14877 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
14878
14879 @item -mjli-always
14880 @opindex mjli-alawys
14881 Force to call a function using jli_s instruction. This option is
14882 valid only for ARCv2 architecture.
14883
14884 @item -mcpu=@var{cpu}
14885 @opindex mcpu
14886 Set architecture type, register usage, and instruction scheduling
14887 parameters for @var{cpu}. There are also shortcut alias options
14888 available for backward compatibility and convenience. Supported
14889 values for @var{cpu} are
14890
14891 @table @samp
14892 @opindex mA6
14893 @opindex mARC600
14894 @item arc600
14895 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
14896
14897 @item arc601
14898 @opindex mARC601
14899 Compile for ARC601. Alias: @option{-mARC601}.
14900
14901 @item arc700
14902 @opindex mA7
14903 @opindex mARC700
14904 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
14905 This is the default when configured with @option{--with-cpu=arc700}@.
14906
14907 @item arcem
14908 Compile for ARC EM.
14909
14910 @item archs
14911 Compile for ARC HS.
14912
14913 @item em
14914 Compile for ARC EM CPU with no hardware extensions.
14915
14916 @item em4
14917 Compile for ARC EM4 CPU.
14918
14919 @item em4_dmips
14920 Compile for ARC EM4 DMIPS CPU.
14921
14922 @item em4_fpus
14923 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
14924 extension.
14925
14926 @item em4_fpuda
14927 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
14928 double assist instructions.
14929
14930 @item hs
14931 Compile for ARC HS CPU with no hardware extensions except the atomic
14932 instructions.
14933
14934 @item hs34
14935 Compile for ARC HS34 CPU.
14936
14937 @item hs38
14938 Compile for ARC HS38 CPU.
14939
14940 @item hs38_linux
14941 Compile for ARC HS38 CPU with all hardware extensions on.
14942
14943 @item arc600_norm
14944 Compile for ARC 600 CPU with @code{norm} instructions enabled.
14945
14946 @item arc600_mul32x16
14947 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
14948 instructions enabled.
14949
14950 @item arc600_mul64
14951 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
14952 instructions enabled.
14953
14954 @item arc601_norm
14955 Compile for ARC 601 CPU with @code{norm} instructions enabled.
14956
14957 @item arc601_mul32x16
14958 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
14959 instructions enabled.
14960
14961 @item arc601_mul64
14962 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
14963 instructions enabled.
14964
14965 @item nps400
14966 Compile for ARC 700 on NPS400 chip.
14967
14968 @item em_mini
14969 Compile for ARC EM minimalist configuration featuring reduced register
14970 set.
14971
14972 @end table
14973
14974 @item -mdpfp
14975 @opindex mdpfp
14976 @itemx -mdpfp-compact
14977 @opindex mdpfp-compact
14978 Generate double-precision FPX instructions, tuned for the compact
14979 implementation.
14980
14981 @item -mdpfp-fast
14982 @opindex mdpfp-fast
14983 Generate double-precision FPX instructions, tuned for the fast
14984 implementation.
14985
14986 @item -mno-dpfp-lrsr
14987 @opindex mno-dpfp-lrsr
14988 Disable @code{lr} and @code{sr} instructions from using FPX extension
14989 aux registers.
14990
14991 @item -mea
14992 @opindex mea
14993 Generate extended arithmetic instructions. Currently only
14994 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
14995 supported. This is always enabled for @option{-mcpu=ARC700}.
14996
14997 @item -mno-mpy
14998 @opindex mno-mpy
14999 Do not generate @code{mpy}-family instructions for ARC700. This option is
15000 deprecated.
15001
15002 @item -mmul32x16
15003 @opindex mmul32x16
15004 Generate 32x16-bit multiply and multiply-accumulate instructions.
15005
15006 @item -mmul64
15007 @opindex mmul64
15008 Generate @code{mul64} and @code{mulu64} instructions.
15009 Only valid for @option{-mcpu=ARC600}.
15010
15011 @item -mnorm
15012 @opindex mnorm
15013 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
15014 is in effect.
15015
15016 @item -mspfp
15017 @opindex mspfp
15018 @itemx -mspfp-compact
15019 @opindex mspfp-compact
15020 Generate single-precision FPX instructions, tuned for the compact
15021 implementation.
15022
15023 @item -mspfp-fast
15024 @opindex mspfp-fast
15025 Generate single-precision FPX instructions, tuned for the fast
15026 implementation.
15027
15028 @item -msimd
15029 @opindex msimd
15030 Enable generation of ARC SIMD instructions via target-specific
15031 builtins. Only valid for @option{-mcpu=ARC700}.
15032
15033 @item -msoft-float
15034 @opindex msoft-float
15035 This option ignored; it is provided for compatibility purposes only.
15036 Software floating-point code is emitted by default, and this default
15037 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
15038 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
15039 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
15040
15041 @item -mswap
15042 @opindex mswap
15043 Generate @code{swap} instructions.
15044
15045 @item -matomic
15046 @opindex matomic
15047 This enables use of the locked load/store conditional extension to implement
15048 atomic memory built-in functions. Not available for ARC 6xx or ARC
15049 EM cores.
15050
15051 @item -mdiv-rem
15052 @opindex mdiv-rem
15053 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
15054
15055 @item -mcode-density
15056 @opindex mcode-density
15057 Enable code density instructions for ARC EM.
15058 This option is on by default for ARC HS.
15059
15060 @item -mll64
15061 @opindex mll64
15062 Enable double load/store operations for ARC HS cores.
15063
15064 @item -mtp-regno=@var{regno}
15065 @opindex mtp-regno
15066 Specify thread pointer register number.
15067
15068 @item -mmpy-option=@var{multo}
15069 @opindex mmpy-option
15070 Compile ARCv2 code with a multiplier design option. You can specify
15071 the option using either a string or numeric value for @var{multo}.
15072 @samp{wlh1} is the default value. The recognized values are:
15073
15074 @table @samp
15075 @item 0
15076 @itemx none
15077 No multiplier available.
15078
15079 @item 1
15080 @itemx w
15081 16x16 multiplier, fully pipelined.
15082 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
15083
15084 @item 2
15085 @itemx wlh1
15086 32x32 multiplier, fully
15087 pipelined (1 stage). The following instructions are additionally
15088 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15089
15090 @item 3
15091 @itemx wlh2
15092 32x32 multiplier, fully pipelined
15093 (2 stages). The following instructions are additionally enabled: @code{mpy},
15094 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15095
15096 @item 4
15097 @itemx wlh3
15098 Two 16x16 multipliers, blocking,
15099 sequential. The following instructions are additionally enabled: @code{mpy},
15100 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15101
15102 @item 5
15103 @itemx wlh4
15104 One 16x16 multiplier, blocking,
15105 sequential. The following instructions are additionally enabled: @code{mpy},
15106 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15107
15108 @item 6
15109 @itemx wlh5
15110 One 32x4 multiplier, blocking,
15111 sequential. The following instructions are additionally enabled: @code{mpy},
15112 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15113
15114 @item 7
15115 @itemx plus_dmpy
15116 ARC HS SIMD support.
15117
15118 @item 8
15119 @itemx plus_macd
15120 ARC HS SIMD support.
15121
15122 @item 9
15123 @itemx plus_qmacw
15124 ARC HS SIMD support.
15125
15126 @end table
15127
15128 This option is only available for ARCv2 cores@.
15129
15130 @item -mfpu=@var{fpu}
15131 @opindex mfpu
15132 Enables support for specific floating-point hardware extensions for ARCv2
15133 cores. Supported values for @var{fpu} are:
15134
15135 @table @samp
15136
15137 @item fpus
15138 Enables support for single-precision floating-point hardware
15139 extensions@.
15140
15141 @item fpud
15142 Enables support for double-precision floating-point hardware
15143 extensions. The single-precision floating-point extension is also
15144 enabled. Not available for ARC EM@.
15145
15146 @item fpuda
15147 Enables support for double-precision floating-point hardware
15148 extensions using double-precision assist instructions. The single-precision
15149 floating-point extension is also enabled. This option is
15150 only available for ARC EM@.
15151
15152 @item fpuda_div
15153 Enables support for double-precision floating-point hardware
15154 extensions using double-precision assist instructions.
15155 The single-precision floating-point, square-root, and divide
15156 extensions are also enabled. This option is
15157 only available for ARC EM@.
15158
15159 @item fpuda_fma
15160 Enables support for double-precision floating-point hardware
15161 extensions using double-precision assist instructions.
15162 The single-precision floating-point and fused multiply and add
15163 hardware extensions are also enabled. This option is
15164 only available for ARC EM@.
15165
15166 @item fpuda_all
15167 Enables support for double-precision floating-point hardware
15168 extensions using double-precision assist instructions.
15169 All single-precision floating-point hardware extensions are also
15170 enabled. This option is only available for ARC EM@.
15171
15172 @item fpus_div
15173 Enables support for single-precision floating-point, square-root and divide
15174 hardware extensions@.
15175
15176 @item fpud_div
15177 Enables support for double-precision floating-point, square-root and divide
15178 hardware extensions. This option
15179 includes option @samp{fpus_div}. Not available for ARC EM@.
15180
15181 @item fpus_fma
15182 Enables support for single-precision floating-point and
15183 fused multiply and add hardware extensions@.
15184
15185 @item fpud_fma
15186 Enables support for double-precision floating-point and
15187 fused multiply and add hardware extensions. This option
15188 includes option @samp{fpus_fma}. Not available for ARC EM@.
15189
15190 @item fpus_all
15191 Enables support for all single-precision floating-point hardware
15192 extensions@.
15193
15194 @item fpud_all
15195 Enables support for all single- and double-precision floating-point
15196 hardware extensions. Not available for ARC EM@.
15197
15198 @end table
15199
15200 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
15201 @opindex mirq-ctrl-saved
15202 Specifies general-purposes registers that the processor automatically
15203 saves/restores on interrupt entry and exit. @var{register-range} is
15204 specified as two registers separated by a dash. The register range
15205 always starts with @code{r0}, the upper limit is @code{fp} register.
15206 @var{blink} and @var{lp_count} are optional. This option is only
15207 valid for ARC EM and ARC HS cores.
15208
15209 @item -mrgf-banked-regs=@var{number}
15210 @opindex mrgf-banked-regs
15211 Specifies the number of registers replicated in second register bank
15212 on entry to fast interrupt. Fast interrupts are interrupts with the
15213 highest priority level P0. These interrupts save only PC and STATUS32
15214 registers to avoid memory transactions during interrupt entry and exit
15215 sequences. Use this option when you are using fast interrupts in an
15216 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
15217
15218 @item -mlpc-width=@var{width}
15219 @opindex mlpc-width
15220 Specify the width of the @code{lp_count} register. Valid values for
15221 @var{width} are 8, 16, 20, 24, 28 and 32 bits. The default width is
15222 fixed to 32 bits. If the width is less than 32, the compiler does not
15223 attempt to transform loops in your program to use the zero-delay loop
15224 mechanism unless it is known that the @code{lp_count} register can
15225 hold the required loop-counter value. Depending on the width
15226 specified, the compiler and run-time library might continue to use the
15227 loop mechanism for various needs. This option defines macro
15228 @code{__ARC_LPC_WIDTH__} with the value of @var{width}.
15229
15230 @item -mrf16
15231 @opindex mrf16
15232 This option instructs the compiler to generate code for a 16-entry
15233 register file. This option defines the @code{__ARC_RF16__}
15234 preprocessor macro.
15235
15236 @end table
15237
15238 The following options are passed through to the assembler, and also
15239 define preprocessor macro symbols.
15240
15241 @c Flags used by the assembler, but for which we define preprocessor
15242 @c macro symbols as well.
15243 @table @gcctabopt
15244 @item -mdsp-packa
15245 @opindex mdsp-packa
15246 Passed down to the assembler to enable the DSP Pack A extensions.
15247 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
15248 deprecated.
15249
15250 @item -mdvbf
15251 @opindex mdvbf
15252 Passed down to the assembler to enable the dual Viterbi butterfly
15253 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
15254 option is deprecated.
15255
15256 @c ARC700 4.10 extension instruction
15257 @item -mlock
15258 @opindex mlock
15259 Passed down to the assembler to enable the locked load/store
15260 conditional extension. Also sets the preprocessor symbol
15261 @code{__Xlock}.
15262
15263 @item -mmac-d16
15264 @opindex mmac-d16
15265 Passed down to the assembler. Also sets the preprocessor symbol
15266 @code{__Xxmac_d16}. This option is deprecated.
15267
15268 @item -mmac-24
15269 @opindex mmac-24
15270 Passed down to the assembler. Also sets the preprocessor symbol
15271 @code{__Xxmac_24}. This option is deprecated.
15272
15273 @c ARC700 4.10 extension instruction
15274 @item -mrtsc
15275 @opindex mrtsc
15276 Passed down to the assembler to enable the 64-bit time-stamp counter
15277 extension instruction. Also sets the preprocessor symbol
15278 @code{__Xrtsc}. This option is deprecated.
15279
15280 @c ARC700 4.10 extension instruction
15281 @item -mswape
15282 @opindex mswape
15283 Passed down to the assembler to enable the swap byte ordering
15284 extension instruction. Also sets the preprocessor symbol
15285 @code{__Xswape}.
15286
15287 @item -mtelephony
15288 @opindex mtelephony
15289 Passed down to the assembler to enable dual- and single-operand
15290 instructions for telephony. Also sets the preprocessor symbol
15291 @code{__Xtelephony}. This option is deprecated.
15292
15293 @item -mxy
15294 @opindex mxy
15295 Passed down to the assembler to enable the XY memory extension. Also
15296 sets the preprocessor symbol @code{__Xxy}.
15297
15298 @end table
15299
15300 The following options control how the assembly code is annotated:
15301
15302 @c Assembly annotation options
15303 @table @gcctabopt
15304 @item -misize
15305 @opindex misize
15306 Annotate assembler instructions with estimated addresses.
15307
15308 @item -mannotate-align
15309 @opindex mannotate-align
15310 Explain what alignment considerations lead to the decision to make an
15311 instruction short or long.
15312
15313 @end table
15314
15315 The following options are passed through to the linker:
15316
15317 @c options passed through to the linker
15318 @table @gcctabopt
15319 @item -marclinux
15320 @opindex marclinux
15321 Passed through to the linker, to specify use of the @code{arclinux} emulation.
15322 This option is enabled by default in tool chains built for
15323 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
15324 when profiling is not requested.
15325
15326 @item -marclinux_prof
15327 @opindex marclinux_prof
15328 Passed through to the linker, to specify use of the
15329 @code{arclinux_prof} emulation. This option is enabled by default in
15330 tool chains built for @w{@code{arc-linux-uclibc}} and
15331 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
15332
15333 @end table
15334
15335 The following options control the semantics of generated code:
15336
15337 @c semantically relevant code generation options
15338 @table @gcctabopt
15339 @item -mlong-calls
15340 @opindex mlong-calls
15341 Generate calls as register indirect calls, thus providing access
15342 to the full 32-bit address range.
15343
15344 @item -mmedium-calls
15345 @opindex mmedium-calls
15346 Don't use less than 25-bit addressing range for calls, which is the
15347 offset available for an unconditional branch-and-link
15348 instruction. Conditional execution of function calls is suppressed, to
15349 allow use of the 25-bit range, rather than the 21-bit range with
15350 conditional branch-and-link. This is the default for tool chains built
15351 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
15352
15353 @item -G @var{num}
15354 @opindex G
15355 Put definitions of externally-visible data in a small data section if
15356 that data is no bigger than @var{num} bytes. The default value of
15357 @var{num} is 4 for any ARC configuration, or 8 when we have double
15358 load/store operations.
15359
15360 @item -mno-sdata
15361 @opindex mno-sdata
15362 Do not generate sdata references. This is the default for tool chains
15363 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
15364 targets.
15365
15366 @item -mvolatile-cache
15367 @opindex mvolatile-cache
15368 Use ordinarily cached memory accesses for volatile references. This is the
15369 default.
15370
15371 @item -mno-volatile-cache
15372 @opindex mno-volatile-cache
15373 Enable cache bypass for volatile references.
15374
15375 @end table
15376
15377 The following options fine tune code generation:
15378 @c code generation tuning options
15379 @table @gcctabopt
15380 @item -malign-call
15381 @opindex malign-call
15382 Do alignment optimizations for call instructions.
15383
15384 @item -mauto-modify-reg
15385 @opindex mauto-modify-reg
15386 Enable the use of pre/post modify with register displacement.
15387
15388 @item -mbbit-peephole
15389 @opindex mbbit-peephole
15390 Enable bbit peephole2.
15391
15392 @item -mno-brcc
15393 @opindex mno-brcc
15394 This option disables a target-specific pass in @file{arc_reorg} to
15395 generate compare-and-branch (@code{br@var{cc}}) instructions.
15396 It has no effect on
15397 generation of these instructions driven by the combiner pass.
15398
15399 @item -mcase-vector-pcrel
15400 @opindex mcase-vector-pcrel
15401 Use PC-relative switch case tables to enable case table shortening.
15402 This is the default for @option{-Os}.
15403
15404 @item -mcompact-casesi
15405 @opindex mcompact-casesi
15406 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
15407 and only available for ARCv1 cores.
15408
15409 @item -mno-cond-exec
15410 @opindex mno-cond-exec
15411 Disable the ARCompact-specific pass to generate conditional
15412 execution instructions.
15413
15414 Due to delay slot scheduling and interactions between operand numbers,
15415 literal sizes, instruction lengths, and the support for conditional execution,
15416 the target-independent pass to generate conditional execution is often lacking,
15417 so the ARC port has kept a special pass around that tries to find more
15418 conditional execution generation opportunities after register allocation,
15419 branch shortening, and delay slot scheduling have been done. This pass
15420 generally, but not always, improves performance and code size, at the cost of
15421 extra compilation time, which is why there is an option to switch it off.
15422 If you have a problem with call instructions exceeding their allowable
15423 offset range because they are conditionalized, you should consider using
15424 @option{-mmedium-calls} instead.
15425
15426 @item -mearly-cbranchsi
15427 @opindex mearly-cbranchsi
15428 Enable pre-reload use of the @code{cbranchsi} pattern.
15429
15430 @item -mexpand-adddi
15431 @opindex mexpand-adddi
15432 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
15433 @code{add.f}, @code{adc} etc. This option is deprecated.
15434
15435 @item -mindexed-loads
15436 @opindex mindexed-loads
15437 Enable the use of indexed loads. This can be problematic because some
15438 optimizers then assume that indexed stores exist, which is not
15439 the case.
15440
15441 @item -mlra
15442 @opindex mlra
15443 Enable Local Register Allocation. This is still experimental for ARC,
15444 so by default the compiler uses standard reload
15445 (i.e. @option{-mno-lra}).
15446
15447 @item -mlra-priority-none
15448 @opindex mlra-priority-none
15449 Don't indicate any priority for target registers.
15450
15451 @item -mlra-priority-compact
15452 @opindex mlra-priority-compact
15453 Indicate target register priority for r0..r3 / r12..r15.
15454
15455 @item -mlra-priority-noncompact
15456 @opindex mlra-priority-noncompact
15457 Reduce target register priority for r0..r3 / r12..r15.
15458
15459 @item -mno-millicode
15460 @opindex mno-millicode
15461 When optimizing for size (using @option{-Os}), prologues and epilogues
15462 that have to save or restore a large number of registers are often
15463 shortened by using call to a special function in libgcc; this is
15464 referred to as a @emph{millicode} call. As these calls can pose
15465 performance issues, and/or cause linking issues when linking in a
15466 nonstandard way, this option is provided to turn off millicode call
15467 generation.
15468
15469 @item -mmixed-code
15470 @opindex mmixed-code
15471 Tweak register allocation to help 16-bit instruction generation.
15472 This generally has the effect of decreasing the average instruction size
15473 while increasing the instruction count.
15474
15475 @item -mq-class
15476 @opindex mq-class
15477 Enable @samp{q} instruction alternatives.
15478 This is the default for @option{-Os}.
15479
15480 @item -mRcq
15481 @opindex mRcq
15482 Enable @samp{Rcq} constraint handling.
15483 Most short code generation depends on this.
15484 This is the default.
15485
15486 @item -mRcw
15487 @opindex mRcw
15488 Enable @samp{Rcw} constraint handling.
15489 Most ccfsm condexec mostly depends on this.
15490 This is the default.
15491
15492 @item -msize-level=@var{level}
15493 @opindex msize-level
15494 Fine-tune size optimization with regards to instruction lengths and alignment.
15495 The recognized values for @var{level} are:
15496 @table @samp
15497 @item 0
15498 No size optimization. This level is deprecated and treated like @samp{1}.
15499
15500 @item 1
15501 Short instructions are used opportunistically.
15502
15503 @item 2
15504 In addition, alignment of loops and of code after barriers are dropped.
15505
15506 @item 3
15507 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
15508
15509 @end table
15510
15511 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
15512 the behavior when this is not set is equivalent to level @samp{1}.
15513
15514 @item -mtune=@var{cpu}
15515 @opindex mtune
15516 Set instruction scheduling parameters for @var{cpu}, overriding any implied
15517 by @option{-mcpu=}.
15518
15519 Supported values for @var{cpu} are
15520
15521 @table @samp
15522 @item ARC600
15523 Tune for ARC600 CPU.
15524
15525 @item ARC601
15526 Tune for ARC601 CPU.
15527
15528 @item ARC700
15529 Tune for ARC700 CPU with standard multiplier block.
15530
15531 @item ARC700-xmac
15532 Tune for ARC700 CPU with XMAC block.
15533
15534 @item ARC725D
15535 Tune for ARC725D CPU.
15536
15537 @item ARC750D
15538 Tune for ARC750D CPU.
15539
15540 @end table
15541
15542 @item -mmultcost=@var{num}
15543 @opindex mmultcost
15544 Cost to assume for a multiply instruction, with @samp{4} being equal to a
15545 normal instruction.
15546
15547 @item -munalign-prob-threshold=@var{probability}
15548 @opindex munalign-prob-threshold
15549 Set probability threshold for unaligning branches.
15550 When tuning for @samp{ARC700} and optimizing for speed, branches without
15551 filled delay slot are preferably emitted unaligned and long, unless
15552 profiling indicates that the probability for the branch to be taken
15553 is below @var{probability}. @xref{Cross-profiling}.
15554 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
15555
15556 @end table
15557
15558 The following options are maintained for backward compatibility, but
15559 are now deprecated and will be removed in a future release:
15560
15561 @c Deprecated options
15562 @table @gcctabopt
15563
15564 @item -margonaut
15565 @opindex margonaut
15566 Obsolete FPX.
15567
15568 @item -mbig-endian
15569 @opindex mbig-endian
15570 @itemx -EB
15571 @opindex EB
15572 Compile code for big-endian targets. Use of these options is now
15573 deprecated. Big-endian code is supported by configuring GCC to build
15574 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
15575 for which big endian is the default.
15576
15577 @item -mlittle-endian
15578 @opindex mlittle-endian
15579 @itemx -EL
15580 @opindex EL
15581 Compile code for little-endian targets. Use of these options is now
15582 deprecated. Little-endian code is supported by configuring GCC to build
15583 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
15584 for which little endian is the default.
15585
15586 @item -mbarrel_shifter
15587 @opindex mbarrel_shifter
15588 Replaced by @option{-mbarrel-shifter}.
15589
15590 @item -mdpfp_compact
15591 @opindex mdpfp_compact
15592 Replaced by @option{-mdpfp-compact}.
15593
15594 @item -mdpfp_fast
15595 @opindex mdpfp_fast
15596 Replaced by @option{-mdpfp-fast}.
15597
15598 @item -mdsp_packa
15599 @opindex mdsp_packa
15600 Replaced by @option{-mdsp-packa}.
15601
15602 @item -mEA
15603 @opindex mEA
15604 Replaced by @option{-mea}.
15605
15606 @item -mmac_24
15607 @opindex mmac_24
15608 Replaced by @option{-mmac-24}.
15609
15610 @item -mmac_d16
15611 @opindex mmac_d16
15612 Replaced by @option{-mmac-d16}.
15613
15614 @item -mspfp_compact
15615 @opindex mspfp_compact
15616 Replaced by @option{-mspfp-compact}.
15617
15618 @item -mspfp_fast
15619 @opindex mspfp_fast
15620 Replaced by @option{-mspfp-fast}.
15621
15622 @item -mtune=@var{cpu}
15623 @opindex mtune
15624 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
15625 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
15626 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
15627
15628 @item -multcost=@var{num}
15629 @opindex multcost
15630 Replaced by @option{-mmultcost}.
15631
15632 @end table
15633
15634 @node ARM Options
15635 @subsection ARM Options
15636 @cindex ARM options
15637
15638 These @samp{-m} options are defined for the ARM port:
15639
15640 @table @gcctabopt
15641 @item -mabi=@var{name}
15642 @opindex mabi
15643 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
15644 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
15645
15646 @item -mapcs-frame
15647 @opindex mapcs-frame
15648 Generate a stack frame that is compliant with the ARM Procedure Call
15649 Standard for all functions, even if this is not strictly necessary for
15650 correct execution of the code. Specifying @option{-fomit-frame-pointer}
15651 with this option causes the stack frames not to be generated for
15652 leaf functions. The default is @option{-mno-apcs-frame}.
15653 This option is deprecated.
15654
15655 @item -mapcs
15656 @opindex mapcs
15657 This is a synonym for @option{-mapcs-frame} and is deprecated.
15658
15659 @ignore
15660 @c not currently implemented
15661 @item -mapcs-stack-check
15662 @opindex mapcs-stack-check
15663 Generate code to check the amount of stack space available upon entry to
15664 every function (that actually uses some stack space). If there is
15665 insufficient space available then either the function
15666 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
15667 called, depending upon the amount of stack space required. The runtime
15668 system is required to provide these functions. The default is
15669 @option{-mno-apcs-stack-check}, since this produces smaller code.
15670
15671 @c not currently implemented
15672 @item -mapcs-reentrant
15673 @opindex mapcs-reentrant
15674 Generate reentrant, position-independent code. The default is
15675 @option{-mno-apcs-reentrant}.
15676 @end ignore
15677
15678 @item -mthumb-interwork
15679 @opindex mthumb-interwork
15680 Generate code that supports calling between the ARM and Thumb
15681 instruction sets. Without this option, on pre-v5 architectures, the
15682 two instruction sets cannot be reliably used inside one program. The
15683 default is @option{-mno-thumb-interwork}, since slightly larger code
15684 is generated when @option{-mthumb-interwork} is specified. In AAPCS
15685 configurations this option is meaningless.
15686
15687 @item -mno-sched-prolog
15688 @opindex mno-sched-prolog
15689 Prevent the reordering of instructions in the function prologue, or the
15690 merging of those instruction with the instructions in the function's
15691 body. This means that all functions start with a recognizable set
15692 of instructions (or in fact one of a choice from a small set of
15693 different function prologues), and this information can be used to
15694 locate the start of functions inside an executable piece of code. The
15695 default is @option{-msched-prolog}.
15696
15697 @item -mfloat-abi=@var{name}
15698 @opindex mfloat-abi
15699 Specifies which floating-point ABI to use. Permissible values
15700 are: @samp{soft}, @samp{softfp} and @samp{hard}.
15701
15702 Specifying @samp{soft} causes GCC to generate output containing
15703 library calls for floating-point operations.
15704 @samp{softfp} allows the generation of code using hardware floating-point
15705 instructions, but still uses the soft-float calling conventions.
15706 @samp{hard} allows generation of floating-point instructions
15707 and uses FPU-specific calling conventions.
15708
15709 The default depends on the specific target configuration. Note that
15710 the hard-float and soft-float ABIs are not link-compatible; you must
15711 compile your entire program with the same ABI, and link with a
15712 compatible set of libraries.
15713
15714 @item -mlittle-endian
15715 @opindex mlittle-endian
15716 Generate code for a processor running in little-endian mode. This is
15717 the default for all standard configurations.
15718
15719 @item -mbig-endian
15720 @opindex mbig-endian
15721 Generate code for a processor running in big-endian mode; the default is
15722 to compile code for a little-endian processor.
15723
15724 @item -mbe8
15725 @itemx -mbe32
15726 @opindex mbe8
15727 When linking a big-endian image select between BE8 and BE32 formats.
15728 The option has no effect for little-endian images and is ignored. The
15729 default is dependent on the selected target architecture. For ARMv6
15730 and later architectures the default is BE8, for older architectures
15731 the default is BE32. BE32 format has been deprecated by ARM.
15732
15733 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
15734 @opindex march
15735 This specifies the name of the target ARM architecture. GCC uses this
15736 name to determine what kind of instructions it can emit when generating
15737 assembly code. This option can be used in conjunction with or instead
15738 of the @option{-mcpu=} option.
15739
15740 Permissible names are:
15741 @samp{armv4t},
15742 @samp{armv5t}, @samp{armv5te},
15743 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
15744 @samp{armv6z}, @samp{armv6zk},
15745 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
15746 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
15747 @samp{armv8.4-a},
15748 @samp{armv7-r},
15749 @samp{armv8-r},
15750 @samp{armv6-m}, @samp{armv6s-m},
15751 @samp{armv7-m}, @samp{armv7e-m},
15752 @samp{armv8-m.base}, @samp{armv8-m.main},
15753 @samp{iwmmxt} and @samp{iwmmxt2}.
15754
15755 Additionally, the following architectures, which lack support for the
15756 Thumb execution state, are recognized but support is deprecated:
15757 @samp{armv2}, @samp{armv2a}, @samp{armv3}, @samp{armv3m},
15758 @samp{armv4}, @samp{armv5} and @samp{armv5e}.
15759
15760 Many of the architectures support extensions. These can be added by
15761 appending @samp{+@var{extension}} to the architecture name. Extension
15762 options are processed in order and capabilities accumulate. An extension
15763 will also enable any necessary base extensions
15764 upon which it depends. For example, the @samp{+crypto} extension
15765 will always enable the @samp{+simd} extension. The exception to the
15766 additive construction is for extensions that are prefixed with
15767 @samp{+no@dots{}}: these extensions disable the specified option and
15768 any other extensions that may depend on the presence of that
15769 extension.
15770
15771 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
15772 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
15773 entirely disabled by the @samp{+nofp} option that follows it.
15774
15775 Most extension names are generically named, but have an effect that is
15776 dependent upon the architecture to which it is applied. For example,
15777 the @samp{+simd} option can be applied to both @samp{armv7-a} and
15778 @samp{armv8-a} architectures, but will enable the original ARMv7-A
15779 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
15780 variant for @samp{armv8-a}.
15781
15782 The table below lists the supported extensions for each architecture.
15783 Architectures not mentioned do not support any extensions.
15784
15785 @table @samp
15786 @item armv5e
15787 @itemx armv5te
15788 @itemx armv6
15789 @itemx armv6j
15790 @itemx armv6k
15791 @itemx armv6kz
15792 @itemx armv6t2
15793 @itemx armv6z
15794 @itemx armv6zk
15795 @table @samp
15796 @item +fp
15797 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
15798 used as an alias for this extension.
15799
15800 @item +nofp
15801 Disable the floating-point instructions.
15802 @end table
15803
15804 @item armv7
15805 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
15806 @table @samp
15807 @item +fp
15808 The VFPv3 floating-point instructions, with 16 double-precision
15809 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15810 for this extension. Note that floating-point is not supported by the
15811 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
15812 ARMv7-R architectures.
15813
15814 @item +nofp
15815 Disable the floating-point instructions.
15816 @end table
15817
15818 @item armv7-a
15819 @table @samp
15820 @item +fp
15821 The VFPv3 floating-point instructions, with 16 double-precision
15822 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15823 for this extension.
15824
15825 @item +simd
15826 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15827 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
15828 for this extension.
15829
15830 @item +vfpv3
15831 The VFPv3 floating-point instructions, with 32 double-precision
15832 registers.
15833
15834 @item +vfpv3-d16-fp16
15835 The VFPv3 floating-point instructions, with 16 double-precision
15836 registers and the half-precision floating-point conversion operations.
15837
15838 @item +vfpv3-fp16
15839 The VFPv3 floating-point instructions, with 32 double-precision
15840 registers and the half-precision floating-point conversion operations.
15841
15842 @item +vfpv4-d16
15843 The VFPv4 floating-point instructions, with 16 double-precision
15844 registers.
15845
15846 @item +vfpv4
15847 The VFPv4 floating-point instructions, with 32 double-precision
15848 registers.
15849
15850 @item +neon-fp16
15851 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15852 the half-precision floating-point conversion operations.
15853
15854 @item +neon-vfpv4
15855 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
15856
15857 @item +nosimd
15858 Disable the Advanced SIMD instructions (does not disable floating point).
15859
15860 @item +nofp
15861 Disable the floating-point and Advanced SIMD instructions.
15862 @end table
15863
15864 @item armv7ve
15865 The extended version of the ARMv7-A architecture with support for
15866 virtualization.
15867 @table @samp
15868 @item +fp
15869 The VFPv4 floating-point instructions, with 16 double-precision registers.
15870 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
15871
15872 @item +simd
15873 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
15874 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
15875
15876 @item +vfpv3-d16
15877 The VFPv3 floating-point instructions, with 16 double-precision
15878 registers.
15879
15880 @item +vfpv3
15881 The VFPv3 floating-point instructions, with 32 double-precision
15882 registers.
15883
15884 @item +vfpv3-d16-fp16
15885 The VFPv3 floating-point instructions, with 16 double-precision
15886 registers and the half-precision floating-point conversion operations.
15887
15888 @item +vfpv3-fp16
15889 The VFPv3 floating-point instructions, with 32 double-precision
15890 registers and the half-precision floating-point conversion operations.
15891
15892 @item +vfpv4-d16
15893 The VFPv4 floating-point instructions, with 16 double-precision
15894 registers.
15895
15896 @item +vfpv4
15897 The VFPv4 floating-point instructions, with 32 double-precision
15898 registers.
15899
15900 @item +neon
15901 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15902 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
15903
15904 @item +neon-fp16
15905 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15906 the half-precision floating-point conversion operations.
15907
15908 @item +nosimd
15909 Disable the Advanced SIMD instructions (does not disable floating point).
15910
15911 @item +nofp
15912 Disable the floating-point and Advanced SIMD instructions.
15913 @end table
15914
15915 @item armv8-a
15916 @table @samp
15917 @item +crc
15918 The Cyclic Redundancy Check (CRC) instructions.
15919 @item +simd
15920 The ARMv8-A Advanced SIMD and floating-point instructions.
15921 @item +crypto
15922 The cryptographic instructions.
15923 @item +nocrypto
15924 Disable the cryptographic instructions.
15925 @item +nofp
15926 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15927 @end table
15928
15929 @item armv8.1-a
15930 @table @samp
15931 @item +simd
15932 The ARMv8.1-A Advanced SIMD and floating-point instructions.
15933
15934 @item +crypto
15935 The cryptographic instructions. This also enables the Advanced SIMD and
15936 floating-point instructions.
15937
15938 @item +nocrypto
15939 Disable the cryptographic instructions.
15940
15941 @item +nofp
15942 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15943 @end table
15944
15945 @item armv8.2-a
15946 @itemx armv8.3-a
15947 @table @samp
15948 @item +fp16
15949 The half-precision floating-point data processing instructions.
15950 This also enables the Advanced SIMD and floating-point instructions.
15951
15952 @item +fp16fml
15953 The half-precision floating-point fmla extension. This also enables
15954 the half-precision floating-point extension and Advanced SIMD and
15955 floating-point instructions.
15956
15957 @item +simd
15958 The ARMv8.1-A Advanced SIMD and floating-point instructions.
15959
15960 @item +crypto
15961 The cryptographic instructions. This also enables the Advanced SIMD and
15962 floating-point instructions.
15963
15964 @item +dotprod
15965 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
15966
15967 @item +nocrypto
15968 Disable the cryptographic extension.
15969
15970 @item +nofp
15971 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15972 @end table
15973
15974 @item armv8.4-a
15975 @table @samp
15976 @item +fp16
15977 The half-precision floating-point data processing instructions.
15978 This also enables the Advanced SIMD and floating-point instructions as well
15979 as the Dot Product extension and the half-precision floating-point fmla
15980 extension.
15981
15982 @item +simd
15983 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
15984 Dot Product extension.
15985
15986 @item +crypto
15987 The cryptographic instructions. This also enables the Advanced SIMD and
15988 floating-point instructions as well as the Dot Product extension.
15989
15990 @item +nocrypto
15991 Disable the cryptographic extension.
15992
15993 @item +nofp
15994 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15995 @end table
15996
15997 @item armv7-r
15998 @table @samp
15999 @item +fp.sp
16000 The single-precision VFPv3 floating-point instructions. The extension
16001 @samp{+vfpv3xd} can be used as an alias for this extension.
16002
16003 @item +fp
16004 The VFPv3 floating-point instructions with 16 double-precision registers.
16005 The extension +vfpv3-d16 can be used as an alias for this extension.
16006
16007 @item +nofp
16008 Disable the floating-point extension.
16009
16010 @item +idiv
16011 The ARM-state integer division instructions.
16012
16013 @item +noidiv
16014 Disable the ARM-state integer division extension.
16015 @end table
16016
16017 @item armv7e-m
16018 @table @samp
16019 @item +fp
16020 The single-precision VFPv4 floating-point instructions.
16021
16022 @item +fpv5
16023 The single-precision FPv5 floating-point instructions.
16024
16025 @item +fp.dp
16026 The single- and double-precision FPv5 floating-point instructions.
16027
16028 @item +nofp
16029 Disable the floating-point extensions.
16030 @end table
16031
16032 @item armv8-m.main
16033 @table @samp
16034 @item +dsp
16035 The DSP instructions.
16036
16037 @item +nodsp
16038 Disable the DSP extension.
16039
16040 @item +fp
16041 The single-precision floating-point instructions.
16042
16043 @item +fp.dp
16044 The single- and double-precision floating-point instructions.
16045
16046 @item +nofp
16047 Disable the floating-point extension.
16048 @end table
16049
16050 @item armv8-r
16051 @table @samp
16052 @item +crc
16053 The Cyclic Redundancy Check (CRC) instructions.
16054 @item +fp.sp
16055 The single-precision FPv5 floating-point instructions.
16056 @item +simd
16057 The ARMv8-A Advanced SIMD and floating-point instructions.
16058 @item +crypto
16059 The cryptographic instructions.
16060 @item +nocrypto
16061 Disable the cryptographic instructions.
16062 @item +nofp
16063 Disable the floating-point, Advanced SIMD and cryptographic instructions.
16064 @end table
16065
16066 @end table
16067
16068 @option{-march=native} causes the compiler to auto-detect the architecture
16069 of the build computer. At present, this feature is only supported on
16070 GNU/Linux, and not all architectures are recognized. If the auto-detect
16071 is unsuccessful the option has no effect.
16072
16073 @item -mtune=@var{name}
16074 @opindex mtune
16075 This option specifies the name of the target ARM processor for
16076 which GCC should tune the performance of the code.
16077 For some ARM implementations better performance can be obtained by using
16078 this option.
16079 Permissible names are: @samp{arm2}, @samp{arm250},
16080 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
16081 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
16082 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
16083 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
16084 @samp{arm720},
16085 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
16086 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
16087 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
16088 @samp{strongarm1110},
16089 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
16090 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
16091 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
16092 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
16093 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
16094 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
16095 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
16096 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
16097 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
16098 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
16099 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
16100 @samp{cortex-r4}, @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7},
16101 @samp{cortex-r8}, @samp{cortex-r52},
16102 @samp{cortex-m33},
16103 @samp{cortex-m23},
16104 @samp{cortex-m7},
16105 @samp{cortex-m4},
16106 @samp{cortex-m3},
16107 @samp{cortex-m1},
16108 @samp{cortex-m0},
16109 @samp{cortex-m0plus},
16110 @samp{cortex-m1.small-multiply},
16111 @samp{cortex-m0.small-multiply},
16112 @samp{cortex-m0plus.small-multiply},
16113 @samp{exynos-m1},
16114 @samp{marvell-pj4},
16115 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
16116 @samp{fa526}, @samp{fa626},
16117 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
16118 @samp{xgene1}.
16119
16120 Additionally, this option can specify that GCC should tune the performance
16121 of the code for a big.LITTLE system. Permissible names are:
16122 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
16123 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
16124 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
16125 @samp{cortex-a75.cortex-a55}.
16126
16127 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
16128 performance for a blend of processors within architecture @var{arch}.
16129 The aim is to generate code that run well on the current most popular
16130 processors, balancing between optimizations that benefit some CPUs in the
16131 range, and avoiding performance pitfalls of other CPUs. The effects of
16132 this option may change in future GCC versions as CPU models come and go.
16133
16134 @option{-mtune} permits the same extension options as @option{-mcpu}, but
16135 the extension options do not affect the tuning of the generated code.
16136
16137 @option{-mtune=native} causes the compiler to auto-detect the CPU
16138 of the build computer. At present, this feature is only supported on
16139 GNU/Linux, and not all architectures are recognized. If the auto-detect is
16140 unsuccessful the option has no effect.
16141
16142 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
16143 @opindex mcpu
16144 This specifies the name of the target ARM processor. GCC uses this name
16145 to derive the name of the target ARM architecture (as if specified
16146 by @option{-march}) and the ARM processor type for which to tune for
16147 performance (as if specified by @option{-mtune}). Where this option
16148 is used in conjunction with @option{-march} or @option{-mtune},
16149 those options take precedence over the appropriate part of this option.
16150
16151 Many of the supported CPUs implement optional architectural
16152 extensions. Where this is so the architectural extensions are
16153 normally enabled by default. If implementations that lack the
16154 extension exist, then the extension syntax can be used to disable
16155 those extensions that have been omitted. For floating-point and
16156 Advanced SIMD (Neon) instructions, the settings of the options
16157 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
16158 floating-point and Advanced SIMD instructions will only be used if
16159 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
16160 @option{-mfpu} other than @samp{auto} will override the available
16161 floating-point and SIMD extension instructions.
16162
16163 For example, @samp{cortex-a9} can be found in three major
16164 configurations: integer only, with just a floating-point unit or with
16165 floating-point and Advanced SIMD. The default is to enable all the
16166 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
16167 be used to disable just the SIMD or both the SIMD and floating-point
16168 instructions respectively.
16169
16170 Permissible names for this option are the same as those for
16171 @option{-mtune}.
16172
16173 The following extension options are common to the listed CPUs:
16174
16175 @table @samp
16176 @item +nodsp
16177 Disable the DSP instructions on @samp{cortex-m33}.
16178
16179 @item +nofp
16180 Disables the floating-point instructions on @samp{arm9e},
16181 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
16182 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
16183 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
16184 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
16185 Disables the floating-point and SIMD instructions on
16186 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
16187 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
16188 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
16189 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
16190 @samp{cortex-a53} and @samp{cortex-a55}.
16191
16192 @item +nofp.dp
16193 Disables the double-precision component of the floating-point instructions
16194 on @samp{cortex-r5}, @samp{cortex-r52} and @samp{cortex-m7}.
16195
16196 @item +nosimd
16197 Disables the SIMD (but not floating-point) instructions on
16198 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
16199 and @samp{cortex-a9}.
16200
16201 @item +crypto
16202 Enables the cryptographic instructions on @samp{cortex-a32},
16203 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
16204 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
16205 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
16206 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
16207 @samp{cortex-a75.cortex-a55}.
16208 @end table
16209
16210 Additionally the @samp{generic-armv7-a} pseudo target defaults to
16211 VFPv3 with 16 double-precision registers. It supports the following
16212 extension options: @samp{vfpv3-d16}, @samp{vfpv3},
16213 @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16}, @samp{vfpv4-d16},
16214 @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3}, @samp{neon-fp16},
16215 @samp{neon-vfpv4}. The meanings are the same as for the extensions to
16216 @option{-march=armv7-a}.
16217
16218 @option{-mcpu=generic-@var{arch}} is also permissible, and is
16219 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
16220 See @option{-mtune} for more information.
16221
16222 @option{-mcpu=native} causes the compiler to auto-detect the CPU
16223 of the build computer. At present, this feature is only supported on
16224 GNU/Linux, and not all architectures are recognized. If the auto-detect
16225 is unsuccessful the option has no effect.
16226
16227 @item -mfpu=@var{name}
16228 @opindex mfpu
16229 This specifies what floating-point hardware (or hardware emulation) is
16230 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
16231 @samp{vfpv3},
16232 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
16233 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
16234 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
16235 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
16236 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
16237 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
16238 is an alias for @samp{vfpv2}.
16239
16240 The setting @samp{auto} is the default and is special. It causes the
16241 compiler to select the floating-point and Advanced SIMD instructions
16242 based on the settings of @option{-mcpu} and @option{-march}.
16243
16244 If the selected floating-point hardware includes the NEON extension
16245 (e.g. @option{-mfpu=neon}), note that floating-point
16246 operations are not generated by GCC's auto-vectorization pass unless
16247 @option{-funsafe-math-optimizations} is also specified. This is
16248 because NEON hardware does not fully implement the IEEE 754 standard for
16249 floating-point arithmetic (in particular denormal values are treated as
16250 zero), so the use of NEON instructions may lead to a loss of precision.
16251
16252 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
16253
16254 @item -mfp16-format=@var{name}
16255 @opindex mfp16-format
16256 Specify the format of the @code{__fp16} half-precision floating-point type.
16257 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
16258 the default is @samp{none}, in which case the @code{__fp16} type is not
16259 defined. @xref{Half-Precision}, for more information.
16260
16261 @item -mstructure-size-boundary=@var{n}
16262 @opindex mstructure-size-boundary
16263 The sizes of all structures and unions are rounded up to a multiple
16264 of the number of bits set by this option. Permissible values are 8, 32
16265 and 64. The default value varies for different toolchains. For the COFF
16266 targeted toolchain the default value is 8. A value of 64 is only allowed
16267 if the underlying ABI supports it.
16268
16269 Specifying a larger number can produce faster, more efficient code, but
16270 can also increase the size of the program. Different values are potentially
16271 incompatible. Code compiled with one value cannot necessarily expect to
16272 work with code or libraries compiled with another value, if they exchange
16273 information using structures or unions.
16274
16275 This option is deprecated.
16276
16277 @item -mabort-on-noreturn
16278 @opindex mabort-on-noreturn
16279 Generate a call to the function @code{abort} at the end of a
16280 @code{noreturn} function. It is executed if the function tries to
16281 return.
16282
16283 @item -mlong-calls
16284 @itemx -mno-long-calls
16285 @opindex mlong-calls
16286 @opindex mno-long-calls
16287 Tells the compiler to perform function calls by first loading the
16288 address of the function into a register and then performing a subroutine
16289 call on this register. This switch is needed if the target function
16290 lies outside of the 64-megabyte addressing range of the offset-based
16291 version of subroutine call instruction.
16292
16293 Even if this switch is enabled, not all function calls are turned
16294 into long calls. The heuristic is that static functions, functions
16295 that have the @code{short_call} attribute, functions that are inside
16296 the scope of a @code{#pragma no_long_calls} directive, and functions whose
16297 definitions have already been compiled within the current compilation
16298 unit are not turned into long calls. The exceptions to this rule are
16299 that weak function definitions, functions with the @code{long_call}
16300 attribute or the @code{section} attribute, and functions that are within
16301 the scope of a @code{#pragma long_calls} directive are always
16302 turned into long calls.
16303
16304 This feature is not enabled by default. Specifying
16305 @option{-mno-long-calls} restores the default behavior, as does
16306 placing the function calls within the scope of a @code{#pragma
16307 long_calls_off} directive. Note these switches have no effect on how
16308 the compiler generates code to handle function calls via function
16309 pointers.
16310
16311 @item -msingle-pic-base
16312 @opindex msingle-pic-base
16313 Treat the register used for PIC addressing as read-only, rather than
16314 loading it in the prologue for each function. The runtime system is
16315 responsible for initializing this register with an appropriate value
16316 before execution begins.
16317
16318 @item -mpic-register=@var{reg}
16319 @opindex mpic-register
16320 Specify the register to be used for PIC addressing.
16321 For standard PIC base case, the default is any suitable register
16322 determined by compiler. For single PIC base case, the default is
16323 @samp{R9} if target is EABI based or stack-checking is enabled,
16324 otherwise the default is @samp{R10}.
16325
16326 @item -mpic-data-is-text-relative
16327 @opindex mpic-data-is-text-relative
16328 Assume that the displacement between the text and data segments is fixed
16329 at static link time. This permits using PC-relative addressing
16330 operations to access data known to be in the data segment. For
16331 non-VxWorks RTP targets, this option is enabled by default. When
16332 disabled on such targets, it will enable @option{-msingle-pic-base} by
16333 default.
16334
16335 @item -mpoke-function-name
16336 @opindex mpoke-function-name
16337 Write the name of each function into the text section, directly
16338 preceding the function prologue. The generated code is similar to this:
16339
16340 @smallexample
16341 t0
16342 .ascii "arm_poke_function_name", 0
16343 .align
16344 t1
16345 .word 0xff000000 + (t1 - t0)
16346 arm_poke_function_name
16347 mov ip, sp
16348 stmfd sp!, @{fp, ip, lr, pc@}
16349 sub fp, ip, #4
16350 @end smallexample
16351
16352 When performing a stack backtrace, code can inspect the value of
16353 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
16354 location @code{pc - 12} and the top 8 bits are set, then we know that
16355 there is a function name embedded immediately preceding this location
16356 and has length @code{((pc[-3]) & 0xff000000)}.
16357
16358 @item -mthumb
16359 @itemx -marm
16360 @opindex marm
16361 @opindex mthumb
16362
16363 Select between generating code that executes in ARM and Thumb
16364 states. The default for most configurations is to generate code
16365 that executes in ARM state, but the default can be changed by
16366 configuring GCC with the @option{--with-mode=}@var{state}
16367 configure option.
16368
16369 You can also override the ARM and Thumb mode for each function
16370 by using the @code{target("thumb")} and @code{target("arm")} function attributes
16371 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
16372
16373 @item -mflip-thumb
16374 @opindex mflip-thumb
16375 Switch ARM/Thumb modes on alternating functions.
16376 This option is provided for regression testing of mixed Thumb/ARM code
16377 generation, and is not intended for ordinary use in compiling code.
16378
16379 @item -mtpcs-frame
16380 @opindex mtpcs-frame
16381 Generate a stack frame that is compliant with the Thumb Procedure Call
16382 Standard for all non-leaf functions. (A leaf function is one that does
16383 not call any other functions.) The default is @option{-mno-tpcs-frame}.
16384
16385 @item -mtpcs-leaf-frame
16386 @opindex mtpcs-leaf-frame
16387 Generate a stack frame that is compliant with the Thumb Procedure Call
16388 Standard for all leaf functions. (A leaf function is one that does
16389 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
16390
16391 @item -mcallee-super-interworking
16392 @opindex mcallee-super-interworking
16393 Gives all externally visible functions in the file being compiled an ARM
16394 instruction set header which switches to Thumb mode before executing the
16395 rest of the function. This allows these functions to be called from
16396 non-interworking code. This option is not valid in AAPCS configurations
16397 because interworking is enabled by default.
16398
16399 @item -mcaller-super-interworking
16400 @opindex mcaller-super-interworking
16401 Allows calls via function pointers (including virtual functions) to
16402 execute correctly regardless of whether the target code has been
16403 compiled for interworking or not. There is a small overhead in the cost
16404 of executing a function pointer if this option is enabled. This option
16405 is not valid in AAPCS configurations because interworking is enabled
16406 by default.
16407
16408 @item -mtp=@var{name}
16409 @opindex mtp
16410 Specify the access model for the thread local storage pointer. The valid
16411 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
16412 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
16413 (supported in the arm6k architecture), and @samp{auto}, which uses the
16414 best available method for the selected processor. The default setting is
16415 @samp{auto}.
16416
16417 @item -mtls-dialect=@var{dialect}
16418 @opindex mtls-dialect
16419 Specify the dialect to use for accessing thread local storage. Two
16420 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
16421 @samp{gnu} dialect selects the original GNU scheme for supporting
16422 local and global dynamic TLS models. The @samp{gnu2} dialect
16423 selects the GNU descriptor scheme, which provides better performance
16424 for shared libraries. The GNU descriptor scheme is compatible with
16425 the original scheme, but does require new assembler, linker and
16426 library support. Initial and local exec TLS models are unaffected by
16427 this option and always use the original scheme.
16428
16429 @item -mword-relocations
16430 @opindex mword-relocations
16431 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
16432 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
16433 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
16434 is specified.
16435
16436 @item -mfix-cortex-m3-ldrd
16437 @opindex mfix-cortex-m3-ldrd
16438 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
16439 with overlapping destination and base registers are used. This option avoids
16440 generating these instructions. This option is enabled by default when
16441 @option{-mcpu=cortex-m3} is specified.
16442
16443 @item -munaligned-access
16444 @itemx -mno-unaligned-access
16445 @opindex munaligned-access
16446 @opindex mno-unaligned-access
16447 Enables (or disables) reading and writing of 16- and 32- bit values
16448 from addresses that are not 16- or 32- bit aligned. By default
16449 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
16450 ARMv8-M Baseline architectures, and enabled for all other
16451 architectures. If unaligned access is not enabled then words in packed
16452 data structures are accessed a byte at a time.
16453
16454 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
16455 generated object file to either true or false, depending upon the
16456 setting of this option. If unaligned access is enabled then the
16457 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
16458 defined.
16459
16460 @item -mneon-for-64bits
16461 @opindex mneon-for-64bits
16462 Enables using Neon to handle scalar 64-bits operations. This is
16463 disabled by default since the cost of moving data from core registers
16464 to Neon is high.
16465
16466 @item -mslow-flash-data
16467 @opindex mslow-flash-data
16468 Assume loading data from flash is slower than fetching instruction.
16469 Therefore literal load is minimized for better performance.
16470 This option is only supported when compiling for ARMv7 M-profile and
16471 off by default.
16472
16473 @item -masm-syntax-unified
16474 @opindex masm-syntax-unified
16475 Assume inline assembler is using unified asm syntax. The default is
16476 currently off which implies divided syntax. This option has no impact
16477 on Thumb2. However, this may change in future releases of GCC.
16478 Divided syntax should be considered deprecated.
16479
16480 @item -mrestrict-it
16481 @opindex mrestrict-it
16482 Restricts generation of IT blocks to conform to the rules of ARMv8-A.
16483 IT blocks can only contain a single 16-bit instruction from a select
16484 set of instructions. This option is on by default for ARMv8-A Thumb mode.
16485
16486 @item -mprint-tune-info
16487 @opindex mprint-tune-info
16488 Print CPU tuning information as comment in assembler file. This is
16489 an option used only for regression testing of the compiler and not
16490 intended for ordinary use in compiling code. This option is disabled
16491 by default.
16492
16493 @item -mverbose-cost-dump
16494 @opindex mverbose-cost-dump
16495 Enable verbose cost model dumping in the debug dump files. This option is
16496 provided for use in debugging the compiler.
16497
16498 @item -mpure-code
16499 @opindex mpure-code
16500 Do not allow constant data to be placed in code sections.
16501 Additionally, when compiling for ELF object format give all text sections the
16502 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
16503 is only available when generating non-pic code for M-profile targets with the
16504 MOVT instruction.
16505
16506 @item -mcmse
16507 @opindex mcmse
16508 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
16509 Development Tools Engineering Specification", which can be found on
16510 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
16511 @end table
16512
16513 @node AVR Options
16514 @subsection AVR Options
16515 @cindex AVR Options
16516
16517 These options are defined for AVR implementations:
16518
16519 @table @gcctabopt
16520 @item -mmcu=@var{mcu}
16521 @opindex mmcu
16522 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
16523
16524 The default for this option is@tie{}@samp{avr2}.
16525
16526 GCC supports the following AVR devices and ISAs:
16527
16528 @include avr-mmcu.texi
16529
16530 @item -mabsdata
16531 @opindex mabsdata
16532
16533 Assume that all data in static storage can be accessed by LDS / STS
16534 instructions. This option has only an effect on reduced Tiny devices like
16535 ATtiny40. See also the @code{absdata}
16536 @ref{AVR Variable Attributes,variable attribute}.
16537
16538 @item -maccumulate-args
16539 @opindex maccumulate-args
16540 Accumulate outgoing function arguments and acquire/release the needed
16541 stack space for outgoing function arguments once in function
16542 prologue/epilogue. Without this option, outgoing arguments are pushed
16543 before calling a function and popped afterwards.
16544
16545 Popping the arguments after the function call can be expensive on
16546 AVR so that accumulating the stack space might lead to smaller
16547 executables because arguments need not be removed from the
16548 stack after such a function call.
16549
16550 This option can lead to reduced code size for functions that perform
16551 several calls to functions that get their arguments on the stack like
16552 calls to printf-like functions.
16553
16554 @item -mbranch-cost=@var{cost}
16555 @opindex mbranch-cost
16556 Set the branch costs for conditional branch instructions to
16557 @var{cost}. Reasonable values for @var{cost} are small, non-negative
16558 integers. The default branch cost is 0.
16559
16560 @item -mcall-prologues
16561 @opindex mcall-prologues
16562 Functions prologues/epilogues are expanded as calls to appropriate
16563 subroutines. Code size is smaller.
16564
16565 @item -mgas-isr-prologues
16566 @opindex mgas-isr-prologues
16567 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
16568 instruction supported by GNU Binutils.
16569 If this option is on, the feature can still be disabled for individual
16570 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
16571 function attribute. This feature is activated per default
16572 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
16573 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
16574
16575 @item -mint8
16576 @opindex mint8
16577 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
16578 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
16579 and @code{long long} is 4 bytes. Please note that this option does not
16580 conform to the C standards, but it results in smaller code
16581 size.
16582
16583 @item -mmain-is-OS_task
16584 @opindex mmain-is-OS_task
16585 Do not save registers in @code{main}. The effect is the same like
16586 attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
16587 to @code{main}. It is activated per default if optimization is on.
16588
16589 @item -mn-flash=@var{num}
16590 @opindex mn-flash
16591 Assume that the flash memory has a size of
16592 @var{num} times 64@tie{}KiB.
16593
16594 @item -mno-interrupts
16595 @opindex mno-interrupts
16596 Generated code is not compatible with hardware interrupts.
16597 Code size is smaller.
16598
16599 @item -mrelax
16600 @opindex mrelax
16601 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
16602 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
16603 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
16604 the assembler's command line and the @option{--relax} option to the
16605 linker's command line.
16606
16607 Jump relaxing is performed by the linker because jump offsets are not
16608 known before code is located. Therefore, the assembler code generated by the
16609 compiler is the same, but the instructions in the executable may
16610 differ from instructions in the assembler code.
16611
16612 Relaxing must be turned on if linker stubs are needed, see the
16613 section on @code{EIND} and linker stubs below.
16614
16615 @item -mrmw
16616 @opindex mrmw
16617 Assume that the device supports the Read-Modify-Write
16618 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
16619
16620 @item -mshort-calls
16621 @opindex mshort-calls
16622
16623 Assume that @code{RJMP} and @code{RCALL} can target the whole
16624 program memory.
16625
16626 This option is used internally for multilib selection. It is
16627 not an optimization option, and you don't need to set it by hand.
16628
16629 @item -msp8
16630 @opindex msp8
16631 Treat the stack pointer register as an 8-bit register,
16632 i.e.@: assume the high byte of the stack pointer is zero.
16633 In general, you don't need to set this option by hand.
16634
16635 This option is used internally by the compiler to select and
16636 build multilibs for architectures @code{avr2} and @code{avr25}.
16637 These architectures mix devices with and without @code{SPH}.
16638 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
16639 the compiler driver adds or removes this option from the compiler
16640 proper's command line, because the compiler then knows if the device
16641 or architecture has an 8-bit stack pointer and thus no @code{SPH}
16642 register or not.
16643
16644 @item -mstrict-X
16645 @opindex mstrict-X
16646 Use address register @code{X} in a way proposed by the hardware. This means
16647 that @code{X} is only used in indirect, post-increment or
16648 pre-decrement addressing.
16649
16650 Without this option, the @code{X} register may be used in the same way
16651 as @code{Y} or @code{Z} which then is emulated by additional
16652 instructions.
16653 For example, loading a value with @code{X+const} addressing with a
16654 small non-negative @code{const < 64} to a register @var{Rn} is
16655 performed as
16656
16657 @example
16658 adiw r26, const ; X += const
16659 ld @var{Rn}, X ; @var{Rn} = *X
16660 sbiw r26, const ; X -= const
16661 @end example
16662
16663 @item -mtiny-stack
16664 @opindex mtiny-stack
16665 Only change the lower 8@tie{}bits of the stack pointer.
16666
16667 @item -mfract-convert-truncate
16668 @opindex mfract-convert-truncate
16669 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
16670
16671 @item -nodevicelib
16672 @opindex nodevicelib
16673 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
16674
16675 @item -Waddr-space-convert
16676 @opindex Waddr-space-convert
16677 Warn about conversions between address spaces in the case where the
16678 resulting address space is not contained in the incoming address space.
16679
16680 @item -Wmisspelled-isr
16681 @opindex Wmisspelled-isr
16682 Warn if the ISR is misspelled, i.e. without __vector prefix.
16683 Enabled by default.
16684 @end table
16685
16686 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
16687 @cindex @code{EIND}
16688 Pointers in the implementation are 16@tie{}bits wide.
16689 The address of a function or label is represented as word address so
16690 that indirect jumps and calls can target any code address in the
16691 range of 64@tie{}Ki words.
16692
16693 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
16694 bytes of program memory space, there is a special function register called
16695 @code{EIND} that serves as most significant part of the target address
16696 when @code{EICALL} or @code{EIJMP} instructions are used.
16697
16698 Indirect jumps and calls on these devices are handled as follows by
16699 the compiler and are subject to some limitations:
16700
16701 @itemize @bullet
16702
16703 @item
16704 The compiler never sets @code{EIND}.
16705
16706 @item
16707 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
16708 instructions or might read @code{EIND} directly in order to emulate an
16709 indirect call/jump by means of a @code{RET} instruction.
16710
16711 @item
16712 The compiler assumes that @code{EIND} never changes during the startup
16713 code or during the application. In particular, @code{EIND} is not
16714 saved/restored in function or interrupt service routine
16715 prologue/epilogue.
16716
16717 @item
16718 For indirect calls to functions and computed goto, the linker
16719 generates @emph{stubs}. Stubs are jump pads sometimes also called
16720 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
16721 The stub contains a direct jump to the desired address.
16722
16723 @item
16724 Linker relaxation must be turned on so that the linker generates
16725 the stubs correctly in all situations. See the compiler option
16726 @option{-mrelax} and the linker option @option{--relax}.
16727 There are corner cases where the linker is supposed to generate stubs
16728 but aborts without relaxation and without a helpful error message.
16729
16730 @item
16731 The default linker script is arranged for code with @code{EIND = 0}.
16732 If code is supposed to work for a setup with @code{EIND != 0}, a custom
16733 linker script has to be used in order to place the sections whose
16734 name start with @code{.trampolines} into the segment where @code{EIND}
16735 points to.
16736
16737 @item
16738 The startup code from libgcc never sets @code{EIND}.
16739 Notice that startup code is a blend of code from libgcc and AVR-LibC.
16740 For the impact of AVR-LibC on @code{EIND}, see the
16741 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
16742
16743 @item
16744 It is legitimate for user-specific startup code to set up @code{EIND}
16745 early, for example by means of initialization code located in
16746 section @code{.init3}. Such code runs prior to general startup code
16747 that initializes RAM and calls constructors, but after the bit
16748 of startup code from AVR-LibC that sets @code{EIND} to the segment
16749 where the vector table is located.
16750 @example
16751 #include <avr/io.h>
16752
16753 static void
16754 __attribute__((section(".init3"),naked,used,no_instrument_function))
16755 init3_set_eind (void)
16756 @{
16757 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
16758 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
16759 @}
16760 @end example
16761
16762 @noindent
16763 The @code{__trampolines_start} symbol is defined in the linker script.
16764
16765 @item
16766 Stubs are generated automatically by the linker if
16767 the following two conditions are met:
16768 @itemize @minus
16769
16770 @item The address of a label is taken by means of the @code{gs} modifier
16771 (short for @emph{generate stubs}) like so:
16772 @example
16773 LDI r24, lo8(gs(@var{func}))
16774 LDI r25, hi8(gs(@var{func}))
16775 @end example
16776 @item The final location of that label is in a code segment
16777 @emph{outside} the segment where the stubs are located.
16778 @end itemize
16779
16780 @item
16781 The compiler emits such @code{gs} modifiers for code labels in the
16782 following situations:
16783 @itemize @minus
16784 @item Taking address of a function or code label.
16785 @item Computed goto.
16786 @item If prologue-save function is used, see @option{-mcall-prologues}
16787 command-line option.
16788 @item Switch/case dispatch tables. If you do not want such dispatch
16789 tables you can specify the @option{-fno-jump-tables} command-line option.
16790 @item C and C++ constructors/destructors called during startup/shutdown.
16791 @item If the tools hit a @code{gs()} modifier explained above.
16792 @end itemize
16793
16794 @item
16795 Jumping to non-symbolic addresses like so is @emph{not} supported:
16796
16797 @example
16798 int main (void)
16799 @{
16800 /* Call function at word address 0x2 */
16801 return ((int(*)(void)) 0x2)();
16802 @}
16803 @end example
16804
16805 Instead, a stub has to be set up, i.e.@: the function has to be called
16806 through a symbol (@code{func_4} in the example):
16807
16808 @example
16809 int main (void)
16810 @{
16811 extern int func_4 (void);
16812
16813 /* Call function at byte address 0x4 */
16814 return func_4();
16815 @}
16816 @end example
16817
16818 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
16819 Alternatively, @code{func_4} can be defined in the linker script.
16820 @end itemize
16821
16822 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
16823 @cindex @code{RAMPD}
16824 @cindex @code{RAMPX}
16825 @cindex @code{RAMPY}
16826 @cindex @code{RAMPZ}
16827 Some AVR devices support memories larger than the 64@tie{}KiB range
16828 that can be accessed with 16-bit pointers. To access memory locations
16829 outside this 64@tie{}KiB range, the content of a @code{RAMP}
16830 register is used as high part of the address:
16831 The @code{X}, @code{Y}, @code{Z} address register is concatenated
16832 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
16833 register, respectively, to get a wide address. Similarly,
16834 @code{RAMPD} is used together with direct addressing.
16835
16836 @itemize
16837 @item
16838 The startup code initializes the @code{RAMP} special function
16839 registers with zero.
16840
16841 @item
16842 If a @ref{AVR Named Address Spaces,named address space} other than
16843 generic or @code{__flash} is used, then @code{RAMPZ} is set
16844 as needed before the operation.
16845
16846 @item
16847 If the device supports RAM larger than 64@tie{}KiB and the compiler
16848 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
16849 is reset to zero after the operation.
16850
16851 @item
16852 If the device comes with a specific @code{RAMP} register, the ISR
16853 prologue/epilogue saves/restores that SFR and initializes it with
16854 zero in case the ISR code might (implicitly) use it.
16855
16856 @item
16857 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
16858 If you use inline assembler to read from locations outside the
16859 16-bit address range and change one of the @code{RAMP} registers,
16860 you must reset it to zero after the access.
16861
16862 @end itemize
16863
16864 @subsubsection AVR Built-in Macros
16865
16866 GCC defines several built-in macros so that the user code can test
16867 for the presence or absence of features. Almost any of the following
16868 built-in macros are deduced from device capabilities and thus
16869 triggered by the @option{-mmcu=} command-line option.
16870
16871 For even more AVR-specific built-in macros see
16872 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
16873
16874 @table @code
16875
16876 @item __AVR_ARCH__
16877 Build-in macro that resolves to a decimal number that identifies the
16878 architecture and depends on the @option{-mmcu=@var{mcu}} option.
16879 Possible values are:
16880
16881 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
16882 @code{4}, @code{5}, @code{51}, @code{6}
16883
16884 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
16885 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
16886
16887 respectively and
16888
16889 @code{100},
16890 @code{102}, @code{103}, @code{104},
16891 @code{105}, @code{106}, @code{107}
16892
16893 for @var{mcu}=@code{avrtiny},
16894 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
16895 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
16896 If @var{mcu} specifies a device, this built-in macro is set
16897 accordingly. For example, with @option{-mmcu=atmega8} the macro is
16898 defined to @code{4}.
16899
16900 @item __AVR_@var{Device}__
16901 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
16902 the device's name. For example, @option{-mmcu=atmega8} defines the
16903 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
16904 @code{__AVR_ATtiny261A__}, etc.
16905
16906 The built-in macros' names follow
16907 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
16908 the device name as from the AVR user manual. The difference between
16909 @var{Device} in the built-in macro and @var{device} in
16910 @option{-mmcu=@var{device}} is that the latter is always lowercase.
16911
16912 If @var{device} is not a device but only a core architecture like
16913 @samp{avr51}, this macro is not defined.
16914
16915 @item __AVR_DEVICE_NAME__
16916 Setting @option{-mmcu=@var{device}} defines this built-in macro to
16917 the device's name. For example, with @option{-mmcu=atmega8} the macro
16918 is defined to @code{atmega8}.
16919
16920 If @var{device} is not a device but only a core architecture like
16921 @samp{avr51}, this macro is not defined.
16922
16923 @item __AVR_XMEGA__
16924 The device / architecture belongs to the XMEGA family of devices.
16925
16926 @item __AVR_HAVE_ELPM__
16927 The device has the @code{ELPM} instruction.
16928
16929 @item __AVR_HAVE_ELPMX__
16930 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
16931 R@var{n},Z+} instructions.
16932
16933 @item __AVR_HAVE_MOVW__
16934 The device has the @code{MOVW} instruction to perform 16-bit
16935 register-register moves.
16936
16937 @item __AVR_HAVE_LPMX__
16938 The device has the @code{LPM R@var{n},Z} and
16939 @code{LPM R@var{n},Z+} instructions.
16940
16941 @item __AVR_HAVE_MUL__
16942 The device has a hardware multiplier.
16943
16944 @item __AVR_HAVE_JMP_CALL__
16945 The device has the @code{JMP} and @code{CALL} instructions.
16946 This is the case for devices with more than 8@tie{}KiB of program
16947 memory.
16948
16949 @item __AVR_HAVE_EIJMP_EICALL__
16950 @itemx __AVR_3_BYTE_PC__
16951 The device has the @code{EIJMP} and @code{EICALL} instructions.
16952 This is the case for devices with more than 128@tie{}KiB of program memory.
16953 This also means that the program counter
16954 (PC) is 3@tie{}bytes wide.
16955
16956 @item __AVR_2_BYTE_PC__
16957 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
16958 with up to 128@tie{}KiB of program memory.
16959
16960 @item __AVR_HAVE_8BIT_SP__
16961 @itemx __AVR_HAVE_16BIT_SP__
16962 The stack pointer (SP) register is treated as 8-bit respectively
16963 16-bit register by the compiler.
16964 The definition of these macros is affected by @option{-mtiny-stack}.
16965
16966 @item __AVR_HAVE_SPH__
16967 @itemx __AVR_SP8__
16968 The device has the SPH (high part of stack pointer) special function
16969 register or has an 8-bit stack pointer, respectively.
16970 The definition of these macros is affected by @option{-mmcu=} and
16971 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
16972 by @option{-msp8}.
16973
16974 @item __AVR_HAVE_RAMPD__
16975 @itemx __AVR_HAVE_RAMPX__
16976 @itemx __AVR_HAVE_RAMPY__
16977 @itemx __AVR_HAVE_RAMPZ__
16978 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
16979 @code{RAMPZ} special function register, respectively.
16980
16981 @item __NO_INTERRUPTS__
16982 This macro reflects the @option{-mno-interrupts} command-line option.
16983
16984 @item __AVR_ERRATA_SKIP__
16985 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
16986 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
16987 instructions because of a hardware erratum. Skip instructions are
16988 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
16989 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
16990 set.
16991
16992 @item __AVR_ISA_RMW__
16993 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
16994
16995 @item __AVR_SFR_OFFSET__=@var{offset}
16996 Instructions that can address I/O special function registers directly
16997 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
16998 address as if addressed by an instruction to access RAM like @code{LD}
16999 or @code{STS}. This offset depends on the device architecture and has
17000 to be subtracted from the RAM address in order to get the
17001 respective I/O@tie{}address.
17002
17003 @item __AVR_SHORT_CALLS__
17004 The @option{-mshort-calls} command line option is set.
17005
17006 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
17007 Some devices support reading from flash memory by means of @code{LD*}
17008 instructions. The flash memory is seen in the data address space
17009 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
17010 is not defined, this feature is not available. If defined,
17011 the address space is linear and there is no need to put
17012 @code{.rodata} into RAM. This is handled by the default linker
17013 description file, and is currently available for
17014 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
17015 there is no need to use address spaces like @code{__flash} or
17016 features like attribute @code{progmem} and @code{pgm_read_*}.
17017
17018 @item __WITH_AVRLIBC__
17019 The compiler is configured to be used together with AVR-Libc.
17020 See the @option{--with-avrlibc} configure option.
17021
17022 @end table
17023
17024 @node Blackfin Options
17025 @subsection Blackfin Options
17026 @cindex Blackfin Options
17027
17028 @table @gcctabopt
17029 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
17030 @opindex mcpu=
17031 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
17032 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
17033 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
17034 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
17035 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
17036 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
17037 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
17038 @samp{bf561}, @samp{bf592}.
17039
17040 The optional @var{sirevision} specifies the silicon revision of the target
17041 Blackfin processor. Any workarounds available for the targeted silicon revision
17042 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
17043 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
17044 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
17045 hexadecimal digits representing the major and minor numbers in the silicon
17046 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
17047 is not defined. If @var{sirevision} is @samp{any}, the
17048 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
17049 If this optional @var{sirevision} is not used, GCC assumes the latest known
17050 silicon revision of the targeted Blackfin processor.
17051
17052 GCC defines a preprocessor macro for the specified @var{cpu}.
17053 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
17054 provided by libgloss to be linked in if @option{-msim} is not given.
17055
17056 Without this option, @samp{bf532} is used as the processor by default.
17057
17058 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
17059 only the preprocessor macro is defined.
17060
17061 @item -msim
17062 @opindex msim
17063 Specifies that the program will be run on the simulator. This causes
17064 the simulator BSP provided by libgloss to be linked in. This option
17065 has effect only for @samp{bfin-elf} toolchain.
17066 Certain other options, such as @option{-mid-shared-library} and
17067 @option{-mfdpic}, imply @option{-msim}.
17068
17069 @item -momit-leaf-frame-pointer
17070 @opindex momit-leaf-frame-pointer
17071 Don't keep the frame pointer in a register for leaf functions. This
17072 avoids the instructions to save, set up and restore frame pointers and
17073 makes an extra register available in leaf functions.
17074
17075 @item -mspecld-anomaly
17076 @opindex mspecld-anomaly
17077 When enabled, the compiler ensures that the generated code does not
17078 contain speculative loads after jump instructions. If this option is used,
17079 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
17080
17081 @item -mno-specld-anomaly
17082 @opindex mno-specld-anomaly
17083 Don't generate extra code to prevent speculative loads from occurring.
17084
17085 @item -mcsync-anomaly
17086 @opindex mcsync-anomaly
17087 When enabled, the compiler ensures that the generated code does not
17088 contain CSYNC or SSYNC instructions too soon after conditional branches.
17089 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
17090
17091 @item -mno-csync-anomaly
17092 @opindex mno-csync-anomaly
17093 Don't generate extra code to prevent CSYNC or SSYNC instructions from
17094 occurring too soon after a conditional branch.
17095
17096 @item -mlow-64k
17097 @opindex mlow-64k
17098 When enabled, the compiler is free to take advantage of the knowledge that
17099 the entire program fits into the low 64k of memory.
17100
17101 @item -mno-low-64k
17102 @opindex mno-low-64k
17103 Assume that the program is arbitrarily large. This is the default.
17104
17105 @item -mstack-check-l1
17106 @opindex mstack-check-l1
17107 Do stack checking using information placed into L1 scratchpad memory by the
17108 uClinux kernel.
17109
17110 @item -mid-shared-library
17111 @opindex mid-shared-library
17112 Generate code that supports shared libraries via the library ID method.
17113 This allows for execute in place and shared libraries in an environment
17114 without virtual memory management. This option implies @option{-fPIC}.
17115 With a @samp{bfin-elf} target, this option implies @option{-msim}.
17116
17117 @item -mno-id-shared-library
17118 @opindex mno-id-shared-library
17119 Generate code that doesn't assume ID-based shared libraries are being used.
17120 This is the default.
17121
17122 @item -mleaf-id-shared-library
17123 @opindex mleaf-id-shared-library
17124 Generate code that supports shared libraries via the library ID method,
17125 but assumes that this library or executable won't link against any other
17126 ID shared libraries. That allows the compiler to use faster code for jumps
17127 and calls.
17128
17129 @item -mno-leaf-id-shared-library
17130 @opindex mno-leaf-id-shared-library
17131 Do not assume that the code being compiled won't link against any ID shared
17132 libraries. Slower code is generated for jump and call insns.
17133
17134 @item -mshared-library-id=n
17135 @opindex mshared-library-id
17136 Specifies the identification number of the ID-based shared library being
17137 compiled. Specifying a value of 0 generates more compact code; specifying
17138 other values forces the allocation of that number to the current
17139 library but is no more space- or time-efficient than omitting this option.
17140
17141 @item -msep-data
17142 @opindex msep-data
17143 Generate code that allows the data segment to be located in a different
17144 area of memory from the text segment. This allows for execute in place in
17145 an environment without virtual memory management by eliminating relocations
17146 against the text section.
17147
17148 @item -mno-sep-data
17149 @opindex mno-sep-data
17150 Generate code that assumes that the data segment follows the text segment.
17151 This is the default.
17152
17153 @item -mlong-calls
17154 @itemx -mno-long-calls
17155 @opindex mlong-calls
17156 @opindex mno-long-calls
17157 Tells the compiler to perform function calls by first loading the
17158 address of the function into a register and then performing a subroutine
17159 call on this register. This switch is needed if the target function
17160 lies outside of the 24-bit addressing range of the offset-based
17161 version of subroutine call instruction.
17162
17163 This feature is not enabled by default. Specifying
17164 @option{-mno-long-calls} restores the default behavior. Note these
17165 switches have no effect on how the compiler generates code to handle
17166 function calls via function pointers.
17167
17168 @item -mfast-fp
17169 @opindex mfast-fp
17170 Link with the fast floating-point library. This library relaxes some of
17171 the IEEE floating-point standard's rules for checking inputs against
17172 Not-a-Number (NAN), in the interest of performance.
17173
17174 @item -minline-plt
17175 @opindex minline-plt
17176 Enable inlining of PLT entries in function calls to functions that are
17177 not known to bind locally. It has no effect without @option{-mfdpic}.
17178
17179 @item -mmulticore
17180 @opindex mmulticore
17181 Build a standalone application for multicore Blackfin processors.
17182 This option causes proper start files and link scripts supporting
17183 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
17184 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
17185
17186 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
17187 selects the one-application-per-core programming model. Without
17188 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
17189 programming model is used. In this model, the main function of Core B
17190 should be named as @code{coreb_main}.
17191
17192 If this option is not used, the single-core application programming
17193 model is used.
17194
17195 @item -mcorea
17196 @opindex mcorea
17197 Build a standalone application for Core A of BF561 when using
17198 the one-application-per-core programming model. Proper start files
17199 and link scripts are used to support Core A, and the macro
17200 @code{__BFIN_COREA} is defined.
17201 This option can only be used in conjunction with @option{-mmulticore}.
17202
17203 @item -mcoreb
17204 @opindex mcoreb
17205 Build a standalone application for Core B of BF561 when using
17206 the one-application-per-core programming model. Proper start files
17207 and link scripts are used to support Core B, and the macro
17208 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
17209 should be used instead of @code{main}.
17210 This option can only be used in conjunction with @option{-mmulticore}.
17211
17212 @item -msdram
17213 @opindex msdram
17214 Build a standalone application for SDRAM. Proper start files and
17215 link scripts are used to put the application into SDRAM, and the macro
17216 @code{__BFIN_SDRAM} is defined.
17217 The loader should initialize SDRAM before loading the application.
17218
17219 @item -micplb
17220 @opindex micplb
17221 Assume that ICPLBs are enabled at run time. This has an effect on certain
17222 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
17223 are enabled; for standalone applications the default is off.
17224 @end table
17225
17226 @node C6X Options
17227 @subsection C6X Options
17228 @cindex C6X Options
17229
17230 @table @gcctabopt
17231 @item -march=@var{name}
17232 @opindex march
17233 This specifies the name of the target architecture. GCC uses this
17234 name to determine what kind of instructions it can emit when generating
17235 assembly code. Permissible names are: @samp{c62x},
17236 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
17237
17238 @item -mbig-endian
17239 @opindex mbig-endian
17240 Generate code for a big-endian target.
17241
17242 @item -mlittle-endian
17243 @opindex mlittle-endian
17244 Generate code for a little-endian target. This is the default.
17245
17246 @item -msim
17247 @opindex msim
17248 Choose startup files and linker script suitable for the simulator.
17249
17250 @item -msdata=default
17251 @opindex msdata=default
17252 Put small global and static data in the @code{.neardata} section,
17253 which is pointed to by register @code{B14}. Put small uninitialized
17254 global and static data in the @code{.bss} section, which is adjacent
17255 to the @code{.neardata} section. Put small read-only data into the
17256 @code{.rodata} section. The corresponding sections used for large
17257 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
17258
17259 @item -msdata=all
17260 @opindex msdata=all
17261 Put all data, not just small objects, into the sections reserved for
17262 small data, and use addressing relative to the @code{B14} register to
17263 access them.
17264
17265 @item -msdata=none
17266 @opindex msdata=none
17267 Make no use of the sections reserved for small data, and use absolute
17268 addresses to access all data. Put all initialized global and static
17269 data in the @code{.fardata} section, and all uninitialized data in the
17270 @code{.far} section. Put all constant data into the @code{.const}
17271 section.
17272 @end table
17273
17274 @node CRIS Options
17275 @subsection CRIS Options
17276 @cindex CRIS Options
17277
17278 These options are defined specifically for the CRIS ports.
17279
17280 @table @gcctabopt
17281 @item -march=@var{architecture-type}
17282 @itemx -mcpu=@var{architecture-type}
17283 @opindex march
17284 @opindex mcpu
17285 Generate code for the specified architecture. The choices for
17286 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
17287 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
17288 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
17289 @samp{v10}.
17290
17291 @item -mtune=@var{architecture-type}
17292 @opindex mtune
17293 Tune to @var{architecture-type} everything applicable about the generated
17294 code, except for the ABI and the set of available instructions. The
17295 choices for @var{architecture-type} are the same as for
17296 @option{-march=@var{architecture-type}}.
17297
17298 @item -mmax-stack-frame=@var{n}
17299 @opindex mmax-stack-frame
17300 Warn when the stack frame of a function exceeds @var{n} bytes.
17301
17302 @item -metrax4
17303 @itemx -metrax100
17304 @opindex metrax4
17305 @opindex metrax100
17306 The options @option{-metrax4} and @option{-metrax100} are synonyms for
17307 @option{-march=v3} and @option{-march=v8} respectively.
17308
17309 @item -mmul-bug-workaround
17310 @itemx -mno-mul-bug-workaround
17311 @opindex mmul-bug-workaround
17312 @opindex mno-mul-bug-workaround
17313 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
17314 models where it applies. This option is active by default.
17315
17316 @item -mpdebug
17317 @opindex mpdebug
17318 Enable CRIS-specific verbose debug-related information in the assembly
17319 code. This option also has the effect of turning off the @samp{#NO_APP}
17320 formatted-code indicator to the assembler at the beginning of the
17321 assembly file.
17322
17323 @item -mcc-init
17324 @opindex mcc-init
17325 Do not use condition-code results from previous instruction; always emit
17326 compare and test instructions before use of condition codes.
17327
17328 @item -mno-side-effects
17329 @opindex mno-side-effects
17330 Do not emit instructions with side effects in addressing modes other than
17331 post-increment.
17332
17333 @item -mstack-align
17334 @itemx -mno-stack-align
17335 @itemx -mdata-align
17336 @itemx -mno-data-align
17337 @itemx -mconst-align
17338 @itemx -mno-const-align
17339 @opindex mstack-align
17340 @opindex mno-stack-align
17341 @opindex mdata-align
17342 @opindex mno-data-align
17343 @opindex mconst-align
17344 @opindex mno-const-align
17345 These options (@samp{no-} options) arrange (eliminate arrangements) for the
17346 stack frame, individual data and constants to be aligned for the maximum
17347 single data access size for the chosen CPU model. The default is to
17348 arrange for 32-bit alignment. ABI details such as structure layout are
17349 not affected by these options.
17350
17351 @item -m32-bit
17352 @itemx -m16-bit
17353 @itemx -m8-bit
17354 @opindex m32-bit
17355 @opindex m16-bit
17356 @opindex m8-bit
17357 Similar to the stack- data- and const-align options above, these options
17358 arrange for stack frame, writable data and constants to all be 32-bit,
17359 16-bit or 8-bit aligned. The default is 32-bit alignment.
17360
17361 @item -mno-prologue-epilogue
17362 @itemx -mprologue-epilogue
17363 @opindex mno-prologue-epilogue
17364 @opindex mprologue-epilogue
17365 With @option{-mno-prologue-epilogue}, the normal function prologue and
17366 epilogue which set up the stack frame are omitted and no return
17367 instructions or return sequences are generated in the code. Use this
17368 option only together with visual inspection of the compiled code: no
17369 warnings or errors are generated when call-saved registers must be saved,
17370 or storage for local variables needs to be allocated.
17371
17372 @item -mno-gotplt
17373 @itemx -mgotplt
17374 @opindex mno-gotplt
17375 @opindex mgotplt
17376 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
17377 instruction sequences that load addresses for functions from the PLT part
17378 of the GOT rather than (traditional on other architectures) calls to the
17379 PLT@. The default is @option{-mgotplt}.
17380
17381 @item -melf
17382 @opindex melf
17383 Legacy no-op option only recognized with the cris-axis-elf and
17384 cris-axis-linux-gnu targets.
17385
17386 @item -mlinux
17387 @opindex mlinux
17388 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
17389
17390 @item -sim
17391 @opindex sim
17392 This option, recognized for the cris-axis-elf, arranges
17393 to link with input-output functions from a simulator library. Code,
17394 initialized data and zero-initialized data are allocated consecutively.
17395
17396 @item -sim2
17397 @opindex sim2
17398 Like @option{-sim}, but pass linker options to locate initialized data at
17399 0x40000000 and zero-initialized data at 0x80000000.
17400 @end table
17401
17402 @node CR16 Options
17403 @subsection CR16 Options
17404 @cindex CR16 Options
17405
17406 These options are defined specifically for the CR16 ports.
17407
17408 @table @gcctabopt
17409
17410 @item -mmac
17411 @opindex mmac
17412 Enable the use of multiply-accumulate instructions. Disabled by default.
17413
17414 @item -mcr16cplus
17415 @itemx -mcr16c
17416 @opindex mcr16cplus
17417 @opindex mcr16c
17418 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
17419 is default.
17420
17421 @item -msim
17422 @opindex msim
17423 Links the library libsim.a which is in compatible with simulator. Applicable
17424 to ELF compiler only.
17425
17426 @item -mint32
17427 @opindex mint32
17428 Choose integer type as 32-bit wide.
17429
17430 @item -mbit-ops
17431 @opindex mbit-ops
17432 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
17433
17434 @item -mdata-model=@var{model}
17435 @opindex mdata-model
17436 Choose a data model. The choices for @var{model} are @samp{near},
17437 @samp{far} or @samp{medium}. @samp{medium} is default.
17438 However, @samp{far} is not valid with @option{-mcr16c}, as the
17439 CR16C architecture does not support the far data model.
17440 @end table
17441
17442 @node Darwin Options
17443 @subsection Darwin Options
17444 @cindex Darwin options
17445
17446 These options are defined for all architectures running the Darwin operating
17447 system.
17448
17449 FSF GCC on Darwin does not create ``fat'' object files; it creates
17450 an object file for the single architecture that GCC was built to
17451 target. Apple's GCC on Darwin does create ``fat'' files if multiple
17452 @option{-arch} options are used; it does so by running the compiler or
17453 linker multiple times and joining the results together with
17454 @file{lipo}.
17455
17456 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
17457 @samp{i686}) is determined by the flags that specify the ISA
17458 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
17459 @option{-force_cpusubtype_ALL} option can be used to override this.
17460
17461 The Darwin tools vary in their behavior when presented with an ISA
17462 mismatch. The assembler, @file{as}, only permits instructions to
17463 be used that are valid for the subtype of the file it is generating,
17464 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
17465 The linker for shared libraries, @file{/usr/bin/libtool}, fails
17466 and prints an error if asked to create a shared library with a less
17467 restrictive subtype than its input files (for instance, trying to put
17468 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
17469 for executables, @command{ld}, quietly gives the executable the most
17470 restrictive subtype of any of its input files.
17471
17472 @table @gcctabopt
17473 @item -F@var{dir}
17474 @opindex F
17475 Add the framework directory @var{dir} to the head of the list of
17476 directories to be searched for header files. These directories are
17477 interleaved with those specified by @option{-I} options and are
17478 scanned in a left-to-right order.
17479
17480 A framework directory is a directory with frameworks in it. A
17481 framework is a directory with a @file{Headers} and/or
17482 @file{PrivateHeaders} directory contained directly in it that ends
17483 in @file{.framework}. The name of a framework is the name of this
17484 directory excluding the @file{.framework}. Headers associated with
17485 the framework are found in one of those two directories, with
17486 @file{Headers} being searched first. A subframework is a framework
17487 directory that is in a framework's @file{Frameworks} directory.
17488 Includes of subframework headers can only appear in a header of a
17489 framework that contains the subframework, or in a sibling subframework
17490 header. Two subframeworks are siblings if they occur in the same
17491 framework. A subframework should not have the same name as a
17492 framework; a warning is issued if this is violated. Currently a
17493 subframework cannot have subframeworks; in the future, the mechanism
17494 may be extended to support this. The standard frameworks can be found
17495 in @file{/System/Library/Frameworks} and
17496 @file{/Library/Frameworks}. An example include looks like
17497 @code{#include <Framework/header.h>}, where @file{Framework} denotes
17498 the name of the framework and @file{header.h} is found in the
17499 @file{PrivateHeaders} or @file{Headers} directory.
17500
17501 @item -iframework@var{dir}
17502 @opindex iframework
17503 Like @option{-F} except the directory is a treated as a system
17504 directory. The main difference between this @option{-iframework} and
17505 @option{-F} is that with @option{-iframework} the compiler does not
17506 warn about constructs contained within header files found via
17507 @var{dir}. This option is valid only for the C family of languages.
17508
17509 @item -gused
17510 @opindex gused
17511 Emit debugging information for symbols that are used. For stabs
17512 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
17513 This is by default ON@.
17514
17515 @item -gfull
17516 @opindex gfull
17517 Emit debugging information for all symbols and types.
17518
17519 @item -mmacosx-version-min=@var{version}
17520 The earliest version of MacOS X that this executable will run on
17521 is @var{version}. Typical values of @var{version} include @code{10.1},
17522 @code{10.2}, and @code{10.3.9}.
17523
17524 If the compiler was built to use the system's headers by default,
17525 then the default for this option is the system version on which the
17526 compiler is running, otherwise the default is to make choices that
17527 are compatible with as many systems and code bases as possible.
17528
17529 @item -mkernel
17530 @opindex mkernel
17531 Enable kernel development mode. The @option{-mkernel} option sets
17532 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
17533 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
17534 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
17535 applicable. This mode also sets @option{-mno-altivec},
17536 @option{-msoft-float}, @option{-fno-builtin} and
17537 @option{-mlong-branch} for PowerPC targets.
17538
17539 @item -mone-byte-bool
17540 @opindex mone-byte-bool
17541 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
17542 By default @code{sizeof(bool)} is @code{4} when compiling for
17543 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
17544 option has no effect on x86.
17545
17546 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
17547 to generate code that is not binary compatible with code generated
17548 without that switch. Using this switch may require recompiling all
17549 other modules in a program, including system libraries. Use this
17550 switch to conform to a non-default data model.
17551
17552 @item -mfix-and-continue
17553 @itemx -ffix-and-continue
17554 @itemx -findirect-data
17555 @opindex mfix-and-continue
17556 @opindex ffix-and-continue
17557 @opindex findirect-data
17558 Generate code suitable for fast turnaround development, such as to
17559 allow GDB to dynamically load @file{.o} files into already-running
17560 programs. @option{-findirect-data} and @option{-ffix-and-continue}
17561 are provided for backwards compatibility.
17562
17563 @item -all_load
17564 @opindex all_load
17565 Loads all members of static archive libraries.
17566 See man ld(1) for more information.
17567
17568 @item -arch_errors_fatal
17569 @opindex arch_errors_fatal
17570 Cause the errors having to do with files that have the wrong architecture
17571 to be fatal.
17572
17573 @item -bind_at_load
17574 @opindex bind_at_load
17575 Causes the output file to be marked such that the dynamic linker will
17576 bind all undefined references when the file is loaded or launched.
17577
17578 @item -bundle
17579 @opindex bundle
17580 Produce a Mach-o bundle format file.
17581 See man ld(1) for more information.
17582
17583 @item -bundle_loader @var{executable}
17584 @opindex bundle_loader
17585 This option specifies the @var{executable} that will load the build
17586 output file being linked. See man ld(1) for more information.
17587
17588 @item -dynamiclib
17589 @opindex dynamiclib
17590 When passed this option, GCC produces a dynamic library instead of
17591 an executable when linking, using the Darwin @file{libtool} command.
17592
17593 @item -force_cpusubtype_ALL
17594 @opindex force_cpusubtype_ALL
17595 This causes GCC's output file to have the @samp{ALL} subtype, instead of
17596 one controlled by the @option{-mcpu} or @option{-march} option.
17597
17598 @item -allowable_client @var{client_name}
17599 @itemx -client_name
17600 @itemx -compatibility_version
17601 @itemx -current_version
17602 @itemx -dead_strip
17603 @itemx -dependency-file
17604 @itemx -dylib_file
17605 @itemx -dylinker_install_name
17606 @itemx -dynamic
17607 @itemx -exported_symbols_list
17608 @itemx -filelist
17609 @need 800
17610 @itemx -flat_namespace
17611 @itemx -force_flat_namespace
17612 @itemx -headerpad_max_install_names
17613 @itemx -image_base
17614 @itemx -init
17615 @itemx -install_name
17616 @itemx -keep_private_externs
17617 @itemx -multi_module
17618 @itemx -multiply_defined
17619 @itemx -multiply_defined_unused
17620 @need 800
17621 @itemx -noall_load
17622 @itemx -no_dead_strip_inits_and_terms
17623 @itemx -nofixprebinding
17624 @itemx -nomultidefs
17625 @itemx -noprebind
17626 @itemx -noseglinkedit
17627 @itemx -pagezero_size
17628 @itemx -prebind
17629 @itemx -prebind_all_twolevel_modules
17630 @itemx -private_bundle
17631 @need 800
17632 @itemx -read_only_relocs
17633 @itemx -sectalign
17634 @itemx -sectobjectsymbols
17635 @itemx -whyload
17636 @itemx -seg1addr
17637 @itemx -sectcreate
17638 @itemx -sectobjectsymbols
17639 @itemx -sectorder
17640 @itemx -segaddr
17641 @itemx -segs_read_only_addr
17642 @need 800
17643 @itemx -segs_read_write_addr
17644 @itemx -seg_addr_table
17645 @itemx -seg_addr_table_filename
17646 @itemx -seglinkedit
17647 @itemx -segprot
17648 @itemx -segs_read_only_addr
17649 @itemx -segs_read_write_addr
17650 @itemx -single_module
17651 @itemx -static
17652 @itemx -sub_library
17653 @need 800
17654 @itemx -sub_umbrella
17655 @itemx -twolevel_namespace
17656 @itemx -umbrella
17657 @itemx -undefined
17658 @itemx -unexported_symbols_list
17659 @itemx -weak_reference_mismatches
17660 @itemx -whatsloaded
17661 @opindex allowable_client
17662 @opindex client_name
17663 @opindex compatibility_version
17664 @opindex current_version
17665 @opindex dead_strip
17666 @opindex dependency-file
17667 @opindex dylib_file
17668 @opindex dylinker_install_name
17669 @opindex dynamic
17670 @opindex exported_symbols_list
17671 @opindex filelist
17672 @opindex flat_namespace
17673 @opindex force_flat_namespace
17674 @opindex headerpad_max_install_names
17675 @opindex image_base
17676 @opindex init
17677 @opindex install_name
17678 @opindex keep_private_externs
17679 @opindex multi_module
17680 @opindex multiply_defined
17681 @opindex multiply_defined_unused
17682 @opindex noall_load
17683 @opindex no_dead_strip_inits_and_terms
17684 @opindex nofixprebinding
17685 @opindex nomultidefs
17686 @opindex noprebind
17687 @opindex noseglinkedit
17688 @opindex pagezero_size
17689 @opindex prebind
17690 @opindex prebind_all_twolevel_modules
17691 @opindex private_bundle
17692 @opindex read_only_relocs
17693 @opindex sectalign
17694 @opindex sectobjectsymbols
17695 @opindex whyload
17696 @opindex seg1addr
17697 @opindex sectcreate
17698 @opindex sectobjectsymbols
17699 @opindex sectorder
17700 @opindex segaddr
17701 @opindex segs_read_only_addr
17702 @opindex segs_read_write_addr
17703 @opindex seg_addr_table
17704 @opindex seg_addr_table_filename
17705 @opindex seglinkedit
17706 @opindex segprot
17707 @opindex segs_read_only_addr
17708 @opindex segs_read_write_addr
17709 @opindex single_module
17710 @opindex static
17711 @opindex sub_library
17712 @opindex sub_umbrella
17713 @opindex twolevel_namespace
17714 @opindex umbrella
17715 @opindex undefined
17716 @opindex unexported_symbols_list
17717 @opindex weak_reference_mismatches
17718 @opindex whatsloaded
17719 These options are passed to the Darwin linker. The Darwin linker man page
17720 describes them in detail.
17721 @end table
17722
17723 @node DEC Alpha Options
17724 @subsection DEC Alpha Options
17725
17726 These @samp{-m} options are defined for the DEC Alpha implementations:
17727
17728 @table @gcctabopt
17729 @item -mno-soft-float
17730 @itemx -msoft-float
17731 @opindex mno-soft-float
17732 @opindex msoft-float
17733 Use (do not use) the hardware floating-point instructions for
17734 floating-point operations. When @option{-msoft-float} is specified,
17735 functions in @file{libgcc.a} are used to perform floating-point
17736 operations. Unless they are replaced by routines that emulate the
17737 floating-point operations, or compiled in such a way as to call such
17738 emulations routines, these routines issue floating-point
17739 operations. If you are compiling for an Alpha without floating-point
17740 operations, you must ensure that the library is built so as not to call
17741 them.
17742
17743 Note that Alpha implementations without floating-point operations are
17744 required to have floating-point registers.
17745
17746 @item -mfp-reg
17747 @itemx -mno-fp-regs
17748 @opindex mfp-reg
17749 @opindex mno-fp-regs
17750 Generate code that uses (does not use) the floating-point register set.
17751 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
17752 register set is not used, floating-point operands are passed in integer
17753 registers as if they were integers and floating-point results are passed
17754 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
17755 so any function with a floating-point argument or return value called by code
17756 compiled with @option{-mno-fp-regs} must also be compiled with that
17757 option.
17758
17759 A typical use of this option is building a kernel that does not use,
17760 and hence need not save and restore, any floating-point registers.
17761
17762 @item -mieee
17763 @opindex mieee
17764 The Alpha architecture implements floating-point hardware optimized for
17765 maximum performance. It is mostly compliant with the IEEE floating-point
17766 standard. However, for full compliance, software assistance is
17767 required. This option generates code fully IEEE-compliant code
17768 @emph{except} that the @var{inexact-flag} is not maintained (see below).
17769 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
17770 defined during compilation. The resulting code is less efficient but is
17771 able to correctly support denormalized numbers and exceptional IEEE
17772 values such as not-a-number and plus/minus infinity. Other Alpha
17773 compilers call this option @option{-ieee_with_no_inexact}.
17774
17775 @item -mieee-with-inexact
17776 @opindex mieee-with-inexact
17777 This is like @option{-mieee} except the generated code also maintains
17778 the IEEE @var{inexact-flag}. Turning on this option causes the
17779 generated code to implement fully-compliant IEEE math. In addition to
17780 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
17781 macro. On some Alpha implementations the resulting code may execute
17782 significantly slower than the code generated by default. Since there is
17783 very little code that depends on the @var{inexact-flag}, you should
17784 normally not specify this option. Other Alpha compilers call this
17785 option @option{-ieee_with_inexact}.
17786
17787 @item -mfp-trap-mode=@var{trap-mode}
17788 @opindex mfp-trap-mode
17789 This option controls what floating-point related traps are enabled.
17790 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
17791 The trap mode can be set to one of four values:
17792
17793 @table @samp
17794 @item n
17795 This is the default (normal) setting. The only traps that are enabled
17796 are the ones that cannot be disabled in software (e.g., division by zero
17797 trap).
17798
17799 @item u
17800 In addition to the traps enabled by @samp{n}, underflow traps are enabled
17801 as well.
17802
17803 @item su
17804 Like @samp{u}, but the instructions are marked to be safe for software
17805 completion (see Alpha architecture manual for details).
17806
17807 @item sui
17808 Like @samp{su}, but inexact traps are enabled as well.
17809 @end table
17810
17811 @item -mfp-rounding-mode=@var{rounding-mode}
17812 @opindex mfp-rounding-mode
17813 Selects the IEEE rounding mode. Other Alpha compilers call this option
17814 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
17815 of:
17816
17817 @table @samp
17818 @item n
17819 Normal IEEE rounding mode. Floating-point numbers are rounded towards
17820 the nearest machine number or towards the even machine number in case
17821 of a tie.
17822
17823 @item m
17824 Round towards minus infinity.
17825
17826 @item c
17827 Chopped rounding mode. Floating-point numbers are rounded towards zero.
17828
17829 @item d
17830 Dynamic rounding mode. A field in the floating-point control register
17831 (@var{fpcr}, see Alpha architecture reference manual) controls the
17832 rounding mode in effect. The C library initializes this register for
17833 rounding towards plus infinity. Thus, unless your program modifies the
17834 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
17835 @end table
17836
17837 @item -mtrap-precision=@var{trap-precision}
17838 @opindex mtrap-precision
17839 In the Alpha architecture, floating-point traps are imprecise. This
17840 means without software assistance it is impossible to recover from a
17841 floating trap and program execution normally needs to be terminated.
17842 GCC can generate code that can assist operating system trap handlers
17843 in determining the exact location that caused a floating-point trap.
17844 Depending on the requirements of an application, different levels of
17845 precisions can be selected:
17846
17847 @table @samp
17848 @item p
17849 Program precision. This option is the default and means a trap handler
17850 can only identify which program caused a floating-point exception.
17851
17852 @item f
17853 Function precision. The trap handler can determine the function that
17854 caused a floating-point exception.
17855
17856 @item i
17857 Instruction precision. The trap handler can determine the exact
17858 instruction that caused a floating-point exception.
17859 @end table
17860
17861 Other Alpha compilers provide the equivalent options called
17862 @option{-scope_safe} and @option{-resumption_safe}.
17863
17864 @item -mieee-conformant
17865 @opindex mieee-conformant
17866 This option marks the generated code as IEEE conformant. You must not
17867 use this option unless you also specify @option{-mtrap-precision=i} and either
17868 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
17869 is to emit the line @samp{.eflag 48} in the function prologue of the
17870 generated assembly file.
17871
17872 @item -mbuild-constants
17873 @opindex mbuild-constants
17874 Normally GCC examines a 32- or 64-bit integer constant to
17875 see if it can construct it from smaller constants in two or three
17876 instructions. If it cannot, it outputs the constant as a literal and
17877 generates code to load it from the data segment at run time.
17878
17879 Use this option to require GCC to construct @emph{all} integer constants
17880 using code, even if it takes more instructions (the maximum is six).
17881
17882 You typically use this option to build a shared library dynamic
17883 loader. Itself a shared library, it must relocate itself in memory
17884 before it can find the variables and constants in its own data segment.
17885
17886 @item -mbwx
17887 @itemx -mno-bwx
17888 @itemx -mcix
17889 @itemx -mno-cix
17890 @itemx -mfix
17891 @itemx -mno-fix
17892 @itemx -mmax
17893 @itemx -mno-max
17894 @opindex mbwx
17895 @opindex mno-bwx
17896 @opindex mcix
17897 @opindex mno-cix
17898 @opindex mfix
17899 @opindex mno-fix
17900 @opindex mmax
17901 @opindex mno-max
17902 Indicate whether GCC should generate code to use the optional BWX,
17903 CIX, FIX and MAX instruction sets. The default is to use the instruction
17904 sets supported by the CPU type specified via @option{-mcpu=} option or that
17905 of the CPU on which GCC was built if none is specified.
17906
17907 @item -mfloat-vax
17908 @itemx -mfloat-ieee
17909 @opindex mfloat-vax
17910 @opindex mfloat-ieee
17911 Generate code that uses (does not use) VAX F and G floating-point
17912 arithmetic instead of IEEE single and double precision.
17913
17914 @item -mexplicit-relocs
17915 @itemx -mno-explicit-relocs
17916 @opindex mexplicit-relocs
17917 @opindex mno-explicit-relocs
17918 Older Alpha assemblers provided no way to generate symbol relocations
17919 except via assembler macros. Use of these macros does not allow
17920 optimal instruction scheduling. GNU binutils as of version 2.12
17921 supports a new syntax that allows the compiler to explicitly mark
17922 which relocations should apply to which instructions. This option
17923 is mostly useful for debugging, as GCC detects the capabilities of
17924 the assembler when it is built and sets the default accordingly.
17925
17926 @item -msmall-data
17927 @itemx -mlarge-data
17928 @opindex msmall-data
17929 @opindex mlarge-data
17930 When @option{-mexplicit-relocs} is in effect, static data is
17931 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
17932 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
17933 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
17934 16-bit relocations off of the @code{$gp} register. This limits the
17935 size of the small data area to 64KB, but allows the variables to be
17936 directly accessed via a single instruction.
17937
17938 The default is @option{-mlarge-data}. With this option the data area
17939 is limited to just below 2GB@. Programs that require more than 2GB of
17940 data must use @code{malloc} or @code{mmap} to allocate the data in the
17941 heap instead of in the program's data segment.
17942
17943 When generating code for shared libraries, @option{-fpic} implies
17944 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
17945
17946 @item -msmall-text
17947 @itemx -mlarge-text
17948 @opindex msmall-text
17949 @opindex mlarge-text
17950 When @option{-msmall-text} is used, the compiler assumes that the
17951 code of the entire program (or shared library) fits in 4MB, and is
17952 thus reachable with a branch instruction. When @option{-msmall-data}
17953 is used, the compiler can assume that all local symbols share the
17954 same @code{$gp} value, and thus reduce the number of instructions
17955 required for a function call from 4 to 1.
17956
17957 The default is @option{-mlarge-text}.
17958
17959 @item -mcpu=@var{cpu_type}
17960 @opindex mcpu
17961 Set the instruction set and instruction scheduling parameters for
17962 machine type @var{cpu_type}. You can specify either the @samp{EV}
17963 style name or the corresponding chip number. GCC supports scheduling
17964 parameters for the EV4, EV5 and EV6 family of processors and
17965 chooses the default values for the instruction set from the processor
17966 you specify. If you do not specify a processor type, GCC defaults
17967 to the processor on which the compiler was built.
17968
17969 Supported values for @var{cpu_type} are
17970
17971 @table @samp
17972 @item ev4
17973 @itemx ev45
17974 @itemx 21064
17975 Schedules as an EV4 and has no instruction set extensions.
17976
17977 @item ev5
17978 @itemx 21164
17979 Schedules as an EV5 and has no instruction set extensions.
17980
17981 @item ev56
17982 @itemx 21164a
17983 Schedules as an EV5 and supports the BWX extension.
17984
17985 @item pca56
17986 @itemx 21164pc
17987 @itemx 21164PC
17988 Schedules as an EV5 and supports the BWX and MAX extensions.
17989
17990 @item ev6
17991 @itemx 21264
17992 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
17993
17994 @item ev67
17995 @itemx 21264a
17996 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
17997 @end table
17998
17999 Native toolchains also support the value @samp{native},
18000 which selects the best architecture option for the host processor.
18001 @option{-mcpu=native} has no effect if GCC does not recognize
18002 the processor.
18003
18004 @item -mtune=@var{cpu_type}
18005 @opindex mtune
18006 Set only the instruction scheduling parameters for machine type
18007 @var{cpu_type}. The instruction set is not changed.
18008
18009 Native toolchains also support the value @samp{native},
18010 which selects the best architecture option for the host processor.
18011 @option{-mtune=native} has no effect if GCC does not recognize
18012 the processor.
18013
18014 @item -mmemory-latency=@var{time}
18015 @opindex mmemory-latency
18016 Sets the latency the scheduler should assume for typical memory
18017 references as seen by the application. This number is highly
18018 dependent on the memory access patterns used by the application
18019 and the size of the external cache on the machine.
18020
18021 Valid options for @var{time} are
18022
18023 @table @samp
18024 @item @var{number}
18025 A decimal number representing clock cycles.
18026
18027 @item L1
18028 @itemx L2
18029 @itemx L3
18030 @itemx main
18031 The compiler contains estimates of the number of clock cycles for
18032 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
18033 (also called Dcache, Scache, and Bcache), as well as to main memory.
18034 Note that L3 is only valid for EV5.
18035
18036 @end table
18037 @end table
18038
18039 @node FR30 Options
18040 @subsection FR30 Options
18041 @cindex FR30 Options
18042
18043 These options are defined specifically for the FR30 port.
18044
18045 @table @gcctabopt
18046
18047 @item -msmall-model
18048 @opindex msmall-model
18049 Use the small address space model. This can produce smaller code, but
18050 it does assume that all symbolic values and addresses fit into a
18051 20-bit range.
18052
18053 @item -mno-lsim
18054 @opindex mno-lsim
18055 Assume that runtime support has been provided and so there is no need
18056 to include the simulator library (@file{libsim.a}) on the linker
18057 command line.
18058
18059 @end table
18060
18061 @node FT32 Options
18062 @subsection FT32 Options
18063 @cindex FT32 Options
18064
18065 These options are defined specifically for the FT32 port.
18066
18067 @table @gcctabopt
18068
18069 @item -msim
18070 @opindex msim
18071 Specifies that the program will be run on the simulator. This causes
18072 an alternate runtime startup and library to be linked.
18073 You must not use this option when generating programs that will run on
18074 real hardware; you must provide your own runtime library for whatever
18075 I/O functions are needed.
18076
18077 @item -mlra
18078 @opindex mlra
18079 Enable Local Register Allocation. This is still experimental for FT32,
18080 so by default the compiler uses standard reload.
18081
18082 @item -mnodiv
18083 @opindex mnodiv
18084 Do not use div and mod instructions.
18085
18086 @item -mft32b
18087 @opindex mft32b
18088 Enable use of the extended instructions of the FT32B processor.
18089
18090 @item -mcompress
18091 @opindex mcompress
18092 Compress all code using the Ft32B code compression scheme.
18093
18094 @item -mnopm
18095 @opindex mnopm
18096 Do not generate code that reads program memory.
18097
18098 @end table
18099
18100 @node FRV Options
18101 @subsection FRV Options
18102 @cindex FRV Options
18103
18104 @table @gcctabopt
18105 @item -mgpr-32
18106 @opindex mgpr-32
18107
18108 Only use the first 32 general-purpose registers.
18109
18110 @item -mgpr-64
18111 @opindex mgpr-64
18112
18113 Use all 64 general-purpose registers.
18114
18115 @item -mfpr-32
18116 @opindex mfpr-32
18117
18118 Use only the first 32 floating-point registers.
18119
18120 @item -mfpr-64
18121 @opindex mfpr-64
18122
18123 Use all 64 floating-point registers.
18124
18125 @item -mhard-float
18126 @opindex mhard-float
18127
18128 Use hardware instructions for floating-point operations.
18129
18130 @item -msoft-float
18131 @opindex msoft-float
18132
18133 Use library routines for floating-point operations.
18134
18135 @item -malloc-cc
18136 @opindex malloc-cc
18137
18138 Dynamically allocate condition code registers.
18139
18140 @item -mfixed-cc
18141 @opindex mfixed-cc
18142
18143 Do not try to dynamically allocate condition code registers, only
18144 use @code{icc0} and @code{fcc0}.
18145
18146 @item -mdword
18147 @opindex mdword
18148
18149 Change ABI to use double word insns.
18150
18151 @item -mno-dword
18152 @opindex mno-dword
18153
18154 Do not use double word instructions.
18155
18156 @item -mdouble
18157 @opindex mdouble
18158
18159 Use floating-point double instructions.
18160
18161 @item -mno-double
18162 @opindex mno-double
18163
18164 Do not use floating-point double instructions.
18165
18166 @item -mmedia
18167 @opindex mmedia
18168
18169 Use media instructions.
18170
18171 @item -mno-media
18172 @opindex mno-media
18173
18174 Do not use media instructions.
18175
18176 @item -mmuladd
18177 @opindex mmuladd
18178
18179 Use multiply and add/subtract instructions.
18180
18181 @item -mno-muladd
18182 @opindex mno-muladd
18183
18184 Do not use multiply and add/subtract instructions.
18185
18186 @item -mfdpic
18187 @opindex mfdpic
18188
18189 Select the FDPIC ABI, which uses function descriptors to represent
18190 pointers to functions. Without any PIC/PIE-related options, it
18191 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
18192 assumes GOT entries and small data are within a 12-bit range from the
18193 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
18194 are computed with 32 bits.
18195 With a @samp{bfin-elf} target, this option implies @option{-msim}.
18196
18197 @item -minline-plt
18198 @opindex minline-plt
18199
18200 Enable inlining of PLT entries in function calls to functions that are
18201 not known to bind locally. It has no effect without @option{-mfdpic}.
18202 It's enabled by default if optimizing for speed and compiling for
18203 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
18204 optimization option such as @option{-O3} or above is present in the
18205 command line.
18206
18207 @item -mTLS
18208 @opindex mTLS
18209
18210 Assume a large TLS segment when generating thread-local code.
18211
18212 @item -mtls
18213 @opindex mtls
18214
18215 Do not assume a large TLS segment when generating thread-local code.
18216
18217 @item -mgprel-ro
18218 @opindex mgprel-ro
18219
18220 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
18221 that is known to be in read-only sections. It's enabled by default,
18222 except for @option{-fpic} or @option{-fpie}: even though it may help
18223 make the global offset table smaller, it trades 1 instruction for 4.
18224 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
18225 one of which may be shared by multiple symbols, and it avoids the need
18226 for a GOT entry for the referenced symbol, so it's more likely to be a
18227 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
18228
18229 @item -multilib-library-pic
18230 @opindex multilib-library-pic
18231
18232 Link with the (library, not FD) pic libraries. It's implied by
18233 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
18234 @option{-fpic} without @option{-mfdpic}. You should never have to use
18235 it explicitly.
18236
18237 @item -mlinked-fp
18238 @opindex mlinked-fp
18239
18240 Follow the EABI requirement of always creating a frame pointer whenever
18241 a stack frame is allocated. This option is enabled by default and can
18242 be disabled with @option{-mno-linked-fp}.
18243
18244 @item -mlong-calls
18245 @opindex mlong-calls
18246
18247 Use indirect addressing to call functions outside the current
18248 compilation unit. This allows the functions to be placed anywhere
18249 within the 32-bit address space.
18250
18251 @item -malign-labels
18252 @opindex malign-labels
18253
18254 Try to align labels to an 8-byte boundary by inserting NOPs into the
18255 previous packet. This option only has an effect when VLIW packing
18256 is enabled. It doesn't create new packets; it merely adds NOPs to
18257 existing ones.
18258
18259 @item -mlibrary-pic
18260 @opindex mlibrary-pic
18261
18262 Generate position-independent EABI code.
18263
18264 @item -macc-4
18265 @opindex macc-4
18266
18267 Use only the first four media accumulator registers.
18268
18269 @item -macc-8
18270 @opindex macc-8
18271
18272 Use all eight media accumulator registers.
18273
18274 @item -mpack
18275 @opindex mpack
18276
18277 Pack VLIW instructions.
18278
18279 @item -mno-pack
18280 @opindex mno-pack
18281
18282 Do not pack VLIW instructions.
18283
18284 @item -mno-eflags
18285 @opindex mno-eflags
18286
18287 Do not mark ABI switches in e_flags.
18288
18289 @item -mcond-move
18290 @opindex mcond-move
18291
18292 Enable the use of conditional-move instructions (default).
18293
18294 This switch is mainly for debugging the compiler and will likely be removed
18295 in a future version.
18296
18297 @item -mno-cond-move
18298 @opindex mno-cond-move
18299
18300 Disable the use of conditional-move instructions.
18301
18302 This switch is mainly for debugging the compiler and will likely be removed
18303 in a future version.
18304
18305 @item -mscc
18306 @opindex mscc
18307
18308 Enable the use of conditional set instructions (default).
18309
18310 This switch is mainly for debugging the compiler and will likely be removed
18311 in a future version.
18312
18313 @item -mno-scc
18314 @opindex mno-scc
18315
18316 Disable the use of conditional set instructions.
18317
18318 This switch is mainly for debugging the compiler and will likely be removed
18319 in a future version.
18320
18321 @item -mcond-exec
18322 @opindex mcond-exec
18323
18324 Enable the use of conditional execution (default).
18325
18326 This switch is mainly for debugging the compiler and will likely be removed
18327 in a future version.
18328
18329 @item -mno-cond-exec
18330 @opindex mno-cond-exec
18331
18332 Disable the use of conditional execution.
18333
18334 This switch is mainly for debugging the compiler and will likely be removed
18335 in a future version.
18336
18337 @item -mvliw-branch
18338 @opindex mvliw-branch
18339
18340 Run a pass to pack branches into VLIW instructions (default).
18341
18342 This switch is mainly for debugging the compiler and will likely be removed
18343 in a future version.
18344
18345 @item -mno-vliw-branch
18346 @opindex mno-vliw-branch
18347
18348 Do not run a pass to pack branches into VLIW instructions.
18349
18350 This switch is mainly for debugging the compiler and will likely be removed
18351 in a future version.
18352
18353 @item -mmulti-cond-exec
18354 @opindex mmulti-cond-exec
18355
18356 Enable optimization of @code{&&} and @code{||} in conditional execution
18357 (default).
18358
18359 This switch is mainly for debugging the compiler and will likely be removed
18360 in a future version.
18361
18362 @item -mno-multi-cond-exec
18363 @opindex mno-multi-cond-exec
18364
18365 Disable optimization of @code{&&} and @code{||} in conditional execution.
18366
18367 This switch is mainly for debugging the compiler and will likely be removed
18368 in a future version.
18369
18370 @item -mnested-cond-exec
18371 @opindex mnested-cond-exec
18372
18373 Enable nested conditional execution optimizations (default).
18374
18375 This switch is mainly for debugging the compiler and will likely be removed
18376 in a future version.
18377
18378 @item -mno-nested-cond-exec
18379 @opindex mno-nested-cond-exec
18380
18381 Disable nested conditional execution optimizations.
18382
18383 This switch is mainly for debugging the compiler and will likely be removed
18384 in a future version.
18385
18386 @item -moptimize-membar
18387 @opindex moptimize-membar
18388
18389 This switch removes redundant @code{membar} instructions from the
18390 compiler-generated code. It is enabled by default.
18391
18392 @item -mno-optimize-membar
18393 @opindex mno-optimize-membar
18394
18395 This switch disables the automatic removal of redundant @code{membar}
18396 instructions from the generated code.
18397
18398 @item -mtomcat-stats
18399 @opindex mtomcat-stats
18400
18401 Cause gas to print out tomcat statistics.
18402
18403 @item -mcpu=@var{cpu}
18404 @opindex mcpu
18405
18406 Select the processor type for which to generate code. Possible values are
18407 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
18408 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
18409
18410 @end table
18411
18412 @node GNU/Linux Options
18413 @subsection GNU/Linux Options
18414
18415 These @samp{-m} options are defined for GNU/Linux targets:
18416
18417 @table @gcctabopt
18418 @item -mglibc
18419 @opindex mglibc
18420 Use the GNU C library. This is the default except
18421 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
18422 @samp{*-*-linux-*android*} targets.
18423
18424 @item -muclibc
18425 @opindex muclibc
18426 Use uClibc C library. This is the default on
18427 @samp{*-*-linux-*uclibc*} targets.
18428
18429 @item -mmusl
18430 @opindex mmusl
18431 Use the musl C library. This is the default on
18432 @samp{*-*-linux-*musl*} targets.
18433
18434 @item -mbionic
18435 @opindex mbionic
18436 Use Bionic C library. This is the default on
18437 @samp{*-*-linux-*android*} targets.
18438
18439 @item -mandroid
18440 @opindex mandroid
18441 Compile code compatible with Android platform. This is the default on
18442 @samp{*-*-linux-*android*} targets.
18443
18444 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
18445 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
18446 this option makes the GCC driver pass Android-specific options to the linker.
18447 Finally, this option causes the preprocessor macro @code{__ANDROID__}
18448 to be defined.
18449
18450 @item -tno-android-cc
18451 @opindex tno-android-cc
18452 Disable compilation effects of @option{-mandroid}, i.e., do not enable
18453 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
18454 @option{-fno-rtti} by default.
18455
18456 @item -tno-android-ld
18457 @opindex tno-android-ld
18458 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
18459 linking options to the linker.
18460
18461 @end table
18462
18463 @node H8/300 Options
18464 @subsection H8/300 Options
18465
18466 These @samp{-m} options are defined for the H8/300 implementations:
18467
18468 @table @gcctabopt
18469 @item -mrelax
18470 @opindex mrelax
18471 Shorten some address references at link time, when possible; uses the
18472 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
18473 ld, Using ld}, for a fuller description.
18474
18475 @item -mh
18476 @opindex mh
18477 Generate code for the H8/300H@.
18478
18479 @item -ms
18480 @opindex ms
18481 Generate code for the H8S@.
18482
18483 @item -mn
18484 @opindex mn
18485 Generate code for the H8S and H8/300H in the normal mode. This switch
18486 must be used either with @option{-mh} or @option{-ms}.
18487
18488 @item -ms2600
18489 @opindex ms2600
18490 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
18491
18492 @item -mexr
18493 @opindex mexr
18494 Extended registers are stored on stack before execution of function
18495 with monitor attribute. Default option is @option{-mexr}.
18496 This option is valid only for H8S targets.
18497
18498 @item -mno-exr
18499 @opindex mno-exr
18500 Extended registers are not stored on stack before execution of function
18501 with monitor attribute. Default option is @option{-mno-exr}.
18502 This option is valid only for H8S targets.
18503
18504 @item -mint32
18505 @opindex mint32
18506 Make @code{int} data 32 bits by default.
18507
18508 @item -malign-300
18509 @opindex malign-300
18510 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
18511 The default for the H8/300H and H8S is to align longs and floats on
18512 4-byte boundaries.
18513 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
18514 This option has no effect on the H8/300.
18515 @end table
18516
18517 @node HPPA Options
18518 @subsection HPPA Options
18519 @cindex HPPA Options
18520
18521 These @samp{-m} options are defined for the HPPA family of computers:
18522
18523 @table @gcctabopt
18524 @item -march=@var{architecture-type}
18525 @opindex march
18526 Generate code for the specified architecture. The choices for
18527 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
18528 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
18529 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
18530 architecture option for your machine. Code compiled for lower numbered
18531 architectures runs on higher numbered architectures, but not the
18532 other way around.
18533
18534 @item -mpa-risc-1-0
18535 @itemx -mpa-risc-1-1
18536 @itemx -mpa-risc-2-0
18537 @opindex mpa-risc-1-0
18538 @opindex mpa-risc-1-1
18539 @opindex mpa-risc-2-0
18540 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
18541
18542 @item -mcaller-copies
18543 @opindex mcaller-copies
18544 The caller copies function arguments passed by hidden reference. This
18545 option should be used with care as it is not compatible with the default
18546 32-bit runtime. However, only aggregates larger than eight bytes are
18547 passed by hidden reference and the option provides better compatibility
18548 with OpenMP.
18549
18550 @item -mjump-in-delay
18551 @opindex mjump-in-delay
18552 This option is ignored and provided for compatibility purposes only.
18553
18554 @item -mdisable-fpregs
18555 @opindex mdisable-fpregs
18556 Prevent floating-point registers from being used in any manner. This is
18557 necessary for compiling kernels that perform lazy context switching of
18558 floating-point registers. If you use this option and attempt to perform
18559 floating-point operations, the compiler aborts.
18560
18561 @item -mdisable-indexing
18562 @opindex mdisable-indexing
18563 Prevent the compiler from using indexing address modes. This avoids some
18564 rather obscure problems when compiling MIG generated code under MACH@.
18565
18566 @item -mno-space-regs
18567 @opindex mno-space-regs
18568 Generate code that assumes the target has no space registers. This allows
18569 GCC to generate faster indirect calls and use unscaled index address modes.
18570
18571 Such code is suitable for level 0 PA systems and kernels.
18572
18573 @item -mfast-indirect-calls
18574 @opindex mfast-indirect-calls
18575 Generate code that assumes calls never cross space boundaries. This
18576 allows GCC to emit code that performs faster indirect calls.
18577
18578 This option does not work in the presence of shared libraries or nested
18579 functions.
18580
18581 @item -mfixed-range=@var{register-range}
18582 @opindex mfixed-range
18583 Generate code treating the given register range as fixed registers.
18584 A fixed register is one that the register allocator cannot use. This is
18585 useful when compiling kernel code. A register range is specified as
18586 two registers separated by a dash. Multiple register ranges can be
18587 specified separated by a comma.
18588
18589 @item -mlong-load-store
18590 @opindex mlong-load-store
18591 Generate 3-instruction load and store sequences as sometimes required by
18592 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
18593 the HP compilers.
18594
18595 @item -mportable-runtime
18596 @opindex mportable-runtime
18597 Use the portable calling conventions proposed by HP for ELF systems.
18598
18599 @item -mgas
18600 @opindex mgas
18601 Enable the use of assembler directives only GAS understands.
18602
18603 @item -mschedule=@var{cpu-type}
18604 @opindex mschedule
18605 Schedule code according to the constraints for the machine type
18606 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
18607 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
18608 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
18609 proper scheduling option for your machine. The default scheduling is
18610 @samp{8000}.
18611
18612 @item -mlinker-opt
18613 @opindex mlinker-opt
18614 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
18615 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
18616 linkers in which they give bogus error messages when linking some programs.
18617
18618 @item -msoft-float
18619 @opindex msoft-float
18620 Generate output containing library calls for floating point.
18621 @strong{Warning:} the requisite libraries are not available for all HPPA
18622 targets. Normally the facilities of the machine's usual C compiler are
18623 used, but this cannot be done directly in cross-compilation. You must make
18624 your own arrangements to provide suitable library functions for
18625 cross-compilation.
18626
18627 @option{-msoft-float} changes the calling convention in the output file;
18628 therefore, it is only useful if you compile @emph{all} of a program with
18629 this option. In particular, you need to compile @file{libgcc.a}, the
18630 library that comes with GCC, with @option{-msoft-float} in order for
18631 this to work.
18632
18633 @item -msio
18634 @opindex msio
18635 Generate the predefine, @code{_SIO}, for server IO@. The default is
18636 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
18637 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
18638 options are available under HP-UX and HI-UX@.
18639
18640 @item -mgnu-ld
18641 @opindex mgnu-ld
18642 Use options specific to GNU @command{ld}.
18643 This passes @option{-shared} to @command{ld} when
18644 building a shared library. It is the default when GCC is configured,
18645 explicitly or implicitly, with the GNU linker. This option does not
18646 affect which @command{ld} is called; it only changes what parameters
18647 are passed to that @command{ld}.
18648 The @command{ld} that is called is determined by the
18649 @option{--with-ld} configure option, GCC's program search path, and
18650 finally by the user's @env{PATH}. The linker used by GCC can be printed
18651 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
18652 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18653
18654 @item -mhp-ld
18655 @opindex mhp-ld
18656 Use options specific to HP @command{ld}.
18657 This passes @option{-b} to @command{ld} when building
18658 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
18659 links. It is the default when GCC is configured, explicitly or
18660 implicitly, with the HP linker. This option does not affect
18661 which @command{ld} is called; it only changes what parameters are passed to that
18662 @command{ld}.
18663 The @command{ld} that is called is determined by the @option{--with-ld}
18664 configure option, GCC's program search path, and finally by the user's
18665 @env{PATH}. The linker used by GCC can be printed using @samp{which
18666 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
18667 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18668
18669 @item -mlong-calls
18670 @opindex mno-long-calls
18671 Generate code that uses long call sequences. This ensures that a call
18672 is always able to reach linker generated stubs. The default is to generate
18673 long calls only when the distance from the call site to the beginning
18674 of the function or translation unit, as the case may be, exceeds a
18675 predefined limit set by the branch type being used. The limits for
18676 normal calls are 7,600,000 and 240,000 bytes, respectively for the
18677 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
18678 240,000 bytes.
18679
18680 Distances are measured from the beginning of functions when using the
18681 @option{-ffunction-sections} option, or when using the @option{-mgas}
18682 and @option{-mno-portable-runtime} options together under HP-UX with
18683 the SOM linker.
18684
18685 It is normally not desirable to use this option as it degrades
18686 performance. However, it may be useful in large applications,
18687 particularly when partial linking is used to build the application.
18688
18689 The types of long calls used depends on the capabilities of the
18690 assembler and linker, and the type of code being generated. The
18691 impact on systems that support long absolute calls, and long pic
18692 symbol-difference or pc-relative calls should be relatively small.
18693 However, an indirect call is used on 32-bit ELF systems in pic code
18694 and it is quite long.
18695
18696 @item -munix=@var{unix-std}
18697 @opindex march
18698 Generate compiler predefines and select a startfile for the specified
18699 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
18700 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
18701 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
18702 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
18703 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
18704 and later.
18705
18706 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
18707 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
18708 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
18709 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
18710 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
18711 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
18712
18713 It is @emph{important} to note that this option changes the interfaces
18714 for various library routines. It also affects the operational behavior
18715 of the C library. Thus, @emph{extreme} care is needed in using this
18716 option.
18717
18718 Library code that is intended to operate with more than one UNIX
18719 standard must test, set and restore the variable @code{__xpg4_extended_mask}
18720 as appropriate. Most GNU software doesn't provide this capability.
18721
18722 @item -nolibdld
18723 @opindex nolibdld
18724 Suppress the generation of link options to search libdld.sl when the
18725 @option{-static} option is specified on HP-UX 10 and later.
18726
18727 @item -static
18728 @opindex static
18729 The HP-UX implementation of setlocale in libc has a dependency on
18730 libdld.sl. There isn't an archive version of libdld.sl. Thus,
18731 when the @option{-static} option is specified, special link options
18732 are needed to resolve this dependency.
18733
18734 On HP-UX 10 and later, the GCC driver adds the necessary options to
18735 link with libdld.sl when the @option{-static} option is specified.
18736 This causes the resulting binary to be dynamic. On the 64-bit port,
18737 the linkers generate dynamic binaries by default in any case. The
18738 @option{-nolibdld} option can be used to prevent the GCC driver from
18739 adding these link options.
18740
18741 @item -threads
18742 @opindex threads
18743 Add support for multithreading with the @dfn{dce thread} library
18744 under HP-UX@. This option sets flags for both the preprocessor and
18745 linker.
18746 @end table
18747
18748 @node IA-64 Options
18749 @subsection IA-64 Options
18750 @cindex IA-64 Options
18751
18752 These are the @samp{-m} options defined for the Intel IA-64 architecture.
18753
18754 @table @gcctabopt
18755 @item -mbig-endian
18756 @opindex mbig-endian
18757 Generate code for a big-endian target. This is the default for HP-UX@.
18758
18759 @item -mlittle-endian
18760 @opindex mlittle-endian
18761 Generate code for a little-endian target. This is the default for AIX5
18762 and GNU/Linux.
18763
18764 @item -mgnu-as
18765 @itemx -mno-gnu-as
18766 @opindex mgnu-as
18767 @opindex mno-gnu-as
18768 Generate (or don't) code for the GNU assembler. This is the default.
18769 @c Also, this is the default if the configure option @option{--with-gnu-as}
18770 @c is used.
18771
18772 @item -mgnu-ld
18773 @itemx -mno-gnu-ld
18774 @opindex mgnu-ld
18775 @opindex mno-gnu-ld
18776 Generate (or don't) code for the GNU linker. This is the default.
18777 @c Also, this is the default if the configure option @option{--with-gnu-ld}
18778 @c is used.
18779
18780 @item -mno-pic
18781 @opindex mno-pic
18782 Generate code that does not use a global pointer register. The result
18783 is not position independent code, and violates the IA-64 ABI@.
18784
18785 @item -mvolatile-asm-stop
18786 @itemx -mno-volatile-asm-stop
18787 @opindex mvolatile-asm-stop
18788 @opindex mno-volatile-asm-stop
18789 Generate (or don't) a stop bit immediately before and after volatile asm
18790 statements.
18791
18792 @item -mregister-names
18793 @itemx -mno-register-names
18794 @opindex mregister-names
18795 @opindex mno-register-names
18796 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
18797 the stacked registers. This may make assembler output more readable.
18798
18799 @item -mno-sdata
18800 @itemx -msdata
18801 @opindex mno-sdata
18802 @opindex msdata
18803 Disable (or enable) optimizations that use the small data section. This may
18804 be useful for working around optimizer bugs.
18805
18806 @item -mconstant-gp
18807 @opindex mconstant-gp
18808 Generate code that uses a single constant global pointer value. This is
18809 useful when compiling kernel code.
18810
18811 @item -mauto-pic
18812 @opindex mauto-pic
18813 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
18814 This is useful when compiling firmware code.
18815
18816 @item -minline-float-divide-min-latency
18817 @opindex minline-float-divide-min-latency
18818 Generate code for inline divides of floating-point values
18819 using the minimum latency algorithm.
18820
18821 @item -minline-float-divide-max-throughput
18822 @opindex minline-float-divide-max-throughput
18823 Generate code for inline divides of floating-point values
18824 using the maximum throughput algorithm.
18825
18826 @item -mno-inline-float-divide
18827 @opindex mno-inline-float-divide
18828 Do not generate inline code for divides of floating-point values.
18829
18830 @item -minline-int-divide-min-latency
18831 @opindex minline-int-divide-min-latency
18832 Generate code for inline divides of integer values
18833 using the minimum latency algorithm.
18834
18835 @item -minline-int-divide-max-throughput
18836 @opindex minline-int-divide-max-throughput
18837 Generate code for inline divides of integer values
18838 using the maximum throughput algorithm.
18839
18840 @item -mno-inline-int-divide
18841 @opindex mno-inline-int-divide
18842 Do not generate inline code for divides of integer values.
18843
18844 @item -minline-sqrt-min-latency
18845 @opindex minline-sqrt-min-latency
18846 Generate code for inline square roots
18847 using the minimum latency algorithm.
18848
18849 @item -minline-sqrt-max-throughput
18850 @opindex minline-sqrt-max-throughput
18851 Generate code for inline square roots
18852 using the maximum throughput algorithm.
18853
18854 @item -mno-inline-sqrt
18855 @opindex mno-inline-sqrt
18856 Do not generate inline code for @code{sqrt}.
18857
18858 @item -mfused-madd
18859 @itemx -mno-fused-madd
18860 @opindex mfused-madd
18861 @opindex mno-fused-madd
18862 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
18863 instructions. The default is to use these instructions.
18864
18865 @item -mno-dwarf2-asm
18866 @itemx -mdwarf2-asm
18867 @opindex mno-dwarf2-asm
18868 @opindex mdwarf2-asm
18869 Don't (or do) generate assembler code for the DWARF line number debugging
18870 info. This may be useful when not using the GNU assembler.
18871
18872 @item -mearly-stop-bits
18873 @itemx -mno-early-stop-bits
18874 @opindex mearly-stop-bits
18875 @opindex mno-early-stop-bits
18876 Allow stop bits to be placed earlier than immediately preceding the
18877 instruction that triggered the stop bit. This can improve instruction
18878 scheduling, but does not always do so.
18879
18880 @item -mfixed-range=@var{register-range}
18881 @opindex mfixed-range
18882 Generate code treating the given register range as fixed registers.
18883 A fixed register is one that the register allocator cannot use. This is
18884 useful when compiling kernel code. A register range is specified as
18885 two registers separated by a dash. Multiple register ranges can be
18886 specified separated by a comma.
18887
18888 @item -mtls-size=@var{tls-size}
18889 @opindex mtls-size
18890 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
18891 64.
18892
18893 @item -mtune=@var{cpu-type}
18894 @opindex mtune
18895 Tune the instruction scheduling for a particular CPU, Valid values are
18896 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
18897 and @samp{mckinley}.
18898
18899 @item -milp32
18900 @itemx -mlp64
18901 @opindex milp32
18902 @opindex mlp64
18903 Generate code for a 32-bit or 64-bit environment.
18904 The 32-bit environment sets int, long and pointer to 32 bits.
18905 The 64-bit environment sets int to 32 bits and long and pointer
18906 to 64 bits. These are HP-UX specific flags.
18907
18908 @item -mno-sched-br-data-spec
18909 @itemx -msched-br-data-spec
18910 @opindex mno-sched-br-data-spec
18911 @opindex msched-br-data-spec
18912 (Dis/En)able data speculative scheduling before reload.
18913 This results in generation of @code{ld.a} instructions and
18914 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18915 The default setting is disabled.
18916
18917 @item -msched-ar-data-spec
18918 @itemx -mno-sched-ar-data-spec
18919 @opindex msched-ar-data-spec
18920 @opindex mno-sched-ar-data-spec
18921 (En/Dis)able data speculative scheduling after reload.
18922 This results in generation of @code{ld.a} instructions and
18923 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18924 The default setting is enabled.
18925
18926 @item -mno-sched-control-spec
18927 @itemx -msched-control-spec
18928 @opindex mno-sched-control-spec
18929 @opindex msched-control-spec
18930 (Dis/En)able control speculative scheduling. This feature is
18931 available only during region scheduling (i.e.@: before reload).
18932 This results in generation of the @code{ld.s} instructions and
18933 the corresponding check instructions @code{chk.s}.
18934 The default setting is disabled.
18935
18936 @item -msched-br-in-data-spec
18937 @itemx -mno-sched-br-in-data-spec
18938 @opindex msched-br-in-data-spec
18939 @opindex mno-sched-br-in-data-spec
18940 (En/Dis)able speculative scheduling of the instructions that
18941 are dependent on the data speculative loads before reload.
18942 This is effective only with @option{-msched-br-data-spec} enabled.
18943 The default setting is enabled.
18944
18945 @item -msched-ar-in-data-spec
18946 @itemx -mno-sched-ar-in-data-spec
18947 @opindex msched-ar-in-data-spec
18948 @opindex mno-sched-ar-in-data-spec
18949 (En/Dis)able speculative scheduling of the instructions that
18950 are dependent on the data speculative loads after reload.
18951 This is effective only with @option{-msched-ar-data-spec} enabled.
18952 The default setting is enabled.
18953
18954 @item -msched-in-control-spec
18955 @itemx -mno-sched-in-control-spec
18956 @opindex msched-in-control-spec
18957 @opindex mno-sched-in-control-spec
18958 (En/Dis)able speculative scheduling of the instructions that
18959 are dependent on the control speculative loads.
18960 This is effective only with @option{-msched-control-spec} enabled.
18961 The default setting is enabled.
18962
18963 @item -mno-sched-prefer-non-data-spec-insns
18964 @itemx -msched-prefer-non-data-spec-insns
18965 @opindex mno-sched-prefer-non-data-spec-insns
18966 @opindex msched-prefer-non-data-spec-insns
18967 If enabled, data-speculative instructions are chosen for schedule
18968 only if there are no other choices at the moment. This makes
18969 the use of the data speculation much more conservative.
18970 The default setting is disabled.
18971
18972 @item -mno-sched-prefer-non-control-spec-insns
18973 @itemx -msched-prefer-non-control-spec-insns
18974 @opindex mno-sched-prefer-non-control-spec-insns
18975 @opindex msched-prefer-non-control-spec-insns
18976 If enabled, control-speculative instructions are chosen for schedule
18977 only if there are no other choices at the moment. This makes
18978 the use of the control speculation much more conservative.
18979 The default setting is disabled.
18980
18981 @item -mno-sched-count-spec-in-critical-path
18982 @itemx -msched-count-spec-in-critical-path
18983 @opindex mno-sched-count-spec-in-critical-path
18984 @opindex msched-count-spec-in-critical-path
18985 If enabled, speculative dependencies are considered during
18986 computation of the instructions priorities. This makes the use of the
18987 speculation a bit more conservative.
18988 The default setting is disabled.
18989
18990 @item -msched-spec-ldc
18991 @opindex msched-spec-ldc
18992 Use a simple data speculation check. This option is on by default.
18993
18994 @item -msched-control-spec-ldc
18995 @opindex msched-spec-ldc
18996 Use a simple check for control speculation. This option is on by default.
18997
18998 @item -msched-stop-bits-after-every-cycle
18999 @opindex msched-stop-bits-after-every-cycle
19000 Place a stop bit after every cycle when scheduling. This option is on
19001 by default.
19002
19003 @item -msched-fp-mem-deps-zero-cost
19004 @opindex msched-fp-mem-deps-zero-cost
19005 Assume that floating-point stores and loads are not likely to cause a conflict
19006 when placed into the same instruction group. This option is disabled by
19007 default.
19008
19009 @item -msel-sched-dont-check-control-spec
19010 @opindex msel-sched-dont-check-control-spec
19011 Generate checks for control speculation in selective scheduling.
19012 This flag is disabled by default.
19013
19014 @item -msched-max-memory-insns=@var{max-insns}
19015 @opindex msched-max-memory-insns
19016 Limit on the number of memory insns per instruction group, giving lower
19017 priority to subsequent memory insns attempting to schedule in the same
19018 instruction group. Frequently useful to prevent cache bank conflicts.
19019 The default value is 1.
19020
19021 @item -msched-max-memory-insns-hard-limit
19022 @opindex msched-max-memory-insns-hard-limit
19023 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
19024 disallowing more than that number in an instruction group.
19025 Otherwise, the limit is ``soft'', meaning that non-memory operations
19026 are preferred when the limit is reached, but memory operations may still
19027 be scheduled.
19028
19029 @end table
19030
19031 @node LM32 Options
19032 @subsection LM32 Options
19033 @cindex LM32 options
19034
19035 These @option{-m} options are defined for the LatticeMico32 architecture:
19036
19037 @table @gcctabopt
19038 @item -mbarrel-shift-enabled
19039 @opindex mbarrel-shift-enabled
19040 Enable barrel-shift instructions.
19041
19042 @item -mdivide-enabled
19043 @opindex mdivide-enabled
19044 Enable divide and modulus instructions.
19045
19046 @item -mmultiply-enabled
19047 @opindex multiply-enabled
19048 Enable multiply instructions.
19049
19050 @item -msign-extend-enabled
19051 @opindex msign-extend-enabled
19052 Enable sign extend instructions.
19053
19054 @item -muser-enabled
19055 @opindex muser-enabled
19056 Enable user-defined instructions.
19057
19058 @end table
19059
19060 @node M32C Options
19061 @subsection M32C Options
19062 @cindex M32C options
19063
19064 @table @gcctabopt
19065 @item -mcpu=@var{name}
19066 @opindex mcpu=
19067 Select the CPU for which code is generated. @var{name} may be one of
19068 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
19069 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
19070 the M32C/80 series.
19071
19072 @item -msim
19073 @opindex msim
19074 Specifies that the program will be run on the simulator. This causes
19075 an alternate runtime library to be linked in which supports, for
19076 example, file I/O@. You must not use this option when generating
19077 programs that will run on real hardware; you must provide your own
19078 runtime library for whatever I/O functions are needed.
19079
19080 @item -memregs=@var{number}
19081 @opindex memregs=
19082 Specifies the number of memory-based pseudo-registers GCC uses
19083 during code generation. These pseudo-registers are used like real
19084 registers, so there is a tradeoff between GCC's ability to fit the
19085 code into available registers, and the performance penalty of using
19086 memory instead of registers. Note that all modules in a program must
19087 be compiled with the same value for this option. Because of that, you
19088 must not use this option with GCC's default runtime libraries.
19089
19090 @end table
19091
19092 @node M32R/D Options
19093 @subsection M32R/D Options
19094 @cindex M32R/D options
19095
19096 These @option{-m} options are defined for Renesas M32R/D architectures:
19097
19098 @table @gcctabopt
19099 @item -m32r2
19100 @opindex m32r2
19101 Generate code for the M32R/2@.
19102
19103 @item -m32rx
19104 @opindex m32rx
19105 Generate code for the M32R/X@.
19106
19107 @item -m32r
19108 @opindex m32r
19109 Generate code for the M32R@. This is the default.
19110
19111 @item -mmodel=small
19112 @opindex mmodel=small
19113 Assume all objects live in the lower 16MB of memory (so that their addresses
19114 can be loaded with the @code{ld24} instruction), and assume all subroutines
19115 are reachable with the @code{bl} instruction.
19116 This is the default.
19117
19118 The addressability of a particular object can be set with the
19119 @code{model} attribute.
19120
19121 @item -mmodel=medium
19122 @opindex mmodel=medium
19123 Assume objects may be anywhere in the 32-bit address space (the compiler
19124 generates @code{seth/add3} instructions to load their addresses), and
19125 assume all subroutines are reachable with the @code{bl} instruction.
19126
19127 @item -mmodel=large
19128 @opindex mmodel=large
19129 Assume objects may be anywhere in the 32-bit address space (the compiler
19130 generates @code{seth/add3} instructions to load their addresses), and
19131 assume subroutines may not be reachable with the @code{bl} instruction
19132 (the compiler generates the much slower @code{seth/add3/jl}
19133 instruction sequence).
19134
19135 @item -msdata=none
19136 @opindex msdata=none
19137 Disable use of the small data area. Variables are put into
19138 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
19139 @code{section} attribute has been specified).
19140 This is the default.
19141
19142 The small data area consists of sections @code{.sdata} and @code{.sbss}.
19143 Objects may be explicitly put in the small data area with the
19144 @code{section} attribute using one of these sections.
19145
19146 @item -msdata=sdata
19147 @opindex msdata=sdata
19148 Put small global and static data in the small data area, but do not
19149 generate special code to reference them.
19150
19151 @item -msdata=use
19152 @opindex msdata=use
19153 Put small global and static data in the small data area, and generate
19154 special instructions to reference them.
19155
19156 @item -G @var{num}
19157 @opindex G
19158 @cindex smaller data references
19159 Put global and static objects less than or equal to @var{num} bytes
19160 into the small data or BSS sections instead of the normal data or BSS
19161 sections. The default value of @var{num} is 8.
19162 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
19163 for this option to have any effect.
19164
19165 All modules should be compiled with the same @option{-G @var{num}} value.
19166 Compiling with different values of @var{num} may or may not work; if it
19167 doesn't the linker gives an error message---incorrect code is not
19168 generated.
19169
19170 @item -mdebug
19171 @opindex mdebug
19172 Makes the M32R-specific code in the compiler display some statistics
19173 that might help in debugging programs.
19174
19175 @item -malign-loops
19176 @opindex malign-loops
19177 Align all loops to a 32-byte boundary.
19178
19179 @item -mno-align-loops
19180 @opindex mno-align-loops
19181 Do not enforce a 32-byte alignment for loops. This is the default.
19182
19183 @item -missue-rate=@var{number}
19184 @opindex missue-rate=@var{number}
19185 Issue @var{number} instructions per cycle. @var{number} can only be 1
19186 or 2.
19187
19188 @item -mbranch-cost=@var{number}
19189 @opindex mbranch-cost=@var{number}
19190 @var{number} can only be 1 or 2. If it is 1 then branches are
19191 preferred over conditional code, if it is 2, then the opposite applies.
19192
19193 @item -mflush-trap=@var{number}
19194 @opindex mflush-trap=@var{number}
19195 Specifies the trap number to use to flush the cache. The default is
19196 12. Valid numbers are between 0 and 15 inclusive.
19197
19198 @item -mno-flush-trap
19199 @opindex mno-flush-trap
19200 Specifies that the cache cannot be flushed by using a trap.
19201
19202 @item -mflush-func=@var{name}
19203 @opindex mflush-func=@var{name}
19204 Specifies the name of the operating system function to call to flush
19205 the cache. The default is @samp{_flush_cache}, but a function call
19206 is only used if a trap is not available.
19207
19208 @item -mno-flush-func
19209 @opindex mno-flush-func
19210 Indicates that there is no OS function for flushing the cache.
19211
19212 @end table
19213
19214 @node M680x0 Options
19215 @subsection M680x0 Options
19216 @cindex M680x0 options
19217
19218 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
19219 The default settings depend on which architecture was selected when
19220 the compiler was configured; the defaults for the most common choices
19221 are given below.
19222
19223 @table @gcctabopt
19224 @item -march=@var{arch}
19225 @opindex march
19226 Generate code for a specific M680x0 or ColdFire instruction set
19227 architecture. Permissible values of @var{arch} for M680x0
19228 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
19229 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
19230 architectures are selected according to Freescale's ISA classification
19231 and the permissible values are: @samp{isaa}, @samp{isaaplus},
19232 @samp{isab} and @samp{isac}.
19233
19234 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
19235 code for a ColdFire target. The @var{arch} in this macro is one of the
19236 @option{-march} arguments given above.
19237
19238 When used together, @option{-march} and @option{-mtune} select code
19239 that runs on a family of similar processors but that is optimized
19240 for a particular microarchitecture.
19241
19242 @item -mcpu=@var{cpu}
19243 @opindex mcpu
19244 Generate code for a specific M680x0 or ColdFire processor.
19245 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
19246 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
19247 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
19248 below, which also classifies the CPUs into families:
19249
19250 @multitable @columnfractions 0.20 0.80
19251 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
19252 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
19253 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
19254 @item @samp{5206e} @tab @samp{5206e}
19255 @item @samp{5208} @tab @samp{5207} @samp{5208}
19256 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
19257 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
19258 @item @samp{5216} @tab @samp{5214} @samp{5216}
19259 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
19260 @item @samp{5225} @tab @samp{5224} @samp{5225}
19261 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
19262 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
19263 @item @samp{5249} @tab @samp{5249}
19264 @item @samp{5250} @tab @samp{5250}
19265 @item @samp{5271} @tab @samp{5270} @samp{5271}
19266 @item @samp{5272} @tab @samp{5272}
19267 @item @samp{5275} @tab @samp{5274} @samp{5275}
19268 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
19269 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
19270 @item @samp{5307} @tab @samp{5307}
19271 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
19272 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
19273 @item @samp{5407} @tab @samp{5407}
19274 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
19275 @end multitable
19276
19277 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
19278 @var{arch} is compatible with @var{cpu}. Other combinations of
19279 @option{-mcpu} and @option{-march} are rejected.
19280
19281 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
19282 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
19283 where the value of @var{family} is given by the table above.
19284
19285 @item -mtune=@var{tune}
19286 @opindex mtune
19287 Tune the code for a particular microarchitecture within the
19288 constraints set by @option{-march} and @option{-mcpu}.
19289 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
19290 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
19291 and @samp{cpu32}. The ColdFire microarchitectures
19292 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
19293
19294 You can also use @option{-mtune=68020-40} for code that needs
19295 to run relatively well on 68020, 68030 and 68040 targets.
19296 @option{-mtune=68020-60} is similar but includes 68060 targets
19297 as well. These two options select the same tuning decisions as
19298 @option{-m68020-40} and @option{-m68020-60} respectively.
19299
19300 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
19301 when tuning for 680x0 architecture @var{arch}. It also defines
19302 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
19303 option is used. If GCC is tuning for a range of architectures,
19304 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
19305 it defines the macros for every architecture in the range.
19306
19307 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
19308 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
19309 of the arguments given above.
19310
19311 @item -m68000
19312 @itemx -mc68000
19313 @opindex m68000
19314 @opindex mc68000
19315 Generate output for a 68000. This is the default
19316 when the compiler is configured for 68000-based systems.
19317 It is equivalent to @option{-march=68000}.
19318
19319 Use this option for microcontrollers with a 68000 or EC000 core,
19320 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
19321
19322 @item -m68010
19323 @opindex m68010
19324 Generate output for a 68010. This is the default
19325 when the compiler is configured for 68010-based systems.
19326 It is equivalent to @option{-march=68010}.
19327
19328 @item -m68020
19329 @itemx -mc68020
19330 @opindex m68020
19331 @opindex mc68020
19332 Generate output for a 68020. This is the default
19333 when the compiler is configured for 68020-based systems.
19334 It is equivalent to @option{-march=68020}.
19335
19336 @item -m68030
19337 @opindex m68030
19338 Generate output for a 68030. This is the default when the compiler is
19339 configured for 68030-based systems. It is equivalent to
19340 @option{-march=68030}.
19341
19342 @item -m68040
19343 @opindex m68040
19344 Generate output for a 68040. This is the default when the compiler is
19345 configured for 68040-based systems. It is equivalent to
19346 @option{-march=68040}.
19347
19348 This option inhibits the use of 68881/68882 instructions that have to be
19349 emulated by software on the 68040. Use this option if your 68040 does not
19350 have code to emulate those instructions.
19351
19352 @item -m68060
19353 @opindex m68060
19354 Generate output for a 68060. This is the default when the compiler is
19355 configured for 68060-based systems. It is equivalent to
19356 @option{-march=68060}.
19357
19358 This option inhibits the use of 68020 and 68881/68882 instructions that
19359 have to be emulated by software on the 68060. Use this option if your 68060
19360 does not have code to emulate those instructions.
19361
19362 @item -mcpu32
19363 @opindex mcpu32
19364 Generate output for a CPU32. This is the default
19365 when the compiler is configured for CPU32-based systems.
19366 It is equivalent to @option{-march=cpu32}.
19367
19368 Use this option for microcontrollers with a
19369 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
19370 68336, 68340, 68341, 68349 and 68360.
19371
19372 @item -m5200
19373 @opindex m5200
19374 Generate output for a 520X ColdFire CPU@. This is the default
19375 when the compiler is configured for 520X-based systems.
19376 It is equivalent to @option{-mcpu=5206}, and is now deprecated
19377 in favor of that option.
19378
19379 Use this option for microcontroller with a 5200 core, including
19380 the MCF5202, MCF5203, MCF5204 and MCF5206.
19381
19382 @item -m5206e
19383 @opindex m5206e
19384 Generate output for a 5206e ColdFire CPU@. The option is now
19385 deprecated in favor of the equivalent @option{-mcpu=5206e}.
19386
19387 @item -m528x
19388 @opindex m528x
19389 Generate output for a member of the ColdFire 528X family.
19390 The option is now deprecated in favor of the equivalent
19391 @option{-mcpu=528x}.
19392
19393 @item -m5307
19394 @opindex m5307
19395 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
19396 in favor of the equivalent @option{-mcpu=5307}.
19397
19398 @item -m5407
19399 @opindex m5407
19400 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
19401 in favor of the equivalent @option{-mcpu=5407}.
19402
19403 @item -mcfv4e
19404 @opindex mcfv4e
19405 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
19406 This includes use of hardware floating-point instructions.
19407 The option is equivalent to @option{-mcpu=547x}, and is now
19408 deprecated in favor of that option.
19409
19410 @item -m68020-40
19411 @opindex m68020-40
19412 Generate output for a 68040, without using any of the new instructions.
19413 This results in code that can run relatively efficiently on either a
19414 68020/68881 or a 68030 or a 68040. The generated code does use the
19415 68881 instructions that are emulated on the 68040.
19416
19417 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
19418
19419 @item -m68020-60
19420 @opindex m68020-60
19421 Generate output for a 68060, without using any of the new instructions.
19422 This results in code that can run relatively efficiently on either a
19423 68020/68881 or a 68030 or a 68040. The generated code does use the
19424 68881 instructions that are emulated on the 68060.
19425
19426 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
19427
19428 @item -mhard-float
19429 @itemx -m68881
19430 @opindex mhard-float
19431 @opindex m68881
19432 Generate floating-point instructions. This is the default for 68020
19433 and above, and for ColdFire devices that have an FPU@. It defines the
19434 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
19435 on ColdFire targets.
19436
19437 @item -msoft-float
19438 @opindex msoft-float
19439 Do not generate floating-point instructions; use library calls instead.
19440 This is the default for 68000, 68010, and 68832 targets. It is also
19441 the default for ColdFire devices that have no FPU.
19442
19443 @item -mdiv
19444 @itemx -mno-div
19445 @opindex mdiv
19446 @opindex mno-div
19447 Generate (do not generate) ColdFire hardware divide and remainder
19448 instructions. If @option{-march} is used without @option{-mcpu},
19449 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
19450 architectures. Otherwise, the default is taken from the target CPU
19451 (either the default CPU, or the one specified by @option{-mcpu}). For
19452 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
19453 @option{-mcpu=5206e}.
19454
19455 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
19456
19457 @item -mshort
19458 @opindex mshort
19459 Consider type @code{int} to be 16 bits wide, like @code{short int}.
19460 Additionally, parameters passed on the stack are also aligned to a
19461 16-bit boundary even on targets whose API mandates promotion to 32-bit.
19462
19463 @item -mno-short
19464 @opindex mno-short
19465 Do not consider type @code{int} to be 16 bits wide. This is the default.
19466
19467 @item -mnobitfield
19468 @itemx -mno-bitfield
19469 @opindex mnobitfield
19470 @opindex mno-bitfield
19471 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
19472 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
19473
19474 @item -mbitfield
19475 @opindex mbitfield
19476 Do use the bit-field instructions. The @option{-m68020} option implies
19477 @option{-mbitfield}. This is the default if you use a configuration
19478 designed for a 68020.
19479
19480 @item -mrtd
19481 @opindex mrtd
19482 Use a different function-calling convention, in which functions
19483 that take a fixed number of arguments return with the @code{rtd}
19484 instruction, which pops their arguments while returning. This
19485 saves one instruction in the caller since there is no need to pop
19486 the arguments there.
19487
19488 This calling convention is incompatible with the one normally
19489 used on Unix, so you cannot use it if you need to call libraries
19490 compiled with the Unix compiler.
19491
19492 Also, you must provide function prototypes for all functions that
19493 take variable numbers of arguments (including @code{printf});
19494 otherwise incorrect code is generated for calls to those
19495 functions.
19496
19497 In addition, seriously incorrect code results if you call a
19498 function with too many arguments. (Normally, extra arguments are
19499 harmlessly ignored.)
19500
19501 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
19502 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
19503
19504 @item -mno-rtd
19505 @opindex mno-rtd
19506 Do not use the calling conventions selected by @option{-mrtd}.
19507 This is the default.
19508
19509 @item -malign-int
19510 @itemx -mno-align-int
19511 @opindex malign-int
19512 @opindex mno-align-int
19513 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
19514 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
19515 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
19516 Aligning variables on 32-bit boundaries produces code that runs somewhat
19517 faster on processors with 32-bit busses at the expense of more memory.
19518
19519 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
19520 aligns structures containing the above types differently than
19521 most published application binary interface specifications for the m68k.
19522
19523 @item -mpcrel
19524 @opindex mpcrel
19525 Use the pc-relative addressing mode of the 68000 directly, instead of
19526 using a global offset table. At present, this option implies @option{-fpic},
19527 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
19528 not presently supported with @option{-mpcrel}, though this could be supported for
19529 68020 and higher processors.
19530
19531 @item -mno-strict-align
19532 @itemx -mstrict-align
19533 @opindex mno-strict-align
19534 @opindex mstrict-align
19535 Do not (do) assume that unaligned memory references are handled by
19536 the system.
19537
19538 @item -msep-data
19539 Generate code that allows the data segment to be located in a different
19540 area of memory from the text segment. This allows for execute-in-place in
19541 an environment without virtual memory management. This option implies
19542 @option{-fPIC}.
19543
19544 @item -mno-sep-data
19545 Generate code that assumes that the data segment follows the text segment.
19546 This is the default.
19547
19548 @item -mid-shared-library
19549 Generate code that supports shared libraries via the library ID method.
19550 This allows for execute-in-place and shared libraries in an environment
19551 without virtual memory management. This option implies @option{-fPIC}.
19552
19553 @item -mno-id-shared-library
19554 Generate code that doesn't assume ID-based shared libraries are being used.
19555 This is the default.
19556
19557 @item -mshared-library-id=n
19558 Specifies the identification number of the ID-based shared library being
19559 compiled. Specifying a value of 0 generates more compact code; specifying
19560 other values forces the allocation of that number to the current
19561 library, but is no more space- or time-efficient than omitting this option.
19562
19563 @item -mxgot
19564 @itemx -mno-xgot
19565 @opindex mxgot
19566 @opindex mno-xgot
19567 When generating position-independent code for ColdFire, generate code
19568 that works if the GOT has more than 8192 entries. This code is
19569 larger and slower than code generated without this option. On M680x0
19570 processors, this option is not needed; @option{-fPIC} suffices.
19571
19572 GCC normally uses a single instruction to load values from the GOT@.
19573 While this is relatively efficient, it only works if the GOT
19574 is smaller than about 64k. Anything larger causes the linker
19575 to report an error such as:
19576
19577 @cindex relocation truncated to fit (ColdFire)
19578 @smallexample
19579 relocation truncated to fit: R_68K_GOT16O foobar
19580 @end smallexample
19581
19582 If this happens, you should recompile your code with @option{-mxgot}.
19583 It should then work with very large GOTs. However, code generated with
19584 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
19585 the value of a global symbol.
19586
19587 Note that some linkers, including newer versions of the GNU linker,
19588 can create multiple GOTs and sort GOT entries. If you have such a linker,
19589 you should only need to use @option{-mxgot} when compiling a single
19590 object file that accesses more than 8192 GOT entries. Very few do.
19591
19592 These options have no effect unless GCC is generating
19593 position-independent code.
19594
19595 @item -mlong-jump-table-offsets
19596 @opindex mlong-jump-table-offsets
19597 Use 32-bit offsets in @code{switch} tables. The default is to use
19598 16-bit offsets.
19599
19600 @end table
19601
19602 @node MCore Options
19603 @subsection MCore Options
19604 @cindex MCore options
19605
19606 These are the @samp{-m} options defined for the Motorola M*Core
19607 processors.
19608
19609 @table @gcctabopt
19610
19611 @item -mhardlit
19612 @itemx -mno-hardlit
19613 @opindex mhardlit
19614 @opindex mno-hardlit
19615 Inline constants into the code stream if it can be done in two
19616 instructions or less.
19617
19618 @item -mdiv
19619 @itemx -mno-div
19620 @opindex mdiv
19621 @opindex mno-div
19622 Use the divide instruction. (Enabled by default).
19623
19624 @item -mrelax-immediate
19625 @itemx -mno-relax-immediate
19626 @opindex mrelax-immediate
19627 @opindex mno-relax-immediate
19628 Allow arbitrary-sized immediates in bit operations.
19629
19630 @item -mwide-bitfields
19631 @itemx -mno-wide-bitfields
19632 @opindex mwide-bitfields
19633 @opindex mno-wide-bitfields
19634 Always treat bit-fields as @code{int}-sized.
19635
19636 @item -m4byte-functions
19637 @itemx -mno-4byte-functions
19638 @opindex m4byte-functions
19639 @opindex mno-4byte-functions
19640 Force all functions to be aligned to a 4-byte boundary.
19641
19642 @item -mcallgraph-data
19643 @itemx -mno-callgraph-data
19644 @opindex mcallgraph-data
19645 @opindex mno-callgraph-data
19646 Emit callgraph information.
19647
19648 @item -mslow-bytes
19649 @itemx -mno-slow-bytes
19650 @opindex mslow-bytes
19651 @opindex mno-slow-bytes
19652 Prefer word access when reading byte quantities.
19653
19654 @item -mlittle-endian
19655 @itemx -mbig-endian
19656 @opindex mlittle-endian
19657 @opindex mbig-endian
19658 Generate code for a little-endian target.
19659
19660 @item -m210
19661 @itemx -m340
19662 @opindex m210
19663 @opindex m340
19664 Generate code for the 210 processor.
19665
19666 @item -mno-lsim
19667 @opindex mno-lsim
19668 Assume that runtime support has been provided and so omit the
19669 simulator library (@file{libsim.a)} from the linker command line.
19670
19671 @item -mstack-increment=@var{size}
19672 @opindex mstack-increment
19673 Set the maximum amount for a single stack increment operation. Large
19674 values can increase the speed of programs that contain functions
19675 that need a large amount of stack space, but they can also trigger a
19676 segmentation fault if the stack is extended too much. The default
19677 value is 0x1000.
19678
19679 @end table
19680
19681 @node MeP Options
19682 @subsection MeP Options
19683 @cindex MeP options
19684
19685 @table @gcctabopt
19686
19687 @item -mabsdiff
19688 @opindex mabsdiff
19689 Enables the @code{abs} instruction, which is the absolute difference
19690 between two registers.
19691
19692 @item -mall-opts
19693 @opindex mall-opts
19694 Enables all the optional instructions---average, multiply, divide, bit
19695 operations, leading zero, absolute difference, min/max, clip, and
19696 saturation.
19697
19698
19699 @item -maverage
19700 @opindex maverage
19701 Enables the @code{ave} instruction, which computes the average of two
19702 registers.
19703
19704 @item -mbased=@var{n}
19705 @opindex mbased=
19706 Variables of size @var{n} bytes or smaller are placed in the
19707 @code{.based} section by default. Based variables use the @code{$tp}
19708 register as a base register, and there is a 128-byte limit to the
19709 @code{.based} section.
19710
19711 @item -mbitops
19712 @opindex mbitops
19713 Enables the bit operation instructions---bit test (@code{btstm}), set
19714 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
19715 test-and-set (@code{tas}).
19716
19717 @item -mc=@var{name}
19718 @opindex mc=
19719 Selects which section constant data is placed in. @var{name} may
19720 be @samp{tiny}, @samp{near}, or @samp{far}.
19721
19722 @item -mclip
19723 @opindex mclip
19724 Enables the @code{clip} instruction. Note that @option{-mclip} is not
19725 useful unless you also provide @option{-mminmax}.
19726
19727 @item -mconfig=@var{name}
19728 @opindex mconfig=
19729 Selects one of the built-in core configurations. Each MeP chip has
19730 one or more modules in it; each module has a core CPU and a variety of
19731 coprocessors, optional instructions, and peripherals. The
19732 @code{MeP-Integrator} tool, not part of GCC, provides these
19733 configurations through this option; using this option is the same as
19734 using all the corresponding command-line options. The default
19735 configuration is @samp{default}.
19736
19737 @item -mcop
19738 @opindex mcop
19739 Enables the coprocessor instructions. By default, this is a 32-bit
19740 coprocessor. Note that the coprocessor is normally enabled via the
19741 @option{-mconfig=} option.
19742
19743 @item -mcop32
19744 @opindex mcop32
19745 Enables the 32-bit coprocessor's instructions.
19746
19747 @item -mcop64
19748 @opindex mcop64
19749 Enables the 64-bit coprocessor's instructions.
19750
19751 @item -mivc2
19752 @opindex mivc2
19753 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
19754
19755 @item -mdc
19756 @opindex mdc
19757 Causes constant variables to be placed in the @code{.near} section.
19758
19759 @item -mdiv
19760 @opindex mdiv
19761 Enables the @code{div} and @code{divu} instructions.
19762
19763 @item -meb
19764 @opindex meb
19765 Generate big-endian code.
19766
19767 @item -mel
19768 @opindex mel
19769 Generate little-endian code.
19770
19771 @item -mio-volatile
19772 @opindex mio-volatile
19773 Tells the compiler that any variable marked with the @code{io}
19774 attribute is to be considered volatile.
19775
19776 @item -ml
19777 @opindex ml
19778 Causes variables to be assigned to the @code{.far} section by default.
19779
19780 @item -mleadz
19781 @opindex mleadz
19782 Enables the @code{leadz} (leading zero) instruction.
19783
19784 @item -mm
19785 @opindex mm
19786 Causes variables to be assigned to the @code{.near} section by default.
19787
19788 @item -mminmax
19789 @opindex mminmax
19790 Enables the @code{min} and @code{max} instructions.
19791
19792 @item -mmult
19793 @opindex mmult
19794 Enables the multiplication and multiply-accumulate instructions.
19795
19796 @item -mno-opts
19797 @opindex mno-opts
19798 Disables all the optional instructions enabled by @option{-mall-opts}.
19799
19800 @item -mrepeat
19801 @opindex mrepeat
19802 Enables the @code{repeat} and @code{erepeat} instructions, used for
19803 low-overhead looping.
19804
19805 @item -ms
19806 @opindex ms
19807 Causes all variables to default to the @code{.tiny} section. Note
19808 that there is a 65536-byte limit to this section. Accesses to these
19809 variables use the @code{%gp} base register.
19810
19811 @item -msatur
19812 @opindex msatur
19813 Enables the saturation instructions. Note that the compiler does not
19814 currently generate these itself, but this option is included for
19815 compatibility with other tools, like @code{as}.
19816
19817 @item -msdram
19818 @opindex msdram
19819 Link the SDRAM-based runtime instead of the default ROM-based runtime.
19820
19821 @item -msim
19822 @opindex msim
19823 Link the simulator run-time libraries.
19824
19825 @item -msimnovec
19826 @opindex msimnovec
19827 Link the simulator runtime libraries, excluding built-in support
19828 for reset and exception vectors and tables.
19829
19830 @item -mtf
19831 @opindex mtf
19832 Causes all functions to default to the @code{.far} section. Without
19833 this option, functions default to the @code{.near} section.
19834
19835 @item -mtiny=@var{n}
19836 @opindex mtiny=
19837 Variables that are @var{n} bytes or smaller are allocated to the
19838 @code{.tiny} section. These variables use the @code{$gp} base
19839 register. The default for this option is 4, but note that there's a
19840 65536-byte limit to the @code{.tiny} section.
19841
19842 @end table
19843
19844 @node MicroBlaze Options
19845 @subsection MicroBlaze Options
19846 @cindex MicroBlaze Options
19847
19848 @table @gcctabopt
19849
19850 @item -msoft-float
19851 @opindex msoft-float
19852 Use software emulation for floating point (default).
19853
19854 @item -mhard-float
19855 @opindex mhard-float
19856 Use hardware floating-point instructions.
19857
19858 @item -mmemcpy
19859 @opindex mmemcpy
19860 Do not optimize block moves, use @code{memcpy}.
19861
19862 @item -mno-clearbss
19863 @opindex mno-clearbss
19864 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
19865
19866 @item -mcpu=@var{cpu-type}
19867 @opindex mcpu=
19868 Use features of, and schedule code for, the given CPU.
19869 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
19870 where @var{X} is a major version, @var{YY} is the minor version, and
19871 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
19872 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
19873
19874 @item -mxl-soft-mul
19875 @opindex mxl-soft-mul
19876 Use software multiply emulation (default).
19877
19878 @item -mxl-soft-div
19879 @opindex mxl-soft-div
19880 Use software emulation for divides (default).
19881
19882 @item -mxl-barrel-shift
19883 @opindex mxl-barrel-shift
19884 Use the hardware barrel shifter.
19885
19886 @item -mxl-pattern-compare
19887 @opindex mxl-pattern-compare
19888 Use pattern compare instructions.
19889
19890 @item -msmall-divides
19891 @opindex msmall-divides
19892 Use table lookup optimization for small signed integer divisions.
19893
19894 @item -mxl-stack-check
19895 @opindex mxl-stack-check
19896 This option is deprecated. Use @option{-fstack-check} instead.
19897
19898 @item -mxl-gp-opt
19899 @opindex mxl-gp-opt
19900 Use GP-relative @code{.sdata}/@code{.sbss} sections.
19901
19902 @item -mxl-multiply-high
19903 @opindex mxl-multiply-high
19904 Use multiply high instructions for high part of 32x32 multiply.
19905
19906 @item -mxl-float-convert
19907 @opindex mxl-float-convert
19908 Use hardware floating-point conversion instructions.
19909
19910 @item -mxl-float-sqrt
19911 @opindex mxl-float-sqrt
19912 Use hardware floating-point square root instruction.
19913
19914 @item -mbig-endian
19915 @opindex mbig-endian
19916 Generate code for a big-endian target.
19917
19918 @item -mlittle-endian
19919 @opindex mlittle-endian
19920 Generate code for a little-endian target.
19921
19922 @item -mxl-reorder
19923 @opindex mxl-reorder
19924 Use reorder instructions (swap and byte reversed load/store).
19925
19926 @item -mxl-mode-@var{app-model}
19927 Select application model @var{app-model}. Valid models are
19928 @table @samp
19929 @item executable
19930 normal executable (default), uses startup code @file{crt0.o}.
19931
19932 @item xmdstub
19933 for use with Xilinx Microprocessor Debugger (XMD) based
19934 software intrusive debug agent called xmdstub. This uses startup file
19935 @file{crt1.o} and sets the start address of the program to 0x800.
19936
19937 @item bootstrap
19938 for applications that are loaded using a bootloader.
19939 This model uses startup file @file{crt2.o} which does not contain a processor
19940 reset vector handler. This is suitable for transferring control on a
19941 processor reset to the bootloader rather than the application.
19942
19943 @item novectors
19944 for applications that do not require any of the
19945 MicroBlaze vectors. This option may be useful for applications running
19946 within a monitoring application. This model uses @file{crt3.o} as a startup file.
19947 @end table
19948
19949 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
19950 @option{-mxl-mode-@var{app-model}}.
19951
19952 @end table
19953
19954 @node MIPS Options
19955 @subsection MIPS Options
19956 @cindex MIPS options
19957
19958 @table @gcctabopt
19959
19960 @item -EB
19961 @opindex EB
19962 Generate big-endian code.
19963
19964 @item -EL
19965 @opindex EL
19966 Generate little-endian code. This is the default for @samp{mips*el-*-*}
19967 configurations.
19968
19969 @item -march=@var{arch}
19970 @opindex march
19971 Generate code that runs on @var{arch}, which can be the name of a
19972 generic MIPS ISA, or the name of a particular processor.
19973 The ISA names are:
19974 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
19975 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
19976 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
19977 @samp{mips64r5} and @samp{mips64r6}.
19978 The processor names are:
19979 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
19980 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
19981 @samp{5kc}, @samp{5kf},
19982 @samp{20kc},
19983 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
19984 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
19985 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
19986 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
19987 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
19988 @samp{i6400},
19989 @samp{interaptiv},
19990 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
19991 @samp{m4k},
19992 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
19993 @samp{m5100}, @samp{m5101},
19994 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
19995 @samp{orion},
19996 @samp{p5600},
19997 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
19998 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
19999 @samp{rm7000}, @samp{rm9000},
20000 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
20001 @samp{sb1},
20002 @samp{sr71000},
20003 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
20004 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
20005 @samp{xlr} and @samp{xlp}.
20006 The special value @samp{from-abi} selects the
20007 most compatible architecture for the selected ABI (that is,
20008 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
20009
20010 The native Linux/GNU toolchain also supports the value @samp{native},
20011 which selects the best architecture option for the host processor.
20012 @option{-march=native} has no effect if GCC does not recognize
20013 the processor.
20014
20015 In processor names, a final @samp{000} can be abbreviated as @samp{k}
20016 (for example, @option{-march=r2k}). Prefixes are optional, and
20017 @samp{vr} may be written @samp{r}.
20018
20019 Names of the form @samp{@var{n}f2_1} refer to processors with
20020 FPUs clocked at half the rate of the core, names of the form
20021 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
20022 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
20023 processors with FPUs clocked a ratio of 3:2 with respect to the core.
20024 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
20025 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
20026 accepted as synonyms for @samp{@var{n}f1_1}.
20027
20028 GCC defines two macros based on the value of this option. The first
20029 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
20030 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
20031 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
20032 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
20033 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
20034
20035 Note that the @code{_MIPS_ARCH} macro uses the processor names given
20036 above. In other words, it has the full prefix and does not
20037 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
20038 the macro names the resolved architecture (either @code{"mips1"} or
20039 @code{"mips3"}). It names the default architecture when no
20040 @option{-march} option is given.
20041
20042 @item -mtune=@var{arch}
20043 @opindex mtune
20044 Optimize for @var{arch}. Among other things, this option controls
20045 the way instructions are scheduled, and the perceived cost of arithmetic
20046 operations. The list of @var{arch} values is the same as for
20047 @option{-march}.
20048
20049 When this option is not used, GCC optimizes for the processor
20050 specified by @option{-march}. By using @option{-march} and
20051 @option{-mtune} together, it is possible to generate code that
20052 runs on a family of processors, but optimize the code for one
20053 particular member of that family.
20054
20055 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
20056 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
20057 @option{-march} ones described above.
20058
20059 @item -mips1
20060 @opindex mips1
20061 Equivalent to @option{-march=mips1}.
20062
20063 @item -mips2
20064 @opindex mips2
20065 Equivalent to @option{-march=mips2}.
20066
20067 @item -mips3
20068 @opindex mips3
20069 Equivalent to @option{-march=mips3}.
20070
20071 @item -mips4
20072 @opindex mips4
20073 Equivalent to @option{-march=mips4}.
20074
20075 @item -mips32
20076 @opindex mips32
20077 Equivalent to @option{-march=mips32}.
20078
20079 @item -mips32r3
20080 @opindex mips32r3
20081 Equivalent to @option{-march=mips32r3}.
20082
20083 @item -mips32r5
20084 @opindex mips32r5
20085 Equivalent to @option{-march=mips32r5}.
20086
20087 @item -mips32r6
20088 @opindex mips32r6
20089 Equivalent to @option{-march=mips32r6}.
20090
20091 @item -mips64
20092 @opindex mips64
20093 Equivalent to @option{-march=mips64}.
20094
20095 @item -mips64r2
20096 @opindex mips64r2
20097 Equivalent to @option{-march=mips64r2}.
20098
20099 @item -mips64r3
20100 @opindex mips64r3
20101 Equivalent to @option{-march=mips64r3}.
20102
20103 @item -mips64r5
20104 @opindex mips64r5
20105 Equivalent to @option{-march=mips64r5}.
20106
20107 @item -mips64r6
20108 @opindex mips64r6
20109 Equivalent to @option{-march=mips64r6}.
20110
20111 @item -mips16
20112 @itemx -mno-mips16
20113 @opindex mips16
20114 @opindex mno-mips16
20115 Generate (do not generate) MIPS16 code. If GCC is targeting a
20116 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
20117
20118 MIPS16 code generation can also be controlled on a per-function basis
20119 by means of @code{mips16} and @code{nomips16} attributes.
20120 @xref{Function Attributes}, for more information.
20121
20122 @item -mflip-mips16
20123 @opindex mflip-mips16
20124 Generate MIPS16 code on alternating functions. This option is provided
20125 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
20126 not intended for ordinary use in compiling user code.
20127
20128 @item -minterlink-compressed
20129 @item -mno-interlink-compressed
20130 @opindex minterlink-compressed
20131 @opindex mno-interlink-compressed
20132 Require (do not require) that code using the standard (uncompressed) MIPS ISA
20133 be link-compatible with MIPS16 and microMIPS code, and vice versa.
20134
20135 For example, code using the standard ISA encoding cannot jump directly
20136 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
20137 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
20138 knows that the target of the jump is not compressed.
20139
20140 @item -minterlink-mips16
20141 @itemx -mno-interlink-mips16
20142 @opindex minterlink-mips16
20143 @opindex mno-interlink-mips16
20144 Aliases of @option{-minterlink-compressed} and
20145 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
20146 and are retained for backwards compatibility.
20147
20148 @item -mabi=32
20149 @itemx -mabi=o64
20150 @itemx -mabi=n32
20151 @itemx -mabi=64
20152 @itemx -mabi=eabi
20153 @opindex mabi=32
20154 @opindex mabi=o64
20155 @opindex mabi=n32
20156 @opindex mabi=64
20157 @opindex mabi=eabi
20158 Generate code for the given ABI@.
20159
20160 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
20161 generates 64-bit code when you select a 64-bit architecture, but you
20162 can use @option{-mgp32} to get 32-bit code instead.
20163
20164 For information about the O64 ABI, see
20165 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
20166
20167 GCC supports a variant of the o32 ABI in which floating-point registers
20168 are 64 rather than 32 bits wide. You can select this combination with
20169 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
20170 and @code{mfhc1} instructions and is therefore only supported for
20171 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
20172
20173 The register assignments for arguments and return values remain the
20174 same, but each scalar value is passed in a single 64-bit register
20175 rather than a pair of 32-bit registers. For example, scalar
20176 floating-point values are returned in @samp{$f0} only, not a
20177 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
20178 remains the same in that the even-numbered double-precision registers
20179 are saved.
20180
20181 Two additional variants of the o32 ABI are supported to enable
20182 a transition from 32-bit to 64-bit registers. These are FPXX
20183 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
20184 The FPXX extension mandates that all code must execute correctly
20185 when run using 32-bit or 64-bit registers. The code can be interlinked
20186 with either FP32 or FP64, but not both.
20187 The FP64A extension is similar to the FP64 extension but forbids the
20188 use of odd-numbered single-precision registers. This can be used
20189 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
20190 processors and allows both FP32 and FP64A code to interlink and
20191 run in the same process without changing FPU modes.
20192
20193 @item -mabicalls
20194 @itemx -mno-abicalls
20195 @opindex mabicalls
20196 @opindex mno-abicalls
20197 Generate (do not generate) code that is suitable for SVR4-style
20198 dynamic objects. @option{-mabicalls} is the default for SVR4-based
20199 systems.
20200
20201 @item -mshared
20202 @itemx -mno-shared
20203 Generate (do not generate) code that is fully position-independent,
20204 and that can therefore be linked into shared libraries. This option
20205 only affects @option{-mabicalls}.
20206
20207 All @option{-mabicalls} code has traditionally been position-independent,
20208 regardless of options like @option{-fPIC} and @option{-fpic}. However,
20209 as an extension, the GNU toolchain allows executables to use absolute
20210 accesses for locally-binding symbols. It can also use shorter GP
20211 initialization sequences and generate direct calls to locally-defined
20212 functions. This mode is selected by @option{-mno-shared}.
20213
20214 @option{-mno-shared} depends on binutils 2.16 or higher and generates
20215 objects that can only be linked by the GNU linker. However, the option
20216 does not affect the ABI of the final executable; it only affects the ABI
20217 of relocatable objects. Using @option{-mno-shared} generally makes
20218 executables both smaller and quicker.
20219
20220 @option{-mshared} is the default.
20221
20222 @item -mplt
20223 @itemx -mno-plt
20224 @opindex mplt
20225 @opindex mno-plt
20226 Assume (do not assume) that the static and dynamic linkers
20227 support PLTs and copy relocations. This option only affects
20228 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
20229 has no effect without @option{-msym32}.
20230
20231 You can make @option{-mplt} the default by configuring
20232 GCC with @option{--with-mips-plt}. The default is
20233 @option{-mno-plt} otherwise.
20234
20235 @item -mxgot
20236 @itemx -mno-xgot
20237 @opindex mxgot
20238 @opindex mno-xgot
20239 Lift (do not lift) the usual restrictions on the size of the global
20240 offset table.
20241
20242 GCC normally uses a single instruction to load values from the GOT@.
20243 While this is relatively efficient, it only works if the GOT
20244 is smaller than about 64k. Anything larger causes the linker
20245 to report an error such as:
20246
20247 @cindex relocation truncated to fit (MIPS)
20248 @smallexample
20249 relocation truncated to fit: R_MIPS_GOT16 foobar
20250 @end smallexample
20251
20252 If this happens, you should recompile your code with @option{-mxgot}.
20253 This works with very large GOTs, although the code is also
20254 less efficient, since it takes three instructions to fetch the
20255 value of a global symbol.
20256
20257 Note that some linkers can create multiple GOTs. If you have such a
20258 linker, you should only need to use @option{-mxgot} when a single object
20259 file accesses more than 64k's worth of GOT entries. Very few do.
20260
20261 These options have no effect unless GCC is generating position
20262 independent code.
20263
20264 @item -mgp32
20265 @opindex mgp32
20266 Assume that general-purpose registers are 32 bits wide.
20267
20268 @item -mgp64
20269 @opindex mgp64
20270 Assume that general-purpose registers are 64 bits wide.
20271
20272 @item -mfp32
20273 @opindex mfp32
20274 Assume that floating-point registers are 32 bits wide.
20275
20276 @item -mfp64
20277 @opindex mfp64
20278 Assume that floating-point registers are 64 bits wide.
20279
20280 @item -mfpxx
20281 @opindex mfpxx
20282 Do not assume the width of floating-point registers.
20283
20284 @item -mhard-float
20285 @opindex mhard-float
20286 Use floating-point coprocessor instructions.
20287
20288 @item -msoft-float
20289 @opindex msoft-float
20290 Do not use floating-point coprocessor instructions. Implement
20291 floating-point calculations using library calls instead.
20292
20293 @item -mno-float
20294 @opindex mno-float
20295 Equivalent to @option{-msoft-float}, but additionally asserts that the
20296 program being compiled does not perform any floating-point operations.
20297 This option is presently supported only by some bare-metal MIPS
20298 configurations, where it may select a special set of libraries
20299 that lack all floating-point support (including, for example, the
20300 floating-point @code{printf} formats).
20301 If code compiled with @option{-mno-float} accidentally contains
20302 floating-point operations, it is likely to suffer a link-time
20303 or run-time failure.
20304
20305 @item -msingle-float
20306 @opindex msingle-float
20307 Assume that the floating-point coprocessor only supports single-precision
20308 operations.
20309
20310 @item -mdouble-float
20311 @opindex mdouble-float
20312 Assume that the floating-point coprocessor supports double-precision
20313 operations. This is the default.
20314
20315 @item -modd-spreg
20316 @itemx -mno-odd-spreg
20317 @opindex modd-spreg
20318 @opindex mno-odd-spreg
20319 Enable the use of odd-numbered single-precision floating-point registers
20320 for the o32 ABI. This is the default for processors that are known to
20321 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
20322 is set by default.
20323
20324 @item -mabs=2008
20325 @itemx -mabs=legacy
20326 @opindex mabs=2008
20327 @opindex mabs=legacy
20328 These options control the treatment of the special not-a-number (NaN)
20329 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
20330 @code{neg.@i{fmt}} machine instructions.
20331
20332 By default or when @option{-mabs=legacy} is used the legacy
20333 treatment is selected. In this case these instructions are considered
20334 arithmetic and avoided where correct operation is required and the
20335 input operand might be a NaN. A longer sequence of instructions that
20336 manipulate the sign bit of floating-point datum manually is used
20337 instead unless the @option{-ffinite-math-only} option has also been
20338 specified.
20339
20340 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
20341 this case these instructions are considered non-arithmetic and therefore
20342 operating correctly in all cases, including in particular where the
20343 input operand is a NaN. These instructions are therefore always used
20344 for the respective operations.
20345
20346 @item -mnan=2008
20347 @itemx -mnan=legacy
20348 @opindex mnan=2008
20349 @opindex mnan=legacy
20350 These options control the encoding of the special not-a-number (NaN)
20351 IEEE 754 floating-point data.
20352
20353 The @option{-mnan=legacy} option selects the legacy encoding. In this
20354 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
20355 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
20356 by the first bit of their trailing significand field being 1.
20357
20358 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
20359 this case qNaNs are denoted by the first bit of their trailing
20360 significand field being 1, whereas sNaNs are denoted by the first bit of
20361 their trailing significand field being 0.
20362
20363 The default is @option{-mnan=legacy} unless GCC has been configured with
20364 @option{--with-nan=2008}.
20365
20366 @item -mllsc
20367 @itemx -mno-llsc
20368 @opindex mllsc
20369 @opindex mno-llsc
20370 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
20371 implement atomic memory built-in functions. When neither option is
20372 specified, GCC uses the instructions if the target architecture
20373 supports them.
20374
20375 @option{-mllsc} is useful if the runtime environment can emulate the
20376 instructions and @option{-mno-llsc} can be useful when compiling for
20377 nonstandard ISAs. You can make either option the default by
20378 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
20379 respectively. @option{--with-llsc} is the default for some
20380 configurations; see the installation documentation for details.
20381
20382 @item -mdsp
20383 @itemx -mno-dsp
20384 @opindex mdsp
20385 @opindex mno-dsp
20386 Use (do not use) revision 1 of the MIPS DSP ASE@.
20387 @xref{MIPS DSP Built-in Functions}. This option defines the
20388 preprocessor macro @code{__mips_dsp}. It also defines
20389 @code{__mips_dsp_rev} to 1.
20390
20391 @item -mdspr2
20392 @itemx -mno-dspr2
20393 @opindex mdspr2
20394 @opindex mno-dspr2
20395 Use (do not use) revision 2 of the MIPS DSP ASE@.
20396 @xref{MIPS DSP Built-in Functions}. This option defines the
20397 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
20398 It also defines @code{__mips_dsp_rev} to 2.
20399
20400 @item -msmartmips
20401 @itemx -mno-smartmips
20402 @opindex msmartmips
20403 @opindex mno-smartmips
20404 Use (do not use) the MIPS SmartMIPS ASE.
20405
20406 @item -mpaired-single
20407 @itemx -mno-paired-single
20408 @opindex mpaired-single
20409 @opindex mno-paired-single
20410 Use (do not use) paired-single floating-point instructions.
20411 @xref{MIPS Paired-Single Support}. This option requires
20412 hardware floating-point support to be enabled.
20413
20414 @item -mdmx
20415 @itemx -mno-mdmx
20416 @opindex mdmx
20417 @opindex mno-mdmx
20418 Use (do not use) MIPS Digital Media Extension instructions.
20419 This option can only be used when generating 64-bit code and requires
20420 hardware floating-point support to be enabled.
20421
20422 @item -mips3d
20423 @itemx -mno-mips3d
20424 @opindex mips3d
20425 @opindex mno-mips3d
20426 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
20427 The option @option{-mips3d} implies @option{-mpaired-single}.
20428
20429 @item -mmicromips
20430 @itemx -mno-micromips
20431 @opindex mmicromips
20432 @opindex mno-mmicromips
20433 Generate (do not generate) microMIPS code.
20434
20435 MicroMIPS code generation can also be controlled on a per-function basis
20436 by means of @code{micromips} and @code{nomicromips} attributes.
20437 @xref{Function Attributes}, for more information.
20438
20439 @item -mmt
20440 @itemx -mno-mt
20441 @opindex mmt
20442 @opindex mno-mt
20443 Use (do not use) MT Multithreading instructions.
20444
20445 @item -mmcu
20446 @itemx -mno-mcu
20447 @opindex mmcu
20448 @opindex mno-mcu
20449 Use (do not use) the MIPS MCU ASE instructions.
20450
20451 @item -meva
20452 @itemx -mno-eva
20453 @opindex meva
20454 @opindex mno-eva
20455 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
20456
20457 @item -mvirt
20458 @itemx -mno-virt
20459 @opindex mvirt
20460 @opindex mno-virt
20461 Use (do not use) the MIPS Virtualization (VZ) instructions.
20462
20463 @item -mxpa
20464 @itemx -mno-xpa
20465 @opindex mxpa
20466 @opindex mno-xpa
20467 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
20468
20469 @item -mlong64
20470 @opindex mlong64
20471 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
20472 an explanation of the default and the way that the pointer size is
20473 determined.
20474
20475 @item -mlong32
20476 @opindex mlong32
20477 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
20478
20479 The default size of @code{int}s, @code{long}s and pointers depends on
20480 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
20481 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
20482 32-bit @code{long}s. Pointers are the same size as @code{long}s,
20483 or the same size as integer registers, whichever is smaller.
20484
20485 @item -msym32
20486 @itemx -mno-sym32
20487 @opindex msym32
20488 @opindex mno-sym32
20489 Assume (do not assume) that all symbols have 32-bit values, regardless
20490 of the selected ABI@. This option is useful in combination with
20491 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
20492 to generate shorter and faster references to symbolic addresses.
20493
20494 @item -G @var{num}
20495 @opindex G
20496 Put definitions of externally-visible data in a small data section
20497 if that data is no bigger than @var{num} bytes. GCC can then generate
20498 more efficient accesses to the data; see @option{-mgpopt} for details.
20499
20500 The default @option{-G} option depends on the configuration.
20501
20502 @item -mlocal-sdata
20503 @itemx -mno-local-sdata
20504 @opindex mlocal-sdata
20505 @opindex mno-local-sdata
20506 Extend (do not extend) the @option{-G} behavior to local data too,
20507 such as to static variables in C@. @option{-mlocal-sdata} is the
20508 default for all configurations.
20509
20510 If the linker complains that an application is using too much small data,
20511 you might want to try rebuilding the less performance-critical parts with
20512 @option{-mno-local-sdata}. You might also want to build large
20513 libraries with @option{-mno-local-sdata}, so that the libraries leave
20514 more room for the main program.
20515
20516 @item -mextern-sdata
20517 @itemx -mno-extern-sdata
20518 @opindex mextern-sdata
20519 @opindex mno-extern-sdata
20520 Assume (do not assume) that externally-defined data is in
20521 a small data section if the size of that data is within the @option{-G} limit.
20522 @option{-mextern-sdata} is the default for all configurations.
20523
20524 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
20525 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
20526 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
20527 is placed in a small data section. If @var{Var} is defined by another
20528 module, you must either compile that module with a high-enough
20529 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
20530 definition. If @var{Var} is common, you must link the application
20531 with a high-enough @option{-G} setting.
20532
20533 The easiest way of satisfying these restrictions is to compile
20534 and link every module with the same @option{-G} option. However,
20535 you may wish to build a library that supports several different
20536 small data limits. You can do this by compiling the library with
20537 the highest supported @option{-G} setting and additionally using
20538 @option{-mno-extern-sdata} to stop the library from making assumptions
20539 about externally-defined data.
20540
20541 @item -mgpopt
20542 @itemx -mno-gpopt
20543 @opindex mgpopt
20544 @opindex mno-gpopt
20545 Use (do not use) GP-relative accesses for symbols that are known to be
20546 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
20547 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
20548 configurations.
20549
20550 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
20551 might not hold the value of @code{_gp}. For example, if the code is
20552 part of a library that might be used in a boot monitor, programs that
20553 call boot monitor routines pass an unknown value in @code{$gp}.
20554 (In such situations, the boot monitor itself is usually compiled
20555 with @option{-G0}.)
20556
20557 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
20558 @option{-mno-extern-sdata}.
20559
20560 @item -membedded-data
20561 @itemx -mno-embedded-data
20562 @opindex membedded-data
20563 @opindex mno-embedded-data
20564 Allocate variables to the read-only data section first if possible, then
20565 next in the small data section if possible, otherwise in data. This gives
20566 slightly slower code than the default, but reduces the amount of RAM required
20567 when executing, and thus may be preferred for some embedded systems.
20568
20569 @item -muninit-const-in-rodata
20570 @itemx -mno-uninit-const-in-rodata
20571 @opindex muninit-const-in-rodata
20572 @opindex mno-uninit-const-in-rodata
20573 Put uninitialized @code{const} variables in the read-only data section.
20574 This option is only meaningful in conjunction with @option{-membedded-data}.
20575
20576 @item -mcode-readable=@var{setting}
20577 @opindex mcode-readable
20578 Specify whether GCC may generate code that reads from executable sections.
20579 There are three possible settings:
20580
20581 @table @gcctabopt
20582 @item -mcode-readable=yes
20583 Instructions may freely access executable sections. This is the
20584 default setting.
20585
20586 @item -mcode-readable=pcrel
20587 MIPS16 PC-relative load instructions can access executable sections,
20588 but other instructions must not do so. This option is useful on 4KSc
20589 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
20590 It is also useful on processors that can be configured to have a dual
20591 instruction/data SRAM interface and that, like the M4K, automatically
20592 redirect PC-relative loads to the instruction RAM.
20593
20594 @item -mcode-readable=no
20595 Instructions must not access executable sections. This option can be
20596 useful on targets that are configured to have a dual instruction/data
20597 SRAM interface but that (unlike the M4K) do not automatically redirect
20598 PC-relative loads to the instruction RAM.
20599 @end table
20600
20601 @item -msplit-addresses
20602 @itemx -mno-split-addresses
20603 @opindex msplit-addresses
20604 @opindex mno-split-addresses
20605 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
20606 relocation operators. This option has been superseded by
20607 @option{-mexplicit-relocs} but is retained for backwards compatibility.
20608
20609 @item -mexplicit-relocs
20610 @itemx -mno-explicit-relocs
20611 @opindex mexplicit-relocs
20612 @opindex mno-explicit-relocs
20613 Use (do not use) assembler relocation operators when dealing with symbolic
20614 addresses. The alternative, selected by @option{-mno-explicit-relocs},
20615 is to use assembler macros instead.
20616
20617 @option{-mexplicit-relocs} is the default if GCC was configured
20618 to use an assembler that supports relocation operators.
20619
20620 @item -mcheck-zero-division
20621 @itemx -mno-check-zero-division
20622 @opindex mcheck-zero-division
20623 @opindex mno-check-zero-division
20624 Trap (do not trap) on integer division by zero.
20625
20626 The default is @option{-mcheck-zero-division}.
20627
20628 @item -mdivide-traps
20629 @itemx -mdivide-breaks
20630 @opindex mdivide-traps
20631 @opindex mdivide-breaks
20632 MIPS systems check for division by zero by generating either a
20633 conditional trap or a break instruction. Using traps results in
20634 smaller code, but is only supported on MIPS II and later. Also, some
20635 versions of the Linux kernel have a bug that prevents trap from
20636 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
20637 allow conditional traps on architectures that support them and
20638 @option{-mdivide-breaks} to force the use of breaks.
20639
20640 The default is usually @option{-mdivide-traps}, but this can be
20641 overridden at configure time using @option{--with-divide=breaks}.
20642 Divide-by-zero checks can be completely disabled using
20643 @option{-mno-check-zero-division}.
20644
20645 @item -mload-store-pairs
20646 @itemx -mno-load-store-pairs
20647 @opindex mload-store-pairs
20648 @opindex mno-load-store-pairs
20649 Enable (disable) an optimization that pairs consecutive load or store
20650 instructions to enable load/store bonding. This option is enabled by
20651 default but only takes effect when the selected architecture is known
20652 to support bonding.
20653
20654 @item -mmemcpy
20655 @itemx -mno-memcpy
20656 @opindex mmemcpy
20657 @opindex mno-memcpy
20658 Force (do not force) the use of @code{memcpy} for non-trivial block
20659 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
20660 most constant-sized copies.
20661
20662 @item -mlong-calls
20663 @itemx -mno-long-calls
20664 @opindex mlong-calls
20665 @opindex mno-long-calls
20666 Disable (do not disable) use of the @code{jal} instruction. Calling
20667 functions using @code{jal} is more efficient but requires the caller
20668 and callee to be in the same 256 megabyte segment.
20669
20670 This option has no effect on abicalls code. The default is
20671 @option{-mno-long-calls}.
20672
20673 @item -mmad
20674 @itemx -mno-mad
20675 @opindex mmad
20676 @opindex mno-mad
20677 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
20678 instructions, as provided by the R4650 ISA@.
20679
20680 @item -mimadd
20681 @itemx -mno-imadd
20682 @opindex mimadd
20683 @opindex mno-imadd
20684 Enable (disable) use of the @code{madd} and @code{msub} integer
20685 instructions. The default is @option{-mimadd} on architectures
20686 that support @code{madd} and @code{msub} except for the 74k
20687 architecture where it was found to generate slower code.
20688
20689 @item -mfused-madd
20690 @itemx -mno-fused-madd
20691 @opindex mfused-madd
20692 @opindex mno-fused-madd
20693 Enable (disable) use of the floating-point multiply-accumulate
20694 instructions, when they are available. The default is
20695 @option{-mfused-madd}.
20696
20697 On the R8000 CPU when multiply-accumulate instructions are used,
20698 the intermediate product is calculated to infinite precision
20699 and is not subject to the FCSR Flush to Zero bit. This may be
20700 undesirable in some circumstances. On other processors the result
20701 is numerically identical to the equivalent computation using
20702 separate multiply, add, subtract and negate instructions.
20703
20704 @item -nocpp
20705 @opindex nocpp
20706 Tell the MIPS assembler to not run its preprocessor over user
20707 assembler files (with a @samp{.s} suffix) when assembling them.
20708
20709 @item -mfix-24k
20710 @item -mno-fix-24k
20711 @opindex mfix-24k
20712 @opindex mno-fix-24k
20713 Work around the 24K E48 (lost data on stores during refill) errata.
20714 The workarounds are implemented by the assembler rather than by GCC@.
20715
20716 @item -mfix-r4000
20717 @itemx -mno-fix-r4000
20718 @opindex mfix-r4000
20719 @opindex mno-fix-r4000
20720 Work around certain R4000 CPU errata:
20721 @itemize @minus
20722 @item
20723 A double-word or a variable shift may give an incorrect result if executed
20724 immediately after starting an integer division.
20725 @item
20726 A double-word or a variable shift may give an incorrect result if executed
20727 while an integer multiplication is in progress.
20728 @item
20729 An integer division may give an incorrect result if started in a delay slot
20730 of a taken branch or a jump.
20731 @end itemize
20732
20733 @item -mfix-r4400
20734 @itemx -mno-fix-r4400
20735 @opindex mfix-r4400
20736 @opindex mno-fix-r4400
20737 Work around certain R4400 CPU errata:
20738 @itemize @minus
20739 @item
20740 A double-word or a variable shift may give an incorrect result if executed
20741 immediately after starting an integer division.
20742 @end itemize
20743
20744 @item -mfix-r10000
20745 @itemx -mno-fix-r10000
20746 @opindex mfix-r10000
20747 @opindex mno-fix-r10000
20748 Work around certain R10000 errata:
20749 @itemize @minus
20750 @item
20751 @code{ll}/@code{sc} sequences may not behave atomically on revisions
20752 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
20753 @end itemize
20754
20755 This option can only be used if the target architecture supports
20756 branch-likely instructions. @option{-mfix-r10000} is the default when
20757 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
20758 otherwise.
20759
20760 @item -mfix-rm7000
20761 @itemx -mno-fix-rm7000
20762 @opindex mfix-rm7000
20763 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
20764 workarounds are implemented by the assembler rather than by GCC@.
20765
20766 @item -mfix-vr4120
20767 @itemx -mno-fix-vr4120
20768 @opindex mfix-vr4120
20769 Work around certain VR4120 errata:
20770 @itemize @minus
20771 @item
20772 @code{dmultu} does not always produce the correct result.
20773 @item
20774 @code{div} and @code{ddiv} do not always produce the correct result if one
20775 of the operands is negative.
20776 @end itemize
20777 The workarounds for the division errata rely on special functions in
20778 @file{libgcc.a}. At present, these functions are only provided by
20779 the @code{mips64vr*-elf} configurations.
20780
20781 Other VR4120 errata require a NOP to be inserted between certain pairs of
20782 instructions. These errata are handled by the assembler, not by GCC itself.
20783
20784 @item -mfix-vr4130
20785 @opindex mfix-vr4130
20786 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
20787 workarounds are implemented by the assembler rather than by GCC,
20788 although GCC avoids using @code{mflo} and @code{mfhi} if the
20789 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
20790 instructions are available instead.
20791
20792 @item -mfix-sb1
20793 @itemx -mno-fix-sb1
20794 @opindex mfix-sb1
20795 Work around certain SB-1 CPU core errata.
20796 (This flag currently works around the SB-1 revision 2
20797 ``F1'' and ``F2'' floating-point errata.)
20798
20799 @item -mr10k-cache-barrier=@var{setting}
20800 @opindex mr10k-cache-barrier
20801 Specify whether GCC should insert cache barriers to avoid the
20802 side-effects of speculation on R10K processors.
20803
20804 In common with many processors, the R10K tries to predict the outcome
20805 of a conditional branch and speculatively executes instructions from
20806 the ``taken'' branch. It later aborts these instructions if the
20807 predicted outcome is wrong. However, on the R10K, even aborted
20808 instructions can have side effects.
20809
20810 This problem only affects kernel stores and, depending on the system,
20811 kernel loads. As an example, a speculatively-executed store may load
20812 the target memory into cache and mark the cache line as dirty, even if
20813 the store itself is later aborted. If a DMA operation writes to the
20814 same area of memory before the ``dirty'' line is flushed, the cached
20815 data overwrites the DMA-ed data. See the R10K processor manual
20816 for a full description, including other potential problems.
20817
20818 One workaround is to insert cache barrier instructions before every memory
20819 access that might be speculatively executed and that might have side
20820 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
20821 controls GCC's implementation of this workaround. It assumes that
20822 aborted accesses to any byte in the following regions does not have
20823 side effects:
20824
20825 @enumerate
20826 @item
20827 the memory occupied by the current function's stack frame;
20828
20829 @item
20830 the memory occupied by an incoming stack argument;
20831
20832 @item
20833 the memory occupied by an object with a link-time-constant address.
20834 @end enumerate
20835
20836 It is the kernel's responsibility to ensure that speculative
20837 accesses to these regions are indeed safe.
20838
20839 If the input program contains a function declaration such as:
20840
20841 @smallexample
20842 void foo (void);
20843 @end smallexample
20844
20845 then the implementation of @code{foo} must allow @code{j foo} and
20846 @code{jal foo} to be executed speculatively. GCC honors this
20847 restriction for functions it compiles itself. It expects non-GCC
20848 functions (such as hand-written assembly code) to do the same.
20849
20850 The option has three forms:
20851
20852 @table @gcctabopt
20853 @item -mr10k-cache-barrier=load-store
20854 Insert a cache barrier before a load or store that might be
20855 speculatively executed and that might have side effects even
20856 if aborted.
20857
20858 @item -mr10k-cache-barrier=store
20859 Insert a cache barrier before a store that might be speculatively
20860 executed and that might have side effects even if aborted.
20861
20862 @item -mr10k-cache-barrier=none
20863 Disable the insertion of cache barriers. This is the default setting.
20864 @end table
20865
20866 @item -mflush-func=@var{func}
20867 @itemx -mno-flush-func
20868 @opindex mflush-func
20869 Specifies the function to call to flush the I and D caches, or to not
20870 call any such function. If called, the function must take the same
20871 arguments as the common @code{_flush_func}, that is, the address of the
20872 memory range for which the cache is being flushed, the size of the
20873 memory range, and the number 3 (to flush both caches). The default
20874 depends on the target GCC was configured for, but commonly is either
20875 @code{_flush_func} or @code{__cpu_flush}.
20876
20877 @item mbranch-cost=@var{num}
20878 @opindex mbranch-cost
20879 Set the cost of branches to roughly @var{num} ``simple'' instructions.
20880 This cost is only a heuristic and is not guaranteed to produce
20881 consistent results across releases. A zero cost redundantly selects
20882 the default, which is based on the @option{-mtune} setting.
20883
20884 @item -mbranch-likely
20885 @itemx -mno-branch-likely
20886 @opindex mbranch-likely
20887 @opindex mno-branch-likely
20888 Enable or disable use of Branch Likely instructions, regardless of the
20889 default for the selected architecture. By default, Branch Likely
20890 instructions may be generated if they are supported by the selected
20891 architecture. An exception is for the MIPS32 and MIPS64 architectures
20892 and processors that implement those architectures; for those, Branch
20893 Likely instructions are not be generated by default because the MIPS32
20894 and MIPS64 architectures specifically deprecate their use.
20895
20896 @item -mcompact-branches=never
20897 @itemx -mcompact-branches=optimal
20898 @itemx -mcompact-branches=always
20899 @opindex mcompact-branches=never
20900 @opindex mcompact-branches=optimal
20901 @opindex mcompact-branches=always
20902 These options control which form of branches will be generated. The
20903 default is @option{-mcompact-branches=optimal}.
20904
20905 The @option{-mcompact-branches=never} option ensures that compact branch
20906 instructions will never be generated.
20907
20908 The @option{-mcompact-branches=always} option ensures that a compact
20909 branch instruction will be generated if available. If a compact branch
20910 instruction is not available, a delay slot form of the branch will be
20911 used instead.
20912
20913 This option is supported from MIPS Release 6 onwards.
20914
20915 The @option{-mcompact-branches=optimal} option will cause a delay slot
20916 branch to be used if one is available in the current ISA and the delay
20917 slot is successfully filled. If the delay slot is not filled, a compact
20918 branch will be chosen if one is available.
20919
20920 @item -mfp-exceptions
20921 @itemx -mno-fp-exceptions
20922 @opindex mfp-exceptions
20923 Specifies whether FP exceptions are enabled. This affects how
20924 FP instructions are scheduled for some processors.
20925 The default is that FP exceptions are
20926 enabled.
20927
20928 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
20929 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
20930 FP pipe.
20931
20932 @item -mvr4130-align
20933 @itemx -mno-vr4130-align
20934 @opindex mvr4130-align
20935 The VR4130 pipeline is two-way superscalar, but can only issue two
20936 instructions together if the first one is 8-byte aligned. When this
20937 option is enabled, GCC aligns pairs of instructions that it
20938 thinks should execute in parallel.
20939
20940 This option only has an effect when optimizing for the VR4130.
20941 It normally makes code faster, but at the expense of making it bigger.
20942 It is enabled by default at optimization level @option{-O3}.
20943
20944 @item -msynci
20945 @itemx -mno-synci
20946 @opindex msynci
20947 Enable (disable) generation of @code{synci} instructions on
20948 architectures that support it. The @code{synci} instructions (if
20949 enabled) are generated when @code{__builtin___clear_cache} is
20950 compiled.
20951
20952 This option defaults to @option{-mno-synci}, but the default can be
20953 overridden by configuring GCC with @option{--with-synci}.
20954
20955 When compiling code for single processor systems, it is generally safe
20956 to use @code{synci}. However, on many multi-core (SMP) systems, it
20957 does not invalidate the instruction caches on all cores and may lead
20958 to undefined behavior.
20959
20960 @item -mrelax-pic-calls
20961 @itemx -mno-relax-pic-calls
20962 @opindex mrelax-pic-calls
20963 Try to turn PIC calls that are normally dispatched via register
20964 @code{$25} into direct calls. This is only possible if the linker can
20965 resolve the destination at link time and if the destination is within
20966 range for a direct call.
20967
20968 @option{-mrelax-pic-calls} is the default if GCC was configured to use
20969 an assembler and a linker that support the @code{.reloc} assembly
20970 directive and @option{-mexplicit-relocs} is in effect. With
20971 @option{-mno-explicit-relocs}, this optimization can be performed by the
20972 assembler and the linker alone without help from the compiler.
20973
20974 @item -mmcount-ra-address
20975 @itemx -mno-mcount-ra-address
20976 @opindex mmcount-ra-address
20977 @opindex mno-mcount-ra-address
20978 Emit (do not emit) code that allows @code{_mcount} to modify the
20979 calling function's return address. When enabled, this option extends
20980 the usual @code{_mcount} interface with a new @var{ra-address}
20981 parameter, which has type @code{intptr_t *} and is passed in register
20982 @code{$12}. @code{_mcount} can then modify the return address by
20983 doing both of the following:
20984 @itemize
20985 @item
20986 Returning the new address in register @code{$31}.
20987 @item
20988 Storing the new address in @code{*@var{ra-address}},
20989 if @var{ra-address} is nonnull.
20990 @end itemize
20991
20992 The default is @option{-mno-mcount-ra-address}.
20993
20994 @item -mframe-header-opt
20995 @itemx -mno-frame-header-opt
20996 @opindex mframe-header-opt
20997 Enable (disable) frame header optimization in the o32 ABI. When using the
20998 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
20999 function to write out register arguments. When enabled, this optimization
21000 will suppress the allocation of the frame header if it can be determined that
21001 it is unused.
21002
21003 This optimization is off by default at all optimization levels.
21004
21005 @item -mlxc1-sxc1
21006 @itemx -mno-lxc1-sxc1
21007 @opindex mlxc1-sxc1
21008 When applicable, enable (disable) the generation of @code{lwxc1},
21009 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
21010
21011 @item -mmadd4
21012 @itemx -mno-madd4
21013 @opindex mmadd4
21014 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
21015 @code{madd.d} and related instructions. Enabled by default.
21016
21017 @end table
21018
21019 @node MMIX Options
21020 @subsection MMIX Options
21021 @cindex MMIX Options
21022
21023 These options are defined for the MMIX:
21024
21025 @table @gcctabopt
21026 @item -mlibfuncs
21027 @itemx -mno-libfuncs
21028 @opindex mlibfuncs
21029 @opindex mno-libfuncs
21030 Specify that intrinsic library functions are being compiled, passing all
21031 values in registers, no matter the size.
21032
21033 @item -mepsilon
21034 @itemx -mno-epsilon
21035 @opindex mepsilon
21036 @opindex mno-epsilon
21037 Generate floating-point comparison instructions that compare with respect
21038 to the @code{rE} epsilon register.
21039
21040 @item -mabi=mmixware
21041 @itemx -mabi=gnu
21042 @opindex mabi=mmixware
21043 @opindex mabi=gnu
21044 Generate code that passes function parameters and return values that (in
21045 the called function) are seen as registers @code{$0} and up, as opposed to
21046 the GNU ABI which uses global registers @code{$231} and up.
21047
21048 @item -mzero-extend
21049 @itemx -mno-zero-extend
21050 @opindex mzero-extend
21051 @opindex mno-zero-extend
21052 When reading data from memory in sizes shorter than 64 bits, use (do not
21053 use) zero-extending load instructions by default, rather than
21054 sign-extending ones.
21055
21056 @item -mknuthdiv
21057 @itemx -mno-knuthdiv
21058 @opindex mknuthdiv
21059 @opindex mno-knuthdiv
21060 Make the result of a division yielding a remainder have the same sign as
21061 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
21062 remainder follows the sign of the dividend. Both methods are
21063 arithmetically valid, the latter being almost exclusively used.
21064
21065 @item -mtoplevel-symbols
21066 @itemx -mno-toplevel-symbols
21067 @opindex mtoplevel-symbols
21068 @opindex mno-toplevel-symbols
21069 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
21070 code can be used with the @code{PREFIX} assembly directive.
21071
21072 @item -melf
21073 @opindex melf
21074 Generate an executable in the ELF format, rather than the default
21075 @samp{mmo} format used by the @command{mmix} simulator.
21076
21077 @item -mbranch-predict
21078 @itemx -mno-branch-predict
21079 @opindex mbranch-predict
21080 @opindex mno-branch-predict
21081 Use (do not use) the probable-branch instructions, when static branch
21082 prediction indicates a probable branch.
21083
21084 @item -mbase-addresses
21085 @itemx -mno-base-addresses
21086 @opindex mbase-addresses
21087 @opindex mno-base-addresses
21088 Generate (do not generate) code that uses @emph{base addresses}. Using a
21089 base address automatically generates a request (handled by the assembler
21090 and the linker) for a constant to be set up in a global register. The
21091 register is used for one or more base address requests within the range 0
21092 to 255 from the value held in the register. The generally leads to short
21093 and fast code, but the number of different data items that can be
21094 addressed is limited. This means that a program that uses lots of static
21095 data may require @option{-mno-base-addresses}.
21096
21097 @item -msingle-exit
21098 @itemx -mno-single-exit
21099 @opindex msingle-exit
21100 @opindex mno-single-exit
21101 Force (do not force) generated code to have a single exit point in each
21102 function.
21103 @end table
21104
21105 @node MN10300 Options
21106 @subsection MN10300 Options
21107 @cindex MN10300 options
21108
21109 These @option{-m} options are defined for Matsushita MN10300 architectures:
21110
21111 @table @gcctabopt
21112 @item -mmult-bug
21113 @opindex mmult-bug
21114 Generate code to avoid bugs in the multiply instructions for the MN10300
21115 processors. This is the default.
21116
21117 @item -mno-mult-bug
21118 @opindex mno-mult-bug
21119 Do not generate code to avoid bugs in the multiply instructions for the
21120 MN10300 processors.
21121
21122 @item -mam33
21123 @opindex mam33
21124 Generate code using features specific to the AM33 processor.
21125
21126 @item -mno-am33
21127 @opindex mno-am33
21128 Do not generate code using features specific to the AM33 processor. This
21129 is the default.
21130
21131 @item -mam33-2
21132 @opindex mam33-2
21133 Generate code using features specific to the AM33/2.0 processor.
21134
21135 @item -mam34
21136 @opindex mam34
21137 Generate code using features specific to the AM34 processor.
21138
21139 @item -mtune=@var{cpu-type}
21140 @opindex mtune
21141 Use the timing characteristics of the indicated CPU type when
21142 scheduling instructions. This does not change the targeted processor
21143 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
21144 @samp{am33-2} or @samp{am34}.
21145
21146 @item -mreturn-pointer-on-d0
21147 @opindex mreturn-pointer-on-d0
21148 When generating a function that returns a pointer, return the pointer
21149 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
21150 only in @code{a0}, and attempts to call such functions without a prototype
21151 result in errors. Note that this option is on by default; use
21152 @option{-mno-return-pointer-on-d0} to disable it.
21153
21154 @item -mno-crt0
21155 @opindex mno-crt0
21156 Do not link in the C run-time initialization object file.
21157
21158 @item -mrelax
21159 @opindex mrelax
21160 Indicate to the linker that it should perform a relaxation optimization pass
21161 to shorten branches, calls and absolute memory addresses. This option only
21162 has an effect when used on the command line for the final link step.
21163
21164 This option makes symbolic debugging impossible.
21165
21166 @item -mliw
21167 @opindex mliw
21168 Allow the compiler to generate @emph{Long Instruction Word}
21169 instructions if the target is the @samp{AM33} or later. This is the
21170 default. This option defines the preprocessor macro @code{__LIW__}.
21171
21172 @item -mnoliw
21173 @opindex mnoliw
21174 Do not allow the compiler to generate @emph{Long Instruction Word}
21175 instructions. This option defines the preprocessor macro
21176 @code{__NO_LIW__}.
21177
21178 @item -msetlb
21179 @opindex msetlb
21180 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
21181 instructions if the target is the @samp{AM33} or later. This is the
21182 default. This option defines the preprocessor macro @code{__SETLB__}.
21183
21184 @item -mnosetlb
21185 @opindex mnosetlb
21186 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
21187 instructions. This option defines the preprocessor macro
21188 @code{__NO_SETLB__}.
21189
21190 @end table
21191
21192 @node Moxie Options
21193 @subsection Moxie Options
21194 @cindex Moxie Options
21195
21196 @table @gcctabopt
21197
21198 @item -meb
21199 @opindex meb
21200 Generate big-endian code. This is the default for @samp{moxie-*-*}
21201 configurations.
21202
21203 @item -mel
21204 @opindex mel
21205 Generate little-endian code.
21206
21207 @item -mmul.x
21208 @opindex mmul.x
21209 Generate mul.x and umul.x instructions. This is the default for
21210 @samp{moxiebox-*-*} configurations.
21211
21212 @item -mno-crt0
21213 @opindex mno-crt0
21214 Do not link in the C run-time initialization object file.
21215
21216 @end table
21217
21218 @node MSP430 Options
21219 @subsection MSP430 Options
21220 @cindex MSP430 Options
21221
21222 These options are defined for the MSP430:
21223
21224 @table @gcctabopt
21225
21226 @item -masm-hex
21227 @opindex masm-hex
21228 Force assembly output to always use hex constants. Normally such
21229 constants are signed decimals, but this option is available for
21230 testsuite and/or aesthetic purposes.
21231
21232 @item -mmcu=
21233 @opindex mmcu=
21234 Select the MCU to target. This is used to create a C preprocessor
21235 symbol based upon the MCU name, converted to upper case and pre- and
21236 post-fixed with @samp{__}. This in turn is used by the
21237 @file{msp430.h} header file to select an MCU-specific supplementary
21238 header file.
21239
21240 The option also sets the ISA to use. If the MCU name is one that is
21241 known to only support the 430 ISA then that is selected, otherwise the
21242 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
21243 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
21244 name selects the 430X ISA.
21245
21246 In addition an MCU-specific linker script is added to the linker
21247 command line. The script's name is the name of the MCU with
21248 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
21249 command line defines the C preprocessor symbol @code{__XXX__} and
21250 cause the linker to search for a script called @file{xxx.ld}.
21251
21252 This option is also passed on to the assembler.
21253
21254 @item -mwarn-mcu
21255 @itemx -mno-warn-mcu
21256 @opindex mwarn-mcu
21257 @opindex mno-warn-mcu
21258 This option enables or disables warnings about conflicts between the
21259 MCU name specified by the @option{-mmcu} option and the ISA set by the
21260 @option{-mcpu} option and/or the hardware multiply support set by the
21261 @option{-mhwmult} option. It also toggles warnings about unrecognized
21262 MCU names. This option is on by default.
21263
21264 @item -mcpu=
21265 @opindex mcpu=
21266 Specifies the ISA to use. Accepted values are @samp{msp430},
21267 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
21268 @option{-mmcu=} option should be used to select the ISA.
21269
21270 @item -msim
21271 @opindex msim
21272 Link to the simulator runtime libraries and linker script. Overrides
21273 any scripts that would be selected by the @option{-mmcu=} option.
21274
21275 @item -mlarge
21276 @opindex mlarge
21277 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
21278
21279 @item -msmall
21280 @opindex msmall
21281 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
21282
21283 @item -mrelax
21284 @opindex mrelax
21285 This option is passed to the assembler and linker, and allows the
21286 linker to perform certain optimizations that cannot be done until
21287 the final link.
21288
21289 @item mhwmult=
21290 @opindex mhwmult=
21291 Describes the type of hardware multiply supported by the target.
21292 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
21293 for the original 16-bit-only multiply supported by early MCUs.
21294 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
21295 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
21296 A value of @samp{auto} can also be given. This tells GCC to deduce
21297 the hardware multiply support based upon the MCU name provided by the
21298 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
21299 the MCU name is not recognized then no hardware multiply support is
21300 assumed. @code{auto} is the default setting.
21301
21302 Hardware multiplies are normally performed by calling a library
21303 routine. This saves space in the generated code. When compiling at
21304 @option{-O3} or higher however the hardware multiplier is invoked
21305 inline. This makes for bigger, but faster code.
21306
21307 The hardware multiply routines disable interrupts whilst running and
21308 restore the previous interrupt state when they finish. This makes
21309 them safe to use inside interrupt handlers as well as in normal code.
21310
21311 @item -minrt
21312 @opindex minrt
21313 Enable the use of a minimum runtime environment - no static
21314 initializers or constructors. This is intended for memory-constrained
21315 devices. The compiler includes special symbols in some objects
21316 that tell the linker and runtime which code fragments are required.
21317
21318 @item -mcode-region=
21319 @itemx -mdata-region=
21320 @opindex mcode-region
21321 @opindex mdata-region
21322 These options tell the compiler where to place functions and data that
21323 do not have one of the @code{lower}, @code{upper}, @code{either} or
21324 @code{section} attributes. Possible values are @code{lower},
21325 @code{upper}, @code{either} or @code{any}. The first three behave
21326 like the corresponding attribute. The fourth possible value -
21327 @code{any} - is the default. It leaves placement entirely up to the
21328 linker script and how it assigns the standard sections
21329 (@code{.text}, @code{.data}, etc) to the memory regions.
21330
21331 @item -msilicon-errata=
21332 @opindex msilicon-errata
21333 This option passes on a request to assembler to enable the fixes for
21334 the named silicon errata.
21335
21336 @item -msilicon-errata-warn=
21337 @opindex msilicon-errata-warn
21338 This option passes on a request to the assembler to enable warning
21339 messages when a silicon errata might need to be applied.
21340
21341 @end table
21342
21343 @node NDS32 Options
21344 @subsection NDS32 Options
21345 @cindex NDS32 Options
21346
21347 These options are defined for NDS32 implementations:
21348
21349 @table @gcctabopt
21350
21351 @item -mbig-endian
21352 @opindex mbig-endian
21353 Generate code in big-endian mode.
21354
21355 @item -mlittle-endian
21356 @opindex mlittle-endian
21357 Generate code in little-endian mode.
21358
21359 @item -mreduced-regs
21360 @opindex mreduced-regs
21361 Use reduced-set registers for register allocation.
21362
21363 @item -mfull-regs
21364 @opindex mfull-regs
21365 Use full-set registers for register allocation.
21366
21367 @item -mcmov
21368 @opindex mcmov
21369 Generate conditional move instructions.
21370
21371 @item -mno-cmov
21372 @opindex mno-cmov
21373 Do not generate conditional move instructions.
21374
21375 @item -mext-perf
21376 @opindex mperf-ext
21377 Generate performance extension instructions.
21378
21379 @item -mno-ext-perf
21380 @opindex mno-perf-ext
21381 Do not generate performance extension instructions.
21382
21383 @item -mext-perf2
21384 @opindex mperf-ext
21385 Generate performance extension 2 instructions.
21386
21387 @item -mno-ext-perf2
21388 @opindex mno-perf-ext
21389 Do not generate performance extension 2 instructions.
21390
21391 @item -mext-string
21392 @opindex mperf-ext
21393 Generate string extension instructions.
21394
21395 @item -mno-ext-string
21396 @opindex mno-perf-ext
21397 Do not generate string extension instructions.
21398
21399 @item -mv3push
21400 @opindex mv3push
21401 Generate v3 push25/pop25 instructions.
21402
21403 @item -mno-v3push
21404 @opindex mno-v3push
21405 Do not generate v3 push25/pop25 instructions.
21406
21407 @item -m16-bit
21408 @opindex m16-bit
21409 Generate 16-bit instructions.
21410
21411 @item -mno-16-bit
21412 @opindex mno-16-bit
21413 Do not generate 16-bit instructions.
21414
21415 @item -misr-vector-size=@var{num}
21416 @opindex misr-vector-size
21417 Specify the size of each interrupt vector, which must be 4 or 16.
21418
21419 @item -mcache-block-size=@var{num}
21420 @opindex mcache-block-size
21421 Specify the size of each cache block,
21422 which must be a power of 2 between 4 and 512.
21423
21424 @item -march=@var{arch}
21425 @opindex march
21426 Specify the name of the target architecture.
21427
21428 @item -mcmodel=@var{code-model}
21429 @opindex mcmodel
21430 Set the code model to one of
21431 @table @asis
21432 @item @samp{small}
21433 All the data and read-only data segments must be within 512KB addressing space.
21434 The text segment must be within 16MB addressing space.
21435 @item @samp{medium}
21436 The data segment must be within 512KB while the read-only data segment can be
21437 within 4GB addressing space. The text segment should be still within 16MB
21438 addressing space.
21439 @item @samp{large}
21440 All the text and data segments can be within 4GB addressing space.
21441 @end table
21442
21443 @item -mctor-dtor
21444 @opindex mctor-dtor
21445 Enable constructor/destructor feature.
21446
21447 @item -mrelax
21448 @opindex mrelax
21449 Guide linker to relax instructions.
21450
21451 @end table
21452
21453 @node Nios II Options
21454 @subsection Nios II Options
21455 @cindex Nios II options
21456 @cindex Altera Nios II options
21457
21458 These are the options defined for the Altera Nios II processor.
21459
21460 @table @gcctabopt
21461
21462 @item -G @var{num}
21463 @opindex G
21464 @cindex smaller data references
21465 Put global and static objects less than or equal to @var{num} bytes
21466 into the small data or BSS sections instead of the normal data or BSS
21467 sections. The default value of @var{num} is 8.
21468
21469 @item -mgpopt=@var{option}
21470 @item -mgpopt
21471 @itemx -mno-gpopt
21472 @opindex mgpopt
21473 @opindex mno-gpopt
21474 Generate (do not generate) GP-relative accesses. The following
21475 @var{option} names are recognized:
21476
21477 @table @samp
21478
21479 @item none
21480 Do not generate GP-relative accesses.
21481
21482 @item local
21483 Generate GP-relative accesses for small data objects that are not
21484 external, weak, or uninitialized common symbols.
21485 Also use GP-relative addressing for objects that
21486 have been explicitly placed in a small data section via a @code{section}
21487 attribute.
21488
21489 @item global
21490 As for @samp{local}, but also generate GP-relative accesses for
21491 small data objects that are external, weak, or common. If you use this option,
21492 you must ensure that all parts of your program (including libraries) are
21493 compiled with the same @option{-G} setting.
21494
21495 @item data
21496 Generate GP-relative accesses for all data objects in the program. If you
21497 use this option, the entire data and BSS segments
21498 of your program must fit in 64K of memory and you must use an appropriate
21499 linker script to allocate them within the addressable range of the
21500 global pointer.
21501
21502 @item all
21503 Generate GP-relative addresses for function pointers as well as data
21504 pointers. If you use this option, the entire text, data, and BSS segments
21505 of your program must fit in 64K of memory and you must use an appropriate
21506 linker script to allocate them within the addressable range of the
21507 global pointer.
21508
21509 @end table
21510
21511 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
21512 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
21513
21514 The default is @option{-mgpopt} except when @option{-fpic} or
21515 @option{-fPIC} is specified to generate position-independent code.
21516 Note that the Nios II ABI does not permit GP-relative accesses from
21517 shared libraries.
21518
21519 You may need to specify @option{-mno-gpopt} explicitly when building
21520 programs that include large amounts of small data, including large
21521 GOT data sections. In this case, the 16-bit offset for GP-relative
21522 addressing may not be large enough to allow access to the entire
21523 small data section.
21524
21525 @item -mgprel-sec=@var{regexp}
21526 @opindex mgprel-sec
21527 This option specifies additional section names that can be accessed via
21528 GP-relative addressing. It is most useful in conjunction with
21529 @code{section} attributes on variable declarations
21530 (@pxref{Common Variable Attributes}) and a custom linker script.
21531 The @var{regexp} is a POSIX Extended Regular Expression.
21532
21533 This option does not affect the behavior of the @option{-G} option, and
21534 and the specified sections are in addition to the standard @code{.sdata}
21535 and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
21536
21537 @item -mr0rel-sec=@var{regexp}
21538 @opindex mr0rel-sec
21539 This option specifies names of sections that can be accessed via a
21540 16-bit offset from @code{r0}; that is, in the low 32K or high 32K
21541 of the 32-bit address space. It is most useful in conjunction with
21542 @code{section} attributes on variable declarations
21543 (@pxref{Common Variable Attributes}) and a custom linker script.
21544 The @var{regexp} is a POSIX Extended Regular Expression.
21545
21546 In contrast to the use of GP-relative addressing for small data,
21547 zero-based addressing is never generated by default and there are no
21548 conventional section names used in standard linker scripts for sections
21549 in the low or high areas of memory.
21550
21551 @item -mel
21552 @itemx -meb
21553 @opindex mel
21554 @opindex meb
21555 Generate little-endian (default) or big-endian (experimental) code,
21556 respectively.
21557
21558 @item -march=@var{arch}
21559 @opindex march
21560 This specifies the name of the target Nios II architecture. GCC uses this
21561 name to determine what kind of instructions it can emit when generating
21562 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
21563
21564 The preprocessor macro @code{__nios2_arch__} is available to programs,
21565 with value 1 or 2, indicating the targeted ISA level.
21566
21567 @item -mbypass-cache
21568 @itemx -mno-bypass-cache
21569 @opindex mno-bypass-cache
21570 @opindex mbypass-cache
21571 Force all load and store instructions to always bypass cache by
21572 using I/O variants of the instructions. The default is not to
21573 bypass the cache.
21574
21575 @item -mno-cache-volatile
21576 @itemx -mcache-volatile
21577 @opindex mcache-volatile
21578 @opindex mno-cache-volatile
21579 Volatile memory access bypass the cache using the I/O variants of
21580 the load and store instructions. The default is not to bypass the cache.
21581
21582 @item -mno-fast-sw-div
21583 @itemx -mfast-sw-div
21584 @opindex mno-fast-sw-div
21585 @opindex mfast-sw-div
21586 Do not use table-based fast divide for small numbers. The default
21587 is to use the fast divide at @option{-O3} and above.
21588
21589 @item -mno-hw-mul
21590 @itemx -mhw-mul
21591 @itemx -mno-hw-mulx
21592 @itemx -mhw-mulx
21593 @itemx -mno-hw-div
21594 @itemx -mhw-div
21595 @opindex mno-hw-mul
21596 @opindex mhw-mul
21597 @opindex mno-hw-mulx
21598 @opindex mhw-mulx
21599 @opindex mno-hw-div
21600 @opindex mhw-div
21601 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
21602 instructions by the compiler. The default is to emit @code{mul}
21603 and not emit @code{div} and @code{mulx}.
21604
21605 @item -mbmx
21606 @itemx -mno-bmx
21607 @itemx -mcdx
21608 @itemx -mno-cdx
21609 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
21610 CDX (code density) instructions. Enabling these instructions also
21611 requires @option{-march=r2}. Since these instructions are optional
21612 extensions to the R2 architecture, the default is not to emit them.
21613
21614 @item -mcustom-@var{insn}=@var{N}
21615 @itemx -mno-custom-@var{insn}
21616 @opindex mcustom-@var{insn}
21617 @opindex mno-custom-@var{insn}
21618 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
21619 custom instruction with encoding @var{N} when generating code that uses
21620 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
21621 instruction 253 for single-precision floating-point add operations instead
21622 of the default behavior of using a library call.
21623
21624 The following values of @var{insn} are supported. Except as otherwise
21625 noted, floating-point operations are expected to be implemented with
21626 normal IEEE 754 semantics and correspond directly to the C operators or the
21627 equivalent GCC built-in functions (@pxref{Other Builtins}).
21628
21629 Single-precision floating point:
21630 @table @asis
21631
21632 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
21633 Binary arithmetic operations.
21634
21635 @item @samp{fnegs}
21636 Unary negation.
21637
21638 @item @samp{fabss}
21639 Unary absolute value.
21640
21641 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
21642 Comparison operations.
21643
21644 @item @samp{fmins}, @samp{fmaxs}
21645 Floating-point minimum and maximum. These instructions are only
21646 generated if @option{-ffinite-math-only} is specified.
21647
21648 @item @samp{fsqrts}
21649 Unary square root operation.
21650
21651 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
21652 Floating-point trigonometric and exponential functions. These instructions
21653 are only generated if @option{-funsafe-math-optimizations} is also specified.
21654
21655 @end table
21656
21657 Double-precision floating point:
21658 @table @asis
21659
21660 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
21661 Binary arithmetic operations.
21662
21663 @item @samp{fnegd}
21664 Unary negation.
21665
21666 @item @samp{fabsd}
21667 Unary absolute value.
21668
21669 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
21670 Comparison operations.
21671
21672 @item @samp{fmind}, @samp{fmaxd}
21673 Double-precision minimum and maximum. These instructions are only
21674 generated if @option{-ffinite-math-only} is specified.
21675
21676 @item @samp{fsqrtd}
21677 Unary square root operation.
21678
21679 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
21680 Double-precision trigonometric and exponential functions. These instructions
21681 are only generated if @option{-funsafe-math-optimizations} is also specified.
21682
21683 @end table
21684
21685 Conversions:
21686 @table @asis
21687 @item @samp{fextsd}
21688 Conversion from single precision to double precision.
21689
21690 @item @samp{ftruncds}
21691 Conversion from double precision to single precision.
21692
21693 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
21694 Conversion from floating point to signed or unsigned integer types, with
21695 truncation towards zero.
21696
21697 @item @samp{round}
21698 Conversion from single-precision floating point to signed integer,
21699 rounding to the nearest integer and ties away from zero.
21700 This corresponds to the @code{__builtin_lroundf} function when
21701 @option{-fno-math-errno} is used.
21702
21703 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
21704 Conversion from signed or unsigned integer types to floating-point types.
21705
21706 @end table
21707
21708 In addition, all of the following transfer instructions for internal
21709 registers X and Y must be provided to use any of the double-precision
21710 floating-point instructions. Custom instructions taking two
21711 double-precision source operands expect the first operand in the
21712 64-bit register X. The other operand (or only operand of a unary
21713 operation) is given to the custom arithmetic instruction with the
21714 least significant half in source register @var{src1} and the most
21715 significant half in @var{src2}. A custom instruction that returns a
21716 double-precision result returns the most significant 32 bits in the
21717 destination register and the other half in 32-bit register Y.
21718 GCC automatically generates the necessary code sequences to write
21719 register X and/or read register Y when double-precision floating-point
21720 instructions are used.
21721
21722 @table @asis
21723
21724 @item @samp{fwrx}
21725 Write @var{src1} into the least significant half of X and @var{src2} into
21726 the most significant half of X.
21727
21728 @item @samp{fwry}
21729 Write @var{src1} into Y.
21730
21731 @item @samp{frdxhi}, @samp{frdxlo}
21732 Read the most or least (respectively) significant half of X and store it in
21733 @var{dest}.
21734
21735 @item @samp{frdy}
21736 Read the value of Y and store it into @var{dest}.
21737 @end table
21738
21739 Note that you can gain more local control over generation of Nios II custom
21740 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
21741 and @code{target("no-custom-@var{insn}")} function attributes
21742 (@pxref{Function Attributes})
21743 or pragmas (@pxref{Function Specific Option Pragmas}).
21744
21745 @item -mcustom-fpu-cfg=@var{name}
21746 @opindex mcustom-fpu-cfg
21747
21748 This option enables a predefined, named set of custom instruction encodings
21749 (see @option{-mcustom-@var{insn}} above).
21750 Currently, the following sets are defined:
21751
21752 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
21753 @gccoptlist{-mcustom-fmuls=252 @gol
21754 -mcustom-fadds=253 @gol
21755 -mcustom-fsubs=254 @gol
21756 -fsingle-precision-constant}
21757
21758 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
21759 @gccoptlist{-mcustom-fmuls=252 @gol
21760 -mcustom-fadds=253 @gol
21761 -mcustom-fsubs=254 @gol
21762 -mcustom-fdivs=255 @gol
21763 -fsingle-precision-constant}
21764
21765 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
21766 @gccoptlist{-mcustom-floatus=243 @gol
21767 -mcustom-fixsi=244 @gol
21768 -mcustom-floatis=245 @gol
21769 -mcustom-fcmpgts=246 @gol
21770 -mcustom-fcmples=249 @gol
21771 -mcustom-fcmpeqs=250 @gol
21772 -mcustom-fcmpnes=251 @gol
21773 -mcustom-fmuls=252 @gol
21774 -mcustom-fadds=253 @gol
21775 -mcustom-fsubs=254 @gol
21776 -mcustom-fdivs=255 @gol
21777 -fsingle-precision-constant}
21778
21779 Custom instruction assignments given by individual
21780 @option{-mcustom-@var{insn}=} options override those given by
21781 @option{-mcustom-fpu-cfg=}, regardless of the
21782 order of the options on the command line.
21783
21784 Note that you can gain more local control over selection of a FPU
21785 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
21786 function attribute (@pxref{Function Attributes})
21787 or pragma (@pxref{Function Specific Option Pragmas}).
21788
21789 @end table
21790
21791 These additional @samp{-m} options are available for the Altera Nios II
21792 ELF (bare-metal) target:
21793
21794 @table @gcctabopt
21795
21796 @item -mhal
21797 @opindex mhal
21798 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
21799 startup and termination code, and is typically used in conjunction with
21800 @option{-msys-crt0=} to specify the location of the alternate startup code
21801 provided by the HAL BSP.
21802
21803 @item -msmallc
21804 @opindex msmallc
21805 Link with a limited version of the C library, @option{-lsmallc}, rather than
21806 Newlib.
21807
21808 @item -msys-crt0=@var{startfile}
21809 @opindex msys-crt0
21810 @var{startfile} is the file name of the startfile (crt0) to use
21811 when linking. This option is only useful in conjunction with @option{-mhal}.
21812
21813 @item -msys-lib=@var{systemlib}
21814 @opindex msys-lib
21815 @var{systemlib} is the library name of the library that provides
21816 low-level system calls required by the C library,
21817 e.g. @code{read} and @code{write}.
21818 This option is typically used to link with a library provided by a HAL BSP.
21819
21820 @end table
21821
21822 @node Nvidia PTX Options
21823 @subsection Nvidia PTX Options
21824 @cindex Nvidia PTX options
21825 @cindex nvptx options
21826
21827 These options are defined for Nvidia PTX:
21828
21829 @table @gcctabopt
21830
21831 @item -m32
21832 @itemx -m64
21833 @opindex m32
21834 @opindex m64
21835 Generate code for 32-bit or 64-bit ABI.
21836
21837 @item -mmainkernel
21838 @opindex mmainkernel
21839 Link in code for a __main kernel. This is for stand-alone instead of
21840 offloading execution.
21841
21842 @item -moptimize
21843 @opindex moptimize
21844 Apply partitioned execution optimizations. This is the default when any
21845 level of optimization is selected.
21846
21847 @item -msoft-stack
21848 @opindex msoft-stack
21849 Generate code that does not use @code{.local} memory
21850 directly for stack storage. Instead, a per-warp stack pointer is
21851 maintained explicitly. This enables variable-length stack allocation (with
21852 variable-length arrays or @code{alloca}), and when global memory is used for
21853 underlying storage, makes it possible to access automatic variables from other
21854 threads, or with atomic instructions. This code generation variant is used
21855 for OpenMP offloading, but the option is exposed on its own for the purpose
21856 of testing the compiler; to generate code suitable for linking into programs
21857 using OpenMP offloading, use option @option{-mgomp}.
21858
21859 @item -muniform-simt
21860 @opindex muniform-simt
21861 Switch to code generation variant that allows to execute all threads in each
21862 warp, while maintaining memory state and side effects as if only one thread
21863 in each warp was active outside of OpenMP SIMD regions. All atomic operations
21864 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
21865 current lane index equals the master lane index), and the register being
21866 assigned is copied via a shuffle instruction from the master lane. Outside of
21867 SIMD regions lane 0 is the master; inside, each thread sees itself as the
21868 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
21869 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
21870 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
21871 with current lane index to compute the master lane index.
21872
21873 @item -mgomp
21874 @opindex mgomp
21875 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
21876 @option{-muniform-simt} options, and selects corresponding multilib variant.
21877
21878 @end table
21879
21880 @node PDP-11 Options
21881 @subsection PDP-11 Options
21882 @cindex PDP-11 Options
21883
21884 These options are defined for the PDP-11:
21885
21886 @table @gcctabopt
21887 @item -mfpu
21888 @opindex mfpu
21889 Use hardware FPP floating point. This is the default. (FIS floating
21890 point on the PDP-11/40 is not supported.)
21891
21892 @item -msoft-float
21893 @opindex msoft-float
21894 Do not use hardware floating point.
21895
21896 @item -mac0
21897 @opindex mac0
21898 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
21899
21900 @item -mno-ac0
21901 @opindex mno-ac0
21902 Return floating-point results in memory. This is the default.
21903
21904 @item -m40
21905 @opindex m40
21906 Generate code for a PDP-11/40.
21907
21908 @item -m45
21909 @opindex m45
21910 Generate code for a PDP-11/45. This is the default.
21911
21912 @item -m10
21913 @opindex m10
21914 Generate code for a PDP-11/10.
21915
21916 @item -mbcopy-builtin
21917 @opindex mbcopy-builtin
21918 Use inline @code{movmemhi} patterns for copying memory. This is the
21919 default.
21920
21921 @item -mbcopy
21922 @opindex mbcopy
21923 Do not use inline @code{movmemhi} patterns for copying memory.
21924
21925 @item -mint16
21926 @itemx -mno-int32
21927 @opindex mint16
21928 @opindex mno-int32
21929 Use 16-bit @code{int}. This is the default.
21930
21931 @item -mint32
21932 @itemx -mno-int16
21933 @opindex mint32
21934 @opindex mno-int16
21935 Use 32-bit @code{int}.
21936
21937 @item -mfloat64
21938 @itemx -mno-float32
21939 @opindex mfloat64
21940 @opindex mno-float32
21941 Use 64-bit @code{float}. This is the default.
21942
21943 @item -mfloat32
21944 @itemx -mno-float64
21945 @opindex mfloat32
21946 @opindex mno-float64
21947 Use 32-bit @code{float}.
21948
21949 @item -mabshi
21950 @opindex mabshi
21951 Use @code{abshi2} pattern. This is the default.
21952
21953 @item -mno-abshi
21954 @opindex mno-abshi
21955 Do not use @code{abshi2} pattern.
21956
21957 @item -mbranch-expensive
21958 @opindex mbranch-expensive
21959 Pretend that branches are expensive. This is for experimenting with
21960 code generation only.
21961
21962 @item -mbranch-cheap
21963 @opindex mbranch-cheap
21964 Do not pretend that branches are expensive. This is the default.
21965
21966 @item -munix-asm
21967 @opindex munix-asm
21968 Use Unix assembler syntax. This is the default when configured for
21969 @samp{pdp11-*-bsd}.
21970
21971 @item -mdec-asm
21972 @opindex mdec-asm
21973 Use DEC assembler syntax. This is the default when configured for any
21974 PDP-11 target other than @samp{pdp11-*-bsd}.
21975 @end table
21976
21977 @node picoChip Options
21978 @subsection picoChip Options
21979 @cindex picoChip options
21980
21981 These @samp{-m} options are defined for picoChip implementations:
21982
21983 @table @gcctabopt
21984
21985 @item -mae=@var{ae_type}
21986 @opindex mcpu
21987 Set the instruction set, register set, and instruction scheduling
21988 parameters for array element type @var{ae_type}. Supported values
21989 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
21990
21991 @option{-mae=ANY} selects a completely generic AE type. Code
21992 generated with this option runs on any of the other AE types. The
21993 code is not as efficient as it would be if compiled for a specific
21994 AE type, and some types of operation (e.g., multiplication) do not
21995 work properly on all types of AE.
21996
21997 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
21998 for compiled code, and is the default.
21999
22000 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
22001 option may suffer from poor performance of byte (char) manipulation,
22002 since the DSP AE does not provide hardware support for byte load/stores.
22003
22004 @item -msymbol-as-address
22005 Enable the compiler to directly use a symbol name as an address in a
22006 load/store instruction, without first loading it into a
22007 register. Typically, the use of this option generates larger
22008 programs, which run faster than when the option isn't used. However, the
22009 results vary from program to program, so it is left as a user option,
22010 rather than being permanently enabled.
22011
22012 @item -mno-inefficient-warnings
22013 Disables warnings about the generation of inefficient code. These
22014 warnings can be generated, for example, when compiling code that
22015 performs byte-level memory operations on the MAC AE type. The MAC AE has
22016 no hardware support for byte-level memory operations, so all byte
22017 load/stores must be synthesized from word load/store operations. This is
22018 inefficient and a warning is generated to indicate
22019 that you should rewrite the code to avoid byte operations, or to target
22020 an AE type that has the necessary hardware support. This option disables
22021 these warnings.
22022
22023 @end table
22024
22025 @node PowerPC Options
22026 @subsection PowerPC Options
22027 @cindex PowerPC options
22028
22029 These are listed under @xref{RS/6000 and PowerPC Options}.
22030
22031 @node RISC-V Options
22032 @subsection RISC-V Options
22033 @cindex RISC-V Options
22034
22035 These command-line options are defined for RISC-V targets:
22036
22037 @table @gcctabopt
22038 @item -mbranch-cost=@var{n}
22039 @opindex mbranch-cost
22040 Set the cost of branches to roughly @var{n} instructions.
22041
22042 @item -mplt
22043 @itemx -mno-plt
22044 @opindex plt
22045 When generating PIC code, do or don't allow the use of PLTs. Ignored for
22046 non-PIC. The default is @option{-mplt}.
22047
22048 @item -mabi=@var{ABI-string}
22049 @opindex mabi
22050 Specify integer and floating-point calling convention. @var{ABI-string}
22051 contains two parts: the size of integer types and the registers used for
22052 floating-point types. For example @samp{-march=rv64ifd -mabi=lp64d} means that
22053 @samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
22054 32-bit), and that floating-point values up to 64 bits wide are passed in F
22055 registers. Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
22056 allows the compiler to generate code that uses the F and D extensions but only
22057 allows floating-point values up to 32 bits long to be passed in registers; or
22058 @samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
22059 passed in registers.
22060
22061 The default for this argument is system dependent, users who want a specific
22062 calling convention should specify one explicitly. The valid calling
22063 conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
22064 @samp{lp64f}, and @samp{lp64d}. Some calling conventions are impossible to
22065 implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
22066 invalid because the ABI requires 64-bit values be passed in F registers, but F
22067 registers are only 32 bits wide.
22068
22069 @item -mfdiv
22070 @itemx -mno-fdiv
22071 @opindex mfdiv
22072 Do or don't use hardware floating-point divide and square root instructions.
22073 This requires the F or D extensions for floating-point registers. The default
22074 is to use them if the specified architecture has these instructions.
22075
22076 @item -mdiv
22077 @itemx -mno-div
22078 @opindex mdiv
22079 Do or don't use hardware instructions for integer division. This requires the
22080 M extension. The default is to use them if the specified architecture has
22081 these instructions.
22082
22083 @item -march=@var{ISA-string}
22084 @opindex march
22085 Generate code for given RISC-V ISA (e.g.@ @samp{rv64im}). ISA strings must be
22086 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, and @samp{rv32imaf}.
22087
22088 @item -mtune=@var{processor-string}
22089 @opindex mtune
22090 Optimize the output for the given processor, specified by microarchitecture
22091 name.
22092
22093 @item -mpreferred-stack-boundary=@var{num}
22094 @opindex mpreferred-stack-boundary
22095 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22096 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
22097 the default is 4 (16 bytes or 128-bits).
22098
22099 @strong{Warning:} If you use this switch, then you must build all modules with
22100 the same value, including any libraries. This includes the system libraries
22101 and startup modules.
22102
22103 @item -msmall-data-limit=@var{n}
22104 @opindex msmall-data-limit
22105 Put global and static data smaller than @var{n} bytes into a special section
22106 (on some targets).
22107
22108 @item -msave-restore
22109 @itemx -mno-save-restore
22110 @opindex msave-restore
22111 Do or don't use smaller but slower prologue and epilogue code that uses
22112 library function calls. The default is to use fast inline prologues and
22113 epilogues.
22114
22115 @item -mstrict-align
22116 @itemx -mno-strict-align
22117 @opindex mstrict-align
22118 Do not or do generate unaligned memory accesses. The default is set depending
22119 on whether the processor we are optimizing for supports fast unaligned access
22120 or not.
22121
22122 @item -mcmodel=medlow
22123 @opindex mcmodel=medlow
22124 Generate code for the medium-low code model. The program and its statically
22125 defined symbols must lie within a single 2 GiB address range and must lie
22126 between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
22127 statically or dynamically linked. This is the default code model.
22128
22129 @item -mcmodel=medany
22130 @opindex mcmodel=medany
22131 Generate code for the medium-any code model. The program and its statically
22132 defined symbols must be within any single 2 GiB address range. Programs can be
22133 statically or dynamically linked.
22134
22135 @item -mexplicit-relocs
22136 @itemx -mno-exlicit-relocs
22137 Use or do not use assembler relocation operators when dealing with symbolic
22138 addresses. The alternative is to use assembler macros instead, which may
22139 limit optimization.
22140
22141 @end table
22142
22143 @node RL78 Options
22144 @subsection RL78 Options
22145 @cindex RL78 Options
22146
22147 @table @gcctabopt
22148
22149 @item -msim
22150 @opindex msim
22151 Links in additional target libraries to support operation within a
22152 simulator.
22153
22154 @item -mmul=none
22155 @itemx -mmul=g10
22156 @itemx -mmul=g13
22157 @itemx -mmul=g14
22158 @itemx -mmul=rl78
22159 @opindex mmul
22160 Specifies the type of hardware multiplication and division support to
22161 be used. The simplest is @code{none}, which uses software for both
22162 multiplication and division. This is the default. The @code{g13}
22163 value is for the hardware multiply/divide peripheral found on the
22164 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
22165 the multiplication and division instructions supported by the RL78/G14
22166 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
22167 the value @code{mg10} is an alias for @code{none}.
22168
22169 In addition a C preprocessor macro is defined, based upon the setting
22170 of this option. Possible values are: @code{__RL78_MUL_NONE__},
22171 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
22172
22173 @item -mcpu=g10
22174 @itemx -mcpu=g13
22175 @itemx -mcpu=g14
22176 @itemx -mcpu=rl78
22177 @opindex mcpu
22178 Specifies the RL78 core to target. The default is the G14 core, also
22179 known as an S3 core or just RL78. The G13 or S2 core does not have
22180 multiply or divide instructions, instead it uses a hardware peripheral
22181 for these operations. The G10 or S1 core does not have register
22182 banks, so it uses a different calling convention.
22183
22184 If this option is set it also selects the type of hardware multiply
22185 support to use, unless this is overridden by an explicit
22186 @option{-mmul=none} option on the command line. Thus specifying
22187 @option{-mcpu=g13} enables the use of the G13 hardware multiply
22188 peripheral and specifying @option{-mcpu=g10} disables the use of
22189 hardware multiplications altogether.
22190
22191 Note, although the RL78/G14 core is the default target, specifying
22192 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
22193 change the behavior of the toolchain since it also enables G14
22194 hardware multiply support. If these options are not specified on the
22195 command line then software multiplication routines will be used even
22196 though the code targets the RL78 core. This is for backwards
22197 compatibility with older toolchains which did not have hardware
22198 multiply and divide support.
22199
22200 In addition a C preprocessor macro is defined, based upon the setting
22201 of this option. Possible values are: @code{__RL78_G10__},
22202 @code{__RL78_G13__} or @code{__RL78_G14__}.
22203
22204 @item -mg10
22205 @itemx -mg13
22206 @itemx -mg14
22207 @itemx -mrl78
22208 @opindex mg10
22209 @opindex mg13
22210 @opindex mg14
22211 @opindex mrl78
22212 These are aliases for the corresponding @option{-mcpu=} option. They
22213 are provided for backwards compatibility.
22214
22215 @item -mallregs
22216 @opindex mallregs
22217 Allow the compiler to use all of the available registers. By default
22218 registers @code{r24..r31} are reserved for use in interrupt handlers.
22219 With this option enabled these registers can be used in ordinary
22220 functions as well.
22221
22222 @item -m64bit-doubles
22223 @itemx -m32bit-doubles
22224 @opindex m64bit-doubles
22225 @opindex m32bit-doubles
22226 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
22227 or 32 bits (@option{-m32bit-doubles}) in size. The default is
22228 @option{-m32bit-doubles}.
22229
22230 @item -msave-mduc-in-interrupts
22231 @item -mno-save-mduc-in-interrupts
22232 @opindex msave-mduc-in-interrupts
22233 @opindex mno-save-mduc-in-interrupts
22234 Specifies that interrupt handler functions should preserve the
22235 MDUC registers. This is only necessary if normal code might use
22236 the MDUC registers, for example because it performs multiplication
22237 and division operations. The default is to ignore the MDUC registers
22238 as this makes the interrupt handlers faster. The target option -mg13
22239 needs to be passed for this to work as this feature is only available
22240 on the G13 target (S2 core). The MDUC registers will only be saved
22241 if the interrupt handler performs a multiplication or division
22242 operation or it calls another function.
22243
22244 @end table
22245
22246 @node RS/6000 and PowerPC Options
22247 @subsection IBM RS/6000 and PowerPC Options
22248 @cindex RS/6000 and PowerPC Options
22249 @cindex IBM RS/6000 and PowerPC Options
22250
22251 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
22252 @table @gcctabopt
22253 @item -mpowerpc-gpopt
22254 @itemx -mno-powerpc-gpopt
22255 @itemx -mpowerpc-gfxopt
22256 @itemx -mno-powerpc-gfxopt
22257 @need 800
22258 @itemx -mpowerpc64
22259 @itemx -mno-powerpc64
22260 @itemx -mmfcrf
22261 @itemx -mno-mfcrf
22262 @itemx -mpopcntb
22263 @itemx -mno-popcntb
22264 @itemx -mpopcntd
22265 @itemx -mno-popcntd
22266 @itemx -mfprnd
22267 @itemx -mno-fprnd
22268 @need 800
22269 @itemx -mcmpb
22270 @itemx -mno-cmpb
22271 @itemx -mmfpgpr
22272 @itemx -mno-mfpgpr
22273 @itemx -mhard-dfp
22274 @itemx -mno-hard-dfp
22275 @opindex mpowerpc-gpopt
22276 @opindex mno-powerpc-gpopt
22277 @opindex mpowerpc-gfxopt
22278 @opindex mno-powerpc-gfxopt
22279 @opindex mpowerpc64
22280 @opindex mno-powerpc64
22281 @opindex mmfcrf
22282 @opindex mno-mfcrf
22283 @opindex mpopcntb
22284 @opindex mno-popcntb
22285 @opindex mpopcntd
22286 @opindex mno-popcntd
22287 @opindex mfprnd
22288 @opindex mno-fprnd
22289 @opindex mcmpb
22290 @opindex mno-cmpb
22291 @opindex mmfpgpr
22292 @opindex mno-mfpgpr
22293 @opindex mhard-dfp
22294 @opindex mno-hard-dfp
22295 You use these options to specify which instructions are available on the
22296 processor you are using. The default value of these options is
22297 determined when configuring GCC@. Specifying the
22298 @option{-mcpu=@var{cpu_type}} overrides the specification of these
22299 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
22300 rather than the options listed above.
22301
22302 Specifying @option{-mpowerpc-gpopt} allows
22303 GCC to use the optional PowerPC architecture instructions in the
22304 General Purpose group, including floating-point square root. Specifying
22305 @option{-mpowerpc-gfxopt} allows GCC to
22306 use the optional PowerPC architecture instructions in the Graphics
22307 group, including floating-point select.
22308
22309 The @option{-mmfcrf} option allows GCC to generate the move from
22310 condition register field instruction implemented on the POWER4
22311 processor and other processors that support the PowerPC V2.01
22312 architecture.
22313 The @option{-mpopcntb} option allows GCC to generate the popcount and
22314 double-precision FP reciprocal estimate instruction implemented on the
22315 POWER5 processor and other processors that support the PowerPC V2.02
22316 architecture.
22317 The @option{-mpopcntd} option allows GCC to generate the popcount
22318 instruction implemented on the POWER7 processor and other processors
22319 that support the PowerPC V2.06 architecture.
22320 The @option{-mfprnd} option allows GCC to generate the FP round to
22321 integer instructions implemented on the POWER5+ processor and other
22322 processors that support the PowerPC V2.03 architecture.
22323 The @option{-mcmpb} option allows GCC to generate the compare bytes
22324 instruction implemented on the POWER6 processor and other processors
22325 that support the PowerPC V2.05 architecture.
22326 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
22327 general-purpose register instructions implemented on the POWER6X
22328 processor and other processors that support the extended PowerPC V2.05
22329 architecture.
22330 The @option{-mhard-dfp} option allows GCC to generate the decimal
22331 floating-point instructions implemented on some POWER processors.
22332
22333 The @option{-mpowerpc64} option allows GCC to generate the additional
22334 64-bit instructions that are found in the full PowerPC64 architecture
22335 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
22336 @option{-mno-powerpc64}.
22337
22338 @item -mcpu=@var{cpu_type}
22339 @opindex mcpu
22340 Set architecture type, register usage, and
22341 instruction scheduling parameters for machine type @var{cpu_type}.
22342 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
22343 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
22344 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
22345 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
22346 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
22347 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
22348 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
22349 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
22350 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
22351 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
22352 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
22353 @samp{rs64}, and @samp{native}.
22354
22355 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
22356 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
22357 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
22358 architecture machine types, with an appropriate, generic processor
22359 model assumed for scheduling purposes.
22360
22361 Specifying @samp{native} as cpu type detects and selects the
22362 architecture option that corresponds to the host processor of the
22363 system performing the compilation.
22364 @option{-mcpu=native} has no effect if GCC does not recognize the
22365 processor.
22366
22367 The other options specify a specific processor. Code generated under
22368 those options runs best on that processor, and may not run at all on
22369 others.
22370
22371 The @option{-mcpu} options automatically enable or disable the
22372 following options:
22373
22374 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
22375 -mpopcntb -mpopcntd -mpowerpc64 @gol
22376 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
22377 -msimple-fpu -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
22378 -mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector @gol
22379 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
22380
22381 The particular options set for any particular CPU varies between
22382 compiler versions, depending on what setting seems to produce optimal
22383 code for that CPU; it doesn't necessarily reflect the actual hardware's
22384 capabilities. If you wish to set an individual option to a particular
22385 value, you may specify it after the @option{-mcpu} option, like
22386 @option{-mcpu=970 -mno-altivec}.
22387
22388 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
22389 not enabled or disabled by the @option{-mcpu} option at present because
22390 AIX does not have full support for these options. You may still
22391 enable or disable them individually if you're sure it'll work in your
22392 environment.
22393
22394 @item -mtune=@var{cpu_type}
22395 @opindex mtune
22396 Set the instruction scheduling parameters for machine type
22397 @var{cpu_type}, but do not set the architecture type or register usage,
22398 as @option{-mcpu=@var{cpu_type}} does. The same
22399 values for @var{cpu_type} are used for @option{-mtune} as for
22400 @option{-mcpu}. If both are specified, the code generated uses the
22401 architecture and registers set by @option{-mcpu}, but the
22402 scheduling parameters set by @option{-mtune}.
22403
22404 @item -mcmodel=small
22405 @opindex mcmodel=small
22406 Generate PowerPC64 code for the small model: The TOC is limited to
22407 64k.
22408
22409 @item -mcmodel=medium
22410 @opindex mcmodel=medium
22411 Generate PowerPC64 code for the medium model: The TOC and other static
22412 data may be up to a total of 4G in size. This is the default for 64-bit
22413 Linux.
22414
22415 @item -mcmodel=large
22416 @opindex mcmodel=large
22417 Generate PowerPC64 code for the large model: The TOC may be up to 4G
22418 in size. Other data and code is only limited by the 64-bit address
22419 space.
22420
22421 @item -maltivec
22422 @itemx -mno-altivec
22423 @opindex maltivec
22424 @opindex mno-altivec
22425 Generate code that uses (does not use) AltiVec instructions, and also
22426 enable the use of built-in functions that allow more direct access to
22427 the AltiVec instruction set. You may also need to set
22428 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
22429 enhancements.
22430
22431 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
22432 @option{-maltivec=be}, the element order for AltiVec intrinsics such
22433 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
22434 match array element order corresponding to the endianness of the
22435 target. That is, element zero identifies the leftmost element in a
22436 vector register when targeting a big-endian platform, and identifies
22437 the rightmost element in a vector register when targeting a
22438 little-endian platform.
22439
22440 @item -maltivec=be
22441 @opindex maltivec=be
22442 Generate AltiVec instructions using big-endian element order,
22443 regardless of whether the target is big- or little-endian. This is
22444 the default when targeting a big-endian platform.
22445
22446 The element order is used to interpret element numbers in AltiVec
22447 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
22448 @code{vec_insert}. By default, these match array element order
22449 corresponding to the endianness for the target.
22450
22451 @item -maltivec=le
22452 @opindex maltivec=le
22453 Generate AltiVec instructions using little-endian element order,
22454 regardless of whether the target is big- or little-endian. This is
22455 the default when targeting a little-endian platform. This option is
22456 currently ignored when targeting a big-endian platform.
22457
22458 The element order is used to interpret element numbers in AltiVec
22459 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
22460 @code{vec_insert}. By default, these match array element order
22461 corresponding to the endianness for the target.
22462
22463 @item -mvrsave
22464 @itemx -mno-vrsave
22465 @opindex mvrsave
22466 @opindex mno-vrsave
22467 Generate VRSAVE instructions when generating AltiVec code.
22468
22469 @item -msecure-plt
22470 @opindex msecure-plt
22471 Generate code that allows @command{ld} and @command{ld.so}
22472 to build executables and shared
22473 libraries with non-executable @code{.plt} and @code{.got} sections.
22474 This is a PowerPC
22475 32-bit SYSV ABI option.
22476
22477 @item -mbss-plt
22478 @opindex mbss-plt
22479 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
22480 fills in, and
22481 requires @code{.plt} and @code{.got}
22482 sections that are both writable and executable.
22483 This is a PowerPC 32-bit SYSV ABI option.
22484
22485 @item -misel
22486 @itemx -mno-isel
22487 @opindex misel
22488 @opindex mno-isel
22489 This switch enables or disables the generation of ISEL instructions.
22490
22491 @item -misel=@var{yes/no}
22492 This switch has been deprecated. Use @option{-misel} and
22493 @option{-mno-isel} instead.
22494
22495 @item -mspe
22496 @itemx -mno-spe
22497 @opindex mspe
22498 @opindex mno-spe
22499 This switch enables or disables the generation of SPE simd
22500 instructions.
22501
22502 @item -mpaired
22503 @itemx -mno-paired
22504 @opindex mpaired
22505 @opindex mno-paired
22506 This switch enables or disables the generation of PAIRED simd
22507 instructions.
22508
22509 @item -mspe=@var{yes/no}
22510 This option has been deprecated. Use @option{-mspe} and
22511 @option{-mno-spe} instead.
22512
22513 @item -mvsx
22514 @itemx -mno-vsx
22515 @opindex mvsx
22516 @opindex mno-vsx
22517 Generate code that uses (does not use) vector/scalar (VSX)
22518 instructions, and also enable the use of built-in functions that allow
22519 more direct access to the VSX instruction set.
22520
22521 @item -mcrypto
22522 @itemx -mno-crypto
22523 @opindex mcrypto
22524 @opindex mno-crypto
22525 Enable the use (disable) of the built-in functions that allow direct
22526 access to the cryptographic instructions that were added in version
22527 2.07 of the PowerPC ISA.
22528
22529 @item -mdirect-move
22530 @itemx -mno-direct-move
22531 @opindex mdirect-move
22532 @opindex mno-direct-move
22533 Generate code that uses (does not use) the instructions to move data
22534 between the general purpose registers and the vector/scalar (VSX)
22535 registers that were added in version 2.07 of the PowerPC ISA.
22536
22537 @item -mhtm
22538 @itemx -mno-htm
22539 @opindex mhtm
22540 @opindex mno-htm
22541 Enable (disable) the use of the built-in functions that allow direct
22542 access to the Hardware Transactional Memory (HTM) instructions that
22543 were added in version 2.07 of the PowerPC ISA.
22544
22545 @item -mpower8-fusion
22546 @itemx -mno-power8-fusion
22547 @opindex mpower8-fusion
22548 @opindex mno-power8-fusion
22549 Generate code that keeps (does not keeps) some integer operations
22550 adjacent so that the instructions can be fused together on power8 and
22551 later processors.
22552
22553 @item -mpower8-vector
22554 @itemx -mno-power8-vector
22555 @opindex mpower8-vector
22556 @opindex mno-power8-vector
22557 Generate code that uses (does not use) the vector and scalar
22558 instructions that were added in version 2.07 of the PowerPC ISA. Also
22559 enable the use of built-in functions that allow more direct access to
22560 the vector instructions.
22561
22562 @item -mquad-memory
22563 @itemx -mno-quad-memory
22564 @opindex mquad-memory
22565 @opindex mno-quad-memory
22566 Generate code that uses (does not use) the non-atomic quad word memory
22567 instructions. The @option{-mquad-memory} option requires use of
22568 64-bit mode.
22569
22570 @item -mquad-memory-atomic
22571 @itemx -mno-quad-memory-atomic
22572 @opindex mquad-memory-atomic
22573 @opindex mno-quad-memory-atomic
22574 Generate code that uses (does not use) the atomic quad word memory
22575 instructions. The @option{-mquad-memory-atomic} option requires use of
22576 64-bit mode.
22577
22578 @item -mfloat128
22579 @itemx -mno-float128
22580 @opindex mfloat128
22581 @opindex mno-float128
22582 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
22583 and use either software emulation for IEEE 128-bit floating point or
22584 hardware instructions.
22585
22586 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
22587 @option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
22588 use the IEEE 128-bit floating point support. The IEEE 128-bit
22589 floating point support only works on PowerPC Linux systems.
22590
22591 The default for @option{-mfloat128} is enabled on PowerPC Linux
22592 systems using the VSX instruction set, and disabled on other systems.
22593
22594 If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
22595 @option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
22596 point support will also enable the generation of ISA 3.0 IEEE 128-bit
22597 floating point instructions. Otherwise, if you do not specify to
22598 generate ISA 3.0 instructions or you are targeting a 32-bit big endian
22599 system, IEEE 128-bit floating point will be done with software
22600 emulation.
22601
22602 @item -mfloat128-hardware
22603 @itemx -mno-float128-hardware
22604 @opindex mfloat128-hardware
22605 @opindex mno-float128-hardware
22606 Enable/disable using ISA 3.0 hardware instructions to support the
22607 @var{__float128} data type.
22608
22609 The default for @option{-mfloat128-hardware} is enabled on PowerPC
22610 Linux systems using the ISA 3.0 instruction set, and disabled on other
22611 systems.
22612
22613 @item -mfloat-gprs=@var{yes/single/double/no}
22614 @itemx -mfloat-gprs
22615 @opindex mfloat-gprs
22616 This switch enables or disables the generation of floating-point
22617 operations on the general-purpose registers for architectures that
22618 support it.
22619
22620 The argument @samp{yes} or @samp{single} enables the use of
22621 single-precision floating-point operations.
22622
22623 The argument @samp{double} enables the use of single and
22624 double-precision floating-point operations.
22625
22626 The argument @samp{no} disables floating-point operations on the
22627 general-purpose registers.
22628
22629 This option is currently only available on the MPC854x.
22630
22631 @item -m32
22632 @itemx -m64
22633 @opindex m32
22634 @opindex m64
22635 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
22636 targets (including GNU/Linux). The 32-bit environment sets int, long
22637 and pointer to 32 bits and generates code that runs on any PowerPC
22638 variant. The 64-bit environment sets int to 32 bits and long and
22639 pointer to 64 bits, and generates code for PowerPC64, as for
22640 @option{-mpowerpc64}.
22641
22642 @item -mfull-toc
22643 @itemx -mno-fp-in-toc
22644 @itemx -mno-sum-in-toc
22645 @itemx -mminimal-toc
22646 @opindex mfull-toc
22647 @opindex mno-fp-in-toc
22648 @opindex mno-sum-in-toc
22649 @opindex mminimal-toc
22650 Modify generation of the TOC (Table Of Contents), which is created for
22651 every executable file. The @option{-mfull-toc} option is selected by
22652 default. In that case, GCC allocates at least one TOC entry for
22653 each unique non-automatic variable reference in your program. GCC
22654 also places floating-point constants in the TOC@. However, only
22655 16,384 entries are available in the TOC@.
22656
22657 If you receive a linker error message that saying you have overflowed
22658 the available TOC space, you can reduce the amount of TOC space used
22659 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
22660 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
22661 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
22662 generate code to calculate the sum of an address and a constant at
22663 run time instead of putting that sum into the TOC@. You may specify one
22664 or both of these options. Each causes GCC to produce very slightly
22665 slower and larger code at the expense of conserving TOC space.
22666
22667 If you still run out of space in the TOC even when you specify both of
22668 these options, specify @option{-mminimal-toc} instead. This option causes
22669 GCC to make only one TOC entry for every file. When you specify this
22670 option, GCC produces code that is slower and larger but which
22671 uses extremely little TOC space. You may wish to use this option
22672 only on files that contain less frequently-executed code.
22673
22674 @item -maix64
22675 @itemx -maix32
22676 @opindex maix64
22677 @opindex maix32
22678 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
22679 @code{long} type, and the infrastructure needed to support them.
22680 Specifying @option{-maix64} implies @option{-mpowerpc64},
22681 while @option{-maix32} disables the 64-bit ABI and
22682 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
22683
22684 @item -mxl-compat
22685 @itemx -mno-xl-compat
22686 @opindex mxl-compat
22687 @opindex mno-xl-compat
22688 Produce code that conforms more closely to IBM XL compiler semantics
22689 when using AIX-compatible ABI@. Pass floating-point arguments to
22690 prototyped functions beyond the register save area (RSA) on the stack
22691 in addition to argument FPRs. Do not assume that most significant
22692 double in 128-bit long double value is properly rounded when comparing
22693 values and converting to double. Use XL symbol names for long double
22694 support routines.
22695
22696 The AIX calling convention was extended but not initially documented to
22697 handle an obscure K&R C case of calling a function that takes the
22698 address of its arguments with fewer arguments than declared. IBM XL
22699 compilers access floating-point arguments that do not fit in the
22700 RSA from the stack when a subroutine is compiled without
22701 optimization. Because always storing floating-point arguments on the
22702 stack is inefficient and rarely needed, this option is not enabled by
22703 default and only is necessary when calling subroutines compiled by IBM
22704 XL compilers without optimization.
22705
22706 @item -mpe
22707 @opindex mpe
22708 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
22709 application written to use message passing with special startup code to
22710 enable the application to run. The system must have PE installed in the
22711 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
22712 must be overridden with the @option{-specs=} option to specify the
22713 appropriate directory location. The Parallel Environment does not
22714 support threads, so the @option{-mpe} option and the @option{-pthread}
22715 option are incompatible.
22716
22717 @item -malign-natural
22718 @itemx -malign-power
22719 @opindex malign-natural
22720 @opindex malign-power
22721 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
22722 @option{-malign-natural} overrides the ABI-defined alignment of larger
22723 types, such as floating-point doubles, on their natural size-based boundary.
22724 The option @option{-malign-power} instructs GCC to follow the ABI-specified
22725 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
22726
22727 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
22728 is not supported.
22729
22730 @item -msoft-float
22731 @itemx -mhard-float
22732 @opindex msoft-float
22733 @opindex mhard-float
22734 Generate code that does not use (uses) the floating-point register set.
22735 Software floating-point emulation is provided if you use the
22736 @option{-msoft-float} option, and pass the option to GCC when linking.
22737
22738 @item -msingle-float
22739 @itemx -mdouble-float
22740 @opindex msingle-float
22741 @opindex mdouble-float
22742 Generate code for single- or double-precision floating-point operations.
22743 @option{-mdouble-float} implies @option{-msingle-float}.
22744
22745 @item -msimple-fpu
22746 @opindex msimple-fpu
22747 Do not generate @code{sqrt} and @code{div} instructions for hardware
22748 floating-point unit.
22749
22750 @item -mfpu=@var{name}
22751 @opindex mfpu
22752 Specify type of floating-point unit. Valid values for @var{name} are
22753 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
22754 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
22755 @samp{sp_full} (equivalent to @option{-msingle-float}),
22756 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
22757
22758 @item -mxilinx-fpu
22759 @opindex mxilinx-fpu
22760 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
22761
22762 @item -mmultiple
22763 @itemx -mno-multiple
22764 @opindex mmultiple
22765 @opindex mno-multiple
22766 Generate code that uses (does not use) the load multiple word
22767 instructions and the store multiple word instructions. These
22768 instructions are generated by default on POWER systems, and not
22769 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
22770 PowerPC systems, since those instructions do not work when the
22771 processor is in little-endian mode. The exceptions are PPC740 and
22772 PPC750 which permit these instructions in little-endian mode.
22773
22774 @item -mupdate
22775 @itemx -mno-update
22776 @opindex mupdate
22777 @opindex mno-update
22778 Generate code that uses (does not use) the load or store instructions
22779 that update the base register to the address of the calculated memory
22780 location. These instructions are generated by default. If you use
22781 @option{-mno-update}, there is a small window between the time that the
22782 stack pointer is updated and the address of the previous frame is
22783 stored, which means code that walks the stack frame across interrupts or
22784 signals may get corrupted data.
22785
22786 @item -mavoid-indexed-addresses
22787 @itemx -mno-avoid-indexed-addresses
22788 @opindex mavoid-indexed-addresses
22789 @opindex mno-avoid-indexed-addresses
22790 Generate code that tries to avoid (not avoid) the use of indexed load
22791 or store instructions. These instructions can incur a performance
22792 penalty on Power6 processors in certain situations, such as when
22793 stepping through large arrays that cross a 16M boundary. This option
22794 is enabled by default when targeting Power6 and disabled otherwise.
22795
22796 @item -mfused-madd
22797 @itemx -mno-fused-madd
22798 @opindex mfused-madd
22799 @opindex mno-fused-madd
22800 Generate code that uses (does not use) the floating-point multiply and
22801 accumulate instructions. These instructions are generated by default
22802 if hardware floating point is used. The machine-dependent
22803 @option{-mfused-madd} option is now mapped to the machine-independent
22804 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
22805 mapped to @option{-ffp-contract=off}.
22806
22807 @item -mmulhw
22808 @itemx -mno-mulhw
22809 @opindex mmulhw
22810 @opindex mno-mulhw
22811 Generate code that uses (does not use) the half-word multiply and
22812 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
22813 These instructions are generated by default when targeting those
22814 processors.
22815
22816 @item -mdlmzb
22817 @itemx -mno-dlmzb
22818 @opindex mdlmzb
22819 @opindex mno-dlmzb
22820 Generate code that uses (does not use) the string-search @samp{dlmzb}
22821 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
22822 generated by default when targeting those processors.
22823
22824 @item -mno-bit-align
22825 @itemx -mbit-align
22826 @opindex mno-bit-align
22827 @opindex mbit-align
22828 On System V.4 and embedded PowerPC systems do not (do) force structures
22829 and unions that contain bit-fields to be aligned to the base type of the
22830 bit-field.
22831
22832 For example, by default a structure containing nothing but 8
22833 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
22834 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
22835 the structure is aligned to a 1-byte boundary and is 1 byte in
22836 size.
22837
22838 @item -mno-strict-align
22839 @itemx -mstrict-align
22840 @opindex mno-strict-align
22841 @opindex mstrict-align
22842 On System V.4 and embedded PowerPC systems do not (do) assume that
22843 unaligned memory references are handled by the system.
22844
22845 @item -mrelocatable
22846 @itemx -mno-relocatable
22847 @opindex mrelocatable
22848 @opindex mno-relocatable
22849 Generate code that allows (does not allow) a static executable to be
22850 relocated to a different address at run time. A simple embedded
22851 PowerPC system loader should relocate the entire contents of
22852 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
22853 a table of 32-bit addresses generated by this option. For this to
22854 work, all objects linked together must be compiled with
22855 @option{-mrelocatable} or @option{-mrelocatable-lib}.
22856 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
22857
22858 @item -mrelocatable-lib
22859 @itemx -mno-relocatable-lib
22860 @opindex mrelocatable-lib
22861 @opindex mno-relocatable-lib
22862 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
22863 @code{.fixup} section to allow static executables to be relocated at
22864 run time, but @option{-mrelocatable-lib} does not use the smaller stack
22865 alignment of @option{-mrelocatable}. Objects compiled with
22866 @option{-mrelocatable-lib} may be linked with objects compiled with
22867 any combination of the @option{-mrelocatable} options.
22868
22869 @item -mno-toc
22870 @itemx -mtoc
22871 @opindex mno-toc
22872 @opindex mtoc
22873 On System V.4 and embedded PowerPC systems do not (do) assume that
22874 register 2 contains a pointer to a global area pointing to the addresses
22875 used in the program.
22876
22877 @item -mlittle
22878 @itemx -mlittle-endian
22879 @opindex mlittle
22880 @opindex mlittle-endian
22881 On System V.4 and embedded PowerPC systems compile code for the
22882 processor in little-endian mode. The @option{-mlittle-endian} option is
22883 the same as @option{-mlittle}.
22884
22885 @item -mbig
22886 @itemx -mbig-endian
22887 @opindex mbig
22888 @opindex mbig-endian
22889 On System V.4 and embedded PowerPC systems compile code for the
22890 processor in big-endian mode. The @option{-mbig-endian} option is
22891 the same as @option{-mbig}.
22892
22893 @item -mdynamic-no-pic
22894 @opindex mdynamic-no-pic
22895 On Darwin and Mac OS X systems, compile code so that it is not
22896 relocatable, but that its external references are relocatable. The
22897 resulting code is suitable for applications, but not shared
22898 libraries.
22899
22900 @item -msingle-pic-base
22901 @opindex msingle-pic-base
22902 Treat the register used for PIC addressing as read-only, rather than
22903 loading it in the prologue for each function. The runtime system is
22904 responsible for initializing this register with an appropriate value
22905 before execution begins.
22906
22907 @item -mprioritize-restricted-insns=@var{priority}
22908 @opindex mprioritize-restricted-insns
22909 This option controls the priority that is assigned to
22910 dispatch-slot restricted instructions during the second scheduling
22911 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
22912 or @samp{2} to assign no, highest, or second-highest (respectively)
22913 priority to dispatch-slot restricted
22914 instructions.
22915
22916 @item -msched-costly-dep=@var{dependence_type}
22917 @opindex msched-costly-dep
22918 This option controls which dependences are considered costly
22919 by the target during instruction scheduling. The argument
22920 @var{dependence_type} takes one of the following values:
22921
22922 @table @asis
22923 @item @samp{no}
22924 No dependence is costly.
22925
22926 @item @samp{all}
22927 All dependences are costly.
22928
22929 @item @samp{true_store_to_load}
22930 A true dependence from store to load is costly.
22931
22932 @item @samp{store_to_load}
22933 Any dependence from store to load is costly.
22934
22935 @item @var{number}
22936 Any dependence for which the latency is greater than or equal to
22937 @var{number} is costly.
22938 @end table
22939
22940 @item -minsert-sched-nops=@var{scheme}
22941 @opindex minsert-sched-nops
22942 This option controls which NOP insertion scheme is used during
22943 the second scheduling pass. The argument @var{scheme} takes one of the
22944 following values:
22945
22946 @table @asis
22947 @item @samp{no}
22948 Don't insert NOPs.
22949
22950 @item @samp{pad}
22951 Pad with NOPs any dispatch group that has vacant issue slots,
22952 according to the scheduler's grouping.
22953
22954 @item @samp{regroup_exact}
22955 Insert NOPs to force costly dependent insns into
22956 separate groups. Insert exactly as many NOPs as needed to force an insn
22957 to a new group, according to the estimated processor grouping.
22958
22959 @item @var{number}
22960 Insert NOPs to force costly dependent insns into
22961 separate groups. Insert @var{number} NOPs to force an insn to a new group.
22962 @end table
22963
22964 @item -mcall-sysv
22965 @opindex mcall-sysv
22966 On System V.4 and embedded PowerPC systems compile code using calling
22967 conventions that adhere to the March 1995 draft of the System V
22968 Application Binary Interface, PowerPC processor supplement. This is the
22969 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
22970
22971 @item -mcall-sysv-eabi
22972 @itemx -mcall-eabi
22973 @opindex mcall-sysv-eabi
22974 @opindex mcall-eabi
22975 Specify both @option{-mcall-sysv} and @option{-meabi} options.
22976
22977 @item -mcall-sysv-noeabi
22978 @opindex mcall-sysv-noeabi
22979 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
22980
22981 @item -mcall-aixdesc
22982 @opindex m
22983 On System V.4 and embedded PowerPC systems compile code for the AIX
22984 operating system.
22985
22986 @item -mcall-linux
22987 @opindex mcall-linux
22988 On System V.4 and embedded PowerPC systems compile code for the
22989 Linux-based GNU system.
22990
22991 @item -mcall-freebsd
22992 @opindex mcall-freebsd
22993 On System V.4 and embedded PowerPC systems compile code for the
22994 FreeBSD operating system.
22995
22996 @item -mcall-netbsd
22997 @opindex mcall-netbsd
22998 On System V.4 and embedded PowerPC systems compile code for the
22999 NetBSD operating system.
23000
23001 @item -mcall-openbsd
23002 @opindex mcall-netbsd
23003 On System V.4 and embedded PowerPC systems compile code for the
23004 OpenBSD operating system.
23005
23006 @item -maix-struct-return
23007 @opindex maix-struct-return
23008 Return all structures in memory (as specified by the AIX ABI)@.
23009
23010 @item -msvr4-struct-return
23011 @opindex msvr4-struct-return
23012 Return structures smaller than 8 bytes in registers (as specified by the
23013 SVR4 ABI)@.
23014
23015 @item -mabi=@var{abi-type}
23016 @opindex mabi
23017 Extend the current ABI with a particular extension, or remove such extension.
23018 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
23019 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
23020 @samp{elfv1}, @samp{elfv2}@.
23021
23022 @item -mabi=spe
23023 @opindex mabi=spe
23024 Extend the current ABI with SPE ABI extensions. This does not change
23025 the default ABI, instead it adds the SPE ABI extensions to the current
23026 ABI@.
23027
23028 @item -mabi=no-spe
23029 @opindex mabi=no-spe
23030 Disable Book-E SPE ABI extensions for the current ABI@.
23031
23032 @item -mabi=ibmlongdouble
23033 @opindex mabi=ibmlongdouble
23034 Change the current ABI to use IBM extended-precision long double.
23035 This is not likely to work if your system defaults to using IEEE
23036 extended-precision long double. If you change the long double type
23037 from IEEE extended-precision, the compiler will issue a warning unless
23038 you use the @option{-Wno-psabi} option.
23039
23040 @item -mabi=ieeelongdouble
23041 @opindex mabi=ieeelongdouble
23042 Change the current ABI to use IEEE extended-precision long double.
23043 This is not likely to work if your system defaults to using IBM
23044 extended-precision long double. If you change the long double type
23045 from IBM extended-precision, the compiler will issue a warning unless
23046 you use the @option{-Wno-psabi} option.
23047
23048 @item -mabi=elfv1
23049 @opindex mabi=elfv1
23050 Change the current ABI to use the ELFv1 ABI.
23051 This is the default ABI for big-endian PowerPC 64-bit Linux.
23052 Overriding the default ABI requires special system support and is
23053 likely to fail in spectacular ways.
23054
23055 @item -mabi=elfv2
23056 @opindex mabi=elfv2
23057 Change the current ABI to use the ELFv2 ABI.
23058 This is the default ABI for little-endian PowerPC 64-bit Linux.
23059 Overriding the default ABI requires special system support and is
23060 likely to fail in spectacular ways.
23061
23062 @item -mgnu-attribute
23063 @itemx -mno-gnu-attribute
23064 @opindex mgnu-attribute
23065 @opindex mno-gnu-attribute
23066 Emit .gnu_attribute assembly directives to set tag/value pairs in a
23067 .gnu.attributes section that specify ABI variations in function
23068 parameters or return values.
23069
23070 @item -mprototype
23071 @itemx -mno-prototype
23072 @opindex mprototype
23073 @opindex mno-prototype
23074 On System V.4 and embedded PowerPC systems assume that all calls to
23075 variable argument functions are properly prototyped. Otherwise, the
23076 compiler must insert an instruction before every non-prototyped call to
23077 set or clear bit 6 of the condition code register (@code{CR}) to
23078 indicate whether floating-point values are passed in the floating-point
23079 registers in case the function takes variable arguments. With
23080 @option{-mprototype}, only calls to prototyped variable argument functions
23081 set or clear the bit.
23082
23083 @item -msim
23084 @opindex msim
23085 On embedded PowerPC systems, assume that the startup module is called
23086 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
23087 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
23088 configurations.
23089
23090 @item -mmvme
23091 @opindex mmvme
23092 On embedded PowerPC systems, assume that the startup module is called
23093 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
23094 @file{libc.a}.
23095
23096 @item -mads
23097 @opindex mads
23098 On embedded PowerPC systems, assume that the startup module is called
23099 @file{crt0.o} and the standard C libraries are @file{libads.a} and
23100 @file{libc.a}.
23101
23102 @item -myellowknife
23103 @opindex myellowknife
23104 On embedded PowerPC systems, assume that the startup module is called
23105 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
23106 @file{libc.a}.
23107
23108 @item -mvxworks
23109 @opindex mvxworks
23110 On System V.4 and embedded PowerPC systems, specify that you are
23111 compiling for a VxWorks system.
23112
23113 @item -memb
23114 @opindex memb
23115 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
23116 header to indicate that @samp{eabi} extended relocations are used.
23117
23118 @item -meabi
23119 @itemx -mno-eabi
23120 @opindex meabi
23121 @opindex mno-eabi
23122 On System V.4 and embedded PowerPC systems do (do not) adhere to the
23123 Embedded Applications Binary Interface (EABI), which is a set of
23124 modifications to the System V.4 specifications. Selecting @option{-meabi}
23125 means that the stack is aligned to an 8-byte boundary, a function
23126 @code{__eabi} is called from @code{main} to set up the EABI
23127 environment, and the @option{-msdata} option can use both @code{r2} and
23128 @code{r13} to point to two separate small data areas. Selecting
23129 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
23130 no EABI initialization function is called from @code{main}, and the
23131 @option{-msdata} option only uses @code{r13} to point to a single
23132 small data area. The @option{-meabi} option is on by default if you
23133 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
23134
23135 @item -msdata=eabi
23136 @opindex msdata=eabi
23137 On System V.4 and embedded PowerPC systems, put small initialized
23138 @code{const} global and static data in the @code{.sdata2} section, which
23139 is pointed to by register @code{r2}. Put small initialized
23140 non-@code{const} global and static data in the @code{.sdata} section,
23141 which is pointed to by register @code{r13}. Put small uninitialized
23142 global and static data in the @code{.sbss} section, which is adjacent to
23143 the @code{.sdata} section. The @option{-msdata=eabi} option is
23144 incompatible with the @option{-mrelocatable} option. The
23145 @option{-msdata=eabi} option also sets the @option{-memb} option.
23146
23147 @item -msdata=sysv
23148 @opindex msdata=sysv
23149 On System V.4 and embedded PowerPC systems, put small global and static
23150 data in the @code{.sdata} section, which is pointed to by register
23151 @code{r13}. Put small uninitialized global and static data in the
23152 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
23153 The @option{-msdata=sysv} option is incompatible with the
23154 @option{-mrelocatable} option.
23155
23156 @item -msdata=default
23157 @itemx -msdata
23158 @opindex msdata=default
23159 @opindex msdata
23160 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
23161 compile code the same as @option{-msdata=eabi}, otherwise compile code the
23162 same as @option{-msdata=sysv}.
23163
23164 @item -msdata=data
23165 @opindex msdata=data
23166 On System V.4 and embedded PowerPC systems, put small global
23167 data in the @code{.sdata} section. Put small uninitialized global
23168 data in the @code{.sbss} section. Do not use register @code{r13}
23169 to address small data however. This is the default behavior unless
23170 other @option{-msdata} options are used.
23171
23172 @item -msdata=none
23173 @itemx -mno-sdata
23174 @opindex msdata=none
23175 @opindex mno-sdata
23176 On embedded PowerPC systems, put all initialized global and static data
23177 in the @code{.data} section, and all uninitialized data in the
23178 @code{.bss} section.
23179
23180 @item -mblock-move-inline-limit=@var{num}
23181 @opindex mblock-move-inline-limit
23182 Inline all block moves (such as calls to @code{memcpy} or structure
23183 copies) less than or equal to @var{num} bytes. The minimum value for
23184 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
23185 targets. The default value is target-specific.
23186
23187 @item -G @var{num}
23188 @opindex G
23189 @cindex smaller data references (PowerPC)
23190 @cindex .sdata/.sdata2 references (PowerPC)
23191 On embedded PowerPC systems, put global and static items less than or
23192 equal to @var{num} bytes into the small data or BSS sections instead of
23193 the normal data or BSS section. By default, @var{num} is 8. The
23194 @option{-G @var{num}} switch is also passed to the linker.
23195 All modules should be compiled with the same @option{-G @var{num}} value.
23196
23197 @item -mregnames
23198 @itemx -mno-regnames
23199 @opindex mregnames
23200 @opindex mno-regnames
23201 On System V.4 and embedded PowerPC systems do (do not) emit register
23202 names in the assembly language output using symbolic forms.
23203
23204 @item -mlongcall
23205 @itemx -mno-longcall
23206 @opindex mlongcall
23207 @opindex mno-longcall
23208 By default assume that all calls are far away so that a longer and more
23209 expensive calling sequence is required. This is required for calls
23210 farther than 32 megabytes (33,554,432 bytes) from the current location.
23211 A short call is generated if the compiler knows
23212 the call cannot be that far away. This setting can be overridden by
23213 the @code{shortcall} function attribute, or by @code{#pragma
23214 longcall(0)}.
23215
23216 Some linkers are capable of detecting out-of-range calls and generating
23217 glue code on the fly. On these systems, long calls are unnecessary and
23218 generate slower code. As of this writing, the AIX linker can do this,
23219 as can the GNU linker for PowerPC/64. It is planned to add this feature
23220 to the GNU linker for 32-bit PowerPC systems as well.
23221
23222 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
23223 callee, L42}, plus a @dfn{branch island} (glue code). The two target
23224 addresses represent the callee and the branch island. The
23225 Darwin/PPC linker prefers the first address and generates a @code{bl
23226 callee} if the PPC @code{bl} instruction reaches the callee directly;
23227 otherwise, the linker generates @code{bl L42} to call the branch
23228 island. The branch island is appended to the body of the
23229 calling function; it computes the full 32-bit address of the callee
23230 and jumps to it.
23231
23232 On Mach-O (Darwin) systems, this option directs the compiler emit to
23233 the glue for every direct call, and the Darwin linker decides whether
23234 to use or discard it.
23235
23236 In the future, GCC may ignore all longcall specifications
23237 when the linker is known to generate glue.
23238
23239 @item -mtls-markers
23240 @itemx -mno-tls-markers
23241 @opindex mtls-markers
23242 @opindex mno-tls-markers
23243 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
23244 specifying the function argument. The relocation allows the linker to
23245 reliably associate function call with argument setup instructions for
23246 TLS optimization, which in turn allows GCC to better schedule the
23247 sequence.
23248
23249 @item -mrecip
23250 @itemx -mno-recip
23251 @opindex mrecip
23252 This option enables use of the reciprocal estimate and
23253 reciprocal square root estimate instructions with additional
23254 Newton-Raphson steps to increase precision instead of doing a divide or
23255 square root and divide for floating-point arguments. You should use
23256 the @option{-ffast-math} option when using @option{-mrecip} (or at
23257 least @option{-funsafe-math-optimizations},
23258 @option{-ffinite-math-only}, @option{-freciprocal-math} and
23259 @option{-fno-trapping-math}). Note that while the throughput of the
23260 sequence is generally higher than the throughput of the non-reciprocal
23261 instruction, the precision of the sequence can be decreased by up to 2
23262 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
23263 roots.
23264
23265 @item -mrecip=@var{opt}
23266 @opindex mrecip=opt
23267 This option controls which reciprocal estimate instructions
23268 may be used. @var{opt} is a comma-separated list of options, which may
23269 be preceded by a @code{!} to invert the option:
23270
23271 @table @samp
23272
23273 @item all
23274 Enable all estimate instructions.
23275
23276 @item default
23277 Enable the default instructions, equivalent to @option{-mrecip}.
23278
23279 @item none
23280 Disable all estimate instructions, equivalent to @option{-mno-recip}.
23281
23282 @item div
23283 Enable the reciprocal approximation instructions for both
23284 single and double precision.
23285
23286 @item divf
23287 Enable the single-precision reciprocal approximation instructions.
23288
23289 @item divd
23290 Enable the double-precision reciprocal approximation instructions.
23291
23292 @item rsqrt
23293 Enable the reciprocal square root approximation instructions for both
23294 single and double precision.
23295
23296 @item rsqrtf
23297 Enable the single-precision reciprocal square root approximation instructions.
23298
23299 @item rsqrtd
23300 Enable the double-precision reciprocal square root approximation instructions.
23301
23302 @end table
23303
23304 So, for example, @option{-mrecip=all,!rsqrtd} enables
23305 all of the reciprocal estimate instructions, except for the
23306 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
23307 which handle the double-precision reciprocal square root calculations.
23308
23309 @item -mrecip-precision
23310 @itemx -mno-recip-precision
23311 @opindex mrecip-precision
23312 Assume (do not assume) that the reciprocal estimate instructions
23313 provide higher-precision estimates than is mandated by the PowerPC
23314 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
23315 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
23316 The double-precision square root estimate instructions are not generated by
23317 default on low-precision machines, since they do not provide an
23318 estimate that converges after three steps.
23319
23320 @item -mveclibabi=@var{type}
23321 @opindex mveclibabi
23322 Specifies the ABI type to use for vectorizing intrinsics using an
23323 external library. The only type supported at present is @samp{mass},
23324 which specifies to use IBM's Mathematical Acceleration Subsystem
23325 (MASS) libraries for vectorizing intrinsics using external libraries.
23326 GCC currently emits calls to @code{acosd2}, @code{acosf4},
23327 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
23328 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
23329 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
23330 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
23331 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
23332 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
23333 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
23334 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
23335 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
23336 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
23337 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
23338 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
23339 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
23340 for power7. Both @option{-ftree-vectorize} and
23341 @option{-funsafe-math-optimizations} must also be enabled. The MASS
23342 libraries must be specified at link time.
23343
23344 @item -mfriz
23345 @itemx -mno-friz
23346 @opindex mfriz
23347 Generate (do not generate) the @code{friz} instruction when the
23348 @option{-funsafe-math-optimizations} option is used to optimize
23349 rounding of floating-point values to 64-bit integer and back to floating
23350 point. The @code{friz} instruction does not return the same value if
23351 the floating-point number is too large to fit in an integer.
23352
23353 @item -mpointers-to-nested-functions
23354 @itemx -mno-pointers-to-nested-functions
23355 @opindex mpointers-to-nested-functions
23356 Generate (do not generate) code to load up the static chain register
23357 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
23358 systems where a function pointer points to a 3-word descriptor giving
23359 the function address, TOC value to be loaded in register @code{r2}, and
23360 static chain value to be loaded in register @code{r11}. The
23361 @option{-mpointers-to-nested-functions} is on by default. You cannot
23362 call through pointers to nested functions or pointers
23363 to functions compiled in other languages that use the static chain if
23364 you use @option{-mno-pointers-to-nested-functions}.
23365
23366 @item -msave-toc-indirect
23367 @itemx -mno-save-toc-indirect
23368 @opindex msave-toc-indirect
23369 Generate (do not generate) code to save the TOC value in the reserved
23370 stack location in the function prologue if the function calls through
23371 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
23372 saved in the prologue, it is saved just before the call through the
23373 pointer. The @option{-mno-save-toc-indirect} option is the default.
23374
23375 @item -mcompat-align-parm
23376 @itemx -mno-compat-align-parm
23377 @opindex mcompat-align-parm
23378 Generate (do not generate) code to pass structure parameters with a
23379 maximum alignment of 64 bits, for compatibility with older versions
23380 of GCC.
23381
23382 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
23383 structure parameter on a 128-bit boundary when that structure contained
23384 a member requiring 128-bit alignment. This is corrected in more
23385 recent versions of GCC. This option may be used to generate code
23386 that is compatible with functions compiled with older versions of
23387 GCC.
23388
23389 The @option{-mno-compat-align-parm} option is the default.
23390
23391 @item -mstack-protector-guard=@var{guard}
23392 @itemx -mstack-protector-guard-reg=@var{reg}
23393 @itemx -mstack-protector-guard-offset=@var{offset}
23394 @itemx -mstack-protector-guard-symbol=@var{symbol}
23395 @opindex mstack-protector-guard
23396 @opindex mstack-protector-guard-reg
23397 @opindex mstack-protector-guard-offset
23398 @opindex mstack-protector-guard-symbol
23399 Generate stack protection code using canary at @var{guard}. Supported
23400 locations are @samp{global} for global canary or @samp{tls} for per-thread
23401 canary in the TLS block (the default with GNU libc version 2.4 or later).
23402
23403 With the latter choice the options
23404 @option{-mstack-protector-guard-reg=@var{reg}} and
23405 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
23406 which register to use as base register for reading the canary, and from what
23407 offset from that base register. The default for those is as specified in the
23408 relevant ABI. @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
23409 the offset with a symbol reference to a canary in the TLS block.
23410 @end table
23411
23412 @node RX Options
23413 @subsection RX Options
23414 @cindex RX Options
23415
23416 These command-line options are defined for RX targets:
23417
23418 @table @gcctabopt
23419 @item -m64bit-doubles
23420 @itemx -m32bit-doubles
23421 @opindex m64bit-doubles
23422 @opindex m32bit-doubles
23423 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
23424 or 32 bits (@option{-m32bit-doubles}) in size. The default is
23425 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
23426 works on 32-bit values, which is why the default is
23427 @option{-m32bit-doubles}.
23428
23429 @item -fpu
23430 @itemx -nofpu
23431 @opindex fpu
23432 @opindex nofpu
23433 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
23434 floating-point hardware. The default is enabled for the RX600
23435 series and disabled for the RX200 series.
23436
23437 Floating-point instructions are only generated for 32-bit floating-point
23438 values, however, so the FPU hardware is not used for doubles if the
23439 @option{-m64bit-doubles} option is used.
23440
23441 @emph{Note} If the @option{-fpu} option is enabled then
23442 @option{-funsafe-math-optimizations} is also enabled automatically.
23443 This is because the RX FPU instructions are themselves unsafe.
23444
23445 @item -mcpu=@var{name}
23446 @opindex mcpu
23447 Selects the type of RX CPU to be targeted. Currently three types are
23448 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
23449 the specific @samp{RX610} CPU. The default is @samp{RX600}.
23450
23451 The only difference between @samp{RX600} and @samp{RX610} is that the
23452 @samp{RX610} does not support the @code{MVTIPL} instruction.
23453
23454 The @samp{RX200} series does not have a hardware floating-point unit
23455 and so @option{-nofpu} is enabled by default when this type is
23456 selected.
23457
23458 @item -mbig-endian-data
23459 @itemx -mlittle-endian-data
23460 @opindex mbig-endian-data
23461 @opindex mlittle-endian-data
23462 Store data (but not code) in the big-endian format. The default is
23463 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
23464 format.
23465
23466 @item -msmall-data-limit=@var{N}
23467 @opindex msmall-data-limit
23468 Specifies the maximum size in bytes of global and static variables
23469 which can be placed into the small data area. Using the small data
23470 area can lead to smaller and faster code, but the size of area is
23471 limited and it is up to the programmer to ensure that the area does
23472 not overflow. Also when the small data area is used one of the RX's
23473 registers (usually @code{r13}) is reserved for use pointing to this
23474 area, so it is no longer available for use by the compiler. This
23475 could result in slower and/or larger code if variables are pushed onto
23476 the stack instead of being held in this register.
23477
23478 Note, common variables (variables that have not been initialized) and
23479 constants are not placed into the small data area as they are assigned
23480 to other sections in the output executable.
23481
23482 The default value is zero, which disables this feature. Note, this
23483 feature is not enabled by default with higher optimization levels
23484 (@option{-O2} etc) because of the potentially detrimental effects of
23485 reserving a register. It is up to the programmer to experiment and
23486 discover whether this feature is of benefit to their program. See the
23487 description of the @option{-mpid} option for a description of how the
23488 actual register to hold the small data area pointer is chosen.
23489
23490 @item -msim
23491 @itemx -mno-sim
23492 @opindex msim
23493 @opindex mno-sim
23494 Use the simulator runtime. The default is to use the libgloss
23495 board-specific runtime.
23496
23497 @item -mas100-syntax
23498 @itemx -mno-as100-syntax
23499 @opindex mas100-syntax
23500 @opindex mno-as100-syntax
23501 When generating assembler output use a syntax that is compatible with
23502 Renesas's AS100 assembler. This syntax can also be handled by the GAS
23503 assembler, but it has some restrictions so it is not generated by default.
23504
23505 @item -mmax-constant-size=@var{N}
23506 @opindex mmax-constant-size
23507 Specifies the maximum size, in bytes, of a constant that can be used as
23508 an operand in a RX instruction. Although the RX instruction set does
23509 allow constants of up to 4 bytes in length to be used in instructions,
23510 a longer value equates to a longer instruction. Thus in some
23511 circumstances it can be beneficial to restrict the size of constants
23512 that are used in instructions. Constants that are too big are instead
23513 placed into a constant pool and referenced via register indirection.
23514
23515 The value @var{N} can be between 0 and 4. A value of 0 (the default)
23516 or 4 means that constants of any size are allowed.
23517
23518 @item -mrelax
23519 @opindex mrelax
23520 Enable linker relaxation. Linker relaxation is a process whereby the
23521 linker attempts to reduce the size of a program by finding shorter
23522 versions of various instructions. Disabled by default.
23523
23524 @item -mint-register=@var{N}
23525 @opindex mint-register
23526 Specify the number of registers to reserve for fast interrupt handler
23527 functions. The value @var{N} can be between 0 and 4. A value of 1
23528 means that register @code{r13} is reserved for the exclusive use
23529 of fast interrupt handlers. A value of 2 reserves @code{r13} and
23530 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
23531 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
23532 A value of 0, the default, does not reserve any registers.
23533
23534 @item -msave-acc-in-interrupts
23535 @opindex msave-acc-in-interrupts
23536 Specifies that interrupt handler functions should preserve the
23537 accumulator register. This is only necessary if normal code might use
23538 the accumulator register, for example because it performs 64-bit
23539 multiplications. The default is to ignore the accumulator as this
23540 makes the interrupt handlers faster.
23541
23542 @item -mpid
23543 @itemx -mno-pid
23544 @opindex mpid
23545 @opindex mno-pid
23546 Enables the generation of position independent data. When enabled any
23547 access to constant data is done via an offset from a base address
23548 held in a register. This allows the location of constant data to be
23549 determined at run time without requiring the executable to be
23550 relocated, which is a benefit to embedded applications with tight
23551 memory constraints. Data that can be modified is not affected by this
23552 option.
23553
23554 Note, using this feature reserves a register, usually @code{r13}, for
23555 the constant data base address. This can result in slower and/or
23556 larger code, especially in complicated functions.
23557
23558 The actual register chosen to hold the constant data base address
23559 depends upon whether the @option{-msmall-data-limit} and/or the
23560 @option{-mint-register} command-line options are enabled. Starting
23561 with register @code{r13} and proceeding downwards, registers are
23562 allocated first to satisfy the requirements of @option{-mint-register},
23563 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
23564 is possible for the small data area register to be @code{r8} if both
23565 @option{-mint-register=4} and @option{-mpid} are specified on the
23566 command line.
23567
23568 By default this feature is not enabled. The default can be restored
23569 via the @option{-mno-pid} command-line option.
23570
23571 @item -mno-warn-multiple-fast-interrupts
23572 @itemx -mwarn-multiple-fast-interrupts
23573 @opindex mno-warn-multiple-fast-interrupts
23574 @opindex mwarn-multiple-fast-interrupts
23575 Prevents GCC from issuing a warning message if it finds more than one
23576 fast interrupt handler when it is compiling a file. The default is to
23577 issue a warning for each extra fast interrupt handler found, as the RX
23578 only supports one such interrupt.
23579
23580 @item -mallow-string-insns
23581 @itemx -mno-allow-string-insns
23582 @opindex mallow-string-insns
23583 @opindex mno-allow-string-insns
23584 Enables or disables the use of the string manipulation instructions
23585 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
23586 @code{SWHILE} and also the @code{RMPA} instruction. These
23587 instructions may prefetch data, which is not safe to do if accessing
23588 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
23589 for more information).
23590
23591 The default is to allow these instructions, but it is not possible for
23592 GCC to reliably detect all circumstances where a string instruction
23593 might be used to access an I/O register, so their use cannot be
23594 disabled automatically. Instead it is reliant upon the programmer to
23595 use the @option{-mno-allow-string-insns} option if their program
23596 accesses I/O space.
23597
23598 When the instructions are enabled GCC defines the C preprocessor
23599 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
23600 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
23601
23602 @item -mjsr
23603 @itemx -mno-jsr
23604 @opindex mjsr
23605 @opindex mno-jsr
23606 Use only (or not only) @code{JSR} instructions to access functions.
23607 This option can be used when code size exceeds the range of @code{BSR}
23608 instructions. Note that @option{-mno-jsr} does not mean to not use
23609 @code{JSR} but instead means that any type of branch may be used.
23610 @end table
23611
23612 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
23613 has special significance to the RX port when used with the
23614 @code{interrupt} function attribute. This attribute indicates a
23615 function intended to process fast interrupts. GCC ensures
23616 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
23617 and/or @code{r13} and only provided that the normal use of the
23618 corresponding registers have been restricted via the
23619 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
23620 options.
23621
23622 @node S/390 and zSeries Options
23623 @subsection S/390 and zSeries Options
23624 @cindex S/390 and zSeries Options
23625
23626 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
23627
23628 @table @gcctabopt
23629 @item -mhard-float
23630 @itemx -msoft-float
23631 @opindex mhard-float
23632 @opindex msoft-float
23633 Use (do not use) the hardware floating-point instructions and registers
23634 for floating-point operations. When @option{-msoft-float} is specified,
23635 functions in @file{libgcc.a} are used to perform floating-point
23636 operations. When @option{-mhard-float} is specified, the compiler
23637 generates IEEE floating-point instructions. This is the default.
23638
23639 @item -mhard-dfp
23640 @itemx -mno-hard-dfp
23641 @opindex mhard-dfp
23642 @opindex mno-hard-dfp
23643 Use (do not use) the hardware decimal-floating-point instructions for
23644 decimal-floating-point operations. When @option{-mno-hard-dfp} is
23645 specified, functions in @file{libgcc.a} are used to perform
23646 decimal-floating-point operations. When @option{-mhard-dfp} is
23647 specified, the compiler generates decimal-floating-point hardware
23648 instructions. This is the default for @option{-march=z9-ec} or higher.
23649
23650 @item -mlong-double-64
23651 @itemx -mlong-double-128
23652 @opindex mlong-double-64
23653 @opindex mlong-double-128
23654 These switches control the size of @code{long double} type. A size
23655 of 64 bits makes the @code{long double} type equivalent to the @code{double}
23656 type. This is the default.
23657
23658 @item -mbackchain
23659 @itemx -mno-backchain
23660 @opindex mbackchain
23661 @opindex mno-backchain
23662 Store (do not store) the address of the caller's frame as backchain pointer
23663 into the callee's stack frame.
23664 A backchain may be needed to allow debugging using tools that do not understand
23665 DWARF call frame information.
23666 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
23667 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
23668 the backchain is placed into the topmost word of the 96/160 byte register
23669 save area.
23670
23671 In general, code compiled with @option{-mbackchain} is call-compatible with
23672 code compiled with @option{-mmo-backchain}; however, use of the backchain
23673 for debugging purposes usually requires that the whole binary is built with
23674 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
23675 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
23676 to build a linux kernel use @option{-msoft-float}.
23677
23678 The default is to not maintain the backchain.
23679
23680 @item -mpacked-stack
23681 @itemx -mno-packed-stack
23682 @opindex mpacked-stack
23683 @opindex mno-packed-stack
23684 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
23685 specified, the compiler uses the all fields of the 96/160 byte register save
23686 area only for their default purpose; unused fields still take up stack space.
23687 When @option{-mpacked-stack} is specified, register save slots are densely
23688 packed at the top of the register save area; unused space is reused for other
23689 purposes, allowing for more efficient use of the available stack space.
23690 However, when @option{-mbackchain} is also in effect, the topmost word of
23691 the save area is always used to store the backchain, and the return address
23692 register is always saved two words below the backchain.
23693
23694 As long as the stack frame backchain is not used, code generated with
23695 @option{-mpacked-stack} is call-compatible with code generated with
23696 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
23697 S/390 or zSeries generated code that uses the stack frame backchain at run
23698 time, not just for debugging purposes. Such code is not call-compatible
23699 with code compiled with @option{-mpacked-stack}. Also, note that the
23700 combination of @option{-mbackchain},
23701 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
23702 to build a linux kernel use @option{-msoft-float}.
23703
23704 The default is to not use the packed stack layout.
23705
23706 @item -msmall-exec
23707 @itemx -mno-small-exec
23708 @opindex msmall-exec
23709 @opindex mno-small-exec
23710 Generate (or do not generate) code using the @code{bras} instruction
23711 to do subroutine calls.
23712 This only works reliably if the total executable size does not
23713 exceed 64k. The default is to use the @code{basr} instruction instead,
23714 which does not have this limitation.
23715
23716 @item -m64
23717 @itemx -m31
23718 @opindex m64
23719 @opindex m31
23720 When @option{-m31} is specified, generate code compliant to the
23721 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
23722 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
23723 particular to generate 64-bit instructions. For the @samp{s390}
23724 targets, the default is @option{-m31}, while the @samp{s390x}
23725 targets default to @option{-m64}.
23726
23727 @item -mzarch
23728 @itemx -mesa
23729 @opindex mzarch
23730 @opindex mesa
23731 When @option{-mzarch} is specified, generate code using the
23732 instructions available on z/Architecture.
23733 When @option{-mesa} is specified, generate code using the
23734 instructions available on ESA/390. Note that @option{-mesa} is
23735 not possible with @option{-m64}.
23736 When generating code compliant to the GNU/Linux for S/390 ABI,
23737 the default is @option{-mesa}. When generating code compliant
23738 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
23739
23740 @item -mhtm
23741 @itemx -mno-htm
23742 @opindex mhtm
23743 @opindex mno-htm
23744 The @option{-mhtm} option enables a set of builtins making use of
23745 instructions available with the transactional execution facility
23746 introduced with the IBM zEnterprise EC12 machine generation
23747 @ref{S/390 System z Built-in Functions}.
23748 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
23749
23750 @item -mvx
23751 @itemx -mno-vx
23752 @opindex mvx
23753 @opindex mno-vx
23754 When @option{-mvx} is specified, generate code using the instructions
23755 available with the vector extension facility introduced with the IBM
23756 z13 machine generation.
23757 This option changes the ABI for some vector type values with regard to
23758 alignment and calling conventions. In case vector type values are
23759 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
23760 command will be added to mark the resulting binary with the ABI used.
23761 @option{-mvx} is enabled by default when using @option{-march=z13}.
23762
23763 @item -mzvector
23764 @itemx -mno-zvector
23765 @opindex mzvector
23766 @opindex mno-zvector
23767 The @option{-mzvector} option enables vector language extensions and
23768 builtins using instructions available with the vector extension
23769 facility introduced with the IBM z13 machine generation.
23770 This option adds support for @samp{vector} to be used as a keyword to
23771 define vector type variables and arguments. @samp{vector} is only
23772 available when GNU extensions are enabled. It will not be expanded
23773 when requesting strict standard compliance e.g. with @option{-std=c99}.
23774 In addition to the GCC low-level builtins @option{-mzvector} enables
23775 a set of builtins added for compatibility with AltiVec-style
23776 implementations like Power and Cell. In order to make use of these
23777 builtins the header file @file{vecintrin.h} needs to be included.
23778 @option{-mzvector} is disabled by default.
23779
23780 @item -mmvcle
23781 @itemx -mno-mvcle
23782 @opindex mmvcle
23783 @opindex mno-mvcle
23784 Generate (or do not generate) code using the @code{mvcle} instruction
23785 to perform block moves. When @option{-mno-mvcle} is specified,
23786 use a @code{mvc} loop instead. This is the default unless optimizing for
23787 size.
23788
23789 @item -mdebug
23790 @itemx -mno-debug
23791 @opindex mdebug
23792 @opindex mno-debug
23793 Print (or do not print) additional debug information when compiling.
23794 The default is to not print debug information.
23795
23796 @item -march=@var{cpu-type}
23797 @opindex march
23798 Generate code that runs on @var{cpu-type}, which is the name of a
23799 system representing a certain processor type. Possible values for
23800 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
23801 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
23802 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11}, and
23803 @samp{native}.
23804
23805 The default is @option{-march=z900}. @samp{g5}/@samp{arch3} and
23806 @samp{g6} are deprecated and will be removed with future releases.
23807
23808 Specifying @samp{native} as cpu type can be used to select the best
23809 architecture option for the host processor.
23810 @option{-march=native} has no effect if GCC does not recognize the
23811 processor.
23812
23813 @item -mtune=@var{cpu-type}
23814 @opindex mtune
23815 Tune to @var{cpu-type} everything applicable about the generated code,
23816 except for the ABI and the set of available instructions.
23817 The list of @var{cpu-type} values is the same as for @option{-march}.
23818 The default is the value used for @option{-march}.
23819
23820 @item -mtpf-trace
23821 @itemx -mno-tpf-trace
23822 @opindex mtpf-trace
23823 @opindex mno-tpf-trace
23824 Generate code that adds (does not add) in TPF OS specific branches to trace
23825 routines in the operating system. This option is off by default, even
23826 when compiling for the TPF OS@.
23827
23828 @item -mfused-madd
23829 @itemx -mno-fused-madd
23830 @opindex mfused-madd
23831 @opindex mno-fused-madd
23832 Generate code that uses (does not use) the floating-point multiply and
23833 accumulate instructions. These instructions are generated by default if
23834 hardware floating point is used.
23835
23836 @item -mwarn-framesize=@var{framesize}
23837 @opindex mwarn-framesize
23838 Emit a warning if the current function exceeds the given frame size. Because
23839 this is a compile-time check it doesn't need to be a real problem when the program
23840 runs. It is intended to identify functions that most probably cause
23841 a stack overflow. It is useful to be used in an environment with limited stack
23842 size e.g.@: the linux kernel.
23843
23844 @item -mwarn-dynamicstack
23845 @opindex mwarn-dynamicstack
23846 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
23847 arrays. This is generally a bad idea with a limited stack size.
23848
23849 @item -mstack-guard=@var{stack-guard}
23850 @itemx -mstack-size=@var{stack-size}
23851 @opindex mstack-guard
23852 @opindex mstack-size
23853 If these options are provided the S/390 back end emits additional instructions in
23854 the function prologue that trigger a trap if the stack size is @var{stack-guard}
23855 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
23856 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
23857 the frame size of the compiled function is chosen.
23858 These options are intended to be used to help debugging stack overflow problems.
23859 The additionally emitted code causes only little overhead and hence can also be
23860 used in production-like systems without greater performance degradation. The given
23861 values have to be exact powers of 2 and @var{stack-size} has to be greater than
23862 @var{stack-guard} without exceeding 64k.
23863 In order to be efficient the extra code makes the assumption that the stack starts
23864 at an address aligned to the value given by @var{stack-size}.
23865 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
23866
23867 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
23868 @opindex mhotpatch
23869 If the hotpatch option is enabled, a ``hot-patching'' function
23870 prologue is generated for all functions in the compilation unit.
23871 The funtion label is prepended with the given number of two-byte
23872 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
23873 the label, 2 * @var{post-halfwords} bytes are appended, using the
23874 largest NOP like instructions the architecture allows (maximum
23875 1000000).
23876
23877 If both arguments are zero, hotpatching is disabled.
23878
23879 This option can be overridden for individual functions with the
23880 @code{hotpatch} attribute.
23881 @end table
23882
23883 @node Score Options
23884 @subsection Score Options
23885 @cindex Score Options
23886
23887 These options are defined for Score implementations:
23888
23889 @table @gcctabopt
23890 @item -meb
23891 @opindex meb
23892 Compile code for big-endian mode. This is the default.
23893
23894 @item -mel
23895 @opindex mel
23896 Compile code for little-endian mode.
23897
23898 @item -mnhwloop
23899 @opindex mnhwloop
23900 Disable generation of @code{bcnz} instructions.
23901
23902 @item -muls
23903 @opindex muls
23904 Enable generation of unaligned load and store instructions.
23905
23906 @item -mmac
23907 @opindex mmac
23908 Enable the use of multiply-accumulate instructions. Disabled by default.
23909
23910 @item -mscore5
23911 @opindex mscore5
23912 Specify the SCORE5 as the target architecture.
23913
23914 @item -mscore5u
23915 @opindex mscore5u
23916 Specify the SCORE5U of the target architecture.
23917
23918 @item -mscore7
23919 @opindex mscore7
23920 Specify the SCORE7 as the target architecture. This is the default.
23921
23922 @item -mscore7d
23923 @opindex mscore7d
23924 Specify the SCORE7D as the target architecture.
23925 @end table
23926
23927 @node SH Options
23928 @subsection SH Options
23929
23930 These @samp{-m} options are defined for the SH implementations:
23931
23932 @table @gcctabopt
23933 @item -m1
23934 @opindex m1
23935 Generate code for the SH1.
23936
23937 @item -m2
23938 @opindex m2
23939 Generate code for the SH2.
23940
23941 @item -m2e
23942 Generate code for the SH2e.
23943
23944 @item -m2a-nofpu
23945 @opindex m2a-nofpu
23946 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
23947 that the floating-point unit is not used.
23948
23949 @item -m2a-single-only
23950 @opindex m2a-single-only
23951 Generate code for the SH2a-FPU, in such a way that no double-precision
23952 floating-point operations are used.
23953
23954 @item -m2a-single
23955 @opindex m2a-single
23956 Generate code for the SH2a-FPU assuming the floating-point unit is in
23957 single-precision mode by default.
23958
23959 @item -m2a
23960 @opindex m2a
23961 Generate code for the SH2a-FPU assuming the floating-point unit is in
23962 double-precision mode by default.
23963
23964 @item -m3
23965 @opindex m3
23966 Generate code for the SH3.
23967
23968 @item -m3e
23969 @opindex m3e
23970 Generate code for the SH3e.
23971
23972 @item -m4-nofpu
23973 @opindex m4-nofpu
23974 Generate code for the SH4 without a floating-point unit.
23975
23976 @item -m4-single-only
23977 @opindex m4-single-only
23978 Generate code for the SH4 with a floating-point unit that only
23979 supports single-precision arithmetic.
23980
23981 @item -m4-single
23982 @opindex m4-single
23983 Generate code for the SH4 assuming the floating-point unit is in
23984 single-precision mode by default.
23985
23986 @item -m4
23987 @opindex m4
23988 Generate code for the SH4.
23989
23990 @item -m4-100
23991 @opindex m4-100
23992 Generate code for SH4-100.
23993
23994 @item -m4-100-nofpu
23995 @opindex m4-100-nofpu
23996 Generate code for SH4-100 in such a way that the
23997 floating-point unit is not used.
23998
23999 @item -m4-100-single
24000 @opindex m4-100-single
24001 Generate code for SH4-100 assuming the floating-point unit is in
24002 single-precision mode by default.
24003
24004 @item -m4-100-single-only
24005 @opindex m4-100-single-only
24006 Generate code for SH4-100 in such a way that no double-precision
24007 floating-point operations are used.
24008
24009 @item -m4-200
24010 @opindex m4-200
24011 Generate code for SH4-200.
24012
24013 @item -m4-200-nofpu
24014 @opindex m4-200-nofpu
24015 Generate code for SH4-200 without in such a way that the
24016 floating-point unit is not used.
24017
24018 @item -m4-200-single
24019 @opindex m4-200-single
24020 Generate code for SH4-200 assuming the floating-point unit is in
24021 single-precision mode by default.
24022
24023 @item -m4-200-single-only
24024 @opindex m4-200-single-only
24025 Generate code for SH4-200 in such a way that no double-precision
24026 floating-point operations are used.
24027
24028 @item -m4-300
24029 @opindex m4-300
24030 Generate code for SH4-300.
24031
24032 @item -m4-300-nofpu
24033 @opindex m4-300-nofpu
24034 Generate code for SH4-300 without in such a way that the
24035 floating-point unit is not used.
24036
24037 @item -m4-300-single
24038 @opindex m4-300-single
24039 Generate code for SH4-300 in such a way that no double-precision
24040 floating-point operations are used.
24041
24042 @item -m4-300-single-only
24043 @opindex m4-300-single-only
24044 Generate code for SH4-300 in such a way that no double-precision
24045 floating-point operations are used.
24046
24047 @item -m4-340
24048 @opindex m4-340
24049 Generate code for SH4-340 (no MMU, no FPU).
24050
24051 @item -m4-500
24052 @opindex m4-500
24053 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
24054 assembler.
24055
24056 @item -m4a-nofpu
24057 @opindex m4a-nofpu
24058 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
24059 floating-point unit is not used.
24060
24061 @item -m4a-single-only
24062 @opindex m4a-single-only
24063 Generate code for the SH4a, in such a way that no double-precision
24064 floating-point operations are used.
24065
24066 @item -m4a-single
24067 @opindex m4a-single
24068 Generate code for the SH4a assuming the floating-point unit is in
24069 single-precision mode by default.
24070
24071 @item -m4a
24072 @opindex m4a
24073 Generate code for the SH4a.
24074
24075 @item -m4al
24076 @opindex m4al
24077 Same as @option{-m4a-nofpu}, except that it implicitly passes
24078 @option{-dsp} to the assembler. GCC doesn't generate any DSP
24079 instructions at the moment.
24080
24081 @item -mb
24082 @opindex mb
24083 Compile code for the processor in big-endian mode.
24084
24085 @item -ml
24086 @opindex ml
24087 Compile code for the processor in little-endian mode.
24088
24089 @item -mdalign
24090 @opindex mdalign
24091 Align doubles at 64-bit boundaries. Note that this changes the calling
24092 conventions, and thus some functions from the standard C library do
24093 not work unless you recompile it first with @option{-mdalign}.
24094
24095 @item -mrelax
24096 @opindex mrelax
24097 Shorten some address references at link time, when possible; uses the
24098 linker option @option{-relax}.
24099
24100 @item -mbigtable
24101 @opindex mbigtable
24102 Use 32-bit offsets in @code{switch} tables. The default is to use
24103 16-bit offsets.
24104
24105 @item -mbitops
24106 @opindex mbitops
24107 Enable the use of bit manipulation instructions on SH2A.
24108
24109 @item -mfmovd
24110 @opindex mfmovd
24111 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
24112 alignment constraints.
24113
24114 @item -mrenesas
24115 @opindex mrenesas
24116 Comply with the calling conventions defined by Renesas.
24117
24118 @item -mno-renesas
24119 @opindex mno-renesas
24120 Comply with the calling conventions defined for GCC before the Renesas
24121 conventions were available. This option is the default for all
24122 targets of the SH toolchain.
24123
24124 @item -mnomacsave
24125 @opindex mnomacsave
24126 Mark the @code{MAC} register as call-clobbered, even if
24127 @option{-mrenesas} is given.
24128
24129 @item -mieee
24130 @itemx -mno-ieee
24131 @opindex mieee
24132 @opindex mno-ieee
24133 Control the IEEE compliance of floating-point comparisons, which affects the
24134 handling of cases where the result of a comparison is unordered. By default
24135 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
24136 enabled @option{-mno-ieee} is implicitly set, which results in faster
24137 floating-point greater-equal and less-equal comparisons. The implicit settings
24138 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
24139
24140 @item -minline-ic_invalidate
24141 @opindex minline-ic_invalidate
24142 Inline code to invalidate instruction cache entries after setting up
24143 nested function trampolines.
24144 This option has no effect if @option{-musermode} is in effect and the selected
24145 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
24146 instruction.
24147 If the selected code generation option does not allow the use of the @code{icbi}
24148 instruction, and @option{-musermode} is not in effect, the inlined code
24149 manipulates the instruction cache address array directly with an associative
24150 write. This not only requires privileged mode at run time, but it also
24151 fails if the cache line had been mapped via the TLB and has become unmapped.
24152
24153 @item -misize
24154 @opindex misize
24155 Dump instruction size and location in the assembly code.
24156
24157 @item -mpadstruct
24158 @opindex mpadstruct
24159 This option is deprecated. It pads structures to multiple of 4 bytes,
24160 which is incompatible with the SH ABI@.
24161
24162 @item -matomic-model=@var{model}
24163 @opindex matomic-model=@var{model}
24164 Sets the model of atomic operations and additional parameters as a comma
24165 separated list. For details on the atomic built-in functions see
24166 @ref{__atomic Builtins}. The following models and parameters are supported:
24167
24168 @table @samp
24169
24170 @item none
24171 Disable compiler generated atomic sequences and emit library calls for atomic
24172 operations. This is the default if the target is not @code{sh*-*-linux*}.
24173
24174 @item soft-gusa
24175 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
24176 built-in functions. The generated atomic sequences require additional support
24177 from the interrupt/exception handling code of the system and are only suitable
24178 for SH3* and SH4* single-core systems. This option is enabled by default when
24179 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
24180 this option also partially utilizes the hardware atomic instructions
24181 @code{movli.l} and @code{movco.l} to create more efficient code, unless
24182 @samp{strict} is specified.
24183
24184 @item soft-tcb
24185 Generate software atomic sequences that use a variable in the thread control
24186 block. This is a variation of the gUSA sequences which can also be used on
24187 SH1* and SH2* targets. The generated atomic sequences require additional
24188 support from the interrupt/exception handling code of the system and are only
24189 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
24190 parameter has to be specified as well.
24191
24192 @item soft-imask
24193 Generate software atomic sequences that temporarily disable interrupts by
24194 setting @code{SR.IMASK = 1111}. This model works only when the program runs
24195 in privileged mode and is only suitable for single-core systems. Additional
24196 support from the interrupt/exception handling code of the system is not
24197 required. This model is enabled by default when the target is
24198 @code{sh*-*-linux*} and SH1* or SH2*.
24199
24200 @item hard-llcs
24201 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
24202 instructions only. This is only available on SH4A and is suitable for
24203 multi-core systems. Since the hardware instructions support only 32 bit atomic
24204 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
24205 Code compiled with this option is also compatible with other software
24206 atomic model interrupt/exception handling systems if executed on an SH4A
24207 system. Additional support from the interrupt/exception handling code of the
24208 system is not required for this model.
24209
24210 @item gbr-offset=
24211 This parameter specifies the offset in bytes of the variable in the thread
24212 control block structure that should be used by the generated atomic sequences
24213 when the @samp{soft-tcb} model has been selected. For other models this
24214 parameter is ignored. The specified value must be an integer multiple of four
24215 and in the range 0-1020.
24216
24217 @item strict
24218 This parameter prevents mixed usage of multiple atomic models, even if they
24219 are compatible, and makes the compiler generate atomic sequences of the
24220 specified model only.
24221
24222 @end table
24223
24224 @item -mtas
24225 @opindex mtas
24226 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
24227 Notice that depending on the particular hardware and software configuration
24228 this can degrade overall performance due to the operand cache line flushes
24229 that are implied by the @code{tas.b} instruction. On multi-core SH4A
24230 processors the @code{tas.b} instruction must be used with caution since it
24231 can result in data corruption for certain cache configurations.
24232
24233 @item -mprefergot
24234 @opindex mprefergot
24235 When generating position-independent code, emit function calls using
24236 the Global Offset Table instead of the Procedure Linkage Table.
24237
24238 @item -musermode
24239 @itemx -mno-usermode
24240 @opindex musermode
24241 @opindex mno-usermode
24242 Don't allow (allow) the compiler generating privileged mode code. Specifying
24243 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
24244 inlined code would not work in user mode. @option{-musermode} is the default
24245 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
24246 @option{-musermode} has no effect, since there is no user mode.
24247
24248 @item -multcost=@var{number}
24249 @opindex multcost=@var{number}
24250 Set the cost to assume for a multiply insn.
24251
24252 @item -mdiv=@var{strategy}
24253 @opindex mdiv=@var{strategy}
24254 Set the division strategy to be used for integer division operations.
24255 @var{strategy} can be one of:
24256
24257 @table @samp
24258
24259 @item call-div1
24260 Calls a library function that uses the single-step division instruction
24261 @code{div1} to perform the operation. Division by zero calculates an
24262 unspecified result and does not trap. This is the default except for SH4,
24263 SH2A and SHcompact.
24264
24265 @item call-fp
24266 Calls a library function that performs the operation in double precision
24267 floating point. Division by zero causes a floating-point exception. This is
24268 the default for SHcompact with FPU. Specifying this for targets that do not
24269 have a double precision FPU defaults to @code{call-div1}.
24270
24271 @item call-table
24272 Calls a library function that uses a lookup table for small divisors and
24273 the @code{div1} instruction with case distinction for larger divisors. Division
24274 by zero calculates an unspecified result and does not trap. This is the default
24275 for SH4. Specifying this for targets that do not have dynamic shift
24276 instructions defaults to @code{call-div1}.
24277
24278 @end table
24279
24280 When a division strategy has not been specified the default strategy is
24281 selected based on the current target. For SH2A the default strategy is to
24282 use the @code{divs} and @code{divu} instructions instead of library function
24283 calls.
24284
24285 @item -maccumulate-outgoing-args
24286 @opindex maccumulate-outgoing-args
24287 Reserve space once for outgoing arguments in the function prologue rather
24288 than around each call. Generally beneficial for performance and size. Also
24289 needed for unwinding to avoid changing the stack frame around conditional code.
24290
24291 @item -mdivsi3_libfunc=@var{name}
24292 @opindex mdivsi3_libfunc=@var{name}
24293 Set the name of the library function used for 32-bit signed division to
24294 @var{name}.
24295 This only affects the name used in the @samp{call} division strategies, and
24296 the compiler still expects the same sets of input/output/clobbered registers as
24297 if this option were not present.
24298
24299 @item -mfixed-range=@var{register-range}
24300 @opindex mfixed-range
24301 Generate code treating the given register range as fixed registers.
24302 A fixed register is one that the register allocator can not use. This is
24303 useful when compiling kernel code. A register range is specified as
24304 two registers separated by a dash. Multiple register ranges can be
24305 specified separated by a comma.
24306
24307 @item -mbranch-cost=@var{num}
24308 @opindex mbranch-cost=@var{num}
24309 Assume @var{num} to be the cost for a branch instruction. Higher numbers
24310 make the compiler try to generate more branch-free code if possible.
24311 If not specified the value is selected depending on the processor type that
24312 is being compiled for.
24313
24314 @item -mzdcbranch
24315 @itemx -mno-zdcbranch
24316 @opindex mzdcbranch
24317 @opindex mno-zdcbranch
24318 Assume (do not assume) that zero displacement conditional branch instructions
24319 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
24320 compiler prefers zero displacement branch code sequences. This is
24321 enabled by default when generating code for SH4 and SH4A. It can be explicitly
24322 disabled by specifying @option{-mno-zdcbranch}.
24323
24324 @item -mcbranch-force-delay-slot
24325 @opindex mcbranch-force-delay-slot
24326 Force the usage of delay slots for conditional branches, which stuffs the delay
24327 slot with a @code{nop} if a suitable instruction cannot be found. By default
24328 this option is disabled. It can be enabled to work around hardware bugs as
24329 found in the original SH7055.
24330
24331 @item -mfused-madd
24332 @itemx -mno-fused-madd
24333 @opindex mfused-madd
24334 @opindex mno-fused-madd
24335 Generate code that uses (does not use) the floating-point multiply and
24336 accumulate instructions. These instructions are generated by default
24337 if hardware floating point is used. The machine-dependent
24338 @option{-mfused-madd} option is now mapped to the machine-independent
24339 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
24340 mapped to @option{-ffp-contract=off}.
24341
24342 @item -mfsca
24343 @itemx -mno-fsca
24344 @opindex mfsca
24345 @opindex mno-fsca
24346 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
24347 and cosine approximations. The option @option{-mfsca} must be used in
24348 combination with @option{-funsafe-math-optimizations}. It is enabled by default
24349 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
24350 approximations even if @option{-funsafe-math-optimizations} is in effect.
24351
24352 @item -mfsrra
24353 @itemx -mno-fsrra
24354 @opindex mfsrra
24355 @opindex mno-fsrra
24356 Allow or disallow the compiler to emit the @code{fsrra} instruction for
24357 reciprocal square root approximations. The option @option{-mfsrra} must be used
24358 in combination with @option{-funsafe-math-optimizations} and
24359 @option{-ffinite-math-only}. It is enabled by default when generating code for
24360 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
24361 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
24362 in effect.
24363
24364 @item -mpretend-cmove
24365 @opindex mpretend-cmove
24366 Prefer zero-displacement conditional branches for conditional move instruction
24367 patterns. This can result in faster code on the SH4 processor.
24368
24369 @item -mfdpic
24370 @opindex fdpic
24371 Generate code using the FDPIC ABI.
24372
24373 @end table
24374
24375 @node Solaris 2 Options
24376 @subsection Solaris 2 Options
24377 @cindex Solaris 2 options
24378
24379 These @samp{-m} options are supported on Solaris 2:
24380
24381 @table @gcctabopt
24382 @item -mclear-hwcap
24383 @opindex mclear-hwcap
24384 @option{-mclear-hwcap} tells the compiler to remove the hardware
24385 capabilities generated by the Solaris assembler. This is only necessary
24386 when object files use ISA extensions not supported by the current
24387 machine, but check at runtime whether or not to use them.
24388
24389 @item -mimpure-text
24390 @opindex mimpure-text
24391 @option{-mimpure-text}, used in addition to @option{-shared}, tells
24392 the compiler to not pass @option{-z text} to the linker when linking a
24393 shared object. Using this option, you can link position-dependent
24394 code into a shared object.
24395
24396 @option{-mimpure-text} suppresses the ``relocations remain against
24397 allocatable but non-writable sections'' linker error message.
24398 However, the necessary relocations trigger copy-on-write, and the
24399 shared object is not actually shared across processes. Instead of
24400 using @option{-mimpure-text}, you should compile all source code with
24401 @option{-fpic} or @option{-fPIC}.
24402
24403 @end table
24404
24405 These switches are supported in addition to the above on Solaris 2:
24406
24407 @table @gcctabopt
24408 @item -pthreads
24409 @opindex pthreads
24410 This is a synonym for @option{-pthread}.
24411 @end table
24412
24413 @node SPARC Options
24414 @subsection SPARC Options
24415 @cindex SPARC options
24416
24417 These @samp{-m} options are supported on the SPARC:
24418
24419 @table @gcctabopt
24420 @item -mno-app-regs
24421 @itemx -mapp-regs
24422 @opindex mno-app-regs
24423 @opindex mapp-regs
24424 Specify @option{-mapp-regs} to generate output using the global registers
24425 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
24426 global register 1, each global register 2 through 4 is then treated as an
24427 allocable register that is clobbered by function calls. This is the default.
24428
24429 To be fully SVR4 ABI-compliant at the cost of some performance loss,
24430 specify @option{-mno-app-regs}. You should compile libraries and system
24431 software with this option.
24432
24433 @item -mflat
24434 @itemx -mno-flat
24435 @opindex mflat
24436 @opindex mno-flat
24437 With @option{-mflat}, the compiler does not generate save/restore instructions
24438 and uses a ``flat'' or single register window model. This model is compatible
24439 with the regular register window model. The local registers and the input
24440 registers (0--5) are still treated as ``call-saved'' registers and are
24441 saved on the stack as needed.
24442
24443 With @option{-mno-flat} (the default), the compiler generates save/restore
24444 instructions (except for leaf functions). This is the normal operating mode.
24445
24446 @item -mfpu
24447 @itemx -mhard-float
24448 @opindex mfpu
24449 @opindex mhard-float
24450 Generate output containing floating-point instructions. This is the
24451 default.
24452
24453 @item -mno-fpu
24454 @itemx -msoft-float
24455 @opindex mno-fpu
24456 @opindex msoft-float
24457 Generate output containing library calls for floating point.
24458 @strong{Warning:} the requisite libraries are not available for all SPARC
24459 targets. Normally the facilities of the machine's usual C compiler are
24460 used, but this cannot be done directly in cross-compilation. You must make
24461 your own arrangements to provide suitable library functions for
24462 cross-compilation. The embedded targets @samp{sparc-*-aout} and
24463 @samp{sparclite-*-*} do provide software floating-point support.
24464
24465 @option{-msoft-float} changes the calling convention in the output file;
24466 therefore, it is only useful if you compile @emph{all} of a program with
24467 this option. In particular, you need to compile @file{libgcc.a}, the
24468 library that comes with GCC, with @option{-msoft-float} in order for
24469 this to work.
24470
24471 @item -mhard-quad-float
24472 @opindex mhard-quad-float
24473 Generate output containing quad-word (long double) floating-point
24474 instructions.
24475
24476 @item -msoft-quad-float
24477 @opindex msoft-quad-float
24478 Generate output containing library calls for quad-word (long double)
24479 floating-point instructions. The functions called are those specified
24480 in the SPARC ABI@. This is the default.
24481
24482 As of this writing, there are no SPARC implementations that have hardware
24483 support for the quad-word floating-point instructions. They all invoke
24484 a trap handler for one of these instructions, and then the trap handler
24485 emulates the effect of the instruction. Because of the trap handler overhead,
24486 this is much slower than calling the ABI library routines. Thus the
24487 @option{-msoft-quad-float} option is the default.
24488
24489 @item -mno-unaligned-doubles
24490 @itemx -munaligned-doubles
24491 @opindex mno-unaligned-doubles
24492 @opindex munaligned-doubles
24493 Assume that doubles have 8-byte alignment. This is the default.
24494
24495 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
24496 alignment only if they are contained in another type, or if they have an
24497 absolute address. Otherwise, it assumes they have 4-byte alignment.
24498 Specifying this option avoids some rare compatibility problems with code
24499 generated by other compilers. It is not the default because it results
24500 in a performance loss, especially for floating-point code.
24501
24502 @item -muser-mode
24503 @itemx -mno-user-mode
24504 @opindex muser-mode
24505 @opindex mno-user-mode
24506 Do not generate code that can only run in supervisor mode. This is relevant
24507 only for the @code{casa} instruction emitted for the LEON3 processor. This
24508 is the default.
24509
24510 @item -mfaster-structs
24511 @itemx -mno-faster-structs
24512 @opindex mfaster-structs
24513 @opindex mno-faster-structs
24514 With @option{-mfaster-structs}, the compiler assumes that structures
24515 should have 8-byte alignment. This enables the use of pairs of
24516 @code{ldd} and @code{std} instructions for copies in structure
24517 assignment, in place of twice as many @code{ld} and @code{st} pairs.
24518 However, the use of this changed alignment directly violates the SPARC
24519 ABI@. Thus, it's intended only for use on targets where the developer
24520 acknowledges that their resulting code is not directly in line with
24521 the rules of the ABI@.
24522
24523 @item -mstd-struct-return
24524 @itemx -mno-std-struct-return
24525 @opindex mstd-struct-return
24526 @opindex mno-std-struct-return
24527 With @option{-mstd-struct-return}, the compiler generates checking code
24528 in functions returning structures or unions to detect size mismatches
24529 between the two sides of function calls, as per the 32-bit ABI@.
24530
24531 The default is @option{-mno-std-struct-return}. This option has no effect
24532 in 64-bit mode.
24533
24534 @item -mlra
24535 @itemx -mno-lra
24536 @opindex mlra
24537 @opindex mno-lra
24538 Enable Local Register Allocation. This is the default for SPARC since GCC 7
24539 so @option{-mno-lra} needs to be passed to get old Reload.
24540
24541 @item -mcpu=@var{cpu_type}
24542 @opindex mcpu
24543 Set the instruction set, register set, and instruction scheduling parameters
24544 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
24545 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
24546 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
24547 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
24548 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
24549 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
24550
24551 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
24552 which selects the best architecture option for the host processor.
24553 @option{-mcpu=native} has no effect if GCC does not recognize
24554 the processor.
24555
24556 Default instruction scheduling parameters are used for values that select
24557 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
24558 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
24559
24560 Here is a list of each supported architecture and their supported
24561 implementations.
24562
24563 @table @asis
24564 @item v7
24565 cypress, leon3v7
24566
24567 @item v8
24568 supersparc, hypersparc, leon, leon3
24569
24570 @item sparclite
24571 f930, f934, sparclite86x
24572
24573 @item sparclet
24574 tsc701
24575
24576 @item v9
24577 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
24578 niagara7, m8
24579 @end table
24580
24581 By default (unless configured otherwise), GCC generates code for the V7
24582 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
24583 additionally optimizes it for the Cypress CY7C602 chip, as used in the
24584 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
24585 SPARCStation 1, 2, IPX etc.
24586
24587 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
24588 architecture. The only difference from V7 code is that the compiler emits
24589 the integer multiply and integer divide instructions which exist in SPARC-V8
24590 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
24591 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
24592 2000 series.
24593
24594 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
24595 the SPARC architecture. This adds the integer multiply, integer divide step
24596 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
24597 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
24598 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
24599 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
24600 MB86934 chip, which is the more recent SPARClite with FPU@.
24601
24602 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
24603 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
24604 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
24605 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
24606 optimizes it for the TEMIC SPARClet chip.
24607
24608 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
24609 architecture. This adds 64-bit integer and floating-point move instructions,
24610 3 additional floating-point condition code registers and conditional move
24611 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
24612 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
24613 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
24614 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
24615 @option{-mcpu=niagara}, the compiler additionally optimizes it for
24616 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
24617 additionally optimizes it for Sun UltraSPARC T2 chips. With
24618 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
24619 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
24620 additionally optimizes it for Sun UltraSPARC T4 chips. With
24621 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
24622 Oracle SPARC M7 chips. With @option{-mcpu=m8}, the compiler
24623 additionally optimizes it for Oracle M8 chips.
24624
24625 @item -mtune=@var{cpu_type}
24626 @opindex mtune
24627 Set the instruction scheduling parameters for machine type
24628 @var{cpu_type}, but do not set the instruction set or register set that the
24629 option @option{-mcpu=@var{cpu_type}} does.
24630
24631 The same values for @option{-mcpu=@var{cpu_type}} can be used for
24632 @option{-mtune=@var{cpu_type}}, but the only useful values are those
24633 that select a particular CPU implementation. Those are
24634 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
24635 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
24636 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
24637 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
24638 @samp{niagara4}, @samp{niagara7} and @samp{m8}. With native Solaris
24639 and GNU/Linux toolchains, @samp{native} can also be used.
24640
24641 @item -mv8plus
24642 @itemx -mno-v8plus
24643 @opindex mv8plus
24644 @opindex mno-v8plus
24645 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
24646 difference from the V8 ABI is that the global and out registers are
24647 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
24648 mode for all SPARC-V9 processors.
24649
24650 @item -mvis
24651 @itemx -mno-vis
24652 @opindex mvis
24653 @opindex mno-vis
24654 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
24655 Visual Instruction Set extensions. The default is @option{-mno-vis}.
24656
24657 @item -mvis2
24658 @itemx -mno-vis2
24659 @opindex mvis2
24660 @opindex mno-vis2
24661 With @option{-mvis2}, GCC generates code that takes advantage of
24662 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
24663 default is @option{-mvis2} when targeting a cpu that supports such
24664 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
24665 also sets @option{-mvis}.
24666
24667 @item -mvis3
24668 @itemx -mno-vis3
24669 @opindex mvis3
24670 @opindex mno-vis3
24671 With @option{-mvis3}, GCC generates code that takes advantage of
24672 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
24673 default is @option{-mvis3} when targeting a cpu that supports such
24674 instructions, such as niagara-3 and later. Setting @option{-mvis3}
24675 also sets @option{-mvis2} and @option{-mvis}.
24676
24677 @item -mvis4
24678 @itemx -mno-vis4
24679 @opindex mvis4
24680 @opindex mno-vis4
24681 With @option{-mvis4}, GCC generates code that takes advantage of
24682 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
24683 default is @option{-mvis4} when targeting a cpu that supports such
24684 instructions, such as niagara-7 and later. Setting @option{-mvis4}
24685 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
24686
24687 @item -mvis4b
24688 @itemx -mno-vis4b
24689 @opindex mvis4b
24690 @opindex mno-vis4b
24691 With @option{-mvis4b}, GCC generates code that takes advantage of
24692 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
24693 the additional VIS instructions introduced in the Oracle SPARC
24694 Architecture 2017. The default is @option{-mvis4b} when targeting a
24695 cpu that supports such instructions, such as m8 and later. Setting
24696 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
24697 @option{-mvis2} and @option{-mvis}.
24698
24699 @item -mcbcond
24700 @itemx -mno-cbcond
24701 @opindex mcbcond
24702 @opindex mno-cbcond
24703 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
24704 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
24705 when targeting a CPU that supports such instructions, such as Niagara-4 and
24706 later.
24707
24708 @item -mfmaf
24709 @itemx -mno-fmaf
24710 @opindex mfmaf
24711 @opindex mno-fmaf
24712 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
24713 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
24714 when targeting a CPU that supports such instructions, such as Niagara-3 and
24715 later.
24716
24717 @item -mfsmuld
24718 @itemx -mno-fsmuld
24719 @opindex mfsmuld
24720 @opindex mno-fsmuld
24721 With @option{-mfsmuld}, GCC generates code that takes advantage of the
24722 Floating-point Multiply Single to Double (FsMULd) instruction. The default is
24723 @option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
24724 or V9 with FPU except @option{-mcpu=leon}.
24725
24726 @item -mpopc
24727 @itemx -mno-popc
24728 @opindex mpopc
24729 @opindex mno-popc
24730 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
24731 Population Count instruction. The default is @option{-mpopc}
24732 when targeting a CPU that supports such an instruction, such as Niagara-2 and
24733 later.
24734
24735 @item -msubxc
24736 @itemx -mno-subxc
24737 @opindex msubxc
24738 @opindex mno-subxc
24739 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
24740 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
24741 when targeting a CPU that supports such an instruction, such as Niagara-7 and
24742 later.
24743
24744 @item -mfix-at697f
24745 @opindex mfix-at697f
24746 Enable the documented workaround for the single erratum of the Atmel AT697F
24747 processor (which corresponds to erratum #13 of the AT697E processor).
24748
24749 @item -mfix-ut699
24750 @opindex mfix-ut699
24751 Enable the documented workarounds for the floating-point errata and the data
24752 cache nullify errata of the UT699 processor.
24753
24754 @item -mfix-ut700
24755 @opindex mfix-ut700
24756 Enable the documented workaround for the back-to-back store errata of
24757 the UT699E/UT700 processor.
24758
24759 @item -mfix-gr712rc
24760 @opindex mfix-gr712rc
24761 Enable the documented workaround for the back-to-back store errata of
24762 the GR712RC processor.
24763 @end table
24764
24765 These @samp{-m} options are supported in addition to the above
24766 on SPARC-V9 processors in 64-bit environments:
24767
24768 @table @gcctabopt
24769 @item -m32
24770 @itemx -m64
24771 @opindex m32
24772 @opindex m64
24773 Generate code for a 32-bit or 64-bit environment.
24774 The 32-bit environment sets int, long and pointer to 32 bits.
24775 The 64-bit environment sets int to 32 bits and long and pointer
24776 to 64 bits.
24777
24778 @item -mcmodel=@var{which}
24779 @opindex mcmodel
24780 Set the code model to one of
24781
24782 @table @samp
24783 @item medlow
24784 The Medium/Low code model: 64-bit addresses, programs
24785 must be linked in the low 32 bits of memory. Programs can be statically
24786 or dynamically linked.
24787
24788 @item medmid
24789 The Medium/Middle code model: 64-bit addresses, programs
24790 must be linked in the low 44 bits of memory, the text and data segments must
24791 be less than 2GB in size and the data segment must be located within 2GB of
24792 the text segment.
24793
24794 @item medany
24795 The Medium/Anywhere code model: 64-bit addresses, programs
24796 may be linked anywhere in memory, the text and data segments must be less
24797 than 2GB in size and the data segment must be located within 2GB of the
24798 text segment.
24799
24800 @item embmedany
24801 The Medium/Anywhere code model for embedded systems:
24802 64-bit addresses, the text and data segments must be less than 2GB in
24803 size, both starting anywhere in memory (determined at link time). The
24804 global register %g4 points to the base of the data segment. Programs
24805 are statically linked and PIC is not supported.
24806 @end table
24807
24808 @item -mmemory-model=@var{mem-model}
24809 @opindex mmemory-model
24810 Set the memory model in force on the processor to one of
24811
24812 @table @samp
24813 @item default
24814 The default memory model for the processor and operating system.
24815
24816 @item rmo
24817 Relaxed Memory Order
24818
24819 @item pso
24820 Partial Store Order
24821
24822 @item tso
24823 Total Store Order
24824
24825 @item sc
24826 Sequential Consistency
24827 @end table
24828
24829 These memory models are formally defined in Appendix D of the SPARC-V9
24830 architecture manual, as set in the processor's @code{PSTATE.MM} field.
24831
24832 @item -mstack-bias
24833 @itemx -mno-stack-bias
24834 @opindex mstack-bias
24835 @opindex mno-stack-bias
24836 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
24837 frame pointer if present, are offset by @minus{}2047 which must be added back
24838 when making stack frame references. This is the default in 64-bit mode.
24839 Otherwise, assume no such offset is present.
24840 @end table
24841
24842 @node SPU Options
24843 @subsection SPU Options
24844 @cindex SPU options
24845
24846 These @samp{-m} options are supported on the SPU:
24847
24848 @table @gcctabopt
24849 @item -mwarn-reloc
24850 @itemx -merror-reloc
24851 @opindex mwarn-reloc
24852 @opindex merror-reloc
24853
24854 The loader for SPU does not handle dynamic relocations. By default, GCC
24855 gives an error when it generates code that requires a dynamic
24856 relocation. @option{-mno-error-reloc} disables the error,
24857 @option{-mwarn-reloc} generates a warning instead.
24858
24859 @item -msafe-dma
24860 @itemx -munsafe-dma
24861 @opindex msafe-dma
24862 @opindex munsafe-dma
24863
24864 Instructions that initiate or test completion of DMA must not be
24865 reordered with respect to loads and stores of the memory that is being
24866 accessed.
24867 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
24868 memory accesses, but that can lead to inefficient code in places where the
24869 memory is known to not change. Rather than mark the memory as volatile,
24870 you can use @option{-msafe-dma} to tell the compiler to treat
24871 the DMA instructions as potentially affecting all memory.
24872
24873 @item -mbranch-hints
24874 @opindex mbranch-hints
24875
24876 By default, GCC generates a branch hint instruction to avoid
24877 pipeline stalls for always-taken or probably-taken branches. A hint
24878 is not generated closer than 8 instructions away from its branch.
24879 There is little reason to disable them, except for debugging purposes,
24880 or to make an object a little bit smaller.
24881
24882 @item -msmall-mem
24883 @itemx -mlarge-mem
24884 @opindex msmall-mem
24885 @opindex mlarge-mem
24886
24887 By default, GCC generates code assuming that addresses are never larger
24888 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
24889 a full 32-bit address.
24890
24891 @item -mstdmain
24892 @opindex mstdmain
24893
24894 By default, GCC links against startup code that assumes the SPU-style
24895 main function interface (which has an unconventional parameter list).
24896 With @option{-mstdmain}, GCC links your program against startup
24897 code that assumes a C99-style interface to @code{main}, including a
24898 local copy of @code{argv} strings.
24899
24900 @item -mfixed-range=@var{register-range}
24901 @opindex mfixed-range
24902 Generate code treating the given register range as fixed registers.
24903 A fixed register is one that the register allocator cannot use. This is
24904 useful when compiling kernel code. A register range is specified as
24905 two registers separated by a dash. Multiple register ranges can be
24906 specified separated by a comma.
24907
24908 @item -mea32
24909 @itemx -mea64
24910 @opindex mea32
24911 @opindex mea64
24912 Compile code assuming that pointers to the PPU address space accessed
24913 via the @code{__ea} named address space qualifier are either 32 or 64
24914 bits wide. The default is 32 bits. As this is an ABI-changing option,
24915 all object code in an executable must be compiled with the same setting.
24916
24917 @item -maddress-space-conversion
24918 @itemx -mno-address-space-conversion
24919 @opindex maddress-space-conversion
24920 @opindex mno-address-space-conversion
24921 Allow/disallow treating the @code{__ea} address space as superset
24922 of the generic address space. This enables explicit type casts
24923 between @code{__ea} and generic pointer as well as implicit
24924 conversions of generic pointers to @code{__ea} pointers. The
24925 default is to allow address space pointer conversions.
24926
24927 @item -mcache-size=@var{cache-size}
24928 @opindex mcache-size
24929 This option controls the version of libgcc that the compiler links to an
24930 executable and selects a software-managed cache for accessing variables
24931 in the @code{__ea} address space with a particular cache size. Possible
24932 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
24933 and @samp{128}. The default cache size is 64KB.
24934
24935 @item -matomic-updates
24936 @itemx -mno-atomic-updates
24937 @opindex matomic-updates
24938 @opindex mno-atomic-updates
24939 This option controls the version of libgcc that the compiler links to an
24940 executable and selects whether atomic updates to the software-managed
24941 cache of PPU-side variables are used. If you use atomic updates, changes
24942 to a PPU variable from SPU code using the @code{__ea} named address space
24943 qualifier do not interfere with changes to other PPU variables residing
24944 in the same cache line from PPU code. If you do not use atomic updates,
24945 such interference may occur; however, writing back cache lines is
24946 more efficient. The default behavior is to use atomic updates.
24947
24948 @item -mdual-nops
24949 @itemx -mdual-nops=@var{n}
24950 @opindex mdual-nops
24951 By default, GCC inserts NOPs to increase dual issue when it expects
24952 it to increase performance. @var{n} can be a value from 0 to 10. A
24953 smaller @var{n} inserts fewer NOPs. 10 is the default, 0 is the
24954 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
24955
24956 @item -mhint-max-nops=@var{n}
24957 @opindex mhint-max-nops
24958 Maximum number of NOPs to insert for a branch hint. A branch hint must
24959 be at least 8 instructions away from the branch it is affecting. GCC
24960 inserts up to @var{n} NOPs to enforce this, otherwise it does not
24961 generate the branch hint.
24962
24963 @item -mhint-max-distance=@var{n}
24964 @opindex mhint-max-distance
24965 The encoding of the branch hint instruction limits the hint to be within
24966 256 instructions of the branch it is affecting. By default, GCC makes
24967 sure it is within 125.
24968
24969 @item -msafe-hints
24970 @opindex msafe-hints
24971 Work around a hardware bug that causes the SPU to stall indefinitely.
24972 By default, GCC inserts the @code{hbrp} instruction to make sure
24973 this stall won't happen.
24974
24975 @end table
24976
24977 @node System V Options
24978 @subsection Options for System V
24979
24980 These additional options are available on System V Release 4 for
24981 compatibility with other compilers on those systems:
24982
24983 @table @gcctabopt
24984 @item -G
24985 @opindex G
24986 Create a shared object.
24987 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
24988
24989 @item -Qy
24990 @opindex Qy
24991 Identify the versions of each tool used by the compiler, in a
24992 @code{.ident} assembler directive in the output.
24993
24994 @item -Qn
24995 @opindex Qn
24996 Refrain from adding @code{.ident} directives to the output file (this is
24997 the default).
24998
24999 @item -YP,@var{dirs}
25000 @opindex YP
25001 Search the directories @var{dirs}, and no others, for libraries
25002 specified with @option{-l}.
25003
25004 @item -Ym,@var{dir}
25005 @opindex Ym
25006 Look in the directory @var{dir} to find the M4 preprocessor.
25007 The assembler uses this option.
25008 @c This is supposed to go with a -Yd for predefined M4 macro files, but
25009 @c the generic assembler that comes with Solaris takes just -Ym.
25010 @end table
25011
25012 @node TILE-Gx Options
25013 @subsection TILE-Gx Options
25014 @cindex TILE-Gx options
25015
25016 These @samp{-m} options are supported on the TILE-Gx:
25017
25018 @table @gcctabopt
25019 @item -mcmodel=small
25020 @opindex mcmodel=small
25021 Generate code for the small model. The distance for direct calls is
25022 limited to 500M in either direction. PC-relative addresses are 32
25023 bits. Absolute addresses support the full address range.
25024
25025 @item -mcmodel=large
25026 @opindex mcmodel=large
25027 Generate code for the large model. There is no limitation on call
25028 distance, pc-relative addresses, or absolute addresses.
25029
25030 @item -mcpu=@var{name}
25031 @opindex mcpu
25032 Selects the type of CPU to be targeted. Currently the only supported
25033 type is @samp{tilegx}.
25034
25035 @item -m32
25036 @itemx -m64
25037 @opindex m32
25038 @opindex m64
25039 Generate code for a 32-bit or 64-bit environment. The 32-bit
25040 environment sets int, long, and pointer to 32 bits. The 64-bit
25041 environment sets int to 32 bits and long and pointer to 64 bits.
25042
25043 @item -mbig-endian
25044 @itemx -mlittle-endian
25045 @opindex mbig-endian
25046 @opindex mlittle-endian
25047 Generate code in big/little endian mode, respectively.
25048 @end table
25049
25050 @node TILEPro Options
25051 @subsection TILEPro Options
25052 @cindex TILEPro options
25053
25054 These @samp{-m} options are supported on the TILEPro:
25055
25056 @table @gcctabopt
25057 @item -mcpu=@var{name}
25058 @opindex mcpu
25059 Selects the type of CPU to be targeted. Currently the only supported
25060 type is @samp{tilepro}.
25061
25062 @item -m32
25063 @opindex m32
25064 Generate code for a 32-bit environment, which sets int, long, and
25065 pointer to 32 bits. This is the only supported behavior so the flag
25066 is essentially ignored.
25067 @end table
25068
25069 @node V850 Options
25070 @subsection V850 Options
25071 @cindex V850 Options
25072
25073 These @samp{-m} options are defined for V850 implementations:
25074
25075 @table @gcctabopt
25076 @item -mlong-calls
25077 @itemx -mno-long-calls
25078 @opindex mlong-calls
25079 @opindex mno-long-calls
25080 Treat all calls as being far away (near). If calls are assumed to be
25081 far away, the compiler always loads the function's address into a
25082 register, and calls indirect through the pointer.
25083
25084 @item -mno-ep
25085 @itemx -mep
25086 @opindex mno-ep
25087 @opindex mep
25088 Do not optimize (do optimize) basic blocks that use the same index
25089 pointer 4 or more times to copy pointer into the @code{ep} register, and
25090 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
25091 option is on by default if you optimize.
25092
25093 @item -mno-prolog-function
25094 @itemx -mprolog-function
25095 @opindex mno-prolog-function
25096 @opindex mprolog-function
25097 Do not use (do use) external functions to save and restore registers
25098 at the prologue and epilogue of a function. The external functions
25099 are slower, but use less code space if more than one function saves
25100 the same number of registers. The @option{-mprolog-function} option
25101 is on by default if you optimize.
25102
25103 @item -mspace
25104 @opindex mspace
25105 Try to make the code as small as possible. At present, this just turns
25106 on the @option{-mep} and @option{-mprolog-function} options.
25107
25108 @item -mtda=@var{n}
25109 @opindex mtda
25110 Put static or global variables whose size is @var{n} bytes or less into
25111 the tiny data area that register @code{ep} points to. The tiny data
25112 area can hold up to 256 bytes in total (128 bytes for byte references).
25113
25114 @item -msda=@var{n}
25115 @opindex msda
25116 Put static or global variables whose size is @var{n} bytes or less into
25117 the small data area that register @code{gp} points to. The small data
25118 area can hold up to 64 kilobytes.
25119
25120 @item -mzda=@var{n}
25121 @opindex mzda
25122 Put static or global variables whose size is @var{n} bytes or less into
25123 the first 32 kilobytes of memory.
25124
25125 @item -mv850
25126 @opindex mv850
25127 Specify that the target processor is the V850.
25128
25129 @item -mv850e3v5
25130 @opindex mv850e3v5
25131 Specify that the target processor is the V850E3V5. The preprocessor
25132 constant @code{__v850e3v5__} is defined if this option is used.
25133
25134 @item -mv850e2v4
25135 @opindex mv850e2v4
25136 Specify that the target processor is the V850E3V5. This is an alias for
25137 the @option{-mv850e3v5} option.
25138
25139 @item -mv850e2v3
25140 @opindex mv850e2v3
25141 Specify that the target processor is the V850E2V3. The preprocessor
25142 constant @code{__v850e2v3__} is defined if this option is used.
25143
25144 @item -mv850e2
25145 @opindex mv850e2
25146 Specify that the target processor is the V850E2. The preprocessor
25147 constant @code{__v850e2__} is defined if this option is used.
25148
25149 @item -mv850e1
25150 @opindex mv850e1
25151 Specify that the target processor is the V850E1. The preprocessor
25152 constants @code{__v850e1__} and @code{__v850e__} are defined if
25153 this option is used.
25154
25155 @item -mv850es
25156 @opindex mv850es
25157 Specify that the target processor is the V850ES. This is an alias for
25158 the @option{-mv850e1} option.
25159
25160 @item -mv850e
25161 @opindex mv850e
25162 Specify that the target processor is the V850E@. The preprocessor
25163 constant @code{__v850e__} is defined if this option is used.
25164
25165 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
25166 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
25167 are defined then a default target processor is chosen and the
25168 relevant @samp{__v850*__} preprocessor constant is defined.
25169
25170 The preprocessor constants @code{__v850} and @code{__v851__} are always
25171 defined, regardless of which processor variant is the target.
25172
25173 @item -mdisable-callt
25174 @itemx -mno-disable-callt
25175 @opindex mdisable-callt
25176 @opindex mno-disable-callt
25177 This option suppresses generation of the @code{CALLT} instruction for the
25178 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
25179 architecture.
25180
25181 This option is enabled by default when the RH850 ABI is
25182 in use (see @option{-mrh850-abi}), and disabled by default when the
25183 GCC ABI is in use. If @code{CALLT} instructions are being generated
25184 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
25185
25186 @item -mrelax
25187 @itemx -mno-relax
25188 @opindex mrelax
25189 @opindex mno-relax
25190 Pass on (or do not pass on) the @option{-mrelax} command-line option
25191 to the assembler.
25192
25193 @item -mlong-jumps
25194 @itemx -mno-long-jumps
25195 @opindex mlong-jumps
25196 @opindex mno-long-jumps
25197 Disable (or re-enable) the generation of PC-relative jump instructions.
25198
25199 @item -msoft-float
25200 @itemx -mhard-float
25201 @opindex msoft-float
25202 @opindex mhard-float
25203 Disable (or re-enable) the generation of hardware floating point
25204 instructions. This option is only significant when the target
25205 architecture is @samp{V850E2V3} or higher. If hardware floating point
25206 instructions are being generated then the C preprocessor symbol
25207 @code{__FPU_OK__} is defined, otherwise the symbol
25208 @code{__NO_FPU__} is defined.
25209
25210 @item -mloop
25211 @opindex mloop
25212 Enables the use of the e3v5 LOOP instruction. The use of this
25213 instruction is not enabled by default when the e3v5 architecture is
25214 selected because its use is still experimental.
25215
25216 @item -mrh850-abi
25217 @itemx -mghs
25218 @opindex mrh850-abi
25219 @opindex mghs
25220 Enables support for the RH850 version of the V850 ABI. This is the
25221 default. With this version of the ABI the following rules apply:
25222
25223 @itemize
25224 @item
25225 Integer sized structures and unions are returned via a memory pointer
25226 rather than a register.
25227
25228 @item
25229 Large structures and unions (more than 8 bytes in size) are passed by
25230 value.
25231
25232 @item
25233 Functions are aligned to 16-bit boundaries.
25234
25235 @item
25236 The @option{-m8byte-align} command-line option is supported.
25237
25238 @item
25239 The @option{-mdisable-callt} command-line option is enabled by
25240 default. The @option{-mno-disable-callt} command-line option is not
25241 supported.
25242 @end itemize
25243
25244 When this version of the ABI is enabled the C preprocessor symbol
25245 @code{__V850_RH850_ABI__} is defined.
25246
25247 @item -mgcc-abi
25248 @opindex mgcc-abi
25249 Enables support for the old GCC version of the V850 ABI. With this
25250 version of the ABI the following rules apply:
25251
25252 @itemize
25253 @item
25254 Integer sized structures and unions are returned in register @code{r10}.
25255
25256 @item
25257 Large structures and unions (more than 8 bytes in size) are passed by
25258 reference.
25259
25260 @item
25261 Functions are aligned to 32-bit boundaries, unless optimizing for
25262 size.
25263
25264 @item
25265 The @option{-m8byte-align} command-line option is not supported.
25266
25267 @item
25268 The @option{-mdisable-callt} command-line option is supported but not
25269 enabled by default.
25270 @end itemize
25271
25272 When this version of the ABI is enabled the C preprocessor symbol
25273 @code{__V850_GCC_ABI__} is defined.
25274
25275 @item -m8byte-align
25276 @itemx -mno-8byte-align
25277 @opindex m8byte-align
25278 @opindex mno-8byte-align
25279 Enables support for @code{double} and @code{long long} types to be
25280 aligned on 8-byte boundaries. The default is to restrict the
25281 alignment of all objects to at most 4-bytes. When
25282 @option{-m8byte-align} is in effect the C preprocessor symbol
25283 @code{__V850_8BYTE_ALIGN__} is defined.
25284
25285 @item -mbig-switch
25286 @opindex mbig-switch
25287 Generate code suitable for big switch tables. Use this option only if
25288 the assembler/linker complain about out of range branches within a switch
25289 table.
25290
25291 @item -mapp-regs
25292 @opindex mapp-regs
25293 This option causes r2 and r5 to be used in the code generated by
25294 the compiler. This setting is the default.
25295
25296 @item -mno-app-regs
25297 @opindex mno-app-regs
25298 This option causes r2 and r5 to be treated as fixed registers.
25299
25300 @end table
25301
25302 @node VAX Options
25303 @subsection VAX Options
25304 @cindex VAX options
25305
25306 These @samp{-m} options are defined for the VAX:
25307
25308 @table @gcctabopt
25309 @item -munix
25310 @opindex munix
25311 Do not output certain jump instructions (@code{aobleq} and so on)
25312 that the Unix assembler for the VAX cannot handle across long
25313 ranges.
25314
25315 @item -mgnu
25316 @opindex mgnu
25317 Do output those jump instructions, on the assumption that the
25318 GNU assembler is being used.
25319
25320 @item -mg
25321 @opindex mg
25322 Output code for G-format floating-point numbers instead of D-format.
25323 @end table
25324
25325 @node Visium Options
25326 @subsection Visium Options
25327 @cindex Visium options
25328
25329 @table @gcctabopt
25330
25331 @item -mdebug
25332 @opindex mdebug
25333 A program which performs file I/O and is destined to run on an MCM target
25334 should be linked with this option. It causes the libraries libc.a and
25335 libdebug.a to be linked. The program should be run on the target under
25336 the control of the GDB remote debugging stub.
25337
25338 @item -msim
25339 @opindex msim
25340 A program which performs file I/O and is destined to run on the simulator
25341 should be linked with option. This causes libraries libc.a and libsim.a to
25342 be linked.
25343
25344 @item -mfpu
25345 @itemx -mhard-float
25346 @opindex mfpu
25347 @opindex mhard-float
25348 Generate code containing floating-point instructions. This is the
25349 default.
25350
25351 @item -mno-fpu
25352 @itemx -msoft-float
25353 @opindex mno-fpu
25354 @opindex msoft-float
25355 Generate code containing library calls for floating-point.
25356
25357 @option{-msoft-float} changes the calling convention in the output file;
25358 therefore, it is only useful if you compile @emph{all} of a program with
25359 this option. In particular, you need to compile @file{libgcc.a}, the
25360 library that comes with GCC, with @option{-msoft-float} in order for
25361 this to work.
25362
25363 @item -mcpu=@var{cpu_type}
25364 @opindex mcpu
25365 Set the instruction set, register set, and instruction scheduling parameters
25366 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
25367 @samp{mcm}, @samp{gr5} and @samp{gr6}.
25368
25369 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
25370
25371 By default (unless configured otherwise), GCC generates code for the GR5
25372 variant of the Visium architecture.
25373
25374 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
25375 architecture. The only difference from GR5 code is that the compiler will
25376 generate block move instructions.
25377
25378 @item -mtune=@var{cpu_type}
25379 @opindex mtune
25380 Set the instruction scheduling parameters for machine type @var{cpu_type},
25381 but do not set the instruction set or register set that the option
25382 @option{-mcpu=@var{cpu_type}} would.
25383
25384 @item -msv-mode
25385 @opindex msv-mode
25386 Generate code for the supervisor mode, where there are no restrictions on
25387 the access to general registers. This is the default.
25388
25389 @item -muser-mode
25390 @opindex muser-mode
25391 Generate code for the user mode, where the access to some general registers
25392 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
25393 mode; on the GR6, only registers r29 to r31 are affected.
25394 @end table
25395
25396 @node VMS Options
25397 @subsection VMS Options
25398
25399 These @samp{-m} options are defined for the VMS implementations:
25400
25401 @table @gcctabopt
25402 @item -mvms-return-codes
25403 @opindex mvms-return-codes
25404 Return VMS condition codes from @code{main}. The default is to return POSIX-style
25405 condition (e.g.@ error) codes.
25406
25407 @item -mdebug-main=@var{prefix}
25408 @opindex mdebug-main=@var{prefix}
25409 Flag the first routine whose name starts with @var{prefix} as the main
25410 routine for the debugger.
25411
25412 @item -mmalloc64
25413 @opindex mmalloc64
25414 Default to 64-bit memory allocation routines.
25415
25416 @item -mpointer-size=@var{size}
25417 @opindex mpointer-size=@var{size}
25418 Set the default size of pointers. Possible options for @var{size} are
25419 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
25420 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
25421 The later option disables @code{pragma pointer_size}.
25422 @end table
25423
25424 @node VxWorks Options
25425 @subsection VxWorks Options
25426 @cindex VxWorks Options
25427
25428 The options in this section are defined for all VxWorks targets.
25429 Options specific to the target hardware are listed with the other
25430 options for that target.
25431
25432 @table @gcctabopt
25433 @item -mrtp
25434 @opindex mrtp
25435 GCC can generate code for both VxWorks kernels and real time processes
25436 (RTPs). This option switches from the former to the latter. It also
25437 defines the preprocessor macro @code{__RTP__}.
25438
25439 @item -non-static
25440 @opindex non-static
25441 Link an RTP executable against shared libraries rather than static
25442 libraries. The options @option{-static} and @option{-shared} can
25443 also be used for RTPs (@pxref{Link Options}); @option{-static}
25444 is the default.
25445
25446 @item -Bstatic
25447 @itemx -Bdynamic
25448 @opindex Bstatic
25449 @opindex Bdynamic
25450 These options are passed down to the linker. They are defined for
25451 compatibility with Diab.
25452
25453 @item -Xbind-lazy
25454 @opindex Xbind-lazy
25455 Enable lazy binding of function calls. This option is equivalent to
25456 @option{-Wl,-z,now} and is defined for compatibility with Diab.
25457
25458 @item -Xbind-now
25459 @opindex Xbind-now
25460 Disable lazy binding of function calls. This option is the default and
25461 is defined for compatibility with Diab.
25462 @end table
25463
25464 @node x86 Options
25465 @subsection x86 Options
25466 @cindex x86 Options
25467
25468 These @samp{-m} options are defined for the x86 family of computers.
25469
25470 @table @gcctabopt
25471
25472 @item -march=@var{cpu-type}
25473 @opindex march
25474 Generate instructions for the machine type @var{cpu-type}. In contrast to
25475 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
25476 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
25477 to generate code that may not run at all on processors other than the one
25478 indicated. Specifying @option{-march=@var{cpu-type}} implies
25479 @option{-mtune=@var{cpu-type}}.
25480
25481 The choices for @var{cpu-type} are:
25482
25483 @table @samp
25484 @item native
25485 This selects the CPU to generate code for at compilation time by determining
25486 the processor type of the compiling machine. Using @option{-march=native}
25487 enables all instruction subsets supported by the local machine (hence
25488 the result might not run on different machines). Using @option{-mtune=native}
25489 produces code optimized for the local machine under the constraints
25490 of the selected instruction set.
25491
25492 @item i386
25493 Original Intel i386 CPU@.
25494
25495 @item i486
25496 Intel i486 CPU@. (No scheduling is implemented for this chip.)
25497
25498 @item i586
25499 @itemx pentium
25500 Intel Pentium CPU with no MMX support.
25501
25502 @item lakemont
25503 Intel Lakemont MCU, based on Intel Pentium CPU.
25504
25505 @item pentium-mmx
25506 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
25507
25508 @item pentiumpro
25509 Intel Pentium Pro CPU@.
25510
25511 @item i686
25512 When used with @option{-march}, the Pentium Pro
25513 instruction set is used, so the code runs on all i686 family chips.
25514 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
25515
25516 @item pentium2
25517 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
25518 support.
25519
25520 @item pentium3
25521 @itemx pentium3m
25522 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
25523 set support.
25524
25525 @item pentium-m
25526 Intel Pentium M; low-power version of Intel Pentium III CPU
25527 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
25528
25529 @item pentium4
25530 @itemx pentium4m
25531 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
25532
25533 @item prescott
25534 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
25535 set support.
25536
25537 @item nocona
25538 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
25539 SSE2 and SSE3 instruction set support.
25540
25541 @item core2
25542 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
25543 instruction set support.
25544
25545 @item nehalem
25546 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25547 SSE4.1, SSE4.2 and POPCNT instruction set support.
25548
25549 @item westmere
25550 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25551 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
25552
25553 @item sandybridge
25554 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25555 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
25556
25557 @item ivybridge
25558 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25559 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
25560 instruction set support.
25561
25562 @item haswell
25563 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25564 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25565 BMI, BMI2 and F16C instruction set support.
25566
25567 @item broadwell
25568 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25569 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25570 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
25571
25572 @item skylake
25573 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25574 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25575 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
25576 XSAVES instruction set support.
25577
25578 @item bonnell
25579 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
25580 instruction set support.
25581
25582 @item silvermont
25583 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25584 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
25585
25586 @item knl
25587 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
25588 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25589 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
25590 AVX512CD instruction set support.
25591
25592 @item knm
25593 Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
25594 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25595 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
25596 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
25597
25598 @item skylake-avx512
25599 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
25600 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25601 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
25602 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
25603
25604 @item cannonlake
25605 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
25606 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
25607 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
25608 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
25609 AVX512IFMA, SHA, CLWB and UMIP instruction set support.
25610
25611 @item Icelake
25612 Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
25613 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
25614 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
25615 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
25616 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
25617 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
25618
25619 @item k6
25620 AMD K6 CPU with MMX instruction set support.
25621
25622 @item k6-2
25623 @itemx k6-3
25624 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
25625
25626 @item athlon
25627 @itemx athlon-tbird
25628 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
25629 support.
25630
25631 @item athlon-4
25632 @itemx athlon-xp
25633 @itemx athlon-mp
25634 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
25635 instruction set support.
25636
25637 @item k8
25638 @itemx opteron
25639 @itemx athlon64
25640 @itemx athlon-fx
25641 Processors based on the AMD K8 core with x86-64 instruction set support,
25642 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
25643 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
25644 instruction set extensions.)
25645
25646 @item k8-sse3
25647 @itemx opteron-sse3
25648 @itemx athlon64-sse3
25649 Improved versions of AMD K8 cores with SSE3 instruction set support.
25650
25651 @item amdfam10
25652 @itemx barcelona
25653 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
25654 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
25655 instruction set extensions.)
25656
25657 @item bdver1
25658 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
25659 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
25660 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
25661 @item bdver2
25662 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
25663 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
25664 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
25665 extensions.)
25666 @item bdver3
25667 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
25668 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
25669 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
25670 64-bit instruction set extensions.
25671 @item bdver4
25672 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
25673 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
25674 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
25675 SSE4.2, ABM and 64-bit instruction set extensions.
25676
25677 @item znver1
25678 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
25679 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
25680 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
25681 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
25682 instruction set extensions.
25683
25684 @item btver1
25685 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
25686 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
25687 instruction set extensions.)
25688
25689 @item btver2
25690 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
25691 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
25692 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
25693
25694 @item winchip-c6
25695 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
25696 set support.
25697
25698 @item winchip2
25699 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
25700 instruction set support.
25701
25702 @item c3
25703 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
25704 (No scheduling is implemented for this chip.)
25705
25706 @item c3-2
25707 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
25708 (No scheduling is implemented for this chip.)
25709
25710 @item c7
25711 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
25712 (No scheduling is implemented for this chip.)
25713
25714 @item samuel-2
25715 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
25716 (No scheduling is implemented for this chip.)
25717
25718 @item nehemiah
25719 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
25720 (No scheduling is implemented for this chip.)
25721
25722 @item esther
25723 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
25724 (No scheduling is implemented for this chip.)
25725
25726 @item eden-x2
25727 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
25728 (No scheduling is implemented for this chip.)
25729
25730 @item eden-x4
25731 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
25732 AVX and AVX2 instruction set support.
25733 (No scheduling is implemented for this chip.)
25734
25735 @item nano
25736 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25737 instruction set support.
25738 (No scheduling is implemented for this chip.)
25739
25740 @item nano-1000
25741 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25742 instruction set support.
25743 (No scheduling is implemented for this chip.)
25744
25745 @item nano-2000
25746 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25747 instruction set support.
25748 (No scheduling is implemented for this chip.)
25749
25750 @item nano-3000
25751 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25752 instruction set support.
25753 (No scheduling is implemented for this chip.)
25754
25755 @item nano-x2
25756 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25757 instruction set support.
25758 (No scheduling is implemented for this chip.)
25759
25760 @item nano-x4
25761 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25762 instruction set support.
25763 (No scheduling is implemented for this chip.)
25764
25765 @item geode
25766 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
25767 @end table
25768
25769 @item -mtune=@var{cpu-type}
25770 @opindex mtune
25771 Tune to @var{cpu-type} everything applicable about the generated code, except
25772 for the ABI and the set of available instructions.
25773 While picking a specific @var{cpu-type} schedules things appropriately
25774 for that particular chip, the compiler does not generate any code that
25775 cannot run on the default machine type unless you use a
25776 @option{-march=@var{cpu-type}} option.
25777 For example, if GCC is configured for i686-pc-linux-gnu
25778 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
25779 but still runs on i686 machines.
25780
25781 The choices for @var{cpu-type} are the same as for @option{-march}.
25782 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
25783
25784 @table @samp
25785 @item generic
25786 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
25787 If you know the CPU on which your code will run, then you should use
25788 the corresponding @option{-mtune} or @option{-march} option instead of
25789 @option{-mtune=generic}. But, if you do not know exactly what CPU users
25790 of your application will have, then you should use this option.
25791
25792 As new processors are deployed in the marketplace, the behavior of this
25793 option will change. Therefore, if you upgrade to a newer version of
25794 GCC, code generation controlled by this option will change to reflect
25795 the processors
25796 that are most common at the time that version of GCC is released.
25797
25798 There is no @option{-march=generic} option because @option{-march}
25799 indicates the instruction set the compiler can use, and there is no
25800 generic instruction set applicable to all processors. In contrast,
25801 @option{-mtune} indicates the processor (or, in this case, collection of
25802 processors) for which the code is optimized.
25803
25804 @item intel
25805 Produce code optimized for the most current Intel processors, which are
25806 Haswell and Silvermont for this version of GCC. If you know the CPU
25807 on which your code will run, then you should use the corresponding
25808 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
25809 But, if you want your application performs better on both Haswell and
25810 Silvermont, then you should use this option.
25811
25812 As new Intel processors are deployed in the marketplace, the behavior of
25813 this option will change. Therefore, if you upgrade to a newer version of
25814 GCC, code generation controlled by this option will change to reflect
25815 the most current Intel processors at the time that version of GCC is
25816 released.
25817
25818 There is no @option{-march=intel} option because @option{-march} indicates
25819 the instruction set the compiler can use, and there is no common
25820 instruction set applicable to all processors. In contrast,
25821 @option{-mtune} indicates the processor (or, in this case, collection of
25822 processors) for which the code is optimized.
25823 @end table
25824
25825 @item -mcpu=@var{cpu-type}
25826 @opindex mcpu
25827 A deprecated synonym for @option{-mtune}.
25828
25829 @item -mfpmath=@var{unit}
25830 @opindex mfpmath
25831 Generate floating-point arithmetic for selected unit @var{unit}. The choices
25832 for @var{unit} are:
25833
25834 @table @samp
25835 @item 387
25836 Use the standard 387 floating-point coprocessor present on the majority of chips and
25837 emulated otherwise. Code compiled with this option runs almost everywhere.
25838 The temporary results are computed in 80-bit precision instead of the precision
25839 specified by the type, resulting in slightly different results compared to most
25840 of other chips. See @option{-ffloat-store} for more detailed description.
25841
25842 This is the default choice for non-Darwin x86-32 targets.
25843
25844 @item sse
25845 Use scalar floating-point instructions present in the SSE instruction set.
25846 This instruction set is supported by Pentium III and newer chips,
25847 and in the AMD line
25848 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
25849 instruction set supports only single-precision arithmetic, thus the double and
25850 extended-precision arithmetic are still done using 387. A later version, present
25851 only in Pentium 4 and AMD x86-64 chips, supports double-precision
25852 arithmetic too.
25853
25854 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
25855 or @option{-msse2} switches to enable SSE extensions and make this option
25856 effective. For the x86-64 compiler, these extensions are enabled by default.
25857
25858 The resulting code should be considerably faster in the majority of cases and avoid
25859 the numerical instability problems of 387 code, but may break some existing
25860 code that expects temporaries to be 80 bits.
25861
25862 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
25863 and the default choice for x86-32 targets with the SSE2 instruction set
25864 when @option{-ffast-math} is enabled.
25865
25866 @item sse,387
25867 @itemx sse+387
25868 @itemx both
25869 Attempt to utilize both instruction sets at once. This effectively doubles the
25870 amount of available registers, and on chips with separate execution units for
25871 387 and SSE the execution resources too. Use this option with care, as it is
25872 still experimental, because the GCC register allocator does not model separate
25873 functional units well, resulting in unstable performance.
25874 @end table
25875
25876 @item -masm=@var{dialect}
25877 @opindex masm=@var{dialect}
25878 Output assembly instructions using selected @var{dialect}. Also affects
25879 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
25880 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
25881 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
25882 not support @samp{intel}.
25883
25884 @item -mieee-fp
25885 @itemx -mno-ieee-fp
25886 @opindex mieee-fp
25887 @opindex mno-ieee-fp
25888 Control whether or not the compiler uses IEEE floating-point
25889 comparisons. These correctly handle the case where the result of a
25890 comparison is unordered.
25891
25892 @item -m80387
25893 @item -mhard-float
25894 @opindex 80387
25895 @opindex mhard-float
25896 Generate output containing 80387 instructions for floating point.
25897
25898 @item -mno-80387
25899 @item -msoft-float
25900 @opindex no-80387
25901 @opindex msoft-float
25902 Generate output containing library calls for floating point.
25903
25904 @strong{Warning:} the requisite libraries are not part of GCC@.
25905 Normally the facilities of the machine's usual C compiler are used, but
25906 this cannot be done directly in cross-compilation. You must make your
25907 own arrangements to provide suitable library functions for
25908 cross-compilation.
25909
25910 On machines where a function returns floating-point results in the 80387
25911 register stack, some floating-point opcodes may be emitted even if
25912 @option{-msoft-float} is used.
25913
25914 @item -mno-fp-ret-in-387
25915 @opindex mno-fp-ret-in-387
25916 Do not use the FPU registers for return values of functions.
25917
25918 The usual calling convention has functions return values of types
25919 @code{float} and @code{double} in an FPU register, even if there
25920 is no FPU@. The idea is that the operating system should emulate
25921 an FPU@.
25922
25923 The option @option{-mno-fp-ret-in-387} causes such values to be returned
25924 in ordinary CPU registers instead.
25925
25926 @item -mno-fancy-math-387
25927 @opindex mno-fancy-math-387
25928 Some 387 emulators do not support the @code{sin}, @code{cos} and
25929 @code{sqrt} instructions for the 387. Specify this option to avoid
25930 generating those instructions. This option is the default on
25931 OpenBSD and NetBSD@. This option is overridden when @option{-march}
25932 indicates that the target CPU always has an FPU and so the
25933 instruction does not need emulation. These
25934 instructions are not generated unless you also use the
25935 @option{-funsafe-math-optimizations} switch.
25936
25937 @item -malign-double
25938 @itemx -mno-align-double
25939 @opindex malign-double
25940 @opindex mno-align-double
25941 Control whether GCC aligns @code{double}, @code{long double}, and
25942 @code{long long} variables on a two-word boundary or a one-word
25943 boundary. Aligning @code{double} variables on a two-word boundary
25944 produces code that runs somewhat faster on a Pentium at the
25945 expense of more memory.
25946
25947 On x86-64, @option{-malign-double} is enabled by default.
25948
25949 @strong{Warning:} if you use the @option{-malign-double} switch,
25950 structures containing the above types are aligned differently than
25951 the published application binary interface specifications for the x86-32
25952 and are not binary compatible with structures in code compiled
25953 without that switch.
25954
25955 @item -m96bit-long-double
25956 @itemx -m128bit-long-double
25957 @opindex m96bit-long-double
25958 @opindex m128bit-long-double
25959 These switches control the size of @code{long double} type. The x86-32
25960 application binary interface specifies the size to be 96 bits,
25961 so @option{-m96bit-long-double} is the default in 32-bit mode.
25962
25963 Modern architectures (Pentium and newer) prefer @code{long double}
25964 to be aligned to an 8- or 16-byte boundary. In arrays or structures
25965 conforming to the ABI, this is not possible. So specifying
25966 @option{-m128bit-long-double} aligns @code{long double}
25967 to a 16-byte boundary by padding the @code{long double} with an additional
25968 32-bit zero.
25969
25970 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
25971 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
25972
25973 Notice that neither of these options enable any extra precision over the x87
25974 standard of 80 bits for a @code{long double}.
25975
25976 @strong{Warning:} if you override the default value for your target ABI, this
25977 changes the size of
25978 structures and arrays containing @code{long double} variables,
25979 as well as modifying the function calling convention for functions taking
25980 @code{long double}. Hence they are not binary-compatible
25981 with code compiled without that switch.
25982
25983 @item -mlong-double-64
25984 @itemx -mlong-double-80
25985 @itemx -mlong-double-128
25986 @opindex mlong-double-64
25987 @opindex mlong-double-80
25988 @opindex mlong-double-128
25989 These switches control the size of @code{long double} type. A size
25990 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25991 type. This is the default for 32-bit Bionic C library. A size
25992 of 128 bits makes the @code{long double} type equivalent to the
25993 @code{__float128} type. This is the default for 64-bit Bionic C library.
25994
25995 @strong{Warning:} if you override the default value for your target ABI, this
25996 changes the size of
25997 structures and arrays containing @code{long double} variables,
25998 as well as modifying the function calling convention for functions taking
25999 @code{long double}. Hence they are not binary-compatible
26000 with code compiled without that switch.
26001
26002 @item -malign-data=@var{type}
26003 @opindex malign-data
26004 Control how GCC aligns variables. Supported values for @var{type} are
26005 @samp{compat} uses increased alignment value compatible uses GCC 4.8
26006 and earlier, @samp{abi} uses alignment value as specified by the
26007 psABI, and @samp{cacheline} uses increased alignment value to match
26008 the cache line size. @samp{compat} is the default.
26009
26010 @item -mlarge-data-threshold=@var{threshold}
26011 @opindex mlarge-data-threshold
26012 When @option{-mcmodel=medium} is specified, data objects larger than
26013 @var{threshold} are placed in the large data section. This value must be the
26014 same across all objects linked into the binary, and defaults to 65535.
26015
26016 @item -mrtd
26017 @opindex mrtd
26018 Use a different function-calling convention, in which functions that
26019 take a fixed number of arguments return with the @code{ret @var{num}}
26020 instruction, which pops their arguments while returning. This saves one
26021 instruction in the caller since there is no need to pop the arguments
26022 there.
26023
26024 You can specify that an individual function is called with this calling
26025 sequence with the function attribute @code{stdcall}. You can also
26026 override the @option{-mrtd} option by using the function attribute
26027 @code{cdecl}. @xref{Function Attributes}.
26028
26029 @strong{Warning:} this calling convention is incompatible with the one
26030 normally used on Unix, so you cannot use it if you need to call
26031 libraries compiled with the Unix compiler.
26032
26033 Also, you must provide function prototypes for all functions that
26034 take variable numbers of arguments (including @code{printf});
26035 otherwise incorrect code is generated for calls to those
26036 functions.
26037
26038 In addition, seriously incorrect code results if you call a
26039 function with too many arguments. (Normally, extra arguments are
26040 harmlessly ignored.)
26041
26042 @item -mregparm=@var{num}
26043 @opindex mregparm
26044 Control how many registers are used to pass integer arguments. By
26045 default, no registers are used to pass arguments, and at most 3
26046 registers can be used. You can control this behavior for a specific
26047 function by using the function attribute @code{regparm}.
26048 @xref{Function Attributes}.
26049
26050 @strong{Warning:} if you use this switch, and
26051 @var{num} is nonzero, then you must build all modules with the same
26052 value, including any libraries. This includes the system libraries and
26053 startup modules.
26054
26055 @item -msseregparm
26056 @opindex msseregparm
26057 Use SSE register passing conventions for float and double arguments
26058 and return values. You can control this behavior for a specific
26059 function by using the function attribute @code{sseregparm}.
26060 @xref{Function Attributes}.
26061
26062 @strong{Warning:} if you use this switch then you must build all
26063 modules with the same value, including any libraries. This includes
26064 the system libraries and startup modules.
26065
26066 @item -mvect8-ret-in-mem
26067 @opindex mvect8-ret-in-mem
26068 Return 8-byte vectors in memory instead of MMX registers. This is the
26069 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
26070 Studio compilers until version 12. Later compiler versions (starting
26071 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
26072 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
26073 you need to remain compatible with existing code produced by those
26074 previous compiler versions or older versions of GCC@.
26075
26076 @item -mpc32
26077 @itemx -mpc64
26078 @itemx -mpc80
26079 @opindex mpc32
26080 @opindex mpc64
26081 @opindex mpc80
26082
26083 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
26084 is specified, the significands of results of floating-point operations are
26085 rounded to 24 bits (single precision); @option{-mpc64} rounds the
26086 significands of results of floating-point operations to 53 bits (double
26087 precision) and @option{-mpc80} rounds the significands of results of
26088 floating-point operations to 64 bits (extended double precision), which is
26089 the default. When this option is used, floating-point operations in higher
26090 precisions are not available to the programmer without setting the FPU
26091 control word explicitly.
26092
26093 Setting the rounding of floating-point operations to less than the default
26094 80 bits can speed some programs by 2% or more. Note that some mathematical
26095 libraries assume that extended-precision (80-bit) floating-point operations
26096 are enabled by default; routines in such libraries could suffer significant
26097 loss of accuracy, typically through so-called ``catastrophic cancellation'',
26098 when this option is used to set the precision to less than extended precision.
26099
26100 @item -mstackrealign
26101 @opindex mstackrealign
26102 Realign the stack at entry. On the x86, the @option{-mstackrealign}
26103 option generates an alternate prologue and epilogue that realigns the
26104 run-time stack if necessary. This supports mixing legacy codes that keep
26105 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
26106 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
26107 applicable to individual functions.
26108
26109 @item -mpreferred-stack-boundary=@var{num}
26110 @opindex mpreferred-stack-boundary
26111 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
26112 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
26113 the default is 4 (16 bytes or 128 bits).
26114
26115 @strong{Warning:} When generating code for the x86-64 architecture with
26116 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
26117 used to keep the stack boundary aligned to 8 byte boundary. Since
26118 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
26119 intended to be used in controlled environment where stack space is
26120 important limitation. This option leads to wrong code when functions
26121 compiled with 16 byte stack alignment (such as functions from a standard
26122 library) are called with misaligned stack. In this case, SSE
26123 instructions may lead to misaligned memory access traps. In addition,
26124 variable arguments are handled incorrectly for 16 byte aligned
26125 objects (including x87 long double and __int128), leading to wrong
26126 results. You must build all modules with
26127 @option{-mpreferred-stack-boundary=3}, including any libraries. This
26128 includes the system libraries and startup modules.
26129
26130 @item -mincoming-stack-boundary=@var{num}
26131 @opindex mincoming-stack-boundary
26132 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
26133 boundary. If @option{-mincoming-stack-boundary} is not specified,
26134 the one specified by @option{-mpreferred-stack-boundary} is used.
26135
26136 On Pentium and Pentium Pro, @code{double} and @code{long double} values
26137 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
26138 suffer significant run time performance penalties. On Pentium III, the
26139 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
26140 properly if it is not 16-byte aligned.
26141
26142 To ensure proper alignment of this values on the stack, the stack boundary
26143 must be as aligned as that required by any value stored on the stack.
26144 Further, every function must be generated such that it keeps the stack
26145 aligned. Thus calling a function compiled with a higher preferred
26146 stack boundary from a function compiled with a lower preferred stack
26147 boundary most likely misaligns the stack. It is recommended that
26148 libraries that use callbacks always use the default setting.
26149
26150 This extra alignment does consume extra stack space, and generally
26151 increases code size. Code that is sensitive to stack space usage, such
26152 as embedded systems and operating system kernels, may want to reduce the
26153 preferred alignment to @option{-mpreferred-stack-boundary=2}.
26154
26155 @need 200
26156 @item -mmmx
26157 @opindex mmmx
26158 @need 200
26159 @itemx -msse
26160 @opindex msse
26161 @need 200
26162 @itemx -msse2
26163 @opindex msse2
26164 @need 200
26165 @itemx -msse3
26166 @opindex msse3
26167 @need 200
26168 @itemx -mssse3
26169 @opindex mssse3
26170 @need 200
26171 @itemx -msse4
26172 @opindex msse4
26173 @need 200
26174 @itemx -msse4a
26175 @opindex msse4a
26176 @need 200
26177 @itemx -msse4.1
26178 @opindex msse4.1
26179 @need 200
26180 @itemx -msse4.2
26181 @opindex msse4.2
26182 @need 200
26183 @itemx -mavx
26184 @opindex mavx
26185 @need 200
26186 @itemx -mavx2
26187 @opindex mavx2
26188 @need 200
26189 @itemx -mavx512f
26190 @opindex mavx512f
26191 @need 200
26192 @itemx -mavx512pf
26193 @opindex mavx512pf
26194 @need 200
26195 @itemx -mavx512er
26196 @opindex mavx512er
26197 @need 200
26198 @itemx -mavx512cd
26199 @opindex mavx512cd
26200 @need 200
26201 @itemx -mavx512vl
26202 @opindex mavx512vl
26203 @need 200
26204 @itemx -mavx512bw
26205 @opindex mavx512bw
26206 @need 200
26207 @itemx -mavx512dq
26208 @opindex mavx512dq
26209 @need 200
26210 @itemx -mavx512ifma
26211 @opindex mavx512ifma
26212 @need 200
26213 @itemx -mavx512vbmi
26214 @opindex mavx512vbmi
26215 @need 200
26216 @itemx -msha
26217 @opindex msha
26218 @need 200
26219 @itemx -maes
26220 @opindex maes
26221 @need 200
26222 @itemx -mpclmul
26223 @opindex mpclmul
26224 @need 200
26225 @itemx -mclfushopt
26226 @opindex mclfushopt
26227 @need 200
26228 @itemx -mfsgsbase
26229 @opindex mfsgsbase
26230 @need 200
26231 @itemx -mrdrnd
26232 @opindex mrdrnd
26233 @need 200
26234 @itemx -mf16c
26235 @opindex mf16c
26236 @need 200
26237 @itemx -mfma
26238 @opindex mfma
26239 @need 200
26240 @itemx -mfma4
26241 @opindex mfma4
26242 @need 200
26243 @itemx -mprefetchwt1
26244 @opindex mprefetchwt1
26245 @need 200
26246 @itemx -mxop
26247 @opindex mxop
26248 @need 200
26249 @itemx -mlwp
26250 @opindex mlwp
26251 @need 200
26252 @itemx -m3dnow
26253 @opindex m3dnow
26254 @need 200
26255 @itemx -m3dnowa
26256 @opindex m3dnowa
26257 @need 200
26258 @itemx -mpopcnt
26259 @opindex mpopcnt
26260 @need 200
26261 @itemx -mabm
26262 @opindex mabm
26263 @need 200
26264 @itemx -mbmi
26265 @opindex mbmi
26266 @need 200
26267 @itemx -mbmi2
26268 @need 200
26269 @itemx -mlzcnt
26270 @opindex mlzcnt
26271 @need 200
26272 @itemx -mfxsr
26273 @opindex mfxsr
26274 @need 200
26275 @itemx -mxsave
26276 @opindex mxsave
26277 @need 200
26278 @itemx -mxsaveopt
26279 @opindex mxsaveopt
26280 @need 200
26281 @itemx -mxsavec
26282 @opindex mxsavec
26283 @need 200
26284 @itemx -mxsaves
26285 @opindex mxsaves
26286 @need 200
26287 @itemx -mrtm
26288 @opindex mrtm
26289 @need 200
26290 @itemx -mtbm
26291 @opindex mtbm
26292 @need 200
26293 @itemx -mmpx
26294 @opindex mmpx
26295 @need 200
26296 @itemx -mmwaitx
26297 @opindex mmwaitx
26298 @need 200
26299 @itemx -mclzero
26300 @opindex mclzero
26301 @need 200
26302 @itemx -mpku
26303 @opindex mpku
26304 @need 200
26305 @itemx -mcet
26306 @opindex mcet
26307 @need 200
26308 @itemx -mavx512vbmi2
26309 @opindex mavx512vbmi2
26310 @need 200
26311 @itemx -mgfni
26312 @opindex mgfni
26313 @need 200
26314 @itemx -mvaes
26315 @opindex mvaes
26316 @need 200
26317 @itemx -mvpclmulqdq
26318 @opindex mvpclmulqdq
26319 @need 200
26320 @itemx -mavx512bitalg
26321 @opindex mavx512bitalg
26322 @need 200
26323 @itemx -mavx512vpopcntdq
26324 @opindex mavx512vpopcntdq
26325 These switches enable the use of instructions in the MMX, SSE,
26326 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
26327 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
26328 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, BMI, BMI2, VAES,
26329 FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU, IBT, SHSTK, AVX512VBMI2,
26330 GFNI, VPCLMULQDQ, AVX512BITALG, AVX512VPOPCNTDQ3DNow!@: or enhanced 3DNow!@:
26331 extended instruction sets.
26332 Each has a corresponding @option{-mno-} option to disable use of these
26333 instructions.
26334
26335 These extensions are also available as built-in functions: see
26336 @ref{x86 Built-in Functions}, for details of the functions enabled and
26337 disabled by these switches.
26338
26339 To generate SSE/SSE2 instructions automatically from floating-point
26340 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
26341
26342 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
26343 generates new AVX instructions or AVX equivalence for all SSEx instructions
26344 when needed.
26345
26346 These options enable GCC to use these extended instructions in
26347 generated code, even without @option{-mfpmath=sse}. Applications that
26348 perform run-time CPU detection must compile separate files for each
26349 supported architecture, using the appropriate flags. In particular,
26350 the file containing the CPU detection code should be compiled without
26351 these options.
26352
26353 The @option{-mcet} option turns on the @option{-mibt} and @option{-mshstk}
26354 options. The @option{-mibt} option enables indirect branch tracking support
26355 and the @option{-mshstk} option enables shadow stack support from
26356 Intel Control-flow Enforcement Technology (CET). The compiler also provides
26357 a number of built-in functions for fine-grained control in a CET-based
26358 application. See @xref{x86 Built-in Functions}, for more information.
26359
26360 @item -mdump-tune-features
26361 @opindex mdump-tune-features
26362 This option instructs GCC to dump the names of the x86 performance
26363 tuning features and default settings. The names can be used in
26364 @option{-mtune-ctrl=@var{feature-list}}.
26365
26366 @item -mtune-ctrl=@var{feature-list}
26367 @opindex mtune-ctrl=@var{feature-list}
26368 This option is used to do fine grain control of x86 code generation features.
26369 @var{feature-list} is a comma separated list of @var{feature} names. See also
26370 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
26371 on if it is not preceded with @samp{^}, otherwise, it is turned off.
26372 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
26373 developers. Using it may lead to code paths not covered by testing and can
26374 potentially result in compiler ICEs or runtime errors.
26375
26376 @item -mno-default
26377 @opindex mno-default
26378 This option instructs GCC to turn off all tunable features. See also
26379 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
26380
26381 @item -mcld
26382 @opindex mcld
26383 This option instructs GCC to emit a @code{cld} instruction in the prologue
26384 of functions that use string instructions. String instructions depend on
26385 the DF flag to select between autoincrement or autodecrement mode. While the
26386 ABI specifies the DF flag to be cleared on function entry, some operating
26387 systems violate this specification by not clearing the DF flag in their
26388 exception dispatchers. The exception handler can be invoked with the DF flag
26389 set, which leads to wrong direction mode when string instructions are used.
26390 This option can be enabled by default on 32-bit x86 targets by configuring
26391 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
26392 instructions can be suppressed with the @option{-mno-cld} compiler option
26393 in this case.
26394
26395 @item -mvzeroupper
26396 @opindex mvzeroupper
26397 This option instructs GCC to emit a @code{vzeroupper} instruction
26398 before a transfer of control flow out of the function to minimize
26399 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
26400 intrinsics.
26401
26402 @item -mprefer-avx128
26403 @opindex mprefer-avx128
26404 This option instructs GCC to use 128-bit AVX instructions instead of
26405 256-bit AVX instructions in the auto-vectorizer.
26406
26407 @item -mprefer-vector-width=@var{opt}
26408 @opindex mprefer-vector-width
26409 This option instructs GCC to use @var{opt}-bit vector width in instructions
26410 instead of default on the selected platform.
26411
26412 @table @samp
26413 @item none
26414 No extra limitations applied to GCC other than defined by the selected platform.
26415
26416 @item 128
26417 Prefer 128-bit vector width for instructions.
26418
26419 @item 256
26420 Prefer 256-bit vector width for instructions.
26421
26422 @item 512
26423 Prefer 512-bit vector width for instructions.
26424 @end table
26425
26426 @item -mcx16
26427 @opindex mcx16
26428 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
26429 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
26430 objects. This is useful for atomic updates of data structures exceeding one
26431 machine word in size. The compiler uses this instruction to implement
26432 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
26433 128-bit integers, a library call is always used.
26434
26435 @item -msahf
26436 @opindex msahf
26437 This option enables generation of @code{SAHF} instructions in 64-bit code.
26438 Early Intel Pentium 4 CPUs with Intel 64 support,
26439 prior to the introduction of Pentium 4 G1 step in December 2005,
26440 lacked the @code{LAHF} and @code{SAHF} instructions
26441 which are supported by AMD64.
26442 These are load and store instructions, respectively, for certain status flags.
26443 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
26444 @code{drem}, and @code{remainder} built-in functions;
26445 see @ref{Other Builtins} for details.
26446
26447 @item -mmovbe
26448 @opindex mmovbe
26449 This option enables use of the @code{movbe} instruction to implement
26450 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
26451
26452 @item -mibt
26453 @opindex mibt
26454 This option tells the compiler to use indirect branch tracking support
26455 (for indirect calls and jumps) from x86 Control-flow Enforcement
26456 Technology (CET). The option has effect only if the
26457 @option{-fcf-protection=full} or @option{-fcf-protection=branch} option
26458 is specified. The option @option{-mibt} is on by default when the
26459 @code{-mcet} option is specified.
26460
26461 @item -mshstk
26462 @opindex mshstk
26463 This option tells the compiler to use shadow stack support (return
26464 address tracking) from x86 Control-flow Enforcement Technology (CET).
26465 The option has effect only if the @option{-fcf-protection=full} or
26466 @option{-fcf-protection=return} option is specified. The option
26467 @option{-mshstk} is on by default when the @option{-mcet} option is
26468 specified.
26469
26470 @item -mcrc32
26471 @opindex mcrc32
26472 This option enables built-in functions @code{__builtin_ia32_crc32qi},
26473 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
26474 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
26475
26476 @item -mrecip
26477 @opindex mrecip
26478 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
26479 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
26480 with an additional Newton-Raphson step
26481 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
26482 (and their vectorized
26483 variants) for single-precision floating-point arguments. These instructions
26484 are generated only when @option{-funsafe-math-optimizations} is enabled
26485 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
26486 Note that while the throughput of the sequence is higher than the throughput
26487 of the non-reciprocal instruction, the precision of the sequence can be
26488 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
26489
26490 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
26491 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
26492 combination), and doesn't need @option{-mrecip}.
26493
26494 Also note that GCC emits the above sequence with additional Newton-Raphson step
26495 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
26496 already with @option{-ffast-math} (or the above option combination), and
26497 doesn't need @option{-mrecip}.
26498
26499 @item -mrecip=@var{opt}
26500 @opindex mrecip=opt
26501 This option controls which reciprocal estimate instructions
26502 may be used. @var{opt} is a comma-separated list of options, which may
26503 be preceded by a @samp{!} to invert the option:
26504
26505 @table @samp
26506 @item all
26507 Enable all estimate instructions.
26508
26509 @item default
26510 Enable the default instructions, equivalent to @option{-mrecip}.
26511
26512 @item none
26513 Disable all estimate instructions, equivalent to @option{-mno-recip}.
26514
26515 @item div
26516 Enable the approximation for scalar division.
26517
26518 @item vec-div
26519 Enable the approximation for vectorized division.
26520
26521 @item sqrt
26522 Enable the approximation for scalar square root.
26523
26524 @item vec-sqrt
26525 Enable the approximation for vectorized square root.
26526 @end table
26527
26528 So, for example, @option{-mrecip=all,!sqrt} enables
26529 all of the reciprocal approximations, except for square root.
26530
26531 @item -mveclibabi=@var{type}
26532 @opindex mveclibabi
26533 Specifies the ABI type to use for vectorizing intrinsics using an
26534 external library. Supported values for @var{type} are @samp{svml}
26535 for the Intel short
26536 vector math library and @samp{acml} for the AMD math core library.
26537 To use this option, both @option{-ftree-vectorize} and
26538 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
26539 ABI-compatible library must be specified at link time.
26540
26541 GCC currently emits calls to @code{vmldExp2},
26542 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
26543 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
26544 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
26545 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
26546 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
26547 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
26548 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
26549 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
26550 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
26551 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
26552 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
26553 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
26554 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
26555 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
26556 when @option{-mveclibabi=acml} is used.
26557
26558 @item -mabi=@var{name}
26559 @opindex mabi
26560 Generate code for the specified calling convention. Permissible values
26561 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
26562 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
26563 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
26564 You can control this behavior for specific functions by
26565 using the function attributes @code{ms_abi} and @code{sysv_abi}.
26566 @xref{Function Attributes}.
26567
26568 @item -mforce-indirect-call
26569 @opindex mforce-indirect-call
26570 Force all calls to functions to be indirect. This is useful
26571 when using Intel Processor Trace where it generates more precise timing
26572 information for function calls.
26573
26574 @item -mcall-ms2sysv-xlogues
26575 @opindex mcall-ms2sysv-xlogues
26576 @opindex mno-call-ms2sysv-xlogues
26577 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
26578 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
26579 default, the code for saving and restoring these registers is emitted inline,
26580 resulting in fairly lengthy prologues and epilogues. Using
26581 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
26582 use stubs in the static portion of libgcc to perform these saves and restores,
26583 thus reducing function size at the cost of a few extra instructions.
26584
26585 @item -mtls-dialect=@var{type}
26586 @opindex mtls-dialect
26587 Generate code to access thread-local storage using the @samp{gnu} or
26588 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
26589 @samp{gnu2} is more efficient, but it may add compile- and run-time
26590 requirements that cannot be satisfied on all systems.
26591
26592 @item -mpush-args
26593 @itemx -mno-push-args
26594 @opindex mpush-args
26595 @opindex mno-push-args
26596 Use PUSH operations to store outgoing parameters. This method is shorter
26597 and usually equally fast as method using SUB/MOV operations and is enabled
26598 by default. In some cases disabling it may improve performance because of
26599 improved scheduling and reduced dependencies.
26600
26601 @item -maccumulate-outgoing-args
26602 @opindex maccumulate-outgoing-args
26603 If enabled, the maximum amount of space required for outgoing arguments is
26604 computed in the function prologue. This is faster on most modern CPUs
26605 because of reduced dependencies, improved scheduling and reduced stack usage
26606 when the preferred stack boundary is not equal to 2. The drawback is a notable
26607 increase in code size. This switch implies @option{-mno-push-args}.
26608
26609 @item -mthreads
26610 @opindex mthreads
26611 Support thread-safe exception handling on MinGW. Programs that rely
26612 on thread-safe exception handling must compile and link all code with the
26613 @option{-mthreads} option. When compiling, @option{-mthreads} defines
26614 @option{-D_MT}; when linking, it links in a special thread helper library
26615 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
26616
26617 @item -mms-bitfields
26618 @itemx -mno-ms-bitfields
26619 @opindex mms-bitfields
26620 @opindex mno-ms-bitfields
26621
26622 Enable/disable bit-field layout compatible with the native Microsoft
26623 Windows compiler.
26624
26625 If @code{packed} is used on a structure, or if bit-fields are used,
26626 it may be that the Microsoft ABI lays out the structure differently
26627 than the way GCC normally does. Particularly when moving packed
26628 data between functions compiled with GCC and the native Microsoft compiler
26629 (either via function call or as data in a file), it may be necessary to access
26630 either format.
26631
26632 This option is enabled by default for Microsoft Windows
26633 targets. This behavior can also be controlled locally by use of variable
26634 or type attributes. For more information, see @ref{x86 Variable Attributes}
26635 and @ref{x86 Type Attributes}.
26636
26637 The Microsoft structure layout algorithm is fairly simple with the exception
26638 of the bit-field packing.
26639 The padding and alignment of members of structures and whether a bit-field
26640 can straddle a storage-unit boundary are determine by these rules:
26641
26642 @enumerate
26643 @item Structure members are stored sequentially in the order in which they are
26644 declared: the first member has the lowest memory address and the last member
26645 the highest.
26646
26647 @item Every data object has an alignment requirement. The alignment requirement
26648 for all data except structures, unions, and arrays is either the size of the
26649 object or the current packing size (specified with either the
26650 @code{aligned} attribute or the @code{pack} pragma),
26651 whichever is less. For structures, unions, and arrays,
26652 the alignment requirement is the largest alignment requirement of its members.
26653 Every object is allocated an offset so that:
26654
26655 @smallexample
26656 offset % alignment_requirement == 0
26657 @end smallexample
26658
26659 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
26660 unit if the integral types are the same size and if the next bit-field fits
26661 into the current allocation unit without crossing the boundary imposed by the
26662 common alignment requirements of the bit-fields.
26663 @end enumerate
26664
26665 MSVC interprets zero-length bit-fields in the following ways:
26666
26667 @enumerate
26668 @item If a zero-length bit-field is inserted between two bit-fields that
26669 are normally coalesced, the bit-fields are not coalesced.
26670
26671 For example:
26672
26673 @smallexample
26674 struct
26675 @{
26676 unsigned long bf_1 : 12;
26677 unsigned long : 0;
26678 unsigned long bf_2 : 12;
26679 @} t1;
26680 @end smallexample
26681
26682 @noindent
26683 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
26684 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
26685
26686 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
26687 alignment of the zero-length bit-field is greater than the member that follows it,
26688 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
26689
26690 For example:
26691
26692 @smallexample
26693 struct
26694 @{
26695 char foo : 4;
26696 short : 0;
26697 char bar;
26698 @} t2;
26699
26700 struct
26701 @{
26702 char foo : 4;
26703 short : 0;
26704 double bar;
26705 @} t3;
26706 @end smallexample
26707
26708 @noindent
26709 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
26710 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
26711 bit-field does not affect the alignment of @code{bar} or, as a result, the size
26712 of the structure.
26713
26714 Taking this into account, it is important to note the following:
26715
26716 @enumerate
26717 @item If a zero-length bit-field follows a normal bit-field, the type of the
26718 zero-length bit-field may affect the alignment of the structure as whole. For
26719 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
26720 normal bit-field, and is of type short.
26721
26722 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
26723 still affect the alignment of the structure:
26724
26725 @smallexample
26726 struct
26727 @{
26728 char foo : 6;
26729 long : 0;
26730 @} t4;
26731 @end smallexample
26732
26733 @noindent
26734 Here, @code{t4} takes up 4 bytes.
26735 @end enumerate
26736
26737 @item Zero-length bit-fields following non-bit-field members are ignored:
26738
26739 @smallexample
26740 struct
26741 @{
26742 char foo;
26743 long : 0;
26744 char bar;
26745 @} t5;
26746 @end smallexample
26747
26748 @noindent
26749 Here, @code{t5} takes up 2 bytes.
26750 @end enumerate
26751
26752
26753 @item -mno-align-stringops
26754 @opindex mno-align-stringops
26755 Do not align the destination of inlined string operations. This switch reduces
26756 code size and improves performance in case the destination is already aligned,
26757 but GCC doesn't know about it.
26758
26759 @item -minline-all-stringops
26760 @opindex minline-all-stringops
26761 By default GCC inlines string operations only when the destination is
26762 known to be aligned to least a 4-byte boundary.
26763 This enables more inlining and increases code
26764 size, but may improve performance of code that depends on fast
26765 @code{memcpy}, @code{strlen},
26766 and @code{memset} for short lengths.
26767
26768 @item -minline-stringops-dynamically
26769 @opindex minline-stringops-dynamically
26770 For string operations of unknown size, use run-time checks with
26771 inline code for small blocks and a library call for large blocks.
26772
26773 @item -mstringop-strategy=@var{alg}
26774 @opindex mstringop-strategy=@var{alg}
26775 Override the internal decision heuristic for the particular algorithm to use
26776 for inlining string operations. The allowed values for @var{alg} are:
26777
26778 @table @samp
26779 @item rep_byte
26780 @itemx rep_4byte
26781 @itemx rep_8byte
26782 Expand using i386 @code{rep} prefix of the specified size.
26783
26784 @item byte_loop
26785 @itemx loop
26786 @itemx unrolled_loop
26787 Expand into an inline loop.
26788
26789 @item libcall
26790 Always use a library call.
26791 @end table
26792
26793 @item -mmemcpy-strategy=@var{strategy}
26794 @opindex mmemcpy-strategy=@var{strategy}
26795 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
26796 should be inlined and what inline algorithm to use when the expected size
26797 of the copy operation is known. @var{strategy}
26798 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
26799 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
26800 the max byte size with which inline algorithm @var{alg} is allowed. For the last
26801 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
26802 in the list must be specified in increasing order. The minimal byte size for
26803 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
26804 preceding range.
26805
26806 @item -mmemset-strategy=@var{strategy}
26807 @opindex mmemset-strategy=@var{strategy}
26808 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
26809 @code{__builtin_memset} expansion.
26810
26811 @item -momit-leaf-frame-pointer
26812 @opindex momit-leaf-frame-pointer
26813 Don't keep the frame pointer in a register for leaf functions. This
26814 avoids the instructions to save, set up, and restore frame pointers and
26815 makes an extra register available in leaf functions. The option
26816 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
26817 which might make debugging harder.
26818
26819 @item -mtls-direct-seg-refs
26820 @itemx -mno-tls-direct-seg-refs
26821 @opindex mtls-direct-seg-refs
26822 Controls whether TLS variables may be accessed with offsets from the
26823 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
26824 or whether the thread base pointer must be added. Whether or not this
26825 is valid depends on the operating system, and whether it maps the
26826 segment to cover the entire TLS area.
26827
26828 For systems that use the GNU C Library, the default is on.
26829
26830 @item -msse2avx
26831 @itemx -mno-sse2avx
26832 @opindex msse2avx
26833 Specify that the assembler should encode SSE instructions with VEX
26834 prefix. The option @option{-mavx} turns this on by default.
26835
26836 @item -mfentry
26837 @itemx -mno-fentry
26838 @opindex mfentry
26839 If profiling is active (@option{-pg}), put the profiling
26840 counter call before the prologue.
26841 Note: On x86 architectures the attribute @code{ms_hook_prologue}
26842 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
26843
26844 @item -mrecord-mcount
26845 @itemx -mno-record-mcount
26846 @opindex mrecord-mcount
26847 If profiling is active (@option{-pg}), generate a __mcount_loc section
26848 that contains pointers to each profiling call. This is useful for
26849 automatically patching and out calls.
26850
26851 @item -mnop-mcount
26852 @itemx -mno-nop-mcount
26853 @opindex mnop-mcount
26854 If profiling is active (@option{-pg}), generate the calls to
26855 the profiling functions as NOPs. This is useful when they
26856 should be patched in later dynamically. This is likely only
26857 useful together with @option{-mrecord-mcount}.
26858
26859 @item -mskip-rax-setup
26860 @itemx -mno-skip-rax-setup
26861 @opindex mskip-rax-setup
26862 When generating code for the x86-64 architecture with SSE extensions
26863 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
26864 register when there are no variable arguments passed in vector registers.
26865
26866 @strong{Warning:} Since RAX register is used to avoid unnecessarily
26867 saving vector registers on stack when passing variable arguments, the
26868 impacts of this option are callees may waste some stack space,
26869 misbehave or jump to a random location. GCC 4.4 or newer don't have
26870 those issues, regardless the RAX register value.
26871
26872 @item -m8bit-idiv
26873 @itemx -mno-8bit-idiv
26874 @opindex m8bit-idiv
26875 On some processors, like Intel Atom, 8-bit unsigned integer divide is
26876 much faster than 32-bit/64-bit integer divide. This option generates a
26877 run-time check. If both dividend and divisor are within range of 0
26878 to 255, 8-bit unsigned integer divide is used instead of
26879 32-bit/64-bit integer divide.
26880
26881 @item -mavx256-split-unaligned-load
26882 @itemx -mavx256-split-unaligned-store
26883 @opindex mavx256-split-unaligned-load
26884 @opindex mavx256-split-unaligned-store
26885 Split 32-byte AVX unaligned load and store.
26886
26887 @item -mstack-protector-guard=@var{guard}
26888 @itemx -mstack-protector-guard-reg=@var{reg}
26889 @itemx -mstack-protector-guard-offset=@var{offset}
26890 @opindex mstack-protector-guard
26891 @opindex mstack-protector-guard-reg
26892 @opindex mstack-protector-guard-offset
26893 Generate stack protection code using canary at @var{guard}. Supported
26894 locations are @samp{global} for global canary or @samp{tls} for per-thread
26895 canary in the TLS block (the default). This option has effect only when
26896 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
26897
26898 With the latter choice the options
26899 @option{-mstack-protector-guard-reg=@var{reg}} and
26900 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
26901 which segment register (@code{%fs} or @code{%gs}) to use as base register
26902 for reading the canary, and from what offset from that base register.
26903 The default for those is as specified in the relevant ABI.
26904
26905 @item -mmitigate-rop
26906 @opindex mmitigate-rop
26907 Try to avoid generating code sequences that contain unintended return
26908 opcodes, to mitigate against certain forms of attack. At the moment,
26909 this option is limited in what it can do and should not be relied
26910 on to provide serious protection.
26911
26912 @item -mgeneral-regs-only
26913 @opindex mgeneral-regs-only
26914 Generate code that uses only the general-purpose registers. This
26915 prevents the compiler from using floating-point, vector, mask and bound
26916 registers.
26917
26918 @item -mindirect-branch=@var{choice}
26919 @opindex -mindirect-branch
26920 Convert indirect call and jump with @var{choice}. The default is
26921 @samp{keep}, which keeps indirect call and jump unmodified.
26922 @samp{thunk} converts indirect call and jump to call and return thunk.
26923 @samp{thunk-inline} converts indirect call and jump to inlined call
26924 and return thunk. @samp{thunk-extern} converts indirect call and jump
26925 to external call and return thunk provided in a separate object file.
26926 You can control this behavior for a specific function by using the
26927 function attribute @code{indirect_branch}. @xref{Function Attributes}.
26928
26929 Note that @option{-mcmodel=large} is incompatible with
26930 @option{-mindirect-branch=thunk} nor
26931 @option{-mindirect-branch=thunk-extern} since the thunk function may
26932 not be reachable in large code model.
26933
26934 @item -mfunction-return=@var{choice}
26935 @opindex -mfunction-return
26936 Convert function return with @var{choice}. The default is @samp{keep},
26937 which keeps function return unmodified. @samp{thunk} converts function
26938 return to call and return thunk. @samp{thunk-inline} converts function
26939 return to inlined call and return thunk. @samp{thunk-extern} converts
26940 function return to external call and return thunk provided in a separate
26941 object file. You can control this behavior for a specific function by
26942 using the function attribute @code{function_return}.
26943 @xref{Function Attributes}.
26944
26945 Note that @option{-mcmodel=large} is incompatible with
26946 @option{-mfunction-return=thunk} nor
26947 @option{-mfunction-return=thunk-extern} since the thunk function may
26948 not be reachable in large code model.
26949
26950
26951 @item -mindirect-branch-register
26952 @opindex -mindirect-branch-register
26953 Force indirect call and jump via register.
26954
26955 @end table
26956
26957 These @samp{-m} switches are supported in addition to the above
26958 on x86-64 processors in 64-bit environments.
26959
26960 @table @gcctabopt
26961 @item -m32
26962 @itemx -m64
26963 @itemx -mx32
26964 @itemx -m16
26965 @itemx -miamcu
26966 @opindex m32
26967 @opindex m64
26968 @opindex mx32
26969 @opindex m16
26970 @opindex miamcu
26971 Generate code for a 16-bit, 32-bit or 64-bit environment.
26972 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
26973 to 32 bits, and
26974 generates code that runs on any i386 system.
26975
26976 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
26977 types to 64 bits, and generates code for the x86-64 architecture.
26978 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
26979 and @option{-mdynamic-no-pic} options.
26980
26981 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
26982 to 32 bits, and
26983 generates code for the x86-64 architecture.
26984
26985 The @option{-m16} option is the same as @option{-m32}, except for that
26986 it outputs the @code{.code16gcc} assembly directive at the beginning of
26987 the assembly output so that the binary can run in 16-bit mode.
26988
26989 The @option{-miamcu} option generates code which conforms to Intel MCU
26990 psABI. It requires the @option{-m32} option to be turned on.
26991
26992 @item -mno-red-zone
26993 @opindex mno-red-zone
26994 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
26995 by the x86-64 ABI; it is a 128-byte area beyond the location of the
26996 stack pointer that is not modified by signal or interrupt handlers
26997 and therefore can be used for temporary data without adjusting the stack
26998 pointer. The flag @option{-mno-red-zone} disables this red zone.
26999
27000 @item -mcmodel=small
27001 @opindex mcmodel=small
27002 Generate code for the small code model: the program and its symbols must
27003 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
27004 Programs can be statically or dynamically linked. This is the default
27005 code model.
27006
27007 @item -mcmodel=kernel
27008 @opindex mcmodel=kernel
27009 Generate code for the kernel code model. The kernel runs in the
27010 negative 2 GB of the address space.
27011 This model has to be used for Linux kernel code.
27012
27013 @item -mcmodel=medium
27014 @opindex mcmodel=medium
27015 Generate code for the medium model: the program is linked in the lower 2
27016 GB of the address space. Small symbols are also placed there. Symbols
27017 with sizes larger than @option{-mlarge-data-threshold} are put into
27018 large data or BSS sections and can be located above 2GB. Programs can
27019 be statically or dynamically linked.
27020
27021 @item -mcmodel=large
27022 @opindex mcmodel=large
27023 Generate code for the large model. This model makes no assumptions
27024 about addresses and sizes of sections.
27025
27026 @item -maddress-mode=long
27027 @opindex maddress-mode=long
27028 Generate code for long address mode. This is only supported for 64-bit
27029 and x32 environments. It is the default address mode for 64-bit
27030 environments.
27031
27032 @item -maddress-mode=short
27033 @opindex maddress-mode=short
27034 Generate code for short address mode. This is only supported for 32-bit
27035 and x32 environments. It is the default address mode for 32-bit and
27036 x32 environments.
27037 @end table
27038
27039 @node x86 Windows Options
27040 @subsection x86 Windows Options
27041 @cindex x86 Windows Options
27042 @cindex Windows Options for x86
27043
27044 These additional options are available for Microsoft Windows targets:
27045
27046 @table @gcctabopt
27047 @item -mconsole
27048 @opindex mconsole
27049 This option
27050 specifies that a console application is to be generated, by
27051 instructing the linker to set the PE header subsystem type
27052 required for console applications.
27053 This option is available for Cygwin and MinGW targets and is
27054 enabled by default on those targets.
27055
27056 @item -mdll
27057 @opindex mdll
27058 This option is available for Cygwin and MinGW targets. It
27059 specifies that a DLL---a dynamic link library---is to be
27060 generated, enabling the selection of the required runtime
27061 startup object and entry point.
27062
27063 @item -mnop-fun-dllimport
27064 @opindex mnop-fun-dllimport
27065 This option is available for Cygwin and MinGW targets. It
27066 specifies that the @code{dllimport} attribute should be ignored.
27067
27068 @item -mthread
27069 @opindex mthread
27070 This option is available for MinGW targets. It specifies
27071 that MinGW-specific thread support is to be used.
27072
27073 @item -municode
27074 @opindex municode
27075 This option is available for MinGW-w64 targets. It causes
27076 the @code{UNICODE} preprocessor macro to be predefined, and
27077 chooses Unicode-capable runtime startup code.
27078
27079 @item -mwin32
27080 @opindex mwin32
27081 This option is available for Cygwin and MinGW targets. It
27082 specifies that the typical Microsoft Windows predefined macros are to
27083 be set in the pre-processor, but does not influence the choice
27084 of runtime library/startup code.
27085
27086 @item -mwindows
27087 @opindex mwindows
27088 This option is available for Cygwin and MinGW targets. It
27089 specifies that a GUI application is to be generated by
27090 instructing the linker to set the PE header subsystem type
27091 appropriately.
27092
27093 @item -fno-set-stack-executable
27094 @opindex fno-set-stack-executable
27095 This option is available for MinGW targets. It specifies that
27096 the executable flag for the stack used by nested functions isn't
27097 set. This is necessary for binaries running in kernel mode of
27098 Microsoft Windows, as there the User32 API, which is used to set executable
27099 privileges, isn't available.
27100
27101 @item -fwritable-relocated-rdata
27102 @opindex fno-writable-relocated-rdata
27103 This option is available for MinGW and Cygwin targets. It specifies
27104 that relocated-data in read-only section is put into the @code{.data}
27105 section. This is a necessary for older runtimes not supporting
27106 modification of @code{.rdata} sections for pseudo-relocation.
27107
27108 @item -mpe-aligned-commons
27109 @opindex mpe-aligned-commons
27110 This option is available for Cygwin and MinGW targets. It
27111 specifies that the GNU extension to the PE file format that
27112 permits the correct alignment of COMMON variables should be
27113 used when generating code. It is enabled by default if
27114 GCC detects that the target assembler found during configuration
27115 supports the feature.
27116 @end table
27117
27118 See also under @ref{x86 Options} for standard options.
27119
27120 @node Xstormy16 Options
27121 @subsection Xstormy16 Options
27122 @cindex Xstormy16 Options
27123
27124 These options are defined for Xstormy16:
27125
27126 @table @gcctabopt
27127 @item -msim
27128 @opindex msim
27129 Choose startup files and linker script suitable for the simulator.
27130 @end table
27131
27132 @node Xtensa Options
27133 @subsection Xtensa Options
27134 @cindex Xtensa Options
27135
27136 These options are supported for Xtensa targets:
27137
27138 @table @gcctabopt
27139 @item -mconst16
27140 @itemx -mno-const16
27141 @opindex mconst16
27142 @opindex mno-const16
27143 Enable or disable use of @code{CONST16} instructions for loading
27144 constant values. The @code{CONST16} instruction is currently not a
27145 standard option from Tensilica. When enabled, @code{CONST16}
27146 instructions are always used in place of the standard @code{L32R}
27147 instructions. The use of @code{CONST16} is enabled by default only if
27148 the @code{L32R} instruction is not available.
27149
27150 @item -mfused-madd
27151 @itemx -mno-fused-madd
27152 @opindex mfused-madd
27153 @opindex mno-fused-madd
27154 Enable or disable use of fused multiply/add and multiply/subtract
27155 instructions in the floating-point option. This has no effect if the
27156 floating-point option is not also enabled. Disabling fused multiply/add
27157 and multiply/subtract instructions forces the compiler to use separate
27158 instructions for the multiply and add/subtract operations. This may be
27159 desirable in some cases where strict IEEE 754-compliant results are
27160 required: the fused multiply add/subtract instructions do not round the
27161 intermediate result, thereby producing results with @emph{more} bits of
27162 precision than specified by the IEEE standard. Disabling fused multiply
27163 add/subtract instructions also ensures that the program output is not
27164 sensitive to the compiler's ability to combine multiply and add/subtract
27165 operations.
27166
27167 @item -mserialize-volatile
27168 @itemx -mno-serialize-volatile
27169 @opindex mserialize-volatile
27170 @opindex mno-serialize-volatile
27171 When this option is enabled, GCC inserts @code{MEMW} instructions before
27172 @code{volatile} memory references to guarantee sequential consistency.
27173 The default is @option{-mserialize-volatile}. Use
27174 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
27175
27176 @item -mforce-no-pic
27177 @opindex mforce-no-pic
27178 For targets, like GNU/Linux, where all user-mode Xtensa code must be
27179 position-independent code (PIC), this option disables PIC for compiling
27180 kernel code.
27181
27182 @item -mtext-section-literals
27183 @itemx -mno-text-section-literals
27184 @opindex mtext-section-literals
27185 @opindex mno-text-section-literals
27186 These options control the treatment of literal pools. The default is
27187 @option{-mno-text-section-literals}, which places literals in a separate
27188 section in the output file. This allows the literal pool to be placed
27189 in a data RAM/ROM, and it also allows the linker to combine literal
27190 pools from separate object files to remove redundant literals and
27191 improve code size. With @option{-mtext-section-literals}, the literals
27192 are interspersed in the text section in order to keep them as close as
27193 possible to their references. This may be necessary for large assembly
27194 files. Literals for each function are placed right before that function.
27195
27196 @item -mauto-litpools
27197 @itemx -mno-auto-litpools
27198 @opindex mauto-litpools
27199 @opindex mno-auto-litpools
27200 These options control the treatment of literal pools. The default is
27201 @option{-mno-auto-litpools}, which places literals in a separate
27202 section in the output file unless @option{-mtext-section-literals} is
27203 used. With @option{-mauto-litpools} the literals are interspersed in
27204 the text section by the assembler. Compiler does not produce explicit
27205 @code{.literal} directives and loads literals into registers with
27206 @code{MOVI} instructions instead of @code{L32R} to let the assembler
27207 do relaxation and place literals as necessary. This option allows
27208 assembler to create several literal pools per function and assemble
27209 very big functions, which may not be possible with
27210 @option{-mtext-section-literals}.
27211
27212 @item -mtarget-align
27213 @itemx -mno-target-align
27214 @opindex mtarget-align
27215 @opindex mno-target-align
27216 When this option is enabled, GCC instructs the assembler to
27217 automatically align instructions to reduce branch penalties at the
27218 expense of some code density. The assembler attempts to widen density
27219 instructions to align branch targets and the instructions following call
27220 instructions. If there are not enough preceding safe density
27221 instructions to align a target, no widening is performed. The
27222 default is @option{-mtarget-align}. These options do not affect the
27223 treatment of auto-aligned instructions like @code{LOOP}, which the
27224 assembler always aligns, either by widening density instructions or
27225 by inserting NOP instructions.
27226
27227 @item -mlongcalls
27228 @itemx -mno-longcalls
27229 @opindex mlongcalls
27230 @opindex mno-longcalls
27231 When this option is enabled, GCC instructs the assembler to translate
27232 direct calls to indirect calls unless it can determine that the target
27233 of a direct call is in the range allowed by the call instruction. This
27234 translation typically occurs for calls to functions in other source
27235 files. Specifically, the assembler translates a direct @code{CALL}
27236 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
27237 The default is @option{-mno-longcalls}. This option should be used in
27238 programs where the call target can potentially be out of range. This
27239 option is implemented in the assembler, not the compiler, so the
27240 assembly code generated by GCC still shows direct call
27241 instructions---look at the disassembled object code to see the actual
27242 instructions. Note that the assembler uses an indirect call for
27243 every cross-file call, not just those that really are out of range.
27244 @end table
27245
27246 @node zSeries Options
27247 @subsection zSeries Options
27248 @cindex zSeries options
27249
27250 These are listed under @xref{S/390 and zSeries Options}.
27251
27252
27253 @c man end
27254
27255 @node Spec Files
27256 @section Specifying Subprocesses and the Switches to Pass to Them
27257 @cindex Spec Files
27258
27259 @command{gcc} is a driver program. It performs its job by invoking a
27260 sequence of other programs to do the work of compiling, assembling and
27261 linking. GCC interprets its command-line parameters and uses these to
27262 deduce which programs it should invoke, and which command-line options
27263 it ought to place on their command lines. This behavior is controlled
27264 by @dfn{spec strings}. In most cases there is one spec string for each
27265 program that GCC can invoke, but a few programs have multiple spec
27266 strings to control their behavior. The spec strings built into GCC can
27267 be overridden by using the @option{-specs=} command-line switch to specify
27268 a spec file.
27269
27270 @dfn{Spec files} are plain-text files that are used to construct spec
27271 strings. They consist of a sequence of directives separated by blank
27272 lines. The type of directive is determined by the first non-whitespace
27273 character on the line, which can be one of the following:
27274
27275 @table @code
27276 @item %@var{command}
27277 Issues a @var{command} to the spec file processor. The commands that can
27278 appear here are:
27279
27280 @table @code
27281 @item %include <@var{file}>
27282 @cindex @code{%include}
27283 Search for @var{file} and insert its text at the current point in the
27284 specs file.
27285
27286 @item %include_noerr <@var{file}>
27287 @cindex @code{%include_noerr}
27288 Just like @samp{%include}, but do not generate an error message if the include
27289 file cannot be found.
27290
27291 @item %rename @var{old_name} @var{new_name}
27292 @cindex @code{%rename}
27293 Rename the spec string @var{old_name} to @var{new_name}.
27294
27295 @end table
27296
27297 @item *[@var{spec_name}]:
27298 This tells the compiler to create, override or delete the named spec
27299 string. All lines after this directive up to the next directive or
27300 blank line are considered to be the text for the spec string. If this
27301 results in an empty string then the spec is deleted. (Or, if the
27302 spec did not exist, then nothing happens.) Otherwise, if the spec
27303 does not currently exist a new spec is created. If the spec does
27304 exist then its contents are overridden by the text of this
27305 directive, unless the first character of that text is the @samp{+}
27306 character, in which case the text is appended to the spec.
27307
27308 @item [@var{suffix}]:
27309 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
27310 and up to the next directive or blank line are considered to make up the
27311 spec string for the indicated suffix. When the compiler encounters an
27312 input file with the named suffix, it processes the spec string in
27313 order to work out how to compile that file. For example:
27314
27315 @smallexample
27316 .ZZ:
27317 z-compile -input %i
27318 @end smallexample
27319
27320 This says that any input file whose name ends in @samp{.ZZ} should be
27321 passed to the program @samp{z-compile}, which should be invoked with the
27322 command-line switch @option{-input} and with the result of performing the
27323 @samp{%i} substitution. (See below.)
27324
27325 As an alternative to providing a spec string, the text following a
27326 suffix directive can be one of the following:
27327
27328 @table @code
27329 @item @@@var{language}
27330 This says that the suffix is an alias for a known @var{language}. This is
27331 similar to using the @option{-x} command-line switch to GCC to specify a
27332 language explicitly. For example:
27333
27334 @smallexample
27335 .ZZ:
27336 @@c++
27337 @end smallexample
27338
27339 Says that .ZZ files are, in fact, C++ source files.
27340
27341 @item #@var{name}
27342 This causes an error messages saying:
27343
27344 @smallexample
27345 @var{name} compiler not installed on this system.
27346 @end smallexample
27347 @end table
27348
27349 GCC already has an extensive list of suffixes built into it.
27350 This directive adds an entry to the end of the list of suffixes, but
27351 since the list is searched from the end backwards, it is effectively
27352 possible to override earlier entries using this technique.
27353
27354 @end table
27355
27356 GCC has the following spec strings built into it. Spec files can
27357 override these strings or create their own. Note that individual
27358 targets can also add their own spec strings to this list.
27359
27360 @smallexample
27361 asm Options to pass to the assembler
27362 asm_final Options to pass to the assembler post-processor
27363 cpp Options to pass to the C preprocessor
27364 cc1 Options to pass to the C compiler
27365 cc1plus Options to pass to the C++ compiler
27366 endfile Object files to include at the end of the link
27367 link Options to pass to the linker
27368 lib Libraries to include on the command line to the linker
27369 libgcc Decides which GCC support library to pass to the linker
27370 linker Sets the name of the linker
27371 predefines Defines to be passed to the C preprocessor
27372 signed_char Defines to pass to CPP to say whether @code{char} is signed
27373 by default
27374 startfile Object files to include at the start of the link
27375 @end smallexample
27376
27377 Here is a small example of a spec file:
27378
27379 @smallexample
27380 %rename lib old_lib
27381
27382 *lib:
27383 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
27384 @end smallexample
27385
27386 This example renames the spec called @samp{lib} to @samp{old_lib} and
27387 then overrides the previous definition of @samp{lib} with a new one.
27388 The new definition adds in some extra command-line options before
27389 including the text of the old definition.
27390
27391 @dfn{Spec strings} are a list of command-line options to be passed to their
27392 corresponding program. In addition, the spec strings can contain
27393 @samp{%}-prefixed sequences to substitute variable text or to
27394 conditionally insert text into the command line. Using these constructs
27395 it is possible to generate quite complex command lines.
27396
27397 Here is a table of all defined @samp{%}-sequences for spec
27398 strings. Note that spaces are not generated automatically around the
27399 results of expanding these sequences. Therefore you can concatenate them
27400 together or combine them with constant text in a single argument.
27401
27402 @table @code
27403 @item %%
27404 Substitute one @samp{%} into the program name or argument.
27405
27406 @item %i
27407 Substitute the name of the input file being processed.
27408
27409 @item %b
27410 Substitute the basename of the input file being processed.
27411 This is the substring up to (and not including) the last period
27412 and not including the directory.
27413
27414 @item %B
27415 This is the same as @samp{%b}, but include the file suffix (text after
27416 the last period).
27417
27418 @item %d
27419 Marks the argument containing or following the @samp{%d} as a
27420 temporary file name, so that that file is deleted if GCC exits
27421 successfully. Unlike @samp{%g}, this contributes no text to the
27422 argument.
27423
27424 @item %g@var{suffix}
27425 Substitute a file name that has suffix @var{suffix} and is chosen
27426 once per compilation, and mark the argument in the same way as
27427 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
27428 name is now chosen in a way that is hard to predict even when previously
27429 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
27430 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
27431 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
27432 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
27433 was simply substituted with a file name chosen once per compilation,
27434 without regard to any appended suffix (which was therefore treated
27435 just like ordinary text), making such attacks more likely to succeed.
27436
27437 @item %u@var{suffix}
27438 Like @samp{%g}, but generates a new temporary file name
27439 each time it appears instead of once per compilation.
27440
27441 @item %U@var{suffix}
27442 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
27443 new one if there is no such last file name. In the absence of any
27444 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
27445 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
27446 involves the generation of two distinct file names, one
27447 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
27448 simply substituted with a file name chosen for the previous @samp{%u},
27449 without regard to any appended suffix.
27450
27451 @item %j@var{suffix}
27452 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
27453 writable, and if @option{-save-temps} is not used;
27454 otherwise, substitute the name
27455 of a temporary file, just like @samp{%u}. This temporary file is not
27456 meant for communication between processes, but rather as a junk
27457 disposal mechanism.
27458
27459 @item %|@var{suffix}
27460 @itemx %m@var{suffix}
27461 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
27462 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
27463 all. These are the two most common ways to instruct a program that it
27464 should read from standard input or write to standard output. If you
27465 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
27466 construct: see for example @file{f/lang-specs.h}.
27467
27468 @item %.@var{SUFFIX}
27469 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
27470 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
27471 terminated by the next space or %.
27472
27473 @item %w
27474 Marks the argument containing or following the @samp{%w} as the
27475 designated output file of this compilation. This puts the argument
27476 into the sequence of arguments that @samp{%o} substitutes.
27477
27478 @item %o
27479 Substitutes the names of all the output files, with spaces
27480 automatically placed around them. You should write spaces
27481 around the @samp{%o} as well or the results are undefined.
27482 @samp{%o} is for use in the specs for running the linker.
27483 Input files whose names have no recognized suffix are not compiled
27484 at all, but they are included among the output files, so they are
27485 linked.
27486
27487 @item %O
27488 Substitutes the suffix for object files. Note that this is
27489 handled specially when it immediately follows @samp{%g, %u, or %U},
27490 because of the need for those to form complete file names. The
27491 handling is such that @samp{%O} is treated exactly as if it had already
27492 been substituted, except that @samp{%g, %u, and %U} do not currently
27493 support additional @var{suffix} characters following @samp{%O} as they do
27494 following, for example, @samp{.o}.
27495
27496 @item %p
27497 Substitutes the standard macro predefinitions for the
27498 current target machine. Use this when running @command{cpp}.
27499
27500 @item %P
27501 Like @samp{%p}, but puts @samp{__} before and after the name of each
27502 predefined macro, except for macros that start with @samp{__} or with
27503 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
27504 C@.
27505
27506 @item %I
27507 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
27508 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
27509 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
27510 and @option{-imultilib} as necessary.
27511
27512 @item %s
27513 Current argument is the name of a library or startup file of some sort.
27514 Search for that file in a standard list of directories and substitute
27515 the full name found. The current working directory is included in the
27516 list of directories scanned.
27517
27518 @item %T
27519 Current argument is the name of a linker script. Search for that file
27520 in the current list of directories to scan for libraries. If the file
27521 is located insert a @option{--script} option into the command line
27522 followed by the full path name found. If the file is not found then
27523 generate an error message. Note: the current working directory is not
27524 searched.
27525
27526 @item %e@var{str}
27527 Print @var{str} as an error message. @var{str} is terminated by a newline.
27528 Use this when inconsistent options are detected.
27529
27530 @item %(@var{name})
27531 Substitute the contents of spec string @var{name} at this point.
27532
27533 @item %x@{@var{option}@}
27534 Accumulate an option for @samp{%X}.
27535
27536 @item %X
27537 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
27538 spec string.
27539
27540 @item %Y
27541 Output the accumulated assembler options specified by @option{-Wa}.
27542
27543 @item %Z
27544 Output the accumulated preprocessor options specified by @option{-Wp}.
27545
27546 @item %a
27547 Process the @code{asm} spec. This is used to compute the
27548 switches to be passed to the assembler.
27549
27550 @item %A
27551 Process the @code{asm_final} spec. This is a spec string for
27552 passing switches to an assembler post-processor, if such a program is
27553 needed.
27554
27555 @item %l
27556 Process the @code{link} spec. This is the spec for computing the
27557 command line passed to the linker. Typically it makes use of the
27558 @samp{%L %G %S %D and %E} sequences.
27559
27560 @item %D
27561 Dump out a @option{-L} option for each directory that GCC believes might
27562 contain startup files. If the target supports multilibs then the
27563 current multilib directory is prepended to each of these paths.
27564
27565 @item %L
27566 Process the @code{lib} spec. This is a spec string for deciding which
27567 libraries are included on the command line to the linker.
27568
27569 @item %G
27570 Process the @code{libgcc} spec. This is a spec string for deciding
27571 which GCC support library is included on the command line to the linker.
27572
27573 @item %S
27574 Process the @code{startfile} spec. This is a spec for deciding which
27575 object files are the first ones passed to the linker. Typically
27576 this might be a file named @file{crt0.o}.
27577
27578 @item %E
27579 Process the @code{endfile} spec. This is a spec string that specifies
27580 the last object files that are passed to the linker.
27581
27582 @item %C
27583 Process the @code{cpp} spec. This is used to construct the arguments
27584 to be passed to the C preprocessor.
27585
27586 @item %1
27587 Process the @code{cc1} spec. This is used to construct the options to be
27588 passed to the actual C compiler (@command{cc1}).
27589
27590 @item %2
27591 Process the @code{cc1plus} spec. This is used to construct the options to be
27592 passed to the actual C++ compiler (@command{cc1plus}).
27593
27594 @item %*
27595 Substitute the variable part of a matched option. See below.
27596 Note that each comma in the substituted string is replaced by
27597 a single space.
27598
27599 @item %<S
27600 Remove all occurrences of @code{-S} from the command line. Note---this
27601 command is position dependent. @samp{%} commands in the spec string
27602 before this one see @code{-S}, @samp{%} commands in the spec string
27603 after this one do not.
27604
27605 @item %:@var{function}(@var{args})
27606 Call the named function @var{function}, passing it @var{args}.
27607 @var{args} is first processed as a nested spec string, then split
27608 into an argument vector in the usual fashion. The function returns
27609 a string which is processed as if it had appeared literally as part
27610 of the current spec.
27611
27612 The following built-in spec functions are provided:
27613
27614 @table @code
27615 @item @code{getenv}
27616 The @code{getenv} spec function takes two arguments: an environment
27617 variable name and a string. If the environment variable is not
27618 defined, a fatal error is issued. Otherwise, the return value is the
27619 value of the environment variable concatenated with the string. For
27620 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
27621
27622 @smallexample
27623 %:getenv(TOPDIR /include)
27624 @end smallexample
27625
27626 expands to @file{/path/to/top/include}.
27627
27628 @item @code{if-exists}
27629 The @code{if-exists} spec function takes one argument, an absolute
27630 pathname to a file. If the file exists, @code{if-exists} returns the
27631 pathname. Here is a small example of its usage:
27632
27633 @smallexample
27634 *startfile:
27635 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
27636 @end smallexample
27637
27638 @item @code{if-exists-else}
27639 The @code{if-exists-else} spec function is similar to the @code{if-exists}
27640 spec function, except that it takes two arguments. The first argument is
27641 an absolute pathname to a file. If the file exists, @code{if-exists-else}
27642 returns the pathname. If it does not exist, it returns the second argument.
27643 This way, @code{if-exists-else} can be used to select one file or another,
27644 based on the existence of the first. Here is a small example of its usage:
27645
27646 @smallexample
27647 *startfile:
27648 crt0%O%s %:if-exists(crti%O%s) \
27649 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
27650 @end smallexample
27651
27652 @item @code{replace-outfile}
27653 The @code{replace-outfile} spec function takes two arguments. It looks for the
27654 first argument in the outfiles array and replaces it with the second argument. Here
27655 is a small example of its usage:
27656
27657 @smallexample
27658 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
27659 @end smallexample
27660
27661 @item @code{remove-outfile}
27662 The @code{remove-outfile} spec function takes one argument. It looks for the
27663 first argument in the outfiles array and removes it. Here is a small example
27664 its usage:
27665
27666 @smallexample
27667 %:remove-outfile(-lm)
27668 @end smallexample
27669
27670 @item @code{pass-through-libs}
27671 The @code{pass-through-libs} spec function takes any number of arguments. It
27672 finds any @option{-l} options and any non-options ending in @file{.a} (which it
27673 assumes are the names of linker input library archive files) and returns a
27674 result containing all the found arguments each prepended by
27675 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
27676 intended to be passed to the LTO linker plugin.
27677
27678 @smallexample
27679 %:pass-through-libs(%G %L %G)
27680 @end smallexample
27681
27682 @item @code{print-asm-header}
27683 The @code{print-asm-header} function takes no arguments and simply
27684 prints a banner like:
27685
27686 @smallexample
27687 Assembler options
27688 =================
27689
27690 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
27691 @end smallexample
27692
27693 It is used to separate compiler options from assembler options
27694 in the @option{--target-help} output.
27695 @end table
27696
27697 @item %@{S@}
27698 Substitutes the @code{-S} switch, if that switch is given to GCC@.
27699 If that switch is not specified, this substitutes nothing. Note that
27700 the leading dash is omitted when specifying this option, and it is
27701 automatically inserted if the substitution is performed. Thus the spec
27702 string @samp{%@{foo@}} matches the command-line option @option{-foo}
27703 and outputs the command-line option @option{-foo}.
27704
27705 @item %W@{S@}
27706 Like %@{@code{S}@} but mark last argument supplied within as a file to be
27707 deleted on failure.
27708
27709 @item %@{S*@}
27710 Substitutes all the switches specified to GCC whose names start
27711 with @code{-S}, but which also take an argument. This is used for
27712 switches like @option{-o}, @option{-D}, @option{-I}, etc.
27713 GCC considers @option{-o foo} as being
27714 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
27715 text, including the space. Thus two arguments are generated.
27716
27717 @item %@{S*&T*@}
27718 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
27719 (the order of @code{S} and @code{T} in the spec is not significant).
27720 There can be any number of ampersand-separated variables; for each the
27721 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
27722
27723 @item %@{S:X@}
27724 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
27725
27726 @item %@{!S:X@}
27727 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
27728
27729 @item %@{S*:X@}
27730 Substitutes @code{X} if one or more switches whose names start with
27731 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
27732 once, no matter how many such switches appeared. However, if @code{%*}
27733 appears somewhere in @code{X}, then @code{X} is substituted once
27734 for each matching switch, with the @code{%*} replaced by the part of
27735 that switch matching the @code{*}.
27736
27737 If @code{%*} appears as the last part of a spec sequence then a space
27738 is added after the end of the last substitution. If there is more
27739 text in the sequence, however, then a space is not generated. This
27740 allows the @code{%*} substitution to be used as part of a larger
27741 string. For example, a spec string like this:
27742
27743 @smallexample
27744 %@{mcu=*:--script=%*/memory.ld@}
27745 @end smallexample
27746
27747 @noindent
27748 when matching an option like @option{-mcu=newchip} produces:
27749
27750 @smallexample
27751 --script=newchip/memory.ld
27752 @end smallexample
27753
27754 @item %@{.S:X@}
27755 Substitutes @code{X}, if processing a file with suffix @code{S}.
27756
27757 @item %@{!.S:X@}
27758 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
27759
27760 @item %@{,S:X@}
27761 Substitutes @code{X}, if processing a file for language @code{S}.
27762
27763 @item %@{!,S:X@}
27764 Substitutes @code{X}, if not processing a file for language @code{S}.
27765
27766 @item %@{S|P:X@}
27767 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
27768 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
27769 @code{*} sequences as well, although they have a stronger binding than
27770 the @samp{|}. If @code{%*} appears in @code{X}, all of the
27771 alternatives must be starred, and only the first matching alternative
27772 is substituted.
27773
27774 For example, a spec string like this:
27775
27776 @smallexample
27777 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
27778 @end smallexample
27779
27780 @noindent
27781 outputs the following command-line options from the following input
27782 command-line options:
27783
27784 @smallexample
27785 fred.c -foo -baz
27786 jim.d -bar -boggle
27787 -d fred.c -foo -baz -boggle
27788 -d jim.d -bar -baz -boggle
27789 @end smallexample
27790
27791 @item %@{S:X; T:Y; :D@}
27792
27793 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
27794 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
27795 be as many clauses as you need. This may be combined with @code{.},
27796 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
27797
27798
27799 @end table
27800
27801 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
27802 or similar construct can use a backslash to ignore the special meaning
27803 of the character following it, thus allowing literal matching of a
27804 character that is otherwise specially treated. For example,
27805 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
27806 @option{-std=iso9899:1999} option is given.
27807
27808 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
27809 construct may contain other nested @samp{%} constructs or spaces, or
27810 even newlines. They are processed as usual, as described above.
27811 Trailing white space in @code{X} is ignored. White space may also
27812 appear anywhere on the left side of the colon in these constructs,
27813 except between @code{.} or @code{*} and the corresponding word.
27814
27815 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
27816 handled specifically in these constructs. If another value of
27817 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
27818 @option{-W} switch is found later in the command line, the earlier
27819 switch value is ignored, except with @{@code{S}*@} where @code{S} is
27820 just one letter, which passes all matching options.
27821
27822 The character @samp{|} at the beginning of the predicate text is used to
27823 indicate that a command should be piped to the following command, but
27824 only if @option{-pipe} is specified.
27825
27826 It is built into GCC which switches take arguments and which do not.
27827 (You might think it would be useful to generalize this to allow each
27828 compiler's spec to say which switches take arguments. But this cannot
27829 be done in a consistent fashion. GCC cannot even decide which input
27830 files have been specified without knowing which switches take arguments,
27831 and it must know which input files to compile in order to tell which
27832 compilers to run).
27833
27834 GCC also knows implicitly that arguments starting in @option{-l} are to be
27835 treated as compiler output files, and passed to the linker in their
27836 proper position among the other output files.
27837
27838 @node Environment Variables
27839 @section Environment Variables Affecting GCC
27840 @cindex environment variables
27841
27842 @c man begin ENVIRONMENT
27843 This section describes several environment variables that affect how GCC
27844 operates. Some of them work by specifying directories or prefixes to use
27845 when searching for various kinds of files. Some are used to specify other
27846 aspects of the compilation environment.
27847
27848 Note that you can also specify places to search using options such as
27849 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
27850 take precedence over places specified using environment variables, which
27851 in turn take precedence over those specified by the configuration of GCC@.
27852 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
27853 GNU Compiler Collection (GCC) Internals}.
27854
27855 @table @env
27856 @item LANG
27857 @itemx LC_CTYPE
27858 @c @itemx LC_COLLATE
27859 @itemx LC_MESSAGES
27860 @c @itemx LC_MONETARY
27861 @c @itemx LC_NUMERIC
27862 @c @itemx LC_TIME
27863 @itemx LC_ALL
27864 @findex LANG
27865 @findex LC_CTYPE
27866 @c @findex LC_COLLATE
27867 @findex LC_MESSAGES
27868 @c @findex LC_MONETARY
27869 @c @findex LC_NUMERIC
27870 @c @findex LC_TIME
27871 @findex LC_ALL
27872 @cindex locale
27873 These environment variables control the way that GCC uses
27874 localization information which allows GCC to work with different
27875 national conventions. GCC inspects the locale categories
27876 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
27877 so. These locale categories can be set to any value supported by your
27878 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
27879 Kingdom encoded in UTF-8.
27880
27881 The @env{LC_CTYPE} environment variable specifies character
27882 classification. GCC uses it to determine the character boundaries in
27883 a string; this is needed for some multibyte encodings that contain quote
27884 and escape characters that are otherwise interpreted as a string
27885 end or escape.
27886
27887 The @env{LC_MESSAGES} environment variable specifies the language to
27888 use in diagnostic messages.
27889
27890 If the @env{LC_ALL} environment variable is set, it overrides the value
27891 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
27892 and @env{LC_MESSAGES} default to the value of the @env{LANG}
27893 environment variable. If none of these variables are set, GCC
27894 defaults to traditional C English behavior.
27895
27896 @item TMPDIR
27897 @findex TMPDIR
27898 If @env{TMPDIR} is set, it specifies the directory to use for temporary
27899 files. GCC uses temporary files to hold the output of one stage of
27900 compilation which is to be used as input to the next stage: for example,
27901 the output of the preprocessor, which is the input to the compiler
27902 proper.
27903
27904 @item GCC_COMPARE_DEBUG
27905 @findex GCC_COMPARE_DEBUG
27906 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
27907 @option{-fcompare-debug} to the compiler driver. See the documentation
27908 of this option for more details.
27909
27910 @item GCC_EXEC_PREFIX
27911 @findex GCC_EXEC_PREFIX
27912 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
27913 names of the subprograms executed by the compiler. No slash is added
27914 when this prefix is combined with the name of a subprogram, but you can
27915 specify a prefix that ends with a slash if you wish.
27916
27917 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
27918 an appropriate prefix to use based on the pathname it is invoked with.
27919
27920 If GCC cannot find the subprogram using the specified prefix, it
27921 tries looking in the usual places for the subprogram.
27922
27923 The default value of @env{GCC_EXEC_PREFIX} is
27924 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
27925 the installed compiler. In many cases @var{prefix} is the value
27926 of @code{prefix} when you ran the @file{configure} script.
27927
27928 Other prefixes specified with @option{-B} take precedence over this prefix.
27929
27930 This prefix is also used for finding files such as @file{crt0.o} that are
27931 used for linking.
27932
27933 In addition, the prefix is used in an unusual way in finding the
27934 directories to search for header files. For each of the standard
27935 directories whose name normally begins with @samp{/usr/local/lib/gcc}
27936 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
27937 replacing that beginning with the specified prefix to produce an
27938 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
27939 @file{foo/bar} just before it searches the standard directory
27940 @file{/usr/local/lib/bar}.
27941 If a standard directory begins with the configured
27942 @var{prefix} then the value of @var{prefix} is replaced by
27943 @env{GCC_EXEC_PREFIX} when looking for header files.
27944
27945 @item COMPILER_PATH
27946 @findex COMPILER_PATH
27947 The value of @env{COMPILER_PATH} is a colon-separated list of
27948 directories, much like @env{PATH}. GCC tries the directories thus
27949 specified when searching for subprograms, if it cannot find the
27950 subprograms using @env{GCC_EXEC_PREFIX}.
27951
27952 @item LIBRARY_PATH
27953 @findex LIBRARY_PATH
27954 The value of @env{LIBRARY_PATH} is a colon-separated list of
27955 directories, much like @env{PATH}. When configured as a native compiler,
27956 GCC tries the directories thus specified when searching for special
27957 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
27958 using GCC also uses these directories when searching for ordinary
27959 libraries for the @option{-l} option (but directories specified with
27960 @option{-L} come first).
27961
27962 @item LANG
27963 @findex LANG
27964 @cindex locale definition
27965 This variable is used to pass locale information to the compiler. One way in
27966 which this information is used is to determine the character set to be used
27967 when character literals, string literals and comments are parsed in C and C++.
27968 When the compiler is configured to allow multibyte characters,
27969 the following values for @env{LANG} are recognized:
27970
27971 @table @samp
27972 @item C-JIS
27973 Recognize JIS characters.
27974 @item C-SJIS
27975 Recognize SJIS characters.
27976 @item C-EUCJP
27977 Recognize EUCJP characters.
27978 @end table
27979
27980 If @env{LANG} is not defined, or if it has some other value, then the
27981 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
27982 recognize and translate multibyte characters.
27983 @end table
27984
27985 @noindent
27986 Some additional environment variables affect the behavior of the
27987 preprocessor.
27988
27989 @include cppenv.texi
27990
27991 @c man end
27992
27993 @node Precompiled Headers
27994 @section Using Precompiled Headers
27995 @cindex precompiled headers
27996 @cindex speed of compilation
27997
27998 Often large projects have many header files that are included in every
27999 source file. The time the compiler takes to process these header files
28000 over and over again can account for nearly all of the time required to
28001 build the project. To make builds faster, GCC allows you to
28002 @dfn{precompile} a header file.
28003
28004 To create a precompiled header file, simply compile it as you would any
28005 other file, if necessary using the @option{-x} option to make the driver
28006 treat it as a C or C++ header file. You may want to use a
28007 tool like @command{make} to keep the precompiled header up-to-date when
28008 the headers it contains change.
28009
28010 A precompiled header file is searched for when @code{#include} is
28011 seen in the compilation. As it searches for the included file
28012 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
28013 compiler looks for a precompiled header in each directory just before it
28014 looks for the include file in that directory. The name searched for is
28015 the name specified in the @code{#include} with @samp{.gch} appended. If
28016 the precompiled header file cannot be used, it is ignored.
28017
28018 For instance, if you have @code{#include "all.h"}, and you have
28019 @file{all.h.gch} in the same directory as @file{all.h}, then the
28020 precompiled header file is used if possible, and the original
28021 header is used otherwise.
28022
28023 Alternatively, you might decide to put the precompiled header file in a
28024 directory and use @option{-I} to ensure that directory is searched
28025 before (or instead of) the directory containing the original header.
28026 Then, if you want to check that the precompiled header file is always
28027 used, you can put a file of the same name as the original header in this
28028 directory containing an @code{#error} command.
28029
28030 This also works with @option{-include}. So yet another way to use
28031 precompiled headers, good for projects not designed with precompiled
28032 header files in mind, is to simply take most of the header files used by
28033 a project, include them from another header file, precompile that header
28034 file, and @option{-include} the precompiled header. If the header files
28035 have guards against multiple inclusion, they are skipped because
28036 they've already been included (in the precompiled header).
28037
28038 If you need to precompile the same header file for different
28039 languages, targets, or compiler options, you can instead make a
28040 @emph{directory} named like @file{all.h.gch}, and put each precompiled
28041 header in the directory, perhaps using @option{-o}. It doesn't matter
28042 what you call the files in the directory; every precompiled header in
28043 the directory is considered. The first precompiled header
28044 encountered in the directory that is valid for this compilation is
28045 used; they're searched in no particular order.
28046
28047 There are many other possibilities, limited only by your imagination,
28048 good sense, and the constraints of your build system.
28049
28050 A precompiled header file can be used only when these conditions apply:
28051
28052 @itemize
28053 @item
28054 Only one precompiled header can be used in a particular compilation.
28055
28056 @item
28057 A precompiled header cannot be used once the first C token is seen. You
28058 can have preprocessor directives before a precompiled header; you cannot
28059 include a precompiled header from inside another header.
28060
28061 @item
28062 The precompiled header file must be produced for the same language as
28063 the current compilation. You cannot use a C precompiled header for a C++
28064 compilation.
28065
28066 @item
28067 The precompiled header file must have been produced by the same compiler
28068 binary as the current compilation is using.
28069
28070 @item
28071 Any macros defined before the precompiled header is included must
28072 either be defined in the same way as when the precompiled header was
28073 generated, or must not affect the precompiled header, which usually
28074 means that they don't appear in the precompiled header at all.
28075
28076 The @option{-D} option is one way to define a macro before a
28077 precompiled header is included; using a @code{#define} can also do it.
28078 There are also some options that define macros implicitly, like
28079 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
28080 defined this way.
28081
28082 @item If debugging information is output when using the precompiled
28083 header, using @option{-g} or similar, the same kind of debugging information
28084 must have been output when building the precompiled header. However,
28085 a precompiled header built using @option{-g} can be used in a compilation
28086 when no debugging information is being output.
28087
28088 @item The same @option{-m} options must generally be used when building
28089 and using the precompiled header. @xref{Submodel Options},
28090 for any cases where this rule is relaxed.
28091
28092 @item Each of the following options must be the same when building and using
28093 the precompiled header:
28094
28095 @gccoptlist{-fexceptions}
28096
28097 @item
28098 Some other command-line options starting with @option{-f},
28099 @option{-p}, or @option{-O} must be defined in the same way as when
28100 the precompiled header was generated. At present, it's not clear
28101 which options are safe to change and which are not; the safest choice
28102 is to use exactly the same options when generating and using the
28103 precompiled header. The following are known to be safe:
28104
28105 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
28106 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
28107 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
28108 -pedantic-errors}
28109
28110 @end itemize
28111
28112 For all of these except the last, the compiler automatically
28113 ignores the precompiled header if the conditions aren't met. If you
28114 find an option combination that doesn't work and doesn't cause the
28115 precompiled header to be ignored, please consider filing a bug report,
28116 see @ref{Bugs}.
28117
28118 If you do use differing options when generating and using the
28119 precompiled header, the actual behavior is a mixture of the
28120 behavior for the options. For instance, if you use @option{-g} to
28121 generate the precompiled header but not when using it, you may or may
28122 not get debugging information for routines in the precompiled header.