invoke.texi (Code Gen Options): Move section up in file, before target-specific options.
[gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2016 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2016 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 @c man end
125
126 @xref{Option Index}, for an index to GCC's options.
127
128 @menu
129 * Option Summary:: Brief list of all options, without explanations.
130 * Overall Options:: Controlling the kind of output:
131 an executable, object files, assembler files,
132 or preprocessed source.
133 * Invoking G++:: Compiling C++ programs.
134 * C Dialect Options:: Controlling the variant of C language compiled.
135 * C++ Dialect Options:: Variations on C++.
136 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
137 and Objective-C++.
138 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
139 be formatted.
140 * Warning Options:: How picky should the compiler be?
141 * Debugging Options:: Symbol tables, measurements, and debugging dumps.
142 * Optimize Options:: How much optimization?
143 * Preprocessor Options:: Controlling header files and macro definitions.
144 Also, getting dependency information for Make.
145 * Assembler Options:: Passing options to the assembler.
146 * Link Options:: Specifying libraries and so on.
147 * Directory Options:: Where to find header files and libraries.
148 Where to find the compiler executable files.
149 * Code Gen Options:: Specifying conventions for function calls, data layout
150 and register usage.
151 * Submodel Options:: Specifying minor hardware or convention variations,
152 such as 68010 vs 68020.
153 * Spec Files:: How to pass switches to sub-processes.
154 * Environment Variables:: Env vars that affect GCC.
155 * Precompiled Headers:: Compiling a header once, and using it many times.
156 @end menu
157
158 @c man begin OPTIONS
159
160 @node Option Summary
161 @section Option Summary
162
163 Here is a summary of all the options, grouped by type. Explanations are
164 in the following sections.
165
166 @table @emph
167 @item Overall Options
168 @xref{Overall Options,,Options Controlling the Kind of Output}.
169 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
170 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
171 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
172 @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
173 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
174
175 @item C Language Options
176 @xref{C Dialect Options,,Options Controlling C Dialect}.
177 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
178 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
179 -fno-asm -fno-builtin -fno-builtin-@var{function} @gol
180 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
181 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness}
182 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
183 -fsigned-bitfields -fsigned-char @gol
184 -funsigned-bitfields -funsigned-char @gol
185 -trigraphs -traditional -traditional-cpp}
186
187 @item C++ Language Options
188 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
189 @gccoptlist{-fabi-version=@var{n} -fno-access-control -fcheck-new @gol
190 -fconstexpr-depth=@var{n} -ffriend-injection @gol
191 -fno-elide-constructors @gol
192 -fno-enforce-eh-specs @gol
193 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
194 -fno-implicit-templates @gol
195 -fno-implicit-inline-templates @gol
196 -fno-implement-inlines -fms-extensions @gol
197 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
198 -fno-optional-diags -fpermissive @gol
199 -fno-pretty-templates @gol
200 -frepo -fno-rtti -fsized-deallocation @gol
201 -fstats -ftemplate-backtrace-limit=@var{n} @gol
202 -ftemplate-depth=@var{n} @gol
203 -fno-threadsafe-statics -fuse-cxa-atexit @gol
204 -fno-weak -nostdinc++ @gol
205 -fvisibility-inlines-hidden @gol
206 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
207 -fvtv-counts -fvtv-debug @gol
208 -fvisibility-ms-compat @gol
209 -fext-numeric-literals @gol
210 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
211 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
212 -Wnamespaces -Wnarrowing @gol
213 -Wnoexcept -Wnon-virtual-dtor -Wreorder @gol
214 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
215 -Wno-non-template-friend -Wold-style-cast @gol
216 -Woverloaded-virtual -Wno-pmf-conversions @gol
217 -Wsign-promo -Wvirtual-inheritance}
218
219 @item Objective-C and Objective-C++ Language Options
220 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
221 Objective-C and Objective-C++ Dialects}.
222 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
223 -fgnu-runtime -fnext-runtime @gol
224 -fno-nil-receivers @gol
225 -fobjc-abi-version=@var{n} @gol
226 -fobjc-call-cxx-cdtors @gol
227 -fobjc-direct-dispatch @gol
228 -fobjc-exceptions @gol
229 -fobjc-gc @gol
230 -fobjc-nilcheck @gol
231 -fobjc-std=objc1 @gol
232 -fno-local-ivars @gol
233 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
234 -freplace-objc-classes @gol
235 -fzero-link @gol
236 -gen-decls @gol
237 -Wassign-intercept @gol
238 -Wno-protocol -Wselector @gol
239 -Wstrict-selector-match @gol
240 -Wundeclared-selector}
241
242 @item Diagnostic Message Formatting Options
243 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
244 @gccoptlist{-fmessage-length=@var{n} @gol
245 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
246 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
247 -fno-diagnostics-show-option -fno-diagnostics-show-caret}
248
249 @item Warning Options
250 @xref{Warning Options,,Options to Request or Suppress Warnings}.
251 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
252 -pedantic-errors @gol
253 -w -Wextra -Wall -Waddress -Waggregate-return @gol
254 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
255 -Wno-attributes -Wbool-compare -Wno-builtin-macro-redefined @gol
256 -Wc90-c99-compat -Wc99-c11-compat @gol
257 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
258 -Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported @gol
259 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdate-time -Wdelete-incomplete @gol
260 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
261 -Wdisabled-optimization @gol
262 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
263 -Wno-div-by-zero -Wdouble-promotion -Wduplicated-cond @gol
264 -Wempty-body -Wenum-compare -Wno-endif-labels @gol
265 -Werror -Werror=* -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
266 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
267 -Wformat-security -Wformat-signedness -Wformat-y2k -Wframe-address @gol
268 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
269 -Wignored-qualifiers -Wincompatible-pointer-types @gol
270 -Wimplicit -Wimplicit-function-declaration -Wimplicit-int @gol
271 -Winit-self -Winline -Wno-int-conversion @gol
272 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
273 -Winvalid-pch -Wlarger-than=@var{len} @gol
274 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
275 -Wmain -Wmaybe-uninitialized -Wmemset-transposed-args @gol
276 -Wmisleading-indentation -Wmissing-braces @gol
277 -Wmissing-field-initializers -Wmissing-include-dirs @gol
278 -Wno-multichar -Wnonnull -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
279 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
280 -Woverride-init-side-effects -Woverlength-strings @gol
281 -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
282 -Wparentheses -Wno-pedantic-ms-format @gol
283 -Wplacement-new -Wpointer-arith -Wno-pointer-to-int-cast @gol
284 -Wno-pragmas -Wredundant-decls -Wno-return-local-addr @gol
285 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
286 -Wshift-overflow -Wshift-overflow=@var{n} @gol
287 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
288 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
289 -Wno-scalar-storage-order @gol
290 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
291 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
292 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
293 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
294 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
295 -Wmissing-format-attribute -Wsubobject-linkage @gol
296 -Wswitch -Wswitch-default -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
297 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
298 -Wtype-limits -Wundef @gol
299 -Wuninitialized -Wunknown-pragmas -Wunsafe-loop-optimizations @gol
300 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
301 -Wunused-label -Wunused-local-typedefs -Wunused-parameter @gol
302 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
303 -Wunused-const-variable @gol
304 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
305 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
306 -Wvla -Wvolatile-register-var -Wwrite-strings @gol
307 -Wzero-as-null-pointer-constant}
308
309 @item C and Objective-C-only Warning Options
310 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
311 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
312 -Wold-style-declaration -Wold-style-definition @gol
313 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
314 -Wdeclaration-after-statement -Wpointer-sign}
315
316 @item Debugging Options
317 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
318 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
319 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
320 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
321 -fsanitize-undefined-trap-on-error @gol
322 -fcheck-pointer-bounds -fchecking -fchkp-check-incomplete-type @gol
323 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
324 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
325 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
326 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
327 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
328 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
329 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
330 -fchkp-use-wrappers @gol
331 -fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
332 -fdisable-ipa-@var{pass_name} @gol
333 -fdisable-rtl-@var{pass_name} @gol
334 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
335 -fdisable-tree-@var{pass_name} @gol
336 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
337 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
338 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
339 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
340 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
341 -fdump-passes @gol
342 -fdump-statistics @gol
343 -fdump-tree-all @gol
344 -fdump-tree-original@r{[}-@var{n}@r{]} @gol
345 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
346 -fdump-tree-cfg -fdump-tree-alias @gol
347 -fdump-tree-ch @gol
348 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
349 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
350 -fdump-tree-gimple@r{[}-raw@r{]} @gol
351 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
352 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
353 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
354 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
355 -fdump-tree-backprop@r{[}-@var{n}@r{]} @gol
356 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
357 -fdump-tree-nrv -fdump-tree-vect @gol
358 -fdump-tree-sink @gol
359 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
360 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
361 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
362 -fdump-tree-vtable-verify @gol
363 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
364 -fdump-tree-split-paths@r{[}-@var{n}@r{]} @gol
365 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
366 -fdump-final-insns=@var{file} @gol
367 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
368 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
369 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
370 -fenable-@var{kind}-@var{pass} @gol
371 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
372 -fdebug-types-section -fmem-report-wpa @gol
373 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
374 -fopt-info @gol
375 -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
376 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
377 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
378 -fstack-usage -ftest-coverage -ftime-report -fvar-tracking @gol
379 -fvar-tracking-assignments -fvar-tracking-assignments-toggle @gol
380 -g -g@var{level} -gtoggle -gcoff -gdwarf-@var{version} @gol
381 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
382 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
383 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
384 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
385 -fdebug-prefix-map=@var{old}=@var{new} @gol
386 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
387 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
388 -p -pg -print-file-name=@var{library} -print-libgcc-file-name @gol
389 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
390 -print-prog-name=@var{program} -print-search-dirs -Q @gol
391 -print-sysroot -print-sysroot-headers-suffix @gol
392 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
393
394 @item Optimization Options
395 @xref{Optimize Options,,Options that Control Optimization}.
396 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
397 -falign-jumps[=@var{n}] @gol
398 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
399 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
400 -fauto-inc-dec -fbranch-probabilities @gol
401 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
402 -fbtr-bb-exclusive -fcaller-saves @gol
403 -fcombine-stack-adjustments -fconserve-stack @gol
404 -fcompare-elim -fcprop-registers -fcrossjumping @gol
405 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
406 -fcx-limited-range @gol
407 -fdata-sections -fdce -fdelayed-branch @gol
408 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
409 -fdevirtualize-at-ltrans -fdse @gol
410 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
411 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
412 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
413 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
414 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
415 -fif-conversion2 -findirect-inlining @gol
416 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
417 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
418 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
419 -fira-algorithm=@var{algorithm} @gol
420 -fira-region=@var{region} -fira-hoist-pressure @gol
421 -fira-loop-pressure -fno-ira-share-save-slots @gol
422 -fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
423 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
424 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
425 -fkeep-static-consts -flive-range-shrinkage @gol
426 -floop-block -floop-interchange -floop-strip-mine @gol
427 -floop-unroll-and-jam -floop-nest-optimize @gol
428 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
429 -flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
430 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
431 -fmove-loop-invariants -fno-branch-count-reg @gol
432 -fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
433 -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
434 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
435 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
436 -fomit-frame-pointer -foptimize-sibling-calls @gol
437 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
438 -fprefetch-loop-arrays -fprofile-report @gol
439 -fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
440 -fprofile-generate=@var{path} @gol
441 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
442 -fprofile-reorder-functions @gol
443 -freciprocal-math -free -frename-registers -freorder-blocks @gol
444 -freorder-blocks-algorithm=@var{algorithm} @gol
445 -freorder-blocks-and-partition -freorder-functions @gol
446 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
447 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
448 -fsched-spec-load -fsched-spec-load-dangerous @gol
449 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
450 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
451 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
452 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
453 -fschedule-fusion @gol
454 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
455 -fselective-scheduling -fselective-scheduling2 @gol
456 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
457 -fsemantic-interposition -fshrink-wrap -fsignaling-nans @gol
458 -fsingle-precision-constant -fsplit-ivs-in-unroller @gol
459 -fsplit-paths @gol
460 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
461 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
462 -fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
463 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
464 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
465 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
466 -ftree-dse -ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
467 -ftree-loop-if-convert-stores -ftree-loop-im @gol
468 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
469 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
470 -ftree-loop-vectorize @gol
471 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
472 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
473 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
474 -ftree-vectorize -ftree-vrp @gol
475 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
476 -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
477 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
478 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
479 --param @var{name}=@var{value}
480 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
481
482 @item Preprocessor Options
483 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
484 @gccoptlist{-A@var{question}=@var{answer} @gol
485 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
486 -C -dD -dI -dM -dN @gol
487 -D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol
488 -idirafter @var{dir} @gol
489 -include @var{file} -imacros @var{file} @gol
490 -iprefix @var{file} -iwithprefix @var{dir} @gol
491 -iwithprefixbefore @var{dir} -isystem @var{dir} @gol
492 -imultilib @var{dir} -isysroot @var{dir} @gol
493 -M -MM -MF -MG -MP -MQ -MT -nostdinc @gol
494 -P -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
495 -remap -trigraphs -undef -U@var{macro} @gol
496 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
497
498 @item Assembler Option
499 @xref{Assembler Options,,Passing Options to the Assembler}.
500 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
501
502 @item Linker Options
503 @xref{Link Options,,Options for Linking}.
504 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
505 -nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol
506 -s -static -static-libgcc -static-libstdc++ @gol
507 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
508 -static-libmpx -static-libmpxwrappers @gol
509 -shared -shared-libgcc -symbolic @gol
510 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
511 -u @var{symbol} -z @var{keyword}}
512
513 @item Directory Options
514 @xref{Directory Options,,Options for Directory Search}.
515 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
516 -iquote@var{dir} -L@var{dir} -no-canonical-prefixes -I- @gol
517 --sysroot=@var{dir} --no-sysroot-suffix}
518
519 @item Code Generation Options
520 @xref{Code Gen Options,,Options for Code Generation Conventions}.
521 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
522 -ffixed-@var{reg} -fexceptions @gol
523 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
524 -fasynchronous-unwind-tables @gol
525 -fno-gnu-unique @gol
526 -finhibit-size-directive -finstrument-functions @gol
527 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
528 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
529 -fno-common -fno-ident @gol
530 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
531 -fno-jump-tables @gol
532 -frecord-gcc-switches @gol
533 -freg-struct-return -fshort-enums @gol
534 -fshort-double -fshort-wchar @gol
535 -fverbose-asm -fpack-struct[=@var{n}] -fstack-check @gol
536 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
537 -fno-stack-limit -fsplit-stack @gol
538 -fleading-underscore -ftls-model=@var{model} @gol
539 -fstack-reuse=@var{reuse_level} @gol
540 -ftrapv -fwrapv -fbounds-check @gol
541 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
542 -fstrict-volatile-bitfields -fsync-libcalls}
543
544 @item Machine Dependent Options
545 @xref{Submodel Options,,Hardware Models and Configurations}.
546 @c This list is ordered alphanumerically by subsection name.
547 @c Try and put the significant identifier (CPU or system) first,
548 @c so users have a clue at guessing where the ones they want will be.
549
550 @emph{AArch64 Options}
551 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
552 -mgeneral-regs-only @gol
553 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
554 -mstrict-align @gol
555 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
556 -mtls-dialect=desc -mtls-dialect=traditional @gol
557 -mtls-size=@var{size} @gol
558 -mfix-cortex-a53-835769 -mno-fix-cortex-a53-835769 @gol
559 -mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419 @gol
560 -mlow-precision-recip-sqrt -mno-low-precision-recip-sqrt@gol
561 -march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
562
563 @emph{Adapteva Epiphany Options}
564 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
565 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
566 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
567 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
568 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
569 -msplit-vecmove-early -m1reg-@var{reg}}
570
571 @emph{ARC Options}
572 @gccoptlist{-mbarrel-shifter @gol
573 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
574 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
575 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
576 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
577 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
578 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
579 -mlong-calls -mmedium-calls -msdata @gol
580 -mucb-mcount -mvolatile-cache @gol
581 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
582 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
583 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
584 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
585 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
586 -mtune=@var{cpu} -mmultcost=@var{num} @gol
587 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
588 -mdiv-rem -mcode-density}
589
590 @emph{ARM Options}
591 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
592 -mabi=@var{name} @gol
593 -mapcs-stack-check -mno-apcs-stack-check @gol
594 -mapcs-float -mno-apcs-float @gol
595 -mapcs-reentrant -mno-apcs-reentrant @gol
596 -msched-prolog -mno-sched-prolog @gol
597 -mlittle-endian -mbig-endian @gol
598 -mfloat-abi=@var{name} @gol
599 -mfp16-format=@var{name}
600 -mthumb-interwork -mno-thumb-interwork @gol
601 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
602 -mtune=@var{name} -mprint-tune-info @gol
603 -mstructure-size-boundary=@var{n} @gol
604 -mabort-on-noreturn @gol
605 -mlong-calls -mno-long-calls @gol
606 -msingle-pic-base -mno-single-pic-base @gol
607 -mpic-register=@var{reg} @gol
608 -mnop-fun-dllimport @gol
609 -mpoke-function-name @gol
610 -mthumb -marm @gol
611 -mtpcs-frame -mtpcs-leaf-frame @gol
612 -mcaller-super-interworking -mcallee-super-interworking @gol
613 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
614 -mword-relocations @gol
615 -mfix-cortex-m3-ldrd @gol
616 -munaligned-access @gol
617 -mneon-for-64bits @gol
618 -mslow-flash-data @gol
619 -masm-syntax-unified @gol
620 -mrestrict-it}
621
622 @emph{AVR Options}
623 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
624 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
625 -mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert}
626
627 @emph{Blackfin Options}
628 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
629 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
630 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
631 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
632 -mno-id-shared-library -mshared-library-id=@var{n} @gol
633 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
634 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
635 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
636 -micplb}
637
638 @emph{C6X Options}
639 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
640 -msim -msdata=@var{sdata-type}}
641
642 @emph{CRIS Options}
643 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
644 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
645 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
646 -mstack-align -mdata-align -mconst-align @gol
647 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
648 -melf -maout -melinux -mlinux -sim -sim2 @gol
649 -mmul-bug-workaround -mno-mul-bug-workaround}
650
651 @emph{CR16 Options}
652 @gccoptlist{-mmac @gol
653 -mcr16cplus -mcr16c @gol
654 -msim -mint32 -mbit-ops
655 -mdata-model=@var{model}}
656
657 @emph{Darwin Options}
658 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
659 -arch_only -bind_at_load -bundle -bundle_loader @gol
660 -client_name -compatibility_version -current_version @gol
661 -dead_strip @gol
662 -dependency-file -dylib_file -dylinker_install_name @gol
663 -dynamic -dynamiclib -exported_symbols_list @gol
664 -filelist -flat_namespace -force_cpusubtype_ALL @gol
665 -force_flat_namespace -headerpad_max_install_names @gol
666 -iframework @gol
667 -image_base -init -install_name -keep_private_externs @gol
668 -multi_module -multiply_defined -multiply_defined_unused @gol
669 -noall_load -no_dead_strip_inits_and_terms @gol
670 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
671 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
672 -private_bundle -read_only_relocs -sectalign @gol
673 -sectobjectsymbols -whyload -seg1addr @gol
674 -sectcreate -sectobjectsymbols -sectorder @gol
675 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
676 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
677 -segprot -segs_read_only_addr -segs_read_write_addr @gol
678 -single_module -static -sub_library -sub_umbrella @gol
679 -twolevel_namespace -umbrella -undefined @gol
680 -unexported_symbols_list -weak_reference_mismatches @gol
681 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
682 -mkernel -mone-byte-bool}
683
684 @emph{DEC Alpha Options}
685 @gccoptlist{-mno-fp-regs -msoft-float @gol
686 -mieee -mieee-with-inexact -mieee-conformant @gol
687 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
688 -mtrap-precision=@var{mode} -mbuild-constants @gol
689 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
690 -mbwx -mmax -mfix -mcix @gol
691 -mfloat-vax -mfloat-ieee @gol
692 -mexplicit-relocs -msmall-data -mlarge-data @gol
693 -msmall-text -mlarge-text @gol
694 -mmemory-latency=@var{time}}
695
696 @emph{FR30 Options}
697 @gccoptlist{-msmall-model -mno-lsim}
698
699 @emph{FT32 Options}
700 @gccoptlist{-msim -mlra}
701
702 @emph{FRV Options}
703 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
704 -mhard-float -msoft-float @gol
705 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
706 -mdouble -mno-double @gol
707 -mmedia -mno-media -mmuladd -mno-muladd @gol
708 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
709 -mlinked-fp -mlong-calls -malign-labels @gol
710 -mlibrary-pic -macc-4 -macc-8 @gol
711 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
712 -moptimize-membar -mno-optimize-membar @gol
713 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
714 -mvliw-branch -mno-vliw-branch @gol
715 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
716 -mno-nested-cond-exec -mtomcat-stats @gol
717 -mTLS -mtls @gol
718 -mcpu=@var{cpu}}
719
720 @emph{GNU/Linux Options}
721 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
722 -tno-android-cc -tno-android-ld}
723
724 @emph{H8/300 Options}
725 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
726
727 @emph{HPPA Options}
728 @gccoptlist{-march=@var{architecture-type} @gol
729 -mdisable-fpregs -mdisable-indexing @gol
730 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
731 -mfixed-range=@var{register-range} @gol
732 -mjump-in-delay -mlinker-opt -mlong-calls @gol
733 -mlong-load-store -mno-disable-fpregs @gol
734 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
735 -mno-jump-in-delay -mno-long-load-store @gol
736 -mno-portable-runtime -mno-soft-float @gol
737 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
738 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
739 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
740 -munix=@var{unix-std} -nolibdld -static -threads}
741
742 @emph{IA-64 Options}
743 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
744 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
745 -mconstant-gp -mauto-pic -mfused-madd @gol
746 -minline-float-divide-min-latency @gol
747 -minline-float-divide-max-throughput @gol
748 -mno-inline-float-divide @gol
749 -minline-int-divide-min-latency @gol
750 -minline-int-divide-max-throughput @gol
751 -mno-inline-int-divide @gol
752 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
753 -mno-inline-sqrt @gol
754 -mdwarf2-asm -mearly-stop-bits @gol
755 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
756 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
757 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
758 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
759 -msched-spec-ldc -msched-spec-control-ldc @gol
760 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
761 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
762 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
763 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
764
765 @emph{LM32 Options}
766 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
767 -msign-extend-enabled -muser-enabled}
768
769 @emph{M32R/D Options}
770 @gccoptlist{-m32r2 -m32rx -m32r @gol
771 -mdebug @gol
772 -malign-loops -mno-align-loops @gol
773 -missue-rate=@var{number} @gol
774 -mbranch-cost=@var{number} @gol
775 -mmodel=@var{code-size-model-type} @gol
776 -msdata=@var{sdata-type} @gol
777 -mno-flush-func -mflush-func=@var{name} @gol
778 -mno-flush-trap -mflush-trap=@var{number} @gol
779 -G @var{num}}
780
781 @emph{M32C Options}
782 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
783
784 @emph{M680x0 Options}
785 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
786 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
787 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
788 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
789 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
790 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
791 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
792 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
793 -mxgot -mno-xgot}
794
795 @emph{MCore Options}
796 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
797 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
798 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
799 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
800 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
801
802 @emph{MeP Options}
803 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
804 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
805 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
806 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
807 -mtiny=@var{n}}
808
809 @emph{MicroBlaze Options}
810 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
811 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
812 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
813 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
814 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
815
816 @emph{MIPS Options}
817 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
818 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
819 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
820 -mips16 -mno-mips16 -mflip-mips16 @gol
821 -minterlink-compressed -mno-interlink-compressed @gol
822 -minterlink-mips16 -mno-interlink-mips16 @gol
823 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
824 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
825 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
826 -mno-float -msingle-float -mdouble-float @gol
827 -modd-spreg -mno-odd-spreg @gol
828 -mabs=@var{mode} -mnan=@var{encoding} @gol
829 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
830 -mmcu -mmno-mcu @gol
831 -meva -mno-eva @gol
832 -mvirt -mno-virt @gol
833 -mxpa -mno-xpa @gol
834 -mmicromips -mno-micromips @gol
835 -mfpu=@var{fpu-type} @gol
836 -msmartmips -mno-smartmips @gol
837 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
838 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
839 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
840 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
841 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
842 -membedded-data -mno-embedded-data @gol
843 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
844 -mcode-readable=@var{setting} @gol
845 -msplit-addresses -mno-split-addresses @gol
846 -mexplicit-relocs -mno-explicit-relocs @gol
847 -mcheck-zero-division -mno-check-zero-division @gol
848 -mdivide-traps -mdivide-breaks @gol
849 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
850 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
851 -mfix-24k -mno-fix-24k @gol
852 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
853 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
854 -mfix-vr4120 -mno-fix-vr4120 @gol
855 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
856 -mflush-func=@var{func} -mno-flush-func @gol
857 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
858 -mcompact-branches=@var{policy} @gol
859 -mfp-exceptions -mno-fp-exceptions @gol
860 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
861 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
862 -mframe-header-opt -mno-frame-header-opt}
863
864 @emph{MMIX Options}
865 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
866 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
867 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
868 -mno-base-addresses -msingle-exit -mno-single-exit}
869
870 @emph{MN10300 Options}
871 @gccoptlist{-mmult-bug -mno-mult-bug @gol
872 -mno-am33 -mam33 -mam33-2 -mam34 @gol
873 -mtune=@var{cpu-type} @gol
874 -mreturn-pointer-on-d0 @gol
875 -mno-crt0 -mrelax -mliw -msetlb}
876
877 @emph{Moxie Options}
878 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
879
880 @emph{MSP430 Options}
881 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
882 -mwarn-mcu @gol
883 -mcode-region= -mdata-region= @gol
884 -msilicon-errata= -msilicon-errata-warn= @gol
885 -mhwmult= -minrt}
886
887 @emph{NDS32 Options}
888 @gccoptlist{-mbig-endian -mlittle-endian @gol
889 -mreduced-regs -mfull-regs @gol
890 -mcmov -mno-cmov @gol
891 -mperf-ext -mno-perf-ext @gol
892 -mv3push -mno-v3push @gol
893 -m16bit -mno-16bit @gol
894 -misr-vector-size=@var{num} @gol
895 -mcache-block-size=@var{num} @gol
896 -march=@var{arch} @gol
897 -mcmodel=@var{code-model} @gol
898 -mctor-dtor -mrelax}
899
900 @emph{Nios II Options}
901 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
902 -mel -meb @gol
903 -mno-bypass-cache -mbypass-cache @gol
904 -mno-cache-volatile -mcache-volatile @gol
905 -mno-fast-sw-div -mfast-sw-div @gol
906 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
907 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
908 -mcustom-fpu-cfg=@var{name} @gol
909 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
910 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
911
912 @emph{Nvidia PTX Options}
913 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
914
915 @emph{PDP-11 Options}
916 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
917 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
918 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
919 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
920 -mbranch-expensive -mbranch-cheap @gol
921 -munix-asm -mdec-asm}
922
923 @emph{picoChip Options}
924 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
925 -msymbol-as-address -mno-inefficient-warnings}
926
927 @emph{PowerPC Options}
928 See RS/6000 and PowerPC Options.
929
930 @emph{RL78 Options}
931 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
932 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
933 -m64bit-doubles -m32bit-doubles}
934
935 @emph{RS/6000 and PowerPC Options}
936 @gccoptlist{-mcpu=@var{cpu-type} @gol
937 -mtune=@var{cpu-type} @gol
938 -mcmodel=@var{code-model} @gol
939 -mpowerpc64 @gol
940 -maltivec -mno-altivec @gol
941 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
942 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
943 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
944 -mfprnd -mno-fprnd @gol
945 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
946 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
947 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
948 -malign-power -malign-natural @gol
949 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
950 -msingle-float -mdouble-float -msimple-fpu @gol
951 -mstring -mno-string -mupdate -mno-update @gol
952 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
953 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
954 -mstrict-align -mno-strict-align -mrelocatable @gol
955 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
956 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
957 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
958 -mprioritize-restricted-insns=@var{priority} @gol
959 -msched-costly-dep=@var{dependence_type} @gol
960 -minsert-sched-nops=@var{scheme} @gol
961 -mcall-sysv -mcall-netbsd @gol
962 -maix-struct-return -msvr4-struct-return @gol
963 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
964 -mblock-move-inline-limit=@var{num} @gol
965 -misel -mno-isel @gol
966 -misel=yes -misel=no @gol
967 -mspe -mno-spe @gol
968 -mspe=yes -mspe=no @gol
969 -mpaired @gol
970 -mgen-cell-microcode -mwarn-cell-microcode @gol
971 -mvrsave -mno-vrsave @gol
972 -mmulhw -mno-mulhw @gol
973 -mdlmzb -mno-dlmzb @gol
974 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
975 -mprototype -mno-prototype @gol
976 -msim -mmvme -mads -myellowknife -memb -msdata @gol
977 -msdata=@var{opt} -mvxworks -G @var{num} -pthread @gol
978 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
979 -mno-recip-precision @gol
980 -mveclibabi=@var{type} -mfriz -mno-friz @gol
981 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
982 -msave-toc-indirect -mno-save-toc-indirect @gol
983 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
984 -mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
985 -mquad-memory -mno-quad-memory @gol
986 -mquad-memory-atomic -mno-quad-memory-atomic @gol
987 -mcompat-align-parm -mno-compat-align-parm @gol
988 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
989 -mupper-regs -mno-upper-regs -mmodulo -mno-modulo @gol
990 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
991 -mpower9-fusion -mno-mpower9-fusion -mpower9-vector -mno-power9-vector}
992
993 @emph{RX Options}
994 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
995 -mcpu=@gol
996 -mbig-endian-data -mlittle-endian-data @gol
997 -msmall-data @gol
998 -msim -mno-sim@gol
999 -mas100-syntax -mno-as100-syntax@gol
1000 -mrelax@gol
1001 -mmax-constant-size=@gol
1002 -mint-register=@gol
1003 -mpid@gol
1004 -mallow-string-insns -mno-allow-string-insns@gol
1005 -mjsr@gol
1006 -mno-warn-multiple-fast-interrupts@gol
1007 -msave-acc-in-interrupts}
1008
1009 @emph{S/390 and zSeries Options}
1010 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1011 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1012 -mlong-double-64 -mlong-double-128 @gol
1013 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1014 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1015 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1016 -mhtm -mvx -mzvector @gol
1017 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1018 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1019 -mhotpatch=@var{halfwords},@var{halfwords}}
1020
1021 @emph{Score Options}
1022 @gccoptlist{-meb -mel @gol
1023 -mnhwloop @gol
1024 -muls @gol
1025 -mmac @gol
1026 -mscore5 -mscore5u -mscore7 -mscore7d}
1027
1028 @emph{SH Options}
1029 @gccoptlist{-m1 -m2 -m2e @gol
1030 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1031 -m3 -m3e @gol
1032 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1033 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1034 -mb -ml -mdalign -mrelax @gol
1035 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1036 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1037 -mspace -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1038 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1039 -maccumulate-outgoing-args @gol
1040 -matomic-model=@var{atomic-model} @gol
1041 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1042 -mcbranch-force-delay-slot @gol
1043 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1044 -mpretend-cmove -mtas}
1045
1046 @emph{Solaris 2 Options}
1047 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1048 -pthreads -pthread}
1049
1050 @emph{SPARC Options}
1051 @gccoptlist{-mcpu=@var{cpu-type} @gol
1052 -mtune=@var{cpu-type} @gol
1053 -mcmodel=@var{code-model} @gol
1054 -mmemory-model=@var{mem-model} @gol
1055 -m32 -m64 -mapp-regs -mno-app-regs @gol
1056 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1057 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1058 -mhard-quad-float -msoft-quad-float @gol
1059 -mstack-bias -mno-stack-bias @gol
1060 -mstd-struct-return -mno-std-struct-return @gol
1061 -munaligned-doubles -mno-unaligned-doubles @gol
1062 -muser-mode -mno-user-mode @gol
1063 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1064 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1065 -mcbcond -mno-cbcond @gol
1066 -mfmaf -mno-fmaf -mpopc -mno-popc @gol
1067 -mfix-at697f -mfix-ut699}
1068
1069 @emph{SPU Options}
1070 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1071 -msafe-dma -munsafe-dma @gol
1072 -mbranch-hints @gol
1073 -msmall-mem -mlarge-mem -mstdmain @gol
1074 -mfixed-range=@var{register-range} @gol
1075 -mea32 -mea64 @gol
1076 -maddress-space-conversion -mno-address-space-conversion @gol
1077 -mcache-size=@var{cache-size} @gol
1078 -matomic-updates -mno-atomic-updates}
1079
1080 @emph{System V Options}
1081 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1082
1083 @emph{TILE-Gx Options}
1084 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1085 -mcmodel=@var{code-model}}
1086
1087 @emph{TILEPro Options}
1088 @gccoptlist{-mcpu=@var{cpu} -m32}
1089
1090 @emph{V850 Options}
1091 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1092 -mprolog-function -mno-prolog-function -mspace @gol
1093 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1094 -mapp-regs -mno-app-regs @gol
1095 -mdisable-callt -mno-disable-callt @gol
1096 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1097 -mv850e -mv850 -mv850e3v5 @gol
1098 -mloop @gol
1099 -mrelax @gol
1100 -mlong-jumps @gol
1101 -msoft-float @gol
1102 -mhard-float @gol
1103 -mgcc-abi @gol
1104 -mrh850-abi @gol
1105 -mbig-switch}
1106
1107 @emph{VAX Options}
1108 @gccoptlist{-mg -mgnu -munix}
1109
1110 @emph{Visium Options}
1111 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1112 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1113
1114 @emph{VMS Options}
1115 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1116 -mpointer-size=@var{size}}
1117
1118 @emph{VxWorks Options}
1119 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1120 -Xbind-lazy -Xbind-now}
1121
1122 @emph{x86 Options}
1123 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1124 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1125 -mfpmath=@var{unit} @gol
1126 -masm=@var{dialect} -mno-fancy-math-387 @gol
1127 -mno-fp-ret-in-387 -msoft-float @gol
1128 -mno-wide-multiply -mrtd -malign-double @gol
1129 -mpreferred-stack-boundary=@var{num} @gol
1130 -mincoming-stack-boundary=@var{num} @gol
1131 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1132 -mrecip -mrecip=@var{opt} @gol
1133 -mvzeroupper -mprefer-avx128 @gol
1134 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1135 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1136 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1137 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma @gol
1138 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves @gol
1139 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1140 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mmwaitx -mclzero
1141 -mpku -mthreads @gol
1142 -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1143 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1144 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1145 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1146 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1147 -mregparm=@var{num} -msseregparm @gol
1148 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1149 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1150 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1151 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1152 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1153 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1154 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1155 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1156 -mmitigate-rop}
1157
1158 @emph{x86 Windows Options}
1159 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1160 -mnop-fun-dllimport -mthread @gol
1161 -municode -mwin32 -mwindows -fno-set-stack-executable}
1162
1163 @emph{Xstormy16 Options}
1164 @gccoptlist{-msim}
1165
1166 @emph{Xtensa Options}
1167 @gccoptlist{-mconst16 -mno-const16 @gol
1168 -mfused-madd -mno-fused-madd @gol
1169 -mforce-no-pic @gol
1170 -mserialize-volatile -mno-serialize-volatile @gol
1171 -mtext-section-literals -mno-text-section-literals @gol
1172 -mauto-litpools -mno-auto-litpools @gol
1173 -mtarget-align -mno-target-align @gol
1174 -mlongcalls -mno-longcalls}
1175
1176 @emph{zSeries Options}
1177 See S/390 and zSeries Options.
1178 @end table
1179
1180
1181 @node Overall Options
1182 @section Options Controlling the Kind of Output
1183
1184 Compilation can involve up to four stages: preprocessing, compilation
1185 proper, assembly and linking, always in that order. GCC is capable of
1186 preprocessing and compiling several files either into several
1187 assembler input files, or into one assembler input file; then each
1188 assembler input file produces an object file, and linking combines all
1189 the object files (those newly compiled, and those specified as input)
1190 into an executable file.
1191
1192 @cindex file name suffix
1193 For any given input file, the file name suffix determines what kind of
1194 compilation is done:
1195
1196 @table @gcctabopt
1197 @item @var{file}.c
1198 C source code that must be preprocessed.
1199
1200 @item @var{file}.i
1201 C source code that should not be preprocessed.
1202
1203 @item @var{file}.ii
1204 C++ source code that should not be preprocessed.
1205
1206 @item @var{file}.m
1207 Objective-C source code. Note that you must link with the @file{libobjc}
1208 library to make an Objective-C program work.
1209
1210 @item @var{file}.mi
1211 Objective-C source code that should not be preprocessed.
1212
1213 @item @var{file}.mm
1214 @itemx @var{file}.M
1215 Objective-C++ source code. Note that you must link with the @file{libobjc}
1216 library to make an Objective-C++ program work. Note that @samp{.M} refers
1217 to a literal capital M@.
1218
1219 @item @var{file}.mii
1220 Objective-C++ source code that should not be preprocessed.
1221
1222 @item @var{file}.h
1223 C, C++, Objective-C or Objective-C++ header file to be turned into a
1224 precompiled header (default), or C, C++ header file to be turned into an
1225 Ada spec (via the @option{-fdump-ada-spec} switch).
1226
1227 @item @var{file}.cc
1228 @itemx @var{file}.cp
1229 @itemx @var{file}.cxx
1230 @itemx @var{file}.cpp
1231 @itemx @var{file}.CPP
1232 @itemx @var{file}.c++
1233 @itemx @var{file}.C
1234 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1235 the last two letters must both be literally @samp{x}. Likewise,
1236 @samp{.C} refers to a literal capital C@.
1237
1238 @item @var{file}.mm
1239 @itemx @var{file}.M
1240 Objective-C++ source code that must be preprocessed.
1241
1242 @item @var{file}.mii
1243 Objective-C++ source code that should not be preprocessed.
1244
1245 @item @var{file}.hh
1246 @itemx @var{file}.H
1247 @itemx @var{file}.hp
1248 @itemx @var{file}.hxx
1249 @itemx @var{file}.hpp
1250 @itemx @var{file}.HPP
1251 @itemx @var{file}.h++
1252 @itemx @var{file}.tcc
1253 C++ header file to be turned into a precompiled header or Ada spec.
1254
1255 @item @var{file}.f
1256 @itemx @var{file}.for
1257 @itemx @var{file}.ftn
1258 Fixed form Fortran source code that should not be preprocessed.
1259
1260 @item @var{file}.F
1261 @itemx @var{file}.FOR
1262 @itemx @var{file}.fpp
1263 @itemx @var{file}.FPP
1264 @itemx @var{file}.FTN
1265 Fixed form Fortran source code that must be preprocessed (with the traditional
1266 preprocessor).
1267
1268 @item @var{file}.f90
1269 @itemx @var{file}.f95
1270 @itemx @var{file}.f03
1271 @itemx @var{file}.f08
1272 Free form Fortran source code that should not be preprocessed.
1273
1274 @item @var{file}.F90
1275 @itemx @var{file}.F95
1276 @itemx @var{file}.F03
1277 @itemx @var{file}.F08
1278 Free form Fortran source code that must be preprocessed (with the
1279 traditional preprocessor).
1280
1281 @item @var{file}.go
1282 Go source code.
1283
1284 @c FIXME: Descriptions of Java file types.
1285 @c @var{file}.java
1286 @c @var{file}.class
1287 @c @var{file}.zip
1288 @c @var{file}.jar
1289
1290 @item @var{file}.ads
1291 Ada source code file that contains a library unit declaration (a
1292 declaration of a package, subprogram, or generic, or a generic
1293 instantiation), or a library unit renaming declaration (a package,
1294 generic, or subprogram renaming declaration). Such files are also
1295 called @dfn{specs}.
1296
1297 @item @var{file}.adb
1298 Ada source code file containing a library unit body (a subprogram or
1299 package body). Such files are also called @dfn{bodies}.
1300
1301 @c GCC also knows about some suffixes for languages not yet included:
1302 @c Pascal:
1303 @c @var{file}.p
1304 @c @var{file}.pas
1305 @c Ratfor:
1306 @c @var{file}.r
1307
1308 @item @var{file}.s
1309 Assembler code.
1310
1311 @item @var{file}.S
1312 @itemx @var{file}.sx
1313 Assembler code that must be preprocessed.
1314
1315 @item @var{other}
1316 An object file to be fed straight into linking.
1317 Any file name with no recognized suffix is treated this way.
1318 @end table
1319
1320 @opindex x
1321 You can specify the input language explicitly with the @option{-x} option:
1322
1323 @table @gcctabopt
1324 @item -x @var{language}
1325 Specify explicitly the @var{language} for the following input files
1326 (rather than letting the compiler choose a default based on the file
1327 name suffix). This option applies to all following input files until
1328 the next @option{-x} option. Possible values for @var{language} are:
1329 @smallexample
1330 c c-header cpp-output
1331 c++ c++-header c++-cpp-output
1332 objective-c objective-c-header objective-c-cpp-output
1333 objective-c++ objective-c++-header objective-c++-cpp-output
1334 assembler assembler-with-cpp
1335 ada
1336 f77 f77-cpp-input f95 f95-cpp-input
1337 go
1338 java
1339 @end smallexample
1340
1341 @item -x none
1342 Turn off any specification of a language, so that subsequent files are
1343 handled according to their file name suffixes (as they are if @option{-x}
1344 has not been used at all).
1345 @end table
1346
1347 If you only want some of the stages of compilation, you can use
1348 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1349 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1350 @command{gcc} is to stop. Note that some combinations (for example,
1351 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1352
1353 @table @gcctabopt
1354 @item -c
1355 @opindex c
1356 Compile or assemble the source files, but do not link. The linking
1357 stage simply is not done. The ultimate output is in the form of an
1358 object file for each source file.
1359
1360 By default, the object file name for a source file is made by replacing
1361 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1362
1363 Unrecognized input files, not requiring compilation or assembly, are
1364 ignored.
1365
1366 @item -S
1367 @opindex S
1368 Stop after the stage of compilation proper; do not assemble. The output
1369 is in the form of an assembler code file for each non-assembler input
1370 file specified.
1371
1372 By default, the assembler file name for a source file is made by
1373 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1374
1375 Input files that don't require compilation are ignored.
1376
1377 @item -E
1378 @opindex E
1379 Stop after the preprocessing stage; do not run the compiler proper. The
1380 output is in the form of preprocessed source code, which is sent to the
1381 standard output.
1382
1383 Input files that don't require preprocessing are ignored.
1384
1385 @cindex output file option
1386 @item -o @var{file}
1387 @opindex o
1388 Place output in file @var{file}. This applies to whatever
1389 sort of output is being produced, whether it be an executable file,
1390 an object file, an assembler file or preprocessed C code.
1391
1392 If @option{-o} is not specified, the default is to put an executable
1393 file in @file{a.out}, the object file for
1394 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1395 assembler file in @file{@var{source}.s}, a precompiled header file in
1396 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1397 standard output.
1398
1399 @item -v
1400 @opindex v
1401 Print (on standard error output) the commands executed to run the stages
1402 of compilation. Also print the version number of the compiler driver
1403 program and of the preprocessor and the compiler proper.
1404
1405 @item -###
1406 @opindex ###
1407 Like @option{-v} except the commands are not executed and arguments
1408 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1409 This is useful for shell scripts to capture the driver-generated command lines.
1410
1411 @item --help
1412 @opindex help
1413 Print (on the standard output) a description of the command-line options
1414 understood by @command{gcc}. If the @option{-v} option is also specified
1415 then @option{--help} is also passed on to the various processes
1416 invoked by @command{gcc}, so that they can display the command-line options
1417 they accept. If the @option{-Wextra} option has also been specified
1418 (prior to the @option{--help} option), then command-line options that
1419 have no documentation associated with them are also displayed.
1420
1421 @item --target-help
1422 @opindex target-help
1423 Print (on the standard output) a description of target-specific command-line
1424 options for each tool. For some targets extra target-specific
1425 information may also be printed.
1426
1427 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1428 Print (on the standard output) a description of the command-line
1429 options understood by the compiler that fit into all specified classes
1430 and qualifiers. These are the supported classes:
1431
1432 @table @asis
1433 @item @samp{optimizers}
1434 Display all of the optimization options supported by the
1435 compiler.
1436
1437 @item @samp{warnings}
1438 Display all of the options controlling warning messages
1439 produced by the compiler.
1440
1441 @item @samp{target}
1442 Display target-specific options. Unlike the
1443 @option{--target-help} option however, target-specific options of the
1444 linker and assembler are not displayed. This is because those
1445 tools do not currently support the extended @option{--help=} syntax.
1446
1447 @item @samp{params}
1448 Display the values recognized by the @option{--param}
1449 option.
1450
1451 @item @var{language}
1452 Display the options supported for @var{language}, where
1453 @var{language} is the name of one of the languages supported in this
1454 version of GCC@.
1455
1456 @item @samp{common}
1457 Display the options that are common to all languages.
1458 @end table
1459
1460 These are the supported qualifiers:
1461
1462 @table @asis
1463 @item @samp{undocumented}
1464 Display only those options that are undocumented.
1465
1466 @item @samp{joined}
1467 Display options taking an argument that appears after an equal
1468 sign in the same continuous piece of text, such as:
1469 @samp{--help=target}.
1470
1471 @item @samp{separate}
1472 Display options taking an argument that appears as a separate word
1473 following the original option, such as: @samp{-o output-file}.
1474 @end table
1475
1476 Thus for example to display all the undocumented target-specific
1477 switches supported by the compiler, use:
1478
1479 @smallexample
1480 --help=target,undocumented
1481 @end smallexample
1482
1483 The sense of a qualifier can be inverted by prefixing it with the
1484 @samp{^} character, so for example to display all binary warning
1485 options (i.e., ones that are either on or off and that do not take an
1486 argument) that have a description, use:
1487
1488 @smallexample
1489 --help=warnings,^joined,^undocumented
1490 @end smallexample
1491
1492 The argument to @option{--help=} should not consist solely of inverted
1493 qualifiers.
1494
1495 Combining several classes is possible, although this usually
1496 restricts the output so much that there is nothing to display. One
1497 case where it does work, however, is when one of the classes is
1498 @var{target}. For example, to display all the target-specific
1499 optimization options, use:
1500
1501 @smallexample
1502 --help=target,optimizers
1503 @end smallexample
1504
1505 The @option{--help=} option can be repeated on the command line. Each
1506 successive use displays its requested class of options, skipping
1507 those that have already been displayed.
1508
1509 If the @option{-Q} option appears on the command line before the
1510 @option{--help=} option, then the descriptive text displayed by
1511 @option{--help=} is changed. Instead of describing the displayed
1512 options, an indication is given as to whether the option is enabled,
1513 disabled or set to a specific value (assuming that the compiler
1514 knows this at the point where the @option{--help=} option is used).
1515
1516 Here is a truncated example from the ARM port of @command{gcc}:
1517
1518 @smallexample
1519 % gcc -Q -mabi=2 --help=target -c
1520 The following options are target specific:
1521 -mabi= 2
1522 -mabort-on-noreturn [disabled]
1523 -mapcs [disabled]
1524 @end smallexample
1525
1526 The output is sensitive to the effects of previous command-line
1527 options, so for example it is possible to find out which optimizations
1528 are enabled at @option{-O2} by using:
1529
1530 @smallexample
1531 -Q -O2 --help=optimizers
1532 @end smallexample
1533
1534 Alternatively you can discover which binary optimizations are enabled
1535 by @option{-O3} by using:
1536
1537 @smallexample
1538 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1539 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1540 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1541 @end smallexample
1542
1543 @item --version
1544 @opindex version
1545 Display the version number and copyrights of the invoked GCC@.
1546
1547 @item -pass-exit-codes
1548 @opindex pass-exit-codes
1549 Normally the @command{gcc} program exits with the code of 1 if any
1550 phase of the compiler returns a non-success return code. If you specify
1551 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1552 the numerically highest error produced by any phase returning an error
1553 indication. The C, C++, and Fortran front ends return 4 if an internal
1554 compiler error is encountered.
1555
1556 @item -pipe
1557 @opindex pipe
1558 Use pipes rather than temporary files for communication between the
1559 various stages of compilation. This fails to work on some systems where
1560 the assembler is unable to read from a pipe; but the GNU assembler has
1561 no trouble.
1562
1563 @item -specs=@var{file}
1564 @opindex specs
1565 Process @var{file} after the compiler reads in the standard @file{specs}
1566 file, in order to override the defaults which the @command{gcc} driver
1567 program uses when determining what switches to pass to @command{cc1},
1568 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1569 @option{-specs=@var{file}} can be specified on the command line, and they
1570 are processed in order, from left to right. @xref{Spec Files}, for
1571 information about the format of the @var{file}.
1572
1573 @item -wrapper
1574 @opindex wrapper
1575 Invoke all subcommands under a wrapper program. The name of the
1576 wrapper program and its parameters are passed as a comma separated
1577 list.
1578
1579 @smallexample
1580 gcc -c t.c -wrapper gdb,--args
1581 @end smallexample
1582
1583 @noindent
1584 This invokes all subprograms of @command{gcc} under
1585 @samp{gdb --args}, thus the invocation of @command{cc1} is
1586 @samp{gdb --args cc1 @dots{}}.
1587
1588 @item -fplugin=@var{name}.so
1589 @opindex fplugin
1590 Load the plugin code in file @var{name}.so, assumed to be a
1591 shared object to be dlopen'd by the compiler. The base name of
1592 the shared object file is used to identify the plugin for the
1593 purposes of argument parsing (See
1594 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1595 Each plugin should define the callback functions specified in the
1596 Plugins API.
1597
1598 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1599 @opindex fplugin-arg
1600 Define an argument called @var{key} with a value of @var{value}
1601 for the plugin called @var{name}.
1602
1603 @item -fdump-ada-spec@r{[}-slim@r{]}
1604 @opindex fdump-ada-spec
1605 For C and C++ source and include files, generate corresponding Ada specs.
1606 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1607 GNAT User's Guide}, which provides detailed documentation on this feature.
1608
1609 @item -fada-spec-parent=@var{unit}
1610 @opindex fada-spec-parent
1611 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1612 Ada specs as child units of parent @var{unit}.
1613
1614 @item -fdump-go-spec=@var{file}
1615 @opindex fdump-go-spec
1616 For input files in any language, generate corresponding Go
1617 declarations in @var{file}. This generates Go @code{const},
1618 @code{type}, @code{var}, and @code{func} declarations which may be a
1619 useful way to start writing a Go interface to code written in some
1620 other language.
1621
1622 @include @value{srcdir}/../libiberty/at-file.texi
1623 @end table
1624
1625 @node Invoking G++
1626 @section Compiling C++ Programs
1627
1628 @cindex suffixes for C++ source
1629 @cindex C++ source file suffixes
1630 C++ source files conventionally use one of the suffixes @samp{.C},
1631 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1632 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1633 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1634 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1635 files with these names and compiles them as C++ programs even if you
1636 call the compiler the same way as for compiling C programs (usually
1637 with the name @command{gcc}).
1638
1639 @findex g++
1640 @findex c++
1641 However, the use of @command{gcc} does not add the C++ library.
1642 @command{g++} is a program that calls GCC and automatically specifies linking
1643 against the C++ library. It treats @samp{.c},
1644 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1645 files unless @option{-x} is used. This program is also useful when
1646 precompiling a C header file with a @samp{.h} extension for use in C++
1647 compilations. On many systems, @command{g++} is also installed with
1648 the name @command{c++}.
1649
1650 @cindex invoking @command{g++}
1651 When you compile C++ programs, you may specify many of the same
1652 command-line options that you use for compiling programs in any
1653 language; or command-line options meaningful for C and related
1654 languages; or options that are meaningful only for C++ programs.
1655 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1656 explanations of options for languages related to C@.
1657 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1658 explanations of options that are meaningful only for C++ programs.
1659
1660 @node C Dialect Options
1661 @section Options Controlling C Dialect
1662 @cindex dialect options
1663 @cindex language dialect options
1664 @cindex options, dialect
1665
1666 The following options control the dialect of C (or languages derived
1667 from C, such as C++, Objective-C and Objective-C++) that the compiler
1668 accepts:
1669
1670 @table @gcctabopt
1671 @cindex ANSI support
1672 @cindex ISO support
1673 @item -ansi
1674 @opindex ansi
1675 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1676 equivalent to @option{-std=c++98}.
1677
1678 This turns off certain features of GCC that are incompatible with ISO
1679 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1680 such as the @code{asm} and @code{typeof} keywords, and
1681 predefined macros such as @code{unix} and @code{vax} that identify the
1682 type of system you are using. It also enables the undesirable and
1683 rarely used ISO trigraph feature. For the C compiler,
1684 it disables recognition of C++ style @samp{//} comments as well as
1685 the @code{inline} keyword.
1686
1687 The alternate keywords @code{__asm__}, @code{__extension__},
1688 @code{__inline__} and @code{__typeof__} continue to work despite
1689 @option{-ansi}. You would not want to use them in an ISO C program, of
1690 course, but it is useful to put them in header files that might be included
1691 in compilations done with @option{-ansi}. Alternate predefined macros
1692 such as @code{__unix__} and @code{__vax__} are also available, with or
1693 without @option{-ansi}.
1694
1695 The @option{-ansi} option does not cause non-ISO programs to be
1696 rejected gratuitously. For that, @option{-Wpedantic} is required in
1697 addition to @option{-ansi}. @xref{Warning Options}.
1698
1699 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1700 option is used. Some header files may notice this macro and refrain
1701 from declaring certain functions or defining certain macros that the
1702 ISO standard doesn't call for; this is to avoid interfering with any
1703 programs that might use these names for other things.
1704
1705 Functions that are normally built in but do not have semantics
1706 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1707 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1708 built-in functions provided by GCC}, for details of the functions
1709 affected.
1710
1711 @item -std=
1712 @opindex std
1713 Determine the language standard. @xref{Standards,,Language Standards
1714 Supported by GCC}, for details of these standard versions. This option
1715 is currently only supported when compiling C or C++.
1716
1717 The compiler can accept several base standards, such as @samp{c90} or
1718 @samp{c++98}, and GNU dialects of those standards, such as
1719 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1720 compiler accepts all programs following that standard plus those
1721 using GNU extensions that do not contradict it. For example,
1722 @option{-std=c90} turns off certain features of GCC that are
1723 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1724 keywords, but not other GNU extensions that do not have a meaning in
1725 ISO C90, such as omitting the middle term of a @code{?:}
1726 expression. On the other hand, when a GNU dialect of a standard is
1727 specified, all features supported by the compiler are enabled, even when
1728 those features change the meaning of the base standard. As a result, some
1729 strict-conforming programs may be rejected. The particular standard
1730 is used by @option{-Wpedantic} to identify which features are GNU
1731 extensions given that version of the standard. For example
1732 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1733 comments, while @option{-std=gnu99 -Wpedantic} does not.
1734
1735 A value for this option must be provided; possible values are
1736
1737 @table @samp
1738 @item c90
1739 @itemx c89
1740 @itemx iso9899:1990
1741 Support all ISO C90 programs (certain GNU extensions that conflict
1742 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1743
1744 @item iso9899:199409
1745 ISO C90 as modified in amendment 1.
1746
1747 @item c99
1748 @itemx c9x
1749 @itemx iso9899:1999
1750 @itemx iso9899:199x
1751 ISO C99. This standard is substantially completely supported, modulo
1752 bugs and floating-point issues
1753 (mainly but not entirely relating to optional C99 features from
1754 Annexes F and G). See
1755 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1756 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1757
1758 @item c11
1759 @itemx c1x
1760 @itemx iso9899:2011
1761 ISO C11, the 2011 revision of the ISO C standard. This standard is
1762 substantially completely supported, modulo bugs, floating-point issues
1763 (mainly but not entirely relating to optional C11 features from
1764 Annexes F and G) and the optional Annexes K (Bounds-checking
1765 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1766
1767 @item gnu90
1768 @itemx gnu89
1769 GNU dialect of ISO C90 (including some C99 features).
1770
1771 @item gnu99
1772 @itemx gnu9x
1773 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1774
1775 @item gnu11
1776 @itemx gnu1x
1777 GNU dialect of ISO C11. This is the default for C code.
1778 The name @samp{gnu1x} is deprecated.
1779
1780 @item c++98
1781 @itemx c++03
1782 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1783 additional defect reports. Same as @option{-ansi} for C++ code.
1784
1785 @item gnu++98
1786 @itemx gnu++03
1787 GNU dialect of @option{-std=c++98}.
1788
1789 @item c++11
1790 @itemx c++0x
1791 The 2011 ISO C++ standard plus amendments.
1792 The name @samp{c++0x} is deprecated.
1793
1794 @item gnu++11
1795 @itemx gnu++0x
1796 GNU dialect of @option{-std=c++11}.
1797 The name @samp{gnu++0x} is deprecated.
1798
1799 @item c++14
1800 @itemx c++1y
1801 The 2014 ISO C++ standard plus amendments.
1802 The name @samp{c++1y} is deprecated.
1803
1804 @item gnu++14
1805 @itemx gnu++1y
1806 GNU dialect of @option{-std=c++14}.
1807 This is the default for C++ code.
1808 The name @samp{gnu++1y} is deprecated.
1809
1810 @item c++1z
1811 The next revision of the ISO C++ standard, tentatively planned for
1812 2017. Support is highly experimental, and will almost certainly
1813 change in incompatible ways in future releases.
1814
1815 @item gnu++1z
1816 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1817 and will almost certainly change in incompatible ways in future
1818 releases.
1819 @end table
1820
1821 @item -fgnu89-inline
1822 @opindex fgnu89-inline
1823 The option @option{-fgnu89-inline} tells GCC to use the traditional
1824 GNU semantics for @code{inline} functions when in C99 mode.
1825 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1826 Using this option is roughly equivalent to adding the
1827 @code{gnu_inline} function attribute to all inline functions
1828 (@pxref{Function Attributes}).
1829
1830 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1831 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1832 specifies the default behavior).
1833 This option is not supported in @option{-std=c90} or
1834 @option{-std=gnu90} mode.
1835
1836 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1837 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1838 in effect for @code{inline} functions. @xref{Common Predefined
1839 Macros,,,cpp,The C Preprocessor}.
1840
1841 @item -aux-info @var{filename}
1842 @opindex aux-info
1843 Output to the given filename prototyped declarations for all functions
1844 declared and/or defined in a translation unit, including those in header
1845 files. This option is silently ignored in any language other than C@.
1846
1847 Besides declarations, the file indicates, in comments, the origin of
1848 each declaration (source file and line), whether the declaration was
1849 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1850 @samp{O} for old, respectively, in the first character after the line
1851 number and the colon), and whether it came from a declaration or a
1852 definition (@samp{C} or @samp{F}, respectively, in the following
1853 character). In the case of function definitions, a K&R-style list of
1854 arguments followed by their declarations is also provided, inside
1855 comments, after the declaration.
1856
1857 @item -fallow-parameterless-variadic-functions
1858 @opindex fallow-parameterless-variadic-functions
1859 Accept variadic functions without named parameters.
1860
1861 Although it is possible to define such a function, this is not very
1862 useful as it is not possible to read the arguments. This is only
1863 supported for C as this construct is allowed by C++.
1864
1865 @item -fno-asm
1866 @opindex fno-asm
1867 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1868 keyword, so that code can use these words as identifiers. You can use
1869 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1870 instead. @option{-ansi} implies @option{-fno-asm}.
1871
1872 In C++, this switch only affects the @code{typeof} keyword, since
1873 @code{asm} and @code{inline} are standard keywords. You may want to
1874 use the @option{-fno-gnu-keywords} flag instead, which has the same
1875 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1876 switch only affects the @code{asm} and @code{typeof} keywords, since
1877 @code{inline} is a standard keyword in ISO C99.
1878
1879 @item -fno-builtin
1880 @itemx -fno-builtin-@var{function}
1881 @opindex fno-builtin
1882 @cindex built-in functions
1883 Don't recognize built-in functions that do not begin with
1884 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1885 functions provided by GCC}, for details of the functions affected,
1886 including those which are not built-in functions when @option{-ansi} or
1887 @option{-std} options for strict ISO C conformance are used because they
1888 do not have an ISO standard meaning.
1889
1890 GCC normally generates special code to handle certain built-in functions
1891 more efficiently; for instance, calls to @code{alloca} may become single
1892 instructions which adjust the stack directly, and calls to @code{memcpy}
1893 may become inline copy loops. The resulting code is often both smaller
1894 and faster, but since the function calls no longer appear as such, you
1895 cannot set a breakpoint on those calls, nor can you change the behavior
1896 of the functions by linking with a different library. In addition,
1897 when a function is recognized as a built-in function, GCC may use
1898 information about that function to warn about problems with calls to
1899 that function, or to generate more efficient code, even if the
1900 resulting code still contains calls to that function. For example,
1901 warnings are given with @option{-Wformat} for bad calls to
1902 @code{printf} when @code{printf} is built in and @code{strlen} is
1903 known not to modify global memory.
1904
1905 With the @option{-fno-builtin-@var{function}} option
1906 only the built-in function @var{function} is
1907 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1908 function is named that is not built-in in this version of GCC, this
1909 option is ignored. There is no corresponding
1910 @option{-fbuiltin-@var{function}} option; if you wish to enable
1911 built-in functions selectively when using @option{-fno-builtin} or
1912 @option{-ffreestanding}, you may define macros such as:
1913
1914 @smallexample
1915 #define abs(n) __builtin_abs ((n))
1916 #define strcpy(d, s) __builtin_strcpy ((d), (s))
1917 @end smallexample
1918
1919 @item -fhosted
1920 @opindex fhosted
1921 @cindex hosted environment
1922
1923 Assert that compilation targets a hosted environment. This implies
1924 @option{-fbuiltin}. A hosted environment is one in which the
1925 entire standard library is available, and in which @code{main} has a return
1926 type of @code{int}. Examples are nearly everything except a kernel.
1927 This is equivalent to @option{-fno-freestanding}.
1928
1929 @item -ffreestanding
1930 @opindex ffreestanding
1931 @cindex hosted environment
1932
1933 Assert that compilation targets a freestanding environment. This
1934 implies @option{-fno-builtin}. A freestanding environment
1935 is one in which the standard library may not exist, and program startup may
1936 not necessarily be at @code{main}. The most obvious example is an OS kernel.
1937 This is equivalent to @option{-fno-hosted}.
1938
1939 @xref{Standards,,Language Standards Supported by GCC}, for details of
1940 freestanding and hosted environments.
1941
1942 @item -fopenacc
1943 @opindex fopenacc
1944 @cindex OpenACC accelerator programming
1945 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1946 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
1947 compiler generates accelerated code according to the OpenACC Application
1948 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
1949 implies @option{-pthread}, and thus is only supported on targets that
1950 have support for @option{-pthread}.
1951
1952 Note that this is an experimental feature, incomplete, and subject to
1953 change in future versions of GCC. See
1954 @w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1955
1956 @item -fopenmp
1957 @opindex fopenmp
1958 @cindex OpenMP parallel
1959 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1960 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
1961 compiler generates parallel code according to the OpenMP Application
1962 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}. This option
1963 implies @option{-pthread}, and thus is only supported on targets that
1964 have support for @option{-pthread}. @option{-fopenmp} implies
1965 @option{-fopenmp-simd}.
1966
1967 @item -fopenmp-simd
1968 @opindex fopenmp-simd
1969 @cindex OpenMP SIMD
1970 @cindex SIMD
1971 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1972 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1973 are ignored.
1974
1975 @item -fcilkplus
1976 @opindex fcilkplus
1977 @cindex Enable Cilk Plus
1978 Enable the usage of Cilk Plus language extension features for C/C++.
1979 When the option @option{-fcilkplus} is specified, enable the usage of
1980 the Cilk Plus Language extension features for C/C++. The present
1981 implementation follows ABI version 1.2. This is an experimental
1982 feature that is only partially complete, and whose interface may
1983 change in future versions of GCC as the official specification
1984 changes. Currently, all features but @code{_Cilk_for} have been
1985 implemented.
1986
1987 @item -fgnu-tm
1988 @opindex fgnu-tm
1989 When the option @option{-fgnu-tm} is specified, the compiler
1990 generates code for the Linux variant of Intel's current Transactional
1991 Memory ABI specification document (Revision 1.1, May 6 2009). This is
1992 an experimental feature whose interface may change in future versions
1993 of GCC, as the official specification changes. Please note that not
1994 all architectures are supported for this feature.
1995
1996 For more information on GCC's support for transactional memory,
1997 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1998 Transactional Memory Library}.
1999
2000 Note that the transactional memory feature is not supported with
2001 non-call exceptions (@option{-fnon-call-exceptions}).
2002
2003 @item -fms-extensions
2004 @opindex fms-extensions
2005 Accept some non-standard constructs used in Microsoft header files.
2006
2007 In C++ code, this allows member names in structures to be similar
2008 to previous types declarations.
2009
2010 @smallexample
2011 typedef int UOW;
2012 struct ABC @{
2013 UOW UOW;
2014 @};
2015 @end smallexample
2016
2017 Some cases of unnamed fields in structures and unions are only
2018 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2019 fields within structs/unions}, for details.
2020
2021 Note that this option is off for all targets but x86
2022 targets using ms-abi.
2023
2024 @item -fplan9-extensions
2025 @opindex fplan9-extensions
2026 Accept some non-standard constructs used in Plan 9 code.
2027
2028 This enables @option{-fms-extensions}, permits passing pointers to
2029 structures with anonymous fields to functions that expect pointers to
2030 elements of the type of the field, and permits referring to anonymous
2031 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2032 struct/union fields within structs/unions}, for details. This is only
2033 supported for C, not C++.
2034
2035 @item -trigraphs
2036 @opindex trigraphs
2037 Support ISO C trigraphs. The @option{-ansi} option (and @option{-std}
2038 options for strict ISO C conformance) implies @option{-trigraphs}.
2039
2040 @cindex traditional C language
2041 @cindex C language, traditional
2042 @item -traditional
2043 @itemx -traditional-cpp
2044 @opindex traditional-cpp
2045 @opindex traditional
2046 Formerly, these options caused GCC to attempt to emulate a pre-standard
2047 C compiler. They are now only supported with the @option{-E} switch.
2048 The preprocessor continues to support a pre-standard mode. See the GNU
2049 CPP manual for details.
2050
2051 @item -fcond-mismatch
2052 @opindex fcond-mismatch
2053 Allow conditional expressions with mismatched types in the second and
2054 third arguments. The value of such an expression is void. This option
2055 is not supported for C++.
2056
2057 @item -flax-vector-conversions
2058 @opindex flax-vector-conversions
2059 Allow implicit conversions between vectors with differing numbers of
2060 elements and/or incompatible element types. This option should not be
2061 used for new code.
2062
2063 @item -funsigned-char
2064 @opindex funsigned-char
2065 Let the type @code{char} be unsigned, like @code{unsigned char}.
2066
2067 Each kind of machine has a default for what @code{char} should
2068 be. It is either like @code{unsigned char} by default or like
2069 @code{signed char} by default.
2070
2071 Ideally, a portable program should always use @code{signed char} or
2072 @code{unsigned char} when it depends on the signedness of an object.
2073 But many programs have been written to use plain @code{char} and
2074 expect it to be signed, or expect it to be unsigned, depending on the
2075 machines they were written for. This option, and its inverse, let you
2076 make such a program work with the opposite default.
2077
2078 The type @code{char} is always a distinct type from each of
2079 @code{signed char} or @code{unsigned char}, even though its behavior
2080 is always just like one of those two.
2081
2082 @item -fsigned-char
2083 @opindex fsigned-char
2084 Let the type @code{char} be signed, like @code{signed char}.
2085
2086 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2087 the negative form of @option{-funsigned-char}. Likewise, the option
2088 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2089
2090 @item -fsigned-bitfields
2091 @itemx -funsigned-bitfields
2092 @itemx -fno-signed-bitfields
2093 @itemx -fno-unsigned-bitfields
2094 @opindex fsigned-bitfields
2095 @opindex funsigned-bitfields
2096 @opindex fno-signed-bitfields
2097 @opindex fno-unsigned-bitfields
2098 These options control whether a bit-field is signed or unsigned, when the
2099 declaration does not use either @code{signed} or @code{unsigned}. By
2100 default, such a bit-field is signed, because this is consistent: the
2101 basic integer types such as @code{int} are signed types.
2102
2103 @item -fsso-struct=@var{endianness}
2104 @opindex fsso-struct
2105 Set the default scalar storage order of structures and unions to the
2106 specified endianness. The accepted values are @samp{big-endian} and
2107 @samp{little-endian}. If the option is not passed, the compiler uses
2108 the native endianness of the target. This option is not supported for C++.
2109
2110 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2111 code that is not binary compatible with code generated without it if the
2112 specified endianness is not the native endianness of the target.
2113 @end table
2114
2115 @node C++ Dialect Options
2116 @section Options Controlling C++ Dialect
2117
2118 @cindex compiler options, C++
2119 @cindex C++ options, command-line
2120 @cindex options, C++
2121 This section describes the command-line options that are only meaningful
2122 for C++ programs. You can also use most of the GNU compiler options
2123 regardless of what language your program is in. For example, you
2124 might compile a file @file{firstClass.C} like this:
2125
2126 @smallexample
2127 g++ -g -fstrict-enums -O -c firstClass.C
2128 @end smallexample
2129
2130 @noindent
2131 In this example, only @option{-fstrict-enums} is an option meant
2132 only for C++ programs; you can use the other options with any
2133 language supported by GCC@.
2134
2135 Some options for compiling C programs, such as @option{-std}, are also
2136 relevant for C++ programs.
2137 @xref{C Dialect Options,,Options Controlling C Dialect}.
2138
2139 Here is a list of options that are @emph{only} for compiling C++ programs:
2140
2141 @table @gcctabopt
2142
2143 @item -fabi-version=@var{n}
2144 @opindex fabi-version
2145 Use version @var{n} of the C++ ABI@. The default is version 0.
2146
2147 Version 0 refers to the version conforming most closely to
2148 the C++ ABI specification. Therefore, the ABI obtained using version 0
2149 will change in different versions of G++ as ABI bugs are fixed.
2150
2151 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2152
2153 Version 2 is the version of the C++ ABI that first appeared in G++
2154 3.4, and was the default through G++ 4.9.
2155
2156 Version 3 corrects an error in mangling a constant address as a
2157 template argument.
2158
2159 Version 4, which first appeared in G++ 4.5, implements a standard
2160 mangling for vector types.
2161
2162 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2163 attribute const/volatile on function pointer types, decltype of a
2164 plain decl, and use of a function parameter in the declaration of
2165 another parameter.
2166
2167 Version 6, which first appeared in G++ 4.7, corrects the promotion
2168 behavior of C++11 scoped enums and the mangling of template argument
2169 packs, const/static_cast, prefix ++ and --, and a class scope function
2170 used as a template argument.
2171
2172 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2173 builtin type and corrects the mangling of lambdas in default argument
2174 scope.
2175
2176 Version 8, which first appeared in G++ 4.9, corrects the substitution
2177 behavior of function types with function-cv-qualifiers.
2178
2179 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2180 @code{nullptr_t}.
2181
2182 Version 10, which first appeared in G++ 6.1, adds mangling of
2183 attributes that affect type identity, such as ia32 calling convention
2184 attributes (e.g. @samp{stdcall}).
2185
2186 See also @option{-Wabi}.
2187
2188 @item -fabi-compat-version=@var{n}
2189 @opindex fabi-compat-version
2190 On targets that support strong aliases, G++
2191 works around mangling changes by creating an alias with the correct
2192 mangled name when defining a symbol with an incorrect mangled name.
2193 This switch specifies which ABI version to use for the alias.
2194
2195 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2196 compatibility). If another ABI version is explicitly selected, this
2197 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2198 use @option{-fabi-compat-version=2}.
2199
2200 If this option is not provided but @option{-Wabi=@var{n}} is, that
2201 version is used for compatibility aliases. If this option is provided
2202 along with @option{-Wabi} (without the version), the version from this
2203 option is used for the warning.
2204
2205 @item -fno-access-control
2206 @opindex fno-access-control
2207 Turn off all access checking. This switch is mainly useful for working
2208 around bugs in the access control code.
2209
2210 @item -fcheck-new
2211 @opindex fcheck-new
2212 Check that the pointer returned by @code{operator new} is non-null
2213 before attempting to modify the storage allocated. This check is
2214 normally unnecessary because the C++ standard specifies that
2215 @code{operator new} only returns @code{0} if it is declared
2216 @code{throw()}, in which case the compiler always checks the
2217 return value even without this option. In all other cases, when
2218 @code{operator new} has a non-empty exception specification, memory
2219 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2220 @samp{new (nothrow)}.
2221
2222 @item -fconstexpr-depth=@var{n}
2223 @opindex fconstexpr-depth
2224 Set the maximum nested evaluation depth for C++11 constexpr functions
2225 to @var{n}. A limit is needed to detect endless recursion during
2226 constant expression evaluation. The minimum specified by the standard
2227 is 512.
2228
2229 @item -fdeduce-init-list
2230 @opindex fdeduce-init-list
2231 Enable deduction of a template type parameter as
2232 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2233
2234 @smallexample
2235 template <class T> auto forward(T t) -> decltype (realfn (t))
2236 @{
2237 return realfn (t);
2238 @}
2239
2240 void f()
2241 @{
2242 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2243 @}
2244 @end smallexample
2245
2246 This deduction was implemented as a possible extension to the
2247 originally proposed semantics for the C++11 standard, but was not part
2248 of the final standard, so it is disabled by default. This option is
2249 deprecated, and may be removed in a future version of G++.
2250
2251 @item -ffriend-injection
2252 @opindex ffriend-injection
2253 Inject friend functions into the enclosing namespace, so that they are
2254 visible outside the scope of the class in which they are declared.
2255 Friend functions were documented to work this way in the old Annotated
2256 C++ Reference Manual.
2257 However, in ISO C++ a friend function that is not declared
2258 in an enclosing scope can only be found using argument dependent
2259 lookup. GCC defaults to the standard behavior.
2260
2261 This option is for compatibility, and may be removed in a future
2262 release of G++.
2263
2264 @item -fno-elide-constructors
2265 @opindex fno-elide-constructors
2266 The C++ standard allows an implementation to omit creating a temporary
2267 that is only used to initialize another object of the same type.
2268 Specifying this option disables that optimization, and forces G++ to
2269 call the copy constructor in all cases.
2270
2271 @item -fno-enforce-eh-specs
2272 @opindex fno-enforce-eh-specs
2273 Don't generate code to check for violation of exception specifications
2274 at run time. This option violates the C++ standard, but may be useful
2275 for reducing code size in production builds, much like defining
2276 @code{NDEBUG}. This does not give user code permission to throw
2277 exceptions in violation of the exception specifications; the compiler
2278 still optimizes based on the specifications, so throwing an
2279 unexpected exception results in undefined behavior at run time.
2280
2281 @item -fextern-tls-init
2282 @itemx -fno-extern-tls-init
2283 @opindex fextern-tls-init
2284 @opindex fno-extern-tls-init
2285 The C++11 and OpenMP standards allow @code{thread_local} and
2286 @code{threadprivate} variables to have dynamic (runtime)
2287 initialization. To support this, any use of such a variable goes
2288 through a wrapper function that performs any necessary initialization.
2289 When the use and definition of the variable are in the same
2290 translation unit, this overhead can be optimized away, but when the
2291 use is in a different translation unit there is significant overhead
2292 even if the variable doesn't actually need dynamic initialization. If
2293 the programmer can be sure that no use of the variable in a
2294 non-defining TU needs to trigger dynamic initialization (either
2295 because the variable is statically initialized, or a use of the
2296 variable in the defining TU will be executed before any uses in
2297 another TU), they can avoid this overhead with the
2298 @option{-fno-extern-tls-init} option.
2299
2300 On targets that support symbol aliases, the default is
2301 @option{-fextern-tls-init}. On targets that do not support symbol
2302 aliases, the default is @option{-fno-extern-tls-init}.
2303
2304 @item -ffor-scope
2305 @itemx -fno-for-scope
2306 @opindex ffor-scope
2307 @opindex fno-for-scope
2308 If @option{-ffor-scope} is specified, the scope of variables declared in
2309 a @i{for-init-statement} is limited to the @code{for} loop itself,
2310 as specified by the C++ standard.
2311 If @option{-fno-for-scope} is specified, the scope of variables declared in
2312 a @i{for-init-statement} extends to the end of the enclosing scope,
2313 as was the case in old versions of G++, and other (traditional)
2314 implementations of C++.
2315
2316 If neither flag is given, the default is to follow the standard,
2317 but to allow and give a warning for old-style code that would
2318 otherwise be invalid, or have different behavior.
2319
2320 @item -fno-gnu-keywords
2321 @opindex fno-gnu-keywords
2322 Do not recognize @code{typeof} as a keyword, so that code can use this
2323 word as an identifier. You can use the keyword @code{__typeof__} instead.
2324 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2325 @option{-std=c++98}, @option{-std=c++11}, etc.
2326
2327 @item -fno-implicit-templates
2328 @opindex fno-implicit-templates
2329 Never emit code for non-inline templates that are instantiated
2330 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2331 @xref{Template Instantiation}, for more information.
2332
2333 @item -fno-implicit-inline-templates
2334 @opindex fno-implicit-inline-templates
2335 Don't emit code for implicit instantiations of inline templates, either.
2336 The default is to handle inlines differently so that compiles with and
2337 without optimization need the same set of explicit instantiations.
2338
2339 @item -fno-implement-inlines
2340 @opindex fno-implement-inlines
2341 To save space, do not emit out-of-line copies of inline functions
2342 controlled by @code{#pragma implementation}. This causes linker
2343 errors if these functions are not inlined everywhere they are called.
2344
2345 @item -fms-extensions
2346 @opindex fms-extensions
2347 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2348 int and getting a pointer to member function via non-standard syntax.
2349
2350 @item -fno-nonansi-builtins
2351 @opindex fno-nonansi-builtins
2352 Disable built-in declarations of functions that are not mandated by
2353 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2354 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2355
2356 @item -fnothrow-opt
2357 @opindex fnothrow-opt
2358 Treat a @code{throw()} exception specification as if it were a
2359 @code{noexcept} specification to reduce or eliminate the text size
2360 overhead relative to a function with no exception specification. If
2361 the function has local variables of types with non-trivial
2362 destructors, the exception specification actually makes the
2363 function smaller because the EH cleanups for those variables can be
2364 optimized away. The semantic effect is that an exception thrown out of
2365 a function with such an exception specification results in a call
2366 to @code{terminate} rather than @code{unexpected}.
2367
2368 @item -fno-operator-names
2369 @opindex fno-operator-names
2370 Do not treat the operator name keywords @code{and}, @code{bitand},
2371 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2372 synonyms as keywords.
2373
2374 @item -fno-optional-diags
2375 @opindex fno-optional-diags
2376 Disable diagnostics that the standard says a compiler does not need to
2377 issue. Currently, the only such diagnostic issued by G++ is the one for
2378 a name having multiple meanings within a class.
2379
2380 @item -fpermissive
2381 @opindex fpermissive
2382 Downgrade some diagnostics about nonconformant code from errors to
2383 warnings. Thus, using @option{-fpermissive} allows some
2384 nonconforming code to compile.
2385
2386 @item -fno-pretty-templates
2387 @opindex fno-pretty-templates
2388 When an error message refers to a specialization of a function
2389 template, the compiler normally prints the signature of the
2390 template followed by the template arguments and any typedefs or
2391 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2392 rather than @code{void f(int)}) so that it's clear which template is
2393 involved. When an error message refers to a specialization of a class
2394 template, the compiler omits any template arguments that match
2395 the default template arguments for that template. If either of these
2396 behaviors make it harder to understand the error message rather than
2397 easier, you can use @option{-fno-pretty-templates} to disable them.
2398
2399 @item -frepo
2400 @opindex frepo
2401 Enable automatic template instantiation at link time. This option also
2402 implies @option{-fno-implicit-templates}. @xref{Template
2403 Instantiation}, for more information.
2404
2405 @item -fno-rtti
2406 @opindex fno-rtti
2407 Disable generation of information about every class with virtual
2408 functions for use by the C++ run-time type identification features
2409 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2410 of the language, you can save some space by using this flag. Note that
2411 exception handling uses the same information, but G++ generates it as
2412 needed. The @code{dynamic_cast} operator can still be used for casts that
2413 do not require run-time type information, i.e.@: casts to @code{void *} or to
2414 unambiguous base classes.
2415
2416 @item -fsized-deallocation
2417 @opindex fsized-deallocation
2418 Enable the built-in global declarations
2419 @smallexample
2420 void operator delete (void *, std::size_t) noexcept;
2421 void operator delete[] (void *, std::size_t) noexcept;
2422 @end smallexample
2423 as introduced in C++14. This is useful for user-defined replacement
2424 deallocation functions that, for example, use the size of the object
2425 to make deallocation faster. Enabled by default under
2426 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2427 warns about places that might want to add a definition.
2428
2429 @item -fstats
2430 @opindex fstats
2431 Emit statistics about front-end processing at the end of the compilation.
2432 This information is generally only useful to the G++ development team.
2433
2434 @item -fstrict-enums
2435 @opindex fstrict-enums
2436 Allow the compiler to optimize using the assumption that a value of
2437 enumerated type can only be one of the values of the enumeration (as
2438 defined in the C++ standard; basically, a value that can be
2439 represented in the minimum number of bits needed to represent all the
2440 enumerators). This assumption may not be valid if the program uses a
2441 cast to convert an arbitrary integer value to the enumerated type.
2442
2443 @item -ftemplate-backtrace-limit=@var{n}
2444 @opindex ftemplate-backtrace-limit
2445 Set the maximum number of template instantiation notes for a single
2446 warning or error to @var{n}. The default value is 10.
2447
2448 @item -ftemplate-depth=@var{n}
2449 @opindex ftemplate-depth
2450 Set the maximum instantiation depth for template classes to @var{n}.
2451 A limit on the template instantiation depth is needed to detect
2452 endless recursions during template class instantiation. ANSI/ISO C++
2453 conforming programs must not rely on a maximum depth greater than 17
2454 (changed to 1024 in C++11). The default value is 900, as the compiler
2455 can run out of stack space before hitting 1024 in some situations.
2456
2457 @item -fno-threadsafe-statics
2458 @opindex fno-threadsafe-statics
2459 Do not emit the extra code to use the routines specified in the C++
2460 ABI for thread-safe initialization of local statics. You can use this
2461 option to reduce code size slightly in code that doesn't need to be
2462 thread-safe.
2463
2464 @item -fuse-cxa-atexit
2465 @opindex fuse-cxa-atexit
2466 Register destructors for objects with static storage duration with the
2467 @code{__cxa_atexit} function rather than the @code{atexit} function.
2468 This option is required for fully standards-compliant handling of static
2469 destructors, but only works if your C library supports
2470 @code{__cxa_atexit}.
2471
2472 @item -fno-use-cxa-get-exception-ptr
2473 @opindex fno-use-cxa-get-exception-ptr
2474 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2475 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2476 if the runtime routine is not available.
2477
2478 @item -fvisibility-inlines-hidden
2479 @opindex fvisibility-inlines-hidden
2480 This switch declares that the user does not attempt to compare
2481 pointers to inline functions or methods where the addresses of the two functions
2482 are taken in different shared objects.
2483
2484 The effect of this is that GCC may, effectively, mark inline methods with
2485 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2486 appear in the export table of a DSO and do not require a PLT indirection
2487 when used within the DSO@. Enabling this option can have a dramatic effect
2488 on load and link times of a DSO as it massively reduces the size of the
2489 dynamic export table when the library makes heavy use of templates.
2490
2491 The behavior of this switch is not quite the same as marking the
2492 methods as hidden directly, because it does not affect static variables
2493 local to the function or cause the compiler to deduce that
2494 the function is defined in only one shared object.
2495
2496 You may mark a method as having a visibility explicitly to negate the
2497 effect of the switch for that method. For example, if you do want to
2498 compare pointers to a particular inline method, you might mark it as
2499 having default visibility. Marking the enclosing class with explicit
2500 visibility has no effect.
2501
2502 Explicitly instantiated inline methods are unaffected by this option
2503 as their linkage might otherwise cross a shared library boundary.
2504 @xref{Template Instantiation}.
2505
2506 @item -fvisibility-ms-compat
2507 @opindex fvisibility-ms-compat
2508 This flag attempts to use visibility settings to make GCC's C++
2509 linkage model compatible with that of Microsoft Visual Studio.
2510
2511 The flag makes these changes to GCC's linkage model:
2512
2513 @enumerate
2514 @item
2515 It sets the default visibility to @code{hidden}, like
2516 @option{-fvisibility=hidden}.
2517
2518 @item
2519 Types, but not their members, are not hidden by default.
2520
2521 @item
2522 The One Definition Rule is relaxed for types without explicit
2523 visibility specifications that are defined in more than one
2524 shared object: those declarations are permitted if they are
2525 permitted when this option is not used.
2526 @end enumerate
2527
2528 In new code it is better to use @option{-fvisibility=hidden} and
2529 export those classes that are intended to be externally visible.
2530 Unfortunately it is possible for code to rely, perhaps accidentally,
2531 on the Visual Studio behavior.
2532
2533 Among the consequences of these changes are that static data members
2534 of the same type with the same name but defined in different shared
2535 objects are different, so changing one does not change the other;
2536 and that pointers to function members defined in different shared
2537 objects may not compare equal. When this flag is given, it is a
2538 violation of the ODR to define types with the same name differently.
2539
2540 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2541 @opindex fvtable-verify
2542 Turn on (or off, if using @option{-fvtable-verify=none}) the security
2543 feature that verifies at run time, for every virtual call, that
2544 the vtable pointer through which the call is made is valid for the type of
2545 the object, and has not been corrupted or overwritten. If an invalid vtable
2546 pointer is detected at run time, an error is reported and execution of the
2547 program is immediately halted.
2548
2549 This option causes run-time data structures to be built at program startup,
2550 which are used for verifying the vtable pointers.
2551 The options @samp{std} and @samp{preinit}
2552 control the timing of when these data structures are built. In both cases the
2553 data structures are built before execution reaches @code{main}. Using
2554 @option{-fvtable-verify=std} causes the data structures to be built after
2555 shared libraries have been loaded and initialized.
2556 @option{-fvtable-verify=preinit} causes them to be built before shared
2557 libraries have been loaded and initialized.
2558
2559 If this option appears multiple times in the command line with different
2560 values specified, @samp{none} takes highest priority over both @samp{std} and
2561 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2562
2563 @item -fvtv-debug
2564 @opindex fvtv-debug
2565 When used in conjunction with @option{-fvtable-verify=std} or
2566 @option{-fvtable-verify=preinit}, causes debug versions of the
2567 runtime functions for the vtable verification feature to be called.
2568 This flag also causes the compiler to log information about which
2569 vtable pointers it finds for each class.
2570 This information is written to a file named @file{vtv_set_ptr_data.log}
2571 in the directory named by the environment variable @env{VTV_LOGS_DIR}
2572 if that is defined or the current working directory otherwise.
2573
2574 Note: This feature @emph{appends} data to the log file. If you want a fresh log
2575 file, be sure to delete any existing one.
2576
2577 @item -fvtv-counts
2578 @opindex fvtv-counts
2579 This is a debugging flag. When used in conjunction with
2580 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2581 causes the compiler to keep track of the total number of virtual calls
2582 it encounters and the number of verifications it inserts. It also
2583 counts the number of calls to certain run-time library functions
2584 that it inserts and logs this information for each compilation unit.
2585 The compiler writes this information to a file named
2586 @file{vtv_count_data.log} in the directory named by the environment
2587 variable @env{VTV_LOGS_DIR} if that is defined or the current working
2588 directory otherwise. It also counts the size of the vtable pointer sets
2589 for each class, and writes this information to @file{vtv_class_set_sizes.log}
2590 in the same directory.
2591
2592 Note: This feature @emph{appends} data to the log files. To get fresh log
2593 files, be sure to delete any existing ones.
2594
2595 @item -fno-weak
2596 @opindex fno-weak
2597 Do not use weak symbol support, even if it is provided by the linker.
2598 By default, G++ uses weak symbols if they are available. This
2599 option exists only for testing, and should not be used by end-users;
2600 it results in inferior code and has no benefits. This option may
2601 be removed in a future release of G++.
2602
2603 @item -nostdinc++
2604 @opindex nostdinc++
2605 Do not search for header files in the standard directories specific to
2606 C++, but do still search the other standard directories. (This option
2607 is used when building the C++ library.)
2608 @end table
2609
2610 In addition, these optimization, warning, and code generation options
2611 have meanings only for C++ programs:
2612
2613 @table @gcctabopt
2614 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2615 @opindex Wabi
2616 @opindex Wno-abi
2617 Warn when G++ it generates code that is probably not compatible with
2618 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2619 ABI with each major release, normally @option{-Wabi} will warn only if
2620 there is a check added later in a release series for an ABI issue
2621 discovered since the initial release. @option{-Wabi} will warn about
2622 more things if an older ABI version is selected (with
2623 @option{-fabi-version=@var{n}}).
2624
2625 @option{-Wabi} can also be used with an explicit version number to
2626 warn about compatibility with a particular @option{-fabi-version}
2627 level, e.g. @option{-Wabi=2} to warn about changes relative to
2628 @option{-fabi-version=2}.
2629
2630 If an explicit version number is provided and
2631 @option{-fabi-compat-version} is not specified, the version number
2632 from this option is used for compatibility aliases. If no explicit
2633 version number is provided with this option, but
2634 @option{-fabi-compat-version} is specified, that version number is
2635 used for ABI warnings.
2636
2637 Although an effort has been made to warn about
2638 all such cases, there are probably some cases that are not warned about,
2639 even though G++ is generating incompatible code. There may also be
2640 cases where warnings are emitted even though the code that is generated
2641 is compatible.
2642
2643 You should rewrite your code to avoid these warnings if you are
2644 concerned about the fact that code generated by G++ may not be binary
2645 compatible with code generated by other compilers.
2646
2647 Known incompatibilities in @option{-fabi-version=2} (which was the
2648 default from GCC 3.4 to 4.9) include:
2649
2650 @itemize @bullet
2651
2652 @item
2653 A template with a non-type template parameter of reference type was
2654 mangled incorrectly:
2655 @smallexample
2656 extern int N;
2657 template <int &> struct S @{@};
2658 void n (S<N>) @{2@}
2659 @end smallexample
2660
2661 This was fixed in @option{-fabi-version=3}.
2662
2663 @item
2664 SIMD vector types declared using @code{__attribute ((vector_size))} were
2665 mangled in a non-standard way that does not allow for overloading of
2666 functions taking vectors of different sizes.
2667
2668 The mangling was changed in @option{-fabi-version=4}.
2669
2670 @item
2671 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2672 qualifiers, and @code{decltype} of a plain declaration was folded away.
2673
2674 These mangling issues were fixed in @option{-fabi-version=5}.
2675
2676 @item
2677 Scoped enumerators passed as arguments to a variadic function are
2678 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2679 On most targets this does not actually affect the parameter passing
2680 ABI, as there is no way to pass an argument smaller than @code{int}.
2681
2682 Also, the ABI changed the mangling of template argument packs,
2683 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2684 a class scope function used as a template argument.
2685
2686 These issues were corrected in @option{-fabi-version=6}.
2687
2688 @item
2689 Lambdas in default argument scope were mangled incorrectly, and the
2690 ABI changed the mangling of @code{nullptr_t}.
2691
2692 These issues were corrected in @option{-fabi-version=7}.
2693
2694 @item
2695 When mangling a function type with function-cv-qualifiers, the
2696 un-qualified function type was incorrectly treated as a substitution
2697 candidate.
2698
2699 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2700
2701 @item
2702 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2703 unaligned accesses. Note that this did not affect the ABI of a
2704 function with a @code{nullptr_t} parameter, as parameters have a
2705 minimum alignment.
2706
2707 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2708
2709 @item
2710 Target-specific attributes that affect the identity of a type, such as
2711 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2712 did not affect the mangled name, leading to name collisions when
2713 function pointers were used as template arguments.
2714
2715 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2716
2717 @end itemize
2718
2719 It also warns about psABI-related changes. The known psABI changes at this
2720 point include:
2721
2722 @itemize @bullet
2723
2724 @item
2725 For SysV/x86-64, unions with @code{long double} members are
2726 passed in memory as specified in psABI. For example:
2727
2728 @smallexample
2729 union U @{
2730 long double ld;
2731 int i;
2732 @};
2733 @end smallexample
2734
2735 @noindent
2736 @code{union U} is always passed in memory.
2737
2738 @end itemize
2739
2740 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2741 @opindex Wabi-tag
2742 @opindex -Wabi-tag
2743 Warn when a type with an ABI tag is used in a context that does not
2744 have that ABI tag. See @ref{C++ Attributes} for more information
2745 about ABI tags.
2746
2747 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2748 @opindex Wctor-dtor-privacy
2749 @opindex Wno-ctor-dtor-privacy
2750 Warn when a class seems unusable because all the constructors or
2751 destructors in that class are private, and it has neither friends nor
2752 public static member functions. Also warn if there are no non-private
2753 methods, and there's at least one private member function that isn't
2754 a constructor or destructor.
2755
2756 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2757 @opindex Wdelete-non-virtual-dtor
2758 @opindex Wno-delete-non-virtual-dtor
2759 Warn when @code{delete} is used to destroy an instance of a class that
2760 has virtual functions and non-virtual destructor. It is unsafe to delete
2761 an instance of a derived class through a pointer to a base class if the
2762 base class does not have a virtual destructor. This warning is enabled
2763 by @option{-Wall}.
2764
2765 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2766 @opindex Wliteral-suffix
2767 @opindex Wno-literal-suffix
2768 Warn when a string or character literal is followed by a ud-suffix which does
2769 not begin with an underscore. As a conforming extension, GCC treats such
2770 suffixes as separate preprocessing tokens in order to maintain backwards
2771 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2772 For example:
2773
2774 @smallexample
2775 #define __STDC_FORMAT_MACROS
2776 #include <inttypes.h>
2777 #include <stdio.h>
2778
2779 int main() @{
2780 int64_t i64 = 123;
2781 printf("My int64: %" PRId64"\n", i64);
2782 @}
2783 @end smallexample
2784
2785 In this case, @code{PRId64} is treated as a separate preprocessing token.
2786
2787 This warning is enabled by default.
2788
2789 @item -Wlto-type-mismatch
2790 @opindex Wlto-type-mismatch
2791 @opindex Wno-lto-type-mistmach
2792
2793 During the link-time optimization warn about type mismatches in between
2794 global declarations from different compilation units.
2795 Requires @option{-flto} to be enabled. Enabled by default.
2796
2797 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2798 @opindex Wnarrowing
2799 @opindex Wno-narrowing
2800 Warn when a narrowing conversion prohibited by C++11 occurs within
2801 @samp{@{ @}}, e.g.
2802
2803 @smallexample
2804 int i = @{ 2.2 @}; // error: narrowing from double to int
2805 @end smallexample
2806
2807 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2808
2809 With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2810 required by the standard. Note that this does not affect the meaning
2811 of well-formed code; narrowing conversions are still considered
2812 ill-formed in SFINAE context.
2813
2814 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2815 @opindex Wnoexcept
2816 @opindex Wno-noexcept
2817 Warn when a noexcept-expression evaluates to false because of a call
2818 to a function that does not have a non-throwing exception
2819 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2820 the compiler to never throw an exception.
2821
2822 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2823 @opindex Wnon-virtual-dtor
2824 @opindex Wno-non-virtual-dtor
2825 Warn when a class has virtual functions and an accessible non-virtual
2826 destructor itself or in an accessible polymorphic base class, in which
2827 case it is possible but unsafe to delete an instance of a derived
2828 class through a pointer to the class itself or base class. This
2829 warning is automatically enabled if @option{-Weffc++} is specified.
2830
2831 @item -Wreorder @r{(C++ and Objective-C++ only)}
2832 @opindex Wreorder
2833 @opindex Wno-reorder
2834 @cindex reordering, warning
2835 @cindex warning for reordering of member initializers
2836 Warn when the order of member initializers given in the code does not
2837 match the order in which they must be executed. For instance:
2838
2839 @smallexample
2840 struct A @{
2841 int i;
2842 int j;
2843 A(): j (0), i (1) @{ @}
2844 @};
2845 @end smallexample
2846
2847 @noindent
2848 The compiler rearranges the member initializers for @code{i}
2849 and @code{j} to match the declaration order of the members, emitting
2850 a warning to that effect. This warning is enabled by @option{-Wall}.
2851
2852 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2853 @opindex fext-numeric-literals
2854 @opindex fno-ext-numeric-literals
2855 Accept imaginary, fixed-point, or machine-defined
2856 literal number suffixes as GNU extensions.
2857 When this option is turned off these suffixes are treated
2858 as C++11 user-defined literal numeric suffixes.
2859 This is on by default for all pre-C++11 dialects and all GNU dialects:
2860 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2861 @option{-std=gnu++14}.
2862 This option is off by default
2863 for ISO C++11 onwards (@option{-std=c++11}, ...).
2864 @end table
2865
2866 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2867
2868 @table @gcctabopt
2869 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2870 @opindex Weffc++
2871 @opindex Wno-effc++
2872 Warn about violations of the following style guidelines from Scott Meyers'
2873 @cite{Effective C++} series of books:
2874
2875 @itemize @bullet
2876 @item
2877 Define a copy constructor and an assignment operator for classes
2878 with dynamically-allocated memory.
2879
2880 @item
2881 Prefer initialization to assignment in constructors.
2882
2883 @item
2884 Have @code{operator=} return a reference to @code{*this}.
2885
2886 @item
2887 Don't try to return a reference when you must return an object.
2888
2889 @item
2890 Distinguish between prefix and postfix forms of increment and
2891 decrement operators.
2892
2893 @item
2894 Never overload @code{&&}, @code{||}, or @code{,}.
2895
2896 @end itemize
2897
2898 This option also enables @option{-Wnon-virtual-dtor}, which is also
2899 one of the effective C++ recommendations. However, the check is
2900 extended to warn about the lack of virtual destructor in accessible
2901 non-polymorphic bases classes too.
2902
2903 When selecting this option, be aware that the standard library
2904 headers do not obey all of these guidelines; use @samp{grep -v}
2905 to filter out those warnings.
2906
2907 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2908 @opindex Wstrict-null-sentinel
2909 @opindex Wno-strict-null-sentinel
2910 Warn about the use of an uncasted @code{NULL} as sentinel. When
2911 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2912 to @code{__null}. Although it is a null pointer constant rather than a
2913 null pointer, it is guaranteed to be of the same size as a pointer.
2914 But this use is not portable across different compilers.
2915
2916 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2917 @opindex Wno-non-template-friend
2918 @opindex Wnon-template-friend
2919 Disable warnings when non-templatized friend functions are declared
2920 within a template. Since the advent of explicit template specification
2921 support in G++, if the name of the friend is an unqualified-id (i.e.,
2922 @samp{friend foo(int)}), the C++ language specification demands that the
2923 friend declare or define an ordinary, nontemplate function. (Section
2924 14.5.3). Before G++ implemented explicit specification, unqualified-ids
2925 could be interpreted as a particular specialization of a templatized
2926 function. Because this non-conforming behavior is no longer the default
2927 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2928 check existing code for potential trouble spots and is on by default.
2929 This new compiler behavior can be turned off with
2930 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2931 but disables the helpful warning.
2932
2933 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2934 @opindex Wold-style-cast
2935 @opindex Wno-old-style-cast
2936 Warn if an old-style (C-style) cast to a non-void type is used within
2937 a C++ program. The new-style casts (@code{dynamic_cast},
2938 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2939 less vulnerable to unintended effects and much easier to search for.
2940
2941 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2942 @opindex Woverloaded-virtual
2943 @opindex Wno-overloaded-virtual
2944 @cindex overloaded virtual function, warning
2945 @cindex warning for overloaded virtual function
2946 Warn when a function declaration hides virtual functions from a
2947 base class. For example, in:
2948
2949 @smallexample
2950 struct A @{
2951 virtual void f();
2952 @};
2953
2954 struct B: public A @{
2955 void f(int);
2956 @};
2957 @end smallexample
2958
2959 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2960 like:
2961
2962 @smallexample
2963 B* b;
2964 b->f();
2965 @end smallexample
2966
2967 @noindent
2968 fails to compile.
2969
2970 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2971 @opindex Wno-pmf-conversions
2972 @opindex Wpmf-conversions
2973 Disable the diagnostic for converting a bound pointer to member function
2974 to a plain pointer.
2975
2976 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
2977 @opindex Wsign-promo
2978 @opindex Wno-sign-promo
2979 Warn when overload resolution chooses a promotion from unsigned or
2980 enumerated type to a signed type, over a conversion to an unsigned type of
2981 the same size. Previous versions of G++ tried to preserve
2982 unsignedness, but the standard mandates the current behavior.
2983
2984 @item -Wtemplates @r{(C++ and Objective-C++ only)}
2985 @opindex Wtemplates
2986 Warn when a primary template declaration is encountered. Some coding
2987 rules disallow templates, and this may be used to enforce that rule.
2988 The warning is inactive inside a system header file, such as the STL, so
2989 one can still use the STL. One may also instantiate or specialize
2990 templates.
2991
2992 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
2993 @opindex Wmultiple-inheritance
2994 Warn when a class is defined with multiple direct base classes. Some
2995 coding rules disallow multiple inheritance, and this may be used to
2996 enforce that rule. The warning is inactive inside a system header file,
2997 such as the STL, so one can still use the STL. One may also define
2998 classes that indirectly use multiple inheritance.
2999
3000 @item -Wvirtual-inheritance
3001 @opindex Wvirtual-inheritance
3002 Warn when a class is defined with a virtual direct base classe. Some
3003 coding rules disallow multiple inheritance, and this may be used to
3004 enforce that rule. The warning is inactive inside a system header file,
3005 such as the STL, so one can still use the STL. One may also define
3006 classes that indirectly use virtual inheritance.
3007
3008 @item -Wnamespaces
3009 @opindex Wnamespaces
3010 Warn when a namespace definition is opened. Some coding rules disallow
3011 namespaces, and this may be used to enforce that rule. The warning is
3012 inactive inside a system header file, such as the STL, so one can still
3013 use the STL. One may also use using directives and qualified names.
3014
3015 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3016 @opindex Wterminate
3017 @opindex Wno-terminate
3018 Disable the warning about a throw-expression that will immediately
3019 result in a call to @code{terminate}.
3020 @end table
3021
3022 @node Objective-C and Objective-C++ Dialect Options
3023 @section Options Controlling Objective-C and Objective-C++ Dialects
3024
3025 @cindex compiler options, Objective-C and Objective-C++
3026 @cindex Objective-C and Objective-C++ options, command-line
3027 @cindex options, Objective-C and Objective-C++
3028 (NOTE: This manual does not describe the Objective-C and Objective-C++
3029 languages themselves. @xref{Standards,,Language Standards
3030 Supported by GCC}, for references.)
3031
3032 This section describes the command-line options that are only meaningful
3033 for Objective-C and Objective-C++ programs. You can also use most of
3034 the language-independent GNU compiler options.
3035 For example, you might compile a file @file{some_class.m} like this:
3036
3037 @smallexample
3038 gcc -g -fgnu-runtime -O -c some_class.m
3039 @end smallexample
3040
3041 @noindent
3042 In this example, @option{-fgnu-runtime} is an option meant only for
3043 Objective-C and Objective-C++ programs; you can use the other options with
3044 any language supported by GCC@.
3045
3046 Note that since Objective-C is an extension of the C language, Objective-C
3047 compilations may also use options specific to the C front-end (e.g.,
3048 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3049 C++-specific options (e.g., @option{-Wabi}).
3050
3051 Here is a list of options that are @emph{only} for compiling Objective-C
3052 and Objective-C++ programs:
3053
3054 @table @gcctabopt
3055 @item -fconstant-string-class=@var{class-name}
3056 @opindex fconstant-string-class
3057 Use @var{class-name} as the name of the class to instantiate for each
3058 literal string specified with the syntax @code{@@"@dots{}"}. The default
3059 class name is @code{NXConstantString} if the GNU runtime is being used, and
3060 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3061 @option{-fconstant-cfstrings} option, if also present, overrides the
3062 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3063 to be laid out as constant CoreFoundation strings.
3064
3065 @item -fgnu-runtime
3066 @opindex fgnu-runtime
3067 Generate object code compatible with the standard GNU Objective-C
3068 runtime. This is the default for most types of systems.
3069
3070 @item -fnext-runtime
3071 @opindex fnext-runtime
3072 Generate output compatible with the NeXT runtime. This is the default
3073 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3074 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3075 used.
3076
3077 @item -fno-nil-receivers
3078 @opindex fno-nil-receivers
3079 Assume that all Objective-C message dispatches (@code{[receiver
3080 message:arg]}) in this translation unit ensure that the receiver is
3081 not @code{nil}. This allows for more efficient entry points in the
3082 runtime to be used. This option is only available in conjunction with
3083 the NeXT runtime and ABI version 0 or 1.
3084
3085 @item -fobjc-abi-version=@var{n}
3086 @opindex fobjc-abi-version
3087 Use version @var{n} of the Objective-C ABI for the selected runtime.
3088 This option is currently supported only for the NeXT runtime. In that
3089 case, Version 0 is the traditional (32-bit) ABI without support for
3090 properties and other Objective-C 2.0 additions. Version 1 is the
3091 traditional (32-bit) ABI with support for properties and other
3092 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3093 nothing is specified, the default is Version 0 on 32-bit target
3094 machines, and Version 2 on 64-bit target machines.
3095
3096 @item -fobjc-call-cxx-cdtors
3097 @opindex fobjc-call-cxx-cdtors
3098 For each Objective-C class, check if any of its instance variables is a
3099 C++ object with a non-trivial default constructor. If so, synthesize a
3100 special @code{- (id) .cxx_construct} instance method which runs
3101 non-trivial default constructors on any such instance variables, in order,
3102 and then return @code{self}. Similarly, check if any instance variable
3103 is a C++ object with a non-trivial destructor, and if so, synthesize a
3104 special @code{- (void) .cxx_destruct} method which runs
3105 all such default destructors, in reverse order.
3106
3107 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3108 methods thusly generated only operate on instance variables
3109 declared in the current Objective-C class, and not those inherited
3110 from superclasses. It is the responsibility of the Objective-C
3111 runtime to invoke all such methods in an object's inheritance
3112 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3113 by the runtime immediately after a new object instance is allocated;
3114 the @code{- (void) .cxx_destruct} methods are invoked immediately
3115 before the runtime deallocates an object instance.
3116
3117 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3118 support for invoking the @code{- (id) .cxx_construct} and
3119 @code{- (void) .cxx_destruct} methods.
3120
3121 @item -fobjc-direct-dispatch
3122 @opindex fobjc-direct-dispatch
3123 Allow fast jumps to the message dispatcher. On Darwin this is
3124 accomplished via the comm page.
3125
3126 @item -fobjc-exceptions
3127 @opindex fobjc-exceptions
3128 Enable syntactic support for structured exception handling in
3129 Objective-C, similar to what is offered by C++ and Java. This option
3130 is required to use the Objective-C keywords @code{@@try},
3131 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3132 @code{@@synchronized}. This option is available with both the GNU
3133 runtime and the NeXT runtime (but not available in conjunction with
3134 the NeXT runtime on Mac OS X 10.2 and earlier).
3135
3136 @item -fobjc-gc
3137 @opindex fobjc-gc
3138 Enable garbage collection (GC) in Objective-C and Objective-C++
3139 programs. This option is only available with the NeXT runtime; the
3140 GNU runtime has a different garbage collection implementation that
3141 does not require special compiler flags.
3142
3143 @item -fobjc-nilcheck
3144 @opindex fobjc-nilcheck
3145 For the NeXT runtime with version 2 of the ABI, check for a nil
3146 receiver in method invocations before doing the actual method call.
3147 This is the default and can be disabled using
3148 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3149 checked for nil in this way no matter what this flag is set to.
3150 Currently this flag does nothing when the GNU runtime, or an older
3151 version of the NeXT runtime ABI, is used.
3152
3153 @item -fobjc-std=objc1
3154 @opindex fobjc-std
3155 Conform to the language syntax of Objective-C 1.0, the language
3156 recognized by GCC 4.0. This only affects the Objective-C additions to
3157 the C/C++ language; it does not affect conformance to C/C++ standards,
3158 which is controlled by the separate C/C++ dialect option flags. When
3159 this option is used with the Objective-C or Objective-C++ compiler,
3160 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3161 This is useful if you need to make sure that your Objective-C code can
3162 be compiled with older versions of GCC@.
3163
3164 @item -freplace-objc-classes
3165 @opindex freplace-objc-classes
3166 Emit a special marker instructing @command{ld(1)} not to statically link in
3167 the resulting object file, and allow @command{dyld(1)} to load it in at
3168 run time instead. This is used in conjunction with the Fix-and-Continue
3169 debugging mode, where the object file in question may be recompiled and
3170 dynamically reloaded in the course of program execution, without the need
3171 to restart the program itself. Currently, Fix-and-Continue functionality
3172 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3173 and later.
3174
3175 @item -fzero-link
3176 @opindex fzero-link
3177 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3178 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3179 compile time) with static class references that get initialized at load time,
3180 which improves run-time performance. Specifying the @option{-fzero-link} flag
3181 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3182 to be retained. This is useful in Zero-Link debugging mode, since it allows
3183 for individual class implementations to be modified during program execution.
3184 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3185 regardless of command-line options.
3186
3187 @item -fno-local-ivars
3188 @opindex fno-local-ivars
3189 @opindex flocal-ivars
3190 By default instance variables in Objective-C can be accessed as if
3191 they were local variables from within the methods of the class they're
3192 declared in. This can lead to shadowing between instance variables
3193 and other variables declared either locally inside a class method or
3194 globally with the same name. Specifying the @option{-fno-local-ivars}
3195 flag disables this behavior thus avoiding variable shadowing issues.
3196
3197 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3198 @opindex fivar-visibility
3199 Set the default instance variable visibility to the specified option
3200 so that instance variables declared outside the scope of any access
3201 modifier directives default to the specified visibility.
3202
3203 @item -gen-decls
3204 @opindex gen-decls
3205 Dump interface declarations for all classes seen in the source file to a
3206 file named @file{@var{sourcename}.decl}.
3207
3208 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3209 @opindex Wassign-intercept
3210 @opindex Wno-assign-intercept
3211 Warn whenever an Objective-C assignment is being intercepted by the
3212 garbage collector.
3213
3214 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3215 @opindex Wno-protocol
3216 @opindex Wprotocol
3217 If a class is declared to implement a protocol, a warning is issued for
3218 every method in the protocol that is not implemented by the class. The
3219 default behavior is to issue a warning for every method not explicitly
3220 implemented in the class, even if a method implementation is inherited
3221 from the superclass. If you use the @option{-Wno-protocol} option, then
3222 methods inherited from the superclass are considered to be implemented,
3223 and no warning is issued for them.
3224
3225 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3226 @opindex Wselector
3227 @opindex Wno-selector
3228 Warn if multiple methods of different types for the same selector are
3229 found during compilation. The check is performed on the list of methods
3230 in the final stage of compilation. Additionally, a check is performed
3231 for each selector appearing in a @code{@@selector(@dots{})}
3232 expression, and a corresponding method for that selector has been found
3233 during compilation. Because these checks scan the method table only at
3234 the end of compilation, these warnings are not produced if the final
3235 stage of compilation is not reached, for example because an error is
3236 found during compilation, or because the @option{-fsyntax-only} option is
3237 being used.
3238
3239 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3240 @opindex Wstrict-selector-match
3241 @opindex Wno-strict-selector-match
3242 Warn if multiple methods with differing argument and/or return types are
3243 found for a given selector when attempting to send a message using this
3244 selector to a receiver of type @code{id} or @code{Class}. When this flag
3245 is off (which is the default behavior), the compiler omits such warnings
3246 if any differences found are confined to types that share the same size
3247 and alignment.
3248
3249 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3250 @opindex Wundeclared-selector
3251 @opindex Wno-undeclared-selector
3252 Warn if a @code{@@selector(@dots{})} expression referring to an
3253 undeclared selector is found. A selector is considered undeclared if no
3254 method with that name has been declared before the
3255 @code{@@selector(@dots{})} expression, either explicitly in an
3256 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3257 an @code{@@implementation} section. This option always performs its
3258 checks as soon as a @code{@@selector(@dots{})} expression is found,
3259 while @option{-Wselector} only performs its checks in the final stage of
3260 compilation. This also enforces the coding style convention
3261 that methods and selectors must be declared before being used.
3262
3263 @item -print-objc-runtime-info
3264 @opindex print-objc-runtime-info
3265 Generate C header describing the largest structure that is passed by
3266 value, if any.
3267
3268 @end table
3269
3270 @node Diagnostic Message Formatting Options
3271 @section Options to Control Diagnostic Messages Formatting
3272 @cindex options to control diagnostics formatting
3273 @cindex diagnostic messages
3274 @cindex message formatting
3275
3276 Traditionally, diagnostic messages have been formatted irrespective of
3277 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3278 options described below
3279 to control the formatting algorithm for diagnostic messages,
3280 e.g.@: how many characters per line, how often source location
3281 information should be reported. Note that some language front ends may not
3282 honor these options.
3283
3284 @table @gcctabopt
3285 @item -fmessage-length=@var{n}
3286 @opindex fmessage-length
3287 Try to format error messages so that they fit on lines of about
3288 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3289 done; each error message appears on a single line. This is the
3290 default for all front ends.
3291
3292 @item -fdiagnostics-show-location=once
3293 @opindex fdiagnostics-show-location
3294 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3295 reporter to emit source location information @emph{once}; that is, in
3296 case the message is too long to fit on a single physical line and has to
3297 be wrapped, the source location won't be emitted (as prefix) again,
3298 over and over, in subsequent continuation lines. This is the default
3299 behavior.
3300
3301 @item -fdiagnostics-show-location=every-line
3302 Only meaningful in line-wrapping mode. Instructs the diagnostic
3303 messages reporter to emit the same source location information (as
3304 prefix) for physical lines that result from the process of breaking
3305 a message which is too long to fit on a single line.
3306
3307 @item -fdiagnostics-color[=@var{WHEN}]
3308 @itemx -fno-diagnostics-color
3309 @opindex fdiagnostics-color
3310 @cindex highlight, color, colour
3311 @vindex GCC_COLORS @r{environment variable}
3312 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3313 or @samp{auto}. The default depends on how the compiler has been configured,
3314 it can be any of the above @var{WHEN} options or also @samp{never}
3315 if @env{GCC_COLORS} environment variable isn't present in the environment,
3316 and @samp{auto} otherwise.
3317 @samp{auto} means to use color only when the standard error is a terminal.
3318 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3319 aliases for @option{-fdiagnostics-color=always} and
3320 @option{-fdiagnostics-color=never}, respectively.
3321
3322 The colors are defined by the environment variable @env{GCC_COLORS}.
3323 Its value is a colon-separated list of capabilities and Select Graphic
3324 Rendition (SGR) substrings. SGR commands are interpreted by the
3325 terminal or terminal emulator. (See the section in the documentation
3326 of your text terminal for permitted values and their meanings as
3327 character attributes.) These substring values are integers in decimal
3328 representation and can be concatenated with semicolons.
3329 Common values to concatenate include
3330 @samp{1} for bold,
3331 @samp{4} for underline,
3332 @samp{5} for blink,
3333 @samp{7} for inverse,
3334 @samp{39} for default foreground color,
3335 @samp{30} to @samp{37} for foreground colors,
3336 @samp{90} to @samp{97} for 16-color mode foreground colors,
3337 @samp{38;5;0} to @samp{38;5;255}
3338 for 88-color and 256-color modes foreground colors,
3339 @samp{49} for default background color,
3340 @samp{40} to @samp{47} for background colors,
3341 @samp{100} to @samp{107} for 16-color mode background colors,
3342 and @samp{48;5;0} to @samp{48;5;255}
3343 for 88-color and 256-color modes background colors.
3344
3345 The default @env{GCC_COLORS} is
3346 @smallexample
3347 error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3348 @end smallexample
3349 @noindent
3350 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3351 @samp{01;36} is bold cyan, @samp{01;32} is bold green and
3352 @samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3353 string disables colors.
3354 Supported capabilities are as follows.
3355
3356 @table @code
3357 @item error=
3358 @vindex error GCC_COLORS @r{capability}
3359 SGR substring for error: markers.
3360
3361 @item warning=
3362 @vindex warning GCC_COLORS @r{capability}
3363 SGR substring for warning: markers.
3364
3365 @item note=
3366 @vindex note GCC_COLORS @r{capability}
3367 SGR substring for note: markers.
3368
3369 @item caret=
3370 @vindex caret GCC_COLORS @r{capability}
3371 SGR substring for caret line.
3372
3373 @item locus=
3374 @vindex locus GCC_COLORS @r{capability}
3375 SGR substring for location information, @samp{file:line} or
3376 @samp{file:line:column} etc.
3377
3378 @item quote=
3379 @vindex quote GCC_COLORS @r{capability}
3380 SGR substring for information printed within quotes.
3381 @end table
3382
3383 @item -fno-diagnostics-show-option
3384 @opindex fno-diagnostics-show-option
3385 @opindex fdiagnostics-show-option
3386 By default, each diagnostic emitted includes text indicating the
3387 command-line option that directly controls the diagnostic (if such an
3388 option is known to the diagnostic machinery). Specifying the
3389 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3390
3391 @item -fno-diagnostics-show-caret
3392 @opindex fno-diagnostics-show-caret
3393 @opindex fdiagnostics-show-caret
3394 By default, each diagnostic emitted includes the original source line
3395 and a caret '^' indicating the column. This option suppresses this
3396 information. The source line is truncated to @var{n} characters, if
3397 the @option{-fmessage-length=n} option is given. When the output is done
3398 to the terminal, the width is limited to the width given by the
3399 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3400
3401 @end table
3402
3403 @node Warning Options
3404 @section Options to Request or Suppress Warnings
3405 @cindex options to control warnings
3406 @cindex warning messages
3407 @cindex messages, warning
3408 @cindex suppressing warnings
3409
3410 Warnings are diagnostic messages that report constructions that
3411 are not inherently erroneous but that are risky or suggest there
3412 may have been an error.
3413
3414 The following language-independent options do not enable specific
3415 warnings but control the kinds of diagnostics produced by GCC@.
3416
3417 @table @gcctabopt
3418 @cindex syntax checking
3419 @item -fsyntax-only
3420 @opindex fsyntax-only
3421 Check the code for syntax errors, but don't do anything beyond that.
3422
3423 @item -fmax-errors=@var{n}
3424 @opindex fmax-errors
3425 Limits the maximum number of error messages to @var{n}, at which point
3426 GCC bails out rather than attempting to continue processing the source
3427 code. If @var{n} is 0 (the default), there is no limit on the number
3428 of error messages produced. If @option{-Wfatal-errors} is also
3429 specified, then @option{-Wfatal-errors} takes precedence over this
3430 option.
3431
3432 @item -w
3433 @opindex w
3434 Inhibit all warning messages.
3435
3436 @item -Werror
3437 @opindex Werror
3438 @opindex Wno-error
3439 Make all warnings into errors.
3440
3441 @item -Werror=
3442 @opindex Werror=
3443 @opindex Wno-error=
3444 Make the specified warning into an error. The specifier for a warning
3445 is appended; for example @option{-Werror=switch} turns the warnings
3446 controlled by @option{-Wswitch} into errors. This switch takes a
3447 negative form, to be used to negate @option{-Werror} for specific
3448 warnings; for example @option{-Wno-error=switch} makes
3449 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3450 is in effect.
3451
3452 The warning message for each controllable warning includes the
3453 option that controls the warning. That option can then be used with
3454 @option{-Werror=} and @option{-Wno-error=} as described above.
3455 (Printing of the option in the warning message can be disabled using the
3456 @option{-fno-diagnostics-show-option} flag.)
3457
3458 Note that specifying @option{-Werror=}@var{foo} automatically implies
3459 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3460 imply anything.
3461
3462 @item -Wfatal-errors
3463 @opindex Wfatal-errors
3464 @opindex Wno-fatal-errors
3465 This option causes the compiler to abort compilation on the first error
3466 occurred rather than trying to keep going and printing further error
3467 messages.
3468
3469 @end table
3470
3471 You can request many specific warnings with options beginning with
3472 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3473 implicit declarations. Each of these specific warning options also
3474 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3475 example, @option{-Wno-implicit}. This manual lists only one of the
3476 two forms, whichever is not the default. For further
3477 language-specific options also refer to @ref{C++ Dialect Options} and
3478 @ref{Objective-C and Objective-C++ Dialect Options}.
3479
3480 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3481 options, such as @option{-Wunused}, which may turn on further options,
3482 such as @option{-Wunused-value}. The combined effect of positive and
3483 negative forms is that more specific options have priority over less
3484 specific ones, independently of their position in the command-line. For
3485 options of the same specificity, the last one takes effect. Options
3486 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3487 as if they appeared at the end of the command-line.
3488
3489 When an unrecognized warning option is requested (e.g.,
3490 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3491 that the option is not recognized. However, if the @option{-Wno-} form
3492 is used, the behavior is slightly different: no diagnostic is
3493 produced for @option{-Wno-unknown-warning} unless other diagnostics
3494 are being produced. This allows the use of new @option{-Wno-} options
3495 with old compilers, but if something goes wrong, the compiler
3496 warns that an unrecognized option is present.
3497
3498 @table @gcctabopt
3499 @item -Wpedantic
3500 @itemx -pedantic
3501 @opindex pedantic
3502 @opindex Wpedantic
3503 Issue all the warnings demanded by strict ISO C and ISO C++;
3504 reject all programs that use forbidden extensions, and some other
3505 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3506 version of the ISO C standard specified by any @option{-std} option used.
3507
3508 Valid ISO C and ISO C++ programs should compile properly with or without
3509 this option (though a rare few require @option{-ansi} or a
3510 @option{-std} option specifying the required version of ISO C)@. However,
3511 without this option, certain GNU extensions and traditional C and C++
3512 features are supported as well. With this option, they are rejected.
3513
3514 @option{-Wpedantic} does not cause warning messages for use of the
3515 alternate keywords whose names begin and end with @samp{__}. Pedantic
3516 warnings are also disabled in the expression that follows
3517 @code{__extension__}. However, only system header files should use
3518 these escape routes; application programs should avoid them.
3519 @xref{Alternate Keywords}.
3520
3521 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3522 C conformance. They soon find that it does not do quite what they want:
3523 it finds some non-ISO practices, but not all---only those for which
3524 ISO C @emph{requires} a diagnostic, and some others for which
3525 diagnostics have been added.
3526
3527 A feature to report any failure to conform to ISO C might be useful in
3528 some instances, but would require considerable additional work and would
3529 be quite different from @option{-Wpedantic}. We don't have plans to
3530 support such a feature in the near future.
3531
3532 Where the standard specified with @option{-std} represents a GNU
3533 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3534 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3535 extended dialect is based. Warnings from @option{-Wpedantic} are given
3536 where they are required by the base standard. (It does not make sense
3537 for such warnings to be given only for features not in the specified GNU
3538 C dialect, since by definition the GNU dialects of C include all
3539 features the compiler supports with the given option, and there would be
3540 nothing to warn about.)
3541
3542 @item -pedantic-errors
3543 @opindex pedantic-errors
3544 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3545 requires a diagnostic, in some cases where there is undefined behavior
3546 at compile-time and in some other cases that do not prevent compilation
3547 of programs that are valid according to the standard. This is not
3548 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3549 by this option and not enabled by the latter and vice versa.
3550
3551 @item -Wall
3552 @opindex Wall
3553 @opindex Wno-all
3554 This enables all the warnings about constructions that some users
3555 consider questionable, and that are easy to avoid (or modify to
3556 prevent the warning), even in conjunction with macros. This also
3557 enables some language-specific warnings described in @ref{C++ Dialect
3558 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3559
3560 @option{-Wall} turns on the following warning flags:
3561
3562 @gccoptlist{-Waddress @gol
3563 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3564 -Wbool-compare @gol
3565 -Wc++11-compat -Wc++14-compat@gol
3566 -Wchar-subscripts @gol
3567 -Wcomment @gol
3568 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3569 -Wformat @gol
3570 -Wimplicit @r{(C and Objective-C only)} @gol
3571 -Wimplicit-int @r{(C and Objective-C only)} @gol
3572 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3573 -Winit-self @r{(only for C++)} @gol
3574 -Wlogical-not-parentheses
3575 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3576 -Wmaybe-uninitialized @gol
3577 -Wmemset-transposed-args @gol
3578 -Wmisleading-indentation @r{(only for C/C++)} @gol
3579 -Wmissing-braces @r{(only for C/ObjC)} @gol
3580 -Wnarrowing @r{(only for C++)} @gol
3581 -Wnonnull @gol
3582 -Wopenmp-simd @gol
3583 -Wparentheses @gol
3584 -Wpointer-sign @gol
3585 -Wreorder @gol
3586 -Wreturn-type @gol
3587 -Wsequence-point @gol
3588 -Wsign-compare @r{(only in C++)} @gol
3589 -Wsizeof-pointer-memaccess @gol
3590 -Wstrict-aliasing @gol
3591 -Wstrict-overflow=1 @gol
3592 -Wswitch @gol
3593 -Wtautological-compare @gol
3594 -Wtrigraphs @gol
3595 -Wuninitialized @gol
3596 -Wunknown-pragmas @gol
3597 -Wunused-function @gol
3598 -Wunused-label @gol
3599 -Wunused-value @gol
3600 -Wunused-variable @gol
3601 -Wvolatile-register-var @gol
3602 }
3603
3604 Note that some warning flags are not implied by @option{-Wall}. Some of
3605 them warn about constructions that users generally do not consider
3606 questionable, but which occasionally you might wish to check for;
3607 others warn about constructions that are necessary or hard to avoid in
3608 some cases, and there is no simple way to modify the code to suppress
3609 the warning. Some of them are enabled by @option{-Wextra} but many of
3610 them must be enabled individually.
3611
3612 @item -Wextra
3613 @opindex W
3614 @opindex Wextra
3615 @opindex Wno-extra
3616 This enables some extra warning flags that are not enabled by
3617 @option{-Wall}. (This option used to be called @option{-W}. The older
3618 name is still supported, but the newer name is more descriptive.)
3619
3620 @gccoptlist{-Wclobbered @gol
3621 -Wempty-body @gol
3622 -Wignored-qualifiers @gol
3623 -Wmissing-field-initializers @gol
3624 -Wmissing-parameter-type @r{(C only)} @gol
3625 -Wold-style-declaration @r{(C only)} @gol
3626 -Woverride-init @gol
3627 -Wsign-compare @r{(C only)} @gol
3628 -Wtype-limits @gol
3629 -Wuninitialized @gol
3630 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
3631 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3632 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3633 }
3634
3635 The option @option{-Wextra} also prints warning messages for the
3636 following cases:
3637
3638 @itemize @bullet
3639
3640 @item
3641 A pointer is compared against integer zero with @code{<}, @code{<=},
3642 @code{>}, or @code{>=}.
3643
3644 @item
3645 (C++ only) An enumerator and a non-enumerator both appear in a
3646 conditional expression.
3647
3648 @item
3649 (C++ only) Ambiguous virtual bases.
3650
3651 @item
3652 (C++ only) Subscripting an array that has been declared @code{register}.
3653
3654 @item
3655 (C++ only) Taking the address of a variable that has been declared
3656 @code{register}.
3657
3658 @item
3659 (C++ only) A base class is not initialized in a derived class's copy
3660 constructor.
3661
3662 @end itemize
3663
3664 @item -Wchar-subscripts
3665 @opindex Wchar-subscripts
3666 @opindex Wno-char-subscripts
3667 Warn if an array subscript has type @code{char}. This is a common cause
3668 of error, as programmers often forget that this type is signed on some
3669 machines.
3670 This warning is enabled by @option{-Wall}.
3671
3672 @item -Wcomment
3673 @opindex Wcomment
3674 @opindex Wno-comment
3675 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3676 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3677 This warning is enabled by @option{-Wall}.
3678
3679 @item -Wno-coverage-mismatch
3680 @opindex Wno-coverage-mismatch
3681 Warn if feedback profiles do not match when using the
3682 @option{-fprofile-use} option.
3683 If a source file is changed between compiling with @option{-fprofile-gen} and
3684 with @option{-fprofile-use}, the files with the profile feedback can fail
3685 to match the source file and GCC cannot use the profile feedback
3686 information. By default, this warning is enabled and is treated as an
3687 error. @option{-Wno-coverage-mismatch} can be used to disable the
3688 warning or @option{-Wno-error=coverage-mismatch} can be used to
3689 disable the error. Disabling the error for this warning can result in
3690 poorly optimized code and is useful only in the
3691 case of very minor changes such as bug fixes to an existing code-base.
3692 Completely disabling the warning is not recommended.
3693
3694 @item -Wno-cpp
3695 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3696
3697 Suppress warning messages emitted by @code{#warning} directives.
3698
3699 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3700 @opindex Wdouble-promotion
3701 @opindex Wno-double-promotion
3702 Give a warning when a value of type @code{float} is implicitly
3703 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3704 floating-point unit implement @code{float} in hardware, but emulate
3705 @code{double} in software. On such a machine, doing computations
3706 using @code{double} values is much more expensive because of the
3707 overhead required for software emulation.
3708
3709 It is easy to accidentally do computations with @code{double} because
3710 floating-point literals are implicitly of type @code{double}. For
3711 example, in:
3712 @smallexample
3713 @group
3714 float area(float radius)
3715 @{
3716 return 3.14159 * radius * radius;
3717 @}
3718 @end group
3719 @end smallexample
3720 the compiler performs the entire computation with @code{double}
3721 because the floating-point literal is a @code{double}.
3722
3723 @item -Wformat
3724 @itemx -Wformat=@var{n}
3725 @opindex Wformat
3726 @opindex Wno-format
3727 @opindex ffreestanding
3728 @opindex fno-builtin
3729 @opindex Wformat=
3730 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3731 the arguments supplied have types appropriate to the format string
3732 specified, and that the conversions specified in the format string make
3733 sense. This includes standard functions, and others specified by format
3734 attributes (@pxref{Function Attributes}), in the @code{printf},
3735 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3736 not in the C standard) families (or other target-specific families).
3737 Which functions are checked without format attributes having been
3738 specified depends on the standard version selected, and such checks of
3739 functions without the attribute specified are disabled by
3740 @option{-ffreestanding} or @option{-fno-builtin}.
3741
3742 The formats are checked against the format features supported by GNU
3743 libc version 2.2. These include all ISO C90 and C99 features, as well
3744 as features from the Single Unix Specification and some BSD and GNU
3745 extensions. Other library implementations may not support all these
3746 features; GCC does not support warning about features that go beyond a
3747 particular library's limitations. However, if @option{-Wpedantic} is used
3748 with @option{-Wformat}, warnings are given about format features not
3749 in the selected standard version (but not for @code{strfmon} formats,
3750 since those are not in any version of the C standard). @xref{C Dialect
3751 Options,,Options Controlling C Dialect}.
3752
3753 @table @gcctabopt
3754 @item -Wformat=1
3755 @itemx -Wformat
3756 @opindex Wformat
3757 @opindex Wformat=1
3758 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3759 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
3760 @option{-Wformat} also checks for null format arguments for several
3761 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
3762 aspects of this level of format checking can be disabled by the
3763 options: @option{-Wno-format-contains-nul},
3764 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3765 @option{-Wformat} is enabled by @option{-Wall}.
3766
3767 @item -Wno-format-contains-nul
3768 @opindex Wno-format-contains-nul
3769 @opindex Wformat-contains-nul
3770 If @option{-Wformat} is specified, do not warn about format strings that
3771 contain NUL bytes.
3772
3773 @item -Wno-format-extra-args
3774 @opindex Wno-format-extra-args
3775 @opindex Wformat-extra-args
3776 If @option{-Wformat} is specified, do not warn about excess arguments to a
3777 @code{printf} or @code{scanf} format function. The C standard specifies
3778 that such arguments are ignored.
3779
3780 Where the unused arguments lie between used arguments that are
3781 specified with @samp{$} operand number specifications, normally
3782 warnings are still given, since the implementation could not know what
3783 type to pass to @code{va_arg} to skip the unused arguments. However,
3784 in the case of @code{scanf} formats, this option suppresses the
3785 warning if the unused arguments are all pointers, since the Single
3786 Unix Specification says that such unused arguments are allowed.
3787
3788 @item -Wno-format-zero-length
3789 @opindex Wno-format-zero-length
3790 @opindex Wformat-zero-length
3791 If @option{-Wformat} is specified, do not warn about zero-length formats.
3792 The C standard specifies that zero-length formats are allowed.
3793
3794
3795 @item -Wformat=2
3796 @opindex Wformat=2
3797 Enable @option{-Wformat} plus additional format checks. Currently
3798 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3799 -Wformat-y2k}.
3800
3801 @item -Wformat-nonliteral
3802 @opindex Wformat-nonliteral
3803 @opindex Wno-format-nonliteral
3804 If @option{-Wformat} is specified, also warn if the format string is not a
3805 string literal and so cannot be checked, unless the format function
3806 takes its format arguments as a @code{va_list}.
3807
3808 @item -Wformat-security
3809 @opindex Wformat-security
3810 @opindex Wno-format-security
3811 If @option{-Wformat} is specified, also warn about uses of format
3812 functions that represent possible security problems. At present, this
3813 warns about calls to @code{printf} and @code{scanf} functions where the
3814 format string is not a string literal and there are no format arguments,
3815 as in @code{printf (foo);}. This may be a security hole if the format
3816 string came from untrusted input and contains @samp{%n}. (This is
3817 currently a subset of what @option{-Wformat-nonliteral} warns about, but
3818 in future warnings may be added to @option{-Wformat-security} that are not
3819 included in @option{-Wformat-nonliteral}.)
3820
3821 @item -Wformat-signedness
3822 @opindex Wformat-signedness
3823 @opindex Wno-format-signedness
3824 If @option{-Wformat} is specified, also warn if the format string
3825 requires an unsigned argument and the argument is signed and vice versa.
3826
3827 @item -Wformat-y2k
3828 @opindex Wformat-y2k
3829 @opindex Wno-format-y2k
3830 If @option{-Wformat} is specified, also warn about @code{strftime}
3831 formats that may yield only a two-digit year.
3832 @end table
3833
3834 @item -Wnonnull
3835 @opindex Wnonnull
3836 @opindex Wno-nonnull
3837 Warn about passing a null pointer for arguments marked as
3838 requiring a non-null value by the @code{nonnull} function attribute.
3839
3840 Also warns when comparing an argument marked with the @code{nonnull}
3841 function attribute against null inside the function.
3842
3843 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
3844 can be disabled with the @option{-Wno-nonnull} option.
3845
3846 @item -Wnull-dereference
3847 @opindex Wnull-dereference
3848 @opindex Wno-null-dereference
3849 Warn if the compiler detects paths that trigger erroneous or
3850 undefined behavior due to dereferencing a null pointer. This option
3851 is only active when @option{-fdelete-null-pointer-checks} is active,
3852 which is enabled by optimizations in most targets. The precision of
3853 the warnings depends on the optimization options used.
3854
3855 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3856 @opindex Winit-self
3857 @opindex Wno-init-self
3858 Warn about uninitialized variables that are initialized with themselves.
3859 Note this option can only be used with the @option{-Wuninitialized} option.
3860
3861 For example, GCC warns about @code{i} being uninitialized in the
3862 following snippet only when @option{-Winit-self} has been specified:
3863 @smallexample
3864 @group
3865 int f()
3866 @{
3867 int i = i;
3868 return i;
3869 @}
3870 @end group
3871 @end smallexample
3872
3873 This warning is enabled by @option{-Wall} in C++.
3874
3875 @item -Wimplicit-int @r{(C and Objective-C only)}
3876 @opindex Wimplicit-int
3877 @opindex Wno-implicit-int
3878 Warn when a declaration does not specify a type.
3879 This warning is enabled by @option{-Wall}.
3880
3881 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3882 @opindex Wimplicit-function-declaration
3883 @opindex Wno-implicit-function-declaration
3884 Give a warning whenever a function is used before being declared. In
3885 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3886 enabled by default and it is made into an error by
3887 @option{-pedantic-errors}. This warning is also enabled by
3888 @option{-Wall}.
3889
3890 @item -Wimplicit @r{(C and Objective-C only)}
3891 @opindex Wimplicit
3892 @opindex Wno-implicit
3893 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3894 This warning is enabled by @option{-Wall}.
3895
3896 @item -Wignored-qualifiers @r{(C and C++ only)}
3897 @opindex Wignored-qualifiers
3898 @opindex Wno-ignored-qualifiers
3899 Warn if the return type of a function has a type qualifier
3900 such as @code{const}. For ISO C such a type qualifier has no effect,
3901 since the value returned by a function is not an lvalue.
3902 For C++, the warning is only emitted for scalar types or @code{void}.
3903 ISO C prohibits qualified @code{void} return types on function
3904 definitions, so such return types always receive a warning
3905 even without this option.
3906
3907 This warning is also enabled by @option{-Wextra}.
3908
3909 @item -Wmain
3910 @opindex Wmain
3911 @opindex Wno-main
3912 Warn if the type of @code{main} is suspicious. @code{main} should be
3913 a function with external linkage, returning int, taking either zero
3914 arguments, two, or three arguments of appropriate types. This warning
3915 is enabled by default in C++ and is enabled by either @option{-Wall}
3916 or @option{-Wpedantic}.
3917
3918 @item -Wmisleading-indentation @r{(C and C++ only)}
3919 @opindex Wmisleading-indentation
3920 @opindex Wno-misleading-indentation
3921 Warn when the indentation of the code does not reflect the block structure.
3922 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
3923 @code{for} clauses with a guarded statement that does not use braces,
3924 followed by an unguarded statement with the same indentation.
3925
3926 In the following example, the call to ``bar'' is misleadingly indented as
3927 if it were guarded by the ``if'' conditional.
3928
3929 @smallexample
3930 if (some_condition ())
3931 foo ();
3932 bar (); /* Gotcha: this is not guarded by the "if". */
3933 @end smallexample
3934
3935 In the case of mixed tabs and spaces, the warning uses the
3936 @option{-ftabstop=} option to determine if the statements line up
3937 (defaulting to 8).
3938
3939 The warning is not issued for code involving multiline preprocessor logic
3940 such as the following example.
3941
3942 @smallexample
3943 if (flagA)
3944 foo (0);
3945 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
3946 if (flagB)
3947 #endif
3948 foo (1);
3949 @end smallexample
3950
3951 The warning is not issued after a @code{#line} directive, since this
3952 typically indicates autogenerated code, and no assumptions can be made
3953 about the layout of the file that the directive references.
3954
3955 This warning is enabled by @option{-Wall} in C and C++.
3956
3957 @item -Wmissing-braces
3958 @opindex Wmissing-braces
3959 @opindex Wno-missing-braces
3960 Warn if an aggregate or union initializer is not fully bracketed. In
3961 the following example, the initializer for @code{a} is not fully
3962 bracketed, but that for @code{b} is fully bracketed. This warning is
3963 enabled by @option{-Wall} in C.
3964
3965 @smallexample
3966 int a[2][2] = @{ 0, 1, 2, 3 @};
3967 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3968 @end smallexample
3969
3970 This warning is enabled by @option{-Wall}.
3971
3972 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3973 @opindex Wmissing-include-dirs
3974 @opindex Wno-missing-include-dirs
3975 Warn if a user-supplied include directory does not exist.
3976
3977 @item -Wparentheses
3978 @opindex Wparentheses
3979 @opindex Wno-parentheses
3980 Warn if parentheses are omitted in certain contexts, such
3981 as when there is an assignment in a context where a truth value
3982 is expected, or when operators are nested whose precedence people
3983 often get confused about.
3984
3985 Also warn if a comparison like @code{x<=y<=z} appears; this is
3986 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3987 interpretation from that of ordinary mathematical notation.
3988
3989 Also warn about constructions where there may be confusion to which
3990 @code{if} statement an @code{else} branch belongs. Here is an example of
3991 such a case:
3992
3993 @smallexample
3994 @group
3995 @{
3996 if (a)
3997 if (b)
3998 foo ();
3999 else
4000 bar ();
4001 @}
4002 @end group
4003 @end smallexample
4004
4005 In C/C++, every @code{else} branch belongs to the innermost possible
4006 @code{if} statement, which in this example is @code{if (b)}. This is
4007 often not what the programmer expected, as illustrated in the above
4008 example by indentation the programmer chose. When there is the
4009 potential for this confusion, GCC issues a warning when this flag
4010 is specified. To eliminate the warning, add explicit braces around
4011 the innermost @code{if} statement so there is no way the @code{else}
4012 can belong to the enclosing @code{if}. The resulting code
4013 looks like this:
4014
4015 @smallexample
4016 @group
4017 @{
4018 if (a)
4019 @{
4020 if (b)
4021 foo ();
4022 else
4023 bar ();
4024 @}
4025 @}
4026 @end group
4027 @end smallexample
4028
4029 Also warn for dangerous uses of the GNU extension to
4030 @code{?:} with omitted middle operand. When the condition
4031 in the @code{?}: operator is a boolean expression, the omitted value is
4032 always 1. Often programmers expect it to be a value computed
4033 inside the conditional expression instead.
4034
4035 This warning is enabled by @option{-Wall}.
4036
4037 @item -Wsequence-point
4038 @opindex Wsequence-point
4039 @opindex Wno-sequence-point
4040 Warn about code that may have undefined semantics because of violations
4041 of sequence point rules in the C and C++ standards.
4042
4043 The C and C++ standards define the order in which expressions in a C/C++
4044 program are evaluated in terms of @dfn{sequence points}, which represent
4045 a partial ordering between the execution of parts of the program: those
4046 executed before the sequence point, and those executed after it. These
4047 occur after the evaluation of a full expression (one which is not part
4048 of a larger expression), after the evaluation of the first operand of a
4049 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4050 function is called (but after the evaluation of its arguments and the
4051 expression denoting the called function), and in certain other places.
4052 Other than as expressed by the sequence point rules, the order of
4053 evaluation of subexpressions of an expression is not specified. All
4054 these rules describe only a partial order rather than a total order,
4055 since, for example, if two functions are called within one expression
4056 with no sequence point between them, the order in which the functions
4057 are called is not specified. However, the standards committee have
4058 ruled that function calls do not overlap.
4059
4060 It is not specified when between sequence points modifications to the
4061 values of objects take effect. Programs whose behavior depends on this
4062 have undefined behavior; the C and C++ standards specify that ``Between
4063 the previous and next sequence point an object shall have its stored
4064 value modified at most once by the evaluation of an expression.
4065 Furthermore, the prior value shall be read only to determine the value
4066 to be stored.''. If a program breaks these rules, the results on any
4067 particular implementation are entirely unpredictable.
4068
4069 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4070 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
4071 diagnosed by this option, and it may give an occasional false positive
4072 result, but in general it has been found fairly effective at detecting
4073 this sort of problem in programs.
4074
4075 The standard is worded confusingly, therefore there is some debate
4076 over the precise meaning of the sequence point rules in subtle cases.
4077 Links to discussions of the problem, including proposed formal
4078 definitions, may be found on the GCC readings page, at
4079 @uref{http://gcc.gnu.org/@/readings.html}.
4080
4081 This warning is enabled by @option{-Wall} for C and C++.
4082
4083 @item -Wno-return-local-addr
4084 @opindex Wno-return-local-addr
4085 @opindex Wreturn-local-addr
4086 Do not warn about returning a pointer (or in C++, a reference) to a
4087 variable that goes out of scope after the function returns.
4088
4089 @item -Wreturn-type
4090 @opindex Wreturn-type
4091 @opindex Wno-return-type
4092 Warn whenever a function is defined with a return type that defaults
4093 to @code{int}. Also warn about any @code{return} statement with no
4094 return value in a function whose return type is not @code{void}
4095 (falling off the end of the function body is considered returning
4096 without a value), and about a @code{return} statement with an
4097 expression in a function whose return type is @code{void}.
4098
4099 For C++, a function without return type always produces a diagnostic
4100 message, even when @option{-Wno-return-type} is specified. The only
4101 exceptions are @code{main} and functions defined in system headers.
4102
4103 This warning is enabled by @option{-Wall}.
4104
4105 @item -Wshift-count-negative
4106 @opindex Wshift-count-negative
4107 @opindex Wno-shift-count-negative
4108 Warn if shift count is negative. This warning is enabled by default.
4109
4110 @item -Wshift-count-overflow
4111 @opindex Wshift-count-overflow
4112 @opindex Wno-shift-count-overflow
4113 Warn if shift count >= width of type. This warning is enabled by default.
4114
4115 @item -Wshift-negative-value
4116 @opindex Wshift-negative-value
4117 @opindex Wno-shift-negative-value
4118 Warn if left shifting a negative value. This warning is enabled by
4119 @option{-Wextra} in C99 and C++11 modes (and newer).
4120
4121 @item -Wshift-overflow
4122 @itemx -Wshift-overflow=@var{n}
4123 @opindex Wshift-overflow
4124 @opindex Wno-shift-overflow
4125 Warn about left shift overflows. This warning is enabled by
4126 default in C99 and C++11 modes (and newer).
4127
4128 @table @gcctabopt
4129 @item -Wshift-overflow=1
4130 This is the warning level of @option{-Wshift-overflow} and is enabled
4131 by default in C99 and C++11 modes (and newer). This warning level does
4132 not warn about left-shifting 1 into the sign bit. (However, in C, such
4133 an overflow is still rejected in contexts where an integer constant expression
4134 is required.)
4135
4136 @item -Wshift-overflow=2
4137 This warning level also warns about left-shifting 1 into the sign bit,
4138 unless C++14 mode is active.
4139 @end table
4140
4141 @item -Wswitch
4142 @opindex Wswitch
4143 @opindex Wno-switch
4144 Warn whenever a @code{switch} statement has an index of enumerated type
4145 and lacks a @code{case} for one or more of the named codes of that
4146 enumeration. (The presence of a @code{default} label prevents this
4147 warning.) @code{case} labels outside the enumeration range also
4148 provoke warnings when this option is used (even if there is a
4149 @code{default} label).
4150 This warning is enabled by @option{-Wall}.
4151
4152 @item -Wswitch-default
4153 @opindex Wswitch-default
4154 @opindex Wno-switch-default
4155 Warn whenever a @code{switch} statement does not have a @code{default}
4156 case.
4157
4158 @item -Wswitch-enum
4159 @opindex Wswitch-enum
4160 @opindex Wno-switch-enum
4161 Warn whenever a @code{switch} statement has an index of enumerated type
4162 and lacks a @code{case} for one or more of the named codes of that
4163 enumeration. @code{case} labels outside the enumeration range also
4164 provoke warnings when this option is used. The only difference
4165 between @option{-Wswitch} and this option is that this option gives a
4166 warning about an omitted enumeration code even if there is a
4167 @code{default} label.
4168
4169 @item -Wswitch-bool
4170 @opindex Wswitch-bool
4171 @opindex Wno-switch-bool
4172 Warn whenever a @code{switch} statement has an index of boolean type
4173 and the case values are outside the range of a boolean type.
4174 It is possible to suppress this warning by casting the controlling
4175 expression to a type other than @code{bool}. For example:
4176 @smallexample
4177 @group
4178 switch ((int) (a == 4))
4179 @{
4180 @dots{}
4181 @}
4182 @end group
4183 @end smallexample
4184 This warning is enabled by default for C and C++ programs.
4185
4186 @item -Wsync-nand @r{(C and C++ only)}
4187 @opindex Wsync-nand
4188 @opindex Wno-sync-nand
4189 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4190 built-in functions are used. These functions changed semantics in GCC 4.4.
4191
4192 @item -Wtrigraphs
4193 @opindex Wtrigraphs
4194 @opindex Wno-trigraphs
4195 Warn if any trigraphs are encountered that might change the meaning of
4196 the program (trigraphs within comments are not warned about).
4197 This warning is enabled by @option{-Wall}.
4198
4199 @item -Wunused-but-set-parameter
4200 @opindex Wunused-but-set-parameter
4201 @opindex Wno-unused-but-set-parameter
4202 Warn whenever a function parameter is assigned to, but otherwise unused
4203 (aside from its declaration).
4204
4205 To suppress this warning use the @code{unused} attribute
4206 (@pxref{Variable Attributes}).
4207
4208 This warning is also enabled by @option{-Wunused} together with
4209 @option{-Wextra}.
4210
4211 @item -Wunused-but-set-variable
4212 @opindex Wunused-but-set-variable
4213 @opindex Wno-unused-but-set-variable
4214 Warn whenever a local variable is assigned to, but otherwise unused
4215 (aside from its declaration).
4216 This warning is enabled by @option{-Wall}.
4217
4218 To suppress this warning use the @code{unused} attribute
4219 (@pxref{Variable Attributes}).
4220
4221 This warning is also enabled by @option{-Wunused}, which is enabled
4222 by @option{-Wall}.
4223
4224 @item -Wunused-function
4225 @opindex Wunused-function
4226 @opindex Wno-unused-function
4227 Warn whenever a static function is declared but not defined or a
4228 non-inline static function is unused.
4229 This warning is enabled by @option{-Wall}.
4230
4231 @item -Wunused-label
4232 @opindex Wunused-label
4233 @opindex Wno-unused-label
4234 Warn whenever a label is declared but not used.
4235 This warning is enabled by @option{-Wall}.
4236
4237 To suppress this warning use the @code{unused} attribute
4238 (@pxref{Variable Attributes}).
4239
4240 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4241 @opindex Wunused-local-typedefs
4242 Warn when a typedef locally defined in a function is not used.
4243 This warning is enabled by @option{-Wall}.
4244
4245 @item -Wunused-parameter
4246 @opindex Wunused-parameter
4247 @opindex Wno-unused-parameter
4248 Warn whenever a function parameter is unused aside from its declaration.
4249
4250 To suppress this warning use the @code{unused} attribute
4251 (@pxref{Variable Attributes}).
4252
4253 @item -Wno-unused-result
4254 @opindex Wunused-result
4255 @opindex Wno-unused-result
4256 Do not warn if a caller of a function marked with attribute
4257 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4258 its return value. The default is @option{-Wunused-result}.
4259
4260 @item -Wunused-variable
4261 @opindex Wunused-variable
4262 @opindex Wno-unused-variable
4263 Warn whenever a local or static variable is unused aside from its
4264 declaration. This option implies @option{-Wunused-const-variable} for C,
4265 but not for C++. This warning is enabled by @option{-Wall}.
4266
4267 To suppress this warning use the @code{unused} attribute
4268 (@pxref{Variable Attributes}).
4269
4270 @item -Wunused-const-variable
4271 @opindex Wunused-const-variable
4272 @opindex Wno-unused-const-variable
4273 Warn whenever a constant static variable is unused aside from its declaration.
4274 This warning is enabled by @option{-Wunused-variable} for C, but not for C++.
4275 In C++ this is normally not an error since const variables take the place of
4276 @code{#define}s in C++.
4277
4278 To suppress this warning use the @code{unused} attribute
4279 (@pxref{Variable Attributes}).
4280
4281 @item -Wunused-value
4282 @opindex Wunused-value
4283 @opindex Wno-unused-value
4284 Warn whenever a statement computes a result that is explicitly not
4285 used. To suppress this warning cast the unused expression to
4286 @code{void}. This includes an expression-statement or the left-hand
4287 side of a comma expression that contains no side effects. For example,
4288 an expression such as @code{x[i,j]} causes a warning, while
4289 @code{x[(void)i,j]} does not.
4290
4291 This warning is enabled by @option{-Wall}.
4292
4293 @item -Wunused
4294 @opindex Wunused
4295 @opindex Wno-unused
4296 All the above @option{-Wunused} options combined.
4297
4298 In order to get a warning about an unused function parameter, you must
4299 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4300 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4301
4302 @item -Wuninitialized
4303 @opindex Wuninitialized
4304 @opindex Wno-uninitialized
4305 Warn if an automatic variable is used without first being initialized
4306 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4307 warn if a non-static reference or non-static @code{const} member
4308 appears in a class without constructors.
4309
4310 If you want to warn about code that uses the uninitialized value of the
4311 variable in its own initializer, use the @option{-Winit-self} option.
4312
4313 These warnings occur for individual uninitialized or clobbered
4314 elements of structure, union or array variables as well as for
4315 variables that are uninitialized or clobbered as a whole. They do
4316 not occur for variables or elements declared @code{volatile}. Because
4317 these warnings depend on optimization, the exact variables or elements
4318 for which there are warnings depends on the precise optimization
4319 options and version of GCC used.
4320
4321 Note that there may be no warning about a variable that is used only
4322 to compute a value that itself is never used, because such
4323 computations may be deleted by data flow analysis before the warnings
4324 are printed.
4325
4326 @item -Winvalid-memory-model
4327 @opindex Winvalid-memory-model
4328 @opindex Wno-invalid-memory-model
4329 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
4330 and the C11 atomic generic functions with a memory consistency argument
4331 that is either invalid for the operation or outside the range of values
4332 of the @code{memory_order} enumeration. For example, since the
4333 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
4334 defined for the relaxed, release, and sequentially consistent memory
4335 orders the following code is diagnosed:
4336
4337 @smallexample
4338 void store (int *i)
4339 @{
4340 __atomic_store_n (i, 0, memory_order_consume);
4341 @}
4342 @end smallexample
4343
4344 @option{-Winvalid-memory-model} is enabled by default.
4345
4346 @item -Wmaybe-uninitialized
4347 @opindex Wmaybe-uninitialized
4348 @opindex Wno-maybe-uninitialized
4349 For an automatic variable, if there exists a path from the function
4350 entry to a use of the variable that is initialized, but there exist
4351 some other paths for which the variable is not initialized, the compiler
4352 emits a warning if it cannot prove the uninitialized paths are not
4353 executed at run time. These warnings are made optional because GCC is
4354 not smart enough to see all the reasons why the code might be correct
4355 in spite of appearing to have an error. Here is one example of how
4356 this can happen:
4357
4358 @smallexample
4359 @group
4360 @{
4361 int x;
4362 switch (y)
4363 @{
4364 case 1: x = 1;
4365 break;
4366 case 2: x = 4;
4367 break;
4368 case 3: x = 5;
4369 @}
4370 foo (x);
4371 @}
4372 @end group
4373 @end smallexample
4374
4375 @noindent
4376 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4377 always initialized, but GCC doesn't know this. To suppress the
4378 warning, you need to provide a default case with assert(0) or
4379 similar code.
4380
4381 @cindex @code{longjmp} warnings
4382 This option also warns when a non-volatile automatic variable might be
4383 changed by a call to @code{longjmp}. These warnings as well are possible
4384 only in optimizing compilation.
4385
4386 The compiler sees only the calls to @code{setjmp}. It cannot know
4387 where @code{longjmp} will be called; in fact, a signal handler could
4388 call it at any point in the code. As a result, you may get a warning
4389 even when there is in fact no problem because @code{longjmp} cannot
4390 in fact be called at the place that would cause a problem.
4391
4392 Some spurious warnings can be avoided if you declare all the functions
4393 you use that never return as @code{noreturn}. @xref{Function
4394 Attributes}.
4395
4396 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4397
4398 @item -Wunknown-pragmas
4399 @opindex Wunknown-pragmas
4400 @opindex Wno-unknown-pragmas
4401 @cindex warning for unknown pragmas
4402 @cindex unknown pragmas, warning
4403 @cindex pragmas, warning of unknown
4404 Warn when a @code{#pragma} directive is encountered that is not understood by
4405 GCC@. If this command-line option is used, warnings are even issued
4406 for unknown pragmas in system header files. This is not the case if
4407 the warnings are only enabled by the @option{-Wall} command-line option.
4408
4409 @item -Wno-pragmas
4410 @opindex Wno-pragmas
4411 @opindex Wpragmas
4412 Do not warn about misuses of pragmas, such as incorrect parameters,
4413 invalid syntax, or conflicts between pragmas. See also
4414 @option{-Wunknown-pragmas}.
4415
4416 @item -Wstrict-aliasing
4417 @opindex Wstrict-aliasing
4418 @opindex Wno-strict-aliasing
4419 This option is only active when @option{-fstrict-aliasing} is active.
4420 It warns about code that might break the strict aliasing rules that the
4421 compiler is using for optimization. The warning does not catch all
4422 cases, but does attempt to catch the more common pitfalls. It is
4423 included in @option{-Wall}.
4424 It is equivalent to @option{-Wstrict-aliasing=3}
4425
4426 @item -Wstrict-aliasing=n
4427 @opindex Wstrict-aliasing=n
4428 This option is only active when @option{-fstrict-aliasing} is active.
4429 It warns about code that might break the strict aliasing rules that the
4430 compiler is using for optimization.
4431 Higher levels correspond to higher accuracy (fewer false positives).
4432 Higher levels also correspond to more effort, similar to the way @option{-O}
4433 works.
4434 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4435
4436 Level 1: Most aggressive, quick, least accurate.
4437 Possibly useful when higher levels
4438 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4439 false negatives. However, it has many false positives.
4440 Warns for all pointer conversions between possibly incompatible types,
4441 even if never dereferenced. Runs in the front end only.
4442
4443 Level 2: Aggressive, quick, not too precise.
4444 May still have many false positives (not as many as level 1 though),
4445 and few false negatives (but possibly more than level 1).
4446 Unlike level 1, it only warns when an address is taken. Warns about
4447 incomplete types. Runs in the front end only.
4448
4449 Level 3 (default for @option{-Wstrict-aliasing}):
4450 Should have very few false positives and few false
4451 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
4452 Takes care of the common pun+dereference pattern in the front end:
4453 @code{*(int*)&some_float}.
4454 If optimization is enabled, it also runs in the back end, where it deals
4455 with multiple statement cases using flow-sensitive points-to information.
4456 Only warns when the converted pointer is dereferenced.
4457 Does not warn about incomplete types.
4458
4459 @item -Wstrict-overflow
4460 @itemx -Wstrict-overflow=@var{n}
4461 @opindex Wstrict-overflow
4462 @opindex Wno-strict-overflow
4463 This option is only active when @option{-fstrict-overflow} is active.
4464 It warns about cases where the compiler optimizes based on the
4465 assumption that signed overflow does not occur. Note that it does not
4466 warn about all cases where the code might overflow: it only warns
4467 about cases where the compiler implements some optimization. Thus
4468 this warning depends on the optimization level.
4469
4470 An optimization that assumes that signed overflow does not occur is
4471 perfectly safe if the values of the variables involved are such that
4472 overflow never does, in fact, occur. Therefore this warning can
4473 easily give a false positive: a warning about code that is not
4474 actually a problem. To help focus on important issues, several
4475 warning levels are defined. No warnings are issued for the use of
4476 undefined signed overflow when estimating how many iterations a loop
4477 requires, in particular when determining whether a loop will be
4478 executed at all.
4479
4480 @table @gcctabopt
4481 @item -Wstrict-overflow=1
4482 Warn about cases that are both questionable and easy to avoid. For
4483 example, with @option{-fstrict-overflow}, the compiler simplifies
4484 @code{x + 1 > x} to @code{1}. This level of
4485 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4486 are not, and must be explicitly requested.
4487
4488 @item -Wstrict-overflow=2
4489 Also warn about other cases where a comparison is simplified to a
4490 constant. For example: @code{abs (x) >= 0}. This can only be
4491 simplified when @option{-fstrict-overflow} is in effect, because
4492 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4493 zero. @option{-Wstrict-overflow} (with no level) is the same as
4494 @option{-Wstrict-overflow=2}.
4495
4496 @item -Wstrict-overflow=3
4497 Also warn about other cases where a comparison is simplified. For
4498 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4499
4500 @item -Wstrict-overflow=4
4501 Also warn about other simplifications not covered by the above cases.
4502 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4503
4504 @item -Wstrict-overflow=5
4505 Also warn about cases where the compiler reduces the magnitude of a
4506 constant involved in a comparison. For example: @code{x + 2 > y} is
4507 simplified to @code{x + 1 >= y}. This is reported only at the
4508 highest warning level because this simplification applies to many
4509 comparisons, so this warning level gives a very large number of
4510 false positives.
4511 @end table
4512
4513 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4514 @opindex Wsuggest-attribute=
4515 @opindex Wno-suggest-attribute=
4516 Warn for cases where adding an attribute may be beneficial. The
4517 attributes currently supported are listed below.
4518
4519 @table @gcctabopt
4520 @item -Wsuggest-attribute=pure
4521 @itemx -Wsuggest-attribute=const
4522 @itemx -Wsuggest-attribute=noreturn
4523 @opindex Wsuggest-attribute=pure
4524 @opindex Wno-suggest-attribute=pure
4525 @opindex Wsuggest-attribute=const
4526 @opindex Wno-suggest-attribute=const
4527 @opindex Wsuggest-attribute=noreturn
4528 @opindex Wno-suggest-attribute=noreturn
4529
4530 Warn about functions that might be candidates for attributes
4531 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
4532 functions visible in other compilation units or (in the case of @code{pure} and
4533 @code{const}) if it cannot prove that the function returns normally. A function
4534 returns normally if it doesn't contain an infinite loop or return abnormally
4535 by throwing, calling @code{abort} or trapping. This analysis requires option
4536 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4537 higher. Higher optimization levels improve the accuracy of the analysis.
4538
4539 @item -Wsuggest-attribute=format
4540 @itemx -Wmissing-format-attribute
4541 @opindex Wsuggest-attribute=format
4542 @opindex Wmissing-format-attribute
4543 @opindex Wno-suggest-attribute=format
4544 @opindex Wno-missing-format-attribute
4545 @opindex Wformat
4546 @opindex Wno-format
4547
4548 Warn about function pointers that might be candidates for @code{format}
4549 attributes. Note these are only possible candidates, not absolute ones.
4550 GCC guesses that function pointers with @code{format} attributes that
4551 are used in assignment, initialization, parameter passing or return
4552 statements should have a corresponding @code{format} attribute in the
4553 resulting type. I.e.@: the left-hand side of the assignment or
4554 initialization, the type of the parameter variable, or the return type
4555 of the containing function respectively should also have a @code{format}
4556 attribute to avoid the warning.
4557
4558 GCC also warns about function definitions that might be
4559 candidates for @code{format} attributes. Again, these are only
4560 possible candidates. GCC guesses that @code{format} attributes
4561 might be appropriate for any function that calls a function like
4562 @code{vprintf} or @code{vscanf}, but this might not always be the
4563 case, and some functions for which @code{format} attributes are
4564 appropriate may not be detected.
4565 @end table
4566
4567 @item -Wsuggest-final-types
4568 @opindex Wno-suggest-final-types
4569 @opindex Wsuggest-final-types
4570 Warn about types with virtual methods where code quality would be improved
4571 if the type were declared with the C++11 @code{final} specifier,
4572 or, if possible,
4573 declared in an anonymous namespace. This allows GCC to more aggressively
4574 devirtualize the polymorphic calls. This warning is more effective with link
4575 time optimization, where the information about the class hierarchy graph is
4576 more complete.
4577
4578 @item -Wsuggest-final-methods
4579 @opindex Wno-suggest-final-methods
4580 @opindex Wsuggest-final-methods
4581 Warn about virtual methods where code quality would be improved if the method
4582 were declared with the C++11 @code{final} specifier,
4583 or, if possible, its type were
4584 declared in an anonymous namespace or with the @code{final} specifier.
4585 This warning is
4586 more effective with link time optimization, where the information about the
4587 class hierarchy graph is more complete. It is recommended to first consider
4588 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4589 annotations.
4590
4591 @item -Wsuggest-override
4592 Warn about overriding virtual functions that are not marked with the override
4593 keyword.
4594
4595 @item -Warray-bounds
4596 @itemx -Warray-bounds=@var{n}
4597 @opindex Wno-array-bounds
4598 @opindex Warray-bounds
4599 This option is only active when @option{-ftree-vrp} is active
4600 (default for @option{-O2} and above). It warns about subscripts to arrays
4601 that are always out of bounds. This warning is enabled by @option{-Wall}.
4602
4603 @table @gcctabopt
4604 @item -Warray-bounds=1
4605 This is the warning level of @option{-Warray-bounds} and is enabled
4606 by @option{-Wall}; higher levels are not, and must be explicitly requested.
4607
4608 @item -Warray-bounds=2
4609 This warning level also warns about out of bounds access for
4610 arrays at the end of a struct and for arrays accessed through
4611 pointers. This warning level may give a larger number of
4612 false positives and is deactivated by default.
4613 @end table
4614
4615 @item -Wbool-compare
4616 @opindex Wno-bool-compare
4617 @opindex Wbool-compare
4618 Warn about boolean expression compared with an integer value different from
4619 @code{true}/@code{false}. For instance, the following comparison is
4620 always false:
4621 @smallexample
4622 int n = 5;
4623 @dots{}
4624 if ((n > 1) == 2) @{ @dots{} @}
4625 @end smallexample
4626 This warning is enabled by @option{-Wall}.
4627
4628 @item -Wduplicated-cond
4629 @opindex Wno-duplicated-cond
4630 @opindex Wduplicated-cond
4631 Warn about duplicated conditions in an if-else-if chain. For instance,
4632 warn for the following code:
4633 @smallexample
4634 if (p->q != NULL) @{ @dots{} @}
4635 else if (p->q != NULL) @{ @dots{} @}
4636 @end smallexample
4637
4638 @item -Wframe-address
4639 @opindex Wno-frame-address
4640 @opindex Wframe-address
4641 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
4642 is called with an argument greater than 0. Such calls may return indeterminate
4643 values or crash the program. The warning is included in @option{-Wall}.
4644
4645 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4646 @opindex Wno-discarded-qualifiers
4647 @opindex Wdiscarded-qualifiers
4648 Do not warn if type qualifiers on pointers are being discarded.
4649 Typically, the compiler warns if a @code{const char *} variable is
4650 passed to a function that takes a @code{char *} parameter. This option
4651 can be used to suppress such a warning.
4652
4653 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4654 @opindex Wno-discarded-array-qualifiers
4655 @opindex Wdiscarded-array-qualifiers
4656 Do not warn if type qualifiers on arrays which are pointer targets
4657 are being discarded. Typically, the compiler warns if a
4658 @code{const int (*)[]} variable is passed to a function that
4659 takes a @code{int (*)[]} parameter. This option can be used to
4660 suppress such a warning.
4661
4662 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4663 @opindex Wno-incompatible-pointer-types
4664 @opindex Wincompatible-pointer-types
4665 Do not warn when there is a conversion between pointers that have incompatible
4666 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
4667 which warns for pointer argument passing or assignment with different
4668 signedness.
4669
4670 @item -Wno-int-conversion @r{(C and Objective-C only)}
4671 @opindex Wno-int-conversion
4672 @opindex Wint-conversion
4673 Do not warn about incompatible integer to pointer and pointer to integer
4674 conversions. This warning is about implicit conversions; for explicit
4675 conversions the warnings @option{-Wno-int-to-pointer-cast} and
4676 @option{-Wno-pointer-to-int-cast} may be used.
4677
4678 @item -Wno-div-by-zero
4679 @opindex Wno-div-by-zero
4680 @opindex Wdiv-by-zero
4681 Do not warn about compile-time integer division by zero. Floating-point
4682 division by zero is not warned about, as it can be a legitimate way of
4683 obtaining infinities and NaNs.
4684
4685 @item -Wsystem-headers
4686 @opindex Wsystem-headers
4687 @opindex Wno-system-headers
4688 @cindex warnings from system headers
4689 @cindex system headers, warnings from
4690 Print warning messages for constructs found in system header files.
4691 Warnings from system headers are normally suppressed, on the assumption
4692 that they usually do not indicate real problems and would only make the
4693 compiler output harder to read. Using this command-line option tells
4694 GCC to emit warnings from system headers as if they occurred in user
4695 code. However, note that using @option{-Wall} in conjunction with this
4696 option does @emph{not} warn about unknown pragmas in system
4697 headers---for that, @option{-Wunknown-pragmas} must also be used.
4698
4699 @item -Wtautological-compare
4700 @opindex Wtautological-compare
4701 @opindex Wno-tautological-compare
4702 Warn if a self-comparison always evaluates to true or false. This
4703 warning detects various mistakes such as:
4704 @smallexample
4705 int i = 1;
4706 @dots{}
4707 if (i > i) @{ @dots{} @}
4708 @end smallexample
4709 This warning is enabled by @option{-Wall}.
4710
4711 @item -Wtrampolines
4712 @opindex Wtrampolines
4713 @opindex Wno-trampolines
4714 Warn about trampolines generated for pointers to nested functions.
4715 A trampoline is a small piece of data or code that is created at run
4716 time on the stack when the address of a nested function is taken, and is
4717 used to call the nested function indirectly. For some targets, it is
4718 made up of data only and thus requires no special treatment. But, for
4719 most targets, it is made up of code and thus requires the stack to be
4720 made executable in order for the program to work properly.
4721
4722 @item -Wfloat-equal
4723 @opindex Wfloat-equal
4724 @opindex Wno-float-equal
4725 Warn if floating-point values are used in equality comparisons.
4726
4727 The idea behind this is that sometimes it is convenient (for the
4728 programmer) to consider floating-point values as approximations to
4729 infinitely precise real numbers. If you are doing this, then you need
4730 to compute (by analyzing the code, or in some other way) the maximum or
4731 likely maximum error that the computation introduces, and allow for it
4732 when performing comparisons (and when producing output, but that's a
4733 different problem). In particular, instead of testing for equality, you
4734 should check to see whether the two values have ranges that overlap; and
4735 this is done with the relational operators, so equality comparisons are
4736 probably mistaken.
4737
4738 @item -Wtraditional @r{(C and Objective-C only)}
4739 @opindex Wtraditional
4740 @opindex Wno-traditional
4741 Warn about certain constructs that behave differently in traditional and
4742 ISO C@. Also warn about ISO C constructs that have no traditional C
4743 equivalent, and/or problematic constructs that should be avoided.
4744
4745 @itemize @bullet
4746 @item
4747 Macro parameters that appear within string literals in the macro body.
4748 In traditional C macro replacement takes place within string literals,
4749 but in ISO C it does not.
4750
4751 @item
4752 In traditional C, some preprocessor directives did not exist.
4753 Traditional preprocessors only considered a line to be a directive
4754 if the @samp{#} appeared in column 1 on the line. Therefore
4755 @option{-Wtraditional} warns about directives that traditional C
4756 understands but ignores because the @samp{#} does not appear as the
4757 first character on the line. It also suggests you hide directives like
4758 @code{#pragma} not understood by traditional C by indenting them. Some
4759 traditional implementations do not recognize @code{#elif}, so this option
4760 suggests avoiding it altogether.
4761
4762 @item
4763 A function-like macro that appears without arguments.
4764
4765 @item
4766 The unary plus operator.
4767
4768 @item
4769 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4770 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
4771 constants.) Note, these suffixes appear in macros defined in the system
4772 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4773 Use of these macros in user code might normally lead to spurious
4774 warnings, however GCC's integrated preprocessor has enough context to
4775 avoid warning in these cases.
4776
4777 @item
4778 A function declared external in one block and then used after the end of
4779 the block.
4780
4781 @item
4782 A @code{switch} statement has an operand of type @code{long}.
4783
4784 @item
4785 A non-@code{static} function declaration follows a @code{static} one.
4786 This construct is not accepted by some traditional C compilers.
4787
4788 @item
4789 The ISO type of an integer constant has a different width or
4790 signedness from its traditional type. This warning is only issued if
4791 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
4792 typically represent bit patterns, are not warned about.
4793
4794 @item
4795 Usage of ISO string concatenation is detected.
4796
4797 @item
4798 Initialization of automatic aggregates.
4799
4800 @item
4801 Identifier conflicts with labels. Traditional C lacks a separate
4802 namespace for labels.
4803
4804 @item
4805 Initialization of unions. If the initializer is zero, the warning is
4806 omitted. This is done under the assumption that the zero initializer in
4807 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4808 initializer warnings and relies on default initialization to zero in the
4809 traditional C case.
4810
4811 @item
4812 Conversions by prototypes between fixed/floating-point values and vice
4813 versa. The absence of these prototypes when compiling with traditional
4814 C causes serious problems. This is a subset of the possible
4815 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4816
4817 @item
4818 Use of ISO C style function definitions. This warning intentionally is
4819 @emph{not} issued for prototype declarations or variadic functions
4820 because these ISO C features appear in your code when using
4821 libiberty's traditional C compatibility macros, @code{PARAMS} and
4822 @code{VPARAMS}. This warning is also bypassed for nested functions
4823 because that feature is already a GCC extension and thus not relevant to
4824 traditional C compatibility.
4825 @end itemize
4826
4827 @item -Wtraditional-conversion @r{(C and Objective-C only)}
4828 @opindex Wtraditional-conversion
4829 @opindex Wno-traditional-conversion
4830 Warn if a prototype causes a type conversion that is different from what
4831 would happen to the same argument in the absence of a prototype. This
4832 includes conversions of fixed point to floating and vice versa, and
4833 conversions changing the width or signedness of a fixed-point argument
4834 except when the same as the default promotion.
4835
4836 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4837 @opindex Wdeclaration-after-statement
4838 @opindex Wno-declaration-after-statement
4839 Warn when a declaration is found after a statement in a block. This
4840 construct, known from C++, was introduced with ISO C99 and is by default
4841 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
4842
4843 @item -Wundef
4844 @opindex Wundef
4845 @opindex Wno-undef
4846 Warn if an undefined identifier is evaluated in an @code{#if} directive.
4847
4848 @item -Wno-endif-labels
4849 @opindex Wno-endif-labels
4850 @opindex Wendif-labels
4851 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4852
4853 @item -Wshadow
4854 @opindex Wshadow
4855 @opindex Wno-shadow
4856 Warn whenever a local variable or type declaration shadows another
4857 variable, parameter, type, class member (in C++), or instance variable
4858 (in Objective-C) or whenever a built-in function is shadowed. Note
4859 that in C++, the compiler warns if a local variable shadows an
4860 explicit typedef, but not if it shadows a struct/class/enum.
4861
4862 @item -Wno-shadow-ivar @r{(Objective-C only)}
4863 @opindex Wno-shadow-ivar
4864 @opindex Wshadow-ivar
4865 Do not warn whenever a local variable shadows an instance variable in an
4866 Objective-C method.
4867
4868 @item -Wlarger-than=@var{len}
4869 @opindex Wlarger-than=@var{len}
4870 @opindex Wlarger-than-@var{len}
4871 Warn whenever an object of larger than @var{len} bytes is defined.
4872
4873 @item -Wframe-larger-than=@var{len}
4874 @opindex Wframe-larger-than
4875 Warn if the size of a function frame is larger than @var{len} bytes.
4876 The computation done to determine the stack frame size is approximate
4877 and not conservative.
4878 The actual requirements may be somewhat greater than @var{len}
4879 even if you do not get a warning. In addition, any space allocated
4880 via @code{alloca}, variable-length arrays, or related constructs
4881 is not included by the compiler when determining
4882 whether or not to issue a warning.
4883
4884 @item -Wno-free-nonheap-object
4885 @opindex Wno-free-nonheap-object
4886 @opindex Wfree-nonheap-object
4887 Do not warn when attempting to free an object that was not allocated
4888 on the heap.
4889
4890 @item -Wstack-usage=@var{len}
4891 @opindex Wstack-usage
4892 Warn if the stack usage of a function might be larger than @var{len} bytes.
4893 The computation done to determine the stack usage is conservative.
4894 Any space allocated via @code{alloca}, variable-length arrays, or related
4895 constructs is included by the compiler when determining whether or not to
4896 issue a warning.
4897
4898 The message is in keeping with the output of @option{-fstack-usage}.
4899
4900 @itemize
4901 @item
4902 If the stack usage is fully static but exceeds the specified amount, it's:
4903
4904 @smallexample
4905 warning: stack usage is 1120 bytes
4906 @end smallexample
4907 @item
4908 If the stack usage is (partly) dynamic but bounded, it's:
4909
4910 @smallexample
4911 warning: stack usage might be 1648 bytes
4912 @end smallexample
4913 @item
4914 If the stack usage is (partly) dynamic and not bounded, it's:
4915
4916 @smallexample
4917 warning: stack usage might be unbounded
4918 @end smallexample
4919 @end itemize
4920
4921 @item -Wunsafe-loop-optimizations
4922 @opindex Wunsafe-loop-optimizations
4923 @opindex Wno-unsafe-loop-optimizations
4924 Warn if the loop cannot be optimized because the compiler cannot
4925 assume anything on the bounds of the loop indices. With
4926 @option{-funsafe-loop-optimizations} warn if the compiler makes
4927 such assumptions.
4928
4929 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4930 @opindex Wno-pedantic-ms-format
4931 @opindex Wpedantic-ms-format
4932 When used in combination with @option{-Wformat}
4933 and @option{-pedantic} without GNU extensions, this option
4934 disables the warnings about non-ISO @code{printf} / @code{scanf} format
4935 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4936 which depend on the MS runtime.
4937
4938 @item -Wplacement-new
4939 @opindex Wplacement-new
4940 @opindex Wno-placement-new
4941 Warn about placement new expressions with undefined behavior, such as
4942 constructing an object in a buffer that is smaller than the type of
4943 the object. For example, the placement new expression below is diagnosed
4944 because it attempts to construct an array of 64 integers in a buffer only
4945 64 bytes large.
4946 @smallexample
4947 char buf [64];
4948 new (buf) int[64];
4949 @end smallexample
4950 This warning is enabled by default.
4951
4952 @item -Wpointer-arith
4953 @opindex Wpointer-arith
4954 @opindex Wno-pointer-arith
4955 Warn about anything that depends on the ``size of'' a function type or
4956 of @code{void}. GNU C assigns these types a size of 1, for
4957 convenience in calculations with @code{void *} pointers and pointers
4958 to functions. In C++, warn also when an arithmetic operation involves
4959 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
4960
4961 @item -Wtype-limits
4962 @opindex Wtype-limits
4963 @opindex Wno-type-limits
4964 Warn if a comparison is always true or always false due to the limited
4965 range of the data type, but do not warn for constant expressions. For
4966 example, warn if an unsigned variable is compared against zero with
4967 @code{<} or @code{>=}. This warning is also enabled by
4968 @option{-Wextra}.
4969
4970 @item -Wbad-function-cast @r{(C and Objective-C only)}
4971 @opindex Wbad-function-cast
4972 @opindex Wno-bad-function-cast
4973 Warn when a function call is cast to a non-matching type.
4974 For example, warn if a call to a function returning an integer type
4975 is cast to a pointer type.
4976
4977 @item -Wc90-c99-compat @r{(C and Objective-C only)}
4978 @opindex Wc90-c99-compat
4979 @opindex Wno-c90-c99-compat
4980 Warn about features not present in ISO C90, but present in ISO C99.
4981 For instance, warn about use of variable length arrays, @code{long long}
4982 type, @code{bool} type, compound literals, designated initializers, and so
4983 on. This option is independent of the standards mode. Warnings are disabled
4984 in the expression that follows @code{__extension__}.
4985
4986 @item -Wc99-c11-compat @r{(C and Objective-C only)}
4987 @opindex Wc99-c11-compat
4988 @opindex Wno-c99-c11-compat
4989 Warn about features not present in ISO C99, but present in ISO C11.
4990 For instance, warn about use of anonymous structures and unions,
4991 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4992 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4993 and so on. This option is independent of the standards mode. Warnings are
4994 disabled in the expression that follows @code{__extension__}.
4995
4996 @item -Wc++-compat @r{(C and Objective-C only)}
4997 @opindex Wc++-compat
4998 Warn about ISO C constructs that are outside of the common subset of
4999 ISO C and ISO C++, e.g.@: request for implicit conversion from
5000 @code{void *} to a pointer to non-@code{void} type.
5001
5002 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
5003 @opindex Wc++11-compat
5004 Warn about C++ constructs whose meaning differs between ISO C++ 1998
5005 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
5006 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
5007 enabled by @option{-Wall}.
5008
5009 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
5010 @opindex Wc++14-compat
5011 Warn about C++ constructs whose meaning differs between ISO C++ 2011
5012 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
5013
5014 @item -Wcast-qual
5015 @opindex Wcast-qual
5016 @opindex Wno-cast-qual
5017 Warn whenever a pointer is cast so as to remove a type qualifier from
5018 the target type. For example, warn if a @code{const char *} is cast
5019 to an ordinary @code{char *}.
5020
5021 Also warn when making a cast that introduces a type qualifier in an
5022 unsafe way. For example, casting @code{char **} to @code{const char **}
5023 is unsafe, as in this example:
5024
5025 @smallexample
5026 /* p is char ** value. */
5027 const char **q = (const char **) p;
5028 /* Assignment of readonly string to const char * is OK. */
5029 *q = "string";
5030 /* Now char** pointer points to read-only memory. */
5031 **p = 'b';
5032 @end smallexample
5033
5034 @item -Wcast-align
5035 @opindex Wcast-align
5036 @opindex Wno-cast-align
5037 Warn whenever a pointer is cast such that the required alignment of the
5038 target is increased. For example, warn if a @code{char *} is cast to
5039 an @code{int *} on machines where integers can only be accessed at
5040 two- or four-byte boundaries.
5041
5042 @item -Wwrite-strings
5043 @opindex Wwrite-strings
5044 @opindex Wno-write-strings
5045 When compiling C, give string constants the type @code{const
5046 char[@var{length}]} so that copying the address of one into a
5047 non-@code{const} @code{char *} pointer produces a warning. These
5048 warnings help you find at compile time code that can try to write
5049 into a string constant, but only if you have been very careful about
5050 using @code{const} in declarations and prototypes. Otherwise, it is
5051 just a nuisance. This is why we did not make @option{-Wall} request
5052 these warnings.
5053
5054 When compiling C++, warn about the deprecated conversion from string
5055 literals to @code{char *}. This warning is enabled by default for C++
5056 programs.
5057
5058 @item -Wclobbered
5059 @opindex Wclobbered
5060 @opindex Wno-clobbered
5061 Warn for variables that might be changed by @code{longjmp} or
5062 @code{vfork}. This warning is also enabled by @option{-Wextra}.
5063
5064 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
5065 @opindex Wconditionally-supported
5066 @opindex Wno-conditionally-supported
5067 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
5068
5069 @item -Wconversion
5070 @opindex Wconversion
5071 @opindex Wno-conversion
5072 Warn for implicit conversions that may alter a value. This includes
5073 conversions between real and integer, like @code{abs (x)} when
5074 @code{x} is @code{double}; conversions between signed and unsigned,
5075 like @code{unsigned ui = -1}; and conversions to smaller types, like
5076 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
5077 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
5078 changed by the conversion like in @code{abs (2.0)}. Warnings about
5079 conversions between signed and unsigned integers can be disabled by
5080 using @option{-Wno-sign-conversion}.
5081
5082 For C++, also warn for confusing overload resolution for user-defined
5083 conversions; and conversions that never use a type conversion
5084 operator: conversions to @code{void}, the same type, a base class or a
5085 reference to them. Warnings about conversions between signed and
5086 unsigned integers are disabled by default in C++ unless
5087 @option{-Wsign-conversion} is explicitly enabled.
5088
5089 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
5090 @opindex Wconversion-null
5091 @opindex Wno-conversion-null
5092 Do not warn for conversions between @code{NULL} and non-pointer
5093 types. @option{-Wconversion-null} is enabled by default.
5094
5095 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
5096 @opindex Wzero-as-null-pointer-constant
5097 @opindex Wno-zero-as-null-pointer-constant
5098 Warn when a literal '0' is used as null pointer constant. This can
5099 be useful to facilitate the conversion to @code{nullptr} in C++11.
5100
5101 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
5102 @opindex Wsubobject-linkage
5103 @opindex Wno-subobject-linkage
5104 Warn if a class type has a base or a field whose type uses the anonymous
5105 namespace or depends on a type with no linkage. If a type A depends on
5106 a type B with no or internal linkage, defining it in multiple
5107 translation units would be an ODR violation because the meaning of B
5108 is different in each translation unit. If A only appears in a single
5109 translation unit, the best way to silence the warning is to give it
5110 internal linkage by putting it in an anonymous namespace as well. The
5111 compiler doesn't give this warning for types defined in the main .C
5112 file, as those are unlikely to have multiple definitions.
5113 @option{-Wsubobject-linkage} is enabled by default.
5114
5115 @item -Wdate-time
5116 @opindex Wdate-time
5117 @opindex Wno-date-time
5118 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
5119 are encountered as they might prevent bit-wise-identical reproducible
5120 compilations.
5121
5122 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
5123 @opindex Wdelete-incomplete
5124 @opindex Wno-delete-incomplete
5125 Warn when deleting a pointer to incomplete type, which may cause
5126 undefined behavior at runtime. This warning is enabled by default.
5127
5128 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
5129 @opindex Wuseless-cast
5130 @opindex Wno-useless-cast
5131 Warn when an expression is casted to its own type.
5132
5133 @item -Wempty-body
5134 @opindex Wempty-body
5135 @opindex Wno-empty-body
5136 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
5137 while} statement. This warning is also enabled by @option{-Wextra}.
5138
5139 @item -Wenum-compare
5140 @opindex Wenum-compare
5141 @opindex Wno-enum-compare
5142 Warn about a comparison between values of different enumerated types.
5143 In C++ enumeral mismatches in conditional expressions are also
5144 diagnosed and the warning is enabled by default. In C this warning is
5145 enabled by @option{-Wall}.
5146
5147 @item -Wjump-misses-init @r{(C, Objective-C only)}
5148 @opindex Wjump-misses-init
5149 @opindex Wno-jump-misses-init
5150 Warn if a @code{goto} statement or a @code{switch} statement jumps
5151 forward across the initialization of a variable, or jumps backward to a
5152 label after the variable has been initialized. This only warns about
5153 variables that are initialized when they are declared. This warning is
5154 only supported for C and Objective-C; in C++ this sort of branch is an
5155 error in any case.
5156
5157 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
5158 can be disabled with the @option{-Wno-jump-misses-init} option.
5159
5160 @item -Wsign-compare
5161 @opindex Wsign-compare
5162 @opindex Wno-sign-compare
5163 @cindex warning for comparison of signed and unsigned values
5164 @cindex comparison of signed and unsigned values, warning
5165 @cindex signed and unsigned values, comparison warning
5166 Warn when a comparison between signed and unsigned values could produce
5167 an incorrect result when the signed value is converted to unsigned.
5168 In C++, this warning is also enabled by @option{-Wall}. In C, it is
5169 also enabled by @option{-Wextra}.
5170
5171 @item -Wsign-conversion
5172 @opindex Wsign-conversion
5173 @opindex Wno-sign-conversion
5174 Warn for implicit conversions that may change the sign of an integer
5175 value, like assigning a signed integer expression to an unsigned
5176 integer variable. An explicit cast silences the warning. In C, this
5177 option is enabled also by @option{-Wconversion}.
5178
5179 @item -Wfloat-conversion
5180 @opindex Wfloat-conversion
5181 @opindex Wno-float-conversion
5182 Warn for implicit conversions that reduce the precision of a real value.
5183 This includes conversions from real to integer, and from higher precision
5184 real to lower precision real values. This option is also enabled by
5185 @option{-Wconversion}.
5186
5187 @item -Wno-scalar-storage-order
5188 @opindex -Wno-scalar-storage-order
5189 @opindex -Wscalar-storage-order
5190 Do not warn on suspicious constructs involving reverse scalar storage order.
5191
5192 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
5193 @opindex Wsized-deallocation
5194 @opindex Wno-sized-deallocation
5195 Warn about a definition of an unsized deallocation function
5196 @smallexample
5197 void operator delete (void *) noexcept;
5198 void operator delete[] (void *) noexcept;
5199 @end smallexample
5200 without a definition of the corresponding sized deallocation function
5201 @smallexample
5202 void operator delete (void *, std::size_t) noexcept;
5203 void operator delete[] (void *, std::size_t) noexcept;
5204 @end smallexample
5205 or vice versa. Enabled by @option{-Wextra} along with
5206 @option{-fsized-deallocation}.
5207
5208 @item -Wsizeof-pointer-memaccess
5209 @opindex Wsizeof-pointer-memaccess
5210 @opindex Wno-sizeof-pointer-memaccess
5211 Warn for suspicious length parameters to certain string and memory built-in
5212 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
5213 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
5214 but a pointer, and suggests a possible fix, or about
5215 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
5216 @option{-Wall}.
5217
5218 @item -Wsizeof-array-argument
5219 @opindex Wsizeof-array-argument
5220 @opindex Wno-sizeof-array-argument
5221 Warn when the @code{sizeof} operator is applied to a parameter that is
5222 declared as an array in a function definition. This warning is enabled by
5223 default for C and C++ programs.
5224
5225 @item -Wmemset-transposed-args
5226 @opindex Wmemset-transposed-args
5227 @opindex Wno-memset-transposed-args
5228 Warn for suspicious calls to the @code{memset} built-in function, if the
5229 second argument is not zero and the third argument is zero. This warns e.g.@
5230 about @code{memset (buf, sizeof buf, 0)} where most probably
5231 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
5232 is only emitted if the third argument is literal zero. If it is some
5233 expression that is folded to zero, a cast of zero to some type, etc.,
5234 it is far less likely that the user has mistakenly exchanged the arguments
5235 and no warning is emitted. This warning is enabled by @option{-Wall}.
5236
5237 @item -Waddress
5238 @opindex Waddress
5239 @opindex Wno-address
5240 Warn about suspicious uses of memory addresses. These include using
5241 the address of a function in a conditional expression, such as
5242 @code{void func(void); if (func)}, and comparisons against the memory
5243 address of a string literal, such as @code{if (x == "abc")}. Such
5244 uses typically indicate a programmer error: the address of a function
5245 always evaluates to true, so their use in a conditional usually
5246 indicate that the programmer forgot the parentheses in a function
5247 call; and comparisons against string literals result in unspecified
5248 behavior and are not portable in C, so they usually indicate that the
5249 programmer intended to use @code{strcmp}. This warning is enabled by
5250 @option{-Wall}.
5251
5252 @item -Wlogical-op
5253 @opindex Wlogical-op
5254 @opindex Wno-logical-op
5255 Warn about suspicious uses of logical operators in expressions.
5256 This includes using logical operators in contexts where a
5257 bit-wise operator is likely to be expected. Also warns when
5258 the operands of a logical operator are the same:
5259 @smallexample
5260 extern int a;
5261 if (a < 0 && a < 0) @{ @dots{} @}
5262 @end smallexample
5263
5264 @item -Wlogical-not-parentheses
5265 @opindex Wlogical-not-parentheses
5266 @opindex Wno-logical-not-parentheses
5267 Warn about logical not used on the left hand side operand of a comparison.
5268 This option does not warn if the RHS operand is of a boolean type. Its
5269 purpose is to detect suspicious code like the following:
5270 @smallexample
5271 int a;
5272 @dots{}
5273 if (!a > 1) @{ @dots{} @}
5274 @end smallexample
5275
5276 It is possible to suppress the warning by wrapping the LHS into
5277 parentheses:
5278 @smallexample
5279 if ((!a) > 1) @{ @dots{} @}
5280 @end smallexample
5281
5282 This warning is enabled by @option{-Wall}.
5283
5284 @item -Waggregate-return
5285 @opindex Waggregate-return
5286 @opindex Wno-aggregate-return
5287 Warn if any functions that return structures or unions are defined or
5288 called. (In languages where you can return an array, this also elicits
5289 a warning.)
5290
5291 @item -Wno-aggressive-loop-optimizations
5292 @opindex Wno-aggressive-loop-optimizations
5293 @opindex Waggressive-loop-optimizations
5294 Warn if in a loop with constant number of iterations the compiler detects
5295 undefined behavior in some statement during one or more of the iterations.
5296
5297 @item -Wno-attributes
5298 @opindex Wno-attributes
5299 @opindex Wattributes
5300 Do not warn if an unexpected @code{__attribute__} is used, such as
5301 unrecognized attributes, function attributes applied to variables,
5302 etc. This does not stop errors for incorrect use of supported
5303 attributes.
5304
5305 @item -Wno-builtin-macro-redefined
5306 @opindex Wno-builtin-macro-redefined
5307 @opindex Wbuiltin-macro-redefined
5308 Do not warn if certain built-in macros are redefined. This suppresses
5309 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5310 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5311
5312 @item -Wstrict-prototypes @r{(C and Objective-C only)}
5313 @opindex Wstrict-prototypes
5314 @opindex Wno-strict-prototypes
5315 Warn if a function is declared or defined without specifying the
5316 argument types. (An old-style function definition is permitted without
5317 a warning if preceded by a declaration that specifies the argument
5318 types.)
5319
5320 @item -Wold-style-declaration @r{(C and Objective-C only)}
5321 @opindex Wold-style-declaration
5322 @opindex Wno-old-style-declaration
5323 Warn for obsolescent usages, according to the C Standard, in a
5324 declaration. For example, warn if storage-class specifiers like
5325 @code{static} are not the first things in a declaration. This warning
5326 is also enabled by @option{-Wextra}.
5327
5328 @item -Wold-style-definition @r{(C and Objective-C only)}
5329 @opindex Wold-style-definition
5330 @opindex Wno-old-style-definition
5331 Warn if an old-style function definition is used. A warning is given
5332 even if there is a previous prototype.
5333
5334 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5335 @opindex Wmissing-parameter-type
5336 @opindex Wno-missing-parameter-type
5337 A function parameter is declared without a type specifier in K&R-style
5338 functions:
5339
5340 @smallexample
5341 void foo(bar) @{ @}
5342 @end smallexample
5343
5344 This warning is also enabled by @option{-Wextra}.
5345
5346 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5347 @opindex Wmissing-prototypes
5348 @opindex Wno-missing-prototypes
5349 Warn if a global function is defined without a previous prototype
5350 declaration. This warning is issued even if the definition itself
5351 provides a prototype. Use this option to detect global functions
5352 that do not have a matching prototype declaration in a header file.
5353 This option is not valid for C++ because all function declarations
5354 provide prototypes and a non-matching declaration declares an
5355 overload rather than conflict with an earlier declaration.
5356 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5357
5358 @item -Wmissing-declarations
5359 @opindex Wmissing-declarations
5360 @opindex Wno-missing-declarations
5361 Warn if a global function is defined without a previous declaration.
5362 Do so even if the definition itself provides a prototype.
5363 Use this option to detect global functions that are not declared in
5364 header files. In C, no warnings are issued for functions with previous
5365 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5366 missing prototypes. In C++, no warnings are issued for function templates,
5367 or for inline functions, or for functions in anonymous namespaces.
5368
5369 @item -Wmissing-field-initializers
5370 @opindex Wmissing-field-initializers
5371 @opindex Wno-missing-field-initializers
5372 @opindex W
5373 @opindex Wextra
5374 @opindex Wno-extra
5375 Warn if a structure's initializer has some fields missing. For
5376 example, the following code causes such a warning, because
5377 @code{x.h} is implicitly zero:
5378
5379 @smallexample
5380 struct s @{ int f, g, h; @};
5381 struct s x = @{ 3, 4 @};
5382 @end smallexample
5383
5384 This option does not warn about designated initializers, so the following
5385 modification does not trigger a warning:
5386
5387 @smallexample
5388 struct s @{ int f, g, h; @};
5389 struct s x = @{ .f = 3, .g = 4 @};
5390 @end smallexample
5391
5392 In C++ this option does not warn either about the empty @{ @}
5393 initializer, for example:
5394
5395 @smallexample
5396 struct s @{ int f, g, h; @};
5397 s x = @{ @};
5398 @end smallexample
5399
5400 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
5401 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5402
5403 @item -Wno-multichar
5404 @opindex Wno-multichar
5405 @opindex Wmultichar
5406 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5407 Usually they indicate a typo in the user's code, as they have
5408 implementation-defined values, and should not be used in portable code.
5409
5410 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5411 @opindex Wnormalized=
5412 @opindex Wnormalized
5413 @opindex Wno-normalized
5414 @cindex NFC
5415 @cindex NFKC
5416 @cindex character set, input normalization
5417 In ISO C and ISO C++, two identifiers are different if they are
5418 different sequences of characters. However, sometimes when characters
5419 outside the basic ASCII character set are used, you can have two
5420 different character sequences that look the same. To avoid confusion,
5421 the ISO 10646 standard sets out some @dfn{normalization rules} which
5422 when applied ensure that two sequences that look the same are turned into
5423 the same sequence. GCC can warn you if you are using identifiers that
5424 have not been normalized; this option controls that warning.
5425
5426 There are four levels of warning supported by GCC@. The default is
5427 @option{-Wnormalized=nfc}, which warns about any identifier that is
5428 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
5429 recommended form for most uses. It is equivalent to
5430 @option{-Wnormalized}.
5431
5432 Unfortunately, there are some characters allowed in identifiers by
5433 ISO C and ISO C++ that, when turned into NFC, are not allowed in
5434 identifiers. That is, there's no way to use these symbols in portable
5435 ISO C or C++ and have all your identifiers in NFC@.
5436 @option{-Wnormalized=id} suppresses the warning for these characters.
5437 It is hoped that future versions of the standards involved will correct
5438 this, which is why this option is not the default.
5439
5440 You can switch the warning off for all characters by writing
5441 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
5442 only do this if you are using some other normalization scheme (like
5443 ``D''), because otherwise you can easily create bugs that are
5444 literally impossible to see.
5445
5446 Some characters in ISO 10646 have distinct meanings but look identical
5447 in some fonts or display methodologies, especially once formatting has
5448 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5449 LETTER N'', displays just like a regular @code{n} that has been
5450 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
5451 normalization scheme to convert all these into a standard form as
5452 well, and GCC warns if your code is not in NFKC if you use
5453 @option{-Wnormalized=nfkc}. This warning is comparable to warning
5454 about every identifier that contains the letter O because it might be
5455 confused with the digit 0, and so is not the default, but may be
5456 useful as a local coding convention if the programming environment
5457 cannot be fixed to display these characters distinctly.
5458
5459 @item -Wno-deprecated
5460 @opindex Wno-deprecated
5461 @opindex Wdeprecated
5462 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
5463
5464 @item -Wno-deprecated-declarations
5465 @opindex Wno-deprecated-declarations
5466 @opindex Wdeprecated-declarations
5467 Do not warn about uses of functions (@pxref{Function Attributes}),
5468 variables (@pxref{Variable Attributes}), and types (@pxref{Type
5469 Attributes}) marked as deprecated by using the @code{deprecated}
5470 attribute.
5471
5472 @item -Wno-overflow
5473 @opindex Wno-overflow
5474 @opindex Woverflow
5475 Do not warn about compile-time overflow in constant expressions.
5476
5477 @item -Wno-odr
5478 @opindex Wno-odr
5479 @opindex Wodr
5480 Warn about One Definition Rule violations during link-time optimization.
5481 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
5482
5483 @item -Wopenmp-simd
5484 @opindex Wopenm-simd
5485 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5486 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
5487 option can be used to relax the cost model.
5488
5489 @item -Woverride-init @r{(C and Objective-C only)}
5490 @opindex Woverride-init
5491 @opindex Wno-override-init
5492 @opindex W
5493 @opindex Wextra
5494 @opindex Wno-extra
5495 Warn if an initialized field without side effects is overridden when
5496 using designated initializers (@pxref{Designated Inits, , Designated
5497 Initializers}).
5498
5499 This warning is included in @option{-Wextra}. To get other
5500 @option{-Wextra} warnings without this one, use @option{-Wextra
5501 -Wno-override-init}.
5502
5503 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
5504 @opindex Woverride-init-side-effects
5505 @opindex Wno-override-init-side-effects
5506 Warn if an initialized field with side effects is overridden when
5507 using designated initializers (@pxref{Designated Inits, , Designated
5508 Initializers}). This warning is enabled by default.
5509
5510 @item -Wpacked
5511 @opindex Wpacked
5512 @opindex Wno-packed
5513 Warn if a structure is given the packed attribute, but the packed
5514 attribute has no effect on the layout or size of the structure.
5515 Such structures may be mis-aligned for little benefit. For
5516 instance, in this code, the variable @code{f.x} in @code{struct bar}
5517 is misaligned even though @code{struct bar} does not itself
5518 have the packed attribute:
5519
5520 @smallexample
5521 @group
5522 struct foo @{
5523 int x;
5524 char a, b, c, d;
5525 @} __attribute__((packed));
5526 struct bar @{
5527 char z;
5528 struct foo f;
5529 @};
5530 @end group
5531 @end smallexample
5532
5533 @item -Wpacked-bitfield-compat
5534 @opindex Wpacked-bitfield-compat
5535 @opindex Wno-packed-bitfield-compat
5536 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5537 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
5538 the change can lead to differences in the structure layout. GCC
5539 informs you when the offset of such a field has changed in GCC 4.4.
5540 For example there is no longer a 4-bit padding between field @code{a}
5541 and @code{b} in this structure:
5542
5543 @smallexample
5544 struct foo
5545 @{
5546 char a:4;
5547 char b:8;
5548 @} __attribute__ ((packed));
5549 @end smallexample
5550
5551 This warning is enabled by default. Use
5552 @option{-Wno-packed-bitfield-compat} to disable this warning.
5553
5554 @item -Wpadded
5555 @opindex Wpadded
5556 @opindex Wno-padded
5557 Warn if padding is included in a structure, either to align an element
5558 of the structure or to align the whole structure. Sometimes when this
5559 happens it is possible to rearrange the fields of the structure to
5560 reduce the padding and so make the structure smaller.
5561
5562 @item -Wredundant-decls
5563 @opindex Wredundant-decls
5564 @opindex Wno-redundant-decls
5565 Warn if anything is declared more than once in the same scope, even in
5566 cases where multiple declaration is valid and changes nothing.
5567
5568 @item -Wnested-externs @r{(C and Objective-C only)}
5569 @opindex Wnested-externs
5570 @opindex Wno-nested-externs
5571 Warn if an @code{extern} declaration is encountered within a function.
5572
5573 @item -Wno-inherited-variadic-ctor
5574 @opindex Winherited-variadic-ctor
5575 @opindex Wno-inherited-variadic-ctor
5576 Suppress warnings about use of C++11 inheriting constructors when the
5577 base class inherited from has a C variadic constructor; the warning is
5578 on by default because the ellipsis is not inherited.
5579
5580 @item -Winline
5581 @opindex Winline
5582 @opindex Wno-inline
5583 Warn if a function that is declared as inline cannot be inlined.
5584 Even with this option, the compiler does not warn about failures to
5585 inline functions declared in system headers.
5586
5587 The compiler uses a variety of heuristics to determine whether or not
5588 to inline a function. For example, the compiler takes into account
5589 the size of the function being inlined and the amount of inlining
5590 that has already been done in the current function. Therefore,
5591 seemingly insignificant changes in the source program can cause the
5592 warnings produced by @option{-Winline} to appear or disappear.
5593
5594 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5595 @opindex Wno-invalid-offsetof
5596 @opindex Winvalid-offsetof
5597 Suppress warnings from applying the @code{offsetof} macro to a non-POD
5598 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
5599 to a non-standard-layout type is undefined. In existing C++ implementations,
5600 however, @code{offsetof} typically gives meaningful results.
5601 This flag is for users who are aware that they are
5602 writing nonportable code and who have deliberately chosen to ignore the
5603 warning about it.
5604
5605 The restrictions on @code{offsetof} may be relaxed in a future version
5606 of the C++ standard.
5607
5608 @item -Wno-int-to-pointer-cast
5609 @opindex Wno-int-to-pointer-cast
5610 @opindex Wint-to-pointer-cast
5611 Suppress warnings from casts to pointer type of an integer of a
5612 different size. In C++, casting to a pointer type of smaller size is
5613 an error. @option{Wint-to-pointer-cast} is enabled by default.
5614
5615
5616 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5617 @opindex Wno-pointer-to-int-cast
5618 @opindex Wpointer-to-int-cast
5619 Suppress warnings from casts from a pointer to an integer type of a
5620 different size.
5621
5622 @item -Winvalid-pch
5623 @opindex Winvalid-pch
5624 @opindex Wno-invalid-pch
5625 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5626 the search path but can't be used.
5627
5628 @item -Wlong-long
5629 @opindex Wlong-long
5630 @opindex Wno-long-long
5631 Warn if @code{long long} type is used. This is enabled by either
5632 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5633 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
5634
5635 @item -Wvariadic-macros
5636 @opindex Wvariadic-macros
5637 @opindex Wno-variadic-macros
5638 Warn if variadic macros are used in ISO C90 mode, or if the GNU
5639 alternate syntax is used in ISO C99 mode. This is enabled by either
5640 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
5641 messages, use @option{-Wno-variadic-macros}.
5642
5643 @item -Wvarargs
5644 @opindex Wvarargs
5645 @opindex Wno-varargs
5646 Warn upon questionable usage of the macros used to handle variable
5647 arguments like @code{va_start}. This is default. To inhibit the
5648 warning messages, use @option{-Wno-varargs}.
5649
5650 @item -Wvector-operation-performance
5651 @opindex Wvector-operation-performance
5652 @opindex Wno-vector-operation-performance
5653 Warn if vector operation is not implemented via SIMD capabilities of the
5654 architecture. Mainly useful for the performance tuning.
5655 Vector operation can be implemented @code{piecewise}, which means that the
5656 scalar operation is performed on every vector element;
5657 @code{in parallel}, which means that the vector operation is implemented
5658 using scalars of wider type, which normally is more performance efficient;
5659 and @code{as a single scalar}, which means that vector fits into a
5660 scalar type.
5661
5662 @item -Wno-virtual-move-assign
5663 @opindex Wvirtual-move-assign
5664 @opindex Wno-virtual-move-assign
5665 Suppress warnings about inheriting from a virtual base with a
5666 non-trivial C++11 move assignment operator. This is dangerous because
5667 if the virtual base is reachable along more than one path, it is
5668 moved multiple times, which can mean both objects end up in the
5669 moved-from state. If the move assignment operator is written to avoid
5670 moving from a moved-from object, this warning can be disabled.
5671
5672 @item -Wvla
5673 @opindex Wvla
5674 @opindex Wno-vla
5675 Warn if variable length array is used in the code.
5676 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5677 the variable length array.
5678
5679 @item -Wvolatile-register-var
5680 @opindex Wvolatile-register-var
5681 @opindex Wno-volatile-register-var
5682 Warn if a register variable is declared volatile. The volatile
5683 modifier does not inhibit all optimizations that may eliminate reads
5684 and/or writes to register variables. This warning is enabled by
5685 @option{-Wall}.
5686
5687 @item -Wdisabled-optimization
5688 @opindex Wdisabled-optimization
5689 @opindex Wno-disabled-optimization
5690 Warn if a requested optimization pass is disabled. This warning does
5691 not generally indicate that there is anything wrong with your code; it
5692 merely indicates that GCC's optimizers are unable to handle the code
5693 effectively. Often, the problem is that your code is too big or too
5694 complex; GCC refuses to optimize programs when the optimization
5695 itself is likely to take inordinate amounts of time.
5696
5697 @item -Wpointer-sign @r{(C and Objective-C only)}
5698 @opindex Wpointer-sign
5699 @opindex Wno-pointer-sign
5700 Warn for pointer argument passing or assignment with different signedness.
5701 This option is only supported for C and Objective-C@. It is implied by
5702 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5703 @option{-Wno-pointer-sign}.
5704
5705 @item -Wstack-protector
5706 @opindex Wstack-protector
5707 @opindex Wno-stack-protector
5708 This option is only active when @option{-fstack-protector} is active. It
5709 warns about functions that are not protected against stack smashing.
5710
5711 @item -Woverlength-strings
5712 @opindex Woverlength-strings
5713 @opindex Wno-overlength-strings
5714 Warn about string constants that are longer than the ``minimum
5715 maximum'' length specified in the C standard. Modern compilers
5716 generally allow string constants that are much longer than the
5717 standard's minimum limit, but very portable programs should avoid
5718 using longer strings.
5719
5720 The limit applies @emph{after} string constant concatenation, and does
5721 not count the trailing NUL@. In C90, the limit was 509 characters; in
5722 C99, it was raised to 4095. C++98 does not specify a normative
5723 minimum maximum, so we do not diagnose overlength strings in C++@.
5724
5725 This option is implied by @option{-Wpedantic}, and can be disabled with
5726 @option{-Wno-overlength-strings}.
5727
5728 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5729 @opindex Wunsuffixed-float-constants
5730
5731 Issue a warning for any floating constant that does not have
5732 a suffix. When used together with @option{-Wsystem-headers} it
5733 warns about such constants in system header files. This can be useful
5734 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5735 from the decimal floating-point extension to C99.
5736
5737 @item -Wno-designated-init @r{(C and Objective-C only)}
5738 Suppress warnings when a positional initializer is used to initialize
5739 a structure that has been marked with the @code{designated_init}
5740 attribute.
5741
5742 @end table
5743
5744 @node Debugging Options
5745 @section Options for Debugging Your Program or GCC
5746 @cindex options, debugging
5747 @cindex debugging information options
5748
5749 GCC has various special options that are used for debugging
5750 either your program or GCC:
5751
5752 @table @gcctabopt
5753 @item -g
5754 @opindex g
5755 Produce debugging information in the operating system's native format
5756 (stabs, COFF, XCOFF, or DWARF 2)@. GDB can work with this debugging
5757 information.
5758
5759 On most systems that use stabs format, @option{-g} enables use of extra
5760 debugging information that only GDB can use; this extra information
5761 makes debugging work better in GDB but probably makes other debuggers
5762 crash or
5763 refuse to read the program. If you want to control for certain whether
5764 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5765 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5766
5767 GCC allows you to use @option{-g} with
5768 @option{-O}. The shortcuts taken by optimized code may occasionally
5769 produce surprising results: some variables you declared may not exist
5770 at all; flow of control may briefly move where you did not expect it;
5771 some statements may not be executed because they compute constant
5772 results or their values are already at hand; some statements may
5773 execute in different places because they have been moved out of loops.
5774
5775 Nevertheless it proves possible to debug optimized output. This makes
5776 it reasonable to use the optimizer for programs that might have bugs.
5777
5778 The following options are useful when GCC is generated with the
5779 capability for more than one debugging format.
5780
5781 @item -gsplit-dwarf
5782 @opindex gsplit-dwarf
5783 Separate as much dwarf debugging information as possible into a
5784 separate output file with the extension .dwo. This option allows
5785 the build system to avoid linking files with debug information. To
5786 be useful, this option requires a debugger capable of reading .dwo
5787 files.
5788
5789 @item -ggdb
5790 @opindex ggdb
5791 Produce debugging information for use by GDB@. This means to use the
5792 most expressive format available (DWARF 2, stabs, or the native format
5793 if neither of those are supported), including GDB extensions if at all
5794 possible.
5795
5796 @item -gpubnames
5797 @opindex gpubnames
5798 Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5799
5800 @item -ggnu-pubnames
5801 @opindex ggnu-pubnames
5802 Generate .debug_pubnames and .debug_pubtypes sections in a format
5803 suitable for conversion into a GDB@ index. This option is only useful
5804 with a linker that can produce GDB@ index version 7.
5805
5806 @item -gstabs
5807 @opindex gstabs
5808 Produce debugging information in stabs format (if that is supported),
5809 without GDB extensions. This is the format used by DBX on most BSD
5810 systems. On MIPS, Alpha and System V Release 4 systems this option
5811 produces stabs debugging output that is not understood by DBX or SDB@.
5812 On System V Release 4 systems this option requires the GNU assembler.
5813
5814 @item -feliminate-unused-debug-symbols
5815 @opindex feliminate-unused-debug-symbols
5816 Produce debugging information in stabs format (if that is supported),
5817 for only symbols that are actually used.
5818
5819 @item -femit-class-debug-always
5820 @opindex femit-class-debug-always
5821 Instead of emitting debugging information for a C++ class in only one
5822 object file, emit it in all object files using the class. This option
5823 should be used only with debuggers that are unable to handle the way GCC
5824 normally emits debugging information for classes because using this
5825 option increases the size of debugging information by as much as a
5826 factor of two.
5827
5828 @item -fdebug-types-section
5829 @opindex fdebug-types-section
5830 @opindex fno-debug-types-section
5831 When using DWARF Version 4 or higher, type DIEs can be put into
5832 their own @code{.debug_types} section instead of making them part of the
5833 @code{.debug_info} section. It is more efficient to put them in a separate
5834 comdat sections since the linker can then remove duplicates.
5835 But not all DWARF consumers support @code{.debug_types} sections yet
5836 and on some objects @code{.debug_types} produces larger instead of smaller
5837 debugging information.
5838
5839 @item -gstabs+
5840 @opindex gstabs+
5841 Produce debugging information in stabs format (if that is supported),
5842 using GNU extensions understood only by the GNU debugger (GDB)@. The
5843 use of these extensions is likely to make other debuggers crash or
5844 refuse to read the program.
5845
5846 @item -gcoff
5847 @opindex gcoff
5848 Produce debugging information in COFF format (if that is supported).
5849 This is the format used by SDB on most System V systems prior to
5850 System V Release 4.
5851
5852 @item -gxcoff
5853 @opindex gxcoff
5854 Produce debugging information in XCOFF format (if that is supported).
5855 This is the format used by the DBX debugger on IBM RS/6000 systems.
5856
5857 @item -gxcoff+
5858 @opindex gxcoff+
5859 Produce debugging information in XCOFF format (if that is supported),
5860 using GNU extensions understood only by the GNU debugger (GDB)@. The
5861 use of these extensions is likely to make other debuggers crash or
5862 refuse to read the program, and may cause assemblers other than the GNU
5863 assembler (GAS) to fail with an error.
5864
5865 @item -gdwarf-@var{version}
5866 @opindex gdwarf-@var{version}
5867 Produce debugging information in DWARF format (if that is supported).
5868 The value of @var{version} may be either 2, 3, 4 or 5; the default version
5869 for most targets is 4. DWARF Version 5 is only experimental.
5870
5871 Note that with DWARF Version 2, some ports require and always
5872 use some non-conflicting DWARF 3 extensions in the unwind tables.
5873
5874 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5875 for maximum benefit.
5876
5877 @item -grecord-gcc-switches
5878 @opindex grecord-gcc-switches
5879 This switch causes the command-line options used to invoke the
5880 compiler that may affect code generation to be appended to the
5881 DW_AT_producer attribute in DWARF debugging information. The options
5882 are concatenated with spaces separating them from each other and from
5883 the compiler version. See also @option{-frecord-gcc-switches} for another
5884 way of storing compiler options into the object file. This is the default.
5885
5886 @item -gno-record-gcc-switches
5887 @opindex gno-record-gcc-switches
5888 Disallow appending command-line options to the DW_AT_producer attribute
5889 in DWARF debugging information.
5890
5891 @item -gstrict-dwarf
5892 @opindex gstrict-dwarf
5893 Disallow using extensions of later DWARF standard version than selected
5894 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
5895 DWARF extensions from later standard versions is allowed.
5896
5897 @item -gno-strict-dwarf
5898 @opindex gno-strict-dwarf
5899 Allow using extensions of later DWARF standard version than selected with
5900 @option{-gdwarf-@var{version}}.
5901
5902 @item -gz@r{[}=@var{type}@r{]}
5903 @opindex gz
5904 Produce compressed debug sections in DWARF format, if that is supported.
5905 If @var{type} is not given, the default type depends on the capabilities
5906 of the assembler and linker used. @var{type} may be one of
5907 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5908 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5909 compression in traditional GNU format). If the linker doesn't support
5910 writing compressed debug sections, the option is rejected. Otherwise,
5911 if the assembler does not support them, @option{-gz} is silently ignored
5912 when producing object files.
5913
5914 @item -gvms
5915 @opindex gvms
5916 Produce debugging information in Alpha/VMS debug format (if that is
5917 supported). This is the format used by DEBUG on Alpha/VMS systems.
5918
5919 @item -g@var{level}
5920 @itemx -ggdb@var{level}
5921 @itemx -gstabs@var{level}
5922 @itemx -gcoff@var{level}
5923 @itemx -gxcoff@var{level}
5924 @itemx -gvms@var{level}
5925 Request debugging information and also use @var{level} to specify how
5926 much information. The default level is 2.
5927
5928 Level 0 produces no debug information at all. Thus, @option{-g0} negates
5929 @option{-g}.
5930
5931 Level 1 produces minimal information, enough for making backtraces in
5932 parts of the program that you don't plan to debug. This includes
5933 descriptions of functions and external variables, and line number
5934 tables, but no information about local variables.
5935
5936 Level 3 includes extra information, such as all the macro definitions
5937 present in the program. Some debuggers support macro expansion when
5938 you use @option{-g3}.
5939
5940 @option{-gdwarf-2} does not accept a concatenated debug level, because
5941 GCC used to support an option @option{-gdwarf} that meant to generate
5942 debug information in version 1 of the DWARF format (which is very
5943 different from version 2), and it would have been too confusing. That
5944 debug format is long obsolete, but the option cannot be changed now.
5945 Instead use an additional @option{-g@var{level}} option to change the
5946 debug level for DWARF.
5947
5948 @item -gtoggle
5949 @opindex gtoggle
5950 Turn off generation of debug info, if leaving out this option
5951 generates it, or turn it on at level 2 otherwise. The position of this
5952 argument in the command line does not matter; it takes effect after all
5953 other options are processed, and it does so only once, no matter how
5954 many times it is given. This is mainly intended to be used with
5955 @option{-fcompare-debug}.
5956
5957 @item -fsanitize=address
5958 @opindex fsanitize=address
5959 Enable AddressSanitizer, a fast memory error detector.
5960 Memory access instructions are instrumented to detect
5961 out-of-bounds and use-after-free bugs.
5962 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
5963 more details. The run-time behavior can be influenced using the
5964 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
5965 the available options are shown at startup of the instrumended program. See
5966 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
5967 for a list of supported options.
5968
5969 @item -fsanitize=kernel-address
5970 @opindex fsanitize=kernel-address
5971 Enable AddressSanitizer for Linux kernel.
5972 See @uref{https://github.com/google/kasan/wiki} for more details.
5973
5974 @item -fsanitize=thread
5975 @opindex fsanitize=thread
5976 Enable ThreadSanitizer, a fast data race detector.
5977 Memory access instructions are instrumented to detect
5978 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
5979 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5980 environment variable; see
5981 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
5982 supported options.
5983
5984 @item -fsanitize=leak
5985 @opindex fsanitize=leak
5986 Enable LeakSanitizer, a memory leak detector.
5987 This option only matters for linking of executables and if neither
5988 @option{-fsanitize=address} nor @option{-fsanitize=thread} is used. In that
5989 case the executable is linked against a library that overrides @code{malloc}
5990 and other allocator functions. See
5991 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
5992 details. The run-time behavior can be influenced using the
5993 @env{LSAN_OPTIONS} environment variable.
5994
5995 @item -fsanitize=undefined
5996 @opindex fsanitize=undefined
5997 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5998 Various computations are instrumented to detect undefined behavior
5999 at runtime. Current suboptions are:
6000
6001 @table @gcctabopt
6002
6003 @item -fsanitize=shift
6004 @opindex fsanitize=shift
6005 This option enables checking that the result of a shift operation is
6006 not undefined. Note that what exactly is considered undefined differs
6007 slightly between C and C++, as well as between ISO C90 and C99, etc.
6008
6009 @item -fsanitize=integer-divide-by-zero
6010 @opindex fsanitize=integer-divide-by-zero
6011 Detect integer division by zero as well as @code{INT_MIN / -1} division.
6012
6013 @item -fsanitize=unreachable
6014 @opindex fsanitize=unreachable
6015 With this option, the compiler turns the @code{__builtin_unreachable}
6016 call into a diagnostics message call instead. When reaching the
6017 @code{__builtin_unreachable} call, the behavior is undefined.
6018
6019 @item -fsanitize=vla-bound
6020 @opindex fsanitize=vla-bound
6021 This option instructs the compiler to check that the size of a variable
6022 length array is positive.
6023
6024 @item -fsanitize=null
6025 @opindex fsanitize=null
6026 This option enables pointer checking. Particularly, the application
6027 built with this option turned on will issue an error message when it
6028 tries to dereference a NULL pointer, or if a reference (possibly an
6029 rvalue reference) is bound to a NULL pointer, or if a method is invoked
6030 on an object pointed by a NULL pointer.
6031
6032 @item -fsanitize=return
6033 @opindex fsanitize=return
6034 This option enables return statement checking. Programs
6035 built with this option turned on will issue an error message
6036 when the end of a non-void function is reached without actually
6037 returning a value. This option works in C++ only.
6038
6039 @item -fsanitize=signed-integer-overflow
6040 @opindex fsanitize=signed-integer-overflow
6041 This option enables signed integer overflow checking. We check that
6042 the result of @code{+}, @code{*}, and both unary and binary @code{-}
6043 does not overflow in the signed arithmetics. Note, integer promotion
6044 rules must be taken into account. That is, the following is not an
6045 overflow:
6046 @smallexample
6047 signed char a = SCHAR_MAX;
6048 a++;
6049 @end smallexample
6050
6051 @item -fsanitize=bounds
6052 @opindex fsanitize=bounds
6053 This option enables instrumentation of array bounds. Various out of bounds
6054 accesses are detected. Flexible array members, flexible array member-like
6055 arrays, and initializers of variables with static storage are not instrumented.
6056
6057 @item -fsanitize=bounds-strict
6058 @opindex fsanitize=bounds-strict
6059 This option enables strict instrumentation of array bounds. Most out of bounds
6060 accesses are detected, including flexible array members and flexible array
6061 member-like arrays. Initializers of variables with static storage are not
6062 instrumented.
6063
6064 @item -fsanitize=alignment
6065 @opindex fsanitize=alignment
6066
6067 This option enables checking of alignment of pointers when they are
6068 dereferenced, or when a reference is bound to insufficiently aligned target,
6069 or when a method or constructor is invoked on insufficiently aligned object.
6070
6071 @item -fsanitize=object-size
6072 @opindex fsanitize=object-size
6073 This option enables instrumentation of memory references using the
6074 @code{__builtin_object_size} function. Various out of bounds pointer
6075 accesses are detected.
6076
6077 @item -fsanitize=float-divide-by-zero
6078 @opindex fsanitize=float-divide-by-zero
6079 Detect floating-point division by zero. Unlike other similar options,
6080 @option{-fsanitize=float-divide-by-zero} is not enabled by
6081 @option{-fsanitize=undefined}, since floating-point division by zero can
6082 be a legitimate way of obtaining infinities and NaNs.
6083
6084 @item -fsanitize=float-cast-overflow
6085 @opindex fsanitize=float-cast-overflow
6086 This option enables floating-point type to integer conversion checking.
6087 We check that the result of the conversion does not overflow.
6088 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
6089 not enabled by @option{-fsanitize=undefined}.
6090 This option does not work well with @code{FE_INVALID} exceptions enabled.
6091
6092 @item -fsanitize=nonnull-attribute
6093 @opindex fsanitize=nonnull-attribute
6094
6095 This option enables instrumentation of calls, checking whether null values
6096 are not passed to arguments marked as requiring a non-null value by the
6097 @code{nonnull} function attribute.
6098
6099 @item -fsanitize=returns-nonnull-attribute
6100 @opindex fsanitize=returns-nonnull-attribute
6101
6102 This option enables instrumentation of return statements in functions
6103 marked with @code{returns_nonnull} function attribute, to detect returning
6104 of null values from such functions.
6105
6106 @item -fsanitize=bool
6107 @opindex fsanitize=bool
6108
6109 This option enables instrumentation of loads from bool. If a value other
6110 than 0/1 is loaded, a run-time error is issued.
6111
6112 @item -fsanitize=enum
6113 @opindex fsanitize=enum
6114
6115 This option enables instrumentation of loads from an enum type. If
6116 a value outside the range of values for the enum type is loaded,
6117 a run-time error is issued.
6118
6119 @item -fsanitize=vptr
6120 @opindex fsanitize=vptr
6121
6122 This option enables instrumentation of C++ member function calls, member
6123 accesses and some conversions between pointers to base and derived classes,
6124 to verify the referenced object has the correct dynamic type.
6125
6126 @end table
6127
6128 While @option{-ftrapv} causes traps for signed overflows to be emitted,
6129 @option{-fsanitize=undefined} gives a diagnostic message.
6130 This currently works only for the C family of languages.
6131
6132 @item -fno-sanitize=all
6133 @opindex fno-sanitize=all
6134
6135 This option disables all previously enabled sanitizers.
6136 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
6137 together.
6138
6139 @item -fasan-shadow-offset=@var{number}
6140 @opindex fasan-shadow-offset
6141 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
6142 It is useful for experimenting with different shadow memory layouts in
6143 Kernel AddressSanitizer.
6144
6145 @item -fsanitize-sections=@var{s1},@var{s2},...
6146 @opindex fsanitize-sections
6147 Sanitize global variables in selected user-defined sections. @var{si} may
6148 contain wildcards.
6149
6150 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
6151 @opindex fsanitize-recover
6152 @opindex fno-sanitize-recover
6153 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
6154 mentioned in comma-separated list of @var{opts}. Enabling this option
6155 for a sanitizer component causes it to attempt to continue
6156 running the program as if no error happened. This means multiple
6157 runtime errors can be reported in a single program run, and the exit
6158 code of the program may indicate success even when errors
6159 have been reported. The @option{-fno-sanitize-recover=} option
6160 can be used to alter
6161 this behavior: only the first detected error is reported
6162 and program then exits with a non-zero exit code.
6163
6164 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
6165 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
6166 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
6167 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
6168 For these sanitizers error recovery is turned on by default, except @option{-fsanitize=address},
6169 for which this feature is experimental.
6170 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
6171 accepted, the former enables recovery for all sanitizers that support it,
6172 the latter disables recovery for all sanitizers that support it.
6173
6174 Syntax without explicit @var{opts} parameter is deprecated. It is equivalent to
6175 @smallexample
6176 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
6177 @end smallexample
6178 @noindent
6179 Similarly @option{-fno-sanitize-recover} is equivalent to
6180 @smallexample
6181 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
6182 @end smallexample
6183
6184 @item -fsanitize-undefined-trap-on-error
6185 @opindex fsanitize-undefined-trap-on-error
6186 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
6187 report undefined behavior using @code{__builtin_trap} rather than
6188 a @code{libubsan} library routine. The advantage of this is that the
6189 @code{libubsan} library is not needed and is not linked in, so this
6190 is usable even in freestanding environments.
6191
6192 @item -fsanitize-coverage=trace-pc
6193 @opindex fsanitize-coverage=trace-pc
6194 Enable coverage-guided fuzzing code instrumentation.
6195 Inserts call to __sanitizer_cov_trace_pc into every basic block.
6196
6197 @item -fcheck-pointer-bounds
6198 @opindex fcheck-pointer-bounds
6199 @opindex fno-check-pointer-bounds
6200 @cindex Pointer Bounds Checker options
6201 Enable Pointer Bounds Checker instrumentation. Each memory reference
6202 is instrumented with checks of the pointer used for memory access against
6203 bounds associated with that pointer.
6204
6205 Currently there
6206 is only an implementation for Intel MPX available, thus x86 target
6207 and @option{-mmpx} are required to enable this feature.
6208 MPX-based instrumentation requires
6209 a runtime library to enable MPX in hardware and handle bounds
6210 violation signals. By default when @option{-fcheck-pointer-bounds}
6211 and @option{-mmpx} options are used to link a program, the GCC driver
6212 links against the @file{libmpx} runtime library and @file{libmpxwrappers}
6213 library. It also passes '-z bndplt' to a linker in case it supports this
6214 option (which is checked on libmpx configuration). Note that old versions
6215 of linker may ignore option. Gold linker doesn't support '-z bndplt'
6216 option. With no '-z bndplt' support in linker all calls to dynamic libraries
6217 lose passed bounds reducing overall protection level. It's highly
6218 recommended to use linker with '-z bndplt' support. In case such linker
6219 is not available it is adviced to always use @option{-static-libmpxwrappers}
6220 for better protection level or use @option{-static} to completely avoid
6221 external calls to dynamic libraries. MPX-based instrumentation
6222 may be used for debugging and also may be included in production code
6223 to increase program security. Depending on usage, you may
6224 have different requirements for the runtime library. The current version
6225 of the MPX runtime library is more oriented for use as a debugging
6226 tool. MPX runtime library usage implies @option{-lpthread}. See
6227 also @option{-static-libmpx}. The runtime library behavior can be
6228 influenced using various @env{CHKP_RT_*} environment variables. See
6229 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
6230 for more details.
6231
6232 Generated instrumentation may be controlled by various
6233 @option{-fchkp-*} options and by the @code{bnd_variable_size}
6234 structure field attribute (@pxref{Type Attributes}) and
6235 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
6236 (@pxref{Function Attributes}). GCC also provides a number of built-in
6237 functions for controlling the Pointer Bounds Checker. @xref{Pointer
6238 Bounds Checker builtins}, for more information.
6239
6240 @item -fchecking
6241 @opindex fchecking
6242 @opindex fno-checking
6243 Enable internal consistency checking. The default depends on
6244 the compiler configuration.
6245
6246 @item -fchkp-check-incomplete-type
6247 @opindex fchkp-check-incomplete-type
6248 @opindex fno-chkp-check-incomplete-type
6249 Generate pointer bounds checks for variables with incomplete type.
6250 Enabled by default.
6251
6252 @item -fchkp-narrow-bounds
6253 @opindex fchkp-narrow-bounds
6254 @opindex fno-chkp-narrow-bounds
6255 Controls bounds used by Pointer Bounds Checker for pointers to object
6256 fields. If narrowing is enabled then field bounds are used. Otherwise
6257 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
6258 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
6259
6260 @item -fchkp-first-field-has-own-bounds
6261 @opindex fchkp-first-field-has-own-bounds
6262 @opindex fno-chkp-first-field-has-own-bounds
6263 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
6264 first field in the structure. By default a pointer to the first field has
6265 the same bounds as a pointer to the whole structure.
6266
6267 @item -fchkp-narrow-to-innermost-array
6268 @opindex fchkp-narrow-to-innermost-array
6269 @opindex fno-chkp-narrow-to-innermost-array
6270 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
6271 case of nested static array access. By default this option is disabled and
6272 bounds of the outermost array are used.
6273
6274 @item -fchkp-optimize
6275 @opindex fchkp-optimize
6276 @opindex fno-chkp-optimize
6277 Enables Pointer Bounds Checker optimizations. Enabled by default at
6278 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
6279
6280 @item -fchkp-use-fast-string-functions
6281 @opindex fchkp-use-fast-string-functions
6282 @opindex fno-chkp-use-fast-string-functions
6283 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
6284 by Pointer Bounds Checker. Disabled by default.
6285
6286 @item -fchkp-use-nochk-string-functions
6287 @opindex fchkp-use-nochk-string-functions
6288 @opindex fno-chkp-use-nochk-string-functions
6289 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
6290 by Pointer Bounds Checker. Disabled by default.
6291
6292 @item -fchkp-use-static-bounds
6293 @opindex fchkp-use-static-bounds
6294 @opindex fno-chkp-use-static-bounds
6295 Allow Pointer Bounds Checker to generate static bounds holding
6296 bounds of static variables. Enabled by default.
6297
6298 @item -fchkp-use-static-const-bounds
6299 @opindex fchkp-use-static-const-bounds
6300 @opindex fno-chkp-use-static-const-bounds
6301 Use statically-initialized bounds for constant bounds instead of
6302 generating them each time they are required. By default enabled when
6303 @option{-fchkp-use-static-bounds} is enabled.
6304
6305 @item -fchkp-treat-zero-dynamic-size-as-infinite
6306 @opindex fchkp-treat-zero-dynamic-size-as-infinite
6307 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
6308 With this option, objects with incomplete type whose
6309 dynamically-obtained size is zero are treated as having infinite size
6310 instead by Pointer Bounds
6311 Checker. This option may be helpful if a program is linked with a library
6312 missing size information for some symbols. Disabled by default.
6313
6314 @item -fchkp-check-read
6315 @opindex fchkp-check-read
6316 @opindex fno-chkp-check-read
6317 Instructs Pointer Bounds Checker to generate checks for all read
6318 accesses to memory. Enabled by default.
6319
6320 @item -fchkp-check-write
6321 @opindex fchkp-check-write
6322 @opindex fno-chkp-check-write
6323 Instructs Pointer Bounds Checker to generate checks for all write
6324 accesses to memory. Enabled by default.
6325
6326 @item -fchkp-store-bounds
6327 @opindex fchkp-store-bounds
6328 @opindex fno-chkp-store-bounds
6329 Instructs Pointer Bounds Checker to generate bounds stores for
6330 pointer writes. Enabled by default.
6331
6332 @item -fchkp-instrument-calls
6333 @opindex fchkp-instrument-calls
6334 @opindex fno-chkp-instrument-calls
6335 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
6336 Enabled by default.
6337
6338 @item -fchkp-instrument-marked-only
6339 @opindex fchkp-instrument-marked-only
6340 @opindex fno-chkp-instrument-marked-only
6341 Instructs Pointer Bounds Checker to instrument only functions
6342 marked with the @code{bnd_instrument} attribute
6343 (@pxref{Function Attributes}). Disabled by default.
6344
6345 @item -fchkp-use-wrappers
6346 @opindex fchkp-use-wrappers
6347 @opindex fno-chkp-use-wrappers
6348 Allows Pointer Bounds Checker to replace calls to built-in functions
6349 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
6350 is used to link a program, the GCC driver automatically links
6351 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
6352 Enabled by default.
6353
6354 @item -fdump-final-insns@r{[}=@var{file}@r{]}
6355 @opindex fdump-final-insns
6356 Dump the final internal representation (RTL) to @var{file}. If the
6357 optional argument is omitted (or if @var{file} is @code{.}), the name
6358 of the dump file is determined by appending @code{.gkd} to the
6359 compilation output file name.
6360
6361 @item -fcompare-debug@r{[}=@var{opts}@r{]}
6362 @opindex fcompare-debug
6363 @opindex fno-compare-debug
6364 If no error occurs during compilation, run the compiler a second time,
6365 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6366 passed to the second compilation. Dump the final internal
6367 representation in both compilations, and print an error if they differ.
6368
6369 If the equal sign is omitted, the default @option{-gtoggle} is used.
6370
6371 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6372 and nonzero, implicitly enables @option{-fcompare-debug}. If
6373 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6374 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6375 is used.
6376
6377 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
6378 is equivalent to @option{-fno-compare-debug}, which disables the dumping
6379 of the final representation and the second compilation, preventing even
6380 @env{GCC_COMPARE_DEBUG} from taking effect.
6381
6382 To verify full coverage during @option{-fcompare-debug} testing, set
6383 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6384 which GCC rejects as an invalid option in any actual compilation
6385 (rather than preprocessing, assembly or linking). To get just a
6386 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6387 not overridden} will do.
6388
6389 @item -fcompare-debug-second
6390 @opindex fcompare-debug-second
6391 This option is implicitly passed to the compiler for the second
6392 compilation requested by @option{-fcompare-debug}, along with options to
6393 silence warnings, and omitting other options that would cause
6394 side-effect compiler outputs to files or to the standard output. Dump
6395 files and preserved temporary files are renamed so as to contain the
6396 @code{.gk} additional extension during the second compilation, to avoid
6397 overwriting those generated by the first.
6398
6399 When this option is passed to the compiler driver, it causes the
6400 @emph{first} compilation to be skipped, which makes it useful for little
6401 other than debugging the compiler proper.
6402
6403 @item -feliminate-dwarf2-dups
6404 @opindex feliminate-dwarf2-dups
6405 Compress DWARF 2 debugging information by eliminating duplicated
6406 information about each symbol. This option only makes sense when
6407 generating DWARF 2 debugging information with @option{-gdwarf-2}.
6408
6409 @item -femit-struct-debug-baseonly
6410 @opindex femit-struct-debug-baseonly
6411 Emit debug information for struct-like types
6412 only when the base name of the compilation source file
6413 matches the base name of file in which the struct is defined.
6414
6415 This option substantially reduces the size of debugging information,
6416 but at significant potential loss in type information to the debugger.
6417 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6418 See @option{-femit-struct-debug-detailed} for more detailed control.
6419
6420 This option works only with DWARF 2.
6421
6422 @item -femit-struct-debug-reduced
6423 @opindex femit-struct-debug-reduced
6424 Emit debug information for struct-like types
6425 only when the base name of the compilation source file
6426 matches the base name of file in which the type is defined,
6427 unless the struct is a template or defined in a system header.
6428
6429 This option significantly reduces the size of debugging information,
6430 with some potential loss in type information to the debugger.
6431 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6432 See @option{-femit-struct-debug-detailed} for more detailed control.
6433
6434 This option works only with DWARF 2.
6435
6436 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6437 @opindex femit-struct-debug-detailed
6438 Specify the struct-like types
6439 for which the compiler generates debug information.
6440 The intent is to reduce duplicate struct debug information
6441 between different object files within the same program.
6442
6443 This option is a detailed version of
6444 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6445 which serves for most needs.
6446
6447 A specification has the syntax@*
6448 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6449
6450 The optional first word limits the specification to
6451 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6452 A struct type is used directly when it is the type of a variable, member.
6453 Indirect uses arise through pointers to structs.
6454 That is, when use of an incomplete struct is valid, the use is indirect.
6455 An example is
6456 @samp{struct one direct; struct two * indirect;}.
6457
6458 The optional second word limits the specification to
6459 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6460 Generic structs are a bit complicated to explain.
6461 For C++, these are non-explicit specializations of template classes,
6462 or non-template classes within the above.
6463 Other programming languages have generics,
6464 but @option{-femit-struct-debug-detailed} does not yet implement them.
6465
6466 The third word specifies the source files for those
6467 structs for which the compiler should emit debug information.
6468 The values @samp{none} and @samp{any} have the normal meaning.
6469 The value @samp{base} means that
6470 the base of name of the file in which the type declaration appears
6471 must match the base of the name of the main compilation file.
6472 In practice, this means that when compiling @file{foo.c}, debug information
6473 is generated for types declared in that file and @file{foo.h},
6474 but not other header files.
6475 The value @samp{sys} means those types satisfying @samp{base}
6476 or declared in system or compiler headers.
6477
6478 You may need to experiment to determine the best settings for your application.
6479
6480 The default is @option{-femit-struct-debug-detailed=all}.
6481
6482 This option works only with DWARF 2.
6483
6484 @item -fno-merge-debug-strings
6485 @opindex fmerge-debug-strings
6486 @opindex fno-merge-debug-strings
6487 Direct the linker to not merge together strings in the debugging
6488 information that are identical in different object files. Merging is
6489 not supported by all assemblers or linkers. Merging decreases the size
6490 of the debug information in the output file at the cost of increasing
6491 link processing time. Merging is enabled by default.
6492
6493 @item -fdebug-prefix-map=@var{old}=@var{new}
6494 @opindex fdebug-prefix-map
6495 When compiling files in directory @file{@var{old}}, record debugging
6496 information describing them as in @file{@var{new}} instead.
6497
6498 @item -fno-dwarf2-cfi-asm
6499 @opindex fdwarf2-cfi-asm
6500 @opindex fno-dwarf2-cfi-asm
6501 Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6502 instead of using GAS @code{.cfi_*} directives.
6503
6504 @cindex @command{prof}
6505 @item -p
6506 @opindex p
6507 Generate extra code to write profile information suitable for the
6508 analysis program @command{prof}. You must use this option when compiling
6509 the source files you want data about, and you must also use it when
6510 linking.
6511
6512 @cindex @command{gprof}
6513 @item -pg
6514 @opindex pg
6515 Generate extra code to write profile information suitable for the
6516 analysis program @command{gprof}. You must use this option when compiling
6517 the source files you want data about, and you must also use it when
6518 linking.
6519
6520 @item -Q
6521 @opindex Q
6522 Makes the compiler print out each function name as it is compiled, and
6523 print some statistics about each pass when it finishes.
6524
6525 @item -ftime-report
6526 @opindex ftime-report
6527 Makes the compiler print some statistics about the time consumed by each
6528 pass when it finishes.
6529
6530 @item -fmem-report
6531 @opindex fmem-report
6532 Makes the compiler print some statistics about permanent memory
6533 allocation when it finishes.
6534
6535 @item -fmem-report-wpa
6536 @opindex fmem-report-wpa
6537 Makes the compiler print some statistics about permanent memory
6538 allocation for the WPA phase only.
6539
6540 @item -fpre-ipa-mem-report
6541 @opindex fpre-ipa-mem-report
6542 @item -fpost-ipa-mem-report
6543 @opindex fpost-ipa-mem-report
6544 Makes the compiler print some statistics about permanent memory
6545 allocation before or after interprocedural optimization.
6546
6547 @item -fprofile-report
6548 @opindex fprofile-report
6549 Makes the compiler print some statistics about consistency of the
6550 (estimated) profile and effect of individual passes.
6551
6552 @item -fstack-usage
6553 @opindex fstack-usage
6554 Makes the compiler output stack usage information for the program, on a
6555 per-function basis. The filename for the dump is made by appending
6556 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
6557 the output file, if explicitly specified and it is not an executable,
6558 otherwise it is the basename of the source file. An entry is made up
6559 of three fields:
6560
6561 @itemize
6562 @item
6563 The name of the function.
6564 @item
6565 A number of bytes.
6566 @item
6567 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6568 @end itemize
6569
6570 The qualifier @code{static} means that the function manipulates the stack
6571 statically: a fixed number of bytes are allocated for the frame on function
6572 entry and released on function exit; no stack adjustments are otherwise made
6573 in the function. The second field is this fixed number of bytes.
6574
6575 The qualifier @code{dynamic} means that the function manipulates the stack
6576 dynamically: in addition to the static allocation described above, stack
6577 adjustments are made in the body of the function, for example to push/pop
6578 arguments around function calls. If the qualifier @code{bounded} is also
6579 present, the amount of these adjustments is bounded at compile time and
6580 the second field is an upper bound of the total amount of stack used by
6581 the function. If it is not present, the amount of these adjustments is
6582 not bounded at compile time and the second field only represents the
6583 bounded part.
6584
6585 @item -fprofile-arcs
6586 @opindex fprofile-arcs
6587 Add code so that program flow @dfn{arcs} are instrumented. During
6588 execution the program records how many times each branch and call is
6589 executed and how many times it is taken or returns. When the compiled
6590 program exits it saves this data to a file called
6591 @file{@var{auxname}.gcda} for each source file. The data may be used for
6592 profile-directed optimizations (@option{-fbranch-probabilities}), or for
6593 test coverage analysis (@option{-ftest-coverage}). Each object file's
6594 @var{auxname} is generated from the name of the output file, if
6595 explicitly specified and it is not the final executable, otherwise it is
6596 the basename of the source file. In both cases any suffix is removed
6597 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6598 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6599 @xref{Cross-profiling}.
6600
6601 @cindex @command{gcov}
6602 @item --coverage
6603 @opindex coverage
6604
6605 This option is used to compile and link code instrumented for coverage
6606 analysis. The option is a synonym for @option{-fprofile-arcs}
6607 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6608 linking). See the documentation for those options for more details.
6609
6610 @itemize
6611
6612 @item
6613 Compile the source files with @option{-fprofile-arcs} plus optimization
6614 and code generation options. For test coverage analysis, use the
6615 additional @option{-ftest-coverage} option. You do not need to profile
6616 every source file in a program.
6617
6618 @item
6619 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6620 (the latter implies the former).
6621
6622 @item
6623 Run the program on a representative workload to generate the arc profile
6624 information. This may be repeated any number of times. You can run
6625 concurrent instances of your program, and provided that the file system
6626 supports locking, the data files will be correctly updated. Also
6627 @code{fork} calls are detected and correctly handled (double counting
6628 will not happen).
6629
6630 @item
6631 For profile-directed optimizations, compile the source files again with
6632 the same optimization and code generation options plus
6633 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6634 Control Optimization}).
6635
6636 @item
6637 For test coverage analysis, use @command{gcov} to produce human readable
6638 information from the @file{.gcno} and @file{.gcda} files. Refer to the
6639 @command{gcov} documentation for further information.
6640
6641 @end itemize
6642
6643 With @option{-fprofile-arcs}, for each function of your program GCC
6644 creates a program flow graph, then finds a spanning tree for the graph.
6645 Only arcs that are not on the spanning tree have to be instrumented: the
6646 compiler adds code to count the number of times that these arcs are
6647 executed. When an arc is the only exit or only entrance to a block, the
6648 instrumentation code can be added to the block; otherwise, a new basic
6649 block must be created to hold the instrumentation code.
6650
6651 @need 2000
6652 @item -ftest-coverage
6653 @opindex ftest-coverage
6654 Produce a notes file that the @command{gcov} code-coverage utility
6655 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6656 show program coverage. Each source file's note file is called
6657 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
6658 above for a description of @var{auxname} and instructions on how to
6659 generate test coverage data. Coverage data matches the source files
6660 more closely if you do not optimize.
6661
6662 @item -fdbg-cnt-list
6663 @opindex fdbg-cnt-list
6664 Print the name and the counter upper bound for all debug counters.
6665
6666
6667 @item -fdbg-cnt=@var{counter-value-list}
6668 @opindex fdbg-cnt
6669 Set the internal debug counter upper bound. @var{counter-value-list}
6670 is a comma-separated list of @var{name}:@var{value} pairs
6671 which sets the upper bound of each debug counter @var{name} to @var{value}.
6672 All debug counters have the initial upper bound of @code{UINT_MAX};
6673 thus @code{dbg_cnt} returns true always unless the upper bound
6674 is set by this option.
6675 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6676 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
6677
6678 @item -fenable-@var{kind}-@var{pass}
6679 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6680 @opindex fdisable-
6681 @opindex fenable-
6682
6683 This is a set of options that are used to explicitly disable/enable
6684 optimization passes. These options are intended for use for debugging GCC.
6685 Compiler users should use regular options for enabling/disabling
6686 passes instead.
6687
6688 @table @gcctabopt
6689
6690 @item -fdisable-ipa-@var{pass}
6691 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6692 statically invoked in the compiler multiple times, the pass name should be
6693 appended with a sequential number starting from 1.
6694
6695 @item -fdisable-rtl-@var{pass}
6696 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
6697 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
6698 statically invoked in the compiler multiple times, the pass name should be
6699 appended with a sequential number starting from 1. @var{range-list} is a
6700 comma-separated list of function ranges or assembler names. Each range is a number
6701 pair separated by a colon. The range is inclusive in both ends. If the range
6702 is trivial, the number pair can be simplified as a single number. If the
6703 function's call graph node's @var{uid} falls within one of the specified ranges,
6704 the @var{pass} is disabled for that function. The @var{uid} is shown in the
6705 function header of a dump file, and the pass names can be dumped by using
6706 option @option{-fdump-passes}.
6707
6708 @item -fdisable-tree-@var{pass}
6709 @itemx -fdisable-tree-@var{pass}=@var{range-list}
6710 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
6711 option arguments.
6712
6713 @item -fenable-ipa-@var{pass}
6714 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6715 statically invoked in the compiler multiple times, the pass name should be
6716 appended with a sequential number starting from 1.
6717
6718 @item -fenable-rtl-@var{pass}
6719 @itemx -fenable-rtl-@var{pass}=@var{range-list}
6720 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
6721 description and examples.
6722
6723 @item -fenable-tree-@var{pass}
6724 @itemx -fenable-tree-@var{pass}=@var{range-list}
6725 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
6726 of option arguments.
6727
6728 @end table
6729
6730 Here are some examples showing uses of these options.
6731
6732 @smallexample
6733
6734 # disable ccp1 for all functions
6735 -fdisable-tree-ccp1
6736 # disable complete unroll for function whose cgraph node uid is 1
6737 -fenable-tree-cunroll=1
6738 # disable gcse2 for functions at the following ranges [1,1],
6739 # [300,400], and [400,1000]
6740 # disable gcse2 for functions foo and foo2
6741 -fdisable-rtl-gcse2=foo,foo2
6742 # disable early inlining
6743 -fdisable-tree-einline
6744 # disable ipa inlining
6745 -fdisable-ipa-inline
6746 # enable tree full unroll
6747 -fenable-tree-unroll
6748
6749 @end smallexample
6750
6751 @item -d@var{letters}
6752 @itemx -fdump-rtl-@var{pass}
6753 @itemx -fdump-rtl-@var{pass}=@var{filename}
6754 @opindex d
6755 @opindex fdump-rtl-@var{pass}
6756 Says to make debugging dumps during compilation at times specified by
6757 @var{letters}. This is used for debugging the RTL-based passes of the
6758 compiler. The file names for most of the dumps are made by appending
6759 a pass number and a word to the @var{dumpname}, and the files are
6760 created in the directory of the output file. In case of
6761 @option{=@var{filename}} option, the dump is output on the given file
6762 instead of the pass numbered dump files. Note that the pass number is
6763 assigned as passes are registered into the pass manager. Most passes
6764 are registered in the order that they will execute and for these passes
6765 the number corresponds to the pass execution order. However, passes
6766 registered by plugins, passes specific to compilation targets, or
6767 passes that are otherwise registered after all the other passes are
6768 numbered higher than a pass named "final", even if they are executed
6769 earlier. @var{dumpname} is generated from the name of the output
6770 file if explicitly specified and not an executable, otherwise it is
6771 the basename of the source file. These switches may have different
6772 effects when @option{-E} is used for preprocessing.
6773
6774 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6775 @option{-d} option @var{letters}. Here are the possible
6776 letters for use in @var{pass} and @var{letters}, and their meanings:
6777
6778 @table @gcctabopt
6779
6780 @item -fdump-rtl-alignments
6781 @opindex fdump-rtl-alignments
6782 Dump after branch alignments have been computed.
6783
6784 @item -fdump-rtl-asmcons
6785 @opindex fdump-rtl-asmcons
6786 Dump after fixing rtl statements that have unsatisfied in/out constraints.
6787
6788 @item -fdump-rtl-auto_inc_dec
6789 @opindex fdump-rtl-auto_inc_dec
6790 Dump after auto-inc-dec discovery. This pass is only run on
6791 architectures that have auto inc or auto dec instructions.
6792
6793 @item -fdump-rtl-barriers
6794 @opindex fdump-rtl-barriers
6795 Dump after cleaning up the barrier instructions.
6796
6797 @item -fdump-rtl-bbpart
6798 @opindex fdump-rtl-bbpart
6799 Dump after partitioning hot and cold basic blocks.
6800
6801 @item -fdump-rtl-bbro
6802 @opindex fdump-rtl-bbro
6803 Dump after block reordering.
6804
6805 @item -fdump-rtl-btl1
6806 @itemx -fdump-rtl-btl2
6807 @opindex fdump-rtl-btl2
6808 @opindex fdump-rtl-btl2
6809 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6810 after the two branch
6811 target load optimization passes.
6812
6813 @item -fdump-rtl-bypass
6814 @opindex fdump-rtl-bypass
6815 Dump after jump bypassing and control flow optimizations.
6816
6817 @item -fdump-rtl-combine
6818 @opindex fdump-rtl-combine
6819 Dump after the RTL instruction combination pass.
6820
6821 @item -fdump-rtl-compgotos
6822 @opindex fdump-rtl-compgotos
6823 Dump after duplicating the computed gotos.
6824
6825 @item -fdump-rtl-ce1
6826 @itemx -fdump-rtl-ce2
6827 @itemx -fdump-rtl-ce3
6828 @opindex fdump-rtl-ce1
6829 @opindex fdump-rtl-ce2
6830 @opindex fdump-rtl-ce3
6831 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6832 @option{-fdump-rtl-ce3} enable dumping after the three
6833 if conversion passes.
6834
6835 @item -fdump-rtl-cprop_hardreg
6836 @opindex fdump-rtl-cprop_hardreg
6837 Dump after hard register copy propagation.
6838
6839 @item -fdump-rtl-csa
6840 @opindex fdump-rtl-csa
6841 Dump after combining stack adjustments.
6842
6843 @item -fdump-rtl-cse1
6844 @itemx -fdump-rtl-cse2
6845 @opindex fdump-rtl-cse1
6846 @opindex fdump-rtl-cse2
6847 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6848 the two common subexpression elimination passes.
6849
6850 @item -fdump-rtl-dce
6851 @opindex fdump-rtl-dce
6852 Dump after the standalone dead code elimination passes.
6853
6854 @item -fdump-rtl-dbr
6855 @opindex fdump-rtl-dbr
6856 Dump after delayed branch scheduling.
6857
6858 @item -fdump-rtl-dce1
6859 @itemx -fdump-rtl-dce2
6860 @opindex fdump-rtl-dce1
6861 @opindex fdump-rtl-dce2
6862 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6863 the two dead store elimination passes.
6864
6865 @item -fdump-rtl-eh
6866 @opindex fdump-rtl-eh
6867 Dump after finalization of EH handling code.
6868
6869 @item -fdump-rtl-eh_ranges
6870 @opindex fdump-rtl-eh_ranges
6871 Dump after conversion of EH handling range regions.
6872
6873 @item -fdump-rtl-expand
6874 @opindex fdump-rtl-expand
6875 Dump after RTL generation.
6876
6877 @item -fdump-rtl-fwprop1
6878 @itemx -fdump-rtl-fwprop2
6879 @opindex fdump-rtl-fwprop1
6880 @opindex fdump-rtl-fwprop2
6881 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6882 dumping after the two forward propagation passes.
6883
6884 @item -fdump-rtl-gcse1
6885 @itemx -fdump-rtl-gcse2
6886 @opindex fdump-rtl-gcse1
6887 @opindex fdump-rtl-gcse2
6888 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6889 after global common subexpression elimination.
6890
6891 @item -fdump-rtl-init-regs
6892 @opindex fdump-rtl-init-regs
6893 Dump after the initialization of the registers.
6894
6895 @item -fdump-rtl-initvals
6896 @opindex fdump-rtl-initvals
6897 Dump after the computation of the initial value sets.
6898
6899 @item -fdump-rtl-into_cfglayout
6900 @opindex fdump-rtl-into_cfglayout
6901 Dump after converting to cfglayout mode.
6902
6903 @item -fdump-rtl-ira
6904 @opindex fdump-rtl-ira
6905 Dump after iterated register allocation.
6906
6907 @item -fdump-rtl-jump
6908 @opindex fdump-rtl-jump
6909 Dump after the second jump optimization.
6910
6911 @item -fdump-rtl-loop2
6912 @opindex fdump-rtl-loop2
6913 @option{-fdump-rtl-loop2} enables dumping after the rtl
6914 loop optimization passes.
6915
6916 @item -fdump-rtl-mach
6917 @opindex fdump-rtl-mach
6918 Dump after performing the machine dependent reorganization pass, if that
6919 pass exists.
6920
6921 @item -fdump-rtl-mode_sw
6922 @opindex fdump-rtl-mode_sw
6923 Dump after removing redundant mode switches.
6924
6925 @item -fdump-rtl-rnreg
6926 @opindex fdump-rtl-rnreg
6927 Dump after register renumbering.
6928
6929 @item -fdump-rtl-outof_cfglayout
6930 @opindex fdump-rtl-outof_cfglayout
6931 Dump after converting from cfglayout mode.
6932
6933 @item -fdump-rtl-peephole2
6934 @opindex fdump-rtl-peephole2
6935 Dump after the peephole pass.
6936
6937 @item -fdump-rtl-postreload
6938 @opindex fdump-rtl-postreload
6939 Dump after post-reload optimizations.
6940
6941 @item -fdump-rtl-pro_and_epilogue
6942 @opindex fdump-rtl-pro_and_epilogue
6943 Dump after generating the function prologues and epilogues.
6944
6945 @item -fdump-rtl-sched1
6946 @itemx -fdump-rtl-sched2
6947 @opindex fdump-rtl-sched1
6948 @opindex fdump-rtl-sched2
6949 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6950 after the basic block scheduling passes.
6951
6952 @item -fdump-rtl-ree
6953 @opindex fdump-rtl-ree
6954 Dump after sign/zero extension elimination.
6955
6956 @item -fdump-rtl-seqabstr
6957 @opindex fdump-rtl-seqabstr
6958 Dump after common sequence discovery.
6959
6960 @item -fdump-rtl-shorten
6961 @opindex fdump-rtl-shorten
6962 Dump after shortening branches.
6963
6964 @item -fdump-rtl-sibling
6965 @opindex fdump-rtl-sibling
6966 Dump after sibling call optimizations.
6967
6968 @item -fdump-rtl-split1
6969 @itemx -fdump-rtl-split2
6970 @itemx -fdump-rtl-split3
6971 @itemx -fdump-rtl-split4
6972 @itemx -fdump-rtl-split5
6973 @opindex fdump-rtl-split1
6974 @opindex fdump-rtl-split2
6975 @opindex fdump-rtl-split3
6976 @opindex fdump-rtl-split4
6977 @opindex fdump-rtl-split5
6978 These options enable dumping after five rounds of
6979 instruction splitting.
6980
6981 @item -fdump-rtl-sms
6982 @opindex fdump-rtl-sms
6983 Dump after modulo scheduling. This pass is only run on some
6984 architectures.
6985
6986 @item -fdump-rtl-stack
6987 @opindex fdump-rtl-stack
6988 Dump after conversion from GCC's ``flat register file'' registers to the
6989 x87's stack-like registers. This pass is only run on x86 variants.
6990
6991 @item -fdump-rtl-subreg1
6992 @itemx -fdump-rtl-subreg2
6993 @opindex fdump-rtl-subreg1
6994 @opindex fdump-rtl-subreg2
6995 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6996 the two subreg expansion passes.
6997
6998 @item -fdump-rtl-unshare
6999 @opindex fdump-rtl-unshare
7000 Dump after all rtl has been unshared.
7001
7002 @item -fdump-rtl-vartrack
7003 @opindex fdump-rtl-vartrack
7004 Dump after variable tracking.
7005
7006 @item -fdump-rtl-vregs
7007 @opindex fdump-rtl-vregs
7008 Dump after converting virtual registers to hard registers.
7009
7010 @item -fdump-rtl-web
7011 @opindex fdump-rtl-web
7012 Dump after live range splitting.
7013
7014 @item -fdump-rtl-regclass
7015 @itemx -fdump-rtl-subregs_of_mode_init
7016 @itemx -fdump-rtl-subregs_of_mode_finish
7017 @itemx -fdump-rtl-dfinit
7018 @itemx -fdump-rtl-dfinish
7019 @opindex fdump-rtl-regclass
7020 @opindex fdump-rtl-subregs_of_mode_init
7021 @opindex fdump-rtl-subregs_of_mode_finish
7022 @opindex fdump-rtl-dfinit
7023 @opindex fdump-rtl-dfinish
7024 These dumps are defined but always produce empty files.
7025
7026 @item -da
7027 @itemx -fdump-rtl-all
7028 @opindex da
7029 @opindex fdump-rtl-all
7030 Produce all the dumps listed above.
7031
7032 @item -dA
7033 @opindex dA
7034 Annotate the assembler output with miscellaneous debugging information.
7035
7036 @item -dD
7037 @opindex dD
7038 Dump all macro definitions, at the end of preprocessing, in addition to
7039 normal output.
7040
7041 @item -dH
7042 @opindex dH
7043 Produce a core dump whenever an error occurs.
7044
7045 @item -dp
7046 @opindex dp
7047 Annotate the assembler output with a comment indicating which
7048 pattern and alternative is used. The length of each instruction is
7049 also printed.
7050
7051 @item -dP
7052 @opindex dP
7053 Dump the RTL in the assembler output as a comment before each instruction.
7054 Also turns on @option{-dp} annotation.
7055
7056 @item -dx
7057 @opindex dx
7058 Just generate RTL for a function instead of compiling it. Usually used
7059 with @option{-fdump-rtl-expand}.
7060 @end table
7061
7062 @item -fdump-noaddr
7063 @opindex fdump-noaddr
7064 When doing debugging dumps, suppress address output. This makes it more
7065 feasible to use diff on debugging dumps for compiler invocations with
7066 different compiler binaries and/or different
7067 text / bss / data / heap / stack / dso start locations.
7068
7069 @item -freport-bug
7070 @opindex freport-bug
7071 Collect and dump debug information into temporary file if ICE in C/C++
7072 compiler occured.
7073
7074 @item -fdump-unnumbered
7075 @opindex fdump-unnumbered
7076 When doing debugging dumps, suppress instruction numbers and address output.
7077 This makes it more feasible to use diff on debugging dumps for compiler
7078 invocations with different options, in particular with and without
7079 @option{-g}.
7080
7081 @item -fdump-unnumbered-links
7082 @opindex fdump-unnumbered-links
7083 When doing debugging dumps (see @option{-d} option above), suppress
7084 instruction numbers for the links to the previous and next instructions
7085 in a sequence.
7086
7087 @item -fdump-translation-unit @r{(C++ only)}
7088 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
7089 @opindex fdump-translation-unit
7090 Dump a representation of the tree structure for the entire translation
7091 unit to a file. The file name is made by appending @file{.tu} to the
7092 source file name, and the file is created in the same directory as the
7093 output file. If the @samp{-@var{options}} form is used, @var{options}
7094 controls the details of the dump as described for the
7095 @option{-fdump-tree} options.
7096
7097 @item -fdump-class-hierarchy @r{(C++ only)}
7098 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
7099 @opindex fdump-class-hierarchy
7100 Dump a representation of each class's hierarchy and virtual function
7101 table layout to a file. The file name is made by appending
7102 @file{.class} to the source file name, and the file is created in the
7103 same directory as the output file. If the @samp{-@var{options}} form
7104 is used, @var{options} controls the details of the dump as described
7105 for the @option{-fdump-tree} options.
7106
7107 @item -fdump-ipa-@var{switch}
7108 @opindex fdump-ipa
7109 Control the dumping at various stages of inter-procedural analysis
7110 language tree to a file. The file name is generated by appending a
7111 switch specific suffix to the source file name, and the file is created
7112 in the same directory as the output file. The following dumps are
7113 possible:
7114
7115 @table @samp
7116 @item all
7117 Enables all inter-procedural analysis dumps.
7118
7119 @item cgraph
7120 Dumps information about call-graph optimization, unused function removal,
7121 and inlining decisions.
7122
7123 @item inline
7124 Dump after function inlining.
7125
7126 @end table
7127
7128 @item -fdump-passes
7129 @opindex fdump-passes
7130 Dump the list of optimization passes that are turned on and off by
7131 the current command-line options.
7132
7133 @item -fdump-statistics-@var{option}
7134 @opindex fdump-statistics
7135 Enable and control dumping of pass statistics in a separate file. The
7136 file name is generated by appending a suffix ending in
7137 @samp{.statistics} to the source file name, and the file is created in
7138 the same directory as the output file. If the @samp{-@var{option}}
7139 form is used, @samp{-stats} causes counters to be summed over the
7140 whole compilation unit while @samp{-details} dumps every event as
7141 the passes generate them. The default with no option is to sum
7142 counters for each function compiled.
7143
7144 @item -fdump-tree-@var{switch}
7145 @itemx -fdump-tree-@var{switch}-@var{options}
7146 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
7147 @opindex fdump-tree
7148 Control the dumping at various stages of processing the intermediate
7149 language tree to a file. The file name is generated by appending a
7150 switch-specific suffix to the source file name, and the file is
7151 created in the same directory as the output file. In case of
7152 @option{=@var{filename}} option, the dump is output on the given file
7153 instead of the auto named dump files. If the @samp{-@var{options}}
7154 form is used, @var{options} is a list of @samp{-} separated options
7155 which control the details of the dump. Not all options are applicable
7156 to all dumps; those that are not meaningful are ignored. The
7157 following options are available
7158
7159 @table @samp
7160 @item address
7161 Print the address of each node. Usually this is not meaningful as it
7162 changes according to the environment and source file. Its primary use
7163 is for tying up a dump file with a debug environment.
7164 @item asmname
7165 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
7166 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
7167 use working backward from mangled names in the assembly file.
7168 @item slim
7169 When dumping front-end intermediate representations, inhibit dumping
7170 of members of a scope or body of a function merely because that scope
7171 has been reached. Only dump such items when they are directly reachable
7172 by some other path.
7173
7174 When dumping pretty-printed trees, this option inhibits dumping the
7175 bodies of control structures.
7176
7177 When dumping RTL, print the RTL in slim (condensed) form instead of
7178 the default LISP-like representation.
7179 @item raw
7180 Print a raw representation of the tree. By default, trees are
7181 pretty-printed into a C-like representation.
7182 @item details
7183 Enable more detailed dumps (not honored by every dump option). Also
7184 include information from the optimization passes.
7185 @item stats
7186 Enable dumping various statistics about the pass (not honored by every dump
7187 option).
7188 @item blocks
7189 Enable showing basic block boundaries (disabled in raw dumps).
7190 @item graph
7191 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
7192 dump a representation of the control flow graph suitable for viewing with
7193 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
7194 the file is pretty-printed as a subgraph, so that GraphViz can render them
7195 all in a single plot.
7196
7197 This option currently only works for RTL dumps, and the RTL is always
7198 dumped in slim form.
7199 @item vops
7200 Enable showing virtual operands for every statement.
7201 @item lineno
7202 Enable showing line numbers for statements.
7203 @item uid
7204 Enable showing the unique ID (@code{DECL_UID}) for each variable.
7205 @item verbose
7206 Enable showing the tree dump for each statement.
7207 @item eh
7208 Enable showing the EH region number holding each statement.
7209 @item scev
7210 Enable showing scalar evolution analysis details.
7211 @item optimized
7212 Enable showing optimization information (only available in certain
7213 passes).
7214 @item missed
7215 Enable showing missed optimization information (only available in certain
7216 passes).
7217 @item note
7218 Enable other detailed optimization information (only available in
7219 certain passes).
7220 @item =@var{filename}
7221 Instead of an auto named dump file, output into the given file
7222 name. The file names @file{stdout} and @file{stderr} are treated
7223 specially and are considered already open standard streams. For
7224 example,
7225
7226 @smallexample
7227 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
7228 -fdump-tree-pre=stderr file.c
7229 @end smallexample
7230
7231 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
7232 output on to @file{stderr}. If two conflicting dump filenames are
7233 given for the same pass, then the latter option overrides the earlier
7234 one.
7235
7236 @item split-paths
7237 @opindex fdump-tree-split-paths
7238 Dump each function after splitting paths to loop backedges. The file
7239 name is made by appending @file{.split-paths} to the source file name.
7240
7241 @item all
7242 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
7243 and @option{lineno}.
7244
7245 @item optall
7246 Turn on all optimization options, i.e., @option{optimized},
7247 @option{missed}, and @option{note}.
7248 @end table
7249
7250 The following tree dumps are possible:
7251 @table @samp
7252
7253 @item original
7254 @opindex fdump-tree-original
7255 Dump before any tree based optimization, to @file{@var{file}.original}.
7256
7257 @item optimized
7258 @opindex fdump-tree-optimized
7259 Dump after all tree based optimization, to @file{@var{file}.optimized}.
7260
7261 @item gimple
7262 @opindex fdump-tree-gimple
7263 Dump each function before and after the gimplification pass to a file. The
7264 file name is made by appending @file{.gimple} to the source file name.
7265
7266 @item cfg
7267 @opindex fdump-tree-cfg
7268 Dump the control flow graph of each function to a file. The file name is
7269 made by appending @file{.cfg} to the source file name.
7270
7271 @item ch
7272 @opindex fdump-tree-ch
7273 Dump each function after copying loop headers. The file name is made by
7274 appending @file{.ch} to the source file name.
7275
7276 @item ssa
7277 @opindex fdump-tree-ssa
7278 Dump SSA related information to a file. The file name is made by appending
7279 @file{.ssa} to the source file name.
7280
7281 @item alias
7282 @opindex fdump-tree-alias
7283 Dump aliasing information for each function. The file name is made by
7284 appending @file{.alias} to the source file name.
7285
7286 @item ccp
7287 @opindex fdump-tree-ccp
7288 Dump each function after CCP@. The file name is made by appending
7289 @file{.ccp} to the source file name.
7290
7291 @item storeccp
7292 @opindex fdump-tree-storeccp
7293 Dump each function after STORE-CCP@. The file name is made by appending
7294 @file{.storeccp} to the source file name.
7295
7296 @item pre
7297 @opindex fdump-tree-pre
7298 Dump trees after partial redundancy elimination. The file name is made
7299 by appending @file{.pre} to the source file name.
7300
7301 @item fre
7302 @opindex fdump-tree-fre
7303 Dump trees after full redundancy elimination. The file name is made
7304 by appending @file{.fre} to the source file name.
7305
7306 @item copyprop
7307 @opindex fdump-tree-copyprop
7308 Dump trees after copy propagation. The file name is made
7309 by appending @file{.copyprop} to the source file name.
7310
7311 @item store_copyprop
7312 @opindex fdump-tree-store_copyprop
7313 Dump trees after store copy-propagation. The file name is made
7314 by appending @file{.store_copyprop} to the source file name.
7315
7316 @item dce
7317 @opindex fdump-tree-dce
7318 Dump each function after dead code elimination. The file name is made by
7319 appending @file{.dce} to the source file name.
7320
7321 @item sra
7322 @opindex fdump-tree-sra
7323 Dump each function after performing scalar replacement of aggregates. The
7324 file name is made by appending @file{.sra} to the source file name.
7325
7326 @item sink
7327 @opindex fdump-tree-sink
7328 Dump each function after performing code sinking. The file name is made
7329 by appending @file{.sink} to the source file name.
7330
7331 @item dom
7332 @opindex fdump-tree-dom
7333 Dump each function after applying dominator tree optimizations. The file
7334 name is made by appending @file{.dom} to the source file name.
7335
7336 @item dse
7337 @opindex fdump-tree-dse
7338 Dump each function after applying dead store elimination. The file
7339 name is made by appending @file{.dse} to the source file name.
7340
7341 @item phiopt
7342 @opindex fdump-tree-phiopt
7343 Dump each function after optimizing PHI nodes into straightline code. The file
7344 name is made by appending @file{.phiopt} to the source file name.
7345
7346 @item backprop
7347 @opindex fdump-tree-backprop
7348 Dump each function after back-propagating use information up the definition
7349 chain. The file name is made by appending @file{.backprop} to the
7350 source file name.
7351
7352 @item forwprop
7353 @opindex fdump-tree-forwprop
7354 Dump each function after forward propagating single use variables. The file
7355 name is made by appending @file{.forwprop} to the source file name.
7356
7357 @item nrv
7358 @opindex fdump-tree-nrv
7359 Dump each function after applying the named return value optimization on
7360 generic trees. The file name is made by appending @file{.nrv} to the source
7361 file name.
7362
7363 @item vect
7364 @opindex fdump-tree-vect
7365 Dump each function after applying vectorization of loops. The file name is
7366 made by appending @file{.vect} to the source file name.
7367
7368 @item slp
7369 @opindex fdump-tree-slp
7370 Dump each function after applying vectorization of basic blocks. The file name
7371 is made by appending @file{.slp} to the source file name.
7372
7373 @item vrp
7374 @opindex fdump-tree-vrp
7375 Dump each function after Value Range Propagation (VRP). The file name
7376 is made by appending @file{.vrp} to the source file name.
7377
7378 @item oaccdevlow
7379 @opindex fdump-tree-oaccdevlow
7380 Dump each function after applying device-specific OpenACC transformations.
7381 The file name is made by appending @file{.oaccdevlow} to the source file name.
7382
7383 @item all
7384 @opindex fdump-tree-all
7385 Enable all the available tree dumps with the flags provided in this option.
7386 @end table
7387
7388 @item -fopt-info
7389 @itemx -fopt-info-@var{options}
7390 @itemx -fopt-info-@var{options}=@var{filename}
7391 @opindex fopt-info
7392 Controls optimization dumps from various optimization passes. If the
7393 @samp{-@var{options}} form is used, @var{options} is a list of
7394 @samp{-} separated option keywords to select the dump details and
7395 optimizations.
7396
7397 The @var{options} can be divided into two groups: options describing the
7398 verbosity of the dump, and options describing which optimizations
7399 should be included. The options from both the groups can be freely
7400 mixed as they are non-overlapping. However, in case of any conflicts,
7401 the later options override the earlier options on the command
7402 line.
7403
7404 The following options control the dump verbosity:
7405
7406 @table @samp
7407 @item optimized
7408 Print information when an optimization is successfully applied. It is
7409 up to a pass to decide which information is relevant. For example, the
7410 vectorizer passes print the source location of loops which are
7411 successfully vectorized.
7412 @item missed
7413 Print information about missed optimizations. Individual passes
7414 control which information to include in the output.
7415 @item note
7416 Print verbose information about optimizations, such as certain
7417 transformations, more detailed messages about decisions etc.
7418 @item all
7419 Print detailed optimization information. This includes
7420 @samp{optimized}, @samp{missed}, and @samp{note}.
7421 @end table
7422
7423 One or more of the following option keywords can be used to describe a
7424 group of optimizations:
7425
7426 @table @samp
7427 @item ipa
7428 Enable dumps from all interprocedural optimizations.
7429 @item loop
7430 Enable dumps from all loop optimizations.
7431 @item inline
7432 Enable dumps from all inlining optimizations.
7433 @item vec
7434 Enable dumps from all vectorization optimizations.
7435 @item optall
7436 Enable dumps from all optimizations. This is a superset of
7437 the optimization groups listed above.
7438 @end table
7439
7440 If @var{options} is
7441 omitted, it defaults to @samp{optimized-optall}, which means to dump all
7442 info about successful optimizations from all the passes.
7443
7444 If the @var{filename} is provided, then the dumps from all the
7445 applicable optimizations are concatenated into the @var{filename}.
7446 Otherwise the dump is output onto @file{stderr}. Though multiple
7447 @option{-fopt-info} options are accepted, only one of them can include
7448 a @var{filename}. If other filenames are provided then all but the
7449 first such option are ignored.
7450
7451 Note that the output @var{filename} is overwritten
7452 in case of multiple translation units. If a combined output from
7453 multiple translation units is desired, @file{stderr} should be used
7454 instead.
7455
7456 In the following example, the optimization info is output to
7457 @file{stderr}:
7458
7459 @smallexample
7460 gcc -O3 -fopt-info
7461 @end smallexample
7462
7463 This example:
7464 @smallexample
7465 gcc -O3 -fopt-info-missed=missed.all
7466 @end smallexample
7467
7468 @noindent
7469 outputs missed optimization report from all the passes into
7470 @file{missed.all}, and this one:
7471
7472 @smallexample
7473 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7474 @end smallexample
7475
7476 @noindent
7477 prints information about missed optimization opportunities from
7478 vectorization passes on @file{stderr}.
7479 Note that @option{-fopt-info-vec-missed} is equivalent to
7480 @option{-fopt-info-missed-vec}.
7481
7482 As another example,
7483 @smallexample
7484 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7485 @end smallexample
7486
7487 @noindent
7488 outputs information about missed optimizations as well as
7489 optimized locations from all the inlining passes into
7490 @file{inline.txt}.
7491
7492 Finally, consider:
7493
7494 @smallexample
7495 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7496 @end smallexample
7497
7498 @noindent
7499 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7500 in conflict since only one output file is allowed. In this case, only
7501 the first option takes effect and the subsequent options are
7502 ignored. Thus only @file{vec.miss} is produced which contains
7503 dumps from the vectorizer about missed opportunities.
7504
7505 @item -frandom-seed=@var{string}
7506 @opindex frandom-seed
7507 This option provides a seed that GCC uses in place of
7508 random numbers in generating certain symbol names
7509 that have to be different in every compiled file. It is also used to
7510 place unique stamps in coverage data files and the object files that
7511 produce them. You can use the @option{-frandom-seed} option to produce
7512 reproducibly identical object files.
7513
7514 The @var{string} can either be a number (decimal, octal or hex) or an
7515 arbitrary string (in which case it's converted to a number by
7516 computing CRC32).
7517
7518 The @var{string} should be different for every file you compile.
7519
7520 @item -fsched-verbose=@var{n}
7521 @opindex fsched-verbose
7522 On targets that use instruction scheduling, this option controls the
7523 amount of debugging output the scheduler prints to the dump files.
7524
7525 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7526 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7527 For @var{n} greater than one, it also output basic block probabilities,
7528 detailed ready list information and unit/insn info. For @var{n} greater
7529 than two, it includes RTL at abort point, control-flow and regions info.
7530 And for @var{n} over four, @option{-fsched-verbose} also includes
7531 dependence info.
7532
7533 @item -save-temps
7534 @itemx -save-temps=cwd
7535 @opindex save-temps
7536 Store the usual ``temporary'' intermediate files permanently; place them
7537 in the current directory and name them based on the source file. Thus,
7538 compiling @file{foo.c} with @option{-c -save-temps} produces files
7539 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
7540 preprocessed @file{foo.i} output file even though the compiler now
7541 normally uses an integrated preprocessor.
7542
7543 When used in combination with the @option{-x} command-line option,
7544 @option{-save-temps} is sensible enough to avoid over writing an
7545 input source file with the same extension as an intermediate file.
7546 The corresponding intermediate file may be obtained by renaming the
7547 source file before using @option{-save-temps}.
7548
7549 If you invoke GCC in parallel, compiling several different source
7550 files that share a common base name in different subdirectories or the
7551 same source file compiled for multiple output destinations, it is
7552 likely that the different parallel compilers will interfere with each
7553 other, and overwrite the temporary files. For instance:
7554
7555 @smallexample
7556 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7557 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7558 @end smallexample
7559
7560 may result in @file{foo.i} and @file{foo.o} being written to
7561 simultaneously by both compilers.
7562
7563 @item -save-temps=obj
7564 @opindex save-temps=obj
7565 Store the usual ``temporary'' intermediate files permanently. If the
7566 @option{-o} option is used, the temporary files are based on the
7567 object file. If the @option{-o} option is not used, the
7568 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
7569
7570 For example:
7571
7572 @smallexample
7573 gcc -save-temps=obj -c foo.c
7574 gcc -save-temps=obj -c bar.c -o dir/xbar.o
7575 gcc -save-temps=obj foobar.c -o dir2/yfoobar
7576 @end smallexample
7577
7578 @noindent
7579 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7580 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7581 @file{dir2/yfoobar.o}.
7582
7583 @item -time@r{[}=@var{file}@r{]}
7584 @opindex time
7585 Report the CPU time taken by each subprocess in the compilation
7586 sequence. For C source files, this is the compiler proper and assembler
7587 (plus the linker if linking is done).
7588
7589 Without the specification of an output file, the output looks like this:
7590
7591 @smallexample
7592 # cc1 0.12 0.01
7593 # as 0.00 0.01
7594 @end smallexample
7595
7596 The first number on each line is the ``user time'', that is time spent
7597 executing the program itself. The second number is ``system time'',
7598 time spent executing operating system routines on behalf of the program.
7599 Both numbers are in seconds.
7600
7601 With the specification of an output file, the output is appended to the
7602 named file, and it looks like this:
7603
7604 @smallexample
7605 0.12 0.01 cc1 @var{options}
7606 0.00 0.01 as @var{options}
7607 @end smallexample
7608
7609 The ``user time'' and the ``system time'' are moved before the program
7610 name, and the options passed to the program are displayed, so that one
7611 can later tell what file was being compiled, and with which options.
7612
7613 @item -fvar-tracking
7614 @opindex fvar-tracking
7615 Run variable tracking pass. It computes where variables are stored at each
7616 position in code. Better debugging information is then generated
7617 (if the debugging information format supports this information).
7618
7619 It is enabled by default when compiling with optimization (@option{-Os},
7620 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7621 the debug info format supports it.
7622
7623 @item -fvar-tracking-assignments
7624 @opindex fvar-tracking-assignments
7625 @opindex fno-var-tracking-assignments
7626 Annotate assignments to user variables early in the compilation and
7627 attempt to carry the annotations over throughout the compilation all the
7628 way to the end, in an attempt to improve debug information while
7629 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7630
7631 It can be enabled even if var-tracking is disabled, in which case
7632 annotations are created and maintained, but discarded at the end.
7633 By default, this flag is enabled together with @option{-fvar-tracking},
7634 except when selective scheduling is enabled.
7635
7636 @item -fvar-tracking-assignments-toggle
7637 @opindex fvar-tracking-assignments-toggle
7638 @opindex fno-var-tracking-assignments-toggle
7639 Toggle @option{-fvar-tracking-assignments}, in the same way that
7640 @option{-gtoggle} toggles @option{-g}.
7641
7642 @item -print-file-name=@var{library}
7643 @opindex print-file-name
7644 Print the full absolute name of the library file @var{library} that
7645 would be used when linking---and don't do anything else. With this
7646 option, GCC does not compile or link anything; it just prints the
7647 file name.
7648
7649 @item -print-multi-directory
7650 @opindex print-multi-directory
7651 Print the directory name corresponding to the multilib selected by any
7652 other switches present in the command line. This directory is supposed
7653 to exist in @env{GCC_EXEC_PREFIX}.
7654
7655 @item -print-multi-lib
7656 @opindex print-multi-lib
7657 Print the mapping from multilib directory names to compiler switches
7658 that enable them. The directory name is separated from the switches by
7659 @samp{;}, and each switch starts with an @samp{@@} instead of the
7660 @samp{-}, without spaces between multiple switches. This is supposed to
7661 ease shell processing.
7662
7663 @item -print-multi-os-directory
7664 @opindex print-multi-os-directory
7665 Print the path to OS libraries for the selected
7666 multilib, relative to some @file{lib} subdirectory. If OS libraries are
7667 present in the @file{lib} subdirectory and no multilibs are used, this is
7668 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7669 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7670 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7671 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7672
7673 @item -print-multiarch
7674 @opindex print-multiarch
7675 Print the path to OS libraries for the selected multiarch,
7676 relative to some @file{lib} subdirectory.
7677
7678 @item -print-prog-name=@var{program}
7679 @opindex print-prog-name
7680 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7681
7682 @item -print-libgcc-file-name
7683 @opindex print-libgcc-file-name
7684 Same as @option{-print-file-name=libgcc.a}.
7685
7686 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7687 but you do want to link with @file{libgcc.a}. You can do:
7688
7689 @smallexample
7690 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7691 @end smallexample
7692
7693 @item -print-search-dirs
7694 @opindex print-search-dirs
7695 Print the name of the configured installation directory and a list of
7696 program and library directories @command{gcc} searches---and don't do anything else.
7697
7698 This is useful when @command{gcc} prints the error message
7699 @samp{installation problem, cannot exec cpp0: No such file or directory}.
7700 To resolve this you either need to put @file{cpp0} and the other compiler
7701 components where @command{gcc} expects to find them, or you can set the environment
7702 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7703 Don't forget the trailing @samp{/}.
7704 @xref{Environment Variables}.
7705
7706 @item -print-sysroot
7707 @opindex print-sysroot
7708 Print the target sysroot directory that is used during
7709 compilation. This is the target sysroot specified either at configure
7710 time or using the @option{--sysroot} option, possibly with an extra
7711 suffix that depends on compilation options. If no target sysroot is
7712 specified, the option prints nothing.
7713
7714 @item -print-sysroot-headers-suffix
7715 @opindex print-sysroot-headers-suffix
7716 Print the suffix added to the target sysroot when searching for
7717 headers, or give an error if the compiler is not configured with such
7718 a suffix---and don't do anything else.
7719
7720 @item -dumpmachine
7721 @opindex dumpmachine
7722 Print the compiler's target machine (for example,
7723 @samp{i686-pc-linux-gnu})---and don't do anything else.
7724
7725 @item -dumpversion
7726 @opindex dumpversion
7727 Print the compiler version (for example, @code{3.0})---and don't do
7728 anything else.
7729
7730 @item -dumpspecs
7731 @opindex dumpspecs
7732 Print the compiler's built-in specs---and don't do anything else. (This
7733 is used when GCC itself is being built.) @xref{Spec Files}.
7734
7735 @item -fno-eliminate-unused-debug-types
7736 @opindex feliminate-unused-debug-types
7737 @opindex fno-eliminate-unused-debug-types
7738 Normally, when producing DWARF 2 output, GCC avoids producing debug symbol
7739 output for types that are nowhere used in the source file being compiled.
7740 Sometimes it is useful to have GCC emit debugging
7741 information for all types declared in a compilation
7742 unit, regardless of whether or not they are actually used
7743 in that compilation unit, for example
7744 if, in the debugger, you want to cast a value to a type that is
7745 not actually used in your program (but is declared). More often,
7746 however, this results in a significant amount of wasted space.
7747 @end table
7748
7749 @node Optimize Options
7750 @section Options That Control Optimization
7751 @cindex optimize options
7752 @cindex options, optimization
7753
7754 These options control various sorts of optimizations.
7755
7756 Without any optimization option, the compiler's goal is to reduce the
7757 cost of compilation and to make debugging produce the expected
7758 results. Statements are independent: if you stop the program with a
7759 breakpoint between statements, you can then assign a new value to any
7760 variable or change the program counter to any other statement in the
7761 function and get exactly the results you expect from the source
7762 code.
7763
7764 Turning on optimization flags makes the compiler attempt to improve
7765 the performance and/or code size at the expense of compilation time
7766 and possibly the ability to debug the program.
7767
7768 The compiler performs optimization based on the knowledge it has of the
7769 program. Compiling multiple files at once to a single output file mode allows
7770 the compiler to use information gained from all of the files when compiling
7771 each of them.
7772
7773 Not all optimizations are controlled directly by a flag. Only
7774 optimizations that have a flag are listed in this section.
7775
7776 Most optimizations are only enabled if an @option{-O} level is set on
7777 the command line. Otherwise they are disabled, even if individual
7778 optimization flags are specified.
7779
7780 Depending on the target and how GCC was configured, a slightly different
7781 set of optimizations may be enabled at each @option{-O} level than
7782 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7783 to find out the exact set of optimizations that are enabled at each level.
7784 @xref{Overall Options}, for examples.
7785
7786 @table @gcctabopt
7787 @item -O
7788 @itemx -O1
7789 @opindex O
7790 @opindex O1
7791 Optimize. Optimizing compilation takes somewhat more time, and a lot
7792 more memory for a large function.
7793
7794 With @option{-O}, the compiler tries to reduce code size and execution
7795 time, without performing any optimizations that take a great deal of
7796 compilation time.
7797
7798 @option{-O} turns on the following optimization flags:
7799 @gccoptlist{
7800 -fauto-inc-dec @gol
7801 -fbranch-count-reg @gol
7802 -fcombine-stack-adjustments @gol
7803 -fcompare-elim @gol
7804 -fcprop-registers @gol
7805 -fdce @gol
7806 -fdefer-pop @gol
7807 -fdelayed-branch @gol
7808 -fdse @gol
7809 -fforward-propagate @gol
7810 -fguess-branch-probability @gol
7811 -fif-conversion2 @gol
7812 -fif-conversion @gol
7813 -finline-functions-called-once @gol
7814 -fipa-pure-const @gol
7815 -fipa-profile @gol
7816 -fipa-reference @gol
7817 -fmerge-constants @gol
7818 -fmove-loop-invariants @gol
7819 -freorder-blocks @gol
7820 -fshrink-wrap @gol
7821 -fsplit-wide-types @gol
7822 -fssa-backprop @gol
7823 -fssa-phiopt @gol
7824 -ftree-bit-ccp @gol
7825 -ftree-ccp @gol
7826 -ftree-ch @gol
7827 -ftree-coalesce-vars @gol
7828 -ftree-copy-prop @gol
7829 -ftree-dce @gol
7830 -ftree-dominator-opts @gol
7831 -ftree-dse @gol
7832 -ftree-forwprop @gol
7833 -ftree-fre @gol
7834 -ftree-phiprop @gol
7835 -ftree-sink @gol
7836 -ftree-slsr @gol
7837 -ftree-sra @gol
7838 -ftree-pta @gol
7839 -ftree-ter @gol
7840 -funit-at-a-time}
7841
7842 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7843 where doing so does not interfere with debugging.
7844
7845 @item -O2
7846 @opindex O2
7847 Optimize even more. GCC performs nearly all supported optimizations
7848 that do not involve a space-speed tradeoff.
7849 As compared to @option{-O}, this option increases both compilation time
7850 and the performance of the generated code.
7851
7852 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7853 also turns on the following optimization flags:
7854 @gccoptlist{-fthread-jumps @gol
7855 -falign-functions -falign-jumps @gol
7856 -falign-loops -falign-labels @gol
7857 -fcaller-saves @gol
7858 -fcrossjumping @gol
7859 -fcse-follow-jumps -fcse-skip-blocks @gol
7860 -fdelete-null-pointer-checks @gol
7861 -fdevirtualize -fdevirtualize-speculatively @gol
7862 -fexpensive-optimizations @gol
7863 -fgcse -fgcse-lm @gol
7864 -fhoist-adjacent-loads @gol
7865 -finline-small-functions @gol
7866 -findirect-inlining @gol
7867 -fipa-cp @gol
7868 -fipa-cp-alignment @gol
7869 -fipa-sra @gol
7870 -fipa-icf @gol
7871 -fisolate-erroneous-paths-dereference @gol
7872 -flra-remat @gol
7873 -foptimize-sibling-calls @gol
7874 -foptimize-strlen @gol
7875 -fpartial-inlining @gol
7876 -fpeephole2 @gol
7877 -freorder-blocks-algorithm=stc @gol
7878 -freorder-blocks-and-partition -freorder-functions @gol
7879 -frerun-cse-after-loop @gol
7880 -fsched-interblock -fsched-spec @gol
7881 -fschedule-insns -fschedule-insns2 @gol
7882 -fstrict-aliasing -fstrict-overflow @gol
7883 -ftree-builtin-call-dce @gol
7884 -ftree-switch-conversion -ftree-tail-merge @gol
7885 -ftree-pre @gol
7886 -ftree-vrp @gol
7887 -fipa-ra}
7888
7889 Please note the warning under @option{-fgcse} about
7890 invoking @option{-O2} on programs that use computed gotos.
7891
7892 @item -O3
7893 @opindex O3
7894 Optimize yet more. @option{-O3} turns on all optimizations specified
7895 by @option{-O2} and also turns on the @option{-finline-functions},
7896 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7897 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7898 @option{-ftree-loop-distribute-patterns}, @option{-fsplit-paths}
7899 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7900 @option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7901
7902 @item -O0
7903 @opindex O0
7904 Reduce compilation time and make debugging produce the expected
7905 results. This is the default.
7906
7907 @item -Os
7908 @opindex Os
7909 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7910 do not typically increase code size. It also performs further
7911 optimizations designed to reduce code size.
7912
7913 @option{-Os} disables the following optimization flags:
7914 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7915 -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc @gol
7916 -freorder-blocks-and-partition -fprefetch-loop-arrays}
7917
7918 @item -Ofast
7919 @opindex Ofast
7920 Disregard strict standards compliance. @option{-Ofast} enables all
7921 @option{-O3} optimizations. It also enables optimizations that are not
7922 valid for all standard-compliant programs.
7923 It turns on @option{-ffast-math} and the Fortran-specific
7924 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7925
7926 @item -Og
7927 @opindex Og
7928 Optimize debugging experience. @option{-Og} enables optimizations
7929 that do not interfere with debugging. It should be the optimization
7930 level of choice for the standard edit-compile-debug cycle, offering
7931 a reasonable level of optimization while maintaining fast compilation
7932 and a good debugging experience.
7933 @end table
7934
7935 If you use multiple @option{-O} options, with or without level numbers,
7936 the last such option is the one that is effective.
7937
7938 Options of the form @option{-f@var{flag}} specify machine-independent
7939 flags. Most flags have both positive and negative forms; the negative
7940 form of @option{-ffoo} is @option{-fno-foo}. In the table
7941 below, only one of the forms is listed---the one you typically
7942 use. You can figure out the other form by either removing @samp{no-}
7943 or adding it.
7944
7945 The following options control specific optimizations. They are either
7946 activated by @option{-O} options or are related to ones that are. You
7947 can use the following flags in the rare cases when ``fine-tuning'' of
7948 optimizations to be performed is desired.
7949
7950 @table @gcctabopt
7951 @item -fno-defer-pop
7952 @opindex fno-defer-pop
7953 Always pop the arguments to each function call as soon as that function
7954 returns. For machines that must pop arguments after a function call,
7955 the compiler normally lets arguments accumulate on the stack for several
7956 function calls and pops them all at once.
7957
7958 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7959
7960 @item -fforward-propagate
7961 @opindex fforward-propagate
7962 Perform a forward propagation pass on RTL@. The pass tries to combine two
7963 instructions and checks if the result can be simplified. If loop unrolling
7964 is active, two passes are performed and the second is scheduled after
7965 loop unrolling.
7966
7967 This option is enabled by default at optimization levels @option{-O},
7968 @option{-O2}, @option{-O3}, @option{-Os}.
7969
7970 @item -ffp-contract=@var{style}
7971 @opindex ffp-contract
7972 @option{-ffp-contract=off} disables floating-point expression contraction.
7973 @option{-ffp-contract=fast} enables floating-point expression contraction
7974 such as forming of fused multiply-add operations if the target has
7975 native support for them.
7976 @option{-ffp-contract=on} enables floating-point expression contraction
7977 if allowed by the language standard. This is currently not implemented
7978 and treated equal to @option{-ffp-contract=off}.
7979
7980 The default is @option{-ffp-contract=fast}.
7981
7982 @item -fomit-frame-pointer
7983 @opindex fomit-frame-pointer
7984 Don't keep the frame pointer in a register for functions that
7985 don't need one. This avoids the instructions to save, set up and
7986 restore frame pointers; it also makes an extra register available
7987 in many functions. @strong{It also makes debugging impossible on
7988 some machines.}
7989
7990 On some machines, such as the VAX, this flag has no effect, because
7991 the standard calling sequence automatically handles the frame pointer
7992 and nothing is saved by pretending it doesn't exist. The
7993 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7994 whether a target machine supports this flag. @xref{Registers,,Register
7995 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7996
7997 The default setting (when not optimizing for
7998 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7999 @option{-fomit-frame-pointer}. You can configure GCC with the
8000 @option{--enable-frame-pointer} configure option to change the default.
8001
8002 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8003
8004 @item -foptimize-sibling-calls
8005 @opindex foptimize-sibling-calls
8006 Optimize sibling and tail recursive calls.
8007
8008 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8009
8010 @item -foptimize-strlen
8011 @opindex foptimize-strlen
8012 Optimize various standard C string functions (e.g. @code{strlen},
8013 @code{strchr} or @code{strcpy}) and
8014 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
8015
8016 Enabled at levels @option{-O2}, @option{-O3}.
8017
8018 @item -fno-inline
8019 @opindex fno-inline
8020 Do not expand any functions inline apart from those marked with
8021 the @code{always_inline} attribute. This is the default when not
8022 optimizing.
8023
8024 Single functions can be exempted from inlining by marking them
8025 with the @code{noinline} attribute.
8026
8027 @item -finline-small-functions
8028 @opindex finline-small-functions
8029 Integrate functions into their callers when their body is smaller than expected
8030 function call code (so overall size of program gets smaller). The compiler
8031 heuristically decides which functions are simple enough to be worth integrating
8032 in this way. This inlining applies to all functions, even those not declared
8033 inline.
8034
8035 Enabled at level @option{-O2}.
8036
8037 @item -findirect-inlining
8038 @opindex findirect-inlining
8039 Inline also indirect calls that are discovered to be known at compile
8040 time thanks to previous inlining. This option has any effect only
8041 when inlining itself is turned on by the @option{-finline-functions}
8042 or @option{-finline-small-functions} options.
8043
8044 Enabled at level @option{-O2}.
8045
8046 @item -finline-functions
8047 @opindex finline-functions
8048 Consider all functions for inlining, even if they are not declared inline.
8049 The compiler heuristically decides which functions are worth integrating
8050 in this way.
8051
8052 If all calls to a given function are integrated, and the function is
8053 declared @code{static}, then the function is normally not output as
8054 assembler code in its own right.
8055
8056 Enabled at level @option{-O3}.
8057
8058 @item -finline-functions-called-once
8059 @opindex finline-functions-called-once
8060 Consider all @code{static} functions called once for inlining into their
8061 caller even if they are not marked @code{inline}. If a call to a given
8062 function is integrated, then the function is not output as assembler code
8063 in its own right.
8064
8065 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
8066
8067 @item -fearly-inlining
8068 @opindex fearly-inlining
8069 Inline functions marked by @code{always_inline} and functions whose body seems
8070 smaller than the function call overhead early before doing
8071 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
8072 makes profiling significantly cheaper and usually inlining faster on programs
8073 having large chains of nested wrapper functions.
8074
8075 Enabled by default.
8076
8077 @item -fipa-sra
8078 @opindex fipa-sra
8079 Perform interprocedural scalar replacement of aggregates, removal of
8080 unused parameters and replacement of parameters passed by reference
8081 by parameters passed by value.
8082
8083 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
8084
8085 @item -finline-limit=@var{n}
8086 @opindex finline-limit
8087 By default, GCC limits the size of functions that can be inlined. This flag
8088 allows coarse control of this limit. @var{n} is the size of functions that
8089 can be inlined in number of pseudo instructions.
8090
8091 Inlining is actually controlled by a number of parameters, which may be
8092 specified individually by using @option{--param @var{name}=@var{value}}.
8093 The @option{-finline-limit=@var{n}} option sets some of these parameters
8094 as follows:
8095
8096 @table @gcctabopt
8097 @item max-inline-insns-single
8098 is set to @var{n}/2.
8099 @item max-inline-insns-auto
8100 is set to @var{n}/2.
8101 @end table
8102
8103 See below for a documentation of the individual
8104 parameters controlling inlining and for the defaults of these parameters.
8105
8106 @emph{Note:} there may be no value to @option{-finline-limit} that results
8107 in default behavior.
8108
8109 @emph{Note:} pseudo instruction represents, in this particular context, an
8110 abstract measurement of function's size. In no way does it represent a count
8111 of assembly instructions and as such its exact meaning might change from one
8112 release to an another.
8113
8114 @item -fno-keep-inline-dllexport
8115 @opindex fno-keep-inline-dllexport
8116 This is a more fine-grained version of @option{-fkeep-inline-functions},
8117 which applies only to functions that are declared using the @code{dllexport}
8118 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
8119 Functions}.)
8120
8121 @item -fkeep-inline-functions
8122 @opindex fkeep-inline-functions
8123 In C, emit @code{static} functions that are declared @code{inline}
8124 into the object file, even if the function has been inlined into all
8125 of its callers. This switch does not affect functions using the
8126 @code{extern inline} extension in GNU C90@. In C++, emit any and all
8127 inline functions into the object file.
8128
8129 @item -fkeep-static-functions
8130 @opindex fkeep-static-functions
8131 Emit @code{static} functions into the object file, even if the function
8132 is never used.
8133
8134 @item -fkeep-static-consts
8135 @opindex fkeep-static-consts
8136 Emit variables declared @code{static const} when optimization isn't turned
8137 on, even if the variables aren't referenced.
8138
8139 GCC enables this option by default. If you want to force the compiler to
8140 check if a variable is referenced, regardless of whether or not
8141 optimization is turned on, use the @option{-fno-keep-static-consts} option.
8142
8143 @item -fmerge-constants
8144 @opindex fmerge-constants
8145 Attempt to merge identical constants (string constants and floating-point
8146 constants) across compilation units.
8147
8148 This option is the default for optimized compilation if the assembler and
8149 linker support it. Use @option{-fno-merge-constants} to inhibit this
8150 behavior.
8151
8152 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8153
8154 @item -fmerge-all-constants
8155 @opindex fmerge-all-constants
8156 Attempt to merge identical constants and identical variables.
8157
8158 This option implies @option{-fmerge-constants}. In addition to
8159 @option{-fmerge-constants} this considers e.g.@: even constant initialized
8160 arrays or initialized constant variables with integral or floating-point
8161 types. Languages like C or C++ require each variable, including multiple
8162 instances of the same variable in recursive calls, to have distinct locations,
8163 so using this option results in non-conforming
8164 behavior.
8165
8166 @item -fmodulo-sched
8167 @opindex fmodulo-sched
8168 Perform swing modulo scheduling immediately before the first scheduling
8169 pass. This pass looks at innermost loops and reorders their
8170 instructions by overlapping different iterations.
8171
8172 @item -fmodulo-sched-allow-regmoves
8173 @opindex fmodulo-sched-allow-regmoves
8174 Perform more aggressive SMS-based modulo scheduling with register moves
8175 allowed. By setting this flag certain anti-dependences edges are
8176 deleted, which triggers the generation of reg-moves based on the
8177 life-range analysis. This option is effective only with
8178 @option{-fmodulo-sched} enabled.
8179
8180 @item -fno-branch-count-reg
8181 @opindex fno-branch-count-reg
8182 Do not use ``decrement and branch'' instructions on a count register,
8183 but instead generate a sequence of instructions that decrement a
8184 register, compare it against zero, then branch based upon the result.
8185 This option is only meaningful on architectures that support such
8186 instructions, which include x86, PowerPC, IA-64 and S/390.
8187
8188 Enabled by default at @option{-O1} and higher.
8189
8190 The default is @option{-fbranch-count-reg}.
8191
8192 @item -fno-function-cse
8193 @opindex fno-function-cse
8194 Do not put function addresses in registers; make each instruction that
8195 calls a constant function contain the function's address explicitly.
8196
8197 This option results in less efficient code, but some strange hacks
8198 that alter the assembler output may be confused by the optimizations
8199 performed when this option is not used.
8200
8201 The default is @option{-ffunction-cse}
8202
8203 @item -fno-zero-initialized-in-bss
8204 @opindex fno-zero-initialized-in-bss
8205 If the target supports a BSS section, GCC by default puts variables that
8206 are initialized to zero into BSS@. This can save space in the resulting
8207 code.
8208
8209 This option turns off this behavior because some programs explicitly
8210 rely on variables going to the data section---e.g., so that the
8211 resulting executable can find the beginning of that section and/or make
8212 assumptions based on that.
8213
8214 The default is @option{-fzero-initialized-in-bss}.
8215
8216 @item -fthread-jumps
8217 @opindex fthread-jumps
8218 Perform optimizations that check to see if a jump branches to a
8219 location where another comparison subsumed by the first is found. If
8220 so, the first branch is redirected to either the destination of the
8221 second branch or a point immediately following it, depending on whether
8222 the condition is known to be true or false.
8223
8224 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8225
8226 @item -fsplit-wide-types
8227 @opindex fsplit-wide-types
8228 When using a type that occupies multiple registers, such as @code{long
8229 long} on a 32-bit system, split the registers apart and allocate them
8230 independently. This normally generates better code for those types,
8231 but may make debugging more difficult.
8232
8233 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8234 @option{-Os}.
8235
8236 @item -fcse-follow-jumps
8237 @opindex fcse-follow-jumps
8238 In common subexpression elimination (CSE), scan through jump instructions
8239 when the target of the jump is not reached by any other path. For
8240 example, when CSE encounters an @code{if} statement with an
8241 @code{else} clause, CSE follows the jump when the condition
8242 tested is false.
8243
8244 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8245
8246 @item -fcse-skip-blocks
8247 @opindex fcse-skip-blocks
8248 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8249 follow jumps that conditionally skip over blocks. When CSE
8250 encounters a simple @code{if} statement with no else clause,
8251 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8252 body of the @code{if}.
8253
8254 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8255
8256 @item -frerun-cse-after-loop
8257 @opindex frerun-cse-after-loop
8258 Re-run common subexpression elimination after loop optimizations are
8259 performed.
8260
8261 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8262
8263 @item -fgcse
8264 @opindex fgcse
8265 Perform a global common subexpression elimination pass.
8266 This pass also performs global constant and copy propagation.
8267
8268 @emph{Note:} When compiling a program using computed gotos, a GCC
8269 extension, you may get better run-time performance if you disable
8270 the global common subexpression elimination pass by adding
8271 @option{-fno-gcse} to the command line.
8272
8273 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8274
8275 @item -fgcse-lm
8276 @opindex fgcse-lm
8277 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8278 attempts to move loads that are only killed by stores into themselves. This
8279 allows a loop containing a load/store sequence to be changed to a load outside
8280 the loop, and a copy/store within the loop.
8281
8282 Enabled by default when @option{-fgcse} is enabled.
8283
8284 @item -fgcse-sm
8285 @opindex fgcse-sm
8286 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8287 global common subexpression elimination. This pass attempts to move
8288 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8289 loops containing a load/store sequence can be changed to a load before
8290 the loop and a store after the loop.
8291
8292 Not enabled at any optimization level.
8293
8294 @item -fgcse-las
8295 @opindex fgcse-las
8296 When @option{-fgcse-las} is enabled, the global common subexpression
8297 elimination pass eliminates redundant loads that come after stores to the
8298 same memory location (both partial and full redundancies).
8299
8300 Not enabled at any optimization level.
8301
8302 @item -fgcse-after-reload
8303 @opindex fgcse-after-reload
8304 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8305 pass is performed after reload. The purpose of this pass is to clean up
8306 redundant spilling.
8307
8308 @item -faggressive-loop-optimizations
8309 @opindex faggressive-loop-optimizations
8310 This option tells the loop optimizer to use language constraints to
8311 derive bounds for the number of iterations of a loop. This assumes that
8312 loop code does not invoke undefined behavior by for example causing signed
8313 integer overflows or out-of-bound array accesses. The bounds for the
8314 number of iterations of a loop are used to guide loop unrolling and peeling
8315 and loop exit test optimizations.
8316 This option is enabled by default.
8317
8318 @item -funsafe-loop-optimizations
8319 @opindex funsafe-loop-optimizations
8320 This option tells the loop optimizer to assume that loop indices do not
8321 overflow, and that loops with nontrivial exit condition are not
8322 infinite. This enables a wider range of loop optimizations even if
8323 the loop optimizer itself cannot prove that these assumptions are valid.
8324 If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
8325 if it finds this kind of loop.
8326
8327 @item -fcrossjumping
8328 @opindex fcrossjumping
8329 Perform cross-jumping transformation.
8330 This transformation unifies equivalent code and saves code size. The
8331 resulting code may or may not perform better than without cross-jumping.
8332
8333 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8334
8335 @item -fauto-inc-dec
8336 @opindex fauto-inc-dec
8337 Combine increments or decrements of addresses with memory accesses.
8338 This pass is always skipped on architectures that do not have
8339 instructions to support this. Enabled by default at @option{-O} and
8340 higher on architectures that support this.
8341
8342 @item -fdce
8343 @opindex fdce
8344 Perform dead code elimination (DCE) on RTL@.
8345 Enabled by default at @option{-O} and higher.
8346
8347 @item -fdse
8348 @opindex fdse
8349 Perform dead store elimination (DSE) on RTL@.
8350 Enabled by default at @option{-O} and higher.
8351
8352 @item -fif-conversion
8353 @opindex fif-conversion
8354 Attempt to transform conditional jumps into branch-less equivalents. This
8355 includes use of conditional moves, min, max, set flags and abs instructions, and
8356 some tricks doable by standard arithmetics. The use of conditional execution
8357 on chips where it is available is controlled by @option{-fif-conversion2}.
8358
8359 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8360
8361 @item -fif-conversion2
8362 @opindex fif-conversion2
8363 Use conditional execution (where available) to transform conditional jumps into
8364 branch-less equivalents.
8365
8366 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8367
8368 @item -fdeclone-ctor-dtor
8369 @opindex fdeclone-ctor-dtor
8370 The C++ ABI requires multiple entry points for constructors and
8371 destructors: one for a base subobject, one for a complete object, and
8372 one for a virtual destructor that calls operator delete afterwards.
8373 For a hierarchy with virtual bases, the base and complete variants are
8374 clones, which means two copies of the function. With this option, the
8375 base and complete variants are changed to be thunks that call a common
8376 implementation.
8377
8378 Enabled by @option{-Os}.
8379
8380 @item -fdelete-null-pointer-checks
8381 @opindex fdelete-null-pointer-checks
8382 Assume that programs cannot safely dereference null pointers, and that
8383 no code or data element resides at address zero.
8384 This option enables simple constant
8385 folding optimizations at all optimization levels. In addition, other
8386 optimization passes in GCC use this flag to control global dataflow
8387 analyses that eliminate useless checks for null pointers; these assume
8388 that a memory access to address zero always results in a trap, so
8389 that if a pointer is checked after it has already been dereferenced,
8390 it cannot be null.
8391
8392 Note however that in some environments this assumption is not true.
8393 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8394 for programs that depend on that behavior.
8395
8396 This option is enabled by default on most targets. On Nios II ELF, it
8397 defaults to off. On AVR and CR16, this option is completely disabled.
8398
8399 Passes that use the dataflow information
8400 are enabled independently at different optimization levels.
8401
8402 @item -fdevirtualize
8403 @opindex fdevirtualize
8404 Attempt to convert calls to virtual functions to direct calls. This
8405 is done both within a procedure and interprocedurally as part of
8406 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8407 propagation (@option{-fipa-cp}).
8408 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8409
8410 @item -fdevirtualize-speculatively
8411 @opindex fdevirtualize-speculatively
8412 Attempt to convert calls to virtual functions to speculative direct calls.
8413 Based on the analysis of the type inheritance graph, determine for a given call
8414 the set of likely targets. If the set is small, preferably of size 1, change
8415 the call into a conditional deciding between direct and indirect calls. The
8416 speculative calls enable more optimizations, such as inlining. When they seem
8417 useless after further optimization, they are converted back into original form.
8418
8419 @item -fdevirtualize-at-ltrans
8420 @opindex fdevirtualize-at-ltrans
8421 Stream extra information needed for aggressive devirtualization when running
8422 the link-time optimizer in local transformation mode.
8423 This option enables more devirtualization but
8424 significantly increases the size of streamed data. For this reason it is
8425 disabled by default.
8426
8427 @item -fexpensive-optimizations
8428 @opindex fexpensive-optimizations
8429 Perform a number of minor optimizations that are relatively expensive.
8430
8431 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8432
8433 @item -free
8434 @opindex free
8435 Attempt to remove redundant extension instructions. This is especially
8436 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8437 registers after writing to their lower 32-bit half.
8438
8439 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8440 @option{-O3}, @option{-Os}.
8441
8442 @item -fno-lifetime-dse
8443 @opindex fno-lifetime-dse
8444 In C++ the value of an object is only affected by changes within its
8445 lifetime: when the constructor begins, the object has an indeterminate
8446 value, and any changes during the lifetime of the object are dead when
8447 the object is destroyed. Normally dead store elimination will take
8448 advantage of this; if your code relies on the value of the object
8449 storage persisting beyond the lifetime of the object, you can use this
8450 flag to disable this optimization.
8451
8452 @item -flive-range-shrinkage
8453 @opindex flive-range-shrinkage
8454 Attempt to decrease register pressure through register live range
8455 shrinkage. This is helpful for fast processors with small or moderate
8456 size register sets.
8457
8458 @item -fira-algorithm=@var{algorithm}
8459 @opindex fira-algorithm
8460 Use the specified coloring algorithm for the integrated register
8461 allocator. The @var{algorithm} argument can be @samp{priority}, which
8462 specifies Chow's priority coloring, or @samp{CB}, which specifies
8463 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8464 for all architectures, but for those targets that do support it, it is
8465 the default because it generates better code.
8466
8467 @item -fira-region=@var{region}
8468 @opindex fira-region
8469 Use specified regions for the integrated register allocator. The
8470 @var{region} argument should be one of the following:
8471
8472 @table @samp
8473
8474 @item all
8475 Use all loops as register allocation regions.
8476 This can give the best results for machines with a small and/or
8477 irregular register set.
8478
8479 @item mixed
8480 Use all loops except for loops with small register pressure
8481 as the regions. This value usually gives
8482 the best results in most cases and for most architectures,
8483 and is enabled by default when compiling with optimization for speed
8484 (@option{-O}, @option{-O2}, @dots{}).
8485
8486 @item one
8487 Use all functions as a single region.
8488 This typically results in the smallest code size, and is enabled by default for
8489 @option{-Os} or @option{-O0}.
8490
8491 @end table
8492
8493 @item -fira-hoist-pressure
8494 @opindex fira-hoist-pressure
8495 Use IRA to evaluate register pressure in the code hoisting pass for
8496 decisions to hoist expressions. This option usually results in smaller
8497 code, but it can slow the compiler down.
8498
8499 This option is enabled at level @option{-Os} for all targets.
8500
8501 @item -fira-loop-pressure
8502 @opindex fira-loop-pressure
8503 Use IRA to evaluate register pressure in loops for decisions to move
8504 loop invariants. This option usually results in generation
8505 of faster and smaller code on machines with large register files (>= 32
8506 registers), but it can slow the compiler down.
8507
8508 This option is enabled at level @option{-O3} for some targets.
8509
8510 @item -fno-ira-share-save-slots
8511 @opindex fno-ira-share-save-slots
8512 Disable sharing of stack slots used for saving call-used hard
8513 registers living through a call. Each hard register gets a
8514 separate stack slot, and as a result function stack frames are
8515 larger.
8516
8517 @item -fno-ira-share-spill-slots
8518 @opindex fno-ira-share-spill-slots
8519 Disable sharing of stack slots allocated for pseudo-registers. Each
8520 pseudo-register that does not get a hard register gets a separate
8521 stack slot, and as a result function stack frames are larger.
8522
8523 @item -fira-verbose=@var{n}
8524 @opindex fira-verbose
8525 Control the verbosity of the dump file for the integrated register allocator.
8526 The default value is 5. If the value @var{n} is greater or equal to 10,
8527 the dump output is sent to stderr using the same format as @var{n} minus 10.
8528
8529 @item -flra-remat
8530 @opindex flra-remat
8531 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8532 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8533 values if it is profitable.
8534
8535 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8536
8537 @item -fdelayed-branch
8538 @opindex fdelayed-branch
8539 If supported for the target machine, attempt to reorder instructions
8540 to exploit instruction slots available after delayed branch
8541 instructions.
8542
8543 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8544
8545 @item -fschedule-insns
8546 @opindex fschedule-insns
8547 If supported for the target machine, attempt to reorder instructions to
8548 eliminate execution stalls due to required data being unavailable. This
8549 helps machines that have slow floating point or memory load instructions
8550 by allowing other instructions to be issued until the result of the load
8551 or floating-point instruction is required.
8552
8553 Enabled at levels @option{-O2}, @option{-O3}.
8554
8555 @item -fschedule-insns2
8556 @opindex fschedule-insns2
8557 Similar to @option{-fschedule-insns}, but requests an additional pass of
8558 instruction scheduling after register allocation has been done. This is
8559 especially useful on machines with a relatively small number of
8560 registers and where memory load instructions take more than one cycle.
8561
8562 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8563
8564 @item -fno-sched-interblock
8565 @opindex fno-sched-interblock
8566 Don't schedule instructions across basic blocks. This is normally
8567 enabled by default when scheduling before register allocation, i.e.@:
8568 with @option{-fschedule-insns} or at @option{-O2} or higher.
8569
8570 @item -fno-sched-spec
8571 @opindex fno-sched-spec
8572 Don't allow speculative motion of non-load instructions. This is normally
8573 enabled by default when scheduling before register allocation, i.e.@:
8574 with @option{-fschedule-insns} or at @option{-O2} or higher.
8575
8576 @item -fsched-pressure
8577 @opindex fsched-pressure
8578 Enable register pressure sensitive insn scheduling before register
8579 allocation. This only makes sense when scheduling before register
8580 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8581 @option{-O2} or higher. Usage of this option can improve the
8582 generated code and decrease its size by preventing register pressure
8583 increase above the number of available hard registers and subsequent
8584 spills in register allocation.
8585
8586 @item -fsched-spec-load
8587 @opindex fsched-spec-load
8588 Allow speculative motion of some load instructions. This only makes
8589 sense when scheduling before register allocation, i.e.@: with
8590 @option{-fschedule-insns} or at @option{-O2} or higher.
8591
8592 @item -fsched-spec-load-dangerous
8593 @opindex fsched-spec-load-dangerous
8594 Allow speculative motion of more load instructions. This only makes
8595 sense when scheduling before register allocation, i.e.@: with
8596 @option{-fschedule-insns} or at @option{-O2} or higher.
8597
8598 @item -fsched-stalled-insns
8599 @itemx -fsched-stalled-insns=@var{n}
8600 @opindex fsched-stalled-insns
8601 Define how many insns (if any) can be moved prematurely from the queue
8602 of stalled insns into the ready list during the second scheduling pass.
8603 @option{-fno-sched-stalled-insns} means that no insns are moved
8604 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8605 on how many queued insns can be moved prematurely.
8606 @option{-fsched-stalled-insns} without a value is equivalent to
8607 @option{-fsched-stalled-insns=1}.
8608
8609 @item -fsched-stalled-insns-dep
8610 @itemx -fsched-stalled-insns-dep=@var{n}
8611 @opindex fsched-stalled-insns-dep
8612 Define how many insn groups (cycles) are examined for a dependency
8613 on a stalled insn that is a candidate for premature removal from the queue
8614 of stalled insns. This has an effect only during the second scheduling pass,
8615 and only if @option{-fsched-stalled-insns} is used.
8616 @option{-fno-sched-stalled-insns-dep} is equivalent to
8617 @option{-fsched-stalled-insns-dep=0}.
8618 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8619 @option{-fsched-stalled-insns-dep=1}.
8620
8621 @item -fsched2-use-superblocks
8622 @opindex fsched2-use-superblocks
8623 When scheduling after register allocation, use superblock scheduling.
8624 This allows motion across basic block boundaries,
8625 resulting in faster schedules. This option is experimental, as not all machine
8626 descriptions used by GCC model the CPU closely enough to avoid unreliable
8627 results from the algorithm.
8628
8629 This only makes sense when scheduling after register allocation, i.e.@: with
8630 @option{-fschedule-insns2} or at @option{-O2} or higher.
8631
8632 @item -fsched-group-heuristic
8633 @opindex fsched-group-heuristic
8634 Enable the group heuristic in the scheduler. This heuristic favors
8635 the instruction that belongs to a schedule group. This is enabled
8636 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8637 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8638
8639 @item -fsched-critical-path-heuristic
8640 @opindex fsched-critical-path-heuristic
8641 Enable the critical-path heuristic in the scheduler. This heuristic favors
8642 instructions on the critical path. This is enabled by default when
8643 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8644 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8645
8646 @item -fsched-spec-insn-heuristic
8647 @opindex fsched-spec-insn-heuristic
8648 Enable the speculative instruction heuristic in the scheduler. This
8649 heuristic favors speculative instructions with greater dependency weakness.
8650 This is enabled by default when scheduling is enabled, i.e.@:
8651 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8652 or at @option{-O2} or higher.
8653
8654 @item -fsched-rank-heuristic
8655 @opindex fsched-rank-heuristic
8656 Enable the rank heuristic in the scheduler. This heuristic favors
8657 the instruction belonging to a basic block with greater size or frequency.
8658 This is enabled by default when scheduling is enabled, i.e.@:
8659 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8660 at @option{-O2} or higher.
8661
8662 @item -fsched-last-insn-heuristic
8663 @opindex fsched-last-insn-heuristic
8664 Enable the last-instruction heuristic in the scheduler. This heuristic
8665 favors the instruction that is less dependent on the last instruction
8666 scheduled. This is enabled by default when scheduling is enabled,
8667 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8668 at @option{-O2} or higher.
8669
8670 @item -fsched-dep-count-heuristic
8671 @opindex fsched-dep-count-heuristic
8672 Enable the dependent-count heuristic in the scheduler. This heuristic
8673 favors the instruction that has more instructions depending on it.
8674 This is enabled by default when scheduling is enabled, i.e.@:
8675 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8676 at @option{-O2} or higher.
8677
8678 @item -freschedule-modulo-scheduled-loops
8679 @opindex freschedule-modulo-scheduled-loops
8680 Modulo scheduling is performed before traditional scheduling. If a loop
8681 is modulo scheduled, later scheduling passes may change its schedule.
8682 Use this option to control that behavior.
8683
8684 @item -fselective-scheduling
8685 @opindex fselective-scheduling
8686 Schedule instructions using selective scheduling algorithm. Selective
8687 scheduling runs instead of the first scheduler pass.
8688
8689 @item -fselective-scheduling2
8690 @opindex fselective-scheduling2
8691 Schedule instructions using selective scheduling algorithm. Selective
8692 scheduling runs instead of the second scheduler pass.
8693
8694 @item -fsel-sched-pipelining
8695 @opindex fsel-sched-pipelining
8696 Enable software pipelining of innermost loops during selective scheduling.
8697 This option has no effect unless one of @option{-fselective-scheduling} or
8698 @option{-fselective-scheduling2} is turned on.
8699
8700 @item -fsel-sched-pipelining-outer-loops
8701 @opindex fsel-sched-pipelining-outer-loops
8702 When pipelining loops during selective scheduling, also pipeline outer loops.
8703 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8704
8705 @item -fsemantic-interposition
8706 @opindex fsemantic-interposition
8707 Some object formats, like ELF, allow interposing of symbols by the
8708 dynamic linker.
8709 This means that for symbols exported from the DSO, the compiler cannot perform
8710 interprocedural propagation, inlining and other optimizations in anticipation
8711 that the function or variable in question may change. While this feature is
8712 useful, for example, to rewrite memory allocation functions by a debugging
8713 implementation, it is expensive in the terms of code quality.
8714 With @option{-fno-semantic-interposition} the compiler assumes that
8715 if interposition happens for functions the overwriting function will have
8716 precisely the same semantics (and side effects).
8717 Similarly if interposition happens
8718 for variables, the constructor of the variable will be the same. The flag
8719 has no effect for functions explicitly declared inline
8720 (where it is never allowed for interposition to change semantics)
8721 and for symbols explicitly declared weak.
8722
8723 @item -fshrink-wrap
8724 @opindex fshrink-wrap
8725 Emit function prologues only before parts of the function that need it,
8726 rather than at the top of the function. This flag is enabled by default at
8727 @option{-O} and higher.
8728
8729 @item -fcaller-saves
8730 @opindex fcaller-saves
8731 Enable allocation of values to registers that are clobbered by
8732 function calls, by emitting extra instructions to save and restore the
8733 registers around such calls. Such allocation is done only when it
8734 seems to result in better code.
8735
8736 This option is always enabled by default on certain machines, usually
8737 those which have no call-preserved registers to use instead.
8738
8739 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8740
8741 @item -fcombine-stack-adjustments
8742 @opindex fcombine-stack-adjustments
8743 Tracks stack adjustments (pushes and pops) and stack memory references
8744 and then tries to find ways to combine them.
8745
8746 Enabled by default at @option{-O1} and higher.
8747
8748 @item -fipa-ra
8749 @opindex fipa-ra
8750 Use caller save registers for allocation if those registers are not used by
8751 any called function. In that case it is not necessary to save and restore
8752 them around calls. This is only possible if called functions are part of
8753 same compilation unit as current function and they are compiled before it.
8754
8755 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8756
8757 @item -fconserve-stack
8758 @opindex fconserve-stack
8759 Attempt to minimize stack usage. The compiler attempts to use less
8760 stack space, even if that makes the program slower. This option
8761 implies setting the @option{large-stack-frame} parameter to 100
8762 and the @option{large-stack-frame-growth} parameter to 400.
8763
8764 @item -ftree-reassoc
8765 @opindex ftree-reassoc
8766 Perform reassociation on trees. This flag is enabled by default
8767 at @option{-O} and higher.
8768
8769 @item -ftree-pre
8770 @opindex ftree-pre
8771 Perform partial redundancy elimination (PRE) on trees. This flag is
8772 enabled by default at @option{-O2} and @option{-O3}.
8773
8774 @item -ftree-partial-pre
8775 @opindex ftree-partial-pre
8776 Make partial redundancy elimination (PRE) more aggressive. This flag is
8777 enabled by default at @option{-O3}.
8778
8779 @item -ftree-forwprop
8780 @opindex ftree-forwprop
8781 Perform forward propagation on trees. This flag is enabled by default
8782 at @option{-O} and higher.
8783
8784 @item -ftree-fre
8785 @opindex ftree-fre
8786 Perform full redundancy elimination (FRE) on trees. The difference
8787 between FRE and PRE is that FRE only considers expressions
8788 that are computed on all paths leading to the redundant computation.
8789 This analysis is faster than PRE, though it exposes fewer redundancies.
8790 This flag is enabled by default at @option{-O} and higher.
8791
8792 @item -ftree-phiprop
8793 @opindex ftree-phiprop
8794 Perform hoisting of loads from conditional pointers on trees. This
8795 pass is enabled by default at @option{-O} and higher.
8796
8797 @item -fhoist-adjacent-loads
8798 @opindex fhoist-adjacent-loads
8799 Speculatively hoist loads from both branches of an if-then-else if the
8800 loads are from adjacent locations in the same structure and the target
8801 architecture has a conditional move instruction. This flag is enabled
8802 by default at @option{-O2} and higher.
8803
8804 @item -ftree-copy-prop
8805 @opindex ftree-copy-prop
8806 Perform copy propagation on trees. This pass eliminates unnecessary
8807 copy operations. This flag is enabled by default at @option{-O} and
8808 higher.
8809
8810 @item -fipa-pure-const
8811 @opindex fipa-pure-const
8812 Discover which functions are pure or constant.
8813 Enabled by default at @option{-O} and higher.
8814
8815 @item -fipa-reference
8816 @opindex fipa-reference
8817 Discover which static variables do not escape the
8818 compilation unit.
8819 Enabled by default at @option{-O} and higher.
8820
8821 @item -fipa-pta
8822 @opindex fipa-pta
8823 Perform interprocedural pointer analysis and interprocedural modification
8824 and reference analysis. This option can cause excessive memory and
8825 compile-time usage on large compilation units. It is not enabled by
8826 default at any optimization level.
8827
8828 @item -fipa-profile
8829 @opindex fipa-profile
8830 Perform interprocedural profile propagation. The functions called only from
8831 cold functions are marked as cold. Also functions executed once (such as
8832 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8833 functions and loop less parts of functions executed once are then optimized for
8834 size.
8835 Enabled by default at @option{-O} and higher.
8836
8837 @item -fipa-cp
8838 @opindex fipa-cp
8839 Perform interprocedural constant propagation.
8840 This optimization analyzes the program to determine when values passed
8841 to functions are constants and then optimizes accordingly.
8842 This optimization can substantially increase performance
8843 if the application has constants passed to functions.
8844 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8845
8846 @item -fipa-cp-clone
8847 @opindex fipa-cp-clone
8848 Perform function cloning to make interprocedural constant propagation stronger.
8849 When enabled, interprocedural constant propagation performs function cloning
8850 when externally visible function can be called with constant arguments.
8851 Because this optimization can create multiple copies of functions,
8852 it may significantly increase code size
8853 (see @option{--param ipcp-unit-growth=@var{value}}).
8854 This flag is enabled by default at @option{-O3}.
8855
8856 @item -fipa-cp-alignment
8857 @opindex -fipa-cp-alignment
8858 When enabled, this optimization propagates alignment of function
8859 parameters to support better vectorization and string operations.
8860
8861 This flag is enabled by default at @option{-O2} and @option{-Os}. It
8862 requires that @option{-fipa-cp} is enabled.
8863
8864 @item -fipa-icf
8865 @opindex fipa-icf
8866 Perform Identical Code Folding for functions and read-only variables.
8867 The optimization reduces code size and may disturb unwind stacks by replacing
8868 a function by equivalent one with a different name. The optimization works
8869 more effectively with link time optimization enabled.
8870
8871 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8872 works on different levels and thus the optimizations are not same - there are
8873 equivalences that are found only by GCC and equivalences found only by Gold.
8874
8875 This flag is enabled by default at @option{-O2} and @option{-Os}.
8876
8877 @item -fisolate-erroneous-paths-dereference
8878 @opindex fisolate-erroneous-paths-dereference
8879 Detect paths that trigger erroneous or undefined behavior due to
8880 dereferencing a null pointer. Isolate those paths from the main control
8881 flow and turn the statement with erroneous or undefined behavior into a trap.
8882 This flag is enabled by default at @option{-O2} and higher and depends on
8883 @option{-fdelete-null-pointer-checks} also being enabled.
8884
8885 @item -fisolate-erroneous-paths-attribute
8886 @opindex fisolate-erroneous-paths-attribute
8887 Detect paths that trigger erroneous or undefined behavior due a null value
8888 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8889 attribute. Isolate those paths from the main control flow and turn the
8890 statement with erroneous or undefined behavior into a trap. This is not
8891 currently enabled, but may be enabled by @option{-O2} in the future.
8892
8893 @item -ftree-sink
8894 @opindex ftree-sink
8895 Perform forward store motion on trees. This flag is
8896 enabled by default at @option{-O} and higher.
8897
8898 @item -ftree-bit-ccp
8899 @opindex ftree-bit-ccp
8900 Perform sparse conditional bit constant propagation on trees and propagate
8901 pointer alignment information.
8902 This pass only operates on local scalar variables and is enabled by default
8903 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8904
8905 @item -ftree-ccp
8906 @opindex ftree-ccp
8907 Perform sparse conditional constant propagation (CCP) on trees. This
8908 pass only operates on local scalar variables and is enabled by default
8909 at @option{-O} and higher.
8910
8911 @item -fssa-backprop
8912 @opindex fssa-backprop
8913 Propagate information about uses of a value up the definition chain
8914 in order to simplify the definitions. For example, this pass strips
8915 sign operations if the sign of a value never matters. The flag is
8916 enabled by default at @option{-O} and higher.
8917
8918 @item -fssa-phiopt
8919 @opindex fssa-phiopt
8920 Perform pattern matching on SSA PHI nodes to optimize conditional
8921 code. This pass is enabled by default at @option{-O} and higher.
8922
8923 @item -ftree-switch-conversion
8924 @opindex ftree-switch-conversion
8925 Perform conversion of simple initializations in a switch to
8926 initializations from a scalar array. This flag is enabled by default
8927 at @option{-O2} and higher.
8928
8929 @item -ftree-tail-merge
8930 @opindex ftree-tail-merge
8931 Look for identical code sequences. When found, replace one with a jump to the
8932 other. This optimization is known as tail merging or cross jumping. This flag
8933 is enabled by default at @option{-O2} and higher. The compilation time
8934 in this pass can
8935 be limited using @option{max-tail-merge-comparisons} parameter and
8936 @option{max-tail-merge-iterations} parameter.
8937
8938 @item -ftree-dce
8939 @opindex ftree-dce
8940 Perform dead code elimination (DCE) on trees. This flag is enabled by
8941 default at @option{-O} and higher.
8942
8943 @item -ftree-builtin-call-dce
8944 @opindex ftree-builtin-call-dce
8945 Perform conditional dead code elimination (DCE) for calls to built-in functions
8946 that may set @code{errno} but are otherwise side-effect free. This flag is
8947 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8948 specified.
8949
8950 @item -ftree-dominator-opts
8951 @opindex ftree-dominator-opts
8952 Perform a variety of simple scalar cleanups (constant/copy
8953 propagation, redundancy elimination, range propagation and expression
8954 simplification) based on a dominator tree traversal. This also
8955 performs jump threading (to reduce jumps to jumps). This flag is
8956 enabled by default at @option{-O} and higher.
8957
8958 @item -ftree-dse
8959 @opindex ftree-dse
8960 Perform dead store elimination (DSE) on trees. A dead store is a store into
8961 a memory location that is later overwritten by another store without
8962 any intervening loads. In this case the earlier store can be deleted. This
8963 flag is enabled by default at @option{-O} and higher.
8964
8965 @item -ftree-ch
8966 @opindex ftree-ch
8967 Perform loop header copying on trees. This is beneficial since it increases
8968 effectiveness of code motion optimizations. It also saves one jump. This flag
8969 is enabled by default at @option{-O} and higher. It is not enabled
8970 for @option{-Os}, since it usually increases code size.
8971
8972 @item -ftree-loop-optimize
8973 @opindex ftree-loop-optimize
8974 Perform loop optimizations on trees. This flag is enabled by default
8975 at @option{-O} and higher.
8976
8977 @item -ftree-loop-linear
8978 @itemx -floop-interchange
8979 @itemx -floop-strip-mine
8980 @itemx -floop-block
8981 @itemx -floop-unroll-and-jam
8982 @opindex ftree-loop-linear
8983 @opindex floop-interchange
8984 @opindex floop-strip-mine
8985 @opindex floop-block
8986 @opindex floop-unroll-and-jam
8987 Perform loop nest optimizations. Same as
8988 @option{-floop-nest-optimize}. To use this code transformation, GCC has
8989 to be configured with @option{--with-isl} to enable the Graphite loop
8990 transformation infrastructure.
8991
8992 @item -fgraphite-identity
8993 @opindex fgraphite-identity
8994 Enable the identity transformation for graphite. For every SCoP we generate
8995 the polyhedral representation and transform it back to gimple. Using
8996 @option{-fgraphite-identity} we can check the costs or benefits of the
8997 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8998 are also performed by the code generator isl, like index splitting and
8999 dead code elimination in loops.
9000
9001 @item -floop-nest-optimize
9002 @opindex floop-nest-optimize
9003 Enable the isl based loop nest optimizer. This is a generic loop nest
9004 optimizer based on the Pluto optimization algorithms. It calculates a loop
9005 structure optimized for data-locality and parallelism. This option
9006 is experimental.
9007
9008 @item -floop-parallelize-all
9009 @opindex floop-parallelize-all
9010 Use the Graphite data dependence analysis to identify loops that can
9011 be parallelized. Parallelize all the loops that can be analyzed to
9012 not contain loop carried dependences without checking that it is
9013 profitable to parallelize the loops.
9014
9015 @item -ftree-coalesce-vars
9016 @opindex ftree-coalesce-vars
9017 While transforming the program out of the SSA representation, attempt to
9018 reduce copying by coalescing versions of different user-defined
9019 variables, instead of just compiler temporaries. This may severely
9020 limit the ability to debug an optimized program compiled with
9021 @option{-fno-var-tracking-assignments}. In the negated form, this flag
9022 prevents SSA coalescing of user variables. This option is enabled by
9023 default if optimization is enabled, and it does very little otherwise.
9024
9025 @item -ftree-loop-if-convert
9026 @opindex ftree-loop-if-convert
9027 Attempt to transform conditional jumps in the innermost loops to
9028 branch-less equivalents. The intent is to remove control-flow from
9029 the innermost loops in order to improve the ability of the
9030 vectorization pass to handle these loops. This is enabled by default
9031 if vectorization is enabled.
9032
9033 @item -ftree-loop-if-convert-stores
9034 @opindex ftree-loop-if-convert-stores
9035 Attempt to also if-convert conditional jumps containing memory writes.
9036 This transformation can be unsafe for multi-threaded programs as it
9037 transforms conditional memory writes into unconditional memory writes.
9038 For example,
9039 @smallexample
9040 for (i = 0; i < N; i++)
9041 if (cond)
9042 A[i] = expr;
9043 @end smallexample
9044 is transformed to
9045 @smallexample
9046 for (i = 0; i < N; i++)
9047 A[i] = cond ? expr : A[i];
9048 @end smallexample
9049 potentially producing data races.
9050
9051 @item -ftree-loop-distribution
9052 @opindex ftree-loop-distribution
9053 Perform loop distribution. This flag can improve cache performance on
9054 big loop bodies and allow further loop optimizations, like
9055 parallelization or vectorization, to take place. For example, the loop
9056 @smallexample
9057 DO I = 1, N
9058 A(I) = B(I) + C
9059 D(I) = E(I) * F
9060 ENDDO
9061 @end smallexample
9062 is transformed to
9063 @smallexample
9064 DO I = 1, N
9065 A(I) = B(I) + C
9066 ENDDO
9067 DO I = 1, N
9068 D(I) = E(I) * F
9069 ENDDO
9070 @end smallexample
9071
9072 @item -ftree-loop-distribute-patterns
9073 @opindex ftree-loop-distribute-patterns
9074 Perform loop distribution of patterns that can be code generated with
9075 calls to a library. This flag is enabled by default at @option{-O3}.
9076
9077 This pass distributes the initialization loops and generates a call to
9078 memset zero. For example, the loop
9079 @smallexample
9080 DO I = 1, N
9081 A(I) = 0
9082 B(I) = A(I) + I
9083 ENDDO
9084 @end smallexample
9085 is transformed to
9086 @smallexample
9087 DO I = 1, N
9088 A(I) = 0
9089 ENDDO
9090 DO I = 1, N
9091 B(I) = A(I) + I
9092 ENDDO
9093 @end smallexample
9094 and the initialization loop is transformed into a call to memset zero.
9095
9096 @item -ftree-loop-im
9097 @opindex ftree-loop-im
9098 Perform loop invariant motion on trees. This pass moves only invariants that
9099 are hard to handle at RTL level (function calls, operations that expand to
9100 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
9101 operands of conditions that are invariant out of the loop, so that we can use
9102 just trivial invariantness analysis in loop unswitching. The pass also includes
9103 store motion.
9104
9105 @item -ftree-loop-ivcanon
9106 @opindex ftree-loop-ivcanon
9107 Create a canonical counter for number of iterations in loops for which
9108 determining number of iterations requires complicated analysis. Later
9109 optimizations then may determine the number easily. Useful especially
9110 in connection with unrolling.
9111
9112 @item -fivopts
9113 @opindex fivopts
9114 Perform induction variable optimizations (strength reduction, induction
9115 variable merging and induction variable elimination) on trees.
9116
9117 @item -ftree-parallelize-loops=n
9118 @opindex ftree-parallelize-loops
9119 Parallelize loops, i.e., split their iteration space to run in n threads.
9120 This is only possible for loops whose iterations are independent
9121 and can be arbitrarily reordered. The optimization is only
9122 profitable on multiprocessor machines, for loops that are CPU-intensive,
9123 rather than constrained e.g.@: by memory bandwidth. This option
9124 implies @option{-pthread}, and thus is only supported on targets
9125 that have support for @option{-pthread}.
9126
9127 @item -ftree-pta
9128 @opindex ftree-pta
9129 Perform function-local points-to analysis on trees. This flag is
9130 enabled by default at @option{-O} and higher.
9131
9132 @item -ftree-sra
9133 @opindex ftree-sra
9134 Perform scalar replacement of aggregates. This pass replaces structure
9135 references with scalars to prevent committing structures to memory too
9136 early. This flag is enabled by default at @option{-O} and higher.
9137
9138 @item -ftree-ter
9139 @opindex ftree-ter
9140 Perform temporary expression replacement during the SSA->normal phase. Single
9141 use/single def temporaries are replaced at their use location with their
9142 defining expression. This results in non-GIMPLE code, but gives the expanders
9143 much more complex trees to work on resulting in better RTL generation. This is
9144 enabled by default at @option{-O} and higher.
9145
9146 @item -ftree-slsr
9147 @opindex ftree-slsr
9148 Perform straight-line strength reduction on trees. This recognizes related
9149 expressions involving multiplications and replaces them by less expensive
9150 calculations when possible. This is enabled by default at @option{-O} and
9151 higher.
9152
9153 @item -ftree-vectorize
9154 @opindex ftree-vectorize
9155 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9156 and @option{-ftree-slp-vectorize} if not explicitly specified.
9157
9158 @item -ftree-loop-vectorize
9159 @opindex ftree-loop-vectorize
9160 Perform loop vectorization on trees. This flag is enabled by default at
9161 @option{-O3} and when @option{-ftree-vectorize} is enabled.
9162
9163 @item -ftree-slp-vectorize
9164 @opindex ftree-slp-vectorize
9165 Perform basic block vectorization on trees. This flag is enabled by default at
9166 @option{-O3} and when @option{-ftree-vectorize} is enabled.
9167
9168 @item -fvect-cost-model=@var{model}
9169 @opindex fvect-cost-model
9170 Alter the cost model used for vectorization. The @var{model} argument
9171 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9172 With the @samp{unlimited} model the vectorized code-path is assumed
9173 to be profitable while with the @samp{dynamic} model a runtime check
9174 guards the vectorized code-path to enable it only for iteration
9175 counts that will likely execute faster than when executing the original
9176 scalar loop. The @samp{cheap} model disables vectorization of
9177 loops where doing so would be cost prohibitive for example due to
9178 required runtime checks for data dependence or alignment but otherwise
9179 is equal to the @samp{dynamic} model.
9180 The default cost model depends on other optimization flags and is
9181 either @samp{dynamic} or @samp{cheap}.
9182
9183 @item -fsimd-cost-model=@var{model}
9184 @opindex fsimd-cost-model
9185 Alter the cost model used for vectorization of loops marked with the OpenMP
9186 or Cilk Plus simd directive. The @var{model} argument should be one of
9187 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
9188 have the same meaning as described in @option{-fvect-cost-model} and by
9189 default a cost model defined with @option{-fvect-cost-model} is used.
9190
9191 @item -ftree-vrp
9192 @opindex ftree-vrp
9193 Perform Value Range Propagation on trees. This is similar to the
9194 constant propagation pass, but instead of values, ranges of values are
9195 propagated. This allows the optimizers to remove unnecessary range
9196 checks like array bound checks and null pointer checks. This is
9197 enabled by default at @option{-O2} and higher. Null pointer check
9198 elimination is only done if @option{-fdelete-null-pointer-checks} is
9199 enabled.
9200
9201 @item -fsplit-paths
9202 @opindex fsplit-paths
9203 Split paths leading to loop backedges. This can improve dead code
9204 elimination and common subexpression elimination. This is enabled by
9205 default at @option{-O2} and above.
9206
9207 @item -fsplit-ivs-in-unroller
9208 @opindex fsplit-ivs-in-unroller
9209 Enables expression of values of induction variables in later iterations
9210 of the unrolled loop using the value in the first iteration. This breaks
9211 long dependency chains, thus improving efficiency of the scheduling passes.
9212
9213 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9214 same effect. However, that is not reliable in cases where the loop body
9215 is more complicated than a single basic block. It also does not work at all
9216 on some architectures due to restrictions in the CSE pass.
9217
9218 This optimization is enabled by default.
9219
9220 @item -fvariable-expansion-in-unroller
9221 @opindex fvariable-expansion-in-unroller
9222 With this option, the compiler creates multiple copies of some
9223 local variables when unrolling a loop, which can result in superior code.
9224
9225 @item -fpartial-inlining
9226 @opindex fpartial-inlining
9227 Inline parts of functions. This option has any effect only
9228 when inlining itself is turned on by the @option{-finline-functions}
9229 or @option{-finline-small-functions} options.
9230
9231 Enabled at level @option{-O2}.
9232
9233 @item -fpredictive-commoning
9234 @opindex fpredictive-commoning
9235 Perform predictive commoning optimization, i.e., reusing computations
9236 (especially memory loads and stores) performed in previous
9237 iterations of loops.
9238
9239 This option is enabled at level @option{-O3}.
9240
9241 @item -fprefetch-loop-arrays
9242 @opindex fprefetch-loop-arrays
9243 If supported by the target machine, generate instructions to prefetch
9244 memory to improve the performance of loops that access large arrays.
9245
9246 This option may generate better or worse code; results are highly
9247 dependent on the structure of loops within the source code.
9248
9249 Disabled at level @option{-Os}.
9250
9251 @item -fno-peephole
9252 @itemx -fno-peephole2
9253 @opindex fno-peephole
9254 @opindex fno-peephole2
9255 Disable any machine-specific peephole optimizations. The difference
9256 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9257 are implemented in the compiler; some targets use one, some use the
9258 other, a few use both.
9259
9260 @option{-fpeephole} is enabled by default.
9261 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9262
9263 @item -fno-guess-branch-probability
9264 @opindex fno-guess-branch-probability
9265 Do not guess branch probabilities using heuristics.
9266
9267 GCC uses heuristics to guess branch probabilities if they are
9268 not provided by profiling feedback (@option{-fprofile-arcs}). These
9269 heuristics are based on the control flow graph. If some branch probabilities
9270 are specified by @code{__builtin_expect}, then the heuristics are
9271 used to guess branch probabilities for the rest of the control flow graph,
9272 taking the @code{__builtin_expect} info into account. The interactions
9273 between the heuristics and @code{__builtin_expect} can be complex, and in
9274 some cases, it may be useful to disable the heuristics so that the effects
9275 of @code{__builtin_expect} are easier to understand.
9276
9277 The default is @option{-fguess-branch-probability} at levels
9278 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9279
9280 @item -freorder-blocks
9281 @opindex freorder-blocks
9282 Reorder basic blocks in the compiled function in order to reduce number of
9283 taken branches and improve code locality.
9284
9285 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9286
9287 @item -freorder-blocks-algorithm=@var{algorithm}
9288 @opindex freorder-blocks-algorithm
9289 Use the specified algorithm for basic block reordering. The
9290 @var{algorithm} argument can be @samp{simple}, which does not increase
9291 code size (except sometimes due to secondary effects like alignment),
9292 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9293 put all often executed code together, minimizing the number of branches
9294 executed by making extra copies of code.
9295
9296 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9297 @samp{stc} at levels @option{-O2}, @option{-O3}.
9298
9299 @item -freorder-blocks-and-partition
9300 @opindex freorder-blocks-and-partition
9301 In addition to reordering basic blocks in the compiled function, in order
9302 to reduce number of taken branches, partitions hot and cold basic blocks
9303 into separate sections of the assembly and .o files, to improve
9304 paging and cache locality performance.
9305
9306 This optimization is automatically turned off in the presence of
9307 exception handling, for linkonce sections, for functions with a user-defined
9308 section attribute and on any architecture that does not support named
9309 sections.
9310
9311 Enabled for x86 at levels @option{-O2}, @option{-O3}.
9312
9313 @item -freorder-functions
9314 @opindex freorder-functions
9315 Reorder functions in the object file in order to
9316 improve code locality. This is implemented by using special
9317 subsections @code{.text.hot} for most frequently executed functions and
9318 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
9319 the linker so object file format must support named sections and linker must
9320 place them in a reasonable way.
9321
9322 Also profile feedback must be available to make this option effective. See
9323 @option{-fprofile-arcs} for details.
9324
9325 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9326
9327 @item -fstrict-aliasing
9328 @opindex fstrict-aliasing
9329 Allow the compiler to assume the strictest aliasing rules applicable to
9330 the language being compiled. For C (and C++), this activates
9331 optimizations based on the type of expressions. In particular, an
9332 object of one type is assumed never to reside at the same address as an
9333 object of a different type, unless the types are almost the same. For
9334 example, an @code{unsigned int} can alias an @code{int}, but not a
9335 @code{void*} or a @code{double}. A character type may alias any other
9336 type.
9337
9338 @anchor{Type-punning}Pay special attention to code like this:
9339 @smallexample
9340 union a_union @{
9341 int i;
9342 double d;
9343 @};
9344
9345 int f() @{
9346 union a_union t;
9347 t.d = 3.0;
9348 return t.i;
9349 @}
9350 @end smallexample
9351 The practice of reading from a different union member than the one most
9352 recently written to (called ``type-punning'') is common. Even with
9353 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9354 is accessed through the union type. So, the code above works as
9355 expected. @xref{Structures unions enumerations and bit-fields
9356 implementation}. However, this code might not:
9357 @smallexample
9358 int f() @{
9359 union a_union t;
9360 int* ip;
9361 t.d = 3.0;
9362 ip = &t.i;
9363 return *ip;
9364 @}
9365 @end smallexample
9366
9367 Similarly, access by taking the address, casting the resulting pointer
9368 and dereferencing the result has undefined behavior, even if the cast
9369 uses a union type, e.g.:
9370 @smallexample
9371 int f() @{
9372 double d = 3.0;
9373 return ((union a_union *) &d)->i;
9374 @}
9375 @end smallexample
9376
9377 The @option{-fstrict-aliasing} option is enabled at levels
9378 @option{-O2}, @option{-O3}, @option{-Os}.
9379
9380 @item -fstrict-overflow
9381 @opindex fstrict-overflow
9382 Allow the compiler to assume strict signed overflow rules, depending
9383 on the language being compiled. For C (and C++) this means that
9384 overflow when doing arithmetic with signed numbers is undefined, which
9385 means that the compiler may assume that it does not happen. This
9386 permits various optimizations. For example, the compiler assumes
9387 that an expression like @code{i + 10 > i} is always true for
9388 signed @code{i}. This assumption is only valid if signed overflow is
9389 undefined, as the expression is false if @code{i + 10} overflows when
9390 using twos complement arithmetic. When this option is in effect any
9391 attempt to determine whether an operation on signed numbers
9392 overflows must be written carefully to not actually involve overflow.
9393
9394 This option also allows the compiler to assume strict pointer
9395 semantics: given a pointer to an object, if adding an offset to that
9396 pointer does not produce a pointer to the same object, the addition is
9397 undefined. This permits the compiler to conclude that @code{p + u >
9398 p} is always true for a pointer @code{p} and unsigned integer
9399 @code{u}. This assumption is only valid because pointer wraparound is
9400 undefined, as the expression is false if @code{p + u} overflows using
9401 twos complement arithmetic.
9402
9403 See also the @option{-fwrapv} option. Using @option{-fwrapv} means
9404 that integer signed overflow is fully defined: it wraps. When
9405 @option{-fwrapv} is used, there is no difference between
9406 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9407 integers. With @option{-fwrapv} certain types of overflow are
9408 permitted. For example, if the compiler gets an overflow when doing
9409 arithmetic on constants, the overflowed value can still be used with
9410 @option{-fwrapv}, but not otherwise.
9411
9412 The @option{-fstrict-overflow} option is enabled at levels
9413 @option{-O2}, @option{-O3}, @option{-Os}.
9414
9415 @item -falign-functions
9416 @itemx -falign-functions=@var{n}
9417 @opindex falign-functions
9418 Align the start of functions to the next power-of-two greater than
9419 @var{n}, skipping up to @var{n} bytes. For instance,
9420 @option{-falign-functions=32} aligns functions to the next 32-byte
9421 boundary, but @option{-falign-functions=24} aligns to the next
9422 32-byte boundary only if this can be done by skipping 23 bytes or less.
9423
9424 @option{-fno-align-functions} and @option{-falign-functions=1} are
9425 equivalent and mean that functions are not aligned.
9426
9427 Some assemblers only support this flag when @var{n} is a power of two;
9428 in that case, it is rounded up.
9429
9430 If @var{n} is not specified or is zero, use a machine-dependent default.
9431
9432 Enabled at levels @option{-O2}, @option{-O3}.
9433
9434 @item -falign-labels
9435 @itemx -falign-labels=@var{n}
9436 @opindex falign-labels
9437 Align all branch targets to a power-of-two boundary, skipping up to
9438 @var{n} bytes like @option{-falign-functions}. This option can easily
9439 make code slower, because it must insert dummy operations for when the
9440 branch target is reached in the usual flow of the code.
9441
9442 @option{-fno-align-labels} and @option{-falign-labels=1} are
9443 equivalent and mean that labels are not aligned.
9444
9445 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9446 are greater than this value, then their values are used instead.
9447
9448 If @var{n} is not specified or is zero, use a machine-dependent default
9449 which is very likely to be @samp{1}, meaning no alignment.
9450
9451 Enabled at levels @option{-O2}, @option{-O3}.
9452
9453 @item -falign-loops
9454 @itemx -falign-loops=@var{n}
9455 @opindex falign-loops
9456 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9457 like @option{-falign-functions}. If the loops are
9458 executed many times, this makes up for any execution of the dummy
9459 operations.
9460
9461 @option{-fno-align-loops} and @option{-falign-loops=1} are
9462 equivalent and mean that loops are not aligned.
9463
9464 If @var{n} is not specified or is zero, use a machine-dependent default.
9465
9466 Enabled at levels @option{-O2}, @option{-O3}.
9467
9468 @item -falign-jumps
9469 @itemx -falign-jumps=@var{n}
9470 @opindex falign-jumps
9471 Align branch targets to a power-of-two boundary, for branch targets
9472 where the targets can only be reached by jumping, skipping up to @var{n}
9473 bytes like @option{-falign-functions}. In this case, no dummy operations
9474 need be executed.
9475
9476 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9477 equivalent and mean that loops are not aligned.
9478
9479 If @var{n} is not specified or is zero, use a machine-dependent default.
9480
9481 Enabled at levels @option{-O2}, @option{-O3}.
9482
9483 @item -funit-at-a-time
9484 @opindex funit-at-a-time
9485 This option is left for compatibility reasons. @option{-funit-at-a-time}
9486 has no effect, while @option{-fno-unit-at-a-time} implies
9487 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9488
9489 Enabled by default.
9490
9491 @item -fno-toplevel-reorder
9492 @opindex fno-toplevel-reorder
9493 Do not reorder top-level functions, variables, and @code{asm}
9494 statements. Output them in the same order that they appear in the
9495 input file. When this option is used, unreferenced static variables
9496 are not removed. This option is intended to support existing code
9497 that relies on a particular ordering. For new code, it is better to
9498 use attributes when possible.
9499
9500 Enabled at level @option{-O0}. When disabled explicitly, it also implies
9501 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9502 targets.
9503
9504 @item -fweb
9505 @opindex fweb
9506 Constructs webs as commonly used for register allocation purposes and assign
9507 each web individual pseudo register. This allows the register allocation pass
9508 to operate on pseudos directly, but also strengthens several other optimization
9509 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
9510 however, make debugging impossible, since variables no longer stay in a
9511 ``home register''.
9512
9513 Enabled by default with @option{-funroll-loops}.
9514
9515 @item -fwhole-program
9516 @opindex fwhole-program
9517 Assume that the current compilation unit represents the whole program being
9518 compiled. All public functions and variables with the exception of @code{main}
9519 and those merged by attribute @code{externally_visible} become static functions
9520 and in effect are optimized more aggressively by interprocedural optimizers.
9521
9522 This option should not be used in combination with @option{-flto}.
9523 Instead relying on a linker plugin should provide safer and more precise
9524 information.
9525
9526 @item -flto[=@var{n}]
9527 @opindex flto
9528 This option runs the standard link-time optimizer. When invoked
9529 with source code, it generates GIMPLE (one of GCC's internal
9530 representations) and writes it to special ELF sections in the object
9531 file. When the object files are linked together, all the function
9532 bodies are read from these ELF sections and instantiated as if they
9533 had been part of the same translation unit.
9534
9535 To use the link-time optimizer, @option{-flto} and optimization
9536 options should be specified at compile time and during the final link.
9537 For example:
9538
9539 @smallexample
9540 gcc -c -O2 -flto foo.c
9541 gcc -c -O2 -flto bar.c
9542 gcc -o myprog -flto -O2 foo.o bar.o
9543 @end smallexample
9544
9545 The first two invocations to GCC save a bytecode representation
9546 of GIMPLE into special ELF sections inside @file{foo.o} and
9547 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
9548 @file{foo.o} and @file{bar.o}, merges the two files into a single
9549 internal image, and compiles the result as usual. Since both
9550 @file{foo.o} and @file{bar.o} are merged into a single image, this
9551 causes all the interprocedural analyses and optimizations in GCC to
9552 work across the two files as if they were a single one. This means,
9553 for example, that the inliner is able to inline functions in
9554 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9555
9556 Another (simpler) way to enable link-time optimization is:
9557
9558 @smallexample
9559 gcc -o myprog -flto -O2 foo.c bar.c
9560 @end smallexample
9561
9562 The above generates bytecode for @file{foo.c} and @file{bar.c},
9563 merges them together into a single GIMPLE representation and optimizes
9564 them as usual to produce @file{myprog}.
9565
9566 The only important thing to keep in mind is that to enable link-time
9567 optimizations you need to use the GCC driver to perform the link-step.
9568 GCC then automatically performs link-time optimization if any of the
9569 objects involved were compiled with the @option{-flto} command-line option.
9570 You generally
9571 should specify the optimization options to be used for link-time
9572 optimization though GCC tries to be clever at guessing an
9573 optimization level to use from the options used at compile-time
9574 if you fail to specify one at link-time. You can always override
9575 the automatic decision to do link-time optimization at link-time
9576 by passing @option{-fno-lto} to the link command.
9577
9578 To make whole program optimization effective, it is necessary to make
9579 certain whole program assumptions. The compiler needs to know
9580 what functions and variables can be accessed by libraries and runtime
9581 outside of the link-time optimized unit. When supported by the linker,
9582 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9583 to the compiler about used and externally visible symbols. When
9584 the linker plugin is not available, @option{-fwhole-program} should be
9585 used to allow the compiler to make these assumptions, which leads
9586 to more aggressive optimization decisions.
9587
9588 When @option{-fuse-linker-plugin} is not enabled then, when a file is
9589 compiled with @option{-flto}, the generated object file is larger than
9590 a regular object file because it contains GIMPLE bytecodes and the usual
9591 final code (see @option{-ffat-lto-objects}. This means that
9592 object files with LTO information can be linked as normal object
9593 files; if @option{-fno-lto} is passed to the linker, no
9594 interprocedural optimizations are applied. Note that when
9595 @option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9596 but you cannot perform a regular, non-LTO link on them.
9597
9598 Additionally, the optimization flags used to compile individual files
9599 are not necessarily related to those used at link time. For instance,
9600
9601 @smallexample
9602 gcc -c -O0 -ffat-lto-objects -flto foo.c
9603 gcc -c -O0 -ffat-lto-objects -flto bar.c
9604 gcc -o myprog -O3 foo.o bar.o
9605 @end smallexample
9606
9607 This produces individual object files with unoptimized assembler
9608 code, but the resulting binary @file{myprog} is optimized at
9609 @option{-O3}. If, instead, the final binary is generated with
9610 @option{-fno-lto}, then @file{myprog} is not optimized.
9611
9612 When producing the final binary, GCC only
9613 applies link-time optimizations to those files that contain bytecode.
9614 Therefore, you can mix and match object files and libraries with
9615 GIMPLE bytecodes and final object code. GCC automatically selects
9616 which files to optimize in LTO mode and which files to link without
9617 further processing.
9618
9619 There are some code generation flags preserved by GCC when
9620 generating bytecodes, as they need to be used during the final link
9621 stage. Generally options specified at link-time override those
9622 specified at compile-time.
9623
9624 If you do not specify an optimization level option @option{-O} at
9625 link-time then GCC computes one based on the optimization levels
9626 used when compiling the object files. The highest optimization
9627 level wins here.
9628
9629 Currently, the following options and their setting are take from
9630 the first object file that explicitely specified it:
9631 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9632 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9633 and all the @option{-m} target flags.
9634
9635 Certain ABI changing flags are required to match in all compilation-units
9636 and trying to override this at link-time with a conflicting value
9637 is ignored. This includes options such as @option{-freg-struct-return}
9638 and @option{-fpcc-struct-return}.
9639
9640 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9641 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9642 are passed through to the link stage and merged conservatively for
9643 conflicting translation units. Specifically
9644 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9645 precedence and for example @option{-ffp-contract=off} takes precedence
9646 over @option{-ffp-contract=fast}. You can override them at linke-time.
9647
9648 It is recommended that you compile all the files participating in the
9649 same link with the same options and also specify those options at
9650 link time.
9651
9652 If LTO encounters objects with C linkage declared with incompatible
9653 types in separate translation units to be linked together (undefined
9654 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9655 issued. The behavior is still undefined at run time. Similar
9656 diagnostics may be raised for other languages.
9657
9658 Another feature of LTO is that it is possible to apply interprocedural
9659 optimizations on files written in different languages:
9660
9661 @smallexample
9662 gcc -c -flto foo.c
9663 g++ -c -flto bar.cc
9664 gfortran -c -flto baz.f90
9665 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9666 @end smallexample
9667
9668 Notice that the final link is done with @command{g++} to get the C++
9669 runtime libraries and @option{-lgfortran} is added to get the Fortran
9670 runtime libraries. In general, when mixing languages in LTO mode, you
9671 should use the same link command options as when mixing languages in a
9672 regular (non-LTO) compilation.
9673
9674 If object files containing GIMPLE bytecode are stored in a library archive, say
9675 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9676 are using a linker with plugin support. To create static libraries suitable
9677 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9678 and @command{ranlib};
9679 to show the symbols of object files with GIMPLE bytecode, use
9680 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9681 and @command{nm} have been compiled with plugin support. At link time, use the the
9682 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9683 the LTO optimization process:
9684
9685 @smallexample
9686 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9687 @end smallexample
9688
9689 With the linker plugin enabled, the linker extracts the needed
9690 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9691 to make them part of the aggregated GIMPLE image to be optimized.
9692
9693 If you are not using a linker with plugin support and/or do not
9694 enable the linker plugin, then the objects inside @file{libfoo.a}
9695 are extracted and linked as usual, but they do not participate
9696 in the LTO optimization process. In order to make a static library suitable
9697 for both LTO optimization and usual linkage, compile its object files with
9698 @option{-flto} @option{-ffat-lto-objects}.
9699
9700 Link-time optimizations do not require the presence of the whole program to
9701 operate. If the program does not require any symbols to be exported, it is
9702 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9703 the interprocedural optimizers to use more aggressive assumptions which may
9704 lead to improved optimization opportunities.
9705 Use of @option{-fwhole-program} is not needed when linker plugin is
9706 active (see @option{-fuse-linker-plugin}).
9707
9708 The current implementation of LTO makes no
9709 attempt to generate bytecode that is portable between different
9710 types of hosts. The bytecode files are versioned and there is a
9711 strict version check, so bytecode files generated in one version of
9712 GCC do not work with an older or newer version of GCC.
9713
9714 Link-time optimization does not work well with generation of debugging
9715 information. Combining @option{-flto} with
9716 @option{-g} is currently experimental and expected to produce unexpected
9717 results.
9718
9719 If you specify the optional @var{n}, the optimization and code
9720 generation done at link time is executed in parallel using @var{n}
9721 parallel jobs by utilizing an installed @command{make} program. The
9722 environment variable @env{MAKE} may be used to override the program
9723 used. The default value for @var{n} is 1.
9724
9725 You can also specify @option{-flto=jobserver} to use GNU make's
9726 job server mode to determine the number of parallel jobs. This
9727 is useful when the Makefile calling GCC is already executing in parallel.
9728 You must prepend a @samp{+} to the command recipe in the parent Makefile
9729 for this to work. This option likely only works if @env{MAKE} is
9730 GNU make.
9731
9732 @item -flto-partition=@var{alg}
9733 @opindex flto-partition
9734 Specify the partitioning algorithm used by the link-time optimizer.
9735 The value is either @samp{1to1} to specify a partitioning mirroring
9736 the original source files or @samp{balanced} to specify partitioning
9737 into equally sized chunks (whenever possible) or @samp{max} to create
9738 new partition for every symbol where possible. Specifying @samp{none}
9739 as an algorithm disables partitioning and streaming completely.
9740 The default value is @samp{balanced}. While @samp{1to1} can be used
9741 as an workaround for various code ordering issues, the @samp{max}
9742 partitioning is intended for internal testing only.
9743 The value @samp{one} specifies that exactly one partition should be
9744 used while the value @samp{none} bypasses partitioning and executes
9745 the link-time optimization step directly from the WPA phase.
9746
9747 @item -flto-odr-type-merging
9748 @opindex flto-odr-type-merging
9749 Enable streaming of mangled types names of C++ types and their unification
9750 at linktime. This increases size of LTO object files, but enable
9751 diagnostics about One Definition Rule violations.
9752
9753 @item -flto-compression-level=@var{n}
9754 @opindex flto-compression-level
9755 This option specifies the level of compression used for intermediate
9756 language written to LTO object files, and is only meaningful in
9757 conjunction with LTO mode (@option{-flto}). Valid
9758 values are 0 (no compression) to 9 (maximum compression). Values
9759 outside this range are clamped to either 0 or 9. If the option is not
9760 given, a default balanced compression setting is used.
9761
9762 @item -flto-report
9763 @opindex flto-report
9764 Prints a report with internal details on the workings of the link-time
9765 optimizer. The contents of this report vary from version to version.
9766 It is meant to be useful to GCC developers when processing object
9767 files in LTO mode (via @option{-flto}).
9768
9769 Disabled by default.
9770
9771 @item -flto-report-wpa
9772 @opindex flto-report-wpa
9773 Like @option{-flto-report}, but only print for the WPA phase of Link
9774 Time Optimization.
9775
9776 @item -fuse-linker-plugin
9777 @opindex fuse-linker-plugin
9778 Enables the use of a linker plugin during link-time optimization. This
9779 option relies on plugin support in the linker, which is available in gold
9780 or in GNU ld 2.21 or newer.
9781
9782 This option enables the extraction of object files with GIMPLE bytecode out
9783 of library archives. This improves the quality of optimization by exposing
9784 more code to the link-time optimizer. This information specifies what
9785 symbols can be accessed externally (by non-LTO object or during dynamic
9786 linking). Resulting code quality improvements on binaries (and shared
9787 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9788 See @option{-flto} for a description of the effect of this flag and how to
9789 use it.
9790
9791 This option is enabled by default when LTO support in GCC is enabled
9792 and GCC was configured for use with
9793 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9794
9795 @item -ffat-lto-objects
9796 @opindex ffat-lto-objects
9797 Fat LTO objects are object files that contain both the intermediate language
9798 and the object code. This makes them usable for both LTO linking and normal
9799 linking. This option is effective only when compiling with @option{-flto}
9800 and is ignored at link time.
9801
9802 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9803 requires the complete toolchain to be aware of LTO. It requires a linker with
9804 linker plugin support for basic functionality. Additionally,
9805 @command{nm}, @command{ar} and @command{ranlib}
9806 need to support linker plugins to allow a full-featured build environment
9807 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9808 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9809 to these tools. With non fat LTO makefiles need to be modified to use them.
9810
9811 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9812 support.
9813
9814 @item -fcompare-elim
9815 @opindex fcompare-elim
9816 After register allocation and post-register allocation instruction splitting,
9817 identify arithmetic instructions that compute processor flags similar to a
9818 comparison operation based on that arithmetic. If possible, eliminate the
9819 explicit comparison operation.
9820
9821 This pass only applies to certain targets that cannot explicitly represent
9822 the comparison operation before register allocation is complete.
9823
9824 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9825
9826 @item -fcprop-registers
9827 @opindex fcprop-registers
9828 After register allocation and post-register allocation instruction splitting,
9829 perform a copy-propagation pass to try to reduce scheduling dependencies
9830 and occasionally eliminate the copy.
9831
9832 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9833
9834 @item -fprofile-correction
9835 @opindex fprofile-correction
9836 Profiles collected using an instrumented binary for multi-threaded programs may
9837 be inconsistent due to missed counter updates. When this option is specified,
9838 GCC uses heuristics to correct or smooth out such inconsistencies. By
9839 default, GCC emits an error message when an inconsistent profile is detected.
9840
9841 @item -fprofile-dir=@var{path}
9842 @opindex fprofile-dir
9843
9844 Set the directory to search for the profile data files in to @var{path}.
9845 This option affects only the profile data generated by
9846 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9847 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9848 and its related options. Both absolute and relative paths can be used.
9849 By default, GCC uses the current directory as @var{path}, thus the
9850 profile data file appears in the same directory as the object file.
9851
9852 @item -fprofile-generate
9853 @itemx -fprofile-generate=@var{path}
9854 @opindex fprofile-generate
9855
9856 Enable options usually used for instrumenting application to produce
9857 profile useful for later recompilation with profile feedback based
9858 optimization. You must use @option{-fprofile-generate} both when
9859 compiling and when linking your program.
9860
9861 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9862
9863 If @var{path} is specified, GCC looks at the @var{path} to find
9864 the profile feedback data files. See @option{-fprofile-dir}.
9865
9866 @item -fprofile-use
9867 @itemx -fprofile-use=@var{path}
9868 @opindex fprofile-use
9869 Enable profile feedback-directed optimizations,
9870 and the following optimizations
9871 which are generally profitable only with profile feedback available:
9872 @option{-fbranch-probabilities}, @option{-fvpt},
9873 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9874 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9875
9876 By default, GCC emits an error message if the feedback profiles do not
9877 match the source code. This error can be turned into a warning by using
9878 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9879 code.
9880
9881 If @var{path} is specified, GCC looks at the @var{path} to find
9882 the profile feedback data files. See @option{-fprofile-dir}.
9883
9884 @item -fauto-profile
9885 @itemx -fauto-profile=@var{path}
9886 @opindex fauto-profile
9887 Enable sampling-based feedback-directed optimizations,
9888 and the following optimizations
9889 which are generally profitable only with profile feedback available:
9890 @option{-fbranch-probabilities}, @option{-fvpt},
9891 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9892 @option{-ftree-vectorize},
9893 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9894 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9895 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9896
9897 @var{path} is the name of a file containing AutoFDO profile information.
9898 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9899
9900 Producing an AutoFDO profile data file requires running your program
9901 with the @command{perf} utility on a supported GNU/Linux target system.
9902 For more information, see @uref{https://perf.wiki.kernel.org/}.
9903
9904 E.g.
9905 @smallexample
9906 perf record -e br_inst_retired:near_taken -b -o perf.data \
9907 -- your_program
9908 @end smallexample
9909
9910 Then use the @command{create_gcov} tool to convert the raw profile data
9911 to a format that can be used by GCC.@ You must also supply the
9912 unstripped binary for your program to this tool.
9913 See @uref{https://github.com/google/autofdo}.
9914
9915 E.g.
9916 @smallexample
9917 create_gcov --binary=your_program.unstripped --profile=perf.data \
9918 --gcov=profile.afdo
9919 @end smallexample
9920 @end table
9921
9922 The following options control compiler behavior regarding floating-point
9923 arithmetic. These options trade off between speed and
9924 correctness. All must be specifically enabled.
9925
9926 @table @gcctabopt
9927 @item -ffloat-store
9928 @opindex ffloat-store
9929 Do not store floating-point variables in registers, and inhibit other
9930 options that might change whether a floating-point value is taken from a
9931 register or memory.
9932
9933 @cindex floating-point precision
9934 This option prevents undesirable excess precision on machines such as
9935 the 68000 where the floating registers (of the 68881) keep more
9936 precision than a @code{double} is supposed to have. Similarly for the
9937 x86 architecture. For most programs, the excess precision does only
9938 good, but a few programs rely on the precise definition of IEEE floating
9939 point. Use @option{-ffloat-store} for such programs, after modifying
9940 them to store all pertinent intermediate computations into variables.
9941
9942 @item -fexcess-precision=@var{style}
9943 @opindex fexcess-precision
9944 This option allows further control over excess precision on machines
9945 where floating-point registers have more precision than the IEEE
9946 @code{float} and @code{double} types and the processor does not
9947 support operations rounding to those types. By default,
9948 @option{-fexcess-precision=fast} is in effect; this means that
9949 operations are carried out in the precision of the registers and that
9950 it is unpredictable when rounding to the types specified in the source
9951 code takes place. When compiling C, if
9952 @option{-fexcess-precision=standard} is specified then excess
9953 precision follows the rules specified in ISO C99; in particular,
9954 both casts and assignments cause values to be rounded to their
9955 semantic types (whereas @option{-ffloat-store} only affects
9956 assignments). This option is enabled by default for C if a strict
9957 conformance option such as @option{-std=c99} is used.
9958
9959 @opindex mfpmath
9960 @option{-fexcess-precision=standard} is not implemented for languages
9961 other than C, and has no effect if
9962 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
9963 specified. On the x86, it also has no effect if @option{-mfpmath=sse}
9964 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9965 semantics apply without excess precision, and in the latter, rounding
9966 is unpredictable.
9967
9968 @item -ffast-math
9969 @opindex ffast-math
9970 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9971 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9972 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9973
9974 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9975
9976 This option is not turned on by any @option{-O} option besides
9977 @option{-Ofast} since it can result in incorrect output for programs
9978 that depend on an exact implementation of IEEE or ISO rules/specifications
9979 for math functions. It may, however, yield faster code for programs
9980 that do not require the guarantees of these specifications.
9981
9982 @item -fno-math-errno
9983 @opindex fno-math-errno
9984 Do not set @code{errno} after calling math functions that are executed
9985 with a single instruction, e.g., @code{sqrt}. A program that relies on
9986 IEEE exceptions for math error handling may want to use this flag
9987 for speed while maintaining IEEE arithmetic compatibility.
9988
9989 This option is not turned on by any @option{-O} option since
9990 it can result in incorrect output for programs that depend on
9991 an exact implementation of IEEE or ISO rules/specifications for
9992 math functions. It may, however, yield faster code for programs
9993 that do not require the guarantees of these specifications.
9994
9995 The default is @option{-fmath-errno}.
9996
9997 On Darwin systems, the math library never sets @code{errno}. There is
9998 therefore no reason for the compiler to consider the possibility that
9999 it might, and @option{-fno-math-errno} is the default.
10000
10001 @item -funsafe-math-optimizations
10002 @opindex funsafe-math-optimizations
10003
10004 Allow optimizations for floating-point arithmetic that (a) assume
10005 that arguments and results are valid and (b) may violate IEEE or
10006 ANSI standards. When used at link-time, it may include libraries
10007 or startup files that change the default FPU control word or other
10008 similar optimizations.
10009
10010 This option is not turned on by any @option{-O} option since
10011 it can result in incorrect output for programs that depend on
10012 an exact implementation of IEEE or ISO rules/specifications for
10013 math functions. It may, however, yield faster code for programs
10014 that do not require the guarantees of these specifications.
10015 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
10016 @option{-fassociative-math} and @option{-freciprocal-math}.
10017
10018 The default is @option{-fno-unsafe-math-optimizations}.
10019
10020 @item -fassociative-math
10021 @opindex fassociative-math
10022
10023 Allow re-association of operands in series of floating-point operations.
10024 This violates the ISO C and C++ language standard by possibly changing
10025 computation result. NOTE: re-ordering may change the sign of zero as
10026 well as ignore NaNs and inhibit or create underflow or overflow (and
10027 thus cannot be used on code that relies on rounding behavior like
10028 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
10029 and thus may not be used when ordered comparisons are required.
10030 This option requires that both @option{-fno-signed-zeros} and
10031 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
10032 much sense with @option{-frounding-math}. For Fortran the option
10033 is automatically enabled when both @option{-fno-signed-zeros} and
10034 @option{-fno-trapping-math} are in effect.
10035
10036 The default is @option{-fno-associative-math}.
10037
10038 @item -freciprocal-math
10039 @opindex freciprocal-math
10040
10041 Allow the reciprocal of a value to be used instead of dividing by
10042 the value if this enables optimizations. For example @code{x / y}
10043 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
10044 is subject to common subexpression elimination. Note that this loses
10045 precision and increases the number of flops operating on the value.
10046
10047 The default is @option{-fno-reciprocal-math}.
10048
10049 @item -ffinite-math-only
10050 @opindex ffinite-math-only
10051 Allow optimizations for floating-point arithmetic that assume
10052 that arguments and results are not NaNs or +-Infs.
10053
10054 This option is not turned on by any @option{-O} option since
10055 it can result in incorrect output for programs that depend on
10056 an exact implementation of IEEE or ISO rules/specifications for
10057 math functions. It may, however, yield faster code for programs
10058 that do not require the guarantees of these specifications.
10059
10060 The default is @option{-fno-finite-math-only}.
10061
10062 @item -fno-signed-zeros
10063 @opindex fno-signed-zeros
10064 Allow optimizations for floating-point arithmetic that ignore the
10065 signedness of zero. IEEE arithmetic specifies the behavior of
10066 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
10067 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
10068 This option implies that the sign of a zero result isn't significant.
10069
10070 The default is @option{-fsigned-zeros}.
10071
10072 @item -fno-trapping-math
10073 @opindex fno-trapping-math
10074 Compile code assuming that floating-point operations cannot generate
10075 user-visible traps. These traps include division by zero, overflow,
10076 underflow, inexact result and invalid operation. This option requires
10077 that @option{-fno-signaling-nans} be in effect. Setting this option may
10078 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
10079
10080 This option should never be turned on by any @option{-O} option since
10081 it can result in incorrect output for programs that depend on
10082 an exact implementation of IEEE or ISO rules/specifications for
10083 math functions.
10084
10085 The default is @option{-ftrapping-math}.
10086
10087 @item -frounding-math
10088 @opindex frounding-math
10089 Disable transformations and optimizations that assume default floating-point
10090 rounding behavior. This is round-to-zero for all floating point
10091 to integer conversions, and round-to-nearest for all other arithmetic
10092 truncations. This option should be specified for programs that change
10093 the FP rounding mode dynamically, or that may be executed with a
10094 non-default rounding mode. This option disables constant folding of
10095 floating-point expressions at compile time (which may be affected by
10096 rounding mode) and arithmetic transformations that are unsafe in the
10097 presence of sign-dependent rounding modes.
10098
10099 The default is @option{-fno-rounding-math}.
10100
10101 This option is experimental and does not currently guarantee to
10102 disable all GCC optimizations that are affected by rounding mode.
10103 Future versions of GCC may provide finer control of this setting
10104 using C99's @code{FENV_ACCESS} pragma. This command-line option
10105 will be used to specify the default state for @code{FENV_ACCESS}.
10106
10107 @item -fsignaling-nans
10108 @opindex fsignaling-nans
10109 Compile code assuming that IEEE signaling NaNs may generate user-visible
10110 traps during floating-point operations. Setting this option disables
10111 optimizations that may change the number of exceptions visible with
10112 signaling NaNs. This option implies @option{-ftrapping-math}.
10113
10114 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
10115 be defined.
10116
10117 The default is @option{-fno-signaling-nans}.
10118
10119 This option is experimental and does not currently guarantee to
10120 disable all GCC optimizations that affect signaling NaN behavior.
10121
10122 @item -fsingle-precision-constant
10123 @opindex fsingle-precision-constant
10124 Treat floating-point constants as single precision instead of
10125 implicitly converting them to double-precision constants.
10126
10127 @item -fcx-limited-range
10128 @opindex fcx-limited-range
10129 When enabled, this option states that a range reduction step is not
10130 needed when performing complex division. Also, there is no checking
10131 whether the result of a complex multiplication or division is @code{NaN
10132 + I*NaN}, with an attempt to rescue the situation in that case. The
10133 default is @option{-fno-cx-limited-range}, but is enabled by
10134 @option{-ffast-math}.
10135
10136 This option controls the default setting of the ISO C99
10137 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
10138 all languages.
10139
10140 @item -fcx-fortran-rules
10141 @opindex fcx-fortran-rules
10142 Complex multiplication and division follow Fortran rules. Range
10143 reduction is done as part of complex division, but there is no checking
10144 whether the result of a complex multiplication or division is @code{NaN
10145 + I*NaN}, with an attempt to rescue the situation in that case.
10146
10147 The default is @option{-fno-cx-fortran-rules}.
10148
10149 @end table
10150
10151 The following options control optimizations that may improve
10152 performance, but are not enabled by any @option{-O} options. This
10153 section includes experimental options that may produce broken code.
10154
10155 @table @gcctabopt
10156 @item -fbranch-probabilities
10157 @opindex fbranch-probabilities
10158 After running a program compiled with @option{-fprofile-arcs}
10159 (@pxref{Debugging Options,, Options for Debugging Your Program or
10160 @command{gcc}}), you can compile it a second time using
10161 @option{-fbranch-probabilities}, to improve optimizations based on
10162 the number of times each branch was taken. When a program
10163 compiled with @option{-fprofile-arcs} exits, it saves arc execution
10164 counts to a file called @file{@var{sourcename}.gcda} for each source
10165 file. The information in this data file is very dependent on the
10166 structure of the generated code, so you must use the same source code
10167 and the same optimization options for both compilations.
10168
10169 With @option{-fbranch-probabilities}, GCC puts a
10170 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10171 These can be used to improve optimization. Currently, they are only
10172 used in one place: in @file{reorg.c}, instead of guessing which path a
10173 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10174 exactly determine which path is taken more often.
10175
10176 @item -fprofile-values
10177 @opindex fprofile-values
10178 If combined with @option{-fprofile-arcs}, it adds code so that some
10179 data about values of expressions in the program is gathered.
10180
10181 With @option{-fbranch-probabilities}, it reads back the data gathered
10182 from profiling values of expressions for usage in optimizations.
10183
10184 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
10185
10186 @item -fprofile-reorder-functions
10187 @opindex fprofile-reorder-functions
10188 Function reordering based on profile instrumentation collects
10189 first time of execution of a function and orders these functions
10190 in ascending order.
10191
10192 Enabled with @option{-fprofile-use}.
10193
10194 @item -fvpt
10195 @opindex fvpt
10196 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10197 to add code to gather information about values of expressions.
10198
10199 With @option{-fbranch-probabilities}, it reads back the data gathered
10200 and actually performs the optimizations based on them.
10201 Currently the optimizations include specialization of division operations
10202 using the knowledge about the value of the denominator.
10203
10204 @item -frename-registers
10205 @opindex frename-registers
10206 Attempt to avoid false dependencies in scheduled code by making use
10207 of registers left over after register allocation. This optimization
10208 most benefits processors with lots of registers. Depending on the
10209 debug information format adopted by the target, however, it can
10210 make debugging impossible, since variables no longer stay in
10211 a ``home register''.
10212
10213 Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
10214
10215 @item -fschedule-fusion
10216 @opindex fschedule-fusion
10217 Performs a target dependent pass over the instruction stream to schedule
10218 instructions of same type together because target machine can execute them
10219 more efficiently if they are adjacent to each other in the instruction flow.
10220
10221 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10222
10223 @item -ftracer
10224 @opindex ftracer
10225 Perform tail duplication to enlarge superblock size. This transformation
10226 simplifies the control flow of the function allowing other optimizations to do
10227 a better job.
10228
10229 Enabled with @option{-fprofile-use}.
10230
10231 @item -funroll-loops
10232 @opindex funroll-loops
10233 Unroll loops whose number of iterations can be determined at compile time or
10234 upon entry to the loop. @option{-funroll-loops} implies
10235 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10236 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10237 a small constant number of iterations). This option makes code larger, and may
10238 or may not make it run faster.
10239
10240 Enabled with @option{-fprofile-use}.
10241
10242 @item -funroll-all-loops
10243 @opindex funroll-all-loops
10244 Unroll all loops, even if their number of iterations is uncertain when
10245 the loop is entered. This usually makes programs run more slowly.
10246 @option{-funroll-all-loops} implies the same options as
10247 @option{-funroll-loops}.
10248
10249 @item -fpeel-loops
10250 @opindex fpeel-loops
10251 Peels loops for which there is enough information that they do not
10252 roll much (from profile feedback). It also turns on complete loop peeling
10253 (i.e.@: complete removal of loops with small constant number of iterations).
10254
10255 Enabled with @option{-fprofile-use}.
10256
10257 @item -fmove-loop-invariants
10258 @opindex fmove-loop-invariants
10259 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10260 at level @option{-O1}
10261
10262 @item -funswitch-loops
10263 @opindex funswitch-loops
10264 Move branches with loop invariant conditions out of the loop, with duplicates
10265 of the loop on both branches (modified according to result of the condition).
10266
10267 @item -ffunction-sections
10268 @itemx -fdata-sections
10269 @opindex ffunction-sections
10270 @opindex fdata-sections
10271 Place each function or data item into its own section in the output
10272 file if the target supports arbitrary sections. The name of the
10273 function or the name of the data item determines the section's name
10274 in the output file.
10275
10276 Use these options on systems where the linker can perform optimizations
10277 to improve locality of reference in the instruction space. Most systems
10278 using the ELF object format and SPARC processors running Solaris 2 have
10279 linkers with such optimizations. AIX may have these optimizations in
10280 the future.
10281
10282 Only use these options when there are significant benefits from doing
10283 so. When you specify these options, the assembler and linker
10284 create larger object and executable files and are also slower.
10285 You cannot use @command{gprof} on all systems if you
10286 specify this option, and you may have problems with debugging if
10287 you specify both this option and @option{-g}.
10288
10289 @item -fbranch-target-load-optimize
10290 @opindex fbranch-target-load-optimize
10291 Perform branch target register load optimization before prologue / epilogue
10292 threading.
10293 The use of target registers can typically be exposed only during reload,
10294 thus hoisting loads out of loops and doing inter-block scheduling needs
10295 a separate optimization pass.
10296
10297 @item -fbranch-target-load-optimize2
10298 @opindex fbranch-target-load-optimize2
10299 Perform branch target register load optimization after prologue / epilogue
10300 threading.
10301
10302 @item -fbtr-bb-exclusive
10303 @opindex fbtr-bb-exclusive
10304 When performing branch target register load optimization, don't reuse
10305 branch target registers within any basic block.
10306
10307 @item -fstack-protector
10308 @opindex fstack-protector
10309 Emit extra code to check for buffer overflows, such as stack smashing
10310 attacks. This is done by adding a guard variable to functions with
10311 vulnerable objects. This includes functions that call @code{alloca}, and
10312 functions with buffers larger than 8 bytes. The guards are initialized
10313 when a function is entered and then checked when the function exits.
10314 If a guard check fails, an error message is printed and the program exits.
10315
10316 @item -fstack-protector-all
10317 @opindex fstack-protector-all
10318 Like @option{-fstack-protector} except that all functions are protected.
10319
10320 @item -fstack-protector-strong
10321 @opindex fstack-protector-strong
10322 Like @option{-fstack-protector} but includes additional functions to
10323 be protected --- those that have local array definitions, or have
10324 references to local frame addresses.
10325
10326 @item -fstack-protector-explicit
10327 @opindex fstack-protector-explicit
10328 Like @option{-fstack-protector} but only protects those functions which
10329 have the @code{stack_protect} attribute.
10330
10331 @item -fstdarg-opt
10332 @opindex fstdarg-opt
10333 Optimize the prologue of variadic argument functions with respect to usage of
10334 those arguments.
10335
10336 @item -fsection-anchors
10337 @opindex fsection-anchors
10338 Try to reduce the number of symbolic address calculations by using
10339 shared ``anchor'' symbols to address nearby objects. This transformation
10340 can help to reduce the number of GOT entries and GOT accesses on some
10341 targets.
10342
10343 For example, the implementation of the following function @code{foo}:
10344
10345 @smallexample
10346 static int a, b, c;
10347 int foo (void) @{ return a + b + c; @}
10348 @end smallexample
10349
10350 @noindent
10351 usually calculates the addresses of all three variables, but if you
10352 compile it with @option{-fsection-anchors}, it accesses the variables
10353 from a common anchor point instead. The effect is similar to the
10354 following pseudocode (which isn't valid C):
10355
10356 @smallexample
10357 int foo (void)
10358 @{
10359 register int *xr = &x;
10360 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10361 @}
10362 @end smallexample
10363
10364 Not all targets support this option.
10365
10366 @item --param @var{name}=@var{value}
10367 @opindex param
10368 In some places, GCC uses various constants to control the amount of
10369 optimization that is done. For example, GCC does not inline functions
10370 that contain more than a certain number of instructions. You can
10371 control some of these constants on the command line using the
10372 @option{--param} option.
10373
10374 The names of specific parameters, and the meaning of the values, are
10375 tied to the internals of the compiler, and are subject to change
10376 without notice in future releases.
10377
10378 In each case, the @var{value} is an integer. The allowable choices for
10379 @var{name} are:
10380
10381 @table @gcctabopt
10382 @item predictable-branch-outcome
10383 When branch is predicted to be taken with probability lower than this threshold
10384 (in percent), then it is considered well predictable. The default is 10.
10385
10386 @item max-rtl-if-conversion-insns
10387 RTL if-conversion tries to remove conditional branches around a block and
10388 replace them with conditionally executed instructions. This parameter
10389 gives the maximum number of instructions in a block which should be
10390 considered for if-conversion. The default is 10, though the compiler will
10391 also use other heuristics to decide whether if-conversion is likely to be
10392 profitable.
10393
10394 @item max-crossjump-edges
10395 The maximum number of incoming edges to consider for cross-jumping.
10396 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10397 the number of edges incoming to each block. Increasing values mean
10398 more aggressive optimization, making the compilation time increase with
10399 probably small improvement in executable size.
10400
10401 @item min-crossjump-insns
10402 The minimum number of instructions that must be matched at the end
10403 of two blocks before cross-jumping is performed on them. This
10404 value is ignored in the case where all instructions in the block being
10405 cross-jumped from are matched. The default value is 5.
10406
10407 @item max-grow-copy-bb-insns
10408 The maximum code size expansion factor when copying basic blocks
10409 instead of jumping. The expansion is relative to a jump instruction.
10410 The default value is 8.
10411
10412 @item max-goto-duplication-insns
10413 The maximum number of instructions to duplicate to a block that jumps
10414 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
10415 passes, GCC factors computed gotos early in the compilation process,
10416 and unfactors them as late as possible. Only computed jumps at the
10417 end of a basic blocks with no more than max-goto-duplication-insns are
10418 unfactored. The default value is 8.
10419
10420 @item max-delay-slot-insn-search
10421 The maximum number of instructions to consider when looking for an
10422 instruction to fill a delay slot. If more than this arbitrary number of
10423 instructions are searched, the time savings from filling the delay slot
10424 are minimal, so stop searching. Increasing values mean more
10425 aggressive optimization, making the compilation time increase with probably
10426 small improvement in execution time.
10427
10428 @item max-delay-slot-live-search
10429 When trying to fill delay slots, the maximum number of instructions to
10430 consider when searching for a block with valid live register
10431 information. Increasing this arbitrarily chosen value means more
10432 aggressive optimization, increasing the compilation time. This parameter
10433 should be removed when the delay slot code is rewritten to maintain the
10434 control-flow graph.
10435
10436 @item max-gcse-memory
10437 The approximate maximum amount of memory that can be allocated in
10438 order to perform the global common subexpression elimination
10439 optimization. If more memory than specified is required, the
10440 optimization is not done.
10441
10442 @item max-gcse-insertion-ratio
10443 If the ratio of expression insertions to deletions is larger than this value
10444 for any expression, then RTL PRE inserts or removes the expression and thus
10445 leaves partially redundant computations in the instruction stream. The default value is 20.
10446
10447 @item max-pending-list-length
10448 The maximum number of pending dependencies scheduling allows
10449 before flushing the current state and starting over. Large functions
10450 with few branches or calls can create excessively large lists which
10451 needlessly consume memory and resources.
10452
10453 @item max-modulo-backtrack-attempts
10454 The maximum number of backtrack attempts the scheduler should make
10455 when modulo scheduling a loop. Larger values can exponentially increase
10456 compilation time.
10457
10458 @item max-inline-insns-single
10459 Several parameters control the tree inliner used in GCC@.
10460 This number sets the maximum number of instructions (counted in GCC's
10461 internal representation) in a single function that the tree inliner
10462 considers for inlining. This only affects functions declared
10463 inline and methods implemented in a class declaration (C++).
10464 The default value is 400.
10465
10466 @item max-inline-insns-auto
10467 When you use @option{-finline-functions} (included in @option{-O3}),
10468 a lot of functions that would otherwise not be considered for inlining
10469 by the compiler are investigated. To those functions, a different
10470 (more restrictive) limit compared to functions declared inline can
10471 be applied.
10472 The default value is 40.
10473
10474 @item inline-min-speedup
10475 When estimated performance improvement of caller + callee runtime exceeds this
10476 threshold (in precent), the function can be inlined regardless the limit on
10477 @option{--param max-inline-insns-single} and @option{--param
10478 max-inline-insns-auto}.
10479
10480 @item large-function-insns
10481 The limit specifying really large functions. For functions larger than this
10482 limit after inlining, inlining is constrained by
10483 @option{--param large-function-growth}. This parameter is useful primarily
10484 to avoid extreme compilation time caused by non-linear algorithms used by the
10485 back end.
10486 The default value is 2700.
10487
10488 @item large-function-growth
10489 Specifies maximal growth of large function caused by inlining in percents.
10490 The default value is 100 which limits large function growth to 2.0 times
10491 the original size.
10492
10493 @item large-unit-insns
10494 The limit specifying large translation unit. Growth caused by inlining of
10495 units larger than this limit is limited by @option{--param inline-unit-growth}.
10496 For small units this might be too tight.
10497 For example, consider a unit consisting of function A
10498 that is inline and B that just calls A three times. If B is small relative to
10499 A, the growth of unit is 300\% and yet such inlining is very sane. For very
10500 large units consisting of small inlineable functions, however, the overall unit
10501 growth limit is needed to avoid exponential explosion of code size. Thus for
10502 smaller units, the size is increased to @option{--param large-unit-insns}
10503 before applying @option{--param inline-unit-growth}. The default is 10000.
10504
10505 @item inline-unit-growth
10506 Specifies maximal overall growth of the compilation unit caused by inlining.
10507 The default value is 20 which limits unit growth to 1.2 times the original
10508 size. Cold functions (either marked cold via an attribute or by profile
10509 feedback) are not accounted into the unit size.
10510
10511 @item ipcp-unit-growth
10512 Specifies maximal overall growth of the compilation unit caused by
10513 interprocedural constant propagation. The default value is 10 which limits
10514 unit growth to 1.1 times the original size.
10515
10516 @item large-stack-frame
10517 The limit specifying large stack frames. While inlining the algorithm is trying
10518 to not grow past this limit too much. The default value is 256 bytes.
10519
10520 @item large-stack-frame-growth
10521 Specifies maximal growth of large stack frames caused by inlining in percents.
10522 The default value is 1000 which limits large stack frame growth to 11 times
10523 the original size.
10524
10525 @item max-inline-insns-recursive
10526 @itemx max-inline-insns-recursive-auto
10527 Specifies the maximum number of instructions an out-of-line copy of a
10528 self-recursive inline
10529 function can grow into by performing recursive inlining.
10530
10531 @option{--param max-inline-insns-recursive} applies to functions
10532 declared inline.
10533 For functions not declared inline, recursive inlining
10534 happens only when @option{-finline-functions} (included in @option{-O3}) is
10535 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
10536 default value is 450.
10537
10538 @item max-inline-recursive-depth
10539 @itemx max-inline-recursive-depth-auto
10540 Specifies the maximum recursion depth used for recursive inlining.
10541
10542 @option{--param max-inline-recursive-depth} applies to functions
10543 declared inline. For functions not declared inline, recursive inlining
10544 happens only when @option{-finline-functions} (included in @option{-O3}) is
10545 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
10546 default value is 8.
10547
10548 @item min-inline-recursive-probability
10549 Recursive inlining is profitable only for function having deep recursion
10550 in average and can hurt for function having little recursion depth by
10551 increasing the prologue size or complexity of function body to other
10552 optimizers.
10553
10554 When profile feedback is available (see @option{-fprofile-generate}) the actual
10555 recursion depth can be guessed from probability that function recurses via a
10556 given call expression. This parameter limits inlining only to call expressions
10557 whose probability exceeds the given threshold (in percents).
10558 The default value is 10.
10559
10560 @item early-inlining-insns
10561 Specify growth that the early inliner can make. In effect it increases
10562 the amount of inlining for code having a large abstraction penalty.
10563 The default value is 14.
10564
10565 @item max-early-inliner-iterations
10566 Limit of iterations of the early inliner. This basically bounds
10567 the number of nested indirect calls the early inliner can resolve.
10568 Deeper chains are still handled by late inlining.
10569
10570 @item comdat-sharing-probability
10571 Probability (in percent) that C++ inline function with comdat visibility
10572 are shared across multiple compilation units. The default value is 20.
10573
10574 @item profile-func-internal-id
10575 A parameter to control whether to use function internal id in profile
10576 database lookup. If the value is 0, the compiler uses an id that
10577 is based on function assembler name and filename, which makes old profile
10578 data more tolerant to source changes such as function reordering etc.
10579 The default value is 0.
10580
10581 @item min-vect-loop-bound
10582 The minimum number of iterations under which loops are not vectorized
10583 when @option{-ftree-vectorize} is used. The number of iterations after
10584 vectorization needs to be greater than the value specified by this option
10585 to allow vectorization. The default value is 0.
10586
10587 @item gcse-cost-distance-ratio
10588 Scaling factor in calculation of maximum distance an expression
10589 can be moved by GCSE optimizations. This is currently supported only in the
10590 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
10591 is with simple expressions, i.e., the expressions that have cost
10592 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
10593 hoisting of simple expressions. The default value is 10.
10594
10595 @item gcse-unrestricted-cost
10596 Cost, roughly measured as the cost of a single typical machine
10597 instruction, at which GCSE optimizations do not constrain
10598 the distance an expression can travel. This is currently
10599 supported only in the code hoisting pass. The lesser the cost,
10600 the more aggressive code hoisting is. Specifying 0
10601 allows all expressions to travel unrestricted distances.
10602 The default value is 3.
10603
10604 @item max-hoist-depth
10605 The depth of search in the dominator tree for expressions to hoist.
10606 This is used to avoid quadratic behavior in hoisting algorithm.
10607 The value of 0 does not limit on the search, but may slow down compilation
10608 of huge functions. The default value is 30.
10609
10610 @item max-tail-merge-comparisons
10611 The maximum amount of similar bbs to compare a bb with. This is used to
10612 avoid quadratic behavior in tree tail merging. The default value is 10.
10613
10614 @item max-tail-merge-iterations
10615 The maximum amount of iterations of the pass over the function. This is used to
10616 limit compilation time in tree tail merging. The default value is 2.
10617
10618 @item max-unrolled-insns
10619 The maximum number of instructions that a loop may have to be unrolled.
10620 If a loop is unrolled, this parameter also determines how many times
10621 the loop code is unrolled.
10622
10623 @item max-average-unrolled-insns
10624 The maximum number of instructions biased by probabilities of their execution
10625 that a loop may have to be unrolled. If a loop is unrolled,
10626 this parameter also determines how many times the loop code is unrolled.
10627
10628 @item max-unroll-times
10629 The maximum number of unrollings of a single loop.
10630
10631 @item max-peeled-insns
10632 The maximum number of instructions that a loop may have to be peeled.
10633 If a loop is peeled, this parameter also determines how many times
10634 the loop code is peeled.
10635
10636 @item max-peel-times
10637 The maximum number of peelings of a single loop.
10638
10639 @item max-peel-branches
10640 The maximum number of branches on the hot path through the peeled sequence.
10641
10642 @item max-completely-peeled-insns
10643 The maximum number of insns of a completely peeled loop.
10644
10645 @item max-completely-peel-times
10646 The maximum number of iterations of a loop to be suitable for complete peeling.
10647
10648 @item max-completely-peel-loop-nest-depth
10649 The maximum depth of a loop nest suitable for complete peeling.
10650
10651 @item max-unswitch-insns
10652 The maximum number of insns of an unswitched loop.
10653
10654 @item max-unswitch-level
10655 The maximum number of branches unswitched in a single loop.
10656
10657 @item lim-expensive
10658 The minimum cost of an expensive expression in the loop invariant motion.
10659
10660 @item iv-consider-all-candidates-bound
10661 Bound on number of candidates for induction variables, below which
10662 all candidates are considered for each use in induction variable
10663 optimizations. If there are more candidates than this,
10664 only the most relevant ones are considered to avoid quadratic time complexity.
10665
10666 @item iv-max-considered-uses
10667 The induction variable optimizations give up on loops that contain more
10668 induction variable uses.
10669
10670 @item iv-always-prune-cand-set-bound
10671 If the number of candidates in the set is smaller than this value,
10672 always try to remove unnecessary ivs from the set
10673 when adding a new one.
10674
10675 @item scev-max-expr-size
10676 Bound on size of expressions used in the scalar evolutions analyzer.
10677 Large expressions slow the analyzer.
10678
10679 @item scev-max-expr-complexity
10680 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10681 Complex expressions slow the analyzer.
10682
10683 @item vect-max-version-for-alignment-checks
10684 The maximum number of run-time checks that can be performed when
10685 doing loop versioning for alignment in the vectorizer.
10686
10687 @item vect-max-version-for-alias-checks
10688 The maximum number of run-time checks that can be performed when
10689 doing loop versioning for alias in the vectorizer.
10690
10691 @item vect-max-peeling-for-alignment
10692 The maximum number of loop peels to enhance access alignment
10693 for vectorizer. Value -1 means 'no limit'.
10694
10695 @item max-iterations-to-track
10696 The maximum number of iterations of a loop the brute-force algorithm
10697 for analysis of the number of iterations of the loop tries to evaluate.
10698
10699 @item hot-bb-count-ws-permille
10700 A basic block profile count is considered hot if it contributes to
10701 the given permillage (i.e. 0...1000) of the entire profiled execution.
10702
10703 @item hot-bb-frequency-fraction
10704 Select fraction of the entry block frequency of executions of basic block in
10705 function given basic block needs to have to be considered hot.
10706
10707 @item max-predicted-iterations
10708 The maximum number of loop iterations we predict statically. This is useful
10709 in cases where a function contains a single loop with known bound and
10710 another loop with unknown bound.
10711 The known number of iterations is predicted correctly, while
10712 the unknown number of iterations average to roughly 10. This means that the
10713 loop without bounds appears artificially cold relative to the other one.
10714
10715 @item builtin-expect-probability
10716 Control the probability of the expression having the specified value. This
10717 parameter takes a percentage (i.e. 0 ... 100) as input.
10718 The default probability of 90 is obtained empirically.
10719
10720 @item align-threshold
10721
10722 Select fraction of the maximal frequency of executions of a basic block in
10723 a function to align the basic block.
10724
10725 @item align-loop-iterations
10726
10727 A loop expected to iterate at least the selected number of iterations is
10728 aligned.
10729
10730 @item tracer-dynamic-coverage
10731 @itemx tracer-dynamic-coverage-feedback
10732
10733 This value is used to limit superblock formation once the given percentage of
10734 executed instructions is covered. This limits unnecessary code size
10735 expansion.
10736
10737 The @option{tracer-dynamic-coverage-feedback} parameter
10738 is used only when profile
10739 feedback is available. The real profiles (as opposed to statically estimated
10740 ones) are much less balanced allowing the threshold to be larger value.
10741
10742 @item tracer-max-code-growth
10743 Stop tail duplication once code growth has reached given percentage. This is
10744 a rather artificial limit, as most of the duplicates are eliminated later in
10745 cross jumping, so it may be set to much higher values than is the desired code
10746 growth.
10747
10748 @item tracer-min-branch-ratio
10749
10750 Stop reverse growth when the reverse probability of best edge is less than this
10751 threshold (in percent).
10752
10753 @item tracer-min-branch-ratio
10754 @itemx tracer-min-branch-ratio-feedback
10755
10756 Stop forward growth if the best edge has probability lower than this
10757 threshold.
10758
10759 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10760 compilation for profile feedback and one for compilation without. The value
10761 for compilation with profile feedback needs to be more conservative (higher) in
10762 order to make tracer effective.
10763
10764 @item max-cse-path-length
10765
10766 The maximum number of basic blocks on path that CSE considers.
10767 The default is 10.
10768
10769 @item max-cse-insns
10770 The maximum number of instructions CSE processes before flushing.
10771 The default is 1000.
10772
10773 @item ggc-min-expand
10774
10775 GCC uses a garbage collector to manage its own memory allocation. This
10776 parameter specifies the minimum percentage by which the garbage
10777 collector's heap should be allowed to expand between collections.
10778 Tuning this may improve compilation speed; it has no effect on code
10779 generation.
10780
10781 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10782 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10783 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10784 GCC is not able to calculate RAM on a particular platform, the lower
10785 bound of 30% is used. Setting this parameter and
10786 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10787 every opportunity. This is extremely slow, but can be useful for
10788 debugging.
10789
10790 @item ggc-min-heapsize
10791
10792 Minimum size of the garbage collector's heap before it begins bothering
10793 to collect garbage. The first collection occurs after the heap expands
10794 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10795 tuning this may improve compilation speed, and has no effect on code
10796 generation.
10797
10798 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10799 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10800 with a lower bound of 4096 (four megabytes) and an upper bound of
10801 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10802 particular platform, the lower bound is used. Setting this parameter
10803 very large effectively disables garbage collection. Setting this
10804 parameter and @option{ggc-min-expand} to zero causes a full collection
10805 to occur at every opportunity.
10806
10807 @item max-reload-search-insns
10808 The maximum number of instruction reload should look backward for equivalent
10809 register. Increasing values mean more aggressive optimization, making the
10810 compilation time increase with probably slightly better performance.
10811 The default value is 100.
10812
10813 @item max-cselib-memory-locations
10814 The maximum number of memory locations cselib should take into account.
10815 Increasing values mean more aggressive optimization, making the compilation time
10816 increase with probably slightly better performance. The default value is 500.
10817
10818 @item reorder-blocks-duplicate
10819 @itemx reorder-blocks-duplicate-feedback
10820
10821 Used by the basic block reordering pass to decide whether to use unconditional
10822 branch or duplicate the code on its destination. Code is duplicated when its
10823 estimated size is smaller than this value multiplied by the estimated size of
10824 unconditional jump in the hot spots of the program.
10825
10826 The @option{reorder-block-duplicate-feedback} parameter
10827 is used only when profile
10828 feedback is available. It may be set to higher values than
10829 @option{reorder-block-duplicate} since information about the hot spots is more
10830 accurate.
10831
10832 @item max-sched-ready-insns
10833 The maximum number of instructions ready to be issued the scheduler should
10834 consider at any given time during the first scheduling pass. Increasing
10835 values mean more thorough searches, making the compilation time increase
10836 with probably little benefit. The default value is 100.
10837
10838 @item max-sched-region-blocks
10839 The maximum number of blocks in a region to be considered for
10840 interblock scheduling. The default value is 10.
10841
10842 @item max-pipeline-region-blocks
10843 The maximum number of blocks in a region to be considered for
10844 pipelining in the selective scheduler. The default value is 15.
10845
10846 @item max-sched-region-insns
10847 The maximum number of insns in a region to be considered for
10848 interblock scheduling. The default value is 100.
10849
10850 @item max-pipeline-region-insns
10851 The maximum number of insns in a region to be considered for
10852 pipelining in the selective scheduler. The default value is 200.
10853
10854 @item min-spec-prob
10855 The minimum probability (in percents) of reaching a source block
10856 for interblock speculative scheduling. The default value is 40.
10857
10858 @item max-sched-extend-regions-iters
10859 The maximum number of iterations through CFG to extend regions.
10860 A value of 0 (the default) disables region extensions.
10861
10862 @item max-sched-insn-conflict-delay
10863 The maximum conflict delay for an insn to be considered for speculative motion.
10864 The default value is 3.
10865
10866 @item sched-spec-prob-cutoff
10867 The minimal probability of speculation success (in percents), so that
10868 speculative insns are scheduled.
10869 The default value is 40.
10870
10871 @item sched-spec-state-edge-prob-cutoff
10872 The minimum probability an edge must have for the scheduler to save its
10873 state across it.
10874 The default value is 10.
10875
10876 @item sched-mem-true-dep-cost
10877 Minimal distance (in CPU cycles) between store and load targeting same
10878 memory locations. The default value is 1.
10879
10880 @item selsched-max-lookahead
10881 The maximum size of the lookahead window of selective scheduling. It is a
10882 depth of search for available instructions.
10883 The default value is 50.
10884
10885 @item selsched-max-sched-times
10886 The maximum number of times that an instruction is scheduled during
10887 selective scheduling. This is the limit on the number of iterations
10888 through which the instruction may be pipelined. The default value is 2.
10889
10890 @item selsched-max-insns-to-rename
10891 The maximum number of best instructions in the ready list that are considered
10892 for renaming in the selective scheduler. The default value is 2.
10893
10894 @item sms-min-sc
10895 The minimum value of stage count that swing modulo scheduler
10896 generates. The default value is 2.
10897
10898 @item max-last-value-rtl
10899 The maximum size measured as number of RTLs that can be recorded in an expression
10900 in combiner for a pseudo register as last known value of that register. The default
10901 is 10000.
10902
10903 @item max-combine-insns
10904 The maximum number of instructions the RTL combiner tries to combine.
10905 The default value is 2 at @option{-Og} and 4 otherwise.
10906
10907 @item integer-share-limit
10908 Small integer constants can use a shared data structure, reducing the
10909 compiler's memory usage and increasing its speed. This sets the maximum
10910 value of a shared integer constant. The default value is 256.
10911
10912 @item ssp-buffer-size
10913 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10914 protection when @option{-fstack-protection} is used.
10915
10916 @item min-size-for-stack-sharing
10917 The minimum size of variables taking part in stack slot sharing when not
10918 optimizing. The default value is 32.
10919
10920 @item max-jump-thread-duplication-stmts
10921 Maximum number of statements allowed in a block that needs to be
10922 duplicated when threading jumps.
10923
10924 @item max-fields-for-field-sensitive
10925 Maximum number of fields in a structure treated in
10926 a field sensitive manner during pointer analysis. The default is zero
10927 for @option{-O0} and @option{-O1},
10928 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10929
10930 @item prefetch-latency
10931 Estimate on average number of instructions that are executed before
10932 prefetch finishes. The distance prefetched ahead is proportional
10933 to this constant. Increasing this number may also lead to less
10934 streams being prefetched (see @option{simultaneous-prefetches}).
10935
10936 @item simultaneous-prefetches
10937 Maximum number of prefetches that can run at the same time.
10938
10939 @item l1-cache-line-size
10940 The size of cache line in L1 cache, in bytes.
10941
10942 @item l1-cache-size
10943 The size of L1 cache, in kilobytes.
10944
10945 @item l2-cache-size
10946 The size of L2 cache, in kilobytes.
10947
10948 @item min-insn-to-prefetch-ratio
10949 The minimum ratio between the number of instructions and the
10950 number of prefetches to enable prefetching in a loop.
10951
10952 @item prefetch-min-insn-to-mem-ratio
10953 The minimum ratio between the number of instructions and the
10954 number of memory references to enable prefetching in a loop.
10955
10956 @item use-canonical-types
10957 Whether the compiler should use the ``canonical'' type system. By
10958 default, this should always be 1, which uses a more efficient internal
10959 mechanism for comparing types in C++ and Objective-C++. However, if
10960 bugs in the canonical type system are causing compilation failures,
10961 set this value to 0 to disable canonical types.
10962
10963 @item switch-conversion-max-branch-ratio
10964 Switch initialization conversion refuses to create arrays that are
10965 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10966 branches in the switch.
10967
10968 @item max-partial-antic-length
10969 Maximum length of the partial antic set computed during the tree
10970 partial redundancy elimination optimization (@option{-ftree-pre}) when
10971 optimizing at @option{-O3} and above. For some sorts of source code
10972 the enhanced partial redundancy elimination optimization can run away,
10973 consuming all of the memory available on the host machine. This
10974 parameter sets a limit on the length of the sets that are computed,
10975 which prevents the runaway behavior. Setting a value of 0 for
10976 this parameter allows an unlimited set length.
10977
10978 @item sccvn-max-scc-size
10979 Maximum size of a strongly connected component (SCC) during SCCVN
10980 processing. If this limit is hit, SCCVN processing for the whole
10981 function is not done and optimizations depending on it are
10982 disabled. The default maximum SCC size is 10000.
10983
10984 @item sccvn-max-alias-queries-per-access
10985 Maximum number of alias-oracle queries we perform when looking for
10986 redundancies for loads and stores. If this limit is hit the search
10987 is aborted and the load or store is not considered redundant. The
10988 number of queries is algorithmically limited to the number of
10989 stores on all paths from the load to the function entry.
10990 The default maxmimum number of queries is 1000.
10991
10992 @item ira-max-loops-num
10993 IRA uses regional register allocation by default. If a function
10994 contains more loops than the number given by this parameter, only at most
10995 the given number of the most frequently-executed loops form regions
10996 for regional register allocation. The default value of the
10997 parameter is 100.
10998
10999 @item ira-max-conflict-table-size
11000 Although IRA uses a sophisticated algorithm to compress the conflict
11001 table, the table can still require excessive amounts of memory for
11002 huge functions. If the conflict table for a function could be more
11003 than the size in MB given by this parameter, the register allocator
11004 instead uses a faster, simpler, and lower-quality
11005 algorithm that does not require building a pseudo-register conflict table.
11006 The default value of the parameter is 2000.
11007
11008 @item ira-loop-reserved-regs
11009 IRA can be used to evaluate more accurate register pressure in loops
11010 for decisions to move loop invariants (see @option{-O3}). The number
11011 of available registers reserved for some other purposes is given
11012 by this parameter. The default value of the parameter is 2, which is
11013 the minimal number of registers needed by typical instructions.
11014 This value is the best found from numerous experiments.
11015
11016 @item lra-inheritance-ebb-probability-cutoff
11017 LRA tries to reuse values reloaded in registers in subsequent insns.
11018 This optimization is called inheritance. EBB is used as a region to
11019 do this optimization. The parameter defines a minimal fall-through
11020 edge probability in percentage used to add BB to inheritance EBB in
11021 LRA. The default value of the parameter is 40. The value was chosen
11022 from numerous runs of SPEC2000 on x86-64.
11023
11024 @item loop-invariant-max-bbs-in-loop
11025 Loop invariant motion can be very expensive, both in compilation time and
11026 in amount of needed compile-time memory, with very large loops. Loops
11027 with more basic blocks than this parameter won't have loop invariant
11028 motion optimization performed on them. The default value of the
11029 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
11030
11031 @item loop-max-datarefs-for-datadeps
11032 Building data dapendencies is expensive for very large loops. This
11033 parameter limits the number of data references in loops that are
11034 considered for data dependence analysis. These large loops are no
11035 handled by the optimizations using loop data dependencies.
11036 The default value is 1000.
11037
11038 @item max-vartrack-size
11039 Sets a maximum number of hash table slots to use during variable
11040 tracking dataflow analysis of any function. If this limit is exceeded
11041 with variable tracking at assignments enabled, analysis for that
11042 function is retried without it, after removing all debug insns from
11043 the function. If the limit is exceeded even without debug insns, var
11044 tracking analysis is completely disabled for the function. Setting
11045 the parameter to zero makes it unlimited.
11046
11047 @item max-vartrack-expr-depth
11048 Sets a maximum number of recursion levels when attempting to map
11049 variable names or debug temporaries to value expressions. This trades
11050 compilation time for more complete debug information. If this is set too
11051 low, value expressions that are available and could be represented in
11052 debug information may end up not being used; setting this higher may
11053 enable the compiler to find more complex debug expressions, but compile
11054 time and memory use may grow. The default is 12.
11055
11056 @item min-nondebug-insn-uid
11057 Use uids starting at this parameter for nondebug insns. The range below
11058 the parameter is reserved exclusively for debug insns created by
11059 @option{-fvar-tracking-assignments}, but debug insns may get
11060 (non-overlapping) uids above it if the reserved range is exhausted.
11061
11062 @item ipa-sra-ptr-growth-factor
11063 IPA-SRA replaces a pointer to an aggregate with one or more new
11064 parameters only when their cumulative size is less or equal to
11065 @option{ipa-sra-ptr-growth-factor} times the size of the original
11066 pointer parameter.
11067
11068 @item sra-max-scalarization-size-Ospeed
11069 @item sra-max-scalarization-size-Osize
11070 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
11071 replace scalar parts of aggregates with uses of independent scalar
11072 variables. These parameters control the maximum size, in storage units,
11073 of aggregate which is considered for replacement when compiling for
11074 speed
11075 (@option{sra-max-scalarization-size-Ospeed}) or size
11076 (@option{sra-max-scalarization-size-Osize}) respectively.
11077
11078 @item tm-max-aggregate-size
11079 When making copies of thread-local variables in a transaction, this
11080 parameter specifies the size in bytes after which variables are
11081 saved with the logging functions as opposed to save/restore code
11082 sequence pairs. This option only applies when using
11083 @option{-fgnu-tm}.
11084
11085 @item graphite-max-nb-scop-params
11086 To avoid exponential effects in the Graphite loop transforms, the
11087 number of parameters in a Static Control Part (SCoP) is bounded. The
11088 default value is 10 parameters. A variable whose value is unknown at
11089 compilation time and defined outside a SCoP is a parameter of the SCoP.
11090
11091 @item graphite-max-bbs-per-function
11092 To avoid exponential effects in the detection of SCoPs, the size of
11093 the functions analyzed by Graphite is bounded. The default value is
11094 100 basic blocks.
11095
11096 @item loop-block-tile-size
11097 Loop blocking or strip mining transforms, enabled with
11098 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
11099 loop in the loop nest by a given number of iterations. The strip
11100 length can be changed using the @option{loop-block-tile-size}
11101 parameter. The default value is 51 iterations.
11102
11103 @item loop-unroll-jam-size
11104 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
11105 default value is 4.
11106
11107 @item loop-unroll-jam-depth
11108 Specify the dimension to be unrolled (counting from the most inner loop)
11109 for the @option{-floop-unroll-and-jam}. The default value is 2.
11110
11111 @item ipa-cp-value-list-size
11112 IPA-CP attempts to track all possible values and types passed to a function's
11113 parameter in order to propagate them and perform devirtualization.
11114 @option{ipa-cp-value-list-size} is the maximum number of values and types it
11115 stores per one formal parameter of a function.
11116
11117 @item ipa-cp-eval-threshold
11118 IPA-CP calculates its own score of cloning profitability heuristics
11119 and performs those cloning opportunities with scores that exceed
11120 @option{ipa-cp-eval-threshold}.
11121
11122 @item ipa-cp-recursion-penalty
11123 Percentage penalty the recursive functions will receive when they
11124 are evaluated for cloning.
11125
11126 @item ipa-cp-single-call-penalty
11127 Percentage penalty functions containg a single call to another
11128 function will receive when they are evaluated for cloning.
11129
11130
11131 @item ipa-max-agg-items
11132 IPA-CP is also capable to propagate a number of scalar values passed
11133 in an aggregate. @option{ipa-max-agg-items} controls the maximum
11134 number of such values per one parameter.
11135
11136 @item ipa-cp-loop-hint-bonus
11137 When IPA-CP determines that a cloning candidate would make the number
11138 of iterations of a loop known, it adds a bonus of
11139 @option{ipa-cp-loop-hint-bonus} to the profitability score of
11140 the candidate.
11141
11142 @item ipa-cp-array-index-hint-bonus
11143 When IPA-CP determines that a cloning candidate would make the index of
11144 an array access known, it adds a bonus of
11145 @option{ipa-cp-array-index-hint-bonus} to the profitability
11146 score of the candidate.
11147
11148 @item ipa-max-aa-steps
11149 During its analysis of function bodies, IPA-CP employs alias analysis
11150 in order to track values pointed to by function parameters. In order
11151 not spend too much time analyzing huge functions, it gives up and
11152 consider all memory clobbered after examining
11153 @option{ipa-max-aa-steps} statements modifying memory.
11154
11155 @item lto-partitions
11156 Specify desired number of partitions produced during WHOPR compilation.
11157 The number of partitions should exceed the number of CPUs used for compilation.
11158 The default value is 32.
11159
11160 @item lto-minpartition
11161 Size of minimal partition for WHOPR (in estimated instructions).
11162 This prevents expenses of splitting very small programs into too many
11163 partitions.
11164
11165 @item cxx-max-namespaces-for-diagnostic-help
11166 The maximum number of namespaces to consult for suggestions when C++
11167 name lookup fails for an identifier. The default is 1000.
11168
11169 @item sink-frequency-threshold
11170 The maximum relative execution frequency (in percents) of the target block
11171 relative to a statement's original block to allow statement sinking of a
11172 statement. Larger numbers result in more aggressive statement sinking.
11173 The default value is 75. A small positive adjustment is applied for
11174 statements with memory operands as those are even more profitable so sink.
11175
11176 @item max-stores-to-sink
11177 The maximum number of conditional stores paires that can be sunk. Set to 0
11178 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11179 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
11180
11181 @item allow-store-data-races
11182 Allow optimizers to introduce new data races on stores.
11183 Set to 1 to allow, otherwise to 0. This option is enabled by default
11184 at optimization level @option{-Ofast}.
11185
11186 @item case-values-threshold
11187 The smallest number of different values for which it is best to use a
11188 jump-table instead of a tree of conditional branches. If the value is
11189 0, use the default for the machine. The default is 0.
11190
11191 @item tree-reassoc-width
11192 Set the maximum number of instructions executed in parallel in
11193 reassociated tree. This parameter overrides target dependent
11194 heuristics used by default if has non zero value.
11195
11196 @item sched-pressure-algorithm
11197 Choose between the two available implementations of
11198 @option{-fsched-pressure}. Algorithm 1 is the original implementation
11199 and is the more likely to prevent instructions from being reordered.
11200 Algorithm 2 was designed to be a compromise between the relatively
11201 conservative approach taken by algorithm 1 and the rather aggressive
11202 approach taken by the default scheduler. It relies more heavily on
11203 having a regular register file and accurate register pressure classes.
11204 See @file{haifa-sched.c} in the GCC sources for more details.
11205
11206 The default choice depends on the target.
11207
11208 @item max-slsr-cand-scan
11209 Set the maximum number of existing candidates that are considered when
11210 seeking a basis for a new straight-line strength reduction candidate.
11211
11212 @item asan-globals
11213 Enable buffer overflow detection for global objects. This kind
11214 of protection is enabled by default if you are using
11215 @option{-fsanitize=address} option.
11216 To disable global objects protection use @option{--param asan-globals=0}.
11217
11218 @item asan-stack
11219 Enable buffer overflow detection for stack objects. This kind of
11220 protection is enabled by default when using @option{-fsanitize=address}.
11221 To disable stack protection use @option{--param asan-stack=0} option.
11222
11223 @item asan-instrument-reads
11224 Enable buffer overflow detection for memory reads. This kind of
11225 protection is enabled by default when using @option{-fsanitize=address}.
11226 To disable memory reads protection use
11227 @option{--param asan-instrument-reads=0}.
11228
11229 @item asan-instrument-writes
11230 Enable buffer overflow detection for memory writes. This kind of
11231 protection is enabled by default when using @option{-fsanitize=address}.
11232 To disable memory writes protection use
11233 @option{--param asan-instrument-writes=0} option.
11234
11235 @item asan-memintrin
11236 Enable detection for built-in functions. This kind of protection
11237 is enabled by default when using @option{-fsanitize=address}.
11238 To disable built-in functions protection use
11239 @option{--param asan-memintrin=0}.
11240
11241 @item asan-use-after-return
11242 Enable detection of use-after-return. This kind of protection
11243 is enabled by default when using @option{-fsanitize=address} option.
11244 To disable use-after-return detection use
11245 @option{--param asan-use-after-return=0}.
11246
11247 @item asan-instrumentation-with-call-threshold
11248 If number of memory accesses in function being instrumented
11249 is greater or equal to this number, use callbacks instead of inline checks.
11250 E.g. to disable inline code use
11251 @option{--param asan-instrumentation-with-call-threshold=0}.
11252
11253 @item chkp-max-ctor-size
11254 Static constructors generated by Pointer Bounds Checker may become very
11255 large and significantly increase compile time at optimization level
11256 @option{-O1} and higher. This parameter is a maximum nubmer of statements
11257 in a single generated constructor. Default value is 5000.
11258
11259 @item max-fsm-thread-path-insns
11260 Maximum number of instructions to copy when duplicating blocks on a
11261 finite state automaton jump thread path. The default is 100.
11262
11263 @item max-fsm-thread-length
11264 Maximum number of basic blocks on a finite state automaton jump thread
11265 path. The default is 10.
11266
11267 @item max-fsm-thread-paths
11268 Maximum number of new jump thread paths to create for a finite state
11269 automaton. The default is 50.
11270
11271 @item parloops-chunk-size
11272 Chunk size of omp schedule for loops parallelized by parloops. The default
11273 is 0.
11274
11275 @item parloops-schedule
11276 Schedule type of omp schedule for loops parallelized by parloops (static,
11277 dynamic, guided, auto, runtime). The default is static.
11278
11279 @item max-ssa-name-query-depth
11280 Maximum depth of recursion when querying properties of SSA names in things
11281 like fold routines. One level of recursion corresponds to following a
11282 use-def chain.
11283 @end table
11284 @end table
11285
11286 @node Preprocessor Options
11287 @section Options Controlling the Preprocessor
11288 @cindex preprocessor options
11289 @cindex options, preprocessor
11290
11291 These options control the C preprocessor, which is run on each C source
11292 file before actual compilation.
11293
11294 If you use the @option{-E} option, nothing is done except preprocessing.
11295 Some of these options make sense only together with @option{-E} because
11296 they cause the preprocessor output to be unsuitable for actual
11297 compilation.
11298
11299 @table @gcctabopt
11300 @item -Wp,@var{option}
11301 @opindex Wp
11302 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11303 and pass @var{option} directly through to the preprocessor. If
11304 @var{option} contains commas, it is split into multiple options at the
11305 commas. However, many options are modified, translated or interpreted
11306 by the compiler driver before being passed to the preprocessor, and
11307 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11308 interface is undocumented and subject to change, so whenever possible
11309 you should avoid using @option{-Wp} and let the driver handle the
11310 options instead.
11311
11312 @item -Xpreprocessor @var{option}
11313 @opindex Xpreprocessor
11314 Pass @var{option} as an option to the preprocessor. You can use this to
11315 supply system-specific preprocessor options that GCC does not
11316 recognize.
11317
11318 If you want to pass an option that takes an argument, you must use
11319 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11320
11321 @item -no-integrated-cpp
11322 @opindex no-integrated-cpp
11323 Perform preprocessing as a separate pass before compilation.
11324 By default, GCC performs preprocessing as an integrated part of
11325 input tokenization and parsing.
11326 If this option is provided, the appropriate language front end
11327 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11328 and Objective-C, respectively) is instead invoked twice,
11329 once for preprocessing only and once for actual compilation
11330 of the preprocessed input.
11331 This option may be useful in conjunction with the @option{-B} or
11332 @option{-wrapper} options to specify an alternate preprocessor or
11333 perform additional processing of the program source between
11334 normal preprocessing and compilation.
11335 @end table
11336
11337 @include cppopts.texi
11338
11339 @node Assembler Options
11340 @section Passing Options to the Assembler
11341
11342 @c prevent bad page break with this line
11343 You can pass options to the assembler.
11344
11345 @table @gcctabopt
11346 @item -Wa,@var{option}
11347 @opindex Wa
11348 Pass @var{option} as an option to the assembler. If @var{option}
11349 contains commas, it is split into multiple options at the commas.
11350
11351 @item -Xassembler @var{option}
11352 @opindex Xassembler
11353 Pass @var{option} as an option to the assembler. You can use this to
11354 supply system-specific assembler options that GCC does not
11355 recognize.
11356
11357 If you want to pass an option that takes an argument, you must use
11358 @option{-Xassembler} twice, once for the option and once for the argument.
11359
11360 @end table
11361
11362 @node Link Options
11363 @section Options for Linking
11364 @cindex link options
11365 @cindex options, linking
11366
11367 These options come into play when the compiler links object files into
11368 an executable output file. They are meaningless if the compiler is
11369 not doing a link step.
11370
11371 @table @gcctabopt
11372 @cindex file names
11373 @item @var{object-file-name}
11374 A file name that does not end in a special recognized suffix is
11375 considered to name an object file or library. (Object files are
11376 distinguished from libraries by the linker according to the file
11377 contents.) If linking is done, these object files are used as input
11378 to the linker.
11379
11380 @item -c
11381 @itemx -S
11382 @itemx -E
11383 @opindex c
11384 @opindex S
11385 @opindex E
11386 If any of these options is used, then the linker is not run, and
11387 object file names should not be used as arguments. @xref{Overall
11388 Options}.
11389
11390 @item -fuse-ld=bfd
11391 @opindex fuse-ld=bfd
11392 Use the @command{bfd} linker instead of the default linker.
11393
11394 @item -fuse-ld=gold
11395 @opindex fuse-ld=gold
11396 Use the @command{gold} linker instead of the default linker.
11397
11398 @cindex Libraries
11399 @item -l@var{library}
11400 @itemx -l @var{library}
11401 @opindex l
11402 Search the library named @var{library} when linking. (The second
11403 alternative with the library as a separate argument is only for
11404 POSIX compliance and is not recommended.)
11405
11406 It makes a difference where in the command you write this option; the
11407 linker searches and processes libraries and object files in the order they
11408 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11409 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11410 to functions in @samp{z}, those functions may not be loaded.
11411
11412 The linker searches a standard list of directories for the library,
11413 which is actually a file named @file{lib@var{library}.a}. The linker
11414 then uses this file as if it had been specified precisely by name.
11415
11416 The directories searched include several standard system directories
11417 plus any that you specify with @option{-L}.
11418
11419 Normally the files found this way are library files---archive files
11420 whose members are object files. The linker handles an archive file by
11421 scanning through it for members which define symbols that have so far
11422 been referenced but not defined. But if the file that is found is an
11423 ordinary object file, it is linked in the usual fashion. The only
11424 difference between using an @option{-l} option and specifying a file name
11425 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11426 and searches several directories.
11427
11428 @item -lobjc
11429 @opindex lobjc
11430 You need this special case of the @option{-l} option in order to
11431 link an Objective-C or Objective-C++ program.
11432
11433 @item -nostartfiles
11434 @opindex nostartfiles
11435 Do not use the standard system startup files when linking.
11436 The standard system libraries are used normally, unless @option{-nostdlib}
11437 or @option{-nodefaultlibs} is used.
11438
11439 @item -nodefaultlibs
11440 @opindex nodefaultlibs
11441 Do not use the standard system libraries when linking.
11442 Only the libraries you specify are passed to the linker, and options
11443 specifying linkage of the system libraries, such as @option{-static-libgcc}
11444 or @option{-shared-libgcc}, are ignored.
11445 The standard startup files are used normally, unless @option{-nostartfiles}
11446 is used.
11447
11448 The compiler may generate calls to @code{memcmp},
11449 @code{memset}, @code{memcpy} and @code{memmove}.
11450 These entries are usually resolved by entries in
11451 libc. These entry points should be supplied through some other
11452 mechanism when this option is specified.
11453
11454 @item -nostdlib
11455 @opindex nostdlib
11456 Do not use the standard system startup files or libraries when linking.
11457 No startup files and only the libraries you specify are passed to
11458 the linker, and options specifying linkage of the system libraries, such as
11459 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11460
11461 The compiler may generate calls to @code{memcmp}, @code{memset},
11462 @code{memcpy} and @code{memmove}.
11463 These entries are usually resolved by entries in
11464 libc. These entry points should be supplied through some other
11465 mechanism when this option is specified.
11466
11467 @cindex @option{-lgcc}, use with @option{-nostdlib}
11468 @cindex @option{-nostdlib} and unresolved references
11469 @cindex unresolved references and @option{-nostdlib}
11470 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11471 @cindex @option{-nodefaultlibs} and unresolved references
11472 @cindex unresolved references and @option{-nodefaultlibs}
11473 One of the standard libraries bypassed by @option{-nostdlib} and
11474 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11475 which GCC uses to overcome shortcomings of particular machines, or special
11476 needs for some languages.
11477 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11478 Collection (GCC) Internals},
11479 for more discussion of @file{libgcc.a}.)
11480 In most cases, you need @file{libgcc.a} even when you want to avoid
11481 other standard libraries. In other words, when you specify @option{-nostdlib}
11482 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11483 This ensures that you have no unresolved references to internal GCC
11484 library subroutines.
11485 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11486 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11487 GNU Compiler Collection (GCC) Internals}.)
11488
11489 @item -pie
11490 @opindex pie
11491 Produce a position independent executable on targets that support it.
11492 For predictable results, you must also specify the same set of options
11493 used for compilation (@option{-fpie}, @option{-fPIE},
11494 or model suboptions) when you specify this linker option.
11495
11496 @item -no-pie
11497 @opindex no-pie
11498 Don't produce a position independent executable.
11499
11500 @item -rdynamic
11501 @opindex rdynamic
11502 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11503 that support it. This instructs the linker to add all symbols, not
11504 only used ones, to the dynamic symbol table. This option is needed
11505 for some uses of @code{dlopen} or to allow obtaining backtraces
11506 from within a program.
11507
11508 @item -s
11509 @opindex s
11510 Remove all symbol table and relocation information from the executable.
11511
11512 @item -static
11513 @opindex static
11514 On systems that support dynamic linking, this prevents linking with the shared
11515 libraries. On other systems, this option has no effect.
11516
11517 @item -shared
11518 @opindex shared
11519 Produce a shared object which can then be linked with other objects to
11520 form an executable. Not all systems support this option. For predictable
11521 results, you must also specify the same set of options used for compilation
11522 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11523 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11524 needs to build supplementary stub code for constructors to work. On
11525 multi-libbed systems, @samp{gcc -shared} must select the correct support
11526 libraries to link against. Failing to supply the correct flags may lead
11527 to subtle defects. Supplying them in cases where they are not necessary
11528 is innocuous.}
11529
11530 @item -shared-libgcc
11531 @itemx -static-libgcc
11532 @opindex shared-libgcc
11533 @opindex static-libgcc
11534 On systems that provide @file{libgcc} as a shared library, these options
11535 force the use of either the shared or static version, respectively.
11536 If no shared version of @file{libgcc} was built when the compiler was
11537 configured, these options have no effect.
11538
11539 There are several situations in which an application should use the
11540 shared @file{libgcc} instead of the static version. The most common
11541 of these is when the application wishes to throw and catch exceptions
11542 across different shared libraries. In that case, each of the libraries
11543 as well as the application itself should use the shared @file{libgcc}.
11544
11545 Therefore, the G++ and GCJ drivers automatically add
11546 @option{-shared-libgcc} whenever you build a shared library or a main
11547 executable, because C++ and Java programs typically use exceptions, so
11548 this is the right thing to do.
11549
11550 If, instead, you use the GCC driver to create shared libraries, you may
11551 find that they are not always linked with the shared @file{libgcc}.
11552 If GCC finds, at its configuration time, that you have a non-GNU linker
11553 or a GNU linker that does not support option @option{--eh-frame-hdr},
11554 it links the shared version of @file{libgcc} into shared libraries
11555 by default. Otherwise, it takes advantage of the linker and optimizes
11556 away the linking with the shared version of @file{libgcc}, linking with
11557 the static version of libgcc by default. This allows exceptions to
11558 propagate through such shared libraries, without incurring relocation
11559 costs at library load time.
11560
11561 However, if a library or main executable is supposed to throw or catch
11562 exceptions, you must link it using the G++ or GCJ driver, as appropriate
11563 for the languages used in the program, or using the option
11564 @option{-shared-libgcc}, such that it is linked with the shared
11565 @file{libgcc}.
11566
11567 @item -static-libasan
11568 @opindex static-libasan
11569 When the @option{-fsanitize=address} option is used to link a program,
11570 the GCC driver automatically links against @option{libasan}. If
11571 @file{libasan} is available as a shared library, and the @option{-static}
11572 option is not used, then this links against the shared version of
11573 @file{libasan}. The @option{-static-libasan} option directs the GCC
11574 driver to link @file{libasan} statically, without necessarily linking
11575 other libraries statically.
11576
11577 @item -static-libtsan
11578 @opindex static-libtsan
11579 When the @option{-fsanitize=thread} option is used to link a program,
11580 the GCC driver automatically links against @option{libtsan}. If
11581 @file{libtsan} is available as a shared library, and the @option{-static}
11582 option is not used, then this links against the shared version of
11583 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11584 driver to link @file{libtsan} statically, without necessarily linking
11585 other libraries statically.
11586
11587 @item -static-liblsan
11588 @opindex static-liblsan
11589 When the @option{-fsanitize=leak} option is used to link a program,
11590 the GCC driver automatically links against @option{liblsan}. If
11591 @file{liblsan} is available as a shared library, and the @option{-static}
11592 option is not used, then this links against the shared version of
11593 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11594 driver to link @file{liblsan} statically, without necessarily linking
11595 other libraries statically.
11596
11597 @item -static-libubsan
11598 @opindex static-libubsan
11599 When the @option{-fsanitize=undefined} option is used to link a program,
11600 the GCC driver automatically links against @option{libubsan}. If
11601 @file{libubsan} is available as a shared library, and the @option{-static}
11602 option is not used, then this links against the shared version of
11603 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11604 driver to link @file{libubsan} statically, without necessarily linking
11605 other libraries statically.
11606
11607 @item -static-libmpx
11608 @opindex static-libmpx
11609 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11610 used to link a program, the GCC driver automatically links against
11611 @file{libmpx}. If @file{libmpx} is available as a shared library,
11612 and the @option{-static} option is not used, then this links against
11613 the shared version of @file{libmpx}. The @option{-static-libmpx}
11614 option directs the GCC driver to link @file{libmpx} statically,
11615 without necessarily linking other libraries statically.
11616
11617 @item -static-libmpxwrappers
11618 @opindex static-libmpxwrappers
11619 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11620 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11621 GCC driver automatically links against @file{libmpxwrappers}. If
11622 @file{libmpxwrappers} is available as a shared library, and the
11623 @option{-static} option is not used, then this links against the shared
11624 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11625 option directs the GCC driver to link @file{libmpxwrappers} statically,
11626 without necessarily linking other libraries statically.
11627
11628 @item -static-libstdc++
11629 @opindex static-libstdc++
11630 When the @command{g++} program is used to link a C++ program, it
11631 normally automatically links against @option{libstdc++}. If
11632 @file{libstdc++} is available as a shared library, and the
11633 @option{-static} option is not used, then this links against the
11634 shared version of @file{libstdc++}. That is normally fine. However, it
11635 is sometimes useful to freeze the version of @file{libstdc++} used by
11636 the program without going all the way to a fully static link. The
11637 @option{-static-libstdc++} option directs the @command{g++} driver to
11638 link @file{libstdc++} statically, without necessarily linking other
11639 libraries statically.
11640
11641 @item -symbolic
11642 @opindex symbolic
11643 Bind references to global symbols when building a shared object. Warn
11644 about any unresolved references (unless overridden by the link editor
11645 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11646 this option.
11647
11648 @item -T @var{script}
11649 @opindex T
11650 @cindex linker script
11651 Use @var{script} as the linker script. This option is supported by most
11652 systems using the GNU linker. On some targets, such as bare-board
11653 targets without an operating system, the @option{-T} option may be required
11654 when linking to avoid references to undefined symbols.
11655
11656 @item -Xlinker @var{option}
11657 @opindex Xlinker
11658 Pass @var{option} as an option to the linker. You can use this to
11659 supply system-specific linker options that GCC does not recognize.
11660
11661 If you want to pass an option that takes a separate argument, you must use
11662 @option{-Xlinker} twice, once for the option and once for the argument.
11663 For example, to pass @option{-assert definitions}, you must write
11664 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11665 @option{-Xlinker "-assert definitions"}, because this passes the entire
11666 string as a single argument, which is not what the linker expects.
11667
11668 When using the GNU linker, it is usually more convenient to pass
11669 arguments to linker options using the @option{@var{option}=@var{value}}
11670 syntax than as separate arguments. For example, you can specify
11671 @option{-Xlinker -Map=output.map} rather than
11672 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11673 this syntax for command-line options.
11674
11675 @item -Wl,@var{option}
11676 @opindex Wl
11677 Pass @var{option} as an option to the linker. If @var{option} contains
11678 commas, it is split into multiple options at the commas. You can use this
11679 syntax to pass an argument to the option.
11680 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11681 linker. When using the GNU linker, you can also get the same effect with
11682 @option{-Wl,-Map=output.map}.
11683
11684 @item -u @var{symbol}
11685 @opindex u
11686 Pretend the symbol @var{symbol} is undefined, to force linking of
11687 library modules to define it. You can use @option{-u} multiple times with
11688 different symbols to force loading of additional library modules.
11689
11690 @item -z @var{keyword}
11691 @opindex z
11692 @option{-z} is passed directly on to the linker along with the keyword
11693 @var{keyword}. See the section in the documentation of your linker for
11694 permitted values and their meanings.
11695 @end table
11696
11697 @node Directory Options
11698 @section Options for Directory Search
11699 @cindex directory options
11700 @cindex options, directory search
11701 @cindex search path
11702
11703 These options specify directories to search for header files, for
11704 libraries and for parts of the compiler:
11705
11706 @table @gcctabopt
11707 @item -I@var{dir}
11708 @opindex I
11709 Add the directory @var{dir} to the head of the list of directories to be
11710 searched for header files. This can be used to override a system header
11711 file, substituting your own version, since these directories are
11712 searched before the system header file directories. However, you should
11713 not use this option to add directories that contain vendor-supplied
11714 system header files (use @option{-isystem} for that). If you use more than
11715 one @option{-I} option, the directories are scanned in left-to-right
11716 order; the standard system directories come after.
11717
11718 If a standard system include directory, or a directory specified with
11719 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
11720 option is ignored. The directory is still searched but as a
11721 system directory at its normal position in the system include chain.
11722 This is to ensure that GCC's procedure to fix buggy system headers and
11723 the ordering for the @code{include_next} directive are not inadvertently changed.
11724 If you really need to change the search order for system directories,
11725 use the @option{-nostdinc} and/or @option{-isystem} options.
11726
11727 @item -iplugindir=@var{dir}
11728 @opindex iplugindir=
11729 Set the directory to search for plugins that are passed
11730 by @option{-fplugin=@var{name}} instead of
11731 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11732 to be used by the user, but only passed by the driver.
11733
11734 @item -iquote@var{dir}
11735 @opindex iquote
11736 Add the directory @var{dir} to the head of the list of directories to
11737 be searched for header files only for the case of @code{#include
11738 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
11739 otherwise just like @option{-I}.
11740
11741 @item -L@var{dir}
11742 @opindex L
11743 Add directory @var{dir} to the list of directories to be searched
11744 for @option{-l}.
11745
11746 @item -B@var{prefix}
11747 @opindex B
11748 This option specifies where to find the executables, libraries,
11749 include files, and data files of the compiler itself.
11750
11751 The compiler driver program runs one or more of the subprograms
11752 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11753 @var{prefix} as a prefix for each program it tries to run, both with and
11754 without @samp{@var{machine}/@var{version}/} for the corresponding target
11755 machine and compiler version.
11756
11757 For each subprogram to be run, the compiler driver first tries the
11758 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11759 is not specified, the driver tries two standard prefixes,
11760 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11761 those results in a file name that is found, the unmodified program
11762 name is searched for using the directories specified in your
11763 @env{PATH} environment variable.
11764
11765 The compiler checks to see if the path provided by @option{-B}
11766 refers to a directory, and if necessary it adds a directory
11767 separator character at the end of the path.
11768
11769 @option{-B} prefixes that effectively specify directory names also apply
11770 to libraries in the linker, because the compiler translates these
11771 options into @option{-L} options for the linker. They also apply to
11772 include files in the preprocessor, because the compiler translates these
11773 options into @option{-isystem} options for the preprocessor. In this case,
11774 the compiler appends @samp{include} to the prefix.
11775
11776 The runtime support file @file{libgcc.a} can also be searched for using
11777 the @option{-B} prefix, if needed. If it is not found there, the two
11778 standard prefixes above are tried, and that is all. The file is left
11779 out of the link if it is not found by those means.
11780
11781 Another way to specify a prefix much like the @option{-B} prefix is to use
11782 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
11783 Variables}.
11784
11785 As a special kludge, if the path provided by @option{-B} is
11786 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11787 9, then it is replaced by @file{[dir/]include}. This is to help
11788 with boot-strapping the compiler.
11789
11790 @item -no-canonical-prefixes
11791 @opindex no-canonical-prefixes
11792 Do not expand any symbolic links, resolve references to @samp{/../}
11793 or @samp{/./}, or make the path absolute when generating a relative
11794 prefix.
11795
11796 @item --sysroot=@var{dir}
11797 @opindex sysroot
11798 Use @var{dir} as the logical root directory for headers and libraries.
11799 For example, if the compiler normally searches for headers in
11800 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11801 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11802
11803 If you use both this option and the @option{-isysroot} option, then
11804 the @option{--sysroot} option applies to libraries, but the
11805 @option{-isysroot} option applies to header files.
11806
11807 The GNU linker (beginning with version 2.16) has the necessary support
11808 for this option. If your linker does not support this option, the
11809 header file aspect of @option{--sysroot} still works, but the
11810 library aspect does not.
11811
11812 @item --no-sysroot-suffix
11813 @opindex no-sysroot-suffix
11814 For some targets, a suffix is added to the root directory specified
11815 with @option{--sysroot}, depending on the other options used, so that
11816 headers may for example be found in
11817 @file{@var{dir}/@var{suffix}/usr/include} instead of
11818 @file{@var{dir}/usr/include}. This option disables the addition of
11819 such a suffix.
11820
11821 @item -I-
11822 @opindex I-
11823 This option has been deprecated. Please use @option{-iquote} instead for
11824 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11825 option.
11826 Any directories you specify with @option{-I} options before the @option{-I-}
11827 option are searched only for the case of @code{#include "@var{file}"};
11828 they are not searched for @code{#include <@var{file}>}.
11829
11830 If additional directories are specified with @option{-I} options after
11831 the @option{-I-} option, these directories are searched for all @code{#include}
11832 directives. (Ordinarily @emph{all} @option{-I} directories are used
11833 this way.)
11834
11835 In addition, the @option{-I-} option inhibits the use of the current
11836 directory (where the current input file came from) as the first search
11837 directory for @code{#include "@var{file}"}. There is no way to
11838 override this effect of @option{-I-}. With @option{-I.} you can specify
11839 searching the directory that is current when the compiler is
11840 invoked. That is not exactly the same as what the preprocessor does
11841 by default, but it is often satisfactory.
11842
11843 @option{-I-} does not inhibit the use of the standard system directories
11844 for header files. Thus, @option{-I-} and @option{-nostdinc} are
11845 independent.
11846 @end table
11847
11848 @node Code Gen Options
11849 @section Options for Code Generation Conventions
11850 @cindex code generation conventions
11851 @cindex options, code generation
11852 @cindex run-time options
11853
11854 These machine-independent options control the interface conventions
11855 used in code generation.
11856
11857 Most of them have both positive and negative forms; the negative form
11858 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
11859 one of the forms is listed---the one that is not the default. You
11860 can figure out the other form by either removing @samp{no-} or adding
11861 it.
11862
11863 @table @gcctabopt
11864 @item -fbounds-check
11865 @opindex fbounds-check
11866 For front ends that support it, generate additional code to check that
11867 indices used to access arrays are within the declared range. This is
11868 currently only supported by the Java and Fortran front ends, where
11869 this option defaults to true and false respectively.
11870
11871 @item -fstack-reuse=@var{reuse-level}
11872 @opindex fstack_reuse
11873 This option controls stack space reuse for user declared local/auto variables
11874 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
11875 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
11876 local variables and temporaries, @samp{named_vars} enables the reuse only for
11877 user defined local variables with names, and @samp{none} disables stack reuse
11878 completely. The default value is @samp{all}. The option is needed when the
11879 program extends the lifetime of a scoped local variable or a compiler generated
11880 temporary beyond the end point defined by the language. When a lifetime of
11881 a variable ends, and if the variable lives in memory, the optimizing compiler
11882 has the freedom to reuse its stack space with other temporaries or scoped
11883 local variables whose live range does not overlap with it. Legacy code extending
11884 local lifetime is likely to break with the stack reuse optimization.
11885
11886 For example,
11887
11888 @smallexample
11889 int *p;
11890 @{
11891 int local1;
11892
11893 p = &local1;
11894 local1 = 10;
11895 ....
11896 @}
11897 @{
11898 int local2;
11899 local2 = 20;
11900 ...
11901 @}
11902
11903 if (*p == 10) // out of scope use of local1
11904 @{
11905
11906 @}
11907 @end smallexample
11908
11909 Another example:
11910 @smallexample
11911
11912 struct A
11913 @{
11914 A(int k) : i(k), j(k) @{ @}
11915 int i;
11916 int j;
11917 @};
11918
11919 A *ap;
11920
11921 void foo(const A& ar)
11922 @{
11923 ap = &ar;
11924 @}
11925
11926 void bar()
11927 @{
11928 foo(A(10)); // temp object's lifetime ends when foo returns
11929
11930 @{
11931 A a(20);
11932 ....
11933 @}
11934 ap->i+= 10; // ap references out of scope temp whose space
11935 // is reused with a. What is the value of ap->i?
11936 @}
11937
11938 @end smallexample
11939
11940 The lifetime of a compiler generated temporary is well defined by the C++
11941 standard. When a lifetime of a temporary ends, and if the temporary lives
11942 in memory, the optimizing compiler has the freedom to reuse its stack
11943 space with other temporaries or scoped local variables whose live range
11944 does not overlap with it. However some of the legacy code relies on
11945 the behavior of older compilers in which temporaries' stack space is
11946 not reused, the aggressive stack reuse can lead to runtime errors. This
11947 option is used to control the temporary stack reuse optimization.
11948
11949 @item -ftrapv
11950 @opindex ftrapv
11951 This option generates traps for signed overflow on addition, subtraction,
11952 multiplication operations.
11953 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
11954 @option{-ftrapv} @option{-fwrapv} on the command-line results in
11955 @option{-fwrapv} being effective. Note that only active options override, so
11956 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
11957 results in @option{-ftrapv} being effective.
11958
11959 @item -fwrapv
11960 @opindex fwrapv
11961 This option instructs the compiler to assume that signed arithmetic
11962 overflow of addition, subtraction and multiplication wraps around
11963 using twos-complement representation. This flag enables some optimizations
11964 and disables others. This option is enabled by default for the Java
11965 front end, as required by the Java language specification.
11966 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
11967 @option{-ftrapv} @option{-fwrapv} on the command-line results in
11968 @option{-fwrapv} being effective. Note that only active options override, so
11969 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
11970 results in @option{-ftrapv} being effective.
11971
11972 @item -fexceptions
11973 @opindex fexceptions
11974 Enable exception handling. Generates extra code needed to propagate
11975 exceptions. For some targets, this implies GCC generates frame
11976 unwind information for all functions, which can produce significant data
11977 size overhead, although it does not affect execution. If you do not
11978 specify this option, GCC enables it by default for languages like
11979 C++ that normally require exception handling, and disables it for
11980 languages like C that do not normally require it. However, you may need
11981 to enable this option when compiling C code that needs to interoperate
11982 properly with exception handlers written in C++. You may also wish to
11983 disable this option if you are compiling older C++ programs that don't
11984 use exception handling.
11985
11986 @item -fnon-call-exceptions
11987 @opindex fnon-call-exceptions
11988 Generate code that allows trapping instructions to throw exceptions.
11989 Note that this requires platform-specific runtime support that does
11990 not exist everywhere. Moreover, it only allows @emph{trapping}
11991 instructions to throw exceptions, i.e.@: memory references or floating-point
11992 instructions. It does not allow exceptions to be thrown from
11993 arbitrary signal handlers such as @code{SIGALRM}.
11994
11995 @item -fdelete-dead-exceptions
11996 @opindex fdelete-dead-exceptions
11997 Consider that instructions that may throw exceptions but don't otherwise
11998 contribute to the execution of the program can be optimized away.
11999 This option is enabled by default for the Ada front end, as permitted by
12000 the Ada language specification.
12001 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
12002
12003 @item -funwind-tables
12004 @opindex funwind-tables
12005 Similar to @option{-fexceptions}, except that it just generates any needed
12006 static data, but does not affect the generated code in any other way.
12007 You normally do not need to enable this option; instead, a language processor
12008 that needs this handling enables it on your behalf.
12009
12010 @item -fasynchronous-unwind-tables
12011 @opindex fasynchronous-unwind-tables
12012 Generate unwind table in DWARF 2 format, if supported by target machine. The
12013 table is exact at each instruction boundary, so it can be used for stack
12014 unwinding from asynchronous events (such as debugger or garbage collector).
12015
12016 @item -fno-gnu-unique
12017 @opindex fno-gnu-unique
12018 On systems with recent GNU assembler and C library, the C++ compiler
12019 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
12020 of template static data members and static local variables in inline
12021 functions are unique even in the presence of @code{RTLD_LOCAL}; this
12022 is necessary to avoid problems with a library used by two different
12023 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
12024 therefore disagreeing with the other one about the binding of the
12025 symbol. But this causes @code{dlclose} to be ignored for affected
12026 DSOs; if your program relies on reinitialization of a DSO via
12027 @code{dlclose} and @code{dlopen}, you can use
12028 @option{-fno-gnu-unique}.
12029
12030 @item -fpcc-struct-return
12031 @opindex fpcc-struct-return
12032 Return ``short'' @code{struct} and @code{union} values in memory like
12033 longer ones, rather than in registers. This convention is less
12034 efficient, but it has the advantage of allowing intercallability between
12035 GCC-compiled files and files compiled with other compilers, particularly
12036 the Portable C Compiler (pcc).
12037
12038 The precise convention for returning structures in memory depends
12039 on the target configuration macros.
12040
12041 Short structures and unions are those whose size and alignment match
12042 that of some integer type.
12043
12044 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
12045 switch is not binary compatible with code compiled with the
12046 @option{-freg-struct-return} switch.
12047 Use it to conform to a non-default application binary interface.
12048
12049 @item -freg-struct-return
12050 @opindex freg-struct-return
12051 Return @code{struct} and @code{union} values in registers when possible.
12052 This is more efficient for small structures than
12053 @option{-fpcc-struct-return}.
12054
12055 If you specify neither @option{-fpcc-struct-return} nor
12056 @option{-freg-struct-return}, GCC defaults to whichever convention is
12057 standard for the target. If there is no standard convention, GCC
12058 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
12059 the principal compiler. In those cases, we can choose the standard, and
12060 we chose the more efficient register return alternative.
12061
12062 @strong{Warning:} code compiled with the @option{-freg-struct-return}
12063 switch is not binary compatible with code compiled with the
12064 @option{-fpcc-struct-return} switch.
12065 Use it to conform to a non-default application binary interface.
12066
12067 @item -fshort-enums
12068 @opindex fshort-enums
12069 Allocate to an @code{enum} type only as many bytes as it needs for the
12070 declared range of possible values. Specifically, the @code{enum} type
12071 is equivalent to the smallest integer type that has enough room.
12072
12073 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
12074 code that is not binary compatible with code generated without that switch.
12075 Use it to conform to a non-default application binary interface.
12076
12077 @item -fshort-double
12078 @opindex fshort-double
12079 Use the same size for @code{double} as for @code{float}.
12080
12081 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
12082 code that is not binary compatible with code generated without that switch.
12083 Use it to conform to a non-default application binary interface.
12084
12085 @item -fshort-wchar
12086 @opindex fshort-wchar
12087 Override the underlying type for @code{wchar_t} to be @code{short
12088 unsigned int} instead of the default for the target. This option is
12089 useful for building programs to run under WINE@.
12090
12091 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
12092 code that is not binary compatible with code generated without that switch.
12093 Use it to conform to a non-default application binary interface.
12094
12095 @item -fno-common
12096 @opindex fno-common
12097 In C code, controls the placement of uninitialized global variables.
12098 Unix C compilers have traditionally permitted multiple definitions of
12099 such variables in different compilation units by placing the variables
12100 in a common block.
12101 This is the behavior specified by @option{-fcommon}, and is the default
12102 for GCC on most targets.
12103 On the other hand, this behavior is not required by ISO C, and on some
12104 targets may carry a speed or code size penalty on variable references.
12105 The @option{-fno-common} option specifies that the compiler should place
12106 uninitialized global variables in the data section of the object file,
12107 rather than generating them as common blocks.
12108 This has the effect that if the same variable is declared
12109 (without @code{extern}) in two different compilations,
12110 you get a multiple-definition error when you link them.
12111 In this case, you must compile with @option{-fcommon} instead.
12112 Compiling with @option{-fno-common} is useful on targets for which
12113 it provides better performance, or if you wish to verify that the
12114 program will work on other systems that always treat uninitialized
12115 variable declarations this way.
12116
12117 @item -fno-ident
12118 @opindex fno-ident
12119 Ignore the @code{#ident} directive.
12120
12121 @item -finhibit-size-directive
12122 @opindex finhibit-size-directive
12123 Don't output a @code{.size} assembler directive, or anything else that
12124 would cause trouble if the function is split in the middle, and the
12125 two halves are placed at locations far apart in memory. This option is
12126 used when compiling @file{crtstuff.c}; you should not need to use it
12127 for anything else.
12128
12129 @item -fverbose-asm
12130 @opindex fverbose-asm
12131 Put extra commentary information in the generated assembly code to
12132 make it more readable. This option is generally only of use to those
12133 who actually need to read the generated assembly code (perhaps while
12134 debugging the compiler itself).
12135
12136 @option{-fno-verbose-asm}, the default, causes the
12137 extra information to be omitted and is useful when comparing two assembler
12138 files.
12139
12140 @item -frecord-gcc-switches
12141 @opindex frecord-gcc-switches
12142 This switch causes the command line used to invoke the
12143 compiler to be recorded into the object file that is being created.
12144 This switch is only implemented on some targets and the exact format
12145 of the recording is target and binary file format dependent, but it
12146 usually takes the form of a section containing ASCII text. This
12147 switch is related to the @option{-fverbose-asm} switch, but that
12148 switch only records information in the assembler output file as
12149 comments, so it never reaches the object file.
12150 See also @option{-grecord-gcc-switches} for another
12151 way of storing compiler options into the object file.
12152
12153 @item -fpic
12154 @opindex fpic
12155 @cindex global offset table
12156 @cindex PIC
12157 Generate position-independent code (PIC) suitable for use in a shared
12158 library, if supported for the target machine. Such code accesses all
12159 constant addresses through a global offset table (GOT)@. The dynamic
12160 loader resolves the GOT entries when the program starts (the dynamic
12161 loader is not part of GCC; it is part of the operating system). If
12162 the GOT size for the linked executable exceeds a machine-specific
12163 maximum size, you get an error message from the linker indicating that
12164 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
12165 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
12166 on the m68k and RS/6000. The x86 has no such limit.)
12167
12168 Position-independent code requires special support, and therefore works
12169 only on certain machines. For the x86, GCC supports PIC for System V
12170 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
12171 position-independent.
12172
12173 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12174 are defined to 1.
12175
12176 @item -fPIC
12177 @opindex fPIC
12178 If supported for the target machine, emit position-independent code,
12179 suitable for dynamic linking and avoiding any limit on the size of the
12180 global offset table. This option makes a difference on AArch64, m68k,
12181 PowerPC and SPARC@.
12182
12183 Position-independent code requires special support, and therefore works
12184 only on certain machines.
12185
12186 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12187 are defined to 2.
12188
12189 @item -fpie
12190 @itemx -fPIE
12191 @opindex fpie
12192 @opindex fPIE
12193 These options are similar to @option{-fpic} and @option{-fPIC}, but
12194 generated position independent code can be only linked into executables.
12195 Usually these options are used when @option{-pie} GCC option is
12196 used during linking.
12197
12198 @option{-fpie} and @option{-fPIE} both define the macros
12199 @code{__pie__} and @code{__PIE__}. The macros have the value 1
12200 for @option{-fpie} and 2 for @option{-fPIE}.
12201
12202 @item -fno-plt
12203 @opindex fno-plt
12204 Do not use the PLT for external function calls in position-independent code.
12205 Instead, load the callee address at call sites from the GOT and branch to it.
12206 This leads to more efficient code by eliminating PLT stubs and exposing
12207 GOT loads to optimizations. On architectures such as 32-bit x86 where
12208 PLT stubs expect the GOT pointer in a specific register, this gives more
12209 register allocation freedom to the compiler.
12210 Lazy binding requires use of the PLT;
12211 with @option{-fno-plt} all external symbols are resolved at load time.
12212
12213 Alternatively, the function attribute @code{noplt} can be used to avoid calls
12214 through the PLT for specific external functions.
12215
12216 In position-dependent code, a few targets also convert calls to
12217 functions that are marked to not use the PLT to use the GOT instead.
12218
12219 @item -fno-jump-tables
12220 @opindex fno-jump-tables
12221 Do not use jump tables for switch statements even where it would be
12222 more efficient than other code generation strategies. This option is
12223 of use in conjunction with @option{-fpic} or @option{-fPIC} for
12224 building code that forms part of a dynamic linker and cannot
12225 reference the address of a jump table. On some targets, jump tables
12226 do not require a GOT and this option is not needed.
12227
12228 @item -ffixed-@var{reg}
12229 @opindex ffixed
12230 Treat the register named @var{reg} as a fixed register; generated code
12231 should never refer to it (except perhaps as a stack pointer, frame
12232 pointer or in some other fixed role).
12233
12234 @var{reg} must be the name of a register. The register names accepted
12235 are machine-specific and are defined in the @code{REGISTER_NAMES}
12236 macro in the machine description macro file.
12237
12238 This flag does not have a negative form, because it specifies a
12239 three-way choice.
12240
12241 @item -fcall-used-@var{reg}
12242 @opindex fcall-used
12243 Treat the register named @var{reg} as an allocable register that is
12244 clobbered by function calls. It may be allocated for temporaries or
12245 variables that do not live across a call. Functions compiled this way
12246 do not save and restore the register @var{reg}.
12247
12248 It is an error to use this flag with the frame pointer or stack pointer.
12249 Use of this flag for other registers that have fixed pervasive roles in
12250 the machine's execution model produces disastrous results.
12251
12252 This flag does not have a negative form, because it specifies a
12253 three-way choice.
12254
12255 @item -fcall-saved-@var{reg}
12256 @opindex fcall-saved
12257 Treat the register named @var{reg} as an allocable register saved by
12258 functions. It may be allocated even for temporaries or variables that
12259 live across a call. Functions compiled this way save and restore
12260 the register @var{reg} if they use it.
12261
12262 It is an error to use this flag with the frame pointer or stack pointer.
12263 Use of this flag for other registers that have fixed pervasive roles in
12264 the machine's execution model produces disastrous results.
12265
12266 A different sort of disaster results from the use of this flag for
12267 a register in which function values may be returned.
12268
12269 This flag does not have a negative form, because it specifies a
12270 three-way choice.
12271
12272 @item -fpack-struct[=@var{n}]
12273 @opindex fpack-struct
12274 Without a value specified, pack all structure members together without
12275 holes. When a value is specified (which must be a small power of two), pack
12276 structure members according to this value, representing the maximum
12277 alignment (that is, objects with default alignment requirements larger than
12278 this are output potentially unaligned at the next fitting location.
12279
12280 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
12281 code that is not binary compatible with code generated without that switch.
12282 Additionally, it makes the code suboptimal.
12283 Use it to conform to a non-default application binary interface.
12284
12285 @item -finstrument-functions
12286 @opindex finstrument-functions
12287 Generate instrumentation calls for entry and exit to functions. Just
12288 after function entry and just before function exit, the following
12289 profiling functions are called with the address of the current
12290 function and its call site. (On some platforms,
12291 @code{__builtin_return_address} does not work beyond the current
12292 function, so the call site information may not be available to the
12293 profiling functions otherwise.)
12294
12295 @smallexample
12296 void __cyg_profile_func_enter (void *this_fn,
12297 void *call_site);
12298 void __cyg_profile_func_exit (void *this_fn,
12299 void *call_site);
12300 @end smallexample
12301
12302 The first argument is the address of the start of the current function,
12303 which may be looked up exactly in the symbol table.
12304
12305 This instrumentation is also done for functions expanded inline in other
12306 functions. The profiling calls indicate where, conceptually, the
12307 inline function is entered and exited. This means that addressable
12308 versions of such functions must be available. If all your uses of a
12309 function are expanded inline, this may mean an additional expansion of
12310 code size. If you use @code{extern inline} in your C code, an
12311 addressable version of such functions must be provided. (This is
12312 normally the case anyway, but if you get lucky and the optimizer always
12313 expands the functions inline, you might have gotten away without
12314 providing static copies.)
12315
12316 A function may be given the attribute @code{no_instrument_function}, in
12317 which case this instrumentation is not done. This can be used, for
12318 example, for the profiling functions listed above, high-priority
12319 interrupt routines, and any functions from which the profiling functions
12320 cannot safely be called (perhaps signal handlers, if the profiling
12321 routines generate output or allocate memory).
12322
12323 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
12324 @opindex finstrument-functions-exclude-file-list
12325
12326 Set the list of functions that are excluded from instrumentation (see
12327 the description of @option{-finstrument-functions}). If the file that
12328 contains a function definition matches with one of @var{file}, then
12329 that function is not instrumented. The match is done on substrings:
12330 if the @var{file} parameter is a substring of the file name, it is
12331 considered to be a match.
12332
12333 For example:
12334
12335 @smallexample
12336 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
12337 @end smallexample
12338
12339 @noindent
12340 excludes any inline function defined in files whose pathnames
12341 contain @file{/bits/stl} or @file{include/sys}.
12342
12343 If, for some reason, you want to include letter @samp{,} in one of
12344 @var{sym}, write @samp{\,}. For example,
12345 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
12346 (note the single quote surrounding the option).
12347
12348 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
12349 @opindex finstrument-functions-exclude-function-list
12350
12351 This is similar to @option{-finstrument-functions-exclude-file-list},
12352 but this option sets the list of function names to be excluded from
12353 instrumentation. The function name to be matched is its user-visible
12354 name, such as @code{vector<int> blah(const vector<int> &)}, not the
12355 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
12356 match is done on substrings: if the @var{sym} parameter is a substring
12357 of the function name, it is considered to be a match. For C99 and C++
12358 extended identifiers, the function name must be given in UTF-8, not
12359 using universal character names.
12360
12361 @item -fstack-check
12362 @opindex fstack-check
12363 Generate code to verify that you do not go beyond the boundary of the
12364 stack. You should specify this flag if you are running in an
12365 environment with multiple threads, but you only rarely need to specify it in
12366 a single-threaded environment since stack overflow is automatically
12367 detected on nearly all systems if there is only one stack.
12368
12369 Note that this switch does not actually cause checking to be done; the
12370 operating system or the language runtime must do that. The switch causes
12371 generation of code to ensure that they see the stack being extended.
12372
12373 You can additionally specify a string parameter: @samp{no} means no
12374 checking, @samp{generic} means force the use of old-style checking,
12375 @samp{specific} means use the best checking method and is equivalent
12376 to bare @option{-fstack-check}.
12377
12378 Old-style checking is a generic mechanism that requires no specific
12379 target support in the compiler but comes with the following drawbacks:
12380
12381 @enumerate
12382 @item
12383 Modified allocation strategy for large objects: they are always
12384 allocated dynamically if their size exceeds a fixed threshold.
12385
12386 @item
12387 Fixed limit on the size of the static frame of functions: when it is
12388 topped by a particular function, stack checking is not reliable and
12389 a warning is issued by the compiler.
12390
12391 @item
12392 Inefficiency: because of both the modified allocation strategy and the
12393 generic implementation, code performance is hampered.
12394 @end enumerate
12395
12396 Note that old-style stack checking is also the fallback method for
12397 @samp{specific} if no target support has been added in the compiler.
12398
12399 @item -fstack-limit-register=@var{reg}
12400 @itemx -fstack-limit-symbol=@var{sym}
12401 @itemx -fno-stack-limit
12402 @opindex fstack-limit-register
12403 @opindex fstack-limit-symbol
12404 @opindex fno-stack-limit
12405 Generate code to ensure that the stack does not grow beyond a certain value,
12406 either the value of a register or the address of a symbol. If a larger
12407 stack is required, a signal is raised at run time. For most targets,
12408 the signal is raised before the stack overruns the boundary, so
12409 it is possible to catch the signal without taking special precautions.
12410
12411 For instance, if the stack starts at absolute address @samp{0x80000000}
12412 and grows downwards, you can use the flags
12413 @option{-fstack-limit-symbol=__stack_limit} and
12414 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
12415 of 128KB@. Note that this may only work with the GNU linker.
12416
12417 You can locally override stack limit checking by using the
12418 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
12419
12420 @item -fsplit-stack
12421 @opindex fsplit-stack
12422 Generate code to automatically split the stack before it overflows.
12423 The resulting program has a discontiguous stack which can only
12424 overflow if the program is unable to allocate any more memory. This
12425 is most useful when running threaded programs, as it is no longer
12426 necessary to calculate a good stack size to use for each thread. This
12427 is currently only implemented for the x86 targets running
12428 GNU/Linux.
12429
12430 When code compiled with @option{-fsplit-stack} calls code compiled
12431 without @option{-fsplit-stack}, there may not be much stack space
12432 available for the latter code to run. If compiling all code,
12433 including library code, with @option{-fsplit-stack} is not an option,
12434 then the linker can fix up these calls so that the code compiled
12435 without @option{-fsplit-stack} always has a large stack. Support for
12436 this is implemented in the gold linker in GNU binutils release 2.21
12437 and later.
12438
12439 @item -fleading-underscore
12440 @opindex fleading-underscore
12441 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
12442 change the way C symbols are represented in the object file. One use
12443 is to help link with legacy assembly code.
12444
12445 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
12446 generate code that is not binary compatible with code generated without that
12447 switch. Use it to conform to a non-default application binary interface.
12448 Not all targets provide complete support for this switch.
12449
12450 @item -ftls-model=@var{model}
12451 @opindex ftls-model
12452 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
12453 The @var{model} argument should be one of @samp{global-dynamic},
12454 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
12455 Note that the choice is subject to optimization: the compiler may use
12456 a more efficient model for symbols not visible outside of the translation
12457 unit, or if @option{-fpic} is not given on the command line.
12458
12459 The default without @option{-fpic} is @samp{initial-exec}; with
12460 @option{-fpic} the default is @samp{global-dynamic}.
12461
12462 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
12463 @opindex fvisibility
12464 Set the default ELF image symbol visibility to the specified option---all
12465 symbols are marked with this unless overridden within the code.
12466 Using this feature can very substantially improve linking and
12467 load times of shared object libraries, produce more optimized
12468 code, provide near-perfect API export and prevent symbol clashes.
12469 It is @strong{strongly} recommended that you use this in any shared objects
12470 you distribute.
12471
12472 Despite the nomenclature, @samp{default} always means public; i.e.,
12473 available to be linked against from outside the shared object.
12474 @samp{protected} and @samp{internal} are pretty useless in real-world
12475 usage so the only other commonly used option is @samp{hidden}.
12476 The default if @option{-fvisibility} isn't specified is
12477 @samp{default}, i.e., make every symbol public.
12478
12479 A good explanation of the benefits offered by ensuring ELF
12480 symbols have the correct visibility is given by ``How To Write
12481 Shared Libraries'' by Ulrich Drepper (which can be found at
12482 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
12483 solution made possible by this option to marking things hidden when
12484 the default is public is to make the default hidden and mark things
12485 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
12486 and @code{__attribute__ ((visibility("default")))} instead of
12487 @code{__declspec(dllexport)} you get almost identical semantics with
12488 identical syntax. This is a great boon to those working with
12489 cross-platform projects.
12490
12491 For those adding visibility support to existing code, you may find
12492 @code{#pragma GCC visibility} of use. This works by you enclosing
12493 the declarations you wish to set visibility for with (for example)
12494 @code{#pragma GCC visibility push(hidden)} and
12495 @code{#pragma GCC visibility pop}.
12496 Bear in mind that symbol visibility should be viewed @strong{as
12497 part of the API interface contract} and thus all new code should
12498 always specify visibility when it is not the default; i.e., declarations
12499 only for use within the local DSO should @strong{always} be marked explicitly
12500 as hidden as so to avoid PLT indirection overheads---making this
12501 abundantly clear also aids readability and self-documentation of the code.
12502 Note that due to ISO C++ specification requirements, @code{operator new} and
12503 @code{operator delete} must always be of default visibility.
12504
12505 Be aware that headers from outside your project, in particular system
12506 headers and headers from any other library you use, may not be
12507 expecting to be compiled with visibility other than the default. You
12508 may need to explicitly say @code{#pragma GCC visibility push(default)}
12509 before including any such headers.
12510
12511 @code{extern} declarations are not affected by @option{-fvisibility}, so
12512 a lot of code can be recompiled with @option{-fvisibility=hidden} with
12513 no modifications. However, this means that calls to @code{extern}
12514 functions with no explicit visibility use the PLT, so it is more
12515 effective to use @code{__attribute ((visibility))} and/or
12516 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
12517 declarations should be treated as hidden.
12518
12519 Note that @option{-fvisibility} does affect C++ vague linkage
12520 entities. This means that, for instance, an exception class that is
12521 be thrown between DSOs must be explicitly marked with default
12522 visibility so that the @samp{type_info} nodes are unified between
12523 the DSOs.
12524
12525 An overview of these techniques, their benefits and how to use them
12526 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
12527
12528 @item -fstrict-volatile-bitfields
12529 @opindex fstrict-volatile-bitfields
12530 This option should be used if accesses to volatile bit-fields (or other
12531 structure fields, although the compiler usually honors those types
12532 anyway) should use a single access of the width of the
12533 field's type, aligned to a natural alignment if possible. For
12534 example, targets with memory-mapped peripheral registers might require
12535 all such accesses to be 16 bits wide; with this flag you can
12536 declare all peripheral bit-fields as @code{unsigned short} (assuming short
12537 is 16 bits on these targets) to force GCC to use 16-bit accesses
12538 instead of, perhaps, a more efficient 32-bit access.
12539
12540 If this option is disabled, the compiler uses the most efficient
12541 instruction. In the previous example, that might be a 32-bit load
12542 instruction, even though that accesses bytes that do not contain
12543 any portion of the bit-field, or memory-mapped registers unrelated to
12544 the one being updated.
12545
12546 In some cases, such as when the @code{packed} attribute is applied to a
12547 structure field, it may not be possible to access the field with a single
12548 read or write that is correctly aligned for the target machine. In this
12549 case GCC falls back to generating multiple accesses rather than code that
12550 will fault or truncate the result at run time.
12551
12552 Note: Due to restrictions of the C/C++11 memory model, write accesses are
12553 not allowed to touch non bit-field members. It is therefore recommended
12554 to define all bits of the field's type as bit-field members.
12555
12556 The default value of this option is determined by the application binary
12557 interface for the target processor.
12558
12559 @item -fsync-libcalls
12560 @opindex fsync-libcalls
12561 This option controls whether any out-of-line instance of the @code{__sync}
12562 family of functions may be used to implement the C++11 @code{__atomic}
12563 family of functions.
12564
12565 The default value of this option is enabled, thus the only useful form
12566 of the option is @option{-fno-sync-libcalls}. This option is used in
12567 the implementation of the @file{libatomic} runtime library.
12568
12569 @end table
12570
12571 @node Submodel Options
12572 @section Hardware Models and Configurations
12573 @cindex submodel options
12574 @cindex specifying hardware config
12575 @cindex hardware models and configurations, specifying
12576 @cindex machine dependent options
12577
12578 Each target machine types can have its own
12579 special options, starting with @samp{-m}, to choose among various
12580 hardware models or configurations---for example, 68010 vs 68020,
12581 floating coprocessor or none. A single installed version of the
12582 compiler can compile for any model or configuration, according to the
12583 options specified.
12584
12585 Some configurations of the compiler also support additional special
12586 options, usually for compatibility with other compilers on the same
12587 platform.
12588
12589 @c This list is ordered alphanumerically by subsection name.
12590 @c It should be the same order and spelling as these options are listed
12591 @c in Machine Dependent Options
12592
12593 @menu
12594 * AArch64 Options::
12595 * Adapteva Epiphany Options::
12596 * ARC Options::
12597 * ARM Options::
12598 * AVR Options::
12599 * Blackfin Options::
12600 * C6X Options::
12601 * CRIS Options::
12602 * CR16 Options::
12603 * Darwin Options::
12604 * DEC Alpha Options::
12605 * FR30 Options::
12606 * FT32 Options::
12607 * FRV Options::
12608 * GNU/Linux Options::
12609 * H8/300 Options::
12610 * HPPA Options::
12611 * IA-64 Options::
12612 * LM32 Options::
12613 * M32C Options::
12614 * M32R/D Options::
12615 * M680x0 Options::
12616 * MCore Options::
12617 * MeP Options::
12618 * MicroBlaze Options::
12619 * MIPS Options::
12620 * MMIX Options::
12621 * MN10300 Options::
12622 * Moxie Options::
12623 * MSP430 Options::
12624 * NDS32 Options::
12625 * Nios II Options::
12626 * Nvidia PTX Options::
12627 * PDP-11 Options::
12628 * picoChip Options::
12629 * PowerPC Options::
12630 * RL78 Options::
12631 * RS/6000 and PowerPC Options::
12632 * RX Options::
12633 * S/390 and zSeries Options::
12634 * Score Options::
12635 * SH Options::
12636 * Solaris 2 Options::
12637 * SPARC Options::
12638 * SPU Options::
12639 * System V Options::
12640 * TILE-Gx Options::
12641 * TILEPro Options::
12642 * V850 Options::
12643 * VAX Options::
12644 * Visium Options::
12645 * VMS Options::
12646 * VxWorks Options::
12647 * x86 Options::
12648 * x86 Windows Options::
12649 * Xstormy16 Options::
12650 * Xtensa Options::
12651 * zSeries Options::
12652 @end menu
12653
12654 @node AArch64 Options
12655 @subsection AArch64 Options
12656 @cindex AArch64 Options
12657
12658 These options are defined for AArch64 implementations:
12659
12660 @table @gcctabopt
12661
12662 @item -mabi=@var{name}
12663 @opindex mabi
12664 Generate code for the specified data model. Permissible values
12665 are @samp{ilp32} for SysV-like data model where int, long int and pointer
12666 are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12667 but long int and pointer are 64-bit.
12668
12669 The default depends on the specific target configuration. Note that
12670 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12671 entire program with the same ABI, and link with a compatible set of libraries.
12672
12673 @item -mbig-endian
12674 @opindex mbig-endian
12675 Generate big-endian code. This is the default when GCC is configured for an
12676 @samp{aarch64_be-*-*} target.
12677
12678 @item -mgeneral-regs-only
12679 @opindex mgeneral-regs-only
12680 Generate code which uses only the general-purpose registers. This will prevent
12681 the compiler from using floating-point and Advanced SIMD registers but will not
12682 impose any restrictions on the assembler.
12683
12684 @item -mlittle-endian
12685 @opindex mlittle-endian
12686 Generate little-endian code. This is the default when GCC is configured for an
12687 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12688
12689 @item -mcmodel=tiny
12690 @opindex mcmodel=tiny
12691 Generate code for the tiny code model. The program and its statically defined
12692 symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
12693 be statically or dynamically linked. This model is not fully implemented and
12694 mostly treated as @samp{small}.
12695
12696 @item -mcmodel=small
12697 @opindex mcmodel=small
12698 Generate code for the small code model. The program and its statically defined
12699 symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
12700 be statically or dynamically linked. This is the default code model.
12701
12702 @item -mcmodel=large
12703 @opindex mcmodel=large
12704 Generate code for the large code model. This makes no assumptions about
12705 addresses and sizes of sections. Pointers are 64 bits. Programs can be
12706 statically linked only.
12707
12708 @item -mstrict-align
12709 @opindex mstrict-align
12710 Do not assume that unaligned memory references are handled by the system.
12711
12712 @item -momit-leaf-frame-pointer
12713 @itemx -mno-omit-leaf-frame-pointer
12714 @opindex momit-leaf-frame-pointer
12715 @opindex mno-omit-leaf-frame-pointer
12716 Omit or keep the frame pointer in leaf functions. The former behaviour is the
12717 default.
12718
12719 @item -mtls-dialect=desc
12720 @opindex mtls-dialect=desc
12721 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12722 of TLS variables. This is the default.
12723
12724 @item -mtls-dialect=traditional
12725 @opindex mtls-dialect=traditional
12726 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12727 of TLS variables.
12728
12729 @item -mtls-size=@var{size}
12730 @opindex mtls-size
12731 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
12732 This option depends on binutils higher than 2.25.
12733
12734 @item -mfix-cortex-a53-835769
12735 @itemx -mno-fix-cortex-a53-835769
12736 @opindex mfix-cortex-a53-835769
12737 @opindex mno-fix-cortex-a53-835769
12738 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12739 This involves inserting a NOP instruction between memory instructions and
12740 64-bit integer multiply-accumulate instructions.
12741
12742 @item -mfix-cortex-a53-843419
12743 @itemx -mno-fix-cortex-a53-843419
12744 @opindex mfix-cortex-a53-843419
12745 @opindex mno-fix-cortex-a53-843419
12746 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
12747 This erratum workaround is made at link time and this will only pass the
12748 corresponding flag to the linker.
12749
12750 @item -mlow-precision-recip-sqrt
12751 @item -mno-low-precision-recip-sqrt
12752 @opindex -mlow-precision-recip-sqrt
12753 @opindex -mno-low-precision-recip-sqrt
12754 The square root estimate uses two steps instead of three for double-precision,
12755 and one step instead of two for single-precision.
12756 Thus reducing latency and precision.
12757 This is only relevant if @option{-ffast-math} activates
12758 reciprocal square root estimate instructions.
12759 Which in turn depends on the target processor.
12760
12761 @item -march=@var{name}
12762 @opindex march
12763 Specify the name of the target architecture and, optionally, one or
12764 more feature modifiers. This option has the form
12765 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
12766
12767 The permissible values for @var{arch} are @samp{armv8-a},
12768 @samp{armv8.1-a} or @var{native}.
12769
12770 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
12771 support for the ARMv8.1 architecture extension. In particular, it
12772 enables the @samp{+crc} and @samp{+lse} features.
12773
12774 The value @samp{native} is available on native AArch64 GNU/Linux and
12775 causes the compiler to pick the architecture of the host system. This
12776 option has no effect if the compiler is unable to recognize the
12777 architecture of the host system,
12778
12779 The permissible values for @var{feature} are listed in the sub-section
12780 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12781 Feature Modifiers}. Where conflicting feature modifiers are
12782 specified, the right-most feature is used.
12783
12784 GCC uses @var{name} to determine what kind of instructions it can emit
12785 when generating assembly code. If @option{-march} is specified
12786 without either of @option{-mtune} or @option{-mcpu} also being
12787 specified, the code is tuned to perform well across a range of target
12788 processors implementing the target architecture.
12789
12790 @item -mtune=@var{name}
12791 @opindex mtune
12792 Specify the name of the target processor for which GCC should tune the
12793 performance of the code. Permissible values for this option are:
12794 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a57},
12795 @samp{cortex-a72}, @samp{exynos-m1}, @samp{qdf24xx}, @samp{thunderx},
12796 @samp{xgene1}.
12797
12798 Additionally, this option can specify that GCC should tune the performance
12799 of the code for a big.LITTLE system. Permissible values for this
12800 option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12801
12802 Additionally on native AArch64 GNU/Linux systems the value
12803 @samp{native} is available. This option causes the compiler to pick
12804 the architecture of and tune the performance of the code for the
12805 processor of the host system. This option has no effect if the
12806 compiler is unable to recognize the architecture of the host system.
12807
12808 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12809 are specified, the code is tuned to perform well across a range
12810 of target processors.
12811
12812 This option cannot be suffixed by feature modifiers.
12813
12814 @item -mcpu=@var{name}
12815 @opindex mcpu
12816 Specify the name of the target processor, optionally suffixed by one
12817 or more feature modifiers. This option has the form
12818 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
12819 the permissible values for @var{cpu} are the same as those available
12820 for @option{-mtune}. The permissible values for @var{feature} are
12821 documented in the sub-section on
12822 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12823 Feature Modifiers}. Where conflicting feature modifiers are
12824 specified, the right-most feature is used.
12825
12826 Additionally on native AArch64 GNU/Linux systems the value
12827 @samp{native} is available. This option causes the compiler to tune
12828 the performance of the code for the processor of the host system.
12829 This option has no effect if the compiler is unable to recognize the
12830 architecture of the host system.
12831
12832 GCC uses @var{name} to determine what kind of instructions it can emit when
12833 generating assembly code (as if by @option{-march}) and to determine
12834 the target processor for which to tune for performance (as if
12835 by @option{-mtune}). Where this option is used in conjunction
12836 with @option{-march} or @option{-mtune}, those options take precedence
12837 over the appropriate part of this option.
12838
12839 @item -moverride=@var{string}
12840 @opindex moverride
12841 Override tuning decisions made by the back-end in response to a
12842 @option{-mtune=} switch. The syntax, semantics, and accepted values
12843 for @var{string} in this option are not guaranteed to be consistent
12844 across releases.
12845
12846 This option is only intended to be useful when developing GCC.
12847
12848 @item -mpc-relative-literal-loads
12849 @opindex mpcrelativeliteralloads
12850 Enable PC relative literal loads. If this option is used, literal
12851 pools are assumed to have a range of up to 1MiB and an appropriate
12852 instruction sequence is used. This option has no impact when used
12853 with @option{-mcmodel=tiny}.
12854
12855 @end table
12856
12857 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12858 @anchor{aarch64-feature-modifiers}
12859 @cindex @option{-march} feature modifiers
12860 @cindex @option{-mcpu} feature modifiers
12861 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
12862 the following and their inverses @option{no@var{feature}}:
12863
12864 @table @samp
12865 @item crc
12866 Enable CRC extension. This is on by default for
12867 @option{-march=armv8.1-a}.
12868 @item crypto
12869 Enable Crypto extension. This also enables Advanced SIMD and floating-point
12870 instructions.
12871 @item fp
12872 Enable floating-point instructions. This is on by default for all possible
12873 values for options @option{-march} and @option{-mcpu}.
12874 @item simd
12875 Enable Advanced SIMD instructions. This also enables floating-point
12876 instructions. This is on by default for all possible values for options
12877 @option{-march} and @option{-mcpu}.
12878 @item lse
12879 Enable Large System Extension instructions. This is on by default for
12880 @option{-march=armv8.1-a}.
12881
12882 @end table
12883
12884 That is, @option{crypto} implies @option{simd} implies @option{fp}.
12885 Conversely, @option{nofp} (or equivalently, @option{-mgeneral-regs-only})
12886 implies @option{nosimd} implies @option{nocrypto}.
12887
12888 @node Adapteva Epiphany Options
12889 @subsection Adapteva Epiphany Options
12890
12891 These @samp{-m} options are defined for Adapteva Epiphany:
12892
12893 @table @gcctabopt
12894 @item -mhalf-reg-file
12895 @opindex mhalf-reg-file
12896 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12897 That allows code to run on hardware variants that lack these registers.
12898
12899 @item -mprefer-short-insn-regs
12900 @opindex mprefer-short-insn-regs
12901 Preferrentially allocate registers that allow short instruction generation.
12902 This can result in increased instruction count, so this may either reduce or
12903 increase overall code size.
12904
12905 @item -mbranch-cost=@var{num}
12906 @opindex mbranch-cost
12907 Set the cost of branches to roughly @var{num} ``simple'' instructions.
12908 This cost is only a heuristic and is not guaranteed to produce
12909 consistent results across releases.
12910
12911 @item -mcmove
12912 @opindex mcmove
12913 Enable the generation of conditional moves.
12914
12915 @item -mnops=@var{num}
12916 @opindex mnops
12917 Emit @var{num} NOPs before every other generated instruction.
12918
12919 @item -mno-soft-cmpsf
12920 @opindex mno-soft-cmpsf
12921 For single-precision floating-point comparisons, emit an @code{fsub} instruction
12922 and test the flags. This is faster than a software comparison, but can
12923 get incorrect results in the presence of NaNs, or when two different small
12924 numbers are compared such that their difference is calculated as zero.
12925 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12926 software comparisons.
12927
12928 @item -mstack-offset=@var{num}
12929 @opindex mstack-offset
12930 Set the offset between the top of the stack and the stack pointer.
12931 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12932 can be used by leaf functions without stack allocation.
12933 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12934 Note also that this option changes the ABI; compiling a program with a
12935 different stack offset than the libraries have been compiled with
12936 generally does not work.
12937 This option can be useful if you want to evaluate if a different stack
12938 offset would give you better code, but to actually use a different stack
12939 offset to build working programs, it is recommended to configure the
12940 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12941
12942 @item -mno-round-nearest
12943 @opindex mno-round-nearest
12944 Make the scheduler assume that the rounding mode has been set to
12945 truncating. The default is @option{-mround-nearest}.
12946
12947 @item -mlong-calls
12948 @opindex mlong-calls
12949 If not otherwise specified by an attribute, assume all calls might be beyond
12950 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12951 function address into a register before performing a (otherwise direct) call.
12952 This is the default.
12953
12954 @item -mshort-calls
12955 @opindex short-calls
12956 If not otherwise specified by an attribute, assume all direct calls are
12957 in the range of the @code{b} / @code{bl} instructions, so use these instructions
12958 for direct calls. The default is @option{-mlong-calls}.
12959
12960 @item -msmall16
12961 @opindex msmall16
12962 Assume addresses can be loaded as 16-bit unsigned values. This does not
12963 apply to function addresses for which @option{-mlong-calls} semantics
12964 are in effect.
12965
12966 @item -mfp-mode=@var{mode}
12967 @opindex mfp-mode
12968 Set the prevailing mode of the floating-point unit.
12969 This determines the floating-point mode that is provided and expected
12970 at function call and return time. Making this mode match the mode you
12971 predominantly need at function start can make your programs smaller and
12972 faster by avoiding unnecessary mode switches.
12973
12974 @var{mode} can be set to one the following values:
12975
12976 @table @samp
12977 @item caller
12978 Any mode at function entry is valid, and retained or restored when
12979 the function returns, and when it calls other functions.
12980 This mode is useful for compiling libraries or other compilation units
12981 you might want to incorporate into different programs with different
12982 prevailing FPU modes, and the convenience of being able to use a single
12983 object file outweighs the size and speed overhead for any extra
12984 mode switching that might be needed, compared with what would be needed
12985 with a more specific choice of prevailing FPU mode.
12986
12987 @item truncate
12988 This is the mode used for floating-point calculations with
12989 truncating (i.e.@: round towards zero) rounding mode. That includes
12990 conversion from floating point to integer.
12991
12992 @item round-nearest
12993 This is the mode used for floating-point calculations with
12994 round-to-nearest-or-even rounding mode.
12995
12996 @item int
12997 This is the mode used to perform integer calculations in the FPU, e.g.@:
12998 integer multiply, or integer multiply-and-accumulate.
12999 @end table
13000
13001 The default is @option{-mfp-mode=caller}
13002
13003 @item -mnosplit-lohi
13004 @itemx -mno-postinc
13005 @itemx -mno-postmodify
13006 @opindex mnosplit-lohi
13007 @opindex mno-postinc
13008 @opindex mno-postmodify
13009 Code generation tweaks that disable, respectively, splitting of 32-bit
13010 loads, generation of post-increment addresses, and generation of
13011 post-modify addresses. The defaults are @option{msplit-lohi},
13012 @option{-mpost-inc}, and @option{-mpost-modify}.
13013
13014 @item -mnovect-double
13015 @opindex mno-vect-double
13016 Change the preferred SIMD mode to SImode. The default is
13017 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
13018
13019 @item -max-vect-align=@var{num}
13020 @opindex max-vect-align
13021 The maximum alignment for SIMD vector mode types.
13022 @var{num} may be 4 or 8. The default is 8.
13023 Note that this is an ABI change, even though many library function
13024 interfaces are unaffected if they don't use SIMD vector modes
13025 in places that affect size and/or alignment of relevant types.
13026
13027 @item -msplit-vecmove-early
13028 @opindex msplit-vecmove-early
13029 Split vector moves into single word moves before reload. In theory this
13030 can give better register allocation, but so far the reverse seems to be
13031 generally the case.
13032
13033 @item -m1reg-@var{reg}
13034 @opindex m1reg-
13035 Specify a register to hold the constant @minus{}1, which makes loading small negative
13036 constants and certain bitmasks faster.
13037 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
13038 which specify use of that register as a fixed register,
13039 and @samp{none}, which means that no register is used for this
13040 purpose. The default is @option{-m1reg-none}.
13041
13042 @end table
13043
13044 @node ARC Options
13045 @subsection ARC Options
13046 @cindex ARC options
13047
13048 The following options control the architecture variant for which code
13049 is being compiled:
13050
13051 @c architecture variants
13052 @table @gcctabopt
13053
13054 @item -mbarrel-shifter
13055 @opindex mbarrel-shifter
13056 Generate instructions supported by barrel shifter. This is the default
13057 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
13058
13059 @item -mcpu=@var{cpu}
13060 @opindex mcpu
13061 Set architecture type, register usage, and instruction scheduling
13062 parameters for @var{cpu}. There are also shortcut alias options
13063 available for backward compatibility and convenience. Supported
13064 values for @var{cpu} are
13065
13066 @table @samp
13067 @opindex mA6
13068 @opindex mARC600
13069 @item ARC600
13070 @item arc600
13071 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
13072
13073 @item ARC601
13074 @item arc601
13075 @opindex mARC601
13076 Compile for ARC601. Alias: @option{-mARC601}.
13077
13078 @item ARC700
13079 @item arc700
13080 @opindex mA7
13081 @opindex mARC700
13082 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
13083 This is the default when configured with @option{--with-cpu=arc700}@.
13084
13085 @item ARCEM
13086 @item arcem
13087 Compile for ARC EM.
13088
13089 @item ARCHS
13090 @item archs
13091 Compile for ARC HS.
13092 @end table
13093
13094 @item -mdpfp
13095 @opindex mdpfp
13096 @itemx -mdpfp-compact
13097 @opindex mdpfp-compact
13098 FPX: Generate Double Precision FPX instructions, tuned for the compact
13099 implementation.
13100
13101 @item -mdpfp-fast
13102 @opindex mdpfp-fast
13103 FPX: Generate Double Precision FPX instructions, tuned for the fast
13104 implementation.
13105
13106 @item -mno-dpfp-lrsr
13107 @opindex mno-dpfp-lrsr
13108 Disable LR and SR instructions from using FPX extension aux registers.
13109
13110 @item -mea
13111 @opindex mea
13112 Generate Extended arithmetic instructions. Currently only
13113 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
13114 supported. This is always enabled for @option{-mcpu=ARC700}.
13115
13116 @item -mno-mpy
13117 @opindex mno-mpy
13118 Do not generate mpy instructions for ARC700.
13119
13120 @item -mmul32x16
13121 @opindex mmul32x16
13122 Generate 32x16 bit multiply and mac instructions.
13123
13124 @item -mmul64
13125 @opindex mmul64
13126 Generate mul64 and mulu64 instructions. Only valid for @option{-mcpu=ARC600}.
13127
13128 @item -mnorm
13129 @opindex mnorm
13130 Generate norm instruction. This is the default if @option{-mcpu=ARC700}
13131 is in effect.
13132
13133 @item -mspfp
13134 @opindex mspfp
13135 @itemx -mspfp-compact
13136 @opindex mspfp-compact
13137 FPX: Generate Single Precision FPX instructions, tuned for the compact
13138 implementation.
13139
13140 @item -mspfp-fast
13141 @opindex mspfp-fast
13142 FPX: Generate Single Precision FPX instructions, tuned for the fast
13143 implementation.
13144
13145 @item -msimd
13146 @opindex msimd
13147 Enable generation of ARC SIMD instructions via target-specific
13148 builtins. Only valid for @option{-mcpu=ARC700}.
13149
13150 @item -msoft-float
13151 @opindex msoft-float
13152 This option ignored; it is provided for compatibility purposes only.
13153 Software floating point code is emitted by default, and this default
13154 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
13155 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
13156 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
13157
13158 @item -mswap
13159 @opindex mswap
13160 Generate swap instructions.
13161
13162 @item -matomic
13163 @opindex matomic
13164 This enables Locked Load/Store Conditional extension to implement
13165 atomic memopry built-in functions. Not available for ARC 6xx or ARC
13166 EM cores.
13167
13168 @item -mdiv-rem
13169 @opindex mdiv-rem
13170 Enable DIV/REM instructions for ARCv2 cores.
13171
13172 @item -mcode-density
13173 @opindex mcode-density
13174 Enable code density instructions for ARC EM, default on for ARC HS.
13175
13176 @item -mmpy-option=@var{multo}
13177 @opindex mmpy-option
13178 Compile ARCv2 code with a multiplier design option. @samp{wlh1} is
13179 the default value. The recognized values for @var{multo} are:
13180
13181 @table @samp
13182 @item 0
13183 No multiplier available.
13184
13185 @item 1
13186 @opindex w
13187 The multiply option is set to w: 16x16 multiplier, fully pipelined.
13188 The following instructions are enabled: MPYW, and MPYUW.
13189
13190 @item 2
13191 @opindex wlh1
13192 The multiply option is set to wlh1: 32x32 multiplier, fully
13193 pipelined (1 stage). The following instructions are additionaly
13194 enabled: MPY, MPYU, MPYM, MPYMU, and MPY_S.
13195
13196 @item 3
13197 @opindex wlh2
13198 The multiply option is set to wlh2: 32x32 multiplier, fully pipelined
13199 (2 stages). The following instructions are additionaly enabled: MPY,
13200 MPYU, MPYM, MPYMU, and MPY_S.
13201
13202 @item 4
13203 @opindex wlh3
13204 The multiply option is set to wlh3: Two 16x16 multiplier, blocking,
13205 sequential. The following instructions are additionaly enabled: MPY,
13206 MPYU, MPYM, MPYMU, and MPY_S.
13207
13208 @item 5
13209 @opindex wlh4
13210 The multiply option is set to wlh4: One 16x16 multiplier, blocking,
13211 sequential. The following instructions are additionaly enabled: MPY,
13212 MPYU, MPYM, MPYMU, and MPY_S.
13213
13214 @item 6
13215 @opindex wlh5
13216 The multiply option is set to wlh5: One 32x4 multiplier, blocking,
13217 sequential. The following instructions are additionaly enabled: MPY,
13218 MPYU, MPYM, MPYMU, and MPY_S.
13219
13220 @end table
13221
13222 This option is only available for ARCv2 cores@.
13223
13224 @end table
13225
13226 The following options are passed through to the assembler, and also
13227 define preprocessor macro symbols.
13228
13229 @c Flags used by the assembler, but for which we define preprocessor
13230 @c macro symbols as well.
13231 @table @gcctabopt
13232 @item -mdsp-packa
13233 @opindex mdsp-packa
13234 Passed down to the assembler to enable the DSP Pack A extensions.
13235 Also sets the preprocessor symbol @code{__Xdsp_packa}.
13236
13237 @item -mdvbf
13238 @opindex mdvbf
13239 Passed down to the assembler to enable the dual viterbi butterfly
13240 extension. Also sets the preprocessor symbol @code{__Xdvbf}.
13241
13242 @c ARC700 4.10 extension instruction
13243 @item -mlock
13244 @opindex mlock
13245 Passed down to the assembler to enable the Locked Load/Store
13246 Conditional extension. Also sets the preprocessor symbol
13247 @code{__Xlock}.
13248
13249 @item -mmac-d16
13250 @opindex mmac-d16
13251 Passed down to the assembler. Also sets the preprocessor symbol
13252 @code{__Xxmac_d16}.
13253
13254 @item -mmac-24
13255 @opindex mmac-24
13256 Passed down to the assembler. Also sets the preprocessor symbol
13257 @code{__Xxmac_24}.
13258
13259 @c ARC700 4.10 extension instruction
13260 @item -mrtsc
13261 @opindex mrtsc
13262 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
13263 extension instruction. Also sets the preprocessor symbol
13264 @code{__Xrtsc}.
13265
13266 @c ARC700 4.10 extension instruction
13267 @item -mswape
13268 @opindex mswape
13269 Passed down to the assembler to enable the swap byte ordering
13270 extension instruction. Also sets the preprocessor symbol
13271 @code{__Xswape}.
13272
13273 @item -mtelephony
13274 @opindex mtelephony
13275 Passed down to the assembler to enable dual and single operand
13276 instructions for telephony. Also sets the preprocessor symbol
13277 @code{__Xtelephony}.
13278
13279 @item -mxy
13280 @opindex mxy
13281 Passed down to the assembler to enable the XY Memory extension. Also
13282 sets the preprocessor symbol @code{__Xxy}.
13283
13284 @end table
13285
13286 The following options control how the assembly code is annotated:
13287
13288 @c Assembly annotation options
13289 @table @gcctabopt
13290 @item -misize
13291 @opindex misize
13292 Annotate assembler instructions with estimated addresses.
13293
13294 @item -mannotate-align
13295 @opindex mannotate-align
13296 Explain what alignment considerations lead to the decision to make an
13297 instruction short or long.
13298
13299 @end table
13300
13301 The following options are passed through to the linker:
13302
13303 @c options passed through to the linker
13304 @table @gcctabopt
13305 @item -marclinux
13306 @opindex marclinux
13307 Passed through to the linker, to specify use of the @code{arclinux} emulation.
13308 This option is enabled by default in tool chains built for
13309 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
13310 when profiling is not requested.
13311
13312 @item -marclinux_prof
13313 @opindex marclinux_prof
13314 Passed through to the linker, to specify use of the
13315 @code{arclinux_prof} emulation. This option is enabled by default in
13316 tool chains built for @w{@code{arc-linux-uclibc}} and
13317 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
13318
13319 @end table
13320
13321 The following options control the semantics of generated code:
13322
13323 @c semantically relevant code generation options
13324 @table @gcctabopt
13325 @item -mlong-calls
13326 @opindex mlong-calls
13327 Generate call insns as register indirect calls, thus providing access
13328 to the full 32-bit address range.
13329
13330 @item -mmedium-calls
13331 @opindex mmedium-calls
13332 Don't use less than 25 bit addressing range for calls, which is the
13333 offset available for an unconditional branch-and-link
13334 instruction. Conditional execution of function calls is suppressed, to
13335 allow use of the 25-bit range, rather than the 21-bit range with
13336 conditional branch-and-link. This is the default for tool chains built
13337 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
13338
13339 @item -mno-sdata
13340 @opindex mno-sdata
13341 Do not generate sdata references. This is the default for tool chains
13342 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
13343 targets.
13344
13345 @item -mucb-mcount
13346 @opindex mucb-mcount
13347 Instrument with mcount calls as used in UCB code. I.e. do the
13348 counting in the callee, not the caller. By default ARC instrumentation
13349 counts in the caller.
13350
13351 @item -mvolatile-cache
13352 @opindex mvolatile-cache
13353 Use ordinarily cached memory accesses for volatile references. This is the
13354 default.
13355
13356 @item -mno-volatile-cache
13357 @opindex mno-volatile-cache
13358 Enable cache bypass for volatile references.
13359
13360 @end table
13361
13362 The following options fine tune code generation:
13363 @c code generation tuning options
13364 @table @gcctabopt
13365 @item -malign-call
13366 @opindex malign-call
13367 Do alignment optimizations for call instructions.
13368
13369 @item -mauto-modify-reg
13370 @opindex mauto-modify-reg
13371 Enable the use of pre/post modify with register displacement.
13372
13373 @item -mbbit-peephole
13374 @opindex mbbit-peephole
13375 Enable bbit peephole2.
13376
13377 @item -mno-brcc
13378 @opindex mno-brcc
13379 This option disables a target-specific pass in @file{arc_reorg} to
13380 generate @code{BRcc} instructions. It has no effect on @code{BRcc}
13381 generation driven by the combiner pass.
13382
13383 @item -mcase-vector-pcrel
13384 @opindex mcase-vector-pcrel
13385 Use pc-relative switch case tables - this enables case table shortening.
13386 This is the default for @option{-Os}.
13387
13388 @item -mcompact-casesi
13389 @opindex mcompact-casesi
13390 Enable compact casesi pattern.
13391 This is the default for @option{-Os}.
13392
13393 @item -mno-cond-exec
13394 @opindex mno-cond-exec
13395 Disable ARCompact specific pass to generate conditional execution instructions.
13396 Due to delay slot scheduling and interactions between operand numbers,
13397 literal sizes, instruction lengths, and the support for conditional execution,
13398 the target-independent pass to generate conditional execution is often lacking,
13399 so the ARC port has kept a special pass around that tries to find more
13400 conditional execution generating opportunities after register allocation,
13401 branch shortening, and delay slot scheduling have been done. This pass
13402 generally, but not always, improves performance and code size, at the cost of
13403 extra compilation time, which is why there is an option to switch it off.
13404 If you have a problem with call instructions exceeding their allowable
13405 offset range because they are conditionalized, you should consider using
13406 @option{-mmedium-calls} instead.
13407
13408 @item -mearly-cbranchsi
13409 @opindex mearly-cbranchsi
13410 Enable pre-reload use of the cbranchsi pattern.
13411
13412 @item -mexpand-adddi
13413 @opindex mexpand-adddi
13414 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
13415 @code{add.f}, @code{adc} etc.
13416
13417 @item -mindexed-loads
13418 @opindex mindexed-loads
13419 Enable the use of indexed loads. This can be problematic because some
13420 optimizers then assume that indexed stores exist, which is not
13421 the case.
13422
13423 @item -mlra
13424 @opindex mlra
13425 Enable Local Register Allocation. This is still experimental for ARC,
13426 so by default the compiler uses standard reload
13427 (i.e. @option{-mno-lra}).
13428
13429 @item -mlra-priority-none
13430 @opindex mlra-priority-none
13431 Don't indicate any priority for target registers.
13432
13433 @item -mlra-priority-compact
13434 @opindex mlra-priority-compact
13435 Indicate target register priority for r0..r3 / r12..r15.
13436
13437 @item -mlra-priority-noncompact
13438 @opindex mlra-priority-noncompact
13439 Reduce target regsiter priority for r0..r3 / r12..r15.
13440
13441 @item -mno-millicode
13442 @opindex mno-millicode
13443 When optimizing for size (using @option{-Os}), prologues and epilogues
13444 that have to save or restore a large number of registers are often
13445 shortened by using call to a special function in libgcc; this is
13446 referred to as a @emph{millicode} call. As these calls can pose
13447 performance issues, and/or cause linking issues when linking in a
13448 nonstandard way, this option is provided to turn off millicode call
13449 generation.
13450
13451 @item -mmixed-code
13452 @opindex mmixed-code
13453 Tweak register allocation to help 16-bit instruction generation.
13454 This generally has the effect of decreasing the average instruction size
13455 while increasing the instruction count.
13456
13457 @item -mq-class
13458 @opindex mq-class
13459 Enable 'q' instruction alternatives.
13460 This is the default for @option{-Os}.
13461
13462 @item -mRcq
13463 @opindex mRcq
13464 Enable Rcq constraint handling - most short code generation depends on this.
13465 This is the default.
13466
13467 @item -mRcw
13468 @opindex mRcw
13469 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
13470 This is the default.
13471
13472 @item -msize-level=@var{level}
13473 @opindex msize-level
13474 Fine-tune size optimization with regards to instruction lengths and alignment.
13475 The recognized values for @var{level} are:
13476 @table @samp
13477 @item 0
13478 No size optimization. This level is deprecated and treated like @samp{1}.
13479
13480 @item 1
13481 Short instructions are used opportunistically.
13482
13483 @item 2
13484 In addition, alignment of loops and of code after barriers are dropped.
13485
13486 @item 3
13487 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
13488
13489 @end table
13490
13491 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
13492 the behavior when this is not set is equivalent to level @samp{1}.
13493
13494 @item -mtune=@var{cpu}
13495 @opindex mtune
13496 Set instruction scheduling parameters for @var{cpu}, overriding any implied
13497 by @option{-mcpu=}.
13498
13499 Supported values for @var{cpu} are
13500
13501 @table @samp
13502 @item ARC600
13503 Tune for ARC600 cpu.
13504
13505 @item ARC601
13506 Tune for ARC601 cpu.
13507
13508 @item ARC700
13509 Tune for ARC700 cpu with standard multiplier block.
13510
13511 @item ARC700-xmac
13512 Tune for ARC700 cpu with XMAC block.
13513
13514 @item ARC725D
13515 Tune for ARC725D cpu.
13516
13517 @item ARC750D
13518 Tune for ARC750D cpu.
13519
13520 @end table
13521
13522 @item -mmultcost=@var{num}
13523 @opindex mmultcost
13524 Cost to assume for a multiply instruction, with @samp{4} being equal to a
13525 normal instruction.
13526
13527 @item -munalign-prob-threshold=@var{probability}
13528 @opindex munalign-prob-threshold
13529 Set probability threshold for unaligning branches.
13530 When tuning for @samp{ARC700} and optimizing for speed, branches without
13531 filled delay slot are preferably emitted unaligned and long, unless
13532 profiling indicates that the probability for the branch to be taken
13533 is below @var{probability}. @xref{Cross-profiling}.
13534 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13535
13536 @end table
13537
13538 The following options are maintained for backward compatibility, but
13539 are now deprecated and will be removed in a future release:
13540
13541 @c Deprecated options
13542 @table @gcctabopt
13543
13544 @item -margonaut
13545 @opindex margonaut
13546 Obsolete FPX.
13547
13548 @item -mbig-endian
13549 @opindex mbig-endian
13550 @itemx -EB
13551 @opindex EB
13552 Compile code for big endian targets. Use of these options is now
13553 deprecated. Users wanting big-endian code, should use the
13554 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13555 building the tool chain, for which big-endian is the default.
13556
13557 @item -mlittle-endian
13558 @opindex mlittle-endian
13559 @itemx -EL
13560 @opindex EL
13561 Compile code for little endian targets. Use of these options is now
13562 deprecated. Users wanting little-endian code should use the
13563 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13564 building the tool chain, for which little-endian is the default.
13565
13566 @item -mbarrel_shifter
13567 @opindex mbarrel_shifter
13568 Replaced by @option{-mbarrel-shifter}.
13569
13570 @item -mdpfp_compact
13571 @opindex mdpfp_compact
13572 Replaced by @option{-mdpfp-compact}.
13573
13574 @item -mdpfp_fast
13575 @opindex mdpfp_fast
13576 Replaced by @option{-mdpfp-fast}.
13577
13578 @item -mdsp_packa
13579 @opindex mdsp_packa
13580 Replaced by @option{-mdsp-packa}.
13581
13582 @item -mEA
13583 @opindex mEA
13584 Replaced by @option{-mea}.
13585
13586 @item -mmac_24
13587 @opindex mmac_24
13588 Replaced by @option{-mmac-24}.
13589
13590 @item -mmac_d16
13591 @opindex mmac_d16
13592 Replaced by @option{-mmac-d16}.
13593
13594 @item -mspfp_compact
13595 @opindex mspfp_compact
13596 Replaced by @option{-mspfp-compact}.
13597
13598 @item -mspfp_fast
13599 @opindex mspfp_fast
13600 Replaced by @option{-mspfp-fast}.
13601
13602 @item -mtune=@var{cpu}
13603 @opindex mtune
13604 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13605 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13606 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13607
13608 @item -multcost=@var{num}
13609 @opindex multcost
13610 Replaced by @option{-mmultcost}.
13611
13612 @end table
13613
13614 @node ARM Options
13615 @subsection ARM Options
13616 @cindex ARM options
13617
13618 These @samp{-m} options are defined for the ARM port:
13619
13620 @table @gcctabopt
13621 @item -mabi=@var{name}
13622 @opindex mabi
13623 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
13624 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13625
13626 @item -mapcs-frame
13627 @opindex mapcs-frame
13628 Generate a stack frame that is compliant with the ARM Procedure Call
13629 Standard for all functions, even if this is not strictly necessary for
13630 correct execution of the code. Specifying @option{-fomit-frame-pointer}
13631 with this option causes the stack frames not to be generated for
13632 leaf functions. The default is @option{-mno-apcs-frame}.
13633 This option is deprecated.
13634
13635 @item -mapcs
13636 @opindex mapcs
13637 This is a synonym for @option{-mapcs-frame} and is deprecated.
13638
13639 @ignore
13640 @c not currently implemented
13641 @item -mapcs-stack-check
13642 @opindex mapcs-stack-check
13643 Generate code to check the amount of stack space available upon entry to
13644 every function (that actually uses some stack space). If there is
13645 insufficient space available then either the function
13646 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13647 called, depending upon the amount of stack space required. The runtime
13648 system is required to provide these functions. The default is
13649 @option{-mno-apcs-stack-check}, since this produces smaller code.
13650
13651 @c not currently implemented
13652 @item -mapcs-float
13653 @opindex mapcs-float
13654 Pass floating-point arguments using the floating-point registers. This is
13655 one of the variants of the APCS@. This option is recommended if the
13656 target hardware has a floating-point unit or if a lot of floating-point
13657 arithmetic is going to be performed by the code. The default is
13658 @option{-mno-apcs-float}, since the size of integer-only code is
13659 slightly increased if @option{-mapcs-float} is used.
13660
13661 @c not currently implemented
13662 @item -mapcs-reentrant
13663 @opindex mapcs-reentrant
13664 Generate reentrant, position-independent code. The default is
13665 @option{-mno-apcs-reentrant}.
13666 @end ignore
13667
13668 @item -mthumb-interwork
13669 @opindex mthumb-interwork
13670 Generate code that supports calling between the ARM and Thumb
13671 instruction sets. Without this option, on pre-v5 architectures, the
13672 two instruction sets cannot be reliably used inside one program. The
13673 default is @option{-mno-thumb-interwork}, since slightly larger code
13674 is generated when @option{-mthumb-interwork} is specified. In AAPCS
13675 configurations this option is meaningless.
13676
13677 @item -mno-sched-prolog
13678 @opindex mno-sched-prolog
13679 Prevent the reordering of instructions in the function prologue, or the
13680 merging of those instruction with the instructions in the function's
13681 body. This means that all functions start with a recognizable set
13682 of instructions (or in fact one of a choice from a small set of
13683 different function prologues), and this information can be used to
13684 locate the start of functions inside an executable piece of code. The
13685 default is @option{-msched-prolog}.
13686
13687 @item -mfloat-abi=@var{name}
13688 @opindex mfloat-abi
13689 Specifies which floating-point ABI to use. Permissible values
13690 are: @samp{soft}, @samp{softfp} and @samp{hard}.
13691
13692 Specifying @samp{soft} causes GCC to generate output containing
13693 library calls for floating-point operations.
13694 @samp{softfp} allows the generation of code using hardware floating-point
13695 instructions, but still uses the soft-float calling conventions.
13696 @samp{hard} allows generation of floating-point instructions
13697 and uses FPU-specific calling conventions.
13698
13699 The default depends on the specific target configuration. Note that
13700 the hard-float and soft-float ABIs are not link-compatible; you must
13701 compile your entire program with the same ABI, and link with a
13702 compatible set of libraries.
13703
13704 @item -mlittle-endian
13705 @opindex mlittle-endian
13706 Generate code for a processor running in little-endian mode. This is
13707 the default for all standard configurations.
13708
13709 @item -mbig-endian
13710 @opindex mbig-endian
13711 Generate code for a processor running in big-endian mode; the default is
13712 to compile code for a little-endian processor.
13713
13714 @item -march=@var{name}
13715 @opindex march
13716 This specifies the name of the target ARM architecture. GCC uses this
13717 name to determine what kind of instructions it can emit when generating
13718 assembly code. This option can be used in conjunction with or instead
13719 of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
13720 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13721 @samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13722 @samp{armv6}, @samp{armv6j},
13723 @samp{armv6t2}, @samp{armv6z}, @samp{armv6kz}, @samp{armv6-m},
13724 @samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13725 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc}, @samp{armv8.1-a},
13726 @samp{armv8.1-a+crc}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13727
13728 @option{-march=armv7ve} is the armv7-a architecture with virtualization
13729 extensions.
13730
13731 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13732 architecture together with the optional CRC32 extensions.
13733
13734 @option{-march=native} causes the compiler to auto-detect the architecture
13735 of the build computer. At present, this feature is only supported on
13736 GNU/Linux, and not all architectures are recognized. If the auto-detect
13737 is unsuccessful the option has no effect.
13738
13739 @item -mtune=@var{name}
13740 @opindex mtune
13741 This option specifies the name of the target ARM processor for
13742 which GCC should tune the performance of the code.
13743 For some ARM implementations better performance can be obtained by using
13744 this option.
13745 Permissible names are: @samp{arm2}, @samp{arm250},
13746 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13747 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13748 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13749 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13750 @samp{arm720},
13751 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13752 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13753 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13754 @samp{strongarm1110},
13755 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13756 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13757 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13758 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13759 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13760 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13761 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13762 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
13763 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
13764 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
13765 @samp{cortex-r4},
13766 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13767 @samp{cortex-m4},
13768 @samp{cortex-m3},
13769 @samp{cortex-m1},
13770 @samp{cortex-m0},
13771 @samp{cortex-m0plus},
13772 @samp{cortex-m1.small-multiply},
13773 @samp{cortex-m0.small-multiply},
13774 @samp{cortex-m0plus.small-multiply},
13775 @samp{exynos-m1},
13776 @samp{qdf24xx},
13777 @samp{marvell-pj4},
13778 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13779 @samp{fa526}, @samp{fa626},
13780 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13781 @samp{xgene1}.
13782
13783 Additionally, this option can specify that GCC should tune the performance
13784 of the code for a big.LITTLE system. Permissible names are:
13785 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
13786 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
13787
13788 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13789 performance for a blend of processors within architecture @var{arch}.
13790 The aim is to generate code that run well on the current most popular
13791 processors, balancing between optimizations that benefit some CPUs in the
13792 range, and avoiding performance pitfalls of other CPUs. The effects of
13793 this option may change in future GCC versions as CPU models come and go.
13794
13795 @option{-mtune=native} causes the compiler to auto-detect the CPU
13796 of the build computer. At present, this feature is only supported on
13797 GNU/Linux, and not all architectures are recognized. If the auto-detect is
13798 unsuccessful the option has no effect.
13799
13800 @item -mcpu=@var{name}
13801 @opindex mcpu
13802 This specifies the name of the target ARM processor. GCC uses this name
13803 to derive the name of the target ARM architecture (as if specified
13804 by @option{-march}) and the ARM processor type for which to tune for
13805 performance (as if specified by @option{-mtune}). Where this option
13806 is used in conjunction with @option{-march} or @option{-mtune},
13807 those options take precedence over the appropriate part of this option.
13808
13809 Permissible names for this option are the same as those for
13810 @option{-mtune}.
13811
13812 @option{-mcpu=generic-@var{arch}} is also permissible, and is
13813 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13814 See @option{-mtune} for more information.
13815
13816 @option{-mcpu=native} causes the compiler to auto-detect the CPU
13817 of the build computer. At present, this feature is only supported on
13818 GNU/Linux, and not all architectures are recognized. If the auto-detect
13819 is unsuccessful the option has no effect.
13820
13821 @item -mfpu=@var{name}
13822 @opindex mfpu
13823 This specifies what floating-point hardware (or hardware emulation) is
13824 available on the target. Permissible names are: @samp{vfp}, @samp{vfpv3},
13825 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13826 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13827 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13828 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
13829 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
13830
13831 If @option{-msoft-float} is specified this specifies the format of
13832 floating-point values.
13833
13834 If the selected floating-point hardware includes the NEON extension
13835 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13836 operations are not generated by GCC's auto-vectorization pass unless
13837 @option{-funsafe-math-optimizations} is also specified. This is
13838 because NEON hardware does not fully implement the IEEE 754 standard for
13839 floating-point arithmetic (in particular denormal values are treated as
13840 zero), so the use of NEON instructions may lead to a loss of precision.
13841
13842 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
13843
13844 @item -mfp16-format=@var{name}
13845 @opindex mfp16-format
13846 Specify the format of the @code{__fp16} half-precision floating-point type.
13847 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13848 the default is @samp{none}, in which case the @code{__fp16} type is not
13849 defined. @xref{Half-Precision}, for more information.
13850
13851 @item -mstructure-size-boundary=@var{n}
13852 @opindex mstructure-size-boundary
13853 The sizes of all structures and unions are rounded up to a multiple
13854 of the number of bits set by this option. Permissible values are 8, 32
13855 and 64. The default value varies for different toolchains. For the COFF
13856 targeted toolchain the default value is 8. A value of 64 is only allowed
13857 if the underlying ABI supports it.
13858
13859 Specifying a larger number can produce faster, more efficient code, but
13860 can also increase the size of the program. Different values are potentially
13861 incompatible. Code compiled with one value cannot necessarily expect to
13862 work with code or libraries compiled with another value, if they exchange
13863 information using structures or unions.
13864
13865 @item -mabort-on-noreturn
13866 @opindex mabort-on-noreturn
13867 Generate a call to the function @code{abort} at the end of a
13868 @code{noreturn} function. It is executed if the function tries to
13869 return.
13870
13871 @item -mlong-calls
13872 @itemx -mno-long-calls
13873 @opindex mlong-calls
13874 @opindex mno-long-calls
13875 Tells the compiler to perform function calls by first loading the
13876 address of the function into a register and then performing a subroutine
13877 call on this register. This switch is needed if the target function
13878 lies outside of the 64-megabyte addressing range of the offset-based
13879 version of subroutine call instruction.
13880
13881 Even if this switch is enabled, not all function calls are turned
13882 into long calls. The heuristic is that static functions, functions
13883 that have the @code{short_call} attribute, functions that are inside
13884 the scope of a @code{#pragma no_long_calls} directive, and functions whose
13885 definitions have already been compiled within the current compilation
13886 unit are not turned into long calls. The exceptions to this rule are
13887 that weak function definitions, functions with the @code{long_call}
13888 attribute or the @code{section} attribute, and functions that are within
13889 the scope of a @code{#pragma long_calls} directive are always
13890 turned into long calls.
13891
13892 This feature is not enabled by default. Specifying
13893 @option{-mno-long-calls} restores the default behavior, as does
13894 placing the function calls within the scope of a @code{#pragma
13895 long_calls_off} directive. Note these switches have no effect on how
13896 the compiler generates code to handle function calls via function
13897 pointers.
13898
13899 @item -msingle-pic-base
13900 @opindex msingle-pic-base
13901 Treat the register used for PIC addressing as read-only, rather than
13902 loading it in the prologue for each function. The runtime system is
13903 responsible for initializing this register with an appropriate value
13904 before execution begins.
13905
13906 @item -mpic-register=@var{reg}
13907 @opindex mpic-register
13908 Specify the register to be used for PIC addressing.
13909 For standard PIC base case, the default is any suitable register
13910 determined by compiler. For single PIC base case, the default is
13911 @samp{R9} if target is EABI based or stack-checking is enabled,
13912 otherwise the default is @samp{R10}.
13913
13914 @item -mpic-data-is-text-relative
13915 @opindex mpic-data-is-text-relative
13916 Assume that each data segments are relative to text segment at load time.
13917 Therefore, it permits addressing data using PC-relative operations.
13918 This option is on by default for targets other than VxWorks RTP.
13919
13920 @item -mpoke-function-name
13921 @opindex mpoke-function-name
13922 Write the name of each function into the text section, directly
13923 preceding the function prologue. The generated code is similar to this:
13924
13925 @smallexample
13926 t0
13927 .ascii "arm_poke_function_name", 0
13928 .align
13929 t1
13930 .word 0xff000000 + (t1 - t0)
13931 arm_poke_function_name
13932 mov ip, sp
13933 stmfd sp!, @{fp, ip, lr, pc@}
13934 sub fp, ip, #4
13935 @end smallexample
13936
13937 When performing a stack backtrace, code can inspect the value of
13938 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
13939 location @code{pc - 12} and the top 8 bits are set, then we know that
13940 there is a function name embedded immediately preceding this location
13941 and has length @code{((pc[-3]) & 0xff000000)}.
13942
13943 @item -mthumb
13944 @itemx -marm
13945 @opindex marm
13946 @opindex mthumb
13947
13948 Select between generating code that executes in ARM and Thumb
13949 states. The default for most configurations is to generate code
13950 that executes in ARM state, but the default can be changed by
13951 configuring GCC with the @option{--with-mode=}@var{state}
13952 configure option.
13953
13954 You can also override the ARM and Thumb mode for each function
13955 by using the @code{target("thumb")} and @code{target("arm")} function attributes
13956 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
13957
13958 @item -mtpcs-frame
13959 @opindex mtpcs-frame
13960 Generate a stack frame that is compliant with the Thumb Procedure Call
13961 Standard for all non-leaf functions. (A leaf function is one that does
13962 not call any other functions.) The default is @option{-mno-tpcs-frame}.
13963
13964 @item -mtpcs-leaf-frame
13965 @opindex mtpcs-leaf-frame
13966 Generate a stack frame that is compliant with the Thumb Procedure Call
13967 Standard for all leaf functions. (A leaf function is one that does
13968 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
13969
13970 @item -mcallee-super-interworking
13971 @opindex mcallee-super-interworking
13972 Gives all externally visible functions in the file being compiled an ARM
13973 instruction set header which switches to Thumb mode before executing the
13974 rest of the function. This allows these functions to be called from
13975 non-interworking code. This option is not valid in AAPCS configurations
13976 because interworking is enabled by default.
13977
13978 @item -mcaller-super-interworking
13979 @opindex mcaller-super-interworking
13980 Allows calls via function pointers (including virtual functions) to
13981 execute correctly regardless of whether the target code has been
13982 compiled for interworking or not. There is a small overhead in the cost
13983 of executing a function pointer if this option is enabled. This option
13984 is not valid in AAPCS configurations because interworking is enabled
13985 by default.
13986
13987 @item -mtp=@var{name}
13988 @opindex mtp
13989 Specify the access model for the thread local storage pointer. The valid
13990 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13991 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13992 (supported in the arm6k architecture), and @samp{auto}, which uses the
13993 best available method for the selected processor. The default setting is
13994 @samp{auto}.
13995
13996 @item -mtls-dialect=@var{dialect}
13997 @opindex mtls-dialect
13998 Specify the dialect to use for accessing thread local storage. Two
13999 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
14000 @samp{gnu} dialect selects the original GNU scheme for supporting
14001 local and global dynamic TLS models. The @samp{gnu2} dialect
14002 selects the GNU descriptor scheme, which provides better performance
14003 for shared libraries. The GNU descriptor scheme is compatible with
14004 the original scheme, but does require new assembler, linker and
14005 library support. Initial and local exec TLS models are unaffected by
14006 this option and always use the original scheme.
14007
14008 @item -mword-relocations
14009 @opindex mword-relocations
14010 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
14011 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
14012 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
14013 is specified.
14014
14015 @item -mfix-cortex-m3-ldrd
14016 @opindex mfix-cortex-m3-ldrd
14017 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
14018 with overlapping destination and base registers are used. This option avoids
14019 generating these instructions. This option is enabled by default when
14020 @option{-mcpu=cortex-m3} is specified.
14021
14022 @item -munaligned-access
14023 @itemx -mno-unaligned-access
14024 @opindex munaligned-access
14025 @opindex mno-unaligned-access
14026 Enables (or disables) reading and writing of 16- and 32- bit values
14027 from addresses that are not 16- or 32- bit aligned. By default
14028 unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
14029 architectures, and enabled for all other architectures. If unaligned
14030 access is not enabled then words in packed data structures are
14031 accessed a byte at a time.
14032
14033 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
14034 generated object file to either true or false, depending upon the
14035 setting of this option. If unaligned access is enabled then the
14036 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
14037 defined.
14038
14039 @item -mneon-for-64bits
14040 @opindex mneon-for-64bits
14041 Enables using Neon to handle scalar 64-bits operations. This is
14042 disabled by default since the cost of moving data from core registers
14043 to Neon is high.
14044
14045 @item -mslow-flash-data
14046 @opindex mslow-flash-data
14047 Assume loading data from flash is slower than fetching instruction.
14048 Therefore literal load is minimized for better performance.
14049 This option is only supported when compiling for ARMv7 M-profile and
14050 off by default.
14051
14052 @item -masm-syntax-unified
14053 @opindex masm-syntax-unified
14054 Assume inline assembler is using unified asm syntax. The default is
14055 currently off which implies divided syntax. This option has no impact
14056 on Thumb2. However, this may change in future releases of GCC.
14057 Divided syntax should be considered deprecated.
14058
14059 @item -mrestrict-it
14060 @opindex mrestrict-it
14061 Restricts generation of IT blocks to conform to the rules of ARMv8.
14062 IT blocks can only contain a single 16-bit instruction from a select
14063 set of instructions. This option is on by default for ARMv8 Thumb mode.
14064
14065 @item -mprint-tune-info
14066 @opindex mprint-tune-info
14067 Print CPU tuning information as comment in assembler file. This is
14068 an option used only for regression testing of the compiler and not
14069 intended for ordinary use in compiling code. This option is disabled
14070 by default.
14071 @end table
14072
14073 @node AVR Options
14074 @subsection AVR Options
14075 @cindex AVR Options
14076
14077 These options are defined for AVR implementations:
14078
14079 @table @gcctabopt
14080 @item -mmcu=@var{mcu}
14081 @opindex mmcu
14082 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
14083
14084 The default for this option is@tie{}@samp{avr2}.
14085
14086 GCC supports the following AVR devices and ISAs:
14087
14088 @include avr-mmcu.texi
14089
14090 @item -maccumulate-args
14091 @opindex maccumulate-args
14092 Accumulate outgoing function arguments and acquire/release the needed
14093 stack space for outgoing function arguments once in function
14094 prologue/epilogue. Without this option, outgoing arguments are pushed
14095 before calling a function and popped afterwards.
14096
14097 Popping the arguments after the function call can be expensive on
14098 AVR so that accumulating the stack space might lead to smaller
14099 executables because arguments need not to be removed from the
14100 stack after such a function call.
14101
14102 This option can lead to reduced code size for functions that perform
14103 several calls to functions that get their arguments on the stack like
14104 calls to printf-like functions.
14105
14106 @item -mbranch-cost=@var{cost}
14107 @opindex mbranch-cost
14108 Set the branch costs for conditional branch instructions to
14109 @var{cost}. Reasonable values for @var{cost} are small, non-negative
14110 integers. The default branch cost is 0.
14111
14112 @item -mcall-prologues
14113 @opindex mcall-prologues
14114 Functions prologues/epilogues are expanded as calls to appropriate
14115 subroutines. Code size is smaller.
14116
14117 @item -mint8
14118 @opindex mint8
14119 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
14120 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
14121 and @code{long long} is 4 bytes. Please note that this option does not
14122 conform to the C standards, but it results in smaller code
14123 size.
14124
14125 @item -mn-flash=@var{num}
14126 @opindex mn-flash
14127 Assume that the flash memory has a size of
14128 @var{num} times 64@tie{}KiB.
14129
14130 @item -mno-interrupts
14131 @opindex mno-interrupts
14132 Generated code is not compatible with hardware interrupts.
14133 Code size is smaller.
14134
14135 @item -mrelax
14136 @opindex mrelax
14137 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
14138 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
14139 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
14140 the assembler's command line and the @option{--relax} option to the
14141 linker's command line.
14142
14143 Jump relaxing is performed by the linker because jump offsets are not
14144 known before code is located. Therefore, the assembler code generated by the
14145 compiler is the same, but the instructions in the executable may
14146 differ from instructions in the assembler code.
14147
14148 Relaxing must be turned on if linker stubs are needed, see the
14149 section on @code{EIND} and linker stubs below.
14150
14151 @item -mrmw
14152 @opindex mrmw
14153 Assume that the device supports the Read-Modify-Write
14154 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
14155
14156 @item -msp8
14157 @opindex msp8
14158 Treat the stack pointer register as an 8-bit register,
14159 i.e.@: assume the high byte of the stack pointer is zero.
14160 In general, you don't need to set this option by hand.
14161
14162 This option is used internally by the compiler to select and
14163 build multilibs for architectures @code{avr2} and @code{avr25}.
14164 These architectures mix devices with and without @code{SPH}.
14165 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
14166 the compiler driver adds or removes this option from the compiler
14167 proper's command line, because the compiler then knows if the device
14168 or architecture has an 8-bit stack pointer and thus no @code{SPH}
14169 register or not.
14170
14171 @item -mstrict-X
14172 @opindex mstrict-X
14173 Use address register @code{X} in a way proposed by the hardware. This means
14174 that @code{X} is only used in indirect, post-increment or
14175 pre-decrement addressing.
14176
14177 Without this option, the @code{X} register may be used in the same way
14178 as @code{Y} or @code{Z} which then is emulated by additional
14179 instructions.
14180 For example, loading a value with @code{X+const} addressing with a
14181 small non-negative @code{const < 64} to a register @var{Rn} is
14182 performed as
14183
14184 @example
14185 adiw r26, const ; X += const
14186 ld @var{Rn}, X ; @var{Rn} = *X
14187 sbiw r26, const ; X -= const
14188 @end example
14189
14190 @item -mtiny-stack
14191 @opindex mtiny-stack
14192 Only change the lower 8@tie{}bits of the stack pointer.
14193
14194 @item -nodevicelib
14195 @opindex nodevicelib
14196 Don't link against AVR-LibC's device specific library @code{libdev.a}.
14197
14198 @item -Waddr-space-convert
14199 @opindex Waddr-space-convert
14200 Warn about conversions between address spaces in the case where the
14201 resulting address space is not contained in the incoming address space.
14202 @end table
14203
14204 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
14205 @cindex @code{EIND}
14206 Pointers in the implementation are 16@tie{}bits wide.
14207 The address of a function or label is represented as word address so
14208 that indirect jumps and calls can target any code address in the
14209 range of 64@tie{}Ki words.
14210
14211 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
14212 bytes of program memory space, there is a special function register called
14213 @code{EIND} that serves as most significant part of the target address
14214 when @code{EICALL} or @code{EIJMP} instructions are used.
14215
14216 Indirect jumps and calls on these devices are handled as follows by
14217 the compiler and are subject to some limitations:
14218
14219 @itemize @bullet
14220
14221 @item
14222 The compiler never sets @code{EIND}.
14223
14224 @item
14225 The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
14226 instructions or might read @code{EIND} directly in order to emulate an
14227 indirect call/jump by means of a @code{RET} instruction.
14228
14229 @item
14230 The compiler assumes that @code{EIND} never changes during the startup
14231 code or during the application. In particular, @code{EIND} is not
14232 saved/restored in function or interrupt service routine
14233 prologue/epilogue.
14234
14235 @item
14236 For indirect calls to functions and computed goto, the linker
14237 generates @emph{stubs}. Stubs are jump pads sometimes also called
14238 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
14239 The stub contains a direct jump to the desired address.
14240
14241 @item
14242 Linker relaxation must be turned on so that the linker generates
14243 the stubs correctly in all situations. See the compiler option
14244 @option{-mrelax} and the linker option @option{--relax}.
14245 There are corner cases where the linker is supposed to generate stubs
14246 but aborts without relaxation and without a helpful error message.
14247
14248 @item
14249 The default linker script is arranged for code with @code{EIND = 0}.
14250 If code is supposed to work for a setup with @code{EIND != 0}, a custom
14251 linker script has to be used in order to place the sections whose
14252 name start with @code{.trampolines} into the segment where @code{EIND}
14253 points to.
14254
14255 @item
14256 The startup code from libgcc never sets @code{EIND}.
14257 Notice that startup code is a blend of code from libgcc and AVR-LibC.
14258 For the impact of AVR-LibC on @code{EIND}, see the
14259 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
14260
14261 @item
14262 It is legitimate for user-specific startup code to set up @code{EIND}
14263 early, for example by means of initialization code located in
14264 section @code{.init3}. Such code runs prior to general startup code
14265 that initializes RAM and calls constructors, but after the bit
14266 of startup code from AVR-LibC that sets @code{EIND} to the segment
14267 where the vector table is located.
14268 @example
14269 #include <avr/io.h>
14270
14271 static void
14272 __attribute__((section(".init3"),naked,used,no_instrument_function))
14273 init3_set_eind (void)
14274 @{
14275 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
14276 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
14277 @}
14278 @end example
14279
14280 @noindent
14281 The @code{__trampolines_start} symbol is defined in the linker script.
14282
14283 @item
14284 Stubs are generated automatically by the linker if
14285 the following two conditions are met:
14286 @itemize @minus
14287
14288 @item The address of a label is taken by means of the @code{gs} modifier
14289 (short for @emph{generate stubs}) like so:
14290 @example
14291 LDI r24, lo8(gs(@var{func}))
14292 LDI r25, hi8(gs(@var{func}))
14293 @end example
14294 @item The final location of that label is in a code segment
14295 @emph{outside} the segment where the stubs are located.
14296 @end itemize
14297
14298 @item
14299 The compiler emits such @code{gs} modifiers for code labels in the
14300 following situations:
14301 @itemize @minus
14302 @item Taking address of a function or code label.
14303 @item Computed goto.
14304 @item If prologue-save function is used, see @option{-mcall-prologues}
14305 command-line option.
14306 @item Switch/case dispatch tables. If you do not want such dispatch
14307 tables you can specify the @option{-fno-jump-tables} command-line option.
14308 @item C and C++ constructors/destructors called during startup/shutdown.
14309 @item If the tools hit a @code{gs()} modifier explained above.
14310 @end itemize
14311
14312 @item
14313 Jumping to non-symbolic addresses like so is @emph{not} supported:
14314
14315 @example
14316 int main (void)
14317 @{
14318 /* Call function at word address 0x2 */
14319 return ((int(*)(void)) 0x2)();
14320 @}
14321 @end example
14322
14323 Instead, a stub has to be set up, i.e.@: the function has to be called
14324 through a symbol (@code{func_4} in the example):
14325
14326 @example
14327 int main (void)
14328 @{
14329 extern int func_4 (void);
14330
14331 /* Call function at byte address 0x4 */
14332 return func_4();
14333 @}
14334 @end example
14335
14336 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
14337 Alternatively, @code{func_4} can be defined in the linker script.
14338 @end itemize
14339
14340 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
14341 @cindex @code{RAMPD}
14342 @cindex @code{RAMPX}
14343 @cindex @code{RAMPY}
14344 @cindex @code{RAMPZ}
14345 Some AVR devices support memories larger than the 64@tie{}KiB range
14346 that can be accessed with 16-bit pointers. To access memory locations
14347 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
14348 register is used as high part of the address:
14349 The @code{X}, @code{Y}, @code{Z} address register is concatenated
14350 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
14351 register, respectively, to get a wide address. Similarly,
14352 @code{RAMPD} is used together with direct addressing.
14353
14354 @itemize
14355 @item
14356 The startup code initializes the @code{RAMP} special function
14357 registers with zero.
14358
14359 @item
14360 If a @ref{AVR Named Address Spaces,named address space} other than
14361 generic or @code{__flash} is used, then @code{RAMPZ} is set
14362 as needed before the operation.
14363
14364 @item
14365 If the device supports RAM larger than 64@tie{}KiB and the compiler
14366 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
14367 is reset to zero after the operation.
14368
14369 @item
14370 If the device comes with a specific @code{RAMP} register, the ISR
14371 prologue/epilogue saves/restores that SFR and initializes it with
14372 zero in case the ISR code might (implicitly) use it.
14373
14374 @item
14375 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
14376 If you use inline assembler to read from locations outside the
14377 16-bit address range and change one of the @code{RAMP} registers,
14378 you must reset it to zero after the access.
14379
14380 @end itemize
14381
14382 @subsubsection AVR Built-in Macros
14383
14384 GCC defines several built-in macros so that the user code can test
14385 for the presence or absence of features. Almost any of the following
14386 built-in macros are deduced from device capabilities and thus
14387 triggered by the @option{-mmcu=} command-line option.
14388
14389 For even more AVR-specific built-in macros see
14390 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
14391
14392 @table @code
14393
14394 @item __AVR_ARCH__
14395 Build-in macro that resolves to a decimal number that identifies the
14396 architecture and depends on the @option{-mmcu=@var{mcu}} option.
14397 Possible values are:
14398
14399 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
14400 @code{4}, @code{5}, @code{51}, @code{6}
14401
14402 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
14403 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
14404
14405 respectively and
14406
14407 @code{100}, @code{102}, @code{104},
14408 @code{105}, @code{106}, @code{107}
14409
14410 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
14411 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
14412 If @var{mcu} specifies a device, this built-in macro is set
14413 accordingly. For example, with @option{-mmcu=atmega8} the macro is
14414 defined to @code{4}.
14415
14416 @item __AVR_@var{Device}__
14417 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
14418 the device's name. For example, @option{-mmcu=atmega8} defines the
14419 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
14420 @code{__AVR_ATtiny261A__}, etc.
14421
14422 The built-in macros' names follow
14423 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
14424 the device name as from the AVR user manual. The difference between
14425 @var{Device} in the built-in macro and @var{device} in
14426 @option{-mmcu=@var{device}} is that the latter is always lowercase.
14427
14428 If @var{device} is not a device but only a core architecture like
14429 @samp{avr51}, this macro is not defined.
14430
14431 @item __AVR_DEVICE_NAME__
14432 Setting @option{-mmcu=@var{device}} defines this built-in macro to
14433 the device's name. For example, with @option{-mmcu=atmega8} the macro
14434 is defined to @code{atmega8}.
14435
14436 If @var{device} is not a device but only a core architecture like
14437 @samp{avr51}, this macro is not defined.
14438
14439 @item __AVR_XMEGA__
14440 The device / architecture belongs to the XMEGA family of devices.
14441
14442 @item __AVR_HAVE_ELPM__
14443 The device has the @code{ELPM} instruction.
14444
14445 @item __AVR_HAVE_ELPMX__
14446 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
14447 R@var{n},Z+} instructions.
14448
14449 @item __AVR_HAVE_MOVW__
14450 The device has the @code{MOVW} instruction to perform 16-bit
14451 register-register moves.
14452
14453 @item __AVR_HAVE_LPMX__
14454 The device has the @code{LPM R@var{n},Z} and
14455 @code{LPM R@var{n},Z+} instructions.
14456
14457 @item __AVR_HAVE_MUL__
14458 The device has a hardware multiplier.
14459
14460 @item __AVR_HAVE_JMP_CALL__
14461 The device has the @code{JMP} and @code{CALL} instructions.
14462 This is the case for devices with at least 16@tie{}KiB of program
14463 memory.
14464
14465 @item __AVR_HAVE_EIJMP_EICALL__
14466 @itemx __AVR_3_BYTE_PC__
14467 The device has the @code{EIJMP} and @code{EICALL} instructions.
14468 This is the case for devices with more than 128@tie{}KiB of program memory.
14469 This also means that the program counter
14470 (PC) is 3@tie{}bytes wide.
14471
14472 @item __AVR_2_BYTE_PC__
14473 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
14474 with up to 128@tie{}KiB of program memory.
14475
14476 @item __AVR_HAVE_8BIT_SP__
14477 @itemx __AVR_HAVE_16BIT_SP__
14478 The stack pointer (SP) register is treated as 8-bit respectively
14479 16-bit register by the compiler.
14480 The definition of these macros is affected by @option{-mtiny-stack}.
14481
14482 @item __AVR_HAVE_SPH__
14483 @itemx __AVR_SP8__
14484 The device has the SPH (high part of stack pointer) special function
14485 register or has an 8-bit stack pointer, respectively.
14486 The definition of these macros is affected by @option{-mmcu=} and
14487 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
14488 by @option{-msp8}.
14489
14490 @item __AVR_HAVE_RAMPD__
14491 @itemx __AVR_HAVE_RAMPX__
14492 @itemx __AVR_HAVE_RAMPY__
14493 @itemx __AVR_HAVE_RAMPZ__
14494 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
14495 @code{RAMPZ} special function register, respectively.
14496
14497 @item __NO_INTERRUPTS__
14498 This macro reflects the @option{-mno-interrupts} command-line option.
14499
14500 @item __AVR_ERRATA_SKIP__
14501 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
14502 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
14503 instructions because of a hardware erratum. Skip instructions are
14504 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
14505 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
14506 set.
14507
14508 @item __AVR_ISA_RMW__
14509 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
14510
14511 @item __AVR_SFR_OFFSET__=@var{offset}
14512 Instructions that can address I/O special function registers directly
14513 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
14514 address as if addressed by an instruction to access RAM like @code{LD}
14515 or @code{STS}. This offset depends on the device architecture and has
14516 to be subtracted from the RAM address in order to get the
14517 respective I/O@tie{}address.
14518
14519 @item __WITH_AVRLIBC__
14520 The compiler is configured to be used together with AVR-Libc.
14521 See the @option{--with-avrlibc} configure option.
14522
14523 @end table
14524
14525 @node Blackfin Options
14526 @subsection Blackfin Options
14527 @cindex Blackfin Options
14528
14529 @table @gcctabopt
14530 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
14531 @opindex mcpu=
14532 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
14533 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
14534 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
14535 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
14536 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
14537 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
14538 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
14539 @samp{bf561}, @samp{bf592}.
14540
14541 The optional @var{sirevision} specifies the silicon revision of the target
14542 Blackfin processor. Any workarounds available for the targeted silicon revision
14543 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
14544 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14545 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
14546 hexadecimal digits representing the major and minor numbers in the silicon
14547 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14548 is not defined. If @var{sirevision} is @samp{any}, the
14549 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14550 If this optional @var{sirevision} is not used, GCC assumes the latest known
14551 silicon revision of the targeted Blackfin processor.
14552
14553 GCC defines a preprocessor macro for the specified @var{cpu}.
14554 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14555 provided by libgloss to be linked in if @option{-msim} is not given.
14556
14557 Without this option, @samp{bf532} is used as the processor by default.
14558
14559 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
14560 only the preprocessor macro is defined.
14561
14562 @item -msim
14563 @opindex msim
14564 Specifies that the program will be run on the simulator. This causes
14565 the simulator BSP provided by libgloss to be linked in. This option
14566 has effect only for @samp{bfin-elf} toolchain.
14567 Certain other options, such as @option{-mid-shared-library} and
14568 @option{-mfdpic}, imply @option{-msim}.
14569
14570 @item -momit-leaf-frame-pointer
14571 @opindex momit-leaf-frame-pointer
14572 Don't keep the frame pointer in a register for leaf functions. This
14573 avoids the instructions to save, set up and restore frame pointers and
14574 makes an extra register available in leaf functions. The option
14575 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
14576 which might make debugging harder.
14577
14578 @item -mspecld-anomaly
14579 @opindex mspecld-anomaly
14580 When enabled, the compiler ensures that the generated code does not
14581 contain speculative loads after jump instructions. If this option is used,
14582 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14583
14584 @item -mno-specld-anomaly
14585 @opindex mno-specld-anomaly
14586 Don't generate extra code to prevent speculative loads from occurring.
14587
14588 @item -mcsync-anomaly
14589 @opindex mcsync-anomaly
14590 When enabled, the compiler ensures that the generated code does not
14591 contain CSYNC or SSYNC instructions too soon after conditional branches.
14592 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14593
14594 @item -mno-csync-anomaly
14595 @opindex mno-csync-anomaly
14596 Don't generate extra code to prevent CSYNC or SSYNC instructions from
14597 occurring too soon after a conditional branch.
14598
14599 @item -mlow-64k
14600 @opindex mlow-64k
14601 When enabled, the compiler is free to take advantage of the knowledge that
14602 the entire program fits into the low 64k of memory.
14603
14604 @item -mno-low-64k
14605 @opindex mno-low-64k
14606 Assume that the program is arbitrarily large. This is the default.
14607
14608 @item -mstack-check-l1
14609 @opindex mstack-check-l1
14610 Do stack checking using information placed into L1 scratchpad memory by the
14611 uClinux kernel.
14612
14613 @item -mid-shared-library
14614 @opindex mid-shared-library
14615 Generate code that supports shared libraries via the library ID method.
14616 This allows for execute in place and shared libraries in an environment
14617 without virtual memory management. This option implies @option{-fPIC}.
14618 With a @samp{bfin-elf} target, this option implies @option{-msim}.
14619
14620 @item -mno-id-shared-library
14621 @opindex mno-id-shared-library
14622 Generate code that doesn't assume ID-based shared libraries are being used.
14623 This is the default.
14624
14625 @item -mleaf-id-shared-library
14626 @opindex mleaf-id-shared-library
14627 Generate code that supports shared libraries via the library ID method,
14628 but assumes that this library or executable won't link against any other
14629 ID shared libraries. That allows the compiler to use faster code for jumps
14630 and calls.
14631
14632 @item -mno-leaf-id-shared-library
14633 @opindex mno-leaf-id-shared-library
14634 Do not assume that the code being compiled won't link against any ID shared
14635 libraries. Slower code is generated for jump and call insns.
14636
14637 @item -mshared-library-id=n
14638 @opindex mshared-library-id
14639 Specifies the identification number of the ID-based shared library being
14640 compiled. Specifying a value of 0 generates more compact code; specifying
14641 other values forces the allocation of that number to the current
14642 library but is no more space- or time-efficient than omitting this option.
14643
14644 @item -msep-data
14645 @opindex msep-data
14646 Generate code that allows the data segment to be located in a different
14647 area of memory from the text segment. This allows for execute in place in
14648 an environment without virtual memory management by eliminating relocations
14649 against the text section.
14650
14651 @item -mno-sep-data
14652 @opindex mno-sep-data
14653 Generate code that assumes that the data segment follows the text segment.
14654 This is the default.
14655
14656 @item -mlong-calls
14657 @itemx -mno-long-calls
14658 @opindex mlong-calls
14659 @opindex mno-long-calls
14660 Tells the compiler to perform function calls by first loading the
14661 address of the function into a register and then performing a subroutine
14662 call on this register. This switch is needed if the target function
14663 lies outside of the 24-bit addressing range of the offset-based
14664 version of subroutine call instruction.
14665
14666 This feature is not enabled by default. Specifying
14667 @option{-mno-long-calls} restores the default behavior. Note these
14668 switches have no effect on how the compiler generates code to handle
14669 function calls via function pointers.
14670
14671 @item -mfast-fp
14672 @opindex mfast-fp
14673 Link with the fast floating-point library. This library relaxes some of
14674 the IEEE floating-point standard's rules for checking inputs against
14675 Not-a-Number (NAN), in the interest of performance.
14676
14677 @item -minline-plt
14678 @opindex minline-plt
14679 Enable inlining of PLT entries in function calls to functions that are
14680 not known to bind locally. It has no effect without @option{-mfdpic}.
14681
14682 @item -mmulticore
14683 @opindex mmulticore
14684 Build a standalone application for multicore Blackfin processors.
14685 This option causes proper start files and link scripts supporting
14686 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
14687 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
14688
14689 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14690 selects the one-application-per-core programming model. Without
14691 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14692 programming model is used. In this model, the main function of Core B
14693 should be named as @code{coreb_main}.
14694
14695 If this option is not used, the single-core application programming
14696 model is used.
14697
14698 @item -mcorea
14699 @opindex mcorea
14700 Build a standalone application for Core A of BF561 when using
14701 the one-application-per-core programming model. Proper start files
14702 and link scripts are used to support Core A, and the macro
14703 @code{__BFIN_COREA} is defined.
14704 This option can only be used in conjunction with @option{-mmulticore}.
14705
14706 @item -mcoreb
14707 @opindex mcoreb
14708 Build a standalone application for Core B of BF561 when using
14709 the one-application-per-core programming model. Proper start files
14710 and link scripts are used to support Core B, and the macro
14711 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14712 should be used instead of @code{main}.
14713 This option can only be used in conjunction with @option{-mmulticore}.
14714
14715 @item -msdram
14716 @opindex msdram
14717 Build a standalone application for SDRAM. Proper start files and
14718 link scripts are used to put the application into SDRAM, and the macro
14719 @code{__BFIN_SDRAM} is defined.
14720 The loader should initialize SDRAM before loading the application.
14721
14722 @item -micplb
14723 @opindex micplb
14724 Assume that ICPLBs are enabled at run time. This has an effect on certain
14725 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
14726 are enabled; for standalone applications the default is off.
14727 @end table
14728
14729 @node C6X Options
14730 @subsection C6X Options
14731 @cindex C6X Options
14732
14733 @table @gcctabopt
14734 @item -march=@var{name}
14735 @opindex march
14736 This specifies the name of the target architecture. GCC uses this
14737 name to determine what kind of instructions it can emit when generating
14738 assembly code. Permissible names are: @samp{c62x},
14739 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14740
14741 @item -mbig-endian
14742 @opindex mbig-endian
14743 Generate code for a big-endian target.
14744
14745 @item -mlittle-endian
14746 @opindex mlittle-endian
14747 Generate code for a little-endian target. This is the default.
14748
14749 @item -msim
14750 @opindex msim
14751 Choose startup files and linker script suitable for the simulator.
14752
14753 @item -msdata=default
14754 @opindex msdata=default
14755 Put small global and static data in the @code{.neardata} section,
14756 which is pointed to by register @code{B14}. Put small uninitialized
14757 global and static data in the @code{.bss} section, which is adjacent
14758 to the @code{.neardata} section. Put small read-only data into the
14759 @code{.rodata} section. The corresponding sections used for large
14760 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14761
14762 @item -msdata=all
14763 @opindex msdata=all
14764 Put all data, not just small objects, into the sections reserved for
14765 small data, and use addressing relative to the @code{B14} register to
14766 access them.
14767
14768 @item -msdata=none
14769 @opindex msdata=none
14770 Make no use of the sections reserved for small data, and use absolute
14771 addresses to access all data. Put all initialized global and static
14772 data in the @code{.fardata} section, and all uninitialized data in the
14773 @code{.far} section. Put all constant data into the @code{.const}
14774 section.
14775 @end table
14776
14777 @node CRIS Options
14778 @subsection CRIS Options
14779 @cindex CRIS Options
14780
14781 These options are defined specifically for the CRIS ports.
14782
14783 @table @gcctabopt
14784 @item -march=@var{architecture-type}
14785 @itemx -mcpu=@var{architecture-type}
14786 @opindex march
14787 @opindex mcpu
14788 Generate code for the specified architecture. The choices for
14789 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14790 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14791 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14792 @samp{v10}.
14793
14794 @item -mtune=@var{architecture-type}
14795 @opindex mtune
14796 Tune to @var{architecture-type} everything applicable about the generated
14797 code, except for the ABI and the set of available instructions. The
14798 choices for @var{architecture-type} are the same as for
14799 @option{-march=@var{architecture-type}}.
14800
14801 @item -mmax-stack-frame=@var{n}
14802 @opindex mmax-stack-frame
14803 Warn when the stack frame of a function exceeds @var{n} bytes.
14804
14805 @item -metrax4
14806 @itemx -metrax100
14807 @opindex metrax4
14808 @opindex metrax100
14809 The options @option{-metrax4} and @option{-metrax100} are synonyms for
14810 @option{-march=v3} and @option{-march=v8} respectively.
14811
14812 @item -mmul-bug-workaround
14813 @itemx -mno-mul-bug-workaround
14814 @opindex mmul-bug-workaround
14815 @opindex mno-mul-bug-workaround
14816 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14817 models where it applies. This option is active by default.
14818
14819 @item -mpdebug
14820 @opindex mpdebug
14821 Enable CRIS-specific verbose debug-related information in the assembly
14822 code. This option also has the effect of turning off the @samp{#NO_APP}
14823 formatted-code indicator to the assembler at the beginning of the
14824 assembly file.
14825
14826 @item -mcc-init
14827 @opindex mcc-init
14828 Do not use condition-code results from previous instruction; always emit
14829 compare and test instructions before use of condition codes.
14830
14831 @item -mno-side-effects
14832 @opindex mno-side-effects
14833 Do not emit instructions with side effects in addressing modes other than
14834 post-increment.
14835
14836 @item -mstack-align
14837 @itemx -mno-stack-align
14838 @itemx -mdata-align
14839 @itemx -mno-data-align
14840 @itemx -mconst-align
14841 @itemx -mno-const-align
14842 @opindex mstack-align
14843 @opindex mno-stack-align
14844 @opindex mdata-align
14845 @opindex mno-data-align
14846 @opindex mconst-align
14847 @opindex mno-const-align
14848 These options (@samp{no-} options) arrange (eliminate arrangements) for the
14849 stack frame, individual data and constants to be aligned for the maximum
14850 single data access size for the chosen CPU model. The default is to
14851 arrange for 32-bit alignment. ABI details such as structure layout are
14852 not affected by these options.
14853
14854 @item -m32-bit
14855 @itemx -m16-bit
14856 @itemx -m8-bit
14857 @opindex m32-bit
14858 @opindex m16-bit
14859 @opindex m8-bit
14860 Similar to the stack- data- and const-align options above, these options
14861 arrange for stack frame, writable data and constants to all be 32-bit,
14862 16-bit or 8-bit aligned. The default is 32-bit alignment.
14863
14864 @item -mno-prologue-epilogue
14865 @itemx -mprologue-epilogue
14866 @opindex mno-prologue-epilogue
14867 @opindex mprologue-epilogue
14868 With @option{-mno-prologue-epilogue}, the normal function prologue and
14869 epilogue which set up the stack frame are omitted and no return
14870 instructions or return sequences are generated in the code. Use this
14871 option only together with visual inspection of the compiled code: no
14872 warnings or errors are generated when call-saved registers must be saved,
14873 or storage for local variables needs to be allocated.
14874
14875 @item -mno-gotplt
14876 @itemx -mgotplt
14877 @opindex mno-gotplt
14878 @opindex mgotplt
14879 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14880 instruction sequences that load addresses for functions from the PLT part
14881 of the GOT rather than (traditional on other architectures) calls to the
14882 PLT@. The default is @option{-mgotplt}.
14883
14884 @item -melf
14885 @opindex melf
14886 Legacy no-op option only recognized with the cris-axis-elf and
14887 cris-axis-linux-gnu targets.
14888
14889 @item -mlinux
14890 @opindex mlinux
14891 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14892
14893 @item -sim
14894 @opindex sim
14895 This option, recognized for the cris-axis-elf, arranges
14896 to link with input-output functions from a simulator library. Code,
14897 initialized data and zero-initialized data are allocated consecutively.
14898
14899 @item -sim2
14900 @opindex sim2
14901 Like @option{-sim}, but pass linker options to locate initialized data at
14902 0x40000000 and zero-initialized data at 0x80000000.
14903 @end table
14904
14905 @node CR16 Options
14906 @subsection CR16 Options
14907 @cindex CR16 Options
14908
14909 These options are defined specifically for the CR16 ports.
14910
14911 @table @gcctabopt
14912
14913 @item -mmac
14914 @opindex mmac
14915 Enable the use of multiply-accumulate instructions. Disabled by default.
14916
14917 @item -mcr16cplus
14918 @itemx -mcr16c
14919 @opindex mcr16cplus
14920 @opindex mcr16c
14921 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
14922 is default.
14923
14924 @item -msim
14925 @opindex msim
14926 Links the library libsim.a which is in compatible with simulator. Applicable
14927 to ELF compiler only.
14928
14929 @item -mint32
14930 @opindex mint32
14931 Choose integer type as 32-bit wide.
14932
14933 @item -mbit-ops
14934 @opindex mbit-ops
14935 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14936
14937 @item -mdata-model=@var{model}
14938 @opindex mdata-model
14939 Choose a data model. The choices for @var{model} are @samp{near},
14940 @samp{far} or @samp{medium}. @samp{medium} is default.
14941 However, @samp{far} is not valid with @option{-mcr16c}, as the
14942 CR16C architecture does not support the far data model.
14943 @end table
14944
14945 @node Darwin Options
14946 @subsection Darwin Options
14947 @cindex Darwin options
14948
14949 These options are defined for all architectures running the Darwin operating
14950 system.
14951
14952 FSF GCC on Darwin does not create ``fat'' object files; it creates
14953 an object file for the single architecture that GCC was built to
14954 target. Apple's GCC on Darwin does create ``fat'' files if multiple
14955 @option{-arch} options are used; it does so by running the compiler or
14956 linker multiple times and joining the results together with
14957 @file{lipo}.
14958
14959 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14960 @samp{i686}) is determined by the flags that specify the ISA
14961 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
14962 @option{-force_cpusubtype_ALL} option can be used to override this.
14963
14964 The Darwin tools vary in their behavior when presented with an ISA
14965 mismatch. The assembler, @file{as}, only permits instructions to
14966 be used that are valid for the subtype of the file it is generating,
14967 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14968 The linker for shared libraries, @file{/usr/bin/libtool}, fails
14969 and prints an error if asked to create a shared library with a less
14970 restrictive subtype than its input files (for instance, trying to put
14971 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
14972 for executables, @command{ld}, quietly gives the executable the most
14973 restrictive subtype of any of its input files.
14974
14975 @table @gcctabopt
14976 @item -F@var{dir}
14977 @opindex F
14978 Add the framework directory @var{dir} to the head of the list of
14979 directories to be searched for header files. These directories are
14980 interleaved with those specified by @option{-I} options and are
14981 scanned in a left-to-right order.
14982
14983 A framework directory is a directory with frameworks in it. A
14984 framework is a directory with a @file{Headers} and/or
14985 @file{PrivateHeaders} directory contained directly in it that ends
14986 in @file{.framework}. The name of a framework is the name of this
14987 directory excluding the @file{.framework}. Headers associated with
14988 the framework are found in one of those two directories, with
14989 @file{Headers} being searched first. A subframework is a framework
14990 directory that is in a framework's @file{Frameworks} directory.
14991 Includes of subframework headers can only appear in a header of a
14992 framework that contains the subframework, or in a sibling subframework
14993 header. Two subframeworks are siblings if they occur in the same
14994 framework. A subframework should not have the same name as a
14995 framework; a warning is issued if this is violated. Currently a
14996 subframework cannot have subframeworks; in the future, the mechanism
14997 may be extended to support this. The standard frameworks can be found
14998 in @file{/System/Library/Frameworks} and
14999 @file{/Library/Frameworks}. An example include looks like
15000 @code{#include <Framework/header.h>}, where @file{Framework} denotes
15001 the name of the framework and @file{header.h} is found in the
15002 @file{PrivateHeaders} or @file{Headers} directory.
15003
15004 @item -iframework@var{dir}
15005 @opindex iframework
15006 Like @option{-F} except the directory is a treated as a system
15007 directory. The main difference between this @option{-iframework} and
15008 @option{-F} is that with @option{-iframework} the compiler does not
15009 warn about constructs contained within header files found via
15010 @var{dir}. This option is valid only for the C family of languages.
15011
15012 @item -gused
15013 @opindex gused
15014 Emit debugging information for symbols that are used. For stabs
15015 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
15016 This is by default ON@.
15017
15018 @item -gfull
15019 @opindex gfull
15020 Emit debugging information for all symbols and types.
15021
15022 @item -mmacosx-version-min=@var{version}
15023 The earliest version of MacOS X that this executable will run on
15024 is @var{version}. Typical values of @var{version} include @code{10.1},
15025 @code{10.2}, and @code{10.3.9}.
15026
15027 If the compiler was built to use the system's headers by default,
15028 then the default for this option is the system version on which the
15029 compiler is running, otherwise the default is to make choices that
15030 are compatible with as many systems and code bases as possible.
15031
15032 @item -mkernel
15033 @opindex mkernel
15034 Enable kernel development mode. The @option{-mkernel} option sets
15035 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
15036 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
15037 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
15038 applicable. This mode also sets @option{-mno-altivec},
15039 @option{-msoft-float}, @option{-fno-builtin} and
15040 @option{-mlong-branch} for PowerPC targets.
15041
15042 @item -mone-byte-bool
15043 @opindex mone-byte-bool
15044 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
15045 By default @code{sizeof(bool)} is @code{4} when compiling for
15046 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
15047 option has no effect on x86.
15048
15049 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
15050 to generate code that is not binary compatible with code generated
15051 without that switch. Using this switch may require recompiling all
15052 other modules in a program, including system libraries. Use this
15053 switch to conform to a non-default data model.
15054
15055 @item -mfix-and-continue
15056 @itemx -ffix-and-continue
15057 @itemx -findirect-data
15058 @opindex mfix-and-continue
15059 @opindex ffix-and-continue
15060 @opindex findirect-data
15061 Generate code suitable for fast turnaround development, such as to
15062 allow GDB to dynamically load @file{.o} files into already-running
15063 programs. @option{-findirect-data} and @option{-ffix-and-continue}
15064 are provided for backwards compatibility.
15065
15066 @item -all_load
15067 @opindex all_load
15068 Loads all members of static archive libraries.
15069 See man ld(1) for more information.
15070
15071 @item -arch_errors_fatal
15072 @opindex arch_errors_fatal
15073 Cause the errors having to do with files that have the wrong architecture
15074 to be fatal.
15075
15076 @item -bind_at_load
15077 @opindex bind_at_load
15078 Causes the output file to be marked such that the dynamic linker will
15079 bind all undefined references when the file is loaded or launched.
15080
15081 @item -bundle
15082 @opindex bundle
15083 Produce a Mach-o bundle format file.
15084 See man ld(1) for more information.
15085
15086 @item -bundle_loader @var{executable}
15087 @opindex bundle_loader
15088 This option specifies the @var{executable} that will load the build
15089 output file being linked. See man ld(1) for more information.
15090
15091 @item -dynamiclib
15092 @opindex dynamiclib
15093 When passed this option, GCC produces a dynamic library instead of
15094 an executable when linking, using the Darwin @file{libtool} command.
15095
15096 @item -force_cpusubtype_ALL
15097 @opindex force_cpusubtype_ALL
15098 This causes GCC's output file to have the @samp{ALL} subtype, instead of
15099 one controlled by the @option{-mcpu} or @option{-march} option.
15100
15101 @item -allowable_client @var{client_name}
15102 @itemx -client_name
15103 @itemx -compatibility_version
15104 @itemx -current_version
15105 @itemx -dead_strip
15106 @itemx -dependency-file
15107 @itemx -dylib_file
15108 @itemx -dylinker_install_name
15109 @itemx -dynamic
15110 @itemx -exported_symbols_list
15111 @itemx -filelist
15112 @need 800
15113 @itemx -flat_namespace
15114 @itemx -force_flat_namespace
15115 @itemx -headerpad_max_install_names
15116 @itemx -image_base
15117 @itemx -init
15118 @itemx -install_name
15119 @itemx -keep_private_externs
15120 @itemx -multi_module
15121 @itemx -multiply_defined
15122 @itemx -multiply_defined_unused
15123 @need 800
15124 @itemx -noall_load
15125 @itemx -no_dead_strip_inits_and_terms
15126 @itemx -nofixprebinding
15127 @itemx -nomultidefs
15128 @itemx -noprebind
15129 @itemx -noseglinkedit
15130 @itemx -pagezero_size
15131 @itemx -prebind
15132 @itemx -prebind_all_twolevel_modules
15133 @itemx -private_bundle
15134 @need 800
15135 @itemx -read_only_relocs
15136 @itemx -sectalign
15137 @itemx -sectobjectsymbols
15138 @itemx -whyload
15139 @itemx -seg1addr
15140 @itemx -sectcreate
15141 @itemx -sectobjectsymbols
15142 @itemx -sectorder
15143 @itemx -segaddr
15144 @itemx -segs_read_only_addr
15145 @need 800
15146 @itemx -segs_read_write_addr
15147 @itemx -seg_addr_table
15148 @itemx -seg_addr_table_filename
15149 @itemx -seglinkedit
15150 @itemx -segprot
15151 @itemx -segs_read_only_addr
15152 @itemx -segs_read_write_addr
15153 @itemx -single_module
15154 @itemx -static
15155 @itemx -sub_library
15156 @need 800
15157 @itemx -sub_umbrella
15158 @itemx -twolevel_namespace
15159 @itemx -umbrella
15160 @itemx -undefined
15161 @itemx -unexported_symbols_list
15162 @itemx -weak_reference_mismatches
15163 @itemx -whatsloaded
15164 @opindex allowable_client
15165 @opindex client_name
15166 @opindex compatibility_version
15167 @opindex current_version
15168 @opindex dead_strip
15169 @opindex dependency-file
15170 @opindex dylib_file
15171 @opindex dylinker_install_name
15172 @opindex dynamic
15173 @opindex exported_symbols_list
15174 @opindex filelist
15175 @opindex flat_namespace
15176 @opindex force_flat_namespace
15177 @opindex headerpad_max_install_names
15178 @opindex image_base
15179 @opindex init
15180 @opindex install_name
15181 @opindex keep_private_externs
15182 @opindex multi_module
15183 @opindex multiply_defined
15184 @opindex multiply_defined_unused
15185 @opindex noall_load
15186 @opindex no_dead_strip_inits_and_terms
15187 @opindex nofixprebinding
15188 @opindex nomultidefs
15189 @opindex noprebind
15190 @opindex noseglinkedit
15191 @opindex pagezero_size
15192 @opindex prebind
15193 @opindex prebind_all_twolevel_modules
15194 @opindex private_bundle
15195 @opindex read_only_relocs
15196 @opindex sectalign
15197 @opindex sectobjectsymbols
15198 @opindex whyload
15199 @opindex seg1addr
15200 @opindex sectcreate
15201 @opindex sectobjectsymbols
15202 @opindex sectorder
15203 @opindex segaddr
15204 @opindex segs_read_only_addr
15205 @opindex segs_read_write_addr
15206 @opindex seg_addr_table
15207 @opindex seg_addr_table_filename
15208 @opindex seglinkedit
15209 @opindex segprot
15210 @opindex segs_read_only_addr
15211 @opindex segs_read_write_addr
15212 @opindex single_module
15213 @opindex static
15214 @opindex sub_library
15215 @opindex sub_umbrella
15216 @opindex twolevel_namespace
15217 @opindex umbrella
15218 @opindex undefined
15219 @opindex unexported_symbols_list
15220 @opindex weak_reference_mismatches
15221 @opindex whatsloaded
15222 These options are passed to the Darwin linker. The Darwin linker man page
15223 describes them in detail.
15224 @end table
15225
15226 @node DEC Alpha Options
15227 @subsection DEC Alpha Options
15228
15229 These @samp{-m} options are defined for the DEC Alpha implementations:
15230
15231 @table @gcctabopt
15232 @item -mno-soft-float
15233 @itemx -msoft-float
15234 @opindex mno-soft-float
15235 @opindex msoft-float
15236 Use (do not use) the hardware floating-point instructions for
15237 floating-point operations. When @option{-msoft-float} is specified,
15238 functions in @file{libgcc.a} are used to perform floating-point
15239 operations. Unless they are replaced by routines that emulate the
15240 floating-point operations, or compiled in such a way as to call such
15241 emulations routines, these routines issue floating-point
15242 operations. If you are compiling for an Alpha without floating-point
15243 operations, you must ensure that the library is built so as not to call
15244 them.
15245
15246 Note that Alpha implementations without floating-point operations are
15247 required to have floating-point registers.
15248
15249 @item -mfp-reg
15250 @itemx -mno-fp-regs
15251 @opindex mfp-reg
15252 @opindex mno-fp-regs
15253 Generate code that uses (does not use) the floating-point register set.
15254 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
15255 register set is not used, floating-point operands are passed in integer
15256 registers as if they were integers and floating-point results are passed
15257 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
15258 so any function with a floating-point argument or return value called by code
15259 compiled with @option{-mno-fp-regs} must also be compiled with that
15260 option.
15261
15262 A typical use of this option is building a kernel that does not use,
15263 and hence need not save and restore, any floating-point registers.
15264
15265 @item -mieee
15266 @opindex mieee
15267 The Alpha architecture implements floating-point hardware optimized for
15268 maximum performance. It is mostly compliant with the IEEE floating-point
15269 standard. However, for full compliance, software assistance is
15270 required. This option generates code fully IEEE-compliant code
15271 @emph{except} that the @var{inexact-flag} is not maintained (see below).
15272 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
15273 defined during compilation. The resulting code is less efficient but is
15274 able to correctly support denormalized numbers and exceptional IEEE
15275 values such as not-a-number and plus/minus infinity. Other Alpha
15276 compilers call this option @option{-ieee_with_no_inexact}.
15277
15278 @item -mieee-with-inexact
15279 @opindex mieee-with-inexact
15280 This is like @option{-mieee} except the generated code also maintains
15281 the IEEE @var{inexact-flag}. Turning on this option causes the
15282 generated code to implement fully-compliant IEEE math. In addition to
15283 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
15284 macro. On some Alpha implementations the resulting code may execute
15285 significantly slower than the code generated by default. Since there is
15286 very little code that depends on the @var{inexact-flag}, you should
15287 normally not specify this option. Other Alpha compilers call this
15288 option @option{-ieee_with_inexact}.
15289
15290 @item -mfp-trap-mode=@var{trap-mode}
15291 @opindex mfp-trap-mode
15292 This option controls what floating-point related traps are enabled.
15293 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
15294 The trap mode can be set to one of four values:
15295
15296 @table @samp
15297 @item n
15298 This is the default (normal) setting. The only traps that are enabled
15299 are the ones that cannot be disabled in software (e.g., division by zero
15300 trap).
15301
15302 @item u
15303 In addition to the traps enabled by @samp{n}, underflow traps are enabled
15304 as well.
15305
15306 @item su
15307 Like @samp{u}, but the instructions are marked to be safe for software
15308 completion (see Alpha architecture manual for details).
15309
15310 @item sui
15311 Like @samp{su}, but inexact traps are enabled as well.
15312 @end table
15313
15314 @item -mfp-rounding-mode=@var{rounding-mode}
15315 @opindex mfp-rounding-mode
15316 Selects the IEEE rounding mode. Other Alpha compilers call this option
15317 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
15318 of:
15319
15320 @table @samp
15321 @item n
15322 Normal IEEE rounding mode. Floating-point numbers are rounded towards
15323 the nearest machine number or towards the even machine number in case
15324 of a tie.
15325
15326 @item m
15327 Round towards minus infinity.
15328
15329 @item c
15330 Chopped rounding mode. Floating-point numbers are rounded towards zero.
15331
15332 @item d
15333 Dynamic rounding mode. A field in the floating-point control register
15334 (@var{fpcr}, see Alpha architecture reference manual) controls the
15335 rounding mode in effect. The C library initializes this register for
15336 rounding towards plus infinity. Thus, unless your program modifies the
15337 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
15338 @end table
15339
15340 @item -mtrap-precision=@var{trap-precision}
15341 @opindex mtrap-precision
15342 In the Alpha architecture, floating-point traps are imprecise. This
15343 means without software assistance it is impossible to recover from a
15344 floating trap and program execution normally needs to be terminated.
15345 GCC can generate code that can assist operating system trap handlers
15346 in determining the exact location that caused a floating-point trap.
15347 Depending on the requirements of an application, different levels of
15348 precisions can be selected:
15349
15350 @table @samp
15351 @item p
15352 Program precision. This option is the default and means a trap handler
15353 can only identify which program caused a floating-point exception.
15354
15355 @item f
15356 Function precision. The trap handler can determine the function that
15357 caused a floating-point exception.
15358
15359 @item i
15360 Instruction precision. The trap handler can determine the exact
15361 instruction that caused a floating-point exception.
15362 @end table
15363
15364 Other Alpha compilers provide the equivalent options called
15365 @option{-scope_safe} and @option{-resumption_safe}.
15366
15367 @item -mieee-conformant
15368 @opindex mieee-conformant
15369 This option marks the generated code as IEEE conformant. You must not
15370 use this option unless you also specify @option{-mtrap-precision=i} and either
15371 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
15372 is to emit the line @samp{.eflag 48} in the function prologue of the
15373 generated assembly file.
15374
15375 @item -mbuild-constants
15376 @opindex mbuild-constants
15377 Normally GCC examines a 32- or 64-bit integer constant to
15378 see if it can construct it from smaller constants in two or three
15379 instructions. If it cannot, it outputs the constant as a literal and
15380 generates code to load it from the data segment at run time.
15381
15382 Use this option to require GCC to construct @emph{all} integer constants
15383 using code, even if it takes more instructions (the maximum is six).
15384
15385 You typically use this option to build a shared library dynamic
15386 loader. Itself a shared library, it must relocate itself in memory
15387 before it can find the variables and constants in its own data segment.
15388
15389 @item -mbwx
15390 @itemx -mno-bwx
15391 @itemx -mcix
15392 @itemx -mno-cix
15393 @itemx -mfix
15394 @itemx -mno-fix
15395 @itemx -mmax
15396 @itemx -mno-max
15397 @opindex mbwx
15398 @opindex mno-bwx
15399 @opindex mcix
15400 @opindex mno-cix
15401 @opindex mfix
15402 @opindex mno-fix
15403 @opindex mmax
15404 @opindex mno-max
15405 Indicate whether GCC should generate code to use the optional BWX,
15406 CIX, FIX and MAX instruction sets. The default is to use the instruction
15407 sets supported by the CPU type specified via @option{-mcpu=} option or that
15408 of the CPU on which GCC was built if none is specified.
15409
15410 @item -mfloat-vax
15411 @itemx -mfloat-ieee
15412 @opindex mfloat-vax
15413 @opindex mfloat-ieee
15414 Generate code that uses (does not use) VAX F and G floating-point
15415 arithmetic instead of IEEE single and double precision.
15416
15417 @item -mexplicit-relocs
15418 @itemx -mno-explicit-relocs
15419 @opindex mexplicit-relocs
15420 @opindex mno-explicit-relocs
15421 Older Alpha assemblers provided no way to generate symbol relocations
15422 except via assembler macros. Use of these macros does not allow
15423 optimal instruction scheduling. GNU binutils as of version 2.12
15424 supports a new syntax that allows the compiler to explicitly mark
15425 which relocations should apply to which instructions. This option
15426 is mostly useful for debugging, as GCC detects the capabilities of
15427 the assembler when it is built and sets the default accordingly.
15428
15429 @item -msmall-data
15430 @itemx -mlarge-data
15431 @opindex msmall-data
15432 @opindex mlarge-data
15433 When @option{-mexplicit-relocs} is in effect, static data is
15434 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
15435 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
15436 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
15437 16-bit relocations off of the @code{$gp} register. This limits the
15438 size of the small data area to 64KB, but allows the variables to be
15439 directly accessed via a single instruction.
15440
15441 The default is @option{-mlarge-data}. With this option the data area
15442 is limited to just below 2GB@. Programs that require more than 2GB of
15443 data must use @code{malloc} or @code{mmap} to allocate the data in the
15444 heap instead of in the program's data segment.
15445
15446 When generating code for shared libraries, @option{-fpic} implies
15447 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
15448
15449 @item -msmall-text
15450 @itemx -mlarge-text
15451 @opindex msmall-text
15452 @opindex mlarge-text
15453 When @option{-msmall-text} is used, the compiler assumes that the
15454 code of the entire program (or shared library) fits in 4MB, and is
15455 thus reachable with a branch instruction. When @option{-msmall-data}
15456 is used, the compiler can assume that all local symbols share the
15457 same @code{$gp} value, and thus reduce the number of instructions
15458 required for a function call from 4 to 1.
15459
15460 The default is @option{-mlarge-text}.
15461
15462 @item -mcpu=@var{cpu_type}
15463 @opindex mcpu
15464 Set the instruction set and instruction scheduling parameters for
15465 machine type @var{cpu_type}. You can specify either the @samp{EV}
15466 style name or the corresponding chip number. GCC supports scheduling
15467 parameters for the EV4, EV5 and EV6 family of processors and
15468 chooses the default values for the instruction set from the processor
15469 you specify. If you do not specify a processor type, GCC defaults
15470 to the processor on which the compiler was built.
15471
15472 Supported values for @var{cpu_type} are
15473
15474 @table @samp
15475 @item ev4
15476 @itemx ev45
15477 @itemx 21064
15478 Schedules as an EV4 and has no instruction set extensions.
15479
15480 @item ev5
15481 @itemx 21164
15482 Schedules as an EV5 and has no instruction set extensions.
15483
15484 @item ev56
15485 @itemx 21164a
15486 Schedules as an EV5 and supports the BWX extension.
15487
15488 @item pca56
15489 @itemx 21164pc
15490 @itemx 21164PC
15491 Schedules as an EV5 and supports the BWX and MAX extensions.
15492
15493 @item ev6
15494 @itemx 21264
15495 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
15496
15497 @item ev67
15498 @itemx 21264a
15499 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
15500 @end table
15501
15502 Native toolchains also support the value @samp{native},
15503 which selects the best architecture option for the host processor.
15504 @option{-mcpu=native} has no effect if GCC does not recognize
15505 the processor.
15506
15507 @item -mtune=@var{cpu_type}
15508 @opindex mtune
15509 Set only the instruction scheduling parameters for machine type
15510 @var{cpu_type}. The instruction set is not changed.
15511
15512 Native toolchains also support the value @samp{native},
15513 which selects the best architecture option for the host processor.
15514 @option{-mtune=native} has no effect if GCC does not recognize
15515 the processor.
15516
15517 @item -mmemory-latency=@var{time}
15518 @opindex mmemory-latency
15519 Sets the latency the scheduler should assume for typical memory
15520 references as seen by the application. This number is highly
15521 dependent on the memory access patterns used by the application
15522 and the size of the external cache on the machine.
15523
15524 Valid options for @var{time} are
15525
15526 @table @samp
15527 @item @var{number}
15528 A decimal number representing clock cycles.
15529
15530 @item L1
15531 @itemx L2
15532 @itemx L3
15533 @itemx main
15534 The compiler contains estimates of the number of clock cycles for
15535 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
15536 (also called Dcache, Scache, and Bcache), as well as to main memory.
15537 Note that L3 is only valid for EV5.
15538
15539 @end table
15540 @end table
15541
15542 @node FR30 Options
15543 @subsection FR30 Options
15544 @cindex FR30 Options
15545
15546 These options are defined specifically for the FR30 port.
15547
15548 @table @gcctabopt
15549
15550 @item -msmall-model
15551 @opindex msmall-model
15552 Use the small address space model. This can produce smaller code, but
15553 it does assume that all symbolic values and addresses fit into a
15554 20-bit range.
15555
15556 @item -mno-lsim
15557 @opindex mno-lsim
15558 Assume that runtime support has been provided and so there is no need
15559 to include the simulator library (@file{libsim.a}) on the linker
15560 command line.
15561
15562 @end table
15563
15564 @node FT32 Options
15565 @subsection FT32 Options
15566 @cindex FT32 Options
15567
15568 These options are defined specifically for the FT32 port.
15569
15570 @table @gcctabopt
15571
15572 @item -msim
15573 @opindex msim
15574 Specifies that the program will be run on the simulator. This causes
15575 an alternate runtime startup and library to be linked.
15576 You must not use this option when generating programs that will run on
15577 real hardware; you must provide your own runtime library for whatever
15578 I/O functions are needed.
15579
15580 @item -mlra
15581 @opindex mlra
15582 Enable Local Register Allocation. This is still experimental for FT32,
15583 so by default the compiler uses standard reload.
15584
15585 @end table
15586
15587 @node FRV Options
15588 @subsection FRV Options
15589 @cindex FRV Options
15590
15591 @table @gcctabopt
15592 @item -mgpr-32
15593 @opindex mgpr-32
15594
15595 Only use the first 32 general-purpose registers.
15596
15597 @item -mgpr-64
15598 @opindex mgpr-64
15599
15600 Use all 64 general-purpose registers.
15601
15602 @item -mfpr-32
15603 @opindex mfpr-32
15604
15605 Use only the first 32 floating-point registers.
15606
15607 @item -mfpr-64
15608 @opindex mfpr-64
15609
15610 Use all 64 floating-point registers.
15611
15612 @item -mhard-float
15613 @opindex mhard-float
15614
15615 Use hardware instructions for floating-point operations.
15616
15617 @item -msoft-float
15618 @opindex msoft-float
15619
15620 Use library routines for floating-point operations.
15621
15622 @item -malloc-cc
15623 @opindex malloc-cc
15624
15625 Dynamically allocate condition code registers.
15626
15627 @item -mfixed-cc
15628 @opindex mfixed-cc
15629
15630 Do not try to dynamically allocate condition code registers, only
15631 use @code{icc0} and @code{fcc0}.
15632
15633 @item -mdword
15634 @opindex mdword
15635
15636 Change ABI to use double word insns.
15637
15638 @item -mno-dword
15639 @opindex mno-dword
15640
15641 Do not use double word instructions.
15642
15643 @item -mdouble
15644 @opindex mdouble
15645
15646 Use floating-point double instructions.
15647
15648 @item -mno-double
15649 @opindex mno-double
15650
15651 Do not use floating-point double instructions.
15652
15653 @item -mmedia
15654 @opindex mmedia
15655
15656 Use media instructions.
15657
15658 @item -mno-media
15659 @opindex mno-media
15660
15661 Do not use media instructions.
15662
15663 @item -mmuladd
15664 @opindex mmuladd
15665
15666 Use multiply and add/subtract instructions.
15667
15668 @item -mno-muladd
15669 @opindex mno-muladd
15670
15671 Do not use multiply and add/subtract instructions.
15672
15673 @item -mfdpic
15674 @opindex mfdpic
15675
15676 Select the FDPIC ABI, which uses function descriptors to represent
15677 pointers to functions. Without any PIC/PIE-related options, it
15678 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
15679 assumes GOT entries and small data are within a 12-bit range from the
15680 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15681 are computed with 32 bits.
15682 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15683
15684 @item -minline-plt
15685 @opindex minline-plt
15686
15687 Enable inlining of PLT entries in function calls to functions that are
15688 not known to bind locally. It has no effect without @option{-mfdpic}.
15689 It's enabled by default if optimizing for speed and compiling for
15690 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15691 optimization option such as @option{-O3} or above is present in the
15692 command line.
15693
15694 @item -mTLS
15695 @opindex mTLS
15696
15697 Assume a large TLS segment when generating thread-local code.
15698
15699 @item -mtls
15700 @opindex mtls
15701
15702 Do not assume a large TLS segment when generating thread-local code.
15703
15704 @item -mgprel-ro
15705 @opindex mgprel-ro
15706
15707 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15708 that is known to be in read-only sections. It's enabled by default,
15709 except for @option{-fpic} or @option{-fpie}: even though it may help
15710 make the global offset table smaller, it trades 1 instruction for 4.
15711 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15712 one of which may be shared by multiple symbols, and it avoids the need
15713 for a GOT entry for the referenced symbol, so it's more likely to be a
15714 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
15715
15716 @item -multilib-library-pic
15717 @opindex multilib-library-pic
15718
15719 Link with the (library, not FD) pic libraries. It's implied by
15720 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
15721 @option{-fpic} without @option{-mfdpic}. You should never have to use
15722 it explicitly.
15723
15724 @item -mlinked-fp
15725 @opindex mlinked-fp
15726
15727 Follow the EABI requirement of always creating a frame pointer whenever
15728 a stack frame is allocated. This option is enabled by default and can
15729 be disabled with @option{-mno-linked-fp}.
15730
15731 @item -mlong-calls
15732 @opindex mlong-calls
15733
15734 Use indirect addressing to call functions outside the current
15735 compilation unit. This allows the functions to be placed anywhere
15736 within the 32-bit address space.
15737
15738 @item -malign-labels
15739 @opindex malign-labels
15740
15741 Try to align labels to an 8-byte boundary by inserting NOPs into the
15742 previous packet. This option only has an effect when VLIW packing
15743 is enabled. It doesn't create new packets; it merely adds NOPs to
15744 existing ones.
15745
15746 @item -mlibrary-pic
15747 @opindex mlibrary-pic
15748
15749 Generate position-independent EABI code.
15750
15751 @item -macc-4
15752 @opindex macc-4
15753
15754 Use only the first four media accumulator registers.
15755
15756 @item -macc-8
15757 @opindex macc-8
15758
15759 Use all eight media accumulator registers.
15760
15761 @item -mpack
15762 @opindex mpack
15763
15764 Pack VLIW instructions.
15765
15766 @item -mno-pack
15767 @opindex mno-pack
15768
15769 Do not pack VLIW instructions.
15770
15771 @item -mno-eflags
15772 @opindex mno-eflags
15773
15774 Do not mark ABI switches in e_flags.
15775
15776 @item -mcond-move
15777 @opindex mcond-move
15778
15779 Enable the use of conditional-move instructions (default).
15780
15781 This switch is mainly for debugging the compiler and will likely be removed
15782 in a future version.
15783
15784 @item -mno-cond-move
15785 @opindex mno-cond-move
15786
15787 Disable the use of conditional-move instructions.
15788
15789 This switch is mainly for debugging the compiler and will likely be removed
15790 in a future version.
15791
15792 @item -mscc
15793 @opindex mscc
15794
15795 Enable the use of conditional set instructions (default).
15796
15797 This switch is mainly for debugging the compiler and will likely be removed
15798 in a future version.
15799
15800 @item -mno-scc
15801 @opindex mno-scc
15802
15803 Disable the use of conditional set instructions.
15804
15805 This switch is mainly for debugging the compiler and will likely be removed
15806 in a future version.
15807
15808 @item -mcond-exec
15809 @opindex mcond-exec
15810
15811 Enable the use of conditional execution (default).
15812
15813 This switch is mainly for debugging the compiler and will likely be removed
15814 in a future version.
15815
15816 @item -mno-cond-exec
15817 @opindex mno-cond-exec
15818
15819 Disable the use of conditional execution.
15820
15821 This switch is mainly for debugging the compiler and will likely be removed
15822 in a future version.
15823
15824 @item -mvliw-branch
15825 @opindex mvliw-branch
15826
15827 Run a pass to pack branches into VLIW instructions (default).
15828
15829 This switch is mainly for debugging the compiler and will likely be removed
15830 in a future version.
15831
15832 @item -mno-vliw-branch
15833 @opindex mno-vliw-branch
15834
15835 Do not run a pass to pack branches into VLIW instructions.
15836
15837 This switch is mainly for debugging the compiler and will likely be removed
15838 in a future version.
15839
15840 @item -mmulti-cond-exec
15841 @opindex mmulti-cond-exec
15842
15843 Enable optimization of @code{&&} and @code{||} in conditional execution
15844 (default).
15845
15846 This switch is mainly for debugging the compiler and will likely be removed
15847 in a future version.
15848
15849 @item -mno-multi-cond-exec
15850 @opindex mno-multi-cond-exec
15851
15852 Disable optimization of @code{&&} and @code{||} in conditional execution.
15853
15854 This switch is mainly for debugging the compiler and will likely be removed
15855 in a future version.
15856
15857 @item -mnested-cond-exec
15858 @opindex mnested-cond-exec
15859
15860 Enable nested conditional execution optimizations (default).
15861
15862 This switch is mainly for debugging the compiler and will likely be removed
15863 in a future version.
15864
15865 @item -mno-nested-cond-exec
15866 @opindex mno-nested-cond-exec
15867
15868 Disable nested conditional execution optimizations.
15869
15870 This switch is mainly for debugging the compiler and will likely be removed
15871 in a future version.
15872
15873 @item -moptimize-membar
15874 @opindex moptimize-membar
15875
15876 This switch removes redundant @code{membar} instructions from the
15877 compiler-generated code. It is enabled by default.
15878
15879 @item -mno-optimize-membar
15880 @opindex mno-optimize-membar
15881
15882 This switch disables the automatic removal of redundant @code{membar}
15883 instructions from the generated code.
15884
15885 @item -mtomcat-stats
15886 @opindex mtomcat-stats
15887
15888 Cause gas to print out tomcat statistics.
15889
15890 @item -mcpu=@var{cpu}
15891 @opindex mcpu
15892
15893 Select the processor type for which to generate code. Possible values are
15894 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15895 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15896
15897 @end table
15898
15899 @node GNU/Linux Options
15900 @subsection GNU/Linux Options
15901
15902 These @samp{-m} options are defined for GNU/Linux targets:
15903
15904 @table @gcctabopt
15905 @item -mglibc
15906 @opindex mglibc
15907 Use the GNU C library. This is the default except
15908 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
15909 @samp{*-*-linux-*android*} targets.
15910
15911 @item -muclibc
15912 @opindex muclibc
15913 Use uClibc C library. This is the default on
15914 @samp{*-*-linux-*uclibc*} targets.
15915
15916 @item -mmusl
15917 @opindex mmusl
15918 Use the musl C library. This is the default on
15919 @samp{*-*-linux-*musl*} targets.
15920
15921 @item -mbionic
15922 @opindex mbionic
15923 Use Bionic C library. This is the default on
15924 @samp{*-*-linux-*android*} targets.
15925
15926 @item -mandroid
15927 @opindex mandroid
15928 Compile code compatible with Android platform. This is the default on
15929 @samp{*-*-linux-*android*} targets.
15930
15931 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15932 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
15933 this option makes the GCC driver pass Android-specific options to the linker.
15934 Finally, this option causes the preprocessor macro @code{__ANDROID__}
15935 to be defined.
15936
15937 @item -tno-android-cc
15938 @opindex tno-android-cc
15939 Disable compilation effects of @option{-mandroid}, i.e., do not enable
15940 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15941 @option{-fno-rtti} by default.
15942
15943 @item -tno-android-ld
15944 @opindex tno-android-ld
15945 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15946 linking options to the linker.
15947
15948 @end table
15949
15950 @node H8/300 Options
15951 @subsection H8/300 Options
15952
15953 These @samp{-m} options are defined for the H8/300 implementations:
15954
15955 @table @gcctabopt
15956 @item -mrelax
15957 @opindex mrelax
15958 Shorten some address references at link time, when possible; uses the
15959 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
15960 ld, Using ld}, for a fuller description.
15961
15962 @item -mh
15963 @opindex mh
15964 Generate code for the H8/300H@.
15965
15966 @item -ms
15967 @opindex ms
15968 Generate code for the H8S@.
15969
15970 @item -mn
15971 @opindex mn
15972 Generate code for the H8S and H8/300H in the normal mode. This switch
15973 must be used either with @option{-mh} or @option{-ms}.
15974
15975 @item -ms2600
15976 @opindex ms2600
15977 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
15978
15979 @item -mexr
15980 @opindex mexr
15981 Extended registers are stored on stack before execution of function
15982 with monitor attribute. Default option is @option{-mexr}.
15983 This option is valid only for H8S targets.
15984
15985 @item -mno-exr
15986 @opindex mno-exr
15987 Extended registers are not stored on stack before execution of function
15988 with monitor attribute. Default option is @option{-mno-exr}.
15989 This option is valid only for H8S targets.
15990
15991 @item -mint32
15992 @opindex mint32
15993 Make @code{int} data 32 bits by default.
15994
15995 @item -malign-300
15996 @opindex malign-300
15997 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15998 The default for the H8/300H and H8S is to align longs and floats on
15999 4-byte boundaries.
16000 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
16001 This option has no effect on the H8/300.
16002 @end table
16003
16004 @node HPPA Options
16005 @subsection HPPA Options
16006 @cindex HPPA Options
16007
16008 These @samp{-m} options are defined for the HPPA family of computers:
16009
16010 @table @gcctabopt
16011 @item -march=@var{architecture-type}
16012 @opindex march
16013 Generate code for the specified architecture. The choices for
16014 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
16015 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
16016 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
16017 architecture option for your machine. Code compiled for lower numbered
16018 architectures runs on higher numbered architectures, but not the
16019 other way around.
16020
16021 @item -mpa-risc-1-0
16022 @itemx -mpa-risc-1-1
16023 @itemx -mpa-risc-2-0
16024 @opindex mpa-risc-1-0
16025 @opindex mpa-risc-1-1
16026 @opindex mpa-risc-2-0
16027 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
16028
16029 @item -mjump-in-delay
16030 @opindex mjump-in-delay
16031 This option is ignored and provided for compatibility purposes only.
16032
16033 @item -mdisable-fpregs
16034 @opindex mdisable-fpregs
16035 Prevent floating-point registers from being used in any manner. This is
16036 necessary for compiling kernels that perform lazy context switching of
16037 floating-point registers. If you use this option and attempt to perform
16038 floating-point operations, the compiler aborts.
16039
16040 @item -mdisable-indexing
16041 @opindex mdisable-indexing
16042 Prevent the compiler from using indexing address modes. This avoids some
16043 rather obscure problems when compiling MIG generated code under MACH@.
16044
16045 @item -mno-space-regs
16046 @opindex mno-space-regs
16047 Generate code that assumes the target has no space registers. This allows
16048 GCC to generate faster indirect calls and use unscaled index address modes.
16049
16050 Such code is suitable for level 0 PA systems and kernels.
16051
16052 @item -mfast-indirect-calls
16053 @opindex mfast-indirect-calls
16054 Generate code that assumes calls never cross space boundaries. This
16055 allows GCC to emit code that performs faster indirect calls.
16056
16057 This option does not work in the presence of shared libraries or nested
16058 functions.
16059
16060 @item -mfixed-range=@var{register-range}
16061 @opindex mfixed-range
16062 Generate code treating the given register range as fixed registers.
16063 A fixed register is one that the register allocator cannot use. This is
16064 useful when compiling kernel code. A register range is specified as
16065 two registers separated by a dash. Multiple register ranges can be
16066 specified separated by a comma.
16067
16068 @item -mlong-load-store
16069 @opindex mlong-load-store
16070 Generate 3-instruction load and store sequences as sometimes required by
16071 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
16072 the HP compilers.
16073
16074 @item -mportable-runtime
16075 @opindex mportable-runtime
16076 Use the portable calling conventions proposed by HP for ELF systems.
16077
16078 @item -mgas
16079 @opindex mgas
16080 Enable the use of assembler directives only GAS understands.
16081
16082 @item -mschedule=@var{cpu-type}
16083 @opindex mschedule
16084 Schedule code according to the constraints for the machine type
16085 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
16086 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
16087 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
16088 proper scheduling option for your machine. The default scheduling is
16089 @samp{8000}.
16090
16091 @item -mlinker-opt
16092 @opindex mlinker-opt
16093 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
16094 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
16095 linkers in which they give bogus error messages when linking some programs.
16096
16097 @item -msoft-float
16098 @opindex msoft-float
16099 Generate output containing library calls for floating point.
16100 @strong{Warning:} the requisite libraries are not available for all HPPA
16101 targets. Normally the facilities of the machine's usual C compiler are
16102 used, but this cannot be done directly in cross-compilation. You must make
16103 your own arrangements to provide suitable library functions for
16104 cross-compilation.
16105
16106 @option{-msoft-float} changes the calling convention in the output file;
16107 therefore, it is only useful if you compile @emph{all} of a program with
16108 this option. In particular, you need to compile @file{libgcc.a}, the
16109 library that comes with GCC, with @option{-msoft-float} in order for
16110 this to work.
16111
16112 @item -msio
16113 @opindex msio
16114 Generate the predefine, @code{_SIO}, for server IO@. The default is
16115 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
16116 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
16117 options are available under HP-UX and HI-UX@.
16118
16119 @item -mgnu-ld
16120 @opindex mgnu-ld
16121 Use options specific to GNU @command{ld}.
16122 This passes @option{-shared} to @command{ld} when
16123 building a shared library. It is the default when GCC is configured,
16124 explicitly or implicitly, with the GNU linker. This option does not
16125 affect which @command{ld} is called; it only changes what parameters
16126 are passed to that @command{ld}.
16127 The @command{ld} that is called is determined by the
16128 @option{--with-ld} configure option, GCC's program search path, and
16129 finally by the user's @env{PATH}. The linker used by GCC can be printed
16130 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
16131 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
16132
16133 @item -mhp-ld
16134 @opindex mhp-ld
16135 Use options specific to HP @command{ld}.
16136 This passes @option{-b} to @command{ld} when building
16137 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
16138 links. It is the default when GCC is configured, explicitly or
16139 implicitly, with the HP linker. This option does not affect
16140 which @command{ld} is called; it only changes what parameters are passed to that
16141 @command{ld}.
16142 The @command{ld} that is called is determined by the @option{--with-ld}
16143 configure option, GCC's program search path, and finally by the user's
16144 @env{PATH}. The linker used by GCC can be printed using @samp{which
16145 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
16146 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
16147
16148 @item -mlong-calls
16149 @opindex mno-long-calls
16150 Generate code that uses long call sequences. This ensures that a call
16151 is always able to reach linker generated stubs. The default is to generate
16152 long calls only when the distance from the call site to the beginning
16153 of the function or translation unit, as the case may be, exceeds a
16154 predefined limit set by the branch type being used. The limits for
16155 normal calls are 7,600,000 and 240,000 bytes, respectively for the
16156 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
16157 240,000 bytes.
16158
16159 Distances are measured from the beginning of functions when using the
16160 @option{-ffunction-sections} option, or when using the @option{-mgas}
16161 and @option{-mno-portable-runtime} options together under HP-UX with
16162 the SOM linker.
16163
16164 It is normally not desirable to use this option as it degrades
16165 performance. However, it may be useful in large applications,
16166 particularly when partial linking is used to build the application.
16167
16168 The types of long calls used depends on the capabilities of the
16169 assembler and linker, and the type of code being generated. The
16170 impact on systems that support long absolute calls, and long pic
16171 symbol-difference or pc-relative calls should be relatively small.
16172 However, an indirect call is used on 32-bit ELF systems in pic code
16173 and it is quite long.
16174
16175 @item -munix=@var{unix-std}
16176 @opindex march
16177 Generate compiler predefines and select a startfile for the specified
16178 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
16179 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
16180 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
16181 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
16182 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
16183 and later.
16184
16185 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
16186 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
16187 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
16188 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
16189 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
16190 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
16191
16192 It is @emph{important} to note that this option changes the interfaces
16193 for various library routines. It also affects the operational behavior
16194 of the C library. Thus, @emph{extreme} care is needed in using this
16195 option.
16196
16197 Library code that is intended to operate with more than one UNIX
16198 standard must test, set and restore the variable @code{__xpg4_extended_mask}
16199 as appropriate. Most GNU software doesn't provide this capability.
16200
16201 @item -nolibdld
16202 @opindex nolibdld
16203 Suppress the generation of link options to search libdld.sl when the
16204 @option{-static} option is specified on HP-UX 10 and later.
16205
16206 @item -static
16207 @opindex static
16208 The HP-UX implementation of setlocale in libc has a dependency on
16209 libdld.sl. There isn't an archive version of libdld.sl. Thus,
16210 when the @option{-static} option is specified, special link options
16211 are needed to resolve this dependency.
16212
16213 On HP-UX 10 and later, the GCC driver adds the necessary options to
16214 link with libdld.sl when the @option{-static} option is specified.
16215 This causes the resulting binary to be dynamic. On the 64-bit port,
16216 the linkers generate dynamic binaries by default in any case. The
16217 @option{-nolibdld} option can be used to prevent the GCC driver from
16218 adding these link options.
16219
16220 @item -threads
16221 @opindex threads
16222 Add support for multithreading with the @dfn{dce thread} library
16223 under HP-UX@. This option sets flags for both the preprocessor and
16224 linker.
16225 @end table
16226
16227 @node IA-64 Options
16228 @subsection IA-64 Options
16229 @cindex IA-64 Options
16230
16231 These are the @samp{-m} options defined for the Intel IA-64 architecture.
16232
16233 @table @gcctabopt
16234 @item -mbig-endian
16235 @opindex mbig-endian
16236 Generate code for a big-endian target. This is the default for HP-UX@.
16237
16238 @item -mlittle-endian
16239 @opindex mlittle-endian
16240 Generate code for a little-endian target. This is the default for AIX5
16241 and GNU/Linux.
16242
16243 @item -mgnu-as
16244 @itemx -mno-gnu-as
16245 @opindex mgnu-as
16246 @opindex mno-gnu-as
16247 Generate (or don't) code for the GNU assembler. This is the default.
16248 @c Also, this is the default if the configure option @option{--with-gnu-as}
16249 @c is used.
16250
16251 @item -mgnu-ld
16252 @itemx -mno-gnu-ld
16253 @opindex mgnu-ld
16254 @opindex mno-gnu-ld
16255 Generate (or don't) code for the GNU linker. This is the default.
16256 @c Also, this is the default if the configure option @option{--with-gnu-ld}
16257 @c is used.
16258
16259 @item -mno-pic
16260 @opindex mno-pic
16261 Generate code that does not use a global pointer register. The result
16262 is not position independent code, and violates the IA-64 ABI@.
16263
16264 @item -mvolatile-asm-stop
16265 @itemx -mno-volatile-asm-stop
16266 @opindex mvolatile-asm-stop
16267 @opindex mno-volatile-asm-stop
16268 Generate (or don't) a stop bit immediately before and after volatile asm
16269 statements.
16270
16271 @item -mregister-names
16272 @itemx -mno-register-names
16273 @opindex mregister-names
16274 @opindex mno-register-names
16275 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
16276 the stacked registers. This may make assembler output more readable.
16277
16278 @item -mno-sdata
16279 @itemx -msdata
16280 @opindex mno-sdata
16281 @opindex msdata
16282 Disable (or enable) optimizations that use the small data section. This may
16283 be useful for working around optimizer bugs.
16284
16285 @item -mconstant-gp
16286 @opindex mconstant-gp
16287 Generate code that uses a single constant global pointer value. This is
16288 useful when compiling kernel code.
16289
16290 @item -mauto-pic
16291 @opindex mauto-pic
16292 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
16293 This is useful when compiling firmware code.
16294
16295 @item -minline-float-divide-min-latency
16296 @opindex minline-float-divide-min-latency
16297 Generate code for inline divides of floating-point values
16298 using the minimum latency algorithm.
16299
16300 @item -minline-float-divide-max-throughput
16301 @opindex minline-float-divide-max-throughput
16302 Generate code for inline divides of floating-point values
16303 using the maximum throughput algorithm.
16304
16305 @item -mno-inline-float-divide
16306 @opindex mno-inline-float-divide
16307 Do not generate inline code for divides of floating-point values.
16308
16309 @item -minline-int-divide-min-latency
16310 @opindex minline-int-divide-min-latency
16311 Generate code for inline divides of integer values
16312 using the minimum latency algorithm.
16313
16314 @item -minline-int-divide-max-throughput
16315 @opindex minline-int-divide-max-throughput
16316 Generate code for inline divides of integer values
16317 using the maximum throughput algorithm.
16318
16319 @item -mno-inline-int-divide
16320 @opindex mno-inline-int-divide
16321 Do not generate inline code for divides of integer values.
16322
16323 @item -minline-sqrt-min-latency
16324 @opindex minline-sqrt-min-latency
16325 Generate code for inline square roots
16326 using the minimum latency algorithm.
16327
16328 @item -minline-sqrt-max-throughput
16329 @opindex minline-sqrt-max-throughput
16330 Generate code for inline square roots
16331 using the maximum throughput algorithm.
16332
16333 @item -mno-inline-sqrt
16334 @opindex mno-inline-sqrt
16335 Do not generate inline code for @code{sqrt}.
16336
16337 @item -mfused-madd
16338 @itemx -mno-fused-madd
16339 @opindex mfused-madd
16340 @opindex mno-fused-madd
16341 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
16342 instructions. The default is to use these instructions.
16343
16344 @item -mno-dwarf2-asm
16345 @itemx -mdwarf2-asm
16346 @opindex mno-dwarf2-asm
16347 @opindex mdwarf2-asm
16348 Don't (or do) generate assembler code for the DWARF 2 line number debugging
16349 info. This may be useful when not using the GNU assembler.
16350
16351 @item -mearly-stop-bits
16352 @itemx -mno-early-stop-bits
16353 @opindex mearly-stop-bits
16354 @opindex mno-early-stop-bits
16355 Allow stop bits to be placed earlier than immediately preceding the
16356 instruction that triggered the stop bit. This can improve instruction
16357 scheduling, but does not always do so.
16358
16359 @item -mfixed-range=@var{register-range}
16360 @opindex mfixed-range
16361 Generate code treating the given register range as fixed registers.
16362 A fixed register is one that the register allocator cannot use. This is
16363 useful when compiling kernel code. A register range is specified as
16364 two registers separated by a dash. Multiple register ranges can be
16365 specified separated by a comma.
16366
16367 @item -mtls-size=@var{tls-size}
16368 @opindex mtls-size
16369 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
16370 64.
16371
16372 @item -mtune=@var{cpu-type}
16373 @opindex mtune
16374 Tune the instruction scheduling for a particular CPU, Valid values are
16375 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
16376 and @samp{mckinley}.
16377
16378 @item -milp32
16379 @itemx -mlp64
16380 @opindex milp32
16381 @opindex mlp64
16382 Generate code for a 32-bit or 64-bit environment.
16383 The 32-bit environment sets int, long and pointer to 32 bits.
16384 The 64-bit environment sets int to 32 bits and long and pointer
16385 to 64 bits. These are HP-UX specific flags.
16386
16387 @item -mno-sched-br-data-spec
16388 @itemx -msched-br-data-spec
16389 @opindex mno-sched-br-data-spec
16390 @opindex msched-br-data-spec
16391 (Dis/En)able data speculative scheduling before reload.
16392 This results in generation of @code{ld.a} instructions and
16393 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16394 The default is 'disable'.
16395
16396 @item -msched-ar-data-spec
16397 @itemx -mno-sched-ar-data-spec
16398 @opindex msched-ar-data-spec
16399 @opindex mno-sched-ar-data-spec
16400 (En/Dis)able data speculative scheduling after reload.
16401 This results in generation of @code{ld.a} instructions and
16402 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16403 The default is 'enable'.
16404
16405 @item -mno-sched-control-spec
16406 @itemx -msched-control-spec
16407 @opindex mno-sched-control-spec
16408 @opindex msched-control-spec
16409 (Dis/En)able control speculative scheduling. This feature is
16410 available only during region scheduling (i.e.@: before reload).
16411 This results in generation of the @code{ld.s} instructions and
16412 the corresponding check instructions @code{chk.s}.
16413 The default is 'disable'.
16414
16415 @item -msched-br-in-data-spec
16416 @itemx -mno-sched-br-in-data-spec
16417 @opindex msched-br-in-data-spec
16418 @opindex mno-sched-br-in-data-spec
16419 (En/Dis)able speculative scheduling of the instructions that
16420 are dependent on the data speculative loads before reload.
16421 This is effective only with @option{-msched-br-data-spec} enabled.
16422 The default is 'enable'.
16423
16424 @item -msched-ar-in-data-spec
16425 @itemx -mno-sched-ar-in-data-spec
16426 @opindex msched-ar-in-data-spec
16427 @opindex mno-sched-ar-in-data-spec
16428 (En/Dis)able speculative scheduling of the instructions that
16429 are dependent on the data speculative loads after reload.
16430 This is effective only with @option{-msched-ar-data-spec} enabled.
16431 The default is 'enable'.
16432
16433 @item -msched-in-control-spec
16434 @itemx -mno-sched-in-control-spec
16435 @opindex msched-in-control-spec
16436 @opindex mno-sched-in-control-spec
16437 (En/Dis)able speculative scheduling of the instructions that
16438 are dependent on the control speculative loads.
16439 This is effective only with @option{-msched-control-spec} enabled.
16440 The default is 'enable'.
16441
16442 @item -mno-sched-prefer-non-data-spec-insns
16443 @itemx -msched-prefer-non-data-spec-insns
16444 @opindex mno-sched-prefer-non-data-spec-insns
16445 @opindex msched-prefer-non-data-spec-insns
16446 If enabled, data-speculative instructions are chosen for schedule
16447 only if there are no other choices at the moment. This makes
16448 the use of the data speculation much more conservative.
16449 The default is 'disable'.
16450
16451 @item -mno-sched-prefer-non-control-spec-insns
16452 @itemx -msched-prefer-non-control-spec-insns
16453 @opindex mno-sched-prefer-non-control-spec-insns
16454 @opindex msched-prefer-non-control-spec-insns
16455 If enabled, control-speculative instructions are chosen for schedule
16456 only if there are no other choices at the moment. This makes
16457 the use of the control speculation much more conservative.
16458 The default is 'disable'.
16459
16460 @item -mno-sched-count-spec-in-critical-path
16461 @itemx -msched-count-spec-in-critical-path
16462 @opindex mno-sched-count-spec-in-critical-path
16463 @opindex msched-count-spec-in-critical-path
16464 If enabled, speculative dependencies are considered during
16465 computation of the instructions priorities. This makes the use of the
16466 speculation a bit more conservative.
16467 The default is 'disable'.
16468
16469 @item -msched-spec-ldc
16470 @opindex msched-spec-ldc
16471 Use a simple data speculation check. This option is on by default.
16472
16473 @item -msched-control-spec-ldc
16474 @opindex msched-spec-ldc
16475 Use a simple check for control speculation. This option is on by default.
16476
16477 @item -msched-stop-bits-after-every-cycle
16478 @opindex msched-stop-bits-after-every-cycle
16479 Place a stop bit after every cycle when scheduling. This option is on
16480 by default.
16481
16482 @item -msched-fp-mem-deps-zero-cost
16483 @opindex msched-fp-mem-deps-zero-cost
16484 Assume that floating-point stores and loads are not likely to cause a conflict
16485 when placed into the same instruction group. This option is disabled by
16486 default.
16487
16488 @item -msel-sched-dont-check-control-spec
16489 @opindex msel-sched-dont-check-control-spec
16490 Generate checks for control speculation in selective scheduling.
16491 This flag is disabled by default.
16492
16493 @item -msched-max-memory-insns=@var{max-insns}
16494 @opindex msched-max-memory-insns
16495 Limit on the number of memory insns per instruction group, giving lower
16496 priority to subsequent memory insns attempting to schedule in the same
16497 instruction group. Frequently useful to prevent cache bank conflicts.
16498 The default value is 1.
16499
16500 @item -msched-max-memory-insns-hard-limit
16501 @opindex msched-max-memory-insns-hard-limit
16502 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
16503 disallowing more than that number in an instruction group.
16504 Otherwise, the limit is ``soft'', meaning that non-memory operations
16505 are preferred when the limit is reached, but memory operations may still
16506 be scheduled.
16507
16508 @end table
16509
16510 @node LM32 Options
16511 @subsection LM32 Options
16512 @cindex LM32 options
16513
16514 These @option{-m} options are defined for the LatticeMico32 architecture:
16515
16516 @table @gcctabopt
16517 @item -mbarrel-shift-enabled
16518 @opindex mbarrel-shift-enabled
16519 Enable barrel-shift instructions.
16520
16521 @item -mdivide-enabled
16522 @opindex mdivide-enabled
16523 Enable divide and modulus instructions.
16524
16525 @item -mmultiply-enabled
16526 @opindex multiply-enabled
16527 Enable multiply instructions.
16528
16529 @item -msign-extend-enabled
16530 @opindex msign-extend-enabled
16531 Enable sign extend instructions.
16532
16533 @item -muser-enabled
16534 @opindex muser-enabled
16535 Enable user-defined instructions.
16536
16537 @end table
16538
16539 @node M32C Options
16540 @subsection M32C Options
16541 @cindex M32C options
16542
16543 @table @gcctabopt
16544 @item -mcpu=@var{name}
16545 @opindex mcpu=
16546 Select the CPU for which code is generated. @var{name} may be one of
16547 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
16548 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
16549 the M32C/80 series.
16550
16551 @item -msim
16552 @opindex msim
16553 Specifies that the program will be run on the simulator. This causes
16554 an alternate runtime library to be linked in which supports, for
16555 example, file I/O@. You must not use this option when generating
16556 programs that will run on real hardware; you must provide your own
16557 runtime library for whatever I/O functions are needed.
16558
16559 @item -memregs=@var{number}
16560 @opindex memregs=
16561 Specifies the number of memory-based pseudo-registers GCC uses
16562 during code generation. These pseudo-registers are used like real
16563 registers, so there is a tradeoff between GCC's ability to fit the
16564 code into available registers, and the performance penalty of using
16565 memory instead of registers. Note that all modules in a program must
16566 be compiled with the same value for this option. Because of that, you
16567 must not use this option with GCC's default runtime libraries.
16568
16569 @end table
16570
16571 @node M32R/D Options
16572 @subsection M32R/D Options
16573 @cindex M32R/D options
16574
16575 These @option{-m} options are defined for Renesas M32R/D architectures:
16576
16577 @table @gcctabopt
16578 @item -m32r2
16579 @opindex m32r2
16580 Generate code for the M32R/2@.
16581
16582 @item -m32rx
16583 @opindex m32rx
16584 Generate code for the M32R/X@.
16585
16586 @item -m32r
16587 @opindex m32r
16588 Generate code for the M32R@. This is the default.
16589
16590 @item -mmodel=small
16591 @opindex mmodel=small
16592 Assume all objects live in the lower 16MB of memory (so that their addresses
16593 can be loaded with the @code{ld24} instruction), and assume all subroutines
16594 are reachable with the @code{bl} instruction.
16595 This is the default.
16596
16597 The addressability of a particular object can be set with the
16598 @code{model} attribute.
16599
16600 @item -mmodel=medium
16601 @opindex mmodel=medium
16602 Assume objects may be anywhere in the 32-bit address space (the compiler
16603 generates @code{seth/add3} instructions to load their addresses), and
16604 assume all subroutines are reachable with the @code{bl} instruction.
16605
16606 @item -mmodel=large
16607 @opindex mmodel=large
16608 Assume objects may be anywhere in the 32-bit address space (the compiler
16609 generates @code{seth/add3} instructions to load their addresses), and
16610 assume subroutines may not be reachable with the @code{bl} instruction
16611 (the compiler generates the much slower @code{seth/add3/jl}
16612 instruction sequence).
16613
16614 @item -msdata=none
16615 @opindex msdata=none
16616 Disable use of the small data area. Variables are put into
16617 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16618 @code{section} attribute has been specified).
16619 This is the default.
16620
16621 The small data area consists of sections @code{.sdata} and @code{.sbss}.
16622 Objects may be explicitly put in the small data area with the
16623 @code{section} attribute using one of these sections.
16624
16625 @item -msdata=sdata
16626 @opindex msdata=sdata
16627 Put small global and static data in the small data area, but do not
16628 generate special code to reference them.
16629
16630 @item -msdata=use
16631 @opindex msdata=use
16632 Put small global and static data in the small data area, and generate
16633 special instructions to reference them.
16634
16635 @item -G @var{num}
16636 @opindex G
16637 @cindex smaller data references
16638 Put global and static objects less than or equal to @var{num} bytes
16639 into the small data or BSS sections instead of the normal data or BSS
16640 sections. The default value of @var{num} is 8.
16641 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16642 for this option to have any effect.
16643
16644 All modules should be compiled with the same @option{-G @var{num}} value.
16645 Compiling with different values of @var{num} may or may not work; if it
16646 doesn't the linker gives an error message---incorrect code is not
16647 generated.
16648
16649 @item -mdebug
16650 @opindex mdebug
16651 Makes the M32R-specific code in the compiler display some statistics
16652 that might help in debugging programs.
16653
16654 @item -malign-loops
16655 @opindex malign-loops
16656 Align all loops to a 32-byte boundary.
16657
16658 @item -mno-align-loops
16659 @opindex mno-align-loops
16660 Do not enforce a 32-byte alignment for loops. This is the default.
16661
16662 @item -missue-rate=@var{number}
16663 @opindex missue-rate=@var{number}
16664 Issue @var{number} instructions per cycle. @var{number} can only be 1
16665 or 2.
16666
16667 @item -mbranch-cost=@var{number}
16668 @opindex mbranch-cost=@var{number}
16669 @var{number} can only be 1 or 2. If it is 1 then branches are
16670 preferred over conditional code, if it is 2, then the opposite applies.
16671
16672 @item -mflush-trap=@var{number}
16673 @opindex mflush-trap=@var{number}
16674 Specifies the trap number to use to flush the cache. The default is
16675 12. Valid numbers are between 0 and 15 inclusive.
16676
16677 @item -mno-flush-trap
16678 @opindex mno-flush-trap
16679 Specifies that the cache cannot be flushed by using a trap.
16680
16681 @item -mflush-func=@var{name}
16682 @opindex mflush-func=@var{name}
16683 Specifies the name of the operating system function to call to flush
16684 the cache. The default is @samp{_flush_cache}, but a function call
16685 is only used if a trap is not available.
16686
16687 @item -mno-flush-func
16688 @opindex mno-flush-func
16689 Indicates that there is no OS function for flushing the cache.
16690
16691 @end table
16692
16693 @node M680x0 Options
16694 @subsection M680x0 Options
16695 @cindex M680x0 options
16696
16697 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16698 The default settings depend on which architecture was selected when
16699 the compiler was configured; the defaults for the most common choices
16700 are given below.
16701
16702 @table @gcctabopt
16703 @item -march=@var{arch}
16704 @opindex march
16705 Generate code for a specific M680x0 or ColdFire instruction set
16706 architecture. Permissible values of @var{arch} for M680x0
16707 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16708 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
16709 architectures are selected according to Freescale's ISA classification
16710 and the permissible values are: @samp{isaa}, @samp{isaaplus},
16711 @samp{isab} and @samp{isac}.
16712
16713 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16714 code for a ColdFire target. The @var{arch} in this macro is one of the
16715 @option{-march} arguments given above.
16716
16717 When used together, @option{-march} and @option{-mtune} select code
16718 that runs on a family of similar processors but that is optimized
16719 for a particular microarchitecture.
16720
16721 @item -mcpu=@var{cpu}
16722 @opindex mcpu
16723 Generate code for a specific M680x0 or ColdFire processor.
16724 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16725 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16726 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
16727 below, which also classifies the CPUs into families:
16728
16729 @multitable @columnfractions 0.20 0.80
16730 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16731 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16732 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16733 @item @samp{5206e} @tab @samp{5206e}
16734 @item @samp{5208} @tab @samp{5207} @samp{5208}
16735 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16736 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16737 @item @samp{5216} @tab @samp{5214} @samp{5216}
16738 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16739 @item @samp{5225} @tab @samp{5224} @samp{5225}
16740 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16741 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16742 @item @samp{5249} @tab @samp{5249}
16743 @item @samp{5250} @tab @samp{5250}
16744 @item @samp{5271} @tab @samp{5270} @samp{5271}
16745 @item @samp{5272} @tab @samp{5272}
16746 @item @samp{5275} @tab @samp{5274} @samp{5275}
16747 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16748 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16749 @item @samp{5307} @tab @samp{5307}
16750 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16751 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16752 @item @samp{5407} @tab @samp{5407}
16753 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16754 @end multitable
16755
16756 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16757 @var{arch} is compatible with @var{cpu}. Other combinations of
16758 @option{-mcpu} and @option{-march} are rejected.
16759
16760 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16761 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
16762 where the value of @var{family} is given by the table above.
16763
16764 @item -mtune=@var{tune}
16765 @opindex mtune
16766 Tune the code for a particular microarchitecture within the
16767 constraints set by @option{-march} and @option{-mcpu}.
16768 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16769 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16770 and @samp{cpu32}. The ColdFire microarchitectures
16771 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16772
16773 You can also use @option{-mtune=68020-40} for code that needs
16774 to run relatively well on 68020, 68030 and 68040 targets.
16775 @option{-mtune=68020-60} is similar but includes 68060 targets
16776 as well. These two options select the same tuning decisions as
16777 @option{-m68020-40} and @option{-m68020-60} respectively.
16778
16779 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16780 when tuning for 680x0 architecture @var{arch}. It also defines
16781 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16782 option is used. If GCC is tuning for a range of architectures,
16783 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16784 it defines the macros for every architecture in the range.
16785
16786 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16787 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16788 of the arguments given above.
16789
16790 @item -m68000
16791 @itemx -mc68000
16792 @opindex m68000
16793 @opindex mc68000
16794 Generate output for a 68000. This is the default
16795 when the compiler is configured for 68000-based systems.
16796 It is equivalent to @option{-march=68000}.
16797
16798 Use this option for microcontrollers with a 68000 or EC000 core,
16799 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16800
16801 @item -m68010
16802 @opindex m68010
16803 Generate output for a 68010. This is the default
16804 when the compiler is configured for 68010-based systems.
16805 It is equivalent to @option{-march=68010}.
16806
16807 @item -m68020
16808 @itemx -mc68020
16809 @opindex m68020
16810 @opindex mc68020
16811 Generate output for a 68020. This is the default
16812 when the compiler is configured for 68020-based systems.
16813 It is equivalent to @option{-march=68020}.
16814
16815 @item -m68030
16816 @opindex m68030
16817 Generate output for a 68030. This is the default when the compiler is
16818 configured for 68030-based systems. It is equivalent to
16819 @option{-march=68030}.
16820
16821 @item -m68040
16822 @opindex m68040
16823 Generate output for a 68040. This is the default when the compiler is
16824 configured for 68040-based systems. It is equivalent to
16825 @option{-march=68040}.
16826
16827 This option inhibits the use of 68881/68882 instructions that have to be
16828 emulated by software on the 68040. Use this option if your 68040 does not
16829 have code to emulate those instructions.
16830
16831 @item -m68060
16832 @opindex m68060
16833 Generate output for a 68060. This is the default when the compiler is
16834 configured for 68060-based systems. It is equivalent to
16835 @option{-march=68060}.
16836
16837 This option inhibits the use of 68020 and 68881/68882 instructions that
16838 have to be emulated by software on the 68060. Use this option if your 68060
16839 does not have code to emulate those instructions.
16840
16841 @item -mcpu32
16842 @opindex mcpu32
16843 Generate output for a CPU32. This is the default
16844 when the compiler is configured for CPU32-based systems.
16845 It is equivalent to @option{-march=cpu32}.
16846
16847 Use this option for microcontrollers with a
16848 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
16849 68336, 68340, 68341, 68349 and 68360.
16850
16851 @item -m5200
16852 @opindex m5200
16853 Generate output for a 520X ColdFire CPU@. This is the default
16854 when the compiler is configured for 520X-based systems.
16855 It is equivalent to @option{-mcpu=5206}, and is now deprecated
16856 in favor of that option.
16857
16858 Use this option for microcontroller with a 5200 core, including
16859 the MCF5202, MCF5203, MCF5204 and MCF5206.
16860
16861 @item -m5206e
16862 @opindex m5206e
16863 Generate output for a 5206e ColdFire CPU@. The option is now
16864 deprecated in favor of the equivalent @option{-mcpu=5206e}.
16865
16866 @item -m528x
16867 @opindex m528x
16868 Generate output for a member of the ColdFire 528X family.
16869 The option is now deprecated in favor of the equivalent
16870 @option{-mcpu=528x}.
16871
16872 @item -m5307
16873 @opindex m5307
16874 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
16875 in favor of the equivalent @option{-mcpu=5307}.
16876
16877 @item -m5407
16878 @opindex m5407
16879 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
16880 in favor of the equivalent @option{-mcpu=5407}.
16881
16882 @item -mcfv4e
16883 @opindex mcfv4e
16884 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16885 This includes use of hardware floating-point instructions.
16886 The option is equivalent to @option{-mcpu=547x}, and is now
16887 deprecated in favor of that option.
16888
16889 @item -m68020-40
16890 @opindex m68020-40
16891 Generate output for a 68040, without using any of the new instructions.
16892 This results in code that can run relatively efficiently on either a
16893 68020/68881 or a 68030 or a 68040. The generated code does use the
16894 68881 instructions that are emulated on the 68040.
16895
16896 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16897
16898 @item -m68020-60
16899 @opindex m68020-60
16900 Generate output for a 68060, without using any of the new instructions.
16901 This results in code that can run relatively efficiently on either a
16902 68020/68881 or a 68030 or a 68040. The generated code does use the
16903 68881 instructions that are emulated on the 68060.
16904
16905 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16906
16907 @item -mhard-float
16908 @itemx -m68881
16909 @opindex mhard-float
16910 @opindex m68881
16911 Generate floating-point instructions. This is the default for 68020
16912 and above, and for ColdFire devices that have an FPU@. It defines the
16913 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16914 on ColdFire targets.
16915
16916 @item -msoft-float
16917 @opindex msoft-float
16918 Do not generate floating-point instructions; use library calls instead.
16919 This is the default for 68000, 68010, and 68832 targets. It is also
16920 the default for ColdFire devices that have no FPU.
16921
16922 @item -mdiv
16923 @itemx -mno-div
16924 @opindex mdiv
16925 @opindex mno-div
16926 Generate (do not generate) ColdFire hardware divide and remainder
16927 instructions. If @option{-march} is used without @option{-mcpu},
16928 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16929 architectures. Otherwise, the default is taken from the target CPU
16930 (either the default CPU, or the one specified by @option{-mcpu}). For
16931 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16932 @option{-mcpu=5206e}.
16933
16934 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16935
16936 @item -mshort
16937 @opindex mshort
16938 Consider type @code{int} to be 16 bits wide, like @code{short int}.
16939 Additionally, parameters passed on the stack are also aligned to a
16940 16-bit boundary even on targets whose API mandates promotion to 32-bit.
16941
16942 @item -mno-short
16943 @opindex mno-short
16944 Do not consider type @code{int} to be 16 bits wide. This is the default.
16945
16946 @item -mnobitfield
16947 @itemx -mno-bitfield
16948 @opindex mnobitfield
16949 @opindex mno-bitfield
16950 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
16951 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16952
16953 @item -mbitfield
16954 @opindex mbitfield
16955 Do use the bit-field instructions. The @option{-m68020} option implies
16956 @option{-mbitfield}. This is the default if you use a configuration
16957 designed for a 68020.
16958
16959 @item -mrtd
16960 @opindex mrtd
16961 Use a different function-calling convention, in which functions
16962 that take a fixed number of arguments return with the @code{rtd}
16963 instruction, which pops their arguments while returning. This
16964 saves one instruction in the caller since there is no need to pop
16965 the arguments there.
16966
16967 This calling convention is incompatible with the one normally
16968 used on Unix, so you cannot use it if you need to call libraries
16969 compiled with the Unix compiler.
16970
16971 Also, you must provide function prototypes for all functions that
16972 take variable numbers of arguments (including @code{printf});
16973 otherwise incorrect code is generated for calls to those
16974 functions.
16975
16976 In addition, seriously incorrect code results if you call a
16977 function with too many arguments. (Normally, extra arguments are
16978 harmlessly ignored.)
16979
16980 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
16981 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16982
16983 @item -mno-rtd
16984 @opindex mno-rtd
16985 Do not use the calling conventions selected by @option{-mrtd}.
16986 This is the default.
16987
16988 @item -malign-int
16989 @itemx -mno-align-int
16990 @opindex malign-int
16991 @opindex mno-align-int
16992 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16993 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
16994 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16995 Aligning variables on 32-bit boundaries produces code that runs somewhat
16996 faster on processors with 32-bit busses at the expense of more memory.
16997
16998 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
16999 aligns structures containing the above types differently than
17000 most published application binary interface specifications for the m68k.
17001
17002 @item -mpcrel
17003 @opindex mpcrel
17004 Use the pc-relative addressing mode of the 68000 directly, instead of
17005 using a global offset table. At present, this option implies @option{-fpic},
17006 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
17007 not presently supported with @option{-mpcrel}, though this could be supported for
17008 68020 and higher processors.
17009
17010 @item -mno-strict-align
17011 @itemx -mstrict-align
17012 @opindex mno-strict-align
17013 @opindex mstrict-align
17014 Do not (do) assume that unaligned memory references are handled by
17015 the system.
17016
17017 @item -msep-data
17018 Generate code that allows the data segment to be located in a different
17019 area of memory from the text segment. This allows for execute-in-place in
17020 an environment without virtual memory management. This option implies
17021 @option{-fPIC}.
17022
17023 @item -mno-sep-data
17024 Generate code that assumes that the data segment follows the text segment.
17025 This is the default.
17026
17027 @item -mid-shared-library
17028 Generate code that supports shared libraries via the library ID method.
17029 This allows for execute-in-place and shared libraries in an environment
17030 without virtual memory management. This option implies @option{-fPIC}.
17031
17032 @item -mno-id-shared-library
17033 Generate code that doesn't assume ID-based shared libraries are being used.
17034 This is the default.
17035
17036 @item -mshared-library-id=n
17037 Specifies the identification number of the ID-based shared library being
17038 compiled. Specifying a value of 0 generates more compact code; specifying
17039 other values forces the allocation of that number to the current
17040 library, but is no more space- or time-efficient than omitting this option.
17041
17042 @item -mxgot
17043 @itemx -mno-xgot
17044 @opindex mxgot
17045 @opindex mno-xgot
17046 When generating position-independent code for ColdFire, generate code
17047 that works if the GOT has more than 8192 entries. This code is
17048 larger and slower than code generated without this option. On M680x0
17049 processors, this option is not needed; @option{-fPIC} suffices.
17050
17051 GCC normally uses a single instruction to load values from the GOT@.
17052 While this is relatively efficient, it only works if the GOT
17053 is smaller than about 64k. Anything larger causes the linker
17054 to report an error such as:
17055
17056 @cindex relocation truncated to fit (ColdFire)
17057 @smallexample
17058 relocation truncated to fit: R_68K_GOT16O foobar
17059 @end smallexample
17060
17061 If this happens, you should recompile your code with @option{-mxgot}.
17062 It should then work with very large GOTs. However, code generated with
17063 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
17064 the value of a global symbol.
17065
17066 Note that some linkers, including newer versions of the GNU linker,
17067 can create multiple GOTs and sort GOT entries. If you have such a linker,
17068 you should only need to use @option{-mxgot} when compiling a single
17069 object file that accesses more than 8192 GOT entries. Very few do.
17070
17071 These options have no effect unless GCC is generating
17072 position-independent code.
17073
17074 @end table
17075
17076 @node MCore Options
17077 @subsection MCore Options
17078 @cindex MCore options
17079
17080 These are the @samp{-m} options defined for the Motorola M*Core
17081 processors.
17082
17083 @table @gcctabopt
17084
17085 @item -mhardlit
17086 @itemx -mno-hardlit
17087 @opindex mhardlit
17088 @opindex mno-hardlit
17089 Inline constants into the code stream if it can be done in two
17090 instructions or less.
17091
17092 @item -mdiv
17093 @itemx -mno-div
17094 @opindex mdiv
17095 @opindex mno-div
17096 Use the divide instruction. (Enabled by default).
17097
17098 @item -mrelax-immediate
17099 @itemx -mno-relax-immediate
17100 @opindex mrelax-immediate
17101 @opindex mno-relax-immediate
17102 Allow arbitrary-sized immediates in bit operations.
17103
17104 @item -mwide-bitfields
17105 @itemx -mno-wide-bitfields
17106 @opindex mwide-bitfields
17107 @opindex mno-wide-bitfields
17108 Always treat bit-fields as @code{int}-sized.
17109
17110 @item -m4byte-functions
17111 @itemx -mno-4byte-functions
17112 @opindex m4byte-functions
17113 @opindex mno-4byte-functions
17114 Force all functions to be aligned to a 4-byte boundary.
17115
17116 @item -mcallgraph-data
17117 @itemx -mno-callgraph-data
17118 @opindex mcallgraph-data
17119 @opindex mno-callgraph-data
17120 Emit callgraph information.
17121
17122 @item -mslow-bytes
17123 @itemx -mno-slow-bytes
17124 @opindex mslow-bytes
17125 @opindex mno-slow-bytes
17126 Prefer word access when reading byte quantities.
17127
17128 @item -mlittle-endian
17129 @itemx -mbig-endian
17130 @opindex mlittle-endian
17131 @opindex mbig-endian
17132 Generate code for a little-endian target.
17133
17134 @item -m210
17135 @itemx -m340
17136 @opindex m210
17137 @opindex m340
17138 Generate code for the 210 processor.
17139
17140 @item -mno-lsim
17141 @opindex mno-lsim
17142 Assume that runtime support has been provided and so omit the
17143 simulator library (@file{libsim.a)} from the linker command line.
17144
17145 @item -mstack-increment=@var{size}
17146 @opindex mstack-increment
17147 Set the maximum amount for a single stack increment operation. Large
17148 values can increase the speed of programs that contain functions
17149 that need a large amount of stack space, but they can also trigger a
17150 segmentation fault if the stack is extended too much. The default
17151 value is 0x1000.
17152
17153 @end table
17154
17155 @node MeP Options
17156 @subsection MeP Options
17157 @cindex MeP options
17158
17159 @table @gcctabopt
17160
17161 @item -mabsdiff
17162 @opindex mabsdiff
17163 Enables the @code{abs} instruction, which is the absolute difference
17164 between two registers.
17165
17166 @item -mall-opts
17167 @opindex mall-opts
17168 Enables all the optional instructions---average, multiply, divide, bit
17169 operations, leading zero, absolute difference, min/max, clip, and
17170 saturation.
17171
17172
17173 @item -maverage
17174 @opindex maverage
17175 Enables the @code{ave} instruction, which computes the average of two
17176 registers.
17177
17178 @item -mbased=@var{n}
17179 @opindex mbased=
17180 Variables of size @var{n} bytes or smaller are placed in the
17181 @code{.based} section by default. Based variables use the @code{$tp}
17182 register as a base register, and there is a 128-byte limit to the
17183 @code{.based} section.
17184
17185 @item -mbitops
17186 @opindex mbitops
17187 Enables the bit operation instructions---bit test (@code{btstm}), set
17188 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
17189 test-and-set (@code{tas}).
17190
17191 @item -mc=@var{name}
17192 @opindex mc=
17193 Selects which section constant data is placed in. @var{name} may
17194 be @samp{tiny}, @samp{near}, or @samp{far}.
17195
17196 @item -mclip
17197 @opindex mclip
17198 Enables the @code{clip} instruction. Note that @option{-mclip} is not
17199 useful unless you also provide @option{-mminmax}.
17200
17201 @item -mconfig=@var{name}
17202 @opindex mconfig=
17203 Selects one of the built-in core configurations. Each MeP chip has
17204 one or more modules in it; each module has a core CPU and a variety of
17205 coprocessors, optional instructions, and peripherals. The
17206 @code{MeP-Integrator} tool, not part of GCC, provides these
17207 configurations through this option; using this option is the same as
17208 using all the corresponding command-line options. The default
17209 configuration is @samp{default}.
17210
17211 @item -mcop
17212 @opindex mcop
17213 Enables the coprocessor instructions. By default, this is a 32-bit
17214 coprocessor. Note that the coprocessor is normally enabled via the
17215 @option{-mconfig=} option.
17216
17217 @item -mcop32
17218 @opindex mcop32
17219 Enables the 32-bit coprocessor's instructions.
17220
17221 @item -mcop64
17222 @opindex mcop64
17223 Enables the 64-bit coprocessor's instructions.
17224
17225 @item -mivc2
17226 @opindex mivc2
17227 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
17228
17229 @item -mdc
17230 @opindex mdc
17231 Causes constant variables to be placed in the @code{.near} section.
17232
17233 @item -mdiv
17234 @opindex mdiv
17235 Enables the @code{div} and @code{divu} instructions.
17236
17237 @item -meb
17238 @opindex meb
17239 Generate big-endian code.
17240
17241 @item -mel
17242 @opindex mel
17243 Generate little-endian code.
17244
17245 @item -mio-volatile
17246 @opindex mio-volatile
17247 Tells the compiler that any variable marked with the @code{io}
17248 attribute is to be considered volatile.
17249
17250 @item -ml
17251 @opindex ml
17252 Causes variables to be assigned to the @code{.far} section by default.
17253
17254 @item -mleadz
17255 @opindex mleadz
17256 Enables the @code{leadz} (leading zero) instruction.
17257
17258 @item -mm
17259 @opindex mm
17260 Causes variables to be assigned to the @code{.near} section by default.
17261
17262 @item -mminmax
17263 @opindex mminmax
17264 Enables the @code{min} and @code{max} instructions.
17265
17266 @item -mmult
17267 @opindex mmult
17268 Enables the multiplication and multiply-accumulate instructions.
17269
17270 @item -mno-opts
17271 @opindex mno-opts
17272 Disables all the optional instructions enabled by @option{-mall-opts}.
17273
17274 @item -mrepeat
17275 @opindex mrepeat
17276 Enables the @code{repeat} and @code{erepeat} instructions, used for
17277 low-overhead looping.
17278
17279 @item -ms
17280 @opindex ms
17281 Causes all variables to default to the @code{.tiny} section. Note
17282 that there is a 65536-byte limit to this section. Accesses to these
17283 variables use the @code{%gp} base register.
17284
17285 @item -msatur
17286 @opindex msatur
17287 Enables the saturation instructions. Note that the compiler does not
17288 currently generate these itself, but this option is included for
17289 compatibility with other tools, like @code{as}.
17290
17291 @item -msdram
17292 @opindex msdram
17293 Link the SDRAM-based runtime instead of the default ROM-based runtime.
17294
17295 @item -msim
17296 @opindex msim
17297 Link the simulator run-time libraries.
17298
17299 @item -msimnovec
17300 @opindex msimnovec
17301 Link the simulator runtime libraries, excluding built-in support
17302 for reset and exception vectors and tables.
17303
17304 @item -mtf
17305 @opindex mtf
17306 Causes all functions to default to the @code{.far} section. Without
17307 this option, functions default to the @code{.near} section.
17308
17309 @item -mtiny=@var{n}
17310 @opindex mtiny=
17311 Variables that are @var{n} bytes or smaller are allocated to the
17312 @code{.tiny} section. These variables use the @code{$gp} base
17313 register. The default for this option is 4, but note that there's a
17314 65536-byte limit to the @code{.tiny} section.
17315
17316 @end table
17317
17318 @node MicroBlaze Options
17319 @subsection MicroBlaze Options
17320 @cindex MicroBlaze Options
17321
17322 @table @gcctabopt
17323
17324 @item -msoft-float
17325 @opindex msoft-float
17326 Use software emulation for floating point (default).
17327
17328 @item -mhard-float
17329 @opindex mhard-float
17330 Use hardware floating-point instructions.
17331
17332 @item -mmemcpy
17333 @opindex mmemcpy
17334 Do not optimize block moves, use @code{memcpy}.
17335
17336 @item -mno-clearbss
17337 @opindex mno-clearbss
17338 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
17339
17340 @item -mcpu=@var{cpu-type}
17341 @opindex mcpu=
17342 Use features of, and schedule code for, the given CPU.
17343 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
17344 where @var{X} is a major version, @var{YY} is the minor version, and
17345 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
17346 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
17347
17348 @item -mxl-soft-mul
17349 @opindex mxl-soft-mul
17350 Use software multiply emulation (default).
17351
17352 @item -mxl-soft-div
17353 @opindex mxl-soft-div
17354 Use software emulation for divides (default).
17355
17356 @item -mxl-barrel-shift
17357 @opindex mxl-barrel-shift
17358 Use the hardware barrel shifter.
17359
17360 @item -mxl-pattern-compare
17361 @opindex mxl-pattern-compare
17362 Use pattern compare instructions.
17363
17364 @item -msmall-divides
17365 @opindex msmall-divides
17366 Use table lookup optimization for small signed integer divisions.
17367
17368 @item -mxl-stack-check
17369 @opindex mxl-stack-check
17370 This option is deprecated. Use @option{-fstack-check} instead.
17371
17372 @item -mxl-gp-opt
17373 @opindex mxl-gp-opt
17374 Use GP-relative @code{.sdata}/@code{.sbss} sections.
17375
17376 @item -mxl-multiply-high
17377 @opindex mxl-multiply-high
17378 Use multiply high instructions for high part of 32x32 multiply.
17379
17380 @item -mxl-float-convert
17381 @opindex mxl-float-convert
17382 Use hardware floating-point conversion instructions.
17383
17384 @item -mxl-float-sqrt
17385 @opindex mxl-float-sqrt
17386 Use hardware floating-point square root instruction.
17387
17388 @item -mbig-endian
17389 @opindex mbig-endian
17390 Generate code for a big-endian target.
17391
17392 @item -mlittle-endian
17393 @opindex mlittle-endian
17394 Generate code for a little-endian target.
17395
17396 @item -mxl-reorder
17397 @opindex mxl-reorder
17398 Use reorder instructions (swap and byte reversed load/store).
17399
17400 @item -mxl-mode-@var{app-model}
17401 Select application model @var{app-model}. Valid models are
17402 @table @samp
17403 @item executable
17404 normal executable (default), uses startup code @file{crt0.o}.
17405
17406 @item xmdstub
17407 for use with Xilinx Microprocessor Debugger (XMD) based
17408 software intrusive debug agent called xmdstub. This uses startup file
17409 @file{crt1.o} and sets the start address of the program to 0x800.
17410
17411 @item bootstrap
17412 for applications that are loaded using a bootloader.
17413 This model uses startup file @file{crt2.o} which does not contain a processor
17414 reset vector handler. This is suitable for transferring control on a
17415 processor reset to the bootloader rather than the application.
17416
17417 @item novectors
17418 for applications that do not require any of the
17419 MicroBlaze vectors. This option may be useful for applications running
17420 within a monitoring application. This model uses @file{crt3.o} as a startup file.
17421 @end table
17422
17423 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
17424 @option{-mxl-mode-@var{app-model}}.
17425
17426 @end table
17427
17428 @node MIPS Options
17429 @subsection MIPS Options
17430 @cindex MIPS options
17431
17432 @table @gcctabopt
17433
17434 @item -EB
17435 @opindex EB
17436 Generate big-endian code.
17437
17438 @item -EL
17439 @opindex EL
17440 Generate little-endian code. This is the default for @samp{mips*el-*-*}
17441 configurations.
17442
17443 @item -march=@var{arch}
17444 @opindex march
17445 Generate code that runs on @var{arch}, which can be the name of a
17446 generic MIPS ISA, or the name of a particular processor.
17447 The ISA names are:
17448 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
17449 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
17450 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
17451 @samp{mips64r5} and @samp{mips64r6}.
17452 The processor names are:
17453 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
17454 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
17455 @samp{5kc}, @samp{5kf},
17456 @samp{20kc},
17457 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
17458 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
17459 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
17460 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
17461 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
17462 @samp{i6400},
17463 @samp{interaptiv},
17464 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
17465 @samp{m4k},
17466 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
17467 @samp{m5100}, @samp{m5101},
17468 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
17469 @samp{orion},
17470 @samp{p5600},
17471 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
17472 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
17473 @samp{rm7000}, @samp{rm9000},
17474 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
17475 @samp{sb1},
17476 @samp{sr71000},
17477 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
17478 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
17479 @samp{xlr} and @samp{xlp}.
17480 The special value @samp{from-abi} selects the
17481 most compatible architecture for the selected ABI (that is,
17482 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
17483
17484 The native Linux/GNU toolchain also supports the value @samp{native},
17485 which selects the best architecture option for the host processor.
17486 @option{-march=native} has no effect if GCC does not recognize
17487 the processor.
17488
17489 In processor names, a final @samp{000} can be abbreviated as @samp{k}
17490 (for example, @option{-march=r2k}). Prefixes are optional, and
17491 @samp{vr} may be written @samp{r}.
17492
17493 Names of the form @samp{@var{n}f2_1} refer to processors with
17494 FPUs clocked at half the rate of the core, names of the form
17495 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
17496 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
17497 processors with FPUs clocked a ratio of 3:2 with respect to the core.
17498 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
17499 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
17500 accepted as synonyms for @samp{@var{n}f1_1}.
17501
17502 GCC defines two macros based on the value of this option. The first
17503 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
17504 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
17505 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
17506 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
17507 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
17508
17509 Note that the @code{_MIPS_ARCH} macro uses the processor names given
17510 above. In other words, it has the full prefix and does not
17511 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
17512 the macro names the resolved architecture (either @code{"mips1"} or
17513 @code{"mips3"}). It names the default architecture when no
17514 @option{-march} option is given.
17515
17516 @item -mtune=@var{arch}
17517 @opindex mtune
17518 Optimize for @var{arch}. Among other things, this option controls
17519 the way instructions are scheduled, and the perceived cost of arithmetic
17520 operations. The list of @var{arch} values is the same as for
17521 @option{-march}.
17522
17523 When this option is not used, GCC optimizes for the processor
17524 specified by @option{-march}. By using @option{-march} and
17525 @option{-mtune} together, it is possible to generate code that
17526 runs on a family of processors, but optimize the code for one
17527 particular member of that family.
17528
17529 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
17530 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
17531 @option{-march} ones described above.
17532
17533 @item -mips1
17534 @opindex mips1
17535 Equivalent to @option{-march=mips1}.
17536
17537 @item -mips2
17538 @opindex mips2
17539 Equivalent to @option{-march=mips2}.
17540
17541 @item -mips3
17542 @opindex mips3
17543 Equivalent to @option{-march=mips3}.
17544
17545 @item -mips4
17546 @opindex mips4
17547 Equivalent to @option{-march=mips4}.
17548
17549 @item -mips32
17550 @opindex mips32
17551 Equivalent to @option{-march=mips32}.
17552
17553 @item -mips32r3
17554 @opindex mips32r3
17555 Equivalent to @option{-march=mips32r3}.
17556
17557 @item -mips32r5
17558 @opindex mips32r5
17559 Equivalent to @option{-march=mips32r5}.
17560
17561 @item -mips32r6
17562 @opindex mips32r6
17563 Equivalent to @option{-march=mips32r6}.
17564
17565 @item -mips64
17566 @opindex mips64
17567 Equivalent to @option{-march=mips64}.
17568
17569 @item -mips64r2
17570 @opindex mips64r2
17571 Equivalent to @option{-march=mips64r2}.
17572
17573 @item -mips64r3
17574 @opindex mips64r3
17575 Equivalent to @option{-march=mips64r3}.
17576
17577 @item -mips64r5
17578 @opindex mips64r5
17579 Equivalent to @option{-march=mips64r5}.
17580
17581 @item -mips64r6
17582 @opindex mips64r6
17583 Equivalent to @option{-march=mips64r6}.
17584
17585 @item -mips16
17586 @itemx -mno-mips16
17587 @opindex mips16
17588 @opindex mno-mips16
17589 Generate (do not generate) MIPS16 code. If GCC is targeting a
17590 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17591
17592 MIPS16 code generation can also be controlled on a per-function basis
17593 by means of @code{mips16} and @code{nomips16} attributes.
17594 @xref{Function Attributes}, for more information.
17595
17596 @item -mflip-mips16
17597 @opindex mflip-mips16
17598 Generate MIPS16 code on alternating functions. This option is provided
17599 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17600 not intended for ordinary use in compiling user code.
17601
17602 @item -minterlink-compressed
17603 @item -mno-interlink-compressed
17604 @opindex minterlink-compressed
17605 @opindex mno-interlink-compressed
17606 Require (do not require) that code using the standard (uncompressed) MIPS ISA
17607 be link-compatible with MIPS16 and microMIPS code, and vice versa.
17608
17609 For example, code using the standard ISA encoding cannot jump directly
17610 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17611 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
17612 knows that the target of the jump is not compressed.
17613
17614 @item -minterlink-mips16
17615 @itemx -mno-interlink-mips16
17616 @opindex minterlink-mips16
17617 @opindex mno-interlink-mips16
17618 Aliases of @option{-minterlink-compressed} and
17619 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
17620 and are retained for backwards compatibility.
17621
17622 @item -mabi=32
17623 @itemx -mabi=o64
17624 @itemx -mabi=n32
17625 @itemx -mabi=64
17626 @itemx -mabi=eabi
17627 @opindex mabi=32
17628 @opindex mabi=o64
17629 @opindex mabi=n32
17630 @opindex mabi=64
17631 @opindex mabi=eabi
17632 Generate code for the given ABI@.
17633
17634 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
17635 generates 64-bit code when you select a 64-bit architecture, but you
17636 can use @option{-mgp32} to get 32-bit code instead.
17637
17638 For information about the O64 ABI, see
17639 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17640
17641 GCC supports a variant of the o32 ABI in which floating-point registers
17642 are 64 rather than 32 bits wide. You can select this combination with
17643 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
17644 and @code{mfhc1} instructions and is therefore only supported for
17645 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17646
17647 The register assignments for arguments and return values remain the
17648 same, but each scalar value is passed in a single 64-bit register
17649 rather than a pair of 32-bit registers. For example, scalar
17650 floating-point values are returned in @samp{$f0} only, not a
17651 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
17652 remains the same in that the even-numbered double-precision registers
17653 are saved.
17654
17655 Two additional variants of the o32 ABI are supported to enable
17656 a transition from 32-bit to 64-bit registers. These are FPXX
17657 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17658 The FPXX extension mandates that all code must execute correctly
17659 when run using 32-bit or 64-bit registers. The code can be interlinked
17660 with either FP32 or FP64, but not both.
17661 The FP64A extension is similar to the FP64 extension but forbids the
17662 use of odd-numbered single-precision registers. This can be used
17663 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17664 processors and allows both FP32 and FP64A code to interlink and
17665 run in the same process without changing FPU modes.
17666
17667 @item -mabicalls
17668 @itemx -mno-abicalls
17669 @opindex mabicalls
17670 @opindex mno-abicalls
17671 Generate (do not generate) code that is suitable for SVR4-style
17672 dynamic objects. @option{-mabicalls} is the default for SVR4-based
17673 systems.
17674
17675 @item -mshared
17676 @itemx -mno-shared
17677 Generate (do not generate) code that is fully position-independent,
17678 and that can therefore be linked into shared libraries. This option
17679 only affects @option{-mabicalls}.
17680
17681 All @option{-mabicalls} code has traditionally been position-independent,
17682 regardless of options like @option{-fPIC} and @option{-fpic}. However,
17683 as an extension, the GNU toolchain allows executables to use absolute
17684 accesses for locally-binding symbols. It can also use shorter GP
17685 initialization sequences and generate direct calls to locally-defined
17686 functions. This mode is selected by @option{-mno-shared}.
17687
17688 @option{-mno-shared} depends on binutils 2.16 or higher and generates
17689 objects that can only be linked by the GNU linker. However, the option
17690 does not affect the ABI of the final executable; it only affects the ABI
17691 of relocatable objects. Using @option{-mno-shared} generally makes
17692 executables both smaller and quicker.
17693
17694 @option{-mshared} is the default.
17695
17696 @item -mplt
17697 @itemx -mno-plt
17698 @opindex mplt
17699 @opindex mno-plt
17700 Assume (do not assume) that the static and dynamic linkers
17701 support PLTs and copy relocations. This option only affects
17702 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
17703 has no effect without @option{-msym32}.
17704
17705 You can make @option{-mplt} the default by configuring
17706 GCC with @option{--with-mips-plt}. The default is
17707 @option{-mno-plt} otherwise.
17708
17709 @item -mxgot
17710 @itemx -mno-xgot
17711 @opindex mxgot
17712 @opindex mno-xgot
17713 Lift (do not lift) the usual restrictions on the size of the global
17714 offset table.
17715
17716 GCC normally uses a single instruction to load values from the GOT@.
17717 While this is relatively efficient, it only works if the GOT
17718 is smaller than about 64k. Anything larger causes the linker
17719 to report an error such as:
17720
17721 @cindex relocation truncated to fit (MIPS)
17722 @smallexample
17723 relocation truncated to fit: R_MIPS_GOT16 foobar
17724 @end smallexample
17725
17726 If this happens, you should recompile your code with @option{-mxgot}.
17727 This works with very large GOTs, although the code is also
17728 less efficient, since it takes three instructions to fetch the
17729 value of a global symbol.
17730
17731 Note that some linkers can create multiple GOTs. If you have such a
17732 linker, you should only need to use @option{-mxgot} when a single object
17733 file accesses more than 64k's worth of GOT entries. Very few do.
17734
17735 These options have no effect unless GCC is generating position
17736 independent code.
17737
17738 @item -mgp32
17739 @opindex mgp32
17740 Assume that general-purpose registers are 32 bits wide.
17741
17742 @item -mgp64
17743 @opindex mgp64
17744 Assume that general-purpose registers are 64 bits wide.
17745
17746 @item -mfp32
17747 @opindex mfp32
17748 Assume that floating-point registers are 32 bits wide.
17749
17750 @item -mfp64
17751 @opindex mfp64
17752 Assume that floating-point registers are 64 bits wide.
17753
17754 @item -mfpxx
17755 @opindex mfpxx
17756 Do not assume the width of floating-point registers.
17757
17758 @item -mhard-float
17759 @opindex mhard-float
17760 Use floating-point coprocessor instructions.
17761
17762 @item -msoft-float
17763 @opindex msoft-float
17764 Do not use floating-point coprocessor instructions. Implement
17765 floating-point calculations using library calls instead.
17766
17767 @item -mno-float
17768 @opindex mno-float
17769 Equivalent to @option{-msoft-float}, but additionally asserts that the
17770 program being compiled does not perform any floating-point operations.
17771 This option is presently supported only by some bare-metal MIPS
17772 configurations, where it may select a special set of libraries
17773 that lack all floating-point support (including, for example, the
17774 floating-point @code{printf} formats).
17775 If code compiled with @option{-mno-float} accidentally contains
17776 floating-point operations, it is likely to suffer a link-time
17777 or run-time failure.
17778
17779 @item -msingle-float
17780 @opindex msingle-float
17781 Assume that the floating-point coprocessor only supports single-precision
17782 operations.
17783
17784 @item -mdouble-float
17785 @opindex mdouble-float
17786 Assume that the floating-point coprocessor supports double-precision
17787 operations. This is the default.
17788
17789 @item -modd-spreg
17790 @itemx -mno-odd-spreg
17791 @opindex modd-spreg
17792 @opindex mno-odd-spreg
17793 Enable the use of odd-numbered single-precision floating-point registers
17794 for the o32 ABI. This is the default for processors that are known to
17795 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17796 is set by default.
17797
17798 @item -mabs=2008
17799 @itemx -mabs=legacy
17800 @opindex mabs=2008
17801 @opindex mabs=legacy
17802 These options control the treatment of the special not-a-number (NaN)
17803 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17804 @code{neg.@i{fmt}} machine instructions.
17805
17806 By default or when @option{-mabs=legacy} is used the legacy
17807 treatment is selected. In this case these instructions are considered
17808 arithmetic and avoided where correct operation is required and the
17809 input operand might be a NaN. A longer sequence of instructions that
17810 manipulate the sign bit of floating-point datum manually is used
17811 instead unless the @option{-ffinite-math-only} option has also been
17812 specified.
17813
17814 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
17815 this case these instructions are considered non-arithmetic and therefore
17816 operating correctly in all cases, including in particular where the
17817 input operand is a NaN. These instructions are therefore always used
17818 for the respective operations.
17819
17820 @item -mnan=2008
17821 @itemx -mnan=legacy
17822 @opindex mnan=2008
17823 @opindex mnan=legacy
17824 These options control the encoding of the special not-a-number (NaN)
17825 IEEE 754 floating-point data.
17826
17827 The @option{-mnan=legacy} option selects the legacy encoding. In this
17828 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17829 significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17830 by the first bit of their trailing significand field being 1.
17831
17832 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
17833 this case qNaNs are denoted by the first bit of their trailing
17834 significand field being 1, whereas sNaNs are denoted by the first bit of
17835 their trailing significand field being 0.
17836
17837 The default is @option{-mnan=legacy} unless GCC has been configured with
17838 @option{--with-nan=2008}.
17839
17840 @item -mllsc
17841 @itemx -mno-llsc
17842 @opindex mllsc
17843 @opindex mno-llsc
17844 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17845 implement atomic memory built-in functions. When neither option is
17846 specified, GCC uses the instructions if the target architecture
17847 supports them.
17848
17849 @option{-mllsc} is useful if the runtime environment can emulate the
17850 instructions and @option{-mno-llsc} can be useful when compiling for
17851 nonstandard ISAs. You can make either option the default by
17852 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17853 respectively. @option{--with-llsc} is the default for some
17854 configurations; see the installation documentation for details.
17855
17856 @item -mdsp
17857 @itemx -mno-dsp
17858 @opindex mdsp
17859 @opindex mno-dsp
17860 Use (do not use) revision 1 of the MIPS DSP ASE@.
17861 @xref{MIPS DSP Built-in Functions}. This option defines the
17862 preprocessor macro @code{__mips_dsp}. It also defines
17863 @code{__mips_dsp_rev} to 1.
17864
17865 @item -mdspr2
17866 @itemx -mno-dspr2
17867 @opindex mdspr2
17868 @opindex mno-dspr2
17869 Use (do not use) revision 2 of the MIPS DSP ASE@.
17870 @xref{MIPS DSP Built-in Functions}. This option defines the
17871 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17872 It also defines @code{__mips_dsp_rev} to 2.
17873
17874 @item -msmartmips
17875 @itemx -mno-smartmips
17876 @opindex msmartmips
17877 @opindex mno-smartmips
17878 Use (do not use) the MIPS SmartMIPS ASE.
17879
17880 @item -mpaired-single
17881 @itemx -mno-paired-single
17882 @opindex mpaired-single
17883 @opindex mno-paired-single
17884 Use (do not use) paired-single floating-point instructions.
17885 @xref{MIPS Paired-Single Support}. This option requires
17886 hardware floating-point support to be enabled.
17887
17888 @item -mdmx
17889 @itemx -mno-mdmx
17890 @opindex mdmx
17891 @opindex mno-mdmx
17892 Use (do not use) MIPS Digital Media Extension instructions.
17893 This option can only be used when generating 64-bit code and requires
17894 hardware floating-point support to be enabled.
17895
17896 @item -mips3d
17897 @itemx -mno-mips3d
17898 @opindex mips3d
17899 @opindex mno-mips3d
17900 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
17901 The option @option{-mips3d} implies @option{-mpaired-single}.
17902
17903 @item -mmicromips
17904 @itemx -mno-micromips
17905 @opindex mmicromips
17906 @opindex mno-mmicromips
17907 Generate (do not generate) microMIPS code.
17908
17909 MicroMIPS code generation can also be controlled on a per-function basis
17910 by means of @code{micromips} and @code{nomicromips} attributes.
17911 @xref{Function Attributes}, for more information.
17912
17913 @item -mmt
17914 @itemx -mno-mt
17915 @opindex mmt
17916 @opindex mno-mt
17917 Use (do not use) MT Multithreading instructions.
17918
17919 @item -mmcu
17920 @itemx -mno-mcu
17921 @opindex mmcu
17922 @opindex mno-mcu
17923 Use (do not use) the MIPS MCU ASE instructions.
17924
17925 @item -meva
17926 @itemx -mno-eva
17927 @opindex meva
17928 @opindex mno-eva
17929 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17930
17931 @item -mvirt
17932 @itemx -mno-virt
17933 @opindex mvirt
17934 @opindex mno-virt
17935 Use (do not use) the MIPS Virtualization Application Specific instructions.
17936
17937 @item -mxpa
17938 @itemx -mno-xpa
17939 @opindex mxpa
17940 @opindex mno-xpa
17941 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17942
17943 @item -mlong64
17944 @opindex mlong64
17945 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
17946 an explanation of the default and the way that the pointer size is
17947 determined.
17948
17949 @item -mlong32
17950 @opindex mlong32
17951 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17952
17953 The default size of @code{int}s, @code{long}s and pointers depends on
17954 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
17955 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
17956 32-bit @code{long}s. Pointers are the same size as @code{long}s,
17957 or the same size as integer registers, whichever is smaller.
17958
17959 @item -msym32
17960 @itemx -mno-sym32
17961 @opindex msym32
17962 @opindex mno-sym32
17963 Assume (do not assume) that all symbols have 32-bit values, regardless
17964 of the selected ABI@. This option is useful in combination with
17965 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17966 to generate shorter and faster references to symbolic addresses.
17967
17968 @item -G @var{num}
17969 @opindex G
17970 Put definitions of externally-visible data in a small data section
17971 if that data is no bigger than @var{num} bytes. GCC can then generate
17972 more efficient accesses to the data; see @option{-mgpopt} for details.
17973
17974 The default @option{-G} option depends on the configuration.
17975
17976 @item -mlocal-sdata
17977 @itemx -mno-local-sdata
17978 @opindex mlocal-sdata
17979 @opindex mno-local-sdata
17980 Extend (do not extend) the @option{-G} behavior to local data too,
17981 such as to static variables in C@. @option{-mlocal-sdata} is the
17982 default for all configurations.
17983
17984 If the linker complains that an application is using too much small data,
17985 you might want to try rebuilding the less performance-critical parts with
17986 @option{-mno-local-sdata}. You might also want to build large
17987 libraries with @option{-mno-local-sdata}, so that the libraries leave
17988 more room for the main program.
17989
17990 @item -mextern-sdata
17991 @itemx -mno-extern-sdata
17992 @opindex mextern-sdata
17993 @opindex mno-extern-sdata
17994 Assume (do not assume) that externally-defined data is in
17995 a small data section if the size of that data is within the @option{-G} limit.
17996 @option{-mextern-sdata} is the default for all configurations.
17997
17998 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17999 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
18000 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
18001 is placed in a small data section. If @var{Var} is defined by another
18002 module, you must either compile that module with a high-enough
18003 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
18004 definition. If @var{Var} is common, you must link the application
18005 with a high-enough @option{-G} setting.
18006
18007 The easiest way of satisfying these restrictions is to compile
18008 and link every module with the same @option{-G} option. However,
18009 you may wish to build a library that supports several different
18010 small data limits. You can do this by compiling the library with
18011 the highest supported @option{-G} setting and additionally using
18012 @option{-mno-extern-sdata} to stop the library from making assumptions
18013 about externally-defined data.
18014
18015 @item -mgpopt
18016 @itemx -mno-gpopt
18017 @opindex mgpopt
18018 @opindex mno-gpopt
18019 Use (do not use) GP-relative accesses for symbols that are known to be
18020 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
18021 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
18022 configurations.
18023
18024 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
18025 might not hold the value of @code{_gp}. For example, if the code is
18026 part of a library that might be used in a boot monitor, programs that
18027 call boot monitor routines pass an unknown value in @code{$gp}.
18028 (In such situations, the boot monitor itself is usually compiled
18029 with @option{-G0}.)
18030
18031 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
18032 @option{-mno-extern-sdata}.
18033
18034 @item -membedded-data
18035 @itemx -mno-embedded-data
18036 @opindex membedded-data
18037 @opindex mno-embedded-data
18038 Allocate variables to the read-only data section first if possible, then
18039 next in the small data section if possible, otherwise in data. This gives
18040 slightly slower code than the default, but reduces the amount of RAM required
18041 when executing, and thus may be preferred for some embedded systems.
18042
18043 @item -muninit-const-in-rodata
18044 @itemx -mno-uninit-const-in-rodata
18045 @opindex muninit-const-in-rodata
18046 @opindex mno-uninit-const-in-rodata
18047 Put uninitialized @code{const} variables in the read-only data section.
18048 This option is only meaningful in conjunction with @option{-membedded-data}.
18049
18050 @item -mcode-readable=@var{setting}
18051 @opindex mcode-readable
18052 Specify whether GCC may generate code that reads from executable sections.
18053 There are three possible settings:
18054
18055 @table @gcctabopt
18056 @item -mcode-readable=yes
18057 Instructions may freely access executable sections. This is the
18058 default setting.
18059
18060 @item -mcode-readable=pcrel
18061 MIPS16 PC-relative load instructions can access executable sections,
18062 but other instructions must not do so. This option is useful on 4KSc
18063 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
18064 It is also useful on processors that can be configured to have a dual
18065 instruction/data SRAM interface and that, like the M4K, automatically
18066 redirect PC-relative loads to the instruction RAM.
18067
18068 @item -mcode-readable=no
18069 Instructions must not access executable sections. This option can be
18070 useful on targets that are configured to have a dual instruction/data
18071 SRAM interface but that (unlike the M4K) do not automatically redirect
18072 PC-relative loads to the instruction RAM.
18073 @end table
18074
18075 @item -msplit-addresses
18076 @itemx -mno-split-addresses
18077 @opindex msplit-addresses
18078 @opindex mno-split-addresses
18079 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
18080 relocation operators. This option has been superseded by
18081 @option{-mexplicit-relocs} but is retained for backwards compatibility.
18082
18083 @item -mexplicit-relocs
18084 @itemx -mno-explicit-relocs
18085 @opindex mexplicit-relocs
18086 @opindex mno-explicit-relocs
18087 Use (do not use) assembler relocation operators when dealing with symbolic
18088 addresses. The alternative, selected by @option{-mno-explicit-relocs},
18089 is to use assembler macros instead.
18090
18091 @option{-mexplicit-relocs} is the default if GCC was configured
18092 to use an assembler that supports relocation operators.
18093
18094 @item -mcheck-zero-division
18095 @itemx -mno-check-zero-division
18096 @opindex mcheck-zero-division
18097 @opindex mno-check-zero-division
18098 Trap (do not trap) on integer division by zero.
18099
18100 The default is @option{-mcheck-zero-division}.
18101
18102 @item -mdivide-traps
18103 @itemx -mdivide-breaks
18104 @opindex mdivide-traps
18105 @opindex mdivide-breaks
18106 MIPS systems check for division by zero by generating either a
18107 conditional trap or a break instruction. Using traps results in
18108 smaller code, but is only supported on MIPS II and later. Also, some
18109 versions of the Linux kernel have a bug that prevents trap from
18110 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
18111 allow conditional traps on architectures that support them and
18112 @option{-mdivide-breaks} to force the use of breaks.
18113
18114 The default is usually @option{-mdivide-traps}, but this can be
18115 overridden at configure time using @option{--with-divide=breaks}.
18116 Divide-by-zero checks can be completely disabled using
18117 @option{-mno-check-zero-division}.
18118
18119 @item -mmemcpy
18120 @itemx -mno-memcpy
18121 @opindex mmemcpy
18122 @opindex mno-memcpy
18123 Force (do not force) the use of @code{memcpy} for non-trivial block
18124 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
18125 most constant-sized copies.
18126
18127 @item -mlong-calls
18128 @itemx -mno-long-calls
18129 @opindex mlong-calls
18130 @opindex mno-long-calls
18131 Disable (do not disable) use of the @code{jal} instruction. Calling
18132 functions using @code{jal} is more efficient but requires the caller
18133 and callee to be in the same 256 megabyte segment.
18134
18135 This option has no effect on abicalls code. The default is
18136 @option{-mno-long-calls}.
18137
18138 @item -mmad
18139 @itemx -mno-mad
18140 @opindex mmad
18141 @opindex mno-mad
18142 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
18143 instructions, as provided by the R4650 ISA@.
18144
18145 @item -mimadd
18146 @itemx -mno-imadd
18147 @opindex mimadd
18148 @opindex mno-imadd
18149 Enable (disable) use of the @code{madd} and @code{msub} integer
18150 instructions. The default is @option{-mimadd} on architectures
18151 that support @code{madd} and @code{msub} except for the 74k
18152 architecture where it was found to generate slower code.
18153
18154 @item -mfused-madd
18155 @itemx -mno-fused-madd
18156 @opindex mfused-madd
18157 @opindex mno-fused-madd
18158 Enable (disable) use of the floating-point multiply-accumulate
18159 instructions, when they are available. The default is
18160 @option{-mfused-madd}.
18161
18162 On the R8000 CPU when multiply-accumulate instructions are used,
18163 the intermediate product is calculated to infinite precision
18164 and is not subject to the FCSR Flush to Zero bit. This may be
18165 undesirable in some circumstances. On other processors the result
18166 is numerically identical to the equivalent computation using
18167 separate multiply, add, subtract and negate instructions.
18168
18169 @item -nocpp
18170 @opindex nocpp
18171 Tell the MIPS assembler to not run its preprocessor over user
18172 assembler files (with a @samp{.s} suffix) when assembling them.
18173
18174 @item -mfix-24k
18175 @item -mno-fix-24k
18176 @opindex mfix-24k
18177 @opindex mno-fix-24k
18178 Work around the 24K E48 (lost data on stores during refill) errata.
18179 The workarounds are implemented by the assembler rather than by GCC@.
18180
18181 @item -mfix-r4000
18182 @itemx -mno-fix-r4000
18183 @opindex mfix-r4000
18184 @opindex mno-fix-r4000
18185 Work around certain R4000 CPU errata:
18186 @itemize @minus
18187 @item
18188 A double-word or a variable shift may give an incorrect result if executed
18189 immediately after starting an integer division.
18190 @item
18191 A double-word or a variable shift may give an incorrect result if executed
18192 while an integer multiplication is in progress.
18193 @item
18194 An integer division may give an incorrect result if started in a delay slot
18195 of a taken branch or a jump.
18196 @end itemize
18197
18198 @item -mfix-r4400
18199 @itemx -mno-fix-r4400
18200 @opindex mfix-r4400
18201 @opindex mno-fix-r4400
18202 Work around certain R4400 CPU errata:
18203 @itemize @minus
18204 @item
18205 A double-word or a variable shift may give an incorrect result if executed
18206 immediately after starting an integer division.
18207 @end itemize
18208
18209 @item -mfix-r10000
18210 @itemx -mno-fix-r10000
18211 @opindex mfix-r10000
18212 @opindex mno-fix-r10000
18213 Work around certain R10000 errata:
18214 @itemize @minus
18215 @item
18216 @code{ll}/@code{sc} sequences may not behave atomically on revisions
18217 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
18218 @end itemize
18219
18220 This option can only be used if the target architecture supports
18221 branch-likely instructions. @option{-mfix-r10000} is the default when
18222 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
18223 otherwise.
18224
18225 @item -mfix-rm7000
18226 @itemx -mno-fix-rm7000
18227 @opindex mfix-rm7000
18228 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
18229 workarounds are implemented by the assembler rather than by GCC@.
18230
18231 @item -mfix-vr4120
18232 @itemx -mno-fix-vr4120
18233 @opindex mfix-vr4120
18234 Work around certain VR4120 errata:
18235 @itemize @minus
18236 @item
18237 @code{dmultu} does not always produce the correct result.
18238 @item
18239 @code{div} and @code{ddiv} do not always produce the correct result if one
18240 of the operands is negative.
18241 @end itemize
18242 The workarounds for the division errata rely on special functions in
18243 @file{libgcc.a}. At present, these functions are only provided by
18244 the @code{mips64vr*-elf} configurations.
18245
18246 Other VR4120 errata require a NOP to be inserted between certain pairs of
18247 instructions. These errata are handled by the assembler, not by GCC itself.
18248
18249 @item -mfix-vr4130
18250 @opindex mfix-vr4130
18251 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
18252 workarounds are implemented by the assembler rather than by GCC,
18253 although GCC avoids using @code{mflo} and @code{mfhi} if the
18254 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
18255 instructions are available instead.
18256
18257 @item -mfix-sb1
18258 @itemx -mno-fix-sb1
18259 @opindex mfix-sb1
18260 Work around certain SB-1 CPU core errata.
18261 (This flag currently works around the SB-1 revision 2
18262 ``F1'' and ``F2'' floating-point errata.)
18263
18264 @item -mr10k-cache-barrier=@var{setting}
18265 @opindex mr10k-cache-barrier
18266 Specify whether GCC should insert cache barriers to avoid the
18267 side-effects of speculation on R10K processors.
18268
18269 In common with many processors, the R10K tries to predict the outcome
18270 of a conditional branch and speculatively executes instructions from
18271 the ``taken'' branch. It later aborts these instructions if the
18272 predicted outcome is wrong. However, on the R10K, even aborted
18273 instructions can have side effects.
18274
18275 This problem only affects kernel stores and, depending on the system,
18276 kernel loads. As an example, a speculatively-executed store may load
18277 the target memory into cache and mark the cache line as dirty, even if
18278 the store itself is later aborted. If a DMA operation writes to the
18279 same area of memory before the ``dirty'' line is flushed, the cached
18280 data overwrites the DMA-ed data. See the R10K processor manual
18281 for a full description, including other potential problems.
18282
18283 One workaround is to insert cache barrier instructions before every memory
18284 access that might be speculatively executed and that might have side
18285 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
18286 controls GCC's implementation of this workaround. It assumes that
18287 aborted accesses to any byte in the following regions does not have
18288 side effects:
18289
18290 @enumerate
18291 @item
18292 the memory occupied by the current function's stack frame;
18293
18294 @item
18295 the memory occupied by an incoming stack argument;
18296
18297 @item
18298 the memory occupied by an object with a link-time-constant address.
18299 @end enumerate
18300
18301 It is the kernel's responsibility to ensure that speculative
18302 accesses to these regions are indeed safe.
18303
18304 If the input program contains a function declaration such as:
18305
18306 @smallexample
18307 void foo (void);
18308 @end smallexample
18309
18310 then the implementation of @code{foo} must allow @code{j foo} and
18311 @code{jal foo} to be executed speculatively. GCC honors this
18312 restriction for functions it compiles itself. It expects non-GCC
18313 functions (such as hand-written assembly code) to do the same.
18314
18315 The option has three forms:
18316
18317 @table @gcctabopt
18318 @item -mr10k-cache-barrier=load-store
18319 Insert a cache barrier before a load or store that might be
18320 speculatively executed and that might have side effects even
18321 if aborted.
18322
18323 @item -mr10k-cache-barrier=store
18324 Insert a cache barrier before a store that might be speculatively
18325 executed and that might have side effects even if aborted.
18326
18327 @item -mr10k-cache-barrier=none
18328 Disable the insertion of cache barriers. This is the default setting.
18329 @end table
18330
18331 @item -mflush-func=@var{func}
18332 @itemx -mno-flush-func
18333 @opindex mflush-func
18334 Specifies the function to call to flush the I and D caches, or to not
18335 call any such function. If called, the function must take the same
18336 arguments as the common @code{_flush_func}, that is, the address of the
18337 memory range for which the cache is being flushed, the size of the
18338 memory range, and the number 3 (to flush both caches). The default
18339 depends on the target GCC was configured for, but commonly is either
18340 @code{_flush_func} or @code{__cpu_flush}.
18341
18342 @item mbranch-cost=@var{num}
18343 @opindex mbranch-cost
18344 Set the cost of branches to roughly @var{num} ``simple'' instructions.
18345 This cost is only a heuristic and is not guaranteed to produce
18346 consistent results across releases. A zero cost redundantly selects
18347 the default, which is based on the @option{-mtune} setting.
18348
18349 @item -mbranch-likely
18350 @itemx -mno-branch-likely
18351 @opindex mbranch-likely
18352 @opindex mno-branch-likely
18353 Enable or disable use of Branch Likely instructions, regardless of the
18354 default for the selected architecture. By default, Branch Likely
18355 instructions may be generated if they are supported by the selected
18356 architecture. An exception is for the MIPS32 and MIPS64 architectures
18357 and processors that implement those architectures; for those, Branch
18358 Likely instructions are not be generated by default because the MIPS32
18359 and MIPS64 architectures specifically deprecate their use.
18360
18361 @item -mcompact-branches=never
18362 @itemx -mcompact-branches=optimal
18363 @itemx -mcompact-branches=always
18364 @opindex mcompact-branches=never
18365 @opindex mcompact-branches=optimal
18366 @opindex mcompact-branches=always
18367 These options control which form of branches will be generated. The
18368 default is @option{-mcompact-branches=optimal}.
18369
18370 The @option{-mcompact-branches=never} option ensures that compact branch
18371 instructions will never be generated.
18372
18373 The @option{-mcompact-branches=always} option ensures that a compact
18374 branch instruction will be generated if available. If a compact branch
18375 instruction is not available, a delay slot form of the branch will be
18376 used instead.
18377
18378 This option is supported from MIPS Release 6 onwards.
18379
18380 The @option{-mcompact-branches=optimal} option will cause a delay slot
18381 branch to be used if one is available in the current ISA and the delay
18382 slot is successfully filled. If the delay slot is not filled, a compact
18383 branch will be chosen if one is available.
18384
18385 @item -mfp-exceptions
18386 @itemx -mno-fp-exceptions
18387 @opindex mfp-exceptions
18388 Specifies whether FP exceptions are enabled. This affects how
18389 FP instructions are scheduled for some processors.
18390 The default is that FP exceptions are
18391 enabled.
18392
18393 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
18394 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
18395 FP pipe.
18396
18397 @item -mvr4130-align
18398 @itemx -mno-vr4130-align
18399 @opindex mvr4130-align
18400 The VR4130 pipeline is two-way superscalar, but can only issue two
18401 instructions together if the first one is 8-byte aligned. When this
18402 option is enabled, GCC aligns pairs of instructions that it
18403 thinks should execute in parallel.
18404
18405 This option only has an effect when optimizing for the VR4130.
18406 It normally makes code faster, but at the expense of making it bigger.
18407 It is enabled by default at optimization level @option{-O3}.
18408
18409 @item -msynci
18410 @itemx -mno-synci
18411 @opindex msynci
18412 Enable (disable) generation of @code{synci} instructions on
18413 architectures that support it. The @code{synci} instructions (if
18414 enabled) are generated when @code{__builtin___clear_cache} is
18415 compiled.
18416
18417 This option defaults to @option{-mno-synci}, but the default can be
18418 overridden by configuring GCC with @option{--with-synci}.
18419
18420 When compiling code for single processor systems, it is generally safe
18421 to use @code{synci}. However, on many multi-core (SMP) systems, it
18422 does not invalidate the instruction caches on all cores and may lead
18423 to undefined behavior.
18424
18425 @item -mrelax-pic-calls
18426 @itemx -mno-relax-pic-calls
18427 @opindex mrelax-pic-calls
18428 Try to turn PIC calls that are normally dispatched via register
18429 @code{$25} into direct calls. This is only possible if the linker can
18430 resolve the destination at link-time and if the destination is within
18431 range for a direct call.
18432
18433 @option{-mrelax-pic-calls} is the default if GCC was configured to use
18434 an assembler and a linker that support the @code{.reloc} assembly
18435 directive and @option{-mexplicit-relocs} is in effect. With
18436 @option{-mno-explicit-relocs}, this optimization can be performed by the
18437 assembler and the linker alone without help from the compiler.
18438
18439 @item -mmcount-ra-address
18440 @itemx -mno-mcount-ra-address
18441 @opindex mmcount-ra-address
18442 @opindex mno-mcount-ra-address
18443 Emit (do not emit) code that allows @code{_mcount} to modify the
18444 calling function's return address. When enabled, this option extends
18445 the usual @code{_mcount} interface with a new @var{ra-address}
18446 parameter, which has type @code{intptr_t *} and is passed in register
18447 @code{$12}. @code{_mcount} can then modify the return address by
18448 doing both of the following:
18449 @itemize
18450 @item
18451 Returning the new address in register @code{$31}.
18452 @item
18453 Storing the new address in @code{*@var{ra-address}},
18454 if @var{ra-address} is nonnull.
18455 @end itemize
18456
18457 The default is @option{-mno-mcount-ra-address}.
18458
18459 @item -mframe-header-opt
18460 @itemx -mno-frame-header-opt
18461 @opindex mframe-header-opt
18462 Enable (disable) frame header optimization in the o32 ABI. When using the
18463 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
18464 function to write out register arguments. When enabled, this optimization
18465 will suppress the allocation of the frame header if it can be determined that
18466 it is unused.
18467
18468 This optimization is off by default at all optimization levels.
18469
18470 @end table
18471
18472 @node MMIX Options
18473 @subsection MMIX Options
18474 @cindex MMIX Options
18475
18476 These options are defined for the MMIX:
18477
18478 @table @gcctabopt
18479 @item -mlibfuncs
18480 @itemx -mno-libfuncs
18481 @opindex mlibfuncs
18482 @opindex mno-libfuncs
18483 Specify that intrinsic library functions are being compiled, passing all
18484 values in registers, no matter the size.
18485
18486 @item -mepsilon
18487 @itemx -mno-epsilon
18488 @opindex mepsilon
18489 @opindex mno-epsilon
18490 Generate floating-point comparison instructions that compare with respect
18491 to the @code{rE} epsilon register.
18492
18493 @item -mabi=mmixware
18494 @itemx -mabi=gnu
18495 @opindex mabi=mmixware
18496 @opindex mabi=gnu
18497 Generate code that passes function parameters and return values that (in
18498 the called function) are seen as registers @code{$0} and up, as opposed to
18499 the GNU ABI which uses global registers @code{$231} and up.
18500
18501 @item -mzero-extend
18502 @itemx -mno-zero-extend
18503 @opindex mzero-extend
18504 @opindex mno-zero-extend
18505 When reading data from memory in sizes shorter than 64 bits, use (do not
18506 use) zero-extending load instructions by default, rather than
18507 sign-extending ones.
18508
18509 @item -mknuthdiv
18510 @itemx -mno-knuthdiv
18511 @opindex mknuthdiv
18512 @opindex mno-knuthdiv
18513 Make the result of a division yielding a remainder have the same sign as
18514 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
18515 remainder follows the sign of the dividend. Both methods are
18516 arithmetically valid, the latter being almost exclusively used.
18517
18518 @item -mtoplevel-symbols
18519 @itemx -mno-toplevel-symbols
18520 @opindex mtoplevel-symbols
18521 @opindex mno-toplevel-symbols
18522 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
18523 code can be used with the @code{PREFIX} assembly directive.
18524
18525 @item -melf
18526 @opindex melf
18527 Generate an executable in the ELF format, rather than the default
18528 @samp{mmo} format used by the @command{mmix} simulator.
18529
18530 @item -mbranch-predict
18531 @itemx -mno-branch-predict
18532 @opindex mbranch-predict
18533 @opindex mno-branch-predict
18534 Use (do not use) the probable-branch instructions, when static branch
18535 prediction indicates a probable branch.
18536
18537 @item -mbase-addresses
18538 @itemx -mno-base-addresses
18539 @opindex mbase-addresses
18540 @opindex mno-base-addresses
18541 Generate (do not generate) code that uses @emph{base addresses}. Using a
18542 base address automatically generates a request (handled by the assembler
18543 and the linker) for a constant to be set up in a global register. The
18544 register is used for one or more base address requests within the range 0
18545 to 255 from the value held in the register. The generally leads to short
18546 and fast code, but the number of different data items that can be
18547 addressed is limited. This means that a program that uses lots of static
18548 data may require @option{-mno-base-addresses}.
18549
18550 @item -msingle-exit
18551 @itemx -mno-single-exit
18552 @opindex msingle-exit
18553 @opindex mno-single-exit
18554 Force (do not force) generated code to have a single exit point in each
18555 function.
18556 @end table
18557
18558 @node MN10300 Options
18559 @subsection MN10300 Options
18560 @cindex MN10300 options
18561
18562 These @option{-m} options are defined for Matsushita MN10300 architectures:
18563
18564 @table @gcctabopt
18565 @item -mmult-bug
18566 @opindex mmult-bug
18567 Generate code to avoid bugs in the multiply instructions for the MN10300
18568 processors. This is the default.
18569
18570 @item -mno-mult-bug
18571 @opindex mno-mult-bug
18572 Do not generate code to avoid bugs in the multiply instructions for the
18573 MN10300 processors.
18574
18575 @item -mam33
18576 @opindex mam33
18577 Generate code using features specific to the AM33 processor.
18578
18579 @item -mno-am33
18580 @opindex mno-am33
18581 Do not generate code using features specific to the AM33 processor. This
18582 is the default.
18583
18584 @item -mam33-2
18585 @opindex mam33-2
18586 Generate code using features specific to the AM33/2.0 processor.
18587
18588 @item -mam34
18589 @opindex mam34
18590 Generate code using features specific to the AM34 processor.
18591
18592 @item -mtune=@var{cpu-type}
18593 @opindex mtune
18594 Use the timing characteristics of the indicated CPU type when
18595 scheduling instructions. This does not change the targeted processor
18596 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
18597 @samp{am33-2} or @samp{am34}.
18598
18599 @item -mreturn-pointer-on-d0
18600 @opindex mreturn-pointer-on-d0
18601 When generating a function that returns a pointer, return the pointer
18602 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
18603 only in @code{a0}, and attempts to call such functions without a prototype
18604 result in errors. Note that this option is on by default; use
18605 @option{-mno-return-pointer-on-d0} to disable it.
18606
18607 @item -mno-crt0
18608 @opindex mno-crt0
18609 Do not link in the C run-time initialization object file.
18610
18611 @item -mrelax
18612 @opindex mrelax
18613 Indicate to the linker that it should perform a relaxation optimization pass
18614 to shorten branches, calls and absolute memory addresses. This option only
18615 has an effect when used on the command line for the final link step.
18616
18617 This option makes symbolic debugging impossible.
18618
18619 @item -mliw
18620 @opindex mliw
18621 Allow the compiler to generate @emph{Long Instruction Word}
18622 instructions if the target is the @samp{AM33} or later. This is the
18623 default. This option defines the preprocessor macro @code{__LIW__}.
18624
18625 @item -mnoliw
18626 @opindex mnoliw
18627 Do not allow the compiler to generate @emph{Long Instruction Word}
18628 instructions. This option defines the preprocessor macro
18629 @code{__NO_LIW__}.
18630
18631 @item -msetlb
18632 @opindex msetlb
18633 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18634 instructions if the target is the @samp{AM33} or later. This is the
18635 default. This option defines the preprocessor macro @code{__SETLB__}.
18636
18637 @item -mnosetlb
18638 @opindex mnosetlb
18639 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18640 instructions. This option defines the preprocessor macro
18641 @code{__NO_SETLB__}.
18642
18643 @end table
18644
18645 @node Moxie Options
18646 @subsection Moxie Options
18647 @cindex Moxie Options
18648
18649 @table @gcctabopt
18650
18651 @item -meb
18652 @opindex meb
18653 Generate big-endian code. This is the default for @samp{moxie-*-*}
18654 configurations.
18655
18656 @item -mel
18657 @opindex mel
18658 Generate little-endian code.
18659
18660 @item -mmul.x
18661 @opindex mmul.x
18662 Generate mul.x and umul.x instructions. This is the default for
18663 @samp{moxiebox-*-*} configurations.
18664
18665 @item -mno-crt0
18666 @opindex mno-crt0
18667 Do not link in the C run-time initialization object file.
18668
18669 @end table
18670
18671 @node MSP430 Options
18672 @subsection MSP430 Options
18673 @cindex MSP430 Options
18674
18675 These options are defined for the MSP430:
18676
18677 @table @gcctabopt
18678
18679 @item -masm-hex
18680 @opindex masm-hex
18681 Force assembly output to always use hex constants. Normally such
18682 constants are signed decimals, but this option is available for
18683 testsuite and/or aesthetic purposes.
18684
18685 @item -mmcu=
18686 @opindex mmcu=
18687 Select the MCU to target. This is used to create a C preprocessor
18688 symbol based upon the MCU name, converted to upper case and pre- and
18689 post-fixed with @samp{__}. This in turn is used by the
18690 @file{msp430.h} header file to select an MCU-specific supplementary
18691 header file.
18692
18693 The option also sets the ISA to use. If the MCU name is one that is
18694 known to only support the 430 ISA then that is selected, otherwise the
18695 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
18696 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
18697 name selects the 430X ISA.
18698
18699 In addition an MCU-specific linker script is added to the linker
18700 command line. The script's name is the name of the MCU with
18701 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18702 command line defines the C preprocessor symbol @code{__XXX__} and
18703 cause the linker to search for a script called @file{xxx.ld}.
18704
18705 This option is also passed on to the assembler.
18706
18707 @item -mwarn-mcu
18708 @itemx -mno-warn-mcu
18709 @opindex mwarn-mcu
18710 @opindex mno-warn-mcu
18711 This option enables or disables warnings about conflicts between the
18712 MCU name specified by the @option{-mmcu} option and the ISA set by the
18713 @option{-mcpu} option and/or the hardware multiply support set by the
18714 @option{-mhwmult} option. It also toggles warnings about unrecognised
18715 MCU names. This option is on by default.
18716
18717 @item -mcpu=
18718 @opindex mcpu=
18719 Specifies the ISA to use. Accepted values are @samp{msp430},
18720 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
18721 @option{-mmcu=} option should be used to select the ISA.
18722
18723 @item -msim
18724 @opindex msim
18725 Link to the simulator runtime libraries and linker script. Overrides
18726 any scripts that would be selected by the @option{-mmcu=} option.
18727
18728 @item -mlarge
18729 @opindex mlarge
18730 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18731
18732 @item -msmall
18733 @opindex msmall
18734 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18735
18736 @item -mrelax
18737 @opindex mrelax
18738 This option is passed to the assembler and linker, and allows the
18739 linker to perform certain optimizations that cannot be done until
18740 the final link.
18741
18742 @item mhwmult=
18743 @opindex mhwmult=
18744 Describes the type of hardware multiply supported by the target.
18745 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18746 for the original 16-bit-only multiply supported by early MCUs.
18747 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18748 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18749 A value of @samp{auto} can also be given. This tells GCC to deduce
18750 the hardware multiply support based upon the MCU name provided by the
18751 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
18752 the MCU name is not recognised then no hardware multiply support is
18753 assumed. @code{auto} is the default setting.
18754
18755 Hardware multiplies are normally performed by calling a library
18756 routine. This saves space in the generated code. When compiling at
18757 @option{-O3} or higher however the hardware multiplier is invoked
18758 inline. This makes for bigger, but faster code.
18759
18760 The hardware multiply routines disable interrupts whilst running and
18761 restore the previous interrupt state when they finish. This makes
18762 them safe to use inside interrupt handlers as well as in normal code.
18763
18764 @item -minrt
18765 @opindex minrt
18766 Enable the use of a minimum runtime environment - no static
18767 initializers or constructors. This is intended for memory-constrained
18768 devices. The compiler includes special symbols in some objects
18769 that tell the linker and runtime which code fragments are required.
18770
18771 @item -mcode-region=
18772 @itemx -mdata-region=
18773 @opindex mcode-region
18774 @opindex mdata-region
18775 These options tell the compiler where to place functions and data that
18776 do not have one of the @code{lower}, @code{upper}, @code{either} or
18777 @code{section} attributes. Possible values are @code{lower},
18778 @code{upper}, @code{either} or @code{any}. The first three behave
18779 like the corresponding attribute. The fourth possible value -
18780 @code{any} - is the default. It leaves placement entirely up to the
18781 linker script and how it assigns the standard sections (.text, .data
18782 etc) to the memory regions.
18783
18784 @item -msilicon-errata=
18785 @opindex msilicon-errata
18786 This option passes on a request to assembler to enable the fixes for
18787 the named silicon errata.
18788
18789 @item -msilicon-errata-warn=
18790 @opindex msilicon-errata-warn
18791 This option passes on a request to the assembler to enable warning
18792 messages when a silicon errata might need to be applied.
18793
18794 @end table
18795
18796 @node NDS32 Options
18797 @subsection NDS32 Options
18798 @cindex NDS32 Options
18799
18800 These options are defined for NDS32 implementations:
18801
18802 @table @gcctabopt
18803
18804 @item -mbig-endian
18805 @opindex mbig-endian
18806 Generate code in big-endian mode.
18807
18808 @item -mlittle-endian
18809 @opindex mlittle-endian
18810 Generate code in little-endian mode.
18811
18812 @item -mreduced-regs
18813 @opindex mreduced-regs
18814 Use reduced-set registers for register allocation.
18815
18816 @item -mfull-regs
18817 @opindex mfull-regs
18818 Use full-set registers for register allocation.
18819
18820 @item -mcmov
18821 @opindex mcmov
18822 Generate conditional move instructions.
18823
18824 @item -mno-cmov
18825 @opindex mno-cmov
18826 Do not generate conditional move instructions.
18827
18828 @item -mperf-ext
18829 @opindex mperf-ext
18830 Generate performance extension instructions.
18831
18832 @item -mno-perf-ext
18833 @opindex mno-perf-ext
18834 Do not generate performance extension instructions.
18835
18836 @item -mv3push
18837 @opindex mv3push
18838 Generate v3 push25/pop25 instructions.
18839
18840 @item -mno-v3push
18841 @opindex mno-v3push
18842 Do not generate v3 push25/pop25 instructions.
18843
18844 @item -m16-bit
18845 @opindex m16-bit
18846 Generate 16-bit instructions.
18847
18848 @item -mno-16-bit
18849 @opindex mno-16-bit
18850 Do not generate 16-bit instructions.
18851
18852 @item -misr-vector-size=@var{num}
18853 @opindex misr-vector-size
18854 Specify the size of each interrupt vector, which must be 4 or 16.
18855
18856 @item -mcache-block-size=@var{num}
18857 @opindex mcache-block-size
18858 Specify the size of each cache block,
18859 which must be a power of 2 between 4 and 512.
18860
18861 @item -march=@var{arch}
18862 @opindex march
18863 Specify the name of the target architecture.
18864
18865 @item -mcmodel=@var{code-model}
18866 @opindex mcmodel
18867 Set the code model to one of
18868 @table @asis
18869 @item @samp{small}
18870 All the data and read-only data segments must be within 512KB addressing space.
18871 The text segment must be within 16MB addressing space.
18872 @item @samp{medium}
18873 The data segment must be within 512KB while the read-only data segment can be
18874 within 4GB addressing space. The text segment should be still within 16MB
18875 addressing space.
18876 @item @samp{large}
18877 All the text and data segments can be within 4GB addressing space.
18878 @end table
18879
18880 @item -mctor-dtor
18881 @opindex mctor-dtor
18882 Enable constructor/destructor feature.
18883
18884 @item -mrelax
18885 @opindex mrelax
18886 Guide linker to relax instructions.
18887
18888 @end table
18889
18890 @node Nios II Options
18891 @subsection Nios II Options
18892 @cindex Nios II options
18893 @cindex Altera Nios II options
18894
18895 These are the options defined for the Altera Nios II processor.
18896
18897 @table @gcctabopt
18898
18899 @item -G @var{num}
18900 @opindex G
18901 @cindex smaller data references
18902 Put global and static objects less than or equal to @var{num} bytes
18903 into the small data or BSS sections instead of the normal data or BSS
18904 sections. The default value of @var{num} is 8.
18905
18906 @item -mgpopt=@var{option}
18907 @item -mgpopt
18908 @itemx -mno-gpopt
18909 @opindex mgpopt
18910 @opindex mno-gpopt
18911 Generate (do not generate) GP-relative accesses. The following
18912 @var{option} names are recognized:
18913
18914 @table @samp
18915
18916 @item none
18917 Do not generate GP-relative accesses.
18918
18919 @item local
18920 Generate GP-relative accesses for small data objects that are not
18921 external, weak, or uninitialized common symbols.
18922 Also use GP-relative addressing for objects that
18923 have been explicitly placed in a small data section via a @code{section}
18924 attribute.
18925
18926 @item global
18927 As for @samp{local}, but also generate GP-relative accesses for
18928 small data objects that are external, weak, or common. If you use this option,
18929 you must ensure that all parts of your program (including libraries) are
18930 compiled with the same @option{-G} setting.
18931
18932 @item data
18933 Generate GP-relative accesses for all data objects in the program. If you
18934 use this option, the entire data and BSS segments
18935 of your program must fit in 64K of memory and you must use an appropriate
18936 linker script to allocate them within the addressible range of the
18937 global pointer.
18938
18939 @item all
18940 Generate GP-relative addresses for function pointers as well as data
18941 pointers. If you use this option, the entire text, data, and BSS segments
18942 of your program must fit in 64K of memory and you must use an appropriate
18943 linker script to allocate them within the addressible range of the
18944 global pointer.
18945
18946 @end table
18947
18948 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18949 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18950
18951 The default is @option{-mgpopt} except when @option{-fpic} or
18952 @option{-fPIC} is specified to generate position-independent code.
18953 Note that the Nios II ABI does not permit GP-relative accesses from
18954 shared libraries.
18955
18956 You may need to specify @option{-mno-gpopt} explicitly when building
18957 programs that include large amounts of small data, including large
18958 GOT data sections. In this case, the 16-bit offset for GP-relative
18959 addressing may not be large enough to allow access to the entire
18960 small data section.
18961
18962 @item -mel
18963 @itemx -meb
18964 @opindex mel
18965 @opindex meb
18966 Generate little-endian (default) or big-endian (experimental) code,
18967 respectively.
18968
18969 @item -march=@var{arch}
18970 @opindex march
18971 This specifies the name of the target Nios II architecture. GCC uses this
18972 name to determine what kind of instructions it can emit when generating
18973 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
18974
18975 The preprocessor macro @code{__nios2_arch__} is available to programs,
18976 with value 1 or 2, indicating the targeted ISA level.
18977
18978 @item -mbypass-cache
18979 @itemx -mno-bypass-cache
18980 @opindex mno-bypass-cache
18981 @opindex mbypass-cache
18982 Force all load and store instructions to always bypass cache by
18983 using I/O variants of the instructions. The default is not to
18984 bypass the cache.
18985
18986 @item -mno-cache-volatile
18987 @itemx -mcache-volatile
18988 @opindex mcache-volatile
18989 @opindex mno-cache-volatile
18990 Volatile memory access bypass the cache using the I/O variants of
18991 the load and store instructions. The default is not to bypass the cache.
18992
18993 @item -mno-fast-sw-div
18994 @itemx -mfast-sw-div
18995 @opindex mno-fast-sw-div
18996 @opindex mfast-sw-div
18997 Do not use table-based fast divide for small numbers. The default
18998 is to use the fast divide at @option{-O3} and above.
18999
19000 @item -mno-hw-mul
19001 @itemx -mhw-mul
19002 @itemx -mno-hw-mulx
19003 @itemx -mhw-mulx
19004 @itemx -mno-hw-div
19005 @itemx -mhw-div
19006 @opindex mno-hw-mul
19007 @opindex mhw-mul
19008 @opindex mno-hw-mulx
19009 @opindex mhw-mulx
19010 @opindex mno-hw-div
19011 @opindex mhw-div
19012 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
19013 instructions by the compiler. The default is to emit @code{mul}
19014 and not emit @code{div} and @code{mulx}.
19015
19016 @item -mbmx
19017 @itemx -mno-bmx
19018 @itemx -mcdx
19019 @itemx -mno-cdx
19020 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
19021 CDX (code density) instructions. Enabling these instructions also
19022 requires @option{-march=r2}. Since these instructions are optional
19023 extensions to the R2 architecture, the default is not to emit them.
19024
19025 @item -mcustom-@var{insn}=@var{N}
19026 @itemx -mno-custom-@var{insn}
19027 @opindex mcustom-@var{insn}
19028 @opindex mno-custom-@var{insn}
19029 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
19030 custom instruction with encoding @var{N} when generating code that uses
19031 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
19032 instruction 253 for single-precision floating-point add operations instead
19033 of the default behavior of using a library call.
19034
19035 The following values of @var{insn} are supported. Except as otherwise
19036 noted, floating-point operations are expected to be implemented with
19037 normal IEEE 754 semantics and correspond directly to the C operators or the
19038 equivalent GCC built-in functions (@pxref{Other Builtins}).
19039
19040 Single-precision floating point:
19041 @table @asis
19042
19043 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
19044 Binary arithmetic operations.
19045
19046 @item @samp{fnegs}
19047 Unary negation.
19048
19049 @item @samp{fabss}
19050 Unary absolute value.
19051
19052 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
19053 Comparison operations.
19054
19055 @item @samp{fmins}, @samp{fmaxs}
19056 Floating-point minimum and maximum. These instructions are only
19057 generated if @option{-ffinite-math-only} is specified.
19058
19059 @item @samp{fsqrts}
19060 Unary square root operation.
19061
19062 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
19063 Floating-point trigonometric and exponential functions. These instructions
19064 are only generated if @option{-funsafe-math-optimizations} is also specified.
19065
19066 @end table
19067
19068 Double-precision floating point:
19069 @table @asis
19070
19071 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
19072 Binary arithmetic operations.
19073
19074 @item @samp{fnegd}
19075 Unary negation.
19076
19077 @item @samp{fabsd}
19078 Unary absolute value.
19079
19080 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
19081 Comparison operations.
19082
19083 @item @samp{fmind}, @samp{fmaxd}
19084 Double-precision minimum and maximum. These instructions are only
19085 generated if @option{-ffinite-math-only} is specified.
19086
19087 @item @samp{fsqrtd}
19088 Unary square root operation.
19089
19090 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
19091 Double-precision trigonometric and exponential functions. These instructions
19092 are only generated if @option{-funsafe-math-optimizations} is also specified.
19093
19094 @end table
19095
19096 Conversions:
19097 @table @asis
19098 @item @samp{fextsd}
19099 Conversion from single precision to double precision.
19100
19101 @item @samp{ftruncds}
19102 Conversion from double precision to single precision.
19103
19104 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
19105 Conversion from floating point to signed or unsigned integer types, with
19106 truncation towards zero.
19107
19108 @item @samp{round}
19109 Conversion from single-precision floating point to signed integer,
19110 rounding to the nearest integer and ties away from zero.
19111 This corresponds to the @code{__builtin_lroundf} function when
19112 @option{-fno-math-errno} is used.
19113
19114 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
19115 Conversion from signed or unsigned integer types to floating-point types.
19116
19117 @end table
19118
19119 In addition, all of the following transfer instructions for internal
19120 registers X and Y must be provided to use any of the double-precision
19121 floating-point instructions. Custom instructions taking two
19122 double-precision source operands expect the first operand in the
19123 64-bit register X. The other operand (or only operand of a unary
19124 operation) is given to the custom arithmetic instruction with the
19125 least significant half in source register @var{src1} and the most
19126 significant half in @var{src2}. A custom instruction that returns a
19127 double-precision result returns the most significant 32 bits in the
19128 destination register and the other half in 32-bit register Y.
19129 GCC automatically generates the necessary code sequences to write
19130 register X and/or read register Y when double-precision floating-point
19131 instructions are used.
19132
19133 @table @asis
19134
19135 @item @samp{fwrx}
19136 Write @var{src1} into the least significant half of X and @var{src2} into
19137 the most significant half of X.
19138
19139 @item @samp{fwry}
19140 Write @var{src1} into Y.
19141
19142 @item @samp{frdxhi}, @samp{frdxlo}
19143 Read the most or least (respectively) significant half of X and store it in
19144 @var{dest}.
19145
19146 @item @samp{frdy}
19147 Read the value of Y and store it into @var{dest}.
19148 @end table
19149
19150 Note that you can gain more local control over generation of Nios II custom
19151 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
19152 and @code{target("no-custom-@var{insn}")} function attributes
19153 (@pxref{Function Attributes})
19154 or pragmas (@pxref{Function Specific Option Pragmas}).
19155
19156 @item -mcustom-fpu-cfg=@var{name}
19157 @opindex mcustom-fpu-cfg
19158
19159 This option enables a predefined, named set of custom instruction encodings
19160 (see @option{-mcustom-@var{insn}} above).
19161 Currently, the following sets are defined:
19162
19163 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
19164 @gccoptlist{-mcustom-fmuls=252 @gol
19165 -mcustom-fadds=253 @gol
19166 -mcustom-fsubs=254 @gol
19167 -fsingle-precision-constant}
19168
19169 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
19170 @gccoptlist{-mcustom-fmuls=252 @gol
19171 -mcustom-fadds=253 @gol
19172 -mcustom-fsubs=254 @gol
19173 -mcustom-fdivs=255 @gol
19174 -fsingle-precision-constant}
19175
19176 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
19177 @gccoptlist{-mcustom-floatus=243 @gol
19178 -mcustom-fixsi=244 @gol
19179 -mcustom-floatis=245 @gol
19180 -mcustom-fcmpgts=246 @gol
19181 -mcustom-fcmples=249 @gol
19182 -mcustom-fcmpeqs=250 @gol
19183 -mcustom-fcmpnes=251 @gol
19184 -mcustom-fmuls=252 @gol
19185 -mcustom-fadds=253 @gol
19186 -mcustom-fsubs=254 @gol
19187 -mcustom-fdivs=255 @gol
19188 -fsingle-precision-constant}
19189
19190 Custom instruction assignments given by individual
19191 @option{-mcustom-@var{insn}=} options override those given by
19192 @option{-mcustom-fpu-cfg=}, regardless of the
19193 order of the options on the command line.
19194
19195 Note that you can gain more local control over selection of a FPU
19196 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
19197 function attribute (@pxref{Function Attributes})
19198 or pragma (@pxref{Function Specific Option Pragmas}).
19199
19200 @end table
19201
19202 These additional @samp{-m} options are available for the Altera Nios II
19203 ELF (bare-metal) target:
19204
19205 @table @gcctabopt
19206
19207 @item -mhal
19208 @opindex mhal
19209 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
19210 startup and termination code, and is typically used in conjunction with
19211 @option{-msys-crt0=} to specify the location of the alternate startup code
19212 provided by the HAL BSP.
19213
19214 @item -msmallc
19215 @opindex msmallc
19216 Link with a limited version of the C library, @option{-lsmallc}, rather than
19217 Newlib.
19218
19219 @item -msys-crt0=@var{startfile}
19220 @opindex msys-crt0
19221 @var{startfile} is the file name of the startfile (crt0) to use
19222 when linking. This option is only useful in conjunction with @option{-mhal}.
19223
19224 @item -msys-lib=@var{systemlib}
19225 @opindex msys-lib
19226 @var{systemlib} is the library name of the library that provides
19227 low-level system calls required by the C library,
19228 e.g. @code{read} and @code{write}.
19229 This option is typically used to link with a library provided by a HAL BSP.
19230
19231 @end table
19232
19233 @node Nvidia PTX Options
19234 @subsection Nvidia PTX Options
19235 @cindex Nvidia PTX options
19236 @cindex nvptx options
19237
19238 These options are defined for Nvidia PTX:
19239
19240 @table @gcctabopt
19241
19242 @item -m32
19243 @itemx -m64
19244 @opindex m32
19245 @opindex m64
19246 Generate code for 32-bit or 64-bit ABI.
19247
19248 @item -mmainkernel
19249 @opindex mmainkernel
19250 Link in code for a __main kernel. This is for stand-alone instead of
19251 offloading execution.
19252
19253 @item -moptimize
19254 @opindex moptimize
19255 Apply partitioned execution optimizations. This is the default when any
19256 level of optimization is selected.
19257
19258 @end table
19259
19260 @node PDP-11 Options
19261 @subsection PDP-11 Options
19262 @cindex PDP-11 Options
19263
19264 These options are defined for the PDP-11:
19265
19266 @table @gcctabopt
19267 @item -mfpu
19268 @opindex mfpu
19269 Use hardware FPP floating point. This is the default. (FIS floating
19270 point on the PDP-11/40 is not supported.)
19271
19272 @item -msoft-float
19273 @opindex msoft-float
19274 Do not use hardware floating point.
19275
19276 @item -mac0
19277 @opindex mac0
19278 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
19279
19280 @item -mno-ac0
19281 @opindex mno-ac0
19282 Return floating-point results in memory. This is the default.
19283
19284 @item -m40
19285 @opindex m40
19286 Generate code for a PDP-11/40.
19287
19288 @item -m45
19289 @opindex m45
19290 Generate code for a PDP-11/45. This is the default.
19291
19292 @item -m10
19293 @opindex m10
19294 Generate code for a PDP-11/10.
19295
19296 @item -mbcopy-builtin
19297 @opindex mbcopy-builtin
19298 Use inline @code{movmemhi} patterns for copying memory. This is the
19299 default.
19300
19301 @item -mbcopy
19302 @opindex mbcopy
19303 Do not use inline @code{movmemhi} patterns for copying memory.
19304
19305 @item -mint16
19306 @itemx -mno-int32
19307 @opindex mint16
19308 @opindex mno-int32
19309 Use 16-bit @code{int}. This is the default.
19310
19311 @item -mint32
19312 @itemx -mno-int16
19313 @opindex mint32
19314 @opindex mno-int16
19315 Use 32-bit @code{int}.
19316
19317 @item -mfloat64
19318 @itemx -mno-float32
19319 @opindex mfloat64
19320 @opindex mno-float32
19321 Use 64-bit @code{float}. This is the default.
19322
19323 @item -mfloat32
19324 @itemx -mno-float64
19325 @opindex mfloat32
19326 @opindex mno-float64
19327 Use 32-bit @code{float}.
19328
19329 @item -mabshi
19330 @opindex mabshi
19331 Use @code{abshi2} pattern. This is the default.
19332
19333 @item -mno-abshi
19334 @opindex mno-abshi
19335 Do not use @code{abshi2} pattern.
19336
19337 @item -mbranch-expensive
19338 @opindex mbranch-expensive
19339 Pretend that branches are expensive. This is for experimenting with
19340 code generation only.
19341
19342 @item -mbranch-cheap
19343 @opindex mbranch-cheap
19344 Do not pretend that branches are expensive. This is the default.
19345
19346 @item -munix-asm
19347 @opindex munix-asm
19348 Use Unix assembler syntax. This is the default when configured for
19349 @samp{pdp11-*-bsd}.
19350
19351 @item -mdec-asm
19352 @opindex mdec-asm
19353 Use DEC assembler syntax. This is the default when configured for any
19354 PDP-11 target other than @samp{pdp11-*-bsd}.
19355 @end table
19356
19357 @node picoChip Options
19358 @subsection picoChip Options
19359 @cindex picoChip options
19360
19361 These @samp{-m} options are defined for picoChip implementations:
19362
19363 @table @gcctabopt
19364
19365 @item -mae=@var{ae_type}
19366 @opindex mcpu
19367 Set the instruction set, register set, and instruction scheduling
19368 parameters for array element type @var{ae_type}. Supported values
19369 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
19370
19371 @option{-mae=ANY} selects a completely generic AE type. Code
19372 generated with this option runs on any of the other AE types. The
19373 code is not as efficient as it would be if compiled for a specific
19374 AE type, and some types of operation (e.g., multiplication) do not
19375 work properly on all types of AE.
19376
19377 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
19378 for compiled code, and is the default.
19379
19380 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
19381 option may suffer from poor performance of byte (char) manipulation,
19382 since the DSP AE does not provide hardware support for byte load/stores.
19383
19384 @item -msymbol-as-address
19385 Enable the compiler to directly use a symbol name as an address in a
19386 load/store instruction, without first loading it into a
19387 register. Typically, the use of this option generates larger
19388 programs, which run faster than when the option isn't used. However, the
19389 results vary from program to program, so it is left as a user option,
19390 rather than being permanently enabled.
19391
19392 @item -mno-inefficient-warnings
19393 Disables warnings about the generation of inefficient code. These
19394 warnings can be generated, for example, when compiling code that
19395 performs byte-level memory operations on the MAC AE type. The MAC AE has
19396 no hardware support for byte-level memory operations, so all byte
19397 load/stores must be synthesized from word load/store operations. This is
19398 inefficient and a warning is generated to indicate
19399 that you should rewrite the code to avoid byte operations, or to target
19400 an AE type that has the necessary hardware support. This option disables
19401 these warnings.
19402
19403 @end table
19404
19405 @node PowerPC Options
19406 @subsection PowerPC Options
19407 @cindex PowerPC options
19408
19409 These are listed under @xref{RS/6000 and PowerPC Options}.
19410
19411 @node RL78 Options
19412 @subsection RL78 Options
19413 @cindex RL78 Options
19414
19415 @table @gcctabopt
19416
19417 @item -msim
19418 @opindex msim
19419 Links in additional target libraries to support operation within a
19420 simulator.
19421
19422 @item -mmul=none
19423 @itemx -mmul=g10
19424 @itemx -mmul=g13
19425 @itemx -mmul=g14
19426 @itemx -mmul=rl78
19427 @opindex mmul
19428 Specifies the type of hardware multiplication and division support to
19429 be used. The simplest is @code{none}, which uses software for both
19430 multiplication and division. This is the default. The @code{g13}
19431 value is for the hardware multiply/divide peripheral found on the
19432 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
19433 the multiplication and division instructions supported by the RL78/G14
19434 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
19435 the value @code{mg10} is an alias for @code{none}.
19436
19437 In addition a C preprocessor macro is defined, based upon the setting
19438 of this option. Possible values are: @code{__RL78_MUL_NONE__},
19439 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
19440
19441 @item -mcpu=g10
19442 @itemx -mcpu=g13
19443 @itemx -mcpu=g14
19444 @itemx -mcpu=rl78
19445 @opindex mcpu
19446 Specifies the RL78 core to target. The default is the G14 core, also
19447 known as an S3 core or just RL78. The G13 or S2 core does not have
19448 multiply or divide instructions, instead it uses a hardware peripheral
19449 for these operations. The G10 or S1 core does not have register
19450 banks, so it uses a different calling convention.
19451
19452 If this option is set it also selects the type of hardware multiply
19453 support to use, unless this is overridden by an explicit
19454 @option{-mmul=none} option on the command line. Thus specifying
19455 @option{-mcpu=g13} enables the use of the G13 hardware multiply
19456 peripheral and specifying @option{-mcpu=g10} disables the use of
19457 hardware multipications altogether.
19458
19459 Note, although the RL78/G14 core is the default target, specifying
19460 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
19461 change the behaviour of the toolchain since it also enables G14
19462 hardware multiply support. If these options are not specified on the
19463 command line then software multiplication routines will be used even
19464 though the code targets the RL78 core. This is for backwards
19465 compatibility with older toolchains which did not have hardware
19466 multiply and divide support.
19467
19468 In addition a C preprocessor macro is defined, based upon the setting
19469 of this option. Possible values are: @code{__RL78_G10__},
19470 @code{__RL78_G13__} or @code{__RL78_G14__}.
19471
19472 @item -mg10
19473 @itemx -mg13
19474 @itemx -mg14
19475 @itemx -mrl78
19476 @opindex mg10
19477 @opindex mg13
19478 @opindex mg14
19479 @opindex mrl78
19480 These are aliases for the corresponding @option{-mcpu=} option. They
19481 are provided for backwards compatibility.
19482
19483 @item -mallregs
19484 @opindex mallregs
19485 Allow the compiler to use all of the available registers. By default
19486 registers @code{r24..r31} are reserved for use in interrupt handlers.
19487 With this option enabled these registers can be used in ordinary
19488 functions as well.
19489
19490 @item -m64bit-doubles
19491 @itemx -m32bit-doubles
19492 @opindex m64bit-doubles
19493 @opindex m32bit-doubles
19494 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
19495 or 32 bits (@option{-m32bit-doubles}) in size. The default is
19496 @option{-m32bit-doubles}.
19497
19498 @end table
19499
19500 @node RS/6000 and PowerPC Options
19501 @subsection IBM RS/6000 and PowerPC Options
19502 @cindex RS/6000 and PowerPC Options
19503 @cindex IBM RS/6000 and PowerPC Options
19504
19505 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
19506 @table @gcctabopt
19507 @item -mpowerpc-gpopt
19508 @itemx -mno-powerpc-gpopt
19509 @itemx -mpowerpc-gfxopt
19510 @itemx -mno-powerpc-gfxopt
19511 @need 800
19512 @itemx -mpowerpc64
19513 @itemx -mno-powerpc64
19514 @itemx -mmfcrf
19515 @itemx -mno-mfcrf
19516 @itemx -mpopcntb
19517 @itemx -mno-popcntb
19518 @itemx -mpopcntd
19519 @itemx -mno-popcntd
19520 @itemx -mfprnd
19521 @itemx -mno-fprnd
19522 @need 800
19523 @itemx -mcmpb
19524 @itemx -mno-cmpb
19525 @itemx -mmfpgpr
19526 @itemx -mno-mfpgpr
19527 @itemx -mhard-dfp
19528 @itemx -mno-hard-dfp
19529 @opindex mpowerpc-gpopt
19530 @opindex mno-powerpc-gpopt
19531 @opindex mpowerpc-gfxopt
19532 @opindex mno-powerpc-gfxopt
19533 @opindex mpowerpc64
19534 @opindex mno-powerpc64
19535 @opindex mmfcrf
19536 @opindex mno-mfcrf
19537 @opindex mpopcntb
19538 @opindex mno-popcntb
19539 @opindex mpopcntd
19540 @opindex mno-popcntd
19541 @opindex mfprnd
19542 @opindex mno-fprnd
19543 @opindex mcmpb
19544 @opindex mno-cmpb
19545 @opindex mmfpgpr
19546 @opindex mno-mfpgpr
19547 @opindex mhard-dfp
19548 @opindex mno-hard-dfp
19549 You use these options to specify which instructions are available on the
19550 processor you are using. The default value of these options is
19551 determined when configuring GCC@. Specifying the
19552 @option{-mcpu=@var{cpu_type}} overrides the specification of these
19553 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
19554 rather than the options listed above.
19555
19556 Specifying @option{-mpowerpc-gpopt} allows
19557 GCC to use the optional PowerPC architecture instructions in the
19558 General Purpose group, including floating-point square root. Specifying
19559 @option{-mpowerpc-gfxopt} allows GCC to
19560 use the optional PowerPC architecture instructions in the Graphics
19561 group, including floating-point select.
19562
19563 The @option{-mmfcrf} option allows GCC to generate the move from
19564 condition register field instruction implemented on the POWER4
19565 processor and other processors that support the PowerPC V2.01
19566 architecture.
19567 The @option{-mpopcntb} option allows GCC to generate the popcount and
19568 double-precision FP reciprocal estimate instruction implemented on the
19569 POWER5 processor and other processors that support the PowerPC V2.02
19570 architecture.
19571 The @option{-mpopcntd} option allows GCC to generate the popcount
19572 instruction implemented on the POWER7 processor and other processors
19573 that support the PowerPC V2.06 architecture.
19574 The @option{-mfprnd} option allows GCC to generate the FP round to
19575 integer instructions implemented on the POWER5+ processor and other
19576 processors that support the PowerPC V2.03 architecture.
19577 The @option{-mcmpb} option allows GCC to generate the compare bytes
19578 instruction implemented on the POWER6 processor and other processors
19579 that support the PowerPC V2.05 architecture.
19580 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
19581 general-purpose register instructions implemented on the POWER6X
19582 processor and other processors that support the extended PowerPC V2.05
19583 architecture.
19584 The @option{-mhard-dfp} option allows GCC to generate the decimal
19585 floating-point instructions implemented on some POWER processors.
19586
19587 The @option{-mpowerpc64} option allows GCC to generate the additional
19588 64-bit instructions that are found in the full PowerPC64 architecture
19589 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
19590 @option{-mno-powerpc64}.
19591
19592 @item -mcpu=@var{cpu_type}
19593 @opindex mcpu
19594 Set architecture type, register usage, and
19595 instruction scheduling parameters for machine type @var{cpu_type}.
19596 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
19597 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
19598 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
19599 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
19600 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
19601 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
19602 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
19603 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
19604 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
19605 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
19606 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
19607 and @samp{rs64}.
19608
19609 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
19610 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
19611 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
19612 architecture machine types, with an appropriate, generic processor
19613 model assumed for scheduling purposes.
19614
19615 The other options specify a specific processor. Code generated under
19616 those options runs best on that processor, and may not run at all on
19617 others.
19618
19619 The @option{-mcpu} options automatically enable or disable the
19620 following options:
19621
19622 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
19623 -mpopcntb -mpopcntd -mpowerpc64 @gol
19624 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
19625 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
19626 -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol
19627 -mquad-memory -mquad-memory-atomic -mmodulo -mfloat128 -mfloat128-hardware @gol
19628 -mpower9-fusion -mpower9-vector}
19629
19630 The particular options set for any particular CPU varies between
19631 compiler versions, depending on what setting seems to produce optimal
19632 code for that CPU; it doesn't necessarily reflect the actual hardware's
19633 capabilities. If you wish to set an individual option to a particular
19634 value, you may specify it after the @option{-mcpu} option, like
19635 @option{-mcpu=970 -mno-altivec}.
19636
19637 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
19638 not enabled or disabled by the @option{-mcpu} option at present because
19639 AIX does not have full support for these options. You may still
19640 enable or disable them individually if you're sure it'll work in your
19641 environment.
19642
19643 @item -mtune=@var{cpu_type}
19644 @opindex mtune
19645 Set the instruction scheduling parameters for machine type
19646 @var{cpu_type}, but do not set the architecture type or register usage,
19647 as @option{-mcpu=@var{cpu_type}} does. The same
19648 values for @var{cpu_type} are used for @option{-mtune} as for
19649 @option{-mcpu}. If both are specified, the code generated uses the
19650 architecture and registers set by @option{-mcpu}, but the
19651 scheduling parameters set by @option{-mtune}.
19652
19653 @item -mcmodel=small
19654 @opindex mcmodel=small
19655 Generate PowerPC64 code for the small model: The TOC is limited to
19656 64k.
19657
19658 @item -mcmodel=medium
19659 @opindex mcmodel=medium
19660 Generate PowerPC64 code for the medium model: The TOC and other static
19661 data may be up to a total of 4G in size.
19662
19663 @item -mcmodel=large
19664 @opindex mcmodel=large
19665 Generate PowerPC64 code for the large model: The TOC may be up to 4G
19666 in size. Other data and code is only limited by the 64-bit address
19667 space.
19668
19669 @item -maltivec
19670 @itemx -mno-altivec
19671 @opindex maltivec
19672 @opindex mno-altivec
19673 Generate code that uses (does not use) AltiVec instructions, and also
19674 enable the use of built-in functions that allow more direct access to
19675 the AltiVec instruction set. You may also need to set
19676 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
19677 enhancements.
19678
19679 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
19680 @option{-maltivec=be}, the element order for Altivec intrinsics such
19681 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
19682 match array element order corresponding to the endianness of the
19683 target. That is, element zero identifies the leftmost element in a
19684 vector register when targeting a big-endian platform, and identifies
19685 the rightmost element in a vector register when targeting a
19686 little-endian platform.
19687
19688 @item -maltivec=be
19689 @opindex maltivec=be
19690 Generate Altivec instructions using big-endian element order,
19691 regardless of whether the target is big- or little-endian. This is
19692 the default when targeting a big-endian platform.
19693
19694 The element order is used to interpret element numbers in Altivec
19695 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19696 @code{vec_insert}. By default, these match array element order
19697 corresponding to the endianness for the target.
19698
19699 @item -maltivec=le
19700 @opindex maltivec=le
19701 Generate Altivec instructions using little-endian element order,
19702 regardless of whether the target is big- or little-endian. This is
19703 the default when targeting a little-endian platform. This option is
19704 currently ignored when targeting a big-endian platform.
19705
19706 The element order is used to interpret element numbers in Altivec
19707 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19708 @code{vec_insert}. By default, these match array element order
19709 corresponding to the endianness for the target.
19710
19711 @item -mvrsave
19712 @itemx -mno-vrsave
19713 @opindex mvrsave
19714 @opindex mno-vrsave
19715 Generate VRSAVE instructions when generating AltiVec code.
19716
19717 @item -mgen-cell-microcode
19718 @opindex mgen-cell-microcode
19719 Generate Cell microcode instructions.
19720
19721 @item -mwarn-cell-microcode
19722 @opindex mwarn-cell-microcode
19723 Warn when a Cell microcode instruction is emitted. An example
19724 of a Cell microcode instruction is a variable shift.
19725
19726 @item -msecure-plt
19727 @opindex msecure-plt
19728 Generate code that allows @command{ld} and @command{ld.so}
19729 to build executables and shared
19730 libraries with non-executable @code{.plt} and @code{.got} sections.
19731 This is a PowerPC
19732 32-bit SYSV ABI option.
19733
19734 @item -mbss-plt
19735 @opindex mbss-plt
19736 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19737 fills in, and
19738 requires @code{.plt} and @code{.got}
19739 sections that are both writable and executable.
19740 This is a PowerPC 32-bit SYSV ABI option.
19741
19742 @item -misel
19743 @itemx -mno-isel
19744 @opindex misel
19745 @opindex mno-isel
19746 This switch enables or disables the generation of ISEL instructions.
19747
19748 @item -misel=@var{yes/no}
19749 This switch has been deprecated. Use @option{-misel} and
19750 @option{-mno-isel} instead.
19751
19752 @item -mspe
19753 @itemx -mno-spe
19754 @opindex mspe
19755 @opindex mno-spe
19756 This switch enables or disables the generation of SPE simd
19757 instructions.
19758
19759 @item -mpaired
19760 @itemx -mno-paired
19761 @opindex mpaired
19762 @opindex mno-paired
19763 This switch enables or disables the generation of PAIRED simd
19764 instructions.
19765
19766 @item -mspe=@var{yes/no}
19767 This option has been deprecated. Use @option{-mspe} and
19768 @option{-mno-spe} instead.
19769
19770 @item -mvsx
19771 @itemx -mno-vsx
19772 @opindex mvsx
19773 @opindex mno-vsx
19774 Generate code that uses (does not use) vector/scalar (VSX)
19775 instructions, and also enable the use of built-in functions that allow
19776 more direct access to the VSX instruction set.
19777
19778 @item -mcrypto
19779 @itemx -mno-crypto
19780 @opindex mcrypto
19781 @opindex mno-crypto
19782 Enable the use (disable) of the built-in functions that allow direct
19783 access to the cryptographic instructions that were added in version
19784 2.07 of the PowerPC ISA.
19785
19786 @item -mdirect-move
19787 @itemx -mno-direct-move
19788 @opindex mdirect-move
19789 @opindex mno-direct-move
19790 Generate code that uses (does not use) the instructions to move data
19791 between the general purpose registers and the vector/scalar (VSX)
19792 registers that were added in version 2.07 of the PowerPC ISA.
19793
19794 @item -mpower8-fusion
19795 @itemx -mno-power8-fusion
19796 @opindex mpower8-fusion
19797 @opindex mno-power8-fusion
19798 Generate code that keeps (does not keeps) some integer operations
19799 adjacent so that the instructions can be fused together on power8 and
19800 later processors.
19801
19802 @item -mpower8-vector
19803 @itemx -mno-power8-vector
19804 @opindex mpower8-vector
19805 @opindex mno-power8-vector
19806 Generate code that uses (does not use) the vector and scalar
19807 instructions that were added in version 2.07 of the PowerPC ISA. Also
19808 enable the use of built-in functions that allow more direct access to
19809 the vector instructions.
19810
19811 @item -mquad-memory
19812 @itemx -mno-quad-memory
19813 @opindex mquad-memory
19814 @opindex mno-quad-memory
19815 Generate code that uses (does not use) the non-atomic quad word memory
19816 instructions. The @option{-mquad-memory} option requires use of
19817 64-bit mode.
19818
19819 @item -mquad-memory-atomic
19820 @itemx -mno-quad-memory-atomic
19821 @opindex mquad-memory-atomic
19822 @opindex mno-quad-memory-atomic
19823 Generate code that uses (does not use) the atomic quad word memory
19824 instructions. The @option{-mquad-memory-atomic} option requires use of
19825 64-bit mode.
19826
19827 @item -mupper-regs-df
19828 @itemx -mno-upper-regs-df
19829 @opindex mupper-regs-df
19830 @opindex mno-upper-regs-df
19831 Generate code that uses (does not use) the scalar double precision
19832 instructions that target all 64 registers in the vector/scalar
19833 floating point register set that were added in version 2.06 of the
19834 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
19835 use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19836 @option{-mvsx} options.
19837
19838 @item -mupper-regs-sf
19839 @itemx -mno-upper-regs-sf
19840 @opindex mupper-regs-sf
19841 @opindex mno-upper-regs-sf
19842 Generate code that uses (does not use) the scalar single precision
19843 instructions that target all 64 registers in the vector/scalar
19844 floating point register set that were added in version 2.07 of the
19845 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
19846 use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19847 options.
19848
19849 @item -mupper-regs
19850 @itemx -mno-upper-regs
19851 @opindex mupper-regs
19852 @opindex mno-upper-regs
19853 Generate code that uses (does not use) the scalar
19854 instructions that target all 64 registers in the vector/scalar
19855 floating point register set, depending on the model of the machine.
19856
19857 If the @option{-mno-upper-regs} option is used, it turns off both
19858 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19859
19860 @item -mfloat128
19861 @itemx -mno-float128
19862 @opindex mfloat128
19863 @opindex mno-float128
19864 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
19865 and use either software emulation for IEEE 128-bit floating point or
19866 hardware instructions.
19867
19868 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7}, or
19869 @option{-mcpu=power8}) must be enabled to use the @option{-mfloat128}
19870 option. The @code{-mfloat128} option only works on PowerPC 64-bit
19871 Linux systems.
19872
19873 @item -mfloat128-hardware
19874 @itemx -mno-float128-hardware
19875 @opindex mfloat128-hardware
19876 @opindex mno-float128-hardware
19877 Enable/disable using ISA 3.0 hardware instructions to support the
19878 @var{__float128} data type.
19879
19880 @item -mmodulo
19881 @itemx -mno-modulo
19882 @opindex mmodulo
19883 @opindex mno-module
19884 Generate code that uses (does not use) the ISA 3.0 integer modulo
19885 instructions. The @option{-mmodulo} option is enabled by default
19886 with the @option{-mcpu=power9} option.
19887
19888 @item -mpower9-fusion
19889 @itemx -mno-power9-fusion
19890 @opindex mpower9-fusion
19891 @opindex mno-power9-fusion
19892 Generate code that keeps (does not keeps) some operations adjacent so
19893 that the instructions can be fused together on power9 and later
19894 processors.
19895
19896 @item -mpower9-vector
19897 @itemx -mno-power9-vector
19898 @opindex mpower9-vector
19899 @opindex mno-power9-vector
19900 Generate code that uses (does not use) the vector and scalar
19901 instructions that were added in version 2.07 of the PowerPC ISA. Also
19902 enable the use of built-in functions that allow more direct access to
19903 the vector instructions.
19904
19905 @item -mfloat-gprs=@var{yes/single/double/no}
19906 @itemx -mfloat-gprs
19907 @opindex mfloat-gprs
19908 This switch enables or disables the generation of floating-point
19909 operations on the general-purpose registers for architectures that
19910 support it.
19911
19912 The argument @samp{yes} or @samp{single} enables the use of
19913 single-precision floating-point operations.
19914
19915 The argument @samp{double} enables the use of single and
19916 double-precision floating-point operations.
19917
19918 The argument @samp{no} disables floating-point operations on the
19919 general-purpose registers.
19920
19921 This option is currently only available on the MPC854x.
19922
19923 @item -m32
19924 @itemx -m64
19925 @opindex m32
19926 @opindex m64
19927 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19928 targets (including GNU/Linux). The 32-bit environment sets int, long
19929 and pointer to 32 bits and generates code that runs on any PowerPC
19930 variant. The 64-bit environment sets int to 32 bits and long and
19931 pointer to 64 bits, and generates code for PowerPC64, as for
19932 @option{-mpowerpc64}.
19933
19934 @item -mfull-toc
19935 @itemx -mno-fp-in-toc
19936 @itemx -mno-sum-in-toc
19937 @itemx -mminimal-toc
19938 @opindex mfull-toc
19939 @opindex mno-fp-in-toc
19940 @opindex mno-sum-in-toc
19941 @opindex mminimal-toc
19942 Modify generation of the TOC (Table Of Contents), which is created for
19943 every executable file. The @option{-mfull-toc} option is selected by
19944 default. In that case, GCC allocates at least one TOC entry for
19945 each unique non-automatic variable reference in your program. GCC
19946 also places floating-point constants in the TOC@. However, only
19947 16,384 entries are available in the TOC@.
19948
19949 If you receive a linker error message that saying you have overflowed
19950 the available TOC space, you can reduce the amount of TOC space used
19951 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19952 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
19953 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19954 generate code to calculate the sum of an address and a constant at
19955 run time instead of putting that sum into the TOC@. You may specify one
19956 or both of these options. Each causes GCC to produce very slightly
19957 slower and larger code at the expense of conserving TOC space.
19958
19959 If you still run out of space in the TOC even when you specify both of
19960 these options, specify @option{-mminimal-toc} instead. This option causes
19961 GCC to make only one TOC entry for every file. When you specify this
19962 option, GCC produces code that is slower and larger but which
19963 uses extremely little TOC space. You may wish to use this option
19964 only on files that contain less frequently-executed code.
19965
19966 @item -maix64
19967 @itemx -maix32
19968 @opindex maix64
19969 @opindex maix32
19970 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19971 @code{long} type, and the infrastructure needed to support them.
19972 Specifying @option{-maix64} implies @option{-mpowerpc64},
19973 while @option{-maix32} disables the 64-bit ABI and
19974 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
19975
19976 @item -mxl-compat
19977 @itemx -mno-xl-compat
19978 @opindex mxl-compat
19979 @opindex mno-xl-compat
19980 Produce code that conforms more closely to IBM XL compiler semantics
19981 when using AIX-compatible ABI@. Pass floating-point arguments to
19982 prototyped functions beyond the register save area (RSA) on the stack
19983 in addition to argument FPRs. Do not assume that most significant
19984 double in 128-bit long double value is properly rounded when comparing
19985 values and converting to double. Use XL symbol names for long double
19986 support routines.
19987
19988 The AIX calling convention was extended but not initially documented to
19989 handle an obscure K&R C case of calling a function that takes the
19990 address of its arguments with fewer arguments than declared. IBM XL
19991 compilers access floating-point arguments that do not fit in the
19992 RSA from the stack when a subroutine is compiled without
19993 optimization. Because always storing floating-point arguments on the
19994 stack is inefficient and rarely needed, this option is not enabled by
19995 default and only is necessary when calling subroutines compiled by IBM
19996 XL compilers without optimization.
19997
19998 @item -mpe
19999 @opindex mpe
20000 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
20001 application written to use message passing with special startup code to
20002 enable the application to run. The system must have PE installed in the
20003 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
20004 must be overridden with the @option{-specs=} option to specify the
20005 appropriate directory location. The Parallel Environment does not
20006 support threads, so the @option{-mpe} option and the @option{-pthread}
20007 option are incompatible.
20008
20009 @item -malign-natural
20010 @itemx -malign-power
20011 @opindex malign-natural
20012 @opindex malign-power
20013 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
20014 @option{-malign-natural} overrides the ABI-defined alignment of larger
20015 types, such as floating-point doubles, on their natural size-based boundary.
20016 The option @option{-malign-power} instructs GCC to follow the ABI-specified
20017 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
20018
20019 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
20020 is not supported.
20021
20022 @item -msoft-float
20023 @itemx -mhard-float
20024 @opindex msoft-float
20025 @opindex mhard-float
20026 Generate code that does not use (uses) the floating-point register set.
20027 Software floating-point emulation is provided if you use the
20028 @option{-msoft-float} option, and pass the option to GCC when linking.
20029
20030 @item -msingle-float
20031 @itemx -mdouble-float
20032 @opindex msingle-float
20033 @opindex mdouble-float
20034 Generate code for single- or double-precision floating-point operations.
20035 @option{-mdouble-float} implies @option{-msingle-float}.
20036
20037 @item -msimple-fpu
20038 @opindex msimple-fpu
20039 Do not generate @code{sqrt} and @code{div} instructions for hardware
20040 floating-point unit.
20041
20042 @item -mfpu=@var{name}
20043 @opindex mfpu
20044 Specify type of floating-point unit. Valid values for @var{name} are
20045 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
20046 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
20047 @samp{sp_full} (equivalent to @option{-msingle-float}),
20048 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
20049
20050 @item -mxilinx-fpu
20051 @opindex mxilinx-fpu
20052 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
20053
20054 @item -mmultiple
20055 @itemx -mno-multiple
20056 @opindex mmultiple
20057 @opindex mno-multiple
20058 Generate code that uses (does not use) the load multiple word
20059 instructions and the store multiple word instructions. These
20060 instructions are generated by default on POWER systems, and not
20061 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
20062 PowerPC systems, since those instructions do not work when the
20063 processor is in little-endian mode. The exceptions are PPC740 and
20064 PPC750 which permit these instructions in little-endian mode.
20065
20066 @item -mstring
20067 @itemx -mno-string
20068 @opindex mstring
20069 @opindex mno-string
20070 Generate code that uses (does not use) the load string instructions
20071 and the store string word instructions to save multiple registers and
20072 do small block moves. These instructions are generated by default on
20073 POWER systems, and not generated on PowerPC systems. Do not use
20074 @option{-mstring} on little-endian PowerPC systems, since those
20075 instructions do not work when the processor is in little-endian mode.
20076 The exceptions are PPC740 and PPC750 which permit these instructions
20077 in little-endian mode.
20078
20079 @item -mupdate
20080 @itemx -mno-update
20081 @opindex mupdate
20082 @opindex mno-update
20083 Generate code that uses (does not use) the load or store instructions
20084 that update the base register to the address of the calculated memory
20085 location. These instructions are generated by default. If you use
20086 @option{-mno-update}, there is a small window between the time that the
20087 stack pointer is updated and the address of the previous frame is
20088 stored, which means code that walks the stack frame across interrupts or
20089 signals may get corrupted data.
20090
20091 @item -mavoid-indexed-addresses
20092 @itemx -mno-avoid-indexed-addresses
20093 @opindex mavoid-indexed-addresses
20094 @opindex mno-avoid-indexed-addresses
20095 Generate code that tries to avoid (not avoid) the use of indexed load
20096 or store instructions. These instructions can incur a performance
20097 penalty on Power6 processors in certain situations, such as when
20098 stepping through large arrays that cross a 16M boundary. This option
20099 is enabled by default when targeting Power6 and disabled otherwise.
20100
20101 @item -mfused-madd
20102 @itemx -mno-fused-madd
20103 @opindex mfused-madd
20104 @opindex mno-fused-madd
20105 Generate code that uses (does not use) the floating-point multiply and
20106 accumulate instructions. These instructions are generated by default
20107 if hardware floating point is used. The machine-dependent
20108 @option{-mfused-madd} option is now mapped to the machine-independent
20109 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
20110 mapped to @option{-ffp-contract=off}.
20111
20112 @item -mmulhw
20113 @itemx -mno-mulhw
20114 @opindex mmulhw
20115 @opindex mno-mulhw
20116 Generate code that uses (does not use) the half-word multiply and
20117 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
20118 These instructions are generated by default when targeting those
20119 processors.
20120
20121 @item -mdlmzb
20122 @itemx -mno-dlmzb
20123 @opindex mdlmzb
20124 @opindex mno-dlmzb
20125 Generate code that uses (does not use) the string-search @samp{dlmzb}
20126 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
20127 generated by default when targeting those processors.
20128
20129 @item -mno-bit-align
20130 @itemx -mbit-align
20131 @opindex mno-bit-align
20132 @opindex mbit-align
20133 On System V.4 and embedded PowerPC systems do not (do) force structures
20134 and unions that contain bit-fields to be aligned to the base type of the
20135 bit-field.
20136
20137 For example, by default a structure containing nothing but 8
20138 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
20139 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
20140 the structure is aligned to a 1-byte boundary and is 1 byte in
20141 size.
20142
20143 @item -mno-strict-align
20144 @itemx -mstrict-align
20145 @opindex mno-strict-align
20146 @opindex mstrict-align
20147 On System V.4 and embedded PowerPC systems do not (do) assume that
20148 unaligned memory references are handled by the system.
20149
20150 @item -mrelocatable
20151 @itemx -mno-relocatable
20152 @opindex mrelocatable
20153 @opindex mno-relocatable
20154 Generate code that allows (does not allow) a static executable to be
20155 relocated to a different address at run time. A simple embedded
20156 PowerPC system loader should relocate the entire contents of
20157 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
20158 a table of 32-bit addresses generated by this option. For this to
20159 work, all objects linked together must be compiled with
20160 @option{-mrelocatable} or @option{-mrelocatable-lib}.
20161 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
20162
20163 @item -mrelocatable-lib
20164 @itemx -mno-relocatable-lib
20165 @opindex mrelocatable-lib
20166 @opindex mno-relocatable-lib
20167 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
20168 @code{.fixup} section to allow static executables to be relocated at
20169 run time, but @option{-mrelocatable-lib} does not use the smaller stack
20170 alignment of @option{-mrelocatable}. Objects compiled with
20171 @option{-mrelocatable-lib} may be linked with objects compiled with
20172 any combination of the @option{-mrelocatable} options.
20173
20174 @item -mno-toc
20175 @itemx -mtoc
20176 @opindex mno-toc
20177 @opindex mtoc
20178 On System V.4 and embedded PowerPC systems do not (do) assume that
20179 register 2 contains a pointer to a global area pointing to the addresses
20180 used in the program.
20181
20182 @item -mlittle
20183 @itemx -mlittle-endian
20184 @opindex mlittle
20185 @opindex mlittle-endian
20186 On System V.4 and embedded PowerPC systems compile code for the
20187 processor in little-endian mode. The @option{-mlittle-endian} option is
20188 the same as @option{-mlittle}.
20189
20190 @item -mbig
20191 @itemx -mbig-endian
20192 @opindex mbig
20193 @opindex mbig-endian
20194 On System V.4 and embedded PowerPC systems compile code for the
20195 processor in big-endian mode. The @option{-mbig-endian} option is
20196 the same as @option{-mbig}.
20197
20198 @item -mdynamic-no-pic
20199 @opindex mdynamic-no-pic
20200 On Darwin and Mac OS X systems, compile code so that it is not
20201 relocatable, but that its external references are relocatable. The
20202 resulting code is suitable for applications, but not shared
20203 libraries.
20204
20205 @item -msingle-pic-base
20206 @opindex msingle-pic-base
20207 Treat the register used for PIC addressing as read-only, rather than
20208 loading it in the prologue for each function. The runtime system is
20209 responsible for initializing this register with an appropriate value
20210 before execution begins.
20211
20212 @item -mprioritize-restricted-insns=@var{priority}
20213 @opindex mprioritize-restricted-insns
20214 This option controls the priority that is assigned to
20215 dispatch-slot restricted instructions during the second scheduling
20216 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
20217 or @samp{2} to assign no, highest, or second-highest (respectively)
20218 priority to dispatch-slot restricted
20219 instructions.
20220
20221 @item -msched-costly-dep=@var{dependence_type}
20222 @opindex msched-costly-dep
20223 This option controls which dependences are considered costly
20224 by the target during instruction scheduling. The argument
20225 @var{dependence_type} takes one of the following values:
20226
20227 @table @asis
20228 @item @samp{no}
20229 No dependence is costly.
20230
20231 @item @samp{all}
20232 All dependences are costly.
20233
20234 @item @samp{true_store_to_load}
20235 A true dependence from store to load is costly.
20236
20237 @item @samp{store_to_load}
20238 Any dependence from store to load is costly.
20239
20240 @item @var{number}
20241 Any dependence for which the latency is greater than or equal to
20242 @var{number} is costly.
20243 @end table
20244
20245 @item -minsert-sched-nops=@var{scheme}
20246 @opindex minsert-sched-nops
20247 This option controls which NOP insertion scheme is used during
20248 the second scheduling pass. The argument @var{scheme} takes one of the
20249 following values:
20250
20251 @table @asis
20252 @item @samp{no}
20253 Don't insert NOPs.
20254
20255 @item @samp{pad}
20256 Pad with NOPs any dispatch group that has vacant issue slots,
20257 according to the scheduler's grouping.
20258
20259 @item @samp{regroup_exact}
20260 Insert NOPs to force costly dependent insns into
20261 separate groups. Insert exactly as many NOPs as needed to force an insn
20262 to a new group, according to the estimated processor grouping.
20263
20264 @item @var{number}
20265 Insert NOPs to force costly dependent insns into
20266 separate groups. Insert @var{number} NOPs to force an insn to a new group.
20267 @end table
20268
20269 @item -mcall-sysv
20270 @opindex mcall-sysv
20271 On System V.4 and embedded PowerPC systems compile code using calling
20272 conventions that adhere to the March 1995 draft of the System V
20273 Application Binary Interface, PowerPC processor supplement. This is the
20274 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
20275
20276 @item -mcall-sysv-eabi
20277 @itemx -mcall-eabi
20278 @opindex mcall-sysv-eabi
20279 @opindex mcall-eabi
20280 Specify both @option{-mcall-sysv} and @option{-meabi} options.
20281
20282 @item -mcall-sysv-noeabi
20283 @opindex mcall-sysv-noeabi
20284 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
20285
20286 @item -mcall-aixdesc
20287 @opindex m
20288 On System V.4 and embedded PowerPC systems compile code for the AIX
20289 operating system.
20290
20291 @item -mcall-linux
20292 @opindex mcall-linux
20293 On System V.4 and embedded PowerPC systems compile code for the
20294 Linux-based GNU system.
20295
20296 @item -mcall-freebsd
20297 @opindex mcall-freebsd
20298 On System V.4 and embedded PowerPC systems compile code for the
20299 FreeBSD operating system.
20300
20301 @item -mcall-netbsd
20302 @opindex mcall-netbsd
20303 On System V.4 and embedded PowerPC systems compile code for the
20304 NetBSD operating system.
20305
20306 @item -mcall-openbsd
20307 @opindex mcall-netbsd
20308 On System V.4 and embedded PowerPC systems compile code for the
20309 OpenBSD operating system.
20310
20311 @item -maix-struct-return
20312 @opindex maix-struct-return
20313 Return all structures in memory (as specified by the AIX ABI)@.
20314
20315 @item -msvr4-struct-return
20316 @opindex msvr4-struct-return
20317 Return structures smaller than 8 bytes in registers (as specified by the
20318 SVR4 ABI)@.
20319
20320 @item -mabi=@var{abi-type}
20321 @opindex mabi
20322 Extend the current ABI with a particular extension, or remove such extension.
20323 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
20324 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
20325 @samp{elfv1}, @samp{elfv2}@.
20326
20327 @item -mabi=spe
20328 @opindex mabi=spe
20329 Extend the current ABI with SPE ABI extensions. This does not change
20330 the default ABI, instead it adds the SPE ABI extensions to the current
20331 ABI@.
20332
20333 @item -mabi=no-spe
20334 @opindex mabi=no-spe
20335 Disable Book-E SPE ABI extensions for the current ABI@.
20336
20337 @item -mabi=ibmlongdouble
20338 @opindex mabi=ibmlongdouble
20339 Change the current ABI to use IBM extended-precision long double.
20340 This is a PowerPC 32-bit SYSV ABI option.
20341
20342 @item -mabi=ieeelongdouble
20343 @opindex mabi=ieeelongdouble
20344 Change the current ABI to use IEEE extended-precision long double.
20345 This is a PowerPC 32-bit Linux ABI option.
20346
20347 @item -mabi=elfv1
20348 @opindex mabi=elfv1
20349 Change the current ABI to use the ELFv1 ABI.
20350 This is the default ABI for big-endian PowerPC 64-bit Linux.
20351 Overriding the default ABI requires special system support and is
20352 likely to fail in spectacular ways.
20353
20354 @item -mabi=elfv2
20355 @opindex mabi=elfv2
20356 Change the current ABI to use the ELFv2 ABI.
20357 This is the default ABI for little-endian PowerPC 64-bit Linux.
20358 Overriding the default ABI requires special system support and is
20359 likely to fail in spectacular ways.
20360
20361 @item -mprototype
20362 @itemx -mno-prototype
20363 @opindex mprototype
20364 @opindex mno-prototype
20365 On System V.4 and embedded PowerPC systems assume that all calls to
20366 variable argument functions are properly prototyped. Otherwise, the
20367 compiler must insert an instruction before every non-prototyped call to
20368 set or clear bit 6 of the condition code register (@code{CR}) to
20369 indicate whether floating-point values are passed in the floating-point
20370 registers in case the function takes variable arguments. With
20371 @option{-mprototype}, only calls to prototyped variable argument functions
20372 set or clear the bit.
20373
20374 @item -msim
20375 @opindex msim
20376 On embedded PowerPC systems, assume that the startup module is called
20377 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
20378 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
20379 configurations.
20380
20381 @item -mmvme
20382 @opindex mmvme
20383 On embedded PowerPC systems, assume that the startup module is called
20384 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
20385 @file{libc.a}.
20386
20387 @item -mads
20388 @opindex mads
20389 On embedded PowerPC systems, assume that the startup module is called
20390 @file{crt0.o} and the standard C libraries are @file{libads.a} and
20391 @file{libc.a}.
20392
20393 @item -myellowknife
20394 @opindex myellowknife
20395 On embedded PowerPC systems, assume that the startup module is called
20396 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
20397 @file{libc.a}.
20398
20399 @item -mvxworks
20400 @opindex mvxworks
20401 On System V.4 and embedded PowerPC systems, specify that you are
20402 compiling for a VxWorks system.
20403
20404 @item -memb
20405 @opindex memb
20406 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
20407 header to indicate that @samp{eabi} extended relocations are used.
20408
20409 @item -meabi
20410 @itemx -mno-eabi
20411 @opindex meabi
20412 @opindex mno-eabi
20413 On System V.4 and embedded PowerPC systems do (do not) adhere to the
20414 Embedded Applications Binary Interface (EABI), which is a set of
20415 modifications to the System V.4 specifications. Selecting @option{-meabi}
20416 means that the stack is aligned to an 8-byte boundary, a function
20417 @code{__eabi} is called from @code{main} to set up the EABI
20418 environment, and the @option{-msdata} option can use both @code{r2} and
20419 @code{r13} to point to two separate small data areas. Selecting
20420 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
20421 no EABI initialization function is called from @code{main}, and the
20422 @option{-msdata} option only uses @code{r13} to point to a single
20423 small data area. The @option{-meabi} option is on by default if you
20424 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
20425
20426 @item -msdata=eabi
20427 @opindex msdata=eabi
20428 On System V.4 and embedded PowerPC systems, put small initialized
20429 @code{const} global and static data in the @code{.sdata2} section, which
20430 is pointed to by register @code{r2}. Put small initialized
20431 non-@code{const} global and static data in the @code{.sdata} section,
20432 which is pointed to by register @code{r13}. Put small uninitialized
20433 global and static data in the @code{.sbss} section, which is adjacent to
20434 the @code{.sdata} section. The @option{-msdata=eabi} option is
20435 incompatible with the @option{-mrelocatable} option. The
20436 @option{-msdata=eabi} option also sets the @option{-memb} option.
20437
20438 @item -msdata=sysv
20439 @opindex msdata=sysv
20440 On System V.4 and embedded PowerPC systems, put small global and static
20441 data in the @code{.sdata} section, which is pointed to by register
20442 @code{r13}. Put small uninitialized global and static data in the
20443 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
20444 The @option{-msdata=sysv} option is incompatible with the
20445 @option{-mrelocatable} option.
20446
20447 @item -msdata=default
20448 @itemx -msdata
20449 @opindex msdata=default
20450 @opindex msdata
20451 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
20452 compile code the same as @option{-msdata=eabi}, otherwise compile code the
20453 same as @option{-msdata=sysv}.
20454
20455 @item -msdata=data
20456 @opindex msdata=data
20457 On System V.4 and embedded PowerPC systems, put small global
20458 data in the @code{.sdata} section. Put small uninitialized global
20459 data in the @code{.sbss} section. Do not use register @code{r13}
20460 to address small data however. This is the default behavior unless
20461 other @option{-msdata} options are used.
20462
20463 @item -msdata=none
20464 @itemx -mno-sdata
20465 @opindex msdata=none
20466 @opindex mno-sdata
20467 On embedded PowerPC systems, put all initialized global and static data
20468 in the @code{.data} section, and all uninitialized data in the
20469 @code{.bss} section.
20470
20471 @item -mblock-move-inline-limit=@var{num}
20472 @opindex mblock-move-inline-limit
20473 Inline all block moves (such as calls to @code{memcpy} or structure
20474 copies) less than or equal to @var{num} bytes. The minimum value for
20475 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
20476 targets. The default value is target-specific.
20477
20478 @item -G @var{num}
20479 @opindex G
20480 @cindex smaller data references (PowerPC)
20481 @cindex .sdata/.sdata2 references (PowerPC)
20482 On embedded PowerPC systems, put global and static items less than or
20483 equal to @var{num} bytes into the small data or BSS sections instead of
20484 the normal data or BSS section. By default, @var{num} is 8. The
20485 @option{-G @var{num}} switch is also passed to the linker.
20486 All modules should be compiled with the same @option{-G @var{num}} value.
20487
20488 @item -mregnames
20489 @itemx -mno-regnames
20490 @opindex mregnames
20491 @opindex mno-regnames
20492 On System V.4 and embedded PowerPC systems do (do not) emit register
20493 names in the assembly language output using symbolic forms.
20494
20495 @item -mlongcall
20496 @itemx -mno-longcall
20497 @opindex mlongcall
20498 @opindex mno-longcall
20499 By default assume that all calls are far away so that a longer and more
20500 expensive calling sequence is required. This is required for calls
20501 farther than 32 megabytes (33,554,432 bytes) from the current location.
20502 A short call is generated if the compiler knows
20503 the call cannot be that far away. This setting can be overridden by
20504 the @code{shortcall} function attribute, or by @code{#pragma
20505 longcall(0)}.
20506
20507 Some linkers are capable of detecting out-of-range calls and generating
20508 glue code on the fly. On these systems, long calls are unnecessary and
20509 generate slower code. As of this writing, the AIX linker can do this,
20510 as can the GNU linker for PowerPC/64. It is planned to add this feature
20511 to the GNU linker for 32-bit PowerPC systems as well.
20512
20513 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
20514 callee, L42}, plus a @dfn{branch island} (glue code). The two target
20515 addresses represent the callee and the branch island. The
20516 Darwin/PPC linker prefers the first address and generates a @code{bl
20517 callee} if the PPC @code{bl} instruction reaches the callee directly;
20518 otherwise, the linker generates @code{bl L42} to call the branch
20519 island. The branch island is appended to the body of the
20520 calling function; it computes the full 32-bit address of the callee
20521 and jumps to it.
20522
20523 On Mach-O (Darwin) systems, this option directs the compiler emit to
20524 the glue for every direct call, and the Darwin linker decides whether
20525 to use or discard it.
20526
20527 In the future, GCC may ignore all longcall specifications
20528 when the linker is known to generate glue.
20529
20530 @item -mtls-markers
20531 @itemx -mno-tls-markers
20532 @opindex mtls-markers
20533 @opindex mno-tls-markers
20534 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
20535 specifying the function argument. The relocation allows the linker to
20536 reliably associate function call with argument setup instructions for
20537 TLS optimization, which in turn allows GCC to better schedule the
20538 sequence.
20539
20540 @item -pthread
20541 @opindex pthread
20542 Adds support for multithreading with the @dfn{pthreads} library.
20543 This option sets flags for both the preprocessor and linker.
20544
20545 @item -mrecip
20546 @itemx -mno-recip
20547 @opindex mrecip
20548 This option enables use of the reciprocal estimate and
20549 reciprocal square root estimate instructions with additional
20550 Newton-Raphson steps to increase precision instead of doing a divide or
20551 square root and divide for floating-point arguments. You should use
20552 the @option{-ffast-math} option when using @option{-mrecip} (or at
20553 least @option{-funsafe-math-optimizations},
20554 @option{-ffinite-math-only}, @option{-freciprocal-math} and
20555 @option{-fno-trapping-math}). Note that while the throughput of the
20556 sequence is generally higher than the throughput of the non-reciprocal
20557 instruction, the precision of the sequence can be decreased by up to 2
20558 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
20559 roots.
20560
20561 @item -mrecip=@var{opt}
20562 @opindex mrecip=opt
20563 This option controls which reciprocal estimate instructions
20564 may be used. @var{opt} is a comma-separated list of options, which may
20565 be preceded by a @code{!} to invert the option:
20566
20567 @table @samp
20568
20569 @item all
20570 Enable all estimate instructions.
20571
20572 @item default
20573 Enable the default instructions, equivalent to @option{-mrecip}.
20574
20575 @item none
20576 Disable all estimate instructions, equivalent to @option{-mno-recip}.
20577
20578 @item div
20579 Enable the reciprocal approximation instructions for both
20580 single and double precision.
20581
20582 @item divf
20583 Enable the single-precision reciprocal approximation instructions.
20584
20585 @item divd
20586 Enable the double-precision reciprocal approximation instructions.
20587
20588 @item rsqrt
20589 Enable the reciprocal square root approximation instructions for both
20590 single and double precision.
20591
20592 @item rsqrtf
20593 Enable the single-precision reciprocal square root approximation instructions.
20594
20595 @item rsqrtd
20596 Enable the double-precision reciprocal square root approximation instructions.
20597
20598 @end table
20599
20600 So, for example, @option{-mrecip=all,!rsqrtd} enables
20601 all of the reciprocal estimate instructions, except for the
20602 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
20603 which handle the double-precision reciprocal square root calculations.
20604
20605 @item -mrecip-precision
20606 @itemx -mno-recip-precision
20607 @opindex mrecip-precision
20608 Assume (do not assume) that the reciprocal estimate instructions
20609 provide higher-precision estimates than is mandated by the PowerPC
20610 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
20611 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
20612 The double-precision square root estimate instructions are not generated by
20613 default on low-precision machines, since they do not provide an
20614 estimate that converges after three steps.
20615
20616 @item -mveclibabi=@var{type}
20617 @opindex mveclibabi
20618 Specifies the ABI type to use for vectorizing intrinsics using an
20619 external library. The only type supported at present is @samp{mass},
20620 which specifies to use IBM's Mathematical Acceleration Subsystem
20621 (MASS) libraries for vectorizing intrinsics using external libraries.
20622 GCC currently emits calls to @code{acosd2}, @code{acosf4},
20623 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
20624 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
20625 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
20626 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
20627 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
20628 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
20629 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
20630 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
20631 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
20632 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
20633 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
20634 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
20635 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
20636 for power7. Both @option{-ftree-vectorize} and
20637 @option{-funsafe-math-optimizations} must also be enabled. The MASS
20638 libraries must be specified at link time.
20639
20640 @item -mfriz
20641 @itemx -mno-friz
20642 @opindex mfriz
20643 Generate (do not generate) the @code{friz} instruction when the
20644 @option{-funsafe-math-optimizations} option is used to optimize
20645 rounding of floating-point values to 64-bit integer and back to floating
20646 point. The @code{friz} instruction does not return the same value if
20647 the floating-point number is too large to fit in an integer.
20648
20649 @item -mpointers-to-nested-functions
20650 @itemx -mno-pointers-to-nested-functions
20651 @opindex mpointers-to-nested-functions
20652 Generate (do not generate) code to load up the static chain register
20653 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
20654 systems where a function pointer points to a 3-word descriptor giving
20655 the function address, TOC value to be loaded in register @code{r2}, and
20656 static chain value to be loaded in register @code{r11}. The
20657 @option{-mpointers-to-nested-functions} is on by default. You cannot
20658 call through pointers to nested functions or pointers
20659 to functions compiled in other languages that use the static chain if
20660 you use @option{-mno-pointers-to-nested-functions}.
20661
20662 @item -msave-toc-indirect
20663 @itemx -mno-save-toc-indirect
20664 @opindex msave-toc-indirect
20665 Generate (do not generate) code to save the TOC value in the reserved
20666 stack location in the function prologue if the function calls through
20667 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
20668 saved in the prologue, it is saved just before the call through the
20669 pointer. The @option{-mno-save-toc-indirect} option is the default.
20670
20671 @item -mcompat-align-parm
20672 @itemx -mno-compat-align-parm
20673 @opindex mcompat-align-parm
20674 Generate (do not generate) code to pass structure parameters with a
20675 maximum alignment of 64 bits, for compatibility with older versions
20676 of GCC.
20677
20678 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
20679 structure parameter on a 128-bit boundary when that structure contained
20680 a member requiring 128-bit alignment. This is corrected in more
20681 recent versions of GCC. This option may be used to generate code
20682 that is compatible with functions compiled with older versions of
20683 GCC.
20684
20685 The @option{-mno-compat-align-parm} option is the default.
20686 @end table
20687
20688 @node RX Options
20689 @subsection RX Options
20690 @cindex RX Options
20691
20692 These command-line options are defined for RX targets:
20693
20694 @table @gcctabopt
20695 @item -m64bit-doubles
20696 @itemx -m32bit-doubles
20697 @opindex m64bit-doubles
20698 @opindex m32bit-doubles
20699 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
20700 or 32 bits (@option{-m32bit-doubles}) in size. The default is
20701 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
20702 works on 32-bit values, which is why the default is
20703 @option{-m32bit-doubles}.
20704
20705 @item -fpu
20706 @itemx -nofpu
20707 @opindex fpu
20708 @opindex nofpu
20709 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
20710 floating-point hardware. The default is enabled for the RX600
20711 series and disabled for the RX200 series.
20712
20713 Floating-point instructions are only generated for 32-bit floating-point
20714 values, however, so the FPU hardware is not used for doubles if the
20715 @option{-m64bit-doubles} option is used.
20716
20717 @emph{Note} If the @option{-fpu} option is enabled then
20718 @option{-funsafe-math-optimizations} is also enabled automatically.
20719 This is because the RX FPU instructions are themselves unsafe.
20720
20721 @item -mcpu=@var{name}
20722 @opindex mcpu
20723 Selects the type of RX CPU to be targeted. Currently three types are
20724 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
20725 the specific @samp{RX610} CPU. The default is @samp{RX600}.
20726
20727 The only difference between @samp{RX600} and @samp{RX610} is that the
20728 @samp{RX610} does not support the @code{MVTIPL} instruction.
20729
20730 The @samp{RX200} series does not have a hardware floating-point unit
20731 and so @option{-nofpu} is enabled by default when this type is
20732 selected.
20733
20734 @item -mbig-endian-data
20735 @itemx -mlittle-endian-data
20736 @opindex mbig-endian-data
20737 @opindex mlittle-endian-data
20738 Store data (but not code) in the big-endian format. The default is
20739 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
20740 format.
20741
20742 @item -msmall-data-limit=@var{N}
20743 @opindex msmall-data-limit
20744 Specifies the maximum size in bytes of global and static variables
20745 which can be placed into the small data area. Using the small data
20746 area can lead to smaller and faster code, but the size of area is
20747 limited and it is up to the programmer to ensure that the area does
20748 not overflow. Also when the small data area is used one of the RX's
20749 registers (usually @code{r13}) is reserved for use pointing to this
20750 area, so it is no longer available for use by the compiler. This
20751 could result in slower and/or larger code if variables are pushed onto
20752 the stack instead of being held in this register.
20753
20754 Note, common variables (variables that have not been initialized) and
20755 constants are not placed into the small data area as they are assigned
20756 to other sections in the output executable.
20757
20758 The default value is zero, which disables this feature. Note, this
20759 feature is not enabled by default with higher optimization levels
20760 (@option{-O2} etc) because of the potentially detrimental effects of
20761 reserving a register. It is up to the programmer to experiment and
20762 discover whether this feature is of benefit to their program. See the
20763 description of the @option{-mpid} option for a description of how the
20764 actual register to hold the small data area pointer is chosen.
20765
20766 @item -msim
20767 @itemx -mno-sim
20768 @opindex msim
20769 @opindex mno-sim
20770 Use the simulator runtime. The default is to use the libgloss
20771 board-specific runtime.
20772
20773 @item -mas100-syntax
20774 @itemx -mno-as100-syntax
20775 @opindex mas100-syntax
20776 @opindex mno-as100-syntax
20777 When generating assembler output use a syntax that is compatible with
20778 Renesas's AS100 assembler. This syntax can also be handled by the GAS
20779 assembler, but it has some restrictions so it is not generated by default.
20780
20781 @item -mmax-constant-size=@var{N}
20782 @opindex mmax-constant-size
20783 Specifies the maximum size, in bytes, of a constant that can be used as
20784 an operand in a RX instruction. Although the RX instruction set does
20785 allow constants of up to 4 bytes in length to be used in instructions,
20786 a longer value equates to a longer instruction. Thus in some
20787 circumstances it can be beneficial to restrict the size of constants
20788 that are used in instructions. Constants that are too big are instead
20789 placed into a constant pool and referenced via register indirection.
20790
20791 The value @var{N} can be between 0 and 4. A value of 0 (the default)
20792 or 4 means that constants of any size are allowed.
20793
20794 @item -mrelax
20795 @opindex mrelax
20796 Enable linker relaxation. Linker relaxation is a process whereby the
20797 linker attempts to reduce the size of a program by finding shorter
20798 versions of various instructions. Disabled by default.
20799
20800 @item -mint-register=@var{N}
20801 @opindex mint-register
20802 Specify the number of registers to reserve for fast interrupt handler
20803 functions. The value @var{N} can be between 0 and 4. A value of 1
20804 means that register @code{r13} is reserved for the exclusive use
20805 of fast interrupt handlers. A value of 2 reserves @code{r13} and
20806 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
20807 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20808 A value of 0, the default, does not reserve any registers.
20809
20810 @item -msave-acc-in-interrupts
20811 @opindex msave-acc-in-interrupts
20812 Specifies that interrupt handler functions should preserve the
20813 accumulator register. This is only necessary if normal code might use
20814 the accumulator register, for example because it performs 64-bit
20815 multiplications. The default is to ignore the accumulator as this
20816 makes the interrupt handlers faster.
20817
20818 @item -mpid
20819 @itemx -mno-pid
20820 @opindex mpid
20821 @opindex mno-pid
20822 Enables the generation of position independent data. When enabled any
20823 access to constant data is done via an offset from a base address
20824 held in a register. This allows the location of constant data to be
20825 determined at run time without requiring the executable to be
20826 relocated, which is a benefit to embedded applications with tight
20827 memory constraints. Data that can be modified is not affected by this
20828 option.
20829
20830 Note, using this feature reserves a register, usually @code{r13}, for
20831 the constant data base address. This can result in slower and/or
20832 larger code, especially in complicated functions.
20833
20834 The actual register chosen to hold the constant data base address
20835 depends upon whether the @option{-msmall-data-limit} and/or the
20836 @option{-mint-register} command-line options are enabled. Starting
20837 with register @code{r13} and proceeding downwards, registers are
20838 allocated first to satisfy the requirements of @option{-mint-register},
20839 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
20840 is possible for the small data area register to be @code{r8} if both
20841 @option{-mint-register=4} and @option{-mpid} are specified on the
20842 command line.
20843
20844 By default this feature is not enabled. The default can be restored
20845 via the @option{-mno-pid} command-line option.
20846
20847 @item -mno-warn-multiple-fast-interrupts
20848 @itemx -mwarn-multiple-fast-interrupts
20849 @opindex mno-warn-multiple-fast-interrupts
20850 @opindex mwarn-multiple-fast-interrupts
20851 Prevents GCC from issuing a warning message if it finds more than one
20852 fast interrupt handler when it is compiling a file. The default is to
20853 issue a warning for each extra fast interrupt handler found, as the RX
20854 only supports one such interrupt.
20855
20856 @item -mallow-string-insns
20857 @itemx -mno-allow-string-insns
20858 @opindex mallow-string-insns
20859 @opindex mno-allow-string-insns
20860 Enables or disables the use of the string manipulation instructions
20861 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
20862 @code{SWHILE} and also the @code{RMPA} instruction. These
20863 instructions may prefetch data, which is not safe to do if accessing
20864 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
20865 for more information).
20866
20867 The default is to allow these instructions, but it is not possible for
20868 GCC to reliably detect all circumstances where a string instruction
20869 might be used to access an I/O register, so their use cannot be
20870 disabled automatically. Instead it is reliant upon the programmer to
20871 use the @option{-mno-allow-string-insns} option if their program
20872 accesses I/O space.
20873
20874 When the instructions are enabled GCC defines the C preprocessor
20875 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
20876 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
20877
20878 @item -mjsr
20879 @itemx -mno-jsr
20880 @opindex mjsr
20881 @opindex mno-jsr
20882 Use only (or not only) @code{JSR} instructions to access functions.
20883 This option can be used when code size exceeds the range of @code{BSR}
20884 instructions. Note that @option{-mno-jsr} does not mean to not use
20885 @code{JSR} but instead means that any type of branch may be used.
20886 @end table
20887
20888 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20889 has special significance to the RX port when used with the
20890 @code{interrupt} function attribute. This attribute indicates a
20891 function intended to process fast interrupts. GCC ensures
20892 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20893 and/or @code{r13} and only provided that the normal use of the
20894 corresponding registers have been restricted via the
20895 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20896 options.
20897
20898 @node S/390 and zSeries Options
20899 @subsection S/390 and zSeries Options
20900 @cindex S/390 and zSeries Options
20901
20902 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20903
20904 @table @gcctabopt
20905 @item -mhard-float
20906 @itemx -msoft-float
20907 @opindex mhard-float
20908 @opindex msoft-float
20909 Use (do not use) the hardware floating-point instructions and registers
20910 for floating-point operations. When @option{-msoft-float} is specified,
20911 functions in @file{libgcc.a} are used to perform floating-point
20912 operations. When @option{-mhard-float} is specified, the compiler
20913 generates IEEE floating-point instructions. This is the default.
20914
20915 @item -mhard-dfp
20916 @itemx -mno-hard-dfp
20917 @opindex mhard-dfp
20918 @opindex mno-hard-dfp
20919 Use (do not use) the hardware decimal-floating-point instructions for
20920 decimal-floating-point operations. When @option{-mno-hard-dfp} is
20921 specified, functions in @file{libgcc.a} are used to perform
20922 decimal-floating-point operations. When @option{-mhard-dfp} is
20923 specified, the compiler generates decimal-floating-point hardware
20924 instructions. This is the default for @option{-march=z9-ec} or higher.
20925
20926 @item -mlong-double-64
20927 @itemx -mlong-double-128
20928 @opindex mlong-double-64
20929 @opindex mlong-double-128
20930 These switches control the size of @code{long double} type. A size
20931 of 64 bits makes the @code{long double} type equivalent to the @code{double}
20932 type. This is the default.
20933
20934 @item -mbackchain
20935 @itemx -mno-backchain
20936 @opindex mbackchain
20937 @opindex mno-backchain
20938 Store (do not store) the address of the caller's frame as backchain pointer
20939 into the callee's stack frame.
20940 A backchain may be needed to allow debugging using tools that do not understand
20941 DWARF 2 call frame information.
20942 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20943 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20944 the backchain is placed into the topmost word of the 96/160 byte register
20945 save area.
20946
20947 In general, code compiled with @option{-mbackchain} is call-compatible with
20948 code compiled with @option{-mmo-backchain}; however, use of the backchain
20949 for debugging purposes usually requires that the whole binary is built with
20950 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
20951 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20952 to build a linux kernel use @option{-msoft-float}.
20953
20954 The default is to not maintain the backchain.
20955
20956 @item -mpacked-stack
20957 @itemx -mno-packed-stack
20958 @opindex mpacked-stack
20959 @opindex mno-packed-stack
20960 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
20961 specified, the compiler uses the all fields of the 96/160 byte register save
20962 area only for their default purpose; unused fields still take up stack space.
20963 When @option{-mpacked-stack} is specified, register save slots are densely
20964 packed at the top of the register save area; unused space is reused for other
20965 purposes, allowing for more efficient use of the available stack space.
20966 However, when @option{-mbackchain} is also in effect, the topmost word of
20967 the save area is always used to store the backchain, and the return address
20968 register is always saved two words below the backchain.
20969
20970 As long as the stack frame backchain is not used, code generated with
20971 @option{-mpacked-stack} is call-compatible with code generated with
20972 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
20973 S/390 or zSeries generated code that uses the stack frame backchain at run
20974 time, not just for debugging purposes. Such code is not call-compatible
20975 with code compiled with @option{-mpacked-stack}. Also, note that the
20976 combination of @option{-mbackchain},
20977 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20978 to build a linux kernel use @option{-msoft-float}.
20979
20980 The default is to not use the packed stack layout.
20981
20982 @item -msmall-exec
20983 @itemx -mno-small-exec
20984 @opindex msmall-exec
20985 @opindex mno-small-exec
20986 Generate (or do not generate) code using the @code{bras} instruction
20987 to do subroutine calls.
20988 This only works reliably if the total executable size does not
20989 exceed 64k. The default is to use the @code{basr} instruction instead,
20990 which does not have this limitation.
20991
20992 @item -m64
20993 @itemx -m31
20994 @opindex m64
20995 @opindex m31
20996 When @option{-m31} is specified, generate code compliant to the
20997 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
20998 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
20999 particular to generate 64-bit instructions. For the @samp{s390}
21000 targets, the default is @option{-m31}, while the @samp{s390x}
21001 targets default to @option{-m64}.
21002
21003 @item -mzarch
21004 @itemx -mesa
21005 @opindex mzarch
21006 @opindex mesa
21007 When @option{-mzarch} is specified, generate code using the
21008 instructions available on z/Architecture.
21009 When @option{-mesa} is specified, generate code using the
21010 instructions available on ESA/390. Note that @option{-mesa} is
21011 not possible with @option{-m64}.
21012 When generating code compliant to the GNU/Linux for S/390 ABI,
21013 the default is @option{-mesa}. When generating code compliant
21014 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
21015
21016 @item -mhtm
21017 @itemx -mno-htm
21018 @opindex mhtm
21019 @opindex mno-htm
21020 The @option{-mhtm} option enables a set of builtins making use of
21021 instructions available with the transactional execution facility
21022 introduced with the IBM zEnterprise EC12 machine generation
21023 @ref{S/390 System z Built-in Functions}.
21024 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
21025
21026 @item -mvx
21027 @itemx -mno-vx
21028 @opindex mvx
21029 @opindex mno-vx
21030 When @option{-mvx} is specified, generate code using the instructions
21031 available with the vector extension facility introduced with the IBM
21032 z13 machine generation.
21033 This option changes the ABI for some vector type values with regard to
21034 alignment and calling conventions. In case vector type values are
21035 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
21036 command will be added to mark the resulting binary with the ABI used.
21037 @option{-mvx} is enabled by default when using @option{-march=z13}.
21038
21039 @item -mzvector
21040 @itemx -mno-zvector
21041 @opindex mzvector
21042 @opindex mno-zvector
21043 The @option{-mzvector} option enables vector language extensions and
21044 builtins using instructions available with the vector extension
21045 facility introduced with the IBM z13 machine generation.
21046 This option adds support for @samp{vector} to be used as a keyword to
21047 define vector type variables and arguments. @samp{vector} is only
21048 available when GNU extensions are enabled. It will not be expanded
21049 when requesting strict standard compliance e.g. with @option{-std=c99}.
21050 In addition to the GCC low-level builtins @option{-mzvector} enables
21051 a set of builtins added for compatibility with Altivec-style
21052 implementations like Power and Cell. In order to make use of these
21053 builtins the header file @file{vecintrin.h} needs to be included.
21054 @option{-mzvector} is disabled by default.
21055
21056 @item -mmvcle
21057 @itemx -mno-mvcle
21058 @opindex mmvcle
21059 @opindex mno-mvcle
21060 Generate (or do not generate) code using the @code{mvcle} instruction
21061 to perform block moves. When @option{-mno-mvcle} is specified,
21062 use a @code{mvc} loop instead. This is the default unless optimizing for
21063 size.
21064
21065 @item -mdebug
21066 @itemx -mno-debug
21067 @opindex mdebug
21068 @opindex mno-debug
21069 Print (or do not print) additional debug information when compiling.
21070 The default is to not print debug information.
21071
21072 @item -march=@var{cpu-type}
21073 @opindex march
21074 Generate code that runs on @var{cpu-type}, which is the name of a
21075 system representing a certain processor type. Possible values for
21076 @var{cpu-type} are @samp{z900}, @samp{z990}, @samp{z9-109},
21077 @samp{z9-ec}, @samp{z10}, @samp{z196}, @samp{zEC12}, and @samp{z13}.
21078 The default is @option{-march=z900}. @samp{g5} and @samp{g6} are
21079 deprecated and will be removed with future releases.
21080
21081 @item -mtune=@var{cpu-type}
21082 @opindex mtune
21083 Tune to @var{cpu-type} everything applicable about the generated code,
21084 except for the ABI and the set of available instructions.
21085 The list of @var{cpu-type} values is the same as for @option{-march}.
21086 The default is the value used for @option{-march}.
21087
21088 @item -mtpf-trace
21089 @itemx -mno-tpf-trace
21090 @opindex mtpf-trace
21091 @opindex mno-tpf-trace
21092 Generate code that adds (does not add) in TPF OS specific branches to trace
21093 routines in the operating system. This option is off by default, even
21094 when compiling for the TPF OS@.
21095
21096 @item -mfused-madd
21097 @itemx -mno-fused-madd
21098 @opindex mfused-madd
21099 @opindex mno-fused-madd
21100 Generate code that uses (does not use) the floating-point multiply and
21101 accumulate instructions. These instructions are generated by default if
21102 hardware floating point is used.
21103
21104 @item -mwarn-framesize=@var{framesize}
21105 @opindex mwarn-framesize
21106 Emit a warning if the current function exceeds the given frame size. Because
21107 this is a compile-time check it doesn't need to be a real problem when the program
21108 runs. It is intended to identify functions that most probably cause
21109 a stack overflow. It is useful to be used in an environment with limited stack
21110 size e.g.@: the linux kernel.
21111
21112 @item -mwarn-dynamicstack
21113 @opindex mwarn-dynamicstack
21114 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
21115 arrays. This is generally a bad idea with a limited stack size.
21116
21117 @item -mstack-guard=@var{stack-guard}
21118 @itemx -mstack-size=@var{stack-size}
21119 @opindex mstack-guard
21120 @opindex mstack-size
21121 If these options are provided the S/390 back end emits additional instructions in
21122 the function prologue that trigger a trap if the stack size is @var{stack-guard}
21123 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
21124 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
21125 the frame size of the compiled function is chosen.
21126 These options are intended to be used to help debugging stack overflow problems.
21127 The additionally emitted code causes only little overhead and hence can also be
21128 used in production-like systems without greater performance degradation. The given
21129 values have to be exact powers of 2 and @var{stack-size} has to be greater than
21130 @var{stack-guard} without exceeding 64k.
21131 In order to be efficient the extra code makes the assumption that the stack starts
21132 at an address aligned to the value given by @var{stack-size}.
21133 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
21134
21135 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
21136 @opindex mhotpatch
21137 If the hotpatch option is enabled, a ``hot-patching'' function
21138 prologue is generated for all functions in the compilation unit.
21139 The funtion label is prepended with the given number of two-byte
21140 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
21141 the label, 2 * @var{post-halfwords} bytes are appended, using the
21142 largest NOP like instructions the architecture allows (maximum
21143 1000000).
21144
21145 If both arguments are zero, hotpatching is disabled.
21146
21147 This option can be overridden for individual functions with the
21148 @code{hotpatch} attribute.
21149 @end table
21150
21151 @node Score Options
21152 @subsection Score Options
21153 @cindex Score Options
21154
21155 These options are defined for Score implementations:
21156
21157 @table @gcctabopt
21158 @item -meb
21159 @opindex meb
21160 Compile code for big-endian mode. This is the default.
21161
21162 @item -mel
21163 @opindex mel
21164 Compile code for little-endian mode.
21165
21166 @item -mnhwloop
21167 @opindex mnhwloop
21168 Disable generation of @code{bcnz} instructions.
21169
21170 @item -muls
21171 @opindex muls
21172 Enable generation of unaligned load and store instructions.
21173
21174 @item -mmac
21175 @opindex mmac
21176 Enable the use of multiply-accumulate instructions. Disabled by default.
21177
21178 @item -mscore5
21179 @opindex mscore5
21180 Specify the SCORE5 as the target architecture.
21181
21182 @item -mscore5u
21183 @opindex mscore5u
21184 Specify the SCORE5U of the target architecture.
21185
21186 @item -mscore7
21187 @opindex mscore7
21188 Specify the SCORE7 as the target architecture. This is the default.
21189
21190 @item -mscore7d
21191 @opindex mscore7d
21192 Specify the SCORE7D as the target architecture.
21193 @end table
21194
21195 @node SH Options
21196 @subsection SH Options
21197
21198 These @samp{-m} options are defined for the SH implementations:
21199
21200 @table @gcctabopt
21201 @item -m1
21202 @opindex m1
21203 Generate code for the SH1.
21204
21205 @item -m2
21206 @opindex m2
21207 Generate code for the SH2.
21208
21209 @item -m2e
21210 Generate code for the SH2e.
21211
21212 @item -m2a-nofpu
21213 @opindex m2a-nofpu
21214 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
21215 that the floating-point unit is not used.
21216
21217 @item -m2a-single-only
21218 @opindex m2a-single-only
21219 Generate code for the SH2a-FPU, in such a way that no double-precision
21220 floating-point operations are used.
21221
21222 @item -m2a-single
21223 @opindex m2a-single
21224 Generate code for the SH2a-FPU assuming the floating-point unit is in
21225 single-precision mode by default.
21226
21227 @item -m2a
21228 @opindex m2a
21229 Generate code for the SH2a-FPU assuming the floating-point unit is in
21230 double-precision mode by default.
21231
21232 @item -m3
21233 @opindex m3
21234 Generate code for the SH3.
21235
21236 @item -m3e
21237 @opindex m3e
21238 Generate code for the SH3e.
21239
21240 @item -m4-nofpu
21241 @opindex m4-nofpu
21242 Generate code for the SH4 without a floating-point unit.
21243
21244 @item -m4-single-only
21245 @opindex m4-single-only
21246 Generate code for the SH4 with a floating-point unit that only
21247 supports single-precision arithmetic.
21248
21249 @item -m4-single
21250 @opindex m4-single
21251 Generate code for the SH4 assuming the floating-point unit is in
21252 single-precision mode by default.
21253
21254 @item -m4
21255 @opindex m4
21256 Generate code for the SH4.
21257
21258 @item -m4-100
21259 @opindex m4-100
21260 Generate code for SH4-100.
21261
21262 @item -m4-100-nofpu
21263 @opindex m4-100-nofpu
21264 Generate code for SH4-100 in such a way that the
21265 floating-point unit is not used.
21266
21267 @item -m4-100-single
21268 @opindex m4-100-single
21269 Generate code for SH4-100 assuming the floating-point unit is in
21270 single-precision mode by default.
21271
21272 @item -m4-100-single-only
21273 @opindex m4-100-single-only
21274 Generate code for SH4-100 in such a way that no double-precision
21275 floating-point operations are used.
21276
21277 @item -m4-200
21278 @opindex m4-200
21279 Generate code for SH4-200.
21280
21281 @item -m4-200-nofpu
21282 @opindex m4-200-nofpu
21283 Generate code for SH4-200 without in such a way that the
21284 floating-point unit is not used.
21285
21286 @item -m4-200-single
21287 @opindex m4-200-single
21288 Generate code for SH4-200 assuming the floating-point unit is in
21289 single-precision mode by default.
21290
21291 @item -m4-200-single-only
21292 @opindex m4-200-single-only
21293 Generate code for SH4-200 in such a way that no double-precision
21294 floating-point operations are used.
21295
21296 @item -m4-300
21297 @opindex m4-300
21298 Generate code for SH4-300.
21299
21300 @item -m4-300-nofpu
21301 @opindex m4-300-nofpu
21302 Generate code for SH4-300 without in such a way that the
21303 floating-point unit is not used.
21304
21305 @item -m4-300-single
21306 @opindex m4-300-single
21307 Generate code for SH4-300 in such a way that no double-precision
21308 floating-point operations are used.
21309
21310 @item -m4-300-single-only
21311 @opindex m4-300-single-only
21312 Generate code for SH4-300 in such a way that no double-precision
21313 floating-point operations are used.
21314
21315 @item -m4-340
21316 @opindex m4-340
21317 Generate code for SH4-340 (no MMU, no FPU).
21318
21319 @item -m4-500
21320 @opindex m4-500
21321 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
21322 assembler.
21323
21324 @item -m4a-nofpu
21325 @opindex m4a-nofpu
21326 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
21327 floating-point unit is not used.
21328
21329 @item -m4a-single-only
21330 @opindex m4a-single-only
21331 Generate code for the SH4a, in such a way that no double-precision
21332 floating-point operations are used.
21333
21334 @item -m4a-single
21335 @opindex m4a-single
21336 Generate code for the SH4a assuming the floating-point unit is in
21337 single-precision mode by default.
21338
21339 @item -m4a
21340 @opindex m4a
21341 Generate code for the SH4a.
21342
21343 @item -m4al
21344 @opindex m4al
21345 Same as @option{-m4a-nofpu}, except that it implicitly passes
21346 @option{-dsp} to the assembler. GCC doesn't generate any DSP
21347 instructions at the moment.
21348
21349 @item -mb
21350 @opindex mb
21351 Compile code for the processor in big-endian mode.
21352
21353 @item -ml
21354 @opindex ml
21355 Compile code for the processor in little-endian mode.
21356
21357 @item -mdalign
21358 @opindex mdalign
21359 Align doubles at 64-bit boundaries. Note that this changes the calling
21360 conventions, and thus some functions from the standard C library do
21361 not work unless you recompile it first with @option{-mdalign}.
21362
21363 @item -mrelax
21364 @opindex mrelax
21365 Shorten some address references at link time, when possible; uses the
21366 linker option @option{-relax}.
21367
21368 @item -mbigtable
21369 @opindex mbigtable
21370 Use 32-bit offsets in @code{switch} tables. The default is to use
21371 16-bit offsets.
21372
21373 @item -mbitops
21374 @opindex mbitops
21375 Enable the use of bit manipulation instructions on SH2A.
21376
21377 @item -mfmovd
21378 @opindex mfmovd
21379 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
21380 alignment constraints.
21381
21382 @item -mrenesas
21383 @opindex mrenesas
21384 Comply with the calling conventions defined by Renesas.
21385
21386 @item -mno-renesas
21387 @opindex mno-renesas
21388 Comply with the calling conventions defined for GCC before the Renesas
21389 conventions were available. This option is the default for all
21390 targets of the SH toolchain.
21391
21392 @item -mnomacsave
21393 @opindex mnomacsave
21394 Mark the @code{MAC} register as call-clobbered, even if
21395 @option{-mrenesas} is given.
21396
21397 @item -mieee
21398 @itemx -mno-ieee
21399 @opindex mieee
21400 @opindex mno-ieee
21401 Control the IEEE compliance of floating-point comparisons, which affects the
21402 handling of cases where the result of a comparison is unordered. By default
21403 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
21404 enabled @option{-mno-ieee} is implicitly set, which results in faster
21405 floating-point greater-equal and less-equal comparisons. The implcit settings
21406 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
21407
21408 @item -minline-ic_invalidate
21409 @opindex minline-ic_invalidate
21410 Inline code to invalidate instruction cache entries after setting up
21411 nested function trampolines.
21412 This option has no effect if @option{-musermode} is in effect and the selected
21413 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
21414 instruction.
21415 If the selected code generation option does not allow the use of the @code{icbi}
21416 instruction, and @option{-musermode} is not in effect, the inlined code
21417 manipulates the instruction cache address array directly with an associative
21418 write. This not only requires privileged mode at run time, but it also
21419 fails if the cache line had been mapped via the TLB and has become unmapped.
21420
21421 @item -misize
21422 @opindex misize
21423 Dump instruction size and location in the assembly code.
21424
21425 @item -mpadstruct
21426 @opindex mpadstruct
21427 This option is deprecated. It pads structures to multiple of 4 bytes,
21428 which is incompatible with the SH ABI@.
21429
21430 @item -matomic-model=@var{model}
21431 @opindex matomic-model=@var{model}
21432 Sets the model of atomic operations and additional parameters as a comma
21433 separated list. For details on the atomic built-in functions see
21434 @ref{__atomic Builtins}. The following models and parameters are supported:
21435
21436 @table @samp
21437
21438 @item none
21439 Disable compiler generated atomic sequences and emit library calls for atomic
21440 operations. This is the default if the target is not @code{sh*-*-linux*}.
21441
21442 @item soft-gusa
21443 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
21444 built-in functions. The generated atomic sequences require additional support
21445 from the interrupt/exception handling code of the system and are only suitable
21446 for SH3* and SH4* single-core systems. This option is enabled by default when
21447 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
21448 this option also partially utilizes the hardware atomic instructions
21449 @code{movli.l} and @code{movco.l} to create more efficient code, unless
21450 @samp{strict} is specified.
21451
21452 @item soft-tcb
21453 Generate software atomic sequences that use a variable in the thread control
21454 block. This is a variation of the gUSA sequences which can also be used on
21455 SH1* and SH2* targets. The generated atomic sequences require additional
21456 support from the interrupt/exception handling code of the system and are only
21457 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
21458 parameter has to be specified as well.
21459
21460 @item soft-imask
21461 Generate software atomic sequences that temporarily disable interrupts by
21462 setting @code{SR.IMASK = 1111}. This model works only when the program runs
21463 in privileged mode and is only suitable for single-core systems. Additional
21464 support from the interrupt/exception handling code of the system is not
21465 required. This model is enabled by default when the target is
21466 @code{sh*-*-linux*} and SH1* or SH2*.
21467
21468 @item hard-llcs
21469 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
21470 instructions only. This is only available on SH4A and is suitable for
21471 multi-core systems. Since the hardware instructions support only 32 bit atomic
21472 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
21473 Code compiled with this option is also compatible with other software
21474 atomic model interrupt/exception handling systems if executed on an SH4A
21475 system. Additional support from the interrupt/exception handling code of the
21476 system is not required for this model.
21477
21478 @item gbr-offset=
21479 This parameter specifies the offset in bytes of the variable in the thread
21480 control block structure that should be used by the generated atomic sequences
21481 when the @samp{soft-tcb} model has been selected. For other models this
21482 parameter is ignored. The specified value must be an integer multiple of four
21483 and in the range 0-1020.
21484
21485 @item strict
21486 This parameter prevents mixed usage of multiple atomic models, even if they
21487 are compatible, and makes the compiler generate atomic sequences of the
21488 specified model only.
21489
21490 @end table
21491
21492 @item -mtas
21493 @opindex mtas
21494 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
21495 Notice that depending on the particular hardware and software configuration
21496 this can degrade overall performance due to the operand cache line flushes
21497 that are implied by the @code{tas.b} instruction. On multi-core SH4A
21498 processors the @code{tas.b} instruction must be used with caution since it
21499 can result in data corruption for certain cache configurations.
21500
21501 @item -mprefergot
21502 @opindex mprefergot
21503 When generating position-independent code, emit function calls using
21504 the Global Offset Table instead of the Procedure Linkage Table.
21505
21506 @item -musermode
21507 @itemx -mno-usermode
21508 @opindex musermode
21509 @opindex mno-usermode
21510 Don't allow (allow) the compiler generating privileged mode code. Specifying
21511 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
21512 inlined code would not work in user mode. @option{-musermode} is the default
21513 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
21514 @option{-musermode} has no effect, since there is no user mode.
21515
21516 @item -multcost=@var{number}
21517 @opindex multcost=@var{number}
21518 Set the cost to assume for a multiply insn.
21519
21520 @item -mdiv=@var{strategy}
21521 @opindex mdiv=@var{strategy}
21522 Set the division strategy to be used for integer division operations.
21523 @var{strategy} can be one of:
21524
21525 @table @samp
21526
21527 @item call-div1
21528 Calls a library function that uses the single-step division instruction
21529 @code{div1} to perform the operation. Division by zero calculates an
21530 unspecified result and does not trap. This is the default except for SH4,
21531 SH2A and SHcompact.
21532
21533 @item call-fp
21534 Calls a library function that performs the operation in double precision
21535 floating point. Division by zero causes a floating-point exception. This is
21536 the default for SHcompact with FPU. Specifying this for targets that do not
21537 have a double precision FPU defaults to @code{call-div1}.
21538
21539 @item call-table
21540 Calls a library function that uses a lookup table for small divisors and
21541 the @code{div1} instruction with case distinction for larger divisors. Division
21542 by zero calculates an unspecified result and does not trap. This is the default
21543 for SH4. Specifying this for targets that do not have dynamic shift
21544 instructions defaults to @code{call-div1}.
21545
21546 @end table
21547
21548 When a division strategy has not been specified the default strategy is
21549 selected based on the current target. For SH2A the default strategy is to
21550 use the @code{divs} and @code{divu} instructions instead of library function
21551 calls.
21552
21553 @item -maccumulate-outgoing-args
21554 @opindex maccumulate-outgoing-args
21555 Reserve space once for outgoing arguments in the function prologue rather
21556 than around each call. Generally beneficial for performance and size. Also
21557 needed for unwinding to avoid changing the stack frame around conditional code.
21558
21559 @item -mdivsi3_libfunc=@var{name}
21560 @opindex mdivsi3_libfunc=@var{name}
21561 Set the name of the library function used for 32-bit signed division to
21562 @var{name}.
21563 This only affects the name used in the @samp{call} division strategies, and
21564 the compiler still expects the same sets of input/output/clobbered registers as
21565 if this option were not present.
21566
21567 @item -mfixed-range=@var{register-range}
21568 @opindex mfixed-range
21569 Generate code treating the given register range as fixed registers.
21570 A fixed register is one that the register allocator can not use. This is
21571 useful when compiling kernel code. A register range is specified as
21572 two registers separated by a dash. Multiple register ranges can be
21573 specified separated by a comma.
21574
21575 @item -mbranch-cost=@var{num}
21576 @opindex mbranch-cost=@var{num}
21577 Assume @var{num} to be the cost for a branch instruction. Higher numbers
21578 make the compiler try to generate more branch-free code if possible.
21579 If not specified the value is selected depending on the processor type that
21580 is being compiled for.
21581
21582 @item -mzdcbranch
21583 @itemx -mno-zdcbranch
21584 @opindex mzdcbranch
21585 @opindex mno-zdcbranch
21586 Assume (do not assume) that zero displacement conditional branch instructions
21587 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
21588 compiler prefers zero displacement branch code sequences. This is
21589 enabled by default when generating code for SH4 and SH4A. It can be explicitly
21590 disabled by specifying @option{-mno-zdcbranch}.
21591
21592 @item -mcbranch-force-delay-slot
21593 @opindex mcbranch-force-delay-slot
21594 Force the usage of delay slots for conditional branches, which stuffs the delay
21595 slot with a @code{nop} if a suitable instruction can't be found. By default
21596 this option is disabled. It can be enabled to work around hardware bugs as
21597 found in the original SH7055.
21598
21599 @item -mfused-madd
21600 @itemx -mno-fused-madd
21601 @opindex mfused-madd
21602 @opindex mno-fused-madd
21603 Generate code that uses (does not use) the floating-point multiply and
21604 accumulate instructions. These instructions are generated by default
21605 if hardware floating point is used. The machine-dependent
21606 @option{-mfused-madd} option is now mapped to the machine-independent
21607 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
21608 mapped to @option{-ffp-contract=off}.
21609
21610 @item -mfsca
21611 @itemx -mno-fsca
21612 @opindex mfsca
21613 @opindex mno-fsca
21614 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
21615 and cosine approximations. The option @option{-mfsca} must be used in
21616 combination with @option{-funsafe-math-optimizations}. It is enabled by default
21617 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
21618 approximations even if @option{-funsafe-math-optimizations} is in effect.
21619
21620 @item -mfsrra
21621 @itemx -mno-fsrra
21622 @opindex mfsrra
21623 @opindex mno-fsrra
21624 Allow or disallow the compiler to emit the @code{fsrra} instruction for
21625 reciprocal square root approximations. The option @option{-mfsrra} must be used
21626 in combination with @option{-funsafe-math-optimizations} and
21627 @option{-ffinite-math-only}. It is enabled by default when generating code for
21628 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
21629 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
21630 in effect.
21631
21632 @item -mpretend-cmove
21633 @opindex mpretend-cmove
21634 Prefer zero-displacement conditional branches for conditional move instruction
21635 patterns. This can result in faster code on the SH4 processor.
21636
21637 @item -mfdpic
21638 @opindex fdpic
21639 Generate code using the FDPIC ABI.
21640
21641 @end table
21642
21643 @node Solaris 2 Options
21644 @subsection Solaris 2 Options
21645 @cindex Solaris 2 options
21646
21647 These @samp{-m} options are supported on Solaris 2:
21648
21649 @table @gcctabopt
21650 @item -mclear-hwcap
21651 @opindex mclear-hwcap
21652 @option{-mclear-hwcap} tells the compiler to remove the hardware
21653 capabilities generated by the Solaris assembler. This is only necessary
21654 when object files use ISA extensions not supported by the current
21655 machine, but check at runtime whether or not to use them.
21656
21657 @item -mimpure-text
21658 @opindex mimpure-text
21659 @option{-mimpure-text}, used in addition to @option{-shared}, tells
21660 the compiler to not pass @option{-z text} to the linker when linking a
21661 shared object. Using this option, you can link position-dependent
21662 code into a shared object.
21663
21664 @option{-mimpure-text} suppresses the ``relocations remain against
21665 allocatable but non-writable sections'' linker error message.
21666 However, the necessary relocations trigger copy-on-write, and the
21667 shared object is not actually shared across processes. Instead of
21668 using @option{-mimpure-text}, you should compile all source code with
21669 @option{-fpic} or @option{-fPIC}.
21670
21671 @end table
21672
21673 These switches are supported in addition to the above on Solaris 2:
21674
21675 @table @gcctabopt
21676 @item -pthreads
21677 @opindex pthreads
21678 Add support for multithreading using the POSIX threads library. This
21679 option sets flags for both the preprocessor and linker. This option does
21680 not affect the thread safety of object code produced by the compiler or
21681 that of libraries supplied with it.
21682
21683 @item -pthread
21684 @opindex pthread
21685 This is a synonym for @option{-pthreads}.
21686 @end table
21687
21688 @node SPARC Options
21689 @subsection SPARC Options
21690 @cindex SPARC options
21691
21692 These @samp{-m} options are supported on the SPARC:
21693
21694 @table @gcctabopt
21695 @item -mno-app-regs
21696 @itemx -mapp-regs
21697 @opindex mno-app-regs
21698 @opindex mapp-regs
21699 Specify @option{-mapp-regs} to generate output using the global registers
21700 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
21701 global register 1, each global register 2 through 4 is then treated as an
21702 allocable register that is clobbered by function calls. This is the default.
21703
21704 To be fully SVR4 ABI-compliant at the cost of some performance loss,
21705 specify @option{-mno-app-regs}. You should compile libraries and system
21706 software with this option.
21707
21708 @item -mflat
21709 @itemx -mno-flat
21710 @opindex mflat
21711 @opindex mno-flat
21712 With @option{-mflat}, the compiler does not generate save/restore instructions
21713 and uses a ``flat'' or single register window model. This model is compatible
21714 with the regular register window model. The local registers and the input
21715 registers (0--5) are still treated as ``call-saved'' registers and are
21716 saved on the stack as needed.
21717
21718 With @option{-mno-flat} (the default), the compiler generates save/restore
21719 instructions (except for leaf functions). This is the normal operating mode.
21720
21721 @item -mfpu
21722 @itemx -mhard-float
21723 @opindex mfpu
21724 @opindex mhard-float
21725 Generate output containing floating-point instructions. This is the
21726 default.
21727
21728 @item -mno-fpu
21729 @itemx -msoft-float
21730 @opindex mno-fpu
21731 @opindex msoft-float
21732 Generate output containing library calls for floating point.
21733 @strong{Warning:} the requisite libraries are not available for all SPARC
21734 targets. Normally the facilities of the machine's usual C compiler are
21735 used, but this cannot be done directly in cross-compilation. You must make
21736 your own arrangements to provide suitable library functions for
21737 cross-compilation. The embedded targets @samp{sparc-*-aout} and
21738 @samp{sparclite-*-*} do provide software floating-point support.
21739
21740 @option{-msoft-float} changes the calling convention in the output file;
21741 therefore, it is only useful if you compile @emph{all} of a program with
21742 this option. In particular, you need to compile @file{libgcc.a}, the
21743 library that comes with GCC, with @option{-msoft-float} in order for
21744 this to work.
21745
21746 @item -mhard-quad-float
21747 @opindex mhard-quad-float
21748 Generate output containing quad-word (long double) floating-point
21749 instructions.
21750
21751 @item -msoft-quad-float
21752 @opindex msoft-quad-float
21753 Generate output containing library calls for quad-word (long double)
21754 floating-point instructions. The functions called are those specified
21755 in the SPARC ABI@. This is the default.
21756
21757 As of this writing, there are no SPARC implementations that have hardware
21758 support for the quad-word floating-point instructions. They all invoke
21759 a trap handler for one of these instructions, and then the trap handler
21760 emulates the effect of the instruction. Because of the trap handler overhead,
21761 this is much slower than calling the ABI library routines. Thus the
21762 @option{-msoft-quad-float} option is the default.
21763
21764 @item -mno-unaligned-doubles
21765 @itemx -munaligned-doubles
21766 @opindex mno-unaligned-doubles
21767 @opindex munaligned-doubles
21768 Assume that doubles have 8-byte alignment. This is the default.
21769
21770 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21771 alignment only if they are contained in another type, or if they have an
21772 absolute address. Otherwise, it assumes they have 4-byte alignment.
21773 Specifying this option avoids some rare compatibility problems with code
21774 generated by other compilers. It is not the default because it results
21775 in a performance loss, especially for floating-point code.
21776
21777 @item -muser-mode
21778 @itemx -mno-user-mode
21779 @opindex muser-mode
21780 @opindex mno-user-mode
21781 Do not generate code that can only run in supervisor mode. This is relevant
21782 only for the @code{casa} instruction emitted for the LEON3 processor. This
21783 is the default.
21784
21785 @item -mfaster-structs
21786 @itemx -mno-faster-structs
21787 @opindex mfaster-structs
21788 @opindex mno-faster-structs
21789 With @option{-mfaster-structs}, the compiler assumes that structures
21790 should have 8-byte alignment. This enables the use of pairs of
21791 @code{ldd} and @code{std} instructions for copies in structure
21792 assignment, in place of twice as many @code{ld} and @code{st} pairs.
21793 However, the use of this changed alignment directly violates the SPARC
21794 ABI@. Thus, it's intended only for use on targets where the developer
21795 acknowledges that their resulting code is not directly in line with
21796 the rules of the ABI@.
21797
21798 @item -mstd-struct-return
21799 @itemx -mno-std-struct-return
21800 @opindex mstd-struct-return
21801 @opindex mno-std-struct-return
21802 With @option{-mstd-struct-return}, the compiler generates checking code
21803 in functions returning structures or unions to detect size mismatches
21804 between the two sides of function calls, as per the 32-bit ABI@.
21805
21806 The default is @option{-mno-std-struct-return}. This option has no effect
21807 in 64-bit mode.
21808
21809 @item -mcpu=@var{cpu_type}
21810 @opindex mcpu
21811 Set the instruction set, register set, and instruction scheduling parameters
21812 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
21813 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21814 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21815 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21816 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21817 @samp{niagara3} and @samp{niagara4}.
21818
21819 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21820 which selects the best architecture option for the host processor.
21821 @option{-mcpu=native} has no effect if GCC does not recognize
21822 the processor.
21823
21824 Default instruction scheduling parameters are used for values that select
21825 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
21826 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
21827
21828 Here is a list of each supported architecture and their supported
21829 implementations.
21830
21831 @table @asis
21832 @item v7
21833 cypress, leon3v7
21834
21835 @item v8
21836 supersparc, hypersparc, leon, leon3
21837
21838 @item sparclite
21839 f930, f934, sparclite86x
21840
21841 @item sparclet
21842 tsc701
21843
21844 @item v9
21845 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21846 @end table
21847
21848 By default (unless configured otherwise), GCC generates code for the V7
21849 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
21850 additionally optimizes it for the Cypress CY7C602 chip, as used in the
21851 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
21852 SPARCStation 1, 2, IPX etc.
21853
21854 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21855 architecture. The only difference from V7 code is that the compiler emits
21856 the integer multiply and integer divide instructions which exist in SPARC-V8
21857 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
21858 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
21859 2000 series.
21860
21861 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21862 the SPARC architecture. This adds the integer multiply, integer divide step
21863 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21864 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21865 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
21866 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21867 MB86934 chip, which is the more recent SPARClite with FPU@.
21868
21869 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21870 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
21871 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21872 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
21873 optimizes it for the TEMIC SPARClet chip.
21874
21875 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21876 architecture. This adds 64-bit integer and floating-point move instructions,
21877 3 additional floating-point condition code registers and conditional move
21878 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
21879 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
21880 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21881 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
21882 @option{-mcpu=niagara}, the compiler additionally optimizes it for
21883 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
21884 additionally optimizes it for Sun UltraSPARC T2 chips. With
21885 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21886 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
21887 additionally optimizes it for Sun UltraSPARC T4 chips.
21888
21889 @item -mtune=@var{cpu_type}
21890 @opindex mtune
21891 Set the instruction scheduling parameters for machine type
21892 @var{cpu_type}, but do not set the instruction set or register set that the
21893 option @option{-mcpu=@var{cpu_type}} does.
21894
21895 The same values for @option{-mcpu=@var{cpu_type}} can be used for
21896 @option{-mtune=@var{cpu_type}}, but the only useful values are those
21897 that select a particular CPU implementation. Those are @samp{cypress},
21898 @samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21899 @samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21900 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21901 @samp{niagara3} and @samp{niagara4}. With native Solaris and GNU/Linux
21902 toolchains, @samp{native} can also be used.
21903
21904 @item -mv8plus
21905 @itemx -mno-v8plus
21906 @opindex mv8plus
21907 @opindex mno-v8plus
21908 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
21909 difference from the V8 ABI is that the global and out registers are
21910 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
21911 mode for all SPARC-V9 processors.
21912
21913 @item -mvis
21914 @itemx -mno-vis
21915 @opindex mvis
21916 @opindex mno-vis
21917 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21918 Visual Instruction Set extensions. The default is @option{-mno-vis}.
21919
21920 @item -mvis2
21921 @itemx -mno-vis2
21922 @opindex mvis2
21923 @opindex mno-vis2
21924 With @option{-mvis2}, GCC generates code that takes advantage of
21925 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
21926 default is @option{-mvis2} when targeting a cpu that supports such
21927 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
21928 also sets @option{-mvis}.
21929
21930 @item -mvis3
21931 @itemx -mno-vis3
21932 @opindex mvis3
21933 @opindex mno-vis3
21934 With @option{-mvis3}, GCC generates code that takes advantage of
21935 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
21936 default is @option{-mvis3} when targeting a cpu that supports such
21937 instructions, such as niagara-3 and later. Setting @option{-mvis3}
21938 also sets @option{-mvis2} and @option{-mvis}.
21939
21940 @item -mcbcond
21941 @itemx -mno-cbcond
21942 @opindex mcbcond
21943 @opindex mno-cbcond
21944 With @option{-mcbcond}, GCC generates code that takes advantage of
21945 compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21946 The default is @option{-mcbcond} when targeting a cpu that supports such
21947 instructions, such as niagara-4 and later.
21948
21949 @item -mpopc
21950 @itemx -mno-popc
21951 @opindex mpopc
21952 @opindex mno-popc
21953 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21954 population count instruction. The default is @option{-mpopc}
21955 when targeting a cpu that supports such instructions, such as Niagara-2 and
21956 later.
21957
21958 @item -mfmaf
21959 @itemx -mno-fmaf
21960 @opindex mfmaf
21961 @opindex mno-fmaf
21962 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21963 Fused Multiply-Add Floating-point extensions. The default is @option{-mfmaf}
21964 when targeting a cpu that supports such instructions, such as Niagara-3 and
21965 later.
21966
21967 @item -mfix-at697f
21968 @opindex mfix-at697f
21969 Enable the documented workaround for the single erratum of the Atmel AT697F
21970 processor (which corresponds to erratum #13 of the AT697E processor).
21971
21972 @item -mfix-ut699
21973 @opindex mfix-ut699
21974 Enable the documented workarounds for the floating-point errata and the data
21975 cache nullify errata of the UT699 processor.
21976 @end table
21977
21978 These @samp{-m} options are supported in addition to the above
21979 on SPARC-V9 processors in 64-bit environments:
21980
21981 @table @gcctabopt
21982 @item -m32
21983 @itemx -m64
21984 @opindex m32
21985 @opindex m64
21986 Generate code for a 32-bit or 64-bit environment.
21987 The 32-bit environment sets int, long and pointer to 32 bits.
21988 The 64-bit environment sets int to 32 bits and long and pointer
21989 to 64 bits.
21990
21991 @item -mcmodel=@var{which}
21992 @opindex mcmodel
21993 Set the code model to one of
21994
21995 @table @samp
21996 @item medlow
21997 The Medium/Low code model: 64-bit addresses, programs
21998 must be linked in the low 32 bits of memory. Programs can be statically
21999 or dynamically linked.
22000
22001 @item medmid
22002 The Medium/Middle code model: 64-bit addresses, programs
22003 must be linked in the low 44 bits of memory, the text and data segments must
22004 be less than 2GB in size and the data segment must be located within 2GB of
22005 the text segment.
22006
22007 @item medany
22008 The Medium/Anywhere code model: 64-bit addresses, programs
22009 may be linked anywhere in memory, the text and data segments must be less
22010 than 2GB in size and the data segment must be located within 2GB of the
22011 text segment.
22012
22013 @item embmedany
22014 The Medium/Anywhere code model for embedded systems:
22015 64-bit addresses, the text and data segments must be less than 2GB in
22016 size, both starting anywhere in memory (determined at link time). The
22017 global register %g4 points to the base of the data segment. Programs
22018 are statically linked and PIC is not supported.
22019 @end table
22020
22021 @item -mmemory-model=@var{mem-model}
22022 @opindex mmemory-model
22023 Set the memory model in force on the processor to one of
22024
22025 @table @samp
22026 @item default
22027 The default memory model for the processor and operating system.
22028
22029 @item rmo
22030 Relaxed Memory Order
22031
22032 @item pso
22033 Partial Store Order
22034
22035 @item tso
22036 Total Store Order
22037
22038 @item sc
22039 Sequential Consistency
22040 @end table
22041
22042 These memory models are formally defined in Appendix D of the Sparc V9
22043 architecture manual, as set in the processor's @code{PSTATE.MM} field.
22044
22045 @item -mstack-bias
22046 @itemx -mno-stack-bias
22047 @opindex mstack-bias
22048 @opindex mno-stack-bias
22049 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
22050 frame pointer if present, are offset by @minus{}2047 which must be added back
22051 when making stack frame references. This is the default in 64-bit mode.
22052 Otherwise, assume no such offset is present.
22053 @end table
22054
22055 @node SPU Options
22056 @subsection SPU Options
22057 @cindex SPU options
22058
22059 These @samp{-m} options are supported on the SPU:
22060
22061 @table @gcctabopt
22062 @item -mwarn-reloc
22063 @itemx -merror-reloc
22064 @opindex mwarn-reloc
22065 @opindex merror-reloc
22066
22067 The loader for SPU does not handle dynamic relocations. By default, GCC
22068 gives an error when it generates code that requires a dynamic
22069 relocation. @option{-mno-error-reloc} disables the error,
22070 @option{-mwarn-reloc} generates a warning instead.
22071
22072 @item -msafe-dma
22073 @itemx -munsafe-dma
22074 @opindex msafe-dma
22075 @opindex munsafe-dma
22076
22077 Instructions that initiate or test completion of DMA must not be
22078 reordered with respect to loads and stores of the memory that is being
22079 accessed.
22080 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
22081 memory accesses, but that can lead to inefficient code in places where the
22082 memory is known to not change. Rather than mark the memory as volatile,
22083 you can use @option{-msafe-dma} to tell the compiler to treat
22084 the DMA instructions as potentially affecting all memory.
22085
22086 @item -mbranch-hints
22087 @opindex mbranch-hints
22088
22089 By default, GCC generates a branch hint instruction to avoid
22090 pipeline stalls for always-taken or probably-taken branches. A hint
22091 is not generated closer than 8 instructions away from its branch.
22092 There is little reason to disable them, except for debugging purposes,
22093 or to make an object a little bit smaller.
22094
22095 @item -msmall-mem
22096 @itemx -mlarge-mem
22097 @opindex msmall-mem
22098 @opindex mlarge-mem
22099
22100 By default, GCC generates code assuming that addresses are never larger
22101 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
22102 a full 32-bit address.
22103
22104 @item -mstdmain
22105 @opindex mstdmain
22106
22107 By default, GCC links against startup code that assumes the SPU-style
22108 main function interface (which has an unconventional parameter list).
22109 With @option{-mstdmain}, GCC links your program against startup
22110 code that assumes a C99-style interface to @code{main}, including a
22111 local copy of @code{argv} strings.
22112
22113 @item -mfixed-range=@var{register-range}
22114 @opindex mfixed-range
22115 Generate code treating the given register range as fixed registers.
22116 A fixed register is one that the register allocator cannot use. This is
22117 useful when compiling kernel code. A register range is specified as
22118 two registers separated by a dash. Multiple register ranges can be
22119 specified separated by a comma.
22120
22121 @item -mea32
22122 @itemx -mea64
22123 @opindex mea32
22124 @opindex mea64
22125 Compile code assuming that pointers to the PPU address space accessed
22126 via the @code{__ea} named address space qualifier are either 32 or 64
22127 bits wide. The default is 32 bits. As this is an ABI-changing option,
22128 all object code in an executable must be compiled with the same setting.
22129
22130 @item -maddress-space-conversion
22131 @itemx -mno-address-space-conversion
22132 @opindex maddress-space-conversion
22133 @opindex mno-address-space-conversion
22134 Allow/disallow treating the @code{__ea} address space as superset
22135 of the generic address space. This enables explicit type casts
22136 between @code{__ea} and generic pointer as well as implicit
22137 conversions of generic pointers to @code{__ea} pointers. The
22138 default is to allow address space pointer conversions.
22139
22140 @item -mcache-size=@var{cache-size}
22141 @opindex mcache-size
22142 This option controls the version of libgcc that the compiler links to an
22143 executable and selects a software-managed cache for accessing variables
22144 in the @code{__ea} address space with a particular cache size. Possible
22145 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
22146 and @samp{128}. The default cache size is 64KB.
22147
22148 @item -matomic-updates
22149 @itemx -mno-atomic-updates
22150 @opindex matomic-updates
22151 @opindex mno-atomic-updates
22152 This option controls the version of libgcc that the compiler links to an
22153 executable and selects whether atomic updates to the software-managed
22154 cache of PPU-side variables are used. If you use atomic updates, changes
22155 to a PPU variable from SPU code using the @code{__ea} named address space
22156 qualifier do not interfere with changes to other PPU variables residing
22157 in the same cache line from PPU code. If you do not use atomic updates,
22158 such interference may occur; however, writing back cache lines is
22159 more efficient. The default behavior is to use atomic updates.
22160
22161 @item -mdual-nops
22162 @itemx -mdual-nops=@var{n}
22163 @opindex mdual-nops
22164 By default, GCC inserts nops to increase dual issue when it expects
22165 it to increase performance. @var{n} can be a value from 0 to 10. A
22166 smaller @var{n} inserts fewer nops. 10 is the default, 0 is the
22167 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
22168
22169 @item -mhint-max-nops=@var{n}
22170 @opindex mhint-max-nops
22171 Maximum number of nops to insert for a branch hint. A branch hint must
22172 be at least 8 instructions away from the branch it is affecting. GCC
22173 inserts up to @var{n} nops to enforce this, otherwise it does not
22174 generate the branch hint.
22175
22176 @item -mhint-max-distance=@var{n}
22177 @opindex mhint-max-distance
22178 The encoding of the branch hint instruction limits the hint to be within
22179 256 instructions of the branch it is affecting. By default, GCC makes
22180 sure it is within 125.
22181
22182 @item -msafe-hints
22183 @opindex msafe-hints
22184 Work around a hardware bug that causes the SPU to stall indefinitely.
22185 By default, GCC inserts the @code{hbrp} instruction to make sure
22186 this stall won't happen.
22187
22188 @end table
22189
22190 @node System V Options
22191 @subsection Options for System V
22192
22193 These additional options are available on System V Release 4 for
22194 compatibility with other compilers on those systems:
22195
22196 @table @gcctabopt
22197 @item -G
22198 @opindex G
22199 Create a shared object.
22200 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
22201
22202 @item -Qy
22203 @opindex Qy
22204 Identify the versions of each tool used by the compiler, in a
22205 @code{.ident} assembler directive in the output.
22206
22207 @item -Qn
22208 @opindex Qn
22209 Refrain from adding @code{.ident} directives to the output file (this is
22210 the default).
22211
22212 @item -YP,@var{dirs}
22213 @opindex YP
22214 Search the directories @var{dirs}, and no others, for libraries
22215 specified with @option{-l}.
22216
22217 @item -Ym,@var{dir}
22218 @opindex Ym
22219 Look in the directory @var{dir} to find the M4 preprocessor.
22220 The assembler uses this option.
22221 @c This is supposed to go with a -Yd for predefined M4 macro files, but
22222 @c the generic assembler that comes with Solaris takes just -Ym.
22223 @end table
22224
22225 @node TILE-Gx Options
22226 @subsection TILE-Gx Options
22227 @cindex TILE-Gx options
22228
22229 These @samp{-m} options are supported on the TILE-Gx:
22230
22231 @table @gcctabopt
22232 @item -mcmodel=small
22233 @opindex mcmodel=small
22234 Generate code for the small model. The distance for direct calls is
22235 limited to 500M in either direction. PC-relative addresses are 32
22236 bits. Absolute addresses support the full address range.
22237
22238 @item -mcmodel=large
22239 @opindex mcmodel=large
22240 Generate code for the large model. There is no limitation on call
22241 distance, pc-relative addresses, or absolute addresses.
22242
22243 @item -mcpu=@var{name}
22244 @opindex mcpu
22245 Selects the type of CPU to be targeted. Currently the only supported
22246 type is @samp{tilegx}.
22247
22248 @item -m32
22249 @itemx -m64
22250 @opindex m32
22251 @opindex m64
22252 Generate code for a 32-bit or 64-bit environment. The 32-bit
22253 environment sets int, long, and pointer to 32 bits. The 64-bit
22254 environment sets int to 32 bits and long and pointer to 64 bits.
22255
22256 @item -mbig-endian
22257 @itemx -mlittle-endian
22258 @opindex mbig-endian
22259 @opindex mlittle-endian
22260 Generate code in big/little endian mode, respectively.
22261 @end table
22262
22263 @node TILEPro Options
22264 @subsection TILEPro Options
22265 @cindex TILEPro options
22266
22267 These @samp{-m} options are supported on the TILEPro:
22268
22269 @table @gcctabopt
22270 @item -mcpu=@var{name}
22271 @opindex mcpu
22272 Selects the type of CPU to be targeted. Currently the only supported
22273 type is @samp{tilepro}.
22274
22275 @item -m32
22276 @opindex m32
22277 Generate code for a 32-bit environment, which sets int, long, and
22278 pointer to 32 bits. This is the only supported behavior so the flag
22279 is essentially ignored.
22280 @end table
22281
22282 @node V850 Options
22283 @subsection V850 Options
22284 @cindex V850 Options
22285
22286 These @samp{-m} options are defined for V850 implementations:
22287
22288 @table @gcctabopt
22289 @item -mlong-calls
22290 @itemx -mno-long-calls
22291 @opindex mlong-calls
22292 @opindex mno-long-calls
22293 Treat all calls as being far away (near). If calls are assumed to be
22294 far away, the compiler always loads the function's address into a
22295 register, and calls indirect through the pointer.
22296
22297 @item -mno-ep
22298 @itemx -mep
22299 @opindex mno-ep
22300 @opindex mep
22301 Do not optimize (do optimize) basic blocks that use the same index
22302 pointer 4 or more times to copy pointer into the @code{ep} register, and
22303 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
22304 option is on by default if you optimize.
22305
22306 @item -mno-prolog-function
22307 @itemx -mprolog-function
22308 @opindex mno-prolog-function
22309 @opindex mprolog-function
22310 Do not use (do use) external functions to save and restore registers
22311 at the prologue and epilogue of a function. The external functions
22312 are slower, but use less code space if more than one function saves
22313 the same number of registers. The @option{-mprolog-function} option
22314 is on by default if you optimize.
22315
22316 @item -mspace
22317 @opindex mspace
22318 Try to make the code as small as possible. At present, this just turns
22319 on the @option{-mep} and @option{-mprolog-function} options.
22320
22321 @item -mtda=@var{n}
22322 @opindex mtda
22323 Put static or global variables whose size is @var{n} bytes or less into
22324 the tiny data area that register @code{ep} points to. The tiny data
22325 area can hold up to 256 bytes in total (128 bytes for byte references).
22326
22327 @item -msda=@var{n}
22328 @opindex msda
22329 Put static or global variables whose size is @var{n} bytes or less into
22330 the small data area that register @code{gp} points to. The small data
22331 area can hold up to 64 kilobytes.
22332
22333 @item -mzda=@var{n}
22334 @opindex mzda
22335 Put static or global variables whose size is @var{n} bytes or less into
22336 the first 32 kilobytes of memory.
22337
22338 @item -mv850
22339 @opindex mv850
22340 Specify that the target processor is the V850.
22341
22342 @item -mv850e3v5
22343 @opindex mv850e3v5
22344 Specify that the target processor is the V850E3V5. The preprocessor
22345 constant @code{__v850e3v5__} is defined if this option is used.
22346
22347 @item -mv850e2v4
22348 @opindex mv850e2v4
22349 Specify that the target processor is the V850E3V5. This is an alias for
22350 the @option{-mv850e3v5} option.
22351
22352 @item -mv850e2v3
22353 @opindex mv850e2v3
22354 Specify that the target processor is the V850E2V3. The preprocessor
22355 constant @code{__v850e2v3__} is defined if this option is used.
22356
22357 @item -mv850e2
22358 @opindex mv850e2
22359 Specify that the target processor is the V850E2. The preprocessor
22360 constant @code{__v850e2__} is defined if this option is used.
22361
22362 @item -mv850e1
22363 @opindex mv850e1
22364 Specify that the target processor is the V850E1. The preprocessor
22365 constants @code{__v850e1__} and @code{__v850e__} are defined if
22366 this option is used.
22367
22368 @item -mv850es
22369 @opindex mv850es
22370 Specify that the target processor is the V850ES. This is an alias for
22371 the @option{-mv850e1} option.
22372
22373 @item -mv850e
22374 @opindex mv850e
22375 Specify that the target processor is the V850E@. The preprocessor
22376 constant @code{__v850e__} is defined if this option is used.
22377
22378 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
22379 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
22380 are defined then a default target processor is chosen and the
22381 relevant @samp{__v850*__} preprocessor constant is defined.
22382
22383 The preprocessor constants @code{__v850} and @code{__v851__} are always
22384 defined, regardless of which processor variant is the target.
22385
22386 @item -mdisable-callt
22387 @itemx -mno-disable-callt
22388 @opindex mdisable-callt
22389 @opindex mno-disable-callt
22390 This option suppresses generation of the @code{CALLT} instruction for the
22391 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
22392 architecture.
22393
22394 This option is enabled by default when the RH850 ABI is
22395 in use (see @option{-mrh850-abi}), and disabled by default when the
22396 GCC ABI is in use. If @code{CALLT} instructions are being generated
22397 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
22398
22399 @item -mrelax
22400 @itemx -mno-relax
22401 @opindex mrelax
22402 @opindex mno-relax
22403 Pass on (or do not pass on) the @option{-mrelax} command-line option
22404 to the assembler.
22405
22406 @item -mlong-jumps
22407 @itemx -mno-long-jumps
22408 @opindex mlong-jumps
22409 @opindex mno-long-jumps
22410 Disable (or re-enable) the generation of PC-relative jump instructions.
22411
22412 @item -msoft-float
22413 @itemx -mhard-float
22414 @opindex msoft-float
22415 @opindex mhard-float
22416 Disable (or re-enable) the generation of hardware floating point
22417 instructions. This option is only significant when the target
22418 architecture is @samp{V850E2V3} or higher. If hardware floating point
22419 instructions are being generated then the C preprocessor symbol
22420 @code{__FPU_OK__} is defined, otherwise the symbol
22421 @code{__NO_FPU__} is defined.
22422
22423 @item -mloop
22424 @opindex mloop
22425 Enables the use of the e3v5 LOOP instruction. The use of this
22426 instruction is not enabled by default when the e3v5 architecture is
22427 selected because its use is still experimental.
22428
22429 @item -mrh850-abi
22430 @itemx -mghs
22431 @opindex mrh850-abi
22432 @opindex mghs
22433 Enables support for the RH850 version of the V850 ABI. This is the
22434 default. With this version of the ABI the following rules apply:
22435
22436 @itemize
22437 @item
22438 Integer sized structures and unions are returned via a memory pointer
22439 rather than a register.
22440
22441 @item
22442 Large structures and unions (more than 8 bytes in size) are passed by
22443 value.
22444
22445 @item
22446 Functions are aligned to 16-bit boundaries.
22447
22448 @item
22449 The @option{-m8byte-align} command-line option is supported.
22450
22451 @item
22452 The @option{-mdisable-callt} command-line option is enabled by
22453 default. The @option{-mno-disable-callt} command-line option is not
22454 supported.
22455 @end itemize
22456
22457 When this version of the ABI is enabled the C preprocessor symbol
22458 @code{__V850_RH850_ABI__} is defined.
22459
22460 @item -mgcc-abi
22461 @opindex mgcc-abi
22462 Enables support for the old GCC version of the V850 ABI. With this
22463 version of the ABI the following rules apply:
22464
22465 @itemize
22466 @item
22467 Integer sized structures and unions are returned in register @code{r10}.
22468
22469 @item
22470 Large structures and unions (more than 8 bytes in size) are passed by
22471 reference.
22472
22473 @item
22474 Functions are aligned to 32-bit boundaries, unless optimizing for
22475 size.
22476
22477 @item
22478 The @option{-m8byte-align} command-line option is not supported.
22479
22480 @item
22481 The @option{-mdisable-callt} command-line option is supported but not
22482 enabled by default.
22483 @end itemize
22484
22485 When this version of the ABI is enabled the C preprocessor symbol
22486 @code{__V850_GCC_ABI__} is defined.
22487
22488 @item -m8byte-align
22489 @itemx -mno-8byte-align
22490 @opindex m8byte-align
22491 @opindex mno-8byte-align
22492 Enables support for @code{double} and @code{long long} types to be
22493 aligned on 8-byte boundaries. The default is to restrict the
22494 alignment of all objects to at most 4-bytes. When
22495 @option{-m8byte-align} is in effect the C preprocessor symbol
22496 @code{__V850_8BYTE_ALIGN__} is defined.
22497
22498 @item -mbig-switch
22499 @opindex mbig-switch
22500 Generate code suitable for big switch tables. Use this option only if
22501 the assembler/linker complain about out of range branches within a switch
22502 table.
22503
22504 @item -mapp-regs
22505 @opindex mapp-regs
22506 This option causes r2 and r5 to be used in the code generated by
22507 the compiler. This setting is the default.
22508
22509 @item -mno-app-regs
22510 @opindex mno-app-regs
22511 This option causes r2 and r5 to be treated as fixed registers.
22512
22513 @end table
22514
22515 @node VAX Options
22516 @subsection VAX Options
22517 @cindex VAX options
22518
22519 These @samp{-m} options are defined for the VAX:
22520
22521 @table @gcctabopt
22522 @item -munix
22523 @opindex munix
22524 Do not output certain jump instructions (@code{aobleq} and so on)
22525 that the Unix assembler for the VAX cannot handle across long
22526 ranges.
22527
22528 @item -mgnu
22529 @opindex mgnu
22530 Do output those jump instructions, on the assumption that the
22531 GNU assembler is being used.
22532
22533 @item -mg
22534 @opindex mg
22535 Output code for G-format floating-point numbers instead of D-format.
22536 @end table
22537
22538 @node Visium Options
22539 @subsection Visium Options
22540 @cindex Visium options
22541
22542 @table @gcctabopt
22543
22544 @item -mdebug
22545 @opindex mdebug
22546 A program which performs file I/O and is destined to run on an MCM target
22547 should be linked with this option. It causes the libraries libc.a and
22548 libdebug.a to be linked. The program should be run on the target under
22549 the control of the GDB remote debugging stub.
22550
22551 @item -msim
22552 @opindex msim
22553 A program which performs file I/O and is destined to run on the simulator
22554 should be linked with option. This causes libraries libc.a and libsim.a to
22555 be linked.
22556
22557 @item -mfpu
22558 @itemx -mhard-float
22559 @opindex mfpu
22560 @opindex mhard-float
22561 Generate code containing floating-point instructions. This is the
22562 default.
22563
22564 @item -mno-fpu
22565 @itemx -msoft-float
22566 @opindex mno-fpu
22567 @opindex msoft-float
22568 Generate code containing library calls for floating-point.
22569
22570 @option{-msoft-float} changes the calling convention in the output file;
22571 therefore, it is only useful if you compile @emph{all} of a program with
22572 this option. In particular, you need to compile @file{libgcc.a}, the
22573 library that comes with GCC, with @option{-msoft-float} in order for
22574 this to work.
22575
22576 @item -mcpu=@var{cpu_type}
22577 @opindex mcpu
22578 Set the instruction set, register set, and instruction scheduling parameters
22579 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
22580 @samp{mcm}, @samp{gr5} and @samp{gr6}.
22581
22582 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
22583
22584 By default (unless configured otherwise), GCC generates code for the GR5
22585 variant of the Visium architecture.
22586
22587 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
22588 architecture. The only difference from GR5 code is that the compiler will
22589 generate block move instructions.
22590
22591 @item -mtune=@var{cpu_type}
22592 @opindex mtune
22593 Set the instruction scheduling parameters for machine type @var{cpu_type},
22594 but do not set the instruction set or register set that the option
22595 @option{-mcpu=@var{cpu_type}} would.
22596
22597 @item -msv-mode
22598 @opindex msv-mode
22599 Generate code for the supervisor mode, where there are no restrictions on
22600 the access to general registers. This is the default.
22601
22602 @item -muser-mode
22603 @opindex muser-mode
22604 Generate code for the user mode, where the access to some general registers
22605 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
22606 mode; on the GR6, only registers r29 to r31 are affected.
22607 @end table
22608
22609 @node VMS Options
22610 @subsection VMS Options
22611
22612 These @samp{-m} options are defined for the VMS implementations:
22613
22614 @table @gcctabopt
22615 @item -mvms-return-codes
22616 @opindex mvms-return-codes
22617 Return VMS condition codes from @code{main}. The default is to return POSIX-style
22618 condition (e.g.@ error) codes.
22619
22620 @item -mdebug-main=@var{prefix}
22621 @opindex mdebug-main=@var{prefix}
22622 Flag the first routine whose name starts with @var{prefix} as the main
22623 routine for the debugger.
22624
22625 @item -mmalloc64
22626 @opindex mmalloc64
22627 Default to 64-bit memory allocation routines.
22628
22629 @item -mpointer-size=@var{size}
22630 @opindex mpointer-size=@var{size}
22631 Set the default size of pointers. Possible options for @var{size} are
22632 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
22633 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
22634 The later option disables @code{pragma pointer_size}.
22635 @end table
22636
22637 @node VxWorks Options
22638 @subsection VxWorks Options
22639 @cindex VxWorks Options
22640
22641 The options in this section are defined for all VxWorks targets.
22642 Options specific to the target hardware are listed with the other
22643 options for that target.
22644
22645 @table @gcctabopt
22646 @item -mrtp
22647 @opindex mrtp
22648 GCC can generate code for both VxWorks kernels and real time processes
22649 (RTPs). This option switches from the former to the latter. It also
22650 defines the preprocessor macro @code{__RTP__}.
22651
22652 @item -non-static
22653 @opindex non-static
22654 Link an RTP executable against shared libraries rather than static
22655 libraries. The options @option{-static} and @option{-shared} can
22656 also be used for RTPs (@pxref{Link Options}); @option{-static}
22657 is the default.
22658
22659 @item -Bstatic
22660 @itemx -Bdynamic
22661 @opindex Bstatic
22662 @opindex Bdynamic
22663 These options are passed down to the linker. They are defined for
22664 compatibility with Diab.
22665
22666 @item -Xbind-lazy
22667 @opindex Xbind-lazy
22668 Enable lazy binding of function calls. This option is equivalent to
22669 @option{-Wl,-z,now} and is defined for compatibility with Diab.
22670
22671 @item -Xbind-now
22672 @opindex Xbind-now
22673 Disable lazy binding of function calls. This option is the default and
22674 is defined for compatibility with Diab.
22675 @end table
22676
22677 @node x86 Options
22678 @subsection x86 Options
22679 @cindex x86 Options
22680
22681 These @samp{-m} options are defined for the x86 family of computers.
22682
22683 @table @gcctabopt
22684
22685 @item -march=@var{cpu-type}
22686 @opindex march
22687 Generate instructions for the machine type @var{cpu-type}. In contrast to
22688 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
22689 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
22690 to generate code that may not run at all on processors other than the one
22691 indicated. Specifying @option{-march=@var{cpu-type}} implies
22692 @option{-mtune=@var{cpu-type}}.
22693
22694 The choices for @var{cpu-type} are:
22695
22696 @table @samp
22697 @item native
22698 This selects the CPU to generate code for at compilation time by determining
22699 the processor type of the compiling machine. Using @option{-march=native}
22700 enables all instruction subsets supported by the local machine (hence
22701 the result might not run on different machines). Using @option{-mtune=native}
22702 produces code optimized for the local machine under the constraints
22703 of the selected instruction set.
22704
22705 @item i386
22706 Original Intel i386 CPU@.
22707
22708 @item i486
22709 Intel i486 CPU@. (No scheduling is implemented for this chip.)
22710
22711 @item i586
22712 @itemx pentium
22713 Intel Pentium CPU with no MMX support.
22714
22715 @item lakemont
22716 Intel Lakemont MCU, based on Intel Pentium CPU.
22717
22718 @item pentium-mmx
22719 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
22720
22721 @item pentiumpro
22722 Intel Pentium Pro CPU@.
22723
22724 @item i686
22725 When used with @option{-march}, the Pentium Pro
22726 instruction set is used, so the code runs on all i686 family chips.
22727 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22728
22729 @item pentium2
22730 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22731 support.
22732
22733 @item pentium3
22734 @itemx pentium3m
22735 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22736 set support.
22737
22738 @item pentium-m
22739 Intel Pentium M; low-power version of Intel Pentium III CPU
22740 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
22741
22742 @item pentium4
22743 @itemx pentium4m
22744 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22745
22746 @item prescott
22747 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22748 set support.
22749
22750 @item nocona
22751 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22752 SSE2 and SSE3 instruction set support.
22753
22754 @item core2
22755 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22756 instruction set support.
22757
22758 @item nehalem
22759 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22760 SSE4.1, SSE4.2 and POPCNT instruction set support.
22761
22762 @item westmere
22763 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22764 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22765
22766 @item sandybridge
22767 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22768 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22769
22770 @item ivybridge
22771 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22772 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22773 instruction set support.
22774
22775 @item haswell
22776 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22777 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22778 BMI, BMI2 and F16C instruction set support.
22779
22780 @item broadwell
22781 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22782 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22783 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22784
22785 @item skylake
22786 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22787 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22788 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
22789 XSAVES instruction set support.
22790
22791 @item bonnell
22792 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22793 instruction set support.
22794
22795 @item silvermont
22796 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22797 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22798
22799 @item knl
22800 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22801 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22802 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22803 AVX512CD instruction set support.
22804
22805 @item skylake-avx512
22806 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22807 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22808 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
22809 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
22810
22811 @item k6
22812 AMD K6 CPU with MMX instruction set support.
22813
22814 @item k6-2
22815 @itemx k6-3
22816 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22817
22818 @item athlon
22819 @itemx athlon-tbird
22820 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22821 support.
22822
22823 @item athlon-4
22824 @itemx athlon-xp
22825 @itemx athlon-mp
22826 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22827 instruction set support.
22828
22829 @item k8
22830 @itemx opteron
22831 @itemx athlon64
22832 @itemx athlon-fx
22833 Processors based on the AMD K8 core with x86-64 instruction set support,
22834 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22835 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22836 instruction set extensions.)
22837
22838 @item k8-sse3
22839 @itemx opteron-sse3
22840 @itemx athlon64-sse3
22841 Improved versions of AMD K8 cores with SSE3 instruction set support.
22842
22843 @item amdfam10
22844 @itemx barcelona
22845 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
22846 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22847 instruction set extensions.)
22848
22849 @item bdver1
22850 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
22851 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22852 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22853 @item bdver2
22854 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22855 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22856 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
22857 extensions.)
22858 @item bdver3
22859 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22860 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
22861 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
22862 64-bit instruction set extensions.
22863 @item bdver4
22864 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22865 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
22866 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
22867 SSE4.2, ABM and 64-bit instruction set extensions.
22868
22869 @item znver1
22870 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
22871 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
22872 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
22873 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
22874 instruction set extensions.
22875
22876 @item btver1
22877 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
22878 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22879 instruction set extensions.)
22880
22881 @item btver2
22882 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22883 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22884 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22885
22886 @item winchip-c6
22887 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22888 set support.
22889
22890 @item winchip2
22891 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22892 instruction set support.
22893
22894 @item c3
22895 VIA C3 CPU with MMX and 3DNow!@: instruction set support. (No scheduling is
22896 implemented for this chip.)
22897
22898 @item c3-2
22899 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22900 (No scheduling is
22901 implemented for this chip.)
22902
22903 @item geode
22904 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22905 @end table
22906
22907 @item -mtune=@var{cpu-type}
22908 @opindex mtune
22909 Tune to @var{cpu-type} everything applicable about the generated code, except
22910 for the ABI and the set of available instructions.
22911 While picking a specific @var{cpu-type} schedules things appropriately
22912 for that particular chip, the compiler does not generate any code that
22913 cannot run on the default machine type unless you use a
22914 @option{-march=@var{cpu-type}} option.
22915 For example, if GCC is configured for i686-pc-linux-gnu
22916 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22917 but still runs on i686 machines.
22918
22919 The choices for @var{cpu-type} are the same as for @option{-march}.
22920 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22921
22922 @table @samp
22923 @item generic
22924 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22925 If you know the CPU on which your code will run, then you should use
22926 the corresponding @option{-mtune} or @option{-march} option instead of
22927 @option{-mtune=generic}. But, if you do not know exactly what CPU users
22928 of your application will have, then you should use this option.
22929
22930 As new processors are deployed in the marketplace, the behavior of this
22931 option will change. Therefore, if you upgrade to a newer version of
22932 GCC, code generation controlled by this option will change to reflect
22933 the processors
22934 that are most common at the time that version of GCC is released.
22935
22936 There is no @option{-march=generic} option because @option{-march}
22937 indicates the instruction set the compiler can use, and there is no
22938 generic instruction set applicable to all processors. In contrast,
22939 @option{-mtune} indicates the processor (or, in this case, collection of
22940 processors) for which the code is optimized.
22941
22942 @item intel
22943 Produce code optimized for the most current Intel processors, which are
22944 Haswell and Silvermont for this version of GCC. If you know the CPU
22945 on which your code will run, then you should use the corresponding
22946 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22947 But, if you want your application performs better on both Haswell and
22948 Silvermont, then you should use this option.
22949
22950 As new Intel processors are deployed in the marketplace, the behavior of
22951 this option will change. Therefore, if you upgrade to a newer version of
22952 GCC, code generation controlled by this option will change to reflect
22953 the most current Intel processors at the time that version of GCC is
22954 released.
22955
22956 There is no @option{-march=intel} option because @option{-march} indicates
22957 the instruction set the compiler can use, and there is no common
22958 instruction set applicable to all processors. In contrast,
22959 @option{-mtune} indicates the processor (or, in this case, collection of
22960 processors) for which the code is optimized.
22961 @end table
22962
22963 @item -mcpu=@var{cpu-type}
22964 @opindex mcpu
22965 A deprecated synonym for @option{-mtune}.
22966
22967 @item -mfpmath=@var{unit}
22968 @opindex mfpmath
22969 Generate floating-point arithmetic for selected unit @var{unit}. The choices
22970 for @var{unit} are:
22971
22972 @table @samp
22973 @item 387
22974 Use the standard 387 floating-point coprocessor present on the majority of chips and
22975 emulated otherwise. Code compiled with this option runs almost everywhere.
22976 The temporary results are computed in 80-bit precision instead of the precision
22977 specified by the type, resulting in slightly different results compared to most
22978 of other chips. See @option{-ffloat-store} for more detailed description.
22979
22980 This is the default choice for x86-32 targets.
22981
22982 @item sse
22983 Use scalar floating-point instructions present in the SSE instruction set.
22984 This instruction set is supported by Pentium III and newer chips,
22985 and in the AMD line
22986 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
22987 instruction set supports only single-precision arithmetic, thus the double and
22988 extended-precision arithmetic are still done using 387. A later version, present
22989 only in Pentium 4 and AMD x86-64 chips, supports double-precision
22990 arithmetic too.
22991
22992 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22993 or @option{-msse2} switches to enable SSE extensions and make this option
22994 effective. For the x86-64 compiler, these extensions are enabled by default.
22995
22996 The resulting code should be considerably faster in the majority of cases and avoid
22997 the numerical instability problems of 387 code, but may break some existing
22998 code that expects temporaries to be 80 bits.
22999
23000 This is the default choice for the x86-64 compiler.
23001
23002 @item sse,387
23003 @itemx sse+387
23004 @itemx both
23005 Attempt to utilize both instruction sets at once. This effectively doubles the
23006 amount of available registers, and on chips with separate execution units for
23007 387 and SSE the execution resources too. Use this option with care, as it is
23008 still experimental, because the GCC register allocator does not model separate
23009 functional units well, resulting in unstable performance.
23010 @end table
23011
23012 @item -masm=@var{dialect}
23013 @opindex masm=@var{dialect}
23014 Output assembly instructions using selected @var{dialect}. Also affects
23015 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
23016 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
23017 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
23018 not support @samp{intel}.
23019
23020 @item -mieee-fp
23021 @itemx -mno-ieee-fp
23022 @opindex mieee-fp
23023 @opindex mno-ieee-fp
23024 Control whether or not the compiler uses IEEE floating-point
23025 comparisons. These correctly handle the case where the result of a
23026 comparison is unordered.
23027
23028 @item -msoft-float
23029 @opindex msoft-float
23030 Generate output containing library calls for floating point.
23031
23032 @strong{Warning:} the requisite libraries are not part of GCC@.
23033 Normally the facilities of the machine's usual C compiler are used, but
23034 this can't be done directly in cross-compilation. You must make your
23035 own arrangements to provide suitable library functions for
23036 cross-compilation.
23037
23038 On machines where a function returns floating-point results in the 80387
23039 register stack, some floating-point opcodes may be emitted even if
23040 @option{-msoft-float} is used.
23041
23042 @item -mno-fp-ret-in-387
23043 @opindex mno-fp-ret-in-387
23044 Do not use the FPU registers for return values of functions.
23045
23046 The usual calling convention has functions return values of types
23047 @code{float} and @code{double} in an FPU register, even if there
23048 is no FPU@. The idea is that the operating system should emulate
23049 an FPU@.
23050
23051 The option @option{-mno-fp-ret-in-387} causes such values to be returned
23052 in ordinary CPU registers instead.
23053
23054 @item -mno-fancy-math-387
23055 @opindex mno-fancy-math-387
23056 Some 387 emulators do not support the @code{sin}, @code{cos} and
23057 @code{sqrt} instructions for the 387. Specify this option to avoid
23058 generating those instructions. This option is the default on
23059 OpenBSD and NetBSD@. This option is overridden when @option{-march}
23060 indicates that the target CPU always has an FPU and so the
23061 instruction does not need emulation. These
23062 instructions are not generated unless you also use the
23063 @option{-funsafe-math-optimizations} switch.
23064
23065 @item -malign-double
23066 @itemx -mno-align-double
23067 @opindex malign-double
23068 @opindex mno-align-double
23069 Control whether GCC aligns @code{double}, @code{long double}, and
23070 @code{long long} variables on a two-word boundary or a one-word
23071 boundary. Aligning @code{double} variables on a two-word boundary
23072 produces code that runs somewhat faster on a Pentium at the
23073 expense of more memory.
23074
23075 On x86-64, @option{-malign-double} is enabled by default.
23076
23077 @strong{Warning:} if you use the @option{-malign-double} switch,
23078 structures containing the above types are aligned differently than
23079 the published application binary interface specifications for the x86-32
23080 and are not binary compatible with structures in code compiled
23081 without that switch.
23082
23083 @item -m96bit-long-double
23084 @itemx -m128bit-long-double
23085 @opindex m96bit-long-double
23086 @opindex m128bit-long-double
23087 These switches control the size of @code{long double} type. The x86-32
23088 application binary interface specifies the size to be 96 bits,
23089 so @option{-m96bit-long-double} is the default in 32-bit mode.
23090
23091 Modern architectures (Pentium and newer) prefer @code{long double}
23092 to be aligned to an 8- or 16-byte boundary. In arrays or structures
23093 conforming to the ABI, this is not possible. So specifying
23094 @option{-m128bit-long-double} aligns @code{long double}
23095 to a 16-byte boundary by padding the @code{long double} with an additional
23096 32-bit zero.
23097
23098 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
23099 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
23100
23101 Notice that neither of these options enable any extra precision over the x87
23102 standard of 80 bits for a @code{long double}.
23103
23104 @strong{Warning:} if you override the default value for your target ABI, this
23105 changes the size of
23106 structures and arrays containing @code{long double} variables,
23107 as well as modifying the function calling convention for functions taking
23108 @code{long double}. Hence they are not binary-compatible
23109 with code compiled without that switch.
23110
23111 @item -mlong-double-64
23112 @itemx -mlong-double-80
23113 @itemx -mlong-double-128
23114 @opindex mlong-double-64
23115 @opindex mlong-double-80
23116 @opindex mlong-double-128
23117 These switches control the size of @code{long double} type. A size
23118 of 64 bits makes the @code{long double} type equivalent to the @code{double}
23119 type. This is the default for 32-bit Bionic C library. A size
23120 of 128 bits makes the @code{long double} type equivalent to the
23121 @code{__float128} type. This is the default for 64-bit Bionic C library.
23122
23123 @strong{Warning:} if you override the default value for your target ABI, this
23124 changes the size of
23125 structures and arrays containing @code{long double} variables,
23126 as well as modifying the function calling convention for functions taking
23127 @code{long double}. Hence they are not binary-compatible
23128 with code compiled without that switch.
23129
23130 @item -malign-data=@var{type}
23131 @opindex malign-data
23132 Control how GCC aligns variables. Supported values for @var{type} are
23133 @samp{compat} uses increased alignment value compatible uses GCC 4.8
23134 and earlier, @samp{abi} uses alignment value as specified by the
23135 psABI, and @samp{cacheline} uses increased alignment value to match
23136 the cache line size. @samp{compat} is the default.
23137
23138 @item -mlarge-data-threshold=@var{threshold}
23139 @opindex mlarge-data-threshold
23140 When @option{-mcmodel=medium} is specified, data objects larger than
23141 @var{threshold} are placed in the large data section. This value must be the
23142 same across all objects linked into the binary, and defaults to 65535.
23143
23144 @item -mrtd
23145 @opindex mrtd
23146 Use a different function-calling convention, in which functions that
23147 take a fixed number of arguments return with the @code{ret @var{num}}
23148 instruction, which pops their arguments while returning. This saves one
23149 instruction in the caller since there is no need to pop the arguments
23150 there.
23151
23152 You can specify that an individual function is called with this calling
23153 sequence with the function attribute @code{stdcall}. You can also
23154 override the @option{-mrtd} option by using the function attribute
23155 @code{cdecl}. @xref{Function Attributes}.
23156
23157 @strong{Warning:} this calling convention is incompatible with the one
23158 normally used on Unix, so you cannot use it if you need to call
23159 libraries compiled with the Unix compiler.
23160
23161 Also, you must provide function prototypes for all functions that
23162 take variable numbers of arguments (including @code{printf});
23163 otherwise incorrect code is generated for calls to those
23164 functions.
23165
23166 In addition, seriously incorrect code results if you call a
23167 function with too many arguments. (Normally, extra arguments are
23168 harmlessly ignored.)
23169
23170 @item -mregparm=@var{num}
23171 @opindex mregparm
23172 Control how many registers are used to pass integer arguments. By
23173 default, no registers are used to pass arguments, and at most 3
23174 registers can be used. You can control this behavior for a specific
23175 function by using the function attribute @code{regparm}.
23176 @xref{Function Attributes}.
23177
23178 @strong{Warning:} if you use this switch, and
23179 @var{num} is nonzero, then you must build all modules with the same
23180 value, including any libraries. This includes the system libraries and
23181 startup modules.
23182
23183 @item -msseregparm
23184 @opindex msseregparm
23185 Use SSE register passing conventions for float and double arguments
23186 and return values. You can control this behavior for a specific
23187 function by using the function attribute @code{sseregparm}.
23188 @xref{Function Attributes}.
23189
23190 @strong{Warning:} if you use this switch then you must build all
23191 modules with the same value, including any libraries. This includes
23192 the system libraries and startup modules.
23193
23194 @item -mvect8-ret-in-mem
23195 @opindex mvect8-ret-in-mem
23196 Return 8-byte vectors in memory instead of MMX registers. This is the
23197 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
23198 Studio compilers until version 12. Later compiler versions (starting
23199 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
23200 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
23201 you need to remain compatible with existing code produced by those
23202 previous compiler versions or older versions of GCC@.
23203
23204 @item -mpc32
23205 @itemx -mpc64
23206 @itemx -mpc80
23207 @opindex mpc32
23208 @opindex mpc64
23209 @opindex mpc80
23210
23211 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
23212 is specified, the significands of results of floating-point operations are
23213 rounded to 24 bits (single precision); @option{-mpc64} rounds the
23214 significands of results of floating-point operations to 53 bits (double
23215 precision) and @option{-mpc80} rounds the significands of results of
23216 floating-point operations to 64 bits (extended double precision), which is
23217 the default. When this option is used, floating-point operations in higher
23218 precisions are not available to the programmer without setting the FPU
23219 control word explicitly.
23220
23221 Setting the rounding of floating-point operations to less than the default
23222 80 bits can speed some programs by 2% or more. Note that some mathematical
23223 libraries assume that extended-precision (80-bit) floating-point operations
23224 are enabled by default; routines in such libraries could suffer significant
23225 loss of accuracy, typically through so-called ``catastrophic cancellation'',
23226 when this option is used to set the precision to less than extended precision.
23227
23228 @item -mstackrealign
23229 @opindex mstackrealign
23230 Realign the stack at entry. On the x86, the @option{-mstackrealign}
23231 option generates an alternate prologue and epilogue that realigns the
23232 run-time stack if necessary. This supports mixing legacy codes that keep
23233 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
23234 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
23235 applicable to individual functions.
23236
23237 @item -mpreferred-stack-boundary=@var{num}
23238 @opindex mpreferred-stack-boundary
23239 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
23240 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
23241 the default is 4 (16 bytes or 128 bits).
23242
23243 @strong{Warning:} When generating code for the x86-64 architecture with
23244 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
23245 used to keep the stack boundary aligned to 8 byte boundary. Since
23246 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
23247 intended to be used in controlled environment where stack space is
23248 important limitation. This option leads to wrong code when functions
23249 compiled with 16 byte stack alignment (such as functions from a standard
23250 library) are called with misaligned stack. In this case, SSE
23251 instructions may lead to misaligned memory access traps. In addition,
23252 variable arguments are handled incorrectly for 16 byte aligned
23253 objects (including x87 long double and __int128), leading to wrong
23254 results. You must build all modules with
23255 @option{-mpreferred-stack-boundary=3}, including any libraries. This
23256 includes the system libraries and startup modules.
23257
23258 @item -mincoming-stack-boundary=@var{num}
23259 @opindex mincoming-stack-boundary
23260 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
23261 boundary. If @option{-mincoming-stack-boundary} is not specified,
23262 the one specified by @option{-mpreferred-stack-boundary} is used.
23263
23264 On Pentium and Pentium Pro, @code{double} and @code{long double} values
23265 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
23266 suffer significant run time performance penalties. On Pentium III, the
23267 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
23268 properly if it is not 16-byte aligned.
23269
23270 To ensure proper alignment of this values on the stack, the stack boundary
23271 must be as aligned as that required by any value stored on the stack.
23272 Further, every function must be generated such that it keeps the stack
23273 aligned. Thus calling a function compiled with a higher preferred
23274 stack boundary from a function compiled with a lower preferred stack
23275 boundary most likely misaligns the stack. It is recommended that
23276 libraries that use callbacks always use the default setting.
23277
23278 This extra alignment does consume extra stack space, and generally
23279 increases code size. Code that is sensitive to stack space usage, such
23280 as embedded systems and operating system kernels, may want to reduce the
23281 preferred alignment to @option{-mpreferred-stack-boundary=2}.
23282
23283 @need 200
23284 @item -mmmx
23285 @opindex mmmx
23286 @need 200
23287 @itemx -msse
23288 @opindex msse
23289 @need 200
23290 @itemx -msse2
23291 @opindex msse2
23292 @need 200
23293 @itemx -msse3
23294 @opindex msse3
23295 @need 200
23296 @itemx -mssse3
23297 @opindex mssse3
23298 @need 200
23299 @itemx -msse4
23300 @opindex msse4
23301 @need 200
23302 @itemx -msse4a
23303 @opindex msse4a
23304 @need 200
23305 @itemx -msse4.1
23306 @opindex msse4.1
23307 @need 200
23308 @itemx -msse4.2
23309 @opindex msse4.2
23310 @need 200
23311 @itemx -mavx
23312 @opindex mavx
23313 @need 200
23314 @itemx -mavx2
23315 @opindex mavx2
23316 @need 200
23317 @itemx -mavx512f
23318 @opindex mavx512f
23319 @need 200
23320 @itemx -mavx512pf
23321 @opindex mavx512pf
23322 @need 200
23323 @itemx -mavx512er
23324 @opindex mavx512er
23325 @need 200
23326 @itemx -mavx512cd
23327 @opindex mavx512cd
23328 @need 200
23329 @itemx -mavx512vl
23330 @opindex mavx512vl
23331 @need 200
23332 @itemx -mavx512bw
23333 @opindex mavx512bw
23334 @need 200
23335 @itemx -mavx512dq
23336 @opindex mavx512dq
23337 @need 200
23338 @itemx -mavx512ifma
23339 @opindex mavx512ifma
23340 @need 200
23341 @itemx -mavx512vbmi
23342 @opindex mavx512vbmi
23343 @need 200
23344 @itemx -msha
23345 @opindex msha
23346 @need 200
23347 @itemx -maes
23348 @opindex maes
23349 @need 200
23350 @itemx -mpclmul
23351 @opindex mpclmul
23352 @need 200
23353 @itemx -mclfushopt
23354 @opindex mclfushopt
23355 @need 200
23356 @itemx -mfsgsbase
23357 @opindex mfsgsbase
23358 @need 200
23359 @itemx -mrdrnd
23360 @opindex mrdrnd
23361 @need 200
23362 @itemx -mf16c
23363 @opindex mf16c
23364 @need 200
23365 @itemx -mfma
23366 @opindex mfma
23367 @need 200
23368 @itemx -mfma4
23369 @opindex mfma4
23370 @need 200
23371 @itemx -mno-fma4
23372 @opindex mno-fma4
23373 @need 200
23374 @itemx -mprefetchwt1
23375 @opindex mprefetchwt1
23376 @need 200
23377 @itemx -mxop
23378 @opindex mxop
23379 @need 200
23380 @itemx -mlwp
23381 @opindex mlwp
23382 @need 200
23383 @itemx -m3dnow
23384 @opindex m3dnow
23385 @need 200
23386 @itemx -mpopcnt
23387 @opindex mpopcnt
23388 @need 200
23389 @itemx -mabm
23390 @opindex mabm
23391 @need 200
23392 @itemx -mbmi
23393 @opindex mbmi
23394 @need 200
23395 @itemx -mbmi2
23396 @need 200
23397 @itemx -mlzcnt
23398 @opindex mlzcnt
23399 @need 200
23400 @itemx -mfxsr
23401 @opindex mfxsr
23402 @need 200
23403 @itemx -mxsave
23404 @opindex mxsave
23405 @need 200
23406 @itemx -mxsaveopt
23407 @opindex mxsaveopt
23408 @need 200
23409 @itemx -mxsavec
23410 @opindex mxsavec
23411 @need 200
23412 @itemx -mxsaves
23413 @opindex mxsaves
23414 @need 200
23415 @itemx -mrtm
23416 @opindex mrtm
23417 @need 200
23418 @itemx -mtbm
23419 @opindex mtbm
23420 @need 200
23421 @itemx -mmpx
23422 @opindex mmpx
23423 @need 200
23424 @itemx -mmwaitx
23425 @opindex mmwaitx
23426 @need 200
23427 @itemx -mclzero
23428 @opindex mclzero
23429 @itemx -mpku
23430 @opindex mpku
23431 These switches enable the use of instructions in the MMX, SSE,
23432 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
23433 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
23434 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA AVX512VBMI, BMI, BMI2, FXSR,
23435 XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU or 3DNow!@:
23436 extended instruction sets. Each has a corresponding @option{-mno-} option
23437 to disable use of these instructions.
23438
23439 These extensions are also available as built-in functions: see
23440 @ref{x86 Built-in Functions}, for details of the functions enabled and
23441 disabled by these switches.
23442
23443 To generate SSE/SSE2 instructions automatically from floating-point
23444 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
23445
23446 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
23447 generates new AVX instructions or AVX equivalence for all SSEx instructions
23448 when needed.
23449
23450 These options enable GCC to use these extended instructions in
23451 generated code, even without @option{-mfpmath=sse}. Applications that
23452 perform run-time CPU detection must compile separate files for each
23453 supported architecture, using the appropriate flags. In particular,
23454 the file containing the CPU detection code should be compiled without
23455 these options.
23456
23457 @item -mdump-tune-features
23458 @opindex mdump-tune-features
23459 This option instructs GCC to dump the names of the x86 performance
23460 tuning features and default settings. The names can be used in
23461 @option{-mtune-ctrl=@var{feature-list}}.
23462
23463 @item -mtune-ctrl=@var{feature-list}
23464 @opindex mtune-ctrl=@var{feature-list}
23465 This option is used to do fine grain control of x86 code generation features.
23466 @var{feature-list} is a comma separated list of @var{feature} names. See also
23467 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
23468 on if it is not preceded with @samp{^}, otherwise, it is turned off.
23469 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
23470 developers. Using it may lead to code paths not covered by testing and can
23471 potentially result in compiler ICEs or runtime errors.
23472
23473 @item -mno-default
23474 @opindex mno-default
23475 This option instructs GCC to turn off all tunable features. See also
23476 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
23477
23478 @item -mcld
23479 @opindex mcld
23480 This option instructs GCC to emit a @code{cld} instruction in the prologue
23481 of functions that use string instructions. String instructions depend on
23482 the DF flag to select between autoincrement or autodecrement mode. While the
23483 ABI specifies the DF flag to be cleared on function entry, some operating
23484 systems violate this specification by not clearing the DF flag in their
23485 exception dispatchers. The exception handler can be invoked with the DF flag
23486 set, which leads to wrong direction mode when string instructions are used.
23487 This option can be enabled by default on 32-bit x86 targets by configuring
23488 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
23489 instructions can be suppressed with the @option{-mno-cld} compiler option
23490 in this case.
23491
23492 @item -mvzeroupper
23493 @opindex mvzeroupper
23494 This option instructs GCC to emit a @code{vzeroupper} instruction
23495 before a transfer of control flow out of the function to minimize
23496 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
23497 intrinsics.
23498
23499 @item -mprefer-avx128
23500 @opindex mprefer-avx128
23501 This option instructs GCC to use 128-bit AVX instructions instead of
23502 256-bit AVX instructions in the auto-vectorizer.
23503
23504 @item -mcx16
23505 @opindex mcx16
23506 This option enables GCC to generate @code{CMPXCHG16B} instructions.
23507 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
23508 (or oword) data types.
23509 This is useful for high-resolution counters that can be updated
23510 by multiple processors (or cores). This instruction is generated as part of
23511 atomic built-in functions: see @ref{__sync Builtins} or
23512 @ref{__atomic Builtins} for details.
23513
23514 @item -msahf
23515 @opindex msahf
23516 This option enables generation of @code{SAHF} instructions in 64-bit code.
23517 Early Intel Pentium 4 CPUs with Intel 64 support,
23518 prior to the introduction of Pentium 4 G1 step in December 2005,
23519 lacked the @code{LAHF} and @code{SAHF} instructions
23520 which are supported by AMD64.
23521 These are load and store instructions, respectively, for certain status flags.
23522 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
23523 @code{drem}, and @code{remainder} built-in functions;
23524 see @ref{Other Builtins} for details.
23525
23526 @item -mmovbe
23527 @opindex mmovbe
23528 This option enables use of the @code{movbe} instruction to implement
23529 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
23530
23531 @item -mcrc32
23532 @opindex mcrc32
23533 This option enables built-in functions @code{__builtin_ia32_crc32qi},
23534 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
23535 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
23536
23537 @item -mrecip
23538 @opindex mrecip
23539 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
23540 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
23541 with an additional Newton-Raphson step
23542 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
23543 (and their vectorized
23544 variants) for single-precision floating-point arguments. These instructions
23545 are generated only when @option{-funsafe-math-optimizations} is enabled
23546 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
23547 Note that while the throughput of the sequence is higher than the throughput
23548 of the non-reciprocal instruction, the precision of the sequence can be
23549 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
23550
23551 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
23552 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
23553 combination), and doesn't need @option{-mrecip}.
23554
23555 Also note that GCC emits the above sequence with additional Newton-Raphson step
23556 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
23557 already with @option{-ffast-math} (or the above option combination), and
23558 doesn't need @option{-mrecip}.
23559
23560 @item -mrecip=@var{opt}
23561 @opindex mrecip=opt
23562 This option controls which reciprocal estimate instructions
23563 may be used. @var{opt} is a comma-separated list of options, which may
23564 be preceded by a @samp{!} to invert the option:
23565
23566 @table @samp
23567 @item all
23568 Enable all estimate instructions.
23569
23570 @item default
23571 Enable the default instructions, equivalent to @option{-mrecip}.
23572
23573 @item none
23574 Disable all estimate instructions, equivalent to @option{-mno-recip}.
23575
23576 @item div
23577 Enable the approximation for scalar division.
23578
23579 @item vec-div
23580 Enable the approximation for vectorized division.
23581
23582 @item sqrt
23583 Enable the approximation for scalar square root.
23584
23585 @item vec-sqrt
23586 Enable the approximation for vectorized square root.
23587 @end table
23588
23589 So, for example, @option{-mrecip=all,!sqrt} enables
23590 all of the reciprocal approximations, except for square root.
23591
23592 @item -mveclibabi=@var{type}
23593 @opindex mveclibabi
23594 Specifies the ABI type to use for vectorizing intrinsics using an
23595 external library. Supported values for @var{type} are @samp{svml}
23596 for the Intel short
23597 vector math library and @samp{acml} for the AMD math core library.
23598 To use this option, both @option{-ftree-vectorize} and
23599 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
23600 ABI-compatible library must be specified at link time.
23601
23602 GCC currently emits calls to @code{vmldExp2},
23603 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
23604 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
23605 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
23606 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
23607 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
23608 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
23609 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
23610 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
23611 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
23612 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
23613 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
23614 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
23615 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
23616 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
23617 when @option{-mveclibabi=acml} is used.
23618
23619 @item -mabi=@var{name}
23620 @opindex mabi
23621 Generate code for the specified calling convention. Permissible values
23622 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
23623 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
23624 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
23625 You can control this behavior for specific functions by
23626 using the function attributes @code{ms_abi} and @code{sysv_abi}.
23627 @xref{Function Attributes}.
23628
23629 @item -mtls-dialect=@var{type}
23630 @opindex mtls-dialect
23631 Generate code to access thread-local storage using the @samp{gnu} or
23632 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
23633 @samp{gnu2} is more efficient, but it may add compile- and run-time
23634 requirements that cannot be satisfied on all systems.
23635
23636 @item -mpush-args
23637 @itemx -mno-push-args
23638 @opindex mpush-args
23639 @opindex mno-push-args
23640 Use PUSH operations to store outgoing parameters. This method is shorter
23641 and usually equally fast as method using SUB/MOV operations and is enabled
23642 by default. In some cases disabling it may improve performance because of
23643 improved scheduling and reduced dependencies.
23644
23645 @item -maccumulate-outgoing-args
23646 @opindex maccumulate-outgoing-args
23647 If enabled, the maximum amount of space required for outgoing arguments is
23648 computed in the function prologue. This is faster on most modern CPUs
23649 because of reduced dependencies, improved scheduling and reduced stack usage
23650 when the preferred stack boundary is not equal to 2. The drawback is a notable
23651 increase in code size. This switch implies @option{-mno-push-args}.
23652
23653 @item -mthreads
23654 @opindex mthreads
23655 Support thread-safe exception handling on MinGW. Programs that rely
23656 on thread-safe exception handling must compile and link all code with the
23657 @option{-mthreads} option. When compiling, @option{-mthreads} defines
23658 @option{-D_MT}; when linking, it links in a special thread helper library
23659 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
23660
23661 @item -mms-bitfields
23662 @itemx -mno-ms-bitfields
23663 @opindex mms-bitfields
23664 @opindex mno-ms-bitfields
23665
23666 Enable/disable bit-field layout compatible with the native Microsoft
23667 Windows compiler.
23668
23669 If @code{packed} is used on a structure, or if bit-fields are used,
23670 it may be that the Microsoft ABI lays out the structure differently
23671 than the way GCC normally does. Particularly when moving packed
23672 data between functions compiled with GCC and the native Microsoft compiler
23673 (either via function call or as data in a file), it may be necessary to access
23674 either format.
23675
23676 This option is enabled by default for Microsoft Windows
23677 targets. This behavior can also be controlled locally by use of variable
23678 or type attributes. For more information, see @ref{x86 Variable Attributes}
23679 and @ref{x86 Type Attributes}.
23680
23681 The Microsoft structure layout algorithm is fairly simple with the exception
23682 of the bit-field packing.
23683 The padding and alignment of members of structures and whether a bit-field
23684 can straddle a storage-unit boundary are determine by these rules:
23685
23686 @enumerate
23687 @item Structure members are stored sequentially in the order in which they are
23688 declared: the first member has the lowest memory address and the last member
23689 the highest.
23690
23691 @item Every data object has an alignment requirement. The alignment requirement
23692 for all data except structures, unions, and arrays is either the size of the
23693 object or the current packing size (specified with either the
23694 @code{aligned} attribute or the @code{pack} pragma),
23695 whichever is less. For structures, unions, and arrays,
23696 the alignment requirement is the largest alignment requirement of its members.
23697 Every object is allocated an offset so that:
23698
23699 @smallexample
23700 offset % alignment_requirement == 0
23701 @end smallexample
23702
23703 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
23704 unit if the integral types are the same size and if the next bit-field fits
23705 into the current allocation unit without crossing the boundary imposed by the
23706 common alignment requirements of the bit-fields.
23707 @end enumerate
23708
23709 MSVC interprets zero-length bit-fields in the following ways:
23710
23711 @enumerate
23712 @item If a zero-length bit-field is inserted between two bit-fields that
23713 are normally coalesced, the bit-fields are not coalesced.
23714
23715 For example:
23716
23717 @smallexample
23718 struct
23719 @{
23720 unsigned long bf_1 : 12;
23721 unsigned long : 0;
23722 unsigned long bf_2 : 12;
23723 @} t1;
23724 @end smallexample
23725
23726 @noindent
23727 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
23728 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
23729
23730 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
23731 alignment of the zero-length bit-field is greater than the member that follows it,
23732 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
23733
23734 For example:
23735
23736 @smallexample
23737 struct
23738 @{
23739 char foo : 4;
23740 short : 0;
23741 char bar;
23742 @} t2;
23743
23744 struct
23745 @{
23746 char foo : 4;
23747 short : 0;
23748 double bar;
23749 @} t3;
23750 @end smallexample
23751
23752 @noindent
23753 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
23754 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
23755 bit-field does not affect the alignment of @code{bar} or, as a result, the size
23756 of the structure.
23757
23758 Taking this into account, it is important to note the following:
23759
23760 @enumerate
23761 @item If a zero-length bit-field follows a normal bit-field, the type of the
23762 zero-length bit-field may affect the alignment of the structure as whole. For
23763 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
23764 normal bit-field, and is of type short.
23765
23766 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
23767 still affect the alignment of the structure:
23768
23769 @smallexample
23770 struct
23771 @{
23772 char foo : 6;
23773 long : 0;
23774 @} t4;
23775 @end smallexample
23776
23777 @noindent
23778 Here, @code{t4} takes up 4 bytes.
23779 @end enumerate
23780
23781 @item Zero-length bit-fields following non-bit-field members are ignored:
23782
23783 @smallexample
23784 struct
23785 @{
23786 char foo;
23787 long : 0;
23788 char bar;
23789 @} t5;
23790 @end smallexample
23791
23792 @noindent
23793 Here, @code{t5} takes up 2 bytes.
23794 @end enumerate
23795
23796
23797 @item -mno-align-stringops
23798 @opindex mno-align-stringops
23799 Do not align the destination of inlined string operations. This switch reduces
23800 code size and improves performance in case the destination is already aligned,
23801 but GCC doesn't know about it.
23802
23803 @item -minline-all-stringops
23804 @opindex minline-all-stringops
23805 By default GCC inlines string operations only when the destination is
23806 known to be aligned to least a 4-byte boundary.
23807 This enables more inlining and increases code
23808 size, but may improve performance of code that depends on fast
23809 @code{memcpy}, @code{strlen},
23810 and @code{memset} for short lengths.
23811
23812 @item -minline-stringops-dynamically
23813 @opindex minline-stringops-dynamically
23814 For string operations of unknown size, use run-time checks with
23815 inline code for small blocks and a library call for large blocks.
23816
23817 @item -mstringop-strategy=@var{alg}
23818 @opindex mstringop-strategy=@var{alg}
23819 Override the internal decision heuristic for the particular algorithm to use
23820 for inlining string operations. The allowed values for @var{alg} are:
23821
23822 @table @samp
23823 @item rep_byte
23824 @itemx rep_4byte
23825 @itemx rep_8byte
23826 Expand using i386 @code{rep} prefix of the specified size.
23827
23828 @item byte_loop
23829 @itemx loop
23830 @itemx unrolled_loop
23831 Expand into an inline loop.
23832
23833 @item libcall
23834 Always use a library call.
23835 @end table
23836
23837 @item -mmemcpy-strategy=@var{strategy}
23838 @opindex mmemcpy-strategy=@var{strategy}
23839 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
23840 should be inlined and what inline algorithm to use when the expected size
23841 of the copy operation is known. @var{strategy}
23842 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
23843 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
23844 the max byte size with which inline algorithm @var{alg} is allowed. For the last
23845 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
23846 in the list must be specified in increasing order. The minimal byte size for
23847 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
23848 preceding range.
23849
23850 @item -mmemset-strategy=@var{strategy}
23851 @opindex mmemset-strategy=@var{strategy}
23852 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
23853 @code{__builtin_memset} expansion.
23854
23855 @item -momit-leaf-frame-pointer
23856 @opindex momit-leaf-frame-pointer
23857 Don't keep the frame pointer in a register for leaf functions. This
23858 avoids the instructions to save, set up, and restore frame pointers and
23859 makes an extra register available in leaf functions. The option
23860 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
23861 which might make debugging harder.
23862
23863 @item -mtls-direct-seg-refs
23864 @itemx -mno-tls-direct-seg-refs
23865 @opindex mtls-direct-seg-refs
23866 Controls whether TLS variables may be accessed with offsets from the
23867 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
23868 or whether the thread base pointer must be added. Whether or not this
23869 is valid depends on the operating system, and whether it maps the
23870 segment to cover the entire TLS area.
23871
23872 For systems that use the GNU C Library, the default is on.
23873
23874 @item -msse2avx
23875 @itemx -mno-sse2avx
23876 @opindex msse2avx
23877 Specify that the assembler should encode SSE instructions with VEX
23878 prefix. The option @option{-mavx} turns this on by default.
23879
23880 @item -mfentry
23881 @itemx -mno-fentry
23882 @opindex mfentry
23883 If profiling is active (@option{-pg}), put the profiling
23884 counter call before the prologue.
23885 Note: On x86 architectures the attribute @code{ms_hook_prologue}
23886 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
23887
23888 @item -mrecord-mcount
23889 @itemx -mno-record-mcount
23890 @opindex mrecord-mcount
23891 If profiling is active (@option{-pg}), generate a __mcount_loc section
23892 that contains pointers to each profiling call. This is useful for
23893 automatically patching and out calls.
23894
23895 @item -mnop-mcount
23896 @itemx -mno-nop-mcount
23897 @opindex mnop-mcount
23898 If profiling is active (@option{-pg}), generate the calls to
23899 the profiling functions as nops. This is useful when they
23900 should be patched in later dynamically. This is likely only
23901 useful together with @option{-mrecord-mcount}.
23902
23903 @item -mskip-rax-setup
23904 @itemx -mno-skip-rax-setup
23905 @opindex mskip-rax-setup
23906 When generating code for the x86-64 architecture with SSE extensions
23907 disabled, @option{-skip-rax-setup} can be used to skip setting up RAX
23908 register when there are no variable arguments passed in vector registers.
23909
23910 @strong{Warning:} Since RAX register is used to avoid unnecessarily
23911 saving vector registers on stack when passing variable arguments, the
23912 impacts of this option are callees may waste some stack space,
23913 misbehave or jump to a random location. GCC 4.4 or newer don't have
23914 those issues, regardless the RAX register value.
23915
23916 @item -m8bit-idiv
23917 @itemx -mno-8bit-idiv
23918 @opindex m8bit-idiv
23919 On some processors, like Intel Atom, 8-bit unsigned integer divide is
23920 much faster than 32-bit/64-bit integer divide. This option generates a
23921 run-time check. If both dividend and divisor are within range of 0
23922 to 255, 8-bit unsigned integer divide is used instead of
23923 32-bit/64-bit integer divide.
23924
23925 @item -mavx256-split-unaligned-load
23926 @itemx -mavx256-split-unaligned-store
23927 @opindex mavx256-split-unaligned-load
23928 @opindex mavx256-split-unaligned-store
23929 Split 32-byte AVX unaligned load and store.
23930
23931 @item -mstack-protector-guard=@var{guard}
23932 @opindex mstack-protector-guard=@var{guard}
23933 Generate stack protection code using canary at @var{guard}. Supported
23934 locations are @samp{global} for global canary or @samp{tls} for per-thread
23935 canary in the TLS block (the default). This option has effect only when
23936 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23937
23938 @item -mmitigate-rop
23939 @opindex mmitigate-rop
23940 Try to avoid generating code sequences that contain unintended return
23941 opcodes, to mitigate against certain forms of attack. At the moment,
23942 this option is limited in what it can do and should not be relied
23943 on to provide serious protection.
23944
23945 @end table
23946
23947 These @samp{-m} switches are supported in addition to the above
23948 on x86-64 processors in 64-bit environments.
23949
23950 @table @gcctabopt
23951 @item -m32
23952 @itemx -m64
23953 @itemx -mx32
23954 @itemx -m16
23955 @itemx -miamcu
23956 @opindex m32
23957 @opindex m64
23958 @opindex mx32
23959 @opindex m16
23960 @opindex miamcu
23961 Generate code for a 16-bit, 32-bit or 64-bit environment.
23962 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23963 to 32 bits, and
23964 generates code that runs on any i386 system.
23965
23966 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23967 types to 64 bits, and generates code for the x86-64 architecture.
23968 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23969 and @option{-mdynamic-no-pic} options.
23970
23971 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23972 to 32 bits, and
23973 generates code for the x86-64 architecture.
23974
23975 The @option{-m16} option is the same as @option{-m32}, except for that
23976 it outputs the @code{.code16gcc} assembly directive at the beginning of
23977 the assembly output so that the binary can run in 16-bit mode.
23978
23979 The @option{-miamcu} option generates code which conforms to Intel MCU
23980 psABI. It requires the @option{-m32} option to be turned on.
23981
23982 @item -mno-red-zone
23983 @opindex mno-red-zone
23984 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
23985 by the x86-64 ABI; it is a 128-byte area beyond the location of the
23986 stack pointer that is not modified by signal or interrupt handlers
23987 and therefore can be used for temporary data without adjusting the stack
23988 pointer. The flag @option{-mno-red-zone} disables this red zone.
23989
23990 @item -mcmodel=small
23991 @opindex mcmodel=small
23992 Generate code for the small code model: the program and its symbols must
23993 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
23994 Programs can be statically or dynamically linked. This is the default
23995 code model.
23996
23997 @item -mcmodel=kernel
23998 @opindex mcmodel=kernel
23999 Generate code for the kernel code model. The kernel runs in the
24000 negative 2 GB of the address space.
24001 This model has to be used for Linux kernel code.
24002
24003 @item -mcmodel=medium
24004 @opindex mcmodel=medium
24005 Generate code for the medium model: the program is linked in the lower 2
24006 GB of the address space. Small symbols are also placed there. Symbols
24007 with sizes larger than @option{-mlarge-data-threshold} are put into
24008 large data or BSS sections and can be located above 2GB. Programs can
24009 be statically or dynamically linked.
24010
24011 @item -mcmodel=large
24012 @opindex mcmodel=large
24013 Generate code for the large model. This model makes no assumptions
24014 about addresses and sizes of sections.
24015
24016 @item -maddress-mode=long
24017 @opindex maddress-mode=long
24018 Generate code for long address mode. This is only supported for 64-bit
24019 and x32 environments. It is the default address mode for 64-bit
24020 environments.
24021
24022 @item -maddress-mode=short
24023 @opindex maddress-mode=short
24024 Generate code for short address mode. This is only supported for 32-bit
24025 and x32 environments. It is the default address mode for 32-bit and
24026 x32 environments.
24027 @end table
24028
24029 @node x86 Windows Options
24030 @subsection x86 Windows Options
24031 @cindex x86 Windows Options
24032 @cindex Windows Options for x86
24033
24034 These additional options are available for Microsoft Windows targets:
24035
24036 @table @gcctabopt
24037 @item -mconsole
24038 @opindex mconsole
24039 This option
24040 specifies that a console application is to be generated, by
24041 instructing the linker to set the PE header subsystem type
24042 required for console applications.
24043 This option is available for Cygwin and MinGW targets and is
24044 enabled by default on those targets.
24045
24046 @item -mdll
24047 @opindex mdll
24048 This option is available for Cygwin and MinGW targets. It
24049 specifies that a DLL---a dynamic link library---is to be
24050 generated, enabling the selection of the required runtime
24051 startup object and entry point.
24052
24053 @item -mnop-fun-dllimport
24054 @opindex mnop-fun-dllimport
24055 This option is available for Cygwin and MinGW targets. It
24056 specifies that the @code{dllimport} attribute should be ignored.
24057
24058 @item -mthread
24059 @opindex mthread
24060 This option is available for MinGW targets. It specifies
24061 that MinGW-specific thread support is to be used.
24062
24063 @item -municode
24064 @opindex municode
24065 This option is available for MinGW-w64 targets. It causes
24066 the @code{UNICODE} preprocessor macro to be predefined, and
24067 chooses Unicode-capable runtime startup code.
24068
24069 @item -mwin32
24070 @opindex mwin32
24071 This option is available for Cygwin and MinGW targets. It
24072 specifies that the typical Microsoft Windows predefined macros are to
24073 be set in the pre-processor, but does not influence the choice
24074 of runtime library/startup code.
24075
24076 @item -mwindows
24077 @opindex mwindows
24078 This option is available for Cygwin and MinGW targets. It
24079 specifies that a GUI application is to be generated by
24080 instructing the linker to set the PE header subsystem type
24081 appropriately.
24082
24083 @item -fno-set-stack-executable
24084 @opindex fno-set-stack-executable
24085 This option is available for MinGW targets. It specifies that
24086 the executable flag for the stack used by nested functions isn't
24087 set. This is necessary for binaries running in kernel mode of
24088 Microsoft Windows, as there the User32 API, which is used to set executable
24089 privileges, isn't available.
24090
24091 @item -fwritable-relocated-rdata
24092 @opindex fno-writable-relocated-rdata
24093 This option is available for MinGW and Cygwin targets. It specifies
24094 that relocated-data in read-only section is put into .data
24095 section. This is a necessary for older runtimes not supporting
24096 modification of .rdata sections for pseudo-relocation.
24097
24098 @item -mpe-aligned-commons
24099 @opindex mpe-aligned-commons
24100 This option is available for Cygwin and MinGW targets. It
24101 specifies that the GNU extension to the PE file format that
24102 permits the correct alignment of COMMON variables should be
24103 used when generating code. It is enabled by default if
24104 GCC detects that the target assembler found during configuration
24105 supports the feature.
24106 @end table
24107
24108 See also under @ref{x86 Options} for standard options.
24109
24110 @node Xstormy16 Options
24111 @subsection Xstormy16 Options
24112 @cindex Xstormy16 Options
24113
24114 These options are defined for Xstormy16:
24115
24116 @table @gcctabopt
24117 @item -msim
24118 @opindex msim
24119 Choose startup files and linker script suitable for the simulator.
24120 @end table
24121
24122 @node Xtensa Options
24123 @subsection Xtensa Options
24124 @cindex Xtensa Options
24125
24126 These options are supported for Xtensa targets:
24127
24128 @table @gcctabopt
24129 @item -mconst16
24130 @itemx -mno-const16
24131 @opindex mconst16
24132 @opindex mno-const16
24133 Enable or disable use of @code{CONST16} instructions for loading
24134 constant values. The @code{CONST16} instruction is currently not a
24135 standard option from Tensilica. When enabled, @code{CONST16}
24136 instructions are always used in place of the standard @code{L32R}
24137 instructions. The use of @code{CONST16} is enabled by default only if
24138 the @code{L32R} instruction is not available.
24139
24140 @item -mfused-madd
24141 @itemx -mno-fused-madd
24142 @opindex mfused-madd
24143 @opindex mno-fused-madd
24144 Enable or disable use of fused multiply/add and multiply/subtract
24145 instructions in the floating-point option. This has no effect if the
24146 floating-point option is not also enabled. Disabling fused multiply/add
24147 and multiply/subtract instructions forces the compiler to use separate
24148 instructions for the multiply and add/subtract operations. This may be
24149 desirable in some cases where strict IEEE 754-compliant results are
24150 required: the fused multiply add/subtract instructions do not round the
24151 intermediate result, thereby producing results with @emph{more} bits of
24152 precision than specified by the IEEE standard. Disabling fused multiply
24153 add/subtract instructions also ensures that the program output is not
24154 sensitive to the compiler's ability to combine multiply and add/subtract
24155 operations.
24156
24157 @item -mserialize-volatile
24158 @itemx -mno-serialize-volatile
24159 @opindex mserialize-volatile
24160 @opindex mno-serialize-volatile
24161 When this option is enabled, GCC inserts @code{MEMW} instructions before
24162 @code{volatile} memory references to guarantee sequential consistency.
24163 The default is @option{-mserialize-volatile}. Use
24164 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
24165
24166 @item -mforce-no-pic
24167 @opindex mforce-no-pic
24168 For targets, like GNU/Linux, where all user-mode Xtensa code must be
24169 position-independent code (PIC), this option disables PIC for compiling
24170 kernel code.
24171
24172 @item -mtext-section-literals
24173 @itemx -mno-text-section-literals
24174 @opindex mtext-section-literals
24175 @opindex mno-text-section-literals
24176 These options control the treatment of literal pools. The default is
24177 @option{-mno-text-section-literals}, which places literals in a separate
24178 section in the output file. This allows the literal pool to be placed
24179 in a data RAM/ROM, and it also allows the linker to combine literal
24180 pools from separate object files to remove redundant literals and
24181 improve code size. With @option{-mtext-section-literals}, the literals
24182 are interspersed in the text section in order to keep them as close as
24183 possible to their references. This may be necessary for large assembly
24184 files. Literals for each function are placed right before that function.
24185
24186 @item -mauto-litpools
24187 @itemx -mno-auto-litpools
24188 @opindex mauto-litpools
24189 @opindex mno-auto-litpools
24190 These options control the treatment of literal pools. The default is
24191 @option{-mno-auto-litpools}, which places literals in a separate
24192 section in the output file unless @option{-mtext-section-literals} is
24193 used. With @option{-mauto-litpools} the literals are interspersed in
24194 the text section by the assembler. Compiler does not produce explicit
24195 @code{.literal} directives and loads literals into registers with
24196 @code{MOVI} instructions instead of @code{L32R} to let the assembler
24197 do relaxation and place literals as necessary. This option allows
24198 assembler to create several literal pools per function and assemble
24199 very big functions, which may not be possible with
24200 @option{-mtext-section-literals}.
24201
24202 @item -mtarget-align
24203 @itemx -mno-target-align
24204 @opindex mtarget-align
24205 @opindex mno-target-align
24206 When this option is enabled, GCC instructs the assembler to
24207 automatically align instructions to reduce branch penalties at the
24208 expense of some code density. The assembler attempts to widen density
24209 instructions to align branch targets and the instructions following call
24210 instructions. If there are not enough preceding safe density
24211 instructions to align a target, no widening is performed. The
24212 default is @option{-mtarget-align}. These options do not affect the
24213 treatment of auto-aligned instructions like @code{LOOP}, which the
24214 assembler always aligns, either by widening density instructions or
24215 by inserting NOP instructions.
24216
24217 @item -mlongcalls
24218 @itemx -mno-longcalls
24219 @opindex mlongcalls
24220 @opindex mno-longcalls
24221 When this option is enabled, GCC instructs the assembler to translate
24222 direct calls to indirect calls unless it can determine that the target
24223 of a direct call is in the range allowed by the call instruction. This
24224 translation typically occurs for calls to functions in other source
24225 files. Specifically, the assembler translates a direct @code{CALL}
24226 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
24227 The default is @option{-mno-longcalls}. This option should be used in
24228 programs where the call target can potentially be out of range. This
24229 option is implemented in the assembler, not the compiler, so the
24230 assembly code generated by GCC still shows direct call
24231 instructions---look at the disassembled object code to see the actual
24232 instructions. Note that the assembler uses an indirect call for
24233 every cross-file call, not just those that really are out of range.
24234 @end table
24235
24236 @node zSeries Options
24237 @subsection zSeries Options
24238 @cindex zSeries options
24239
24240 These are listed under @xref{S/390 and zSeries Options}.
24241
24242
24243 @c man end
24244
24245 @node Spec Files
24246 @section Specifying Subprocesses and the Switches to Pass to Them
24247 @cindex Spec Files
24248
24249 @command{gcc} is a driver program. It performs its job by invoking a
24250 sequence of other programs to do the work of compiling, assembling and
24251 linking. GCC interprets its command-line parameters and uses these to
24252 deduce which programs it should invoke, and which command-line options
24253 it ought to place on their command lines. This behavior is controlled
24254 by @dfn{spec strings}. In most cases there is one spec string for each
24255 program that GCC can invoke, but a few programs have multiple spec
24256 strings to control their behavior. The spec strings built into GCC can
24257 be overridden by using the @option{-specs=} command-line switch to specify
24258 a spec file.
24259
24260 @dfn{Spec files} are plaintext files that are used to construct spec
24261 strings. They consist of a sequence of directives separated by blank
24262 lines. The type of directive is determined by the first non-whitespace
24263 character on the line, which can be one of the following:
24264
24265 @table @code
24266 @item %@var{command}
24267 Issues a @var{command} to the spec file processor. The commands that can
24268 appear here are:
24269
24270 @table @code
24271 @item %include <@var{file}>
24272 @cindex @code{%include}
24273 Search for @var{file} and insert its text at the current point in the
24274 specs file.
24275
24276 @item %include_noerr <@var{file}>
24277 @cindex @code{%include_noerr}
24278 Just like @samp{%include}, but do not generate an error message if the include
24279 file cannot be found.
24280
24281 @item %rename @var{old_name} @var{new_name}
24282 @cindex @code{%rename}
24283 Rename the spec string @var{old_name} to @var{new_name}.
24284
24285 @end table
24286
24287 @item *[@var{spec_name}]:
24288 This tells the compiler to create, override or delete the named spec
24289 string. All lines after this directive up to the next directive or
24290 blank line are considered to be the text for the spec string. If this
24291 results in an empty string then the spec is deleted. (Or, if the
24292 spec did not exist, then nothing happens.) Otherwise, if the spec
24293 does not currently exist a new spec is created. If the spec does
24294 exist then its contents are overridden by the text of this
24295 directive, unless the first character of that text is the @samp{+}
24296 character, in which case the text is appended to the spec.
24297
24298 @item [@var{suffix}]:
24299 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
24300 and up to the next directive or blank line are considered to make up the
24301 spec string for the indicated suffix. When the compiler encounters an
24302 input file with the named suffix, it processes the spec string in
24303 order to work out how to compile that file. For example:
24304
24305 @smallexample
24306 .ZZ:
24307 z-compile -input %i
24308 @end smallexample
24309
24310 This says that any input file whose name ends in @samp{.ZZ} should be
24311 passed to the program @samp{z-compile}, which should be invoked with the
24312 command-line switch @option{-input} and with the result of performing the
24313 @samp{%i} substitution. (See below.)
24314
24315 As an alternative to providing a spec string, the text following a
24316 suffix directive can be one of the following:
24317
24318 @table @code
24319 @item @@@var{language}
24320 This says that the suffix is an alias for a known @var{language}. This is
24321 similar to using the @option{-x} command-line switch to GCC to specify a
24322 language explicitly. For example:
24323
24324 @smallexample
24325 .ZZ:
24326 @@c++
24327 @end smallexample
24328
24329 Says that .ZZ files are, in fact, C++ source files.
24330
24331 @item #@var{name}
24332 This causes an error messages saying:
24333
24334 @smallexample
24335 @var{name} compiler not installed on this system.
24336 @end smallexample
24337 @end table
24338
24339 GCC already has an extensive list of suffixes built into it.
24340 This directive adds an entry to the end of the list of suffixes, but
24341 since the list is searched from the end backwards, it is effectively
24342 possible to override earlier entries using this technique.
24343
24344 @end table
24345
24346 GCC has the following spec strings built into it. Spec files can
24347 override these strings or create their own. Note that individual
24348 targets can also add their own spec strings to this list.
24349
24350 @smallexample
24351 asm Options to pass to the assembler
24352 asm_final Options to pass to the assembler post-processor
24353 cpp Options to pass to the C preprocessor
24354 cc1 Options to pass to the C compiler
24355 cc1plus Options to pass to the C++ compiler
24356 endfile Object files to include at the end of the link
24357 link Options to pass to the linker
24358 lib Libraries to include on the command line to the linker
24359 libgcc Decides which GCC support library to pass to the linker
24360 linker Sets the name of the linker
24361 predefines Defines to be passed to the C preprocessor
24362 signed_char Defines to pass to CPP to say whether @code{char} is signed
24363 by default
24364 startfile Object files to include at the start of the link
24365 @end smallexample
24366
24367 Here is a small example of a spec file:
24368
24369 @smallexample
24370 %rename lib old_lib
24371
24372 *lib:
24373 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
24374 @end smallexample
24375
24376 This example renames the spec called @samp{lib} to @samp{old_lib} and
24377 then overrides the previous definition of @samp{lib} with a new one.
24378 The new definition adds in some extra command-line options before
24379 including the text of the old definition.
24380
24381 @dfn{Spec strings} are a list of command-line options to be passed to their
24382 corresponding program. In addition, the spec strings can contain
24383 @samp{%}-prefixed sequences to substitute variable text or to
24384 conditionally insert text into the command line. Using these constructs
24385 it is possible to generate quite complex command lines.
24386
24387 Here is a table of all defined @samp{%}-sequences for spec
24388 strings. Note that spaces are not generated automatically around the
24389 results of expanding these sequences. Therefore you can concatenate them
24390 together or combine them with constant text in a single argument.
24391
24392 @table @code
24393 @item %%
24394 Substitute one @samp{%} into the program name or argument.
24395
24396 @item %i
24397 Substitute the name of the input file being processed.
24398
24399 @item %b
24400 Substitute the basename of the input file being processed.
24401 This is the substring up to (and not including) the last period
24402 and not including the directory.
24403
24404 @item %B
24405 This is the same as @samp{%b}, but include the file suffix (text after
24406 the last period).
24407
24408 @item %d
24409 Marks the argument containing or following the @samp{%d} as a
24410 temporary file name, so that that file is deleted if GCC exits
24411 successfully. Unlike @samp{%g}, this contributes no text to the
24412 argument.
24413
24414 @item %g@var{suffix}
24415 Substitute a file name that has suffix @var{suffix} and is chosen
24416 once per compilation, and mark the argument in the same way as
24417 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
24418 name is now chosen in a way that is hard to predict even when previously
24419 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
24420 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
24421 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
24422 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
24423 was simply substituted with a file name chosen once per compilation,
24424 without regard to any appended suffix (which was therefore treated
24425 just like ordinary text), making such attacks more likely to succeed.
24426
24427 @item %u@var{suffix}
24428 Like @samp{%g}, but generates a new temporary file name
24429 each time it appears instead of once per compilation.
24430
24431 @item %U@var{suffix}
24432 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
24433 new one if there is no such last file name. In the absence of any
24434 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
24435 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
24436 involves the generation of two distinct file names, one
24437 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
24438 simply substituted with a file name chosen for the previous @samp{%u},
24439 without regard to any appended suffix.
24440
24441 @item %j@var{suffix}
24442 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
24443 writable, and if @option{-save-temps} is not used;
24444 otherwise, substitute the name
24445 of a temporary file, just like @samp{%u}. This temporary file is not
24446 meant for communication between processes, but rather as a junk
24447 disposal mechanism.
24448
24449 @item %|@var{suffix}
24450 @itemx %m@var{suffix}
24451 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
24452 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
24453 all. These are the two most common ways to instruct a program that it
24454 should read from standard input or write to standard output. If you
24455 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
24456 construct: see for example @file{f/lang-specs.h}.
24457
24458 @item %.@var{SUFFIX}
24459 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
24460 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
24461 terminated by the next space or %.
24462
24463 @item %w
24464 Marks the argument containing or following the @samp{%w} as the
24465 designated output file of this compilation. This puts the argument
24466 into the sequence of arguments that @samp{%o} substitutes.
24467
24468 @item %o
24469 Substitutes the names of all the output files, with spaces
24470 automatically placed around them. You should write spaces
24471 around the @samp{%o} as well or the results are undefined.
24472 @samp{%o} is for use in the specs for running the linker.
24473 Input files whose names have no recognized suffix are not compiled
24474 at all, but they are included among the output files, so they are
24475 linked.
24476
24477 @item %O
24478 Substitutes the suffix for object files. Note that this is
24479 handled specially when it immediately follows @samp{%g, %u, or %U},
24480 because of the need for those to form complete file names. The
24481 handling is such that @samp{%O} is treated exactly as if it had already
24482 been substituted, except that @samp{%g, %u, and %U} do not currently
24483 support additional @var{suffix} characters following @samp{%O} as they do
24484 following, for example, @samp{.o}.
24485
24486 @item %p
24487 Substitutes the standard macro predefinitions for the
24488 current target machine. Use this when running @command{cpp}.
24489
24490 @item %P
24491 Like @samp{%p}, but puts @samp{__} before and after the name of each
24492 predefined macro, except for macros that start with @samp{__} or with
24493 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
24494 C@.
24495
24496 @item %I
24497 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
24498 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
24499 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
24500 and @option{-imultilib} as necessary.
24501
24502 @item %s
24503 Current argument is the name of a library or startup file of some sort.
24504 Search for that file in a standard list of directories and substitute
24505 the full name found. The current working directory is included in the
24506 list of directories scanned.
24507
24508 @item %T
24509 Current argument is the name of a linker script. Search for that file
24510 in the current list of directories to scan for libraries. If the file
24511 is located insert a @option{--script} option into the command line
24512 followed by the full path name found. If the file is not found then
24513 generate an error message. Note: the current working directory is not
24514 searched.
24515
24516 @item %e@var{str}
24517 Print @var{str} as an error message. @var{str} is terminated by a newline.
24518 Use this when inconsistent options are detected.
24519
24520 @item %(@var{name})
24521 Substitute the contents of spec string @var{name} at this point.
24522
24523 @item %x@{@var{option}@}
24524 Accumulate an option for @samp{%X}.
24525
24526 @item %X
24527 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
24528 spec string.
24529
24530 @item %Y
24531 Output the accumulated assembler options specified by @option{-Wa}.
24532
24533 @item %Z
24534 Output the accumulated preprocessor options specified by @option{-Wp}.
24535
24536 @item %a
24537 Process the @code{asm} spec. This is used to compute the
24538 switches to be passed to the assembler.
24539
24540 @item %A
24541 Process the @code{asm_final} spec. This is a spec string for
24542 passing switches to an assembler post-processor, if such a program is
24543 needed.
24544
24545 @item %l
24546 Process the @code{link} spec. This is the spec for computing the
24547 command line passed to the linker. Typically it makes use of the
24548 @samp{%L %G %S %D and %E} sequences.
24549
24550 @item %D
24551 Dump out a @option{-L} option for each directory that GCC believes might
24552 contain startup files. If the target supports multilibs then the
24553 current multilib directory is prepended to each of these paths.
24554
24555 @item %L
24556 Process the @code{lib} spec. This is a spec string for deciding which
24557 libraries are included on the command line to the linker.
24558
24559 @item %G
24560 Process the @code{libgcc} spec. This is a spec string for deciding
24561 which GCC support library is included on the command line to the linker.
24562
24563 @item %S
24564 Process the @code{startfile} spec. This is a spec for deciding which
24565 object files are the first ones passed to the linker. Typically
24566 this might be a file named @file{crt0.o}.
24567
24568 @item %E
24569 Process the @code{endfile} spec. This is a spec string that specifies
24570 the last object files that are passed to the linker.
24571
24572 @item %C
24573 Process the @code{cpp} spec. This is used to construct the arguments
24574 to be passed to the C preprocessor.
24575
24576 @item %1
24577 Process the @code{cc1} spec. This is used to construct the options to be
24578 passed to the actual C compiler (@command{cc1}).
24579
24580 @item %2
24581 Process the @code{cc1plus} spec. This is used to construct the options to be
24582 passed to the actual C++ compiler (@command{cc1plus}).
24583
24584 @item %*
24585 Substitute the variable part of a matched option. See below.
24586 Note that each comma in the substituted string is replaced by
24587 a single space.
24588
24589 @item %<@code{S}
24590 Remove all occurrences of @code{-S} from the command line. Note---this
24591 command is position dependent. @samp{%} commands in the spec string
24592 before this one see @code{-S}, @samp{%} commands in the spec string
24593 after this one do not.
24594
24595 @item %:@var{function}(@var{args})
24596 Call the named function @var{function}, passing it @var{args}.
24597 @var{args} is first processed as a nested spec string, then split
24598 into an argument vector in the usual fashion. The function returns
24599 a string which is processed as if it had appeared literally as part
24600 of the current spec.
24601
24602 The following built-in spec functions are provided:
24603
24604 @table @code
24605 @item @code{getenv}
24606 The @code{getenv} spec function takes two arguments: an environment
24607 variable name and a string. If the environment variable is not
24608 defined, a fatal error is issued. Otherwise, the return value is the
24609 value of the environment variable concatenated with the string. For
24610 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
24611
24612 @smallexample
24613 %:getenv(TOPDIR /include)
24614 @end smallexample
24615
24616 expands to @file{/path/to/top/include}.
24617
24618 @item @code{if-exists}
24619 The @code{if-exists} spec function takes one argument, an absolute
24620 pathname to a file. If the file exists, @code{if-exists} returns the
24621 pathname. Here is a small example of its usage:
24622
24623 @smallexample
24624 *startfile:
24625 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
24626 @end smallexample
24627
24628 @item @code{if-exists-else}
24629 The @code{if-exists-else} spec function is similar to the @code{if-exists}
24630 spec function, except that it takes two arguments. The first argument is
24631 an absolute pathname to a file. If the file exists, @code{if-exists-else}
24632 returns the pathname. If it does not exist, it returns the second argument.
24633 This way, @code{if-exists-else} can be used to select one file or another,
24634 based on the existence of the first. Here is a small example of its usage:
24635
24636 @smallexample
24637 *startfile:
24638 crt0%O%s %:if-exists(crti%O%s) \
24639 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
24640 @end smallexample
24641
24642 @item @code{replace-outfile}
24643 The @code{replace-outfile} spec function takes two arguments. It looks for the
24644 first argument in the outfiles array and replaces it with the second argument. Here
24645 is a small example of its usage:
24646
24647 @smallexample
24648 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
24649 @end smallexample
24650
24651 @item @code{remove-outfile}
24652 The @code{remove-outfile} spec function takes one argument. It looks for the
24653 first argument in the outfiles array and removes it. Here is a small example
24654 its usage:
24655
24656 @smallexample
24657 %:remove-outfile(-lm)
24658 @end smallexample
24659
24660 @item @code{pass-through-libs}
24661 The @code{pass-through-libs} spec function takes any number of arguments. It
24662 finds any @option{-l} options and any non-options ending in @file{.a} (which it
24663 assumes are the names of linker input library archive files) and returns a
24664 result containing all the found arguments each prepended by
24665 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
24666 intended to be passed to the LTO linker plugin.
24667
24668 @smallexample
24669 %:pass-through-libs(%G %L %G)
24670 @end smallexample
24671
24672 @item @code{print-asm-header}
24673 The @code{print-asm-header} function takes no arguments and simply
24674 prints a banner like:
24675
24676 @smallexample
24677 Assembler options
24678 =================
24679
24680 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
24681 @end smallexample
24682
24683 It is used to separate compiler options from assembler options
24684 in the @option{--target-help} output.
24685 @end table
24686
24687 @item %@{@code{S}@}
24688 Substitutes the @code{-S} switch, if that switch is given to GCC@.
24689 If that switch is not specified, this substitutes nothing. Note that
24690 the leading dash is omitted when specifying this option, and it is
24691 automatically inserted if the substitution is performed. Thus the spec
24692 string @samp{%@{foo@}} matches the command-line option @option{-foo}
24693 and outputs the command-line option @option{-foo}.
24694
24695 @item %W@{@code{S}@}
24696 Like %@{@code{S}@} but mark last argument supplied within as a file to be
24697 deleted on failure.
24698
24699 @item %@{@code{S}*@}
24700 Substitutes all the switches specified to GCC whose names start
24701 with @code{-S}, but which also take an argument. This is used for
24702 switches like @option{-o}, @option{-D}, @option{-I}, etc.
24703 GCC considers @option{-o foo} as being
24704 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
24705 text, including the space. Thus two arguments are generated.
24706
24707 @item %@{@code{S}*&@code{T}*@}
24708 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
24709 (the order of @code{S} and @code{T} in the spec is not significant).
24710 There can be any number of ampersand-separated variables; for each the
24711 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
24712
24713 @item %@{@code{S}:@code{X}@}
24714 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
24715
24716 @item %@{!@code{S}:@code{X}@}
24717 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
24718
24719 @item %@{@code{S}*:@code{X}@}
24720 Substitutes @code{X} if one or more switches whose names start with
24721 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
24722 once, no matter how many such switches appeared. However, if @code{%*}
24723 appears somewhere in @code{X}, then @code{X} is substituted once
24724 for each matching switch, with the @code{%*} replaced by the part of
24725 that switch matching the @code{*}.
24726
24727 If @code{%*} appears as the last part of a spec sequence then a space
24728 is added after the end of the last substitution. If there is more
24729 text in the sequence, however, then a space is not generated. This
24730 allows the @code{%*} substitution to be used as part of a larger
24731 string. For example, a spec string like this:
24732
24733 @smallexample
24734 %@{mcu=*:--script=%*/memory.ld@}
24735 @end smallexample
24736
24737 @noindent
24738 when matching an option like @option{-mcu=newchip} produces:
24739
24740 @smallexample
24741 --script=newchip/memory.ld
24742 @end smallexample
24743
24744 @item %@{.@code{S}:@code{X}@}
24745 Substitutes @code{X}, if processing a file with suffix @code{S}.
24746
24747 @item %@{!.@code{S}:@code{X}@}
24748 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
24749
24750 @item %@{,@code{S}:@code{X}@}
24751 Substitutes @code{X}, if processing a file for language @code{S}.
24752
24753 @item %@{!,@code{S}:@code{X}@}
24754 Substitutes @code{X}, if not processing a file for language @code{S}.
24755
24756 @item %@{@code{S}|@code{P}:@code{X}@}
24757 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
24758 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
24759 @code{*} sequences as well, although they have a stronger binding than
24760 the @samp{|}. If @code{%*} appears in @code{X}, all of the
24761 alternatives must be starred, and only the first matching alternative
24762 is substituted.
24763
24764 For example, a spec string like this:
24765
24766 @smallexample
24767 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
24768 @end smallexample
24769
24770 @noindent
24771 outputs the following command-line options from the following input
24772 command-line options:
24773
24774 @smallexample
24775 fred.c -foo -baz
24776 jim.d -bar -boggle
24777 -d fred.c -foo -baz -boggle
24778 -d jim.d -bar -baz -boggle
24779 @end smallexample
24780
24781 @item %@{S:X; T:Y; :D@}
24782
24783 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
24784 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
24785 be as many clauses as you need. This may be combined with @code{.},
24786 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
24787
24788
24789 @end table
24790
24791 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
24792 construct may contain other nested @samp{%} constructs or spaces, or
24793 even newlines. They are processed as usual, as described above.
24794 Trailing white space in @code{X} is ignored. White space may also
24795 appear anywhere on the left side of the colon in these constructs,
24796 except between @code{.} or @code{*} and the corresponding word.
24797
24798 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
24799 handled specifically in these constructs. If another value of
24800 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
24801 @option{-W} switch is found later in the command line, the earlier
24802 switch value is ignored, except with @{@code{S}*@} where @code{S} is
24803 just one letter, which passes all matching options.
24804
24805 The character @samp{|} at the beginning of the predicate text is used to
24806 indicate that a command should be piped to the following command, but
24807 only if @option{-pipe} is specified.
24808
24809 It is built into GCC which switches take arguments and which do not.
24810 (You might think it would be useful to generalize this to allow each
24811 compiler's spec to say which switches take arguments. But this cannot
24812 be done in a consistent fashion. GCC cannot even decide which input
24813 files have been specified without knowing which switches take arguments,
24814 and it must know which input files to compile in order to tell which
24815 compilers to run).
24816
24817 GCC also knows implicitly that arguments starting in @option{-l} are to be
24818 treated as compiler output files, and passed to the linker in their
24819 proper position among the other output files.
24820
24821 @node Environment Variables
24822 @section Environment Variables Affecting GCC
24823 @cindex environment variables
24824
24825 @c man begin ENVIRONMENT
24826 This section describes several environment variables that affect how GCC
24827 operates. Some of them work by specifying directories or prefixes to use
24828 when searching for various kinds of files. Some are used to specify other
24829 aspects of the compilation environment.
24830
24831 Note that you can also specify places to search using options such as
24832 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
24833 take precedence over places specified using environment variables, which
24834 in turn take precedence over those specified by the configuration of GCC@.
24835 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24836 GNU Compiler Collection (GCC) Internals}.
24837
24838 @table @env
24839 @item LANG
24840 @itemx LC_CTYPE
24841 @c @itemx LC_COLLATE
24842 @itemx LC_MESSAGES
24843 @c @itemx LC_MONETARY
24844 @c @itemx LC_NUMERIC
24845 @c @itemx LC_TIME
24846 @itemx LC_ALL
24847 @findex LANG
24848 @findex LC_CTYPE
24849 @c @findex LC_COLLATE
24850 @findex LC_MESSAGES
24851 @c @findex LC_MONETARY
24852 @c @findex LC_NUMERIC
24853 @c @findex LC_TIME
24854 @findex LC_ALL
24855 @cindex locale
24856 These environment variables control the way that GCC uses
24857 localization information which allows GCC to work with different
24858 national conventions. GCC inspects the locale categories
24859 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24860 so. These locale categories can be set to any value supported by your
24861 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
24862 Kingdom encoded in UTF-8.
24863
24864 The @env{LC_CTYPE} environment variable specifies character
24865 classification. GCC uses it to determine the character boundaries in
24866 a string; this is needed for some multibyte encodings that contain quote
24867 and escape characters that are otherwise interpreted as a string
24868 end or escape.
24869
24870 The @env{LC_MESSAGES} environment variable specifies the language to
24871 use in diagnostic messages.
24872
24873 If the @env{LC_ALL} environment variable is set, it overrides the value
24874 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24875 and @env{LC_MESSAGES} default to the value of the @env{LANG}
24876 environment variable. If none of these variables are set, GCC
24877 defaults to traditional C English behavior.
24878
24879 @item TMPDIR
24880 @findex TMPDIR
24881 If @env{TMPDIR} is set, it specifies the directory to use for temporary
24882 files. GCC uses temporary files to hold the output of one stage of
24883 compilation which is to be used as input to the next stage: for example,
24884 the output of the preprocessor, which is the input to the compiler
24885 proper.
24886
24887 @item GCC_COMPARE_DEBUG
24888 @findex GCC_COMPARE_DEBUG
24889 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24890 @option{-fcompare-debug} to the compiler driver. See the documentation
24891 of this option for more details.
24892
24893 @item GCC_EXEC_PREFIX
24894 @findex GCC_EXEC_PREFIX
24895 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24896 names of the subprograms executed by the compiler. No slash is added
24897 when this prefix is combined with the name of a subprogram, but you can
24898 specify a prefix that ends with a slash if you wish.
24899
24900 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24901 an appropriate prefix to use based on the pathname it is invoked with.
24902
24903 If GCC cannot find the subprogram using the specified prefix, it
24904 tries looking in the usual places for the subprogram.
24905
24906 The default value of @env{GCC_EXEC_PREFIX} is
24907 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24908 the installed compiler. In many cases @var{prefix} is the value
24909 of @code{prefix} when you ran the @file{configure} script.
24910
24911 Other prefixes specified with @option{-B} take precedence over this prefix.
24912
24913 This prefix is also used for finding files such as @file{crt0.o} that are
24914 used for linking.
24915
24916 In addition, the prefix is used in an unusual way in finding the
24917 directories to search for header files. For each of the standard
24918 directories whose name normally begins with @samp{/usr/local/lib/gcc}
24919 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24920 replacing that beginning with the specified prefix to produce an
24921 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
24922 @file{foo/bar} just before it searches the standard directory
24923 @file{/usr/local/lib/bar}.
24924 If a standard directory begins with the configured
24925 @var{prefix} then the value of @var{prefix} is replaced by
24926 @env{GCC_EXEC_PREFIX} when looking for header files.
24927
24928 @item COMPILER_PATH
24929 @findex COMPILER_PATH
24930 The value of @env{COMPILER_PATH} is a colon-separated list of
24931 directories, much like @env{PATH}. GCC tries the directories thus
24932 specified when searching for subprograms, if it can't find the
24933 subprograms using @env{GCC_EXEC_PREFIX}.
24934
24935 @item LIBRARY_PATH
24936 @findex LIBRARY_PATH
24937 The value of @env{LIBRARY_PATH} is a colon-separated list of
24938 directories, much like @env{PATH}. When configured as a native compiler,
24939 GCC tries the directories thus specified when searching for special
24940 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking
24941 using GCC also uses these directories when searching for ordinary
24942 libraries for the @option{-l} option (but directories specified with
24943 @option{-L} come first).
24944
24945 @item LANG
24946 @findex LANG
24947 @cindex locale definition
24948 This variable is used to pass locale information to the compiler. One way in
24949 which this information is used is to determine the character set to be used
24950 when character literals, string literals and comments are parsed in C and C++.
24951 When the compiler is configured to allow multibyte characters,
24952 the following values for @env{LANG} are recognized:
24953
24954 @table @samp
24955 @item C-JIS
24956 Recognize JIS characters.
24957 @item C-SJIS
24958 Recognize SJIS characters.
24959 @item C-EUCJP
24960 Recognize EUCJP characters.
24961 @end table
24962
24963 If @env{LANG} is not defined, or if it has some other value, then the
24964 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24965 recognize and translate multibyte characters.
24966 @end table
24967
24968 @noindent
24969 Some additional environment variables affect the behavior of the
24970 preprocessor.
24971
24972 @include cppenv.texi
24973
24974 @c man end
24975
24976 @node Precompiled Headers
24977 @section Using Precompiled Headers
24978 @cindex precompiled headers
24979 @cindex speed of compilation
24980
24981 Often large projects have many header files that are included in every
24982 source file. The time the compiler takes to process these header files
24983 over and over again can account for nearly all of the time required to
24984 build the project. To make builds faster, GCC allows you to
24985 @dfn{precompile} a header file.
24986
24987 To create a precompiled header file, simply compile it as you would any
24988 other file, if necessary using the @option{-x} option to make the driver
24989 treat it as a C or C++ header file. You may want to use a
24990 tool like @command{make} to keep the precompiled header up-to-date when
24991 the headers it contains change.
24992
24993 A precompiled header file is searched for when @code{#include} is
24994 seen in the compilation. As it searches for the included file
24995 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24996 compiler looks for a precompiled header in each directory just before it
24997 looks for the include file in that directory. The name searched for is
24998 the name specified in the @code{#include} with @samp{.gch} appended. If
24999 the precompiled header file can't be used, it is ignored.
25000
25001 For instance, if you have @code{#include "all.h"}, and you have
25002 @file{all.h.gch} in the same directory as @file{all.h}, then the
25003 precompiled header file is used if possible, and the original
25004 header is used otherwise.
25005
25006 Alternatively, you might decide to put the precompiled header file in a
25007 directory and use @option{-I} to ensure that directory is searched
25008 before (or instead of) the directory containing the original header.
25009 Then, if you want to check that the precompiled header file is always
25010 used, you can put a file of the same name as the original header in this
25011 directory containing an @code{#error} command.
25012
25013 This also works with @option{-include}. So yet another way to use
25014 precompiled headers, good for projects not designed with precompiled
25015 header files in mind, is to simply take most of the header files used by
25016 a project, include them from another header file, precompile that header
25017 file, and @option{-include} the precompiled header. If the header files
25018 have guards against multiple inclusion, they are skipped because
25019 they've already been included (in the precompiled header).
25020
25021 If you need to precompile the same header file for different
25022 languages, targets, or compiler options, you can instead make a
25023 @emph{directory} named like @file{all.h.gch}, and put each precompiled
25024 header in the directory, perhaps using @option{-o}. It doesn't matter
25025 what you call the files in the directory; every precompiled header in
25026 the directory is considered. The first precompiled header
25027 encountered in the directory that is valid for this compilation is
25028 used; they're searched in no particular order.
25029
25030 There are many other possibilities, limited only by your imagination,
25031 good sense, and the constraints of your build system.
25032
25033 A precompiled header file can be used only when these conditions apply:
25034
25035 @itemize
25036 @item
25037 Only one precompiled header can be used in a particular compilation.
25038
25039 @item
25040 A precompiled header can't be used once the first C token is seen. You
25041 can have preprocessor directives before a precompiled header; you cannot
25042 include a precompiled header from inside another header.
25043
25044 @item
25045 The precompiled header file must be produced for the same language as
25046 the current compilation. You can't use a C precompiled header for a C++
25047 compilation.
25048
25049 @item
25050 The precompiled header file must have been produced by the same compiler
25051 binary as the current compilation is using.
25052
25053 @item
25054 Any macros defined before the precompiled header is included must
25055 either be defined in the same way as when the precompiled header was
25056 generated, or must not affect the precompiled header, which usually
25057 means that they don't appear in the precompiled header at all.
25058
25059 The @option{-D} option is one way to define a macro before a
25060 precompiled header is included; using a @code{#define} can also do it.
25061 There are also some options that define macros implicitly, like
25062 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
25063 defined this way.
25064
25065 @item If debugging information is output when using the precompiled
25066 header, using @option{-g} or similar, the same kind of debugging information
25067 must have been output when building the precompiled header. However,
25068 a precompiled header built using @option{-g} can be used in a compilation
25069 when no debugging information is being output.
25070
25071 @item The same @option{-m} options must generally be used when building
25072 and using the precompiled header. @xref{Submodel Options},
25073 for any cases where this rule is relaxed.
25074
25075 @item Each of the following options must be the same when building and using
25076 the precompiled header:
25077
25078 @gccoptlist{-fexceptions}
25079
25080 @item
25081 Some other command-line options starting with @option{-f},
25082 @option{-p}, or @option{-O} must be defined in the same way as when
25083 the precompiled header was generated. At present, it's not clear
25084 which options are safe to change and which are not; the safest choice
25085 is to use exactly the same options when generating and using the
25086 precompiled header. The following are known to be safe:
25087
25088 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
25089 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
25090 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
25091 -pedantic-errors}
25092
25093 @end itemize
25094
25095 For all of these except the last, the compiler automatically
25096 ignores the precompiled header if the conditions aren't met. If you
25097 find an option combination that doesn't work and doesn't cause the
25098 precompiled header to be ignored, please consider filing a bug report,
25099 see @ref{Bugs}.
25100
25101 If you do use differing options when generating and using the
25102 precompiled header, the actual behavior is a mixture of the
25103 behavior for the options. For instance, if you use @option{-g} to
25104 generate the precompiled header but not when using it, you may or may
25105 not get debugging information for routines in the precompiled header.