Fix docs for -frandom-seed.
[gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2016 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2016 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75
76 Other options are passed on to one stage of processing. Some options
77 control the preprocessor and others the compiler itself. Yet other
78 options control the assembler and linker; most of these are not
79 documented here, since you rarely need to use any of them.
80
81 @cindex C compilation options
82 Most of the command-line options that you can use with GCC are useful
83 for C programs; when an option is only useful with another language
84 (usually C++), the explanation says so explicitly. If the description
85 for a particular option does not mention a source language, you can use
86 that option with all supported languages.
87
88 @cindex C++ compilation options
89 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
90 options for compiling C++ programs.
91
92 @cindex grouping options
93 @cindex options, grouping
94 The @command{gcc} program accepts options and file names as operands. Many
95 options have multi-letter names; therefore multiple single-letter options
96 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
97 -v}}.
98
99 @cindex order of options
100 @cindex options, order
101 You can mix options and other arguments. For the most part, the order
102 you use doesn't matter. Order does matter when you use several
103 options of the same kind; for example, if you specify @option{-L} more
104 than once, the directories are searched in the order specified. Also,
105 the placement of the @option{-l} option is significant.
106
107 Many options have long names starting with @samp{-f} or with
108 @samp{-W}---for example,
109 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
110 these have both positive and negative forms; the negative form of
111 @option{-ffoo} is @option{-fno-foo}. This manual documents
112 only one of these two forms, whichever one is not the default.
113
114 @c man end
115
116 @xref{Option Index}, for an index to GCC's options.
117
118 @menu
119 * Option Summary:: Brief list of all options, without explanations.
120 * Overall Options:: Controlling the kind of output:
121 an executable, object files, assembler files,
122 or preprocessed source.
123 * Invoking G++:: Compiling C++ programs.
124 * C Dialect Options:: Controlling the variant of C language compiled.
125 * C++ Dialect Options:: Variations on C++.
126 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
127 and Objective-C++.
128 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
129 be formatted.
130 * Warning Options:: How picky should the compiler be?
131 * Debugging Options:: Symbol tables, measurements, and debugging dumps.
132 * Optimize Options:: How much optimization?
133 * Preprocessor Options:: Controlling header files and macro definitions.
134 Also, getting dependency information for Make.
135 * Assembler Options:: Passing options to the assembler.
136 * Link Options:: Specifying libraries and so on.
137 * Directory Options:: Where to find header files and libraries.
138 Where to find the compiler executable files.
139 * Spec Files:: How to pass switches to sub-processes.
140 * Target Options:: Running a cross-compiler, or an old version of GCC.
141 * Submodel Options:: Specifying minor hardware or convention variations,
142 such as 68010 vs 68020.
143 * Code Gen Options:: Specifying conventions for function calls, data layout
144 and register usage.
145 * Environment Variables:: Env vars that affect GCC.
146 * Precompiled Headers:: Compiling a header once, and using it many times.
147 @end menu
148
149 @c man begin OPTIONS
150
151 @node Option Summary
152 @section Option Summary
153
154 Here is a summary of all the options, grouped by type. Explanations are
155 in the following sections.
156
157 @table @emph
158 @item Overall Options
159 @xref{Overall Options,,Options Controlling the Kind of Output}.
160 @gccoptlist{-c -S -E -o @var{file} -no-canonical-prefixes @gol
161 -pipe -pass-exit-codes @gol
162 -x @var{language} -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help @gol
163 --version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
164 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
165
166 @item C Language Options
167 @xref{C Dialect Options,,Options Controlling C Dialect}.
168 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
169 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
170 -fno-asm -fno-builtin -fno-builtin-@var{function} @gol
171 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
172 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness}
173 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
174 -fsigned-bitfields -fsigned-char @gol
175 -funsigned-bitfields -funsigned-char @gol
176 -trigraphs -traditional -traditional-cpp}
177
178 @item C++ Language Options
179 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
180 @gccoptlist{-fabi-version=@var{n} -fno-access-control -fcheck-new @gol
181 -fconstexpr-depth=@var{n} -ffriend-injection @gol
182 -fno-elide-constructors @gol
183 -fno-enforce-eh-specs @gol
184 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
185 -fno-implicit-templates @gol
186 -fno-implicit-inline-templates @gol
187 -fno-implement-inlines -fms-extensions @gol
188 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
189 -fno-optional-diags -fpermissive @gol
190 -fno-pretty-templates @gol
191 -frepo -fno-rtti -fsized-deallocation @gol
192 -fstats -ftemplate-backtrace-limit=@var{n} @gol
193 -ftemplate-depth=@var{n} @gol
194 -fno-threadsafe-statics -fuse-cxa-atexit @gol
195 -fno-weak -nostdinc++ @gol
196 -fvisibility-inlines-hidden @gol
197 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
198 -fvtv-counts -fvtv-debug @gol
199 -fvisibility-ms-compat @gol
200 -fext-numeric-literals @gol
201 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
202 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
203 -Wnamespaces -Wnarrowing @gol
204 -Wnoexcept -Wnon-virtual-dtor -Wreorder @gol
205 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
206 -Wno-non-template-friend -Wold-style-cast @gol
207 -Woverloaded-virtual -Wno-pmf-conversions @gol
208 -Wsign-promo -Wvirtual-inheritance}
209
210 @item Objective-C and Objective-C++ Language Options
211 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
212 Objective-C and Objective-C++ Dialects}.
213 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
214 -fgnu-runtime -fnext-runtime @gol
215 -fno-nil-receivers @gol
216 -fobjc-abi-version=@var{n} @gol
217 -fobjc-call-cxx-cdtors @gol
218 -fobjc-direct-dispatch @gol
219 -fobjc-exceptions @gol
220 -fobjc-gc @gol
221 -fobjc-nilcheck @gol
222 -fobjc-std=objc1 @gol
223 -fno-local-ivars @gol
224 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
225 -freplace-objc-classes @gol
226 -fzero-link @gol
227 -gen-decls @gol
228 -Wassign-intercept @gol
229 -Wno-protocol -Wselector @gol
230 -Wstrict-selector-match @gol
231 -Wundeclared-selector}
232
233 @item Diagnostic Message Formatting Options
234 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
235 @gccoptlist{-fmessage-length=@var{n} @gol
236 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
237 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
238 -fno-diagnostics-show-option -fno-diagnostics-show-caret}
239
240 @item Warning Options
241 @xref{Warning Options,,Options to Request or Suppress Warnings}.
242 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
243 -pedantic-errors @gol
244 -w -Wextra -Wall -Waddress -Waggregate-return @gol
245 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
246 -Wno-attributes -Wbool-compare -Wno-builtin-macro-redefined @gol
247 -Wc90-c99-compat -Wc99-c11-compat @gol
248 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
249 -Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported @gol
250 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdate-time -Wdelete-incomplete @gol
251 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
252 -Wdisabled-optimization @gol
253 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
254 -Wno-div-by-zero -Wdouble-promotion -Wduplicated-cond @gol
255 -Wempty-body -Wenum-compare -Wno-endif-labels @gol
256 -Werror -Werror=* -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
257 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
258 -Wformat-security -Wformat-signedness -Wformat-y2k -Wframe-address @gol
259 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
260 -Wignored-qualifiers -Wincompatible-pointer-types @gol
261 -Wimplicit -Wimplicit-function-declaration -Wimplicit-int @gol
262 -Winit-self -Winline -Wno-int-conversion @gol
263 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
264 -Winvalid-pch -Wlarger-than=@var{len} @gol
265 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
266 -Wmain -Wmaybe-uninitialized -Wmemset-transposed-args @gol
267 -Wmisleading-indentation -Wmissing-braces @gol
268 -Wmissing-field-initializers -Wmissing-include-dirs @gol
269 -Wno-multichar -Wnonnull -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
270 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
271 -Woverride-init-side-effects -Woverlength-strings @gol
272 -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
273 -Wparentheses -Wno-pedantic-ms-format @gol
274 -Wplacement-new -Wpointer-arith -Wno-pointer-to-int-cast @gol
275 -Wno-pragmas -Wredundant-decls -Wno-return-local-addr @gol
276 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
277 -Wshift-overflow -Wshift-overflow=@var{n} @gol
278 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
279 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
280 -Wno-scalar-storage-order @gol
281 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
282 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
283 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
284 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
285 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
286 -Wmissing-format-attribute -Wsubobject-linkage @gol
287 -Wswitch -Wswitch-default -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
288 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
289 -Wtype-limits -Wundef @gol
290 -Wuninitialized -Wunknown-pragmas -Wunsafe-loop-optimizations @gol
291 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
292 -Wunused-label -Wunused-local-typedefs -Wunused-parameter @gol
293 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
294 -Wunused-const-variable @gol
295 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
296 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
297 -Wvla -Wvolatile-register-var -Wwrite-strings @gol
298 -Wzero-as-null-pointer-constant}
299
300 @item C and Objective-C-only Warning Options
301 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
302 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
303 -Wold-style-declaration -Wold-style-definition @gol
304 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
305 -Wdeclaration-after-statement -Wpointer-sign}
306
307 @item Debugging Options
308 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
309 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
310 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
311 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
312 -fsanitize-undefined-trap-on-error @gol
313 -fcheck-pointer-bounds -fchecking -fchkp-check-incomplete-type @gol
314 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
315 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
316 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
317 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
318 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
319 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
320 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
321 -fchkp-use-wrappers @gol
322 -fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
323 -fdisable-ipa-@var{pass_name} @gol
324 -fdisable-rtl-@var{pass_name} @gol
325 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
326 -fdisable-tree-@var{pass_name} @gol
327 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
328 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
329 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
330 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
331 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
332 -fdump-passes @gol
333 -fdump-statistics @gol
334 -fdump-tree-all @gol
335 -fdump-tree-original@r{[}-@var{n}@r{]} @gol
336 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
337 -fdump-tree-cfg -fdump-tree-alias @gol
338 -fdump-tree-ch @gol
339 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
340 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
341 -fdump-tree-gimple@r{[}-raw@r{]} @gol
342 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
343 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
344 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
345 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
346 -fdump-tree-backprop@r{[}-@var{n}@r{]} @gol
347 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
348 -fdump-tree-nrv -fdump-tree-vect @gol
349 -fdump-tree-sink @gol
350 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
351 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
352 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
353 -fdump-tree-vtable-verify @gol
354 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
355 -fdump-tree-split-paths@r{[}-@var{n}@r{]} @gol
356 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
357 -fdump-final-insns=@var{file} @gol
358 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
359 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
360 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
361 -fenable-@var{kind}-@var{pass} @gol
362 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
363 -fdebug-types-section -fmem-report-wpa @gol
364 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
365 -fopt-info @gol
366 -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
367 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
368 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
369 -fstack-usage -ftest-coverage -ftime-report -fvar-tracking @gol
370 -fvar-tracking-assignments -fvar-tracking-assignments-toggle @gol
371 -g -g@var{level} -gtoggle -gcoff -gdwarf-@var{version} @gol
372 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
373 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
374 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
375 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
376 -fdebug-prefix-map=@var{old}=@var{new} @gol
377 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
378 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
379 -p -pg -print-file-name=@var{library} -print-libgcc-file-name @gol
380 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
381 -print-prog-name=@var{program} -print-search-dirs -Q @gol
382 -print-sysroot -print-sysroot-headers-suffix @gol
383 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
384
385 @item Optimization Options
386 @xref{Optimize Options,,Options that Control Optimization}.
387 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
388 -falign-jumps[=@var{n}] @gol
389 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
390 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
391 -fauto-inc-dec -fbranch-probabilities @gol
392 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
393 -fbtr-bb-exclusive -fcaller-saves @gol
394 -fcombine-stack-adjustments -fconserve-stack @gol
395 -fcompare-elim -fcprop-registers -fcrossjumping @gol
396 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
397 -fcx-limited-range @gol
398 -fdata-sections -fdce -fdelayed-branch @gol
399 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
400 -fdevirtualize-at-ltrans -fdse @gol
401 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
402 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
403 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
404 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
405 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
406 -fif-conversion2 -findirect-inlining @gol
407 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
408 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
409 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
410 -fira-algorithm=@var{algorithm} @gol
411 -fira-region=@var{region} -fira-hoist-pressure @gol
412 -fira-loop-pressure -fno-ira-share-save-slots @gol
413 -fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
414 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
415 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
416 -fkeep-static-consts -flive-range-shrinkage @gol
417 -floop-block -floop-interchange -floop-strip-mine @gol
418 -floop-unroll-and-jam -floop-nest-optimize @gol
419 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
420 -flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
421 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
422 -fmove-loop-invariants -fno-branch-count-reg @gol
423 -fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
424 -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
425 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
426 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
427 -fomit-frame-pointer -foptimize-sibling-calls @gol
428 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
429 -fprefetch-loop-arrays -fprofile-report @gol
430 -fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
431 -fprofile-generate=@var{path} @gol
432 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
433 -fprofile-reorder-functions @gol
434 -freciprocal-math -free -frename-registers -freorder-blocks @gol
435 -freorder-blocks-algorithm=@var{algorithm} @gol
436 -freorder-blocks-and-partition -freorder-functions @gol
437 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
438 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
439 -fsched-spec-load -fsched-spec-load-dangerous @gol
440 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
441 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
442 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
443 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
444 -fschedule-fusion @gol
445 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
446 -fselective-scheduling -fselective-scheduling2 @gol
447 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
448 -fsemantic-interposition -fshrink-wrap -fsignaling-nans @gol
449 -fsingle-precision-constant -fsplit-ivs-in-unroller @gol
450 -fsplit-paths @gol
451 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
452 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
453 -fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
454 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
455 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
456 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
457 -ftree-dse -ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
458 -ftree-loop-if-convert-stores -ftree-loop-im @gol
459 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
460 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
461 -ftree-loop-vectorize @gol
462 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
463 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
464 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
465 -ftree-vectorize -ftree-vrp @gol
466 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
467 -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
468 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
469 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
470 --param @var{name}=@var{value}
471 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
472
473 @item Preprocessor Options
474 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
475 @gccoptlist{-A@var{question}=@var{answer} @gol
476 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
477 -C -dD -dI -dM -dN @gol
478 -D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol
479 -idirafter @var{dir} @gol
480 -include @var{file} -imacros @var{file} @gol
481 -iprefix @var{file} -iwithprefix @var{dir} @gol
482 -iwithprefixbefore @var{dir} -isystem @var{dir} @gol
483 -imultilib @var{dir} -isysroot @var{dir} @gol
484 -M -MM -MF -MG -MP -MQ -MT -nostdinc @gol
485 -P -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
486 -remap -trigraphs -undef -U@var{macro} @gol
487 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
488
489 @item Assembler Option
490 @xref{Assembler Options,,Passing Options to the Assembler}.
491 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
492
493 @item Linker Options
494 @xref{Link Options,,Options for Linking}.
495 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
496 -nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol
497 -s -static -static-libgcc -static-libstdc++ @gol
498 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
499 -static-libmpx -static-libmpxwrappers @gol
500 -shared -shared-libgcc -symbolic @gol
501 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
502 -u @var{symbol} -z @var{keyword}}
503
504 @item Directory Options
505 @xref{Directory Options,,Options for Directory Search}.
506 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
507 -iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
508 --sysroot=@var{dir} --no-sysroot-suffix}
509
510 @item Machine Dependent Options
511 @xref{Submodel Options,,Hardware Models and Configurations}.
512 @c This list is ordered alphanumerically by subsection name.
513 @c Try and put the significant identifier (CPU or system) first,
514 @c so users have a clue at guessing where the ones they want will be.
515
516 @emph{AArch64 Options}
517 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
518 -mgeneral-regs-only @gol
519 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
520 -mstrict-align @gol
521 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
522 -mtls-dialect=desc -mtls-dialect=traditional @gol
523 -mtls-size=@var{size} @gol
524 -mfix-cortex-a53-835769 -mno-fix-cortex-a53-835769 @gol
525 -mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419 @gol
526 -mlow-precision-recip-sqrt -mno-low-precision-recip-sqrt@gol
527 -march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
528
529 @emph{Adapteva Epiphany Options}
530 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
531 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
532 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
533 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
534 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
535 -msplit-vecmove-early -m1reg-@var{reg}}
536
537 @emph{ARC Options}
538 @gccoptlist{-mbarrel-shifter @gol
539 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
540 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
541 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
542 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
543 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
544 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
545 -mlong-calls -mmedium-calls -msdata @gol
546 -mucb-mcount -mvolatile-cache @gol
547 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
548 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
549 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
550 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
551 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
552 -mtune=@var{cpu} -mmultcost=@var{num} @gol
553 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
554 -mdiv-rem -mcode-density}
555
556 @emph{ARM Options}
557 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
558 -mabi=@var{name} @gol
559 -mapcs-stack-check -mno-apcs-stack-check @gol
560 -mapcs-float -mno-apcs-float @gol
561 -mapcs-reentrant -mno-apcs-reentrant @gol
562 -msched-prolog -mno-sched-prolog @gol
563 -mlittle-endian -mbig-endian @gol
564 -mfloat-abi=@var{name} @gol
565 -mfp16-format=@var{name}
566 -mthumb-interwork -mno-thumb-interwork @gol
567 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
568 -mtune=@var{name} -mprint-tune-info @gol
569 -mstructure-size-boundary=@var{n} @gol
570 -mabort-on-noreturn @gol
571 -mlong-calls -mno-long-calls @gol
572 -msingle-pic-base -mno-single-pic-base @gol
573 -mpic-register=@var{reg} @gol
574 -mnop-fun-dllimport @gol
575 -mpoke-function-name @gol
576 -mthumb -marm @gol
577 -mtpcs-frame -mtpcs-leaf-frame @gol
578 -mcaller-super-interworking -mcallee-super-interworking @gol
579 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
580 -mword-relocations @gol
581 -mfix-cortex-m3-ldrd @gol
582 -munaligned-access @gol
583 -mneon-for-64bits @gol
584 -mslow-flash-data @gol
585 -masm-syntax-unified @gol
586 -mrestrict-it}
587
588 @emph{AVR Options}
589 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
590 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
591 -mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert}
592
593 @emph{Blackfin Options}
594 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
595 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
596 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
597 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
598 -mno-id-shared-library -mshared-library-id=@var{n} @gol
599 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
600 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
601 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
602 -micplb}
603
604 @emph{C6X Options}
605 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
606 -msim -msdata=@var{sdata-type}}
607
608 @emph{CRIS Options}
609 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
610 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
611 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
612 -mstack-align -mdata-align -mconst-align @gol
613 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
614 -melf -maout -melinux -mlinux -sim -sim2 @gol
615 -mmul-bug-workaround -mno-mul-bug-workaround}
616
617 @emph{CR16 Options}
618 @gccoptlist{-mmac @gol
619 -mcr16cplus -mcr16c @gol
620 -msim -mint32 -mbit-ops
621 -mdata-model=@var{model}}
622
623 @emph{Darwin Options}
624 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
625 -arch_only -bind_at_load -bundle -bundle_loader @gol
626 -client_name -compatibility_version -current_version @gol
627 -dead_strip @gol
628 -dependency-file -dylib_file -dylinker_install_name @gol
629 -dynamic -dynamiclib -exported_symbols_list @gol
630 -filelist -flat_namespace -force_cpusubtype_ALL @gol
631 -force_flat_namespace -headerpad_max_install_names @gol
632 -iframework @gol
633 -image_base -init -install_name -keep_private_externs @gol
634 -multi_module -multiply_defined -multiply_defined_unused @gol
635 -noall_load -no_dead_strip_inits_and_terms @gol
636 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
637 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
638 -private_bundle -read_only_relocs -sectalign @gol
639 -sectobjectsymbols -whyload -seg1addr @gol
640 -sectcreate -sectobjectsymbols -sectorder @gol
641 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
642 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
643 -segprot -segs_read_only_addr -segs_read_write_addr @gol
644 -single_module -static -sub_library -sub_umbrella @gol
645 -twolevel_namespace -umbrella -undefined @gol
646 -unexported_symbols_list -weak_reference_mismatches @gol
647 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
648 -mkernel -mone-byte-bool}
649
650 @emph{DEC Alpha Options}
651 @gccoptlist{-mno-fp-regs -msoft-float @gol
652 -mieee -mieee-with-inexact -mieee-conformant @gol
653 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
654 -mtrap-precision=@var{mode} -mbuild-constants @gol
655 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
656 -mbwx -mmax -mfix -mcix @gol
657 -mfloat-vax -mfloat-ieee @gol
658 -mexplicit-relocs -msmall-data -mlarge-data @gol
659 -msmall-text -mlarge-text @gol
660 -mmemory-latency=@var{time}}
661
662 @emph{FR30 Options}
663 @gccoptlist{-msmall-model -mno-lsim}
664
665 @emph{FT32 Options}
666 @gccoptlist{-msim -mlra}
667
668 @emph{FRV Options}
669 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
670 -mhard-float -msoft-float @gol
671 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
672 -mdouble -mno-double @gol
673 -mmedia -mno-media -mmuladd -mno-muladd @gol
674 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
675 -mlinked-fp -mlong-calls -malign-labels @gol
676 -mlibrary-pic -macc-4 -macc-8 @gol
677 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
678 -moptimize-membar -mno-optimize-membar @gol
679 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
680 -mvliw-branch -mno-vliw-branch @gol
681 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
682 -mno-nested-cond-exec -mtomcat-stats @gol
683 -mTLS -mtls @gol
684 -mcpu=@var{cpu}}
685
686 @emph{GNU/Linux Options}
687 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
688 -tno-android-cc -tno-android-ld}
689
690 @emph{H8/300 Options}
691 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
692
693 @emph{HPPA Options}
694 @gccoptlist{-march=@var{architecture-type} @gol
695 -mdisable-fpregs -mdisable-indexing @gol
696 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
697 -mfixed-range=@var{register-range} @gol
698 -mjump-in-delay -mlinker-opt -mlong-calls @gol
699 -mlong-load-store -mno-disable-fpregs @gol
700 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
701 -mno-jump-in-delay -mno-long-load-store @gol
702 -mno-portable-runtime -mno-soft-float @gol
703 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
704 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
705 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
706 -munix=@var{unix-std} -nolibdld -static -threads}
707
708 @emph{IA-64 Options}
709 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
710 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
711 -mconstant-gp -mauto-pic -mfused-madd @gol
712 -minline-float-divide-min-latency @gol
713 -minline-float-divide-max-throughput @gol
714 -mno-inline-float-divide @gol
715 -minline-int-divide-min-latency @gol
716 -minline-int-divide-max-throughput @gol
717 -mno-inline-int-divide @gol
718 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
719 -mno-inline-sqrt @gol
720 -mdwarf2-asm -mearly-stop-bits @gol
721 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
722 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
723 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
724 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
725 -msched-spec-ldc -msched-spec-control-ldc @gol
726 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
727 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
728 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
729 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
730
731 @emph{LM32 Options}
732 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
733 -msign-extend-enabled -muser-enabled}
734
735 @emph{M32R/D Options}
736 @gccoptlist{-m32r2 -m32rx -m32r @gol
737 -mdebug @gol
738 -malign-loops -mno-align-loops @gol
739 -missue-rate=@var{number} @gol
740 -mbranch-cost=@var{number} @gol
741 -mmodel=@var{code-size-model-type} @gol
742 -msdata=@var{sdata-type} @gol
743 -mno-flush-func -mflush-func=@var{name} @gol
744 -mno-flush-trap -mflush-trap=@var{number} @gol
745 -G @var{num}}
746
747 @emph{M32C Options}
748 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
749
750 @emph{M680x0 Options}
751 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
752 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
753 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
754 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
755 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
756 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
757 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
758 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
759 -mxgot -mno-xgot}
760
761 @emph{MCore Options}
762 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
763 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
764 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
765 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
766 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
767
768 @emph{MeP Options}
769 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
770 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
771 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
772 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
773 -mtiny=@var{n}}
774
775 @emph{MicroBlaze Options}
776 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
777 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
778 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
779 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
780 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
781
782 @emph{MIPS Options}
783 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
784 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
785 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
786 -mips16 -mno-mips16 -mflip-mips16 @gol
787 -minterlink-compressed -mno-interlink-compressed @gol
788 -minterlink-mips16 -mno-interlink-mips16 @gol
789 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
790 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
791 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
792 -mno-float -msingle-float -mdouble-float @gol
793 -modd-spreg -mno-odd-spreg @gol
794 -mabs=@var{mode} -mnan=@var{encoding} @gol
795 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
796 -mmcu -mmno-mcu @gol
797 -meva -mno-eva @gol
798 -mvirt -mno-virt @gol
799 -mxpa -mno-xpa @gol
800 -mmicromips -mno-micromips @gol
801 -mfpu=@var{fpu-type} @gol
802 -msmartmips -mno-smartmips @gol
803 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
804 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
805 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
806 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
807 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
808 -membedded-data -mno-embedded-data @gol
809 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
810 -mcode-readable=@var{setting} @gol
811 -msplit-addresses -mno-split-addresses @gol
812 -mexplicit-relocs -mno-explicit-relocs @gol
813 -mcheck-zero-division -mno-check-zero-division @gol
814 -mdivide-traps -mdivide-breaks @gol
815 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
816 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
817 -mfix-24k -mno-fix-24k @gol
818 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
819 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
820 -mfix-vr4120 -mno-fix-vr4120 @gol
821 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
822 -mflush-func=@var{func} -mno-flush-func @gol
823 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
824 -mcompact-branches=@var{policy} @gol
825 -mfp-exceptions -mno-fp-exceptions @gol
826 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
827 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
828 -mframe-header-opt -mno-frame-header-opt}
829
830 @emph{MMIX Options}
831 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
832 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
833 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
834 -mno-base-addresses -msingle-exit -mno-single-exit}
835
836 @emph{MN10300 Options}
837 @gccoptlist{-mmult-bug -mno-mult-bug @gol
838 -mno-am33 -mam33 -mam33-2 -mam34 @gol
839 -mtune=@var{cpu-type} @gol
840 -mreturn-pointer-on-d0 @gol
841 -mno-crt0 -mrelax -mliw -msetlb}
842
843 @emph{Moxie Options}
844 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
845
846 @emph{MSP430 Options}
847 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
848 -mwarn-mcu @gol
849 -mcode-region= -mdata-region= @gol
850 -msilicon-errata= -msilicon-errata-warn= @gol
851 -mhwmult= -minrt}
852
853 @emph{NDS32 Options}
854 @gccoptlist{-mbig-endian -mlittle-endian @gol
855 -mreduced-regs -mfull-regs @gol
856 -mcmov -mno-cmov @gol
857 -mperf-ext -mno-perf-ext @gol
858 -mv3push -mno-v3push @gol
859 -m16bit -mno-16bit @gol
860 -misr-vector-size=@var{num} @gol
861 -mcache-block-size=@var{num} @gol
862 -march=@var{arch} @gol
863 -mcmodel=@var{code-model} @gol
864 -mctor-dtor -mrelax}
865
866 @emph{Nios II Options}
867 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
868 -mel -meb @gol
869 -mno-bypass-cache -mbypass-cache @gol
870 -mno-cache-volatile -mcache-volatile @gol
871 -mno-fast-sw-div -mfast-sw-div @gol
872 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
873 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
874 -mcustom-fpu-cfg=@var{name} @gol
875 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
876 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
877
878 @emph{Nvidia PTX Options}
879 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
880
881 @emph{PDP-11 Options}
882 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
883 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
884 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
885 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
886 -mbranch-expensive -mbranch-cheap @gol
887 -munix-asm -mdec-asm}
888
889 @emph{picoChip Options}
890 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
891 -msymbol-as-address -mno-inefficient-warnings}
892
893 @emph{PowerPC Options}
894 See RS/6000 and PowerPC Options.
895
896 @emph{RL78 Options}
897 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
898 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
899 -m64bit-doubles -m32bit-doubles}
900
901 @emph{RS/6000 and PowerPC Options}
902 @gccoptlist{-mcpu=@var{cpu-type} @gol
903 -mtune=@var{cpu-type} @gol
904 -mcmodel=@var{code-model} @gol
905 -mpowerpc64 @gol
906 -maltivec -mno-altivec @gol
907 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
908 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
909 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
910 -mfprnd -mno-fprnd @gol
911 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
912 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
913 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
914 -malign-power -malign-natural @gol
915 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
916 -msingle-float -mdouble-float -msimple-fpu @gol
917 -mstring -mno-string -mupdate -mno-update @gol
918 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
919 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
920 -mstrict-align -mno-strict-align -mrelocatable @gol
921 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
922 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
923 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
924 -mprioritize-restricted-insns=@var{priority} @gol
925 -msched-costly-dep=@var{dependence_type} @gol
926 -minsert-sched-nops=@var{scheme} @gol
927 -mcall-sysv -mcall-netbsd @gol
928 -maix-struct-return -msvr4-struct-return @gol
929 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
930 -mblock-move-inline-limit=@var{num} @gol
931 -misel -mno-isel @gol
932 -misel=yes -misel=no @gol
933 -mspe -mno-spe @gol
934 -mspe=yes -mspe=no @gol
935 -mpaired @gol
936 -mgen-cell-microcode -mwarn-cell-microcode @gol
937 -mvrsave -mno-vrsave @gol
938 -mmulhw -mno-mulhw @gol
939 -mdlmzb -mno-dlmzb @gol
940 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
941 -mprototype -mno-prototype @gol
942 -msim -mmvme -mads -myellowknife -memb -msdata @gol
943 -msdata=@var{opt} -mvxworks -G @var{num} -pthread @gol
944 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
945 -mno-recip-precision @gol
946 -mveclibabi=@var{type} -mfriz -mno-friz @gol
947 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
948 -msave-toc-indirect -mno-save-toc-indirect @gol
949 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
950 -mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
951 -mquad-memory -mno-quad-memory @gol
952 -mquad-memory-atomic -mno-quad-memory-atomic @gol
953 -mcompat-align-parm -mno-compat-align-parm @gol
954 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
955 -mupper-regs -mno-upper-regs -mmodulo -mno-modulo @gol
956 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
957 -mpower9-fusion -mno-mpower9-fusion -mpower9-vector -mno-power9-vector}
958
959 @emph{RX Options}
960 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
961 -mcpu=@gol
962 -mbig-endian-data -mlittle-endian-data @gol
963 -msmall-data @gol
964 -msim -mno-sim@gol
965 -mas100-syntax -mno-as100-syntax@gol
966 -mrelax@gol
967 -mmax-constant-size=@gol
968 -mint-register=@gol
969 -mpid@gol
970 -mallow-string-insns -mno-allow-string-insns@gol
971 -mjsr@gol
972 -mno-warn-multiple-fast-interrupts@gol
973 -msave-acc-in-interrupts}
974
975 @emph{S/390 and zSeries Options}
976 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
977 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
978 -mlong-double-64 -mlong-double-128 @gol
979 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
980 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
981 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
982 -mhtm -mvx -mzvector @gol
983 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
984 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
985 -mhotpatch=@var{halfwords},@var{halfwords}}
986
987 @emph{Score Options}
988 @gccoptlist{-meb -mel @gol
989 -mnhwloop @gol
990 -muls @gol
991 -mmac @gol
992 -mscore5 -mscore5u -mscore7 -mscore7d}
993
994 @emph{SH Options}
995 @gccoptlist{-m1 -m2 -m2e @gol
996 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
997 -m3 -m3e @gol
998 -m4-nofpu -m4-single-only -m4-single -m4 @gol
999 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1000 -mb -ml -mdalign -mrelax @gol
1001 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1002 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1003 -mspace -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1004 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1005 -maccumulate-outgoing-args @gol
1006 -matomic-model=@var{atomic-model} @gol
1007 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1008 -mcbranch-force-delay-slot @gol
1009 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1010 -mpretend-cmove -mtas}
1011
1012 @emph{Solaris 2 Options}
1013 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1014 -pthreads -pthread}
1015
1016 @emph{SPARC Options}
1017 @gccoptlist{-mcpu=@var{cpu-type} @gol
1018 -mtune=@var{cpu-type} @gol
1019 -mcmodel=@var{code-model} @gol
1020 -mmemory-model=@var{mem-model} @gol
1021 -m32 -m64 -mapp-regs -mno-app-regs @gol
1022 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1023 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1024 -mhard-quad-float -msoft-quad-float @gol
1025 -mstack-bias -mno-stack-bias @gol
1026 -mstd-struct-return -mno-std-struct-return @gol
1027 -munaligned-doubles -mno-unaligned-doubles @gol
1028 -muser-mode -mno-user-mode @gol
1029 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1030 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1031 -mcbcond -mno-cbcond @gol
1032 -mfmaf -mno-fmaf -mpopc -mno-popc @gol
1033 -mfix-at697f -mfix-ut699}
1034
1035 @emph{SPU Options}
1036 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1037 -msafe-dma -munsafe-dma @gol
1038 -mbranch-hints @gol
1039 -msmall-mem -mlarge-mem -mstdmain @gol
1040 -mfixed-range=@var{register-range} @gol
1041 -mea32 -mea64 @gol
1042 -maddress-space-conversion -mno-address-space-conversion @gol
1043 -mcache-size=@var{cache-size} @gol
1044 -matomic-updates -mno-atomic-updates}
1045
1046 @emph{System V Options}
1047 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1048
1049 @emph{TILE-Gx Options}
1050 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1051 -mcmodel=@var{code-model}}
1052
1053 @emph{TILEPro Options}
1054 @gccoptlist{-mcpu=@var{cpu} -m32}
1055
1056 @emph{V850 Options}
1057 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1058 -mprolog-function -mno-prolog-function -mspace @gol
1059 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1060 -mapp-regs -mno-app-regs @gol
1061 -mdisable-callt -mno-disable-callt @gol
1062 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1063 -mv850e -mv850 -mv850e3v5 @gol
1064 -mloop @gol
1065 -mrelax @gol
1066 -mlong-jumps @gol
1067 -msoft-float @gol
1068 -mhard-float @gol
1069 -mgcc-abi @gol
1070 -mrh850-abi @gol
1071 -mbig-switch}
1072
1073 @emph{VAX Options}
1074 @gccoptlist{-mg -mgnu -munix}
1075
1076 @emph{Visium Options}
1077 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1078 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1079
1080 @emph{VMS Options}
1081 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1082 -mpointer-size=@var{size}}
1083
1084 @emph{VxWorks Options}
1085 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1086 -Xbind-lazy -Xbind-now}
1087
1088 @emph{x86 Options}
1089 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1090 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1091 -mfpmath=@var{unit} @gol
1092 -masm=@var{dialect} -mno-fancy-math-387 @gol
1093 -mno-fp-ret-in-387 -msoft-float @gol
1094 -mno-wide-multiply -mrtd -malign-double @gol
1095 -mpreferred-stack-boundary=@var{num} @gol
1096 -mincoming-stack-boundary=@var{num} @gol
1097 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1098 -mrecip -mrecip=@var{opt} @gol
1099 -mvzeroupper -mprefer-avx128 @gol
1100 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1101 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1102 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1103 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma @gol
1104 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves @gol
1105 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1106 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mmwaitx -mclzero
1107 -mpku -mthreads @gol
1108 -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1109 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1110 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1111 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1112 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1113 -mregparm=@var{num} -msseregparm @gol
1114 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1115 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1116 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1117 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1118 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1119 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1120 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1121 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1122 -mmitigate-rop}
1123
1124 @emph{x86 Windows Options}
1125 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1126 -mnop-fun-dllimport -mthread @gol
1127 -municode -mwin32 -mwindows -fno-set-stack-executable}
1128
1129 @emph{Xstormy16 Options}
1130 @gccoptlist{-msim}
1131
1132 @emph{Xtensa Options}
1133 @gccoptlist{-mconst16 -mno-const16 @gol
1134 -mfused-madd -mno-fused-madd @gol
1135 -mforce-no-pic @gol
1136 -mserialize-volatile -mno-serialize-volatile @gol
1137 -mtext-section-literals -mno-text-section-literals @gol
1138 -mauto-litpools -mno-auto-litpools @gol
1139 -mtarget-align -mno-target-align @gol
1140 -mlongcalls -mno-longcalls}
1141
1142 @emph{zSeries Options}
1143 See S/390 and zSeries Options.
1144
1145 @item Code Generation Options
1146 @xref{Code Gen Options,,Options for Code Generation Conventions}.
1147 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
1148 -ffixed-@var{reg} -fexceptions @gol
1149 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
1150 -fasynchronous-unwind-tables @gol
1151 -fno-gnu-unique @gol
1152 -finhibit-size-directive -finstrument-functions @gol
1153 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
1154 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
1155 -fno-common -fno-ident @gol
1156 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
1157 -fno-jump-tables @gol
1158 -frecord-gcc-switches @gol
1159 -freg-struct-return -fshort-enums @gol
1160 -fshort-double -fshort-wchar @gol
1161 -fverbose-asm -fpack-struct[=@var{n}] -fstack-check @gol
1162 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
1163 -fno-stack-limit -fsplit-stack @gol
1164 -fleading-underscore -ftls-model=@var{model} @gol
1165 -fstack-reuse=@var{reuse_level} @gol
1166 -ftrapv -fwrapv -fbounds-check @gol
1167 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
1168 -fstrict-volatile-bitfields -fsync-libcalls}
1169 @end table
1170
1171
1172 @node Overall Options
1173 @section Options Controlling the Kind of Output
1174
1175 Compilation can involve up to four stages: preprocessing, compilation
1176 proper, assembly and linking, always in that order. GCC is capable of
1177 preprocessing and compiling several files either into several
1178 assembler input files, or into one assembler input file; then each
1179 assembler input file produces an object file, and linking combines all
1180 the object files (those newly compiled, and those specified as input)
1181 into an executable file.
1182
1183 @cindex file name suffix
1184 For any given input file, the file name suffix determines what kind of
1185 compilation is done:
1186
1187 @table @gcctabopt
1188 @item @var{file}.c
1189 C source code that must be preprocessed.
1190
1191 @item @var{file}.i
1192 C source code that should not be preprocessed.
1193
1194 @item @var{file}.ii
1195 C++ source code that should not be preprocessed.
1196
1197 @item @var{file}.m
1198 Objective-C source code. Note that you must link with the @file{libobjc}
1199 library to make an Objective-C program work.
1200
1201 @item @var{file}.mi
1202 Objective-C source code that should not be preprocessed.
1203
1204 @item @var{file}.mm
1205 @itemx @var{file}.M
1206 Objective-C++ source code. Note that you must link with the @file{libobjc}
1207 library to make an Objective-C++ program work. Note that @samp{.M} refers
1208 to a literal capital M@.
1209
1210 @item @var{file}.mii
1211 Objective-C++ source code that should not be preprocessed.
1212
1213 @item @var{file}.h
1214 C, C++, Objective-C or Objective-C++ header file to be turned into a
1215 precompiled header (default), or C, C++ header file to be turned into an
1216 Ada spec (via the @option{-fdump-ada-spec} switch).
1217
1218 @item @var{file}.cc
1219 @itemx @var{file}.cp
1220 @itemx @var{file}.cxx
1221 @itemx @var{file}.cpp
1222 @itemx @var{file}.CPP
1223 @itemx @var{file}.c++
1224 @itemx @var{file}.C
1225 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1226 the last two letters must both be literally @samp{x}. Likewise,
1227 @samp{.C} refers to a literal capital C@.
1228
1229 @item @var{file}.mm
1230 @itemx @var{file}.M
1231 Objective-C++ source code that must be preprocessed.
1232
1233 @item @var{file}.mii
1234 Objective-C++ source code that should not be preprocessed.
1235
1236 @item @var{file}.hh
1237 @itemx @var{file}.H
1238 @itemx @var{file}.hp
1239 @itemx @var{file}.hxx
1240 @itemx @var{file}.hpp
1241 @itemx @var{file}.HPP
1242 @itemx @var{file}.h++
1243 @itemx @var{file}.tcc
1244 C++ header file to be turned into a precompiled header or Ada spec.
1245
1246 @item @var{file}.f
1247 @itemx @var{file}.for
1248 @itemx @var{file}.ftn
1249 Fixed form Fortran source code that should not be preprocessed.
1250
1251 @item @var{file}.F
1252 @itemx @var{file}.FOR
1253 @itemx @var{file}.fpp
1254 @itemx @var{file}.FPP
1255 @itemx @var{file}.FTN
1256 Fixed form Fortran source code that must be preprocessed (with the traditional
1257 preprocessor).
1258
1259 @item @var{file}.f90
1260 @itemx @var{file}.f95
1261 @itemx @var{file}.f03
1262 @itemx @var{file}.f08
1263 Free form Fortran source code that should not be preprocessed.
1264
1265 @item @var{file}.F90
1266 @itemx @var{file}.F95
1267 @itemx @var{file}.F03
1268 @itemx @var{file}.F08
1269 Free form Fortran source code that must be preprocessed (with the
1270 traditional preprocessor).
1271
1272 @item @var{file}.go
1273 Go source code.
1274
1275 @c FIXME: Descriptions of Java file types.
1276 @c @var{file}.java
1277 @c @var{file}.class
1278 @c @var{file}.zip
1279 @c @var{file}.jar
1280
1281 @item @var{file}.ads
1282 Ada source code file that contains a library unit declaration (a
1283 declaration of a package, subprogram, or generic, or a generic
1284 instantiation), or a library unit renaming declaration (a package,
1285 generic, or subprogram renaming declaration). Such files are also
1286 called @dfn{specs}.
1287
1288 @item @var{file}.adb
1289 Ada source code file containing a library unit body (a subprogram or
1290 package body). Such files are also called @dfn{bodies}.
1291
1292 @c GCC also knows about some suffixes for languages not yet included:
1293 @c Pascal:
1294 @c @var{file}.p
1295 @c @var{file}.pas
1296 @c Ratfor:
1297 @c @var{file}.r
1298
1299 @item @var{file}.s
1300 Assembler code.
1301
1302 @item @var{file}.S
1303 @itemx @var{file}.sx
1304 Assembler code that must be preprocessed.
1305
1306 @item @var{other}
1307 An object file to be fed straight into linking.
1308 Any file name with no recognized suffix is treated this way.
1309 @end table
1310
1311 @opindex x
1312 You can specify the input language explicitly with the @option{-x} option:
1313
1314 @table @gcctabopt
1315 @item -x @var{language}
1316 Specify explicitly the @var{language} for the following input files
1317 (rather than letting the compiler choose a default based on the file
1318 name suffix). This option applies to all following input files until
1319 the next @option{-x} option. Possible values for @var{language} are:
1320 @smallexample
1321 c c-header cpp-output
1322 c++ c++-header c++-cpp-output
1323 objective-c objective-c-header objective-c-cpp-output
1324 objective-c++ objective-c++-header objective-c++-cpp-output
1325 assembler assembler-with-cpp
1326 ada
1327 f77 f77-cpp-input f95 f95-cpp-input
1328 go
1329 java
1330 @end smallexample
1331
1332 @item -x none
1333 Turn off any specification of a language, so that subsequent files are
1334 handled according to their file name suffixes (as they are if @option{-x}
1335 has not been used at all).
1336
1337 @item -pass-exit-codes
1338 @opindex pass-exit-codes
1339 Normally the @command{gcc} program exits with the code of 1 if any
1340 phase of the compiler returns a non-success return code. If you specify
1341 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1342 the numerically highest error produced by any phase returning an error
1343 indication. The C, C++, and Fortran front ends return 4 if an internal
1344 compiler error is encountered.
1345 @end table
1346
1347 If you only want some of the stages of compilation, you can use
1348 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1349 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1350 @command{gcc} is to stop. Note that some combinations (for example,
1351 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1352
1353 @table @gcctabopt
1354 @item -c
1355 @opindex c
1356 Compile or assemble the source files, but do not link. The linking
1357 stage simply is not done. The ultimate output is in the form of an
1358 object file for each source file.
1359
1360 By default, the object file name for a source file is made by replacing
1361 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1362
1363 Unrecognized input files, not requiring compilation or assembly, are
1364 ignored.
1365
1366 @item -S
1367 @opindex S
1368 Stop after the stage of compilation proper; do not assemble. The output
1369 is in the form of an assembler code file for each non-assembler input
1370 file specified.
1371
1372 By default, the assembler file name for a source file is made by
1373 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1374
1375 Input files that don't require compilation are ignored.
1376
1377 @item -E
1378 @opindex E
1379 Stop after the preprocessing stage; do not run the compiler proper. The
1380 output is in the form of preprocessed source code, which is sent to the
1381 standard output.
1382
1383 Input files that don't require preprocessing are ignored.
1384
1385 @cindex output file option
1386 @item -o @var{file}
1387 @opindex o
1388 Place output in file @var{file}. This applies to whatever
1389 sort of output is being produced, whether it be an executable file,
1390 an object file, an assembler file or preprocessed C code.
1391
1392 If @option{-o} is not specified, the default is to put an executable
1393 file in @file{a.out}, the object file for
1394 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1395 assembler file in @file{@var{source}.s}, a precompiled header file in
1396 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1397 standard output.
1398
1399 @item -v
1400 @opindex v
1401 Print (on standard error output) the commands executed to run the stages
1402 of compilation. Also print the version number of the compiler driver
1403 program and of the preprocessor and the compiler proper.
1404
1405 @item -###
1406 @opindex ###
1407 Like @option{-v} except the commands are not executed and arguments
1408 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1409 This is useful for shell scripts to capture the driver-generated command lines.
1410
1411 @item -pipe
1412 @opindex pipe
1413 Use pipes rather than temporary files for communication between the
1414 various stages of compilation. This fails to work on some systems where
1415 the assembler is unable to read from a pipe; but the GNU assembler has
1416 no trouble.
1417
1418 @item --help
1419 @opindex help
1420 Print (on the standard output) a description of the command-line options
1421 understood by @command{gcc}. If the @option{-v} option is also specified
1422 then @option{--help} is also passed on to the various processes
1423 invoked by @command{gcc}, so that they can display the command-line options
1424 they accept. If the @option{-Wextra} option has also been specified
1425 (prior to the @option{--help} option), then command-line options that
1426 have no documentation associated with them are also displayed.
1427
1428 @item --target-help
1429 @opindex target-help
1430 Print (on the standard output) a description of target-specific command-line
1431 options for each tool. For some targets extra target-specific
1432 information may also be printed.
1433
1434 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1435 Print (on the standard output) a description of the command-line
1436 options understood by the compiler that fit into all specified classes
1437 and qualifiers. These are the supported classes:
1438
1439 @table @asis
1440 @item @samp{optimizers}
1441 Display all of the optimization options supported by the
1442 compiler.
1443
1444 @item @samp{warnings}
1445 Display all of the options controlling warning messages
1446 produced by the compiler.
1447
1448 @item @samp{target}
1449 Display target-specific options. Unlike the
1450 @option{--target-help} option however, target-specific options of the
1451 linker and assembler are not displayed. This is because those
1452 tools do not currently support the extended @option{--help=} syntax.
1453
1454 @item @samp{params}
1455 Display the values recognized by the @option{--param}
1456 option.
1457
1458 @item @var{language}
1459 Display the options supported for @var{language}, where
1460 @var{language} is the name of one of the languages supported in this
1461 version of GCC@.
1462
1463 @item @samp{common}
1464 Display the options that are common to all languages.
1465 @end table
1466
1467 These are the supported qualifiers:
1468
1469 @table @asis
1470 @item @samp{undocumented}
1471 Display only those options that are undocumented.
1472
1473 @item @samp{joined}
1474 Display options taking an argument that appears after an equal
1475 sign in the same continuous piece of text, such as:
1476 @samp{--help=target}.
1477
1478 @item @samp{separate}
1479 Display options taking an argument that appears as a separate word
1480 following the original option, such as: @samp{-o output-file}.
1481 @end table
1482
1483 Thus for example to display all the undocumented target-specific
1484 switches supported by the compiler, use:
1485
1486 @smallexample
1487 --help=target,undocumented
1488 @end smallexample
1489
1490 The sense of a qualifier can be inverted by prefixing it with the
1491 @samp{^} character, so for example to display all binary warning
1492 options (i.e., ones that are either on or off and that do not take an
1493 argument) that have a description, use:
1494
1495 @smallexample
1496 --help=warnings,^joined,^undocumented
1497 @end smallexample
1498
1499 The argument to @option{--help=} should not consist solely of inverted
1500 qualifiers.
1501
1502 Combining several classes is possible, although this usually
1503 restricts the output so much that there is nothing to display. One
1504 case where it does work, however, is when one of the classes is
1505 @var{target}. For example, to display all the target-specific
1506 optimization options, use:
1507
1508 @smallexample
1509 --help=target,optimizers
1510 @end smallexample
1511
1512 The @option{--help=} option can be repeated on the command line. Each
1513 successive use displays its requested class of options, skipping
1514 those that have already been displayed.
1515
1516 If the @option{-Q} option appears on the command line before the
1517 @option{--help=} option, then the descriptive text displayed by
1518 @option{--help=} is changed. Instead of describing the displayed
1519 options, an indication is given as to whether the option is enabled,
1520 disabled or set to a specific value (assuming that the compiler
1521 knows this at the point where the @option{--help=} option is used).
1522
1523 Here is a truncated example from the ARM port of @command{gcc}:
1524
1525 @smallexample
1526 % gcc -Q -mabi=2 --help=target -c
1527 The following options are target specific:
1528 -mabi= 2
1529 -mabort-on-noreturn [disabled]
1530 -mapcs [disabled]
1531 @end smallexample
1532
1533 The output is sensitive to the effects of previous command-line
1534 options, so for example it is possible to find out which optimizations
1535 are enabled at @option{-O2} by using:
1536
1537 @smallexample
1538 -Q -O2 --help=optimizers
1539 @end smallexample
1540
1541 Alternatively you can discover which binary optimizations are enabled
1542 by @option{-O3} by using:
1543
1544 @smallexample
1545 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1546 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1547 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1548 @end smallexample
1549
1550 @item -no-canonical-prefixes
1551 @opindex no-canonical-prefixes
1552 Do not expand any symbolic links, resolve references to @samp{/../}
1553 or @samp{/./}, or make the path absolute when generating a relative
1554 prefix.
1555
1556 @item --version
1557 @opindex version
1558 Display the version number and copyrights of the invoked GCC@.
1559
1560 @item -wrapper
1561 @opindex wrapper
1562 Invoke all subcommands under a wrapper program. The name of the
1563 wrapper program and its parameters are passed as a comma separated
1564 list.
1565
1566 @smallexample
1567 gcc -c t.c -wrapper gdb,--args
1568 @end smallexample
1569
1570 @noindent
1571 This invokes all subprograms of @command{gcc} under
1572 @samp{gdb --args}, thus the invocation of @command{cc1} is
1573 @samp{gdb --args cc1 @dots{}}.
1574
1575 @item -fplugin=@var{name}.so
1576 @opindex fplugin
1577 Load the plugin code in file @var{name}.so, assumed to be a
1578 shared object to be dlopen'd by the compiler. The base name of
1579 the shared object file is used to identify the plugin for the
1580 purposes of argument parsing (See
1581 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1582 Each plugin should define the callback functions specified in the
1583 Plugins API.
1584
1585 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1586 @opindex fplugin-arg
1587 Define an argument called @var{key} with a value of @var{value}
1588 for the plugin called @var{name}.
1589
1590 @item -fdump-ada-spec@r{[}-slim@r{]}
1591 @opindex fdump-ada-spec
1592 For C and C++ source and include files, generate corresponding Ada specs.
1593 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1594 GNAT User's Guide}, which provides detailed documentation on this feature.
1595
1596 @item -fada-spec-parent=@var{unit}
1597 @opindex fada-spec-parent
1598 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1599 Ada specs as child units of parent @var{unit}.
1600
1601 @item -fdump-go-spec=@var{file}
1602 @opindex fdump-go-spec
1603 For input files in any language, generate corresponding Go
1604 declarations in @var{file}. This generates Go @code{const},
1605 @code{type}, @code{var}, and @code{func} declarations which may be a
1606 useful way to start writing a Go interface to code written in some
1607 other language.
1608
1609 @include @value{srcdir}/../libiberty/at-file.texi
1610 @end table
1611
1612 @node Invoking G++
1613 @section Compiling C++ Programs
1614
1615 @cindex suffixes for C++ source
1616 @cindex C++ source file suffixes
1617 C++ source files conventionally use one of the suffixes @samp{.C},
1618 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1619 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1620 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1621 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1622 files with these names and compiles them as C++ programs even if you
1623 call the compiler the same way as for compiling C programs (usually
1624 with the name @command{gcc}).
1625
1626 @findex g++
1627 @findex c++
1628 However, the use of @command{gcc} does not add the C++ library.
1629 @command{g++} is a program that calls GCC and automatically specifies linking
1630 against the C++ library. It treats @samp{.c},
1631 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1632 files unless @option{-x} is used. This program is also useful when
1633 precompiling a C header file with a @samp{.h} extension for use in C++
1634 compilations. On many systems, @command{g++} is also installed with
1635 the name @command{c++}.
1636
1637 @cindex invoking @command{g++}
1638 When you compile C++ programs, you may specify many of the same
1639 command-line options that you use for compiling programs in any
1640 language; or command-line options meaningful for C and related
1641 languages; or options that are meaningful only for C++ programs.
1642 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1643 explanations of options for languages related to C@.
1644 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1645 explanations of options that are meaningful only for C++ programs.
1646
1647 @node C Dialect Options
1648 @section Options Controlling C Dialect
1649 @cindex dialect options
1650 @cindex language dialect options
1651 @cindex options, dialect
1652
1653 The following options control the dialect of C (or languages derived
1654 from C, such as C++, Objective-C and Objective-C++) that the compiler
1655 accepts:
1656
1657 @table @gcctabopt
1658 @cindex ANSI support
1659 @cindex ISO support
1660 @item -ansi
1661 @opindex ansi
1662 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1663 equivalent to @option{-std=c++98}.
1664
1665 This turns off certain features of GCC that are incompatible with ISO
1666 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1667 such as the @code{asm} and @code{typeof} keywords, and
1668 predefined macros such as @code{unix} and @code{vax} that identify the
1669 type of system you are using. It also enables the undesirable and
1670 rarely used ISO trigraph feature. For the C compiler,
1671 it disables recognition of C++ style @samp{//} comments as well as
1672 the @code{inline} keyword.
1673
1674 The alternate keywords @code{__asm__}, @code{__extension__},
1675 @code{__inline__} and @code{__typeof__} continue to work despite
1676 @option{-ansi}. You would not want to use them in an ISO C program, of
1677 course, but it is useful to put them in header files that might be included
1678 in compilations done with @option{-ansi}. Alternate predefined macros
1679 such as @code{__unix__} and @code{__vax__} are also available, with or
1680 without @option{-ansi}.
1681
1682 The @option{-ansi} option does not cause non-ISO programs to be
1683 rejected gratuitously. For that, @option{-Wpedantic} is required in
1684 addition to @option{-ansi}. @xref{Warning Options}.
1685
1686 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1687 option is used. Some header files may notice this macro and refrain
1688 from declaring certain functions or defining certain macros that the
1689 ISO standard doesn't call for; this is to avoid interfering with any
1690 programs that might use these names for other things.
1691
1692 Functions that are normally built in but do not have semantics
1693 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1694 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1695 built-in functions provided by GCC}, for details of the functions
1696 affected.
1697
1698 @item -std=
1699 @opindex std
1700 Determine the language standard. @xref{Standards,,Language Standards
1701 Supported by GCC}, for details of these standard versions. This option
1702 is currently only supported when compiling C or C++.
1703
1704 The compiler can accept several base standards, such as @samp{c90} or
1705 @samp{c++98}, and GNU dialects of those standards, such as
1706 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1707 compiler accepts all programs following that standard plus those
1708 using GNU extensions that do not contradict it. For example,
1709 @option{-std=c90} turns off certain features of GCC that are
1710 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1711 keywords, but not other GNU extensions that do not have a meaning in
1712 ISO C90, such as omitting the middle term of a @code{?:}
1713 expression. On the other hand, when a GNU dialect of a standard is
1714 specified, all features supported by the compiler are enabled, even when
1715 those features change the meaning of the base standard. As a result, some
1716 strict-conforming programs may be rejected. The particular standard
1717 is used by @option{-Wpedantic} to identify which features are GNU
1718 extensions given that version of the standard. For example
1719 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1720 comments, while @option{-std=gnu99 -Wpedantic} does not.
1721
1722 A value for this option must be provided; possible values are
1723
1724 @table @samp
1725 @item c90
1726 @itemx c89
1727 @itemx iso9899:1990
1728 Support all ISO C90 programs (certain GNU extensions that conflict
1729 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1730
1731 @item iso9899:199409
1732 ISO C90 as modified in amendment 1.
1733
1734 @item c99
1735 @itemx c9x
1736 @itemx iso9899:1999
1737 @itemx iso9899:199x
1738 ISO C99. This standard is substantially completely supported, modulo
1739 bugs and floating-point issues
1740 (mainly but not entirely relating to optional C99 features from
1741 Annexes F and G). See
1742 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1743 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1744
1745 @item c11
1746 @itemx c1x
1747 @itemx iso9899:2011
1748 ISO C11, the 2011 revision of the ISO C standard. This standard is
1749 substantially completely supported, modulo bugs, floating-point issues
1750 (mainly but not entirely relating to optional C11 features from
1751 Annexes F and G) and the optional Annexes K (Bounds-checking
1752 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1753
1754 @item gnu90
1755 @itemx gnu89
1756 GNU dialect of ISO C90 (including some C99 features).
1757
1758 @item gnu99
1759 @itemx gnu9x
1760 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1761
1762 @item gnu11
1763 @itemx gnu1x
1764 GNU dialect of ISO C11. This is the default for C code.
1765 The name @samp{gnu1x} is deprecated.
1766
1767 @item c++98
1768 @itemx c++03
1769 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1770 additional defect reports. Same as @option{-ansi} for C++ code.
1771
1772 @item gnu++98
1773 @itemx gnu++03
1774 GNU dialect of @option{-std=c++98}. This is the default for
1775 C++ code.
1776
1777 @item c++11
1778 @itemx c++0x
1779 The 2011 ISO C++ standard plus amendments.
1780 The name @samp{c++0x} is deprecated.
1781
1782 @item gnu++11
1783 @itemx gnu++0x
1784 GNU dialect of @option{-std=c++11}.
1785 The name @samp{gnu++0x} is deprecated.
1786
1787 @item c++14
1788 @itemx c++1y
1789 The 2014 ISO C++ standard plus amendments.
1790 The name @samp{c++1y} is deprecated.
1791
1792 @item gnu++14
1793 @itemx gnu++1y
1794 GNU dialect of @option{-std=c++14}.
1795 The name @samp{gnu++1y} is deprecated.
1796
1797 @item c++1z
1798 The next revision of the ISO C++ standard, tentatively planned for
1799 2017. Support is highly experimental, and will almost certainly
1800 change in incompatible ways in future releases.
1801
1802 @item gnu++1z
1803 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1804 and will almost certainly change in incompatible ways in future
1805 releases.
1806 @end table
1807
1808 @item -fgnu89-inline
1809 @opindex fgnu89-inline
1810 The option @option{-fgnu89-inline} tells GCC to use the traditional
1811 GNU semantics for @code{inline} functions when in C99 mode.
1812 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1813 Using this option is roughly equivalent to adding the
1814 @code{gnu_inline} function attribute to all inline functions
1815 (@pxref{Function Attributes}).
1816
1817 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1818 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1819 specifies the default behavior).
1820 This option is not supported in @option{-std=c90} or
1821 @option{-std=gnu90} mode.
1822
1823 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1824 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1825 in effect for @code{inline} functions. @xref{Common Predefined
1826 Macros,,,cpp,The C Preprocessor}.
1827
1828 @item -aux-info @var{filename}
1829 @opindex aux-info
1830 Output to the given filename prototyped declarations for all functions
1831 declared and/or defined in a translation unit, including those in header
1832 files. This option is silently ignored in any language other than C@.
1833
1834 Besides declarations, the file indicates, in comments, the origin of
1835 each declaration (source file and line), whether the declaration was
1836 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1837 @samp{O} for old, respectively, in the first character after the line
1838 number and the colon), and whether it came from a declaration or a
1839 definition (@samp{C} or @samp{F}, respectively, in the following
1840 character). In the case of function definitions, a K&R-style list of
1841 arguments followed by their declarations is also provided, inside
1842 comments, after the declaration.
1843
1844 @item -fallow-parameterless-variadic-functions
1845 @opindex fallow-parameterless-variadic-functions
1846 Accept variadic functions without named parameters.
1847
1848 Although it is possible to define such a function, this is not very
1849 useful as it is not possible to read the arguments. This is only
1850 supported for C as this construct is allowed by C++.
1851
1852 @item -fno-asm
1853 @opindex fno-asm
1854 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1855 keyword, so that code can use these words as identifiers. You can use
1856 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1857 instead. @option{-ansi} implies @option{-fno-asm}.
1858
1859 In C++, this switch only affects the @code{typeof} keyword, since
1860 @code{asm} and @code{inline} are standard keywords. You may want to
1861 use the @option{-fno-gnu-keywords} flag instead, which has the same
1862 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1863 switch only affects the @code{asm} and @code{typeof} keywords, since
1864 @code{inline} is a standard keyword in ISO C99.
1865
1866 @item -fno-builtin
1867 @itemx -fno-builtin-@var{function}
1868 @opindex fno-builtin
1869 @cindex built-in functions
1870 Don't recognize built-in functions that do not begin with
1871 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1872 functions provided by GCC}, for details of the functions affected,
1873 including those which are not built-in functions when @option{-ansi} or
1874 @option{-std} options for strict ISO C conformance are used because they
1875 do not have an ISO standard meaning.
1876
1877 GCC normally generates special code to handle certain built-in functions
1878 more efficiently; for instance, calls to @code{alloca} may become single
1879 instructions which adjust the stack directly, and calls to @code{memcpy}
1880 may become inline copy loops. The resulting code is often both smaller
1881 and faster, but since the function calls no longer appear as such, you
1882 cannot set a breakpoint on those calls, nor can you change the behavior
1883 of the functions by linking with a different library. In addition,
1884 when a function is recognized as a built-in function, GCC may use
1885 information about that function to warn about problems with calls to
1886 that function, or to generate more efficient code, even if the
1887 resulting code still contains calls to that function. For example,
1888 warnings are given with @option{-Wformat} for bad calls to
1889 @code{printf} when @code{printf} is built in and @code{strlen} is
1890 known not to modify global memory.
1891
1892 With the @option{-fno-builtin-@var{function}} option
1893 only the built-in function @var{function} is
1894 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1895 function is named that is not built-in in this version of GCC, this
1896 option is ignored. There is no corresponding
1897 @option{-fbuiltin-@var{function}} option; if you wish to enable
1898 built-in functions selectively when using @option{-fno-builtin} or
1899 @option{-ffreestanding}, you may define macros such as:
1900
1901 @smallexample
1902 #define abs(n) __builtin_abs ((n))
1903 #define strcpy(d, s) __builtin_strcpy ((d), (s))
1904 @end smallexample
1905
1906 @item -fhosted
1907 @opindex fhosted
1908 @cindex hosted environment
1909
1910 Assert that compilation targets a hosted environment. This implies
1911 @option{-fbuiltin}. A hosted environment is one in which the
1912 entire standard library is available, and in which @code{main} has a return
1913 type of @code{int}. Examples are nearly everything except a kernel.
1914 This is equivalent to @option{-fno-freestanding}.
1915
1916 @item -ffreestanding
1917 @opindex ffreestanding
1918 @cindex hosted environment
1919
1920 Assert that compilation targets a freestanding environment. This
1921 implies @option{-fno-builtin}. A freestanding environment
1922 is one in which the standard library may not exist, and program startup may
1923 not necessarily be at @code{main}. The most obvious example is an OS kernel.
1924 This is equivalent to @option{-fno-hosted}.
1925
1926 @xref{Standards,,Language Standards Supported by GCC}, for details of
1927 freestanding and hosted environments.
1928
1929 @item -fopenacc
1930 @opindex fopenacc
1931 @cindex OpenACC accelerator programming
1932 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1933 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
1934 compiler generates accelerated code according to the OpenACC Application
1935 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
1936 implies @option{-pthread}, and thus is only supported on targets that
1937 have support for @option{-pthread}.
1938
1939 Note that this is an experimental feature, incomplete, and subject to
1940 change in future versions of GCC. See
1941 @w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1942
1943 @item -fopenmp
1944 @opindex fopenmp
1945 @cindex OpenMP parallel
1946 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1947 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
1948 compiler generates parallel code according to the OpenMP Application
1949 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}. This option
1950 implies @option{-pthread}, and thus is only supported on targets that
1951 have support for @option{-pthread}. @option{-fopenmp} implies
1952 @option{-fopenmp-simd}.
1953
1954 @item -fopenmp-simd
1955 @opindex fopenmp-simd
1956 @cindex OpenMP SIMD
1957 @cindex SIMD
1958 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1959 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1960 are ignored.
1961
1962 @item -fcilkplus
1963 @opindex fcilkplus
1964 @cindex Enable Cilk Plus
1965 Enable the usage of Cilk Plus language extension features for C/C++.
1966 When the option @option{-fcilkplus} is specified, enable the usage of
1967 the Cilk Plus Language extension features for C/C++. The present
1968 implementation follows ABI version 1.2. This is an experimental
1969 feature that is only partially complete, and whose interface may
1970 change in future versions of GCC as the official specification
1971 changes. Currently, all features but @code{_Cilk_for} have been
1972 implemented.
1973
1974 @item -fgnu-tm
1975 @opindex fgnu-tm
1976 When the option @option{-fgnu-tm} is specified, the compiler
1977 generates code for the Linux variant of Intel's current Transactional
1978 Memory ABI specification document (Revision 1.1, May 6 2009). This is
1979 an experimental feature whose interface may change in future versions
1980 of GCC, as the official specification changes. Please note that not
1981 all architectures are supported for this feature.
1982
1983 For more information on GCC's support for transactional memory,
1984 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1985 Transactional Memory Library}.
1986
1987 Note that the transactional memory feature is not supported with
1988 non-call exceptions (@option{-fnon-call-exceptions}).
1989
1990 @item -fms-extensions
1991 @opindex fms-extensions
1992 Accept some non-standard constructs used in Microsoft header files.
1993
1994 In C++ code, this allows member names in structures to be similar
1995 to previous types declarations.
1996
1997 @smallexample
1998 typedef int UOW;
1999 struct ABC @{
2000 UOW UOW;
2001 @};
2002 @end smallexample
2003
2004 Some cases of unnamed fields in structures and unions are only
2005 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2006 fields within structs/unions}, for details.
2007
2008 Note that this option is off for all targets but x86
2009 targets using ms-abi.
2010
2011 @item -fplan9-extensions
2012 @opindex fplan9-extensions
2013 Accept some non-standard constructs used in Plan 9 code.
2014
2015 This enables @option{-fms-extensions}, permits passing pointers to
2016 structures with anonymous fields to functions that expect pointers to
2017 elements of the type of the field, and permits referring to anonymous
2018 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2019 struct/union fields within structs/unions}, for details. This is only
2020 supported for C, not C++.
2021
2022 @item -trigraphs
2023 @opindex trigraphs
2024 Support ISO C trigraphs. The @option{-ansi} option (and @option{-std}
2025 options for strict ISO C conformance) implies @option{-trigraphs}.
2026
2027 @cindex traditional C language
2028 @cindex C language, traditional
2029 @item -traditional
2030 @itemx -traditional-cpp
2031 @opindex traditional-cpp
2032 @opindex traditional
2033 Formerly, these options caused GCC to attempt to emulate a pre-standard
2034 C compiler. They are now only supported with the @option{-E} switch.
2035 The preprocessor continues to support a pre-standard mode. See the GNU
2036 CPP manual for details.
2037
2038 @item -fcond-mismatch
2039 @opindex fcond-mismatch
2040 Allow conditional expressions with mismatched types in the second and
2041 third arguments. The value of such an expression is void. This option
2042 is not supported for C++.
2043
2044 @item -flax-vector-conversions
2045 @opindex flax-vector-conversions
2046 Allow implicit conversions between vectors with differing numbers of
2047 elements and/or incompatible element types. This option should not be
2048 used for new code.
2049
2050 @item -funsigned-char
2051 @opindex funsigned-char
2052 Let the type @code{char} be unsigned, like @code{unsigned char}.
2053
2054 Each kind of machine has a default for what @code{char} should
2055 be. It is either like @code{unsigned char} by default or like
2056 @code{signed char} by default.
2057
2058 Ideally, a portable program should always use @code{signed char} or
2059 @code{unsigned char} when it depends on the signedness of an object.
2060 But many programs have been written to use plain @code{char} and
2061 expect it to be signed, or expect it to be unsigned, depending on the
2062 machines they were written for. This option, and its inverse, let you
2063 make such a program work with the opposite default.
2064
2065 The type @code{char} is always a distinct type from each of
2066 @code{signed char} or @code{unsigned char}, even though its behavior
2067 is always just like one of those two.
2068
2069 @item -fsigned-char
2070 @opindex fsigned-char
2071 Let the type @code{char} be signed, like @code{signed char}.
2072
2073 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2074 the negative form of @option{-funsigned-char}. Likewise, the option
2075 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2076
2077 @item -fsigned-bitfields
2078 @itemx -funsigned-bitfields
2079 @itemx -fno-signed-bitfields
2080 @itemx -fno-unsigned-bitfields
2081 @opindex fsigned-bitfields
2082 @opindex funsigned-bitfields
2083 @opindex fno-signed-bitfields
2084 @opindex fno-unsigned-bitfields
2085 These options control whether a bit-field is signed or unsigned, when the
2086 declaration does not use either @code{signed} or @code{unsigned}. By
2087 default, such a bit-field is signed, because this is consistent: the
2088 basic integer types such as @code{int} are signed types.
2089
2090 @item -fsso-struct=@var{endianness}
2091 @opindex fsso-struct
2092 Set the default scalar storage order of structures and unions to the
2093 specified endianness. The accepted values are @samp{big-endian} and
2094 @samp{little-endian}. If the option is not passed, the compiler uses
2095 the native endianness of the target. This option is not supported for C++.
2096
2097 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2098 code that is not binary compatible with code generated without it if the
2099 specified endianness is not the native endianness of the target.
2100 @end table
2101
2102 @node C++ Dialect Options
2103 @section Options Controlling C++ Dialect
2104
2105 @cindex compiler options, C++
2106 @cindex C++ options, command-line
2107 @cindex options, C++
2108 This section describes the command-line options that are only meaningful
2109 for C++ programs. You can also use most of the GNU compiler options
2110 regardless of what language your program is in. For example, you
2111 might compile a file @file{firstClass.C} like this:
2112
2113 @smallexample
2114 g++ -g -fstrict-enums -O -c firstClass.C
2115 @end smallexample
2116
2117 @noindent
2118 In this example, only @option{-fstrict-enums} is an option meant
2119 only for C++ programs; you can use the other options with any
2120 language supported by GCC@.
2121
2122 Here is a list of options that are @emph{only} for compiling C++ programs:
2123
2124 @table @gcctabopt
2125
2126 @item -fabi-version=@var{n}
2127 @opindex fabi-version
2128 Use version @var{n} of the C++ ABI@. The default is version 0.
2129
2130 Version 0 refers to the version conforming most closely to
2131 the C++ ABI specification. Therefore, the ABI obtained using version 0
2132 will change in different versions of G++ as ABI bugs are fixed.
2133
2134 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2135
2136 Version 2 is the version of the C++ ABI that first appeared in G++
2137 3.4, and was the default through G++ 4.9.
2138
2139 Version 3 corrects an error in mangling a constant address as a
2140 template argument.
2141
2142 Version 4, which first appeared in G++ 4.5, implements a standard
2143 mangling for vector types.
2144
2145 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2146 attribute const/volatile on function pointer types, decltype of a
2147 plain decl, and use of a function parameter in the declaration of
2148 another parameter.
2149
2150 Version 6, which first appeared in G++ 4.7, corrects the promotion
2151 behavior of C++11 scoped enums and the mangling of template argument
2152 packs, const/static_cast, prefix ++ and --, and a class scope function
2153 used as a template argument.
2154
2155 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2156 builtin type and corrects the mangling of lambdas in default argument
2157 scope.
2158
2159 Version 8, which first appeared in G++ 4.9, corrects the substitution
2160 behavior of function types with function-cv-qualifiers.
2161
2162 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2163 @code{nullptr_t}.
2164
2165 Version 10, which first appeared in G++ 6.1, adds mangling of
2166 attributes that affect type identity, such as ia32 calling convention
2167 attributes (e.g. @samp{stdcall}).
2168
2169 See also @option{-Wabi}.
2170
2171 @item -fabi-compat-version=@var{n}
2172 @opindex fabi-compat-version
2173 On targets that support strong aliases, G++
2174 works around mangling changes by creating an alias with the correct
2175 mangled name when defining a symbol with an incorrect mangled name.
2176 This switch specifies which ABI version to use for the alias.
2177
2178 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2179 compatibility). If another ABI version is explicitly selected, this
2180 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2181 use @option{-fabi-compat-version=2}.
2182
2183 If this option is not provided but @option{-Wabi=@var{n}} is, that
2184 version is used for compatibility aliases. If this option is provided
2185 along with @option{-Wabi} (without the version), the version from this
2186 option is used for the warning.
2187
2188 @item -fno-access-control
2189 @opindex fno-access-control
2190 Turn off all access checking. This switch is mainly useful for working
2191 around bugs in the access control code.
2192
2193 @item -fcheck-new
2194 @opindex fcheck-new
2195 Check that the pointer returned by @code{operator new} is non-null
2196 before attempting to modify the storage allocated. This check is
2197 normally unnecessary because the C++ standard specifies that
2198 @code{operator new} only returns @code{0} if it is declared
2199 @code{throw()}, in which case the compiler always checks the
2200 return value even without this option. In all other cases, when
2201 @code{operator new} has a non-empty exception specification, memory
2202 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2203 @samp{new (nothrow)}.
2204
2205 @item -fconstexpr-depth=@var{n}
2206 @opindex fconstexpr-depth
2207 Set the maximum nested evaluation depth for C++11 constexpr functions
2208 to @var{n}. A limit is needed to detect endless recursion during
2209 constant expression evaluation. The minimum specified by the standard
2210 is 512.
2211
2212 @item -fdeduce-init-list
2213 @opindex fdeduce-init-list
2214 Enable deduction of a template type parameter as
2215 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2216
2217 @smallexample
2218 template <class T> auto forward(T t) -> decltype (realfn (t))
2219 @{
2220 return realfn (t);
2221 @}
2222
2223 void f()
2224 @{
2225 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2226 @}
2227 @end smallexample
2228
2229 This deduction was implemented as a possible extension to the
2230 originally proposed semantics for the C++11 standard, but was not part
2231 of the final standard, so it is disabled by default. This option is
2232 deprecated, and may be removed in a future version of G++.
2233
2234 @item -ffriend-injection
2235 @opindex ffriend-injection
2236 Inject friend functions into the enclosing namespace, so that they are
2237 visible outside the scope of the class in which they are declared.
2238 Friend functions were documented to work this way in the old Annotated
2239 C++ Reference Manual.
2240 However, in ISO C++ a friend function that is not declared
2241 in an enclosing scope can only be found using argument dependent
2242 lookup. GCC defaults to the standard behavior.
2243
2244 This option is for compatibility, and may be removed in a future
2245 release of G++.
2246
2247 @item -fno-elide-constructors
2248 @opindex fno-elide-constructors
2249 The C++ standard allows an implementation to omit creating a temporary
2250 that is only used to initialize another object of the same type.
2251 Specifying this option disables that optimization, and forces G++ to
2252 call the copy constructor in all cases.
2253
2254 @item -fno-enforce-eh-specs
2255 @opindex fno-enforce-eh-specs
2256 Don't generate code to check for violation of exception specifications
2257 at run time. This option violates the C++ standard, but may be useful
2258 for reducing code size in production builds, much like defining
2259 @code{NDEBUG}. This does not give user code permission to throw
2260 exceptions in violation of the exception specifications; the compiler
2261 still optimizes based on the specifications, so throwing an
2262 unexpected exception results in undefined behavior at run time.
2263
2264 @item -fextern-tls-init
2265 @itemx -fno-extern-tls-init
2266 @opindex fextern-tls-init
2267 @opindex fno-extern-tls-init
2268 The C++11 and OpenMP standards allow @code{thread_local} and
2269 @code{threadprivate} variables to have dynamic (runtime)
2270 initialization. To support this, any use of such a variable goes
2271 through a wrapper function that performs any necessary initialization.
2272 When the use and definition of the variable are in the same
2273 translation unit, this overhead can be optimized away, but when the
2274 use is in a different translation unit there is significant overhead
2275 even if the variable doesn't actually need dynamic initialization. If
2276 the programmer can be sure that no use of the variable in a
2277 non-defining TU needs to trigger dynamic initialization (either
2278 because the variable is statically initialized, or a use of the
2279 variable in the defining TU will be executed before any uses in
2280 another TU), they can avoid this overhead with the
2281 @option{-fno-extern-tls-init} option.
2282
2283 On targets that support symbol aliases, the default is
2284 @option{-fextern-tls-init}. On targets that do not support symbol
2285 aliases, the default is @option{-fno-extern-tls-init}.
2286
2287 @item -ffor-scope
2288 @itemx -fno-for-scope
2289 @opindex ffor-scope
2290 @opindex fno-for-scope
2291 If @option{-ffor-scope} is specified, the scope of variables declared in
2292 a @i{for-init-statement} is limited to the @code{for} loop itself,
2293 as specified by the C++ standard.
2294 If @option{-fno-for-scope} is specified, the scope of variables declared in
2295 a @i{for-init-statement} extends to the end of the enclosing scope,
2296 as was the case in old versions of G++, and other (traditional)
2297 implementations of C++.
2298
2299 If neither flag is given, the default is to follow the standard,
2300 but to allow and give a warning for old-style code that would
2301 otherwise be invalid, or have different behavior.
2302
2303 @item -fno-gnu-keywords
2304 @opindex fno-gnu-keywords
2305 Do not recognize @code{typeof} as a keyword, so that code can use this
2306 word as an identifier. You can use the keyword @code{__typeof__} instead.
2307 @option{-ansi} implies @option{-fno-gnu-keywords}.
2308
2309 @item -fno-implicit-templates
2310 @opindex fno-implicit-templates
2311 Never emit code for non-inline templates that are instantiated
2312 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2313 @xref{Template Instantiation}, for more information.
2314
2315 @item -fno-implicit-inline-templates
2316 @opindex fno-implicit-inline-templates
2317 Don't emit code for implicit instantiations of inline templates, either.
2318 The default is to handle inlines differently so that compiles with and
2319 without optimization need the same set of explicit instantiations.
2320
2321 @item -fno-implement-inlines
2322 @opindex fno-implement-inlines
2323 To save space, do not emit out-of-line copies of inline functions
2324 controlled by @code{#pragma implementation}. This causes linker
2325 errors if these functions are not inlined everywhere they are called.
2326
2327 @item -fms-extensions
2328 @opindex fms-extensions
2329 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2330 int and getting a pointer to member function via non-standard syntax.
2331
2332 @item -fno-nonansi-builtins
2333 @opindex fno-nonansi-builtins
2334 Disable built-in declarations of functions that are not mandated by
2335 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2336 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2337
2338 @item -fnothrow-opt
2339 @opindex fnothrow-opt
2340 Treat a @code{throw()} exception specification as if it were a
2341 @code{noexcept} specification to reduce or eliminate the text size
2342 overhead relative to a function with no exception specification. If
2343 the function has local variables of types with non-trivial
2344 destructors, the exception specification actually makes the
2345 function smaller because the EH cleanups for those variables can be
2346 optimized away. The semantic effect is that an exception thrown out of
2347 a function with such an exception specification results in a call
2348 to @code{terminate} rather than @code{unexpected}.
2349
2350 @item -fno-operator-names
2351 @opindex fno-operator-names
2352 Do not treat the operator name keywords @code{and}, @code{bitand},
2353 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2354 synonyms as keywords.
2355
2356 @item -fno-optional-diags
2357 @opindex fno-optional-diags
2358 Disable diagnostics that the standard says a compiler does not need to
2359 issue. Currently, the only such diagnostic issued by G++ is the one for
2360 a name having multiple meanings within a class.
2361
2362 @item -fpermissive
2363 @opindex fpermissive
2364 Downgrade some diagnostics about nonconformant code from errors to
2365 warnings. Thus, using @option{-fpermissive} allows some
2366 nonconforming code to compile.
2367
2368 @item -fno-pretty-templates
2369 @opindex fno-pretty-templates
2370 When an error message refers to a specialization of a function
2371 template, the compiler normally prints the signature of the
2372 template followed by the template arguments and any typedefs or
2373 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2374 rather than @code{void f(int)}) so that it's clear which template is
2375 involved. When an error message refers to a specialization of a class
2376 template, the compiler omits any template arguments that match
2377 the default template arguments for that template. If either of these
2378 behaviors make it harder to understand the error message rather than
2379 easier, you can use @option{-fno-pretty-templates} to disable them.
2380
2381 @item -frepo
2382 @opindex frepo
2383 Enable automatic template instantiation at link time. This option also
2384 implies @option{-fno-implicit-templates}. @xref{Template
2385 Instantiation}, for more information.
2386
2387 @item -fno-rtti
2388 @opindex fno-rtti
2389 Disable generation of information about every class with virtual
2390 functions for use by the C++ run-time type identification features
2391 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2392 of the language, you can save some space by using this flag. Note that
2393 exception handling uses the same information, but G++ generates it as
2394 needed. The @code{dynamic_cast} operator can still be used for casts that
2395 do not require run-time type information, i.e.@: casts to @code{void *} or to
2396 unambiguous base classes.
2397
2398 @item -fsized-deallocation
2399 @opindex fsized-deallocation
2400 Enable the built-in global declarations
2401 @smallexample
2402 void operator delete (void *, std::size_t) noexcept;
2403 void operator delete[] (void *, std::size_t) noexcept;
2404 @end smallexample
2405 as introduced in C++14. This is useful for user-defined replacement
2406 deallocation functions that, for example, use the size of the object
2407 to make deallocation faster. Enabled by default under
2408 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2409 warns about places that might want to add a definition.
2410
2411 @item -fstats
2412 @opindex fstats
2413 Emit statistics about front-end processing at the end of the compilation.
2414 This information is generally only useful to the G++ development team.
2415
2416 @item -fstrict-enums
2417 @opindex fstrict-enums
2418 Allow the compiler to optimize using the assumption that a value of
2419 enumerated type can only be one of the values of the enumeration (as
2420 defined in the C++ standard; basically, a value that can be
2421 represented in the minimum number of bits needed to represent all the
2422 enumerators). This assumption may not be valid if the program uses a
2423 cast to convert an arbitrary integer value to the enumerated type.
2424
2425 @item -ftemplate-backtrace-limit=@var{n}
2426 @opindex ftemplate-backtrace-limit
2427 Set the maximum number of template instantiation notes for a single
2428 warning or error to @var{n}. The default value is 10.
2429
2430 @item -ftemplate-depth=@var{n}
2431 @opindex ftemplate-depth
2432 Set the maximum instantiation depth for template classes to @var{n}.
2433 A limit on the template instantiation depth is needed to detect
2434 endless recursions during template class instantiation. ANSI/ISO C++
2435 conforming programs must not rely on a maximum depth greater than 17
2436 (changed to 1024 in C++11). The default value is 900, as the compiler
2437 can run out of stack space before hitting 1024 in some situations.
2438
2439 @item -fno-threadsafe-statics
2440 @opindex fno-threadsafe-statics
2441 Do not emit the extra code to use the routines specified in the C++
2442 ABI for thread-safe initialization of local statics. You can use this
2443 option to reduce code size slightly in code that doesn't need to be
2444 thread-safe.
2445
2446 @item -fuse-cxa-atexit
2447 @opindex fuse-cxa-atexit
2448 Register destructors for objects with static storage duration with the
2449 @code{__cxa_atexit} function rather than the @code{atexit} function.
2450 This option is required for fully standards-compliant handling of static
2451 destructors, but only works if your C library supports
2452 @code{__cxa_atexit}.
2453
2454 @item -fno-use-cxa-get-exception-ptr
2455 @opindex fno-use-cxa-get-exception-ptr
2456 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2457 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2458 if the runtime routine is not available.
2459
2460 @item -fvisibility-inlines-hidden
2461 @opindex fvisibility-inlines-hidden
2462 This switch declares that the user does not attempt to compare
2463 pointers to inline functions or methods where the addresses of the two functions
2464 are taken in different shared objects.
2465
2466 The effect of this is that GCC may, effectively, mark inline methods with
2467 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2468 appear in the export table of a DSO and do not require a PLT indirection
2469 when used within the DSO@. Enabling this option can have a dramatic effect
2470 on load and link times of a DSO as it massively reduces the size of the
2471 dynamic export table when the library makes heavy use of templates.
2472
2473 The behavior of this switch is not quite the same as marking the
2474 methods as hidden directly, because it does not affect static variables
2475 local to the function or cause the compiler to deduce that
2476 the function is defined in only one shared object.
2477
2478 You may mark a method as having a visibility explicitly to negate the
2479 effect of the switch for that method. For example, if you do want to
2480 compare pointers to a particular inline method, you might mark it as
2481 having default visibility. Marking the enclosing class with explicit
2482 visibility has no effect.
2483
2484 Explicitly instantiated inline methods are unaffected by this option
2485 as their linkage might otherwise cross a shared library boundary.
2486 @xref{Template Instantiation}.
2487
2488 @item -fvisibility-ms-compat
2489 @opindex fvisibility-ms-compat
2490 This flag attempts to use visibility settings to make GCC's C++
2491 linkage model compatible with that of Microsoft Visual Studio.
2492
2493 The flag makes these changes to GCC's linkage model:
2494
2495 @enumerate
2496 @item
2497 It sets the default visibility to @code{hidden}, like
2498 @option{-fvisibility=hidden}.
2499
2500 @item
2501 Types, but not their members, are not hidden by default.
2502
2503 @item
2504 The One Definition Rule is relaxed for types without explicit
2505 visibility specifications that are defined in more than one
2506 shared object: those declarations are permitted if they are
2507 permitted when this option is not used.
2508 @end enumerate
2509
2510 In new code it is better to use @option{-fvisibility=hidden} and
2511 export those classes that are intended to be externally visible.
2512 Unfortunately it is possible for code to rely, perhaps accidentally,
2513 on the Visual Studio behavior.
2514
2515 Among the consequences of these changes are that static data members
2516 of the same type with the same name but defined in different shared
2517 objects are different, so changing one does not change the other;
2518 and that pointers to function members defined in different shared
2519 objects may not compare equal. When this flag is given, it is a
2520 violation of the ODR to define types with the same name differently.
2521
2522 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2523 @opindex fvtable-verify
2524 Turn on (or off, if using @option{-fvtable-verify=none}) the security
2525 feature that verifies at run time, for every virtual call, that
2526 the vtable pointer through which the call is made is valid for the type of
2527 the object, and has not been corrupted or overwritten. If an invalid vtable
2528 pointer is detected at run time, an error is reported and execution of the
2529 program is immediately halted.
2530
2531 This option causes run-time data structures to be built at program startup,
2532 which are used for verifying the vtable pointers.
2533 The options @samp{std} and @samp{preinit}
2534 control the timing of when these data structures are built. In both cases the
2535 data structures are built before execution reaches @code{main}. Using
2536 @option{-fvtable-verify=std} causes the data structures to be built after
2537 shared libraries have been loaded and initialized.
2538 @option{-fvtable-verify=preinit} causes them to be built before shared
2539 libraries have been loaded and initialized.
2540
2541 If this option appears multiple times in the command line with different
2542 values specified, @samp{none} takes highest priority over both @samp{std} and
2543 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2544
2545 @item -fvtv-debug
2546 @opindex fvtv-debug
2547 When used in conjunction with @option{-fvtable-verify=std} or
2548 @option{-fvtable-verify=preinit}, causes debug versions of the
2549 runtime functions for the vtable verification feature to be called.
2550 This flag also causes the compiler to log information about which
2551 vtable pointers it finds for each class.
2552 This information is written to a file named @file{vtv_set_ptr_data.log}
2553 in the directory named by the environment variable @env{VTV_LOGS_DIR}
2554 if that is defined or the current working directory otherwise.
2555
2556 Note: This feature @emph{appends} data to the log file. If you want a fresh log
2557 file, be sure to delete any existing one.
2558
2559 @item -fvtv-counts
2560 @opindex fvtv-counts
2561 This is a debugging flag. When used in conjunction with
2562 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2563 causes the compiler to keep track of the total number of virtual calls
2564 it encounters and the number of verifications it inserts. It also
2565 counts the number of calls to certain run-time library functions
2566 that it inserts and logs this information for each compilation unit.
2567 The compiler writes this information to a file named
2568 @file{vtv_count_data.log} in the directory named by the environment
2569 variable @env{VTV_LOGS_DIR} if that is defined or the current working
2570 directory otherwise. It also counts the size of the vtable pointer sets
2571 for each class, and writes this information to @file{vtv_class_set_sizes.log}
2572 in the same directory.
2573
2574 Note: This feature @emph{appends} data to the log files. To get fresh log
2575 files, be sure to delete any existing ones.
2576
2577 @item -fno-weak
2578 @opindex fno-weak
2579 Do not use weak symbol support, even if it is provided by the linker.
2580 By default, G++ uses weak symbols if they are available. This
2581 option exists only for testing, and should not be used by end-users;
2582 it results in inferior code and has no benefits. This option may
2583 be removed in a future release of G++.
2584
2585 @item -nostdinc++
2586 @opindex nostdinc++
2587 Do not search for header files in the standard directories specific to
2588 C++, but do still search the other standard directories. (This option
2589 is used when building the C++ library.)
2590 @end table
2591
2592 In addition, these optimization, warning, and code generation options
2593 have meanings only for C++ programs:
2594
2595 @table @gcctabopt
2596 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2597 @opindex Wabi
2598 @opindex Wno-abi
2599 Warn when G++ it generates code that is probably not compatible with
2600 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2601 ABI with each major release, normally @option{-Wabi} will warn only if
2602 there is a check added later in a release series for an ABI issue
2603 discovered since the initial release. @option{-Wabi} will warn about
2604 more things if an older ABI version is selected (with
2605 @option{-fabi-version=@var{n}}).
2606
2607 @option{-Wabi} can also be used with an explicit version number to
2608 warn about compatibility with a particular @option{-fabi-version}
2609 level, e.g. @option{-Wabi=2} to warn about changes relative to
2610 @option{-fabi-version=2}.
2611
2612 If an explicit version number is provided and
2613 @option{-fabi-compat-version} is not specified, the version number
2614 from this option is used for compatibility aliases. If no explicit
2615 version number is provided with this option, but
2616 @option{-fabi-compat-version} is specified, that version number is
2617 used for ABI warnings.
2618
2619 Although an effort has been made to warn about
2620 all such cases, there are probably some cases that are not warned about,
2621 even though G++ is generating incompatible code. There may also be
2622 cases where warnings are emitted even though the code that is generated
2623 is compatible.
2624
2625 You should rewrite your code to avoid these warnings if you are
2626 concerned about the fact that code generated by G++ may not be binary
2627 compatible with code generated by other compilers.
2628
2629 Known incompatibilities in @option{-fabi-version=2} (which was the
2630 default from GCC 3.4 to 4.9) include:
2631
2632 @itemize @bullet
2633
2634 @item
2635 A template with a non-type template parameter of reference type was
2636 mangled incorrectly:
2637 @smallexample
2638 extern int N;
2639 template <int &> struct S @{@};
2640 void n (S<N>) @{2@}
2641 @end smallexample
2642
2643 This was fixed in @option{-fabi-version=3}.
2644
2645 @item
2646 SIMD vector types declared using @code{__attribute ((vector_size))} were
2647 mangled in a non-standard way that does not allow for overloading of
2648 functions taking vectors of different sizes.
2649
2650 The mangling was changed in @option{-fabi-version=4}.
2651
2652 @item
2653 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2654 qualifiers, and @code{decltype} of a plain declaration was folded away.
2655
2656 These mangling issues were fixed in @option{-fabi-version=5}.
2657
2658 @item
2659 Scoped enumerators passed as arguments to a variadic function are
2660 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2661 On most targets this does not actually affect the parameter passing
2662 ABI, as there is no way to pass an argument smaller than @code{int}.
2663
2664 Also, the ABI changed the mangling of template argument packs,
2665 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2666 a class scope function used as a template argument.
2667
2668 These issues were corrected in @option{-fabi-version=6}.
2669
2670 @item
2671 Lambdas in default argument scope were mangled incorrectly, and the
2672 ABI changed the mangling of @code{nullptr_t}.
2673
2674 These issues were corrected in @option{-fabi-version=7}.
2675
2676 @item
2677 When mangling a function type with function-cv-qualifiers, the
2678 un-qualified function type was incorrectly treated as a substitution
2679 candidate.
2680
2681 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2682
2683 @item
2684 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2685 unaligned accesses. Note that this did not affect the ABI of a
2686 function with a @code{nullptr_t} parameter, as parameters have a
2687 minimum alignment.
2688
2689 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2690
2691 @item
2692 Target-specific attributes that affect the identity of a type, such as
2693 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2694 did not affect the mangled name, leading to name collisions when
2695 function pointers were used as template arguments.
2696
2697 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2698
2699 @end itemize
2700
2701 It also warns about psABI-related changes. The known psABI changes at this
2702 point include:
2703
2704 @itemize @bullet
2705
2706 @item
2707 For SysV/x86-64, unions with @code{long double} members are
2708 passed in memory as specified in psABI. For example:
2709
2710 @smallexample
2711 union U @{
2712 long double ld;
2713 int i;
2714 @};
2715 @end smallexample
2716
2717 @noindent
2718 @code{union U} is always passed in memory.
2719
2720 @end itemize
2721
2722 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2723 @opindex Wabi-tag
2724 @opindex -Wabi-tag
2725 Warn when a type with an ABI tag is used in a context that does not
2726 have that ABI tag. See @ref{C++ Attributes} for more information
2727 about ABI tags.
2728
2729 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2730 @opindex Wctor-dtor-privacy
2731 @opindex Wno-ctor-dtor-privacy
2732 Warn when a class seems unusable because all the constructors or
2733 destructors in that class are private, and it has neither friends nor
2734 public static member functions. Also warn if there are no non-private
2735 methods, and there's at least one private member function that isn't
2736 a constructor or destructor.
2737
2738 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2739 @opindex Wdelete-non-virtual-dtor
2740 @opindex Wno-delete-non-virtual-dtor
2741 Warn when @code{delete} is used to destroy an instance of a class that
2742 has virtual functions and non-virtual destructor. It is unsafe to delete
2743 an instance of a derived class through a pointer to a base class if the
2744 base class does not have a virtual destructor. This warning is enabled
2745 by @option{-Wall}.
2746
2747 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2748 @opindex Wliteral-suffix
2749 @opindex Wno-literal-suffix
2750 Warn when a string or character literal is followed by a ud-suffix which does
2751 not begin with an underscore. As a conforming extension, GCC treats such
2752 suffixes as separate preprocessing tokens in order to maintain backwards
2753 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2754 For example:
2755
2756 @smallexample
2757 #define __STDC_FORMAT_MACROS
2758 #include <inttypes.h>
2759 #include <stdio.h>
2760
2761 int main() @{
2762 int64_t i64 = 123;
2763 printf("My int64: %" PRId64"\n", i64);
2764 @}
2765 @end smallexample
2766
2767 In this case, @code{PRId64} is treated as a separate preprocessing token.
2768
2769 This warning is enabled by default.
2770
2771 @item -Wlto-type-mismatch
2772 @opindex Wlto-type-mismatch
2773 @opindex Wno-lto-type-mistmach
2774
2775 During the link-time optimization warn about type mismatches in between
2776 global declarations from different compilation units.
2777 Requires @option{-flto} to be enabled. Enabled by default.
2778
2779 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2780 @opindex Wnarrowing
2781 @opindex Wno-narrowing
2782 Warn when a narrowing conversion prohibited by C++11 occurs within
2783 @samp{@{ @}}, e.g.
2784
2785 @smallexample
2786 int i = @{ 2.2 @}; // error: narrowing from double to int
2787 @end smallexample
2788
2789 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2790
2791 With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2792 required by the standard. Note that this does not affect the meaning
2793 of well-formed code; narrowing conversions are still considered
2794 ill-formed in SFINAE context.
2795
2796 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2797 @opindex Wnoexcept
2798 @opindex Wno-noexcept
2799 Warn when a noexcept-expression evaluates to false because of a call
2800 to a function that does not have a non-throwing exception
2801 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2802 the compiler to never throw an exception.
2803
2804 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2805 @opindex Wnon-virtual-dtor
2806 @opindex Wno-non-virtual-dtor
2807 Warn when a class has virtual functions and an accessible non-virtual
2808 destructor itself or in an accessible polymorphic base class, in which
2809 case it is possible but unsafe to delete an instance of a derived
2810 class through a pointer to the class itself or base class. This
2811 warning is automatically enabled if @option{-Weffc++} is specified.
2812
2813 @item -Wreorder @r{(C++ and Objective-C++ only)}
2814 @opindex Wreorder
2815 @opindex Wno-reorder
2816 @cindex reordering, warning
2817 @cindex warning for reordering of member initializers
2818 Warn when the order of member initializers given in the code does not
2819 match the order in which they must be executed. For instance:
2820
2821 @smallexample
2822 struct A @{
2823 int i;
2824 int j;
2825 A(): j (0), i (1) @{ @}
2826 @};
2827 @end smallexample
2828
2829 @noindent
2830 The compiler rearranges the member initializers for @code{i}
2831 and @code{j} to match the declaration order of the members, emitting
2832 a warning to that effect. This warning is enabled by @option{-Wall}.
2833
2834 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2835 @opindex fext-numeric-literals
2836 @opindex fno-ext-numeric-literals
2837 Accept imaginary, fixed-point, or machine-defined
2838 literal number suffixes as GNU extensions.
2839 When this option is turned off these suffixes are treated
2840 as C++11 user-defined literal numeric suffixes.
2841 This is on by default for all pre-C++11 dialects and all GNU dialects:
2842 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2843 @option{-std=gnu++14}.
2844 This option is off by default
2845 for ISO C++11 onwards (@option{-std=c++11}, ...).
2846 @end table
2847
2848 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2849
2850 @table @gcctabopt
2851 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2852 @opindex Weffc++
2853 @opindex Wno-effc++
2854 Warn about violations of the following style guidelines from Scott Meyers'
2855 @cite{Effective C++} series of books:
2856
2857 @itemize @bullet
2858 @item
2859 Define a copy constructor and an assignment operator for classes
2860 with dynamically-allocated memory.
2861
2862 @item
2863 Prefer initialization to assignment in constructors.
2864
2865 @item
2866 Have @code{operator=} return a reference to @code{*this}.
2867
2868 @item
2869 Don't try to return a reference when you must return an object.
2870
2871 @item
2872 Distinguish between prefix and postfix forms of increment and
2873 decrement operators.
2874
2875 @item
2876 Never overload @code{&&}, @code{||}, or @code{,}.
2877
2878 @end itemize
2879
2880 This option also enables @option{-Wnon-virtual-dtor}, which is also
2881 one of the effective C++ recommendations. However, the check is
2882 extended to warn about the lack of virtual destructor in accessible
2883 non-polymorphic bases classes too.
2884
2885 When selecting this option, be aware that the standard library
2886 headers do not obey all of these guidelines; use @samp{grep -v}
2887 to filter out those warnings.
2888
2889 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2890 @opindex Wstrict-null-sentinel
2891 @opindex Wno-strict-null-sentinel
2892 Warn about the use of an uncasted @code{NULL} as sentinel. When
2893 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2894 to @code{__null}. Although it is a null pointer constant rather than a
2895 null pointer, it is guaranteed to be of the same size as a pointer.
2896 But this use is not portable across different compilers.
2897
2898 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2899 @opindex Wno-non-template-friend
2900 @opindex Wnon-template-friend
2901 Disable warnings when non-templatized friend functions are declared
2902 within a template. Since the advent of explicit template specification
2903 support in G++, if the name of the friend is an unqualified-id (i.e.,
2904 @samp{friend foo(int)}), the C++ language specification demands that the
2905 friend declare or define an ordinary, nontemplate function. (Section
2906 14.5.3). Before G++ implemented explicit specification, unqualified-ids
2907 could be interpreted as a particular specialization of a templatized
2908 function. Because this non-conforming behavior is no longer the default
2909 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2910 check existing code for potential trouble spots and is on by default.
2911 This new compiler behavior can be turned off with
2912 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2913 but disables the helpful warning.
2914
2915 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2916 @opindex Wold-style-cast
2917 @opindex Wno-old-style-cast
2918 Warn if an old-style (C-style) cast to a non-void type is used within
2919 a C++ program. The new-style casts (@code{dynamic_cast},
2920 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2921 less vulnerable to unintended effects and much easier to search for.
2922
2923 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2924 @opindex Woverloaded-virtual
2925 @opindex Wno-overloaded-virtual
2926 @cindex overloaded virtual function, warning
2927 @cindex warning for overloaded virtual function
2928 Warn when a function declaration hides virtual functions from a
2929 base class. For example, in:
2930
2931 @smallexample
2932 struct A @{
2933 virtual void f();
2934 @};
2935
2936 struct B: public A @{
2937 void f(int);
2938 @};
2939 @end smallexample
2940
2941 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2942 like:
2943
2944 @smallexample
2945 B* b;
2946 b->f();
2947 @end smallexample
2948
2949 @noindent
2950 fails to compile.
2951
2952 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2953 @opindex Wno-pmf-conversions
2954 @opindex Wpmf-conversions
2955 Disable the diagnostic for converting a bound pointer to member function
2956 to a plain pointer.
2957
2958 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
2959 @opindex Wsign-promo
2960 @opindex Wno-sign-promo
2961 Warn when overload resolution chooses a promotion from unsigned or
2962 enumerated type to a signed type, over a conversion to an unsigned type of
2963 the same size. Previous versions of G++ tried to preserve
2964 unsignedness, but the standard mandates the current behavior.
2965
2966 @item -Wtemplates @r{(C++ and Objective-C++ only)}
2967 @opindex Wtemplates
2968 Warn when a primary template declaration is encountered. Some coding
2969 rules disallow templates, and this may be used to enforce that rule.
2970 The warning is inactive inside a system header file, such as the STL, so
2971 one can still use the STL. One may also instantiate or specialize
2972 templates.
2973
2974 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
2975 @opindex Wmultiple-inheritance
2976 Warn when a class is defined with multiple direct base classes. Some
2977 coding rules disallow multiple inheritance, and this may be used to
2978 enforce that rule. The warning is inactive inside a system header file,
2979 such as the STL, so one can still use the STL. One may also define
2980 classes that indirectly use multiple inheritance.
2981
2982 @item -Wvirtual-inheritance
2983 @opindex Wvirtual-inheritance
2984 Warn when a class is defined with a virtual direct base classe. Some
2985 coding rules disallow multiple inheritance, and this may be used to
2986 enforce that rule. The warning is inactive inside a system header file,
2987 such as the STL, so one can still use the STL. One may also define
2988 classes that indirectly use virtual inheritance.
2989
2990 @item -Wnamespaces
2991 @opindex Wnamespaces
2992 Warn when a namespace definition is opened. Some coding rules disallow
2993 namespaces, and this may be used to enforce that rule. The warning is
2994 inactive inside a system header file, such as the STL, so one can still
2995 use the STL. One may also use using directives and qualified names.
2996
2997 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
2998 @opindex Wterminate
2999 @opindex Wno-terminate
3000 Disable the warning about a throw-expression that will immediately
3001 result in a call to @code{terminate}.
3002 @end table
3003
3004 @node Objective-C and Objective-C++ Dialect Options
3005 @section Options Controlling Objective-C and Objective-C++ Dialects
3006
3007 @cindex compiler options, Objective-C and Objective-C++
3008 @cindex Objective-C and Objective-C++ options, command-line
3009 @cindex options, Objective-C and Objective-C++
3010 (NOTE: This manual does not describe the Objective-C and Objective-C++
3011 languages themselves. @xref{Standards,,Language Standards
3012 Supported by GCC}, for references.)
3013
3014 This section describes the command-line options that are only meaningful
3015 for Objective-C and Objective-C++ programs. You can also use most of
3016 the language-independent GNU compiler options.
3017 For example, you might compile a file @file{some_class.m} like this:
3018
3019 @smallexample
3020 gcc -g -fgnu-runtime -O -c some_class.m
3021 @end smallexample
3022
3023 @noindent
3024 In this example, @option{-fgnu-runtime} is an option meant only for
3025 Objective-C and Objective-C++ programs; you can use the other options with
3026 any language supported by GCC@.
3027
3028 Note that since Objective-C is an extension of the C language, Objective-C
3029 compilations may also use options specific to the C front-end (e.g.,
3030 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3031 C++-specific options (e.g., @option{-Wabi}).
3032
3033 Here is a list of options that are @emph{only} for compiling Objective-C
3034 and Objective-C++ programs:
3035
3036 @table @gcctabopt
3037 @item -fconstant-string-class=@var{class-name}
3038 @opindex fconstant-string-class
3039 Use @var{class-name} as the name of the class to instantiate for each
3040 literal string specified with the syntax @code{@@"@dots{}"}. The default
3041 class name is @code{NXConstantString} if the GNU runtime is being used, and
3042 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3043 @option{-fconstant-cfstrings} option, if also present, overrides the
3044 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3045 to be laid out as constant CoreFoundation strings.
3046
3047 @item -fgnu-runtime
3048 @opindex fgnu-runtime
3049 Generate object code compatible with the standard GNU Objective-C
3050 runtime. This is the default for most types of systems.
3051
3052 @item -fnext-runtime
3053 @opindex fnext-runtime
3054 Generate output compatible with the NeXT runtime. This is the default
3055 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3056 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3057 used.
3058
3059 @item -fno-nil-receivers
3060 @opindex fno-nil-receivers
3061 Assume that all Objective-C message dispatches (@code{[receiver
3062 message:arg]}) in this translation unit ensure that the receiver is
3063 not @code{nil}. This allows for more efficient entry points in the
3064 runtime to be used. This option is only available in conjunction with
3065 the NeXT runtime and ABI version 0 or 1.
3066
3067 @item -fobjc-abi-version=@var{n}
3068 @opindex fobjc-abi-version
3069 Use version @var{n} of the Objective-C ABI for the selected runtime.
3070 This option is currently supported only for the NeXT runtime. In that
3071 case, Version 0 is the traditional (32-bit) ABI without support for
3072 properties and other Objective-C 2.0 additions. Version 1 is the
3073 traditional (32-bit) ABI with support for properties and other
3074 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3075 nothing is specified, the default is Version 0 on 32-bit target
3076 machines, and Version 2 on 64-bit target machines.
3077
3078 @item -fobjc-call-cxx-cdtors
3079 @opindex fobjc-call-cxx-cdtors
3080 For each Objective-C class, check if any of its instance variables is a
3081 C++ object with a non-trivial default constructor. If so, synthesize a
3082 special @code{- (id) .cxx_construct} instance method which runs
3083 non-trivial default constructors on any such instance variables, in order,
3084 and then return @code{self}. Similarly, check if any instance variable
3085 is a C++ object with a non-trivial destructor, and if so, synthesize a
3086 special @code{- (void) .cxx_destruct} method which runs
3087 all such default destructors, in reverse order.
3088
3089 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3090 methods thusly generated only operate on instance variables
3091 declared in the current Objective-C class, and not those inherited
3092 from superclasses. It is the responsibility of the Objective-C
3093 runtime to invoke all such methods in an object's inheritance
3094 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3095 by the runtime immediately after a new object instance is allocated;
3096 the @code{- (void) .cxx_destruct} methods are invoked immediately
3097 before the runtime deallocates an object instance.
3098
3099 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3100 support for invoking the @code{- (id) .cxx_construct} and
3101 @code{- (void) .cxx_destruct} methods.
3102
3103 @item -fobjc-direct-dispatch
3104 @opindex fobjc-direct-dispatch
3105 Allow fast jumps to the message dispatcher. On Darwin this is
3106 accomplished via the comm page.
3107
3108 @item -fobjc-exceptions
3109 @opindex fobjc-exceptions
3110 Enable syntactic support for structured exception handling in
3111 Objective-C, similar to what is offered by C++ and Java. This option
3112 is required to use the Objective-C keywords @code{@@try},
3113 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3114 @code{@@synchronized}. This option is available with both the GNU
3115 runtime and the NeXT runtime (but not available in conjunction with
3116 the NeXT runtime on Mac OS X 10.2 and earlier).
3117
3118 @item -fobjc-gc
3119 @opindex fobjc-gc
3120 Enable garbage collection (GC) in Objective-C and Objective-C++
3121 programs. This option is only available with the NeXT runtime; the
3122 GNU runtime has a different garbage collection implementation that
3123 does not require special compiler flags.
3124
3125 @item -fobjc-nilcheck
3126 @opindex fobjc-nilcheck
3127 For the NeXT runtime with version 2 of the ABI, check for a nil
3128 receiver in method invocations before doing the actual method call.
3129 This is the default and can be disabled using
3130 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3131 checked for nil in this way no matter what this flag is set to.
3132 Currently this flag does nothing when the GNU runtime, or an older
3133 version of the NeXT runtime ABI, is used.
3134
3135 @item -fobjc-std=objc1
3136 @opindex fobjc-std
3137 Conform to the language syntax of Objective-C 1.0, the language
3138 recognized by GCC 4.0. This only affects the Objective-C additions to
3139 the C/C++ language; it does not affect conformance to C/C++ standards,
3140 which is controlled by the separate C/C++ dialect option flags. When
3141 this option is used with the Objective-C or Objective-C++ compiler,
3142 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3143 This is useful if you need to make sure that your Objective-C code can
3144 be compiled with older versions of GCC@.
3145
3146 @item -freplace-objc-classes
3147 @opindex freplace-objc-classes
3148 Emit a special marker instructing @command{ld(1)} not to statically link in
3149 the resulting object file, and allow @command{dyld(1)} to load it in at
3150 run time instead. This is used in conjunction with the Fix-and-Continue
3151 debugging mode, where the object file in question may be recompiled and
3152 dynamically reloaded in the course of program execution, without the need
3153 to restart the program itself. Currently, Fix-and-Continue functionality
3154 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3155 and later.
3156
3157 @item -fzero-link
3158 @opindex fzero-link
3159 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3160 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3161 compile time) with static class references that get initialized at load time,
3162 which improves run-time performance. Specifying the @option{-fzero-link} flag
3163 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3164 to be retained. This is useful in Zero-Link debugging mode, since it allows
3165 for individual class implementations to be modified during program execution.
3166 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3167 regardless of command-line options.
3168
3169 @item -fno-local-ivars
3170 @opindex fno-local-ivars
3171 @opindex flocal-ivars
3172 By default instance variables in Objective-C can be accessed as if
3173 they were local variables from within the methods of the class they're
3174 declared in. This can lead to shadowing between instance variables
3175 and other variables declared either locally inside a class method or
3176 globally with the same name. Specifying the @option{-fno-local-ivars}
3177 flag disables this behavior thus avoiding variable shadowing issues.
3178
3179 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3180 @opindex fivar-visibility
3181 Set the default instance variable visibility to the specified option
3182 so that instance variables declared outside the scope of any access
3183 modifier directives default to the specified visibility.
3184
3185 @item -gen-decls
3186 @opindex gen-decls
3187 Dump interface declarations for all classes seen in the source file to a
3188 file named @file{@var{sourcename}.decl}.
3189
3190 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3191 @opindex Wassign-intercept
3192 @opindex Wno-assign-intercept
3193 Warn whenever an Objective-C assignment is being intercepted by the
3194 garbage collector.
3195
3196 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3197 @opindex Wno-protocol
3198 @opindex Wprotocol
3199 If a class is declared to implement a protocol, a warning is issued for
3200 every method in the protocol that is not implemented by the class. The
3201 default behavior is to issue a warning for every method not explicitly
3202 implemented in the class, even if a method implementation is inherited
3203 from the superclass. If you use the @option{-Wno-protocol} option, then
3204 methods inherited from the superclass are considered to be implemented,
3205 and no warning is issued for them.
3206
3207 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3208 @opindex Wselector
3209 @opindex Wno-selector
3210 Warn if multiple methods of different types for the same selector are
3211 found during compilation. The check is performed on the list of methods
3212 in the final stage of compilation. Additionally, a check is performed
3213 for each selector appearing in a @code{@@selector(@dots{})}
3214 expression, and a corresponding method for that selector has been found
3215 during compilation. Because these checks scan the method table only at
3216 the end of compilation, these warnings are not produced if the final
3217 stage of compilation is not reached, for example because an error is
3218 found during compilation, or because the @option{-fsyntax-only} option is
3219 being used.
3220
3221 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3222 @opindex Wstrict-selector-match
3223 @opindex Wno-strict-selector-match
3224 Warn if multiple methods with differing argument and/or return types are
3225 found for a given selector when attempting to send a message using this
3226 selector to a receiver of type @code{id} or @code{Class}. When this flag
3227 is off (which is the default behavior), the compiler omits such warnings
3228 if any differences found are confined to types that share the same size
3229 and alignment.
3230
3231 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3232 @opindex Wundeclared-selector
3233 @opindex Wno-undeclared-selector
3234 Warn if a @code{@@selector(@dots{})} expression referring to an
3235 undeclared selector is found. A selector is considered undeclared if no
3236 method with that name has been declared before the
3237 @code{@@selector(@dots{})} expression, either explicitly in an
3238 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3239 an @code{@@implementation} section. This option always performs its
3240 checks as soon as a @code{@@selector(@dots{})} expression is found,
3241 while @option{-Wselector} only performs its checks in the final stage of
3242 compilation. This also enforces the coding style convention
3243 that methods and selectors must be declared before being used.
3244
3245 @item -print-objc-runtime-info
3246 @opindex print-objc-runtime-info
3247 Generate C header describing the largest structure that is passed by
3248 value, if any.
3249
3250 @end table
3251
3252 @node Diagnostic Message Formatting Options
3253 @section Options to Control Diagnostic Messages Formatting
3254 @cindex options to control diagnostics formatting
3255 @cindex diagnostic messages
3256 @cindex message formatting
3257
3258 Traditionally, diagnostic messages have been formatted irrespective of
3259 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3260 options described below
3261 to control the formatting algorithm for diagnostic messages,
3262 e.g.@: how many characters per line, how often source location
3263 information should be reported. Note that some language front ends may not
3264 honor these options.
3265
3266 @table @gcctabopt
3267 @item -fmessage-length=@var{n}
3268 @opindex fmessage-length
3269 Try to format error messages so that they fit on lines of about
3270 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3271 done; each error message appears on a single line. This is the
3272 default for all front ends.
3273
3274 @item -fdiagnostics-show-location=once
3275 @opindex fdiagnostics-show-location
3276 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3277 reporter to emit source location information @emph{once}; that is, in
3278 case the message is too long to fit on a single physical line and has to
3279 be wrapped, the source location won't be emitted (as prefix) again,
3280 over and over, in subsequent continuation lines. This is the default
3281 behavior.
3282
3283 @item -fdiagnostics-show-location=every-line
3284 Only meaningful in line-wrapping mode. Instructs the diagnostic
3285 messages reporter to emit the same source location information (as
3286 prefix) for physical lines that result from the process of breaking
3287 a message which is too long to fit on a single line.
3288
3289 @item -fdiagnostics-color[=@var{WHEN}]
3290 @itemx -fno-diagnostics-color
3291 @opindex fdiagnostics-color
3292 @cindex highlight, color, colour
3293 @vindex GCC_COLORS @r{environment variable}
3294 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3295 or @samp{auto}. The default depends on how the compiler has been configured,
3296 it can be any of the above @var{WHEN} options or also @samp{never}
3297 if @env{GCC_COLORS} environment variable isn't present in the environment,
3298 and @samp{auto} otherwise.
3299 @samp{auto} means to use color only when the standard error is a terminal.
3300 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3301 aliases for @option{-fdiagnostics-color=always} and
3302 @option{-fdiagnostics-color=never}, respectively.
3303
3304 The colors are defined by the environment variable @env{GCC_COLORS}.
3305 Its value is a colon-separated list of capabilities and Select Graphic
3306 Rendition (SGR) substrings. SGR commands are interpreted by the
3307 terminal or terminal emulator. (See the section in the documentation
3308 of your text terminal for permitted values and their meanings as
3309 character attributes.) These substring values are integers in decimal
3310 representation and can be concatenated with semicolons.
3311 Common values to concatenate include
3312 @samp{1} for bold,
3313 @samp{4} for underline,
3314 @samp{5} for blink,
3315 @samp{7} for inverse,
3316 @samp{39} for default foreground color,
3317 @samp{30} to @samp{37} for foreground colors,
3318 @samp{90} to @samp{97} for 16-color mode foreground colors,
3319 @samp{38;5;0} to @samp{38;5;255}
3320 for 88-color and 256-color modes foreground colors,
3321 @samp{49} for default background color,
3322 @samp{40} to @samp{47} for background colors,
3323 @samp{100} to @samp{107} for 16-color mode background colors,
3324 and @samp{48;5;0} to @samp{48;5;255}
3325 for 88-color and 256-color modes background colors.
3326
3327 The default @env{GCC_COLORS} is
3328 @smallexample
3329 error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3330 @end smallexample
3331 @noindent
3332 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3333 @samp{01;36} is bold cyan, @samp{01;32} is bold green and
3334 @samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3335 string disables colors.
3336 Supported capabilities are as follows.
3337
3338 @table @code
3339 @item error=
3340 @vindex error GCC_COLORS @r{capability}
3341 SGR substring for error: markers.
3342
3343 @item warning=
3344 @vindex warning GCC_COLORS @r{capability}
3345 SGR substring for warning: markers.
3346
3347 @item note=
3348 @vindex note GCC_COLORS @r{capability}
3349 SGR substring for note: markers.
3350
3351 @item caret=
3352 @vindex caret GCC_COLORS @r{capability}
3353 SGR substring for caret line.
3354
3355 @item locus=
3356 @vindex locus GCC_COLORS @r{capability}
3357 SGR substring for location information, @samp{file:line} or
3358 @samp{file:line:column} etc.
3359
3360 @item quote=
3361 @vindex quote GCC_COLORS @r{capability}
3362 SGR substring for information printed within quotes.
3363 @end table
3364
3365 @item -fno-diagnostics-show-option
3366 @opindex fno-diagnostics-show-option
3367 @opindex fdiagnostics-show-option
3368 By default, each diagnostic emitted includes text indicating the
3369 command-line option that directly controls the diagnostic (if such an
3370 option is known to the diagnostic machinery). Specifying the
3371 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3372
3373 @item -fno-diagnostics-show-caret
3374 @opindex fno-diagnostics-show-caret
3375 @opindex fdiagnostics-show-caret
3376 By default, each diagnostic emitted includes the original source line
3377 and a caret '^' indicating the column. This option suppresses this
3378 information. The source line is truncated to @var{n} characters, if
3379 the @option{-fmessage-length=n} option is given. When the output is done
3380 to the terminal, the width is limited to the width given by the
3381 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3382
3383 @end table
3384
3385 @node Warning Options
3386 @section Options to Request or Suppress Warnings
3387 @cindex options to control warnings
3388 @cindex warning messages
3389 @cindex messages, warning
3390 @cindex suppressing warnings
3391
3392 Warnings are diagnostic messages that report constructions that
3393 are not inherently erroneous but that are risky or suggest there
3394 may have been an error.
3395
3396 The following language-independent options do not enable specific
3397 warnings but control the kinds of diagnostics produced by GCC@.
3398
3399 @table @gcctabopt
3400 @cindex syntax checking
3401 @item -fsyntax-only
3402 @opindex fsyntax-only
3403 Check the code for syntax errors, but don't do anything beyond that.
3404
3405 @item -fmax-errors=@var{n}
3406 @opindex fmax-errors
3407 Limits the maximum number of error messages to @var{n}, at which point
3408 GCC bails out rather than attempting to continue processing the source
3409 code. If @var{n} is 0 (the default), there is no limit on the number
3410 of error messages produced. If @option{-Wfatal-errors} is also
3411 specified, then @option{-Wfatal-errors} takes precedence over this
3412 option.
3413
3414 @item -w
3415 @opindex w
3416 Inhibit all warning messages.
3417
3418 @item -Werror
3419 @opindex Werror
3420 @opindex Wno-error
3421 Make all warnings into errors.
3422
3423 @item -Werror=
3424 @opindex Werror=
3425 @opindex Wno-error=
3426 Make the specified warning into an error. The specifier for a warning
3427 is appended; for example @option{-Werror=switch} turns the warnings
3428 controlled by @option{-Wswitch} into errors. This switch takes a
3429 negative form, to be used to negate @option{-Werror} for specific
3430 warnings; for example @option{-Wno-error=switch} makes
3431 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3432 is in effect.
3433
3434 The warning message for each controllable warning includes the
3435 option that controls the warning. That option can then be used with
3436 @option{-Werror=} and @option{-Wno-error=} as described above.
3437 (Printing of the option in the warning message can be disabled using the
3438 @option{-fno-diagnostics-show-option} flag.)
3439
3440 Note that specifying @option{-Werror=}@var{foo} automatically implies
3441 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3442 imply anything.
3443
3444 @item -Wfatal-errors
3445 @opindex Wfatal-errors
3446 @opindex Wno-fatal-errors
3447 This option causes the compiler to abort compilation on the first error
3448 occurred rather than trying to keep going and printing further error
3449 messages.
3450
3451 @end table
3452
3453 You can request many specific warnings with options beginning with
3454 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3455 implicit declarations. Each of these specific warning options also
3456 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3457 example, @option{-Wno-implicit}. This manual lists only one of the
3458 two forms, whichever is not the default. For further
3459 language-specific options also refer to @ref{C++ Dialect Options} and
3460 @ref{Objective-C and Objective-C++ Dialect Options}.
3461
3462 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3463 options, such as @option{-Wunused}, which may turn on further options,
3464 such as @option{-Wunused-value}. The combined effect of positive and
3465 negative forms is that more specific options have priority over less
3466 specific ones, independently of their position in the command-line. For
3467 options of the same specificity, the last one takes effect. Options
3468 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3469 as if they appeared at the end of the command-line.
3470
3471 When an unrecognized warning option is requested (e.g.,
3472 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3473 that the option is not recognized. However, if the @option{-Wno-} form
3474 is used, the behavior is slightly different: no diagnostic is
3475 produced for @option{-Wno-unknown-warning} unless other diagnostics
3476 are being produced. This allows the use of new @option{-Wno-} options
3477 with old compilers, but if something goes wrong, the compiler
3478 warns that an unrecognized option is present.
3479
3480 @table @gcctabopt
3481 @item -Wpedantic
3482 @itemx -pedantic
3483 @opindex pedantic
3484 @opindex Wpedantic
3485 Issue all the warnings demanded by strict ISO C and ISO C++;
3486 reject all programs that use forbidden extensions, and some other
3487 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3488 version of the ISO C standard specified by any @option{-std} option used.
3489
3490 Valid ISO C and ISO C++ programs should compile properly with or without
3491 this option (though a rare few require @option{-ansi} or a
3492 @option{-std} option specifying the required version of ISO C)@. However,
3493 without this option, certain GNU extensions and traditional C and C++
3494 features are supported as well. With this option, they are rejected.
3495
3496 @option{-Wpedantic} does not cause warning messages for use of the
3497 alternate keywords whose names begin and end with @samp{__}. Pedantic
3498 warnings are also disabled in the expression that follows
3499 @code{__extension__}. However, only system header files should use
3500 these escape routes; application programs should avoid them.
3501 @xref{Alternate Keywords}.
3502
3503 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3504 C conformance. They soon find that it does not do quite what they want:
3505 it finds some non-ISO practices, but not all---only those for which
3506 ISO C @emph{requires} a diagnostic, and some others for which
3507 diagnostics have been added.
3508
3509 A feature to report any failure to conform to ISO C might be useful in
3510 some instances, but would require considerable additional work and would
3511 be quite different from @option{-Wpedantic}. We don't have plans to
3512 support such a feature in the near future.
3513
3514 Where the standard specified with @option{-std} represents a GNU
3515 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3516 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3517 extended dialect is based. Warnings from @option{-Wpedantic} are given
3518 where they are required by the base standard. (It does not make sense
3519 for such warnings to be given only for features not in the specified GNU
3520 C dialect, since by definition the GNU dialects of C include all
3521 features the compiler supports with the given option, and there would be
3522 nothing to warn about.)
3523
3524 @item -pedantic-errors
3525 @opindex pedantic-errors
3526 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3527 requires a diagnostic, in some cases where there is undefined behavior
3528 at compile-time and in some other cases that do not prevent compilation
3529 of programs that are valid according to the standard. This is not
3530 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3531 by this option and not enabled by the latter and vice versa.
3532
3533 @item -Wall
3534 @opindex Wall
3535 @opindex Wno-all
3536 This enables all the warnings about constructions that some users
3537 consider questionable, and that are easy to avoid (or modify to
3538 prevent the warning), even in conjunction with macros. This also
3539 enables some language-specific warnings described in @ref{C++ Dialect
3540 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3541
3542 @option{-Wall} turns on the following warning flags:
3543
3544 @gccoptlist{-Waddress @gol
3545 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3546 -Wbool-compare @gol
3547 -Wc++11-compat -Wc++14-compat@gol
3548 -Wchar-subscripts @gol
3549 -Wcomment @gol
3550 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3551 -Wformat @gol
3552 -Wimplicit @r{(C and Objective-C only)} @gol
3553 -Wimplicit-int @r{(C and Objective-C only)} @gol
3554 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3555 -Winit-self @r{(only for C++)} @gol
3556 -Wlogical-not-parentheses
3557 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3558 -Wmaybe-uninitialized @gol
3559 -Wmemset-transposed-args @gol
3560 -Wmisleading-indentation @r{(only for C/C++)} @gol
3561 -Wmissing-braces @r{(only for C/ObjC)} @gol
3562 -Wnarrowing @r{(only for C++)} @gol
3563 -Wnonnull @gol
3564 -Wopenmp-simd @gol
3565 -Wparentheses @gol
3566 -Wpointer-sign @gol
3567 -Wreorder @gol
3568 -Wreturn-type @gol
3569 -Wsequence-point @gol
3570 -Wsign-compare @r{(only in C++)} @gol
3571 -Wsizeof-pointer-memaccess @gol
3572 -Wstrict-aliasing @gol
3573 -Wstrict-overflow=1 @gol
3574 -Wswitch @gol
3575 -Wtautological-compare @gol
3576 -Wtrigraphs @gol
3577 -Wuninitialized @gol
3578 -Wunknown-pragmas @gol
3579 -Wunused-function @gol
3580 -Wunused-label @gol
3581 -Wunused-value @gol
3582 -Wunused-variable @gol
3583 -Wvolatile-register-var @gol
3584 }
3585
3586 Note that some warning flags are not implied by @option{-Wall}. Some of
3587 them warn about constructions that users generally do not consider
3588 questionable, but which occasionally you might wish to check for;
3589 others warn about constructions that are necessary or hard to avoid in
3590 some cases, and there is no simple way to modify the code to suppress
3591 the warning. Some of them are enabled by @option{-Wextra} but many of
3592 them must be enabled individually.
3593
3594 @item -Wextra
3595 @opindex W
3596 @opindex Wextra
3597 @opindex Wno-extra
3598 This enables some extra warning flags that are not enabled by
3599 @option{-Wall}. (This option used to be called @option{-W}. The older
3600 name is still supported, but the newer name is more descriptive.)
3601
3602 @gccoptlist{-Wclobbered @gol
3603 -Wempty-body @gol
3604 -Wignored-qualifiers @gol
3605 -Wmissing-field-initializers @gol
3606 -Wmissing-parameter-type @r{(C only)} @gol
3607 -Wold-style-declaration @r{(C only)} @gol
3608 -Woverride-init @gol
3609 -Wsign-compare @r{(C only)} @gol
3610 -Wtype-limits @gol
3611 -Wuninitialized @gol
3612 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
3613 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3614 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3615 }
3616
3617 The option @option{-Wextra} also prints warning messages for the
3618 following cases:
3619
3620 @itemize @bullet
3621
3622 @item
3623 A pointer is compared against integer zero with @code{<}, @code{<=},
3624 @code{>}, or @code{>=}.
3625
3626 @item
3627 (C++ only) An enumerator and a non-enumerator both appear in a
3628 conditional expression.
3629
3630 @item
3631 (C++ only) Ambiguous virtual bases.
3632
3633 @item
3634 (C++ only) Subscripting an array that has been declared @code{register}.
3635
3636 @item
3637 (C++ only) Taking the address of a variable that has been declared
3638 @code{register}.
3639
3640 @item
3641 (C++ only) A base class is not initialized in a derived class's copy
3642 constructor.
3643
3644 @end itemize
3645
3646 @item -Wchar-subscripts
3647 @opindex Wchar-subscripts
3648 @opindex Wno-char-subscripts
3649 Warn if an array subscript has type @code{char}. This is a common cause
3650 of error, as programmers often forget that this type is signed on some
3651 machines.
3652 This warning is enabled by @option{-Wall}.
3653
3654 @item -Wcomment
3655 @opindex Wcomment
3656 @opindex Wno-comment
3657 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3658 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3659 This warning is enabled by @option{-Wall}.
3660
3661 @item -Wno-coverage-mismatch
3662 @opindex Wno-coverage-mismatch
3663 Warn if feedback profiles do not match when using the
3664 @option{-fprofile-use} option.
3665 If a source file is changed between compiling with @option{-fprofile-gen} and
3666 with @option{-fprofile-use}, the files with the profile feedback can fail
3667 to match the source file and GCC cannot use the profile feedback
3668 information. By default, this warning is enabled and is treated as an
3669 error. @option{-Wno-coverage-mismatch} can be used to disable the
3670 warning or @option{-Wno-error=coverage-mismatch} can be used to
3671 disable the error. Disabling the error for this warning can result in
3672 poorly optimized code and is useful only in the
3673 case of very minor changes such as bug fixes to an existing code-base.
3674 Completely disabling the warning is not recommended.
3675
3676 @item -Wno-cpp
3677 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3678
3679 Suppress warning messages emitted by @code{#warning} directives.
3680
3681 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3682 @opindex Wdouble-promotion
3683 @opindex Wno-double-promotion
3684 Give a warning when a value of type @code{float} is implicitly
3685 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3686 floating-point unit implement @code{float} in hardware, but emulate
3687 @code{double} in software. On such a machine, doing computations
3688 using @code{double} values is much more expensive because of the
3689 overhead required for software emulation.
3690
3691 It is easy to accidentally do computations with @code{double} because
3692 floating-point literals are implicitly of type @code{double}. For
3693 example, in:
3694 @smallexample
3695 @group
3696 float area(float radius)
3697 @{
3698 return 3.14159 * radius * radius;
3699 @}
3700 @end group
3701 @end smallexample
3702 the compiler performs the entire computation with @code{double}
3703 because the floating-point literal is a @code{double}.
3704
3705 @item -Wformat
3706 @itemx -Wformat=@var{n}
3707 @opindex Wformat
3708 @opindex Wno-format
3709 @opindex ffreestanding
3710 @opindex fno-builtin
3711 @opindex Wformat=
3712 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3713 the arguments supplied have types appropriate to the format string
3714 specified, and that the conversions specified in the format string make
3715 sense. This includes standard functions, and others specified by format
3716 attributes (@pxref{Function Attributes}), in the @code{printf},
3717 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3718 not in the C standard) families (or other target-specific families).
3719 Which functions are checked without format attributes having been
3720 specified depends on the standard version selected, and such checks of
3721 functions without the attribute specified are disabled by
3722 @option{-ffreestanding} or @option{-fno-builtin}.
3723
3724 The formats are checked against the format features supported by GNU
3725 libc version 2.2. These include all ISO C90 and C99 features, as well
3726 as features from the Single Unix Specification and some BSD and GNU
3727 extensions. Other library implementations may not support all these
3728 features; GCC does not support warning about features that go beyond a
3729 particular library's limitations. However, if @option{-Wpedantic} is used
3730 with @option{-Wformat}, warnings are given about format features not
3731 in the selected standard version (but not for @code{strfmon} formats,
3732 since those are not in any version of the C standard). @xref{C Dialect
3733 Options,,Options Controlling C Dialect}.
3734
3735 @table @gcctabopt
3736 @item -Wformat=1
3737 @itemx -Wformat
3738 @opindex Wformat
3739 @opindex Wformat=1
3740 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3741 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
3742 @option{-Wformat} also checks for null format arguments for several
3743 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
3744 aspects of this level of format checking can be disabled by the
3745 options: @option{-Wno-format-contains-nul},
3746 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3747 @option{-Wformat} is enabled by @option{-Wall}.
3748
3749 @item -Wno-format-contains-nul
3750 @opindex Wno-format-contains-nul
3751 @opindex Wformat-contains-nul
3752 If @option{-Wformat} is specified, do not warn about format strings that
3753 contain NUL bytes.
3754
3755 @item -Wno-format-extra-args
3756 @opindex Wno-format-extra-args
3757 @opindex Wformat-extra-args
3758 If @option{-Wformat} is specified, do not warn about excess arguments to a
3759 @code{printf} or @code{scanf} format function. The C standard specifies
3760 that such arguments are ignored.
3761
3762 Where the unused arguments lie between used arguments that are
3763 specified with @samp{$} operand number specifications, normally
3764 warnings are still given, since the implementation could not know what
3765 type to pass to @code{va_arg} to skip the unused arguments. However,
3766 in the case of @code{scanf} formats, this option suppresses the
3767 warning if the unused arguments are all pointers, since the Single
3768 Unix Specification says that such unused arguments are allowed.
3769
3770 @item -Wno-format-zero-length
3771 @opindex Wno-format-zero-length
3772 @opindex Wformat-zero-length
3773 If @option{-Wformat} is specified, do not warn about zero-length formats.
3774 The C standard specifies that zero-length formats are allowed.
3775
3776
3777 @item -Wformat=2
3778 @opindex Wformat=2
3779 Enable @option{-Wformat} plus additional format checks. Currently
3780 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3781 -Wformat-y2k}.
3782
3783 @item -Wformat-nonliteral
3784 @opindex Wformat-nonliteral
3785 @opindex Wno-format-nonliteral
3786 If @option{-Wformat} is specified, also warn if the format string is not a
3787 string literal and so cannot be checked, unless the format function
3788 takes its format arguments as a @code{va_list}.
3789
3790 @item -Wformat-security
3791 @opindex Wformat-security
3792 @opindex Wno-format-security
3793 If @option{-Wformat} is specified, also warn about uses of format
3794 functions that represent possible security problems. At present, this
3795 warns about calls to @code{printf} and @code{scanf} functions where the
3796 format string is not a string literal and there are no format arguments,
3797 as in @code{printf (foo);}. This may be a security hole if the format
3798 string came from untrusted input and contains @samp{%n}. (This is
3799 currently a subset of what @option{-Wformat-nonliteral} warns about, but
3800 in future warnings may be added to @option{-Wformat-security} that are not
3801 included in @option{-Wformat-nonliteral}.)
3802
3803 @item -Wformat-signedness
3804 @opindex Wformat-signedness
3805 @opindex Wno-format-signedness
3806 If @option{-Wformat} is specified, also warn if the format string
3807 requires an unsigned argument and the argument is signed and vice versa.
3808
3809 @item -Wformat-y2k
3810 @opindex Wformat-y2k
3811 @opindex Wno-format-y2k
3812 If @option{-Wformat} is specified, also warn about @code{strftime}
3813 formats that may yield only a two-digit year.
3814 @end table
3815
3816 @item -Wnonnull
3817 @opindex Wnonnull
3818 @opindex Wno-nonnull
3819 Warn about passing a null pointer for arguments marked as
3820 requiring a non-null value by the @code{nonnull} function attribute.
3821
3822 Also warns when comparing an argument marked with the @code{nonnull}
3823 function attribute against null inside the function.
3824
3825 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
3826 can be disabled with the @option{-Wno-nonnull} option.
3827
3828 @item -Wnull-dereference
3829 @opindex Wnull-dereference
3830 @opindex Wno-null-dereference
3831 Warn if the compiler detects paths that trigger erroneous or
3832 undefined behavior due to dereferencing a null pointer. This option
3833 is only active when @option{-fdelete-null-pointer-checks} is active,
3834 which is enabled by optimizations in most targets. The precision of
3835 the warnings depends on the optimization options used.
3836
3837 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3838 @opindex Winit-self
3839 @opindex Wno-init-self
3840 Warn about uninitialized variables that are initialized with themselves.
3841 Note this option can only be used with the @option{-Wuninitialized} option.
3842
3843 For example, GCC warns about @code{i} being uninitialized in the
3844 following snippet only when @option{-Winit-self} has been specified:
3845 @smallexample
3846 @group
3847 int f()
3848 @{
3849 int i = i;
3850 return i;
3851 @}
3852 @end group
3853 @end smallexample
3854
3855 This warning is enabled by @option{-Wall} in C++.
3856
3857 @item -Wimplicit-int @r{(C and Objective-C only)}
3858 @opindex Wimplicit-int
3859 @opindex Wno-implicit-int
3860 Warn when a declaration does not specify a type.
3861 This warning is enabled by @option{-Wall}.
3862
3863 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3864 @opindex Wimplicit-function-declaration
3865 @opindex Wno-implicit-function-declaration
3866 Give a warning whenever a function is used before being declared. In
3867 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3868 enabled by default and it is made into an error by
3869 @option{-pedantic-errors}. This warning is also enabled by
3870 @option{-Wall}.
3871
3872 @item -Wimplicit @r{(C and Objective-C only)}
3873 @opindex Wimplicit
3874 @opindex Wno-implicit
3875 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3876 This warning is enabled by @option{-Wall}.
3877
3878 @item -Wignored-qualifiers @r{(C and C++ only)}
3879 @opindex Wignored-qualifiers
3880 @opindex Wno-ignored-qualifiers
3881 Warn if the return type of a function has a type qualifier
3882 such as @code{const}. For ISO C such a type qualifier has no effect,
3883 since the value returned by a function is not an lvalue.
3884 For C++, the warning is only emitted for scalar types or @code{void}.
3885 ISO C prohibits qualified @code{void} return types on function
3886 definitions, so such return types always receive a warning
3887 even without this option.
3888
3889 This warning is also enabled by @option{-Wextra}.
3890
3891 @item -Wmain
3892 @opindex Wmain
3893 @opindex Wno-main
3894 Warn if the type of @code{main} is suspicious. @code{main} should be
3895 a function with external linkage, returning int, taking either zero
3896 arguments, two, or three arguments of appropriate types. This warning
3897 is enabled by default in C++ and is enabled by either @option{-Wall}
3898 or @option{-Wpedantic}.
3899
3900 @item -Wmisleading-indentation @r{(C and C++ only)}
3901 @opindex Wmisleading-indentation
3902 @opindex Wno-misleading-indentation
3903 Warn when the indentation of the code does not reflect the block structure.
3904 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
3905 @code{for} clauses with a guarded statement that does not use braces,
3906 followed by an unguarded statement with the same indentation.
3907
3908 In the following example, the call to ``bar'' is misleadingly indented as
3909 if it were guarded by the ``if'' conditional.
3910
3911 @smallexample
3912 if (some_condition ())
3913 foo ();
3914 bar (); /* Gotcha: this is not guarded by the "if". */
3915 @end smallexample
3916
3917 In the case of mixed tabs and spaces, the warning uses the
3918 @option{-ftabstop=} option to determine if the statements line up
3919 (defaulting to 8).
3920
3921 The warning is not issued for code involving multiline preprocessor logic
3922 such as the following example.
3923
3924 @smallexample
3925 if (flagA)
3926 foo (0);
3927 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
3928 if (flagB)
3929 #endif
3930 foo (1);
3931 @end smallexample
3932
3933 The warning is not issued after a @code{#line} directive, since this
3934 typically indicates autogenerated code, and no assumptions can be made
3935 about the layout of the file that the directive references.
3936
3937 This warning is enabled by @option{-Wall} in C and C++.
3938
3939 @item -Wmissing-braces
3940 @opindex Wmissing-braces
3941 @opindex Wno-missing-braces
3942 Warn if an aggregate or union initializer is not fully bracketed. In
3943 the following example, the initializer for @code{a} is not fully
3944 bracketed, but that for @code{b} is fully bracketed. This warning is
3945 enabled by @option{-Wall} in C.
3946
3947 @smallexample
3948 int a[2][2] = @{ 0, 1, 2, 3 @};
3949 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3950 @end smallexample
3951
3952 This warning is enabled by @option{-Wall}.
3953
3954 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3955 @opindex Wmissing-include-dirs
3956 @opindex Wno-missing-include-dirs
3957 Warn if a user-supplied include directory does not exist.
3958
3959 @item -Wparentheses
3960 @opindex Wparentheses
3961 @opindex Wno-parentheses
3962 Warn if parentheses are omitted in certain contexts, such
3963 as when there is an assignment in a context where a truth value
3964 is expected, or when operators are nested whose precedence people
3965 often get confused about.
3966
3967 Also warn if a comparison like @code{x<=y<=z} appears; this is
3968 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3969 interpretation from that of ordinary mathematical notation.
3970
3971 Also warn about constructions where there may be confusion to which
3972 @code{if} statement an @code{else} branch belongs. Here is an example of
3973 such a case:
3974
3975 @smallexample
3976 @group
3977 @{
3978 if (a)
3979 if (b)
3980 foo ();
3981 else
3982 bar ();
3983 @}
3984 @end group
3985 @end smallexample
3986
3987 In C/C++, every @code{else} branch belongs to the innermost possible
3988 @code{if} statement, which in this example is @code{if (b)}. This is
3989 often not what the programmer expected, as illustrated in the above
3990 example by indentation the programmer chose. When there is the
3991 potential for this confusion, GCC issues a warning when this flag
3992 is specified. To eliminate the warning, add explicit braces around
3993 the innermost @code{if} statement so there is no way the @code{else}
3994 can belong to the enclosing @code{if}. The resulting code
3995 looks like this:
3996
3997 @smallexample
3998 @group
3999 @{
4000 if (a)
4001 @{
4002 if (b)
4003 foo ();
4004 else
4005 bar ();
4006 @}
4007 @}
4008 @end group
4009 @end smallexample
4010
4011 Also warn for dangerous uses of the GNU extension to
4012 @code{?:} with omitted middle operand. When the condition
4013 in the @code{?}: operator is a boolean expression, the omitted value is
4014 always 1. Often programmers expect it to be a value computed
4015 inside the conditional expression instead.
4016
4017 This warning is enabled by @option{-Wall}.
4018
4019 @item -Wsequence-point
4020 @opindex Wsequence-point
4021 @opindex Wno-sequence-point
4022 Warn about code that may have undefined semantics because of violations
4023 of sequence point rules in the C and C++ standards.
4024
4025 The C and C++ standards define the order in which expressions in a C/C++
4026 program are evaluated in terms of @dfn{sequence points}, which represent
4027 a partial ordering between the execution of parts of the program: those
4028 executed before the sequence point, and those executed after it. These
4029 occur after the evaluation of a full expression (one which is not part
4030 of a larger expression), after the evaluation of the first operand of a
4031 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4032 function is called (but after the evaluation of its arguments and the
4033 expression denoting the called function), and in certain other places.
4034 Other than as expressed by the sequence point rules, the order of
4035 evaluation of subexpressions of an expression is not specified. All
4036 these rules describe only a partial order rather than a total order,
4037 since, for example, if two functions are called within one expression
4038 with no sequence point between them, the order in which the functions
4039 are called is not specified. However, the standards committee have
4040 ruled that function calls do not overlap.
4041
4042 It is not specified when between sequence points modifications to the
4043 values of objects take effect. Programs whose behavior depends on this
4044 have undefined behavior; the C and C++ standards specify that ``Between
4045 the previous and next sequence point an object shall have its stored
4046 value modified at most once by the evaluation of an expression.
4047 Furthermore, the prior value shall be read only to determine the value
4048 to be stored.''. If a program breaks these rules, the results on any
4049 particular implementation are entirely unpredictable.
4050
4051 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4052 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
4053 diagnosed by this option, and it may give an occasional false positive
4054 result, but in general it has been found fairly effective at detecting
4055 this sort of problem in programs.
4056
4057 The standard is worded confusingly, therefore there is some debate
4058 over the precise meaning of the sequence point rules in subtle cases.
4059 Links to discussions of the problem, including proposed formal
4060 definitions, may be found on the GCC readings page, at
4061 @uref{http://gcc.gnu.org/@/readings.html}.
4062
4063 This warning is enabled by @option{-Wall} for C and C++.
4064
4065 @item -Wno-return-local-addr
4066 @opindex Wno-return-local-addr
4067 @opindex Wreturn-local-addr
4068 Do not warn about returning a pointer (or in C++, a reference) to a
4069 variable that goes out of scope after the function returns.
4070
4071 @item -Wreturn-type
4072 @opindex Wreturn-type
4073 @opindex Wno-return-type
4074 Warn whenever a function is defined with a return type that defaults
4075 to @code{int}. Also warn about any @code{return} statement with no
4076 return value in a function whose return type is not @code{void}
4077 (falling off the end of the function body is considered returning
4078 without a value), and about a @code{return} statement with an
4079 expression in a function whose return type is @code{void}.
4080
4081 For C++, a function without return type always produces a diagnostic
4082 message, even when @option{-Wno-return-type} is specified. The only
4083 exceptions are @code{main} and functions defined in system headers.
4084
4085 This warning is enabled by @option{-Wall}.
4086
4087 @item -Wshift-count-negative
4088 @opindex Wshift-count-negative
4089 @opindex Wno-shift-count-negative
4090 Warn if shift count is negative. This warning is enabled by default.
4091
4092 @item -Wshift-count-overflow
4093 @opindex Wshift-count-overflow
4094 @opindex Wno-shift-count-overflow
4095 Warn if shift count >= width of type. This warning is enabled by default.
4096
4097 @item -Wshift-negative-value
4098 @opindex Wshift-negative-value
4099 @opindex Wno-shift-negative-value
4100 Warn if left shifting a negative value. This warning is enabled by
4101 @option{-Wextra} in C99 and C++11 modes (and newer).
4102
4103 @item -Wshift-overflow
4104 @itemx -Wshift-overflow=@var{n}
4105 @opindex Wshift-overflow
4106 @opindex Wno-shift-overflow
4107 Warn about left shift overflows. This warning is enabled by
4108 default in C99 and C++11 modes (and newer).
4109
4110 @table @gcctabopt
4111 @item -Wshift-overflow=1
4112 This is the warning level of @option{-Wshift-overflow} and is enabled
4113 by default in C99 and C++11 modes (and newer). This warning level does
4114 not warn about left-shifting 1 into the sign bit. (However, in C, such
4115 an overflow is still rejected in contexts where an integer constant expression
4116 is required.)
4117
4118 @item -Wshift-overflow=2
4119 This warning level also warns about left-shifting 1 into the sign bit,
4120 unless C++14 mode is active.
4121 @end table
4122
4123 @item -Wswitch
4124 @opindex Wswitch
4125 @opindex Wno-switch
4126 Warn whenever a @code{switch} statement has an index of enumerated type
4127 and lacks a @code{case} for one or more of the named codes of that
4128 enumeration. (The presence of a @code{default} label prevents this
4129 warning.) @code{case} labels outside the enumeration range also
4130 provoke warnings when this option is used (even if there is a
4131 @code{default} label).
4132 This warning is enabled by @option{-Wall}.
4133
4134 @item -Wswitch-default
4135 @opindex Wswitch-default
4136 @opindex Wno-switch-default
4137 Warn whenever a @code{switch} statement does not have a @code{default}
4138 case.
4139
4140 @item -Wswitch-enum
4141 @opindex Wswitch-enum
4142 @opindex Wno-switch-enum
4143 Warn whenever a @code{switch} statement has an index of enumerated type
4144 and lacks a @code{case} for one or more of the named codes of that
4145 enumeration. @code{case} labels outside the enumeration range also
4146 provoke warnings when this option is used. The only difference
4147 between @option{-Wswitch} and this option is that this option gives a
4148 warning about an omitted enumeration code even if there is a
4149 @code{default} label.
4150
4151 @item -Wswitch-bool
4152 @opindex Wswitch-bool
4153 @opindex Wno-switch-bool
4154 Warn whenever a @code{switch} statement has an index of boolean type
4155 and the case values are outside the range of a boolean type.
4156 It is possible to suppress this warning by casting the controlling
4157 expression to a type other than @code{bool}. For example:
4158 @smallexample
4159 @group
4160 switch ((int) (a == 4))
4161 @{
4162 @dots{}
4163 @}
4164 @end group
4165 @end smallexample
4166 This warning is enabled by default for C and C++ programs.
4167
4168 @item -Wsync-nand @r{(C and C++ only)}
4169 @opindex Wsync-nand
4170 @opindex Wno-sync-nand
4171 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4172 built-in functions are used. These functions changed semantics in GCC 4.4.
4173
4174 @item -Wtrigraphs
4175 @opindex Wtrigraphs
4176 @opindex Wno-trigraphs
4177 Warn if any trigraphs are encountered that might change the meaning of
4178 the program (trigraphs within comments are not warned about).
4179 This warning is enabled by @option{-Wall}.
4180
4181 @item -Wunused-but-set-parameter
4182 @opindex Wunused-but-set-parameter
4183 @opindex Wno-unused-but-set-parameter
4184 Warn whenever a function parameter is assigned to, but otherwise unused
4185 (aside from its declaration).
4186
4187 To suppress this warning use the @code{unused} attribute
4188 (@pxref{Variable Attributes}).
4189
4190 This warning is also enabled by @option{-Wunused} together with
4191 @option{-Wextra}.
4192
4193 @item -Wunused-but-set-variable
4194 @opindex Wunused-but-set-variable
4195 @opindex Wno-unused-but-set-variable
4196 Warn whenever a local variable is assigned to, but otherwise unused
4197 (aside from its declaration).
4198 This warning is enabled by @option{-Wall}.
4199
4200 To suppress this warning use the @code{unused} attribute
4201 (@pxref{Variable Attributes}).
4202
4203 This warning is also enabled by @option{-Wunused}, which is enabled
4204 by @option{-Wall}.
4205
4206 @item -Wunused-function
4207 @opindex Wunused-function
4208 @opindex Wno-unused-function
4209 Warn whenever a static function is declared but not defined or a
4210 non-inline static function is unused.
4211 This warning is enabled by @option{-Wall}.
4212
4213 @item -Wunused-label
4214 @opindex Wunused-label
4215 @opindex Wno-unused-label
4216 Warn whenever a label is declared but not used.
4217 This warning is enabled by @option{-Wall}.
4218
4219 To suppress this warning use the @code{unused} attribute
4220 (@pxref{Variable Attributes}).
4221
4222 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4223 @opindex Wunused-local-typedefs
4224 Warn when a typedef locally defined in a function is not used.
4225 This warning is enabled by @option{-Wall}.
4226
4227 @item -Wunused-parameter
4228 @opindex Wunused-parameter
4229 @opindex Wno-unused-parameter
4230 Warn whenever a function parameter is unused aside from its declaration.
4231
4232 To suppress this warning use the @code{unused} attribute
4233 (@pxref{Variable Attributes}).
4234
4235 @item -Wno-unused-result
4236 @opindex Wunused-result
4237 @opindex Wno-unused-result
4238 Do not warn if a caller of a function marked with attribute
4239 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4240 its return value. The default is @option{-Wunused-result}.
4241
4242 @item -Wunused-variable
4243 @opindex Wunused-variable
4244 @opindex Wno-unused-variable
4245 Warn whenever a local or static variable is unused aside from its
4246 declaration. This option implies @option{-Wunused-const-variable} for C,
4247 but not for C++. This warning is enabled by @option{-Wall}.
4248
4249 To suppress this warning use the @code{unused} attribute
4250 (@pxref{Variable Attributes}).
4251
4252 @item -Wunused-const-variable
4253 @opindex Wunused-const-variable
4254 @opindex Wno-unused-const-variable
4255 Warn whenever a constant static variable is unused aside from its declaration.
4256 This warning is enabled by @option{-Wunused-variable} for C, but not for C++.
4257 In C++ this is normally not an error since const variables take the place of
4258 @code{#define}s in C++.
4259
4260 To suppress this warning use the @code{unused} attribute
4261 (@pxref{Variable Attributes}).
4262
4263 @item -Wunused-value
4264 @opindex Wunused-value
4265 @opindex Wno-unused-value
4266 Warn whenever a statement computes a result that is explicitly not
4267 used. To suppress this warning cast the unused expression to
4268 @code{void}. This includes an expression-statement or the left-hand
4269 side of a comma expression that contains no side effects. For example,
4270 an expression such as @code{x[i,j]} causes a warning, while
4271 @code{x[(void)i,j]} does not.
4272
4273 This warning is enabled by @option{-Wall}.
4274
4275 @item -Wunused
4276 @opindex Wunused
4277 @opindex Wno-unused
4278 All the above @option{-Wunused} options combined.
4279
4280 In order to get a warning about an unused function parameter, you must
4281 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4282 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4283
4284 @item -Wuninitialized
4285 @opindex Wuninitialized
4286 @opindex Wno-uninitialized
4287 Warn if an automatic variable is used without first being initialized
4288 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4289 warn if a non-static reference or non-static @code{const} member
4290 appears in a class without constructors.
4291
4292 If you want to warn about code that uses the uninitialized value of the
4293 variable in its own initializer, use the @option{-Winit-self} option.
4294
4295 These warnings occur for individual uninitialized or clobbered
4296 elements of structure, union or array variables as well as for
4297 variables that are uninitialized or clobbered as a whole. They do
4298 not occur for variables or elements declared @code{volatile}. Because
4299 these warnings depend on optimization, the exact variables or elements
4300 for which there are warnings depends on the precise optimization
4301 options and version of GCC used.
4302
4303 Note that there may be no warning about a variable that is used only
4304 to compute a value that itself is never used, because such
4305 computations may be deleted by data flow analysis before the warnings
4306 are printed.
4307
4308 @item -Winvalid-memory-model
4309 @opindex Winvalid-memory-model
4310 @opindex Wno-invalid-memory-model
4311 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
4312 and the C11 atomic generic functions with a memory consistency argument
4313 that is either invalid for the operation or outside the range of values
4314 of the @code{memory_order} enumeration. For example, since the
4315 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
4316 defined for the relaxed, release, and sequentially consistent memory
4317 orders the following code is diagnosed:
4318
4319 @smallexample
4320 void store (int *i)
4321 @{
4322 __atomic_store_n (i, 0, memory_order_consume);
4323 @}
4324 @end smallexample
4325
4326 @option{-Winvalid-memory-model} is enabled by default.
4327
4328 @item -Wmaybe-uninitialized
4329 @opindex Wmaybe-uninitialized
4330 @opindex Wno-maybe-uninitialized
4331 For an automatic variable, if there exists a path from the function
4332 entry to a use of the variable that is initialized, but there exist
4333 some other paths for which the variable is not initialized, the compiler
4334 emits a warning if it cannot prove the uninitialized paths are not
4335 executed at run time. These warnings are made optional because GCC is
4336 not smart enough to see all the reasons why the code might be correct
4337 in spite of appearing to have an error. Here is one example of how
4338 this can happen:
4339
4340 @smallexample
4341 @group
4342 @{
4343 int x;
4344 switch (y)
4345 @{
4346 case 1: x = 1;
4347 break;
4348 case 2: x = 4;
4349 break;
4350 case 3: x = 5;
4351 @}
4352 foo (x);
4353 @}
4354 @end group
4355 @end smallexample
4356
4357 @noindent
4358 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4359 always initialized, but GCC doesn't know this. To suppress the
4360 warning, you need to provide a default case with assert(0) or
4361 similar code.
4362
4363 @cindex @code{longjmp} warnings
4364 This option also warns when a non-volatile automatic variable might be
4365 changed by a call to @code{longjmp}. These warnings as well are possible
4366 only in optimizing compilation.
4367
4368 The compiler sees only the calls to @code{setjmp}. It cannot know
4369 where @code{longjmp} will be called; in fact, a signal handler could
4370 call it at any point in the code. As a result, you may get a warning
4371 even when there is in fact no problem because @code{longjmp} cannot
4372 in fact be called at the place that would cause a problem.
4373
4374 Some spurious warnings can be avoided if you declare all the functions
4375 you use that never return as @code{noreturn}. @xref{Function
4376 Attributes}.
4377
4378 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4379
4380 @item -Wunknown-pragmas
4381 @opindex Wunknown-pragmas
4382 @opindex Wno-unknown-pragmas
4383 @cindex warning for unknown pragmas
4384 @cindex unknown pragmas, warning
4385 @cindex pragmas, warning of unknown
4386 Warn when a @code{#pragma} directive is encountered that is not understood by
4387 GCC@. If this command-line option is used, warnings are even issued
4388 for unknown pragmas in system header files. This is not the case if
4389 the warnings are only enabled by the @option{-Wall} command-line option.
4390
4391 @item -Wno-pragmas
4392 @opindex Wno-pragmas
4393 @opindex Wpragmas
4394 Do not warn about misuses of pragmas, such as incorrect parameters,
4395 invalid syntax, or conflicts between pragmas. See also
4396 @option{-Wunknown-pragmas}.
4397
4398 @item -Wstrict-aliasing
4399 @opindex Wstrict-aliasing
4400 @opindex Wno-strict-aliasing
4401 This option is only active when @option{-fstrict-aliasing} is active.
4402 It warns about code that might break the strict aliasing rules that the
4403 compiler is using for optimization. The warning does not catch all
4404 cases, but does attempt to catch the more common pitfalls. It is
4405 included in @option{-Wall}.
4406 It is equivalent to @option{-Wstrict-aliasing=3}
4407
4408 @item -Wstrict-aliasing=n
4409 @opindex Wstrict-aliasing=n
4410 This option is only active when @option{-fstrict-aliasing} is active.
4411 It warns about code that might break the strict aliasing rules that the
4412 compiler is using for optimization.
4413 Higher levels correspond to higher accuracy (fewer false positives).
4414 Higher levels also correspond to more effort, similar to the way @option{-O}
4415 works.
4416 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4417
4418 Level 1: Most aggressive, quick, least accurate.
4419 Possibly useful when higher levels
4420 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4421 false negatives. However, it has many false positives.
4422 Warns for all pointer conversions between possibly incompatible types,
4423 even if never dereferenced. Runs in the front end only.
4424
4425 Level 2: Aggressive, quick, not too precise.
4426 May still have many false positives (not as many as level 1 though),
4427 and few false negatives (but possibly more than level 1).
4428 Unlike level 1, it only warns when an address is taken. Warns about
4429 incomplete types. Runs in the front end only.
4430
4431 Level 3 (default for @option{-Wstrict-aliasing}):
4432 Should have very few false positives and few false
4433 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
4434 Takes care of the common pun+dereference pattern in the front end:
4435 @code{*(int*)&some_float}.
4436 If optimization is enabled, it also runs in the back end, where it deals
4437 with multiple statement cases using flow-sensitive points-to information.
4438 Only warns when the converted pointer is dereferenced.
4439 Does not warn about incomplete types.
4440
4441 @item -Wstrict-overflow
4442 @itemx -Wstrict-overflow=@var{n}
4443 @opindex Wstrict-overflow
4444 @opindex Wno-strict-overflow
4445 This option is only active when @option{-fstrict-overflow} is active.
4446 It warns about cases where the compiler optimizes based on the
4447 assumption that signed overflow does not occur. Note that it does not
4448 warn about all cases where the code might overflow: it only warns
4449 about cases where the compiler implements some optimization. Thus
4450 this warning depends on the optimization level.
4451
4452 An optimization that assumes that signed overflow does not occur is
4453 perfectly safe if the values of the variables involved are such that
4454 overflow never does, in fact, occur. Therefore this warning can
4455 easily give a false positive: a warning about code that is not
4456 actually a problem. To help focus on important issues, several
4457 warning levels are defined. No warnings are issued for the use of
4458 undefined signed overflow when estimating how many iterations a loop
4459 requires, in particular when determining whether a loop will be
4460 executed at all.
4461
4462 @table @gcctabopt
4463 @item -Wstrict-overflow=1
4464 Warn about cases that are both questionable and easy to avoid. For
4465 example, with @option{-fstrict-overflow}, the compiler simplifies
4466 @code{x + 1 > x} to @code{1}. This level of
4467 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4468 are not, and must be explicitly requested.
4469
4470 @item -Wstrict-overflow=2
4471 Also warn about other cases where a comparison is simplified to a
4472 constant. For example: @code{abs (x) >= 0}. This can only be
4473 simplified when @option{-fstrict-overflow} is in effect, because
4474 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4475 zero. @option{-Wstrict-overflow} (with no level) is the same as
4476 @option{-Wstrict-overflow=2}.
4477
4478 @item -Wstrict-overflow=3
4479 Also warn about other cases where a comparison is simplified. For
4480 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4481
4482 @item -Wstrict-overflow=4
4483 Also warn about other simplifications not covered by the above cases.
4484 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4485
4486 @item -Wstrict-overflow=5
4487 Also warn about cases where the compiler reduces the magnitude of a
4488 constant involved in a comparison. For example: @code{x + 2 > y} is
4489 simplified to @code{x + 1 >= y}. This is reported only at the
4490 highest warning level because this simplification applies to many
4491 comparisons, so this warning level gives a very large number of
4492 false positives.
4493 @end table
4494
4495 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4496 @opindex Wsuggest-attribute=
4497 @opindex Wno-suggest-attribute=
4498 Warn for cases where adding an attribute may be beneficial. The
4499 attributes currently supported are listed below.
4500
4501 @table @gcctabopt
4502 @item -Wsuggest-attribute=pure
4503 @itemx -Wsuggest-attribute=const
4504 @itemx -Wsuggest-attribute=noreturn
4505 @opindex Wsuggest-attribute=pure
4506 @opindex Wno-suggest-attribute=pure
4507 @opindex Wsuggest-attribute=const
4508 @opindex Wno-suggest-attribute=const
4509 @opindex Wsuggest-attribute=noreturn
4510 @opindex Wno-suggest-attribute=noreturn
4511
4512 Warn about functions that might be candidates for attributes
4513 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
4514 functions visible in other compilation units or (in the case of @code{pure} and
4515 @code{const}) if it cannot prove that the function returns normally. A function
4516 returns normally if it doesn't contain an infinite loop or return abnormally
4517 by throwing, calling @code{abort} or trapping. This analysis requires option
4518 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4519 higher. Higher optimization levels improve the accuracy of the analysis.
4520
4521 @item -Wsuggest-attribute=format
4522 @itemx -Wmissing-format-attribute
4523 @opindex Wsuggest-attribute=format
4524 @opindex Wmissing-format-attribute
4525 @opindex Wno-suggest-attribute=format
4526 @opindex Wno-missing-format-attribute
4527 @opindex Wformat
4528 @opindex Wno-format
4529
4530 Warn about function pointers that might be candidates for @code{format}
4531 attributes. Note these are only possible candidates, not absolute ones.
4532 GCC guesses that function pointers with @code{format} attributes that
4533 are used in assignment, initialization, parameter passing or return
4534 statements should have a corresponding @code{format} attribute in the
4535 resulting type. I.e.@: the left-hand side of the assignment or
4536 initialization, the type of the parameter variable, or the return type
4537 of the containing function respectively should also have a @code{format}
4538 attribute to avoid the warning.
4539
4540 GCC also warns about function definitions that might be
4541 candidates for @code{format} attributes. Again, these are only
4542 possible candidates. GCC guesses that @code{format} attributes
4543 might be appropriate for any function that calls a function like
4544 @code{vprintf} or @code{vscanf}, but this might not always be the
4545 case, and some functions for which @code{format} attributes are
4546 appropriate may not be detected.
4547 @end table
4548
4549 @item -Wsuggest-final-types
4550 @opindex Wno-suggest-final-types
4551 @opindex Wsuggest-final-types
4552 Warn about types with virtual methods where code quality would be improved
4553 if the type were declared with the C++11 @code{final} specifier,
4554 or, if possible,
4555 declared in an anonymous namespace. This allows GCC to more aggressively
4556 devirtualize the polymorphic calls. This warning is more effective with link
4557 time optimization, where the information about the class hierarchy graph is
4558 more complete.
4559
4560 @item -Wsuggest-final-methods
4561 @opindex Wno-suggest-final-methods
4562 @opindex Wsuggest-final-methods
4563 Warn about virtual methods where code quality would be improved if the method
4564 were declared with the C++11 @code{final} specifier,
4565 or, if possible, its type were
4566 declared in an anonymous namespace or with the @code{final} specifier.
4567 This warning is
4568 more effective with link time optimization, where the information about the
4569 class hierarchy graph is more complete. It is recommended to first consider
4570 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4571 annotations.
4572
4573 @item -Wsuggest-override
4574 Warn about overriding virtual functions that are not marked with the override
4575 keyword.
4576
4577 @item -Warray-bounds
4578 @itemx -Warray-bounds=@var{n}
4579 @opindex Wno-array-bounds
4580 @opindex Warray-bounds
4581 This option is only active when @option{-ftree-vrp} is active
4582 (default for @option{-O2} and above). It warns about subscripts to arrays
4583 that are always out of bounds. This warning is enabled by @option{-Wall}.
4584
4585 @table @gcctabopt
4586 @item -Warray-bounds=1
4587 This is the warning level of @option{-Warray-bounds} and is enabled
4588 by @option{-Wall}; higher levels are not, and must be explicitly requested.
4589
4590 @item -Warray-bounds=2
4591 This warning level also warns about out of bounds access for
4592 arrays at the end of a struct and for arrays accessed through
4593 pointers. This warning level may give a larger number of
4594 false positives and is deactivated by default.
4595 @end table
4596
4597 @item -Wbool-compare
4598 @opindex Wno-bool-compare
4599 @opindex Wbool-compare
4600 Warn about boolean expression compared with an integer value different from
4601 @code{true}/@code{false}. For instance, the following comparison is
4602 always false:
4603 @smallexample
4604 int n = 5;
4605 @dots{}
4606 if ((n > 1) == 2) @{ @dots{} @}
4607 @end smallexample
4608 This warning is enabled by @option{-Wall}.
4609
4610 @item -Wduplicated-cond
4611 @opindex Wno-duplicated-cond
4612 @opindex Wduplicated-cond
4613 Warn about duplicated conditions in an if-else-if chain. For instance,
4614 warn for the following code:
4615 @smallexample
4616 if (p->q != NULL) @{ @dots{} @}
4617 else if (p->q != NULL) @{ @dots{} @}
4618 @end smallexample
4619
4620 @item -Wframe-address
4621 @opindex Wno-frame-address
4622 @opindex Wframe-address
4623 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
4624 is called with an argument greater than 0. Such calls may return indeterminate
4625 values or crash the program. The warning is included in @option{-Wall}.
4626
4627 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4628 @opindex Wno-discarded-qualifiers
4629 @opindex Wdiscarded-qualifiers
4630 Do not warn if type qualifiers on pointers are being discarded.
4631 Typically, the compiler warns if a @code{const char *} variable is
4632 passed to a function that takes a @code{char *} parameter. This option
4633 can be used to suppress such a warning.
4634
4635 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4636 @opindex Wno-discarded-array-qualifiers
4637 @opindex Wdiscarded-array-qualifiers
4638 Do not warn if type qualifiers on arrays which are pointer targets
4639 are being discarded. Typically, the compiler warns if a
4640 @code{const int (*)[]} variable is passed to a function that
4641 takes a @code{int (*)[]} parameter. This option can be used to
4642 suppress such a warning.
4643
4644 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4645 @opindex Wno-incompatible-pointer-types
4646 @opindex Wincompatible-pointer-types
4647 Do not warn when there is a conversion between pointers that have incompatible
4648 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
4649 which warns for pointer argument passing or assignment with different
4650 signedness.
4651
4652 @item -Wno-int-conversion @r{(C and Objective-C only)}
4653 @opindex Wno-int-conversion
4654 @opindex Wint-conversion
4655 Do not warn about incompatible integer to pointer and pointer to integer
4656 conversions. This warning is about implicit conversions; for explicit
4657 conversions the warnings @option{-Wno-int-to-pointer-cast} and
4658 @option{-Wno-pointer-to-int-cast} may be used.
4659
4660 @item -Wno-div-by-zero
4661 @opindex Wno-div-by-zero
4662 @opindex Wdiv-by-zero
4663 Do not warn about compile-time integer division by zero. Floating-point
4664 division by zero is not warned about, as it can be a legitimate way of
4665 obtaining infinities and NaNs.
4666
4667 @item -Wsystem-headers
4668 @opindex Wsystem-headers
4669 @opindex Wno-system-headers
4670 @cindex warnings from system headers
4671 @cindex system headers, warnings from
4672 Print warning messages for constructs found in system header files.
4673 Warnings from system headers are normally suppressed, on the assumption
4674 that they usually do not indicate real problems and would only make the
4675 compiler output harder to read. Using this command-line option tells
4676 GCC to emit warnings from system headers as if they occurred in user
4677 code. However, note that using @option{-Wall} in conjunction with this
4678 option does @emph{not} warn about unknown pragmas in system
4679 headers---for that, @option{-Wunknown-pragmas} must also be used.
4680
4681 @item -Wtautological-compare
4682 @opindex Wtautological-compare
4683 @opindex Wno-tautological-compare
4684 Warn if a self-comparison always evaluates to true or false. This
4685 warning detects various mistakes such as:
4686 @smallexample
4687 int i = 1;
4688 @dots{}
4689 if (i > i) @{ @dots{} @}
4690 @end smallexample
4691 This warning is enabled by @option{-Wall}.
4692
4693 @item -Wtrampolines
4694 @opindex Wtrampolines
4695 @opindex Wno-trampolines
4696 Warn about trampolines generated for pointers to nested functions.
4697 A trampoline is a small piece of data or code that is created at run
4698 time on the stack when the address of a nested function is taken, and is
4699 used to call the nested function indirectly. For some targets, it is
4700 made up of data only and thus requires no special treatment. But, for
4701 most targets, it is made up of code and thus requires the stack to be
4702 made executable in order for the program to work properly.
4703
4704 @item -Wfloat-equal
4705 @opindex Wfloat-equal
4706 @opindex Wno-float-equal
4707 Warn if floating-point values are used in equality comparisons.
4708
4709 The idea behind this is that sometimes it is convenient (for the
4710 programmer) to consider floating-point values as approximations to
4711 infinitely precise real numbers. If you are doing this, then you need
4712 to compute (by analyzing the code, or in some other way) the maximum or
4713 likely maximum error that the computation introduces, and allow for it
4714 when performing comparisons (and when producing output, but that's a
4715 different problem). In particular, instead of testing for equality, you
4716 should check to see whether the two values have ranges that overlap; and
4717 this is done with the relational operators, so equality comparisons are
4718 probably mistaken.
4719
4720 @item -Wtraditional @r{(C and Objective-C only)}
4721 @opindex Wtraditional
4722 @opindex Wno-traditional
4723 Warn about certain constructs that behave differently in traditional and
4724 ISO C@. Also warn about ISO C constructs that have no traditional C
4725 equivalent, and/or problematic constructs that should be avoided.
4726
4727 @itemize @bullet
4728 @item
4729 Macro parameters that appear within string literals in the macro body.
4730 In traditional C macro replacement takes place within string literals,
4731 but in ISO C it does not.
4732
4733 @item
4734 In traditional C, some preprocessor directives did not exist.
4735 Traditional preprocessors only considered a line to be a directive
4736 if the @samp{#} appeared in column 1 on the line. Therefore
4737 @option{-Wtraditional} warns about directives that traditional C
4738 understands but ignores because the @samp{#} does not appear as the
4739 first character on the line. It also suggests you hide directives like
4740 @code{#pragma} not understood by traditional C by indenting them. Some
4741 traditional implementations do not recognize @code{#elif}, so this option
4742 suggests avoiding it altogether.
4743
4744 @item
4745 A function-like macro that appears without arguments.
4746
4747 @item
4748 The unary plus operator.
4749
4750 @item
4751 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4752 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
4753 constants.) Note, these suffixes appear in macros defined in the system
4754 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4755 Use of these macros in user code might normally lead to spurious
4756 warnings, however GCC's integrated preprocessor has enough context to
4757 avoid warning in these cases.
4758
4759 @item
4760 A function declared external in one block and then used after the end of
4761 the block.
4762
4763 @item
4764 A @code{switch} statement has an operand of type @code{long}.
4765
4766 @item
4767 A non-@code{static} function declaration follows a @code{static} one.
4768 This construct is not accepted by some traditional C compilers.
4769
4770 @item
4771 The ISO type of an integer constant has a different width or
4772 signedness from its traditional type. This warning is only issued if
4773 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
4774 typically represent bit patterns, are not warned about.
4775
4776 @item
4777 Usage of ISO string concatenation is detected.
4778
4779 @item
4780 Initialization of automatic aggregates.
4781
4782 @item
4783 Identifier conflicts with labels. Traditional C lacks a separate
4784 namespace for labels.
4785
4786 @item
4787 Initialization of unions. If the initializer is zero, the warning is
4788 omitted. This is done under the assumption that the zero initializer in
4789 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4790 initializer warnings and relies on default initialization to zero in the
4791 traditional C case.
4792
4793 @item
4794 Conversions by prototypes between fixed/floating-point values and vice
4795 versa. The absence of these prototypes when compiling with traditional
4796 C causes serious problems. This is a subset of the possible
4797 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4798
4799 @item
4800 Use of ISO C style function definitions. This warning intentionally is
4801 @emph{not} issued for prototype declarations or variadic functions
4802 because these ISO C features appear in your code when using
4803 libiberty's traditional C compatibility macros, @code{PARAMS} and
4804 @code{VPARAMS}. This warning is also bypassed for nested functions
4805 because that feature is already a GCC extension and thus not relevant to
4806 traditional C compatibility.
4807 @end itemize
4808
4809 @item -Wtraditional-conversion @r{(C and Objective-C only)}
4810 @opindex Wtraditional-conversion
4811 @opindex Wno-traditional-conversion
4812 Warn if a prototype causes a type conversion that is different from what
4813 would happen to the same argument in the absence of a prototype. This
4814 includes conversions of fixed point to floating and vice versa, and
4815 conversions changing the width or signedness of a fixed-point argument
4816 except when the same as the default promotion.
4817
4818 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4819 @opindex Wdeclaration-after-statement
4820 @opindex Wno-declaration-after-statement
4821 Warn when a declaration is found after a statement in a block. This
4822 construct, known from C++, was introduced with ISO C99 and is by default
4823 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
4824
4825 @item -Wundef
4826 @opindex Wundef
4827 @opindex Wno-undef
4828 Warn if an undefined identifier is evaluated in an @code{#if} directive.
4829
4830 @item -Wno-endif-labels
4831 @opindex Wno-endif-labels
4832 @opindex Wendif-labels
4833 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4834
4835 @item -Wshadow
4836 @opindex Wshadow
4837 @opindex Wno-shadow
4838 Warn whenever a local variable or type declaration shadows another
4839 variable, parameter, type, class member (in C++), or instance variable
4840 (in Objective-C) or whenever a built-in function is shadowed. Note
4841 that in C++, the compiler warns if a local variable shadows an
4842 explicit typedef, but not if it shadows a struct/class/enum.
4843
4844 @item -Wno-shadow-ivar @r{(Objective-C only)}
4845 @opindex Wno-shadow-ivar
4846 @opindex Wshadow-ivar
4847 Do not warn whenever a local variable shadows an instance variable in an
4848 Objective-C method.
4849
4850 @item -Wlarger-than=@var{len}
4851 @opindex Wlarger-than=@var{len}
4852 @opindex Wlarger-than-@var{len}
4853 Warn whenever an object of larger than @var{len} bytes is defined.
4854
4855 @item -Wframe-larger-than=@var{len}
4856 @opindex Wframe-larger-than
4857 Warn if the size of a function frame is larger than @var{len} bytes.
4858 The computation done to determine the stack frame size is approximate
4859 and not conservative.
4860 The actual requirements may be somewhat greater than @var{len}
4861 even if you do not get a warning. In addition, any space allocated
4862 via @code{alloca}, variable-length arrays, or related constructs
4863 is not included by the compiler when determining
4864 whether or not to issue a warning.
4865
4866 @item -Wno-free-nonheap-object
4867 @opindex Wno-free-nonheap-object
4868 @opindex Wfree-nonheap-object
4869 Do not warn when attempting to free an object that was not allocated
4870 on the heap.
4871
4872 @item -Wstack-usage=@var{len}
4873 @opindex Wstack-usage
4874 Warn if the stack usage of a function might be larger than @var{len} bytes.
4875 The computation done to determine the stack usage is conservative.
4876 Any space allocated via @code{alloca}, variable-length arrays, or related
4877 constructs is included by the compiler when determining whether or not to
4878 issue a warning.
4879
4880 The message is in keeping with the output of @option{-fstack-usage}.
4881
4882 @itemize
4883 @item
4884 If the stack usage is fully static but exceeds the specified amount, it's:
4885
4886 @smallexample
4887 warning: stack usage is 1120 bytes
4888 @end smallexample
4889 @item
4890 If the stack usage is (partly) dynamic but bounded, it's:
4891
4892 @smallexample
4893 warning: stack usage might be 1648 bytes
4894 @end smallexample
4895 @item
4896 If the stack usage is (partly) dynamic and not bounded, it's:
4897
4898 @smallexample
4899 warning: stack usage might be unbounded
4900 @end smallexample
4901 @end itemize
4902
4903 @item -Wunsafe-loop-optimizations
4904 @opindex Wunsafe-loop-optimizations
4905 @opindex Wno-unsafe-loop-optimizations
4906 Warn if the loop cannot be optimized because the compiler cannot
4907 assume anything on the bounds of the loop indices. With
4908 @option{-funsafe-loop-optimizations} warn if the compiler makes
4909 such assumptions.
4910
4911 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4912 @opindex Wno-pedantic-ms-format
4913 @opindex Wpedantic-ms-format
4914 When used in combination with @option{-Wformat}
4915 and @option{-pedantic} without GNU extensions, this option
4916 disables the warnings about non-ISO @code{printf} / @code{scanf} format
4917 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4918 which depend on the MS runtime.
4919
4920 @item -Wplacement-new
4921 @opindex Wplacement-new
4922 @opindex Wno-placement-new
4923 Warn about placement new expressions with undefined behavior, such as
4924 constructing an object in a buffer that is smaller than the type of
4925 the object. For example, the placement new expression below is diagnosed
4926 because it attempts to construct an array of 64 integers in a buffer only
4927 64 bytes large.
4928 @smallexample
4929 char buf [64];
4930 new (buf) int[64];
4931 @end smallexample
4932 This warning is enabled by default.
4933
4934 @item -Wpointer-arith
4935 @opindex Wpointer-arith
4936 @opindex Wno-pointer-arith
4937 Warn about anything that depends on the ``size of'' a function type or
4938 of @code{void}. GNU C assigns these types a size of 1, for
4939 convenience in calculations with @code{void *} pointers and pointers
4940 to functions. In C++, warn also when an arithmetic operation involves
4941 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
4942
4943 @item -Wtype-limits
4944 @opindex Wtype-limits
4945 @opindex Wno-type-limits
4946 Warn if a comparison is always true or always false due to the limited
4947 range of the data type, but do not warn for constant expressions. For
4948 example, warn if an unsigned variable is compared against zero with
4949 @code{<} or @code{>=}. This warning is also enabled by
4950 @option{-Wextra}.
4951
4952 @item -Wbad-function-cast @r{(C and Objective-C only)}
4953 @opindex Wbad-function-cast
4954 @opindex Wno-bad-function-cast
4955 Warn when a function call is cast to a non-matching type.
4956 For example, warn if a call to a function returning an integer type
4957 is cast to a pointer type.
4958
4959 @item -Wc90-c99-compat @r{(C and Objective-C only)}
4960 @opindex Wc90-c99-compat
4961 @opindex Wno-c90-c99-compat
4962 Warn about features not present in ISO C90, but present in ISO C99.
4963 For instance, warn about use of variable length arrays, @code{long long}
4964 type, @code{bool} type, compound literals, designated initializers, and so
4965 on. This option is independent of the standards mode. Warnings are disabled
4966 in the expression that follows @code{__extension__}.
4967
4968 @item -Wc99-c11-compat @r{(C and Objective-C only)}
4969 @opindex Wc99-c11-compat
4970 @opindex Wno-c99-c11-compat
4971 Warn about features not present in ISO C99, but present in ISO C11.
4972 For instance, warn about use of anonymous structures and unions,
4973 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4974 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4975 and so on. This option is independent of the standards mode. Warnings are
4976 disabled in the expression that follows @code{__extension__}.
4977
4978 @item -Wc++-compat @r{(C and Objective-C only)}
4979 @opindex Wc++-compat
4980 Warn about ISO C constructs that are outside of the common subset of
4981 ISO C and ISO C++, e.g.@: request for implicit conversion from
4982 @code{void *} to a pointer to non-@code{void} type.
4983
4984 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
4985 @opindex Wc++11-compat
4986 Warn about C++ constructs whose meaning differs between ISO C++ 1998
4987 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
4988 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
4989 enabled by @option{-Wall}.
4990
4991 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
4992 @opindex Wc++14-compat
4993 Warn about C++ constructs whose meaning differs between ISO C++ 2011
4994 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
4995
4996 @item -Wcast-qual
4997 @opindex Wcast-qual
4998 @opindex Wno-cast-qual
4999 Warn whenever a pointer is cast so as to remove a type qualifier from
5000 the target type. For example, warn if a @code{const char *} is cast
5001 to an ordinary @code{char *}.
5002
5003 Also warn when making a cast that introduces a type qualifier in an
5004 unsafe way. For example, casting @code{char **} to @code{const char **}
5005 is unsafe, as in this example:
5006
5007 @smallexample
5008 /* p is char ** value. */
5009 const char **q = (const char **) p;
5010 /* Assignment of readonly string to const char * is OK. */
5011 *q = "string";
5012 /* Now char** pointer points to read-only memory. */
5013 **p = 'b';
5014 @end smallexample
5015
5016 @item -Wcast-align
5017 @opindex Wcast-align
5018 @opindex Wno-cast-align
5019 Warn whenever a pointer is cast such that the required alignment of the
5020 target is increased. For example, warn if a @code{char *} is cast to
5021 an @code{int *} on machines where integers can only be accessed at
5022 two- or four-byte boundaries.
5023
5024 @item -Wwrite-strings
5025 @opindex Wwrite-strings
5026 @opindex Wno-write-strings
5027 When compiling C, give string constants the type @code{const
5028 char[@var{length}]} so that copying the address of one into a
5029 non-@code{const} @code{char *} pointer produces a warning. These
5030 warnings help you find at compile time code that can try to write
5031 into a string constant, but only if you have been very careful about
5032 using @code{const} in declarations and prototypes. Otherwise, it is
5033 just a nuisance. This is why we did not make @option{-Wall} request
5034 these warnings.
5035
5036 When compiling C++, warn about the deprecated conversion from string
5037 literals to @code{char *}. This warning is enabled by default for C++
5038 programs.
5039
5040 @item -Wclobbered
5041 @opindex Wclobbered
5042 @opindex Wno-clobbered
5043 Warn for variables that might be changed by @code{longjmp} or
5044 @code{vfork}. This warning is also enabled by @option{-Wextra}.
5045
5046 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
5047 @opindex Wconditionally-supported
5048 @opindex Wno-conditionally-supported
5049 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
5050
5051 @item -Wconversion
5052 @opindex Wconversion
5053 @opindex Wno-conversion
5054 Warn for implicit conversions that may alter a value. This includes
5055 conversions between real and integer, like @code{abs (x)} when
5056 @code{x} is @code{double}; conversions between signed and unsigned,
5057 like @code{unsigned ui = -1}; and conversions to smaller types, like
5058 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
5059 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
5060 changed by the conversion like in @code{abs (2.0)}. Warnings about
5061 conversions between signed and unsigned integers can be disabled by
5062 using @option{-Wno-sign-conversion}.
5063
5064 For C++, also warn for confusing overload resolution for user-defined
5065 conversions; and conversions that never use a type conversion
5066 operator: conversions to @code{void}, the same type, a base class or a
5067 reference to them. Warnings about conversions between signed and
5068 unsigned integers are disabled by default in C++ unless
5069 @option{-Wsign-conversion} is explicitly enabled.
5070
5071 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
5072 @opindex Wconversion-null
5073 @opindex Wno-conversion-null
5074 Do not warn for conversions between @code{NULL} and non-pointer
5075 types. @option{-Wconversion-null} is enabled by default.
5076
5077 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
5078 @opindex Wzero-as-null-pointer-constant
5079 @opindex Wno-zero-as-null-pointer-constant
5080 Warn when a literal '0' is used as null pointer constant. This can
5081 be useful to facilitate the conversion to @code{nullptr} in C++11.
5082
5083 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
5084 @opindex Wsubobject-linkage
5085 @opindex Wno-subobject-linkage
5086 Warn if a class type has a base or a field whose type uses the anonymous
5087 namespace or depends on a type with no linkage. If a type A depends on
5088 a type B with no or internal linkage, defining it in multiple
5089 translation units would be an ODR violation because the meaning of B
5090 is different in each translation unit. If A only appears in a single
5091 translation unit, the best way to silence the warning is to give it
5092 internal linkage by putting it in an anonymous namespace as well. The
5093 compiler doesn't give this warning for types defined in the main .C
5094 file, as those are unlikely to have multiple definitions.
5095 @option{-Wsubobject-linkage} is enabled by default.
5096
5097 @item -Wdate-time
5098 @opindex Wdate-time
5099 @opindex Wno-date-time
5100 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
5101 are encountered as they might prevent bit-wise-identical reproducible
5102 compilations.
5103
5104 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
5105 @opindex Wdelete-incomplete
5106 @opindex Wno-delete-incomplete
5107 Warn when deleting a pointer to incomplete type, which may cause
5108 undefined behavior at runtime. This warning is enabled by default.
5109
5110 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
5111 @opindex Wuseless-cast
5112 @opindex Wno-useless-cast
5113 Warn when an expression is casted to its own type.
5114
5115 @item -Wempty-body
5116 @opindex Wempty-body
5117 @opindex Wno-empty-body
5118 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
5119 while} statement. This warning is also enabled by @option{-Wextra}.
5120
5121 @item -Wenum-compare
5122 @opindex Wenum-compare
5123 @opindex Wno-enum-compare
5124 Warn about a comparison between values of different enumerated types.
5125 In C++ enumeral mismatches in conditional expressions are also
5126 diagnosed and the warning is enabled by default. In C this warning is
5127 enabled by @option{-Wall}.
5128
5129 @item -Wjump-misses-init @r{(C, Objective-C only)}
5130 @opindex Wjump-misses-init
5131 @opindex Wno-jump-misses-init
5132 Warn if a @code{goto} statement or a @code{switch} statement jumps
5133 forward across the initialization of a variable, or jumps backward to a
5134 label after the variable has been initialized. This only warns about
5135 variables that are initialized when they are declared. This warning is
5136 only supported for C and Objective-C; in C++ this sort of branch is an
5137 error in any case.
5138
5139 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
5140 can be disabled with the @option{-Wno-jump-misses-init} option.
5141
5142 @item -Wsign-compare
5143 @opindex Wsign-compare
5144 @opindex Wno-sign-compare
5145 @cindex warning for comparison of signed and unsigned values
5146 @cindex comparison of signed and unsigned values, warning
5147 @cindex signed and unsigned values, comparison warning
5148 Warn when a comparison between signed and unsigned values could produce
5149 an incorrect result when the signed value is converted to unsigned.
5150 In C++, this warning is also enabled by @option{-Wall}. In C, it is
5151 also enabled by @option{-Wextra}.
5152
5153 @item -Wsign-conversion
5154 @opindex Wsign-conversion
5155 @opindex Wno-sign-conversion
5156 Warn for implicit conversions that may change the sign of an integer
5157 value, like assigning a signed integer expression to an unsigned
5158 integer variable. An explicit cast silences the warning. In C, this
5159 option is enabled also by @option{-Wconversion}.
5160
5161 @item -Wfloat-conversion
5162 @opindex Wfloat-conversion
5163 @opindex Wno-float-conversion
5164 Warn for implicit conversions that reduce the precision of a real value.
5165 This includes conversions from real to integer, and from higher precision
5166 real to lower precision real values. This option is also enabled by
5167 @option{-Wconversion}.
5168
5169 @item -Wno-scalar-storage-order
5170 @opindex -Wno-scalar-storage-order
5171 @opindex -Wscalar-storage-order
5172 Do not warn on suspicious constructs involving reverse scalar storage order.
5173
5174 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
5175 @opindex Wsized-deallocation
5176 @opindex Wno-sized-deallocation
5177 Warn about a definition of an unsized deallocation function
5178 @smallexample
5179 void operator delete (void *) noexcept;
5180 void operator delete[] (void *) noexcept;
5181 @end smallexample
5182 without a definition of the corresponding sized deallocation function
5183 @smallexample
5184 void operator delete (void *, std::size_t) noexcept;
5185 void operator delete[] (void *, std::size_t) noexcept;
5186 @end smallexample
5187 or vice versa. Enabled by @option{-Wextra} along with
5188 @option{-fsized-deallocation}.
5189
5190 @item -Wsizeof-pointer-memaccess
5191 @opindex Wsizeof-pointer-memaccess
5192 @opindex Wno-sizeof-pointer-memaccess
5193 Warn for suspicious length parameters to certain string and memory built-in
5194 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
5195 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
5196 but a pointer, and suggests a possible fix, or about
5197 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
5198 @option{-Wall}.
5199
5200 @item -Wsizeof-array-argument
5201 @opindex Wsizeof-array-argument
5202 @opindex Wno-sizeof-array-argument
5203 Warn when the @code{sizeof} operator is applied to a parameter that is
5204 declared as an array in a function definition. This warning is enabled by
5205 default for C and C++ programs.
5206
5207 @item -Wmemset-transposed-args
5208 @opindex Wmemset-transposed-args
5209 @opindex Wno-memset-transposed-args
5210 Warn for suspicious calls to the @code{memset} built-in function, if the
5211 second argument is not zero and the third argument is zero. This warns e.g.@
5212 about @code{memset (buf, sizeof buf, 0)} where most probably
5213 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
5214 is only emitted if the third argument is literal zero. If it is some
5215 expression that is folded to zero, a cast of zero to some type, etc.,
5216 it is far less likely that the user has mistakenly exchanged the arguments
5217 and no warning is emitted. This warning is enabled by @option{-Wall}.
5218
5219 @item -Waddress
5220 @opindex Waddress
5221 @opindex Wno-address
5222 Warn about suspicious uses of memory addresses. These include using
5223 the address of a function in a conditional expression, such as
5224 @code{void func(void); if (func)}, and comparisons against the memory
5225 address of a string literal, such as @code{if (x == "abc")}. Such
5226 uses typically indicate a programmer error: the address of a function
5227 always evaluates to true, so their use in a conditional usually
5228 indicate that the programmer forgot the parentheses in a function
5229 call; and comparisons against string literals result in unspecified
5230 behavior and are not portable in C, so they usually indicate that the
5231 programmer intended to use @code{strcmp}. This warning is enabled by
5232 @option{-Wall}.
5233
5234 @item -Wlogical-op
5235 @opindex Wlogical-op
5236 @opindex Wno-logical-op
5237 Warn about suspicious uses of logical operators in expressions.
5238 This includes using logical operators in contexts where a
5239 bit-wise operator is likely to be expected. Also warns when
5240 the operands of a logical operator are the same:
5241 @smallexample
5242 extern int a;
5243 if (a < 0 && a < 0) @{ @dots{} @}
5244 @end smallexample
5245
5246 @item -Wlogical-not-parentheses
5247 @opindex Wlogical-not-parentheses
5248 @opindex Wno-logical-not-parentheses
5249 Warn about logical not used on the left hand side operand of a comparison.
5250 This option does not warn if the RHS operand is of a boolean type. Its
5251 purpose is to detect suspicious code like the following:
5252 @smallexample
5253 int a;
5254 @dots{}
5255 if (!a > 1) @{ @dots{} @}
5256 @end smallexample
5257
5258 It is possible to suppress the warning by wrapping the LHS into
5259 parentheses:
5260 @smallexample
5261 if ((!a) > 1) @{ @dots{} @}
5262 @end smallexample
5263
5264 This warning is enabled by @option{-Wall}.
5265
5266 @item -Waggregate-return
5267 @opindex Waggregate-return
5268 @opindex Wno-aggregate-return
5269 Warn if any functions that return structures or unions are defined or
5270 called. (In languages where you can return an array, this also elicits
5271 a warning.)
5272
5273 @item -Wno-aggressive-loop-optimizations
5274 @opindex Wno-aggressive-loop-optimizations
5275 @opindex Waggressive-loop-optimizations
5276 Warn if in a loop with constant number of iterations the compiler detects
5277 undefined behavior in some statement during one or more of the iterations.
5278
5279 @item -Wno-attributes
5280 @opindex Wno-attributes
5281 @opindex Wattributes
5282 Do not warn if an unexpected @code{__attribute__} is used, such as
5283 unrecognized attributes, function attributes applied to variables,
5284 etc. This does not stop errors for incorrect use of supported
5285 attributes.
5286
5287 @item -Wno-builtin-macro-redefined
5288 @opindex Wno-builtin-macro-redefined
5289 @opindex Wbuiltin-macro-redefined
5290 Do not warn if certain built-in macros are redefined. This suppresses
5291 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5292 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5293
5294 @item -Wstrict-prototypes @r{(C and Objective-C only)}
5295 @opindex Wstrict-prototypes
5296 @opindex Wno-strict-prototypes
5297 Warn if a function is declared or defined without specifying the
5298 argument types. (An old-style function definition is permitted without
5299 a warning if preceded by a declaration that specifies the argument
5300 types.)
5301
5302 @item -Wold-style-declaration @r{(C and Objective-C only)}
5303 @opindex Wold-style-declaration
5304 @opindex Wno-old-style-declaration
5305 Warn for obsolescent usages, according to the C Standard, in a
5306 declaration. For example, warn if storage-class specifiers like
5307 @code{static} are not the first things in a declaration. This warning
5308 is also enabled by @option{-Wextra}.
5309
5310 @item -Wold-style-definition @r{(C and Objective-C only)}
5311 @opindex Wold-style-definition
5312 @opindex Wno-old-style-definition
5313 Warn if an old-style function definition is used. A warning is given
5314 even if there is a previous prototype.
5315
5316 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5317 @opindex Wmissing-parameter-type
5318 @opindex Wno-missing-parameter-type
5319 A function parameter is declared without a type specifier in K&R-style
5320 functions:
5321
5322 @smallexample
5323 void foo(bar) @{ @}
5324 @end smallexample
5325
5326 This warning is also enabled by @option{-Wextra}.
5327
5328 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5329 @opindex Wmissing-prototypes
5330 @opindex Wno-missing-prototypes
5331 Warn if a global function is defined without a previous prototype
5332 declaration. This warning is issued even if the definition itself
5333 provides a prototype. Use this option to detect global functions
5334 that do not have a matching prototype declaration in a header file.
5335 This option is not valid for C++ because all function declarations
5336 provide prototypes and a non-matching declaration declares an
5337 overload rather than conflict with an earlier declaration.
5338 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5339
5340 @item -Wmissing-declarations
5341 @opindex Wmissing-declarations
5342 @opindex Wno-missing-declarations
5343 Warn if a global function is defined without a previous declaration.
5344 Do so even if the definition itself provides a prototype.
5345 Use this option to detect global functions that are not declared in
5346 header files. In C, no warnings are issued for functions with previous
5347 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5348 missing prototypes. In C++, no warnings are issued for function templates,
5349 or for inline functions, or for functions in anonymous namespaces.
5350
5351 @item -Wmissing-field-initializers
5352 @opindex Wmissing-field-initializers
5353 @opindex Wno-missing-field-initializers
5354 @opindex W
5355 @opindex Wextra
5356 @opindex Wno-extra
5357 Warn if a structure's initializer has some fields missing. For
5358 example, the following code causes such a warning, because
5359 @code{x.h} is implicitly zero:
5360
5361 @smallexample
5362 struct s @{ int f, g, h; @};
5363 struct s x = @{ 3, 4 @};
5364 @end smallexample
5365
5366 This option does not warn about designated initializers, so the following
5367 modification does not trigger a warning:
5368
5369 @smallexample
5370 struct s @{ int f, g, h; @};
5371 struct s x = @{ .f = 3, .g = 4 @};
5372 @end smallexample
5373
5374 In C++ this option does not warn either about the empty @{ @}
5375 initializer, for example:
5376
5377 @smallexample
5378 struct s @{ int f, g, h; @};
5379 s x = @{ @};
5380 @end smallexample
5381
5382 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
5383 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5384
5385 @item -Wno-multichar
5386 @opindex Wno-multichar
5387 @opindex Wmultichar
5388 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5389 Usually they indicate a typo in the user's code, as they have
5390 implementation-defined values, and should not be used in portable code.
5391
5392 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5393 @opindex Wnormalized=
5394 @opindex Wnormalized
5395 @opindex Wno-normalized
5396 @cindex NFC
5397 @cindex NFKC
5398 @cindex character set, input normalization
5399 In ISO C and ISO C++, two identifiers are different if they are
5400 different sequences of characters. However, sometimes when characters
5401 outside the basic ASCII character set are used, you can have two
5402 different character sequences that look the same. To avoid confusion,
5403 the ISO 10646 standard sets out some @dfn{normalization rules} which
5404 when applied ensure that two sequences that look the same are turned into
5405 the same sequence. GCC can warn you if you are using identifiers that
5406 have not been normalized; this option controls that warning.
5407
5408 There are four levels of warning supported by GCC@. The default is
5409 @option{-Wnormalized=nfc}, which warns about any identifier that is
5410 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
5411 recommended form for most uses. It is equivalent to
5412 @option{-Wnormalized}.
5413
5414 Unfortunately, there are some characters allowed in identifiers by
5415 ISO C and ISO C++ that, when turned into NFC, are not allowed in
5416 identifiers. That is, there's no way to use these symbols in portable
5417 ISO C or C++ and have all your identifiers in NFC@.
5418 @option{-Wnormalized=id} suppresses the warning for these characters.
5419 It is hoped that future versions of the standards involved will correct
5420 this, which is why this option is not the default.
5421
5422 You can switch the warning off for all characters by writing
5423 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
5424 only do this if you are using some other normalization scheme (like
5425 ``D''), because otherwise you can easily create bugs that are
5426 literally impossible to see.
5427
5428 Some characters in ISO 10646 have distinct meanings but look identical
5429 in some fonts or display methodologies, especially once formatting has
5430 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5431 LETTER N'', displays just like a regular @code{n} that has been
5432 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
5433 normalization scheme to convert all these into a standard form as
5434 well, and GCC warns if your code is not in NFKC if you use
5435 @option{-Wnormalized=nfkc}. This warning is comparable to warning
5436 about every identifier that contains the letter O because it might be
5437 confused with the digit 0, and so is not the default, but may be
5438 useful as a local coding convention if the programming environment
5439 cannot be fixed to display these characters distinctly.
5440
5441 @item -Wno-deprecated
5442 @opindex Wno-deprecated
5443 @opindex Wdeprecated
5444 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
5445
5446 @item -Wno-deprecated-declarations
5447 @opindex Wno-deprecated-declarations
5448 @opindex Wdeprecated-declarations
5449 Do not warn about uses of functions (@pxref{Function Attributes}),
5450 variables (@pxref{Variable Attributes}), and types (@pxref{Type
5451 Attributes}) marked as deprecated by using the @code{deprecated}
5452 attribute.
5453
5454 @item -Wno-overflow
5455 @opindex Wno-overflow
5456 @opindex Woverflow
5457 Do not warn about compile-time overflow in constant expressions.
5458
5459 @item -Wno-odr
5460 @opindex Wno-odr
5461 @opindex Wodr
5462 Warn about One Definition Rule violations during link-time optimization.
5463 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
5464
5465 @item -Wopenmp-simd
5466 @opindex Wopenm-simd
5467 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5468 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
5469 option can be used to relax the cost model.
5470
5471 @item -Woverride-init @r{(C and Objective-C only)}
5472 @opindex Woverride-init
5473 @opindex Wno-override-init
5474 @opindex W
5475 @opindex Wextra
5476 @opindex Wno-extra
5477 Warn if an initialized field without side effects is overridden when
5478 using designated initializers (@pxref{Designated Inits, , Designated
5479 Initializers}).
5480
5481 This warning is included in @option{-Wextra}. To get other
5482 @option{-Wextra} warnings without this one, use @option{-Wextra
5483 -Wno-override-init}.
5484
5485 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
5486 @opindex Woverride-init-side-effects
5487 @opindex Wno-override-init-side-effects
5488 Warn if an initialized field with side effects is overridden when
5489 using designated initializers (@pxref{Designated Inits, , Designated
5490 Initializers}). This warning is enabled by default.
5491
5492 @item -Wpacked
5493 @opindex Wpacked
5494 @opindex Wno-packed
5495 Warn if a structure is given the packed attribute, but the packed
5496 attribute has no effect on the layout or size of the structure.
5497 Such structures may be mis-aligned for little benefit. For
5498 instance, in this code, the variable @code{f.x} in @code{struct bar}
5499 is misaligned even though @code{struct bar} does not itself
5500 have the packed attribute:
5501
5502 @smallexample
5503 @group
5504 struct foo @{
5505 int x;
5506 char a, b, c, d;
5507 @} __attribute__((packed));
5508 struct bar @{
5509 char z;
5510 struct foo f;
5511 @};
5512 @end group
5513 @end smallexample
5514
5515 @item -Wpacked-bitfield-compat
5516 @opindex Wpacked-bitfield-compat
5517 @opindex Wno-packed-bitfield-compat
5518 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5519 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
5520 the change can lead to differences in the structure layout. GCC
5521 informs you when the offset of such a field has changed in GCC 4.4.
5522 For example there is no longer a 4-bit padding between field @code{a}
5523 and @code{b} in this structure:
5524
5525 @smallexample
5526 struct foo
5527 @{
5528 char a:4;
5529 char b:8;
5530 @} __attribute__ ((packed));
5531 @end smallexample
5532
5533 This warning is enabled by default. Use
5534 @option{-Wno-packed-bitfield-compat} to disable this warning.
5535
5536 @item -Wpadded
5537 @opindex Wpadded
5538 @opindex Wno-padded
5539 Warn if padding is included in a structure, either to align an element
5540 of the structure or to align the whole structure. Sometimes when this
5541 happens it is possible to rearrange the fields of the structure to
5542 reduce the padding and so make the structure smaller.
5543
5544 @item -Wredundant-decls
5545 @opindex Wredundant-decls
5546 @opindex Wno-redundant-decls
5547 Warn if anything is declared more than once in the same scope, even in
5548 cases where multiple declaration is valid and changes nothing.
5549
5550 @item -Wnested-externs @r{(C and Objective-C only)}
5551 @opindex Wnested-externs
5552 @opindex Wno-nested-externs
5553 Warn if an @code{extern} declaration is encountered within a function.
5554
5555 @item -Wno-inherited-variadic-ctor
5556 @opindex Winherited-variadic-ctor
5557 @opindex Wno-inherited-variadic-ctor
5558 Suppress warnings about use of C++11 inheriting constructors when the
5559 base class inherited from has a C variadic constructor; the warning is
5560 on by default because the ellipsis is not inherited.
5561
5562 @item -Winline
5563 @opindex Winline
5564 @opindex Wno-inline
5565 Warn if a function that is declared as inline cannot be inlined.
5566 Even with this option, the compiler does not warn about failures to
5567 inline functions declared in system headers.
5568
5569 The compiler uses a variety of heuristics to determine whether or not
5570 to inline a function. For example, the compiler takes into account
5571 the size of the function being inlined and the amount of inlining
5572 that has already been done in the current function. Therefore,
5573 seemingly insignificant changes in the source program can cause the
5574 warnings produced by @option{-Winline} to appear or disappear.
5575
5576 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5577 @opindex Wno-invalid-offsetof
5578 @opindex Winvalid-offsetof
5579 Suppress warnings from applying the @code{offsetof} macro to a non-POD
5580 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
5581 to a non-standard-layout type is undefined. In existing C++ implementations,
5582 however, @code{offsetof} typically gives meaningful results.
5583 This flag is for users who are aware that they are
5584 writing nonportable code and who have deliberately chosen to ignore the
5585 warning about it.
5586
5587 The restrictions on @code{offsetof} may be relaxed in a future version
5588 of the C++ standard.
5589
5590 @item -Wno-int-to-pointer-cast
5591 @opindex Wno-int-to-pointer-cast
5592 @opindex Wint-to-pointer-cast
5593 Suppress warnings from casts to pointer type of an integer of a
5594 different size. In C++, casting to a pointer type of smaller size is
5595 an error. @option{Wint-to-pointer-cast} is enabled by default.
5596
5597
5598 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5599 @opindex Wno-pointer-to-int-cast
5600 @opindex Wpointer-to-int-cast
5601 Suppress warnings from casts from a pointer to an integer type of a
5602 different size.
5603
5604 @item -Winvalid-pch
5605 @opindex Winvalid-pch
5606 @opindex Wno-invalid-pch
5607 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5608 the search path but can't be used.
5609
5610 @item -Wlong-long
5611 @opindex Wlong-long
5612 @opindex Wno-long-long
5613 Warn if @code{long long} type is used. This is enabled by either
5614 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5615 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
5616
5617 @item -Wvariadic-macros
5618 @opindex Wvariadic-macros
5619 @opindex Wno-variadic-macros
5620 Warn if variadic macros are used in ISO C90 mode, or if the GNU
5621 alternate syntax is used in ISO C99 mode. This is enabled by either
5622 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
5623 messages, use @option{-Wno-variadic-macros}.
5624
5625 @item -Wvarargs
5626 @opindex Wvarargs
5627 @opindex Wno-varargs
5628 Warn upon questionable usage of the macros used to handle variable
5629 arguments like @code{va_start}. This is default. To inhibit the
5630 warning messages, use @option{-Wno-varargs}.
5631
5632 @item -Wvector-operation-performance
5633 @opindex Wvector-operation-performance
5634 @opindex Wno-vector-operation-performance
5635 Warn if vector operation is not implemented via SIMD capabilities of the
5636 architecture. Mainly useful for the performance tuning.
5637 Vector operation can be implemented @code{piecewise}, which means that the
5638 scalar operation is performed on every vector element;
5639 @code{in parallel}, which means that the vector operation is implemented
5640 using scalars of wider type, which normally is more performance efficient;
5641 and @code{as a single scalar}, which means that vector fits into a
5642 scalar type.
5643
5644 @item -Wno-virtual-move-assign
5645 @opindex Wvirtual-move-assign
5646 @opindex Wno-virtual-move-assign
5647 Suppress warnings about inheriting from a virtual base with a
5648 non-trivial C++11 move assignment operator. This is dangerous because
5649 if the virtual base is reachable along more than one path, it is
5650 moved multiple times, which can mean both objects end up in the
5651 moved-from state. If the move assignment operator is written to avoid
5652 moving from a moved-from object, this warning can be disabled.
5653
5654 @item -Wvla
5655 @opindex Wvla
5656 @opindex Wno-vla
5657 Warn if variable length array is used in the code.
5658 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5659 the variable length array.
5660
5661 @item -Wvolatile-register-var
5662 @opindex Wvolatile-register-var
5663 @opindex Wno-volatile-register-var
5664 Warn if a register variable is declared volatile. The volatile
5665 modifier does not inhibit all optimizations that may eliminate reads
5666 and/or writes to register variables. This warning is enabled by
5667 @option{-Wall}.
5668
5669 @item -Wdisabled-optimization
5670 @opindex Wdisabled-optimization
5671 @opindex Wno-disabled-optimization
5672 Warn if a requested optimization pass is disabled. This warning does
5673 not generally indicate that there is anything wrong with your code; it
5674 merely indicates that GCC's optimizers are unable to handle the code
5675 effectively. Often, the problem is that your code is too big or too
5676 complex; GCC refuses to optimize programs when the optimization
5677 itself is likely to take inordinate amounts of time.
5678
5679 @item -Wpointer-sign @r{(C and Objective-C only)}
5680 @opindex Wpointer-sign
5681 @opindex Wno-pointer-sign
5682 Warn for pointer argument passing or assignment with different signedness.
5683 This option is only supported for C and Objective-C@. It is implied by
5684 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5685 @option{-Wno-pointer-sign}.
5686
5687 @item -Wstack-protector
5688 @opindex Wstack-protector
5689 @opindex Wno-stack-protector
5690 This option is only active when @option{-fstack-protector} is active. It
5691 warns about functions that are not protected against stack smashing.
5692
5693 @item -Woverlength-strings
5694 @opindex Woverlength-strings
5695 @opindex Wno-overlength-strings
5696 Warn about string constants that are longer than the ``minimum
5697 maximum'' length specified in the C standard. Modern compilers
5698 generally allow string constants that are much longer than the
5699 standard's minimum limit, but very portable programs should avoid
5700 using longer strings.
5701
5702 The limit applies @emph{after} string constant concatenation, and does
5703 not count the trailing NUL@. In C90, the limit was 509 characters; in
5704 C99, it was raised to 4095. C++98 does not specify a normative
5705 minimum maximum, so we do not diagnose overlength strings in C++@.
5706
5707 This option is implied by @option{-Wpedantic}, and can be disabled with
5708 @option{-Wno-overlength-strings}.
5709
5710 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5711 @opindex Wunsuffixed-float-constants
5712
5713 Issue a warning for any floating constant that does not have
5714 a suffix. When used together with @option{-Wsystem-headers} it
5715 warns about such constants in system header files. This can be useful
5716 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5717 from the decimal floating-point extension to C99.
5718
5719 @item -Wno-designated-init @r{(C and Objective-C only)}
5720 Suppress warnings when a positional initializer is used to initialize
5721 a structure that has been marked with the @code{designated_init}
5722 attribute.
5723
5724 @end table
5725
5726 @node Debugging Options
5727 @section Options for Debugging Your Program or GCC
5728 @cindex options, debugging
5729 @cindex debugging information options
5730
5731 GCC has various special options that are used for debugging
5732 either your program or GCC:
5733
5734 @table @gcctabopt
5735 @item -g
5736 @opindex g
5737 Produce debugging information in the operating system's native format
5738 (stabs, COFF, XCOFF, or DWARF 2)@. GDB can work with this debugging
5739 information.
5740
5741 On most systems that use stabs format, @option{-g} enables use of extra
5742 debugging information that only GDB can use; this extra information
5743 makes debugging work better in GDB but probably makes other debuggers
5744 crash or
5745 refuse to read the program. If you want to control for certain whether
5746 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5747 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5748
5749 GCC allows you to use @option{-g} with
5750 @option{-O}. The shortcuts taken by optimized code may occasionally
5751 produce surprising results: some variables you declared may not exist
5752 at all; flow of control may briefly move where you did not expect it;
5753 some statements may not be executed because they compute constant
5754 results or their values are already at hand; some statements may
5755 execute in different places because they have been moved out of loops.
5756
5757 Nevertheless it proves possible to debug optimized output. This makes
5758 it reasonable to use the optimizer for programs that might have bugs.
5759
5760 The following options are useful when GCC is generated with the
5761 capability for more than one debugging format.
5762
5763 @item -gsplit-dwarf
5764 @opindex gsplit-dwarf
5765 Separate as much dwarf debugging information as possible into a
5766 separate output file with the extension .dwo. This option allows
5767 the build system to avoid linking files with debug information. To
5768 be useful, this option requires a debugger capable of reading .dwo
5769 files.
5770
5771 @item -ggdb
5772 @opindex ggdb
5773 Produce debugging information for use by GDB@. This means to use the
5774 most expressive format available (DWARF 2, stabs, or the native format
5775 if neither of those are supported), including GDB extensions if at all
5776 possible.
5777
5778 @item -gpubnames
5779 @opindex gpubnames
5780 Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5781
5782 @item -ggnu-pubnames
5783 @opindex ggnu-pubnames
5784 Generate .debug_pubnames and .debug_pubtypes sections in a format
5785 suitable for conversion into a GDB@ index. This option is only useful
5786 with a linker that can produce GDB@ index version 7.
5787
5788 @item -gstabs
5789 @opindex gstabs
5790 Produce debugging information in stabs format (if that is supported),
5791 without GDB extensions. This is the format used by DBX on most BSD
5792 systems. On MIPS, Alpha and System V Release 4 systems this option
5793 produces stabs debugging output that is not understood by DBX or SDB@.
5794 On System V Release 4 systems this option requires the GNU assembler.
5795
5796 @item -feliminate-unused-debug-symbols
5797 @opindex feliminate-unused-debug-symbols
5798 Produce debugging information in stabs format (if that is supported),
5799 for only symbols that are actually used.
5800
5801 @item -femit-class-debug-always
5802 @opindex femit-class-debug-always
5803 Instead of emitting debugging information for a C++ class in only one
5804 object file, emit it in all object files using the class. This option
5805 should be used only with debuggers that are unable to handle the way GCC
5806 normally emits debugging information for classes because using this
5807 option increases the size of debugging information by as much as a
5808 factor of two.
5809
5810 @item -fdebug-types-section
5811 @opindex fdebug-types-section
5812 @opindex fno-debug-types-section
5813 When using DWARF Version 4 or higher, type DIEs can be put into
5814 their own @code{.debug_types} section instead of making them part of the
5815 @code{.debug_info} section. It is more efficient to put them in a separate
5816 comdat sections since the linker can then remove duplicates.
5817 But not all DWARF consumers support @code{.debug_types} sections yet
5818 and on some objects @code{.debug_types} produces larger instead of smaller
5819 debugging information.
5820
5821 @item -gstabs+
5822 @opindex gstabs+
5823 Produce debugging information in stabs format (if that is supported),
5824 using GNU extensions understood only by the GNU debugger (GDB)@. The
5825 use of these extensions is likely to make other debuggers crash or
5826 refuse to read the program.
5827
5828 @item -gcoff
5829 @opindex gcoff
5830 Produce debugging information in COFF format (if that is supported).
5831 This is the format used by SDB on most System V systems prior to
5832 System V Release 4.
5833
5834 @item -gxcoff
5835 @opindex gxcoff
5836 Produce debugging information in XCOFF format (if that is supported).
5837 This is the format used by the DBX debugger on IBM RS/6000 systems.
5838
5839 @item -gxcoff+
5840 @opindex gxcoff+
5841 Produce debugging information in XCOFF format (if that is supported),
5842 using GNU extensions understood only by the GNU debugger (GDB)@. The
5843 use of these extensions is likely to make other debuggers crash or
5844 refuse to read the program, and may cause assemblers other than the GNU
5845 assembler (GAS) to fail with an error.
5846
5847 @item -gdwarf-@var{version}
5848 @opindex gdwarf-@var{version}
5849 Produce debugging information in DWARF format (if that is supported).
5850 The value of @var{version} may be either 2, 3, 4 or 5; the default version
5851 for most targets is 4. DWARF Version 5 is only experimental.
5852
5853 Note that with DWARF Version 2, some ports require and always
5854 use some non-conflicting DWARF 3 extensions in the unwind tables.
5855
5856 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5857 for maximum benefit.
5858
5859 @item -grecord-gcc-switches
5860 @opindex grecord-gcc-switches
5861 This switch causes the command-line options used to invoke the
5862 compiler that may affect code generation to be appended to the
5863 DW_AT_producer attribute in DWARF debugging information. The options
5864 are concatenated with spaces separating them from each other and from
5865 the compiler version. See also @option{-frecord-gcc-switches} for another
5866 way of storing compiler options into the object file. This is the default.
5867
5868 @item -gno-record-gcc-switches
5869 @opindex gno-record-gcc-switches
5870 Disallow appending command-line options to the DW_AT_producer attribute
5871 in DWARF debugging information.
5872
5873 @item -gstrict-dwarf
5874 @opindex gstrict-dwarf
5875 Disallow using extensions of later DWARF standard version than selected
5876 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
5877 DWARF extensions from later standard versions is allowed.
5878
5879 @item -gno-strict-dwarf
5880 @opindex gno-strict-dwarf
5881 Allow using extensions of later DWARF standard version than selected with
5882 @option{-gdwarf-@var{version}}.
5883
5884 @item -gz@r{[}=@var{type}@r{]}
5885 @opindex gz
5886 Produce compressed debug sections in DWARF format, if that is supported.
5887 If @var{type} is not given, the default type depends on the capabilities
5888 of the assembler and linker used. @var{type} may be one of
5889 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5890 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5891 compression in traditional GNU format). If the linker doesn't support
5892 writing compressed debug sections, the option is rejected. Otherwise,
5893 if the assembler does not support them, @option{-gz} is silently ignored
5894 when producing object files.
5895
5896 @item -gvms
5897 @opindex gvms
5898 Produce debugging information in Alpha/VMS debug format (if that is
5899 supported). This is the format used by DEBUG on Alpha/VMS systems.
5900
5901 @item -g@var{level}
5902 @itemx -ggdb@var{level}
5903 @itemx -gstabs@var{level}
5904 @itemx -gcoff@var{level}
5905 @itemx -gxcoff@var{level}
5906 @itemx -gvms@var{level}
5907 Request debugging information and also use @var{level} to specify how
5908 much information. The default level is 2.
5909
5910 Level 0 produces no debug information at all. Thus, @option{-g0} negates
5911 @option{-g}.
5912
5913 Level 1 produces minimal information, enough for making backtraces in
5914 parts of the program that you don't plan to debug. This includes
5915 descriptions of functions and external variables, and line number
5916 tables, but no information about local variables.
5917
5918 Level 3 includes extra information, such as all the macro definitions
5919 present in the program. Some debuggers support macro expansion when
5920 you use @option{-g3}.
5921
5922 @option{-gdwarf-2} does not accept a concatenated debug level, because
5923 GCC used to support an option @option{-gdwarf} that meant to generate
5924 debug information in version 1 of the DWARF format (which is very
5925 different from version 2), and it would have been too confusing. That
5926 debug format is long obsolete, but the option cannot be changed now.
5927 Instead use an additional @option{-g@var{level}} option to change the
5928 debug level for DWARF.
5929
5930 @item -gtoggle
5931 @opindex gtoggle
5932 Turn off generation of debug info, if leaving out this option
5933 generates it, or turn it on at level 2 otherwise. The position of this
5934 argument in the command line does not matter; it takes effect after all
5935 other options are processed, and it does so only once, no matter how
5936 many times it is given. This is mainly intended to be used with
5937 @option{-fcompare-debug}.
5938
5939 @item -fsanitize=address
5940 @opindex fsanitize=address
5941 Enable AddressSanitizer, a fast memory error detector.
5942 Memory access instructions are instrumented to detect
5943 out-of-bounds and use-after-free bugs.
5944 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
5945 more details. The run-time behavior can be influenced using the
5946 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
5947 the available options are shown at startup of the instrumended program. See
5948 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
5949 for a list of supported options.
5950
5951 @item -fsanitize=kernel-address
5952 @opindex fsanitize=kernel-address
5953 Enable AddressSanitizer for Linux kernel.
5954 See @uref{https://github.com/google/kasan/wiki} for more details.
5955
5956 @item -fsanitize=thread
5957 @opindex fsanitize=thread
5958 Enable ThreadSanitizer, a fast data race detector.
5959 Memory access instructions are instrumented to detect
5960 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
5961 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5962 environment variable; see
5963 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
5964 supported options.
5965
5966 @item -fsanitize=leak
5967 @opindex fsanitize=leak
5968 Enable LeakSanitizer, a memory leak detector.
5969 This option only matters for linking of executables and if neither
5970 @option{-fsanitize=address} nor @option{-fsanitize=thread} is used. In that
5971 case the executable is linked against a library that overrides @code{malloc}
5972 and other allocator functions. See
5973 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
5974 details. The run-time behavior can be influenced using the
5975 @env{LSAN_OPTIONS} environment variable.
5976
5977 @item -fsanitize=undefined
5978 @opindex fsanitize=undefined
5979 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5980 Various computations are instrumented to detect undefined behavior
5981 at runtime. Current suboptions are:
5982
5983 @table @gcctabopt
5984
5985 @item -fsanitize=shift
5986 @opindex fsanitize=shift
5987 This option enables checking that the result of a shift operation is
5988 not undefined. Note that what exactly is considered undefined differs
5989 slightly between C and C++, as well as between ISO C90 and C99, etc.
5990
5991 @item -fsanitize=integer-divide-by-zero
5992 @opindex fsanitize=integer-divide-by-zero
5993 Detect integer division by zero as well as @code{INT_MIN / -1} division.
5994
5995 @item -fsanitize=unreachable
5996 @opindex fsanitize=unreachable
5997 With this option, the compiler turns the @code{__builtin_unreachable}
5998 call into a diagnostics message call instead. When reaching the
5999 @code{__builtin_unreachable} call, the behavior is undefined.
6000
6001 @item -fsanitize=vla-bound
6002 @opindex fsanitize=vla-bound
6003 This option instructs the compiler to check that the size of a variable
6004 length array is positive.
6005
6006 @item -fsanitize=null
6007 @opindex fsanitize=null
6008 This option enables pointer checking. Particularly, the application
6009 built with this option turned on will issue an error message when it
6010 tries to dereference a NULL pointer, or if a reference (possibly an
6011 rvalue reference) is bound to a NULL pointer, or if a method is invoked
6012 on an object pointed by a NULL pointer.
6013
6014 @item -fsanitize=return
6015 @opindex fsanitize=return
6016 This option enables return statement checking. Programs
6017 built with this option turned on will issue an error message
6018 when the end of a non-void function is reached without actually
6019 returning a value. This option works in C++ only.
6020
6021 @item -fsanitize=signed-integer-overflow
6022 @opindex fsanitize=signed-integer-overflow
6023 This option enables signed integer overflow checking. We check that
6024 the result of @code{+}, @code{*}, and both unary and binary @code{-}
6025 does not overflow in the signed arithmetics. Note, integer promotion
6026 rules must be taken into account. That is, the following is not an
6027 overflow:
6028 @smallexample
6029 signed char a = SCHAR_MAX;
6030 a++;
6031 @end smallexample
6032
6033 @item -fsanitize=bounds
6034 @opindex fsanitize=bounds
6035 This option enables instrumentation of array bounds. Various out of bounds
6036 accesses are detected. Flexible array members, flexible array member-like
6037 arrays, and initializers of variables with static storage are not instrumented.
6038
6039 @item -fsanitize=bounds-strict
6040 @opindex fsanitize=bounds-strict
6041 This option enables strict instrumentation of array bounds. Most out of bounds
6042 accesses are detected, including flexible array members and flexible array
6043 member-like arrays. Initializers of variables with static storage are not
6044 instrumented.
6045
6046 @item -fsanitize=alignment
6047 @opindex fsanitize=alignment
6048
6049 This option enables checking of alignment of pointers when they are
6050 dereferenced, or when a reference is bound to insufficiently aligned target,
6051 or when a method or constructor is invoked on insufficiently aligned object.
6052
6053 @item -fsanitize=object-size
6054 @opindex fsanitize=object-size
6055 This option enables instrumentation of memory references using the
6056 @code{__builtin_object_size} function. Various out of bounds pointer
6057 accesses are detected.
6058
6059 @item -fsanitize=float-divide-by-zero
6060 @opindex fsanitize=float-divide-by-zero
6061 Detect floating-point division by zero. Unlike other similar options,
6062 @option{-fsanitize=float-divide-by-zero} is not enabled by
6063 @option{-fsanitize=undefined}, since floating-point division by zero can
6064 be a legitimate way of obtaining infinities and NaNs.
6065
6066 @item -fsanitize=float-cast-overflow
6067 @opindex fsanitize=float-cast-overflow
6068 This option enables floating-point type to integer conversion checking.
6069 We check that the result of the conversion does not overflow.
6070 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
6071 not enabled by @option{-fsanitize=undefined}.
6072 This option does not work well with @code{FE_INVALID} exceptions enabled.
6073
6074 @item -fsanitize=nonnull-attribute
6075 @opindex fsanitize=nonnull-attribute
6076
6077 This option enables instrumentation of calls, checking whether null values
6078 are not passed to arguments marked as requiring a non-null value by the
6079 @code{nonnull} function attribute.
6080
6081 @item -fsanitize=returns-nonnull-attribute
6082 @opindex fsanitize=returns-nonnull-attribute
6083
6084 This option enables instrumentation of return statements in functions
6085 marked with @code{returns_nonnull} function attribute, to detect returning
6086 of null values from such functions.
6087
6088 @item -fsanitize=bool
6089 @opindex fsanitize=bool
6090
6091 This option enables instrumentation of loads from bool. If a value other
6092 than 0/1 is loaded, a run-time error is issued.
6093
6094 @item -fsanitize=enum
6095 @opindex fsanitize=enum
6096
6097 This option enables instrumentation of loads from an enum type. If
6098 a value outside the range of values for the enum type is loaded,
6099 a run-time error is issued.
6100
6101 @item -fsanitize=vptr
6102 @opindex fsanitize=vptr
6103
6104 This option enables instrumentation of C++ member function calls, member
6105 accesses and some conversions between pointers to base and derived classes,
6106 to verify the referenced object has the correct dynamic type.
6107
6108 @end table
6109
6110 While @option{-ftrapv} causes traps for signed overflows to be emitted,
6111 @option{-fsanitize=undefined} gives a diagnostic message.
6112 This currently works only for the C family of languages.
6113
6114 @item -fno-sanitize=all
6115 @opindex fno-sanitize=all
6116
6117 This option disables all previously enabled sanitizers.
6118 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
6119 together.
6120
6121 @item -fasan-shadow-offset=@var{number}
6122 @opindex fasan-shadow-offset
6123 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
6124 It is useful for experimenting with different shadow memory layouts in
6125 Kernel AddressSanitizer.
6126
6127 @item -fsanitize-sections=@var{s1},@var{s2},...
6128 @opindex fsanitize-sections
6129 Sanitize global variables in selected user-defined sections. @var{si} may
6130 contain wildcards.
6131
6132 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
6133 @opindex fsanitize-recover
6134 @opindex fno-sanitize-recover
6135 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
6136 mentioned in comma-separated list of @var{opts}. Enabling this option
6137 for a sanitizer component causes it to attempt to continue
6138 running the program as if no error happened. This means multiple
6139 runtime errors can be reported in a single program run, and the exit
6140 code of the program may indicate success even when errors
6141 have been reported. The @option{-fno-sanitize-recover=} option
6142 can be used to alter
6143 this behavior: only the first detected error is reported
6144 and program then exits with a non-zero exit code.
6145
6146 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
6147 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
6148 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
6149 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
6150 For these sanitizers error recovery is turned on by default, except @option{-fsanitize=address},
6151 for which this feature is experimental.
6152 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
6153 accepted, the former enables recovery for all sanitizers that support it,
6154 the latter disables recovery for all sanitizers that support it.
6155
6156 Syntax without explicit @var{opts} parameter is deprecated. It is equivalent to
6157 @smallexample
6158 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
6159 @end smallexample
6160 @noindent
6161 Similarly @option{-fno-sanitize-recover} is equivalent to
6162 @smallexample
6163 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
6164 @end smallexample
6165
6166 @item -fsanitize-undefined-trap-on-error
6167 @opindex fsanitize-undefined-trap-on-error
6168 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
6169 report undefined behavior using @code{__builtin_trap} rather than
6170 a @code{libubsan} library routine. The advantage of this is that the
6171 @code{libubsan} library is not needed and is not linked in, so this
6172 is usable even in freestanding environments.
6173
6174 @item -fsanitize-coverage=trace-pc
6175 @opindex fsanitize-coverage=trace-pc
6176 Enable coverage-guided fuzzing code instrumentation.
6177 Inserts call to __sanitizer_cov_trace_pc into every basic block.
6178
6179 @item -fcheck-pointer-bounds
6180 @opindex fcheck-pointer-bounds
6181 @opindex fno-check-pointer-bounds
6182 @cindex Pointer Bounds Checker options
6183 Enable Pointer Bounds Checker instrumentation. Each memory reference
6184 is instrumented with checks of the pointer used for memory access against
6185 bounds associated with that pointer.
6186
6187 Currently there
6188 is only an implementation for Intel MPX available, thus x86 target
6189 and @option{-mmpx} are required to enable this feature.
6190 MPX-based instrumentation requires
6191 a runtime library to enable MPX in hardware and handle bounds
6192 violation signals. By default when @option{-fcheck-pointer-bounds}
6193 and @option{-mmpx} options are used to link a program, the GCC driver
6194 links against the @file{libmpx} runtime library and @file{libmpxwrappers}
6195 library. It also passes '-z bndplt' to a linker in case it supports this
6196 option (which is checked on libmpx configuration). Note that old versions
6197 of linker may ignore option. Gold linker doesn't support '-z bndplt'
6198 option. With no '-z bndplt' support in linker all calls to dynamic libraries
6199 lose passed bounds reducing overall protection level. It's highly
6200 recommended to use linker with '-z bndplt' support. In case such linker
6201 is not available it is adviced to always use @option{-static-libmpxwrappers}
6202 for better protection level or use @option{-static} to completely avoid
6203 external calls to dynamic libraries. MPX-based instrumentation
6204 may be used for debugging and also may be included in production code
6205 to increase program security. Depending on usage, you may
6206 have different requirements for the runtime library. The current version
6207 of the MPX runtime library is more oriented for use as a debugging
6208 tool. MPX runtime library usage implies @option{-lpthread}. See
6209 also @option{-static-libmpx}. The runtime library behavior can be
6210 influenced using various @env{CHKP_RT_*} environment variables. See
6211 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
6212 for more details.
6213
6214 Generated instrumentation may be controlled by various
6215 @option{-fchkp-*} options and by the @code{bnd_variable_size}
6216 structure field attribute (@pxref{Type Attributes}) and
6217 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
6218 (@pxref{Function Attributes}). GCC also provides a number of built-in
6219 functions for controlling the Pointer Bounds Checker. @xref{Pointer
6220 Bounds Checker builtins}, for more information.
6221
6222 @item -fchecking
6223 @opindex fchecking
6224 @opindex fno-checking
6225 Enable internal consistency checking. The default depends on
6226 the compiler configuration.
6227
6228 @item -fchkp-check-incomplete-type
6229 @opindex fchkp-check-incomplete-type
6230 @opindex fno-chkp-check-incomplete-type
6231 Generate pointer bounds checks for variables with incomplete type.
6232 Enabled by default.
6233
6234 @item -fchkp-narrow-bounds
6235 @opindex fchkp-narrow-bounds
6236 @opindex fno-chkp-narrow-bounds
6237 Controls bounds used by Pointer Bounds Checker for pointers to object
6238 fields. If narrowing is enabled then field bounds are used. Otherwise
6239 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
6240 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
6241
6242 @item -fchkp-first-field-has-own-bounds
6243 @opindex fchkp-first-field-has-own-bounds
6244 @opindex fno-chkp-first-field-has-own-bounds
6245 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
6246 first field in the structure. By default a pointer to the first field has
6247 the same bounds as a pointer to the whole structure.
6248
6249 @item -fchkp-narrow-to-innermost-array
6250 @opindex fchkp-narrow-to-innermost-array
6251 @opindex fno-chkp-narrow-to-innermost-array
6252 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
6253 case of nested static array access. By default this option is disabled and
6254 bounds of the outermost array are used.
6255
6256 @item -fchkp-optimize
6257 @opindex fchkp-optimize
6258 @opindex fno-chkp-optimize
6259 Enables Pointer Bounds Checker optimizations. Enabled by default at
6260 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
6261
6262 @item -fchkp-use-fast-string-functions
6263 @opindex fchkp-use-fast-string-functions
6264 @opindex fno-chkp-use-fast-string-functions
6265 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
6266 by Pointer Bounds Checker. Disabled by default.
6267
6268 @item -fchkp-use-nochk-string-functions
6269 @opindex fchkp-use-nochk-string-functions
6270 @opindex fno-chkp-use-nochk-string-functions
6271 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
6272 by Pointer Bounds Checker. Disabled by default.
6273
6274 @item -fchkp-use-static-bounds
6275 @opindex fchkp-use-static-bounds
6276 @opindex fno-chkp-use-static-bounds
6277 Allow Pointer Bounds Checker to generate static bounds holding
6278 bounds of static variables. Enabled by default.
6279
6280 @item -fchkp-use-static-const-bounds
6281 @opindex fchkp-use-static-const-bounds
6282 @opindex fno-chkp-use-static-const-bounds
6283 Use statically-initialized bounds for constant bounds instead of
6284 generating them each time they are required. By default enabled when
6285 @option{-fchkp-use-static-bounds} is enabled.
6286
6287 @item -fchkp-treat-zero-dynamic-size-as-infinite
6288 @opindex fchkp-treat-zero-dynamic-size-as-infinite
6289 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
6290 With this option, objects with incomplete type whose
6291 dynamically-obtained size is zero are treated as having infinite size
6292 instead by Pointer Bounds
6293 Checker. This option may be helpful if a program is linked with a library
6294 missing size information for some symbols. Disabled by default.
6295
6296 @item -fchkp-check-read
6297 @opindex fchkp-check-read
6298 @opindex fno-chkp-check-read
6299 Instructs Pointer Bounds Checker to generate checks for all read
6300 accesses to memory. Enabled by default.
6301
6302 @item -fchkp-check-write
6303 @opindex fchkp-check-write
6304 @opindex fno-chkp-check-write
6305 Instructs Pointer Bounds Checker to generate checks for all write
6306 accesses to memory. Enabled by default.
6307
6308 @item -fchkp-store-bounds
6309 @opindex fchkp-store-bounds
6310 @opindex fno-chkp-store-bounds
6311 Instructs Pointer Bounds Checker to generate bounds stores for
6312 pointer writes. Enabled by default.
6313
6314 @item -fchkp-instrument-calls
6315 @opindex fchkp-instrument-calls
6316 @opindex fno-chkp-instrument-calls
6317 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
6318 Enabled by default.
6319
6320 @item -fchkp-instrument-marked-only
6321 @opindex fchkp-instrument-marked-only
6322 @opindex fno-chkp-instrument-marked-only
6323 Instructs Pointer Bounds Checker to instrument only functions
6324 marked with the @code{bnd_instrument} attribute
6325 (@pxref{Function Attributes}). Disabled by default.
6326
6327 @item -fchkp-use-wrappers
6328 @opindex fchkp-use-wrappers
6329 @opindex fno-chkp-use-wrappers
6330 Allows Pointer Bounds Checker to replace calls to built-in functions
6331 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
6332 is used to link a program, the GCC driver automatically links
6333 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
6334 Enabled by default.
6335
6336 @item -fdump-final-insns@r{[}=@var{file}@r{]}
6337 @opindex fdump-final-insns
6338 Dump the final internal representation (RTL) to @var{file}. If the
6339 optional argument is omitted (or if @var{file} is @code{.}), the name
6340 of the dump file is determined by appending @code{.gkd} to the
6341 compilation output file name.
6342
6343 @item -fcompare-debug@r{[}=@var{opts}@r{]}
6344 @opindex fcompare-debug
6345 @opindex fno-compare-debug
6346 If no error occurs during compilation, run the compiler a second time,
6347 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6348 passed to the second compilation. Dump the final internal
6349 representation in both compilations, and print an error if they differ.
6350
6351 If the equal sign is omitted, the default @option{-gtoggle} is used.
6352
6353 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6354 and nonzero, implicitly enables @option{-fcompare-debug}. If
6355 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6356 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6357 is used.
6358
6359 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
6360 is equivalent to @option{-fno-compare-debug}, which disables the dumping
6361 of the final representation and the second compilation, preventing even
6362 @env{GCC_COMPARE_DEBUG} from taking effect.
6363
6364 To verify full coverage during @option{-fcompare-debug} testing, set
6365 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6366 which GCC rejects as an invalid option in any actual compilation
6367 (rather than preprocessing, assembly or linking). To get just a
6368 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6369 not overridden} will do.
6370
6371 @item -fcompare-debug-second
6372 @opindex fcompare-debug-second
6373 This option is implicitly passed to the compiler for the second
6374 compilation requested by @option{-fcompare-debug}, along with options to
6375 silence warnings, and omitting other options that would cause
6376 side-effect compiler outputs to files or to the standard output. Dump
6377 files and preserved temporary files are renamed so as to contain the
6378 @code{.gk} additional extension during the second compilation, to avoid
6379 overwriting those generated by the first.
6380
6381 When this option is passed to the compiler driver, it causes the
6382 @emph{first} compilation to be skipped, which makes it useful for little
6383 other than debugging the compiler proper.
6384
6385 @item -feliminate-dwarf2-dups
6386 @opindex feliminate-dwarf2-dups
6387 Compress DWARF 2 debugging information by eliminating duplicated
6388 information about each symbol. This option only makes sense when
6389 generating DWARF 2 debugging information with @option{-gdwarf-2}.
6390
6391 @item -femit-struct-debug-baseonly
6392 @opindex femit-struct-debug-baseonly
6393 Emit debug information for struct-like types
6394 only when the base name of the compilation source file
6395 matches the base name of file in which the struct is defined.
6396
6397 This option substantially reduces the size of debugging information,
6398 but at significant potential loss in type information to the debugger.
6399 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6400 See @option{-femit-struct-debug-detailed} for more detailed control.
6401
6402 This option works only with DWARF 2.
6403
6404 @item -femit-struct-debug-reduced
6405 @opindex femit-struct-debug-reduced
6406 Emit debug information for struct-like types
6407 only when the base name of the compilation source file
6408 matches the base name of file in which the type is defined,
6409 unless the struct is a template or defined in a system header.
6410
6411 This option significantly reduces the size of debugging information,
6412 with some potential loss in type information to the debugger.
6413 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6414 See @option{-femit-struct-debug-detailed} for more detailed control.
6415
6416 This option works only with DWARF 2.
6417
6418 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6419 @opindex femit-struct-debug-detailed
6420 Specify the struct-like types
6421 for which the compiler generates debug information.
6422 The intent is to reduce duplicate struct debug information
6423 between different object files within the same program.
6424
6425 This option is a detailed version of
6426 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6427 which serves for most needs.
6428
6429 A specification has the syntax@*
6430 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6431
6432 The optional first word limits the specification to
6433 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6434 A struct type is used directly when it is the type of a variable, member.
6435 Indirect uses arise through pointers to structs.
6436 That is, when use of an incomplete struct is valid, the use is indirect.
6437 An example is
6438 @samp{struct one direct; struct two * indirect;}.
6439
6440 The optional second word limits the specification to
6441 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6442 Generic structs are a bit complicated to explain.
6443 For C++, these are non-explicit specializations of template classes,
6444 or non-template classes within the above.
6445 Other programming languages have generics,
6446 but @option{-femit-struct-debug-detailed} does not yet implement them.
6447
6448 The third word specifies the source files for those
6449 structs for which the compiler should emit debug information.
6450 The values @samp{none} and @samp{any} have the normal meaning.
6451 The value @samp{base} means that
6452 the base of name of the file in which the type declaration appears
6453 must match the base of the name of the main compilation file.
6454 In practice, this means that when compiling @file{foo.c}, debug information
6455 is generated for types declared in that file and @file{foo.h},
6456 but not other header files.
6457 The value @samp{sys} means those types satisfying @samp{base}
6458 or declared in system or compiler headers.
6459
6460 You may need to experiment to determine the best settings for your application.
6461
6462 The default is @option{-femit-struct-debug-detailed=all}.
6463
6464 This option works only with DWARF 2.
6465
6466 @item -fno-merge-debug-strings
6467 @opindex fmerge-debug-strings
6468 @opindex fno-merge-debug-strings
6469 Direct the linker to not merge together strings in the debugging
6470 information that are identical in different object files. Merging is
6471 not supported by all assemblers or linkers. Merging decreases the size
6472 of the debug information in the output file at the cost of increasing
6473 link processing time. Merging is enabled by default.
6474
6475 @item -fdebug-prefix-map=@var{old}=@var{new}
6476 @opindex fdebug-prefix-map
6477 When compiling files in directory @file{@var{old}}, record debugging
6478 information describing them as in @file{@var{new}} instead.
6479
6480 @item -fno-dwarf2-cfi-asm
6481 @opindex fdwarf2-cfi-asm
6482 @opindex fno-dwarf2-cfi-asm
6483 Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6484 instead of using GAS @code{.cfi_*} directives.
6485
6486 @cindex @command{prof}
6487 @item -p
6488 @opindex p
6489 Generate extra code to write profile information suitable for the
6490 analysis program @command{prof}. You must use this option when compiling
6491 the source files you want data about, and you must also use it when
6492 linking.
6493
6494 @cindex @command{gprof}
6495 @item -pg
6496 @opindex pg
6497 Generate extra code to write profile information suitable for the
6498 analysis program @command{gprof}. You must use this option when compiling
6499 the source files you want data about, and you must also use it when
6500 linking.
6501
6502 @item -Q
6503 @opindex Q
6504 Makes the compiler print out each function name as it is compiled, and
6505 print some statistics about each pass when it finishes.
6506
6507 @item -ftime-report
6508 @opindex ftime-report
6509 Makes the compiler print some statistics about the time consumed by each
6510 pass when it finishes.
6511
6512 @item -fmem-report
6513 @opindex fmem-report
6514 Makes the compiler print some statistics about permanent memory
6515 allocation when it finishes.
6516
6517 @item -fmem-report-wpa
6518 @opindex fmem-report-wpa
6519 Makes the compiler print some statistics about permanent memory
6520 allocation for the WPA phase only.
6521
6522 @item -fpre-ipa-mem-report
6523 @opindex fpre-ipa-mem-report
6524 @item -fpost-ipa-mem-report
6525 @opindex fpost-ipa-mem-report
6526 Makes the compiler print some statistics about permanent memory
6527 allocation before or after interprocedural optimization.
6528
6529 @item -fprofile-report
6530 @opindex fprofile-report
6531 Makes the compiler print some statistics about consistency of the
6532 (estimated) profile and effect of individual passes.
6533
6534 @item -fstack-usage
6535 @opindex fstack-usage
6536 Makes the compiler output stack usage information for the program, on a
6537 per-function basis. The filename for the dump is made by appending
6538 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
6539 the output file, if explicitly specified and it is not an executable,
6540 otherwise it is the basename of the source file. An entry is made up
6541 of three fields:
6542
6543 @itemize
6544 @item
6545 The name of the function.
6546 @item
6547 A number of bytes.
6548 @item
6549 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6550 @end itemize
6551
6552 The qualifier @code{static} means that the function manipulates the stack
6553 statically: a fixed number of bytes are allocated for the frame on function
6554 entry and released on function exit; no stack adjustments are otherwise made
6555 in the function. The second field is this fixed number of bytes.
6556
6557 The qualifier @code{dynamic} means that the function manipulates the stack
6558 dynamically: in addition to the static allocation described above, stack
6559 adjustments are made in the body of the function, for example to push/pop
6560 arguments around function calls. If the qualifier @code{bounded} is also
6561 present, the amount of these adjustments is bounded at compile time and
6562 the second field is an upper bound of the total amount of stack used by
6563 the function. If it is not present, the amount of these adjustments is
6564 not bounded at compile time and the second field only represents the
6565 bounded part.
6566
6567 @item -fprofile-arcs
6568 @opindex fprofile-arcs
6569 Add code so that program flow @dfn{arcs} are instrumented. During
6570 execution the program records how many times each branch and call is
6571 executed and how many times it is taken or returns. When the compiled
6572 program exits it saves this data to a file called
6573 @file{@var{auxname}.gcda} for each source file. The data may be used for
6574 profile-directed optimizations (@option{-fbranch-probabilities}), or for
6575 test coverage analysis (@option{-ftest-coverage}). Each object file's
6576 @var{auxname} is generated from the name of the output file, if
6577 explicitly specified and it is not the final executable, otherwise it is
6578 the basename of the source file. In both cases any suffix is removed
6579 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6580 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6581 @xref{Cross-profiling}.
6582
6583 @cindex @command{gcov}
6584 @item --coverage
6585 @opindex coverage
6586
6587 This option is used to compile and link code instrumented for coverage
6588 analysis. The option is a synonym for @option{-fprofile-arcs}
6589 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6590 linking). See the documentation for those options for more details.
6591
6592 @itemize
6593
6594 @item
6595 Compile the source files with @option{-fprofile-arcs} plus optimization
6596 and code generation options. For test coverage analysis, use the
6597 additional @option{-ftest-coverage} option. You do not need to profile
6598 every source file in a program.
6599
6600 @item
6601 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6602 (the latter implies the former).
6603
6604 @item
6605 Run the program on a representative workload to generate the arc profile
6606 information. This may be repeated any number of times. You can run
6607 concurrent instances of your program, and provided that the file system
6608 supports locking, the data files will be correctly updated. Also
6609 @code{fork} calls are detected and correctly handled (double counting
6610 will not happen).
6611
6612 @item
6613 For profile-directed optimizations, compile the source files again with
6614 the same optimization and code generation options plus
6615 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6616 Control Optimization}).
6617
6618 @item
6619 For test coverage analysis, use @command{gcov} to produce human readable
6620 information from the @file{.gcno} and @file{.gcda} files. Refer to the
6621 @command{gcov} documentation for further information.
6622
6623 @end itemize
6624
6625 With @option{-fprofile-arcs}, for each function of your program GCC
6626 creates a program flow graph, then finds a spanning tree for the graph.
6627 Only arcs that are not on the spanning tree have to be instrumented: the
6628 compiler adds code to count the number of times that these arcs are
6629 executed. When an arc is the only exit or only entrance to a block, the
6630 instrumentation code can be added to the block; otherwise, a new basic
6631 block must be created to hold the instrumentation code.
6632
6633 @need 2000
6634 @item -ftest-coverage
6635 @opindex ftest-coverage
6636 Produce a notes file that the @command{gcov} code-coverage utility
6637 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6638 show program coverage. Each source file's note file is called
6639 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
6640 above for a description of @var{auxname} and instructions on how to
6641 generate test coverage data. Coverage data matches the source files
6642 more closely if you do not optimize.
6643
6644 @item -fdbg-cnt-list
6645 @opindex fdbg-cnt-list
6646 Print the name and the counter upper bound for all debug counters.
6647
6648
6649 @item -fdbg-cnt=@var{counter-value-list}
6650 @opindex fdbg-cnt
6651 Set the internal debug counter upper bound. @var{counter-value-list}
6652 is a comma-separated list of @var{name}:@var{value} pairs
6653 which sets the upper bound of each debug counter @var{name} to @var{value}.
6654 All debug counters have the initial upper bound of @code{UINT_MAX};
6655 thus @code{dbg_cnt} returns true always unless the upper bound
6656 is set by this option.
6657 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6658 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
6659
6660 @item -fenable-@var{kind}-@var{pass}
6661 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6662 @opindex fdisable-
6663 @opindex fenable-
6664
6665 This is a set of options that are used to explicitly disable/enable
6666 optimization passes. These options are intended for use for debugging GCC.
6667 Compiler users should use regular options for enabling/disabling
6668 passes instead.
6669
6670 @table @gcctabopt
6671
6672 @item -fdisable-ipa-@var{pass}
6673 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6674 statically invoked in the compiler multiple times, the pass name should be
6675 appended with a sequential number starting from 1.
6676
6677 @item -fdisable-rtl-@var{pass}
6678 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
6679 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
6680 statically invoked in the compiler multiple times, the pass name should be
6681 appended with a sequential number starting from 1. @var{range-list} is a
6682 comma-separated list of function ranges or assembler names. Each range is a number
6683 pair separated by a colon. The range is inclusive in both ends. If the range
6684 is trivial, the number pair can be simplified as a single number. If the
6685 function's call graph node's @var{uid} falls within one of the specified ranges,
6686 the @var{pass} is disabled for that function. The @var{uid} is shown in the
6687 function header of a dump file, and the pass names can be dumped by using
6688 option @option{-fdump-passes}.
6689
6690 @item -fdisable-tree-@var{pass}
6691 @itemx -fdisable-tree-@var{pass}=@var{range-list}
6692 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
6693 option arguments.
6694
6695 @item -fenable-ipa-@var{pass}
6696 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6697 statically invoked in the compiler multiple times, the pass name should be
6698 appended with a sequential number starting from 1.
6699
6700 @item -fenable-rtl-@var{pass}
6701 @itemx -fenable-rtl-@var{pass}=@var{range-list}
6702 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
6703 description and examples.
6704
6705 @item -fenable-tree-@var{pass}
6706 @itemx -fenable-tree-@var{pass}=@var{range-list}
6707 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
6708 of option arguments.
6709
6710 @end table
6711
6712 Here are some examples showing uses of these options.
6713
6714 @smallexample
6715
6716 # disable ccp1 for all functions
6717 -fdisable-tree-ccp1
6718 # disable complete unroll for function whose cgraph node uid is 1
6719 -fenable-tree-cunroll=1
6720 # disable gcse2 for functions at the following ranges [1,1],
6721 # [300,400], and [400,1000]
6722 # disable gcse2 for functions foo and foo2
6723 -fdisable-rtl-gcse2=foo,foo2
6724 # disable early inlining
6725 -fdisable-tree-einline
6726 # disable ipa inlining
6727 -fdisable-ipa-inline
6728 # enable tree full unroll
6729 -fenable-tree-unroll
6730
6731 @end smallexample
6732
6733 @item -d@var{letters}
6734 @itemx -fdump-rtl-@var{pass}
6735 @itemx -fdump-rtl-@var{pass}=@var{filename}
6736 @opindex d
6737 @opindex fdump-rtl-@var{pass}
6738 Says to make debugging dumps during compilation at times specified by
6739 @var{letters}. This is used for debugging the RTL-based passes of the
6740 compiler. The file names for most of the dumps are made by appending
6741 a pass number and a word to the @var{dumpname}, and the files are
6742 created in the directory of the output file. In case of
6743 @option{=@var{filename}} option, the dump is output on the given file
6744 instead of the pass numbered dump files. Note that the pass number is
6745 assigned as passes are registered into the pass manager. Most passes
6746 are registered in the order that they will execute and for these passes
6747 the number corresponds to the pass execution order. However, passes
6748 registered by plugins, passes specific to compilation targets, or
6749 passes that are otherwise registered after all the other passes are
6750 numbered higher than a pass named "final", even if they are executed
6751 earlier. @var{dumpname} is generated from the name of the output
6752 file if explicitly specified and not an executable, otherwise it is
6753 the basename of the source file. These switches may have different
6754 effects when @option{-E} is used for preprocessing.
6755
6756 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6757 @option{-d} option @var{letters}. Here are the possible
6758 letters for use in @var{pass} and @var{letters}, and their meanings:
6759
6760 @table @gcctabopt
6761
6762 @item -fdump-rtl-alignments
6763 @opindex fdump-rtl-alignments
6764 Dump after branch alignments have been computed.
6765
6766 @item -fdump-rtl-asmcons
6767 @opindex fdump-rtl-asmcons
6768 Dump after fixing rtl statements that have unsatisfied in/out constraints.
6769
6770 @item -fdump-rtl-auto_inc_dec
6771 @opindex fdump-rtl-auto_inc_dec
6772 Dump after auto-inc-dec discovery. This pass is only run on
6773 architectures that have auto inc or auto dec instructions.
6774
6775 @item -fdump-rtl-barriers
6776 @opindex fdump-rtl-barriers
6777 Dump after cleaning up the barrier instructions.
6778
6779 @item -fdump-rtl-bbpart
6780 @opindex fdump-rtl-bbpart
6781 Dump after partitioning hot and cold basic blocks.
6782
6783 @item -fdump-rtl-bbro
6784 @opindex fdump-rtl-bbro
6785 Dump after block reordering.
6786
6787 @item -fdump-rtl-btl1
6788 @itemx -fdump-rtl-btl2
6789 @opindex fdump-rtl-btl2
6790 @opindex fdump-rtl-btl2
6791 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6792 after the two branch
6793 target load optimization passes.
6794
6795 @item -fdump-rtl-bypass
6796 @opindex fdump-rtl-bypass
6797 Dump after jump bypassing and control flow optimizations.
6798
6799 @item -fdump-rtl-combine
6800 @opindex fdump-rtl-combine
6801 Dump after the RTL instruction combination pass.
6802
6803 @item -fdump-rtl-compgotos
6804 @opindex fdump-rtl-compgotos
6805 Dump after duplicating the computed gotos.
6806
6807 @item -fdump-rtl-ce1
6808 @itemx -fdump-rtl-ce2
6809 @itemx -fdump-rtl-ce3
6810 @opindex fdump-rtl-ce1
6811 @opindex fdump-rtl-ce2
6812 @opindex fdump-rtl-ce3
6813 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6814 @option{-fdump-rtl-ce3} enable dumping after the three
6815 if conversion passes.
6816
6817 @item -fdump-rtl-cprop_hardreg
6818 @opindex fdump-rtl-cprop_hardreg
6819 Dump after hard register copy propagation.
6820
6821 @item -fdump-rtl-csa
6822 @opindex fdump-rtl-csa
6823 Dump after combining stack adjustments.
6824
6825 @item -fdump-rtl-cse1
6826 @itemx -fdump-rtl-cse2
6827 @opindex fdump-rtl-cse1
6828 @opindex fdump-rtl-cse2
6829 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6830 the two common subexpression elimination passes.
6831
6832 @item -fdump-rtl-dce
6833 @opindex fdump-rtl-dce
6834 Dump after the standalone dead code elimination passes.
6835
6836 @item -fdump-rtl-dbr
6837 @opindex fdump-rtl-dbr
6838 Dump after delayed branch scheduling.
6839
6840 @item -fdump-rtl-dce1
6841 @itemx -fdump-rtl-dce2
6842 @opindex fdump-rtl-dce1
6843 @opindex fdump-rtl-dce2
6844 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6845 the two dead store elimination passes.
6846
6847 @item -fdump-rtl-eh
6848 @opindex fdump-rtl-eh
6849 Dump after finalization of EH handling code.
6850
6851 @item -fdump-rtl-eh_ranges
6852 @opindex fdump-rtl-eh_ranges
6853 Dump after conversion of EH handling range regions.
6854
6855 @item -fdump-rtl-expand
6856 @opindex fdump-rtl-expand
6857 Dump after RTL generation.
6858
6859 @item -fdump-rtl-fwprop1
6860 @itemx -fdump-rtl-fwprop2
6861 @opindex fdump-rtl-fwprop1
6862 @opindex fdump-rtl-fwprop2
6863 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6864 dumping after the two forward propagation passes.
6865
6866 @item -fdump-rtl-gcse1
6867 @itemx -fdump-rtl-gcse2
6868 @opindex fdump-rtl-gcse1
6869 @opindex fdump-rtl-gcse2
6870 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6871 after global common subexpression elimination.
6872
6873 @item -fdump-rtl-init-regs
6874 @opindex fdump-rtl-init-regs
6875 Dump after the initialization of the registers.
6876
6877 @item -fdump-rtl-initvals
6878 @opindex fdump-rtl-initvals
6879 Dump after the computation of the initial value sets.
6880
6881 @item -fdump-rtl-into_cfglayout
6882 @opindex fdump-rtl-into_cfglayout
6883 Dump after converting to cfglayout mode.
6884
6885 @item -fdump-rtl-ira
6886 @opindex fdump-rtl-ira
6887 Dump after iterated register allocation.
6888
6889 @item -fdump-rtl-jump
6890 @opindex fdump-rtl-jump
6891 Dump after the second jump optimization.
6892
6893 @item -fdump-rtl-loop2
6894 @opindex fdump-rtl-loop2
6895 @option{-fdump-rtl-loop2} enables dumping after the rtl
6896 loop optimization passes.
6897
6898 @item -fdump-rtl-mach
6899 @opindex fdump-rtl-mach
6900 Dump after performing the machine dependent reorganization pass, if that
6901 pass exists.
6902
6903 @item -fdump-rtl-mode_sw
6904 @opindex fdump-rtl-mode_sw
6905 Dump after removing redundant mode switches.
6906
6907 @item -fdump-rtl-rnreg
6908 @opindex fdump-rtl-rnreg
6909 Dump after register renumbering.
6910
6911 @item -fdump-rtl-outof_cfglayout
6912 @opindex fdump-rtl-outof_cfglayout
6913 Dump after converting from cfglayout mode.
6914
6915 @item -fdump-rtl-peephole2
6916 @opindex fdump-rtl-peephole2
6917 Dump after the peephole pass.
6918
6919 @item -fdump-rtl-postreload
6920 @opindex fdump-rtl-postreload
6921 Dump after post-reload optimizations.
6922
6923 @item -fdump-rtl-pro_and_epilogue
6924 @opindex fdump-rtl-pro_and_epilogue
6925 Dump after generating the function prologues and epilogues.
6926
6927 @item -fdump-rtl-sched1
6928 @itemx -fdump-rtl-sched2
6929 @opindex fdump-rtl-sched1
6930 @opindex fdump-rtl-sched2
6931 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6932 after the basic block scheduling passes.
6933
6934 @item -fdump-rtl-ree
6935 @opindex fdump-rtl-ree
6936 Dump after sign/zero extension elimination.
6937
6938 @item -fdump-rtl-seqabstr
6939 @opindex fdump-rtl-seqabstr
6940 Dump after common sequence discovery.
6941
6942 @item -fdump-rtl-shorten
6943 @opindex fdump-rtl-shorten
6944 Dump after shortening branches.
6945
6946 @item -fdump-rtl-sibling
6947 @opindex fdump-rtl-sibling
6948 Dump after sibling call optimizations.
6949
6950 @item -fdump-rtl-split1
6951 @itemx -fdump-rtl-split2
6952 @itemx -fdump-rtl-split3
6953 @itemx -fdump-rtl-split4
6954 @itemx -fdump-rtl-split5
6955 @opindex fdump-rtl-split1
6956 @opindex fdump-rtl-split2
6957 @opindex fdump-rtl-split3
6958 @opindex fdump-rtl-split4
6959 @opindex fdump-rtl-split5
6960 These options enable dumping after five rounds of
6961 instruction splitting.
6962
6963 @item -fdump-rtl-sms
6964 @opindex fdump-rtl-sms
6965 Dump after modulo scheduling. This pass is only run on some
6966 architectures.
6967
6968 @item -fdump-rtl-stack
6969 @opindex fdump-rtl-stack
6970 Dump after conversion from GCC's ``flat register file'' registers to the
6971 x87's stack-like registers. This pass is only run on x86 variants.
6972
6973 @item -fdump-rtl-subreg1
6974 @itemx -fdump-rtl-subreg2
6975 @opindex fdump-rtl-subreg1
6976 @opindex fdump-rtl-subreg2
6977 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6978 the two subreg expansion passes.
6979
6980 @item -fdump-rtl-unshare
6981 @opindex fdump-rtl-unshare
6982 Dump after all rtl has been unshared.
6983
6984 @item -fdump-rtl-vartrack
6985 @opindex fdump-rtl-vartrack
6986 Dump after variable tracking.
6987
6988 @item -fdump-rtl-vregs
6989 @opindex fdump-rtl-vregs
6990 Dump after converting virtual registers to hard registers.
6991
6992 @item -fdump-rtl-web
6993 @opindex fdump-rtl-web
6994 Dump after live range splitting.
6995
6996 @item -fdump-rtl-regclass
6997 @itemx -fdump-rtl-subregs_of_mode_init
6998 @itemx -fdump-rtl-subregs_of_mode_finish
6999 @itemx -fdump-rtl-dfinit
7000 @itemx -fdump-rtl-dfinish
7001 @opindex fdump-rtl-regclass
7002 @opindex fdump-rtl-subregs_of_mode_init
7003 @opindex fdump-rtl-subregs_of_mode_finish
7004 @opindex fdump-rtl-dfinit
7005 @opindex fdump-rtl-dfinish
7006 These dumps are defined but always produce empty files.
7007
7008 @item -da
7009 @itemx -fdump-rtl-all
7010 @opindex da
7011 @opindex fdump-rtl-all
7012 Produce all the dumps listed above.
7013
7014 @item -dA
7015 @opindex dA
7016 Annotate the assembler output with miscellaneous debugging information.
7017
7018 @item -dD
7019 @opindex dD
7020 Dump all macro definitions, at the end of preprocessing, in addition to
7021 normal output.
7022
7023 @item -dH
7024 @opindex dH
7025 Produce a core dump whenever an error occurs.
7026
7027 @item -dp
7028 @opindex dp
7029 Annotate the assembler output with a comment indicating which
7030 pattern and alternative is used. The length of each instruction is
7031 also printed.
7032
7033 @item -dP
7034 @opindex dP
7035 Dump the RTL in the assembler output as a comment before each instruction.
7036 Also turns on @option{-dp} annotation.
7037
7038 @item -dx
7039 @opindex dx
7040 Just generate RTL for a function instead of compiling it. Usually used
7041 with @option{-fdump-rtl-expand}.
7042 @end table
7043
7044 @item -fdump-noaddr
7045 @opindex fdump-noaddr
7046 When doing debugging dumps, suppress address output. This makes it more
7047 feasible to use diff on debugging dumps for compiler invocations with
7048 different compiler binaries and/or different
7049 text / bss / data / heap / stack / dso start locations.
7050
7051 @item -freport-bug
7052 @opindex freport-bug
7053 Collect and dump debug information into temporary file if ICE in C/C++
7054 compiler occured.
7055
7056 @item -fdump-unnumbered
7057 @opindex fdump-unnumbered
7058 When doing debugging dumps, suppress instruction numbers and address output.
7059 This makes it more feasible to use diff on debugging dumps for compiler
7060 invocations with different options, in particular with and without
7061 @option{-g}.
7062
7063 @item -fdump-unnumbered-links
7064 @opindex fdump-unnumbered-links
7065 When doing debugging dumps (see @option{-d} option above), suppress
7066 instruction numbers for the links to the previous and next instructions
7067 in a sequence.
7068
7069 @item -fdump-translation-unit @r{(C++ only)}
7070 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
7071 @opindex fdump-translation-unit
7072 Dump a representation of the tree structure for the entire translation
7073 unit to a file. The file name is made by appending @file{.tu} to the
7074 source file name, and the file is created in the same directory as the
7075 output file. If the @samp{-@var{options}} form is used, @var{options}
7076 controls the details of the dump as described for the
7077 @option{-fdump-tree} options.
7078
7079 @item -fdump-class-hierarchy @r{(C++ only)}
7080 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
7081 @opindex fdump-class-hierarchy
7082 Dump a representation of each class's hierarchy and virtual function
7083 table layout to a file. The file name is made by appending
7084 @file{.class} to the source file name, and the file is created in the
7085 same directory as the output file. If the @samp{-@var{options}} form
7086 is used, @var{options} controls the details of the dump as described
7087 for the @option{-fdump-tree} options.
7088
7089 @item -fdump-ipa-@var{switch}
7090 @opindex fdump-ipa
7091 Control the dumping at various stages of inter-procedural analysis
7092 language tree to a file. The file name is generated by appending a
7093 switch specific suffix to the source file name, and the file is created
7094 in the same directory as the output file. The following dumps are
7095 possible:
7096
7097 @table @samp
7098 @item all
7099 Enables all inter-procedural analysis dumps.
7100
7101 @item cgraph
7102 Dumps information about call-graph optimization, unused function removal,
7103 and inlining decisions.
7104
7105 @item inline
7106 Dump after function inlining.
7107
7108 @end table
7109
7110 @item -fdump-passes
7111 @opindex fdump-passes
7112 Dump the list of optimization passes that are turned on and off by
7113 the current command-line options.
7114
7115 @item -fdump-statistics-@var{option}
7116 @opindex fdump-statistics
7117 Enable and control dumping of pass statistics in a separate file. The
7118 file name is generated by appending a suffix ending in
7119 @samp{.statistics} to the source file name, and the file is created in
7120 the same directory as the output file. If the @samp{-@var{option}}
7121 form is used, @samp{-stats} causes counters to be summed over the
7122 whole compilation unit while @samp{-details} dumps every event as
7123 the passes generate them. The default with no option is to sum
7124 counters for each function compiled.
7125
7126 @item -fdump-tree-@var{switch}
7127 @itemx -fdump-tree-@var{switch}-@var{options}
7128 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
7129 @opindex fdump-tree
7130 Control the dumping at various stages of processing the intermediate
7131 language tree to a file. The file name is generated by appending a
7132 switch-specific suffix to the source file name, and the file is
7133 created in the same directory as the output file. In case of
7134 @option{=@var{filename}} option, the dump is output on the given file
7135 instead of the auto named dump files. If the @samp{-@var{options}}
7136 form is used, @var{options} is a list of @samp{-} separated options
7137 which control the details of the dump. Not all options are applicable
7138 to all dumps; those that are not meaningful are ignored. The
7139 following options are available
7140
7141 @table @samp
7142 @item address
7143 Print the address of each node. Usually this is not meaningful as it
7144 changes according to the environment and source file. Its primary use
7145 is for tying up a dump file with a debug environment.
7146 @item asmname
7147 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
7148 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
7149 use working backward from mangled names in the assembly file.
7150 @item slim
7151 When dumping front-end intermediate representations, inhibit dumping
7152 of members of a scope or body of a function merely because that scope
7153 has been reached. Only dump such items when they are directly reachable
7154 by some other path.
7155
7156 When dumping pretty-printed trees, this option inhibits dumping the
7157 bodies of control structures.
7158
7159 When dumping RTL, print the RTL in slim (condensed) form instead of
7160 the default LISP-like representation.
7161 @item raw
7162 Print a raw representation of the tree. By default, trees are
7163 pretty-printed into a C-like representation.
7164 @item details
7165 Enable more detailed dumps (not honored by every dump option). Also
7166 include information from the optimization passes.
7167 @item stats
7168 Enable dumping various statistics about the pass (not honored by every dump
7169 option).
7170 @item blocks
7171 Enable showing basic block boundaries (disabled in raw dumps).
7172 @item graph
7173 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
7174 dump a representation of the control flow graph suitable for viewing with
7175 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
7176 the file is pretty-printed as a subgraph, so that GraphViz can render them
7177 all in a single plot.
7178
7179 This option currently only works for RTL dumps, and the RTL is always
7180 dumped in slim form.
7181 @item vops
7182 Enable showing virtual operands for every statement.
7183 @item lineno
7184 Enable showing line numbers for statements.
7185 @item uid
7186 Enable showing the unique ID (@code{DECL_UID}) for each variable.
7187 @item verbose
7188 Enable showing the tree dump for each statement.
7189 @item eh
7190 Enable showing the EH region number holding each statement.
7191 @item scev
7192 Enable showing scalar evolution analysis details.
7193 @item optimized
7194 Enable showing optimization information (only available in certain
7195 passes).
7196 @item missed
7197 Enable showing missed optimization information (only available in certain
7198 passes).
7199 @item note
7200 Enable other detailed optimization information (only available in
7201 certain passes).
7202 @item =@var{filename}
7203 Instead of an auto named dump file, output into the given file
7204 name. The file names @file{stdout} and @file{stderr} are treated
7205 specially and are considered already open standard streams. For
7206 example,
7207
7208 @smallexample
7209 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
7210 -fdump-tree-pre=stderr file.c
7211 @end smallexample
7212
7213 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
7214 output on to @file{stderr}. If two conflicting dump filenames are
7215 given for the same pass, then the latter option overrides the earlier
7216 one.
7217
7218 @item split-paths
7219 @opindex fdump-tree-split-paths
7220 Dump each function after splitting paths to loop backedges. The file
7221 name is made by appending @file{.split-paths} to the source file name.
7222
7223 @item all
7224 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
7225 and @option{lineno}.
7226
7227 @item optall
7228 Turn on all optimization options, i.e., @option{optimized},
7229 @option{missed}, and @option{note}.
7230 @end table
7231
7232 The following tree dumps are possible:
7233 @table @samp
7234
7235 @item original
7236 @opindex fdump-tree-original
7237 Dump before any tree based optimization, to @file{@var{file}.original}.
7238
7239 @item optimized
7240 @opindex fdump-tree-optimized
7241 Dump after all tree based optimization, to @file{@var{file}.optimized}.
7242
7243 @item gimple
7244 @opindex fdump-tree-gimple
7245 Dump each function before and after the gimplification pass to a file. The
7246 file name is made by appending @file{.gimple} to the source file name.
7247
7248 @item cfg
7249 @opindex fdump-tree-cfg
7250 Dump the control flow graph of each function to a file. The file name is
7251 made by appending @file{.cfg} to the source file name.
7252
7253 @item ch
7254 @opindex fdump-tree-ch
7255 Dump each function after copying loop headers. The file name is made by
7256 appending @file{.ch} to the source file name.
7257
7258 @item ssa
7259 @opindex fdump-tree-ssa
7260 Dump SSA related information to a file. The file name is made by appending
7261 @file{.ssa} to the source file name.
7262
7263 @item alias
7264 @opindex fdump-tree-alias
7265 Dump aliasing information for each function. The file name is made by
7266 appending @file{.alias} to the source file name.
7267
7268 @item ccp
7269 @opindex fdump-tree-ccp
7270 Dump each function after CCP@. The file name is made by appending
7271 @file{.ccp} to the source file name.
7272
7273 @item storeccp
7274 @opindex fdump-tree-storeccp
7275 Dump each function after STORE-CCP@. The file name is made by appending
7276 @file{.storeccp} to the source file name.
7277
7278 @item pre
7279 @opindex fdump-tree-pre
7280 Dump trees after partial redundancy elimination. The file name is made
7281 by appending @file{.pre} to the source file name.
7282
7283 @item fre
7284 @opindex fdump-tree-fre
7285 Dump trees after full redundancy elimination. The file name is made
7286 by appending @file{.fre} to the source file name.
7287
7288 @item copyprop
7289 @opindex fdump-tree-copyprop
7290 Dump trees after copy propagation. The file name is made
7291 by appending @file{.copyprop} to the source file name.
7292
7293 @item store_copyprop
7294 @opindex fdump-tree-store_copyprop
7295 Dump trees after store copy-propagation. The file name is made
7296 by appending @file{.store_copyprop} to the source file name.
7297
7298 @item dce
7299 @opindex fdump-tree-dce
7300 Dump each function after dead code elimination. The file name is made by
7301 appending @file{.dce} to the source file name.
7302
7303 @item sra
7304 @opindex fdump-tree-sra
7305 Dump each function after performing scalar replacement of aggregates. The
7306 file name is made by appending @file{.sra} to the source file name.
7307
7308 @item sink
7309 @opindex fdump-tree-sink
7310 Dump each function after performing code sinking. The file name is made
7311 by appending @file{.sink} to the source file name.
7312
7313 @item dom
7314 @opindex fdump-tree-dom
7315 Dump each function after applying dominator tree optimizations. The file
7316 name is made by appending @file{.dom} to the source file name.
7317
7318 @item dse
7319 @opindex fdump-tree-dse
7320 Dump each function after applying dead store elimination. The file
7321 name is made by appending @file{.dse} to the source file name.
7322
7323 @item phiopt
7324 @opindex fdump-tree-phiopt
7325 Dump each function after optimizing PHI nodes into straightline code. The file
7326 name is made by appending @file{.phiopt} to the source file name.
7327
7328 @item backprop
7329 @opindex fdump-tree-backprop
7330 Dump each function after back-propagating use information up the definition
7331 chain. The file name is made by appending @file{.backprop} to the
7332 source file name.
7333
7334 @item forwprop
7335 @opindex fdump-tree-forwprop
7336 Dump each function after forward propagating single use variables. The file
7337 name is made by appending @file{.forwprop} to the source file name.
7338
7339 @item nrv
7340 @opindex fdump-tree-nrv
7341 Dump each function after applying the named return value optimization on
7342 generic trees. The file name is made by appending @file{.nrv} to the source
7343 file name.
7344
7345 @item vect
7346 @opindex fdump-tree-vect
7347 Dump each function after applying vectorization of loops. The file name is
7348 made by appending @file{.vect} to the source file name.
7349
7350 @item slp
7351 @opindex fdump-tree-slp
7352 Dump each function after applying vectorization of basic blocks. The file name
7353 is made by appending @file{.slp} to the source file name.
7354
7355 @item vrp
7356 @opindex fdump-tree-vrp
7357 Dump each function after Value Range Propagation (VRP). The file name
7358 is made by appending @file{.vrp} to the source file name.
7359
7360 @item oaccdevlow
7361 @opindex fdump-tree-oaccdevlow
7362 Dump each function after applying device-specific OpenACC transformations.
7363 The file name is made by appending @file{.oaccdevlow} to the source file name.
7364
7365 @item all
7366 @opindex fdump-tree-all
7367 Enable all the available tree dumps with the flags provided in this option.
7368 @end table
7369
7370 @item -fopt-info
7371 @itemx -fopt-info-@var{options}
7372 @itemx -fopt-info-@var{options}=@var{filename}
7373 @opindex fopt-info
7374 Controls optimization dumps from various optimization passes. If the
7375 @samp{-@var{options}} form is used, @var{options} is a list of
7376 @samp{-} separated option keywords to select the dump details and
7377 optimizations.
7378
7379 The @var{options} can be divided into two groups: options describing the
7380 verbosity of the dump, and options describing which optimizations
7381 should be included. The options from both the groups can be freely
7382 mixed as they are non-overlapping. However, in case of any conflicts,
7383 the later options override the earlier options on the command
7384 line.
7385
7386 The following options control the dump verbosity:
7387
7388 @table @samp
7389 @item optimized
7390 Print information when an optimization is successfully applied. It is
7391 up to a pass to decide which information is relevant. For example, the
7392 vectorizer passes print the source location of loops which are
7393 successfully vectorized.
7394 @item missed
7395 Print information about missed optimizations. Individual passes
7396 control which information to include in the output.
7397 @item note
7398 Print verbose information about optimizations, such as certain
7399 transformations, more detailed messages about decisions etc.
7400 @item all
7401 Print detailed optimization information. This includes
7402 @samp{optimized}, @samp{missed}, and @samp{note}.
7403 @end table
7404
7405 One or more of the following option keywords can be used to describe a
7406 group of optimizations:
7407
7408 @table @samp
7409 @item ipa
7410 Enable dumps from all interprocedural optimizations.
7411 @item loop
7412 Enable dumps from all loop optimizations.
7413 @item inline
7414 Enable dumps from all inlining optimizations.
7415 @item vec
7416 Enable dumps from all vectorization optimizations.
7417 @item optall
7418 Enable dumps from all optimizations. This is a superset of
7419 the optimization groups listed above.
7420 @end table
7421
7422 If @var{options} is
7423 omitted, it defaults to @samp{optimized-optall}, which means to dump all
7424 info about successful optimizations from all the passes.
7425
7426 If the @var{filename} is provided, then the dumps from all the
7427 applicable optimizations are concatenated into the @var{filename}.
7428 Otherwise the dump is output onto @file{stderr}. Though multiple
7429 @option{-fopt-info} options are accepted, only one of them can include
7430 a @var{filename}. If other filenames are provided then all but the
7431 first such option are ignored.
7432
7433 Note that the output @var{filename} is overwritten
7434 in case of multiple translation units. If a combined output from
7435 multiple translation units is desired, @file{stderr} should be used
7436 instead.
7437
7438 In the following example, the optimization info is output to
7439 @file{stderr}:
7440
7441 @smallexample
7442 gcc -O3 -fopt-info
7443 @end smallexample
7444
7445 This example:
7446 @smallexample
7447 gcc -O3 -fopt-info-missed=missed.all
7448 @end smallexample
7449
7450 @noindent
7451 outputs missed optimization report from all the passes into
7452 @file{missed.all}, and this one:
7453
7454 @smallexample
7455 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7456 @end smallexample
7457
7458 @noindent
7459 prints information about missed optimization opportunities from
7460 vectorization passes on @file{stderr}.
7461 Note that @option{-fopt-info-vec-missed} is equivalent to
7462 @option{-fopt-info-missed-vec}.
7463
7464 As another example,
7465 @smallexample
7466 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7467 @end smallexample
7468
7469 @noindent
7470 outputs information about missed optimizations as well as
7471 optimized locations from all the inlining passes into
7472 @file{inline.txt}.
7473
7474 Finally, consider:
7475
7476 @smallexample
7477 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7478 @end smallexample
7479
7480 @noindent
7481 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7482 in conflict since only one output file is allowed. In this case, only
7483 the first option takes effect and the subsequent options are
7484 ignored. Thus only @file{vec.miss} is produced which contains
7485 dumps from the vectorizer about missed opportunities.
7486
7487 @item -frandom-seed=@var{string}
7488 @opindex frandom-seed
7489 This option provides a seed that GCC uses in place of
7490 random numbers in generating certain symbol names
7491 that have to be different in every compiled file. It is also used to
7492 place unique stamps in coverage data files and the object files that
7493 produce them. You can use the @option{-frandom-seed} option to produce
7494 reproducibly identical object files.
7495
7496 The @var{string} can either be a number (decimal, octal or hex) or an
7497 arbitrary string (in which case it's converted to a number by
7498 computing CRC32).
7499
7500 The @var{string} should be different for every file you compile.
7501
7502 @item -fsched-verbose=@var{n}
7503 @opindex fsched-verbose
7504 On targets that use instruction scheduling, this option controls the
7505 amount of debugging output the scheduler prints to the dump files.
7506
7507 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7508 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7509 For @var{n} greater than one, it also output basic block probabilities,
7510 detailed ready list information and unit/insn info. For @var{n} greater
7511 than two, it includes RTL at abort point, control-flow and regions info.
7512 And for @var{n} over four, @option{-fsched-verbose} also includes
7513 dependence info.
7514
7515 @item -save-temps
7516 @itemx -save-temps=cwd
7517 @opindex save-temps
7518 Store the usual ``temporary'' intermediate files permanently; place them
7519 in the current directory and name them based on the source file. Thus,
7520 compiling @file{foo.c} with @option{-c -save-temps} produces files
7521 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
7522 preprocessed @file{foo.i} output file even though the compiler now
7523 normally uses an integrated preprocessor.
7524
7525 When used in combination with the @option{-x} command-line option,
7526 @option{-save-temps} is sensible enough to avoid over writing an
7527 input source file with the same extension as an intermediate file.
7528 The corresponding intermediate file may be obtained by renaming the
7529 source file before using @option{-save-temps}.
7530
7531 If you invoke GCC in parallel, compiling several different source
7532 files that share a common base name in different subdirectories or the
7533 same source file compiled for multiple output destinations, it is
7534 likely that the different parallel compilers will interfere with each
7535 other, and overwrite the temporary files. For instance:
7536
7537 @smallexample
7538 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7539 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7540 @end smallexample
7541
7542 may result in @file{foo.i} and @file{foo.o} being written to
7543 simultaneously by both compilers.
7544
7545 @item -save-temps=obj
7546 @opindex save-temps=obj
7547 Store the usual ``temporary'' intermediate files permanently. If the
7548 @option{-o} option is used, the temporary files are based on the
7549 object file. If the @option{-o} option is not used, the
7550 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
7551
7552 For example:
7553
7554 @smallexample
7555 gcc -save-temps=obj -c foo.c
7556 gcc -save-temps=obj -c bar.c -o dir/xbar.o
7557 gcc -save-temps=obj foobar.c -o dir2/yfoobar
7558 @end smallexample
7559
7560 @noindent
7561 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7562 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7563 @file{dir2/yfoobar.o}.
7564
7565 @item -time@r{[}=@var{file}@r{]}
7566 @opindex time
7567 Report the CPU time taken by each subprocess in the compilation
7568 sequence. For C source files, this is the compiler proper and assembler
7569 (plus the linker if linking is done).
7570
7571 Without the specification of an output file, the output looks like this:
7572
7573 @smallexample
7574 # cc1 0.12 0.01
7575 # as 0.00 0.01
7576 @end smallexample
7577
7578 The first number on each line is the ``user time'', that is time spent
7579 executing the program itself. The second number is ``system time'',
7580 time spent executing operating system routines on behalf of the program.
7581 Both numbers are in seconds.
7582
7583 With the specification of an output file, the output is appended to the
7584 named file, and it looks like this:
7585
7586 @smallexample
7587 0.12 0.01 cc1 @var{options}
7588 0.00 0.01 as @var{options}
7589 @end smallexample
7590
7591 The ``user time'' and the ``system time'' are moved before the program
7592 name, and the options passed to the program are displayed, so that one
7593 can later tell what file was being compiled, and with which options.
7594
7595 @item -fvar-tracking
7596 @opindex fvar-tracking
7597 Run variable tracking pass. It computes where variables are stored at each
7598 position in code. Better debugging information is then generated
7599 (if the debugging information format supports this information).
7600
7601 It is enabled by default when compiling with optimization (@option{-Os},
7602 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7603 the debug info format supports it.
7604
7605 @item -fvar-tracking-assignments
7606 @opindex fvar-tracking-assignments
7607 @opindex fno-var-tracking-assignments
7608 Annotate assignments to user variables early in the compilation and
7609 attempt to carry the annotations over throughout the compilation all the
7610 way to the end, in an attempt to improve debug information while
7611 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7612
7613 It can be enabled even if var-tracking is disabled, in which case
7614 annotations are created and maintained, but discarded at the end.
7615 By default, this flag is enabled together with @option{-fvar-tracking},
7616 except when selective scheduling is enabled.
7617
7618 @item -fvar-tracking-assignments-toggle
7619 @opindex fvar-tracking-assignments-toggle
7620 @opindex fno-var-tracking-assignments-toggle
7621 Toggle @option{-fvar-tracking-assignments}, in the same way that
7622 @option{-gtoggle} toggles @option{-g}.
7623
7624 @item -print-file-name=@var{library}
7625 @opindex print-file-name
7626 Print the full absolute name of the library file @var{library} that
7627 would be used when linking---and don't do anything else. With this
7628 option, GCC does not compile or link anything; it just prints the
7629 file name.
7630
7631 @item -print-multi-directory
7632 @opindex print-multi-directory
7633 Print the directory name corresponding to the multilib selected by any
7634 other switches present in the command line. This directory is supposed
7635 to exist in @env{GCC_EXEC_PREFIX}.
7636
7637 @item -print-multi-lib
7638 @opindex print-multi-lib
7639 Print the mapping from multilib directory names to compiler switches
7640 that enable them. The directory name is separated from the switches by
7641 @samp{;}, and each switch starts with an @samp{@@} instead of the
7642 @samp{-}, without spaces between multiple switches. This is supposed to
7643 ease shell processing.
7644
7645 @item -print-multi-os-directory
7646 @opindex print-multi-os-directory
7647 Print the path to OS libraries for the selected
7648 multilib, relative to some @file{lib} subdirectory. If OS libraries are
7649 present in the @file{lib} subdirectory and no multilibs are used, this is
7650 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7651 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7652 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7653 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7654
7655 @item -print-multiarch
7656 @opindex print-multiarch
7657 Print the path to OS libraries for the selected multiarch,
7658 relative to some @file{lib} subdirectory.
7659
7660 @item -print-prog-name=@var{program}
7661 @opindex print-prog-name
7662 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7663
7664 @item -print-libgcc-file-name
7665 @opindex print-libgcc-file-name
7666 Same as @option{-print-file-name=libgcc.a}.
7667
7668 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7669 but you do want to link with @file{libgcc.a}. You can do:
7670
7671 @smallexample
7672 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7673 @end smallexample
7674
7675 @item -print-search-dirs
7676 @opindex print-search-dirs
7677 Print the name of the configured installation directory and a list of
7678 program and library directories @command{gcc} searches---and don't do anything else.
7679
7680 This is useful when @command{gcc} prints the error message
7681 @samp{installation problem, cannot exec cpp0: No such file or directory}.
7682 To resolve this you either need to put @file{cpp0} and the other compiler
7683 components where @command{gcc} expects to find them, or you can set the environment
7684 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7685 Don't forget the trailing @samp{/}.
7686 @xref{Environment Variables}.
7687
7688 @item -print-sysroot
7689 @opindex print-sysroot
7690 Print the target sysroot directory that is used during
7691 compilation. This is the target sysroot specified either at configure
7692 time or using the @option{--sysroot} option, possibly with an extra
7693 suffix that depends on compilation options. If no target sysroot is
7694 specified, the option prints nothing.
7695
7696 @item -print-sysroot-headers-suffix
7697 @opindex print-sysroot-headers-suffix
7698 Print the suffix added to the target sysroot when searching for
7699 headers, or give an error if the compiler is not configured with such
7700 a suffix---and don't do anything else.
7701
7702 @item -dumpmachine
7703 @opindex dumpmachine
7704 Print the compiler's target machine (for example,
7705 @samp{i686-pc-linux-gnu})---and don't do anything else.
7706
7707 @item -dumpversion
7708 @opindex dumpversion
7709 Print the compiler version (for example, @code{3.0})---and don't do
7710 anything else.
7711
7712 @item -dumpspecs
7713 @opindex dumpspecs
7714 Print the compiler's built-in specs---and don't do anything else. (This
7715 is used when GCC itself is being built.) @xref{Spec Files}.
7716
7717 @item -fno-eliminate-unused-debug-types
7718 @opindex feliminate-unused-debug-types
7719 @opindex fno-eliminate-unused-debug-types
7720 Normally, when producing DWARF 2 output, GCC avoids producing debug symbol
7721 output for types that are nowhere used in the source file being compiled.
7722 Sometimes it is useful to have GCC emit debugging
7723 information for all types declared in a compilation
7724 unit, regardless of whether or not they are actually used
7725 in that compilation unit, for example
7726 if, in the debugger, you want to cast a value to a type that is
7727 not actually used in your program (but is declared). More often,
7728 however, this results in a significant amount of wasted space.
7729 @end table
7730
7731 @node Optimize Options
7732 @section Options That Control Optimization
7733 @cindex optimize options
7734 @cindex options, optimization
7735
7736 These options control various sorts of optimizations.
7737
7738 Without any optimization option, the compiler's goal is to reduce the
7739 cost of compilation and to make debugging produce the expected
7740 results. Statements are independent: if you stop the program with a
7741 breakpoint between statements, you can then assign a new value to any
7742 variable or change the program counter to any other statement in the
7743 function and get exactly the results you expect from the source
7744 code.
7745
7746 Turning on optimization flags makes the compiler attempt to improve
7747 the performance and/or code size at the expense of compilation time
7748 and possibly the ability to debug the program.
7749
7750 The compiler performs optimization based on the knowledge it has of the
7751 program. Compiling multiple files at once to a single output file mode allows
7752 the compiler to use information gained from all of the files when compiling
7753 each of them.
7754
7755 Not all optimizations are controlled directly by a flag. Only
7756 optimizations that have a flag are listed in this section.
7757
7758 Most optimizations are only enabled if an @option{-O} level is set on
7759 the command line. Otherwise they are disabled, even if individual
7760 optimization flags are specified.
7761
7762 Depending on the target and how GCC was configured, a slightly different
7763 set of optimizations may be enabled at each @option{-O} level than
7764 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7765 to find out the exact set of optimizations that are enabled at each level.
7766 @xref{Overall Options}, for examples.
7767
7768 @table @gcctabopt
7769 @item -O
7770 @itemx -O1
7771 @opindex O
7772 @opindex O1
7773 Optimize. Optimizing compilation takes somewhat more time, and a lot
7774 more memory for a large function.
7775
7776 With @option{-O}, the compiler tries to reduce code size and execution
7777 time, without performing any optimizations that take a great deal of
7778 compilation time.
7779
7780 @option{-O} turns on the following optimization flags:
7781 @gccoptlist{
7782 -fauto-inc-dec @gol
7783 -fbranch-count-reg @gol
7784 -fcombine-stack-adjustments @gol
7785 -fcompare-elim @gol
7786 -fcprop-registers @gol
7787 -fdce @gol
7788 -fdefer-pop @gol
7789 -fdelayed-branch @gol
7790 -fdse @gol
7791 -fforward-propagate @gol
7792 -fguess-branch-probability @gol
7793 -fif-conversion2 @gol
7794 -fif-conversion @gol
7795 -finline-functions-called-once @gol
7796 -fipa-pure-const @gol
7797 -fipa-profile @gol
7798 -fipa-reference @gol
7799 -fmerge-constants @gol
7800 -fmove-loop-invariants @gol
7801 -freorder-blocks @gol
7802 -fshrink-wrap @gol
7803 -fsplit-wide-types @gol
7804 -fssa-backprop @gol
7805 -fssa-phiopt @gol
7806 -ftree-bit-ccp @gol
7807 -ftree-ccp @gol
7808 -ftree-ch @gol
7809 -ftree-coalesce-vars @gol
7810 -ftree-copy-prop @gol
7811 -ftree-dce @gol
7812 -ftree-dominator-opts @gol
7813 -ftree-dse @gol
7814 -ftree-forwprop @gol
7815 -ftree-fre @gol
7816 -ftree-phiprop @gol
7817 -ftree-sink @gol
7818 -ftree-slsr @gol
7819 -ftree-sra @gol
7820 -ftree-pta @gol
7821 -ftree-ter @gol
7822 -funit-at-a-time}
7823
7824 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7825 where doing so does not interfere with debugging.
7826
7827 @item -O2
7828 @opindex O2
7829 Optimize even more. GCC performs nearly all supported optimizations
7830 that do not involve a space-speed tradeoff.
7831 As compared to @option{-O}, this option increases both compilation time
7832 and the performance of the generated code.
7833
7834 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7835 also turns on the following optimization flags:
7836 @gccoptlist{-fthread-jumps @gol
7837 -falign-functions -falign-jumps @gol
7838 -falign-loops -falign-labels @gol
7839 -fcaller-saves @gol
7840 -fcrossjumping @gol
7841 -fcse-follow-jumps -fcse-skip-blocks @gol
7842 -fdelete-null-pointer-checks @gol
7843 -fdevirtualize -fdevirtualize-speculatively @gol
7844 -fexpensive-optimizations @gol
7845 -fgcse -fgcse-lm @gol
7846 -fhoist-adjacent-loads @gol
7847 -finline-small-functions @gol
7848 -findirect-inlining @gol
7849 -fipa-cp @gol
7850 -fipa-cp-alignment @gol
7851 -fipa-sra @gol
7852 -fipa-icf @gol
7853 -fisolate-erroneous-paths-dereference @gol
7854 -flra-remat @gol
7855 -foptimize-sibling-calls @gol
7856 -foptimize-strlen @gol
7857 -fpartial-inlining @gol
7858 -fpeephole2 @gol
7859 -freorder-blocks-algorithm=stc @gol
7860 -freorder-blocks-and-partition -freorder-functions @gol
7861 -frerun-cse-after-loop @gol
7862 -fsched-interblock -fsched-spec @gol
7863 -fschedule-insns -fschedule-insns2 @gol
7864 -fstrict-aliasing -fstrict-overflow @gol
7865 -ftree-builtin-call-dce @gol
7866 -ftree-switch-conversion -ftree-tail-merge @gol
7867 -ftree-pre @gol
7868 -ftree-vrp @gol
7869 -fipa-ra}
7870
7871 Please note the warning under @option{-fgcse} about
7872 invoking @option{-O2} on programs that use computed gotos.
7873
7874 @item -O3
7875 @opindex O3
7876 Optimize yet more. @option{-O3} turns on all optimizations specified
7877 by @option{-O2} and also turns on the @option{-finline-functions},
7878 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7879 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7880 @option{-ftree-loop-distribute-patterns}, @option{-fsplit-paths}
7881 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7882 @option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7883
7884 @item -O0
7885 @opindex O0
7886 Reduce compilation time and make debugging produce the expected
7887 results. This is the default.
7888
7889 @item -Os
7890 @opindex Os
7891 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7892 do not typically increase code size. It also performs further
7893 optimizations designed to reduce code size.
7894
7895 @option{-Os} disables the following optimization flags:
7896 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7897 -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc @gol
7898 -freorder-blocks-and-partition -fprefetch-loop-arrays}
7899
7900 @item -Ofast
7901 @opindex Ofast
7902 Disregard strict standards compliance. @option{-Ofast} enables all
7903 @option{-O3} optimizations. It also enables optimizations that are not
7904 valid for all standard-compliant programs.
7905 It turns on @option{-ffast-math} and the Fortran-specific
7906 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7907
7908 @item -Og
7909 @opindex Og
7910 Optimize debugging experience. @option{-Og} enables optimizations
7911 that do not interfere with debugging. It should be the optimization
7912 level of choice for the standard edit-compile-debug cycle, offering
7913 a reasonable level of optimization while maintaining fast compilation
7914 and a good debugging experience.
7915 @end table
7916
7917 If you use multiple @option{-O} options, with or without level numbers,
7918 the last such option is the one that is effective.
7919
7920 Options of the form @option{-f@var{flag}} specify machine-independent
7921 flags. Most flags have both positive and negative forms; the negative
7922 form of @option{-ffoo} is @option{-fno-foo}. In the table
7923 below, only one of the forms is listed---the one you typically
7924 use. You can figure out the other form by either removing @samp{no-}
7925 or adding it.
7926
7927 The following options control specific optimizations. They are either
7928 activated by @option{-O} options or are related to ones that are. You
7929 can use the following flags in the rare cases when ``fine-tuning'' of
7930 optimizations to be performed is desired.
7931
7932 @table @gcctabopt
7933 @item -fno-defer-pop
7934 @opindex fno-defer-pop
7935 Always pop the arguments to each function call as soon as that function
7936 returns. For machines that must pop arguments after a function call,
7937 the compiler normally lets arguments accumulate on the stack for several
7938 function calls and pops them all at once.
7939
7940 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7941
7942 @item -fforward-propagate
7943 @opindex fforward-propagate
7944 Perform a forward propagation pass on RTL@. The pass tries to combine two
7945 instructions and checks if the result can be simplified. If loop unrolling
7946 is active, two passes are performed and the second is scheduled after
7947 loop unrolling.
7948
7949 This option is enabled by default at optimization levels @option{-O},
7950 @option{-O2}, @option{-O3}, @option{-Os}.
7951
7952 @item -ffp-contract=@var{style}
7953 @opindex ffp-contract
7954 @option{-ffp-contract=off} disables floating-point expression contraction.
7955 @option{-ffp-contract=fast} enables floating-point expression contraction
7956 such as forming of fused multiply-add operations if the target has
7957 native support for them.
7958 @option{-ffp-contract=on} enables floating-point expression contraction
7959 if allowed by the language standard. This is currently not implemented
7960 and treated equal to @option{-ffp-contract=off}.
7961
7962 The default is @option{-ffp-contract=fast}.
7963
7964 @item -fomit-frame-pointer
7965 @opindex fomit-frame-pointer
7966 Don't keep the frame pointer in a register for functions that
7967 don't need one. This avoids the instructions to save, set up and
7968 restore frame pointers; it also makes an extra register available
7969 in many functions. @strong{It also makes debugging impossible on
7970 some machines.}
7971
7972 On some machines, such as the VAX, this flag has no effect, because
7973 the standard calling sequence automatically handles the frame pointer
7974 and nothing is saved by pretending it doesn't exist. The
7975 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7976 whether a target machine supports this flag. @xref{Registers,,Register
7977 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7978
7979 The default setting (when not optimizing for
7980 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7981 @option{-fomit-frame-pointer}. You can configure GCC with the
7982 @option{--enable-frame-pointer} configure option to change the default.
7983
7984 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7985
7986 @item -foptimize-sibling-calls
7987 @opindex foptimize-sibling-calls
7988 Optimize sibling and tail recursive calls.
7989
7990 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7991
7992 @item -foptimize-strlen
7993 @opindex foptimize-strlen
7994 Optimize various standard C string functions (e.g. @code{strlen},
7995 @code{strchr} or @code{strcpy}) and
7996 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7997
7998 Enabled at levels @option{-O2}, @option{-O3}.
7999
8000 @item -fno-inline
8001 @opindex fno-inline
8002 Do not expand any functions inline apart from those marked with
8003 the @code{always_inline} attribute. This is the default when not
8004 optimizing.
8005
8006 Single functions can be exempted from inlining by marking them
8007 with the @code{noinline} attribute.
8008
8009 @item -finline-small-functions
8010 @opindex finline-small-functions
8011 Integrate functions into their callers when their body is smaller than expected
8012 function call code (so overall size of program gets smaller). The compiler
8013 heuristically decides which functions are simple enough to be worth integrating
8014 in this way. This inlining applies to all functions, even those not declared
8015 inline.
8016
8017 Enabled at level @option{-O2}.
8018
8019 @item -findirect-inlining
8020 @opindex findirect-inlining
8021 Inline also indirect calls that are discovered to be known at compile
8022 time thanks to previous inlining. This option has any effect only
8023 when inlining itself is turned on by the @option{-finline-functions}
8024 or @option{-finline-small-functions} options.
8025
8026 Enabled at level @option{-O2}.
8027
8028 @item -finline-functions
8029 @opindex finline-functions
8030 Consider all functions for inlining, even if they are not declared inline.
8031 The compiler heuristically decides which functions are worth integrating
8032 in this way.
8033
8034 If all calls to a given function are integrated, and the function is
8035 declared @code{static}, then the function is normally not output as
8036 assembler code in its own right.
8037
8038 Enabled at level @option{-O3}.
8039
8040 @item -finline-functions-called-once
8041 @opindex finline-functions-called-once
8042 Consider all @code{static} functions called once for inlining into their
8043 caller even if they are not marked @code{inline}. If a call to a given
8044 function is integrated, then the function is not output as assembler code
8045 in its own right.
8046
8047 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
8048
8049 @item -fearly-inlining
8050 @opindex fearly-inlining
8051 Inline functions marked by @code{always_inline} and functions whose body seems
8052 smaller than the function call overhead early before doing
8053 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
8054 makes profiling significantly cheaper and usually inlining faster on programs
8055 having large chains of nested wrapper functions.
8056
8057 Enabled by default.
8058
8059 @item -fipa-sra
8060 @opindex fipa-sra
8061 Perform interprocedural scalar replacement of aggregates, removal of
8062 unused parameters and replacement of parameters passed by reference
8063 by parameters passed by value.
8064
8065 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
8066
8067 @item -finline-limit=@var{n}
8068 @opindex finline-limit
8069 By default, GCC limits the size of functions that can be inlined. This flag
8070 allows coarse control of this limit. @var{n} is the size of functions that
8071 can be inlined in number of pseudo instructions.
8072
8073 Inlining is actually controlled by a number of parameters, which may be
8074 specified individually by using @option{--param @var{name}=@var{value}}.
8075 The @option{-finline-limit=@var{n}} option sets some of these parameters
8076 as follows:
8077
8078 @table @gcctabopt
8079 @item max-inline-insns-single
8080 is set to @var{n}/2.
8081 @item max-inline-insns-auto
8082 is set to @var{n}/2.
8083 @end table
8084
8085 See below for a documentation of the individual
8086 parameters controlling inlining and for the defaults of these parameters.
8087
8088 @emph{Note:} there may be no value to @option{-finline-limit} that results
8089 in default behavior.
8090
8091 @emph{Note:} pseudo instruction represents, in this particular context, an
8092 abstract measurement of function's size. In no way does it represent a count
8093 of assembly instructions and as such its exact meaning might change from one
8094 release to an another.
8095
8096 @item -fno-keep-inline-dllexport
8097 @opindex fno-keep-inline-dllexport
8098 This is a more fine-grained version of @option{-fkeep-inline-functions},
8099 which applies only to functions that are declared using the @code{dllexport}
8100 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
8101 Functions}.)
8102
8103 @item -fkeep-inline-functions
8104 @opindex fkeep-inline-functions
8105 In C, emit @code{static} functions that are declared @code{inline}
8106 into the object file, even if the function has been inlined into all
8107 of its callers. This switch does not affect functions using the
8108 @code{extern inline} extension in GNU C90@. In C++, emit any and all
8109 inline functions into the object file.
8110
8111 @item -fkeep-static-functions
8112 @opindex fkeep-static-functions
8113 Emit @code{static} functions into the object file, even if the function
8114 is never used.
8115
8116 @item -fkeep-static-consts
8117 @opindex fkeep-static-consts
8118 Emit variables declared @code{static const} when optimization isn't turned
8119 on, even if the variables aren't referenced.
8120
8121 GCC enables this option by default. If you want to force the compiler to
8122 check if a variable is referenced, regardless of whether or not
8123 optimization is turned on, use the @option{-fno-keep-static-consts} option.
8124
8125 @item -fmerge-constants
8126 @opindex fmerge-constants
8127 Attempt to merge identical constants (string constants and floating-point
8128 constants) across compilation units.
8129
8130 This option is the default for optimized compilation if the assembler and
8131 linker support it. Use @option{-fno-merge-constants} to inhibit this
8132 behavior.
8133
8134 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8135
8136 @item -fmerge-all-constants
8137 @opindex fmerge-all-constants
8138 Attempt to merge identical constants and identical variables.
8139
8140 This option implies @option{-fmerge-constants}. In addition to
8141 @option{-fmerge-constants} this considers e.g.@: even constant initialized
8142 arrays or initialized constant variables with integral or floating-point
8143 types. Languages like C or C++ require each variable, including multiple
8144 instances of the same variable in recursive calls, to have distinct locations,
8145 so using this option results in non-conforming
8146 behavior.
8147
8148 @item -fmodulo-sched
8149 @opindex fmodulo-sched
8150 Perform swing modulo scheduling immediately before the first scheduling
8151 pass. This pass looks at innermost loops and reorders their
8152 instructions by overlapping different iterations.
8153
8154 @item -fmodulo-sched-allow-regmoves
8155 @opindex fmodulo-sched-allow-regmoves
8156 Perform more aggressive SMS-based modulo scheduling with register moves
8157 allowed. By setting this flag certain anti-dependences edges are
8158 deleted, which triggers the generation of reg-moves based on the
8159 life-range analysis. This option is effective only with
8160 @option{-fmodulo-sched} enabled.
8161
8162 @item -fno-branch-count-reg
8163 @opindex fno-branch-count-reg
8164 Do not use ``decrement and branch'' instructions on a count register,
8165 but instead generate a sequence of instructions that decrement a
8166 register, compare it against zero, then branch based upon the result.
8167 This option is only meaningful on architectures that support such
8168 instructions, which include x86, PowerPC, IA-64 and S/390.
8169
8170 Enabled by default at @option{-O1} and higher.
8171
8172 The default is @option{-fbranch-count-reg}.
8173
8174 @item -fno-function-cse
8175 @opindex fno-function-cse
8176 Do not put function addresses in registers; make each instruction that
8177 calls a constant function contain the function's address explicitly.
8178
8179 This option results in less efficient code, but some strange hacks
8180 that alter the assembler output may be confused by the optimizations
8181 performed when this option is not used.
8182
8183 The default is @option{-ffunction-cse}
8184
8185 @item -fno-zero-initialized-in-bss
8186 @opindex fno-zero-initialized-in-bss
8187 If the target supports a BSS section, GCC by default puts variables that
8188 are initialized to zero into BSS@. This can save space in the resulting
8189 code.
8190
8191 This option turns off this behavior because some programs explicitly
8192 rely on variables going to the data section---e.g., so that the
8193 resulting executable can find the beginning of that section and/or make
8194 assumptions based on that.
8195
8196 The default is @option{-fzero-initialized-in-bss}.
8197
8198 @item -fthread-jumps
8199 @opindex fthread-jumps
8200 Perform optimizations that check to see if a jump branches to a
8201 location where another comparison subsumed by the first is found. If
8202 so, the first branch is redirected to either the destination of the
8203 second branch or a point immediately following it, depending on whether
8204 the condition is known to be true or false.
8205
8206 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8207
8208 @item -fsplit-wide-types
8209 @opindex fsplit-wide-types
8210 When using a type that occupies multiple registers, such as @code{long
8211 long} on a 32-bit system, split the registers apart and allocate them
8212 independently. This normally generates better code for those types,
8213 but may make debugging more difficult.
8214
8215 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8216 @option{-Os}.
8217
8218 @item -fcse-follow-jumps
8219 @opindex fcse-follow-jumps
8220 In common subexpression elimination (CSE), scan through jump instructions
8221 when the target of the jump is not reached by any other path. For
8222 example, when CSE encounters an @code{if} statement with an
8223 @code{else} clause, CSE follows the jump when the condition
8224 tested is false.
8225
8226 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8227
8228 @item -fcse-skip-blocks
8229 @opindex fcse-skip-blocks
8230 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8231 follow jumps that conditionally skip over blocks. When CSE
8232 encounters a simple @code{if} statement with no else clause,
8233 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8234 body of the @code{if}.
8235
8236 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8237
8238 @item -frerun-cse-after-loop
8239 @opindex frerun-cse-after-loop
8240 Re-run common subexpression elimination after loop optimizations are
8241 performed.
8242
8243 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8244
8245 @item -fgcse
8246 @opindex fgcse
8247 Perform a global common subexpression elimination pass.
8248 This pass also performs global constant and copy propagation.
8249
8250 @emph{Note:} When compiling a program using computed gotos, a GCC
8251 extension, you may get better run-time performance if you disable
8252 the global common subexpression elimination pass by adding
8253 @option{-fno-gcse} to the command line.
8254
8255 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8256
8257 @item -fgcse-lm
8258 @opindex fgcse-lm
8259 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8260 attempts to move loads that are only killed by stores into themselves. This
8261 allows a loop containing a load/store sequence to be changed to a load outside
8262 the loop, and a copy/store within the loop.
8263
8264 Enabled by default when @option{-fgcse} is enabled.
8265
8266 @item -fgcse-sm
8267 @opindex fgcse-sm
8268 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8269 global common subexpression elimination. This pass attempts to move
8270 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8271 loops containing a load/store sequence can be changed to a load before
8272 the loop and a store after the loop.
8273
8274 Not enabled at any optimization level.
8275
8276 @item -fgcse-las
8277 @opindex fgcse-las
8278 When @option{-fgcse-las} is enabled, the global common subexpression
8279 elimination pass eliminates redundant loads that come after stores to the
8280 same memory location (both partial and full redundancies).
8281
8282 Not enabled at any optimization level.
8283
8284 @item -fgcse-after-reload
8285 @opindex fgcse-after-reload
8286 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8287 pass is performed after reload. The purpose of this pass is to clean up
8288 redundant spilling.
8289
8290 @item -faggressive-loop-optimizations
8291 @opindex faggressive-loop-optimizations
8292 This option tells the loop optimizer to use language constraints to
8293 derive bounds for the number of iterations of a loop. This assumes that
8294 loop code does not invoke undefined behavior by for example causing signed
8295 integer overflows or out-of-bound array accesses. The bounds for the
8296 number of iterations of a loop are used to guide loop unrolling and peeling
8297 and loop exit test optimizations.
8298 This option is enabled by default.
8299
8300 @item -funsafe-loop-optimizations
8301 @opindex funsafe-loop-optimizations
8302 This option tells the loop optimizer to assume that loop indices do not
8303 overflow, and that loops with nontrivial exit condition are not
8304 infinite. This enables a wider range of loop optimizations even if
8305 the loop optimizer itself cannot prove that these assumptions are valid.
8306 If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
8307 if it finds this kind of loop.
8308
8309 @item -fcrossjumping
8310 @opindex fcrossjumping
8311 Perform cross-jumping transformation.
8312 This transformation unifies equivalent code and saves code size. The
8313 resulting code may or may not perform better than without cross-jumping.
8314
8315 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8316
8317 @item -fauto-inc-dec
8318 @opindex fauto-inc-dec
8319 Combine increments or decrements of addresses with memory accesses.
8320 This pass is always skipped on architectures that do not have
8321 instructions to support this. Enabled by default at @option{-O} and
8322 higher on architectures that support this.
8323
8324 @item -fdce
8325 @opindex fdce
8326 Perform dead code elimination (DCE) on RTL@.
8327 Enabled by default at @option{-O} and higher.
8328
8329 @item -fdse
8330 @opindex fdse
8331 Perform dead store elimination (DSE) on RTL@.
8332 Enabled by default at @option{-O} and higher.
8333
8334 @item -fif-conversion
8335 @opindex fif-conversion
8336 Attempt to transform conditional jumps into branch-less equivalents. This
8337 includes use of conditional moves, min, max, set flags and abs instructions, and
8338 some tricks doable by standard arithmetics. The use of conditional execution
8339 on chips where it is available is controlled by @option{-fif-conversion2}.
8340
8341 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8342
8343 @item -fif-conversion2
8344 @opindex fif-conversion2
8345 Use conditional execution (where available) to transform conditional jumps into
8346 branch-less equivalents.
8347
8348 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8349
8350 @item -fdeclone-ctor-dtor
8351 @opindex fdeclone-ctor-dtor
8352 The C++ ABI requires multiple entry points for constructors and
8353 destructors: one for a base subobject, one for a complete object, and
8354 one for a virtual destructor that calls operator delete afterwards.
8355 For a hierarchy with virtual bases, the base and complete variants are
8356 clones, which means two copies of the function. With this option, the
8357 base and complete variants are changed to be thunks that call a common
8358 implementation.
8359
8360 Enabled by @option{-Os}.
8361
8362 @item -fdelete-null-pointer-checks
8363 @opindex fdelete-null-pointer-checks
8364 Assume that programs cannot safely dereference null pointers, and that
8365 no code or data element resides at address zero.
8366 This option enables simple constant
8367 folding optimizations at all optimization levels. In addition, other
8368 optimization passes in GCC use this flag to control global dataflow
8369 analyses that eliminate useless checks for null pointers; these assume
8370 that a memory access to address zero always results in a trap, so
8371 that if a pointer is checked after it has already been dereferenced,
8372 it cannot be null.
8373
8374 Note however that in some environments this assumption is not true.
8375 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8376 for programs that depend on that behavior.
8377
8378 This option is enabled by default on most targets. On Nios II ELF, it
8379 defaults to off. On AVR and CR16, this option is completely disabled.
8380
8381 Passes that use the dataflow information
8382 are enabled independently at different optimization levels.
8383
8384 @item -fdevirtualize
8385 @opindex fdevirtualize
8386 Attempt to convert calls to virtual functions to direct calls. This
8387 is done both within a procedure and interprocedurally as part of
8388 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8389 propagation (@option{-fipa-cp}).
8390 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8391
8392 @item -fdevirtualize-speculatively
8393 @opindex fdevirtualize-speculatively
8394 Attempt to convert calls to virtual functions to speculative direct calls.
8395 Based on the analysis of the type inheritance graph, determine for a given call
8396 the set of likely targets. If the set is small, preferably of size 1, change
8397 the call into a conditional deciding between direct and indirect calls. The
8398 speculative calls enable more optimizations, such as inlining. When they seem
8399 useless after further optimization, they are converted back into original form.
8400
8401 @item -fdevirtualize-at-ltrans
8402 @opindex fdevirtualize-at-ltrans
8403 Stream extra information needed for aggressive devirtualization when running
8404 the link-time optimizer in local transformation mode.
8405 This option enables more devirtualization but
8406 significantly increases the size of streamed data. For this reason it is
8407 disabled by default.
8408
8409 @item -fexpensive-optimizations
8410 @opindex fexpensive-optimizations
8411 Perform a number of minor optimizations that are relatively expensive.
8412
8413 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8414
8415 @item -free
8416 @opindex free
8417 Attempt to remove redundant extension instructions. This is especially
8418 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8419 registers after writing to their lower 32-bit half.
8420
8421 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8422 @option{-O3}, @option{-Os}.
8423
8424 @item -fno-lifetime-dse
8425 @opindex fno-lifetime-dse
8426 In C++ the value of an object is only affected by changes within its
8427 lifetime: when the constructor begins, the object has an indeterminate
8428 value, and any changes during the lifetime of the object are dead when
8429 the object is destroyed. Normally dead store elimination will take
8430 advantage of this; if your code relies on the value of the object
8431 storage persisting beyond the lifetime of the object, you can use this
8432 flag to disable this optimization.
8433
8434 @item -flive-range-shrinkage
8435 @opindex flive-range-shrinkage
8436 Attempt to decrease register pressure through register live range
8437 shrinkage. This is helpful for fast processors with small or moderate
8438 size register sets.
8439
8440 @item -fira-algorithm=@var{algorithm}
8441 @opindex fira-algorithm
8442 Use the specified coloring algorithm for the integrated register
8443 allocator. The @var{algorithm} argument can be @samp{priority}, which
8444 specifies Chow's priority coloring, or @samp{CB}, which specifies
8445 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8446 for all architectures, but for those targets that do support it, it is
8447 the default because it generates better code.
8448
8449 @item -fira-region=@var{region}
8450 @opindex fira-region
8451 Use specified regions for the integrated register allocator. The
8452 @var{region} argument should be one of the following:
8453
8454 @table @samp
8455
8456 @item all
8457 Use all loops as register allocation regions.
8458 This can give the best results for machines with a small and/or
8459 irregular register set.
8460
8461 @item mixed
8462 Use all loops except for loops with small register pressure
8463 as the regions. This value usually gives
8464 the best results in most cases and for most architectures,
8465 and is enabled by default when compiling with optimization for speed
8466 (@option{-O}, @option{-O2}, @dots{}).
8467
8468 @item one
8469 Use all functions as a single region.
8470 This typically results in the smallest code size, and is enabled by default for
8471 @option{-Os} or @option{-O0}.
8472
8473 @end table
8474
8475 @item -fira-hoist-pressure
8476 @opindex fira-hoist-pressure
8477 Use IRA to evaluate register pressure in the code hoisting pass for
8478 decisions to hoist expressions. This option usually results in smaller
8479 code, but it can slow the compiler down.
8480
8481 This option is enabled at level @option{-Os} for all targets.
8482
8483 @item -fira-loop-pressure
8484 @opindex fira-loop-pressure
8485 Use IRA to evaluate register pressure in loops for decisions to move
8486 loop invariants. This option usually results in generation
8487 of faster and smaller code on machines with large register files (>= 32
8488 registers), but it can slow the compiler down.
8489
8490 This option is enabled at level @option{-O3} for some targets.
8491
8492 @item -fno-ira-share-save-slots
8493 @opindex fno-ira-share-save-slots
8494 Disable sharing of stack slots used for saving call-used hard
8495 registers living through a call. Each hard register gets a
8496 separate stack slot, and as a result function stack frames are
8497 larger.
8498
8499 @item -fno-ira-share-spill-slots
8500 @opindex fno-ira-share-spill-slots
8501 Disable sharing of stack slots allocated for pseudo-registers. Each
8502 pseudo-register that does not get a hard register gets a separate
8503 stack slot, and as a result function stack frames are larger.
8504
8505 @item -fira-verbose=@var{n}
8506 @opindex fira-verbose
8507 Control the verbosity of the dump file for the integrated register allocator.
8508 The default value is 5. If the value @var{n} is greater or equal to 10,
8509 the dump output is sent to stderr using the same format as @var{n} minus 10.
8510
8511 @item -flra-remat
8512 @opindex flra-remat
8513 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8514 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8515 values if it is profitable.
8516
8517 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8518
8519 @item -fdelayed-branch
8520 @opindex fdelayed-branch
8521 If supported for the target machine, attempt to reorder instructions
8522 to exploit instruction slots available after delayed branch
8523 instructions.
8524
8525 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8526
8527 @item -fschedule-insns
8528 @opindex fschedule-insns
8529 If supported for the target machine, attempt to reorder instructions to
8530 eliminate execution stalls due to required data being unavailable. This
8531 helps machines that have slow floating point or memory load instructions
8532 by allowing other instructions to be issued until the result of the load
8533 or floating-point instruction is required.
8534
8535 Enabled at levels @option{-O2}, @option{-O3}.
8536
8537 @item -fschedule-insns2
8538 @opindex fschedule-insns2
8539 Similar to @option{-fschedule-insns}, but requests an additional pass of
8540 instruction scheduling after register allocation has been done. This is
8541 especially useful on machines with a relatively small number of
8542 registers and where memory load instructions take more than one cycle.
8543
8544 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8545
8546 @item -fno-sched-interblock
8547 @opindex fno-sched-interblock
8548 Don't schedule instructions across basic blocks. This is normally
8549 enabled by default when scheduling before register allocation, i.e.@:
8550 with @option{-fschedule-insns} or at @option{-O2} or higher.
8551
8552 @item -fno-sched-spec
8553 @opindex fno-sched-spec
8554 Don't allow speculative motion of non-load instructions. This is normally
8555 enabled by default when scheduling before register allocation, i.e.@:
8556 with @option{-fschedule-insns} or at @option{-O2} or higher.
8557
8558 @item -fsched-pressure
8559 @opindex fsched-pressure
8560 Enable register pressure sensitive insn scheduling before register
8561 allocation. This only makes sense when scheduling before register
8562 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8563 @option{-O2} or higher. Usage of this option can improve the
8564 generated code and decrease its size by preventing register pressure
8565 increase above the number of available hard registers and subsequent
8566 spills in register allocation.
8567
8568 @item -fsched-spec-load
8569 @opindex fsched-spec-load
8570 Allow speculative motion of some load instructions. This only makes
8571 sense when scheduling before register allocation, i.e.@: with
8572 @option{-fschedule-insns} or at @option{-O2} or higher.
8573
8574 @item -fsched-spec-load-dangerous
8575 @opindex fsched-spec-load-dangerous
8576 Allow speculative motion of more load instructions. This only makes
8577 sense when scheduling before register allocation, i.e.@: with
8578 @option{-fschedule-insns} or at @option{-O2} or higher.
8579
8580 @item -fsched-stalled-insns
8581 @itemx -fsched-stalled-insns=@var{n}
8582 @opindex fsched-stalled-insns
8583 Define how many insns (if any) can be moved prematurely from the queue
8584 of stalled insns into the ready list during the second scheduling pass.
8585 @option{-fno-sched-stalled-insns} means that no insns are moved
8586 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8587 on how many queued insns can be moved prematurely.
8588 @option{-fsched-stalled-insns} without a value is equivalent to
8589 @option{-fsched-stalled-insns=1}.
8590
8591 @item -fsched-stalled-insns-dep
8592 @itemx -fsched-stalled-insns-dep=@var{n}
8593 @opindex fsched-stalled-insns-dep
8594 Define how many insn groups (cycles) are examined for a dependency
8595 on a stalled insn that is a candidate for premature removal from the queue
8596 of stalled insns. This has an effect only during the second scheduling pass,
8597 and only if @option{-fsched-stalled-insns} is used.
8598 @option{-fno-sched-stalled-insns-dep} is equivalent to
8599 @option{-fsched-stalled-insns-dep=0}.
8600 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8601 @option{-fsched-stalled-insns-dep=1}.
8602
8603 @item -fsched2-use-superblocks
8604 @opindex fsched2-use-superblocks
8605 When scheduling after register allocation, use superblock scheduling.
8606 This allows motion across basic block boundaries,
8607 resulting in faster schedules. This option is experimental, as not all machine
8608 descriptions used by GCC model the CPU closely enough to avoid unreliable
8609 results from the algorithm.
8610
8611 This only makes sense when scheduling after register allocation, i.e.@: with
8612 @option{-fschedule-insns2} or at @option{-O2} or higher.
8613
8614 @item -fsched-group-heuristic
8615 @opindex fsched-group-heuristic
8616 Enable the group heuristic in the scheduler. This heuristic favors
8617 the instruction that belongs to a schedule group. This is enabled
8618 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8619 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8620
8621 @item -fsched-critical-path-heuristic
8622 @opindex fsched-critical-path-heuristic
8623 Enable the critical-path heuristic in the scheduler. This heuristic favors
8624 instructions on the critical path. This is enabled by default when
8625 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8626 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8627
8628 @item -fsched-spec-insn-heuristic
8629 @opindex fsched-spec-insn-heuristic
8630 Enable the speculative instruction heuristic in the scheduler. This
8631 heuristic favors speculative instructions with greater dependency weakness.
8632 This is enabled by default when scheduling is enabled, i.e.@:
8633 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8634 or at @option{-O2} or higher.
8635
8636 @item -fsched-rank-heuristic
8637 @opindex fsched-rank-heuristic
8638 Enable the rank heuristic in the scheduler. This heuristic favors
8639 the instruction belonging to a basic block with greater size or frequency.
8640 This is enabled by default when scheduling is enabled, i.e.@:
8641 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8642 at @option{-O2} or higher.
8643
8644 @item -fsched-last-insn-heuristic
8645 @opindex fsched-last-insn-heuristic
8646 Enable the last-instruction heuristic in the scheduler. This heuristic
8647 favors the instruction that is less dependent on the last instruction
8648 scheduled. This is enabled by default when scheduling is enabled,
8649 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8650 at @option{-O2} or higher.
8651
8652 @item -fsched-dep-count-heuristic
8653 @opindex fsched-dep-count-heuristic
8654 Enable the dependent-count heuristic in the scheduler. This heuristic
8655 favors the instruction that has more instructions depending on it.
8656 This is enabled by default when scheduling is enabled, i.e.@:
8657 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8658 at @option{-O2} or higher.
8659
8660 @item -freschedule-modulo-scheduled-loops
8661 @opindex freschedule-modulo-scheduled-loops
8662 Modulo scheduling is performed before traditional scheduling. If a loop
8663 is modulo scheduled, later scheduling passes may change its schedule.
8664 Use this option to control that behavior.
8665
8666 @item -fselective-scheduling
8667 @opindex fselective-scheduling
8668 Schedule instructions using selective scheduling algorithm. Selective
8669 scheduling runs instead of the first scheduler pass.
8670
8671 @item -fselective-scheduling2
8672 @opindex fselective-scheduling2
8673 Schedule instructions using selective scheduling algorithm. Selective
8674 scheduling runs instead of the second scheduler pass.
8675
8676 @item -fsel-sched-pipelining
8677 @opindex fsel-sched-pipelining
8678 Enable software pipelining of innermost loops during selective scheduling.
8679 This option has no effect unless one of @option{-fselective-scheduling} or
8680 @option{-fselective-scheduling2} is turned on.
8681
8682 @item -fsel-sched-pipelining-outer-loops
8683 @opindex fsel-sched-pipelining-outer-loops
8684 When pipelining loops during selective scheduling, also pipeline outer loops.
8685 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8686
8687 @item -fsemantic-interposition
8688 @opindex fsemantic-interposition
8689 Some object formats, like ELF, allow interposing of symbols by the
8690 dynamic linker.
8691 This means that for symbols exported from the DSO, the compiler cannot perform
8692 interprocedural propagation, inlining and other optimizations in anticipation
8693 that the function or variable in question may change. While this feature is
8694 useful, for example, to rewrite memory allocation functions by a debugging
8695 implementation, it is expensive in the terms of code quality.
8696 With @option{-fno-semantic-interposition} the compiler assumes that
8697 if interposition happens for functions the overwriting function will have
8698 precisely the same semantics (and side effects).
8699 Similarly if interposition happens
8700 for variables, the constructor of the variable will be the same. The flag
8701 has no effect for functions explicitly declared inline
8702 (where it is never allowed for interposition to change semantics)
8703 and for symbols explicitly declared weak.
8704
8705 @item -fshrink-wrap
8706 @opindex fshrink-wrap
8707 Emit function prologues only before parts of the function that need it,
8708 rather than at the top of the function. This flag is enabled by default at
8709 @option{-O} and higher.
8710
8711 @item -fcaller-saves
8712 @opindex fcaller-saves
8713 Enable allocation of values to registers that are clobbered by
8714 function calls, by emitting extra instructions to save and restore the
8715 registers around such calls. Such allocation is done only when it
8716 seems to result in better code.
8717
8718 This option is always enabled by default on certain machines, usually
8719 those which have no call-preserved registers to use instead.
8720
8721 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8722
8723 @item -fcombine-stack-adjustments
8724 @opindex fcombine-stack-adjustments
8725 Tracks stack adjustments (pushes and pops) and stack memory references
8726 and then tries to find ways to combine them.
8727
8728 Enabled by default at @option{-O1} and higher.
8729
8730 @item -fipa-ra
8731 @opindex fipa-ra
8732 Use caller save registers for allocation if those registers are not used by
8733 any called function. In that case it is not necessary to save and restore
8734 them around calls. This is only possible if called functions are part of
8735 same compilation unit as current function and they are compiled before it.
8736
8737 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8738
8739 @item -fconserve-stack
8740 @opindex fconserve-stack
8741 Attempt to minimize stack usage. The compiler attempts to use less
8742 stack space, even if that makes the program slower. This option
8743 implies setting the @option{large-stack-frame} parameter to 100
8744 and the @option{large-stack-frame-growth} parameter to 400.
8745
8746 @item -ftree-reassoc
8747 @opindex ftree-reassoc
8748 Perform reassociation on trees. This flag is enabled by default
8749 at @option{-O} and higher.
8750
8751 @item -ftree-pre
8752 @opindex ftree-pre
8753 Perform partial redundancy elimination (PRE) on trees. This flag is
8754 enabled by default at @option{-O2} and @option{-O3}.
8755
8756 @item -ftree-partial-pre
8757 @opindex ftree-partial-pre
8758 Make partial redundancy elimination (PRE) more aggressive. This flag is
8759 enabled by default at @option{-O3}.
8760
8761 @item -ftree-forwprop
8762 @opindex ftree-forwprop
8763 Perform forward propagation on trees. This flag is enabled by default
8764 at @option{-O} and higher.
8765
8766 @item -ftree-fre
8767 @opindex ftree-fre
8768 Perform full redundancy elimination (FRE) on trees. The difference
8769 between FRE and PRE is that FRE only considers expressions
8770 that are computed on all paths leading to the redundant computation.
8771 This analysis is faster than PRE, though it exposes fewer redundancies.
8772 This flag is enabled by default at @option{-O} and higher.
8773
8774 @item -ftree-phiprop
8775 @opindex ftree-phiprop
8776 Perform hoisting of loads from conditional pointers on trees. This
8777 pass is enabled by default at @option{-O} and higher.
8778
8779 @item -fhoist-adjacent-loads
8780 @opindex fhoist-adjacent-loads
8781 Speculatively hoist loads from both branches of an if-then-else if the
8782 loads are from adjacent locations in the same structure and the target
8783 architecture has a conditional move instruction. This flag is enabled
8784 by default at @option{-O2} and higher.
8785
8786 @item -ftree-copy-prop
8787 @opindex ftree-copy-prop
8788 Perform copy propagation on trees. This pass eliminates unnecessary
8789 copy operations. This flag is enabled by default at @option{-O} and
8790 higher.
8791
8792 @item -fipa-pure-const
8793 @opindex fipa-pure-const
8794 Discover which functions are pure or constant.
8795 Enabled by default at @option{-O} and higher.
8796
8797 @item -fipa-reference
8798 @opindex fipa-reference
8799 Discover which static variables do not escape the
8800 compilation unit.
8801 Enabled by default at @option{-O} and higher.
8802
8803 @item -fipa-pta
8804 @opindex fipa-pta
8805 Perform interprocedural pointer analysis and interprocedural modification
8806 and reference analysis. This option can cause excessive memory and
8807 compile-time usage on large compilation units. It is not enabled by
8808 default at any optimization level.
8809
8810 @item -fipa-profile
8811 @opindex fipa-profile
8812 Perform interprocedural profile propagation. The functions called only from
8813 cold functions are marked as cold. Also functions executed once (such as
8814 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8815 functions and loop less parts of functions executed once are then optimized for
8816 size.
8817 Enabled by default at @option{-O} and higher.
8818
8819 @item -fipa-cp
8820 @opindex fipa-cp
8821 Perform interprocedural constant propagation.
8822 This optimization analyzes the program to determine when values passed
8823 to functions are constants and then optimizes accordingly.
8824 This optimization can substantially increase performance
8825 if the application has constants passed to functions.
8826 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8827
8828 @item -fipa-cp-clone
8829 @opindex fipa-cp-clone
8830 Perform function cloning to make interprocedural constant propagation stronger.
8831 When enabled, interprocedural constant propagation performs function cloning
8832 when externally visible function can be called with constant arguments.
8833 Because this optimization can create multiple copies of functions,
8834 it may significantly increase code size
8835 (see @option{--param ipcp-unit-growth=@var{value}}).
8836 This flag is enabled by default at @option{-O3}.
8837
8838 @item -fipa-cp-alignment
8839 @opindex -fipa-cp-alignment
8840 When enabled, this optimization propagates alignment of function
8841 parameters to support better vectorization and string operations.
8842
8843 This flag is enabled by default at @option{-O2} and @option{-Os}. It
8844 requires that @option{-fipa-cp} is enabled.
8845
8846 @item -fipa-icf
8847 @opindex fipa-icf
8848 Perform Identical Code Folding for functions and read-only variables.
8849 The optimization reduces code size and may disturb unwind stacks by replacing
8850 a function by equivalent one with a different name. The optimization works
8851 more effectively with link time optimization enabled.
8852
8853 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8854 works on different levels and thus the optimizations are not same - there are
8855 equivalences that are found only by GCC and equivalences found only by Gold.
8856
8857 This flag is enabled by default at @option{-O2} and @option{-Os}.
8858
8859 @item -fisolate-erroneous-paths-dereference
8860 @opindex fisolate-erroneous-paths-dereference
8861 Detect paths that trigger erroneous or undefined behavior due to
8862 dereferencing a null pointer. Isolate those paths from the main control
8863 flow and turn the statement with erroneous or undefined behavior into a trap.
8864 This flag is enabled by default at @option{-O2} and higher and depends on
8865 @option{-fdelete-null-pointer-checks} also being enabled.
8866
8867 @item -fisolate-erroneous-paths-attribute
8868 @opindex fisolate-erroneous-paths-attribute
8869 Detect paths that trigger erroneous or undefined behavior due a null value
8870 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8871 attribute. Isolate those paths from the main control flow and turn the
8872 statement with erroneous or undefined behavior into a trap. This is not
8873 currently enabled, but may be enabled by @option{-O2} in the future.
8874
8875 @item -ftree-sink
8876 @opindex ftree-sink
8877 Perform forward store motion on trees. This flag is
8878 enabled by default at @option{-O} and higher.
8879
8880 @item -ftree-bit-ccp
8881 @opindex ftree-bit-ccp
8882 Perform sparse conditional bit constant propagation on trees and propagate
8883 pointer alignment information.
8884 This pass only operates on local scalar variables and is enabled by default
8885 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8886
8887 @item -ftree-ccp
8888 @opindex ftree-ccp
8889 Perform sparse conditional constant propagation (CCP) on trees. This
8890 pass only operates on local scalar variables and is enabled by default
8891 at @option{-O} and higher.
8892
8893 @item -fssa-backprop
8894 @opindex fssa-backprop
8895 Propagate information about uses of a value up the definition chain
8896 in order to simplify the definitions. For example, this pass strips
8897 sign operations if the sign of a value never matters. The flag is
8898 enabled by default at @option{-O} and higher.
8899
8900 @item -fssa-phiopt
8901 @opindex fssa-phiopt
8902 Perform pattern matching on SSA PHI nodes to optimize conditional
8903 code. This pass is enabled by default at @option{-O} and higher.
8904
8905 @item -ftree-switch-conversion
8906 @opindex ftree-switch-conversion
8907 Perform conversion of simple initializations in a switch to
8908 initializations from a scalar array. This flag is enabled by default
8909 at @option{-O2} and higher.
8910
8911 @item -ftree-tail-merge
8912 @opindex ftree-tail-merge
8913 Look for identical code sequences. When found, replace one with a jump to the
8914 other. This optimization is known as tail merging or cross jumping. This flag
8915 is enabled by default at @option{-O2} and higher. The compilation time
8916 in this pass can
8917 be limited using @option{max-tail-merge-comparisons} parameter and
8918 @option{max-tail-merge-iterations} parameter.
8919
8920 @item -ftree-dce
8921 @opindex ftree-dce
8922 Perform dead code elimination (DCE) on trees. This flag is enabled by
8923 default at @option{-O} and higher.
8924
8925 @item -ftree-builtin-call-dce
8926 @opindex ftree-builtin-call-dce
8927 Perform conditional dead code elimination (DCE) for calls to built-in functions
8928 that may set @code{errno} but are otherwise side-effect free. This flag is
8929 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8930 specified.
8931
8932 @item -ftree-dominator-opts
8933 @opindex ftree-dominator-opts
8934 Perform a variety of simple scalar cleanups (constant/copy
8935 propagation, redundancy elimination, range propagation and expression
8936 simplification) based on a dominator tree traversal. This also
8937 performs jump threading (to reduce jumps to jumps). This flag is
8938 enabled by default at @option{-O} and higher.
8939
8940 @item -ftree-dse
8941 @opindex ftree-dse
8942 Perform dead store elimination (DSE) on trees. A dead store is a store into
8943 a memory location that is later overwritten by another store without
8944 any intervening loads. In this case the earlier store can be deleted. This
8945 flag is enabled by default at @option{-O} and higher.
8946
8947 @item -ftree-ch
8948 @opindex ftree-ch
8949 Perform loop header copying on trees. This is beneficial since it increases
8950 effectiveness of code motion optimizations. It also saves one jump. This flag
8951 is enabled by default at @option{-O} and higher. It is not enabled
8952 for @option{-Os}, since it usually increases code size.
8953
8954 @item -ftree-loop-optimize
8955 @opindex ftree-loop-optimize
8956 Perform loop optimizations on trees. This flag is enabled by default
8957 at @option{-O} and higher.
8958
8959 @item -ftree-loop-linear
8960 @itemx -floop-interchange
8961 @itemx -floop-strip-mine
8962 @itemx -floop-block
8963 @itemx -floop-unroll-and-jam
8964 @opindex ftree-loop-linear
8965 @opindex floop-interchange
8966 @opindex floop-strip-mine
8967 @opindex floop-block
8968 @opindex floop-unroll-and-jam
8969 Perform loop nest optimizations. Same as
8970 @option{-floop-nest-optimize}. To use this code transformation, GCC has
8971 to be configured with @option{--with-isl} to enable the Graphite loop
8972 transformation infrastructure.
8973
8974 @item -fgraphite-identity
8975 @opindex fgraphite-identity
8976 Enable the identity transformation for graphite. For every SCoP we generate
8977 the polyhedral representation and transform it back to gimple. Using
8978 @option{-fgraphite-identity} we can check the costs or benefits of the
8979 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8980 are also performed by the code generator isl, like index splitting and
8981 dead code elimination in loops.
8982
8983 @item -floop-nest-optimize
8984 @opindex floop-nest-optimize
8985 Enable the isl based loop nest optimizer. This is a generic loop nest
8986 optimizer based on the Pluto optimization algorithms. It calculates a loop
8987 structure optimized for data-locality and parallelism. This option
8988 is experimental.
8989
8990 @item -floop-parallelize-all
8991 @opindex floop-parallelize-all
8992 Use the Graphite data dependence analysis to identify loops that can
8993 be parallelized. Parallelize all the loops that can be analyzed to
8994 not contain loop carried dependences without checking that it is
8995 profitable to parallelize the loops.
8996
8997 @item -ftree-coalesce-vars
8998 @opindex ftree-coalesce-vars
8999 While transforming the program out of the SSA representation, attempt to
9000 reduce copying by coalescing versions of different user-defined
9001 variables, instead of just compiler temporaries. This may severely
9002 limit the ability to debug an optimized program compiled with
9003 @option{-fno-var-tracking-assignments}. In the negated form, this flag
9004 prevents SSA coalescing of user variables. This option is enabled by
9005 default if optimization is enabled, and it does very little otherwise.
9006
9007 @item -ftree-loop-if-convert
9008 @opindex ftree-loop-if-convert
9009 Attempt to transform conditional jumps in the innermost loops to
9010 branch-less equivalents. The intent is to remove control-flow from
9011 the innermost loops in order to improve the ability of the
9012 vectorization pass to handle these loops. This is enabled by default
9013 if vectorization is enabled.
9014
9015 @item -ftree-loop-if-convert-stores
9016 @opindex ftree-loop-if-convert-stores
9017 Attempt to also if-convert conditional jumps containing memory writes.
9018 This transformation can be unsafe for multi-threaded programs as it
9019 transforms conditional memory writes into unconditional memory writes.
9020 For example,
9021 @smallexample
9022 for (i = 0; i < N; i++)
9023 if (cond)
9024 A[i] = expr;
9025 @end smallexample
9026 is transformed to
9027 @smallexample
9028 for (i = 0; i < N; i++)
9029 A[i] = cond ? expr : A[i];
9030 @end smallexample
9031 potentially producing data races.
9032
9033 @item -ftree-loop-distribution
9034 @opindex ftree-loop-distribution
9035 Perform loop distribution. This flag can improve cache performance on
9036 big loop bodies and allow further loop optimizations, like
9037 parallelization or vectorization, to take place. For example, the loop
9038 @smallexample
9039 DO I = 1, N
9040 A(I) = B(I) + C
9041 D(I) = E(I) * F
9042 ENDDO
9043 @end smallexample
9044 is transformed to
9045 @smallexample
9046 DO I = 1, N
9047 A(I) = B(I) + C
9048 ENDDO
9049 DO I = 1, N
9050 D(I) = E(I) * F
9051 ENDDO
9052 @end smallexample
9053
9054 @item -ftree-loop-distribute-patterns
9055 @opindex ftree-loop-distribute-patterns
9056 Perform loop distribution of patterns that can be code generated with
9057 calls to a library. This flag is enabled by default at @option{-O3}.
9058
9059 This pass distributes the initialization loops and generates a call to
9060 memset zero. For example, the loop
9061 @smallexample
9062 DO I = 1, N
9063 A(I) = 0
9064 B(I) = A(I) + I
9065 ENDDO
9066 @end smallexample
9067 is transformed to
9068 @smallexample
9069 DO I = 1, N
9070 A(I) = 0
9071 ENDDO
9072 DO I = 1, N
9073 B(I) = A(I) + I
9074 ENDDO
9075 @end smallexample
9076 and the initialization loop is transformed into a call to memset zero.
9077
9078 @item -ftree-loop-im
9079 @opindex ftree-loop-im
9080 Perform loop invariant motion on trees. This pass moves only invariants that
9081 are hard to handle at RTL level (function calls, operations that expand to
9082 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
9083 operands of conditions that are invariant out of the loop, so that we can use
9084 just trivial invariantness analysis in loop unswitching. The pass also includes
9085 store motion.
9086
9087 @item -ftree-loop-ivcanon
9088 @opindex ftree-loop-ivcanon
9089 Create a canonical counter for number of iterations in loops for which
9090 determining number of iterations requires complicated analysis. Later
9091 optimizations then may determine the number easily. Useful especially
9092 in connection with unrolling.
9093
9094 @item -fivopts
9095 @opindex fivopts
9096 Perform induction variable optimizations (strength reduction, induction
9097 variable merging and induction variable elimination) on trees.
9098
9099 @item -ftree-parallelize-loops=n
9100 @opindex ftree-parallelize-loops
9101 Parallelize loops, i.e., split their iteration space to run in n threads.
9102 This is only possible for loops whose iterations are independent
9103 and can be arbitrarily reordered. The optimization is only
9104 profitable on multiprocessor machines, for loops that are CPU-intensive,
9105 rather than constrained e.g.@: by memory bandwidth. This option
9106 implies @option{-pthread}, and thus is only supported on targets
9107 that have support for @option{-pthread}.
9108
9109 @item -ftree-pta
9110 @opindex ftree-pta
9111 Perform function-local points-to analysis on trees. This flag is
9112 enabled by default at @option{-O} and higher.
9113
9114 @item -ftree-sra
9115 @opindex ftree-sra
9116 Perform scalar replacement of aggregates. This pass replaces structure
9117 references with scalars to prevent committing structures to memory too
9118 early. This flag is enabled by default at @option{-O} and higher.
9119
9120 @item -ftree-ter
9121 @opindex ftree-ter
9122 Perform temporary expression replacement during the SSA->normal phase. Single
9123 use/single def temporaries are replaced at their use location with their
9124 defining expression. This results in non-GIMPLE code, but gives the expanders
9125 much more complex trees to work on resulting in better RTL generation. This is
9126 enabled by default at @option{-O} and higher.
9127
9128 @item -ftree-slsr
9129 @opindex ftree-slsr
9130 Perform straight-line strength reduction on trees. This recognizes related
9131 expressions involving multiplications and replaces them by less expensive
9132 calculations when possible. This is enabled by default at @option{-O} and
9133 higher.
9134
9135 @item -ftree-vectorize
9136 @opindex ftree-vectorize
9137 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9138 and @option{-ftree-slp-vectorize} if not explicitly specified.
9139
9140 @item -ftree-loop-vectorize
9141 @opindex ftree-loop-vectorize
9142 Perform loop vectorization on trees. This flag is enabled by default at
9143 @option{-O3} and when @option{-ftree-vectorize} is enabled.
9144
9145 @item -ftree-slp-vectorize
9146 @opindex ftree-slp-vectorize
9147 Perform basic block vectorization on trees. This flag is enabled by default at
9148 @option{-O3} and when @option{-ftree-vectorize} is enabled.
9149
9150 @item -fvect-cost-model=@var{model}
9151 @opindex fvect-cost-model
9152 Alter the cost model used for vectorization. The @var{model} argument
9153 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9154 With the @samp{unlimited} model the vectorized code-path is assumed
9155 to be profitable while with the @samp{dynamic} model a runtime check
9156 guards the vectorized code-path to enable it only for iteration
9157 counts that will likely execute faster than when executing the original
9158 scalar loop. The @samp{cheap} model disables vectorization of
9159 loops where doing so would be cost prohibitive for example due to
9160 required runtime checks for data dependence or alignment but otherwise
9161 is equal to the @samp{dynamic} model.
9162 The default cost model depends on other optimization flags and is
9163 either @samp{dynamic} or @samp{cheap}.
9164
9165 @item -fsimd-cost-model=@var{model}
9166 @opindex fsimd-cost-model
9167 Alter the cost model used for vectorization of loops marked with the OpenMP
9168 or Cilk Plus simd directive. The @var{model} argument should be one of
9169 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
9170 have the same meaning as described in @option{-fvect-cost-model} and by
9171 default a cost model defined with @option{-fvect-cost-model} is used.
9172
9173 @item -ftree-vrp
9174 @opindex ftree-vrp
9175 Perform Value Range Propagation on trees. This is similar to the
9176 constant propagation pass, but instead of values, ranges of values are
9177 propagated. This allows the optimizers to remove unnecessary range
9178 checks like array bound checks and null pointer checks. This is
9179 enabled by default at @option{-O2} and higher. Null pointer check
9180 elimination is only done if @option{-fdelete-null-pointer-checks} is
9181 enabled.
9182
9183 @item -fsplit-paths
9184 @opindex fsplit-paths
9185 Split paths leading to loop backedges. This can improve dead code
9186 elimination and common subexpression elimination. This is enabled by
9187 default at @option{-O2} and above.
9188
9189 @item -fsplit-ivs-in-unroller
9190 @opindex fsplit-ivs-in-unroller
9191 Enables expression of values of induction variables in later iterations
9192 of the unrolled loop using the value in the first iteration. This breaks
9193 long dependency chains, thus improving efficiency of the scheduling passes.
9194
9195 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9196 same effect. However, that is not reliable in cases where the loop body
9197 is more complicated than a single basic block. It also does not work at all
9198 on some architectures due to restrictions in the CSE pass.
9199
9200 This optimization is enabled by default.
9201
9202 @item -fvariable-expansion-in-unroller
9203 @opindex fvariable-expansion-in-unroller
9204 With this option, the compiler creates multiple copies of some
9205 local variables when unrolling a loop, which can result in superior code.
9206
9207 @item -fpartial-inlining
9208 @opindex fpartial-inlining
9209 Inline parts of functions. This option has any effect only
9210 when inlining itself is turned on by the @option{-finline-functions}
9211 or @option{-finline-small-functions} options.
9212
9213 Enabled at level @option{-O2}.
9214
9215 @item -fpredictive-commoning
9216 @opindex fpredictive-commoning
9217 Perform predictive commoning optimization, i.e., reusing computations
9218 (especially memory loads and stores) performed in previous
9219 iterations of loops.
9220
9221 This option is enabled at level @option{-O3}.
9222
9223 @item -fprefetch-loop-arrays
9224 @opindex fprefetch-loop-arrays
9225 If supported by the target machine, generate instructions to prefetch
9226 memory to improve the performance of loops that access large arrays.
9227
9228 This option may generate better or worse code; results are highly
9229 dependent on the structure of loops within the source code.
9230
9231 Disabled at level @option{-Os}.
9232
9233 @item -fno-peephole
9234 @itemx -fno-peephole2
9235 @opindex fno-peephole
9236 @opindex fno-peephole2
9237 Disable any machine-specific peephole optimizations. The difference
9238 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9239 are implemented in the compiler; some targets use one, some use the
9240 other, a few use both.
9241
9242 @option{-fpeephole} is enabled by default.
9243 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9244
9245 @item -fno-guess-branch-probability
9246 @opindex fno-guess-branch-probability
9247 Do not guess branch probabilities using heuristics.
9248
9249 GCC uses heuristics to guess branch probabilities if they are
9250 not provided by profiling feedback (@option{-fprofile-arcs}). These
9251 heuristics are based on the control flow graph. If some branch probabilities
9252 are specified by @code{__builtin_expect}, then the heuristics are
9253 used to guess branch probabilities for the rest of the control flow graph,
9254 taking the @code{__builtin_expect} info into account. The interactions
9255 between the heuristics and @code{__builtin_expect} can be complex, and in
9256 some cases, it may be useful to disable the heuristics so that the effects
9257 of @code{__builtin_expect} are easier to understand.
9258
9259 The default is @option{-fguess-branch-probability} at levels
9260 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9261
9262 @item -freorder-blocks
9263 @opindex freorder-blocks
9264 Reorder basic blocks in the compiled function in order to reduce number of
9265 taken branches and improve code locality.
9266
9267 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9268
9269 @item -freorder-blocks-algorithm=@var{algorithm}
9270 @opindex freorder-blocks-algorithm
9271 Use the specified algorithm for basic block reordering. The
9272 @var{algorithm} argument can be @samp{simple}, which does not increase
9273 code size (except sometimes due to secondary effects like alignment),
9274 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9275 put all often executed code together, minimizing the number of branches
9276 executed by making extra copies of code.
9277
9278 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9279 @samp{stc} at levels @option{-O2}, @option{-O3}.
9280
9281 @item -freorder-blocks-and-partition
9282 @opindex freorder-blocks-and-partition
9283 In addition to reordering basic blocks in the compiled function, in order
9284 to reduce number of taken branches, partitions hot and cold basic blocks
9285 into separate sections of the assembly and .o files, to improve
9286 paging and cache locality performance.
9287
9288 This optimization is automatically turned off in the presence of
9289 exception handling, for linkonce sections, for functions with a user-defined
9290 section attribute and on any architecture that does not support named
9291 sections.
9292
9293 Enabled for x86 at levels @option{-O2}, @option{-O3}.
9294
9295 @item -freorder-functions
9296 @opindex freorder-functions
9297 Reorder functions in the object file in order to
9298 improve code locality. This is implemented by using special
9299 subsections @code{.text.hot} for most frequently executed functions and
9300 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
9301 the linker so object file format must support named sections and linker must
9302 place them in a reasonable way.
9303
9304 Also profile feedback must be available to make this option effective. See
9305 @option{-fprofile-arcs} for details.
9306
9307 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9308
9309 @item -fstrict-aliasing
9310 @opindex fstrict-aliasing
9311 Allow the compiler to assume the strictest aliasing rules applicable to
9312 the language being compiled. For C (and C++), this activates
9313 optimizations based on the type of expressions. In particular, an
9314 object of one type is assumed never to reside at the same address as an
9315 object of a different type, unless the types are almost the same. For
9316 example, an @code{unsigned int} can alias an @code{int}, but not a
9317 @code{void*} or a @code{double}. A character type may alias any other
9318 type.
9319
9320 @anchor{Type-punning}Pay special attention to code like this:
9321 @smallexample
9322 union a_union @{
9323 int i;
9324 double d;
9325 @};
9326
9327 int f() @{
9328 union a_union t;
9329 t.d = 3.0;
9330 return t.i;
9331 @}
9332 @end smallexample
9333 The practice of reading from a different union member than the one most
9334 recently written to (called ``type-punning'') is common. Even with
9335 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9336 is accessed through the union type. So, the code above works as
9337 expected. @xref{Structures unions enumerations and bit-fields
9338 implementation}. However, this code might not:
9339 @smallexample
9340 int f() @{
9341 union a_union t;
9342 int* ip;
9343 t.d = 3.0;
9344 ip = &t.i;
9345 return *ip;
9346 @}
9347 @end smallexample
9348
9349 Similarly, access by taking the address, casting the resulting pointer
9350 and dereferencing the result has undefined behavior, even if the cast
9351 uses a union type, e.g.:
9352 @smallexample
9353 int f() @{
9354 double d = 3.0;
9355 return ((union a_union *) &d)->i;
9356 @}
9357 @end smallexample
9358
9359 The @option{-fstrict-aliasing} option is enabled at levels
9360 @option{-O2}, @option{-O3}, @option{-Os}.
9361
9362 @item -fstrict-overflow
9363 @opindex fstrict-overflow
9364 Allow the compiler to assume strict signed overflow rules, depending
9365 on the language being compiled. For C (and C++) this means that
9366 overflow when doing arithmetic with signed numbers is undefined, which
9367 means that the compiler may assume that it does not happen. This
9368 permits various optimizations. For example, the compiler assumes
9369 that an expression like @code{i + 10 > i} is always true for
9370 signed @code{i}. This assumption is only valid if signed overflow is
9371 undefined, as the expression is false if @code{i + 10} overflows when
9372 using twos complement arithmetic. When this option is in effect any
9373 attempt to determine whether an operation on signed numbers
9374 overflows must be written carefully to not actually involve overflow.
9375
9376 This option also allows the compiler to assume strict pointer
9377 semantics: given a pointer to an object, if adding an offset to that
9378 pointer does not produce a pointer to the same object, the addition is
9379 undefined. This permits the compiler to conclude that @code{p + u >
9380 p} is always true for a pointer @code{p} and unsigned integer
9381 @code{u}. This assumption is only valid because pointer wraparound is
9382 undefined, as the expression is false if @code{p + u} overflows using
9383 twos complement arithmetic.
9384
9385 See also the @option{-fwrapv} option. Using @option{-fwrapv} means
9386 that integer signed overflow is fully defined: it wraps. When
9387 @option{-fwrapv} is used, there is no difference between
9388 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9389 integers. With @option{-fwrapv} certain types of overflow are
9390 permitted. For example, if the compiler gets an overflow when doing
9391 arithmetic on constants, the overflowed value can still be used with
9392 @option{-fwrapv}, but not otherwise.
9393
9394 The @option{-fstrict-overflow} option is enabled at levels
9395 @option{-O2}, @option{-O3}, @option{-Os}.
9396
9397 @item -falign-functions
9398 @itemx -falign-functions=@var{n}
9399 @opindex falign-functions
9400 Align the start of functions to the next power-of-two greater than
9401 @var{n}, skipping up to @var{n} bytes. For instance,
9402 @option{-falign-functions=32} aligns functions to the next 32-byte
9403 boundary, but @option{-falign-functions=24} aligns to the next
9404 32-byte boundary only if this can be done by skipping 23 bytes or less.
9405
9406 @option{-fno-align-functions} and @option{-falign-functions=1} are
9407 equivalent and mean that functions are not aligned.
9408
9409 Some assemblers only support this flag when @var{n} is a power of two;
9410 in that case, it is rounded up.
9411
9412 If @var{n} is not specified or is zero, use a machine-dependent default.
9413
9414 Enabled at levels @option{-O2}, @option{-O3}.
9415
9416 @item -falign-labels
9417 @itemx -falign-labels=@var{n}
9418 @opindex falign-labels
9419 Align all branch targets to a power-of-two boundary, skipping up to
9420 @var{n} bytes like @option{-falign-functions}. This option can easily
9421 make code slower, because it must insert dummy operations for when the
9422 branch target is reached in the usual flow of the code.
9423
9424 @option{-fno-align-labels} and @option{-falign-labels=1} are
9425 equivalent and mean that labels are not aligned.
9426
9427 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9428 are greater than this value, then their values are used instead.
9429
9430 If @var{n} is not specified or is zero, use a machine-dependent default
9431 which is very likely to be @samp{1}, meaning no alignment.
9432
9433 Enabled at levels @option{-O2}, @option{-O3}.
9434
9435 @item -falign-loops
9436 @itemx -falign-loops=@var{n}
9437 @opindex falign-loops
9438 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9439 like @option{-falign-functions}. If the loops are
9440 executed many times, this makes up for any execution of the dummy
9441 operations.
9442
9443 @option{-fno-align-loops} and @option{-falign-loops=1} are
9444 equivalent and mean that loops are not aligned.
9445
9446 If @var{n} is not specified or is zero, use a machine-dependent default.
9447
9448 Enabled at levels @option{-O2}, @option{-O3}.
9449
9450 @item -falign-jumps
9451 @itemx -falign-jumps=@var{n}
9452 @opindex falign-jumps
9453 Align branch targets to a power-of-two boundary, for branch targets
9454 where the targets can only be reached by jumping, skipping up to @var{n}
9455 bytes like @option{-falign-functions}. In this case, no dummy operations
9456 need be executed.
9457
9458 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9459 equivalent and mean that loops are not aligned.
9460
9461 If @var{n} is not specified or is zero, use a machine-dependent default.
9462
9463 Enabled at levels @option{-O2}, @option{-O3}.
9464
9465 @item -funit-at-a-time
9466 @opindex funit-at-a-time
9467 This option is left for compatibility reasons. @option{-funit-at-a-time}
9468 has no effect, while @option{-fno-unit-at-a-time} implies
9469 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9470
9471 Enabled by default.
9472
9473 @item -fno-toplevel-reorder
9474 @opindex fno-toplevel-reorder
9475 Do not reorder top-level functions, variables, and @code{asm}
9476 statements. Output them in the same order that they appear in the
9477 input file. When this option is used, unreferenced static variables
9478 are not removed. This option is intended to support existing code
9479 that relies on a particular ordering. For new code, it is better to
9480 use attributes when possible.
9481
9482 Enabled at level @option{-O0}. When disabled explicitly, it also implies
9483 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9484 targets.
9485
9486 @item -fweb
9487 @opindex fweb
9488 Constructs webs as commonly used for register allocation purposes and assign
9489 each web individual pseudo register. This allows the register allocation pass
9490 to operate on pseudos directly, but also strengthens several other optimization
9491 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
9492 however, make debugging impossible, since variables no longer stay in a
9493 ``home register''.
9494
9495 Enabled by default with @option{-funroll-loops}.
9496
9497 @item -fwhole-program
9498 @opindex fwhole-program
9499 Assume that the current compilation unit represents the whole program being
9500 compiled. All public functions and variables with the exception of @code{main}
9501 and those merged by attribute @code{externally_visible} become static functions
9502 and in effect are optimized more aggressively by interprocedural optimizers.
9503
9504 This option should not be used in combination with @option{-flto}.
9505 Instead relying on a linker plugin should provide safer and more precise
9506 information.
9507
9508 @item -flto[=@var{n}]
9509 @opindex flto
9510 This option runs the standard link-time optimizer. When invoked
9511 with source code, it generates GIMPLE (one of GCC's internal
9512 representations) and writes it to special ELF sections in the object
9513 file. When the object files are linked together, all the function
9514 bodies are read from these ELF sections and instantiated as if they
9515 had been part of the same translation unit.
9516
9517 To use the link-time optimizer, @option{-flto} and optimization
9518 options should be specified at compile time and during the final link.
9519 For example:
9520
9521 @smallexample
9522 gcc -c -O2 -flto foo.c
9523 gcc -c -O2 -flto bar.c
9524 gcc -o myprog -flto -O2 foo.o bar.o
9525 @end smallexample
9526
9527 The first two invocations to GCC save a bytecode representation
9528 of GIMPLE into special ELF sections inside @file{foo.o} and
9529 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
9530 @file{foo.o} and @file{bar.o}, merges the two files into a single
9531 internal image, and compiles the result as usual. Since both
9532 @file{foo.o} and @file{bar.o} are merged into a single image, this
9533 causes all the interprocedural analyses and optimizations in GCC to
9534 work across the two files as if they were a single one. This means,
9535 for example, that the inliner is able to inline functions in
9536 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9537
9538 Another (simpler) way to enable link-time optimization is:
9539
9540 @smallexample
9541 gcc -o myprog -flto -O2 foo.c bar.c
9542 @end smallexample
9543
9544 The above generates bytecode for @file{foo.c} and @file{bar.c},
9545 merges them together into a single GIMPLE representation and optimizes
9546 them as usual to produce @file{myprog}.
9547
9548 The only important thing to keep in mind is that to enable link-time
9549 optimizations you need to use the GCC driver to perform the link-step.
9550 GCC then automatically performs link-time optimization if any of the
9551 objects involved were compiled with the @option{-flto} command-line option.
9552 You generally
9553 should specify the optimization options to be used for link-time
9554 optimization though GCC tries to be clever at guessing an
9555 optimization level to use from the options used at compile-time
9556 if you fail to specify one at link-time. You can always override
9557 the automatic decision to do link-time optimization at link-time
9558 by passing @option{-fno-lto} to the link command.
9559
9560 To make whole program optimization effective, it is necessary to make
9561 certain whole program assumptions. The compiler needs to know
9562 what functions and variables can be accessed by libraries and runtime
9563 outside of the link-time optimized unit. When supported by the linker,
9564 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9565 to the compiler about used and externally visible symbols. When
9566 the linker plugin is not available, @option{-fwhole-program} should be
9567 used to allow the compiler to make these assumptions, which leads
9568 to more aggressive optimization decisions.
9569
9570 When @option{-fuse-linker-plugin} is not enabled then, when a file is
9571 compiled with @option{-flto}, the generated object file is larger than
9572 a regular object file because it contains GIMPLE bytecodes and the usual
9573 final code (see @option{-ffat-lto-objects}. This means that
9574 object files with LTO information can be linked as normal object
9575 files; if @option{-fno-lto} is passed to the linker, no
9576 interprocedural optimizations are applied. Note that when
9577 @option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9578 but you cannot perform a regular, non-LTO link on them.
9579
9580 Additionally, the optimization flags used to compile individual files
9581 are not necessarily related to those used at link time. For instance,
9582
9583 @smallexample
9584 gcc -c -O0 -ffat-lto-objects -flto foo.c
9585 gcc -c -O0 -ffat-lto-objects -flto bar.c
9586 gcc -o myprog -O3 foo.o bar.o
9587 @end smallexample
9588
9589 This produces individual object files with unoptimized assembler
9590 code, but the resulting binary @file{myprog} is optimized at
9591 @option{-O3}. If, instead, the final binary is generated with
9592 @option{-fno-lto}, then @file{myprog} is not optimized.
9593
9594 When producing the final binary, GCC only
9595 applies link-time optimizations to those files that contain bytecode.
9596 Therefore, you can mix and match object files and libraries with
9597 GIMPLE bytecodes and final object code. GCC automatically selects
9598 which files to optimize in LTO mode and which files to link without
9599 further processing.
9600
9601 There are some code generation flags preserved by GCC when
9602 generating bytecodes, as they need to be used during the final link
9603 stage. Generally options specified at link-time override those
9604 specified at compile-time.
9605
9606 If you do not specify an optimization level option @option{-O} at
9607 link-time then GCC computes one based on the optimization levels
9608 used when compiling the object files. The highest optimization
9609 level wins here.
9610
9611 Currently, the following options and their setting are take from
9612 the first object file that explicitely specified it:
9613 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9614 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9615 and all the @option{-m} target flags.
9616
9617 Certain ABI changing flags are required to match in all compilation-units
9618 and trying to override this at link-time with a conflicting value
9619 is ignored. This includes options such as @option{-freg-struct-return}
9620 and @option{-fpcc-struct-return}.
9621
9622 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9623 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9624 are passed through to the link stage and merged conservatively for
9625 conflicting translation units. Specifically
9626 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9627 precedence and for example @option{-ffp-contract=off} takes precedence
9628 over @option{-ffp-contract=fast}. You can override them at linke-time.
9629
9630 It is recommended that you compile all the files participating in the
9631 same link with the same options and also specify those options at
9632 link time.
9633
9634 If LTO encounters objects with C linkage declared with incompatible
9635 types in separate translation units to be linked together (undefined
9636 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9637 issued. The behavior is still undefined at run time. Similar
9638 diagnostics may be raised for other languages.
9639
9640 Another feature of LTO is that it is possible to apply interprocedural
9641 optimizations on files written in different languages:
9642
9643 @smallexample
9644 gcc -c -flto foo.c
9645 g++ -c -flto bar.cc
9646 gfortran -c -flto baz.f90
9647 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9648 @end smallexample
9649
9650 Notice that the final link is done with @command{g++} to get the C++
9651 runtime libraries and @option{-lgfortran} is added to get the Fortran
9652 runtime libraries. In general, when mixing languages in LTO mode, you
9653 should use the same link command options as when mixing languages in a
9654 regular (non-LTO) compilation.
9655
9656 If object files containing GIMPLE bytecode are stored in a library archive, say
9657 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9658 are using a linker with plugin support. To create static libraries suitable
9659 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9660 and @command{ranlib};
9661 to show the symbols of object files with GIMPLE bytecode, use
9662 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9663 and @command{nm} have been compiled with plugin support. At link time, use the the
9664 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9665 the LTO optimization process:
9666
9667 @smallexample
9668 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9669 @end smallexample
9670
9671 With the linker plugin enabled, the linker extracts the needed
9672 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9673 to make them part of the aggregated GIMPLE image to be optimized.
9674
9675 If you are not using a linker with plugin support and/or do not
9676 enable the linker plugin, then the objects inside @file{libfoo.a}
9677 are extracted and linked as usual, but they do not participate
9678 in the LTO optimization process. In order to make a static library suitable
9679 for both LTO optimization and usual linkage, compile its object files with
9680 @option{-flto} @option{-ffat-lto-objects}.
9681
9682 Link-time optimizations do not require the presence of the whole program to
9683 operate. If the program does not require any symbols to be exported, it is
9684 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9685 the interprocedural optimizers to use more aggressive assumptions which may
9686 lead to improved optimization opportunities.
9687 Use of @option{-fwhole-program} is not needed when linker plugin is
9688 active (see @option{-fuse-linker-plugin}).
9689
9690 The current implementation of LTO makes no
9691 attempt to generate bytecode that is portable between different
9692 types of hosts. The bytecode files are versioned and there is a
9693 strict version check, so bytecode files generated in one version of
9694 GCC do not work with an older or newer version of GCC.
9695
9696 Link-time optimization does not work well with generation of debugging
9697 information. Combining @option{-flto} with
9698 @option{-g} is currently experimental and expected to produce unexpected
9699 results.
9700
9701 If you specify the optional @var{n}, the optimization and code
9702 generation done at link time is executed in parallel using @var{n}
9703 parallel jobs by utilizing an installed @command{make} program. The
9704 environment variable @env{MAKE} may be used to override the program
9705 used. The default value for @var{n} is 1.
9706
9707 You can also specify @option{-flto=jobserver} to use GNU make's
9708 job server mode to determine the number of parallel jobs. This
9709 is useful when the Makefile calling GCC is already executing in parallel.
9710 You must prepend a @samp{+} to the command recipe in the parent Makefile
9711 for this to work. This option likely only works if @env{MAKE} is
9712 GNU make.
9713
9714 @item -flto-partition=@var{alg}
9715 @opindex flto-partition
9716 Specify the partitioning algorithm used by the link-time optimizer.
9717 The value is either @samp{1to1} to specify a partitioning mirroring
9718 the original source files or @samp{balanced} to specify partitioning
9719 into equally sized chunks (whenever possible) or @samp{max} to create
9720 new partition for every symbol where possible. Specifying @samp{none}
9721 as an algorithm disables partitioning and streaming completely.
9722 The default value is @samp{balanced}. While @samp{1to1} can be used
9723 as an workaround for various code ordering issues, the @samp{max}
9724 partitioning is intended for internal testing only.
9725 The value @samp{one} specifies that exactly one partition should be
9726 used while the value @samp{none} bypasses partitioning and executes
9727 the link-time optimization step directly from the WPA phase.
9728
9729 @item -flto-odr-type-merging
9730 @opindex flto-odr-type-merging
9731 Enable streaming of mangled types names of C++ types and their unification
9732 at linktime. This increases size of LTO object files, but enable
9733 diagnostics about One Definition Rule violations.
9734
9735 @item -flto-compression-level=@var{n}
9736 @opindex flto-compression-level
9737 This option specifies the level of compression used for intermediate
9738 language written to LTO object files, and is only meaningful in
9739 conjunction with LTO mode (@option{-flto}). Valid
9740 values are 0 (no compression) to 9 (maximum compression). Values
9741 outside this range are clamped to either 0 or 9. If the option is not
9742 given, a default balanced compression setting is used.
9743
9744 @item -flto-report
9745 @opindex flto-report
9746 Prints a report with internal details on the workings of the link-time
9747 optimizer. The contents of this report vary from version to version.
9748 It is meant to be useful to GCC developers when processing object
9749 files in LTO mode (via @option{-flto}).
9750
9751 Disabled by default.
9752
9753 @item -flto-report-wpa
9754 @opindex flto-report-wpa
9755 Like @option{-flto-report}, but only print for the WPA phase of Link
9756 Time Optimization.
9757
9758 @item -fuse-linker-plugin
9759 @opindex fuse-linker-plugin
9760 Enables the use of a linker plugin during link-time optimization. This
9761 option relies on plugin support in the linker, which is available in gold
9762 or in GNU ld 2.21 or newer.
9763
9764 This option enables the extraction of object files with GIMPLE bytecode out
9765 of library archives. This improves the quality of optimization by exposing
9766 more code to the link-time optimizer. This information specifies what
9767 symbols can be accessed externally (by non-LTO object or during dynamic
9768 linking). Resulting code quality improvements on binaries (and shared
9769 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9770 See @option{-flto} for a description of the effect of this flag and how to
9771 use it.
9772
9773 This option is enabled by default when LTO support in GCC is enabled
9774 and GCC was configured for use with
9775 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9776
9777 @item -ffat-lto-objects
9778 @opindex ffat-lto-objects
9779 Fat LTO objects are object files that contain both the intermediate language
9780 and the object code. This makes them usable for both LTO linking and normal
9781 linking. This option is effective only when compiling with @option{-flto}
9782 and is ignored at link time.
9783
9784 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9785 requires the complete toolchain to be aware of LTO. It requires a linker with
9786 linker plugin support for basic functionality. Additionally,
9787 @command{nm}, @command{ar} and @command{ranlib}
9788 need to support linker plugins to allow a full-featured build environment
9789 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9790 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9791 to these tools. With non fat LTO makefiles need to be modified to use them.
9792
9793 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9794 support.
9795
9796 @item -fcompare-elim
9797 @opindex fcompare-elim
9798 After register allocation and post-register allocation instruction splitting,
9799 identify arithmetic instructions that compute processor flags similar to a
9800 comparison operation based on that arithmetic. If possible, eliminate the
9801 explicit comparison operation.
9802
9803 This pass only applies to certain targets that cannot explicitly represent
9804 the comparison operation before register allocation is complete.
9805
9806 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9807
9808 @item -fcprop-registers
9809 @opindex fcprop-registers
9810 After register allocation and post-register allocation instruction splitting,
9811 perform a copy-propagation pass to try to reduce scheduling dependencies
9812 and occasionally eliminate the copy.
9813
9814 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9815
9816 @item -fprofile-correction
9817 @opindex fprofile-correction
9818 Profiles collected using an instrumented binary for multi-threaded programs may
9819 be inconsistent due to missed counter updates. When this option is specified,
9820 GCC uses heuristics to correct or smooth out such inconsistencies. By
9821 default, GCC emits an error message when an inconsistent profile is detected.
9822
9823 @item -fprofile-dir=@var{path}
9824 @opindex fprofile-dir
9825
9826 Set the directory to search for the profile data files in to @var{path}.
9827 This option affects only the profile data generated by
9828 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9829 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9830 and its related options. Both absolute and relative paths can be used.
9831 By default, GCC uses the current directory as @var{path}, thus the
9832 profile data file appears in the same directory as the object file.
9833
9834 @item -fprofile-generate
9835 @itemx -fprofile-generate=@var{path}
9836 @opindex fprofile-generate
9837
9838 Enable options usually used for instrumenting application to produce
9839 profile useful for later recompilation with profile feedback based
9840 optimization. You must use @option{-fprofile-generate} both when
9841 compiling and when linking your program.
9842
9843 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9844
9845 If @var{path} is specified, GCC looks at the @var{path} to find
9846 the profile feedback data files. See @option{-fprofile-dir}.
9847
9848 @item -fprofile-use
9849 @itemx -fprofile-use=@var{path}
9850 @opindex fprofile-use
9851 Enable profile feedback-directed optimizations,
9852 and the following optimizations
9853 which are generally profitable only with profile feedback available:
9854 @option{-fbranch-probabilities}, @option{-fvpt},
9855 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9856 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9857
9858 By default, GCC emits an error message if the feedback profiles do not
9859 match the source code. This error can be turned into a warning by using
9860 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9861 code.
9862
9863 If @var{path} is specified, GCC looks at the @var{path} to find
9864 the profile feedback data files. See @option{-fprofile-dir}.
9865
9866 @item -fauto-profile
9867 @itemx -fauto-profile=@var{path}
9868 @opindex fauto-profile
9869 Enable sampling-based feedback-directed optimizations,
9870 and the following optimizations
9871 which are generally profitable only with profile feedback available:
9872 @option{-fbranch-probabilities}, @option{-fvpt},
9873 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9874 @option{-ftree-vectorize},
9875 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9876 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9877 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9878
9879 @var{path} is the name of a file containing AutoFDO profile information.
9880 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9881
9882 Producing an AutoFDO profile data file requires running your program
9883 with the @command{perf} utility on a supported GNU/Linux target system.
9884 For more information, see @uref{https://perf.wiki.kernel.org/}.
9885
9886 E.g.
9887 @smallexample
9888 perf record -e br_inst_retired:near_taken -b -o perf.data \
9889 -- your_program
9890 @end smallexample
9891
9892 Then use the @command{create_gcov} tool to convert the raw profile data
9893 to a format that can be used by GCC.@ You must also supply the
9894 unstripped binary for your program to this tool.
9895 See @uref{https://github.com/google/autofdo}.
9896
9897 E.g.
9898 @smallexample
9899 create_gcov --binary=your_program.unstripped --profile=perf.data \
9900 --gcov=profile.afdo
9901 @end smallexample
9902 @end table
9903
9904 The following options control compiler behavior regarding floating-point
9905 arithmetic. These options trade off between speed and
9906 correctness. All must be specifically enabled.
9907
9908 @table @gcctabopt
9909 @item -ffloat-store
9910 @opindex ffloat-store
9911 Do not store floating-point variables in registers, and inhibit other
9912 options that might change whether a floating-point value is taken from a
9913 register or memory.
9914
9915 @cindex floating-point precision
9916 This option prevents undesirable excess precision on machines such as
9917 the 68000 where the floating registers (of the 68881) keep more
9918 precision than a @code{double} is supposed to have. Similarly for the
9919 x86 architecture. For most programs, the excess precision does only
9920 good, but a few programs rely on the precise definition of IEEE floating
9921 point. Use @option{-ffloat-store} for such programs, after modifying
9922 them to store all pertinent intermediate computations into variables.
9923
9924 @item -fexcess-precision=@var{style}
9925 @opindex fexcess-precision
9926 This option allows further control over excess precision on machines
9927 where floating-point registers have more precision than the IEEE
9928 @code{float} and @code{double} types and the processor does not
9929 support operations rounding to those types. By default,
9930 @option{-fexcess-precision=fast} is in effect; this means that
9931 operations are carried out in the precision of the registers and that
9932 it is unpredictable when rounding to the types specified in the source
9933 code takes place. When compiling C, if
9934 @option{-fexcess-precision=standard} is specified then excess
9935 precision follows the rules specified in ISO C99; in particular,
9936 both casts and assignments cause values to be rounded to their
9937 semantic types (whereas @option{-ffloat-store} only affects
9938 assignments). This option is enabled by default for C if a strict
9939 conformance option such as @option{-std=c99} is used.
9940
9941 @opindex mfpmath
9942 @option{-fexcess-precision=standard} is not implemented for languages
9943 other than C, and has no effect if
9944 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
9945 specified. On the x86, it also has no effect if @option{-mfpmath=sse}
9946 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9947 semantics apply without excess precision, and in the latter, rounding
9948 is unpredictable.
9949
9950 @item -ffast-math
9951 @opindex ffast-math
9952 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9953 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9954 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9955
9956 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9957
9958 This option is not turned on by any @option{-O} option besides
9959 @option{-Ofast} since it can result in incorrect output for programs
9960 that depend on an exact implementation of IEEE or ISO rules/specifications
9961 for math functions. It may, however, yield faster code for programs
9962 that do not require the guarantees of these specifications.
9963
9964 @item -fno-math-errno
9965 @opindex fno-math-errno
9966 Do not set @code{errno} after calling math functions that are executed
9967 with a single instruction, e.g., @code{sqrt}. A program that relies on
9968 IEEE exceptions for math error handling may want to use this flag
9969 for speed while maintaining IEEE arithmetic compatibility.
9970
9971 This option is not turned on by any @option{-O} option since
9972 it can result in incorrect output for programs that depend on
9973 an exact implementation of IEEE or ISO rules/specifications for
9974 math functions. It may, however, yield faster code for programs
9975 that do not require the guarantees of these specifications.
9976
9977 The default is @option{-fmath-errno}.
9978
9979 On Darwin systems, the math library never sets @code{errno}. There is
9980 therefore no reason for the compiler to consider the possibility that
9981 it might, and @option{-fno-math-errno} is the default.
9982
9983 @item -funsafe-math-optimizations
9984 @opindex funsafe-math-optimizations
9985
9986 Allow optimizations for floating-point arithmetic that (a) assume
9987 that arguments and results are valid and (b) may violate IEEE or
9988 ANSI standards. When used at link-time, it may include libraries
9989 or startup files that change the default FPU control word or other
9990 similar optimizations.
9991
9992 This option is not turned on by any @option{-O} option since
9993 it can result in incorrect output for programs that depend on
9994 an exact implementation of IEEE or ISO rules/specifications for
9995 math functions. It may, however, yield faster code for programs
9996 that do not require the guarantees of these specifications.
9997 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9998 @option{-fassociative-math} and @option{-freciprocal-math}.
9999
10000 The default is @option{-fno-unsafe-math-optimizations}.
10001
10002 @item -fassociative-math
10003 @opindex fassociative-math
10004
10005 Allow re-association of operands in series of floating-point operations.
10006 This violates the ISO C and C++ language standard by possibly changing
10007 computation result. NOTE: re-ordering may change the sign of zero as
10008 well as ignore NaNs and inhibit or create underflow or overflow (and
10009 thus cannot be used on code that relies on rounding behavior like
10010 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
10011 and thus may not be used when ordered comparisons are required.
10012 This option requires that both @option{-fno-signed-zeros} and
10013 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
10014 much sense with @option{-frounding-math}. For Fortran the option
10015 is automatically enabled when both @option{-fno-signed-zeros} and
10016 @option{-fno-trapping-math} are in effect.
10017
10018 The default is @option{-fno-associative-math}.
10019
10020 @item -freciprocal-math
10021 @opindex freciprocal-math
10022
10023 Allow the reciprocal of a value to be used instead of dividing by
10024 the value if this enables optimizations. For example @code{x / y}
10025 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
10026 is subject to common subexpression elimination. Note that this loses
10027 precision and increases the number of flops operating on the value.
10028
10029 The default is @option{-fno-reciprocal-math}.
10030
10031 @item -ffinite-math-only
10032 @opindex ffinite-math-only
10033 Allow optimizations for floating-point arithmetic that assume
10034 that arguments and results are not NaNs or +-Infs.
10035
10036 This option is not turned on by any @option{-O} option since
10037 it can result in incorrect output for programs that depend on
10038 an exact implementation of IEEE or ISO rules/specifications for
10039 math functions. It may, however, yield faster code for programs
10040 that do not require the guarantees of these specifications.
10041
10042 The default is @option{-fno-finite-math-only}.
10043
10044 @item -fno-signed-zeros
10045 @opindex fno-signed-zeros
10046 Allow optimizations for floating-point arithmetic that ignore the
10047 signedness of zero. IEEE arithmetic specifies the behavior of
10048 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
10049 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
10050 This option implies that the sign of a zero result isn't significant.
10051
10052 The default is @option{-fsigned-zeros}.
10053
10054 @item -fno-trapping-math
10055 @opindex fno-trapping-math
10056 Compile code assuming that floating-point operations cannot generate
10057 user-visible traps. These traps include division by zero, overflow,
10058 underflow, inexact result and invalid operation. This option requires
10059 that @option{-fno-signaling-nans} be in effect. Setting this option may
10060 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
10061
10062 This option should never be turned on by any @option{-O} option since
10063 it can result in incorrect output for programs that depend on
10064 an exact implementation of IEEE or ISO rules/specifications for
10065 math functions.
10066
10067 The default is @option{-ftrapping-math}.
10068
10069 @item -frounding-math
10070 @opindex frounding-math
10071 Disable transformations and optimizations that assume default floating-point
10072 rounding behavior. This is round-to-zero for all floating point
10073 to integer conversions, and round-to-nearest for all other arithmetic
10074 truncations. This option should be specified for programs that change
10075 the FP rounding mode dynamically, or that may be executed with a
10076 non-default rounding mode. This option disables constant folding of
10077 floating-point expressions at compile time (which may be affected by
10078 rounding mode) and arithmetic transformations that are unsafe in the
10079 presence of sign-dependent rounding modes.
10080
10081 The default is @option{-fno-rounding-math}.
10082
10083 This option is experimental and does not currently guarantee to
10084 disable all GCC optimizations that are affected by rounding mode.
10085 Future versions of GCC may provide finer control of this setting
10086 using C99's @code{FENV_ACCESS} pragma. This command-line option
10087 will be used to specify the default state for @code{FENV_ACCESS}.
10088
10089 @item -fsignaling-nans
10090 @opindex fsignaling-nans
10091 Compile code assuming that IEEE signaling NaNs may generate user-visible
10092 traps during floating-point operations. Setting this option disables
10093 optimizations that may change the number of exceptions visible with
10094 signaling NaNs. This option implies @option{-ftrapping-math}.
10095
10096 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
10097 be defined.
10098
10099 The default is @option{-fno-signaling-nans}.
10100
10101 This option is experimental and does not currently guarantee to
10102 disable all GCC optimizations that affect signaling NaN behavior.
10103
10104 @item -fsingle-precision-constant
10105 @opindex fsingle-precision-constant
10106 Treat floating-point constants as single precision instead of
10107 implicitly converting them to double-precision constants.
10108
10109 @item -fcx-limited-range
10110 @opindex fcx-limited-range
10111 When enabled, this option states that a range reduction step is not
10112 needed when performing complex division. Also, there is no checking
10113 whether the result of a complex multiplication or division is @code{NaN
10114 + I*NaN}, with an attempt to rescue the situation in that case. The
10115 default is @option{-fno-cx-limited-range}, but is enabled by
10116 @option{-ffast-math}.
10117
10118 This option controls the default setting of the ISO C99
10119 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
10120 all languages.
10121
10122 @item -fcx-fortran-rules
10123 @opindex fcx-fortran-rules
10124 Complex multiplication and division follow Fortran rules. Range
10125 reduction is done as part of complex division, but there is no checking
10126 whether the result of a complex multiplication or division is @code{NaN
10127 + I*NaN}, with an attempt to rescue the situation in that case.
10128
10129 The default is @option{-fno-cx-fortran-rules}.
10130
10131 @end table
10132
10133 The following options control optimizations that may improve
10134 performance, but are not enabled by any @option{-O} options. This
10135 section includes experimental options that may produce broken code.
10136
10137 @table @gcctabopt
10138 @item -fbranch-probabilities
10139 @opindex fbranch-probabilities
10140 After running a program compiled with @option{-fprofile-arcs}
10141 (@pxref{Debugging Options,, Options for Debugging Your Program or
10142 @command{gcc}}), you can compile it a second time using
10143 @option{-fbranch-probabilities}, to improve optimizations based on
10144 the number of times each branch was taken. When a program
10145 compiled with @option{-fprofile-arcs} exits, it saves arc execution
10146 counts to a file called @file{@var{sourcename}.gcda} for each source
10147 file. The information in this data file is very dependent on the
10148 structure of the generated code, so you must use the same source code
10149 and the same optimization options for both compilations.
10150
10151 With @option{-fbranch-probabilities}, GCC puts a
10152 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10153 These can be used to improve optimization. Currently, they are only
10154 used in one place: in @file{reorg.c}, instead of guessing which path a
10155 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10156 exactly determine which path is taken more often.
10157
10158 @item -fprofile-values
10159 @opindex fprofile-values
10160 If combined with @option{-fprofile-arcs}, it adds code so that some
10161 data about values of expressions in the program is gathered.
10162
10163 With @option{-fbranch-probabilities}, it reads back the data gathered
10164 from profiling values of expressions for usage in optimizations.
10165
10166 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
10167
10168 @item -fprofile-reorder-functions
10169 @opindex fprofile-reorder-functions
10170 Function reordering based on profile instrumentation collects
10171 first time of execution of a function and orders these functions
10172 in ascending order.
10173
10174 Enabled with @option{-fprofile-use}.
10175
10176 @item -fvpt
10177 @opindex fvpt
10178 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10179 to add code to gather information about values of expressions.
10180
10181 With @option{-fbranch-probabilities}, it reads back the data gathered
10182 and actually performs the optimizations based on them.
10183 Currently the optimizations include specialization of division operations
10184 using the knowledge about the value of the denominator.
10185
10186 @item -frename-registers
10187 @opindex frename-registers
10188 Attempt to avoid false dependencies in scheduled code by making use
10189 of registers left over after register allocation. This optimization
10190 most benefits processors with lots of registers. Depending on the
10191 debug information format adopted by the target, however, it can
10192 make debugging impossible, since variables no longer stay in
10193 a ``home register''.
10194
10195 Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
10196
10197 @item -fschedule-fusion
10198 @opindex fschedule-fusion
10199 Performs a target dependent pass over the instruction stream to schedule
10200 instructions of same type together because target machine can execute them
10201 more efficiently if they are adjacent to each other in the instruction flow.
10202
10203 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10204
10205 @item -ftracer
10206 @opindex ftracer
10207 Perform tail duplication to enlarge superblock size. This transformation
10208 simplifies the control flow of the function allowing other optimizations to do
10209 a better job.
10210
10211 Enabled with @option{-fprofile-use}.
10212
10213 @item -funroll-loops
10214 @opindex funroll-loops
10215 Unroll loops whose number of iterations can be determined at compile time or
10216 upon entry to the loop. @option{-funroll-loops} implies
10217 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10218 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10219 a small constant number of iterations). This option makes code larger, and may
10220 or may not make it run faster.
10221
10222 Enabled with @option{-fprofile-use}.
10223
10224 @item -funroll-all-loops
10225 @opindex funroll-all-loops
10226 Unroll all loops, even if their number of iterations is uncertain when
10227 the loop is entered. This usually makes programs run more slowly.
10228 @option{-funroll-all-loops} implies the same options as
10229 @option{-funroll-loops}.
10230
10231 @item -fpeel-loops
10232 @opindex fpeel-loops
10233 Peels loops for which there is enough information that they do not
10234 roll much (from profile feedback). It also turns on complete loop peeling
10235 (i.e.@: complete removal of loops with small constant number of iterations).
10236
10237 Enabled with @option{-fprofile-use}.
10238
10239 @item -fmove-loop-invariants
10240 @opindex fmove-loop-invariants
10241 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10242 at level @option{-O1}
10243
10244 @item -funswitch-loops
10245 @opindex funswitch-loops
10246 Move branches with loop invariant conditions out of the loop, with duplicates
10247 of the loop on both branches (modified according to result of the condition).
10248
10249 @item -ffunction-sections
10250 @itemx -fdata-sections
10251 @opindex ffunction-sections
10252 @opindex fdata-sections
10253 Place each function or data item into its own section in the output
10254 file if the target supports arbitrary sections. The name of the
10255 function or the name of the data item determines the section's name
10256 in the output file.
10257
10258 Use these options on systems where the linker can perform optimizations
10259 to improve locality of reference in the instruction space. Most systems
10260 using the ELF object format and SPARC processors running Solaris 2 have
10261 linkers with such optimizations. AIX may have these optimizations in
10262 the future.
10263
10264 Only use these options when there are significant benefits from doing
10265 so. When you specify these options, the assembler and linker
10266 create larger object and executable files and are also slower.
10267 You cannot use @command{gprof} on all systems if you
10268 specify this option, and you may have problems with debugging if
10269 you specify both this option and @option{-g}.
10270
10271 @item -fbranch-target-load-optimize
10272 @opindex fbranch-target-load-optimize
10273 Perform branch target register load optimization before prologue / epilogue
10274 threading.
10275 The use of target registers can typically be exposed only during reload,
10276 thus hoisting loads out of loops and doing inter-block scheduling needs
10277 a separate optimization pass.
10278
10279 @item -fbranch-target-load-optimize2
10280 @opindex fbranch-target-load-optimize2
10281 Perform branch target register load optimization after prologue / epilogue
10282 threading.
10283
10284 @item -fbtr-bb-exclusive
10285 @opindex fbtr-bb-exclusive
10286 When performing branch target register load optimization, don't reuse
10287 branch target registers within any basic block.
10288
10289 @item -fstack-protector
10290 @opindex fstack-protector
10291 Emit extra code to check for buffer overflows, such as stack smashing
10292 attacks. This is done by adding a guard variable to functions with
10293 vulnerable objects. This includes functions that call @code{alloca}, and
10294 functions with buffers larger than 8 bytes. The guards are initialized
10295 when a function is entered and then checked when the function exits.
10296 If a guard check fails, an error message is printed and the program exits.
10297
10298 @item -fstack-protector-all
10299 @opindex fstack-protector-all
10300 Like @option{-fstack-protector} except that all functions are protected.
10301
10302 @item -fstack-protector-strong
10303 @opindex fstack-protector-strong
10304 Like @option{-fstack-protector} but includes additional functions to
10305 be protected --- those that have local array definitions, or have
10306 references to local frame addresses.
10307
10308 @item -fstack-protector-explicit
10309 @opindex fstack-protector-explicit
10310 Like @option{-fstack-protector} but only protects those functions which
10311 have the @code{stack_protect} attribute.
10312
10313 @item -fstdarg-opt
10314 @opindex fstdarg-opt
10315 Optimize the prologue of variadic argument functions with respect to usage of
10316 those arguments.
10317
10318 @item -fsection-anchors
10319 @opindex fsection-anchors
10320 Try to reduce the number of symbolic address calculations by using
10321 shared ``anchor'' symbols to address nearby objects. This transformation
10322 can help to reduce the number of GOT entries and GOT accesses on some
10323 targets.
10324
10325 For example, the implementation of the following function @code{foo}:
10326
10327 @smallexample
10328 static int a, b, c;
10329 int foo (void) @{ return a + b + c; @}
10330 @end smallexample
10331
10332 @noindent
10333 usually calculates the addresses of all three variables, but if you
10334 compile it with @option{-fsection-anchors}, it accesses the variables
10335 from a common anchor point instead. The effect is similar to the
10336 following pseudocode (which isn't valid C):
10337
10338 @smallexample
10339 int foo (void)
10340 @{
10341 register int *xr = &x;
10342 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10343 @}
10344 @end smallexample
10345
10346 Not all targets support this option.
10347
10348 @item --param @var{name}=@var{value}
10349 @opindex param
10350 In some places, GCC uses various constants to control the amount of
10351 optimization that is done. For example, GCC does not inline functions
10352 that contain more than a certain number of instructions. You can
10353 control some of these constants on the command line using the
10354 @option{--param} option.
10355
10356 The names of specific parameters, and the meaning of the values, are
10357 tied to the internals of the compiler, and are subject to change
10358 without notice in future releases.
10359
10360 In each case, the @var{value} is an integer. The allowable choices for
10361 @var{name} are:
10362
10363 @table @gcctabopt
10364 @item predictable-branch-outcome
10365 When branch is predicted to be taken with probability lower than this threshold
10366 (in percent), then it is considered well predictable. The default is 10.
10367
10368 @item max-crossjump-edges
10369 The maximum number of incoming edges to consider for cross-jumping.
10370 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10371 the number of edges incoming to each block. Increasing values mean
10372 more aggressive optimization, making the compilation time increase with
10373 probably small improvement in executable size.
10374
10375 @item min-crossjump-insns
10376 The minimum number of instructions that must be matched at the end
10377 of two blocks before cross-jumping is performed on them. This
10378 value is ignored in the case where all instructions in the block being
10379 cross-jumped from are matched. The default value is 5.
10380
10381 @item max-grow-copy-bb-insns
10382 The maximum code size expansion factor when copying basic blocks
10383 instead of jumping. The expansion is relative to a jump instruction.
10384 The default value is 8.
10385
10386 @item max-goto-duplication-insns
10387 The maximum number of instructions to duplicate to a block that jumps
10388 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
10389 passes, GCC factors computed gotos early in the compilation process,
10390 and unfactors them as late as possible. Only computed jumps at the
10391 end of a basic blocks with no more than max-goto-duplication-insns are
10392 unfactored. The default value is 8.
10393
10394 @item max-delay-slot-insn-search
10395 The maximum number of instructions to consider when looking for an
10396 instruction to fill a delay slot. If more than this arbitrary number of
10397 instructions are searched, the time savings from filling the delay slot
10398 are minimal, so stop searching. Increasing values mean more
10399 aggressive optimization, making the compilation time increase with probably
10400 small improvement in execution time.
10401
10402 @item max-delay-slot-live-search
10403 When trying to fill delay slots, the maximum number of instructions to
10404 consider when searching for a block with valid live register
10405 information. Increasing this arbitrarily chosen value means more
10406 aggressive optimization, increasing the compilation time. This parameter
10407 should be removed when the delay slot code is rewritten to maintain the
10408 control-flow graph.
10409
10410 @item max-gcse-memory
10411 The approximate maximum amount of memory that can be allocated in
10412 order to perform the global common subexpression elimination
10413 optimization. If more memory than specified is required, the
10414 optimization is not done.
10415
10416 @item max-gcse-insertion-ratio
10417 If the ratio of expression insertions to deletions is larger than this value
10418 for any expression, then RTL PRE inserts or removes the expression and thus
10419 leaves partially redundant computations in the instruction stream. The default value is 20.
10420
10421 @item max-pending-list-length
10422 The maximum number of pending dependencies scheduling allows
10423 before flushing the current state and starting over. Large functions
10424 with few branches or calls can create excessively large lists which
10425 needlessly consume memory and resources.
10426
10427 @item max-modulo-backtrack-attempts
10428 The maximum number of backtrack attempts the scheduler should make
10429 when modulo scheduling a loop. Larger values can exponentially increase
10430 compilation time.
10431
10432 @item max-inline-insns-single
10433 Several parameters control the tree inliner used in GCC@.
10434 This number sets the maximum number of instructions (counted in GCC's
10435 internal representation) in a single function that the tree inliner
10436 considers for inlining. This only affects functions declared
10437 inline and methods implemented in a class declaration (C++).
10438 The default value is 400.
10439
10440 @item max-inline-insns-auto
10441 When you use @option{-finline-functions} (included in @option{-O3}),
10442 a lot of functions that would otherwise not be considered for inlining
10443 by the compiler are investigated. To those functions, a different
10444 (more restrictive) limit compared to functions declared inline can
10445 be applied.
10446 The default value is 40.
10447
10448 @item inline-min-speedup
10449 When estimated performance improvement of caller + callee runtime exceeds this
10450 threshold (in precent), the function can be inlined regardless the limit on
10451 @option{--param max-inline-insns-single} and @option{--param
10452 max-inline-insns-auto}.
10453
10454 @item large-function-insns
10455 The limit specifying really large functions. For functions larger than this
10456 limit after inlining, inlining is constrained by
10457 @option{--param large-function-growth}. This parameter is useful primarily
10458 to avoid extreme compilation time caused by non-linear algorithms used by the
10459 back end.
10460 The default value is 2700.
10461
10462 @item large-function-growth
10463 Specifies maximal growth of large function caused by inlining in percents.
10464 The default value is 100 which limits large function growth to 2.0 times
10465 the original size.
10466
10467 @item large-unit-insns
10468 The limit specifying large translation unit. Growth caused by inlining of
10469 units larger than this limit is limited by @option{--param inline-unit-growth}.
10470 For small units this might be too tight.
10471 For example, consider a unit consisting of function A
10472 that is inline and B that just calls A three times. If B is small relative to
10473 A, the growth of unit is 300\% and yet such inlining is very sane. For very
10474 large units consisting of small inlineable functions, however, the overall unit
10475 growth limit is needed to avoid exponential explosion of code size. Thus for
10476 smaller units, the size is increased to @option{--param large-unit-insns}
10477 before applying @option{--param inline-unit-growth}. The default is 10000.
10478
10479 @item inline-unit-growth
10480 Specifies maximal overall growth of the compilation unit caused by inlining.
10481 The default value is 20 which limits unit growth to 1.2 times the original
10482 size. Cold functions (either marked cold via an attribute or by profile
10483 feedback) are not accounted into the unit size.
10484
10485 @item ipcp-unit-growth
10486 Specifies maximal overall growth of the compilation unit caused by
10487 interprocedural constant propagation. The default value is 10 which limits
10488 unit growth to 1.1 times the original size.
10489
10490 @item large-stack-frame
10491 The limit specifying large stack frames. While inlining the algorithm is trying
10492 to not grow past this limit too much. The default value is 256 bytes.
10493
10494 @item large-stack-frame-growth
10495 Specifies maximal growth of large stack frames caused by inlining in percents.
10496 The default value is 1000 which limits large stack frame growth to 11 times
10497 the original size.
10498
10499 @item max-inline-insns-recursive
10500 @itemx max-inline-insns-recursive-auto
10501 Specifies the maximum number of instructions an out-of-line copy of a
10502 self-recursive inline
10503 function can grow into by performing recursive inlining.
10504
10505 @option{--param max-inline-insns-recursive} applies to functions
10506 declared inline.
10507 For functions not declared inline, recursive inlining
10508 happens only when @option{-finline-functions} (included in @option{-O3}) is
10509 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
10510 default value is 450.
10511
10512 @item max-inline-recursive-depth
10513 @itemx max-inline-recursive-depth-auto
10514 Specifies the maximum recursion depth used for recursive inlining.
10515
10516 @option{--param max-inline-recursive-depth} applies to functions
10517 declared inline. For functions not declared inline, recursive inlining
10518 happens only when @option{-finline-functions} (included in @option{-O3}) is
10519 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
10520 default value is 8.
10521
10522 @item min-inline-recursive-probability
10523 Recursive inlining is profitable only for function having deep recursion
10524 in average and can hurt for function having little recursion depth by
10525 increasing the prologue size or complexity of function body to other
10526 optimizers.
10527
10528 When profile feedback is available (see @option{-fprofile-generate}) the actual
10529 recursion depth can be guessed from probability that function recurses via a
10530 given call expression. This parameter limits inlining only to call expressions
10531 whose probability exceeds the given threshold (in percents).
10532 The default value is 10.
10533
10534 @item early-inlining-insns
10535 Specify growth that the early inliner can make. In effect it increases
10536 the amount of inlining for code having a large abstraction penalty.
10537 The default value is 14.
10538
10539 @item max-early-inliner-iterations
10540 Limit of iterations of the early inliner. This basically bounds
10541 the number of nested indirect calls the early inliner can resolve.
10542 Deeper chains are still handled by late inlining.
10543
10544 @item comdat-sharing-probability
10545 Probability (in percent) that C++ inline function with comdat visibility
10546 are shared across multiple compilation units. The default value is 20.
10547
10548 @item profile-func-internal-id
10549 A parameter to control whether to use function internal id in profile
10550 database lookup. If the value is 0, the compiler uses an id that
10551 is based on function assembler name and filename, which makes old profile
10552 data more tolerant to source changes such as function reordering etc.
10553 The default value is 0.
10554
10555 @item min-vect-loop-bound
10556 The minimum number of iterations under which loops are not vectorized
10557 when @option{-ftree-vectorize} is used. The number of iterations after
10558 vectorization needs to be greater than the value specified by this option
10559 to allow vectorization. The default value is 0.
10560
10561 @item gcse-cost-distance-ratio
10562 Scaling factor in calculation of maximum distance an expression
10563 can be moved by GCSE optimizations. This is currently supported only in the
10564 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
10565 is with simple expressions, i.e., the expressions that have cost
10566 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
10567 hoisting of simple expressions. The default value is 10.
10568
10569 @item gcse-unrestricted-cost
10570 Cost, roughly measured as the cost of a single typical machine
10571 instruction, at which GCSE optimizations do not constrain
10572 the distance an expression can travel. This is currently
10573 supported only in the code hoisting pass. The lesser the cost,
10574 the more aggressive code hoisting is. Specifying 0
10575 allows all expressions to travel unrestricted distances.
10576 The default value is 3.
10577
10578 @item max-hoist-depth
10579 The depth of search in the dominator tree for expressions to hoist.
10580 This is used to avoid quadratic behavior in hoisting algorithm.
10581 The value of 0 does not limit on the search, but may slow down compilation
10582 of huge functions. The default value is 30.
10583
10584 @item max-tail-merge-comparisons
10585 The maximum amount of similar bbs to compare a bb with. This is used to
10586 avoid quadratic behavior in tree tail merging. The default value is 10.
10587
10588 @item max-tail-merge-iterations
10589 The maximum amount of iterations of the pass over the function. This is used to
10590 limit compilation time in tree tail merging. The default value is 2.
10591
10592 @item max-unrolled-insns
10593 The maximum number of instructions that a loop may have to be unrolled.
10594 If a loop is unrolled, this parameter also determines how many times
10595 the loop code is unrolled.
10596
10597 @item max-average-unrolled-insns
10598 The maximum number of instructions biased by probabilities of their execution
10599 that a loop may have to be unrolled. If a loop is unrolled,
10600 this parameter also determines how many times the loop code is unrolled.
10601
10602 @item max-unroll-times
10603 The maximum number of unrollings of a single loop.
10604
10605 @item max-peeled-insns
10606 The maximum number of instructions that a loop may have to be peeled.
10607 If a loop is peeled, this parameter also determines how many times
10608 the loop code is peeled.
10609
10610 @item max-peel-times
10611 The maximum number of peelings of a single loop.
10612
10613 @item max-peel-branches
10614 The maximum number of branches on the hot path through the peeled sequence.
10615
10616 @item max-completely-peeled-insns
10617 The maximum number of insns of a completely peeled loop.
10618
10619 @item max-completely-peel-times
10620 The maximum number of iterations of a loop to be suitable for complete peeling.
10621
10622 @item max-completely-peel-loop-nest-depth
10623 The maximum depth of a loop nest suitable for complete peeling.
10624
10625 @item max-unswitch-insns
10626 The maximum number of insns of an unswitched loop.
10627
10628 @item max-unswitch-level
10629 The maximum number of branches unswitched in a single loop.
10630
10631 @item lim-expensive
10632 The minimum cost of an expensive expression in the loop invariant motion.
10633
10634 @item iv-consider-all-candidates-bound
10635 Bound on number of candidates for induction variables, below which
10636 all candidates are considered for each use in induction variable
10637 optimizations. If there are more candidates than this,
10638 only the most relevant ones are considered to avoid quadratic time complexity.
10639
10640 @item iv-max-considered-uses
10641 The induction variable optimizations give up on loops that contain more
10642 induction variable uses.
10643
10644 @item iv-always-prune-cand-set-bound
10645 If the number of candidates in the set is smaller than this value,
10646 always try to remove unnecessary ivs from the set
10647 when adding a new one.
10648
10649 @item scev-max-expr-size
10650 Bound on size of expressions used in the scalar evolutions analyzer.
10651 Large expressions slow the analyzer.
10652
10653 @item scev-max-expr-complexity
10654 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10655 Complex expressions slow the analyzer.
10656
10657 @item vect-max-version-for-alignment-checks
10658 The maximum number of run-time checks that can be performed when
10659 doing loop versioning for alignment in the vectorizer.
10660
10661 @item vect-max-version-for-alias-checks
10662 The maximum number of run-time checks that can be performed when
10663 doing loop versioning for alias in the vectorizer.
10664
10665 @item vect-max-peeling-for-alignment
10666 The maximum number of loop peels to enhance access alignment
10667 for vectorizer. Value -1 means 'no limit'.
10668
10669 @item max-iterations-to-track
10670 The maximum number of iterations of a loop the brute-force algorithm
10671 for analysis of the number of iterations of the loop tries to evaluate.
10672
10673 @item hot-bb-count-ws-permille
10674 A basic block profile count is considered hot if it contributes to
10675 the given permillage (i.e. 0...1000) of the entire profiled execution.
10676
10677 @item hot-bb-frequency-fraction
10678 Select fraction of the entry block frequency of executions of basic block in
10679 function given basic block needs to have to be considered hot.
10680
10681 @item max-predicted-iterations
10682 The maximum number of loop iterations we predict statically. This is useful
10683 in cases where a function contains a single loop with known bound and
10684 another loop with unknown bound.
10685 The known number of iterations is predicted correctly, while
10686 the unknown number of iterations average to roughly 10. This means that the
10687 loop without bounds appears artificially cold relative to the other one.
10688
10689 @item builtin-expect-probability
10690 Control the probability of the expression having the specified value. This
10691 parameter takes a percentage (i.e. 0 ... 100) as input.
10692 The default probability of 90 is obtained empirically.
10693
10694 @item align-threshold
10695
10696 Select fraction of the maximal frequency of executions of a basic block in
10697 a function to align the basic block.
10698
10699 @item align-loop-iterations
10700
10701 A loop expected to iterate at least the selected number of iterations is
10702 aligned.
10703
10704 @item tracer-dynamic-coverage
10705 @itemx tracer-dynamic-coverage-feedback
10706
10707 This value is used to limit superblock formation once the given percentage of
10708 executed instructions is covered. This limits unnecessary code size
10709 expansion.
10710
10711 The @option{tracer-dynamic-coverage-feedback} parameter
10712 is used only when profile
10713 feedback is available. The real profiles (as opposed to statically estimated
10714 ones) are much less balanced allowing the threshold to be larger value.
10715
10716 @item tracer-max-code-growth
10717 Stop tail duplication once code growth has reached given percentage. This is
10718 a rather artificial limit, as most of the duplicates are eliminated later in
10719 cross jumping, so it may be set to much higher values than is the desired code
10720 growth.
10721
10722 @item tracer-min-branch-ratio
10723
10724 Stop reverse growth when the reverse probability of best edge is less than this
10725 threshold (in percent).
10726
10727 @item tracer-min-branch-ratio
10728 @itemx tracer-min-branch-ratio-feedback
10729
10730 Stop forward growth if the best edge has probability lower than this
10731 threshold.
10732
10733 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10734 compilation for profile feedback and one for compilation without. The value
10735 for compilation with profile feedback needs to be more conservative (higher) in
10736 order to make tracer effective.
10737
10738 @item max-cse-path-length
10739
10740 The maximum number of basic blocks on path that CSE considers.
10741 The default is 10.
10742
10743 @item max-cse-insns
10744 The maximum number of instructions CSE processes before flushing.
10745 The default is 1000.
10746
10747 @item ggc-min-expand
10748
10749 GCC uses a garbage collector to manage its own memory allocation. This
10750 parameter specifies the minimum percentage by which the garbage
10751 collector's heap should be allowed to expand between collections.
10752 Tuning this may improve compilation speed; it has no effect on code
10753 generation.
10754
10755 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10756 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10757 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10758 GCC is not able to calculate RAM on a particular platform, the lower
10759 bound of 30% is used. Setting this parameter and
10760 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10761 every opportunity. This is extremely slow, but can be useful for
10762 debugging.
10763
10764 @item ggc-min-heapsize
10765
10766 Minimum size of the garbage collector's heap before it begins bothering
10767 to collect garbage. The first collection occurs after the heap expands
10768 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10769 tuning this may improve compilation speed, and has no effect on code
10770 generation.
10771
10772 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10773 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10774 with a lower bound of 4096 (four megabytes) and an upper bound of
10775 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10776 particular platform, the lower bound is used. Setting this parameter
10777 very large effectively disables garbage collection. Setting this
10778 parameter and @option{ggc-min-expand} to zero causes a full collection
10779 to occur at every opportunity.
10780
10781 @item max-reload-search-insns
10782 The maximum number of instruction reload should look backward for equivalent
10783 register. Increasing values mean more aggressive optimization, making the
10784 compilation time increase with probably slightly better performance.
10785 The default value is 100.
10786
10787 @item max-cselib-memory-locations
10788 The maximum number of memory locations cselib should take into account.
10789 Increasing values mean more aggressive optimization, making the compilation time
10790 increase with probably slightly better performance. The default value is 500.
10791
10792 @item reorder-blocks-duplicate
10793 @itemx reorder-blocks-duplicate-feedback
10794
10795 Used by the basic block reordering pass to decide whether to use unconditional
10796 branch or duplicate the code on its destination. Code is duplicated when its
10797 estimated size is smaller than this value multiplied by the estimated size of
10798 unconditional jump in the hot spots of the program.
10799
10800 The @option{reorder-block-duplicate-feedback} parameter
10801 is used only when profile
10802 feedback is available. It may be set to higher values than
10803 @option{reorder-block-duplicate} since information about the hot spots is more
10804 accurate.
10805
10806 @item max-sched-ready-insns
10807 The maximum number of instructions ready to be issued the scheduler should
10808 consider at any given time during the first scheduling pass. Increasing
10809 values mean more thorough searches, making the compilation time increase
10810 with probably little benefit. The default value is 100.
10811
10812 @item max-sched-region-blocks
10813 The maximum number of blocks in a region to be considered for
10814 interblock scheduling. The default value is 10.
10815
10816 @item max-pipeline-region-blocks
10817 The maximum number of blocks in a region to be considered for
10818 pipelining in the selective scheduler. The default value is 15.
10819
10820 @item max-sched-region-insns
10821 The maximum number of insns in a region to be considered for
10822 interblock scheduling. The default value is 100.
10823
10824 @item max-pipeline-region-insns
10825 The maximum number of insns in a region to be considered for
10826 pipelining in the selective scheduler. The default value is 200.
10827
10828 @item min-spec-prob
10829 The minimum probability (in percents) of reaching a source block
10830 for interblock speculative scheduling. The default value is 40.
10831
10832 @item max-sched-extend-regions-iters
10833 The maximum number of iterations through CFG to extend regions.
10834 A value of 0 (the default) disables region extensions.
10835
10836 @item max-sched-insn-conflict-delay
10837 The maximum conflict delay for an insn to be considered for speculative motion.
10838 The default value is 3.
10839
10840 @item sched-spec-prob-cutoff
10841 The minimal probability of speculation success (in percents), so that
10842 speculative insns are scheduled.
10843 The default value is 40.
10844
10845 @item sched-spec-state-edge-prob-cutoff
10846 The minimum probability an edge must have for the scheduler to save its
10847 state across it.
10848 The default value is 10.
10849
10850 @item sched-mem-true-dep-cost
10851 Minimal distance (in CPU cycles) between store and load targeting same
10852 memory locations. The default value is 1.
10853
10854 @item selsched-max-lookahead
10855 The maximum size of the lookahead window of selective scheduling. It is a
10856 depth of search for available instructions.
10857 The default value is 50.
10858
10859 @item selsched-max-sched-times
10860 The maximum number of times that an instruction is scheduled during
10861 selective scheduling. This is the limit on the number of iterations
10862 through which the instruction may be pipelined. The default value is 2.
10863
10864 @item selsched-max-insns-to-rename
10865 The maximum number of best instructions in the ready list that are considered
10866 for renaming in the selective scheduler. The default value is 2.
10867
10868 @item sms-min-sc
10869 The minimum value of stage count that swing modulo scheduler
10870 generates. The default value is 2.
10871
10872 @item max-last-value-rtl
10873 The maximum size measured as number of RTLs that can be recorded in an expression
10874 in combiner for a pseudo register as last known value of that register. The default
10875 is 10000.
10876
10877 @item max-combine-insns
10878 The maximum number of instructions the RTL combiner tries to combine.
10879 The default value is 2 at @option{-Og} and 4 otherwise.
10880
10881 @item integer-share-limit
10882 Small integer constants can use a shared data structure, reducing the
10883 compiler's memory usage and increasing its speed. This sets the maximum
10884 value of a shared integer constant. The default value is 256.
10885
10886 @item ssp-buffer-size
10887 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10888 protection when @option{-fstack-protection} is used.
10889
10890 @item min-size-for-stack-sharing
10891 The minimum size of variables taking part in stack slot sharing when not
10892 optimizing. The default value is 32.
10893
10894 @item max-jump-thread-duplication-stmts
10895 Maximum number of statements allowed in a block that needs to be
10896 duplicated when threading jumps.
10897
10898 @item max-fields-for-field-sensitive
10899 Maximum number of fields in a structure treated in
10900 a field sensitive manner during pointer analysis. The default is zero
10901 for @option{-O0} and @option{-O1},
10902 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10903
10904 @item prefetch-latency
10905 Estimate on average number of instructions that are executed before
10906 prefetch finishes. The distance prefetched ahead is proportional
10907 to this constant. Increasing this number may also lead to less
10908 streams being prefetched (see @option{simultaneous-prefetches}).
10909
10910 @item simultaneous-prefetches
10911 Maximum number of prefetches that can run at the same time.
10912
10913 @item l1-cache-line-size
10914 The size of cache line in L1 cache, in bytes.
10915
10916 @item l1-cache-size
10917 The size of L1 cache, in kilobytes.
10918
10919 @item l2-cache-size
10920 The size of L2 cache, in kilobytes.
10921
10922 @item min-insn-to-prefetch-ratio
10923 The minimum ratio between the number of instructions and the
10924 number of prefetches to enable prefetching in a loop.
10925
10926 @item prefetch-min-insn-to-mem-ratio
10927 The minimum ratio between the number of instructions and the
10928 number of memory references to enable prefetching in a loop.
10929
10930 @item use-canonical-types
10931 Whether the compiler should use the ``canonical'' type system. By
10932 default, this should always be 1, which uses a more efficient internal
10933 mechanism for comparing types in C++ and Objective-C++. However, if
10934 bugs in the canonical type system are causing compilation failures,
10935 set this value to 0 to disable canonical types.
10936
10937 @item switch-conversion-max-branch-ratio
10938 Switch initialization conversion refuses to create arrays that are
10939 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10940 branches in the switch.
10941
10942 @item max-partial-antic-length
10943 Maximum length of the partial antic set computed during the tree
10944 partial redundancy elimination optimization (@option{-ftree-pre}) when
10945 optimizing at @option{-O3} and above. For some sorts of source code
10946 the enhanced partial redundancy elimination optimization can run away,
10947 consuming all of the memory available on the host machine. This
10948 parameter sets a limit on the length of the sets that are computed,
10949 which prevents the runaway behavior. Setting a value of 0 for
10950 this parameter allows an unlimited set length.
10951
10952 @item sccvn-max-scc-size
10953 Maximum size of a strongly connected component (SCC) during SCCVN
10954 processing. If this limit is hit, SCCVN processing for the whole
10955 function is not done and optimizations depending on it are
10956 disabled. The default maximum SCC size is 10000.
10957
10958 @item sccvn-max-alias-queries-per-access
10959 Maximum number of alias-oracle queries we perform when looking for
10960 redundancies for loads and stores. If this limit is hit the search
10961 is aborted and the load or store is not considered redundant. The
10962 number of queries is algorithmically limited to the number of
10963 stores on all paths from the load to the function entry.
10964 The default maxmimum number of queries is 1000.
10965
10966 @item ira-max-loops-num
10967 IRA uses regional register allocation by default. If a function
10968 contains more loops than the number given by this parameter, only at most
10969 the given number of the most frequently-executed loops form regions
10970 for regional register allocation. The default value of the
10971 parameter is 100.
10972
10973 @item ira-max-conflict-table-size
10974 Although IRA uses a sophisticated algorithm to compress the conflict
10975 table, the table can still require excessive amounts of memory for
10976 huge functions. If the conflict table for a function could be more
10977 than the size in MB given by this parameter, the register allocator
10978 instead uses a faster, simpler, and lower-quality
10979 algorithm that does not require building a pseudo-register conflict table.
10980 The default value of the parameter is 2000.
10981
10982 @item ira-loop-reserved-regs
10983 IRA can be used to evaluate more accurate register pressure in loops
10984 for decisions to move loop invariants (see @option{-O3}). The number
10985 of available registers reserved for some other purposes is given
10986 by this parameter. The default value of the parameter is 2, which is
10987 the minimal number of registers needed by typical instructions.
10988 This value is the best found from numerous experiments.
10989
10990 @item lra-inheritance-ebb-probability-cutoff
10991 LRA tries to reuse values reloaded in registers in subsequent insns.
10992 This optimization is called inheritance. EBB is used as a region to
10993 do this optimization. The parameter defines a minimal fall-through
10994 edge probability in percentage used to add BB to inheritance EBB in
10995 LRA. The default value of the parameter is 40. The value was chosen
10996 from numerous runs of SPEC2000 on x86-64.
10997
10998 @item loop-invariant-max-bbs-in-loop
10999 Loop invariant motion can be very expensive, both in compilation time and
11000 in amount of needed compile-time memory, with very large loops. Loops
11001 with more basic blocks than this parameter won't have loop invariant
11002 motion optimization performed on them. The default value of the
11003 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
11004
11005 @item loop-max-datarefs-for-datadeps
11006 Building data dapendencies is expensive for very large loops. This
11007 parameter limits the number of data references in loops that are
11008 considered for data dependence analysis. These large loops are no
11009 handled by the optimizations using loop data dependencies.
11010 The default value is 1000.
11011
11012 @item max-vartrack-size
11013 Sets a maximum number of hash table slots to use during variable
11014 tracking dataflow analysis of any function. If this limit is exceeded
11015 with variable tracking at assignments enabled, analysis for that
11016 function is retried without it, after removing all debug insns from
11017 the function. If the limit is exceeded even without debug insns, var
11018 tracking analysis is completely disabled for the function. Setting
11019 the parameter to zero makes it unlimited.
11020
11021 @item max-vartrack-expr-depth
11022 Sets a maximum number of recursion levels when attempting to map
11023 variable names or debug temporaries to value expressions. This trades
11024 compilation time for more complete debug information. If this is set too
11025 low, value expressions that are available and could be represented in
11026 debug information may end up not being used; setting this higher may
11027 enable the compiler to find more complex debug expressions, but compile
11028 time and memory use may grow. The default is 12.
11029
11030 @item min-nondebug-insn-uid
11031 Use uids starting at this parameter for nondebug insns. The range below
11032 the parameter is reserved exclusively for debug insns created by
11033 @option{-fvar-tracking-assignments}, but debug insns may get
11034 (non-overlapping) uids above it if the reserved range is exhausted.
11035
11036 @item ipa-sra-ptr-growth-factor
11037 IPA-SRA replaces a pointer to an aggregate with one or more new
11038 parameters only when their cumulative size is less or equal to
11039 @option{ipa-sra-ptr-growth-factor} times the size of the original
11040 pointer parameter.
11041
11042 @item sra-max-scalarization-size-Ospeed
11043 @item sra-max-scalarization-size-Osize
11044 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
11045 replace scalar parts of aggregates with uses of independent scalar
11046 variables. These parameters control the maximum size, in storage units,
11047 of aggregate which is considered for replacement when compiling for
11048 speed
11049 (@option{sra-max-scalarization-size-Ospeed}) or size
11050 (@option{sra-max-scalarization-size-Osize}) respectively.
11051
11052 @item tm-max-aggregate-size
11053 When making copies of thread-local variables in a transaction, this
11054 parameter specifies the size in bytes after which variables are
11055 saved with the logging functions as opposed to save/restore code
11056 sequence pairs. This option only applies when using
11057 @option{-fgnu-tm}.
11058
11059 @item graphite-max-nb-scop-params
11060 To avoid exponential effects in the Graphite loop transforms, the
11061 number of parameters in a Static Control Part (SCoP) is bounded. The
11062 default value is 10 parameters. A variable whose value is unknown at
11063 compilation time and defined outside a SCoP is a parameter of the SCoP.
11064
11065 @item graphite-max-bbs-per-function
11066 To avoid exponential effects in the detection of SCoPs, the size of
11067 the functions analyzed by Graphite is bounded. The default value is
11068 100 basic blocks.
11069
11070 @item loop-block-tile-size
11071 Loop blocking or strip mining transforms, enabled with
11072 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
11073 loop in the loop nest by a given number of iterations. The strip
11074 length can be changed using the @option{loop-block-tile-size}
11075 parameter. The default value is 51 iterations.
11076
11077 @item loop-unroll-jam-size
11078 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
11079 default value is 4.
11080
11081 @item loop-unroll-jam-depth
11082 Specify the dimension to be unrolled (counting from the most inner loop)
11083 for the @option{-floop-unroll-and-jam}. The default value is 2.
11084
11085 @item ipa-cp-value-list-size
11086 IPA-CP attempts to track all possible values and types passed to a function's
11087 parameter in order to propagate them and perform devirtualization.
11088 @option{ipa-cp-value-list-size} is the maximum number of values and types it
11089 stores per one formal parameter of a function.
11090
11091 @item ipa-cp-eval-threshold
11092 IPA-CP calculates its own score of cloning profitability heuristics
11093 and performs those cloning opportunities with scores that exceed
11094 @option{ipa-cp-eval-threshold}.
11095
11096 @item ipa-cp-recursion-penalty
11097 Percentage penalty the recursive functions will receive when they
11098 are evaluated for cloning.
11099
11100 @item ipa-cp-single-call-penalty
11101 Percentage penalty functions containg a single call to another
11102 function will receive when they are evaluated for cloning.
11103
11104
11105 @item ipa-max-agg-items
11106 IPA-CP is also capable to propagate a number of scalar values passed
11107 in an aggregate. @option{ipa-max-agg-items} controls the maximum
11108 number of such values per one parameter.
11109
11110 @item ipa-cp-loop-hint-bonus
11111 When IPA-CP determines that a cloning candidate would make the number
11112 of iterations of a loop known, it adds a bonus of
11113 @option{ipa-cp-loop-hint-bonus} to the profitability score of
11114 the candidate.
11115
11116 @item ipa-cp-array-index-hint-bonus
11117 When IPA-CP determines that a cloning candidate would make the index of
11118 an array access known, it adds a bonus of
11119 @option{ipa-cp-array-index-hint-bonus} to the profitability
11120 score of the candidate.
11121
11122 @item ipa-max-aa-steps
11123 During its analysis of function bodies, IPA-CP employs alias analysis
11124 in order to track values pointed to by function parameters. In order
11125 not spend too much time analyzing huge functions, it gives up and
11126 consider all memory clobbered after examining
11127 @option{ipa-max-aa-steps} statements modifying memory.
11128
11129 @item lto-partitions
11130 Specify desired number of partitions produced during WHOPR compilation.
11131 The number of partitions should exceed the number of CPUs used for compilation.
11132 The default value is 32.
11133
11134 @item lto-minpartition
11135 Size of minimal partition for WHOPR (in estimated instructions).
11136 This prevents expenses of splitting very small programs into too many
11137 partitions.
11138
11139 @item cxx-max-namespaces-for-diagnostic-help
11140 The maximum number of namespaces to consult for suggestions when C++
11141 name lookup fails for an identifier. The default is 1000.
11142
11143 @item sink-frequency-threshold
11144 The maximum relative execution frequency (in percents) of the target block
11145 relative to a statement's original block to allow statement sinking of a
11146 statement. Larger numbers result in more aggressive statement sinking.
11147 The default value is 75. A small positive adjustment is applied for
11148 statements with memory operands as those are even more profitable so sink.
11149
11150 @item max-stores-to-sink
11151 The maximum number of conditional stores paires that can be sunk. Set to 0
11152 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11153 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
11154
11155 @item allow-store-data-races
11156 Allow optimizers to introduce new data races on stores.
11157 Set to 1 to allow, otherwise to 0. This option is enabled by default
11158 at optimization level @option{-Ofast}.
11159
11160 @item case-values-threshold
11161 The smallest number of different values for which it is best to use a
11162 jump-table instead of a tree of conditional branches. If the value is
11163 0, use the default for the machine. The default is 0.
11164
11165 @item tree-reassoc-width
11166 Set the maximum number of instructions executed in parallel in
11167 reassociated tree. This parameter overrides target dependent
11168 heuristics used by default if has non zero value.
11169
11170 @item sched-pressure-algorithm
11171 Choose between the two available implementations of
11172 @option{-fsched-pressure}. Algorithm 1 is the original implementation
11173 and is the more likely to prevent instructions from being reordered.
11174 Algorithm 2 was designed to be a compromise between the relatively
11175 conservative approach taken by algorithm 1 and the rather aggressive
11176 approach taken by the default scheduler. It relies more heavily on
11177 having a regular register file and accurate register pressure classes.
11178 See @file{haifa-sched.c} in the GCC sources for more details.
11179
11180 The default choice depends on the target.
11181
11182 @item max-slsr-cand-scan
11183 Set the maximum number of existing candidates that are considered when
11184 seeking a basis for a new straight-line strength reduction candidate.
11185
11186 @item asan-globals
11187 Enable buffer overflow detection for global objects. This kind
11188 of protection is enabled by default if you are using
11189 @option{-fsanitize=address} option.
11190 To disable global objects protection use @option{--param asan-globals=0}.
11191
11192 @item asan-stack
11193 Enable buffer overflow detection for stack objects. This kind of
11194 protection is enabled by default when using @option{-fsanitize=address}.
11195 To disable stack protection use @option{--param asan-stack=0} option.
11196
11197 @item asan-instrument-reads
11198 Enable buffer overflow detection for memory reads. This kind of
11199 protection is enabled by default when using @option{-fsanitize=address}.
11200 To disable memory reads protection use
11201 @option{--param asan-instrument-reads=0}.
11202
11203 @item asan-instrument-writes
11204 Enable buffer overflow detection for memory writes. This kind of
11205 protection is enabled by default when using @option{-fsanitize=address}.
11206 To disable memory writes protection use
11207 @option{--param asan-instrument-writes=0} option.
11208
11209 @item asan-memintrin
11210 Enable detection for built-in functions. This kind of protection
11211 is enabled by default when using @option{-fsanitize=address}.
11212 To disable built-in functions protection use
11213 @option{--param asan-memintrin=0}.
11214
11215 @item asan-use-after-return
11216 Enable detection of use-after-return. This kind of protection
11217 is enabled by default when using @option{-fsanitize=address} option.
11218 To disable use-after-return detection use
11219 @option{--param asan-use-after-return=0}.
11220
11221 @item asan-instrumentation-with-call-threshold
11222 If number of memory accesses in function being instrumented
11223 is greater or equal to this number, use callbacks instead of inline checks.
11224 E.g. to disable inline code use
11225 @option{--param asan-instrumentation-with-call-threshold=0}.
11226
11227 @item chkp-max-ctor-size
11228 Static constructors generated by Pointer Bounds Checker may become very
11229 large and significantly increase compile time at optimization level
11230 @option{-O1} and higher. This parameter is a maximum nubmer of statements
11231 in a single generated constructor. Default value is 5000.
11232
11233 @item max-fsm-thread-path-insns
11234 Maximum number of instructions to copy when duplicating blocks on a
11235 finite state automaton jump thread path. The default is 100.
11236
11237 @item max-fsm-thread-length
11238 Maximum number of basic blocks on a finite state automaton jump thread
11239 path. The default is 10.
11240
11241 @item max-fsm-thread-paths
11242 Maximum number of new jump thread paths to create for a finite state
11243 automaton. The default is 50.
11244
11245 @item parloops-chunk-size
11246 Chunk size of omp schedule for loops parallelized by parloops. The default
11247 is 0.
11248
11249 @item parloops-schedule
11250 Schedule type of omp schedule for loops parallelized by parloops (static,
11251 dynamic, guided, auto, runtime). The default is static.
11252
11253 @item max-ssa-name-query-depth
11254 Maximum depth of recursion when querying properties of SSA names in things
11255 like fold routines. One level of recursion corresponds to following a
11256 use-def chain.
11257 @end table
11258 @end table
11259
11260 @node Preprocessor Options
11261 @section Options Controlling the Preprocessor
11262 @cindex preprocessor options
11263 @cindex options, preprocessor
11264
11265 These options control the C preprocessor, which is run on each C source
11266 file before actual compilation.
11267
11268 If you use the @option{-E} option, nothing is done except preprocessing.
11269 Some of these options make sense only together with @option{-E} because
11270 they cause the preprocessor output to be unsuitable for actual
11271 compilation.
11272
11273 @table @gcctabopt
11274 @item -Wp,@var{option}
11275 @opindex Wp
11276 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11277 and pass @var{option} directly through to the preprocessor. If
11278 @var{option} contains commas, it is split into multiple options at the
11279 commas. However, many options are modified, translated or interpreted
11280 by the compiler driver before being passed to the preprocessor, and
11281 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11282 interface is undocumented and subject to change, so whenever possible
11283 you should avoid using @option{-Wp} and let the driver handle the
11284 options instead.
11285
11286 @item -Xpreprocessor @var{option}
11287 @opindex Xpreprocessor
11288 Pass @var{option} as an option to the preprocessor. You can use this to
11289 supply system-specific preprocessor options that GCC does not
11290 recognize.
11291
11292 If you want to pass an option that takes an argument, you must use
11293 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11294
11295 @item -no-integrated-cpp
11296 @opindex no-integrated-cpp
11297 Perform preprocessing as a separate pass before compilation.
11298 By default, GCC performs preprocessing as an integrated part of
11299 input tokenization and parsing.
11300 If this option is provided, the appropriate language front end
11301 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11302 and Objective-C, respectively) is instead invoked twice,
11303 once for preprocessing only and once for actual compilation
11304 of the preprocessed input.
11305 This option may be useful in conjunction with the @option{-B} or
11306 @option{-wrapper} options to specify an alternate preprocessor or
11307 perform additional processing of the program source between
11308 normal preprocessing and compilation.
11309 @end table
11310
11311 @include cppopts.texi
11312
11313 @node Assembler Options
11314 @section Passing Options to the Assembler
11315
11316 @c prevent bad page break with this line
11317 You can pass options to the assembler.
11318
11319 @table @gcctabopt
11320 @item -Wa,@var{option}
11321 @opindex Wa
11322 Pass @var{option} as an option to the assembler. If @var{option}
11323 contains commas, it is split into multiple options at the commas.
11324
11325 @item -Xassembler @var{option}
11326 @opindex Xassembler
11327 Pass @var{option} as an option to the assembler. You can use this to
11328 supply system-specific assembler options that GCC does not
11329 recognize.
11330
11331 If you want to pass an option that takes an argument, you must use
11332 @option{-Xassembler} twice, once for the option and once for the argument.
11333
11334 @end table
11335
11336 @node Link Options
11337 @section Options for Linking
11338 @cindex link options
11339 @cindex options, linking
11340
11341 These options come into play when the compiler links object files into
11342 an executable output file. They are meaningless if the compiler is
11343 not doing a link step.
11344
11345 @table @gcctabopt
11346 @cindex file names
11347 @item @var{object-file-name}
11348 A file name that does not end in a special recognized suffix is
11349 considered to name an object file or library. (Object files are
11350 distinguished from libraries by the linker according to the file
11351 contents.) If linking is done, these object files are used as input
11352 to the linker.
11353
11354 @item -c
11355 @itemx -S
11356 @itemx -E
11357 @opindex c
11358 @opindex S
11359 @opindex E
11360 If any of these options is used, then the linker is not run, and
11361 object file names should not be used as arguments. @xref{Overall
11362 Options}.
11363
11364 @item -fuse-ld=bfd
11365 @opindex fuse-ld=bfd
11366 Use the @command{bfd} linker instead of the default linker.
11367
11368 @item -fuse-ld=gold
11369 @opindex fuse-ld=gold
11370 Use the @command{gold} linker instead of the default linker.
11371
11372 @cindex Libraries
11373 @item -l@var{library}
11374 @itemx -l @var{library}
11375 @opindex l
11376 Search the library named @var{library} when linking. (The second
11377 alternative with the library as a separate argument is only for
11378 POSIX compliance and is not recommended.)
11379
11380 It makes a difference where in the command you write this option; the
11381 linker searches and processes libraries and object files in the order they
11382 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11383 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11384 to functions in @samp{z}, those functions may not be loaded.
11385
11386 The linker searches a standard list of directories for the library,
11387 which is actually a file named @file{lib@var{library}.a}. The linker
11388 then uses this file as if it had been specified precisely by name.
11389
11390 The directories searched include several standard system directories
11391 plus any that you specify with @option{-L}.
11392
11393 Normally the files found this way are library files---archive files
11394 whose members are object files. The linker handles an archive file by
11395 scanning through it for members which define symbols that have so far
11396 been referenced but not defined. But if the file that is found is an
11397 ordinary object file, it is linked in the usual fashion. The only
11398 difference between using an @option{-l} option and specifying a file name
11399 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11400 and searches several directories.
11401
11402 @item -lobjc
11403 @opindex lobjc
11404 You need this special case of the @option{-l} option in order to
11405 link an Objective-C or Objective-C++ program.
11406
11407 @item -nostartfiles
11408 @opindex nostartfiles
11409 Do not use the standard system startup files when linking.
11410 The standard system libraries are used normally, unless @option{-nostdlib}
11411 or @option{-nodefaultlibs} is used.
11412
11413 @item -nodefaultlibs
11414 @opindex nodefaultlibs
11415 Do not use the standard system libraries when linking.
11416 Only the libraries you specify are passed to the linker, and options
11417 specifying linkage of the system libraries, such as @option{-static-libgcc}
11418 or @option{-shared-libgcc}, are ignored.
11419 The standard startup files are used normally, unless @option{-nostartfiles}
11420 is used.
11421
11422 The compiler may generate calls to @code{memcmp},
11423 @code{memset}, @code{memcpy} and @code{memmove}.
11424 These entries are usually resolved by entries in
11425 libc. These entry points should be supplied through some other
11426 mechanism when this option is specified.
11427
11428 @item -nostdlib
11429 @opindex nostdlib
11430 Do not use the standard system startup files or libraries when linking.
11431 No startup files and only the libraries you specify are passed to
11432 the linker, and options specifying linkage of the system libraries, such as
11433 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11434
11435 The compiler may generate calls to @code{memcmp}, @code{memset},
11436 @code{memcpy} and @code{memmove}.
11437 These entries are usually resolved by entries in
11438 libc. These entry points should be supplied through some other
11439 mechanism when this option is specified.
11440
11441 @cindex @option{-lgcc}, use with @option{-nostdlib}
11442 @cindex @option{-nostdlib} and unresolved references
11443 @cindex unresolved references and @option{-nostdlib}
11444 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11445 @cindex @option{-nodefaultlibs} and unresolved references
11446 @cindex unresolved references and @option{-nodefaultlibs}
11447 One of the standard libraries bypassed by @option{-nostdlib} and
11448 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11449 which GCC uses to overcome shortcomings of particular machines, or special
11450 needs for some languages.
11451 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11452 Collection (GCC) Internals},
11453 for more discussion of @file{libgcc.a}.)
11454 In most cases, you need @file{libgcc.a} even when you want to avoid
11455 other standard libraries. In other words, when you specify @option{-nostdlib}
11456 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11457 This ensures that you have no unresolved references to internal GCC
11458 library subroutines.
11459 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11460 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11461 GNU Compiler Collection (GCC) Internals}.)
11462
11463 @item -pie
11464 @opindex pie
11465 Produce a position independent executable on targets that support it.
11466 For predictable results, you must also specify the same set of options
11467 used for compilation (@option{-fpie}, @option{-fPIE},
11468 or model suboptions) when you specify this linker option.
11469
11470 @item -no-pie
11471 @opindex no-pie
11472 Don't produce a position independent executable.
11473
11474 @item -rdynamic
11475 @opindex rdynamic
11476 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11477 that support it. This instructs the linker to add all symbols, not
11478 only used ones, to the dynamic symbol table. This option is needed
11479 for some uses of @code{dlopen} or to allow obtaining backtraces
11480 from within a program.
11481
11482 @item -s
11483 @opindex s
11484 Remove all symbol table and relocation information from the executable.
11485
11486 @item -static
11487 @opindex static
11488 On systems that support dynamic linking, this prevents linking with the shared
11489 libraries. On other systems, this option has no effect.
11490
11491 @item -shared
11492 @opindex shared
11493 Produce a shared object which can then be linked with other objects to
11494 form an executable. Not all systems support this option. For predictable
11495 results, you must also specify the same set of options used for compilation
11496 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11497 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11498 needs to build supplementary stub code for constructors to work. On
11499 multi-libbed systems, @samp{gcc -shared} must select the correct support
11500 libraries to link against. Failing to supply the correct flags may lead
11501 to subtle defects. Supplying them in cases where they are not necessary
11502 is innocuous.}
11503
11504 @item -shared-libgcc
11505 @itemx -static-libgcc
11506 @opindex shared-libgcc
11507 @opindex static-libgcc
11508 On systems that provide @file{libgcc} as a shared library, these options
11509 force the use of either the shared or static version, respectively.
11510 If no shared version of @file{libgcc} was built when the compiler was
11511 configured, these options have no effect.
11512
11513 There are several situations in which an application should use the
11514 shared @file{libgcc} instead of the static version. The most common
11515 of these is when the application wishes to throw and catch exceptions
11516 across different shared libraries. In that case, each of the libraries
11517 as well as the application itself should use the shared @file{libgcc}.
11518
11519 Therefore, the G++ and GCJ drivers automatically add
11520 @option{-shared-libgcc} whenever you build a shared library or a main
11521 executable, because C++ and Java programs typically use exceptions, so
11522 this is the right thing to do.
11523
11524 If, instead, you use the GCC driver to create shared libraries, you may
11525 find that they are not always linked with the shared @file{libgcc}.
11526 If GCC finds, at its configuration time, that you have a non-GNU linker
11527 or a GNU linker that does not support option @option{--eh-frame-hdr},
11528 it links the shared version of @file{libgcc} into shared libraries
11529 by default. Otherwise, it takes advantage of the linker and optimizes
11530 away the linking with the shared version of @file{libgcc}, linking with
11531 the static version of libgcc by default. This allows exceptions to
11532 propagate through such shared libraries, without incurring relocation
11533 costs at library load time.
11534
11535 However, if a library or main executable is supposed to throw or catch
11536 exceptions, you must link it using the G++ or GCJ driver, as appropriate
11537 for the languages used in the program, or using the option
11538 @option{-shared-libgcc}, such that it is linked with the shared
11539 @file{libgcc}.
11540
11541 @item -static-libasan
11542 @opindex static-libasan
11543 When the @option{-fsanitize=address} option is used to link a program,
11544 the GCC driver automatically links against @option{libasan}. If
11545 @file{libasan} is available as a shared library, and the @option{-static}
11546 option is not used, then this links against the shared version of
11547 @file{libasan}. The @option{-static-libasan} option directs the GCC
11548 driver to link @file{libasan} statically, without necessarily linking
11549 other libraries statically.
11550
11551 @item -static-libtsan
11552 @opindex static-libtsan
11553 When the @option{-fsanitize=thread} option is used to link a program,
11554 the GCC driver automatically links against @option{libtsan}. If
11555 @file{libtsan} is available as a shared library, and the @option{-static}
11556 option is not used, then this links against the shared version of
11557 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11558 driver to link @file{libtsan} statically, without necessarily linking
11559 other libraries statically.
11560
11561 @item -static-liblsan
11562 @opindex static-liblsan
11563 When the @option{-fsanitize=leak} option is used to link a program,
11564 the GCC driver automatically links against @option{liblsan}. If
11565 @file{liblsan} is available as a shared library, and the @option{-static}
11566 option is not used, then this links against the shared version of
11567 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11568 driver to link @file{liblsan} statically, without necessarily linking
11569 other libraries statically.
11570
11571 @item -static-libubsan
11572 @opindex static-libubsan
11573 When the @option{-fsanitize=undefined} option is used to link a program,
11574 the GCC driver automatically links against @option{libubsan}. If
11575 @file{libubsan} is available as a shared library, and the @option{-static}
11576 option is not used, then this links against the shared version of
11577 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11578 driver to link @file{libubsan} statically, without necessarily linking
11579 other libraries statically.
11580
11581 @item -static-libmpx
11582 @opindex static-libmpx
11583 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11584 used to link a program, the GCC driver automatically links against
11585 @file{libmpx}. If @file{libmpx} is available as a shared library,
11586 and the @option{-static} option is not used, then this links against
11587 the shared version of @file{libmpx}. The @option{-static-libmpx}
11588 option directs the GCC driver to link @file{libmpx} statically,
11589 without necessarily linking other libraries statically.
11590
11591 @item -static-libmpxwrappers
11592 @opindex static-libmpxwrappers
11593 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11594 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11595 GCC driver automatically links against @file{libmpxwrappers}. If
11596 @file{libmpxwrappers} is available as a shared library, and the
11597 @option{-static} option is not used, then this links against the shared
11598 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11599 option directs the GCC driver to link @file{libmpxwrappers} statically,
11600 without necessarily linking other libraries statically.
11601
11602 @item -static-libstdc++
11603 @opindex static-libstdc++
11604 When the @command{g++} program is used to link a C++ program, it
11605 normally automatically links against @option{libstdc++}. If
11606 @file{libstdc++} is available as a shared library, and the
11607 @option{-static} option is not used, then this links against the
11608 shared version of @file{libstdc++}. That is normally fine. However, it
11609 is sometimes useful to freeze the version of @file{libstdc++} used by
11610 the program without going all the way to a fully static link. The
11611 @option{-static-libstdc++} option directs the @command{g++} driver to
11612 link @file{libstdc++} statically, without necessarily linking other
11613 libraries statically.
11614
11615 @item -symbolic
11616 @opindex symbolic
11617 Bind references to global symbols when building a shared object. Warn
11618 about any unresolved references (unless overridden by the link editor
11619 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11620 this option.
11621
11622 @item -T @var{script}
11623 @opindex T
11624 @cindex linker script
11625 Use @var{script} as the linker script. This option is supported by most
11626 systems using the GNU linker. On some targets, such as bare-board
11627 targets without an operating system, the @option{-T} option may be required
11628 when linking to avoid references to undefined symbols.
11629
11630 @item -Xlinker @var{option}
11631 @opindex Xlinker
11632 Pass @var{option} as an option to the linker. You can use this to
11633 supply system-specific linker options that GCC does not recognize.
11634
11635 If you want to pass an option that takes a separate argument, you must use
11636 @option{-Xlinker} twice, once for the option and once for the argument.
11637 For example, to pass @option{-assert definitions}, you must write
11638 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11639 @option{-Xlinker "-assert definitions"}, because this passes the entire
11640 string as a single argument, which is not what the linker expects.
11641
11642 When using the GNU linker, it is usually more convenient to pass
11643 arguments to linker options using the @option{@var{option}=@var{value}}
11644 syntax than as separate arguments. For example, you can specify
11645 @option{-Xlinker -Map=output.map} rather than
11646 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11647 this syntax for command-line options.
11648
11649 @item -Wl,@var{option}
11650 @opindex Wl
11651 Pass @var{option} as an option to the linker. If @var{option} contains
11652 commas, it is split into multiple options at the commas. You can use this
11653 syntax to pass an argument to the option.
11654 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11655 linker. When using the GNU linker, you can also get the same effect with
11656 @option{-Wl,-Map=output.map}.
11657
11658 @item -u @var{symbol}
11659 @opindex u
11660 Pretend the symbol @var{symbol} is undefined, to force linking of
11661 library modules to define it. You can use @option{-u} multiple times with
11662 different symbols to force loading of additional library modules.
11663
11664 @item -z @var{keyword}
11665 @opindex z
11666 @option{-z} is passed directly on to the linker along with the keyword
11667 @var{keyword}. See the section in the documentation of your linker for
11668 permitted values and their meanings.
11669 @end table
11670
11671 @node Directory Options
11672 @section Options for Directory Search
11673 @cindex directory options
11674 @cindex options, directory search
11675 @cindex search path
11676
11677 These options specify directories to search for header files, for
11678 libraries and for parts of the compiler:
11679
11680 @table @gcctabopt
11681 @item -I@var{dir}
11682 @opindex I
11683 Add the directory @var{dir} to the head of the list of directories to be
11684 searched for header files. This can be used to override a system header
11685 file, substituting your own version, since these directories are
11686 searched before the system header file directories. However, you should
11687 not use this option to add directories that contain vendor-supplied
11688 system header files (use @option{-isystem} for that). If you use more than
11689 one @option{-I} option, the directories are scanned in left-to-right
11690 order; the standard system directories come after.
11691
11692 If a standard system include directory, or a directory specified with
11693 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
11694 option is ignored. The directory is still searched but as a
11695 system directory at its normal position in the system include chain.
11696 This is to ensure that GCC's procedure to fix buggy system headers and
11697 the ordering for the @code{include_next} directive are not inadvertently changed.
11698 If you really need to change the search order for system directories,
11699 use the @option{-nostdinc} and/or @option{-isystem} options.
11700
11701 @item -iplugindir=@var{dir}
11702 @opindex iplugindir=
11703 Set the directory to search for plugins that are passed
11704 by @option{-fplugin=@var{name}} instead of
11705 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11706 to be used by the user, but only passed by the driver.
11707
11708 @item -iquote@var{dir}
11709 @opindex iquote
11710 Add the directory @var{dir} to the head of the list of directories to
11711 be searched for header files only for the case of @code{#include
11712 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
11713 otherwise just like @option{-I}.
11714
11715 @item -L@var{dir}
11716 @opindex L
11717 Add directory @var{dir} to the list of directories to be searched
11718 for @option{-l}.
11719
11720 @item -B@var{prefix}
11721 @opindex B
11722 This option specifies where to find the executables, libraries,
11723 include files, and data files of the compiler itself.
11724
11725 The compiler driver program runs one or more of the subprograms
11726 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11727 @var{prefix} as a prefix for each program it tries to run, both with and
11728 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
11729
11730 For each subprogram to be run, the compiler driver first tries the
11731 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11732 is not specified, the driver tries two standard prefixes,
11733 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11734 those results in a file name that is found, the unmodified program
11735 name is searched for using the directories specified in your
11736 @env{PATH} environment variable.
11737
11738 The compiler checks to see if the path provided by @option{-B}
11739 refers to a directory, and if necessary it adds a directory
11740 separator character at the end of the path.
11741
11742 @option{-B} prefixes that effectively specify directory names also apply
11743 to libraries in the linker, because the compiler translates these
11744 options into @option{-L} options for the linker. They also apply to
11745 include files in the preprocessor, because the compiler translates these
11746 options into @option{-isystem} options for the preprocessor. In this case,
11747 the compiler appends @samp{include} to the prefix.
11748
11749 The runtime support file @file{libgcc.a} can also be searched for using
11750 the @option{-B} prefix, if needed. If it is not found there, the two
11751 standard prefixes above are tried, and that is all. The file is left
11752 out of the link if it is not found by those means.
11753
11754 Another way to specify a prefix much like the @option{-B} prefix is to use
11755 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
11756 Variables}.
11757
11758 As a special kludge, if the path provided by @option{-B} is
11759 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11760 9, then it is replaced by @file{[dir/]include}. This is to help
11761 with boot-strapping the compiler.
11762
11763 @item -specs=@var{file}
11764 @opindex specs
11765 Process @var{file} after the compiler reads in the standard @file{specs}
11766 file, in order to override the defaults which the @command{gcc} driver
11767 program uses when determining what switches to pass to @command{cc1},
11768 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
11769 @option{-specs=@var{file}} can be specified on the command line, and they
11770 are processed in order, from left to right.
11771
11772 @item --sysroot=@var{dir}
11773 @opindex sysroot
11774 Use @var{dir} as the logical root directory for headers and libraries.
11775 For example, if the compiler normally searches for headers in
11776 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11777 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11778
11779 If you use both this option and the @option{-isysroot} option, then
11780 the @option{--sysroot} option applies to libraries, but the
11781 @option{-isysroot} option applies to header files.
11782
11783 The GNU linker (beginning with version 2.16) has the necessary support
11784 for this option. If your linker does not support this option, the
11785 header file aspect of @option{--sysroot} still works, but the
11786 library aspect does not.
11787
11788 @item --no-sysroot-suffix
11789 @opindex no-sysroot-suffix
11790 For some targets, a suffix is added to the root directory specified
11791 with @option{--sysroot}, depending on the other options used, so that
11792 headers may for example be found in
11793 @file{@var{dir}/@var{suffix}/usr/include} instead of
11794 @file{@var{dir}/usr/include}. This option disables the addition of
11795 such a suffix.
11796
11797 @item -I-
11798 @opindex I-
11799 This option has been deprecated. Please use @option{-iquote} instead for
11800 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11801 option.
11802 Any directories you specify with @option{-I} options before the @option{-I-}
11803 option are searched only for the case of @code{#include "@var{file}"};
11804 they are not searched for @code{#include <@var{file}>}.
11805
11806 If additional directories are specified with @option{-I} options after
11807 the @option{-I-} option, these directories are searched for all @code{#include}
11808 directives. (Ordinarily @emph{all} @option{-I} directories are used
11809 this way.)
11810
11811 In addition, the @option{-I-} option inhibits the use of the current
11812 directory (where the current input file came from) as the first search
11813 directory for @code{#include "@var{file}"}. There is no way to
11814 override this effect of @option{-I-}. With @option{-I.} you can specify
11815 searching the directory that is current when the compiler is
11816 invoked. That is not exactly the same as what the preprocessor does
11817 by default, but it is often satisfactory.
11818
11819 @option{-I-} does not inhibit the use of the standard system directories
11820 for header files. Thus, @option{-I-} and @option{-nostdinc} are
11821 independent.
11822 @end table
11823
11824 @c man end
11825
11826 @node Spec Files
11827 @section Specifying Subprocesses and the Switches to Pass to Them
11828 @cindex Spec Files
11829
11830 @command{gcc} is a driver program. It performs its job by invoking a
11831 sequence of other programs to do the work of compiling, assembling and
11832 linking. GCC interprets its command-line parameters and uses these to
11833 deduce which programs it should invoke, and which command-line options
11834 it ought to place on their command lines. This behavior is controlled
11835 by @dfn{spec strings}. In most cases there is one spec string for each
11836 program that GCC can invoke, but a few programs have multiple spec
11837 strings to control their behavior. The spec strings built into GCC can
11838 be overridden by using the @option{-specs=} command-line switch to specify
11839 a spec file.
11840
11841 @dfn{Spec files} are plaintext files that are used to construct spec
11842 strings. They consist of a sequence of directives separated by blank
11843 lines. The type of directive is determined by the first non-whitespace
11844 character on the line, which can be one of the following:
11845
11846 @table @code
11847 @item %@var{command}
11848 Issues a @var{command} to the spec file processor. The commands that can
11849 appear here are:
11850
11851 @table @code
11852 @item %include <@var{file}>
11853 @cindex @code{%include}
11854 Search for @var{file} and insert its text at the current point in the
11855 specs file.
11856
11857 @item %include_noerr <@var{file}>
11858 @cindex @code{%include_noerr}
11859 Just like @samp{%include}, but do not generate an error message if the include
11860 file cannot be found.
11861
11862 @item %rename @var{old_name} @var{new_name}
11863 @cindex @code{%rename}
11864 Rename the spec string @var{old_name} to @var{new_name}.
11865
11866 @end table
11867
11868 @item *[@var{spec_name}]:
11869 This tells the compiler to create, override or delete the named spec
11870 string. All lines after this directive up to the next directive or
11871 blank line are considered to be the text for the spec string. If this
11872 results in an empty string then the spec is deleted. (Or, if the
11873 spec did not exist, then nothing happens.) Otherwise, if the spec
11874 does not currently exist a new spec is created. If the spec does
11875 exist then its contents are overridden by the text of this
11876 directive, unless the first character of that text is the @samp{+}
11877 character, in which case the text is appended to the spec.
11878
11879 @item [@var{suffix}]:
11880 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
11881 and up to the next directive or blank line are considered to make up the
11882 spec string for the indicated suffix. When the compiler encounters an
11883 input file with the named suffix, it processes the spec string in
11884 order to work out how to compile that file. For example:
11885
11886 @smallexample
11887 .ZZ:
11888 z-compile -input %i
11889 @end smallexample
11890
11891 This says that any input file whose name ends in @samp{.ZZ} should be
11892 passed to the program @samp{z-compile}, which should be invoked with the
11893 command-line switch @option{-input} and with the result of performing the
11894 @samp{%i} substitution. (See below.)
11895
11896 As an alternative to providing a spec string, the text following a
11897 suffix directive can be one of the following:
11898
11899 @table @code
11900 @item @@@var{language}
11901 This says that the suffix is an alias for a known @var{language}. This is
11902 similar to using the @option{-x} command-line switch to GCC to specify a
11903 language explicitly. For example:
11904
11905 @smallexample
11906 .ZZ:
11907 @@c++
11908 @end smallexample
11909
11910 Says that .ZZ files are, in fact, C++ source files.
11911
11912 @item #@var{name}
11913 This causes an error messages saying:
11914
11915 @smallexample
11916 @var{name} compiler not installed on this system.
11917 @end smallexample
11918 @end table
11919
11920 GCC already has an extensive list of suffixes built into it.
11921 This directive adds an entry to the end of the list of suffixes, but
11922 since the list is searched from the end backwards, it is effectively
11923 possible to override earlier entries using this technique.
11924
11925 @end table
11926
11927 GCC has the following spec strings built into it. Spec files can
11928 override these strings or create their own. Note that individual
11929 targets can also add their own spec strings to this list.
11930
11931 @smallexample
11932 asm Options to pass to the assembler
11933 asm_final Options to pass to the assembler post-processor
11934 cpp Options to pass to the C preprocessor
11935 cc1 Options to pass to the C compiler
11936 cc1plus Options to pass to the C++ compiler
11937 endfile Object files to include at the end of the link
11938 link Options to pass to the linker
11939 lib Libraries to include on the command line to the linker
11940 libgcc Decides which GCC support library to pass to the linker
11941 linker Sets the name of the linker
11942 predefines Defines to be passed to the C preprocessor
11943 signed_char Defines to pass to CPP to say whether @code{char} is signed
11944 by default
11945 startfile Object files to include at the start of the link
11946 @end smallexample
11947
11948 Here is a small example of a spec file:
11949
11950 @smallexample
11951 %rename lib old_lib
11952
11953 *lib:
11954 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
11955 @end smallexample
11956
11957 This example renames the spec called @samp{lib} to @samp{old_lib} and
11958 then overrides the previous definition of @samp{lib} with a new one.
11959 The new definition adds in some extra command-line options before
11960 including the text of the old definition.
11961
11962 @dfn{Spec strings} are a list of command-line options to be passed to their
11963 corresponding program. In addition, the spec strings can contain
11964 @samp{%}-prefixed sequences to substitute variable text or to
11965 conditionally insert text into the command line. Using these constructs
11966 it is possible to generate quite complex command lines.
11967
11968 Here is a table of all defined @samp{%}-sequences for spec
11969 strings. Note that spaces are not generated automatically around the
11970 results of expanding these sequences. Therefore you can concatenate them
11971 together or combine them with constant text in a single argument.
11972
11973 @table @code
11974 @item %%
11975 Substitute one @samp{%} into the program name or argument.
11976
11977 @item %i
11978 Substitute the name of the input file being processed.
11979
11980 @item %b
11981 Substitute the basename of the input file being processed.
11982 This is the substring up to (and not including) the last period
11983 and not including the directory.
11984
11985 @item %B
11986 This is the same as @samp{%b}, but include the file suffix (text after
11987 the last period).
11988
11989 @item %d
11990 Marks the argument containing or following the @samp{%d} as a
11991 temporary file name, so that that file is deleted if GCC exits
11992 successfully. Unlike @samp{%g}, this contributes no text to the
11993 argument.
11994
11995 @item %g@var{suffix}
11996 Substitute a file name that has suffix @var{suffix} and is chosen
11997 once per compilation, and mark the argument in the same way as
11998 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
11999 name is now chosen in a way that is hard to predict even when previously
12000 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
12001 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
12002 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
12003 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
12004 was simply substituted with a file name chosen once per compilation,
12005 without regard to any appended suffix (which was therefore treated
12006 just like ordinary text), making such attacks more likely to succeed.
12007
12008 @item %u@var{suffix}
12009 Like @samp{%g}, but generates a new temporary file name
12010 each time it appears instead of once per compilation.
12011
12012 @item %U@var{suffix}
12013 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
12014 new one if there is no such last file name. In the absence of any
12015 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
12016 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
12017 involves the generation of two distinct file names, one
12018 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
12019 simply substituted with a file name chosen for the previous @samp{%u},
12020 without regard to any appended suffix.
12021
12022 @item %j@var{suffix}
12023 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
12024 writable, and if @option{-save-temps} is not used;
12025 otherwise, substitute the name
12026 of a temporary file, just like @samp{%u}. This temporary file is not
12027 meant for communication between processes, but rather as a junk
12028 disposal mechanism.
12029
12030 @item %|@var{suffix}
12031 @itemx %m@var{suffix}
12032 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
12033 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
12034 all. These are the two most common ways to instruct a program that it
12035 should read from standard input or write to standard output. If you
12036 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
12037 construct: see for example @file{f/lang-specs.h}.
12038
12039 @item %.@var{SUFFIX}
12040 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
12041 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
12042 terminated by the next space or %.
12043
12044 @item %w
12045 Marks the argument containing or following the @samp{%w} as the
12046 designated output file of this compilation. This puts the argument
12047 into the sequence of arguments that @samp{%o} substitutes.
12048
12049 @item %o
12050 Substitutes the names of all the output files, with spaces
12051 automatically placed around them. You should write spaces
12052 around the @samp{%o} as well or the results are undefined.
12053 @samp{%o} is for use in the specs for running the linker.
12054 Input files whose names have no recognized suffix are not compiled
12055 at all, but they are included among the output files, so they are
12056 linked.
12057
12058 @item %O
12059 Substitutes the suffix for object files. Note that this is
12060 handled specially when it immediately follows @samp{%g, %u, or %U},
12061 because of the need for those to form complete file names. The
12062 handling is such that @samp{%O} is treated exactly as if it had already
12063 been substituted, except that @samp{%g, %u, and %U} do not currently
12064 support additional @var{suffix} characters following @samp{%O} as they do
12065 following, for example, @samp{.o}.
12066
12067 @item %p
12068 Substitutes the standard macro predefinitions for the
12069 current target machine. Use this when running @command{cpp}.
12070
12071 @item %P
12072 Like @samp{%p}, but puts @samp{__} before and after the name of each
12073 predefined macro, except for macros that start with @samp{__} or with
12074 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
12075 C@.
12076
12077 @item %I
12078 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
12079 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
12080 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
12081 and @option{-imultilib} as necessary.
12082
12083 @item %s
12084 Current argument is the name of a library or startup file of some sort.
12085 Search for that file in a standard list of directories and substitute
12086 the full name found. The current working directory is included in the
12087 list of directories scanned.
12088
12089 @item %T
12090 Current argument is the name of a linker script. Search for that file
12091 in the current list of directories to scan for libraries. If the file
12092 is located insert a @option{--script} option into the command line
12093 followed by the full path name found. If the file is not found then
12094 generate an error message. Note: the current working directory is not
12095 searched.
12096
12097 @item %e@var{str}
12098 Print @var{str} as an error message. @var{str} is terminated by a newline.
12099 Use this when inconsistent options are detected.
12100
12101 @item %(@var{name})
12102 Substitute the contents of spec string @var{name} at this point.
12103
12104 @item %x@{@var{option}@}
12105 Accumulate an option for @samp{%X}.
12106
12107 @item %X
12108 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
12109 spec string.
12110
12111 @item %Y
12112 Output the accumulated assembler options specified by @option{-Wa}.
12113
12114 @item %Z
12115 Output the accumulated preprocessor options specified by @option{-Wp}.
12116
12117 @item %a
12118 Process the @code{asm} spec. This is used to compute the
12119 switches to be passed to the assembler.
12120
12121 @item %A
12122 Process the @code{asm_final} spec. This is a spec string for
12123 passing switches to an assembler post-processor, if such a program is
12124 needed.
12125
12126 @item %l
12127 Process the @code{link} spec. This is the spec for computing the
12128 command line passed to the linker. Typically it makes use of the
12129 @samp{%L %G %S %D and %E} sequences.
12130
12131 @item %D
12132 Dump out a @option{-L} option for each directory that GCC believes might
12133 contain startup files. If the target supports multilibs then the
12134 current multilib directory is prepended to each of these paths.
12135
12136 @item %L
12137 Process the @code{lib} spec. This is a spec string for deciding which
12138 libraries are included on the command line to the linker.
12139
12140 @item %G
12141 Process the @code{libgcc} spec. This is a spec string for deciding
12142 which GCC support library is included on the command line to the linker.
12143
12144 @item %S
12145 Process the @code{startfile} spec. This is a spec for deciding which
12146 object files are the first ones passed to the linker. Typically
12147 this might be a file named @file{crt0.o}.
12148
12149 @item %E
12150 Process the @code{endfile} spec. This is a spec string that specifies
12151 the last object files that are passed to the linker.
12152
12153 @item %C
12154 Process the @code{cpp} spec. This is used to construct the arguments
12155 to be passed to the C preprocessor.
12156
12157 @item %1
12158 Process the @code{cc1} spec. This is used to construct the options to be
12159 passed to the actual C compiler (@command{cc1}).
12160
12161 @item %2
12162 Process the @code{cc1plus} spec. This is used to construct the options to be
12163 passed to the actual C++ compiler (@command{cc1plus}).
12164
12165 @item %*
12166 Substitute the variable part of a matched option. See below.
12167 Note that each comma in the substituted string is replaced by
12168 a single space.
12169
12170 @item %<@code{S}
12171 Remove all occurrences of @code{-S} from the command line. Note---this
12172 command is position dependent. @samp{%} commands in the spec string
12173 before this one see @code{-S}, @samp{%} commands in the spec string
12174 after this one do not.
12175
12176 @item %:@var{function}(@var{args})
12177 Call the named function @var{function}, passing it @var{args}.
12178 @var{args} is first processed as a nested spec string, then split
12179 into an argument vector in the usual fashion. The function returns
12180 a string which is processed as if it had appeared literally as part
12181 of the current spec.
12182
12183 The following built-in spec functions are provided:
12184
12185 @table @code
12186 @item @code{getenv}
12187 The @code{getenv} spec function takes two arguments: an environment
12188 variable name and a string. If the environment variable is not
12189 defined, a fatal error is issued. Otherwise, the return value is the
12190 value of the environment variable concatenated with the string. For
12191 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
12192
12193 @smallexample
12194 %:getenv(TOPDIR /include)
12195 @end smallexample
12196
12197 expands to @file{/path/to/top/include}.
12198
12199 @item @code{if-exists}
12200 The @code{if-exists} spec function takes one argument, an absolute
12201 pathname to a file. If the file exists, @code{if-exists} returns the
12202 pathname. Here is a small example of its usage:
12203
12204 @smallexample
12205 *startfile:
12206 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
12207 @end smallexample
12208
12209 @item @code{if-exists-else}
12210 The @code{if-exists-else} spec function is similar to the @code{if-exists}
12211 spec function, except that it takes two arguments. The first argument is
12212 an absolute pathname to a file. If the file exists, @code{if-exists-else}
12213 returns the pathname. If it does not exist, it returns the second argument.
12214 This way, @code{if-exists-else} can be used to select one file or another,
12215 based on the existence of the first. Here is a small example of its usage:
12216
12217 @smallexample
12218 *startfile:
12219 crt0%O%s %:if-exists(crti%O%s) \
12220 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
12221 @end smallexample
12222
12223 @item @code{replace-outfile}
12224 The @code{replace-outfile} spec function takes two arguments. It looks for the
12225 first argument in the outfiles array and replaces it with the second argument. Here
12226 is a small example of its usage:
12227
12228 @smallexample
12229 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
12230 @end smallexample
12231
12232 @item @code{remove-outfile}
12233 The @code{remove-outfile} spec function takes one argument. It looks for the
12234 first argument in the outfiles array and removes it. Here is a small example
12235 its usage:
12236
12237 @smallexample
12238 %:remove-outfile(-lm)
12239 @end smallexample
12240
12241 @item @code{pass-through-libs}
12242 The @code{pass-through-libs} spec function takes any number of arguments. It
12243 finds any @option{-l} options and any non-options ending in @file{.a} (which it
12244 assumes are the names of linker input library archive files) and returns a
12245 result containing all the found arguments each prepended by
12246 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
12247 intended to be passed to the LTO linker plugin.
12248
12249 @smallexample
12250 %:pass-through-libs(%G %L %G)
12251 @end smallexample
12252
12253 @item @code{print-asm-header}
12254 The @code{print-asm-header} function takes no arguments and simply
12255 prints a banner like:
12256
12257 @smallexample
12258 Assembler options
12259 =================
12260
12261 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
12262 @end smallexample
12263
12264 It is used to separate compiler options from assembler options
12265 in the @option{--target-help} output.
12266 @end table
12267
12268 @item %@{@code{S}@}
12269 Substitutes the @code{-S} switch, if that switch is given to GCC@.
12270 If that switch is not specified, this substitutes nothing. Note that
12271 the leading dash is omitted when specifying this option, and it is
12272 automatically inserted if the substitution is performed. Thus the spec
12273 string @samp{%@{foo@}} matches the command-line option @option{-foo}
12274 and outputs the command-line option @option{-foo}.
12275
12276 @item %W@{@code{S}@}
12277 Like %@{@code{S}@} but mark last argument supplied within as a file to be
12278 deleted on failure.
12279
12280 @item %@{@code{S}*@}
12281 Substitutes all the switches specified to GCC whose names start
12282 with @code{-S}, but which also take an argument. This is used for
12283 switches like @option{-o}, @option{-D}, @option{-I}, etc.
12284 GCC considers @option{-o foo} as being
12285 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
12286 text, including the space. Thus two arguments are generated.
12287
12288 @item %@{@code{S}*&@code{T}*@}
12289 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
12290 (the order of @code{S} and @code{T} in the spec is not significant).
12291 There can be any number of ampersand-separated variables; for each the
12292 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
12293
12294 @item %@{@code{S}:@code{X}@}
12295 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
12296
12297 @item %@{!@code{S}:@code{X}@}
12298 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
12299
12300 @item %@{@code{S}*:@code{X}@}
12301 Substitutes @code{X} if one or more switches whose names start with
12302 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
12303 once, no matter how many such switches appeared. However, if @code{%*}
12304 appears somewhere in @code{X}, then @code{X} is substituted once
12305 for each matching switch, with the @code{%*} replaced by the part of
12306 that switch matching the @code{*}.
12307
12308 If @code{%*} appears as the last part of a spec sequence then a space
12309 is added after the end of the last substitution. If there is more
12310 text in the sequence, however, then a space is not generated. This
12311 allows the @code{%*} substitution to be used as part of a larger
12312 string. For example, a spec string like this:
12313
12314 @smallexample
12315 %@{mcu=*:--script=%*/memory.ld@}
12316 @end smallexample
12317
12318 @noindent
12319 when matching an option like @option{-mcu=newchip} produces:
12320
12321 @smallexample
12322 --script=newchip/memory.ld
12323 @end smallexample
12324
12325 @item %@{.@code{S}:@code{X}@}
12326 Substitutes @code{X}, if processing a file with suffix @code{S}.
12327
12328 @item %@{!.@code{S}:@code{X}@}
12329 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
12330
12331 @item %@{,@code{S}:@code{X}@}
12332 Substitutes @code{X}, if processing a file for language @code{S}.
12333
12334 @item %@{!,@code{S}:@code{X}@}
12335 Substitutes @code{X}, if not processing a file for language @code{S}.
12336
12337 @item %@{@code{S}|@code{P}:@code{X}@}
12338 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
12339 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
12340 @code{*} sequences as well, although they have a stronger binding than
12341 the @samp{|}. If @code{%*} appears in @code{X}, all of the
12342 alternatives must be starred, and only the first matching alternative
12343 is substituted.
12344
12345 For example, a spec string like this:
12346
12347 @smallexample
12348 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
12349 @end smallexample
12350
12351 @noindent
12352 outputs the following command-line options from the following input
12353 command-line options:
12354
12355 @smallexample
12356 fred.c -foo -baz
12357 jim.d -bar -boggle
12358 -d fred.c -foo -baz -boggle
12359 -d jim.d -bar -baz -boggle
12360 @end smallexample
12361
12362 @item %@{S:X; T:Y; :D@}
12363
12364 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
12365 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
12366 be as many clauses as you need. This may be combined with @code{.},
12367 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
12368
12369
12370 @end table
12371
12372 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
12373 construct may contain other nested @samp{%} constructs or spaces, or
12374 even newlines. They are processed as usual, as described above.
12375 Trailing white space in @code{X} is ignored. White space may also
12376 appear anywhere on the left side of the colon in these constructs,
12377 except between @code{.} or @code{*} and the corresponding word.
12378
12379 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
12380 handled specifically in these constructs. If another value of
12381 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
12382 @option{-W} switch is found later in the command line, the earlier
12383 switch value is ignored, except with @{@code{S}*@} where @code{S} is
12384 just one letter, which passes all matching options.
12385
12386 The character @samp{|} at the beginning of the predicate text is used to
12387 indicate that a command should be piped to the following command, but
12388 only if @option{-pipe} is specified.
12389
12390 It is built into GCC which switches take arguments and which do not.
12391 (You might think it would be useful to generalize this to allow each
12392 compiler's spec to say which switches take arguments. But this cannot
12393 be done in a consistent fashion. GCC cannot even decide which input
12394 files have been specified without knowing which switches take arguments,
12395 and it must know which input files to compile in order to tell which
12396 compilers to run).
12397
12398 GCC also knows implicitly that arguments starting in @option{-l} are to be
12399 treated as compiler output files, and passed to the linker in their
12400 proper position among the other output files.
12401
12402 @c man begin OPTIONS
12403
12404 @node Target Options
12405 @section Specifying Target Machine and Compiler Version
12406 @cindex target options
12407 @cindex cross compiling
12408 @cindex specifying machine version
12409 @cindex specifying compiler version and target machine
12410 @cindex compiler version, specifying
12411 @cindex target machine, specifying
12412
12413 The usual way to run GCC is to run the executable called @command{gcc}, or
12414 @command{@var{machine}-gcc} when cross-compiling, or
12415 @command{@var{machine}-gcc-@var{version}} to run a version other than the
12416 one that was installed last.
12417
12418 @node Submodel Options
12419 @section Hardware Models and Configurations
12420 @cindex submodel options
12421 @cindex specifying hardware config
12422 @cindex hardware models and configurations, specifying
12423 @cindex machine dependent options
12424
12425 Each target machine types can have its own
12426 special options, starting with @samp{-m}, to choose among various
12427 hardware models or configurations---for example, 68010 vs 68020,
12428 floating coprocessor or none. A single installed version of the
12429 compiler can compile for any model or configuration, according to the
12430 options specified.
12431
12432 Some configurations of the compiler also support additional special
12433 options, usually for compatibility with other compilers on the same
12434 platform.
12435
12436 @c This list is ordered alphanumerically by subsection name.
12437 @c It should be the same order and spelling as these options are listed
12438 @c in Machine Dependent Options
12439
12440 @menu
12441 * AArch64 Options::
12442 * Adapteva Epiphany Options::
12443 * ARC Options::
12444 * ARM Options::
12445 * AVR Options::
12446 * Blackfin Options::
12447 * C6X Options::
12448 * CRIS Options::
12449 * CR16 Options::
12450 * Darwin Options::
12451 * DEC Alpha Options::
12452 * FR30 Options::
12453 * FT32 Options::
12454 * FRV Options::
12455 * GNU/Linux Options::
12456 * H8/300 Options::
12457 * HPPA Options::
12458 * IA-64 Options::
12459 * LM32 Options::
12460 * M32C Options::
12461 * M32R/D Options::
12462 * M680x0 Options::
12463 * MCore Options::
12464 * MeP Options::
12465 * MicroBlaze Options::
12466 * MIPS Options::
12467 * MMIX Options::
12468 * MN10300 Options::
12469 * Moxie Options::
12470 * MSP430 Options::
12471 * NDS32 Options::
12472 * Nios II Options::
12473 * Nvidia PTX Options::
12474 * PDP-11 Options::
12475 * picoChip Options::
12476 * PowerPC Options::
12477 * RL78 Options::
12478 * RS/6000 and PowerPC Options::
12479 * RX Options::
12480 * S/390 and zSeries Options::
12481 * Score Options::
12482 * SH Options::
12483 * Solaris 2 Options::
12484 * SPARC Options::
12485 * SPU Options::
12486 * System V Options::
12487 * TILE-Gx Options::
12488 * TILEPro Options::
12489 * V850 Options::
12490 * VAX Options::
12491 * Visium Options::
12492 * VMS Options::
12493 * VxWorks Options::
12494 * x86 Options::
12495 * x86 Windows Options::
12496 * Xstormy16 Options::
12497 * Xtensa Options::
12498 * zSeries Options::
12499 @end menu
12500
12501 @node AArch64 Options
12502 @subsection AArch64 Options
12503 @cindex AArch64 Options
12504
12505 These options are defined for AArch64 implementations:
12506
12507 @table @gcctabopt
12508
12509 @item -mabi=@var{name}
12510 @opindex mabi
12511 Generate code for the specified data model. Permissible values
12512 are @samp{ilp32} for SysV-like data model where int, long int and pointer
12513 are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12514 but long int and pointer are 64-bit.
12515
12516 The default depends on the specific target configuration. Note that
12517 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12518 entire program with the same ABI, and link with a compatible set of libraries.
12519
12520 @item -mbig-endian
12521 @opindex mbig-endian
12522 Generate big-endian code. This is the default when GCC is configured for an
12523 @samp{aarch64_be-*-*} target.
12524
12525 @item -mgeneral-regs-only
12526 @opindex mgeneral-regs-only
12527 Generate code which uses only the general-purpose registers. This will prevent
12528 the compiler from using floating-point and Advanced SIMD registers but will not
12529 impose any restrictions on the assembler.
12530
12531 @item -mlittle-endian
12532 @opindex mlittle-endian
12533 Generate little-endian code. This is the default when GCC is configured for an
12534 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12535
12536 @item -mcmodel=tiny
12537 @opindex mcmodel=tiny
12538 Generate code for the tiny code model. The program and its statically defined
12539 symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
12540 be statically or dynamically linked. This model is not fully implemented and
12541 mostly treated as @samp{small}.
12542
12543 @item -mcmodel=small
12544 @opindex mcmodel=small
12545 Generate code for the small code model. The program and its statically defined
12546 symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
12547 be statically or dynamically linked. This is the default code model.
12548
12549 @item -mcmodel=large
12550 @opindex mcmodel=large
12551 Generate code for the large code model. This makes no assumptions about
12552 addresses and sizes of sections. Pointers are 64 bits. Programs can be
12553 statically linked only.
12554
12555 @item -mstrict-align
12556 @opindex mstrict-align
12557 Do not assume that unaligned memory references are handled by the system.
12558
12559 @item -momit-leaf-frame-pointer
12560 @itemx -mno-omit-leaf-frame-pointer
12561 @opindex momit-leaf-frame-pointer
12562 @opindex mno-omit-leaf-frame-pointer
12563 Omit or keep the frame pointer in leaf functions. The former behaviour is the
12564 default.
12565
12566 @item -mtls-dialect=desc
12567 @opindex mtls-dialect=desc
12568 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12569 of TLS variables. This is the default.
12570
12571 @item -mtls-dialect=traditional
12572 @opindex mtls-dialect=traditional
12573 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12574 of TLS variables.
12575
12576 @item -mtls-size=@var{size}
12577 @opindex mtls-size
12578 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
12579 This option depends on binutils higher than 2.25.
12580
12581 @item -mfix-cortex-a53-835769
12582 @itemx -mno-fix-cortex-a53-835769
12583 @opindex mfix-cortex-a53-835769
12584 @opindex mno-fix-cortex-a53-835769
12585 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12586 This involves inserting a NOP instruction between memory instructions and
12587 64-bit integer multiply-accumulate instructions.
12588
12589 @item -mfix-cortex-a53-843419
12590 @itemx -mno-fix-cortex-a53-843419
12591 @opindex mfix-cortex-a53-843419
12592 @opindex mno-fix-cortex-a53-843419
12593 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
12594 This erratum workaround is made at link time and this will only pass the
12595 corresponding flag to the linker.
12596
12597 @item -mlow-precision-recip-sqrt
12598 @item -mno-low-precision-recip-sqrt
12599 @opindex -mlow-precision-recip-sqrt
12600 @opindex -mno-low-precision-recip-sqrt
12601 The square root estimate uses two steps instead of three for double-precision,
12602 and one step instead of two for single-precision.
12603 Thus reducing latency and precision.
12604 This is only relevant if @option{-ffast-math} activates
12605 reciprocal square root estimate instructions.
12606 Which in turn depends on the target processor.
12607
12608 @item -march=@var{name}
12609 @opindex march
12610 Specify the name of the target architecture and, optionally, one or
12611 more feature modifiers. This option has the form
12612 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
12613
12614 The permissible values for @var{arch} are @samp{armv8-a},
12615 @samp{armv8.1-a} or @var{native}.
12616
12617 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
12618 support for the ARMv8.1 architecture extension. In particular, it
12619 enables the @samp{+crc} and @samp{+lse} features.
12620
12621 The value @samp{native} is available on native AArch64 GNU/Linux and
12622 causes the compiler to pick the architecture of the host system. This
12623 option has no effect if the compiler is unable to recognize the
12624 architecture of the host system,
12625
12626 The permissible values for @var{feature} are listed in the sub-section
12627 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12628 Feature Modifiers}. Where conflicting feature modifiers are
12629 specified, the right-most feature is used.
12630
12631 GCC uses @var{name} to determine what kind of instructions it can emit
12632 when generating assembly code. If @option{-march} is specified
12633 without either of @option{-mtune} or @option{-mcpu} also being
12634 specified, the code is tuned to perform well across a range of target
12635 processors implementing the target architecture.
12636
12637 @item -mtune=@var{name}
12638 @opindex mtune
12639 Specify the name of the target processor for which GCC should tune the
12640 performance of the code. Permissible values for this option are:
12641 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a57},
12642 @samp{cortex-a72}, @samp{exynos-m1}, @samp{qdf24xx}, @samp{thunderx},
12643 @samp{xgene1}.
12644
12645 Additionally, this option can specify that GCC should tune the performance
12646 of the code for a big.LITTLE system. Permissible values for this
12647 option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12648
12649 Additionally on native AArch64 GNU/Linux systems the value
12650 @samp{native} is available. This option causes the compiler to pick
12651 the architecture of and tune the performance of the code for the
12652 processor of the host system. This option has no effect if the
12653 compiler is unable to recognize the architecture of the host system.
12654
12655 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12656 are specified, the code is tuned to perform well across a range
12657 of target processors.
12658
12659 This option cannot be suffixed by feature modifiers.
12660
12661 @item -mcpu=@var{name}
12662 @opindex mcpu
12663 Specify the name of the target processor, optionally suffixed by one
12664 or more feature modifiers. This option has the form
12665 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
12666 the permissible values for @var{cpu} are the same as those available
12667 for @option{-mtune}. The permissible values for @var{feature} are
12668 documented in the sub-section on
12669 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12670 Feature Modifiers}. Where conflicting feature modifiers are
12671 specified, the right-most feature is used.
12672
12673 Additionally on native AArch64 GNU/Linux systems the value
12674 @samp{native} is available. This option causes the compiler to tune
12675 the performance of the code for the processor of the host system.
12676 This option has no effect if the compiler is unable to recognize the
12677 architecture of the host system.
12678
12679 GCC uses @var{name} to determine what kind of instructions it can emit when
12680 generating assembly code (as if by @option{-march}) and to determine
12681 the target processor for which to tune for performance (as if
12682 by @option{-mtune}). Where this option is used in conjunction
12683 with @option{-march} or @option{-mtune}, those options take precedence
12684 over the appropriate part of this option.
12685
12686 @item -moverride=@var{string}
12687 @opindex moverride
12688 Override tuning decisions made by the back-end in response to a
12689 @option{-mtune=} switch. The syntax, semantics, and accepted values
12690 for @var{string} in this option are not guaranteed to be consistent
12691 across releases.
12692
12693 This option is only intended to be useful when developing GCC.
12694
12695 @item -mpc-relative-literal-loads
12696 @opindex mpcrelativeliteralloads
12697 Enable PC relative literal loads. If this option is used, literal
12698 pools are assumed to have a range of up to 1MiB and an appropriate
12699 instruction sequence is used. This option has no impact when used
12700 with @option{-mcmodel=tiny}.
12701
12702 @end table
12703
12704 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12705 @anchor{aarch64-feature-modifiers}
12706 @cindex @option{-march} feature modifiers
12707 @cindex @option{-mcpu} feature modifiers
12708 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
12709 the following and their inverses @option{no@var{feature}}:
12710
12711 @table @samp
12712 @item crc
12713 Enable CRC extension. This is on by default for
12714 @option{-march=armv8.1-a}.
12715 @item crypto
12716 Enable Crypto extension. This also enables Advanced SIMD and floating-point
12717 instructions.
12718 @item fp
12719 Enable floating-point instructions. This is on by default for all possible
12720 values for options @option{-march} and @option{-mcpu}.
12721 @item simd
12722 Enable Advanced SIMD instructions. This also enables floating-point
12723 instructions. This is on by default for all possible values for options
12724 @option{-march} and @option{-mcpu}.
12725 @item lse
12726 Enable Large System Extension instructions. This is on by default for
12727 @option{-march=armv8.1-a}.
12728
12729 @end table
12730
12731 That is, @option{crypto} implies @option{simd} implies @option{fp}.
12732 Conversely, @option{nofp} (or equivalently, @option{-mgeneral-regs-only})
12733 implies @option{nosimd} implies @option{nocrypto}.
12734
12735 @node Adapteva Epiphany Options
12736 @subsection Adapteva Epiphany Options
12737
12738 These @samp{-m} options are defined for Adapteva Epiphany:
12739
12740 @table @gcctabopt
12741 @item -mhalf-reg-file
12742 @opindex mhalf-reg-file
12743 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12744 That allows code to run on hardware variants that lack these registers.
12745
12746 @item -mprefer-short-insn-regs
12747 @opindex mprefer-short-insn-regs
12748 Preferrentially allocate registers that allow short instruction generation.
12749 This can result in increased instruction count, so this may either reduce or
12750 increase overall code size.
12751
12752 @item -mbranch-cost=@var{num}
12753 @opindex mbranch-cost
12754 Set the cost of branches to roughly @var{num} ``simple'' instructions.
12755 This cost is only a heuristic and is not guaranteed to produce
12756 consistent results across releases.
12757
12758 @item -mcmove
12759 @opindex mcmove
12760 Enable the generation of conditional moves.
12761
12762 @item -mnops=@var{num}
12763 @opindex mnops
12764 Emit @var{num} NOPs before every other generated instruction.
12765
12766 @item -mno-soft-cmpsf
12767 @opindex mno-soft-cmpsf
12768 For single-precision floating-point comparisons, emit an @code{fsub} instruction
12769 and test the flags. This is faster than a software comparison, but can
12770 get incorrect results in the presence of NaNs, or when two different small
12771 numbers are compared such that their difference is calculated as zero.
12772 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12773 software comparisons.
12774
12775 @item -mstack-offset=@var{num}
12776 @opindex mstack-offset
12777 Set the offset between the top of the stack and the stack pointer.
12778 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12779 can be used by leaf functions without stack allocation.
12780 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12781 Note also that this option changes the ABI; compiling a program with a
12782 different stack offset than the libraries have been compiled with
12783 generally does not work.
12784 This option can be useful if you want to evaluate if a different stack
12785 offset would give you better code, but to actually use a different stack
12786 offset to build working programs, it is recommended to configure the
12787 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12788
12789 @item -mno-round-nearest
12790 @opindex mno-round-nearest
12791 Make the scheduler assume that the rounding mode has been set to
12792 truncating. The default is @option{-mround-nearest}.
12793
12794 @item -mlong-calls
12795 @opindex mlong-calls
12796 If not otherwise specified by an attribute, assume all calls might be beyond
12797 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12798 function address into a register before performing a (otherwise direct) call.
12799 This is the default.
12800
12801 @item -mshort-calls
12802 @opindex short-calls
12803 If not otherwise specified by an attribute, assume all direct calls are
12804 in the range of the @code{b} / @code{bl} instructions, so use these instructions
12805 for direct calls. The default is @option{-mlong-calls}.
12806
12807 @item -msmall16
12808 @opindex msmall16
12809 Assume addresses can be loaded as 16-bit unsigned values. This does not
12810 apply to function addresses for which @option{-mlong-calls} semantics
12811 are in effect.
12812
12813 @item -mfp-mode=@var{mode}
12814 @opindex mfp-mode
12815 Set the prevailing mode of the floating-point unit.
12816 This determines the floating-point mode that is provided and expected
12817 at function call and return time. Making this mode match the mode you
12818 predominantly need at function start can make your programs smaller and
12819 faster by avoiding unnecessary mode switches.
12820
12821 @var{mode} can be set to one the following values:
12822
12823 @table @samp
12824 @item caller
12825 Any mode at function entry is valid, and retained or restored when
12826 the function returns, and when it calls other functions.
12827 This mode is useful for compiling libraries or other compilation units
12828 you might want to incorporate into different programs with different
12829 prevailing FPU modes, and the convenience of being able to use a single
12830 object file outweighs the size and speed overhead for any extra
12831 mode switching that might be needed, compared with what would be needed
12832 with a more specific choice of prevailing FPU mode.
12833
12834 @item truncate
12835 This is the mode used for floating-point calculations with
12836 truncating (i.e.@: round towards zero) rounding mode. That includes
12837 conversion from floating point to integer.
12838
12839 @item round-nearest
12840 This is the mode used for floating-point calculations with
12841 round-to-nearest-or-even rounding mode.
12842
12843 @item int
12844 This is the mode used to perform integer calculations in the FPU, e.g.@:
12845 integer multiply, or integer multiply-and-accumulate.
12846 @end table
12847
12848 The default is @option{-mfp-mode=caller}
12849
12850 @item -mnosplit-lohi
12851 @itemx -mno-postinc
12852 @itemx -mno-postmodify
12853 @opindex mnosplit-lohi
12854 @opindex mno-postinc
12855 @opindex mno-postmodify
12856 Code generation tweaks that disable, respectively, splitting of 32-bit
12857 loads, generation of post-increment addresses, and generation of
12858 post-modify addresses. The defaults are @option{msplit-lohi},
12859 @option{-mpost-inc}, and @option{-mpost-modify}.
12860
12861 @item -mnovect-double
12862 @opindex mno-vect-double
12863 Change the preferred SIMD mode to SImode. The default is
12864 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
12865
12866 @item -max-vect-align=@var{num}
12867 @opindex max-vect-align
12868 The maximum alignment for SIMD vector mode types.
12869 @var{num} may be 4 or 8. The default is 8.
12870 Note that this is an ABI change, even though many library function
12871 interfaces are unaffected if they don't use SIMD vector modes
12872 in places that affect size and/or alignment of relevant types.
12873
12874 @item -msplit-vecmove-early
12875 @opindex msplit-vecmove-early
12876 Split vector moves into single word moves before reload. In theory this
12877 can give better register allocation, but so far the reverse seems to be
12878 generally the case.
12879
12880 @item -m1reg-@var{reg}
12881 @opindex m1reg-
12882 Specify a register to hold the constant @minus{}1, which makes loading small negative
12883 constants and certain bitmasks faster.
12884 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
12885 which specify use of that register as a fixed register,
12886 and @samp{none}, which means that no register is used for this
12887 purpose. The default is @option{-m1reg-none}.
12888
12889 @end table
12890
12891 @node ARC Options
12892 @subsection ARC Options
12893 @cindex ARC options
12894
12895 The following options control the architecture variant for which code
12896 is being compiled:
12897
12898 @c architecture variants
12899 @table @gcctabopt
12900
12901 @item -mbarrel-shifter
12902 @opindex mbarrel-shifter
12903 Generate instructions supported by barrel shifter. This is the default
12904 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
12905
12906 @item -mcpu=@var{cpu}
12907 @opindex mcpu
12908 Set architecture type, register usage, and instruction scheduling
12909 parameters for @var{cpu}. There are also shortcut alias options
12910 available for backward compatibility and convenience. Supported
12911 values for @var{cpu} are
12912
12913 @table @samp
12914 @opindex mA6
12915 @opindex mARC600
12916 @item ARC600
12917 @item arc600
12918 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
12919
12920 @item ARC601
12921 @item arc601
12922 @opindex mARC601
12923 Compile for ARC601. Alias: @option{-mARC601}.
12924
12925 @item ARC700
12926 @item arc700
12927 @opindex mA7
12928 @opindex mARC700
12929 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
12930 This is the default when configured with @option{--with-cpu=arc700}@.
12931
12932 @item ARCEM
12933 @item arcem
12934 Compile for ARC EM.
12935
12936 @item ARCHS
12937 @item archs
12938 Compile for ARC HS.
12939 @end table
12940
12941 @item -mdpfp
12942 @opindex mdpfp
12943 @itemx -mdpfp-compact
12944 @opindex mdpfp-compact
12945 FPX: Generate Double Precision FPX instructions, tuned for the compact
12946 implementation.
12947
12948 @item -mdpfp-fast
12949 @opindex mdpfp-fast
12950 FPX: Generate Double Precision FPX instructions, tuned for the fast
12951 implementation.
12952
12953 @item -mno-dpfp-lrsr
12954 @opindex mno-dpfp-lrsr
12955 Disable LR and SR instructions from using FPX extension aux registers.
12956
12957 @item -mea
12958 @opindex mea
12959 Generate Extended arithmetic instructions. Currently only
12960 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
12961 supported. This is always enabled for @option{-mcpu=ARC700}.
12962
12963 @item -mno-mpy
12964 @opindex mno-mpy
12965 Do not generate mpy instructions for ARC700.
12966
12967 @item -mmul32x16
12968 @opindex mmul32x16
12969 Generate 32x16 bit multiply and mac instructions.
12970
12971 @item -mmul64
12972 @opindex mmul64
12973 Generate mul64 and mulu64 instructions. Only valid for @option{-mcpu=ARC600}.
12974
12975 @item -mnorm
12976 @opindex mnorm
12977 Generate norm instruction. This is the default if @option{-mcpu=ARC700}
12978 is in effect.
12979
12980 @item -mspfp
12981 @opindex mspfp
12982 @itemx -mspfp-compact
12983 @opindex mspfp-compact
12984 FPX: Generate Single Precision FPX instructions, tuned for the compact
12985 implementation.
12986
12987 @item -mspfp-fast
12988 @opindex mspfp-fast
12989 FPX: Generate Single Precision FPX instructions, tuned for the fast
12990 implementation.
12991
12992 @item -msimd
12993 @opindex msimd
12994 Enable generation of ARC SIMD instructions via target-specific
12995 builtins. Only valid for @option{-mcpu=ARC700}.
12996
12997 @item -msoft-float
12998 @opindex msoft-float
12999 This option ignored; it is provided for compatibility purposes only.
13000 Software floating point code is emitted by default, and this default
13001 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
13002 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
13003 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
13004
13005 @item -mswap
13006 @opindex mswap
13007 Generate swap instructions.
13008
13009 @item -matomic
13010 @opindex matomic
13011 This enables Locked Load/Store Conditional extension to implement
13012 atomic memopry built-in functions. Not available for ARC 6xx or ARC
13013 EM cores.
13014
13015 @item -mdiv-rem
13016 @opindex mdiv-rem
13017 Enable DIV/REM instructions for ARCv2 cores.
13018
13019 @item -mcode-density
13020 @opindex mcode-density
13021 Enable code density instructions for ARC EM, default on for ARC HS.
13022
13023 @item -mmpy-option=@var{multo}
13024 @opindex mmpy-option
13025 Compile ARCv2 code with a multiplier design option. @samp{wlh1} is
13026 the default value. The recognized values for @var{multo} are:
13027
13028 @table @samp
13029 @item 0
13030 No multiplier available.
13031
13032 @item 1
13033 @opindex w
13034 The multiply option is set to w: 16x16 multiplier, fully pipelined.
13035 The following instructions are enabled: MPYW, and MPYUW.
13036
13037 @item 2
13038 @opindex wlh1
13039 The multiply option is set to wlh1: 32x32 multiplier, fully
13040 pipelined (1 stage). The following instructions are additionaly
13041 enabled: MPY, MPYU, MPYM, MPYMU, and MPY_S.
13042
13043 @item 3
13044 @opindex wlh2
13045 The multiply option is set to wlh2: 32x32 multiplier, fully pipelined
13046 (2 stages). The following instructions are additionaly enabled: MPY,
13047 MPYU, MPYM, MPYMU, and MPY_S.
13048
13049 @item 4
13050 @opindex wlh3
13051 The multiply option is set to wlh3: Two 16x16 multiplier, blocking,
13052 sequential. The following instructions are additionaly enabled: MPY,
13053 MPYU, MPYM, MPYMU, and MPY_S.
13054
13055 @item 5
13056 @opindex wlh4
13057 The multiply option is set to wlh4: One 16x16 multiplier, blocking,
13058 sequential. The following instructions are additionaly enabled: MPY,
13059 MPYU, MPYM, MPYMU, and MPY_S.
13060
13061 @item 6
13062 @opindex wlh5
13063 The multiply option is set to wlh5: One 32x4 multiplier, blocking,
13064 sequential. The following instructions are additionaly enabled: MPY,
13065 MPYU, MPYM, MPYMU, and MPY_S.
13066
13067 @end table
13068
13069 This option is only available for ARCv2 cores@.
13070
13071 @end table
13072
13073 The following options are passed through to the assembler, and also
13074 define preprocessor macro symbols.
13075
13076 @c Flags used by the assembler, but for which we define preprocessor
13077 @c macro symbols as well.
13078 @table @gcctabopt
13079 @item -mdsp-packa
13080 @opindex mdsp-packa
13081 Passed down to the assembler to enable the DSP Pack A extensions.
13082 Also sets the preprocessor symbol @code{__Xdsp_packa}.
13083
13084 @item -mdvbf
13085 @opindex mdvbf
13086 Passed down to the assembler to enable the dual viterbi butterfly
13087 extension. Also sets the preprocessor symbol @code{__Xdvbf}.
13088
13089 @c ARC700 4.10 extension instruction
13090 @item -mlock
13091 @opindex mlock
13092 Passed down to the assembler to enable the Locked Load/Store
13093 Conditional extension. Also sets the preprocessor symbol
13094 @code{__Xlock}.
13095
13096 @item -mmac-d16
13097 @opindex mmac-d16
13098 Passed down to the assembler. Also sets the preprocessor symbol
13099 @code{__Xxmac_d16}.
13100
13101 @item -mmac-24
13102 @opindex mmac-24
13103 Passed down to the assembler. Also sets the preprocessor symbol
13104 @code{__Xxmac_24}.
13105
13106 @c ARC700 4.10 extension instruction
13107 @item -mrtsc
13108 @opindex mrtsc
13109 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
13110 extension instruction. Also sets the preprocessor symbol
13111 @code{__Xrtsc}.
13112
13113 @c ARC700 4.10 extension instruction
13114 @item -mswape
13115 @opindex mswape
13116 Passed down to the assembler to enable the swap byte ordering
13117 extension instruction. Also sets the preprocessor symbol
13118 @code{__Xswape}.
13119
13120 @item -mtelephony
13121 @opindex mtelephony
13122 Passed down to the assembler to enable dual and single operand
13123 instructions for telephony. Also sets the preprocessor symbol
13124 @code{__Xtelephony}.
13125
13126 @item -mxy
13127 @opindex mxy
13128 Passed down to the assembler to enable the XY Memory extension. Also
13129 sets the preprocessor symbol @code{__Xxy}.
13130
13131 @end table
13132
13133 The following options control how the assembly code is annotated:
13134
13135 @c Assembly annotation options
13136 @table @gcctabopt
13137 @item -misize
13138 @opindex misize
13139 Annotate assembler instructions with estimated addresses.
13140
13141 @item -mannotate-align
13142 @opindex mannotate-align
13143 Explain what alignment considerations lead to the decision to make an
13144 instruction short or long.
13145
13146 @end table
13147
13148 The following options are passed through to the linker:
13149
13150 @c options passed through to the linker
13151 @table @gcctabopt
13152 @item -marclinux
13153 @opindex marclinux
13154 Passed through to the linker, to specify use of the @code{arclinux} emulation.
13155 This option is enabled by default in tool chains built for
13156 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
13157 when profiling is not requested.
13158
13159 @item -marclinux_prof
13160 @opindex marclinux_prof
13161 Passed through to the linker, to specify use of the
13162 @code{arclinux_prof} emulation. This option is enabled by default in
13163 tool chains built for @w{@code{arc-linux-uclibc}} and
13164 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
13165
13166 @end table
13167
13168 The following options control the semantics of generated code:
13169
13170 @c semantically relevant code generation options
13171 @table @gcctabopt
13172 @item -mlong-calls
13173 @opindex mlong-calls
13174 Generate call insns as register indirect calls, thus providing access
13175 to the full 32-bit address range.
13176
13177 @item -mmedium-calls
13178 @opindex mmedium-calls
13179 Don't use less than 25 bit addressing range for calls, which is the
13180 offset available for an unconditional branch-and-link
13181 instruction. Conditional execution of function calls is suppressed, to
13182 allow use of the 25-bit range, rather than the 21-bit range with
13183 conditional branch-and-link. This is the default for tool chains built
13184 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
13185
13186 @item -mno-sdata
13187 @opindex mno-sdata
13188 Do not generate sdata references. This is the default for tool chains
13189 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
13190 targets.
13191
13192 @item -mucb-mcount
13193 @opindex mucb-mcount
13194 Instrument with mcount calls as used in UCB code. I.e. do the
13195 counting in the callee, not the caller. By default ARC instrumentation
13196 counts in the caller.
13197
13198 @item -mvolatile-cache
13199 @opindex mvolatile-cache
13200 Use ordinarily cached memory accesses for volatile references. This is the
13201 default.
13202
13203 @item -mno-volatile-cache
13204 @opindex mno-volatile-cache
13205 Enable cache bypass for volatile references.
13206
13207 @end table
13208
13209 The following options fine tune code generation:
13210 @c code generation tuning options
13211 @table @gcctabopt
13212 @item -malign-call
13213 @opindex malign-call
13214 Do alignment optimizations for call instructions.
13215
13216 @item -mauto-modify-reg
13217 @opindex mauto-modify-reg
13218 Enable the use of pre/post modify with register displacement.
13219
13220 @item -mbbit-peephole
13221 @opindex mbbit-peephole
13222 Enable bbit peephole2.
13223
13224 @item -mno-brcc
13225 @opindex mno-brcc
13226 This option disables a target-specific pass in @file{arc_reorg} to
13227 generate @code{BRcc} instructions. It has no effect on @code{BRcc}
13228 generation driven by the combiner pass.
13229
13230 @item -mcase-vector-pcrel
13231 @opindex mcase-vector-pcrel
13232 Use pc-relative switch case tables - this enables case table shortening.
13233 This is the default for @option{-Os}.
13234
13235 @item -mcompact-casesi
13236 @opindex mcompact-casesi
13237 Enable compact casesi pattern.
13238 This is the default for @option{-Os}.
13239
13240 @item -mno-cond-exec
13241 @opindex mno-cond-exec
13242 Disable ARCompact specific pass to generate conditional execution instructions.
13243 Due to delay slot scheduling and interactions between operand numbers,
13244 literal sizes, instruction lengths, and the support for conditional execution,
13245 the target-independent pass to generate conditional execution is often lacking,
13246 so the ARC port has kept a special pass around that tries to find more
13247 conditional execution generating opportunities after register allocation,
13248 branch shortening, and delay slot scheduling have been done. This pass
13249 generally, but not always, improves performance and code size, at the cost of
13250 extra compilation time, which is why there is an option to switch it off.
13251 If you have a problem with call instructions exceeding their allowable
13252 offset range because they are conditionalized, you should consider using
13253 @option{-mmedium-calls} instead.
13254
13255 @item -mearly-cbranchsi
13256 @opindex mearly-cbranchsi
13257 Enable pre-reload use of the cbranchsi pattern.
13258
13259 @item -mexpand-adddi
13260 @opindex mexpand-adddi
13261 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
13262 @code{add.f}, @code{adc} etc.
13263
13264 @item -mindexed-loads
13265 @opindex mindexed-loads
13266 Enable the use of indexed loads. This can be problematic because some
13267 optimizers then assume that indexed stores exist, which is not
13268 the case.
13269
13270 @item -mlra
13271 @opindex mlra
13272 Enable Local Register Allocation. This is still experimental for ARC,
13273 so by default the compiler uses standard reload
13274 (i.e. @option{-mno-lra}).
13275
13276 @item -mlra-priority-none
13277 @opindex mlra-priority-none
13278 Don't indicate any priority for target registers.
13279
13280 @item -mlra-priority-compact
13281 @opindex mlra-priority-compact
13282 Indicate target register priority for r0..r3 / r12..r15.
13283
13284 @item -mlra-priority-noncompact
13285 @opindex mlra-priority-noncompact
13286 Reduce target regsiter priority for r0..r3 / r12..r15.
13287
13288 @item -mno-millicode
13289 @opindex mno-millicode
13290 When optimizing for size (using @option{-Os}), prologues and epilogues
13291 that have to save or restore a large number of registers are often
13292 shortened by using call to a special function in libgcc; this is
13293 referred to as a @emph{millicode} call. As these calls can pose
13294 performance issues, and/or cause linking issues when linking in a
13295 nonstandard way, this option is provided to turn off millicode call
13296 generation.
13297
13298 @item -mmixed-code
13299 @opindex mmixed-code
13300 Tweak register allocation to help 16-bit instruction generation.
13301 This generally has the effect of decreasing the average instruction size
13302 while increasing the instruction count.
13303
13304 @item -mq-class
13305 @opindex mq-class
13306 Enable 'q' instruction alternatives.
13307 This is the default for @option{-Os}.
13308
13309 @item -mRcq
13310 @opindex mRcq
13311 Enable Rcq constraint handling - most short code generation depends on this.
13312 This is the default.
13313
13314 @item -mRcw
13315 @opindex mRcw
13316 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
13317 This is the default.
13318
13319 @item -msize-level=@var{level}
13320 @opindex msize-level
13321 Fine-tune size optimization with regards to instruction lengths and alignment.
13322 The recognized values for @var{level} are:
13323 @table @samp
13324 @item 0
13325 No size optimization. This level is deprecated and treated like @samp{1}.
13326
13327 @item 1
13328 Short instructions are used opportunistically.
13329
13330 @item 2
13331 In addition, alignment of loops and of code after barriers are dropped.
13332
13333 @item 3
13334 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
13335
13336 @end table
13337
13338 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
13339 the behavior when this is not set is equivalent to level @samp{1}.
13340
13341 @item -mtune=@var{cpu}
13342 @opindex mtune
13343 Set instruction scheduling parameters for @var{cpu}, overriding any implied
13344 by @option{-mcpu=}.
13345
13346 Supported values for @var{cpu} are
13347
13348 @table @samp
13349 @item ARC600
13350 Tune for ARC600 cpu.
13351
13352 @item ARC601
13353 Tune for ARC601 cpu.
13354
13355 @item ARC700
13356 Tune for ARC700 cpu with standard multiplier block.
13357
13358 @item ARC700-xmac
13359 Tune for ARC700 cpu with XMAC block.
13360
13361 @item ARC725D
13362 Tune for ARC725D cpu.
13363
13364 @item ARC750D
13365 Tune for ARC750D cpu.
13366
13367 @end table
13368
13369 @item -mmultcost=@var{num}
13370 @opindex mmultcost
13371 Cost to assume for a multiply instruction, with @samp{4} being equal to a
13372 normal instruction.
13373
13374 @item -munalign-prob-threshold=@var{probability}
13375 @opindex munalign-prob-threshold
13376 Set probability threshold for unaligning branches.
13377 When tuning for @samp{ARC700} and optimizing for speed, branches without
13378 filled delay slot are preferably emitted unaligned and long, unless
13379 profiling indicates that the probability for the branch to be taken
13380 is below @var{probability}. @xref{Cross-profiling}.
13381 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13382
13383 @end table
13384
13385 The following options are maintained for backward compatibility, but
13386 are now deprecated and will be removed in a future release:
13387
13388 @c Deprecated options
13389 @table @gcctabopt
13390
13391 @item -margonaut
13392 @opindex margonaut
13393 Obsolete FPX.
13394
13395 @item -mbig-endian
13396 @opindex mbig-endian
13397 @itemx -EB
13398 @opindex EB
13399 Compile code for big endian targets. Use of these options is now
13400 deprecated. Users wanting big-endian code, should use the
13401 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13402 building the tool chain, for which big-endian is the default.
13403
13404 @item -mlittle-endian
13405 @opindex mlittle-endian
13406 @itemx -EL
13407 @opindex EL
13408 Compile code for little endian targets. Use of these options is now
13409 deprecated. Users wanting little-endian code should use the
13410 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13411 building the tool chain, for which little-endian is the default.
13412
13413 @item -mbarrel_shifter
13414 @opindex mbarrel_shifter
13415 Replaced by @option{-mbarrel-shifter}.
13416
13417 @item -mdpfp_compact
13418 @opindex mdpfp_compact
13419 Replaced by @option{-mdpfp-compact}.
13420
13421 @item -mdpfp_fast
13422 @opindex mdpfp_fast
13423 Replaced by @option{-mdpfp-fast}.
13424
13425 @item -mdsp_packa
13426 @opindex mdsp_packa
13427 Replaced by @option{-mdsp-packa}.
13428
13429 @item -mEA
13430 @opindex mEA
13431 Replaced by @option{-mea}.
13432
13433 @item -mmac_24
13434 @opindex mmac_24
13435 Replaced by @option{-mmac-24}.
13436
13437 @item -mmac_d16
13438 @opindex mmac_d16
13439 Replaced by @option{-mmac-d16}.
13440
13441 @item -mspfp_compact
13442 @opindex mspfp_compact
13443 Replaced by @option{-mspfp-compact}.
13444
13445 @item -mspfp_fast
13446 @opindex mspfp_fast
13447 Replaced by @option{-mspfp-fast}.
13448
13449 @item -mtune=@var{cpu}
13450 @opindex mtune
13451 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13452 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13453 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13454
13455 @item -multcost=@var{num}
13456 @opindex multcost
13457 Replaced by @option{-mmultcost}.
13458
13459 @end table
13460
13461 @node ARM Options
13462 @subsection ARM Options
13463 @cindex ARM options
13464
13465 These @samp{-m} options are defined for the ARM port:
13466
13467 @table @gcctabopt
13468 @item -mabi=@var{name}
13469 @opindex mabi
13470 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
13471 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13472
13473 @item -mapcs-frame
13474 @opindex mapcs-frame
13475 Generate a stack frame that is compliant with the ARM Procedure Call
13476 Standard for all functions, even if this is not strictly necessary for
13477 correct execution of the code. Specifying @option{-fomit-frame-pointer}
13478 with this option causes the stack frames not to be generated for
13479 leaf functions. The default is @option{-mno-apcs-frame}.
13480 This option is deprecated.
13481
13482 @item -mapcs
13483 @opindex mapcs
13484 This is a synonym for @option{-mapcs-frame} and is deprecated.
13485
13486 @ignore
13487 @c not currently implemented
13488 @item -mapcs-stack-check
13489 @opindex mapcs-stack-check
13490 Generate code to check the amount of stack space available upon entry to
13491 every function (that actually uses some stack space). If there is
13492 insufficient space available then either the function
13493 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13494 called, depending upon the amount of stack space required. The runtime
13495 system is required to provide these functions. The default is
13496 @option{-mno-apcs-stack-check}, since this produces smaller code.
13497
13498 @c not currently implemented
13499 @item -mapcs-float
13500 @opindex mapcs-float
13501 Pass floating-point arguments using the floating-point registers. This is
13502 one of the variants of the APCS@. This option is recommended if the
13503 target hardware has a floating-point unit or if a lot of floating-point
13504 arithmetic is going to be performed by the code. The default is
13505 @option{-mno-apcs-float}, since the size of integer-only code is
13506 slightly increased if @option{-mapcs-float} is used.
13507
13508 @c not currently implemented
13509 @item -mapcs-reentrant
13510 @opindex mapcs-reentrant
13511 Generate reentrant, position-independent code. The default is
13512 @option{-mno-apcs-reentrant}.
13513 @end ignore
13514
13515 @item -mthumb-interwork
13516 @opindex mthumb-interwork
13517 Generate code that supports calling between the ARM and Thumb
13518 instruction sets. Without this option, on pre-v5 architectures, the
13519 two instruction sets cannot be reliably used inside one program. The
13520 default is @option{-mno-thumb-interwork}, since slightly larger code
13521 is generated when @option{-mthumb-interwork} is specified. In AAPCS
13522 configurations this option is meaningless.
13523
13524 @item -mno-sched-prolog
13525 @opindex mno-sched-prolog
13526 Prevent the reordering of instructions in the function prologue, or the
13527 merging of those instruction with the instructions in the function's
13528 body. This means that all functions start with a recognizable set
13529 of instructions (or in fact one of a choice from a small set of
13530 different function prologues), and this information can be used to
13531 locate the start of functions inside an executable piece of code. The
13532 default is @option{-msched-prolog}.
13533
13534 @item -mfloat-abi=@var{name}
13535 @opindex mfloat-abi
13536 Specifies which floating-point ABI to use. Permissible values
13537 are: @samp{soft}, @samp{softfp} and @samp{hard}.
13538
13539 Specifying @samp{soft} causes GCC to generate output containing
13540 library calls for floating-point operations.
13541 @samp{softfp} allows the generation of code using hardware floating-point
13542 instructions, but still uses the soft-float calling conventions.
13543 @samp{hard} allows generation of floating-point instructions
13544 and uses FPU-specific calling conventions.
13545
13546 The default depends on the specific target configuration. Note that
13547 the hard-float and soft-float ABIs are not link-compatible; you must
13548 compile your entire program with the same ABI, and link with a
13549 compatible set of libraries.
13550
13551 @item -mlittle-endian
13552 @opindex mlittle-endian
13553 Generate code for a processor running in little-endian mode. This is
13554 the default for all standard configurations.
13555
13556 @item -mbig-endian
13557 @opindex mbig-endian
13558 Generate code for a processor running in big-endian mode; the default is
13559 to compile code for a little-endian processor.
13560
13561 @item -march=@var{name}
13562 @opindex march
13563 This specifies the name of the target ARM architecture. GCC uses this
13564 name to determine what kind of instructions it can emit when generating
13565 assembly code. This option can be used in conjunction with or instead
13566 of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
13567 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13568 @samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13569 @samp{armv6}, @samp{armv6j},
13570 @samp{armv6t2}, @samp{armv6z}, @samp{armv6kz}, @samp{armv6-m},
13571 @samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13572 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc}, @samp{armv8.1-a},
13573 @samp{armv8.1-a+crc}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13574
13575 @option{-march=armv7ve} is the armv7-a architecture with virtualization
13576 extensions.
13577
13578 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13579 architecture together with the optional CRC32 extensions.
13580
13581 @option{-march=native} causes the compiler to auto-detect the architecture
13582 of the build computer. At present, this feature is only supported on
13583 GNU/Linux, and not all architectures are recognized. If the auto-detect
13584 is unsuccessful the option has no effect.
13585
13586 @item -mtune=@var{name}
13587 @opindex mtune
13588 This option specifies the name of the target ARM processor for
13589 which GCC should tune the performance of the code.
13590 For some ARM implementations better performance can be obtained by using
13591 this option.
13592 Permissible names are: @samp{arm2}, @samp{arm250},
13593 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13594 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13595 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13596 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13597 @samp{arm720},
13598 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13599 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13600 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13601 @samp{strongarm1110},
13602 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13603 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13604 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13605 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13606 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13607 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13608 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13609 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
13610 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
13611 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
13612 @samp{cortex-r4},
13613 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13614 @samp{cortex-m4},
13615 @samp{cortex-m3},
13616 @samp{cortex-m1},
13617 @samp{cortex-m0},
13618 @samp{cortex-m0plus},
13619 @samp{cortex-m1.small-multiply},
13620 @samp{cortex-m0.small-multiply},
13621 @samp{cortex-m0plus.small-multiply},
13622 @samp{exynos-m1},
13623 @samp{qdf24xx},
13624 @samp{marvell-pj4},
13625 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13626 @samp{fa526}, @samp{fa626},
13627 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13628 @samp{xgene1}.
13629
13630 Additionally, this option can specify that GCC should tune the performance
13631 of the code for a big.LITTLE system. Permissible names are:
13632 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
13633 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
13634
13635 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13636 performance for a blend of processors within architecture @var{arch}.
13637 The aim is to generate code that run well on the current most popular
13638 processors, balancing between optimizations that benefit some CPUs in the
13639 range, and avoiding performance pitfalls of other CPUs. The effects of
13640 this option may change in future GCC versions as CPU models come and go.
13641
13642 @option{-mtune=native} causes the compiler to auto-detect the CPU
13643 of the build computer. At present, this feature is only supported on
13644 GNU/Linux, and not all architectures are recognized. If the auto-detect is
13645 unsuccessful the option has no effect.
13646
13647 @item -mcpu=@var{name}
13648 @opindex mcpu
13649 This specifies the name of the target ARM processor. GCC uses this name
13650 to derive the name of the target ARM architecture (as if specified
13651 by @option{-march}) and the ARM processor type for which to tune for
13652 performance (as if specified by @option{-mtune}). Where this option
13653 is used in conjunction with @option{-march} or @option{-mtune},
13654 those options take precedence over the appropriate part of this option.
13655
13656 Permissible names for this option are the same as those for
13657 @option{-mtune}.
13658
13659 @option{-mcpu=generic-@var{arch}} is also permissible, and is
13660 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13661 See @option{-mtune} for more information.
13662
13663 @option{-mcpu=native} causes the compiler to auto-detect the CPU
13664 of the build computer. At present, this feature is only supported on
13665 GNU/Linux, and not all architectures are recognized. If the auto-detect
13666 is unsuccessful the option has no effect.
13667
13668 @item -mfpu=@var{name}
13669 @opindex mfpu
13670 This specifies what floating-point hardware (or hardware emulation) is
13671 available on the target. Permissible names are: @samp{vfp}, @samp{vfpv3},
13672 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13673 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13674 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13675 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
13676 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
13677
13678 If @option{-msoft-float} is specified this specifies the format of
13679 floating-point values.
13680
13681 If the selected floating-point hardware includes the NEON extension
13682 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13683 operations are not generated by GCC's auto-vectorization pass unless
13684 @option{-funsafe-math-optimizations} is also specified. This is
13685 because NEON hardware does not fully implement the IEEE 754 standard for
13686 floating-point arithmetic (in particular denormal values are treated as
13687 zero), so the use of NEON instructions may lead to a loss of precision.
13688
13689 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
13690
13691 @item -mfp16-format=@var{name}
13692 @opindex mfp16-format
13693 Specify the format of the @code{__fp16} half-precision floating-point type.
13694 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13695 the default is @samp{none}, in which case the @code{__fp16} type is not
13696 defined. @xref{Half-Precision}, for more information.
13697
13698 @item -mstructure-size-boundary=@var{n}
13699 @opindex mstructure-size-boundary
13700 The sizes of all structures and unions are rounded up to a multiple
13701 of the number of bits set by this option. Permissible values are 8, 32
13702 and 64. The default value varies for different toolchains. For the COFF
13703 targeted toolchain the default value is 8. A value of 64 is only allowed
13704 if the underlying ABI supports it.
13705
13706 Specifying a larger number can produce faster, more efficient code, but
13707 can also increase the size of the program. Different values are potentially
13708 incompatible. Code compiled with one value cannot necessarily expect to
13709 work with code or libraries compiled with another value, if they exchange
13710 information using structures or unions.
13711
13712 @item -mabort-on-noreturn
13713 @opindex mabort-on-noreturn
13714 Generate a call to the function @code{abort} at the end of a
13715 @code{noreturn} function. It is executed if the function tries to
13716 return.
13717
13718 @item -mlong-calls
13719 @itemx -mno-long-calls
13720 @opindex mlong-calls
13721 @opindex mno-long-calls
13722 Tells the compiler to perform function calls by first loading the
13723 address of the function into a register and then performing a subroutine
13724 call on this register. This switch is needed if the target function
13725 lies outside of the 64-megabyte addressing range of the offset-based
13726 version of subroutine call instruction.
13727
13728 Even if this switch is enabled, not all function calls are turned
13729 into long calls. The heuristic is that static functions, functions
13730 that have the @code{short_call} attribute, functions that are inside
13731 the scope of a @code{#pragma no_long_calls} directive, and functions whose
13732 definitions have already been compiled within the current compilation
13733 unit are not turned into long calls. The exceptions to this rule are
13734 that weak function definitions, functions with the @code{long_call}
13735 attribute or the @code{section} attribute, and functions that are within
13736 the scope of a @code{#pragma long_calls} directive are always
13737 turned into long calls.
13738
13739 This feature is not enabled by default. Specifying
13740 @option{-mno-long-calls} restores the default behavior, as does
13741 placing the function calls within the scope of a @code{#pragma
13742 long_calls_off} directive. Note these switches have no effect on how
13743 the compiler generates code to handle function calls via function
13744 pointers.
13745
13746 @item -msingle-pic-base
13747 @opindex msingle-pic-base
13748 Treat the register used for PIC addressing as read-only, rather than
13749 loading it in the prologue for each function. The runtime system is
13750 responsible for initializing this register with an appropriate value
13751 before execution begins.
13752
13753 @item -mpic-register=@var{reg}
13754 @opindex mpic-register
13755 Specify the register to be used for PIC addressing.
13756 For standard PIC base case, the default is any suitable register
13757 determined by compiler. For single PIC base case, the default is
13758 @samp{R9} if target is EABI based or stack-checking is enabled,
13759 otherwise the default is @samp{R10}.
13760
13761 @item -mpic-data-is-text-relative
13762 @opindex mpic-data-is-text-relative
13763 Assume that each data segments are relative to text segment at load time.
13764 Therefore, it permits addressing data using PC-relative operations.
13765 This option is on by default for targets other than VxWorks RTP.
13766
13767 @item -mpoke-function-name
13768 @opindex mpoke-function-name
13769 Write the name of each function into the text section, directly
13770 preceding the function prologue. The generated code is similar to this:
13771
13772 @smallexample
13773 t0
13774 .ascii "arm_poke_function_name", 0
13775 .align
13776 t1
13777 .word 0xff000000 + (t1 - t0)
13778 arm_poke_function_name
13779 mov ip, sp
13780 stmfd sp!, @{fp, ip, lr, pc@}
13781 sub fp, ip, #4
13782 @end smallexample
13783
13784 When performing a stack backtrace, code can inspect the value of
13785 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
13786 location @code{pc - 12} and the top 8 bits are set, then we know that
13787 there is a function name embedded immediately preceding this location
13788 and has length @code{((pc[-3]) & 0xff000000)}.
13789
13790 @item -mthumb
13791 @itemx -marm
13792 @opindex marm
13793 @opindex mthumb
13794
13795 Select between generating code that executes in ARM and Thumb
13796 states. The default for most configurations is to generate code
13797 that executes in ARM state, but the default can be changed by
13798 configuring GCC with the @option{--with-mode=}@var{state}
13799 configure option.
13800
13801 You can also override the ARM and Thumb mode for each function
13802 by using the @code{target("thumb")} and @code{target("arm")} function attributes
13803 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
13804
13805 @item -mtpcs-frame
13806 @opindex mtpcs-frame
13807 Generate a stack frame that is compliant with the Thumb Procedure Call
13808 Standard for all non-leaf functions. (A leaf function is one that does
13809 not call any other functions.) The default is @option{-mno-tpcs-frame}.
13810
13811 @item -mtpcs-leaf-frame
13812 @opindex mtpcs-leaf-frame
13813 Generate a stack frame that is compliant with the Thumb Procedure Call
13814 Standard for all leaf functions. (A leaf function is one that does
13815 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
13816
13817 @item -mcallee-super-interworking
13818 @opindex mcallee-super-interworking
13819 Gives all externally visible functions in the file being compiled an ARM
13820 instruction set header which switches to Thumb mode before executing the
13821 rest of the function. This allows these functions to be called from
13822 non-interworking code. This option is not valid in AAPCS configurations
13823 because interworking is enabled by default.
13824
13825 @item -mcaller-super-interworking
13826 @opindex mcaller-super-interworking
13827 Allows calls via function pointers (including virtual functions) to
13828 execute correctly regardless of whether the target code has been
13829 compiled for interworking or not. There is a small overhead in the cost
13830 of executing a function pointer if this option is enabled. This option
13831 is not valid in AAPCS configurations because interworking is enabled
13832 by default.
13833
13834 @item -mtp=@var{name}
13835 @opindex mtp
13836 Specify the access model for the thread local storage pointer. The valid
13837 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13838 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13839 (supported in the arm6k architecture), and @samp{auto}, which uses the
13840 best available method for the selected processor. The default setting is
13841 @samp{auto}.
13842
13843 @item -mtls-dialect=@var{dialect}
13844 @opindex mtls-dialect
13845 Specify the dialect to use for accessing thread local storage. Two
13846 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
13847 @samp{gnu} dialect selects the original GNU scheme for supporting
13848 local and global dynamic TLS models. The @samp{gnu2} dialect
13849 selects the GNU descriptor scheme, which provides better performance
13850 for shared libraries. The GNU descriptor scheme is compatible with
13851 the original scheme, but does require new assembler, linker and
13852 library support. Initial and local exec TLS models are unaffected by
13853 this option and always use the original scheme.
13854
13855 @item -mword-relocations
13856 @opindex mword-relocations
13857 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
13858 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
13859 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
13860 is specified.
13861
13862 @item -mfix-cortex-m3-ldrd
13863 @opindex mfix-cortex-m3-ldrd
13864 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
13865 with overlapping destination and base registers are used. This option avoids
13866 generating these instructions. This option is enabled by default when
13867 @option{-mcpu=cortex-m3} is specified.
13868
13869 @item -munaligned-access
13870 @itemx -mno-unaligned-access
13871 @opindex munaligned-access
13872 @opindex mno-unaligned-access
13873 Enables (or disables) reading and writing of 16- and 32- bit values
13874 from addresses that are not 16- or 32- bit aligned. By default
13875 unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
13876 architectures, and enabled for all other architectures. If unaligned
13877 access is not enabled then words in packed data structures are
13878 accessed a byte at a time.
13879
13880 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
13881 generated object file to either true or false, depending upon the
13882 setting of this option. If unaligned access is enabled then the
13883 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
13884 defined.
13885
13886 @item -mneon-for-64bits
13887 @opindex mneon-for-64bits
13888 Enables using Neon to handle scalar 64-bits operations. This is
13889 disabled by default since the cost of moving data from core registers
13890 to Neon is high.
13891
13892 @item -mslow-flash-data
13893 @opindex mslow-flash-data
13894 Assume loading data from flash is slower than fetching instruction.
13895 Therefore literal load is minimized for better performance.
13896 This option is only supported when compiling for ARMv7 M-profile and
13897 off by default.
13898
13899 @item -masm-syntax-unified
13900 @opindex masm-syntax-unified
13901 Assume inline assembler is using unified asm syntax. The default is
13902 currently off which implies divided syntax. This option has no impact
13903 on Thumb2. However, this may change in future releases of GCC.
13904 Divided syntax should be considered deprecated.
13905
13906 @item -mrestrict-it
13907 @opindex mrestrict-it
13908 Restricts generation of IT blocks to conform to the rules of ARMv8.
13909 IT blocks can only contain a single 16-bit instruction from a select
13910 set of instructions. This option is on by default for ARMv8 Thumb mode.
13911
13912 @item -mprint-tune-info
13913 @opindex mprint-tune-info
13914 Print CPU tuning information as comment in assembler file. This is
13915 an option used only for regression testing of the compiler and not
13916 intended for ordinary use in compiling code. This option is disabled
13917 by default.
13918 @end table
13919
13920 @node AVR Options
13921 @subsection AVR Options
13922 @cindex AVR Options
13923
13924 These options are defined for AVR implementations:
13925
13926 @table @gcctabopt
13927 @item -mmcu=@var{mcu}
13928 @opindex mmcu
13929 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
13930
13931 The default for this option is@tie{}@samp{avr2}.
13932
13933 GCC supports the following AVR devices and ISAs:
13934
13935 @include avr-mmcu.texi
13936
13937 @item -maccumulate-args
13938 @opindex maccumulate-args
13939 Accumulate outgoing function arguments and acquire/release the needed
13940 stack space for outgoing function arguments once in function
13941 prologue/epilogue. Without this option, outgoing arguments are pushed
13942 before calling a function and popped afterwards.
13943
13944 Popping the arguments after the function call can be expensive on
13945 AVR so that accumulating the stack space might lead to smaller
13946 executables because arguments need not to be removed from the
13947 stack after such a function call.
13948
13949 This option can lead to reduced code size for functions that perform
13950 several calls to functions that get their arguments on the stack like
13951 calls to printf-like functions.
13952
13953 @item -mbranch-cost=@var{cost}
13954 @opindex mbranch-cost
13955 Set the branch costs for conditional branch instructions to
13956 @var{cost}. Reasonable values for @var{cost} are small, non-negative
13957 integers. The default branch cost is 0.
13958
13959 @item -mcall-prologues
13960 @opindex mcall-prologues
13961 Functions prologues/epilogues are expanded as calls to appropriate
13962 subroutines. Code size is smaller.
13963
13964 @item -mint8
13965 @opindex mint8
13966 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
13967 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
13968 and @code{long long} is 4 bytes. Please note that this option does not
13969 conform to the C standards, but it results in smaller code
13970 size.
13971
13972 @item -mn-flash=@var{num}
13973 @opindex mn-flash
13974 Assume that the flash memory has a size of
13975 @var{num} times 64@tie{}KiB.
13976
13977 @item -mno-interrupts
13978 @opindex mno-interrupts
13979 Generated code is not compatible with hardware interrupts.
13980 Code size is smaller.
13981
13982 @item -mrelax
13983 @opindex mrelax
13984 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
13985 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
13986 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
13987 the assembler's command line and the @option{--relax} option to the
13988 linker's command line.
13989
13990 Jump relaxing is performed by the linker because jump offsets are not
13991 known before code is located. Therefore, the assembler code generated by the
13992 compiler is the same, but the instructions in the executable may
13993 differ from instructions in the assembler code.
13994
13995 Relaxing must be turned on if linker stubs are needed, see the
13996 section on @code{EIND} and linker stubs below.
13997
13998 @item -mrmw
13999 @opindex mrmw
14000 Assume that the device supports the Read-Modify-Write
14001 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
14002
14003 @item -msp8
14004 @opindex msp8
14005 Treat the stack pointer register as an 8-bit register,
14006 i.e.@: assume the high byte of the stack pointer is zero.
14007 In general, you don't need to set this option by hand.
14008
14009 This option is used internally by the compiler to select and
14010 build multilibs for architectures @code{avr2} and @code{avr25}.
14011 These architectures mix devices with and without @code{SPH}.
14012 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
14013 the compiler driver adds or removes this option from the compiler
14014 proper's command line, because the compiler then knows if the device
14015 or architecture has an 8-bit stack pointer and thus no @code{SPH}
14016 register or not.
14017
14018 @item -mstrict-X
14019 @opindex mstrict-X
14020 Use address register @code{X} in a way proposed by the hardware. This means
14021 that @code{X} is only used in indirect, post-increment or
14022 pre-decrement addressing.
14023
14024 Without this option, the @code{X} register may be used in the same way
14025 as @code{Y} or @code{Z} which then is emulated by additional
14026 instructions.
14027 For example, loading a value with @code{X+const} addressing with a
14028 small non-negative @code{const < 64} to a register @var{Rn} is
14029 performed as
14030
14031 @example
14032 adiw r26, const ; X += const
14033 ld @var{Rn}, X ; @var{Rn} = *X
14034 sbiw r26, const ; X -= const
14035 @end example
14036
14037 @item -mtiny-stack
14038 @opindex mtiny-stack
14039 Only change the lower 8@tie{}bits of the stack pointer.
14040
14041 @item -nodevicelib
14042 @opindex nodevicelib
14043 Don't link against AVR-LibC's device specific library @code{libdev.a}.
14044
14045 @item -Waddr-space-convert
14046 @opindex Waddr-space-convert
14047 Warn about conversions between address spaces in the case where the
14048 resulting address space is not contained in the incoming address space.
14049 @end table
14050
14051 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
14052 @cindex @code{EIND}
14053 Pointers in the implementation are 16@tie{}bits wide.
14054 The address of a function or label is represented as word address so
14055 that indirect jumps and calls can target any code address in the
14056 range of 64@tie{}Ki words.
14057
14058 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
14059 bytes of program memory space, there is a special function register called
14060 @code{EIND} that serves as most significant part of the target address
14061 when @code{EICALL} or @code{EIJMP} instructions are used.
14062
14063 Indirect jumps and calls on these devices are handled as follows by
14064 the compiler and are subject to some limitations:
14065
14066 @itemize @bullet
14067
14068 @item
14069 The compiler never sets @code{EIND}.
14070
14071 @item
14072 The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
14073 instructions or might read @code{EIND} directly in order to emulate an
14074 indirect call/jump by means of a @code{RET} instruction.
14075
14076 @item
14077 The compiler assumes that @code{EIND} never changes during the startup
14078 code or during the application. In particular, @code{EIND} is not
14079 saved/restored in function or interrupt service routine
14080 prologue/epilogue.
14081
14082 @item
14083 For indirect calls to functions and computed goto, the linker
14084 generates @emph{stubs}. Stubs are jump pads sometimes also called
14085 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
14086 The stub contains a direct jump to the desired address.
14087
14088 @item
14089 Linker relaxation must be turned on so that the linker generates
14090 the stubs correctly in all situations. See the compiler option
14091 @option{-mrelax} and the linker option @option{--relax}.
14092 There are corner cases where the linker is supposed to generate stubs
14093 but aborts without relaxation and without a helpful error message.
14094
14095 @item
14096 The default linker script is arranged for code with @code{EIND = 0}.
14097 If code is supposed to work for a setup with @code{EIND != 0}, a custom
14098 linker script has to be used in order to place the sections whose
14099 name start with @code{.trampolines} into the segment where @code{EIND}
14100 points to.
14101
14102 @item
14103 The startup code from libgcc never sets @code{EIND}.
14104 Notice that startup code is a blend of code from libgcc and AVR-LibC.
14105 For the impact of AVR-LibC on @code{EIND}, see the
14106 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
14107
14108 @item
14109 It is legitimate for user-specific startup code to set up @code{EIND}
14110 early, for example by means of initialization code located in
14111 section @code{.init3}. Such code runs prior to general startup code
14112 that initializes RAM and calls constructors, but after the bit
14113 of startup code from AVR-LibC that sets @code{EIND} to the segment
14114 where the vector table is located.
14115 @example
14116 #include <avr/io.h>
14117
14118 static void
14119 __attribute__((section(".init3"),naked,used,no_instrument_function))
14120 init3_set_eind (void)
14121 @{
14122 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
14123 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
14124 @}
14125 @end example
14126
14127 @noindent
14128 The @code{__trampolines_start} symbol is defined in the linker script.
14129
14130 @item
14131 Stubs are generated automatically by the linker if
14132 the following two conditions are met:
14133 @itemize @minus
14134
14135 @item The address of a label is taken by means of the @code{gs} modifier
14136 (short for @emph{generate stubs}) like so:
14137 @example
14138 LDI r24, lo8(gs(@var{func}))
14139 LDI r25, hi8(gs(@var{func}))
14140 @end example
14141 @item The final location of that label is in a code segment
14142 @emph{outside} the segment where the stubs are located.
14143 @end itemize
14144
14145 @item
14146 The compiler emits such @code{gs} modifiers for code labels in the
14147 following situations:
14148 @itemize @minus
14149 @item Taking address of a function or code label.
14150 @item Computed goto.
14151 @item If prologue-save function is used, see @option{-mcall-prologues}
14152 command-line option.
14153 @item Switch/case dispatch tables. If you do not want such dispatch
14154 tables you can specify the @option{-fno-jump-tables} command-line option.
14155 @item C and C++ constructors/destructors called during startup/shutdown.
14156 @item If the tools hit a @code{gs()} modifier explained above.
14157 @end itemize
14158
14159 @item
14160 Jumping to non-symbolic addresses like so is @emph{not} supported:
14161
14162 @example
14163 int main (void)
14164 @{
14165 /* Call function at word address 0x2 */
14166 return ((int(*)(void)) 0x2)();
14167 @}
14168 @end example
14169
14170 Instead, a stub has to be set up, i.e.@: the function has to be called
14171 through a symbol (@code{func_4} in the example):
14172
14173 @example
14174 int main (void)
14175 @{
14176 extern int func_4 (void);
14177
14178 /* Call function at byte address 0x4 */
14179 return func_4();
14180 @}
14181 @end example
14182
14183 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
14184 Alternatively, @code{func_4} can be defined in the linker script.
14185 @end itemize
14186
14187 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
14188 @cindex @code{RAMPD}
14189 @cindex @code{RAMPX}
14190 @cindex @code{RAMPY}
14191 @cindex @code{RAMPZ}
14192 Some AVR devices support memories larger than the 64@tie{}KiB range
14193 that can be accessed with 16-bit pointers. To access memory locations
14194 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
14195 register is used as high part of the address:
14196 The @code{X}, @code{Y}, @code{Z} address register is concatenated
14197 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
14198 register, respectively, to get a wide address. Similarly,
14199 @code{RAMPD} is used together with direct addressing.
14200
14201 @itemize
14202 @item
14203 The startup code initializes the @code{RAMP} special function
14204 registers with zero.
14205
14206 @item
14207 If a @ref{AVR Named Address Spaces,named address space} other than
14208 generic or @code{__flash} is used, then @code{RAMPZ} is set
14209 as needed before the operation.
14210
14211 @item
14212 If the device supports RAM larger than 64@tie{}KiB and the compiler
14213 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
14214 is reset to zero after the operation.
14215
14216 @item
14217 If the device comes with a specific @code{RAMP} register, the ISR
14218 prologue/epilogue saves/restores that SFR and initializes it with
14219 zero in case the ISR code might (implicitly) use it.
14220
14221 @item
14222 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
14223 If you use inline assembler to read from locations outside the
14224 16-bit address range and change one of the @code{RAMP} registers,
14225 you must reset it to zero after the access.
14226
14227 @end itemize
14228
14229 @subsubsection AVR Built-in Macros
14230
14231 GCC defines several built-in macros so that the user code can test
14232 for the presence or absence of features. Almost any of the following
14233 built-in macros are deduced from device capabilities and thus
14234 triggered by the @option{-mmcu=} command-line option.
14235
14236 For even more AVR-specific built-in macros see
14237 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
14238
14239 @table @code
14240
14241 @item __AVR_ARCH__
14242 Build-in macro that resolves to a decimal number that identifies the
14243 architecture and depends on the @option{-mmcu=@var{mcu}} option.
14244 Possible values are:
14245
14246 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
14247 @code{4}, @code{5}, @code{51}, @code{6}
14248
14249 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
14250 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
14251
14252 respectively and
14253
14254 @code{100}, @code{102}, @code{104},
14255 @code{105}, @code{106}, @code{107}
14256
14257 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
14258 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
14259 If @var{mcu} specifies a device, this built-in macro is set
14260 accordingly. For example, with @option{-mmcu=atmega8} the macro is
14261 defined to @code{4}.
14262
14263 @item __AVR_@var{Device}__
14264 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
14265 the device's name. For example, @option{-mmcu=atmega8} defines the
14266 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
14267 @code{__AVR_ATtiny261A__}, etc.
14268
14269 The built-in macros' names follow
14270 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
14271 the device name as from the AVR user manual. The difference between
14272 @var{Device} in the built-in macro and @var{device} in
14273 @option{-mmcu=@var{device}} is that the latter is always lowercase.
14274
14275 If @var{device} is not a device but only a core architecture like
14276 @samp{avr51}, this macro is not defined.
14277
14278 @item __AVR_DEVICE_NAME__
14279 Setting @option{-mmcu=@var{device}} defines this built-in macro to
14280 the device's name. For example, with @option{-mmcu=atmega8} the macro
14281 is defined to @code{atmega8}.
14282
14283 If @var{device} is not a device but only a core architecture like
14284 @samp{avr51}, this macro is not defined.
14285
14286 @item __AVR_XMEGA__
14287 The device / architecture belongs to the XMEGA family of devices.
14288
14289 @item __AVR_HAVE_ELPM__
14290 The device has the @code{ELPM} instruction.
14291
14292 @item __AVR_HAVE_ELPMX__
14293 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
14294 R@var{n},Z+} instructions.
14295
14296 @item __AVR_HAVE_MOVW__
14297 The device has the @code{MOVW} instruction to perform 16-bit
14298 register-register moves.
14299
14300 @item __AVR_HAVE_LPMX__
14301 The device has the @code{LPM R@var{n},Z} and
14302 @code{LPM R@var{n},Z+} instructions.
14303
14304 @item __AVR_HAVE_MUL__
14305 The device has a hardware multiplier.
14306
14307 @item __AVR_HAVE_JMP_CALL__
14308 The device has the @code{JMP} and @code{CALL} instructions.
14309 This is the case for devices with at least 16@tie{}KiB of program
14310 memory.
14311
14312 @item __AVR_HAVE_EIJMP_EICALL__
14313 @itemx __AVR_3_BYTE_PC__
14314 The device has the @code{EIJMP} and @code{EICALL} instructions.
14315 This is the case for devices with more than 128@tie{}KiB of program memory.
14316 This also means that the program counter
14317 (PC) is 3@tie{}bytes wide.
14318
14319 @item __AVR_2_BYTE_PC__
14320 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
14321 with up to 128@tie{}KiB of program memory.
14322
14323 @item __AVR_HAVE_8BIT_SP__
14324 @itemx __AVR_HAVE_16BIT_SP__
14325 The stack pointer (SP) register is treated as 8-bit respectively
14326 16-bit register by the compiler.
14327 The definition of these macros is affected by @option{-mtiny-stack}.
14328
14329 @item __AVR_HAVE_SPH__
14330 @itemx __AVR_SP8__
14331 The device has the SPH (high part of stack pointer) special function
14332 register or has an 8-bit stack pointer, respectively.
14333 The definition of these macros is affected by @option{-mmcu=} and
14334 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
14335 by @option{-msp8}.
14336
14337 @item __AVR_HAVE_RAMPD__
14338 @itemx __AVR_HAVE_RAMPX__
14339 @itemx __AVR_HAVE_RAMPY__
14340 @itemx __AVR_HAVE_RAMPZ__
14341 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
14342 @code{RAMPZ} special function register, respectively.
14343
14344 @item __NO_INTERRUPTS__
14345 This macro reflects the @option{-mno-interrupts} command-line option.
14346
14347 @item __AVR_ERRATA_SKIP__
14348 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
14349 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
14350 instructions because of a hardware erratum. Skip instructions are
14351 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
14352 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
14353 set.
14354
14355 @item __AVR_ISA_RMW__
14356 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
14357
14358 @item __AVR_SFR_OFFSET__=@var{offset}
14359 Instructions that can address I/O special function registers directly
14360 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
14361 address as if addressed by an instruction to access RAM like @code{LD}
14362 or @code{STS}. This offset depends on the device architecture and has
14363 to be subtracted from the RAM address in order to get the
14364 respective I/O@tie{}address.
14365
14366 @item __WITH_AVRLIBC__
14367 The compiler is configured to be used together with AVR-Libc.
14368 See the @option{--with-avrlibc} configure option.
14369
14370 @end table
14371
14372 @node Blackfin Options
14373 @subsection Blackfin Options
14374 @cindex Blackfin Options
14375
14376 @table @gcctabopt
14377 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
14378 @opindex mcpu=
14379 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
14380 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
14381 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
14382 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
14383 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
14384 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
14385 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
14386 @samp{bf561}, @samp{bf592}.
14387
14388 The optional @var{sirevision} specifies the silicon revision of the target
14389 Blackfin processor. Any workarounds available for the targeted silicon revision
14390 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
14391 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14392 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
14393 hexadecimal digits representing the major and minor numbers in the silicon
14394 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14395 is not defined. If @var{sirevision} is @samp{any}, the
14396 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14397 If this optional @var{sirevision} is not used, GCC assumes the latest known
14398 silicon revision of the targeted Blackfin processor.
14399
14400 GCC defines a preprocessor macro for the specified @var{cpu}.
14401 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14402 provided by libgloss to be linked in if @option{-msim} is not given.
14403
14404 Without this option, @samp{bf532} is used as the processor by default.
14405
14406 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
14407 only the preprocessor macro is defined.
14408
14409 @item -msim
14410 @opindex msim
14411 Specifies that the program will be run on the simulator. This causes
14412 the simulator BSP provided by libgloss to be linked in. This option
14413 has effect only for @samp{bfin-elf} toolchain.
14414 Certain other options, such as @option{-mid-shared-library} and
14415 @option{-mfdpic}, imply @option{-msim}.
14416
14417 @item -momit-leaf-frame-pointer
14418 @opindex momit-leaf-frame-pointer
14419 Don't keep the frame pointer in a register for leaf functions. This
14420 avoids the instructions to save, set up and restore frame pointers and
14421 makes an extra register available in leaf functions. The option
14422 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
14423 which might make debugging harder.
14424
14425 @item -mspecld-anomaly
14426 @opindex mspecld-anomaly
14427 When enabled, the compiler ensures that the generated code does not
14428 contain speculative loads after jump instructions. If this option is used,
14429 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14430
14431 @item -mno-specld-anomaly
14432 @opindex mno-specld-anomaly
14433 Don't generate extra code to prevent speculative loads from occurring.
14434
14435 @item -mcsync-anomaly
14436 @opindex mcsync-anomaly
14437 When enabled, the compiler ensures that the generated code does not
14438 contain CSYNC or SSYNC instructions too soon after conditional branches.
14439 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14440
14441 @item -mno-csync-anomaly
14442 @opindex mno-csync-anomaly
14443 Don't generate extra code to prevent CSYNC or SSYNC instructions from
14444 occurring too soon after a conditional branch.
14445
14446 @item -mlow-64k
14447 @opindex mlow-64k
14448 When enabled, the compiler is free to take advantage of the knowledge that
14449 the entire program fits into the low 64k of memory.
14450
14451 @item -mno-low-64k
14452 @opindex mno-low-64k
14453 Assume that the program is arbitrarily large. This is the default.
14454
14455 @item -mstack-check-l1
14456 @opindex mstack-check-l1
14457 Do stack checking using information placed into L1 scratchpad memory by the
14458 uClinux kernel.
14459
14460 @item -mid-shared-library
14461 @opindex mid-shared-library
14462 Generate code that supports shared libraries via the library ID method.
14463 This allows for execute in place and shared libraries in an environment
14464 without virtual memory management. This option implies @option{-fPIC}.
14465 With a @samp{bfin-elf} target, this option implies @option{-msim}.
14466
14467 @item -mno-id-shared-library
14468 @opindex mno-id-shared-library
14469 Generate code that doesn't assume ID-based shared libraries are being used.
14470 This is the default.
14471
14472 @item -mleaf-id-shared-library
14473 @opindex mleaf-id-shared-library
14474 Generate code that supports shared libraries via the library ID method,
14475 but assumes that this library or executable won't link against any other
14476 ID shared libraries. That allows the compiler to use faster code for jumps
14477 and calls.
14478
14479 @item -mno-leaf-id-shared-library
14480 @opindex mno-leaf-id-shared-library
14481 Do not assume that the code being compiled won't link against any ID shared
14482 libraries. Slower code is generated for jump and call insns.
14483
14484 @item -mshared-library-id=n
14485 @opindex mshared-library-id
14486 Specifies the identification number of the ID-based shared library being
14487 compiled. Specifying a value of 0 generates more compact code; specifying
14488 other values forces the allocation of that number to the current
14489 library but is no more space- or time-efficient than omitting this option.
14490
14491 @item -msep-data
14492 @opindex msep-data
14493 Generate code that allows the data segment to be located in a different
14494 area of memory from the text segment. This allows for execute in place in
14495 an environment without virtual memory management by eliminating relocations
14496 against the text section.
14497
14498 @item -mno-sep-data
14499 @opindex mno-sep-data
14500 Generate code that assumes that the data segment follows the text segment.
14501 This is the default.
14502
14503 @item -mlong-calls
14504 @itemx -mno-long-calls
14505 @opindex mlong-calls
14506 @opindex mno-long-calls
14507 Tells the compiler to perform function calls by first loading the
14508 address of the function into a register and then performing a subroutine
14509 call on this register. This switch is needed if the target function
14510 lies outside of the 24-bit addressing range of the offset-based
14511 version of subroutine call instruction.
14512
14513 This feature is not enabled by default. Specifying
14514 @option{-mno-long-calls} restores the default behavior. Note these
14515 switches have no effect on how the compiler generates code to handle
14516 function calls via function pointers.
14517
14518 @item -mfast-fp
14519 @opindex mfast-fp
14520 Link with the fast floating-point library. This library relaxes some of
14521 the IEEE floating-point standard's rules for checking inputs against
14522 Not-a-Number (NAN), in the interest of performance.
14523
14524 @item -minline-plt
14525 @opindex minline-plt
14526 Enable inlining of PLT entries in function calls to functions that are
14527 not known to bind locally. It has no effect without @option{-mfdpic}.
14528
14529 @item -mmulticore
14530 @opindex mmulticore
14531 Build a standalone application for multicore Blackfin processors.
14532 This option causes proper start files and link scripts supporting
14533 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
14534 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
14535
14536 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14537 selects the one-application-per-core programming model. Without
14538 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14539 programming model is used. In this model, the main function of Core B
14540 should be named as @code{coreb_main}.
14541
14542 If this option is not used, the single-core application programming
14543 model is used.
14544
14545 @item -mcorea
14546 @opindex mcorea
14547 Build a standalone application for Core A of BF561 when using
14548 the one-application-per-core programming model. Proper start files
14549 and link scripts are used to support Core A, and the macro
14550 @code{__BFIN_COREA} is defined.
14551 This option can only be used in conjunction with @option{-mmulticore}.
14552
14553 @item -mcoreb
14554 @opindex mcoreb
14555 Build a standalone application for Core B of BF561 when using
14556 the one-application-per-core programming model. Proper start files
14557 and link scripts are used to support Core B, and the macro
14558 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14559 should be used instead of @code{main}.
14560 This option can only be used in conjunction with @option{-mmulticore}.
14561
14562 @item -msdram
14563 @opindex msdram
14564 Build a standalone application for SDRAM. Proper start files and
14565 link scripts are used to put the application into SDRAM, and the macro
14566 @code{__BFIN_SDRAM} is defined.
14567 The loader should initialize SDRAM before loading the application.
14568
14569 @item -micplb
14570 @opindex micplb
14571 Assume that ICPLBs are enabled at run time. This has an effect on certain
14572 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
14573 are enabled; for standalone applications the default is off.
14574 @end table
14575
14576 @node C6X Options
14577 @subsection C6X Options
14578 @cindex C6X Options
14579
14580 @table @gcctabopt
14581 @item -march=@var{name}
14582 @opindex march
14583 This specifies the name of the target architecture. GCC uses this
14584 name to determine what kind of instructions it can emit when generating
14585 assembly code. Permissible names are: @samp{c62x},
14586 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14587
14588 @item -mbig-endian
14589 @opindex mbig-endian
14590 Generate code for a big-endian target.
14591
14592 @item -mlittle-endian
14593 @opindex mlittle-endian
14594 Generate code for a little-endian target. This is the default.
14595
14596 @item -msim
14597 @opindex msim
14598 Choose startup files and linker script suitable for the simulator.
14599
14600 @item -msdata=default
14601 @opindex msdata=default
14602 Put small global and static data in the @code{.neardata} section,
14603 which is pointed to by register @code{B14}. Put small uninitialized
14604 global and static data in the @code{.bss} section, which is adjacent
14605 to the @code{.neardata} section. Put small read-only data into the
14606 @code{.rodata} section. The corresponding sections used for large
14607 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14608
14609 @item -msdata=all
14610 @opindex msdata=all
14611 Put all data, not just small objects, into the sections reserved for
14612 small data, and use addressing relative to the @code{B14} register to
14613 access them.
14614
14615 @item -msdata=none
14616 @opindex msdata=none
14617 Make no use of the sections reserved for small data, and use absolute
14618 addresses to access all data. Put all initialized global and static
14619 data in the @code{.fardata} section, and all uninitialized data in the
14620 @code{.far} section. Put all constant data into the @code{.const}
14621 section.
14622 @end table
14623
14624 @node CRIS Options
14625 @subsection CRIS Options
14626 @cindex CRIS Options
14627
14628 These options are defined specifically for the CRIS ports.
14629
14630 @table @gcctabopt
14631 @item -march=@var{architecture-type}
14632 @itemx -mcpu=@var{architecture-type}
14633 @opindex march
14634 @opindex mcpu
14635 Generate code for the specified architecture. The choices for
14636 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14637 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14638 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14639 @samp{v10}.
14640
14641 @item -mtune=@var{architecture-type}
14642 @opindex mtune
14643 Tune to @var{architecture-type} everything applicable about the generated
14644 code, except for the ABI and the set of available instructions. The
14645 choices for @var{architecture-type} are the same as for
14646 @option{-march=@var{architecture-type}}.
14647
14648 @item -mmax-stack-frame=@var{n}
14649 @opindex mmax-stack-frame
14650 Warn when the stack frame of a function exceeds @var{n} bytes.
14651
14652 @item -metrax4
14653 @itemx -metrax100
14654 @opindex metrax4
14655 @opindex metrax100
14656 The options @option{-metrax4} and @option{-metrax100} are synonyms for
14657 @option{-march=v3} and @option{-march=v8} respectively.
14658
14659 @item -mmul-bug-workaround
14660 @itemx -mno-mul-bug-workaround
14661 @opindex mmul-bug-workaround
14662 @opindex mno-mul-bug-workaround
14663 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14664 models where it applies. This option is active by default.
14665
14666 @item -mpdebug
14667 @opindex mpdebug
14668 Enable CRIS-specific verbose debug-related information in the assembly
14669 code. This option also has the effect of turning off the @samp{#NO_APP}
14670 formatted-code indicator to the assembler at the beginning of the
14671 assembly file.
14672
14673 @item -mcc-init
14674 @opindex mcc-init
14675 Do not use condition-code results from previous instruction; always emit
14676 compare and test instructions before use of condition codes.
14677
14678 @item -mno-side-effects
14679 @opindex mno-side-effects
14680 Do not emit instructions with side effects in addressing modes other than
14681 post-increment.
14682
14683 @item -mstack-align
14684 @itemx -mno-stack-align
14685 @itemx -mdata-align
14686 @itemx -mno-data-align
14687 @itemx -mconst-align
14688 @itemx -mno-const-align
14689 @opindex mstack-align
14690 @opindex mno-stack-align
14691 @opindex mdata-align
14692 @opindex mno-data-align
14693 @opindex mconst-align
14694 @opindex mno-const-align
14695 These options (@samp{no-} options) arrange (eliminate arrangements) for the
14696 stack frame, individual data and constants to be aligned for the maximum
14697 single data access size for the chosen CPU model. The default is to
14698 arrange for 32-bit alignment. ABI details such as structure layout are
14699 not affected by these options.
14700
14701 @item -m32-bit
14702 @itemx -m16-bit
14703 @itemx -m8-bit
14704 @opindex m32-bit
14705 @opindex m16-bit
14706 @opindex m8-bit
14707 Similar to the stack- data- and const-align options above, these options
14708 arrange for stack frame, writable data and constants to all be 32-bit,
14709 16-bit or 8-bit aligned. The default is 32-bit alignment.
14710
14711 @item -mno-prologue-epilogue
14712 @itemx -mprologue-epilogue
14713 @opindex mno-prologue-epilogue
14714 @opindex mprologue-epilogue
14715 With @option{-mno-prologue-epilogue}, the normal function prologue and
14716 epilogue which set up the stack frame are omitted and no return
14717 instructions or return sequences are generated in the code. Use this
14718 option only together with visual inspection of the compiled code: no
14719 warnings or errors are generated when call-saved registers must be saved,
14720 or storage for local variables needs to be allocated.
14721
14722 @item -mno-gotplt
14723 @itemx -mgotplt
14724 @opindex mno-gotplt
14725 @opindex mgotplt
14726 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14727 instruction sequences that load addresses for functions from the PLT part
14728 of the GOT rather than (traditional on other architectures) calls to the
14729 PLT@. The default is @option{-mgotplt}.
14730
14731 @item -melf
14732 @opindex melf
14733 Legacy no-op option only recognized with the cris-axis-elf and
14734 cris-axis-linux-gnu targets.
14735
14736 @item -mlinux
14737 @opindex mlinux
14738 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14739
14740 @item -sim
14741 @opindex sim
14742 This option, recognized for the cris-axis-elf, arranges
14743 to link with input-output functions from a simulator library. Code,
14744 initialized data and zero-initialized data are allocated consecutively.
14745
14746 @item -sim2
14747 @opindex sim2
14748 Like @option{-sim}, but pass linker options to locate initialized data at
14749 0x40000000 and zero-initialized data at 0x80000000.
14750 @end table
14751
14752 @node CR16 Options
14753 @subsection CR16 Options
14754 @cindex CR16 Options
14755
14756 These options are defined specifically for the CR16 ports.
14757
14758 @table @gcctabopt
14759
14760 @item -mmac
14761 @opindex mmac
14762 Enable the use of multiply-accumulate instructions. Disabled by default.
14763
14764 @item -mcr16cplus
14765 @itemx -mcr16c
14766 @opindex mcr16cplus
14767 @opindex mcr16c
14768 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
14769 is default.
14770
14771 @item -msim
14772 @opindex msim
14773 Links the library libsim.a which is in compatible with simulator. Applicable
14774 to ELF compiler only.
14775
14776 @item -mint32
14777 @opindex mint32
14778 Choose integer type as 32-bit wide.
14779
14780 @item -mbit-ops
14781 @opindex mbit-ops
14782 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14783
14784 @item -mdata-model=@var{model}
14785 @opindex mdata-model
14786 Choose a data model. The choices for @var{model} are @samp{near},
14787 @samp{far} or @samp{medium}. @samp{medium} is default.
14788 However, @samp{far} is not valid with @option{-mcr16c}, as the
14789 CR16C architecture does not support the far data model.
14790 @end table
14791
14792 @node Darwin Options
14793 @subsection Darwin Options
14794 @cindex Darwin options
14795
14796 These options are defined for all architectures running the Darwin operating
14797 system.
14798
14799 FSF GCC on Darwin does not create ``fat'' object files; it creates
14800 an object file for the single architecture that GCC was built to
14801 target. Apple's GCC on Darwin does create ``fat'' files if multiple
14802 @option{-arch} options are used; it does so by running the compiler or
14803 linker multiple times and joining the results together with
14804 @file{lipo}.
14805
14806 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14807 @samp{i686}) is determined by the flags that specify the ISA
14808 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
14809 @option{-force_cpusubtype_ALL} option can be used to override this.
14810
14811 The Darwin tools vary in their behavior when presented with an ISA
14812 mismatch. The assembler, @file{as}, only permits instructions to
14813 be used that are valid for the subtype of the file it is generating,
14814 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14815 The linker for shared libraries, @file{/usr/bin/libtool}, fails
14816 and prints an error if asked to create a shared library with a less
14817 restrictive subtype than its input files (for instance, trying to put
14818 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
14819 for executables, @command{ld}, quietly gives the executable the most
14820 restrictive subtype of any of its input files.
14821
14822 @table @gcctabopt
14823 @item -F@var{dir}
14824 @opindex F
14825 Add the framework directory @var{dir} to the head of the list of
14826 directories to be searched for header files. These directories are
14827 interleaved with those specified by @option{-I} options and are
14828 scanned in a left-to-right order.
14829
14830 A framework directory is a directory with frameworks in it. A
14831 framework is a directory with a @file{Headers} and/or
14832 @file{PrivateHeaders} directory contained directly in it that ends
14833 in @file{.framework}. The name of a framework is the name of this
14834 directory excluding the @file{.framework}. Headers associated with
14835 the framework are found in one of those two directories, with
14836 @file{Headers} being searched first. A subframework is a framework
14837 directory that is in a framework's @file{Frameworks} directory.
14838 Includes of subframework headers can only appear in a header of a
14839 framework that contains the subframework, or in a sibling subframework
14840 header. Two subframeworks are siblings if they occur in the same
14841 framework. A subframework should not have the same name as a
14842 framework; a warning is issued if this is violated. Currently a
14843 subframework cannot have subframeworks; in the future, the mechanism
14844 may be extended to support this. The standard frameworks can be found
14845 in @file{/System/Library/Frameworks} and
14846 @file{/Library/Frameworks}. An example include looks like
14847 @code{#include <Framework/header.h>}, where @file{Framework} denotes
14848 the name of the framework and @file{header.h} is found in the
14849 @file{PrivateHeaders} or @file{Headers} directory.
14850
14851 @item -iframework@var{dir}
14852 @opindex iframework
14853 Like @option{-F} except the directory is a treated as a system
14854 directory. The main difference between this @option{-iframework} and
14855 @option{-F} is that with @option{-iframework} the compiler does not
14856 warn about constructs contained within header files found via
14857 @var{dir}. This option is valid only for the C family of languages.
14858
14859 @item -gused
14860 @opindex gused
14861 Emit debugging information for symbols that are used. For stabs
14862 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
14863 This is by default ON@.
14864
14865 @item -gfull
14866 @opindex gfull
14867 Emit debugging information for all symbols and types.
14868
14869 @item -mmacosx-version-min=@var{version}
14870 The earliest version of MacOS X that this executable will run on
14871 is @var{version}. Typical values of @var{version} include @code{10.1},
14872 @code{10.2}, and @code{10.3.9}.
14873
14874 If the compiler was built to use the system's headers by default,
14875 then the default for this option is the system version on which the
14876 compiler is running, otherwise the default is to make choices that
14877 are compatible with as many systems and code bases as possible.
14878
14879 @item -mkernel
14880 @opindex mkernel
14881 Enable kernel development mode. The @option{-mkernel} option sets
14882 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
14883 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
14884 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
14885 applicable. This mode also sets @option{-mno-altivec},
14886 @option{-msoft-float}, @option{-fno-builtin} and
14887 @option{-mlong-branch} for PowerPC targets.
14888
14889 @item -mone-byte-bool
14890 @opindex mone-byte-bool
14891 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
14892 By default @code{sizeof(bool)} is @code{4} when compiling for
14893 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
14894 option has no effect on x86.
14895
14896 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
14897 to generate code that is not binary compatible with code generated
14898 without that switch. Using this switch may require recompiling all
14899 other modules in a program, including system libraries. Use this
14900 switch to conform to a non-default data model.
14901
14902 @item -mfix-and-continue
14903 @itemx -ffix-and-continue
14904 @itemx -findirect-data
14905 @opindex mfix-and-continue
14906 @opindex ffix-and-continue
14907 @opindex findirect-data
14908 Generate code suitable for fast turnaround development, such as to
14909 allow GDB to dynamically load @file{.o} files into already-running
14910 programs. @option{-findirect-data} and @option{-ffix-and-continue}
14911 are provided for backwards compatibility.
14912
14913 @item -all_load
14914 @opindex all_load
14915 Loads all members of static archive libraries.
14916 See man ld(1) for more information.
14917
14918 @item -arch_errors_fatal
14919 @opindex arch_errors_fatal
14920 Cause the errors having to do with files that have the wrong architecture
14921 to be fatal.
14922
14923 @item -bind_at_load
14924 @opindex bind_at_load
14925 Causes the output file to be marked such that the dynamic linker will
14926 bind all undefined references when the file is loaded or launched.
14927
14928 @item -bundle
14929 @opindex bundle
14930 Produce a Mach-o bundle format file.
14931 See man ld(1) for more information.
14932
14933 @item -bundle_loader @var{executable}
14934 @opindex bundle_loader
14935 This option specifies the @var{executable} that will load the build
14936 output file being linked. See man ld(1) for more information.
14937
14938 @item -dynamiclib
14939 @opindex dynamiclib
14940 When passed this option, GCC produces a dynamic library instead of
14941 an executable when linking, using the Darwin @file{libtool} command.
14942
14943 @item -force_cpusubtype_ALL
14944 @opindex force_cpusubtype_ALL
14945 This causes GCC's output file to have the @samp{ALL} subtype, instead of
14946 one controlled by the @option{-mcpu} or @option{-march} option.
14947
14948 @item -allowable_client @var{client_name}
14949 @itemx -client_name
14950 @itemx -compatibility_version
14951 @itemx -current_version
14952 @itemx -dead_strip
14953 @itemx -dependency-file
14954 @itemx -dylib_file
14955 @itemx -dylinker_install_name
14956 @itemx -dynamic
14957 @itemx -exported_symbols_list
14958 @itemx -filelist
14959 @need 800
14960 @itemx -flat_namespace
14961 @itemx -force_flat_namespace
14962 @itemx -headerpad_max_install_names
14963 @itemx -image_base
14964 @itemx -init
14965 @itemx -install_name
14966 @itemx -keep_private_externs
14967 @itemx -multi_module
14968 @itemx -multiply_defined
14969 @itemx -multiply_defined_unused
14970 @need 800
14971 @itemx -noall_load
14972 @itemx -no_dead_strip_inits_and_terms
14973 @itemx -nofixprebinding
14974 @itemx -nomultidefs
14975 @itemx -noprebind
14976 @itemx -noseglinkedit
14977 @itemx -pagezero_size
14978 @itemx -prebind
14979 @itemx -prebind_all_twolevel_modules
14980 @itemx -private_bundle
14981 @need 800
14982 @itemx -read_only_relocs
14983 @itemx -sectalign
14984 @itemx -sectobjectsymbols
14985 @itemx -whyload
14986 @itemx -seg1addr
14987 @itemx -sectcreate
14988 @itemx -sectobjectsymbols
14989 @itemx -sectorder
14990 @itemx -segaddr
14991 @itemx -segs_read_only_addr
14992 @need 800
14993 @itemx -segs_read_write_addr
14994 @itemx -seg_addr_table
14995 @itemx -seg_addr_table_filename
14996 @itemx -seglinkedit
14997 @itemx -segprot
14998 @itemx -segs_read_only_addr
14999 @itemx -segs_read_write_addr
15000 @itemx -single_module
15001 @itemx -static
15002 @itemx -sub_library
15003 @need 800
15004 @itemx -sub_umbrella
15005 @itemx -twolevel_namespace
15006 @itemx -umbrella
15007 @itemx -undefined
15008 @itemx -unexported_symbols_list
15009 @itemx -weak_reference_mismatches
15010 @itemx -whatsloaded
15011 @opindex allowable_client
15012 @opindex client_name
15013 @opindex compatibility_version
15014 @opindex current_version
15015 @opindex dead_strip
15016 @opindex dependency-file
15017 @opindex dylib_file
15018 @opindex dylinker_install_name
15019 @opindex dynamic
15020 @opindex exported_symbols_list
15021 @opindex filelist
15022 @opindex flat_namespace
15023 @opindex force_flat_namespace
15024 @opindex headerpad_max_install_names
15025 @opindex image_base
15026 @opindex init
15027 @opindex install_name
15028 @opindex keep_private_externs
15029 @opindex multi_module
15030 @opindex multiply_defined
15031 @opindex multiply_defined_unused
15032 @opindex noall_load
15033 @opindex no_dead_strip_inits_and_terms
15034 @opindex nofixprebinding
15035 @opindex nomultidefs
15036 @opindex noprebind
15037 @opindex noseglinkedit
15038 @opindex pagezero_size
15039 @opindex prebind
15040 @opindex prebind_all_twolevel_modules
15041 @opindex private_bundle
15042 @opindex read_only_relocs
15043 @opindex sectalign
15044 @opindex sectobjectsymbols
15045 @opindex whyload
15046 @opindex seg1addr
15047 @opindex sectcreate
15048 @opindex sectobjectsymbols
15049 @opindex sectorder
15050 @opindex segaddr
15051 @opindex segs_read_only_addr
15052 @opindex segs_read_write_addr
15053 @opindex seg_addr_table
15054 @opindex seg_addr_table_filename
15055 @opindex seglinkedit
15056 @opindex segprot
15057 @opindex segs_read_only_addr
15058 @opindex segs_read_write_addr
15059 @opindex single_module
15060 @opindex static
15061 @opindex sub_library
15062 @opindex sub_umbrella
15063 @opindex twolevel_namespace
15064 @opindex umbrella
15065 @opindex undefined
15066 @opindex unexported_symbols_list
15067 @opindex weak_reference_mismatches
15068 @opindex whatsloaded
15069 These options are passed to the Darwin linker. The Darwin linker man page
15070 describes them in detail.
15071 @end table
15072
15073 @node DEC Alpha Options
15074 @subsection DEC Alpha Options
15075
15076 These @samp{-m} options are defined for the DEC Alpha implementations:
15077
15078 @table @gcctabopt
15079 @item -mno-soft-float
15080 @itemx -msoft-float
15081 @opindex mno-soft-float
15082 @opindex msoft-float
15083 Use (do not use) the hardware floating-point instructions for
15084 floating-point operations. When @option{-msoft-float} is specified,
15085 functions in @file{libgcc.a} are used to perform floating-point
15086 operations. Unless they are replaced by routines that emulate the
15087 floating-point operations, or compiled in such a way as to call such
15088 emulations routines, these routines issue floating-point
15089 operations. If you are compiling for an Alpha without floating-point
15090 operations, you must ensure that the library is built so as not to call
15091 them.
15092
15093 Note that Alpha implementations without floating-point operations are
15094 required to have floating-point registers.
15095
15096 @item -mfp-reg
15097 @itemx -mno-fp-regs
15098 @opindex mfp-reg
15099 @opindex mno-fp-regs
15100 Generate code that uses (does not use) the floating-point register set.
15101 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
15102 register set is not used, floating-point operands are passed in integer
15103 registers as if they were integers and floating-point results are passed
15104 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
15105 so any function with a floating-point argument or return value called by code
15106 compiled with @option{-mno-fp-regs} must also be compiled with that
15107 option.
15108
15109 A typical use of this option is building a kernel that does not use,
15110 and hence need not save and restore, any floating-point registers.
15111
15112 @item -mieee
15113 @opindex mieee
15114 The Alpha architecture implements floating-point hardware optimized for
15115 maximum performance. It is mostly compliant with the IEEE floating-point
15116 standard. However, for full compliance, software assistance is
15117 required. This option generates code fully IEEE-compliant code
15118 @emph{except} that the @var{inexact-flag} is not maintained (see below).
15119 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
15120 defined during compilation. The resulting code is less efficient but is
15121 able to correctly support denormalized numbers and exceptional IEEE
15122 values such as not-a-number and plus/minus infinity. Other Alpha
15123 compilers call this option @option{-ieee_with_no_inexact}.
15124
15125 @item -mieee-with-inexact
15126 @opindex mieee-with-inexact
15127 This is like @option{-mieee} except the generated code also maintains
15128 the IEEE @var{inexact-flag}. Turning on this option causes the
15129 generated code to implement fully-compliant IEEE math. In addition to
15130 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
15131 macro. On some Alpha implementations the resulting code may execute
15132 significantly slower than the code generated by default. Since there is
15133 very little code that depends on the @var{inexact-flag}, you should
15134 normally not specify this option. Other Alpha compilers call this
15135 option @option{-ieee_with_inexact}.
15136
15137 @item -mfp-trap-mode=@var{trap-mode}
15138 @opindex mfp-trap-mode
15139 This option controls what floating-point related traps are enabled.
15140 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
15141 The trap mode can be set to one of four values:
15142
15143 @table @samp
15144 @item n
15145 This is the default (normal) setting. The only traps that are enabled
15146 are the ones that cannot be disabled in software (e.g., division by zero
15147 trap).
15148
15149 @item u
15150 In addition to the traps enabled by @samp{n}, underflow traps are enabled
15151 as well.
15152
15153 @item su
15154 Like @samp{u}, but the instructions are marked to be safe for software
15155 completion (see Alpha architecture manual for details).
15156
15157 @item sui
15158 Like @samp{su}, but inexact traps are enabled as well.
15159 @end table
15160
15161 @item -mfp-rounding-mode=@var{rounding-mode}
15162 @opindex mfp-rounding-mode
15163 Selects the IEEE rounding mode. Other Alpha compilers call this option
15164 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
15165 of:
15166
15167 @table @samp
15168 @item n
15169 Normal IEEE rounding mode. Floating-point numbers are rounded towards
15170 the nearest machine number or towards the even machine number in case
15171 of a tie.
15172
15173 @item m
15174 Round towards minus infinity.
15175
15176 @item c
15177 Chopped rounding mode. Floating-point numbers are rounded towards zero.
15178
15179 @item d
15180 Dynamic rounding mode. A field in the floating-point control register
15181 (@var{fpcr}, see Alpha architecture reference manual) controls the
15182 rounding mode in effect. The C library initializes this register for
15183 rounding towards plus infinity. Thus, unless your program modifies the
15184 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
15185 @end table
15186
15187 @item -mtrap-precision=@var{trap-precision}
15188 @opindex mtrap-precision
15189 In the Alpha architecture, floating-point traps are imprecise. This
15190 means without software assistance it is impossible to recover from a
15191 floating trap and program execution normally needs to be terminated.
15192 GCC can generate code that can assist operating system trap handlers
15193 in determining the exact location that caused a floating-point trap.
15194 Depending on the requirements of an application, different levels of
15195 precisions can be selected:
15196
15197 @table @samp
15198 @item p
15199 Program precision. This option is the default and means a trap handler
15200 can only identify which program caused a floating-point exception.
15201
15202 @item f
15203 Function precision. The trap handler can determine the function that
15204 caused a floating-point exception.
15205
15206 @item i
15207 Instruction precision. The trap handler can determine the exact
15208 instruction that caused a floating-point exception.
15209 @end table
15210
15211 Other Alpha compilers provide the equivalent options called
15212 @option{-scope_safe} and @option{-resumption_safe}.
15213
15214 @item -mieee-conformant
15215 @opindex mieee-conformant
15216 This option marks the generated code as IEEE conformant. You must not
15217 use this option unless you also specify @option{-mtrap-precision=i} and either
15218 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
15219 is to emit the line @samp{.eflag 48} in the function prologue of the
15220 generated assembly file.
15221
15222 @item -mbuild-constants
15223 @opindex mbuild-constants
15224 Normally GCC examines a 32- or 64-bit integer constant to
15225 see if it can construct it from smaller constants in two or three
15226 instructions. If it cannot, it outputs the constant as a literal and
15227 generates code to load it from the data segment at run time.
15228
15229 Use this option to require GCC to construct @emph{all} integer constants
15230 using code, even if it takes more instructions (the maximum is six).
15231
15232 You typically use this option to build a shared library dynamic
15233 loader. Itself a shared library, it must relocate itself in memory
15234 before it can find the variables and constants in its own data segment.
15235
15236 @item -mbwx
15237 @itemx -mno-bwx
15238 @itemx -mcix
15239 @itemx -mno-cix
15240 @itemx -mfix
15241 @itemx -mno-fix
15242 @itemx -mmax
15243 @itemx -mno-max
15244 @opindex mbwx
15245 @opindex mno-bwx
15246 @opindex mcix
15247 @opindex mno-cix
15248 @opindex mfix
15249 @opindex mno-fix
15250 @opindex mmax
15251 @opindex mno-max
15252 Indicate whether GCC should generate code to use the optional BWX,
15253 CIX, FIX and MAX instruction sets. The default is to use the instruction
15254 sets supported by the CPU type specified via @option{-mcpu=} option or that
15255 of the CPU on which GCC was built if none is specified.
15256
15257 @item -mfloat-vax
15258 @itemx -mfloat-ieee
15259 @opindex mfloat-vax
15260 @opindex mfloat-ieee
15261 Generate code that uses (does not use) VAX F and G floating-point
15262 arithmetic instead of IEEE single and double precision.
15263
15264 @item -mexplicit-relocs
15265 @itemx -mno-explicit-relocs
15266 @opindex mexplicit-relocs
15267 @opindex mno-explicit-relocs
15268 Older Alpha assemblers provided no way to generate symbol relocations
15269 except via assembler macros. Use of these macros does not allow
15270 optimal instruction scheduling. GNU binutils as of version 2.12
15271 supports a new syntax that allows the compiler to explicitly mark
15272 which relocations should apply to which instructions. This option
15273 is mostly useful for debugging, as GCC detects the capabilities of
15274 the assembler when it is built and sets the default accordingly.
15275
15276 @item -msmall-data
15277 @itemx -mlarge-data
15278 @opindex msmall-data
15279 @opindex mlarge-data
15280 When @option{-mexplicit-relocs} is in effect, static data is
15281 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
15282 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
15283 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
15284 16-bit relocations off of the @code{$gp} register. This limits the
15285 size of the small data area to 64KB, but allows the variables to be
15286 directly accessed via a single instruction.
15287
15288 The default is @option{-mlarge-data}. With this option the data area
15289 is limited to just below 2GB@. Programs that require more than 2GB of
15290 data must use @code{malloc} or @code{mmap} to allocate the data in the
15291 heap instead of in the program's data segment.
15292
15293 When generating code for shared libraries, @option{-fpic} implies
15294 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
15295
15296 @item -msmall-text
15297 @itemx -mlarge-text
15298 @opindex msmall-text
15299 @opindex mlarge-text
15300 When @option{-msmall-text} is used, the compiler assumes that the
15301 code of the entire program (or shared library) fits in 4MB, and is
15302 thus reachable with a branch instruction. When @option{-msmall-data}
15303 is used, the compiler can assume that all local symbols share the
15304 same @code{$gp} value, and thus reduce the number of instructions
15305 required for a function call from 4 to 1.
15306
15307 The default is @option{-mlarge-text}.
15308
15309 @item -mcpu=@var{cpu_type}
15310 @opindex mcpu
15311 Set the instruction set and instruction scheduling parameters for
15312 machine type @var{cpu_type}. You can specify either the @samp{EV}
15313 style name or the corresponding chip number. GCC supports scheduling
15314 parameters for the EV4, EV5 and EV6 family of processors and
15315 chooses the default values for the instruction set from the processor
15316 you specify. If you do not specify a processor type, GCC defaults
15317 to the processor on which the compiler was built.
15318
15319 Supported values for @var{cpu_type} are
15320
15321 @table @samp
15322 @item ev4
15323 @itemx ev45
15324 @itemx 21064
15325 Schedules as an EV4 and has no instruction set extensions.
15326
15327 @item ev5
15328 @itemx 21164
15329 Schedules as an EV5 and has no instruction set extensions.
15330
15331 @item ev56
15332 @itemx 21164a
15333 Schedules as an EV5 and supports the BWX extension.
15334
15335 @item pca56
15336 @itemx 21164pc
15337 @itemx 21164PC
15338 Schedules as an EV5 and supports the BWX and MAX extensions.
15339
15340 @item ev6
15341 @itemx 21264
15342 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
15343
15344 @item ev67
15345 @itemx 21264a
15346 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
15347 @end table
15348
15349 Native toolchains also support the value @samp{native},
15350 which selects the best architecture option for the host processor.
15351 @option{-mcpu=native} has no effect if GCC does not recognize
15352 the processor.
15353
15354 @item -mtune=@var{cpu_type}
15355 @opindex mtune
15356 Set only the instruction scheduling parameters for machine type
15357 @var{cpu_type}. The instruction set is not changed.
15358
15359 Native toolchains also support the value @samp{native},
15360 which selects the best architecture option for the host processor.
15361 @option{-mtune=native} has no effect if GCC does not recognize
15362 the processor.
15363
15364 @item -mmemory-latency=@var{time}
15365 @opindex mmemory-latency
15366 Sets the latency the scheduler should assume for typical memory
15367 references as seen by the application. This number is highly
15368 dependent on the memory access patterns used by the application
15369 and the size of the external cache on the machine.
15370
15371 Valid options for @var{time} are
15372
15373 @table @samp
15374 @item @var{number}
15375 A decimal number representing clock cycles.
15376
15377 @item L1
15378 @itemx L2
15379 @itemx L3
15380 @itemx main
15381 The compiler contains estimates of the number of clock cycles for
15382 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
15383 (also called Dcache, Scache, and Bcache), as well as to main memory.
15384 Note that L3 is only valid for EV5.
15385
15386 @end table
15387 @end table
15388
15389 @node FR30 Options
15390 @subsection FR30 Options
15391 @cindex FR30 Options
15392
15393 These options are defined specifically for the FR30 port.
15394
15395 @table @gcctabopt
15396
15397 @item -msmall-model
15398 @opindex msmall-model
15399 Use the small address space model. This can produce smaller code, but
15400 it does assume that all symbolic values and addresses fit into a
15401 20-bit range.
15402
15403 @item -mno-lsim
15404 @opindex mno-lsim
15405 Assume that runtime support has been provided and so there is no need
15406 to include the simulator library (@file{libsim.a}) on the linker
15407 command line.
15408
15409 @end table
15410
15411 @node FT32 Options
15412 @subsection FT32 Options
15413 @cindex FT32 Options
15414
15415 These options are defined specifically for the FT32 port.
15416
15417 @table @gcctabopt
15418
15419 @item -msim
15420 @opindex msim
15421 Specifies that the program will be run on the simulator. This causes
15422 an alternate runtime startup and library to be linked.
15423 You must not use this option when generating programs that will run on
15424 real hardware; you must provide your own runtime library for whatever
15425 I/O functions are needed.
15426
15427 @item -mlra
15428 @opindex mlra
15429 Enable Local Register Allocation. This is still experimental for FT32,
15430 so by default the compiler uses standard reload.
15431
15432 @end table
15433
15434 @node FRV Options
15435 @subsection FRV Options
15436 @cindex FRV Options
15437
15438 @table @gcctabopt
15439 @item -mgpr-32
15440 @opindex mgpr-32
15441
15442 Only use the first 32 general-purpose registers.
15443
15444 @item -mgpr-64
15445 @opindex mgpr-64
15446
15447 Use all 64 general-purpose registers.
15448
15449 @item -mfpr-32
15450 @opindex mfpr-32
15451
15452 Use only the first 32 floating-point registers.
15453
15454 @item -mfpr-64
15455 @opindex mfpr-64
15456
15457 Use all 64 floating-point registers.
15458
15459 @item -mhard-float
15460 @opindex mhard-float
15461
15462 Use hardware instructions for floating-point operations.
15463
15464 @item -msoft-float
15465 @opindex msoft-float
15466
15467 Use library routines for floating-point operations.
15468
15469 @item -malloc-cc
15470 @opindex malloc-cc
15471
15472 Dynamically allocate condition code registers.
15473
15474 @item -mfixed-cc
15475 @opindex mfixed-cc
15476
15477 Do not try to dynamically allocate condition code registers, only
15478 use @code{icc0} and @code{fcc0}.
15479
15480 @item -mdword
15481 @opindex mdword
15482
15483 Change ABI to use double word insns.
15484
15485 @item -mno-dword
15486 @opindex mno-dword
15487
15488 Do not use double word instructions.
15489
15490 @item -mdouble
15491 @opindex mdouble
15492
15493 Use floating-point double instructions.
15494
15495 @item -mno-double
15496 @opindex mno-double
15497
15498 Do not use floating-point double instructions.
15499
15500 @item -mmedia
15501 @opindex mmedia
15502
15503 Use media instructions.
15504
15505 @item -mno-media
15506 @opindex mno-media
15507
15508 Do not use media instructions.
15509
15510 @item -mmuladd
15511 @opindex mmuladd
15512
15513 Use multiply and add/subtract instructions.
15514
15515 @item -mno-muladd
15516 @opindex mno-muladd
15517
15518 Do not use multiply and add/subtract instructions.
15519
15520 @item -mfdpic
15521 @opindex mfdpic
15522
15523 Select the FDPIC ABI, which uses function descriptors to represent
15524 pointers to functions. Without any PIC/PIE-related options, it
15525 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
15526 assumes GOT entries and small data are within a 12-bit range from the
15527 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15528 are computed with 32 bits.
15529 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15530
15531 @item -minline-plt
15532 @opindex minline-plt
15533
15534 Enable inlining of PLT entries in function calls to functions that are
15535 not known to bind locally. It has no effect without @option{-mfdpic}.
15536 It's enabled by default if optimizing for speed and compiling for
15537 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15538 optimization option such as @option{-O3} or above is present in the
15539 command line.
15540
15541 @item -mTLS
15542 @opindex mTLS
15543
15544 Assume a large TLS segment when generating thread-local code.
15545
15546 @item -mtls
15547 @opindex mtls
15548
15549 Do not assume a large TLS segment when generating thread-local code.
15550
15551 @item -mgprel-ro
15552 @opindex mgprel-ro
15553
15554 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15555 that is known to be in read-only sections. It's enabled by default,
15556 except for @option{-fpic} or @option{-fpie}: even though it may help
15557 make the global offset table smaller, it trades 1 instruction for 4.
15558 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15559 one of which may be shared by multiple symbols, and it avoids the need
15560 for a GOT entry for the referenced symbol, so it's more likely to be a
15561 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
15562
15563 @item -multilib-library-pic
15564 @opindex multilib-library-pic
15565
15566 Link with the (library, not FD) pic libraries. It's implied by
15567 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
15568 @option{-fpic} without @option{-mfdpic}. You should never have to use
15569 it explicitly.
15570
15571 @item -mlinked-fp
15572 @opindex mlinked-fp
15573
15574 Follow the EABI requirement of always creating a frame pointer whenever
15575 a stack frame is allocated. This option is enabled by default and can
15576 be disabled with @option{-mno-linked-fp}.
15577
15578 @item -mlong-calls
15579 @opindex mlong-calls
15580
15581 Use indirect addressing to call functions outside the current
15582 compilation unit. This allows the functions to be placed anywhere
15583 within the 32-bit address space.
15584
15585 @item -malign-labels
15586 @opindex malign-labels
15587
15588 Try to align labels to an 8-byte boundary by inserting NOPs into the
15589 previous packet. This option only has an effect when VLIW packing
15590 is enabled. It doesn't create new packets; it merely adds NOPs to
15591 existing ones.
15592
15593 @item -mlibrary-pic
15594 @opindex mlibrary-pic
15595
15596 Generate position-independent EABI code.
15597
15598 @item -macc-4
15599 @opindex macc-4
15600
15601 Use only the first four media accumulator registers.
15602
15603 @item -macc-8
15604 @opindex macc-8
15605
15606 Use all eight media accumulator registers.
15607
15608 @item -mpack
15609 @opindex mpack
15610
15611 Pack VLIW instructions.
15612
15613 @item -mno-pack
15614 @opindex mno-pack
15615
15616 Do not pack VLIW instructions.
15617
15618 @item -mno-eflags
15619 @opindex mno-eflags
15620
15621 Do not mark ABI switches in e_flags.
15622
15623 @item -mcond-move
15624 @opindex mcond-move
15625
15626 Enable the use of conditional-move instructions (default).
15627
15628 This switch is mainly for debugging the compiler and will likely be removed
15629 in a future version.
15630
15631 @item -mno-cond-move
15632 @opindex mno-cond-move
15633
15634 Disable the use of conditional-move instructions.
15635
15636 This switch is mainly for debugging the compiler and will likely be removed
15637 in a future version.
15638
15639 @item -mscc
15640 @opindex mscc
15641
15642 Enable the use of conditional set instructions (default).
15643
15644 This switch is mainly for debugging the compiler and will likely be removed
15645 in a future version.
15646
15647 @item -mno-scc
15648 @opindex mno-scc
15649
15650 Disable the use of conditional set instructions.
15651
15652 This switch is mainly for debugging the compiler and will likely be removed
15653 in a future version.
15654
15655 @item -mcond-exec
15656 @opindex mcond-exec
15657
15658 Enable the use of conditional execution (default).
15659
15660 This switch is mainly for debugging the compiler and will likely be removed
15661 in a future version.
15662
15663 @item -mno-cond-exec
15664 @opindex mno-cond-exec
15665
15666 Disable the use of conditional execution.
15667
15668 This switch is mainly for debugging the compiler and will likely be removed
15669 in a future version.
15670
15671 @item -mvliw-branch
15672 @opindex mvliw-branch
15673
15674 Run a pass to pack branches into VLIW instructions (default).
15675
15676 This switch is mainly for debugging the compiler and will likely be removed
15677 in a future version.
15678
15679 @item -mno-vliw-branch
15680 @opindex mno-vliw-branch
15681
15682 Do not run a pass to pack branches into VLIW instructions.
15683
15684 This switch is mainly for debugging the compiler and will likely be removed
15685 in a future version.
15686
15687 @item -mmulti-cond-exec
15688 @opindex mmulti-cond-exec
15689
15690 Enable optimization of @code{&&} and @code{||} in conditional execution
15691 (default).
15692
15693 This switch is mainly for debugging the compiler and will likely be removed
15694 in a future version.
15695
15696 @item -mno-multi-cond-exec
15697 @opindex mno-multi-cond-exec
15698
15699 Disable optimization of @code{&&} and @code{||} in conditional execution.
15700
15701 This switch is mainly for debugging the compiler and will likely be removed
15702 in a future version.
15703
15704 @item -mnested-cond-exec
15705 @opindex mnested-cond-exec
15706
15707 Enable nested conditional execution optimizations (default).
15708
15709 This switch is mainly for debugging the compiler and will likely be removed
15710 in a future version.
15711
15712 @item -mno-nested-cond-exec
15713 @opindex mno-nested-cond-exec
15714
15715 Disable nested conditional execution optimizations.
15716
15717 This switch is mainly for debugging the compiler and will likely be removed
15718 in a future version.
15719
15720 @item -moptimize-membar
15721 @opindex moptimize-membar
15722
15723 This switch removes redundant @code{membar} instructions from the
15724 compiler-generated code. It is enabled by default.
15725
15726 @item -mno-optimize-membar
15727 @opindex mno-optimize-membar
15728
15729 This switch disables the automatic removal of redundant @code{membar}
15730 instructions from the generated code.
15731
15732 @item -mtomcat-stats
15733 @opindex mtomcat-stats
15734
15735 Cause gas to print out tomcat statistics.
15736
15737 @item -mcpu=@var{cpu}
15738 @opindex mcpu
15739
15740 Select the processor type for which to generate code. Possible values are
15741 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15742 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15743
15744 @end table
15745
15746 @node GNU/Linux Options
15747 @subsection GNU/Linux Options
15748
15749 These @samp{-m} options are defined for GNU/Linux targets:
15750
15751 @table @gcctabopt
15752 @item -mglibc
15753 @opindex mglibc
15754 Use the GNU C library. This is the default except
15755 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
15756 @samp{*-*-linux-*android*} targets.
15757
15758 @item -muclibc
15759 @opindex muclibc
15760 Use uClibc C library. This is the default on
15761 @samp{*-*-linux-*uclibc*} targets.
15762
15763 @item -mmusl
15764 @opindex mmusl
15765 Use the musl C library. This is the default on
15766 @samp{*-*-linux-*musl*} targets.
15767
15768 @item -mbionic
15769 @opindex mbionic
15770 Use Bionic C library. This is the default on
15771 @samp{*-*-linux-*android*} targets.
15772
15773 @item -mandroid
15774 @opindex mandroid
15775 Compile code compatible with Android platform. This is the default on
15776 @samp{*-*-linux-*android*} targets.
15777
15778 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15779 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
15780 this option makes the GCC driver pass Android-specific options to the linker.
15781 Finally, this option causes the preprocessor macro @code{__ANDROID__}
15782 to be defined.
15783
15784 @item -tno-android-cc
15785 @opindex tno-android-cc
15786 Disable compilation effects of @option{-mandroid}, i.e., do not enable
15787 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15788 @option{-fno-rtti} by default.
15789
15790 @item -tno-android-ld
15791 @opindex tno-android-ld
15792 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15793 linking options to the linker.
15794
15795 @end table
15796
15797 @node H8/300 Options
15798 @subsection H8/300 Options
15799
15800 These @samp{-m} options are defined for the H8/300 implementations:
15801
15802 @table @gcctabopt
15803 @item -mrelax
15804 @opindex mrelax
15805 Shorten some address references at link time, when possible; uses the
15806 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
15807 ld, Using ld}, for a fuller description.
15808
15809 @item -mh
15810 @opindex mh
15811 Generate code for the H8/300H@.
15812
15813 @item -ms
15814 @opindex ms
15815 Generate code for the H8S@.
15816
15817 @item -mn
15818 @opindex mn
15819 Generate code for the H8S and H8/300H in the normal mode. This switch
15820 must be used either with @option{-mh} or @option{-ms}.
15821
15822 @item -ms2600
15823 @opindex ms2600
15824 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
15825
15826 @item -mexr
15827 @opindex mexr
15828 Extended registers are stored on stack before execution of function
15829 with monitor attribute. Default option is @option{-mexr}.
15830 This option is valid only for H8S targets.
15831
15832 @item -mno-exr
15833 @opindex mno-exr
15834 Extended registers are not stored on stack before execution of function
15835 with monitor attribute. Default option is @option{-mno-exr}.
15836 This option is valid only for H8S targets.
15837
15838 @item -mint32
15839 @opindex mint32
15840 Make @code{int} data 32 bits by default.
15841
15842 @item -malign-300
15843 @opindex malign-300
15844 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15845 The default for the H8/300H and H8S is to align longs and floats on
15846 4-byte boundaries.
15847 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
15848 This option has no effect on the H8/300.
15849 @end table
15850
15851 @node HPPA Options
15852 @subsection HPPA Options
15853 @cindex HPPA Options
15854
15855 These @samp{-m} options are defined for the HPPA family of computers:
15856
15857 @table @gcctabopt
15858 @item -march=@var{architecture-type}
15859 @opindex march
15860 Generate code for the specified architecture. The choices for
15861 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
15862 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
15863 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
15864 architecture option for your machine. Code compiled for lower numbered
15865 architectures runs on higher numbered architectures, but not the
15866 other way around.
15867
15868 @item -mpa-risc-1-0
15869 @itemx -mpa-risc-1-1
15870 @itemx -mpa-risc-2-0
15871 @opindex mpa-risc-1-0
15872 @opindex mpa-risc-1-1
15873 @opindex mpa-risc-2-0
15874 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
15875
15876 @item -mjump-in-delay
15877 @opindex mjump-in-delay
15878 This option is ignored and provided for compatibility purposes only.
15879
15880 @item -mdisable-fpregs
15881 @opindex mdisable-fpregs
15882 Prevent floating-point registers from being used in any manner. This is
15883 necessary for compiling kernels that perform lazy context switching of
15884 floating-point registers. If you use this option and attempt to perform
15885 floating-point operations, the compiler aborts.
15886
15887 @item -mdisable-indexing
15888 @opindex mdisable-indexing
15889 Prevent the compiler from using indexing address modes. This avoids some
15890 rather obscure problems when compiling MIG generated code under MACH@.
15891
15892 @item -mno-space-regs
15893 @opindex mno-space-regs
15894 Generate code that assumes the target has no space registers. This allows
15895 GCC to generate faster indirect calls and use unscaled index address modes.
15896
15897 Such code is suitable for level 0 PA systems and kernels.
15898
15899 @item -mfast-indirect-calls
15900 @opindex mfast-indirect-calls
15901 Generate code that assumes calls never cross space boundaries. This
15902 allows GCC to emit code that performs faster indirect calls.
15903
15904 This option does not work in the presence of shared libraries or nested
15905 functions.
15906
15907 @item -mfixed-range=@var{register-range}
15908 @opindex mfixed-range
15909 Generate code treating the given register range as fixed registers.
15910 A fixed register is one that the register allocator cannot use. This is
15911 useful when compiling kernel code. A register range is specified as
15912 two registers separated by a dash. Multiple register ranges can be
15913 specified separated by a comma.
15914
15915 @item -mlong-load-store
15916 @opindex mlong-load-store
15917 Generate 3-instruction load and store sequences as sometimes required by
15918 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
15919 the HP compilers.
15920
15921 @item -mportable-runtime
15922 @opindex mportable-runtime
15923 Use the portable calling conventions proposed by HP for ELF systems.
15924
15925 @item -mgas
15926 @opindex mgas
15927 Enable the use of assembler directives only GAS understands.
15928
15929 @item -mschedule=@var{cpu-type}
15930 @opindex mschedule
15931 Schedule code according to the constraints for the machine type
15932 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
15933 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
15934 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
15935 proper scheduling option for your machine. The default scheduling is
15936 @samp{8000}.
15937
15938 @item -mlinker-opt
15939 @opindex mlinker-opt
15940 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
15941 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
15942 linkers in which they give bogus error messages when linking some programs.
15943
15944 @item -msoft-float
15945 @opindex msoft-float
15946 Generate output containing library calls for floating point.
15947 @strong{Warning:} the requisite libraries are not available for all HPPA
15948 targets. Normally the facilities of the machine's usual C compiler are
15949 used, but this cannot be done directly in cross-compilation. You must make
15950 your own arrangements to provide suitable library functions for
15951 cross-compilation.
15952
15953 @option{-msoft-float} changes the calling convention in the output file;
15954 therefore, it is only useful if you compile @emph{all} of a program with
15955 this option. In particular, you need to compile @file{libgcc.a}, the
15956 library that comes with GCC, with @option{-msoft-float} in order for
15957 this to work.
15958
15959 @item -msio
15960 @opindex msio
15961 Generate the predefine, @code{_SIO}, for server IO@. The default is
15962 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
15963 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
15964 options are available under HP-UX and HI-UX@.
15965
15966 @item -mgnu-ld
15967 @opindex mgnu-ld
15968 Use options specific to GNU @command{ld}.
15969 This passes @option{-shared} to @command{ld} when
15970 building a shared library. It is the default when GCC is configured,
15971 explicitly or implicitly, with the GNU linker. This option does not
15972 affect which @command{ld} is called; it only changes what parameters
15973 are passed to that @command{ld}.
15974 The @command{ld} that is called is determined by the
15975 @option{--with-ld} configure option, GCC's program search path, and
15976 finally by the user's @env{PATH}. The linker used by GCC can be printed
15977 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
15978 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15979
15980 @item -mhp-ld
15981 @opindex mhp-ld
15982 Use options specific to HP @command{ld}.
15983 This passes @option{-b} to @command{ld} when building
15984 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
15985 links. It is the default when GCC is configured, explicitly or
15986 implicitly, with the HP linker. This option does not affect
15987 which @command{ld} is called; it only changes what parameters are passed to that
15988 @command{ld}.
15989 The @command{ld} that is called is determined by the @option{--with-ld}
15990 configure option, GCC's program search path, and finally by the user's
15991 @env{PATH}. The linker used by GCC can be printed using @samp{which
15992 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
15993 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15994
15995 @item -mlong-calls
15996 @opindex mno-long-calls
15997 Generate code that uses long call sequences. This ensures that a call
15998 is always able to reach linker generated stubs. The default is to generate
15999 long calls only when the distance from the call site to the beginning
16000 of the function or translation unit, as the case may be, exceeds a
16001 predefined limit set by the branch type being used. The limits for
16002 normal calls are 7,600,000 and 240,000 bytes, respectively for the
16003 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
16004 240,000 bytes.
16005
16006 Distances are measured from the beginning of functions when using the
16007 @option{-ffunction-sections} option, or when using the @option{-mgas}
16008 and @option{-mno-portable-runtime} options together under HP-UX with
16009 the SOM linker.
16010
16011 It is normally not desirable to use this option as it degrades
16012 performance. However, it may be useful in large applications,
16013 particularly when partial linking is used to build the application.
16014
16015 The types of long calls used depends on the capabilities of the
16016 assembler and linker, and the type of code being generated. The
16017 impact on systems that support long absolute calls, and long pic
16018 symbol-difference or pc-relative calls should be relatively small.
16019 However, an indirect call is used on 32-bit ELF systems in pic code
16020 and it is quite long.
16021
16022 @item -munix=@var{unix-std}
16023 @opindex march
16024 Generate compiler predefines and select a startfile for the specified
16025 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
16026 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
16027 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
16028 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
16029 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
16030 and later.
16031
16032 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
16033 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
16034 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
16035 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
16036 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
16037 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
16038
16039 It is @emph{important} to note that this option changes the interfaces
16040 for various library routines. It also affects the operational behavior
16041 of the C library. Thus, @emph{extreme} care is needed in using this
16042 option.
16043
16044 Library code that is intended to operate with more than one UNIX
16045 standard must test, set and restore the variable @code{__xpg4_extended_mask}
16046 as appropriate. Most GNU software doesn't provide this capability.
16047
16048 @item -nolibdld
16049 @opindex nolibdld
16050 Suppress the generation of link options to search libdld.sl when the
16051 @option{-static} option is specified on HP-UX 10 and later.
16052
16053 @item -static
16054 @opindex static
16055 The HP-UX implementation of setlocale in libc has a dependency on
16056 libdld.sl. There isn't an archive version of libdld.sl. Thus,
16057 when the @option{-static} option is specified, special link options
16058 are needed to resolve this dependency.
16059
16060 On HP-UX 10 and later, the GCC driver adds the necessary options to
16061 link with libdld.sl when the @option{-static} option is specified.
16062 This causes the resulting binary to be dynamic. On the 64-bit port,
16063 the linkers generate dynamic binaries by default in any case. The
16064 @option{-nolibdld} option can be used to prevent the GCC driver from
16065 adding these link options.
16066
16067 @item -threads
16068 @opindex threads
16069 Add support for multithreading with the @dfn{dce thread} library
16070 under HP-UX@. This option sets flags for both the preprocessor and
16071 linker.
16072 @end table
16073
16074 @node IA-64 Options
16075 @subsection IA-64 Options
16076 @cindex IA-64 Options
16077
16078 These are the @samp{-m} options defined for the Intel IA-64 architecture.
16079
16080 @table @gcctabopt
16081 @item -mbig-endian
16082 @opindex mbig-endian
16083 Generate code for a big-endian target. This is the default for HP-UX@.
16084
16085 @item -mlittle-endian
16086 @opindex mlittle-endian
16087 Generate code for a little-endian target. This is the default for AIX5
16088 and GNU/Linux.
16089
16090 @item -mgnu-as
16091 @itemx -mno-gnu-as
16092 @opindex mgnu-as
16093 @opindex mno-gnu-as
16094 Generate (or don't) code for the GNU assembler. This is the default.
16095 @c Also, this is the default if the configure option @option{--with-gnu-as}
16096 @c is used.
16097
16098 @item -mgnu-ld
16099 @itemx -mno-gnu-ld
16100 @opindex mgnu-ld
16101 @opindex mno-gnu-ld
16102 Generate (or don't) code for the GNU linker. This is the default.
16103 @c Also, this is the default if the configure option @option{--with-gnu-ld}
16104 @c is used.
16105
16106 @item -mno-pic
16107 @opindex mno-pic
16108 Generate code that does not use a global pointer register. The result
16109 is not position independent code, and violates the IA-64 ABI@.
16110
16111 @item -mvolatile-asm-stop
16112 @itemx -mno-volatile-asm-stop
16113 @opindex mvolatile-asm-stop
16114 @opindex mno-volatile-asm-stop
16115 Generate (or don't) a stop bit immediately before and after volatile asm
16116 statements.
16117
16118 @item -mregister-names
16119 @itemx -mno-register-names
16120 @opindex mregister-names
16121 @opindex mno-register-names
16122 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
16123 the stacked registers. This may make assembler output more readable.
16124
16125 @item -mno-sdata
16126 @itemx -msdata
16127 @opindex mno-sdata
16128 @opindex msdata
16129 Disable (or enable) optimizations that use the small data section. This may
16130 be useful for working around optimizer bugs.
16131
16132 @item -mconstant-gp
16133 @opindex mconstant-gp
16134 Generate code that uses a single constant global pointer value. This is
16135 useful when compiling kernel code.
16136
16137 @item -mauto-pic
16138 @opindex mauto-pic
16139 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
16140 This is useful when compiling firmware code.
16141
16142 @item -minline-float-divide-min-latency
16143 @opindex minline-float-divide-min-latency
16144 Generate code for inline divides of floating-point values
16145 using the minimum latency algorithm.
16146
16147 @item -minline-float-divide-max-throughput
16148 @opindex minline-float-divide-max-throughput
16149 Generate code for inline divides of floating-point values
16150 using the maximum throughput algorithm.
16151
16152 @item -mno-inline-float-divide
16153 @opindex mno-inline-float-divide
16154 Do not generate inline code for divides of floating-point values.
16155
16156 @item -minline-int-divide-min-latency
16157 @opindex minline-int-divide-min-latency
16158 Generate code for inline divides of integer values
16159 using the minimum latency algorithm.
16160
16161 @item -minline-int-divide-max-throughput
16162 @opindex minline-int-divide-max-throughput
16163 Generate code for inline divides of integer values
16164 using the maximum throughput algorithm.
16165
16166 @item -mno-inline-int-divide
16167 @opindex mno-inline-int-divide
16168 Do not generate inline code for divides of integer values.
16169
16170 @item -minline-sqrt-min-latency
16171 @opindex minline-sqrt-min-latency
16172 Generate code for inline square roots
16173 using the minimum latency algorithm.
16174
16175 @item -minline-sqrt-max-throughput
16176 @opindex minline-sqrt-max-throughput
16177 Generate code for inline square roots
16178 using the maximum throughput algorithm.
16179
16180 @item -mno-inline-sqrt
16181 @opindex mno-inline-sqrt
16182 Do not generate inline code for @code{sqrt}.
16183
16184 @item -mfused-madd
16185 @itemx -mno-fused-madd
16186 @opindex mfused-madd
16187 @opindex mno-fused-madd
16188 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
16189 instructions. The default is to use these instructions.
16190
16191 @item -mno-dwarf2-asm
16192 @itemx -mdwarf2-asm
16193 @opindex mno-dwarf2-asm
16194 @opindex mdwarf2-asm
16195 Don't (or do) generate assembler code for the DWARF 2 line number debugging
16196 info. This may be useful when not using the GNU assembler.
16197
16198 @item -mearly-stop-bits
16199 @itemx -mno-early-stop-bits
16200 @opindex mearly-stop-bits
16201 @opindex mno-early-stop-bits
16202 Allow stop bits to be placed earlier than immediately preceding the
16203 instruction that triggered the stop bit. This can improve instruction
16204 scheduling, but does not always do so.
16205
16206 @item -mfixed-range=@var{register-range}
16207 @opindex mfixed-range
16208 Generate code treating the given register range as fixed registers.
16209 A fixed register is one that the register allocator cannot use. This is
16210 useful when compiling kernel code. A register range is specified as
16211 two registers separated by a dash. Multiple register ranges can be
16212 specified separated by a comma.
16213
16214 @item -mtls-size=@var{tls-size}
16215 @opindex mtls-size
16216 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
16217 64.
16218
16219 @item -mtune=@var{cpu-type}
16220 @opindex mtune
16221 Tune the instruction scheduling for a particular CPU, Valid values are
16222 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
16223 and @samp{mckinley}.
16224
16225 @item -milp32
16226 @itemx -mlp64
16227 @opindex milp32
16228 @opindex mlp64
16229 Generate code for a 32-bit or 64-bit environment.
16230 The 32-bit environment sets int, long and pointer to 32 bits.
16231 The 64-bit environment sets int to 32 bits and long and pointer
16232 to 64 bits. These are HP-UX specific flags.
16233
16234 @item -mno-sched-br-data-spec
16235 @itemx -msched-br-data-spec
16236 @opindex mno-sched-br-data-spec
16237 @opindex msched-br-data-spec
16238 (Dis/En)able data speculative scheduling before reload.
16239 This results in generation of @code{ld.a} instructions and
16240 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16241 The default is 'disable'.
16242
16243 @item -msched-ar-data-spec
16244 @itemx -mno-sched-ar-data-spec
16245 @opindex msched-ar-data-spec
16246 @opindex mno-sched-ar-data-spec
16247 (En/Dis)able data speculative scheduling after reload.
16248 This results in generation of @code{ld.a} instructions and
16249 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16250 The default is 'enable'.
16251
16252 @item -mno-sched-control-spec
16253 @itemx -msched-control-spec
16254 @opindex mno-sched-control-spec
16255 @opindex msched-control-spec
16256 (Dis/En)able control speculative scheduling. This feature is
16257 available only during region scheduling (i.e.@: before reload).
16258 This results in generation of the @code{ld.s} instructions and
16259 the corresponding check instructions @code{chk.s}.
16260 The default is 'disable'.
16261
16262 @item -msched-br-in-data-spec
16263 @itemx -mno-sched-br-in-data-spec
16264 @opindex msched-br-in-data-spec
16265 @opindex mno-sched-br-in-data-spec
16266 (En/Dis)able speculative scheduling of the instructions that
16267 are dependent on the data speculative loads before reload.
16268 This is effective only with @option{-msched-br-data-spec} enabled.
16269 The default is 'enable'.
16270
16271 @item -msched-ar-in-data-spec
16272 @itemx -mno-sched-ar-in-data-spec
16273 @opindex msched-ar-in-data-spec
16274 @opindex mno-sched-ar-in-data-spec
16275 (En/Dis)able speculative scheduling of the instructions that
16276 are dependent on the data speculative loads after reload.
16277 This is effective only with @option{-msched-ar-data-spec} enabled.
16278 The default is 'enable'.
16279
16280 @item -msched-in-control-spec
16281 @itemx -mno-sched-in-control-spec
16282 @opindex msched-in-control-spec
16283 @opindex mno-sched-in-control-spec
16284 (En/Dis)able speculative scheduling of the instructions that
16285 are dependent on the control speculative loads.
16286 This is effective only with @option{-msched-control-spec} enabled.
16287 The default is 'enable'.
16288
16289 @item -mno-sched-prefer-non-data-spec-insns
16290 @itemx -msched-prefer-non-data-spec-insns
16291 @opindex mno-sched-prefer-non-data-spec-insns
16292 @opindex msched-prefer-non-data-spec-insns
16293 If enabled, data-speculative instructions are chosen for schedule
16294 only if there are no other choices at the moment. This makes
16295 the use of the data speculation much more conservative.
16296 The default is 'disable'.
16297
16298 @item -mno-sched-prefer-non-control-spec-insns
16299 @itemx -msched-prefer-non-control-spec-insns
16300 @opindex mno-sched-prefer-non-control-spec-insns
16301 @opindex msched-prefer-non-control-spec-insns
16302 If enabled, control-speculative instructions are chosen for schedule
16303 only if there are no other choices at the moment. This makes
16304 the use of the control speculation much more conservative.
16305 The default is 'disable'.
16306
16307 @item -mno-sched-count-spec-in-critical-path
16308 @itemx -msched-count-spec-in-critical-path
16309 @opindex mno-sched-count-spec-in-critical-path
16310 @opindex msched-count-spec-in-critical-path
16311 If enabled, speculative dependencies are considered during
16312 computation of the instructions priorities. This makes the use of the
16313 speculation a bit more conservative.
16314 The default is 'disable'.
16315
16316 @item -msched-spec-ldc
16317 @opindex msched-spec-ldc
16318 Use a simple data speculation check. This option is on by default.
16319
16320 @item -msched-control-spec-ldc
16321 @opindex msched-spec-ldc
16322 Use a simple check for control speculation. This option is on by default.
16323
16324 @item -msched-stop-bits-after-every-cycle
16325 @opindex msched-stop-bits-after-every-cycle
16326 Place a stop bit after every cycle when scheduling. This option is on
16327 by default.
16328
16329 @item -msched-fp-mem-deps-zero-cost
16330 @opindex msched-fp-mem-deps-zero-cost
16331 Assume that floating-point stores and loads are not likely to cause a conflict
16332 when placed into the same instruction group. This option is disabled by
16333 default.
16334
16335 @item -msel-sched-dont-check-control-spec
16336 @opindex msel-sched-dont-check-control-spec
16337 Generate checks for control speculation in selective scheduling.
16338 This flag is disabled by default.
16339
16340 @item -msched-max-memory-insns=@var{max-insns}
16341 @opindex msched-max-memory-insns
16342 Limit on the number of memory insns per instruction group, giving lower
16343 priority to subsequent memory insns attempting to schedule in the same
16344 instruction group. Frequently useful to prevent cache bank conflicts.
16345 The default value is 1.
16346
16347 @item -msched-max-memory-insns-hard-limit
16348 @opindex msched-max-memory-insns-hard-limit
16349 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
16350 disallowing more than that number in an instruction group.
16351 Otherwise, the limit is ``soft'', meaning that non-memory operations
16352 are preferred when the limit is reached, but memory operations may still
16353 be scheduled.
16354
16355 @end table
16356
16357 @node LM32 Options
16358 @subsection LM32 Options
16359 @cindex LM32 options
16360
16361 These @option{-m} options are defined for the LatticeMico32 architecture:
16362
16363 @table @gcctabopt
16364 @item -mbarrel-shift-enabled
16365 @opindex mbarrel-shift-enabled
16366 Enable barrel-shift instructions.
16367
16368 @item -mdivide-enabled
16369 @opindex mdivide-enabled
16370 Enable divide and modulus instructions.
16371
16372 @item -mmultiply-enabled
16373 @opindex multiply-enabled
16374 Enable multiply instructions.
16375
16376 @item -msign-extend-enabled
16377 @opindex msign-extend-enabled
16378 Enable sign extend instructions.
16379
16380 @item -muser-enabled
16381 @opindex muser-enabled
16382 Enable user-defined instructions.
16383
16384 @end table
16385
16386 @node M32C Options
16387 @subsection M32C Options
16388 @cindex M32C options
16389
16390 @table @gcctabopt
16391 @item -mcpu=@var{name}
16392 @opindex mcpu=
16393 Select the CPU for which code is generated. @var{name} may be one of
16394 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
16395 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
16396 the M32C/80 series.
16397
16398 @item -msim
16399 @opindex msim
16400 Specifies that the program will be run on the simulator. This causes
16401 an alternate runtime library to be linked in which supports, for
16402 example, file I/O@. You must not use this option when generating
16403 programs that will run on real hardware; you must provide your own
16404 runtime library for whatever I/O functions are needed.
16405
16406 @item -memregs=@var{number}
16407 @opindex memregs=
16408 Specifies the number of memory-based pseudo-registers GCC uses
16409 during code generation. These pseudo-registers are used like real
16410 registers, so there is a tradeoff between GCC's ability to fit the
16411 code into available registers, and the performance penalty of using
16412 memory instead of registers. Note that all modules in a program must
16413 be compiled with the same value for this option. Because of that, you
16414 must not use this option with GCC's default runtime libraries.
16415
16416 @end table
16417
16418 @node M32R/D Options
16419 @subsection M32R/D Options
16420 @cindex M32R/D options
16421
16422 These @option{-m} options are defined for Renesas M32R/D architectures:
16423
16424 @table @gcctabopt
16425 @item -m32r2
16426 @opindex m32r2
16427 Generate code for the M32R/2@.
16428
16429 @item -m32rx
16430 @opindex m32rx
16431 Generate code for the M32R/X@.
16432
16433 @item -m32r
16434 @opindex m32r
16435 Generate code for the M32R@. This is the default.
16436
16437 @item -mmodel=small
16438 @opindex mmodel=small
16439 Assume all objects live in the lower 16MB of memory (so that their addresses
16440 can be loaded with the @code{ld24} instruction), and assume all subroutines
16441 are reachable with the @code{bl} instruction.
16442 This is the default.
16443
16444 The addressability of a particular object can be set with the
16445 @code{model} attribute.
16446
16447 @item -mmodel=medium
16448 @opindex mmodel=medium
16449 Assume objects may be anywhere in the 32-bit address space (the compiler
16450 generates @code{seth/add3} instructions to load their addresses), and
16451 assume all subroutines are reachable with the @code{bl} instruction.
16452
16453 @item -mmodel=large
16454 @opindex mmodel=large
16455 Assume objects may be anywhere in the 32-bit address space (the compiler
16456 generates @code{seth/add3} instructions to load their addresses), and
16457 assume subroutines may not be reachable with the @code{bl} instruction
16458 (the compiler generates the much slower @code{seth/add3/jl}
16459 instruction sequence).
16460
16461 @item -msdata=none
16462 @opindex msdata=none
16463 Disable use of the small data area. Variables are put into
16464 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16465 @code{section} attribute has been specified).
16466 This is the default.
16467
16468 The small data area consists of sections @code{.sdata} and @code{.sbss}.
16469 Objects may be explicitly put in the small data area with the
16470 @code{section} attribute using one of these sections.
16471
16472 @item -msdata=sdata
16473 @opindex msdata=sdata
16474 Put small global and static data in the small data area, but do not
16475 generate special code to reference them.
16476
16477 @item -msdata=use
16478 @opindex msdata=use
16479 Put small global and static data in the small data area, and generate
16480 special instructions to reference them.
16481
16482 @item -G @var{num}
16483 @opindex G
16484 @cindex smaller data references
16485 Put global and static objects less than or equal to @var{num} bytes
16486 into the small data or BSS sections instead of the normal data or BSS
16487 sections. The default value of @var{num} is 8.
16488 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16489 for this option to have any effect.
16490
16491 All modules should be compiled with the same @option{-G @var{num}} value.
16492 Compiling with different values of @var{num} may or may not work; if it
16493 doesn't the linker gives an error message---incorrect code is not
16494 generated.
16495
16496 @item -mdebug
16497 @opindex mdebug
16498 Makes the M32R-specific code in the compiler display some statistics
16499 that might help in debugging programs.
16500
16501 @item -malign-loops
16502 @opindex malign-loops
16503 Align all loops to a 32-byte boundary.
16504
16505 @item -mno-align-loops
16506 @opindex mno-align-loops
16507 Do not enforce a 32-byte alignment for loops. This is the default.
16508
16509 @item -missue-rate=@var{number}
16510 @opindex missue-rate=@var{number}
16511 Issue @var{number} instructions per cycle. @var{number} can only be 1
16512 or 2.
16513
16514 @item -mbranch-cost=@var{number}
16515 @opindex mbranch-cost=@var{number}
16516 @var{number} can only be 1 or 2. If it is 1 then branches are
16517 preferred over conditional code, if it is 2, then the opposite applies.
16518
16519 @item -mflush-trap=@var{number}
16520 @opindex mflush-trap=@var{number}
16521 Specifies the trap number to use to flush the cache. The default is
16522 12. Valid numbers are between 0 and 15 inclusive.
16523
16524 @item -mno-flush-trap
16525 @opindex mno-flush-trap
16526 Specifies that the cache cannot be flushed by using a trap.
16527
16528 @item -mflush-func=@var{name}
16529 @opindex mflush-func=@var{name}
16530 Specifies the name of the operating system function to call to flush
16531 the cache. The default is @samp{_flush_cache}, but a function call
16532 is only used if a trap is not available.
16533
16534 @item -mno-flush-func
16535 @opindex mno-flush-func
16536 Indicates that there is no OS function for flushing the cache.
16537
16538 @end table
16539
16540 @node M680x0 Options
16541 @subsection M680x0 Options
16542 @cindex M680x0 options
16543
16544 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16545 The default settings depend on which architecture was selected when
16546 the compiler was configured; the defaults for the most common choices
16547 are given below.
16548
16549 @table @gcctabopt
16550 @item -march=@var{arch}
16551 @opindex march
16552 Generate code for a specific M680x0 or ColdFire instruction set
16553 architecture. Permissible values of @var{arch} for M680x0
16554 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16555 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
16556 architectures are selected according to Freescale's ISA classification
16557 and the permissible values are: @samp{isaa}, @samp{isaaplus},
16558 @samp{isab} and @samp{isac}.
16559
16560 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16561 code for a ColdFire target. The @var{arch} in this macro is one of the
16562 @option{-march} arguments given above.
16563
16564 When used together, @option{-march} and @option{-mtune} select code
16565 that runs on a family of similar processors but that is optimized
16566 for a particular microarchitecture.
16567
16568 @item -mcpu=@var{cpu}
16569 @opindex mcpu
16570 Generate code for a specific M680x0 or ColdFire processor.
16571 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16572 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16573 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
16574 below, which also classifies the CPUs into families:
16575
16576 @multitable @columnfractions 0.20 0.80
16577 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16578 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16579 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16580 @item @samp{5206e} @tab @samp{5206e}
16581 @item @samp{5208} @tab @samp{5207} @samp{5208}
16582 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16583 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16584 @item @samp{5216} @tab @samp{5214} @samp{5216}
16585 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16586 @item @samp{5225} @tab @samp{5224} @samp{5225}
16587 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16588 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16589 @item @samp{5249} @tab @samp{5249}
16590 @item @samp{5250} @tab @samp{5250}
16591 @item @samp{5271} @tab @samp{5270} @samp{5271}
16592 @item @samp{5272} @tab @samp{5272}
16593 @item @samp{5275} @tab @samp{5274} @samp{5275}
16594 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16595 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16596 @item @samp{5307} @tab @samp{5307}
16597 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16598 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16599 @item @samp{5407} @tab @samp{5407}
16600 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16601 @end multitable
16602
16603 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16604 @var{arch} is compatible with @var{cpu}. Other combinations of
16605 @option{-mcpu} and @option{-march} are rejected.
16606
16607 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16608 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
16609 where the value of @var{family} is given by the table above.
16610
16611 @item -mtune=@var{tune}
16612 @opindex mtune
16613 Tune the code for a particular microarchitecture within the
16614 constraints set by @option{-march} and @option{-mcpu}.
16615 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16616 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16617 and @samp{cpu32}. The ColdFire microarchitectures
16618 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16619
16620 You can also use @option{-mtune=68020-40} for code that needs
16621 to run relatively well on 68020, 68030 and 68040 targets.
16622 @option{-mtune=68020-60} is similar but includes 68060 targets
16623 as well. These two options select the same tuning decisions as
16624 @option{-m68020-40} and @option{-m68020-60} respectively.
16625
16626 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16627 when tuning for 680x0 architecture @var{arch}. It also defines
16628 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16629 option is used. If GCC is tuning for a range of architectures,
16630 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16631 it defines the macros for every architecture in the range.
16632
16633 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16634 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16635 of the arguments given above.
16636
16637 @item -m68000
16638 @itemx -mc68000
16639 @opindex m68000
16640 @opindex mc68000
16641 Generate output for a 68000. This is the default
16642 when the compiler is configured for 68000-based systems.
16643 It is equivalent to @option{-march=68000}.
16644
16645 Use this option for microcontrollers with a 68000 or EC000 core,
16646 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16647
16648 @item -m68010
16649 @opindex m68010
16650 Generate output for a 68010. This is the default
16651 when the compiler is configured for 68010-based systems.
16652 It is equivalent to @option{-march=68010}.
16653
16654 @item -m68020
16655 @itemx -mc68020
16656 @opindex m68020
16657 @opindex mc68020
16658 Generate output for a 68020. This is the default
16659 when the compiler is configured for 68020-based systems.
16660 It is equivalent to @option{-march=68020}.
16661
16662 @item -m68030
16663 @opindex m68030
16664 Generate output for a 68030. This is the default when the compiler is
16665 configured for 68030-based systems. It is equivalent to
16666 @option{-march=68030}.
16667
16668 @item -m68040
16669 @opindex m68040
16670 Generate output for a 68040. This is the default when the compiler is
16671 configured for 68040-based systems. It is equivalent to
16672 @option{-march=68040}.
16673
16674 This option inhibits the use of 68881/68882 instructions that have to be
16675 emulated by software on the 68040. Use this option if your 68040 does not
16676 have code to emulate those instructions.
16677
16678 @item -m68060
16679 @opindex m68060
16680 Generate output for a 68060. This is the default when the compiler is
16681 configured for 68060-based systems. It is equivalent to
16682 @option{-march=68060}.
16683
16684 This option inhibits the use of 68020 and 68881/68882 instructions that
16685 have to be emulated by software on the 68060. Use this option if your 68060
16686 does not have code to emulate those instructions.
16687
16688 @item -mcpu32
16689 @opindex mcpu32
16690 Generate output for a CPU32. This is the default
16691 when the compiler is configured for CPU32-based systems.
16692 It is equivalent to @option{-march=cpu32}.
16693
16694 Use this option for microcontrollers with a
16695 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
16696 68336, 68340, 68341, 68349 and 68360.
16697
16698 @item -m5200
16699 @opindex m5200
16700 Generate output for a 520X ColdFire CPU@. This is the default
16701 when the compiler is configured for 520X-based systems.
16702 It is equivalent to @option{-mcpu=5206}, and is now deprecated
16703 in favor of that option.
16704
16705 Use this option for microcontroller with a 5200 core, including
16706 the MCF5202, MCF5203, MCF5204 and MCF5206.
16707
16708 @item -m5206e
16709 @opindex m5206e
16710 Generate output for a 5206e ColdFire CPU@. The option is now
16711 deprecated in favor of the equivalent @option{-mcpu=5206e}.
16712
16713 @item -m528x
16714 @opindex m528x
16715 Generate output for a member of the ColdFire 528X family.
16716 The option is now deprecated in favor of the equivalent
16717 @option{-mcpu=528x}.
16718
16719 @item -m5307
16720 @opindex m5307
16721 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
16722 in favor of the equivalent @option{-mcpu=5307}.
16723
16724 @item -m5407
16725 @opindex m5407
16726 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
16727 in favor of the equivalent @option{-mcpu=5407}.
16728
16729 @item -mcfv4e
16730 @opindex mcfv4e
16731 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16732 This includes use of hardware floating-point instructions.
16733 The option is equivalent to @option{-mcpu=547x}, and is now
16734 deprecated in favor of that option.
16735
16736 @item -m68020-40
16737 @opindex m68020-40
16738 Generate output for a 68040, without using any of the new instructions.
16739 This results in code that can run relatively efficiently on either a
16740 68020/68881 or a 68030 or a 68040. The generated code does use the
16741 68881 instructions that are emulated on the 68040.
16742
16743 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16744
16745 @item -m68020-60
16746 @opindex m68020-60
16747 Generate output for a 68060, without using any of the new instructions.
16748 This results in code that can run relatively efficiently on either a
16749 68020/68881 or a 68030 or a 68040. The generated code does use the
16750 68881 instructions that are emulated on the 68060.
16751
16752 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16753
16754 @item -mhard-float
16755 @itemx -m68881
16756 @opindex mhard-float
16757 @opindex m68881
16758 Generate floating-point instructions. This is the default for 68020
16759 and above, and for ColdFire devices that have an FPU@. It defines the
16760 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16761 on ColdFire targets.
16762
16763 @item -msoft-float
16764 @opindex msoft-float
16765 Do not generate floating-point instructions; use library calls instead.
16766 This is the default for 68000, 68010, and 68832 targets. It is also
16767 the default for ColdFire devices that have no FPU.
16768
16769 @item -mdiv
16770 @itemx -mno-div
16771 @opindex mdiv
16772 @opindex mno-div
16773 Generate (do not generate) ColdFire hardware divide and remainder
16774 instructions. If @option{-march} is used without @option{-mcpu},
16775 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16776 architectures. Otherwise, the default is taken from the target CPU
16777 (either the default CPU, or the one specified by @option{-mcpu}). For
16778 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16779 @option{-mcpu=5206e}.
16780
16781 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16782
16783 @item -mshort
16784 @opindex mshort
16785 Consider type @code{int} to be 16 bits wide, like @code{short int}.
16786 Additionally, parameters passed on the stack are also aligned to a
16787 16-bit boundary even on targets whose API mandates promotion to 32-bit.
16788
16789 @item -mno-short
16790 @opindex mno-short
16791 Do not consider type @code{int} to be 16 bits wide. This is the default.
16792
16793 @item -mnobitfield
16794 @itemx -mno-bitfield
16795 @opindex mnobitfield
16796 @opindex mno-bitfield
16797 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
16798 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16799
16800 @item -mbitfield
16801 @opindex mbitfield
16802 Do use the bit-field instructions. The @option{-m68020} option implies
16803 @option{-mbitfield}. This is the default if you use a configuration
16804 designed for a 68020.
16805
16806 @item -mrtd
16807 @opindex mrtd
16808 Use a different function-calling convention, in which functions
16809 that take a fixed number of arguments return with the @code{rtd}
16810 instruction, which pops their arguments while returning. This
16811 saves one instruction in the caller since there is no need to pop
16812 the arguments there.
16813
16814 This calling convention is incompatible with the one normally
16815 used on Unix, so you cannot use it if you need to call libraries
16816 compiled with the Unix compiler.
16817
16818 Also, you must provide function prototypes for all functions that
16819 take variable numbers of arguments (including @code{printf});
16820 otherwise incorrect code is generated for calls to those
16821 functions.
16822
16823 In addition, seriously incorrect code results if you call a
16824 function with too many arguments. (Normally, extra arguments are
16825 harmlessly ignored.)
16826
16827 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
16828 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16829
16830 @item -mno-rtd
16831 @opindex mno-rtd
16832 Do not use the calling conventions selected by @option{-mrtd}.
16833 This is the default.
16834
16835 @item -malign-int
16836 @itemx -mno-align-int
16837 @opindex malign-int
16838 @opindex mno-align-int
16839 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16840 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
16841 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16842 Aligning variables on 32-bit boundaries produces code that runs somewhat
16843 faster on processors with 32-bit busses at the expense of more memory.
16844
16845 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
16846 aligns structures containing the above types differently than
16847 most published application binary interface specifications for the m68k.
16848
16849 @item -mpcrel
16850 @opindex mpcrel
16851 Use the pc-relative addressing mode of the 68000 directly, instead of
16852 using a global offset table. At present, this option implies @option{-fpic},
16853 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
16854 not presently supported with @option{-mpcrel}, though this could be supported for
16855 68020 and higher processors.
16856
16857 @item -mno-strict-align
16858 @itemx -mstrict-align
16859 @opindex mno-strict-align
16860 @opindex mstrict-align
16861 Do not (do) assume that unaligned memory references are handled by
16862 the system.
16863
16864 @item -msep-data
16865 Generate code that allows the data segment to be located in a different
16866 area of memory from the text segment. This allows for execute-in-place in
16867 an environment without virtual memory management. This option implies
16868 @option{-fPIC}.
16869
16870 @item -mno-sep-data
16871 Generate code that assumes that the data segment follows the text segment.
16872 This is the default.
16873
16874 @item -mid-shared-library
16875 Generate code that supports shared libraries via the library ID method.
16876 This allows for execute-in-place and shared libraries in an environment
16877 without virtual memory management. This option implies @option{-fPIC}.
16878
16879 @item -mno-id-shared-library
16880 Generate code that doesn't assume ID-based shared libraries are being used.
16881 This is the default.
16882
16883 @item -mshared-library-id=n
16884 Specifies the identification number of the ID-based shared library being
16885 compiled. Specifying a value of 0 generates more compact code; specifying
16886 other values forces the allocation of that number to the current
16887 library, but is no more space- or time-efficient than omitting this option.
16888
16889 @item -mxgot
16890 @itemx -mno-xgot
16891 @opindex mxgot
16892 @opindex mno-xgot
16893 When generating position-independent code for ColdFire, generate code
16894 that works if the GOT has more than 8192 entries. This code is
16895 larger and slower than code generated without this option. On M680x0
16896 processors, this option is not needed; @option{-fPIC} suffices.
16897
16898 GCC normally uses a single instruction to load values from the GOT@.
16899 While this is relatively efficient, it only works if the GOT
16900 is smaller than about 64k. Anything larger causes the linker
16901 to report an error such as:
16902
16903 @cindex relocation truncated to fit (ColdFire)
16904 @smallexample
16905 relocation truncated to fit: R_68K_GOT16O foobar
16906 @end smallexample
16907
16908 If this happens, you should recompile your code with @option{-mxgot}.
16909 It should then work with very large GOTs. However, code generated with
16910 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
16911 the value of a global symbol.
16912
16913 Note that some linkers, including newer versions of the GNU linker,
16914 can create multiple GOTs and sort GOT entries. If you have such a linker,
16915 you should only need to use @option{-mxgot} when compiling a single
16916 object file that accesses more than 8192 GOT entries. Very few do.
16917
16918 These options have no effect unless GCC is generating
16919 position-independent code.
16920
16921 @end table
16922
16923 @node MCore Options
16924 @subsection MCore Options
16925 @cindex MCore options
16926
16927 These are the @samp{-m} options defined for the Motorola M*Core
16928 processors.
16929
16930 @table @gcctabopt
16931
16932 @item -mhardlit
16933 @itemx -mno-hardlit
16934 @opindex mhardlit
16935 @opindex mno-hardlit
16936 Inline constants into the code stream if it can be done in two
16937 instructions or less.
16938
16939 @item -mdiv
16940 @itemx -mno-div
16941 @opindex mdiv
16942 @opindex mno-div
16943 Use the divide instruction. (Enabled by default).
16944
16945 @item -mrelax-immediate
16946 @itemx -mno-relax-immediate
16947 @opindex mrelax-immediate
16948 @opindex mno-relax-immediate
16949 Allow arbitrary-sized immediates in bit operations.
16950
16951 @item -mwide-bitfields
16952 @itemx -mno-wide-bitfields
16953 @opindex mwide-bitfields
16954 @opindex mno-wide-bitfields
16955 Always treat bit-fields as @code{int}-sized.
16956
16957 @item -m4byte-functions
16958 @itemx -mno-4byte-functions
16959 @opindex m4byte-functions
16960 @opindex mno-4byte-functions
16961 Force all functions to be aligned to a 4-byte boundary.
16962
16963 @item -mcallgraph-data
16964 @itemx -mno-callgraph-data
16965 @opindex mcallgraph-data
16966 @opindex mno-callgraph-data
16967 Emit callgraph information.
16968
16969 @item -mslow-bytes
16970 @itemx -mno-slow-bytes
16971 @opindex mslow-bytes
16972 @opindex mno-slow-bytes
16973 Prefer word access when reading byte quantities.
16974
16975 @item -mlittle-endian
16976 @itemx -mbig-endian
16977 @opindex mlittle-endian
16978 @opindex mbig-endian
16979 Generate code for a little-endian target.
16980
16981 @item -m210
16982 @itemx -m340
16983 @opindex m210
16984 @opindex m340
16985 Generate code for the 210 processor.
16986
16987 @item -mno-lsim
16988 @opindex mno-lsim
16989 Assume that runtime support has been provided and so omit the
16990 simulator library (@file{libsim.a)} from the linker command line.
16991
16992 @item -mstack-increment=@var{size}
16993 @opindex mstack-increment
16994 Set the maximum amount for a single stack increment operation. Large
16995 values can increase the speed of programs that contain functions
16996 that need a large amount of stack space, but they can also trigger a
16997 segmentation fault if the stack is extended too much. The default
16998 value is 0x1000.
16999
17000 @end table
17001
17002 @node MeP Options
17003 @subsection MeP Options
17004 @cindex MeP options
17005
17006 @table @gcctabopt
17007
17008 @item -mabsdiff
17009 @opindex mabsdiff
17010 Enables the @code{abs} instruction, which is the absolute difference
17011 between two registers.
17012
17013 @item -mall-opts
17014 @opindex mall-opts
17015 Enables all the optional instructions---average, multiply, divide, bit
17016 operations, leading zero, absolute difference, min/max, clip, and
17017 saturation.
17018
17019
17020 @item -maverage
17021 @opindex maverage
17022 Enables the @code{ave} instruction, which computes the average of two
17023 registers.
17024
17025 @item -mbased=@var{n}
17026 @opindex mbased=
17027 Variables of size @var{n} bytes or smaller are placed in the
17028 @code{.based} section by default. Based variables use the @code{$tp}
17029 register as a base register, and there is a 128-byte limit to the
17030 @code{.based} section.
17031
17032 @item -mbitops
17033 @opindex mbitops
17034 Enables the bit operation instructions---bit test (@code{btstm}), set
17035 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
17036 test-and-set (@code{tas}).
17037
17038 @item -mc=@var{name}
17039 @opindex mc=
17040 Selects which section constant data is placed in. @var{name} may
17041 be @samp{tiny}, @samp{near}, or @samp{far}.
17042
17043 @item -mclip
17044 @opindex mclip
17045 Enables the @code{clip} instruction. Note that @option{-mclip} is not
17046 useful unless you also provide @option{-mminmax}.
17047
17048 @item -mconfig=@var{name}
17049 @opindex mconfig=
17050 Selects one of the built-in core configurations. Each MeP chip has
17051 one or more modules in it; each module has a core CPU and a variety of
17052 coprocessors, optional instructions, and peripherals. The
17053 @code{MeP-Integrator} tool, not part of GCC, provides these
17054 configurations through this option; using this option is the same as
17055 using all the corresponding command-line options. The default
17056 configuration is @samp{default}.
17057
17058 @item -mcop
17059 @opindex mcop
17060 Enables the coprocessor instructions. By default, this is a 32-bit
17061 coprocessor. Note that the coprocessor is normally enabled via the
17062 @option{-mconfig=} option.
17063
17064 @item -mcop32
17065 @opindex mcop32
17066 Enables the 32-bit coprocessor's instructions.
17067
17068 @item -mcop64
17069 @opindex mcop64
17070 Enables the 64-bit coprocessor's instructions.
17071
17072 @item -mivc2
17073 @opindex mivc2
17074 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
17075
17076 @item -mdc
17077 @opindex mdc
17078 Causes constant variables to be placed in the @code{.near} section.
17079
17080 @item -mdiv
17081 @opindex mdiv
17082 Enables the @code{div} and @code{divu} instructions.
17083
17084 @item -meb
17085 @opindex meb
17086 Generate big-endian code.
17087
17088 @item -mel
17089 @opindex mel
17090 Generate little-endian code.
17091
17092 @item -mio-volatile
17093 @opindex mio-volatile
17094 Tells the compiler that any variable marked with the @code{io}
17095 attribute is to be considered volatile.
17096
17097 @item -ml
17098 @opindex ml
17099 Causes variables to be assigned to the @code{.far} section by default.
17100
17101 @item -mleadz
17102 @opindex mleadz
17103 Enables the @code{leadz} (leading zero) instruction.
17104
17105 @item -mm
17106 @opindex mm
17107 Causes variables to be assigned to the @code{.near} section by default.
17108
17109 @item -mminmax
17110 @opindex mminmax
17111 Enables the @code{min} and @code{max} instructions.
17112
17113 @item -mmult
17114 @opindex mmult
17115 Enables the multiplication and multiply-accumulate instructions.
17116
17117 @item -mno-opts
17118 @opindex mno-opts
17119 Disables all the optional instructions enabled by @option{-mall-opts}.
17120
17121 @item -mrepeat
17122 @opindex mrepeat
17123 Enables the @code{repeat} and @code{erepeat} instructions, used for
17124 low-overhead looping.
17125
17126 @item -ms
17127 @opindex ms
17128 Causes all variables to default to the @code{.tiny} section. Note
17129 that there is a 65536-byte limit to this section. Accesses to these
17130 variables use the @code{%gp} base register.
17131
17132 @item -msatur
17133 @opindex msatur
17134 Enables the saturation instructions. Note that the compiler does not
17135 currently generate these itself, but this option is included for
17136 compatibility with other tools, like @code{as}.
17137
17138 @item -msdram
17139 @opindex msdram
17140 Link the SDRAM-based runtime instead of the default ROM-based runtime.
17141
17142 @item -msim
17143 @opindex msim
17144 Link the simulator run-time libraries.
17145
17146 @item -msimnovec
17147 @opindex msimnovec
17148 Link the simulator runtime libraries, excluding built-in support
17149 for reset and exception vectors and tables.
17150
17151 @item -mtf
17152 @opindex mtf
17153 Causes all functions to default to the @code{.far} section. Without
17154 this option, functions default to the @code{.near} section.
17155
17156 @item -mtiny=@var{n}
17157 @opindex mtiny=
17158 Variables that are @var{n} bytes or smaller are allocated to the
17159 @code{.tiny} section. These variables use the @code{$gp} base
17160 register. The default for this option is 4, but note that there's a
17161 65536-byte limit to the @code{.tiny} section.
17162
17163 @end table
17164
17165 @node MicroBlaze Options
17166 @subsection MicroBlaze Options
17167 @cindex MicroBlaze Options
17168
17169 @table @gcctabopt
17170
17171 @item -msoft-float
17172 @opindex msoft-float
17173 Use software emulation for floating point (default).
17174
17175 @item -mhard-float
17176 @opindex mhard-float
17177 Use hardware floating-point instructions.
17178
17179 @item -mmemcpy
17180 @opindex mmemcpy
17181 Do not optimize block moves, use @code{memcpy}.
17182
17183 @item -mno-clearbss
17184 @opindex mno-clearbss
17185 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
17186
17187 @item -mcpu=@var{cpu-type}
17188 @opindex mcpu=
17189 Use features of, and schedule code for, the given CPU.
17190 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
17191 where @var{X} is a major version, @var{YY} is the minor version, and
17192 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
17193 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
17194
17195 @item -mxl-soft-mul
17196 @opindex mxl-soft-mul
17197 Use software multiply emulation (default).
17198
17199 @item -mxl-soft-div
17200 @opindex mxl-soft-div
17201 Use software emulation for divides (default).
17202
17203 @item -mxl-barrel-shift
17204 @opindex mxl-barrel-shift
17205 Use the hardware barrel shifter.
17206
17207 @item -mxl-pattern-compare
17208 @opindex mxl-pattern-compare
17209 Use pattern compare instructions.
17210
17211 @item -msmall-divides
17212 @opindex msmall-divides
17213 Use table lookup optimization for small signed integer divisions.
17214
17215 @item -mxl-stack-check
17216 @opindex mxl-stack-check
17217 This option is deprecated. Use @option{-fstack-check} instead.
17218
17219 @item -mxl-gp-opt
17220 @opindex mxl-gp-opt
17221 Use GP-relative @code{.sdata}/@code{.sbss} sections.
17222
17223 @item -mxl-multiply-high
17224 @opindex mxl-multiply-high
17225 Use multiply high instructions for high part of 32x32 multiply.
17226
17227 @item -mxl-float-convert
17228 @opindex mxl-float-convert
17229 Use hardware floating-point conversion instructions.
17230
17231 @item -mxl-float-sqrt
17232 @opindex mxl-float-sqrt
17233 Use hardware floating-point square root instruction.
17234
17235 @item -mbig-endian
17236 @opindex mbig-endian
17237 Generate code for a big-endian target.
17238
17239 @item -mlittle-endian
17240 @opindex mlittle-endian
17241 Generate code for a little-endian target.
17242
17243 @item -mxl-reorder
17244 @opindex mxl-reorder
17245 Use reorder instructions (swap and byte reversed load/store).
17246
17247 @item -mxl-mode-@var{app-model}
17248 Select application model @var{app-model}. Valid models are
17249 @table @samp
17250 @item executable
17251 normal executable (default), uses startup code @file{crt0.o}.
17252
17253 @item xmdstub
17254 for use with Xilinx Microprocessor Debugger (XMD) based
17255 software intrusive debug agent called xmdstub. This uses startup file
17256 @file{crt1.o} and sets the start address of the program to 0x800.
17257
17258 @item bootstrap
17259 for applications that are loaded using a bootloader.
17260 This model uses startup file @file{crt2.o} which does not contain a processor
17261 reset vector handler. This is suitable for transferring control on a
17262 processor reset to the bootloader rather than the application.
17263
17264 @item novectors
17265 for applications that do not require any of the
17266 MicroBlaze vectors. This option may be useful for applications running
17267 within a monitoring application. This model uses @file{crt3.o} as a startup file.
17268 @end table
17269
17270 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
17271 @option{-mxl-mode-@var{app-model}}.
17272
17273 @end table
17274
17275 @node MIPS Options
17276 @subsection MIPS Options
17277 @cindex MIPS options
17278
17279 @table @gcctabopt
17280
17281 @item -EB
17282 @opindex EB
17283 Generate big-endian code.
17284
17285 @item -EL
17286 @opindex EL
17287 Generate little-endian code. This is the default for @samp{mips*el-*-*}
17288 configurations.
17289
17290 @item -march=@var{arch}
17291 @opindex march
17292 Generate code that runs on @var{arch}, which can be the name of a
17293 generic MIPS ISA, or the name of a particular processor.
17294 The ISA names are:
17295 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
17296 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
17297 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
17298 @samp{mips64r5} and @samp{mips64r6}.
17299 The processor names are:
17300 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
17301 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
17302 @samp{5kc}, @samp{5kf},
17303 @samp{20kc},
17304 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
17305 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
17306 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
17307 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
17308 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
17309 @samp{i6400},
17310 @samp{interaptiv},
17311 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
17312 @samp{m4k},
17313 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
17314 @samp{m5100}, @samp{m5101},
17315 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
17316 @samp{orion},
17317 @samp{p5600},
17318 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
17319 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
17320 @samp{rm7000}, @samp{rm9000},
17321 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
17322 @samp{sb1},
17323 @samp{sr71000},
17324 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
17325 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
17326 @samp{xlr} and @samp{xlp}.
17327 The special value @samp{from-abi} selects the
17328 most compatible architecture for the selected ABI (that is,
17329 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
17330
17331 The native Linux/GNU toolchain also supports the value @samp{native},
17332 which selects the best architecture option for the host processor.
17333 @option{-march=native} has no effect if GCC does not recognize
17334 the processor.
17335
17336 In processor names, a final @samp{000} can be abbreviated as @samp{k}
17337 (for example, @option{-march=r2k}). Prefixes are optional, and
17338 @samp{vr} may be written @samp{r}.
17339
17340 Names of the form @samp{@var{n}f2_1} refer to processors with
17341 FPUs clocked at half the rate of the core, names of the form
17342 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
17343 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
17344 processors with FPUs clocked a ratio of 3:2 with respect to the core.
17345 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
17346 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
17347 accepted as synonyms for @samp{@var{n}f1_1}.
17348
17349 GCC defines two macros based on the value of this option. The first
17350 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
17351 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
17352 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
17353 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
17354 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
17355
17356 Note that the @code{_MIPS_ARCH} macro uses the processor names given
17357 above. In other words, it has the full prefix and does not
17358 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
17359 the macro names the resolved architecture (either @code{"mips1"} or
17360 @code{"mips3"}). It names the default architecture when no
17361 @option{-march} option is given.
17362
17363 @item -mtune=@var{arch}
17364 @opindex mtune
17365 Optimize for @var{arch}. Among other things, this option controls
17366 the way instructions are scheduled, and the perceived cost of arithmetic
17367 operations. The list of @var{arch} values is the same as for
17368 @option{-march}.
17369
17370 When this option is not used, GCC optimizes for the processor
17371 specified by @option{-march}. By using @option{-march} and
17372 @option{-mtune} together, it is possible to generate code that
17373 runs on a family of processors, but optimize the code for one
17374 particular member of that family.
17375
17376 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
17377 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
17378 @option{-march} ones described above.
17379
17380 @item -mips1
17381 @opindex mips1
17382 Equivalent to @option{-march=mips1}.
17383
17384 @item -mips2
17385 @opindex mips2
17386 Equivalent to @option{-march=mips2}.
17387
17388 @item -mips3
17389 @opindex mips3
17390 Equivalent to @option{-march=mips3}.
17391
17392 @item -mips4
17393 @opindex mips4
17394 Equivalent to @option{-march=mips4}.
17395
17396 @item -mips32
17397 @opindex mips32
17398 Equivalent to @option{-march=mips32}.
17399
17400 @item -mips32r3
17401 @opindex mips32r3
17402 Equivalent to @option{-march=mips32r3}.
17403
17404 @item -mips32r5
17405 @opindex mips32r5
17406 Equivalent to @option{-march=mips32r5}.
17407
17408 @item -mips32r6
17409 @opindex mips32r6
17410 Equivalent to @option{-march=mips32r6}.
17411
17412 @item -mips64
17413 @opindex mips64
17414 Equivalent to @option{-march=mips64}.
17415
17416 @item -mips64r2
17417 @opindex mips64r2
17418 Equivalent to @option{-march=mips64r2}.
17419
17420 @item -mips64r3
17421 @opindex mips64r3
17422 Equivalent to @option{-march=mips64r3}.
17423
17424 @item -mips64r5
17425 @opindex mips64r5
17426 Equivalent to @option{-march=mips64r5}.
17427
17428 @item -mips64r6
17429 @opindex mips64r6
17430 Equivalent to @option{-march=mips64r6}.
17431
17432 @item -mips16
17433 @itemx -mno-mips16
17434 @opindex mips16
17435 @opindex mno-mips16
17436 Generate (do not generate) MIPS16 code. If GCC is targeting a
17437 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17438
17439 MIPS16 code generation can also be controlled on a per-function basis
17440 by means of @code{mips16} and @code{nomips16} attributes.
17441 @xref{Function Attributes}, for more information.
17442
17443 @item -mflip-mips16
17444 @opindex mflip-mips16
17445 Generate MIPS16 code on alternating functions. This option is provided
17446 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17447 not intended for ordinary use in compiling user code.
17448
17449 @item -minterlink-compressed
17450 @item -mno-interlink-compressed
17451 @opindex minterlink-compressed
17452 @opindex mno-interlink-compressed
17453 Require (do not require) that code using the standard (uncompressed) MIPS ISA
17454 be link-compatible with MIPS16 and microMIPS code, and vice versa.
17455
17456 For example, code using the standard ISA encoding cannot jump directly
17457 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17458 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
17459 knows that the target of the jump is not compressed.
17460
17461 @item -minterlink-mips16
17462 @itemx -mno-interlink-mips16
17463 @opindex minterlink-mips16
17464 @opindex mno-interlink-mips16
17465 Aliases of @option{-minterlink-compressed} and
17466 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
17467 and are retained for backwards compatibility.
17468
17469 @item -mabi=32
17470 @itemx -mabi=o64
17471 @itemx -mabi=n32
17472 @itemx -mabi=64
17473 @itemx -mabi=eabi
17474 @opindex mabi=32
17475 @opindex mabi=o64
17476 @opindex mabi=n32
17477 @opindex mabi=64
17478 @opindex mabi=eabi
17479 Generate code for the given ABI@.
17480
17481 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
17482 generates 64-bit code when you select a 64-bit architecture, but you
17483 can use @option{-mgp32} to get 32-bit code instead.
17484
17485 For information about the O64 ABI, see
17486 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17487
17488 GCC supports a variant of the o32 ABI in which floating-point registers
17489 are 64 rather than 32 bits wide. You can select this combination with
17490 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
17491 and @code{mfhc1} instructions and is therefore only supported for
17492 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17493
17494 The register assignments for arguments and return values remain the
17495 same, but each scalar value is passed in a single 64-bit register
17496 rather than a pair of 32-bit registers. For example, scalar
17497 floating-point values are returned in @samp{$f0} only, not a
17498 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
17499 remains the same in that the even-numbered double-precision registers
17500 are saved.
17501
17502 Two additional variants of the o32 ABI are supported to enable
17503 a transition from 32-bit to 64-bit registers. These are FPXX
17504 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17505 The FPXX extension mandates that all code must execute correctly
17506 when run using 32-bit or 64-bit registers. The code can be interlinked
17507 with either FP32 or FP64, but not both.
17508 The FP64A extension is similar to the FP64 extension but forbids the
17509 use of odd-numbered single-precision registers. This can be used
17510 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17511 processors and allows both FP32 and FP64A code to interlink and
17512 run in the same process without changing FPU modes.
17513
17514 @item -mabicalls
17515 @itemx -mno-abicalls
17516 @opindex mabicalls
17517 @opindex mno-abicalls
17518 Generate (do not generate) code that is suitable for SVR4-style
17519 dynamic objects. @option{-mabicalls} is the default for SVR4-based
17520 systems.
17521
17522 @item -mshared
17523 @itemx -mno-shared
17524 Generate (do not generate) code that is fully position-independent,
17525 and that can therefore be linked into shared libraries. This option
17526 only affects @option{-mabicalls}.
17527
17528 All @option{-mabicalls} code has traditionally been position-independent,
17529 regardless of options like @option{-fPIC} and @option{-fpic}. However,
17530 as an extension, the GNU toolchain allows executables to use absolute
17531 accesses for locally-binding symbols. It can also use shorter GP
17532 initialization sequences and generate direct calls to locally-defined
17533 functions. This mode is selected by @option{-mno-shared}.
17534
17535 @option{-mno-shared} depends on binutils 2.16 or higher and generates
17536 objects that can only be linked by the GNU linker. However, the option
17537 does not affect the ABI of the final executable; it only affects the ABI
17538 of relocatable objects. Using @option{-mno-shared} generally makes
17539 executables both smaller and quicker.
17540
17541 @option{-mshared} is the default.
17542
17543 @item -mplt
17544 @itemx -mno-plt
17545 @opindex mplt
17546 @opindex mno-plt
17547 Assume (do not assume) that the static and dynamic linkers
17548 support PLTs and copy relocations. This option only affects
17549 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
17550 has no effect without @option{-msym32}.
17551
17552 You can make @option{-mplt} the default by configuring
17553 GCC with @option{--with-mips-plt}. The default is
17554 @option{-mno-plt} otherwise.
17555
17556 @item -mxgot
17557 @itemx -mno-xgot
17558 @opindex mxgot
17559 @opindex mno-xgot
17560 Lift (do not lift) the usual restrictions on the size of the global
17561 offset table.
17562
17563 GCC normally uses a single instruction to load values from the GOT@.
17564 While this is relatively efficient, it only works if the GOT
17565 is smaller than about 64k. Anything larger causes the linker
17566 to report an error such as:
17567
17568 @cindex relocation truncated to fit (MIPS)
17569 @smallexample
17570 relocation truncated to fit: R_MIPS_GOT16 foobar
17571 @end smallexample
17572
17573 If this happens, you should recompile your code with @option{-mxgot}.
17574 This works with very large GOTs, although the code is also
17575 less efficient, since it takes three instructions to fetch the
17576 value of a global symbol.
17577
17578 Note that some linkers can create multiple GOTs. If you have such a
17579 linker, you should only need to use @option{-mxgot} when a single object
17580 file accesses more than 64k's worth of GOT entries. Very few do.
17581
17582 These options have no effect unless GCC is generating position
17583 independent code.
17584
17585 @item -mgp32
17586 @opindex mgp32
17587 Assume that general-purpose registers are 32 bits wide.
17588
17589 @item -mgp64
17590 @opindex mgp64
17591 Assume that general-purpose registers are 64 bits wide.
17592
17593 @item -mfp32
17594 @opindex mfp32
17595 Assume that floating-point registers are 32 bits wide.
17596
17597 @item -mfp64
17598 @opindex mfp64
17599 Assume that floating-point registers are 64 bits wide.
17600
17601 @item -mfpxx
17602 @opindex mfpxx
17603 Do not assume the width of floating-point registers.
17604
17605 @item -mhard-float
17606 @opindex mhard-float
17607 Use floating-point coprocessor instructions.
17608
17609 @item -msoft-float
17610 @opindex msoft-float
17611 Do not use floating-point coprocessor instructions. Implement
17612 floating-point calculations using library calls instead.
17613
17614 @item -mno-float
17615 @opindex mno-float
17616 Equivalent to @option{-msoft-float}, but additionally asserts that the
17617 program being compiled does not perform any floating-point operations.
17618 This option is presently supported only by some bare-metal MIPS
17619 configurations, where it may select a special set of libraries
17620 that lack all floating-point support (including, for example, the
17621 floating-point @code{printf} formats).
17622 If code compiled with @option{-mno-float} accidentally contains
17623 floating-point operations, it is likely to suffer a link-time
17624 or run-time failure.
17625
17626 @item -msingle-float
17627 @opindex msingle-float
17628 Assume that the floating-point coprocessor only supports single-precision
17629 operations.
17630
17631 @item -mdouble-float
17632 @opindex mdouble-float
17633 Assume that the floating-point coprocessor supports double-precision
17634 operations. This is the default.
17635
17636 @item -modd-spreg
17637 @itemx -mno-odd-spreg
17638 @opindex modd-spreg
17639 @opindex mno-odd-spreg
17640 Enable the use of odd-numbered single-precision floating-point registers
17641 for the o32 ABI. This is the default for processors that are known to
17642 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17643 is set by default.
17644
17645 @item -mabs=2008
17646 @itemx -mabs=legacy
17647 @opindex mabs=2008
17648 @opindex mabs=legacy
17649 These options control the treatment of the special not-a-number (NaN)
17650 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17651 @code{neg.@i{fmt}} machine instructions.
17652
17653 By default or when @option{-mabs=legacy} is used the legacy
17654 treatment is selected. In this case these instructions are considered
17655 arithmetic and avoided where correct operation is required and the
17656 input operand might be a NaN. A longer sequence of instructions that
17657 manipulate the sign bit of floating-point datum manually is used
17658 instead unless the @option{-ffinite-math-only} option has also been
17659 specified.
17660
17661 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
17662 this case these instructions are considered non-arithmetic and therefore
17663 operating correctly in all cases, including in particular where the
17664 input operand is a NaN. These instructions are therefore always used
17665 for the respective operations.
17666
17667 @item -mnan=2008
17668 @itemx -mnan=legacy
17669 @opindex mnan=2008
17670 @opindex mnan=legacy
17671 These options control the encoding of the special not-a-number (NaN)
17672 IEEE 754 floating-point data.
17673
17674 The @option{-mnan=legacy} option selects the legacy encoding. In this
17675 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17676 significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17677 by the first bit of their trailing significand field being 1.
17678
17679 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
17680 this case qNaNs are denoted by the first bit of their trailing
17681 significand field being 1, whereas sNaNs are denoted by the first bit of
17682 their trailing significand field being 0.
17683
17684 The default is @option{-mnan=legacy} unless GCC has been configured with
17685 @option{--with-nan=2008}.
17686
17687 @item -mllsc
17688 @itemx -mno-llsc
17689 @opindex mllsc
17690 @opindex mno-llsc
17691 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17692 implement atomic memory built-in functions. When neither option is
17693 specified, GCC uses the instructions if the target architecture
17694 supports them.
17695
17696 @option{-mllsc} is useful if the runtime environment can emulate the
17697 instructions and @option{-mno-llsc} can be useful when compiling for
17698 nonstandard ISAs. You can make either option the default by
17699 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17700 respectively. @option{--with-llsc} is the default for some
17701 configurations; see the installation documentation for details.
17702
17703 @item -mdsp
17704 @itemx -mno-dsp
17705 @opindex mdsp
17706 @opindex mno-dsp
17707 Use (do not use) revision 1 of the MIPS DSP ASE@.
17708 @xref{MIPS DSP Built-in Functions}. This option defines the
17709 preprocessor macro @code{__mips_dsp}. It also defines
17710 @code{__mips_dsp_rev} to 1.
17711
17712 @item -mdspr2
17713 @itemx -mno-dspr2
17714 @opindex mdspr2
17715 @opindex mno-dspr2
17716 Use (do not use) revision 2 of the MIPS DSP ASE@.
17717 @xref{MIPS DSP Built-in Functions}. This option defines the
17718 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17719 It also defines @code{__mips_dsp_rev} to 2.
17720
17721 @item -msmartmips
17722 @itemx -mno-smartmips
17723 @opindex msmartmips
17724 @opindex mno-smartmips
17725 Use (do not use) the MIPS SmartMIPS ASE.
17726
17727 @item -mpaired-single
17728 @itemx -mno-paired-single
17729 @opindex mpaired-single
17730 @opindex mno-paired-single
17731 Use (do not use) paired-single floating-point instructions.
17732 @xref{MIPS Paired-Single Support}. This option requires
17733 hardware floating-point support to be enabled.
17734
17735 @item -mdmx
17736 @itemx -mno-mdmx
17737 @opindex mdmx
17738 @opindex mno-mdmx
17739 Use (do not use) MIPS Digital Media Extension instructions.
17740 This option can only be used when generating 64-bit code and requires
17741 hardware floating-point support to be enabled.
17742
17743 @item -mips3d
17744 @itemx -mno-mips3d
17745 @opindex mips3d
17746 @opindex mno-mips3d
17747 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
17748 The option @option{-mips3d} implies @option{-mpaired-single}.
17749
17750 @item -mmicromips
17751 @itemx -mno-micromips
17752 @opindex mmicromips
17753 @opindex mno-mmicromips
17754 Generate (do not generate) microMIPS code.
17755
17756 MicroMIPS code generation can also be controlled on a per-function basis
17757 by means of @code{micromips} and @code{nomicromips} attributes.
17758 @xref{Function Attributes}, for more information.
17759
17760 @item -mmt
17761 @itemx -mno-mt
17762 @opindex mmt
17763 @opindex mno-mt
17764 Use (do not use) MT Multithreading instructions.
17765
17766 @item -mmcu
17767 @itemx -mno-mcu
17768 @opindex mmcu
17769 @opindex mno-mcu
17770 Use (do not use) the MIPS MCU ASE instructions.
17771
17772 @item -meva
17773 @itemx -mno-eva
17774 @opindex meva
17775 @opindex mno-eva
17776 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17777
17778 @item -mvirt
17779 @itemx -mno-virt
17780 @opindex mvirt
17781 @opindex mno-virt
17782 Use (do not use) the MIPS Virtualization Application Specific instructions.
17783
17784 @item -mxpa
17785 @itemx -mno-xpa
17786 @opindex mxpa
17787 @opindex mno-xpa
17788 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17789
17790 @item -mlong64
17791 @opindex mlong64
17792 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
17793 an explanation of the default and the way that the pointer size is
17794 determined.
17795
17796 @item -mlong32
17797 @opindex mlong32
17798 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17799
17800 The default size of @code{int}s, @code{long}s and pointers depends on
17801 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
17802 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
17803 32-bit @code{long}s. Pointers are the same size as @code{long}s,
17804 or the same size as integer registers, whichever is smaller.
17805
17806 @item -msym32
17807 @itemx -mno-sym32
17808 @opindex msym32
17809 @opindex mno-sym32
17810 Assume (do not assume) that all symbols have 32-bit values, regardless
17811 of the selected ABI@. This option is useful in combination with
17812 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17813 to generate shorter and faster references to symbolic addresses.
17814
17815 @item -G @var{num}
17816 @opindex G
17817 Put definitions of externally-visible data in a small data section
17818 if that data is no bigger than @var{num} bytes. GCC can then generate
17819 more efficient accesses to the data; see @option{-mgpopt} for details.
17820
17821 The default @option{-G} option depends on the configuration.
17822
17823 @item -mlocal-sdata
17824 @itemx -mno-local-sdata
17825 @opindex mlocal-sdata
17826 @opindex mno-local-sdata
17827 Extend (do not extend) the @option{-G} behavior to local data too,
17828 such as to static variables in C@. @option{-mlocal-sdata} is the
17829 default for all configurations.
17830
17831 If the linker complains that an application is using too much small data,
17832 you might want to try rebuilding the less performance-critical parts with
17833 @option{-mno-local-sdata}. You might also want to build large
17834 libraries with @option{-mno-local-sdata}, so that the libraries leave
17835 more room for the main program.
17836
17837 @item -mextern-sdata
17838 @itemx -mno-extern-sdata
17839 @opindex mextern-sdata
17840 @opindex mno-extern-sdata
17841 Assume (do not assume) that externally-defined data is in
17842 a small data section if the size of that data is within the @option{-G} limit.
17843 @option{-mextern-sdata} is the default for all configurations.
17844
17845 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17846 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
17847 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
17848 is placed in a small data section. If @var{Var} is defined by another
17849 module, you must either compile that module with a high-enough
17850 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
17851 definition. If @var{Var} is common, you must link the application
17852 with a high-enough @option{-G} setting.
17853
17854 The easiest way of satisfying these restrictions is to compile
17855 and link every module with the same @option{-G} option. However,
17856 you may wish to build a library that supports several different
17857 small data limits. You can do this by compiling the library with
17858 the highest supported @option{-G} setting and additionally using
17859 @option{-mno-extern-sdata} to stop the library from making assumptions
17860 about externally-defined data.
17861
17862 @item -mgpopt
17863 @itemx -mno-gpopt
17864 @opindex mgpopt
17865 @opindex mno-gpopt
17866 Use (do not use) GP-relative accesses for symbols that are known to be
17867 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
17868 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
17869 configurations.
17870
17871 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
17872 might not hold the value of @code{_gp}. For example, if the code is
17873 part of a library that might be used in a boot monitor, programs that
17874 call boot monitor routines pass an unknown value in @code{$gp}.
17875 (In such situations, the boot monitor itself is usually compiled
17876 with @option{-G0}.)
17877
17878 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
17879 @option{-mno-extern-sdata}.
17880
17881 @item -membedded-data
17882 @itemx -mno-embedded-data
17883 @opindex membedded-data
17884 @opindex mno-embedded-data
17885 Allocate variables to the read-only data section first if possible, then
17886 next in the small data section if possible, otherwise in data. This gives
17887 slightly slower code than the default, but reduces the amount of RAM required
17888 when executing, and thus may be preferred for some embedded systems.
17889
17890 @item -muninit-const-in-rodata
17891 @itemx -mno-uninit-const-in-rodata
17892 @opindex muninit-const-in-rodata
17893 @opindex mno-uninit-const-in-rodata
17894 Put uninitialized @code{const} variables in the read-only data section.
17895 This option is only meaningful in conjunction with @option{-membedded-data}.
17896
17897 @item -mcode-readable=@var{setting}
17898 @opindex mcode-readable
17899 Specify whether GCC may generate code that reads from executable sections.
17900 There are three possible settings:
17901
17902 @table @gcctabopt
17903 @item -mcode-readable=yes
17904 Instructions may freely access executable sections. This is the
17905 default setting.
17906
17907 @item -mcode-readable=pcrel
17908 MIPS16 PC-relative load instructions can access executable sections,
17909 but other instructions must not do so. This option is useful on 4KSc
17910 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
17911 It is also useful on processors that can be configured to have a dual
17912 instruction/data SRAM interface and that, like the M4K, automatically
17913 redirect PC-relative loads to the instruction RAM.
17914
17915 @item -mcode-readable=no
17916 Instructions must not access executable sections. This option can be
17917 useful on targets that are configured to have a dual instruction/data
17918 SRAM interface but that (unlike the M4K) do not automatically redirect
17919 PC-relative loads to the instruction RAM.
17920 @end table
17921
17922 @item -msplit-addresses
17923 @itemx -mno-split-addresses
17924 @opindex msplit-addresses
17925 @opindex mno-split-addresses
17926 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
17927 relocation operators. This option has been superseded by
17928 @option{-mexplicit-relocs} but is retained for backwards compatibility.
17929
17930 @item -mexplicit-relocs
17931 @itemx -mno-explicit-relocs
17932 @opindex mexplicit-relocs
17933 @opindex mno-explicit-relocs
17934 Use (do not use) assembler relocation operators when dealing with symbolic
17935 addresses. The alternative, selected by @option{-mno-explicit-relocs},
17936 is to use assembler macros instead.
17937
17938 @option{-mexplicit-relocs} is the default if GCC was configured
17939 to use an assembler that supports relocation operators.
17940
17941 @item -mcheck-zero-division
17942 @itemx -mno-check-zero-division
17943 @opindex mcheck-zero-division
17944 @opindex mno-check-zero-division
17945 Trap (do not trap) on integer division by zero.
17946
17947 The default is @option{-mcheck-zero-division}.
17948
17949 @item -mdivide-traps
17950 @itemx -mdivide-breaks
17951 @opindex mdivide-traps
17952 @opindex mdivide-breaks
17953 MIPS systems check for division by zero by generating either a
17954 conditional trap or a break instruction. Using traps results in
17955 smaller code, but is only supported on MIPS II and later. Also, some
17956 versions of the Linux kernel have a bug that prevents trap from
17957 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
17958 allow conditional traps on architectures that support them and
17959 @option{-mdivide-breaks} to force the use of breaks.
17960
17961 The default is usually @option{-mdivide-traps}, but this can be
17962 overridden at configure time using @option{--with-divide=breaks}.
17963 Divide-by-zero checks can be completely disabled using
17964 @option{-mno-check-zero-division}.
17965
17966 @item -mmemcpy
17967 @itemx -mno-memcpy
17968 @opindex mmemcpy
17969 @opindex mno-memcpy
17970 Force (do not force) the use of @code{memcpy} for non-trivial block
17971 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
17972 most constant-sized copies.
17973
17974 @item -mlong-calls
17975 @itemx -mno-long-calls
17976 @opindex mlong-calls
17977 @opindex mno-long-calls
17978 Disable (do not disable) use of the @code{jal} instruction. Calling
17979 functions using @code{jal} is more efficient but requires the caller
17980 and callee to be in the same 256 megabyte segment.
17981
17982 This option has no effect on abicalls code. The default is
17983 @option{-mno-long-calls}.
17984
17985 @item -mmad
17986 @itemx -mno-mad
17987 @opindex mmad
17988 @opindex mno-mad
17989 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
17990 instructions, as provided by the R4650 ISA@.
17991
17992 @item -mimadd
17993 @itemx -mno-imadd
17994 @opindex mimadd
17995 @opindex mno-imadd
17996 Enable (disable) use of the @code{madd} and @code{msub} integer
17997 instructions. The default is @option{-mimadd} on architectures
17998 that support @code{madd} and @code{msub} except for the 74k
17999 architecture where it was found to generate slower code.
18000
18001 @item -mfused-madd
18002 @itemx -mno-fused-madd
18003 @opindex mfused-madd
18004 @opindex mno-fused-madd
18005 Enable (disable) use of the floating-point multiply-accumulate
18006 instructions, when they are available. The default is
18007 @option{-mfused-madd}.
18008
18009 On the R8000 CPU when multiply-accumulate instructions are used,
18010 the intermediate product is calculated to infinite precision
18011 and is not subject to the FCSR Flush to Zero bit. This may be
18012 undesirable in some circumstances. On other processors the result
18013 is numerically identical to the equivalent computation using
18014 separate multiply, add, subtract and negate instructions.
18015
18016 @item -nocpp
18017 @opindex nocpp
18018 Tell the MIPS assembler to not run its preprocessor over user
18019 assembler files (with a @samp{.s} suffix) when assembling them.
18020
18021 @item -mfix-24k
18022 @item -mno-fix-24k
18023 @opindex mfix-24k
18024 @opindex mno-fix-24k
18025 Work around the 24K E48 (lost data on stores during refill) errata.
18026 The workarounds are implemented by the assembler rather than by GCC@.
18027
18028 @item -mfix-r4000
18029 @itemx -mno-fix-r4000
18030 @opindex mfix-r4000
18031 @opindex mno-fix-r4000
18032 Work around certain R4000 CPU errata:
18033 @itemize @minus
18034 @item
18035 A double-word or a variable shift may give an incorrect result if executed
18036 immediately after starting an integer division.
18037 @item
18038 A double-word or a variable shift may give an incorrect result if executed
18039 while an integer multiplication is in progress.
18040 @item
18041 An integer division may give an incorrect result if started in a delay slot
18042 of a taken branch or a jump.
18043 @end itemize
18044
18045 @item -mfix-r4400
18046 @itemx -mno-fix-r4400
18047 @opindex mfix-r4400
18048 @opindex mno-fix-r4400
18049 Work around certain R4400 CPU errata:
18050 @itemize @minus
18051 @item
18052 A double-word or a variable shift may give an incorrect result if executed
18053 immediately after starting an integer division.
18054 @end itemize
18055
18056 @item -mfix-r10000
18057 @itemx -mno-fix-r10000
18058 @opindex mfix-r10000
18059 @opindex mno-fix-r10000
18060 Work around certain R10000 errata:
18061 @itemize @minus
18062 @item
18063 @code{ll}/@code{sc} sequences may not behave atomically on revisions
18064 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
18065 @end itemize
18066
18067 This option can only be used if the target architecture supports
18068 branch-likely instructions. @option{-mfix-r10000} is the default when
18069 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
18070 otherwise.
18071
18072 @item -mfix-rm7000
18073 @itemx -mno-fix-rm7000
18074 @opindex mfix-rm7000
18075 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
18076 workarounds are implemented by the assembler rather than by GCC@.
18077
18078 @item -mfix-vr4120
18079 @itemx -mno-fix-vr4120
18080 @opindex mfix-vr4120
18081 Work around certain VR4120 errata:
18082 @itemize @minus
18083 @item
18084 @code{dmultu} does not always produce the correct result.
18085 @item
18086 @code{div} and @code{ddiv} do not always produce the correct result if one
18087 of the operands is negative.
18088 @end itemize
18089 The workarounds for the division errata rely on special functions in
18090 @file{libgcc.a}. At present, these functions are only provided by
18091 the @code{mips64vr*-elf} configurations.
18092
18093 Other VR4120 errata require a NOP to be inserted between certain pairs of
18094 instructions. These errata are handled by the assembler, not by GCC itself.
18095
18096 @item -mfix-vr4130
18097 @opindex mfix-vr4130
18098 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
18099 workarounds are implemented by the assembler rather than by GCC,
18100 although GCC avoids using @code{mflo} and @code{mfhi} if the
18101 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
18102 instructions are available instead.
18103
18104 @item -mfix-sb1
18105 @itemx -mno-fix-sb1
18106 @opindex mfix-sb1
18107 Work around certain SB-1 CPU core errata.
18108 (This flag currently works around the SB-1 revision 2
18109 ``F1'' and ``F2'' floating-point errata.)
18110
18111 @item -mr10k-cache-barrier=@var{setting}
18112 @opindex mr10k-cache-barrier
18113 Specify whether GCC should insert cache barriers to avoid the
18114 side-effects of speculation on R10K processors.
18115
18116 In common with many processors, the R10K tries to predict the outcome
18117 of a conditional branch and speculatively executes instructions from
18118 the ``taken'' branch. It later aborts these instructions if the
18119 predicted outcome is wrong. However, on the R10K, even aborted
18120 instructions can have side effects.
18121
18122 This problem only affects kernel stores and, depending on the system,
18123 kernel loads. As an example, a speculatively-executed store may load
18124 the target memory into cache and mark the cache line as dirty, even if
18125 the store itself is later aborted. If a DMA operation writes to the
18126 same area of memory before the ``dirty'' line is flushed, the cached
18127 data overwrites the DMA-ed data. See the R10K processor manual
18128 for a full description, including other potential problems.
18129
18130 One workaround is to insert cache barrier instructions before every memory
18131 access that might be speculatively executed and that might have side
18132 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
18133 controls GCC's implementation of this workaround. It assumes that
18134 aborted accesses to any byte in the following regions does not have
18135 side effects:
18136
18137 @enumerate
18138 @item
18139 the memory occupied by the current function's stack frame;
18140
18141 @item
18142 the memory occupied by an incoming stack argument;
18143
18144 @item
18145 the memory occupied by an object with a link-time-constant address.
18146 @end enumerate
18147
18148 It is the kernel's responsibility to ensure that speculative
18149 accesses to these regions are indeed safe.
18150
18151 If the input program contains a function declaration such as:
18152
18153 @smallexample
18154 void foo (void);
18155 @end smallexample
18156
18157 then the implementation of @code{foo} must allow @code{j foo} and
18158 @code{jal foo} to be executed speculatively. GCC honors this
18159 restriction for functions it compiles itself. It expects non-GCC
18160 functions (such as hand-written assembly code) to do the same.
18161
18162 The option has three forms:
18163
18164 @table @gcctabopt
18165 @item -mr10k-cache-barrier=load-store
18166 Insert a cache barrier before a load or store that might be
18167 speculatively executed and that might have side effects even
18168 if aborted.
18169
18170 @item -mr10k-cache-barrier=store
18171 Insert a cache barrier before a store that might be speculatively
18172 executed and that might have side effects even if aborted.
18173
18174 @item -mr10k-cache-barrier=none
18175 Disable the insertion of cache barriers. This is the default setting.
18176 @end table
18177
18178 @item -mflush-func=@var{func}
18179 @itemx -mno-flush-func
18180 @opindex mflush-func
18181 Specifies the function to call to flush the I and D caches, or to not
18182 call any such function. If called, the function must take the same
18183 arguments as the common @code{_flush_func}, that is, the address of the
18184 memory range for which the cache is being flushed, the size of the
18185 memory range, and the number 3 (to flush both caches). The default
18186 depends on the target GCC was configured for, but commonly is either
18187 @code{_flush_func} or @code{__cpu_flush}.
18188
18189 @item mbranch-cost=@var{num}
18190 @opindex mbranch-cost
18191 Set the cost of branches to roughly @var{num} ``simple'' instructions.
18192 This cost is only a heuristic and is not guaranteed to produce
18193 consistent results across releases. A zero cost redundantly selects
18194 the default, which is based on the @option{-mtune} setting.
18195
18196 @item -mbranch-likely
18197 @itemx -mno-branch-likely
18198 @opindex mbranch-likely
18199 @opindex mno-branch-likely
18200 Enable or disable use of Branch Likely instructions, regardless of the
18201 default for the selected architecture. By default, Branch Likely
18202 instructions may be generated if they are supported by the selected
18203 architecture. An exception is for the MIPS32 and MIPS64 architectures
18204 and processors that implement those architectures; for those, Branch
18205 Likely instructions are not be generated by default because the MIPS32
18206 and MIPS64 architectures specifically deprecate their use.
18207
18208 @item -mcompact-branches=never
18209 @itemx -mcompact-branches=optimal
18210 @itemx -mcompact-branches=always
18211 @opindex mcompact-branches=never
18212 @opindex mcompact-branches=optimal
18213 @opindex mcompact-branches=always
18214 These options control which form of branches will be generated. The
18215 default is @option{-mcompact-branches=optimal}.
18216
18217 The @option{-mcompact-branches=never} option ensures that compact branch
18218 instructions will never be generated.
18219
18220 The @option{-mcompact-branches=always} option ensures that a compact
18221 branch instruction will be generated if available. If a compact branch
18222 instruction is not available, a delay slot form of the branch will be
18223 used instead.
18224
18225 This option is supported from MIPS Release 6 onwards.
18226
18227 The @option{-mcompact-branches=optimal} option will cause a delay slot
18228 branch to be used if one is available in the current ISA and the delay
18229 slot is successfully filled. If the delay slot is not filled, a compact
18230 branch will be chosen if one is available.
18231
18232 @item -mfp-exceptions
18233 @itemx -mno-fp-exceptions
18234 @opindex mfp-exceptions
18235 Specifies whether FP exceptions are enabled. This affects how
18236 FP instructions are scheduled for some processors.
18237 The default is that FP exceptions are
18238 enabled.
18239
18240 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
18241 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
18242 FP pipe.
18243
18244 @item -mvr4130-align
18245 @itemx -mno-vr4130-align
18246 @opindex mvr4130-align
18247 The VR4130 pipeline is two-way superscalar, but can only issue two
18248 instructions together if the first one is 8-byte aligned. When this
18249 option is enabled, GCC aligns pairs of instructions that it
18250 thinks should execute in parallel.
18251
18252 This option only has an effect when optimizing for the VR4130.
18253 It normally makes code faster, but at the expense of making it bigger.
18254 It is enabled by default at optimization level @option{-O3}.
18255
18256 @item -msynci
18257 @itemx -mno-synci
18258 @opindex msynci
18259 Enable (disable) generation of @code{synci} instructions on
18260 architectures that support it. The @code{synci} instructions (if
18261 enabled) are generated when @code{__builtin___clear_cache} is
18262 compiled.
18263
18264 This option defaults to @option{-mno-synci}, but the default can be
18265 overridden by configuring GCC with @option{--with-synci}.
18266
18267 When compiling code for single processor systems, it is generally safe
18268 to use @code{synci}. However, on many multi-core (SMP) systems, it
18269 does not invalidate the instruction caches on all cores and may lead
18270 to undefined behavior.
18271
18272 @item -mrelax-pic-calls
18273 @itemx -mno-relax-pic-calls
18274 @opindex mrelax-pic-calls
18275 Try to turn PIC calls that are normally dispatched via register
18276 @code{$25} into direct calls. This is only possible if the linker can
18277 resolve the destination at link-time and if the destination is within
18278 range for a direct call.
18279
18280 @option{-mrelax-pic-calls} is the default if GCC was configured to use
18281 an assembler and a linker that support the @code{.reloc} assembly
18282 directive and @option{-mexplicit-relocs} is in effect. With
18283 @option{-mno-explicit-relocs}, this optimization can be performed by the
18284 assembler and the linker alone without help from the compiler.
18285
18286 @item -mmcount-ra-address
18287 @itemx -mno-mcount-ra-address
18288 @opindex mmcount-ra-address
18289 @opindex mno-mcount-ra-address
18290 Emit (do not emit) code that allows @code{_mcount} to modify the
18291 calling function's return address. When enabled, this option extends
18292 the usual @code{_mcount} interface with a new @var{ra-address}
18293 parameter, which has type @code{intptr_t *} and is passed in register
18294 @code{$12}. @code{_mcount} can then modify the return address by
18295 doing both of the following:
18296 @itemize
18297 @item
18298 Returning the new address in register @code{$31}.
18299 @item
18300 Storing the new address in @code{*@var{ra-address}},
18301 if @var{ra-address} is nonnull.
18302 @end itemize
18303
18304 The default is @option{-mno-mcount-ra-address}.
18305
18306 @item -mframe-header-opt
18307 @itemx -mno-frame-header-opt
18308 @opindex mframe-header-opt
18309 Enable (disable) frame header optimization in the o32 ABI. When using the
18310 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
18311 function to write out register arguments. When enabled, this optimization
18312 will suppress the allocation of the frame header if it can be determined that
18313 it is unused.
18314
18315 This optimization is off by default at all optimization levels.
18316
18317 @end table
18318
18319 @node MMIX Options
18320 @subsection MMIX Options
18321 @cindex MMIX Options
18322
18323 These options are defined for the MMIX:
18324
18325 @table @gcctabopt
18326 @item -mlibfuncs
18327 @itemx -mno-libfuncs
18328 @opindex mlibfuncs
18329 @opindex mno-libfuncs
18330 Specify that intrinsic library functions are being compiled, passing all
18331 values in registers, no matter the size.
18332
18333 @item -mepsilon
18334 @itemx -mno-epsilon
18335 @opindex mepsilon
18336 @opindex mno-epsilon
18337 Generate floating-point comparison instructions that compare with respect
18338 to the @code{rE} epsilon register.
18339
18340 @item -mabi=mmixware
18341 @itemx -mabi=gnu
18342 @opindex mabi=mmixware
18343 @opindex mabi=gnu
18344 Generate code that passes function parameters and return values that (in
18345 the called function) are seen as registers @code{$0} and up, as opposed to
18346 the GNU ABI which uses global registers @code{$231} and up.
18347
18348 @item -mzero-extend
18349 @itemx -mno-zero-extend
18350 @opindex mzero-extend
18351 @opindex mno-zero-extend
18352 When reading data from memory in sizes shorter than 64 bits, use (do not
18353 use) zero-extending load instructions by default, rather than
18354 sign-extending ones.
18355
18356 @item -mknuthdiv
18357 @itemx -mno-knuthdiv
18358 @opindex mknuthdiv
18359 @opindex mno-knuthdiv
18360 Make the result of a division yielding a remainder have the same sign as
18361 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
18362 remainder follows the sign of the dividend. Both methods are
18363 arithmetically valid, the latter being almost exclusively used.
18364
18365 @item -mtoplevel-symbols
18366 @itemx -mno-toplevel-symbols
18367 @opindex mtoplevel-symbols
18368 @opindex mno-toplevel-symbols
18369 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
18370 code can be used with the @code{PREFIX} assembly directive.
18371
18372 @item -melf
18373 @opindex melf
18374 Generate an executable in the ELF format, rather than the default
18375 @samp{mmo} format used by the @command{mmix} simulator.
18376
18377 @item -mbranch-predict
18378 @itemx -mno-branch-predict
18379 @opindex mbranch-predict
18380 @opindex mno-branch-predict
18381 Use (do not use) the probable-branch instructions, when static branch
18382 prediction indicates a probable branch.
18383
18384 @item -mbase-addresses
18385 @itemx -mno-base-addresses
18386 @opindex mbase-addresses
18387 @opindex mno-base-addresses
18388 Generate (do not generate) code that uses @emph{base addresses}. Using a
18389 base address automatically generates a request (handled by the assembler
18390 and the linker) for a constant to be set up in a global register. The
18391 register is used for one or more base address requests within the range 0
18392 to 255 from the value held in the register. The generally leads to short
18393 and fast code, but the number of different data items that can be
18394 addressed is limited. This means that a program that uses lots of static
18395 data may require @option{-mno-base-addresses}.
18396
18397 @item -msingle-exit
18398 @itemx -mno-single-exit
18399 @opindex msingle-exit
18400 @opindex mno-single-exit
18401 Force (do not force) generated code to have a single exit point in each
18402 function.
18403 @end table
18404
18405 @node MN10300 Options
18406 @subsection MN10300 Options
18407 @cindex MN10300 options
18408
18409 These @option{-m} options are defined for Matsushita MN10300 architectures:
18410
18411 @table @gcctabopt
18412 @item -mmult-bug
18413 @opindex mmult-bug
18414 Generate code to avoid bugs in the multiply instructions for the MN10300
18415 processors. This is the default.
18416
18417 @item -mno-mult-bug
18418 @opindex mno-mult-bug
18419 Do not generate code to avoid bugs in the multiply instructions for the
18420 MN10300 processors.
18421
18422 @item -mam33
18423 @opindex mam33
18424 Generate code using features specific to the AM33 processor.
18425
18426 @item -mno-am33
18427 @opindex mno-am33
18428 Do not generate code using features specific to the AM33 processor. This
18429 is the default.
18430
18431 @item -mam33-2
18432 @opindex mam33-2
18433 Generate code using features specific to the AM33/2.0 processor.
18434
18435 @item -mam34
18436 @opindex mam34
18437 Generate code using features specific to the AM34 processor.
18438
18439 @item -mtune=@var{cpu-type}
18440 @opindex mtune
18441 Use the timing characteristics of the indicated CPU type when
18442 scheduling instructions. This does not change the targeted processor
18443 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
18444 @samp{am33-2} or @samp{am34}.
18445
18446 @item -mreturn-pointer-on-d0
18447 @opindex mreturn-pointer-on-d0
18448 When generating a function that returns a pointer, return the pointer
18449 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
18450 only in @code{a0}, and attempts to call such functions without a prototype
18451 result in errors. Note that this option is on by default; use
18452 @option{-mno-return-pointer-on-d0} to disable it.
18453
18454 @item -mno-crt0
18455 @opindex mno-crt0
18456 Do not link in the C run-time initialization object file.
18457
18458 @item -mrelax
18459 @opindex mrelax
18460 Indicate to the linker that it should perform a relaxation optimization pass
18461 to shorten branches, calls and absolute memory addresses. This option only
18462 has an effect when used on the command line for the final link step.
18463
18464 This option makes symbolic debugging impossible.
18465
18466 @item -mliw
18467 @opindex mliw
18468 Allow the compiler to generate @emph{Long Instruction Word}
18469 instructions if the target is the @samp{AM33} or later. This is the
18470 default. This option defines the preprocessor macro @code{__LIW__}.
18471
18472 @item -mnoliw
18473 @opindex mnoliw
18474 Do not allow the compiler to generate @emph{Long Instruction Word}
18475 instructions. This option defines the preprocessor macro
18476 @code{__NO_LIW__}.
18477
18478 @item -msetlb
18479 @opindex msetlb
18480 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18481 instructions if the target is the @samp{AM33} or later. This is the
18482 default. This option defines the preprocessor macro @code{__SETLB__}.
18483
18484 @item -mnosetlb
18485 @opindex mnosetlb
18486 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18487 instructions. This option defines the preprocessor macro
18488 @code{__NO_SETLB__}.
18489
18490 @end table
18491
18492 @node Moxie Options
18493 @subsection Moxie Options
18494 @cindex Moxie Options
18495
18496 @table @gcctabopt
18497
18498 @item -meb
18499 @opindex meb
18500 Generate big-endian code. This is the default for @samp{moxie-*-*}
18501 configurations.
18502
18503 @item -mel
18504 @opindex mel
18505 Generate little-endian code.
18506
18507 @item -mmul.x
18508 @opindex mmul.x
18509 Generate mul.x and umul.x instructions. This is the default for
18510 @samp{moxiebox-*-*} configurations.
18511
18512 @item -mno-crt0
18513 @opindex mno-crt0
18514 Do not link in the C run-time initialization object file.
18515
18516 @end table
18517
18518 @node MSP430 Options
18519 @subsection MSP430 Options
18520 @cindex MSP430 Options
18521
18522 These options are defined for the MSP430:
18523
18524 @table @gcctabopt
18525
18526 @item -masm-hex
18527 @opindex masm-hex
18528 Force assembly output to always use hex constants. Normally such
18529 constants are signed decimals, but this option is available for
18530 testsuite and/or aesthetic purposes.
18531
18532 @item -mmcu=
18533 @opindex mmcu=
18534 Select the MCU to target. This is used to create a C preprocessor
18535 symbol based upon the MCU name, converted to upper case and pre- and
18536 post-fixed with @samp{__}. This in turn is used by the
18537 @file{msp430.h} header file to select an MCU-specific supplementary
18538 header file.
18539
18540 The option also sets the ISA to use. If the MCU name is one that is
18541 known to only support the 430 ISA then that is selected, otherwise the
18542 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
18543 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
18544 name selects the 430X ISA.
18545
18546 In addition an MCU-specific linker script is added to the linker
18547 command line. The script's name is the name of the MCU with
18548 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18549 command line defines the C preprocessor symbol @code{__XXX__} and
18550 cause the linker to search for a script called @file{xxx.ld}.
18551
18552 This option is also passed on to the assembler.
18553
18554 @item -mwarn-mcu
18555 @itemx -mno-warn-mcu
18556 @opindex mwarn-mcu
18557 @opindex mno-warn-mcu
18558 This option enables or disables warnings about conflicts between the
18559 MCU name specified by the @option{-mmcu} option and the ISA set by the
18560 @option{-mcpu} option and/or the hardware multiply support set by the
18561 @option{-mhwmult} option. It also toggles warnings about unrecognised
18562 MCU names. This option is on by default.
18563
18564 @item -mcpu=
18565 @opindex mcpu=
18566 Specifies the ISA to use. Accepted values are @samp{msp430},
18567 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
18568 @option{-mmcu=} option should be used to select the ISA.
18569
18570 @item -msim
18571 @opindex msim
18572 Link to the simulator runtime libraries and linker script. Overrides
18573 any scripts that would be selected by the @option{-mmcu=} option.
18574
18575 @item -mlarge
18576 @opindex mlarge
18577 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18578
18579 @item -msmall
18580 @opindex msmall
18581 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18582
18583 @item -mrelax
18584 @opindex mrelax
18585 This option is passed to the assembler and linker, and allows the
18586 linker to perform certain optimizations that cannot be done until
18587 the final link.
18588
18589 @item mhwmult=
18590 @opindex mhwmult=
18591 Describes the type of hardware multiply supported by the target.
18592 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18593 for the original 16-bit-only multiply supported by early MCUs.
18594 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18595 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18596 A value of @samp{auto} can also be given. This tells GCC to deduce
18597 the hardware multiply support based upon the MCU name provided by the
18598 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
18599 the MCU name is not recognised then no hardware multiply support is
18600 assumed. @code{auto} is the default setting.
18601
18602 Hardware multiplies are normally performed by calling a library
18603 routine. This saves space in the generated code. When compiling at
18604 @option{-O3} or higher however the hardware multiplier is invoked
18605 inline. This makes for bigger, but faster code.
18606
18607 The hardware multiply routines disable interrupts whilst running and
18608 restore the previous interrupt state when they finish. This makes
18609 them safe to use inside interrupt handlers as well as in normal code.
18610
18611 @item -minrt
18612 @opindex minrt
18613 Enable the use of a minimum runtime environment - no static
18614 initializers or constructors. This is intended for memory-constrained
18615 devices. The compiler includes special symbols in some objects
18616 that tell the linker and runtime which code fragments are required.
18617
18618 @item -mcode-region=
18619 @itemx -mdata-region=
18620 @opindex mcode-region
18621 @opindex mdata-region
18622 These options tell the compiler where to place functions and data that
18623 do not have one of the @code{lower}, @code{upper}, @code{either} or
18624 @code{section} attributes. Possible values are @code{lower},
18625 @code{upper}, @code{either} or @code{any}. The first three behave
18626 like the corresponding attribute. The fourth possible value -
18627 @code{any} - is the default. It leaves placement entirely up to the
18628 linker script and how it assigns the standard sections (.text, .data
18629 etc) to the memory regions.
18630
18631 @item -msilicon-errata=
18632 @opindex msilicon-errata
18633 This option passes on a request to assembler to enable the fixes for
18634 the named silicon errata.
18635
18636 @item -msilicon-errata-warn=
18637 @opindex msilicon-errata-warn
18638 This option passes on a request to the assembler to enable warning
18639 messages when a silicon errata might need to be applied.
18640
18641 @end table
18642
18643 @node NDS32 Options
18644 @subsection NDS32 Options
18645 @cindex NDS32 Options
18646
18647 These options are defined for NDS32 implementations:
18648
18649 @table @gcctabopt
18650
18651 @item -mbig-endian
18652 @opindex mbig-endian
18653 Generate code in big-endian mode.
18654
18655 @item -mlittle-endian
18656 @opindex mlittle-endian
18657 Generate code in little-endian mode.
18658
18659 @item -mreduced-regs
18660 @opindex mreduced-regs
18661 Use reduced-set registers for register allocation.
18662
18663 @item -mfull-regs
18664 @opindex mfull-regs
18665 Use full-set registers for register allocation.
18666
18667 @item -mcmov
18668 @opindex mcmov
18669 Generate conditional move instructions.
18670
18671 @item -mno-cmov
18672 @opindex mno-cmov
18673 Do not generate conditional move instructions.
18674
18675 @item -mperf-ext
18676 @opindex mperf-ext
18677 Generate performance extension instructions.
18678
18679 @item -mno-perf-ext
18680 @opindex mno-perf-ext
18681 Do not generate performance extension instructions.
18682
18683 @item -mv3push
18684 @opindex mv3push
18685 Generate v3 push25/pop25 instructions.
18686
18687 @item -mno-v3push
18688 @opindex mno-v3push
18689 Do not generate v3 push25/pop25 instructions.
18690
18691 @item -m16-bit
18692 @opindex m16-bit
18693 Generate 16-bit instructions.
18694
18695 @item -mno-16-bit
18696 @opindex mno-16-bit
18697 Do not generate 16-bit instructions.
18698
18699 @item -misr-vector-size=@var{num}
18700 @opindex misr-vector-size
18701 Specify the size of each interrupt vector, which must be 4 or 16.
18702
18703 @item -mcache-block-size=@var{num}
18704 @opindex mcache-block-size
18705 Specify the size of each cache block,
18706 which must be a power of 2 between 4 and 512.
18707
18708 @item -march=@var{arch}
18709 @opindex march
18710 Specify the name of the target architecture.
18711
18712 @item -mcmodel=@var{code-model}
18713 @opindex mcmodel
18714 Set the code model to one of
18715 @table @asis
18716 @item @samp{small}
18717 All the data and read-only data segments must be within 512KB addressing space.
18718 The text segment must be within 16MB addressing space.
18719 @item @samp{medium}
18720 The data segment must be within 512KB while the read-only data segment can be
18721 within 4GB addressing space. The text segment should be still within 16MB
18722 addressing space.
18723 @item @samp{large}
18724 All the text and data segments can be within 4GB addressing space.
18725 @end table
18726
18727 @item -mctor-dtor
18728 @opindex mctor-dtor
18729 Enable constructor/destructor feature.
18730
18731 @item -mrelax
18732 @opindex mrelax
18733 Guide linker to relax instructions.
18734
18735 @end table
18736
18737 @node Nios II Options
18738 @subsection Nios II Options
18739 @cindex Nios II options
18740 @cindex Altera Nios II options
18741
18742 These are the options defined for the Altera Nios II processor.
18743
18744 @table @gcctabopt
18745
18746 @item -G @var{num}
18747 @opindex G
18748 @cindex smaller data references
18749 Put global and static objects less than or equal to @var{num} bytes
18750 into the small data or BSS sections instead of the normal data or BSS
18751 sections. The default value of @var{num} is 8.
18752
18753 @item -mgpopt=@var{option}
18754 @item -mgpopt
18755 @itemx -mno-gpopt
18756 @opindex mgpopt
18757 @opindex mno-gpopt
18758 Generate (do not generate) GP-relative accesses. The following
18759 @var{option} names are recognized:
18760
18761 @table @samp
18762
18763 @item none
18764 Do not generate GP-relative accesses.
18765
18766 @item local
18767 Generate GP-relative accesses for small data objects that are not
18768 external, weak, or uninitialized common symbols.
18769 Also use GP-relative addressing for objects that
18770 have been explicitly placed in a small data section via a @code{section}
18771 attribute.
18772
18773 @item global
18774 As for @samp{local}, but also generate GP-relative accesses for
18775 small data objects that are external, weak, or common. If you use this option,
18776 you must ensure that all parts of your program (including libraries) are
18777 compiled with the same @option{-G} setting.
18778
18779 @item data
18780 Generate GP-relative accesses for all data objects in the program. If you
18781 use this option, the entire data and BSS segments
18782 of your program must fit in 64K of memory and you must use an appropriate
18783 linker script to allocate them within the addressible range of the
18784 global pointer.
18785
18786 @item all
18787 Generate GP-relative addresses for function pointers as well as data
18788 pointers. If you use this option, the entire text, data, and BSS segments
18789 of your program must fit in 64K of memory and you must use an appropriate
18790 linker script to allocate them within the addressible range of the
18791 global pointer.
18792
18793 @end table
18794
18795 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18796 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18797
18798 The default is @option{-mgpopt} except when @option{-fpic} or
18799 @option{-fPIC} is specified to generate position-independent code.
18800 Note that the Nios II ABI does not permit GP-relative accesses from
18801 shared libraries.
18802
18803 You may need to specify @option{-mno-gpopt} explicitly when building
18804 programs that include large amounts of small data, including large
18805 GOT data sections. In this case, the 16-bit offset for GP-relative
18806 addressing may not be large enough to allow access to the entire
18807 small data section.
18808
18809 @item -mel
18810 @itemx -meb
18811 @opindex mel
18812 @opindex meb
18813 Generate little-endian (default) or big-endian (experimental) code,
18814 respectively.
18815
18816 @item -march=@var{arch}
18817 @opindex march
18818 This specifies the name of the target Nios II architecture. GCC uses this
18819 name to determine what kind of instructions it can emit when generating
18820 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
18821
18822 The preprocessor macro @code{__nios2_arch__} is available to programs,
18823 with value 1 or 2, indicating the targeted ISA level.
18824
18825 @item -mbypass-cache
18826 @itemx -mno-bypass-cache
18827 @opindex mno-bypass-cache
18828 @opindex mbypass-cache
18829 Force all load and store instructions to always bypass cache by
18830 using I/O variants of the instructions. The default is not to
18831 bypass the cache.
18832
18833 @item -mno-cache-volatile
18834 @itemx -mcache-volatile
18835 @opindex mcache-volatile
18836 @opindex mno-cache-volatile
18837 Volatile memory access bypass the cache using the I/O variants of
18838 the load and store instructions. The default is not to bypass the cache.
18839
18840 @item -mno-fast-sw-div
18841 @itemx -mfast-sw-div
18842 @opindex mno-fast-sw-div
18843 @opindex mfast-sw-div
18844 Do not use table-based fast divide for small numbers. The default
18845 is to use the fast divide at @option{-O3} and above.
18846
18847 @item -mno-hw-mul
18848 @itemx -mhw-mul
18849 @itemx -mno-hw-mulx
18850 @itemx -mhw-mulx
18851 @itemx -mno-hw-div
18852 @itemx -mhw-div
18853 @opindex mno-hw-mul
18854 @opindex mhw-mul
18855 @opindex mno-hw-mulx
18856 @opindex mhw-mulx
18857 @opindex mno-hw-div
18858 @opindex mhw-div
18859 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
18860 instructions by the compiler. The default is to emit @code{mul}
18861 and not emit @code{div} and @code{mulx}.
18862
18863 @item -mbmx
18864 @itemx -mno-bmx
18865 @itemx -mcdx
18866 @itemx -mno-cdx
18867 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
18868 CDX (code density) instructions. Enabling these instructions also
18869 requires @option{-march=r2}. Since these instructions are optional
18870 extensions to the R2 architecture, the default is not to emit them.
18871
18872 @item -mcustom-@var{insn}=@var{N}
18873 @itemx -mno-custom-@var{insn}
18874 @opindex mcustom-@var{insn}
18875 @opindex mno-custom-@var{insn}
18876 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
18877 custom instruction with encoding @var{N} when generating code that uses
18878 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
18879 instruction 253 for single-precision floating-point add operations instead
18880 of the default behavior of using a library call.
18881
18882 The following values of @var{insn} are supported. Except as otherwise
18883 noted, floating-point operations are expected to be implemented with
18884 normal IEEE 754 semantics and correspond directly to the C operators or the
18885 equivalent GCC built-in functions (@pxref{Other Builtins}).
18886
18887 Single-precision floating point:
18888 @table @asis
18889
18890 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
18891 Binary arithmetic operations.
18892
18893 @item @samp{fnegs}
18894 Unary negation.
18895
18896 @item @samp{fabss}
18897 Unary absolute value.
18898
18899 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
18900 Comparison operations.
18901
18902 @item @samp{fmins}, @samp{fmaxs}
18903 Floating-point minimum and maximum. These instructions are only
18904 generated if @option{-ffinite-math-only} is specified.
18905
18906 @item @samp{fsqrts}
18907 Unary square root operation.
18908
18909 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
18910 Floating-point trigonometric and exponential functions. These instructions
18911 are only generated if @option{-funsafe-math-optimizations} is also specified.
18912
18913 @end table
18914
18915 Double-precision floating point:
18916 @table @asis
18917
18918 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
18919 Binary arithmetic operations.
18920
18921 @item @samp{fnegd}
18922 Unary negation.
18923
18924 @item @samp{fabsd}
18925 Unary absolute value.
18926
18927 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
18928 Comparison operations.
18929
18930 @item @samp{fmind}, @samp{fmaxd}
18931 Double-precision minimum and maximum. These instructions are only
18932 generated if @option{-ffinite-math-only} is specified.
18933
18934 @item @samp{fsqrtd}
18935 Unary square root operation.
18936
18937 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
18938 Double-precision trigonometric and exponential functions. These instructions
18939 are only generated if @option{-funsafe-math-optimizations} is also specified.
18940
18941 @end table
18942
18943 Conversions:
18944 @table @asis
18945 @item @samp{fextsd}
18946 Conversion from single precision to double precision.
18947
18948 @item @samp{ftruncds}
18949 Conversion from double precision to single precision.
18950
18951 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
18952 Conversion from floating point to signed or unsigned integer types, with
18953 truncation towards zero.
18954
18955 @item @samp{round}
18956 Conversion from single-precision floating point to signed integer,
18957 rounding to the nearest integer and ties away from zero.
18958 This corresponds to the @code{__builtin_lroundf} function when
18959 @option{-fno-math-errno} is used.
18960
18961 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
18962 Conversion from signed or unsigned integer types to floating-point types.
18963
18964 @end table
18965
18966 In addition, all of the following transfer instructions for internal
18967 registers X and Y must be provided to use any of the double-precision
18968 floating-point instructions. Custom instructions taking two
18969 double-precision source operands expect the first operand in the
18970 64-bit register X. The other operand (or only operand of a unary
18971 operation) is given to the custom arithmetic instruction with the
18972 least significant half in source register @var{src1} and the most
18973 significant half in @var{src2}. A custom instruction that returns a
18974 double-precision result returns the most significant 32 bits in the
18975 destination register and the other half in 32-bit register Y.
18976 GCC automatically generates the necessary code sequences to write
18977 register X and/or read register Y when double-precision floating-point
18978 instructions are used.
18979
18980 @table @asis
18981
18982 @item @samp{fwrx}
18983 Write @var{src1} into the least significant half of X and @var{src2} into
18984 the most significant half of X.
18985
18986 @item @samp{fwry}
18987 Write @var{src1} into Y.
18988
18989 @item @samp{frdxhi}, @samp{frdxlo}
18990 Read the most or least (respectively) significant half of X and store it in
18991 @var{dest}.
18992
18993 @item @samp{frdy}
18994 Read the value of Y and store it into @var{dest}.
18995 @end table
18996
18997 Note that you can gain more local control over generation of Nios II custom
18998 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
18999 and @code{target("no-custom-@var{insn}")} function attributes
19000 (@pxref{Function Attributes})
19001 or pragmas (@pxref{Function Specific Option Pragmas}).
19002
19003 @item -mcustom-fpu-cfg=@var{name}
19004 @opindex mcustom-fpu-cfg
19005
19006 This option enables a predefined, named set of custom instruction encodings
19007 (see @option{-mcustom-@var{insn}} above).
19008 Currently, the following sets are defined:
19009
19010 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
19011 @gccoptlist{-mcustom-fmuls=252 @gol
19012 -mcustom-fadds=253 @gol
19013 -mcustom-fsubs=254 @gol
19014 -fsingle-precision-constant}
19015
19016 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
19017 @gccoptlist{-mcustom-fmuls=252 @gol
19018 -mcustom-fadds=253 @gol
19019 -mcustom-fsubs=254 @gol
19020 -mcustom-fdivs=255 @gol
19021 -fsingle-precision-constant}
19022
19023 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
19024 @gccoptlist{-mcustom-floatus=243 @gol
19025 -mcustom-fixsi=244 @gol
19026 -mcustom-floatis=245 @gol
19027 -mcustom-fcmpgts=246 @gol
19028 -mcustom-fcmples=249 @gol
19029 -mcustom-fcmpeqs=250 @gol
19030 -mcustom-fcmpnes=251 @gol
19031 -mcustom-fmuls=252 @gol
19032 -mcustom-fadds=253 @gol
19033 -mcustom-fsubs=254 @gol
19034 -mcustom-fdivs=255 @gol
19035 -fsingle-precision-constant}
19036
19037 Custom instruction assignments given by individual
19038 @option{-mcustom-@var{insn}=} options override those given by
19039 @option{-mcustom-fpu-cfg=}, regardless of the
19040 order of the options on the command line.
19041
19042 Note that you can gain more local control over selection of a FPU
19043 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
19044 function attribute (@pxref{Function Attributes})
19045 or pragma (@pxref{Function Specific Option Pragmas}).
19046
19047 @end table
19048
19049 These additional @samp{-m} options are available for the Altera Nios II
19050 ELF (bare-metal) target:
19051
19052 @table @gcctabopt
19053
19054 @item -mhal
19055 @opindex mhal
19056 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
19057 startup and termination code, and is typically used in conjunction with
19058 @option{-msys-crt0=} to specify the location of the alternate startup code
19059 provided by the HAL BSP.
19060
19061 @item -msmallc
19062 @opindex msmallc
19063 Link with a limited version of the C library, @option{-lsmallc}, rather than
19064 Newlib.
19065
19066 @item -msys-crt0=@var{startfile}
19067 @opindex msys-crt0
19068 @var{startfile} is the file name of the startfile (crt0) to use
19069 when linking. This option is only useful in conjunction with @option{-mhal}.
19070
19071 @item -msys-lib=@var{systemlib}
19072 @opindex msys-lib
19073 @var{systemlib} is the library name of the library that provides
19074 low-level system calls required by the C library,
19075 e.g. @code{read} and @code{write}.
19076 This option is typically used to link with a library provided by a HAL BSP.
19077
19078 @end table
19079
19080 @node Nvidia PTX Options
19081 @subsection Nvidia PTX Options
19082 @cindex Nvidia PTX options
19083 @cindex nvptx options
19084
19085 These options are defined for Nvidia PTX:
19086
19087 @table @gcctabopt
19088
19089 @item -m32
19090 @itemx -m64
19091 @opindex m32
19092 @opindex m64
19093 Generate code for 32-bit or 64-bit ABI.
19094
19095 @item -mmainkernel
19096 @opindex mmainkernel
19097 Link in code for a __main kernel. This is for stand-alone instead of
19098 offloading execution.
19099
19100 @item -moptimize
19101 @opindex moptimize
19102 Apply partitioned execution optimizations. This is the default when any
19103 level of optimization is selected.
19104
19105 @end table
19106
19107 @node PDP-11 Options
19108 @subsection PDP-11 Options
19109 @cindex PDP-11 Options
19110
19111 These options are defined for the PDP-11:
19112
19113 @table @gcctabopt
19114 @item -mfpu
19115 @opindex mfpu
19116 Use hardware FPP floating point. This is the default. (FIS floating
19117 point on the PDP-11/40 is not supported.)
19118
19119 @item -msoft-float
19120 @opindex msoft-float
19121 Do not use hardware floating point.
19122
19123 @item -mac0
19124 @opindex mac0
19125 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
19126
19127 @item -mno-ac0
19128 @opindex mno-ac0
19129 Return floating-point results in memory. This is the default.
19130
19131 @item -m40
19132 @opindex m40
19133 Generate code for a PDP-11/40.
19134
19135 @item -m45
19136 @opindex m45
19137 Generate code for a PDP-11/45. This is the default.
19138
19139 @item -m10
19140 @opindex m10
19141 Generate code for a PDP-11/10.
19142
19143 @item -mbcopy-builtin
19144 @opindex mbcopy-builtin
19145 Use inline @code{movmemhi} patterns for copying memory. This is the
19146 default.
19147
19148 @item -mbcopy
19149 @opindex mbcopy
19150 Do not use inline @code{movmemhi} patterns for copying memory.
19151
19152 @item -mint16
19153 @itemx -mno-int32
19154 @opindex mint16
19155 @opindex mno-int32
19156 Use 16-bit @code{int}. This is the default.
19157
19158 @item -mint32
19159 @itemx -mno-int16
19160 @opindex mint32
19161 @opindex mno-int16
19162 Use 32-bit @code{int}.
19163
19164 @item -mfloat64
19165 @itemx -mno-float32
19166 @opindex mfloat64
19167 @opindex mno-float32
19168 Use 64-bit @code{float}. This is the default.
19169
19170 @item -mfloat32
19171 @itemx -mno-float64
19172 @opindex mfloat32
19173 @opindex mno-float64
19174 Use 32-bit @code{float}.
19175
19176 @item -mabshi
19177 @opindex mabshi
19178 Use @code{abshi2} pattern. This is the default.
19179
19180 @item -mno-abshi
19181 @opindex mno-abshi
19182 Do not use @code{abshi2} pattern.
19183
19184 @item -mbranch-expensive
19185 @opindex mbranch-expensive
19186 Pretend that branches are expensive. This is for experimenting with
19187 code generation only.
19188
19189 @item -mbranch-cheap
19190 @opindex mbranch-cheap
19191 Do not pretend that branches are expensive. This is the default.
19192
19193 @item -munix-asm
19194 @opindex munix-asm
19195 Use Unix assembler syntax. This is the default when configured for
19196 @samp{pdp11-*-bsd}.
19197
19198 @item -mdec-asm
19199 @opindex mdec-asm
19200 Use DEC assembler syntax. This is the default when configured for any
19201 PDP-11 target other than @samp{pdp11-*-bsd}.
19202 @end table
19203
19204 @node picoChip Options
19205 @subsection picoChip Options
19206 @cindex picoChip options
19207
19208 These @samp{-m} options are defined for picoChip implementations:
19209
19210 @table @gcctabopt
19211
19212 @item -mae=@var{ae_type}
19213 @opindex mcpu
19214 Set the instruction set, register set, and instruction scheduling
19215 parameters for array element type @var{ae_type}. Supported values
19216 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
19217
19218 @option{-mae=ANY} selects a completely generic AE type. Code
19219 generated with this option runs on any of the other AE types. The
19220 code is not as efficient as it would be if compiled for a specific
19221 AE type, and some types of operation (e.g., multiplication) do not
19222 work properly on all types of AE.
19223
19224 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
19225 for compiled code, and is the default.
19226
19227 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
19228 option may suffer from poor performance of byte (char) manipulation,
19229 since the DSP AE does not provide hardware support for byte load/stores.
19230
19231 @item -msymbol-as-address
19232 Enable the compiler to directly use a symbol name as an address in a
19233 load/store instruction, without first loading it into a
19234 register. Typically, the use of this option generates larger
19235 programs, which run faster than when the option isn't used. However, the
19236 results vary from program to program, so it is left as a user option,
19237 rather than being permanently enabled.
19238
19239 @item -mno-inefficient-warnings
19240 Disables warnings about the generation of inefficient code. These
19241 warnings can be generated, for example, when compiling code that
19242 performs byte-level memory operations on the MAC AE type. The MAC AE has
19243 no hardware support for byte-level memory operations, so all byte
19244 load/stores must be synthesized from word load/store operations. This is
19245 inefficient and a warning is generated to indicate
19246 that you should rewrite the code to avoid byte operations, or to target
19247 an AE type that has the necessary hardware support. This option disables
19248 these warnings.
19249
19250 @end table
19251
19252 @node PowerPC Options
19253 @subsection PowerPC Options
19254 @cindex PowerPC options
19255
19256 These are listed under @xref{RS/6000 and PowerPC Options}.
19257
19258 @node RL78 Options
19259 @subsection RL78 Options
19260 @cindex RL78 Options
19261
19262 @table @gcctabopt
19263
19264 @item -msim
19265 @opindex msim
19266 Links in additional target libraries to support operation within a
19267 simulator.
19268
19269 @item -mmul=none
19270 @itemx -mmul=g10
19271 @itemx -mmul=g13
19272 @itemx -mmul=g14
19273 @itemx -mmul=rl78
19274 @opindex mmul
19275 Specifies the type of hardware multiplication and division support to
19276 be used. The simplest is @code{none}, which uses software for both
19277 multiplication and division. This is the default. The @code{g13}
19278 value is for the hardware multiply/divide peripheral found on the
19279 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
19280 the multiplication and division instructions supported by the RL78/G14
19281 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
19282 the value @code{mg10} is an alias for @code{none}.
19283
19284 In addition a C preprocessor macro is defined, based upon the setting
19285 of this option. Possible values are: @code{__RL78_MUL_NONE__},
19286 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
19287
19288 @item -mcpu=g10
19289 @itemx -mcpu=g13
19290 @itemx -mcpu=g14
19291 @itemx -mcpu=rl78
19292 @opindex mcpu
19293 Specifies the RL78 core to target. The default is the G14 core, also
19294 known as an S3 core or just RL78. The G13 or S2 core does not have
19295 multiply or divide instructions, instead it uses a hardware peripheral
19296 for these operations. The G10 or S1 core does not have register
19297 banks, so it uses a different calling convention.
19298
19299 If this option is set it also selects the type of hardware multiply
19300 support to use, unless this is overridden by an explicit
19301 @option{-mmul=none} option on the command line. Thus specifying
19302 @option{-mcpu=g13} enables the use of the G13 hardware multiply
19303 peripheral and specifying @option{-mcpu=g10} disables the use of
19304 hardware multipications altogether.
19305
19306 Note, although the RL78/G14 core is the default target, specifying
19307 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
19308 change the behaviour of the toolchain since it also enables G14
19309 hardware multiply support. If these options are not specified on the
19310 command line then software multiplication routines will be used even
19311 though the code targets the RL78 core. This is for backwards
19312 compatibility with older toolchains which did not have hardware
19313 multiply and divide support.
19314
19315 In addition a C preprocessor macro is defined, based upon the setting
19316 of this option. Possible values are: @code{__RL78_G10__},
19317 @code{__RL78_G13__} or @code{__RL78_G14__}.
19318
19319 @item -mg10
19320 @itemx -mg13
19321 @itemx -mg14
19322 @itemx -mrl78
19323 @opindex mg10
19324 @opindex mg13
19325 @opindex mg14
19326 @opindex mrl78
19327 These are aliases for the corresponding @option{-mcpu=} option. They
19328 are provided for backwards compatibility.
19329
19330 @item -mallregs
19331 @opindex mallregs
19332 Allow the compiler to use all of the available registers. By default
19333 registers @code{r24..r31} are reserved for use in interrupt handlers.
19334 With this option enabled these registers can be used in ordinary
19335 functions as well.
19336
19337 @item -m64bit-doubles
19338 @itemx -m32bit-doubles
19339 @opindex m64bit-doubles
19340 @opindex m32bit-doubles
19341 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
19342 or 32 bits (@option{-m32bit-doubles}) in size. The default is
19343 @option{-m32bit-doubles}.
19344
19345 @end table
19346
19347 @node RS/6000 and PowerPC Options
19348 @subsection IBM RS/6000 and PowerPC Options
19349 @cindex RS/6000 and PowerPC Options
19350 @cindex IBM RS/6000 and PowerPC Options
19351
19352 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
19353 @table @gcctabopt
19354 @item -mpowerpc-gpopt
19355 @itemx -mno-powerpc-gpopt
19356 @itemx -mpowerpc-gfxopt
19357 @itemx -mno-powerpc-gfxopt
19358 @need 800
19359 @itemx -mpowerpc64
19360 @itemx -mno-powerpc64
19361 @itemx -mmfcrf
19362 @itemx -mno-mfcrf
19363 @itemx -mpopcntb
19364 @itemx -mno-popcntb
19365 @itemx -mpopcntd
19366 @itemx -mno-popcntd
19367 @itemx -mfprnd
19368 @itemx -mno-fprnd
19369 @need 800
19370 @itemx -mcmpb
19371 @itemx -mno-cmpb
19372 @itemx -mmfpgpr
19373 @itemx -mno-mfpgpr
19374 @itemx -mhard-dfp
19375 @itemx -mno-hard-dfp
19376 @opindex mpowerpc-gpopt
19377 @opindex mno-powerpc-gpopt
19378 @opindex mpowerpc-gfxopt
19379 @opindex mno-powerpc-gfxopt
19380 @opindex mpowerpc64
19381 @opindex mno-powerpc64
19382 @opindex mmfcrf
19383 @opindex mno-mfcrf
19384 @opindex mpopcntb
19385 @opindex mno-popcntb
19386 @opindex mpopcntd
19387 @opindex mno-popcntd
19388 @opindex mfprnd
19389 @opindex mno-fprnd
19390 @opindex mcmpb
19391 @opindex mno-cmpb
19392 @opindex mmfpgpr
19393 @opindex mno-mfpgpr
19394 @opindex mhard-dfp
19395 @opindex mno-hard-dfp
19396 You use these options to specify which instructions are available on the
19397 processor you are using. The default value of these options is
19398 determined when configuring GCC@. Specifying the
19399 @option{-mcpu=@var{cpu_type}} overrides the specification of these
19400 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
19401 rather than the options listed above.
19402
19403 Specifying @option{-mpowerpc-gpopt} allows
19404 GCC to use the optional PowerPC architecture instructions in the
19405 General Purpose group, including floating-point square root. Specifying
19406 @option{-mpowerpc-gfxopt} allows GCC to
19407 use the optional PowerPC architecture instructions in the Graphics
19408 group, including floating-point select.
19409
19410 The @option{-mmfcrf} option allows GCC to generate the move from
19411 condition register field instruction implemented on the POWER4
19412 processor and other processors that support the PowerPC V2.01
19413 architecture.
19414 The @option{-mpopcntb} option allows GCC to generate the popcount and
19415 double-precision FP reciprocal estimate instruction implemented on the
19416 POWER5 processor and other processors that support the PowerPC V2.02
19417 architecture.
19418 The @option{-mpopcntd} option allows GCC to generate the popcount
19419 instruction implemented on the POWER7 processor and other processors
19420 that support the PowerPC V2.06 architecture.
19421 The @option{-mfprnd} option allows GCC to generate the FP round to
19422 integer instructions implemented on the POWER5+ processor and other
19423 processors that support the PowerPC V2.03 architecture.
19424 The @option{-mcmpb} option allows GCC to generate the compare bytes
19425 instruction implemented on the POWER6 processor and other processors
19426 that support the PowerPC V2.05 architecture.
19427 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
19428 general-purpose register instructions implemented on the POWER6X
19429 processor and other processors that support the extended PowerPC V2.05
19430 architecture.
19431 The @option{-mhard-dfp} option allows GCC to generate the decimal
19432 floating-point instructions implemented on some POWER processors.
19433
19434 The @option{-mpowerpc64} option allows GCC to generate the additional
19435 64-bit instructions that are found in the full PowerPC64 architecture
19436 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
19437 @option{-mno-powerpc64}.
19438
19439 @item -mcpu=@var{cpu_type}
19440 @opindex mcpu
19441 Set architecture type, register usage, and
19442 instruction scheduling parameters for machine type @var{cpu_type}.
19443 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
19444 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
19445 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
19446 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
19447 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
19448 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
19449 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
19450 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
19451 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
19452 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
19453 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
19454 and @samp{rs64}.
19455
19456 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
19457 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
19458 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
19459 architecture machine types, with an appropriate, generic processor
19460 model assumed for scheduling purposes.
19461
19462 The other options specify a specific processor. Code generated under
19463 those options runs best on that processor, and may not run at all on
19464 others.
19465
19466 The @option{-mcpu} options automatically enable or disable the
19467 following options:
19468
19469 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
19470 -mpopcntb -mpopcntd -mpowerpc64 @gol
19471 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
19472 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
19473 -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol
19474 -mquad-memory -mquad-memory-atomic -mmodulo -mfloat128 -mfloat128-hardware @gol
19475 -mpower9-fusion -mpower9-vector}
19476
19477 The particular options set for any particular CPU varies between
19478 compiler versions, depending on what setting seems to produce optimal
19479 code for that CPU; it doesn't necessarily reflect the actual hardware's
19480 capabilities. If you wish to set an individual option to a particular
19481 value, you may specify it after the @option{-mcpu} option, like
19482 @option{-mcpu=970 -mno-altivec}.
19483
19484 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
19485 not enabled or disabled by the @option{-mcpu} option at present because
19486 AIX does not have full support for these options. You may still
19487 enable or disable them individually if you're sure it'll work in your
19488 environment.
19489
19490 @item -mtune=@var{cpu_type}
19491 @opindex mtune
19492 Set the instruction scheduling parameters for machine type
19493 @var{cpu_type}, but do not set the architecture type or register usage,
19494 as @option{-mcpu=@var{cpu_type}} does. The same
19495 values for @var{cpu_type} are used for @option{-mtune} as for
19496 @option{-mcpu}. If both are specified, the code generated uses the
19497 architecture and registers set by @option{-mcpu}, but the
19498 scheduling parameters set by @option{-mtune}.
19499
19500 @item -mcmodel=small
19501 @opindex mcmodel=small
19502 Generate PowerPC64 code for the small model: The TOC is limited to
19503 64k.
19504
19505 @item -mcmodel=medium
19506 @opindex mcmodel=medium
19507 Generate PowerPC64 code for the medium model: The TOC and other static
19508 data may be up to a total of 4G in size.
19509
19510 @item -mcmodel=large
19511 @opindex mcmodel=large
19512 Generate PowerPC64 code for the large model: The TOC may be up to 4G
19513 in size. Other data and code is only limited by the 64-bit address
19514 space.
19515
19516 @item -maltivec
19517 @itemx -mno-altivec
19518 @opindex maltivec
19519 @opindex mno-altivec
19520 Generate code that uses (does not use) AltiVec instructions, and also
19521 enable the use of built-in functions that allow more direct access to
19522 the AltiVec instruction set. You may also need to set
19523 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
19524 enhancements.
19525
19526 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
19527 @option{-maltivec=be}, the element order for Altivec intrinsics such
19528 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
19529 match array element order corresponding to the endianness of the
19530 target. That is, element zero identifies the leftmost element in a
19531 vector register when targeting a big-endian platform, and identifies
19532 the rightmost element in a vector register when targeting a
19533 little-endian platform.
19534
19535 @item -maltivec=be
19536 @opindex maltivec=be
19537 Generate Altivec instructions using big-endian element order,
19538 regardless of whether the target is big- or little-endian. This is
19539 the default when targeting a big-endian platform.
19540
19541 The element order is used to interpret element numbers in Altivec
19542 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19543 @code{vec_insert}. By default, these match array element order
19544 corresponding to the endianness for the target.
19545
19546 @item -maltivec=le
19547 @opindex maltivec=le
19548 Generate Altivec instructions using little-endian element order,
19549 regardless of whether the target is big- or little-endian. This is
19550 the default when targeting a little-endian platform. This option is
19551 currently ignored when targeting a big-endian platform.
19552
19553 The element order is used to interpret element numbers in Altivec
19554 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19555 @code{vec_insert}. By default, these match array element order
19556 corresponding to the endianness for the target.
19557
19558 @item -mvrsave
19559 @itemx -mno-vrsave
19560 @opindex mvrsave
19561 @opindex mno-vrsave
19562 Generate VRSAVE instructions when generating AltiVec code.
19563
19564 @item -mgen-cell-microcode
19565 @opindex mgen-cell-microcode
19566 Generate Cell microcode instructions.
19567
19568 @item -mwarn-cell-microcode
19569 @opindex mwarn-cell-microcode
19570 Warn when a Cell microcode instruction is emitted. An example
19571 of a Cell microcode instruction is a variable shift.
19572
19573 @item -msecure-plt
19574 @opindex msecure-plt
19575 Generate code that allows @command{ld} and @command{ld.so}
19576 to build executables and shared
19577 libraries with non-executable @code{.plt} and @code{.got} sections.
19578 This is a PowerPC
19579 32-bit SYSV ABI option.
19580
19581 @item -mbss-plt
19582 @opindex mbss-plt
19583 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19584 fills in, and
19585 requires @code{.plt} and @code{.got}
19586 sections that are both writable and executable.
19587 This is a PowerPC 32-bit SYSV ABI option.
19588
19589 @item -misel
19590 @itemx -mno-isel
19591 @opindex misel
19592 @opindex mno-isel
19593 This switch enables or disables the generation of ISEL instructions.
19594
19595 @item -misel=@var{yes/no}
19596 This switch has been deprecated. Use @option{-misel} and
19597 @option{-mno-isel} instead.
19598
19599 @item -mspe
19600 @itemx -mno-spe
19601 @opindex mspe
19602 @opindex mno-spe
19603 This switch enables or disables the generation of SPE simd
19604 instructions.
19605
19606 @item -mpaired
19607 @itemx -mno-paired
19608 @opindex mpaired
19609 @opindex mno-paired
19610 This switch enables or disables the generation of PAIRED simd
19611 instructions.
19612
19613 @item -mspe=@var{yes/no}
19614 This option has been deprecated. Use @option{-mspe} and
19615 @option{-mno-spe} instead.
19616
19617 @item -mvsx
19618 @itemx -mno-vsx
19619 @opindex mvsx
19620 @opindex mno-vsx
19621 Generate code that uses (does not use) vector/scalar (VSX)
19622 instructions, and also enable the use of built-in functions that allow
19623 more direct access to the VSX instruction set.
19624
19625 @item -mcrypto
19626 @itemx -mno-crypto
19627 @opindex mcrypto
19628 @opindex mno-crypto
19629 Enable the use (disable) of the built-in functions that allow direct
19630 access to the cryptographic instructions that were added in version
19631 2.07 of the PowerPC ISA.
19632
19633 @item -mdirect-move
19634 @itemx -mno-direct-move
19635 @opindex mdirect-move
19636 @opindex mno-direct-move
19637 Generate code that uses (does not use) the instructions to move data
19638 between the general purpose registers and the vector/scalar (VSX)
19639 registers that were added in version 2.07 of the PowerPC ISA.
19640
19641 @item -mpower8-fusion
19642 @itemx -mno-power8-fusion
19643 @opindex mpower8-fusion
19644 @opindex mno-power8-fusion
19645 Generate code that keeps (does not keeps) some integer operations
19646 adjacent so that the instructions can be fused together on power8 and
19647 later processors.
19648
19649 @item -mpower8-vector
19650 @itemx -mno-power8-vector
19651 @opindex mpower8-vector
19652 @opindex mno-power8-vector
19653 Generate code that uses (does not use) the vector and scalar
19654 instructions that were added in version 2.07 of the PowerPC ISA. Also
19655 enable the use of built-in functions that allow more direct access to
19656 the vector instructions.
19657
19658 @item -mquad-memory
19659 @itemx -mno-quad-memory
19660 @opindex mquad-memory
19661 @opindex mno-quad-memory
19662 Generate code that uses (does not use) the non-atomic quad word memory
19663 instructions. The @option{-mquad-memory} option requires use of
19664 64-bit mode.
19665
19666 @item -mquad-memory-atomic
19667 @itemx -mno-quad-memory-atomic
19668 @opindex mquad-memory-atomic
19669 @opindex mno-quad-memory-atomic
19670 Generate code that uses (does not use) the atomic quad word memory
19671 instructions. The @option{-mquad-memory-atomic} option requires use of
19672 64-bit mode.
19673
19674 @item -mupper-regs-df
19675 @itemx -mno-upper-regs-df
19676 @opindex mupper-regs-df
19677 @opindex mno-upper-regs-df
19678 Generate code that uses (does not use) the scalar double precision
19679 instructions that target all 64 registers in the vector/scalar
19680 floating point register set that were added in version 2.06 of the
19681 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
19682 use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19683 @option{-mvsx} options.
19684
19685 @item -mupper-regs-sf
19686 @itemx -mno-upper-regs-sf
19687 @opindex mupper-regs-sf
19688 @opindex mno-upper-regs-sf
19689 Generate code that uses (does not use) the scalar single precision
19690 instructions that target all 64 registers in the vector/scalar
19691 floating point register set that were added in version 2.07 of the
19692 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
19693 use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19694 options.
19695
19696 @item -mupper-regs
19697 @itemx -mno-upper-regs
19698 @opindex mupper-regs
19699 @opindex mno-upper-regs
19700 Generate code that uses (does not use) the scalar
19701 instructions that target all 64 registers in the vector/scalar
19702 floating point register set, depending on the model of the machine.
19703
19704 If the @option{-mno-upper-regs} option is used, it turns off both
19705 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19706
19707 @item -mfloat128
19708 @itemx -mno-float128
19709 @opindex mfloat128
19710 @opindex mno-float128
19711 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
19712 and use either software emulation for IEEE 128-bit floating point or
19713 hardware instructions.
19714
19715 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7}, or
19716 @option{-mcpu=power8}) must be enabled to use the @option{-mfloat128}
19717 option. The @code{-mfloat128} option only works on PowerPC 64-bit
19718 Linux systems.
19719
19720 @item -mfloat128-hardware
19721 @itemx -mno-float128-hardware
19722 @opindex mfloat128-hardware
19723 @opindex mno-float128-hardware
19724 Enable/disable using ISA 3.0 hardware instructions to support the
19725 @var{__float128} data type.
19726
19727 @item -mmodulo
19728 @itemx -mno-modulo
19729 @opindex mmodulo
19730 @opindex mno-module
19731 Generate code that uses (does not use) the ISA 3.0 integer modulo
19732 instructions. The @option{-mmodulo} option is enabled by default
19733 with the @option{-mcpu=power9} option.
19734
19735 @item -mpower9-fusion
19736 @itemx -mno-power9-fusion
19737 @opindex mpower9-fusion
19738 @opindex mno-power9-fusion
19739 Generate code that keeps (does not keeps) some operations adjacent so
19740 that the instructions can be fused together on power9 and later
19741 processors.
19742
19743 @item -mpower9-vector
19744 @itemx -mno-power9-vector
19745 @opindex mpower9-vector
19746 @opindex mno-power9-vector
19747 Generate code that uses (does not use) the vector and scalar
19748 instructions that were added in version 2.07 of the PowerPC ISA. Also
19749 enable the use of built-in functions that allow more direct access to
19750 the vector instructions.
19751
19752 @item -mfloat-gprs=@var{yes/single/double/no}
19753 @itemx -mfloat-gprs
19754 @opindex mfloat-gprs
19755 This switch enables or disables the generation of floating-point
19756 operations on the general-purpose registers for architectures that
19757 support it.
19758
19759 The argument @samp{yes} or @samp{single} enables the use of
19760 single-precision floating-point operations.
19761
19762 The argument @samp{double} enables the use of single and
19763 double-precision floating-point operations.
19764
19765 The argument @samp{no} disables floating-point operations on the
19766 general-purpose registers.
19767
19768 This option is currently only available on the MPC854x.
19769
19770 @item -m32
19771 @itemx -m64
19772 @opindex m32
19773 @opindex m64
19774 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19775 targets (including GNU/Linux). The 32-bit environment sets int, long
19776 and pointer to 32 bits and generates code that runs on any PowerPC
19777 variant. The 64-bit environment sets int to 32 bits and long and
19778 pointer to 64 bits, and generates code for PowerPC64, as for
19779 @option{-mpowerpc64}.
19780
19781 @item -mfull-toc
19782 @itemx -mno-fp-in-toc
19783 @itemx -mno-sum-in-toc
19784 @itemx -mminimal-toc
19785 @opindex mfull-toc
19786 @opindex mno-fp-in-toc
19787 @opindex mno-sum-in-toc
19788 @opindex mminimal-toc
19789 Modify generation of the TOC (Table Of Contents), which is created for
19790 every executable file. The @option{-mfull-toc} option is selected by
19791 default. In that case, GCC allocates at least one TOC entry for
19792 each unique non-automatic variable reference in your program. GCC
19793 also places floating-point constants in the TOC@. However, only
19794 16,384 entries are available in the TOC@.
19795
19796 If you receive a linker error message that saying you have overflowed
19797 the available TOC space, you can reduce the amount of TOC space used
19798 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19799 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
19800 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19801 generate code to calculate the sum of an address and a constant at
19802 run time instead of putting that sum into the TOC@. You may specify one
19803 or both of these options. Each causes GCC to produce very slightly
19804 slower and larger code at the expense of conserving TOC space.
19805
19806 If you still run out of space in the TOC even when you specify both of
19807 these options, specify @option{-mminimal-toc} instead. This option causes
19808 GCC to make only one TOC entry for every file. When you specify this
19809 option, GCC produces code that is slower and larger but which
19810 uses extremely little TOC space. You may wish to use this option
19811 only on files that contain less frequently-executed code.
19812
19813 @item -maix64
19814 @itemx -maix32
19815 @opindex maix64
19816 @opindex maix32
19817 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19818 @code{long} type, and the infrastructure needed to support them.
19819 Specifying @option{-maix64} implies @option{-mpowerpc64},
19820 while @option{-maix32} disables the 64-bit ABI and
19821 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
19822
19823 @item -mxl-compat
19824 @itemx -mno-xl-compat
19825 @opindex mxl-compat
19826 @opindex mno-xl-compat
19827 Produce code that conforms more closely to IBM XL compiler semantics
19828 when using AIX-compatible ABI@. Pass floating-point arguments to
19829 prototyped functions beyond the register save area (RSA) on the stack
19830 in addition to argument FPRs. Do not assume that most significant
19831 double in 128-bit long double value is properly rounded when comparing
19832 values and converting to double. Use XL symbol names for long double
19833 support routines.
19834
19835 The AIX calling convention was extended but not initially documented to
19836 handle an obscure K&R C case of calling a function that takes the
19837 address of its arguments with fewer arguments than declared. IBM XL
19838 compilers access floating-point arguments that do not fit in the
19839 RSA from the stack when a subroutine is compiled without
19840 optimization. Because always storing floating-point arguments on the
19841 stack is inefficient and rarely needed, this option is not enabled by
19842 default and only is necessary when calling subroutines compiled by IBM
19843 XL compilers without optimization.
19844
19845 @item -mpe
19846 @opindex mpe
19847 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
19848 application written to use message passing with special startup code to
19849 enable the application to run. The system must have PE installed in the
19850 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
19851 must be overridden with the @option{-specs=} option to specify the
19852 appropriate directory location. The Parallel Environment does not
19853 support threads, so the @option{-mpe} option and the @option{-pthread}
19854 option are incompatible.
19855
19856 @item -malign-natural
19857 @itemx -malign-power
19858 @opindex malign-natural
19859 @opindex malign-power
19860 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
19861 @option{-malign-natural} overrides the ABI-defined alignment of larger
19862 types, such as floating-point doubles, on their natural size-based boundary.
19863 The option @option{-malign-power} instructs GCC to follow the ABI-specified
19864 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
19865
19866 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
19867 is not supported.
19868
19869 @item -msoft-float
19870 @itemx -mhard-float
19871 @opindex msoft-float
19872 @opindex mhard-float
19873 Generate code that does not use (uses) the floating-point register set.
19874 Software floating-point emulation is provided if you use the
19875 @option{-msoft-float} option, and pass the option to GCC when linking.
19876
19877 @item -msingle-float
19878 @itemx -mdouble-float
19879 @opindex msingle-float
19880 @opindex mdouble-float
19881 Generate code for single- or double-precision floating-point operations.
19882 @option{-mdouble-float} implies @option{-msingle-float}.
19883
19884 @item -msimple-fpu
19885 @opindex msimple-fpu
19886 Do not generate @code{sqrt} and @code{div} instructions for hardware
19887 floating-point unit.
19888
19889 @item -mfpu=@var{name}
19890 @opindex mfpu
19891 Specify type of floating-point unit. Valid values for @var{name} are
19892 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
19893 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
19894 @samp{sp_full} (equivalent to @option{-msingle-float}),
19895 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
19896
19897 @item -mxilinx-fpu
19898 @opindex mxilinx-fpu
19899 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
19900
19901 @item -mmultiple
19902 @itemx -mno-multiple
19903 @opindex mmultiple
19904 @opindex mno-multiple
19905 Generate code that uses (does not use) the load multiple word
19906 instructions and the store multiple word instructions. These
19907 instructions are generated by default on POWER systems, and not
19908 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
19909 PowerPC systems, since those instructions do not work when the
19910 processor is in little-endian mode. The exceptions are PPC740 and
19911 PPC750 which permit these instructions in little-endian mode.
19912
19913 @item -mstring
19914 @itemx -mno-string
19915 @opindex mstring
19916 @opindex mno-string
19917 Generate code that uses (does not use) the load string instructions
19918 and the store string word instructions to save multiple registers and
19919 do small block moves. These instructions are generated by default on
19920 POWER systems, and not generated on PowerPC systems. Do not use
19921 @option{-mstring} on little-endian PowerPC systems, since those
19922 instructions do not work when the processor is in little-endian mode.
19923 The exceptions are PPC740 and PPC750 which permit these instructions
19924 in little-endian mode.
19925
19926 @item -mupdate
19927 @itemx -mno-update
19928 @opindex mupdate
19929 @opindex mno-update
19930 Generate code that uses (does not use) the load or store instructions
19931 that update the base register to the address of the calculated memory
19932 location. These instructions are generated by default. If you use
19933 @option{-mno-update}, there is a small window between the time that the
19934 stack pointer is updated and the address of the previous frame is
19935 stored, which means code that walks the stack frame across interrupts or
19936 signals may get corrupted data.
19937
19938 @item -mavoid-indexed-addresses
19939 @itemx -mno-avoid-indexed-addresses
19940 @opindex mavoid-indexed-addresses
19941 @opindex mno-avoid-indexed-addresses
19942 Generate code that tries to avoid (not avoid) the use of indexed load
19943 or store instructions. These instructions can incur a performance
19944 penalty on Power6 processors in certain situations, such as when
19945 stepping through large arrays that cross a 16M boundary. This option
19946 is enabled by default when targeting Power6 and disabled otherwise.
19947
19948 @item -mfused-madd
19949 @itemx -mno-fused-madd
19950 @opindex mfused-madd
19951 @opindex mno-fused-madd
19952 Generate code that uses (does not use) the floating-point multiply and
19953 accumulate instructions. These instructions are generated by default
19954 if hardware floating point is used. The machine-dependent
19955 @option{-mfused-madd} option is now mapped to the machine-independent
19956 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
19957 mapped to @option{-ffp-contract=off}.
19958
19959 @item -mmulhw
19960 @itemx -mno-mulhw
19961 @opindex mmulhw
19962 @opindex mno-mulhw
19963 Generate code that uses (does not use) the half-word multiply and
19964 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
19965 These instructions are generated by default when targeting those
19966 processors.
19967
19968 @item -mdlmzb
19969 @itemx -mno-dlmzb
19970 @opindex mdlmzb
19971 @opindex mno-dlmzb
19972 Generate code that uses (does not use) the string-search @samp{dlmzb}
19973 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
19974 generated by default when targeting those processors.
19975
19976 @item -mno-bit-align
19977 @itemx -mbit-align
19978 @opindex mno-bit-align
19979 @opindex mbit-align
19980 On System V.4 and embedded PowerPC systems do not (do) force structures
19981 and unions that contain bit-fields to be aligned to the base type of the
19982 bit-field.
19983
19984 For example, by default a structure containing nothing but 8
19985 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
19986 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
19987 the structure is aligned to a 1-byte boundary and is 1 byte in
19988 size.
19989
19990 @item -mno-strict-align
19991 @itemx -mstrict-align
19992 @opindex mno-strict-align
19993 @opindex mstrict-align
19994 On System V.4 and embedded PowerPC systems do not (do) assume that
19995 unaligned memory references are handled by the system.
19996
19997 @item -mrelocatable
19998 @itemx -mno-relocatable
19999 @opindex mrelocatable
20000 @opindex mno-relocatable
20001 Generate code that allows (does not allow) a static executable to be
20002 relocated to a different address at run time. A simple embedded
20003 PowerPC system loader should relocate the entire contents of
20004 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
20005 a table of 32-bit addresses generated by this option. For this to
20006 work, all objects linked together must be compiled with
20007 @option{-mrelocatable} or @option{-mrelocatable-lib}.
20008 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
20009
20010 @item -mrelocatable-lib
20011 @itemx -mno-relocatable-lib
20012 @opindex mrelocatable-lib
20013 @opindex mno-relocatable-lib
20014 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
20015 @code{.fixup} section to allow static executables to be relocated at
20016 run time, but @option{-mrelocatable-lib} does not use the smaller stack
20017 alignment of @option{-mrelocatable}. Objects compiled with
20018 @option{-mrelocatable-lib} may be linked with objects compiled with
20019 any combination of the @option{-mrelocatable} options.
20020
20021 @item -mno-toc
20022 @itemx -mtoc
20023 @opindex mno-toc
20024 @opindex mtoc
20025 On System V.4 and embedded PowerPC systems do not (do) assume that
20026 register 2 contains a pointer to a global area pointing to the addresses
20027 used in the program.
20028
20029 @item -mlittle
20030 @itemx -mlittle-endian
20031 @opindex mlittle
20032 @opindex mlittle-endian
20033 On System V.4 and embedded PowerPC systems compile code for the
20034 processor in little-endian mode. The @option{-mlittle-endian} option is
20035 the same as @option{-mlittle}.
20036
20037 @item -mbig
20038 @itemx -mbig-endian
20039 @opindex mbig
20040 @opindex mbig-endian
20041 On System V.4 and embedded PowerPC systems compile code for the
20042 processor in big-endian mode. The @option{-mbig-endian} option is
20043 the same as @option{-mbig}.
20044
20045 @item -mdynamic-no-pic
20046 @opindex mdynamic-no-pic
20047 On Darwin and Mac OS X systems, compile code so that it is not
20048 relocatable, but that its external references are relocatable. The
20049 resulting code is suitable for applications, but not shared
20050 libraries.
20051
20052 @item -msingle-pic-base
20053 @opindex msingle-pic-base
20054 Treat the register used for PIC addressing as read-only, rather than
20055 loading it in the prologue for each function. The runtime system is
20056 responsible for initializing this register with an appropriate value
20057 before execution begins.
20058
20059 @item -mprioritize-restricted-insns=@var{priority}
20060 @opindex mprioritize-restricted-insns
20061 This option controls the priority that is assigned to
20062 dispatch-slot restricted instructions during the second scheduling
20063 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
20064 or @samp{2} to assign no, highest, or second-highest (respectively)
20065 priority to dispatch-slot restricted
20066 instructions.
20067
20068 @item -msched-costly-dep=@var{dependence_type}
20069 @opindex msched-costly-dep
20070 This option controls which dependences are considered costly
20071 by the target during instruction scheduling. The argument
20072 @var{dependence_type} takes one of the following values:
20073
20074 @table @asis
20075 @item @samp{no}
20076 No dependence is costly.
20077
20078 @item @samp{all}
20079 All dependences are costly.
20080
20081 @item @samp{true_store_to_load}
20082 A true dependence from store to load is costly.
20083
20084 @item @samp{store_to_load}
20085 Any dependence from store to load is costly.
20086
20087 @item @var{number}
20088 Any dependence for which the latency is greater than or equal to
20089 @var{number} is costly.
20090 @end table
20091
20092 @item -minsert-sched-nops=@var{scheme}
20093 @opindex minsert-sched-nops
20094 This option controls which NOP insertion scheme is used during
20095 the second scheduling pass. The argument @var{scheme} takes one of the
20096 following values:
20097
20098 @table @asis
20099 @item @samp{no}
20100 Don't insert NOPs.
20101
20102 @item @samp{pad}
20103 Pad with NOPs any dispatch group that has vacant issue slots,
20104 according to the scheduler's grouping.
20105
20106 @item @samp{regroup_exact}
20107 Insert NOPs to force costly dependent insns into
20108 separate groups. Insert exactly as many NOPs as needed to force an insn
20109 to a new group, according to the estimated processor grouping.
20110
20111 @item @var{number}
20112 Insert NOPs to force costly dependent insns into
20113 separate groups. Insert @var{number} NOPs to force an insn to a new group.
20114 @end table
20115
20116 @item -mcall-sysv
20117 @opindex mcall-sysv
20118 On System V.4 and embedded PowerPC systems compile code using calling
20119 conventions that adhere to the March 1995 draft of the System V
20120 Application Binary Interface, PowerPC processor supplement. This is the
20121 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
20122
20123 @item -mcall-sysv-eabi
20124 @itemx -mcall-eabi
20125 @opindex mcall-sysv-eabi
20126 @opindex mcall-eabi
20127 Specify both @option{-mcall-sysv} and @option{-meabi} options.
20128
20129 @item -mcall-sysv-noeabi
20130 @opindex mcall-sysv-noeabi
20131 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
20132
20133 @item -mcall-aixdesc
20134 @opindex m
20135 On System V.4 and embedded PowerPC systems compile code for the AIX
20136 operating system.
20137
20138 @item -mcall-linux
20139 @opindex mcall-linux
20140 On System V.4 and embedded PowerPC systems compile code for the
20141 Linux-based GNU system.
20142
20143 @item -mcall-freebsd
20144 @opindex mcall-freebsd
20145 On System V.4 and embedded PowerPC systems compile code for the
20146 FreeBSD operating system.
20147
20148 @item -mcall-netbsd
20149 @opindex mcall-netbsd
20150 On System V.4 and embedded PowerPC systems compile code for the
20151 NetBSD operating system.
20152
20153 @item -mcall-openbsd
20154 @opindex mcall-netbsd
20155 On System V.4 and embedded PowerPC systems compile code for the
20156 OpenBSD operating system.
20157
20158 @item -maix-struct-return
20159 @opindex maix-struct-return
20160 Return all structures in memory (as specified by the AIX ABI)@.
20161
20162 @item -msvr4-struct-return
20163 @opindex msvr4-struct-return
20164 Return structures smaller than 8 bytes in registers (as specified by the
20165 SVR4 ABI)@.
20166
20167 @item -mabi=@var{abi-type}
20168 @opindex mabi
20169 Extend the current ABI with a particular extension, or remove such extension.
20170 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
20171 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
20172 @samp{elfv1}, @samp{elfv2}@.
20173
20174 @item -mabi=spe
20175 @opindex mabi=spe
20176 Extend the current ABI with SPE ABI extensions. This does not change
20177 the default ABI, instead it adds the SPE ABI extensions to the current
20178 ABI@.
20179
20180 @item -mabi=no-spe
20181 @opindex mabi=no-spe
20182 Disable Book-E SPE ABI extensions for the current ABI@.
20183
20184 @item -mabi=ibmlongdouble
20185 @opindex mabi=ibmlongdouble
20186 Change the current ABI to use IBM extended-precision long double.
20187 This is a PowerPC 32-bit SYSV ABI option.
20188
20189 @item -mabi=ieeelongdouble
20190 @opindex mabi=ieeelongdouble
20191 Change the current ABI to use IEEE extended-precision long double.
20192 This is a PowerPC 32-bit Linux ABI option.
20193
20194 @item -mabi=elfv1
20195 @opindex mabi=elfv1
20196 Change the current ABI to use the ELFv1 ABI.
20197 This is the default ABI for big-endian PowerPC 64-bit Linux.
20198 Overriding the default ABI requires special system support and is
20199 likely to fail in spectacular ways.
20200
20201 @item -mabi=elfv2
20202 @opindex mabi=elfv2
20203 Change the current ABI to use the ELFv2 ABI.
20204 This is the default ABI for little-endian PowerPC 64-bit Linux.
20205 Overriding the default ABI requires special system support and is
20206 likely to fail in spectacular ways.
20207
20208 @item -mprototype
20209 @itemx -mno-prototype
20210 @opindex mprototype
20211 @opindex mno-prototype
20212 On System V.4 and embedded PowerPC systems assume that all calls to
20213 variable argument functions are properly prototyped. Otherwise, the
20214 compiler must insert an instruction before every non-prototyped call to
20215 set or clear bit 6 of the condition code register (@code{CR}) to
20216 indicate whether floating-point values are passed in the floating-point
20217 registers in case the function takes variable arguments. With
20218 @option{-mprototype}, only calls to prototyped variable argument functions
20219 set or clear the bit.
20220
20221 @item -msim
20222 @opindex msim
20223 On embedded PowerPC systems, assume that the startup module is called
20224 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
20225 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
20226 configurations.
20227
20228 @item -mmvme
20229 @opindex mmvme
20230 On embedded PowerPC systems, assume that the startup module is called
20231 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
20232 @file{libc.a}.
20233
20234 @item -mads
20235 @opindex mads
20236 On embedded PowerPC systems, assume that the startup module is called
20237 @file{crt0.o} and the standard C libraries are @file{libads.a} and
20238 @file{libc.a}.
20239
20240 @item -myellowknife
20241 @opindex myellowknife
20242 On embedded PowerPC systems, assume that the startup module is called
20243 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
20244 @file{libc.a}.
20245
20246 @item -mvxworks
20247 @opindex mvxworks
20248 On System V.4 and embedded PowerPC systems, specify that you are
20249 compiling for a VxWorks system.
20250
20251 @item -memb
20252 @opindex memb
20253 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
20254 header to indicate that @samp{eabi} extended relocations are used.
20255
20256 @item -meabi
20257 @itemx -mno-eabi
20258 @opindex meabi
20259 @opindex mno-eabi
20260 On System V.4 and embedded PowerPC systems do (do not) adhere to the
20261 Embedded Applications Binary Interface (EABI), which is a set of
20262 modifications to the System V.4 specifications. Selecting @option{-meabi}
20263 means that the stack is aligned to an 8-byte boundary, a function
20264 @code{__eabi} is called from @code{main} to set up the EABI
20265 environment, and the @option{-msdata} option can use both @code{r2} and
20266 @code{r13} to point to two separate small data areas. Selecting
20267 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
20268 no EABI initialization function is called from @code{main}, and the
20269 @option{-msdata} option only uses @code{r13} to point to a single
20270 small data area. The @option{-meabi} option is on by default if you
20271 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
20272
20273 @item -msdata=eabi
20274 @opindex msdata=eabi
20275 On System V.4 and embedded PowerPC systems, put small initialized
20276 @code{const} global and static data in the @code{.sdata2} section, which
20277 is pointed to by register @code{r2}. Put small initialized
20278 non-@code{const} global and static data in the @code{.sdata} section,
20279 which is pointed to by register @code{r13}. Put small uninitialized
20280 global and static data in the @code{.sbss} section, which is adjacent to
20281 the @code{.sdata} section. The @option{-msdata=eabi} option is
20282 incompatible with the @option{-mrelocatable} option. The
20283 @option{-msdata=eabi} option also sets the @option{-memb} option.
20284
20285 @item -msdata=sysv
20286 @opindex msdata=sysv
20287 On System V.4 and embedded PowerPC systems, put small global and static
20288 data in the @code{.sdata} section, which is pointed to by register
20289 @code{r13}. Put small uninitialized global and static data in the
20290 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
20291 The @option{-msdata=sysv} option is incompatible with the
20292 @option{-mrelocatable} option.
20293
20294 @item -msdata=default
20295 @itemx -msdata
20296 @opindex msdata=default
20297 @opindex msdata
20298 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
20299 compile code the same as @option{-msdata=eabi}, otherwise compile code the
20300 same as @option{-msdata=sysv}.
20301
20302 @item -msdata=data
20303 @opindex msdata=data
20304 On System V.4 and embedded PowerPC systems, put small global
20305 data in the @code{.sdata} section. Put small uninitialized global
20306 data in the @code{.sbss} section. Do not use register @code{r13}
20307 to address small data however. This is the default behavior unless
20308 other @option{-msdata} options are used.
20309
20310 @item -msdata=none
20311 @itemx -mno-sdata
20312 @opindex msdata=none
20313 @opindex mno-sdata
20314 On embedded PowerPC systems, put all initialized global and static data
20315 in the @code{.data} section, and all uninitialized data in the
20316 @code{.bss} section.
20317
20318 @item -mblock-move-inline-limit=@var{num}
20319 @opindex mblock-move-inline-limit
20320 Inline all block moves (such as calls to @code{memcpy} or structure
20321 copies) less than or equal to @var{num} bytes. The minimum value for
20322 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
20323 targets. The default value is target-specific.
20324
20325 @item -G @var{num}
20326 @opindex G
20327 @cindex smaller data references (PowerPC)
20328 @cindex .sdata/.sdata2 references (PowerPC)
20329 On embedded PowerPC systems, put global and static items less than or
20330 equal to @var{num} bytes into the small data or BSS sections instead of
20331 the normal data or BSS section. By default, @var{num} is 8. The
20332 @option{-G @var{num}} switch is also passed to the linker.
20333 All modules should be compiled with the same @option{-G @var{num}} value.
20334
20335 @item -mregnames
20336 @itemx -mno-regnames
20337 @opindex mregnames
20338 @opindex mno-regnames
20339 On System V.4 and embedded PowerPC systems do (do not) emit register
20340 names in the assembly language output using symbolic forms.
20341
20342 @item -mlongcall
20343 @itemx -mno-longcall
20344 @opindex mlongcall
20345 @opindex mno-longcall
20346 By default assume that all calls are far away so that a longer and more
20347 expensive calling sequence is required. This is required for calls
20348 farther than 32 megabytes (33,554,432 bytes) from the current location.
20349 A short call is generated if the compiler knows
20350 the call cannot be that far away. This setting can be overridden by
20351 the @code{shortcall} function attribute, or by @code{#pragma
20352 longcall(0)}.
20353
20354 Some linkers are capable of detecting out-of-range calls and generating
20355 glue code on the fly. On these systems, long calls are unnecessary and
20356 generate slower code. As of this writing, the AIX linker can do this,
20357 as can the GNU linker for PowerPC/64. It is planned to add this feature
20358 to the GNU linker for 32-bit PowerPC systems as well.
20359
20360 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
20361 callee, L42}, plus a @dfn{branch island} (glue code). The two target
20362 addresses represent the callee and the branch island. The
20363 Darwin/PPC linker prefers the first address and generates a @code{bl
20364 callee} if the PPC @code{bl} instruction reaches the callee directly;
20365 otherwise, the linker generates @code{bl L42} to call the branch
20366 island. The branch island is appended to the body of the
20367 calling function; it computes the full 32-bit address of the callee
20368 and jumps to it.
20369
20370 On Mach-O (Darwin) systems, this option directs the compiler emit to
20371 the glue for every direct call, and the Darwin linker decides whether
20372 to use or discard it.
20373
20374 In the future, GCC may ignore all longcall specifications
20375 when the linker is known to generate glue.
20376
20377 @item -mtls-markers
20378 @itemx -mno-tls-markers
20379 @opindex mtls-markers
20380 @opindex mno-tls-markers
20381 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
20382 specifying the function argument. The relocation allows the linker to
20383 reliably associate function call with argument setup instructions for
20384 TLS optimization, which in turn allows GCC to better schedule the
20385 sequence.
20386
20387 @item -pthread
20388 @opindex pthread
20389 Adds support for multithreading with the @dfn{pthreads} library.
20390 This option sets flags for both the preprocessor and linker.
20391
20392 @item -mrecip
20393 @itemx -mno-recip
20394 @opindex mrecip
20395 This option enables use of the reciprocal estimate and
20396 reciprocal square root estimate instructions with additional
20397 Newton-Raphson steps to increase precision instead of doing a divide or
20398 square root and divide for floating-point arguments. You should use
20399 the @option{-ffast-math} option when using @option{-mrecip} (or at
20400 least @option{-funsafe-math-optimizations},
20401 @option{-ffinite-math-only}, @option{-freciprocal-math} and
20402 @option{-fno-trapping-math}). Note that while the throughput of the
20403 sequence is generally higher than the throughput of the non-reciprocal
20404 instruction, the precision of the sequence can be decreased by up to 2
20405 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
20406 roots.
20407
20408 @item -mrecip=@var{opt}
20409 @opindex mrecip=opt
20410 This option controls which reciprocal estimate instructions
20411 may be used. @var{opt} is a comma-separated list of options, which may
20412 be preceded by a @code{!} to invert the option:
20413
20414 @table @samp
20415
20416 @item all
20417 Enable all estimate instructions.
20418
20419 @item default
20420 Enable the default instructions, equivalent to @option{-mrecip}.
20421
20422 @item none
20423 Disable all estimate instructions, equivalent to @option{-mno-recip}.
20424
20425 @item div
20426 Enable the reciprocal approximation instructions for both
20427 single and double precision.
20428
20429 @item divf
20430 Enable the single-precision reciprocal approximation instructions.
20431
20432 @item divd
20433 Enable the double-precision reciprocal approximation instructions.
20434
20435 @item rsqrt
20436 Enable the reciprocal square root approximation instructions for both
20437 single and double precision.
20438
20439 @item rsqrtf
20440 Enable the single-precision reciprocal square root approximation instructions.
20441
20442 @item rsqrtd
20443 Enable the double-precision reciprocal square root approximation instructions.
20444
20445 @end table
20446
20447 So, for example, @option{-mrecip=all,!rsqrtd} enables
20448 all of the reciprocal estimate instructions, except for the
20449 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
20450 which handle the double-precision reciprocal square root calculations.
20451
20452 @item -mrecip-precision
20453 @itemx -mno-recip-precision
20454 @opindex mrecip-precision
20455 Assume (do not assume) that the reciprocal estimate instructions
20456 provide higher-precision estimates than is mandated by the PowerPC
20457 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
20458 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
20459 The double-precision square root estimate instructions are not generated by
20460 default on low-precision machines, since they do not provide an
20461 estimate that converges after three steps.
20462
20463 @item -mveclibabi=@var{type}
20464 @opindex mveclibabi
20465 Specifies the ABI type to use for vectorizing intrinsics using an
20466 external library. The only type supported at present is @samp{mass},
20467 which specifies to use IBM's Mathematical Acceleration Subsystem
20468 (MASS) libraries for vectorizing intrinsics using external libraries.
20469 GCC currently emits calls to @code{acosd2}, @code{acosf4},
20470 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
20471 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
20472 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
20473 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
20474 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
20475 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
20476 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
20477 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
20478 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
20479 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
20480 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
20481 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
20482 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
20483 for power7. Both @option{-ftree-vectorize} and
20484 @option{-funsafe-math-optimizations} must also be enabled. The MASS
20485 libraries must be specified at link time.
20486
20487 @item -mfriz
20488 @itemx -mno-friz
20489 @opindex mfriz
20490 Generate (do not generate) the @code{friz} instruction when the
20491 @option{-funsafe-math-optimizations} option is used to optimize
20492 rounding of floating-point values to 64-bit integer and back to floating
20493 point. The @code{friz} instruction does not return the same value if
20494 the floating-point number is too large to fit in an integer.
20495
20496 @item -mpointers-to-nested-functions
20497 @itemx -mno-pointers-to-nested-functions
20498 @opindex mpointers-to-nested-functions
20499 Generate (do not generate) code to load up the static chain register
20500 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
20501 systems where a function pointer points to a 3-word descriptor giving
20502 the function address, TOC value to be loaded in register @code{r2}, and
20503 static chain value to be loaded in register @code{r11}. The
20504 @option{-mpointers-to-nested-functions} is on by default. You cannot
20505 call through pointers to nested functions or pointers
20506 to functions compiled in other languages that use the static chain if
20507 you use @option{-mno-pointers-to-nested-functions}.
20508
20509 @item -msave-toc-indirect
20510 @itemx -mno-save-toc-indirect
20511 @opindex msave-toc-indirect
20512 Generate (do not generate) code to save the TOC value in the reserved
20513 stack location in the function prologue if the function calls through
20514 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
20515 saved in the prologue, it is saved just before the call through the
20516 pointer. The @option{-mno-save-toc-indirect} option is the default.
20517
20518 @item -mcompat-align-parm
20519 @itemx -mno-compat-align-parm
20520 @opindex mcompat-align-parm
20521 Generate (do not generate) code to pass structure parameters with a
20522 maximum alignment of 64 bits, for compatibility with older versions
20523 of GCC.
20524
20525 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
20526 structure parameter on a 128-bit boundary when that structure contained
20527 a member requiring 128-bit alignment. This is corrected in more
20528 recent versions of GCC. This option may be used to generate code
20529 that is compatible with functions compiled with older versions of
20530 GCC.
20531
20532 The @option{-mno-compat-align-parm} option is the default.
20533 @end table
20534
20535 @node RX Options
20536 @subsection RX Options
20537 @cindex RX Options
20538
20539 These command-line options are defined for RX targets:
20540
20541 @table @gcctabopt
20542 @item -m64bit-doubles
20543 @itemx -m32bit-doubles
20544 @opindex m64bit-doubles
20545 @opindex m32bit-doubles
20546 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
20547 or 32 bits (@option{-m32bit-doubles}) in size. The default is
20548 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
20549 works on 32-bit values, which is why the default is
20550 @option{-m32bit-doubles}.
20551
20552 @item -fpu
20553 @itemx -nofpu
20554 @opindex fpu
20555 @opindex nofpu
20556 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
20557 floating-point hardware. The default is enabled for the RX600
20558 series and disabled for the RX200 series.
20559
20560 Floating-point instructions are only generated for 32-bit floating-point
20561 values, however, so the FPU hardware is not used for doubles if the
20562 @option{-m64bit-doubles} option is used.
20563
20564 @emph{Note} If the @option{-fpu} option is enabled then
20565 @option{-funsafe-math-optimizations} is also enabled automatically.
20566 This is because the RX FPU instructions are themselves unsafe.
20567
20568 @item -mcpu=@var{name}
20569 @opindex mcpu
20570 Selects the type of RX CPU to be targeted. Currently three types are
20571 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
20572 the specific @samp{RX610} CPU. The default is @samp{RX600}.
20573
20574 The only difference between @samp{RX600} and @samp{RX610} is that the
20575 @samp{RX610} does not support the @code{MVTIPL} instruction.
20576
20577 The @samp{RX200} series does not have a hardware floating-point unit
20578 and so @option{-nofpu} is enabled by default when this type is
20579 selected.
20580
20581 @item -mbig-endian-data
20582 @itemx -mlittle-endian-data
20583 @opindex mbig-endian-data
20584 @opindex mlittle-endian-data
20585 Store data (but not code) in the big-endian format. The default is
20586 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
20587 format.
20588
20589 @item -msmall-data-limit=@var{N}
20590 @opindex msmall-data-limit
20591 Specifies the maximum size in bytes of global and static variables
20592 which can be placed into the small data area. Using the small data
20593 area can lead to smaller and faster code, but the size of area is
20594 limited and it is up to the programmer to ensure that the area does
20595 not overflow. Also when the small data area is used one of the RX's
20596 registers (usually @code{r13}) is reserved for use pointing to this
20597 area, so it is no longer available for use by the compiler. This
20598 could result in slower and/or larger code if variables are pushed onto
20599 the stack instead of being held in this register.
20600
20601 Note, common variables (variables that have not been initialized) and
20602 constants are not placed into the small data area as they are assigned
20603 to other sections in the output executable.
20604
20605 The default value is zero, which disables this feature. Note, this
20606 feature is not enabled by default with higher optimization levels
20607 (@option{-O2} etc) because of the potentially detrimental effects of
20608 reserving a register. It is up to the programmer to experiment and
20609 discover whether this feature is of benefit to their program. See the
20610 description of the @option{-mpid} option for a description of how the
20611 actual register to hold the small data area pointer is chosen.
20612
20613 @item -msim
20614 @itemx -mno-sim
20615 @opindex msim
20616 @opindex mno-sim
20617 Use the simulator runtime. The default is to use the libgloss
20618 board-specific runtime.
20619
20620 @item -mas100-syntax
20621 @itemx -mno-as100-syntax
20622 @opindex mas100-syntax
20623 @opindex mno-as100-syntax
20624 When generating assembler output use a syntax that is compatible with
20625 Renesas's AS100 assembler. This syntax can also be handled by the GAS
20626 assembler, but it has some restrictions so it is not generated by default.
20627
20628 @item -mmax-constant-size=@var{N}
20629 @opindex mmax-constant-size
20630 Specifies the maximum size, in bytes, of a constant that can be used as
20631 an operand in a RX instruction. Although the RX instruction set does
20632 allow constants of up to 4 bytes in length to be used in instructions,
20633 a longer value equates to a longer instruction. Thus in some
20634 circumstances it can be beneficial to restrict the size of constants
20635 that are used in instructions. Constants that are too big are instead
20636 placed into a constant pool and referenced via register indirection.
20637
20638 The value @var{N} can be between 0 and 4. A value of 0 (the default)
20639 or 4 means that constants of any size are allowed.
20640
20641 @item -mrelax
20642 @opindex mrelax
20643 Enable linker relaxation. Linker relaxation is a process whereby the
20644 linker attempts to reduce the size of a program by finding shorter
20645 versions of various instructions. Disabled by default.
20646
20647 @item -mint-register=@var{N}
20648 @opindex mint-register
20649 Specify the number of registers to reserve for fast interrupt handler
20650 functions. The value @var{N} can be between 0 and 4. A value of 1
20651 means that register @code{r13} is reserved for the exclusive use
20652 of fast interrupt handlers. A value of 2 reserves @code{r13} and
20653 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
20654 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20655 A value of 0, the default, does not reserve any registers.
20656
20657 @item -msave-acc-in-interrupts
20658 @opindex msave-acc-in-interrupts
20659 Specifies that interrupt handler functions should preserve the
20660 accumulator register. This is only necessary if normal code might use
20661 the accumulator register, for example because it performs 64-bit
20662 multiplications. The default is to ignore the accumulator as this
20663 makes the interrupt handlers faster.
20664
20665 @item -mpid
20666 @itemx -mno-pid
20667 @opindex mpid
20668 @opindex mno-pid
20669 Enables the generation of position independent data. When enabled any
20670 access to constant data is done via an offset from a base address
20671 held in a register. This allows the location of constant data to be
20672 determined at run time without requiring the executable to be
20673 relocated, which is a benefit to embedded applications with tight
20674 memory constraints. Data that can be modified is not affected by this
20675 option.
20676
20677 Note, using this feature reserves a register, usually @code{r13}, for
20678 the constant data base address. This can result in slower and/or
20679 larger code, especially in complicated functions.
20680
20681 The actual register chosen to hold the constant data base address
20682 depends upon whether the @option{-msmall-data-limit} and/or the
20683 @option{-mint-register} command-line options are enabled. Starting
20684 with register @code{r13} and proceeding downwards, registers are
20685 allocated first to satisfy the requirements of @option{-mint-register},
20686 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
20687 is possible for the small data area register to be @code{r8} if both
20688 @option{-mint-register=4} and @option{-mpid} are specified on the
20689 command line.
20690
20691 By default this feature is not enabled. The default can be restored
20692 via the @option{-mno-pid} command-line option.
20693
20694 @item -mno-warn-multiple-fast-interrupts
20695 @itemx -mwarn-multiple-fast-interrupts
20696 @opindex mno-warn-multiple-fast-interrupts
20697 @opindex mwarn-multiple-fast-interrupts
20698 Prevents GCC from issuing a warning message if it finds more than one
20699 fast interrupt handler when it is compiling a file. The default is to
20700 issue a warning for each extra fast interrupt handler found, as the RX
20701 only supports one such interrupt.
20702
20703 @item -mallow-string-insns
20704 @itemx -mno-allow-string-insns
20705 @opindex mallow-string-insns
20706 @opindex mno-allow-string-insns
20707 Enables or disables the use of the string manipulation instructions
20708 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
20709 @code{SWHILE} and also the @code{RMPA} instruction. These
20710 instructions may prefetch data, which is not safe to do if accessing
20711 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
20712 for more information).
20713
20714 The default is to allow these instructions, but it is not possible for
20715 GCC to reliably detect all circumstances where a string instruction
20716 might be used to access an I/O register, so their use cannot be
20717 disabled automatically. Instead it is reliant upon the programmer to
20718 use the @option{-mno-allow-string-insns} option if their program
20719 accesses I/O space.
20720
20721 When the instructions are enabled GCC defines the C preprocessor
20722 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
20723 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
20724
20725 @item -mjsr
20726 @itemx -mno-jsr
20727 @opindex mjsr
20728 @opindex mno-jsr
20729 Use only (or not only) @code{JSR} instructions to access functions.
20730 This option can be used when code size exceeds the range of @code{BSR}
20731 instructions. Note that @option{-mno-jsr} does not mean to not use
20732 @code{JSR} but instead means that any type of branch may be used.
20733 @end table
20734
20735 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20736 has special significance to the RX port when used with the
20737 @code{interrupt} function attribute. This attribute indicates a
20738 function intended to process fast interrupts. GCC ensures
20739 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20740 and/or @code{r13} and only provided that the normal use of the
20741 corresponding registers have been restricted via the
20742 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20743 options.
20744
20745 @node S/390 and zSeries Options
20746 @subsection S/390 and zSeries Options
20747 @cindex S/390 and zSeries Options
20748
20749 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20750
20751 @table @gcctabopt
20752 @item -mhard-float
20753 @itemx -msoft-float
20754 @opindex mhard-float
20755 @opindex msoft-float
20756 Use (do not use) the hardware floating-point instructions and registers
20757 for floating-point operations. When @option{-msoft-float} is specified,
20758 functions in @file{libgcc.a} are used to perform floating-point
20759 operations. When @option{-mhard-float} is specified, the compiler
20760 generates IEEE floating-point instructions. This is the default.
20761
20762 @item -mhard-dfp
20763 @itemx -mno-hard-dfp
20764 @opindex mhard-dfp
20765 @opindex mno-hard-dfp
20766 Use (do not use) the hardware decimal-floating-point instructions for
20767 decimal-floating-point operations. When @option{-mno-hard-dfp} is
20768 specified, functions in @file{libgcc.a} are used to perform
20769 decimal-floating-point operations. When @option{-mhard-dfp} is
20770 specified, the compiler generates decimal-floating-point hardware
20771 instructions. This is the default for @option{-march=z9-ec} or higher.
20772
20773 @item -mlong-double-64
20774 @itemx -mlong-double-128
20775 @opindex mlong-double-64
20776 @opindex mlong-double-128
20777 These switches control the size of @code{long double} type. A size
20778 of 64 bits makes the @code{long double} type equivalent to the @code{double}
20779 type. This is the default.
20780
20781 @item -mbackchain
20782 @itemx -mno-backchain
20783 @opindex mbackchain
20784 @opindex mno-backchain
20785 Store (do not store) the address of the caller's frame as backchain pointer
20786 into the callee's stack frame.
20787 A backchain may be needed to allow debugging using tools that do not understand
20788 DWARF 2 call frame information.
20789 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20790 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20791 the backchain is placed into the topmost word of the 96/160 byte register
20792 save area.
20793
20794 In general, code compiled with @option{-mbackchain} is call-compatible with
20795 code compiled with @option{-mmo-backchain}; however, use of the backchain
20796 for debugging purposes usually requires that the whole binary is built with
20797 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
20798 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20799 to build a linux kernel use @option{-msoft-float}.
20800
20801 The default is to not maintain the backchain.
20802
20803 @item -mpacked-stack
20804 @itemx -mno-packed-stack
20805 @opindex mpacked-stack
20806 @opindex mno-packed-stack
20807 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
20808 specified, the compiler uses the all fields of the 96/160 byte register save
20809 area only for their default purpose; unused fields still take up stack space.
20810 When @option{-mpacked-stack} is specified, register save slots are densely
20811 packed at the top of the register save area; unused space is reused for other
20812 purposes, allowing for more efficient use of the available stack space.
20813 However, when @option{-mbackchain} is also in effect, the topmost word of
20814 the save area is always used to store the backchain, and the return address
20815 register is always saved two words below the backchain.
20816
20817 As long as the stack frame backchain is not used, code generated with
20818 @option{-mpacked-stack} is call-compatible with code generated with
20819 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
20820 S/390 or zSeries generated code that uses the stack frame backchain at run
20821 time, not just for debugging purposes. Such code is not call-compatible
20822 with code compiled with @option{-mpacked-stack}. Also, note that the
20823 combination of @option{-mbackchain},
20824 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20825 to build a linux kernel use @option{-msoft-float}.
20826
20827 The default is to not use the packed stack layout.
20828
20829 @item -msmall-exec
20830 @itemx -mno-small-exec
20831 @opindex msmall-exec
20832 @opindex mno-small-exec
20833 Generate (or do not generate) code using the @code{bras} instruction
20834 to do subroutine calls.
20835 This only works reliably if the total executable size does not
20836 exceed 64k. The default is to use the @code{basr} instruction instead,
20837 which does not have this limitation.
20838
20839 @item -m64
20840 @itemx -m31
20841 @opindex m64
20842 @opindex m31
20843 When @option{-m31} is specified, generate code compliant to the
20844 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
20845 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
20846 particular to generate 64-bit instructions. For the @samp{s390}
20847 targets, the default is @option{-m31}, while the @samp{s390x}
20848 targets default to @option{-m64}.
20849
20850 @item -mzarch
20851 @itemx -mesa
20852 @opindex mzarch
20853 @opindex mesa
20854 When @option{-mzarch} is specified, generate code using the
20855 instructions available on z/Architecture.
20856 When @option{-mesa} is specified, generate code using the
20857 instructions available on ESA/390. Note that @option{-mesa} is
20858 not possible with @option{-m64}.
20859 When generating code compliant to the GNU/Linux for S/390 ABI,
20860 the default is @option{-mesa}. When generating code compliant
20861 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
20862
20863 @item -mhtm
20864 @itemx -mno-htm
20865 @opindex mhtm
20866 @opindex mno-htm
20867 The @option{-mhtm} option enables a set of builtins making use of
20868 instructions available with the transactional execution facility
20869 introduced with the IBM zEnterprise EC12 machine generation
20870 @ref{S/390 System z Built-in Functions}.
20871 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
20872
20873 @item -mvx
20874 @itemx -mno-vx
20875 @opindex mvx
20876 @opindex mno-vx
20877 When @option{-mvx} is specified, generate code using the instructions
20878 available with the vector extension facility introduced with the IBM
20879 z13 machine generation.
20880 This option changes the ABI for some vector type values with regard to
20881 alignment and calling conventions. In case vector type values are
20882 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
20883 command will be added to mark the resulting binary with the ABI used.
20884 @option{-mvx} is enabled by default when using @option{-march=z13}.
20885
20886 @item -mzvector
20887 @itemx -mno-zvector
20888 @opindex mzvector
20889 @opindex mno-zvector
20890 The @option{-mzvector} option enables vector language extensions and
20891 builtins using instructions available with the vector extension
20892 facility introduced with the IBM z13 machine generation.
20893 This option adds support for @samp{vector} to be used as a keyword to
20894 define vector type variables and arguments. @samp{vector} is only
20895 available when GNU extensions are enabled. It will not be expanded
20896 when requesting strict standard compliance e.g. with @option{-std=c99}.
20897 In addition to the GCC low-level builtins @option{-mzvector} enables
20898 a set of builtins added for compatibility with Altivec-style
20899 implementations like Power and Cell. In order to make use of these
20900 builtins the header file @file{vecintrin.h} needs to be included.
20901 @option{-mzvector} is disabled by default.
20902
20903 @item -mmvcle
20904 @itemx -mno-mvcle
20905 @opindex mmvcle
20906 @opindex mno-mvcle
20907 Generate (or do not generate) code using the @code{mvcle} instruction
20908 to perform block moves. When @option{-mno-mvcle} is specified,
20909 use a @code{mvc} loop instead. This is the default unless optimizing for
20910 size.
20911
20912 @item -mdebug
20913 @itemx -mno-debug
20914 @opindex mdebug
20915 @opindex mno-debug
20916 Print (or do not print) additional debug information when compiling.
20917 The default is to not print debug information.
20918
20919 @item -march=@var{cpu-type}
20920 @opindex march
20921 Generate code that runs on @var{cpu-type}, which is the name of a
20922 system representing a certain processor type. Possible values for
20923 @var{cpu-type} are @samp{z900}, @samp{z990}, @samp{z9-109},
20924 @samp{z9-ec}, @samp{z10}, @samp{z196}, @samp{zEC12}, and @samp{z13}.
20925 The default is @option{-march=z900}. @samp{g5} and @samp{g6} are
20926 deprecated and will be removed with future releases.
20927
20928 @item -mtune=@var{cpu-type}
20929 @opindex mtune
20930 Tune to @var{cpu-type} everything applicable about the generated code,
20931 except for the ABI and the set of available instructions.
20932 The list of @var{cpu-type} values is the same as for @option{-march}.
20933 The default is the value used for @option{-march}.
20934
20935 @item -mtpf-trace
20936 @itemx -mno-tpf-trace
20937 @opindex mtpf-trace
20938 @opindex mno-tpf-trace
20939 Generate code that adds (does not add) in TPF OS specific branches to trace
20940 routines in the operating system. This option is off by default, even
20941 when compiling for the TPF OS@.
20942
20943 @item -mfused-madd
20944 @itemx -mno-fused-madd
20945 @opindex mfused-madd
20946 @opindex mno-fused-madd
20947 Generate code that uses (does not use) the floating-point multiply and
20948 accumulate instructions. These instructions are generated by default if
20949 hardware floating point is used.
20950
20951 @item -mwarn-framesize=@var{framesize}
20952 @opindex mwarn-framesize
20953 Emit a warning if the current function exceeds the given frame size. Because
20954 this is a compile-time check it doesn't need to be a real problem when the program
20955 runs. It is intended to identify functions that most probably cause
20956 a stack overflow. It is useful to be used in an environment with limited stack
20957 size e.g.@: the linux kernel.
20958
20959 @item -mwarn-dynamicstack
20960 @opindex mwarn-dynamicstack
20961 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
20962 arrays. This is generally a bad idea with a limited stack size.
20963
20964 @item -mstack-guard=@var{stack-guard}
20965 @itemx -mstack-size=@var{stack-size}
20966 @opindex mstack-guard
20967 @opindex mstack-size
20968 If these options are provided the S/390 back end emits additional instructions in
20969 the function prologue that trigger a trap if the stack size is @var{stack-guard}
20970 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
20971 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
20972 the frame size of the compiled function is chosen.
20973 These options are intended to be used to help debugging stack overflow problems.
20974 The additionally emitted code causes only little overhead and hence can also be
20975 used in production-like systems without greater performance degradation. The given
20976 values have to be exact powers of 2 and @var{stack-size} has to be greater than
20977 @var{stack-guard} without exceeding 64k.
20978 In order to be efficient the extra code makes the assumption that the stack starts
20979 at an address aligned to the value given by @var{stack-size}.
20980 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
20981
20982 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
20983 @opindex mhotpatch
20984 If the hotpatch option is enabled, a ``hot-patching'' function
20985 prologue is generated for all functions in the compilation unit.
20986 The funtion label is prepended with the given number of two-byte
20987 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
20988 the label, 2 * @var{post-halfwords} bytes are appended, using the
20989 largest NOP like instructions the architecture allows (maximum
20990 1000000).
20991
20992 If both arguments are zero, hotpatching is disabled.
20993
20994 This option can be overridden for individual functions with the
20995 @code{hotpatch} attribute.
20996 @end table
20997
20998 @node Score Options
20999 @subsection Score Options
21000 @cindex Score Options
21001
21002 These options are defined for Score implementations:
21003
21004 @table @gcctabopt
21005 @item -meb
21006 @opindex meb
21007 Compile code for big-endian mode. This is the default.
21008
21009 @item -mel
21010 @opindex mel
21011 Compile code for little-endian mode.
21012
21013 @item -mnhwloop
21014 @opindex mnhwloop
21015 Disable generation of @code{bcnz} instructions.
21016
21017 @item -muls
21018 @opindex muls
21019 Enable generation of unaligned load and store instructions.
21020
21021 @item -mmac
21022 @opindex mmac
21023 Enable the use of multiply-accumulate instructions. Disabled by default.
21024
21025 @item -mscore5
21026 @opindex mscore5
21027 Specify the SCORE5 as the target architecture.
21028
21029 @item -mscore5u
21030 @opindex mscore5u
21031 Specify the SCORE5U of the target architecture.
21032
21033 @item -mscore7
21034 @opindex mscore7
21035 Specify the SCORE7 as the target architecture. This is the default.
21036
21037 @item -mscore7d
21038 @opindex mscore7d
21039 Specify the SCORE7D as the target architecture.
21040 @end table
21041
21042 @node SH Options
21043 @subsection SH Options
21044
21045 These @samp{-m} options are defined for the SH implementations:
21046
21047 @table @gcctabopt
21048 @item -m1
21049 @opindex m1
21050 Generate code for the SH1.
21051
21052 @item -m2
21053 @opindex m2
21054 Generate code for the SH2.
21055
21056 @item -m2e
21057 Generate code for the SH2e.
21058
21059 @item -m2a-nofpu
21060 @opindex m2a-nofpu
21061 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
21062 that the floating-point unit is not used.
21063
21064 @item -m2a-single-only
21065 @opindex m2a-single-only
21066 Generate code for the SH2a-FPU, in such a way that no double-precision
21067 floating-point operations are used.
21068
21069 @item -m2a-single
21070 @opindex m2a-single
21071 Generate code for the SH2a-FPU assuming the floating-point unit is in
21072 single-precision mode by default.
21073
21074 @item -m2a
21075 @opindex m2a
21076 Generate code for the SH2a-FPU assuming the floating-point unit is in
21077 double-precision mode by default.
21078
21079 @item -m3
21080 @opindex m3
21081 Generate code for the SH3.
21082
21083 @item -m3e
21084 @opindex m3e
21085 Generate code for the SH3e.
21086
21087 @item -m4-nofpu
21088 @opindex m4-nofpu
21089 Generate code for the SH4 without a floating-point unit.
21090
21091 @item -m4-single-only
21092 @opindex m4-single-only
21093 Generate code for the SH4 with a floating-point unit that only
21094 supports single-precision arithmetic.
21095
21096 @item -m4-single
21097 @opindex m4-single
21098 Generate code for the SH4 assuming the floating-point unit is in
21099 single-precision mode by default.
21100
21101 @item -m4
21102 @opindex m4
21103 Generate code for the SH4.
21104
21105 @item -m4-100
21106 @opindex m4-100
21107 Generate code for SH4-100.
21108
21109 @item -m4-100-nofpu
21110 @opindex m4-100-nofpu
21111 Generate code for SH4-100 in such a way that the
21112 floating-point unit is not used.
21113
21114 @item -m4-100-single
21115 @opindex m4-100-single
21116 Generate code for SH4-100 assuming the floating-point unit is in
21117 single-precision mode by default.
21118
21119 @item -m4-100-single-only
21120 @opindex m4-100-single-only
21121 Generate code for SH4-100 in such a way that no double-precision
21122 floating-point operations are used.
21123
21124 @item -m4-200
21125 @opindex m4-200
21126 Generate code for SH4-200.
21127
21128 @item -m4-200-nofpu
21129 @opindex m4-200-nofpu
21130 Generate code for SH4-200 without in such a way that the
21131 floating-point unit is not used.
21132
21133 @item -m4-200-single
21134 @opindex m4-200-single
21135 Generate code for SH4-200 assuming the floating-point unit is in
21136 single-precision mode by default.
21137
21138 @item -m4-200-single-only
21139 @opindex m4-200-single-only
21140 Generate code for SH4-200 in such a way that no double-precision
21141 floating-point operations are used.
21142
21143 @item -m4-300
21144 @opindex m4-300
21145 Generate code for SH4-300.
21146
21147 @item -m4-300-nofpu
21148 @opindex m4-300-nofpu
21149 Generate code for SH4-300 without in such a way that the
21150 floating-point unit is not used.
21151
21152 @item -m4-300-single
21153 @opindex m4-300-single
21154 Generate code for SH4-300 in such a way that no double-precision
21155 floating-point operations are used.
21156
21157 @item -m4-300-single-only
21158 @opindex m4-300-single-only
21159 Generate code for SH4-300 in such a way that no double-precision
21160 floating-point operations are used.
21161
21162 @item -m4-340
21163 @opindex m4-340
21164 Generate code for SH4-340 (no MMU, no FPU).
21165
21166 @item -m4-500
21167 @opindex m4-500
21168 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
21169 assembler.
21170
21171 @item -m4a-nofpu
21172 @opindex m4a-nofpu
21173 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
21174 floating-point unit is not used.
21175
21176 @item -m4a-single-only
21177 @opindex m4a-single-only
21178 Generate code for the SH4a, in such a way that no double-precision
21179 floating-point operations are used.
21180
21181 @item -m4a-single
21182 @opindex m4a-single
21183 Generate code for the SH4a assuming the floating-point unit is in
21184 single-precision mode by default.
21185
21186 @item -m4a
21187 @opindex m4a
21188 Generate code for the SH4a.
21189
21190 @item -m4al
21191 @opindex m4al
21192 Same as @option{-m4a-nofpu}, except that it implicitly passes
21193 @option{-dsp} to the assembler. GCC doesn't generate any DSP
21194 instructions at the moment.
21195
21196 @item -mb
21197 @opindex mb
21198 Compile code for the processor in big-endian mode.
21199
21200 @item -ml
21201 @opindex ml
21202 Compile code for the processor in little-endian mode.
21203
21204 @item -mdalign
21205 @opindex mdalign
21206 Align doubles at 64-bit boundaries. Note that this changes the calling
21207 conventions, and thus some functions from the standard C library do
21208 not work unless you recompile it first with @option{-mdalign}.
21209
21210 @item -mrelax
21211 @opindex mrelax
21212 Shorten some address references at link time, when possible; uses the
21213 linker option @option{-relax}.
21214
21215 @item -mbigtable
21216 @opindex mbigtable
21217 Use 32-bit offsets in @code{switch} tables. The default is to use
21218 16-bit offsets.
21219
21220 @item -mbitops
21221 @opindex mbitops
21222 Enable the use of bit manipulation instructions on SH2A.
21223
21224 @item -mfmovd
21225 @opindex mfmovd
21226 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
21227 alignment constraints.
21228
21229 @item -mrenesas
21230 @opindex mrenesas
21231 Comply with the calling conventions defined by Renesas.
21232
21233 @item -mno-renesas
21234 @opindex mno-renesas
21235 Comply with the calling conventions defined for GCC before the Renesas
21236 conventions were available. This option is the default for all
21237 targets of the SH toolchain.
21238
21239 @item -mnomacsave
21240 @opindex mnomacsave
21241 Mark the @code{MAC} register as call-clobbered, even if
21242 @option{-mrenesas} is given.
21243
21244 @item -mieee
21245 @itemx -mno-ieee
21246 @opindex mieee
21247 @opindex mno-ieee
21248 Control the IEEE compliance of floating-point comparisons, which affects the
21249 handling of cases where the result of a comparison is unordered. By default
21250 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
21251 enabled @option{-mno-ieee} is implicitly set, which results in faster
21252 floating-point greater-equal and less-equal comparisons. The implcit settings
21253 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
21254
21255 @item -minline-ic_invalidate
21256 @opindex minline-ic_invalidate
21257 Inline code to invalidate instruction cache entries after setting up
21258 nested function trampolines.
21259 This option has no effect if @option{-musermode} is in effect and the selected
21260 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
21261 instruction.
21262 If the selected code generation option does not allow the use of the @code{icbi}
21263 instruction, and @option{-musermode} is not in effect, the inlined code
21264 manipulates the instruction cache address array directly with an associative
21265 write. This not only requires privileged mode at run time, but it also
21266 fails if the cache line had been mapped via the TLB and has become unmapped.
21267
21268 @item -misize
21269 @opindex misize
21270 Dump instruction size and location in the assembly code.
21271
21272 @item -mpadstruct
21273 @opindex mpadstruct
21274 This option is deprecated. It pads structures to multiple of 4 bytes,
21275 which is incompatible with the SH ABI@.
21276
21277 @item -matomic-model=@var{model}
21278 @opindex matomic-model=@var{model}
21279 Sets the model of atomic operations and additional parameters as a comma
21280 separated list. For details on the atomic built-in functions see
21281 @ref{__atomic Builtins}. The following models and parameters are supported:
21282
21283 @table @samp
21284
21285 @item none
21286 Disable compiler generated atomic sequences and emit library calls for atomic
21287 operations. This is the default if the target is not @code{sh*-*-linux*}.
21288
21289 @item soft-gusa
21290 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
21291 built-in functions. The generated atomic sequences require additional support
21292 from the interrupt/exception handling code of the system and are only suitable
21293 for SH3* and SH4* single-core systems. This option is enabled by default when
21294 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
21295 this option also partially utilizes the hardware atomic instructions
21296 @code{movli.l} and @code{movco.l} to create more efficient code, unless
21297 @samp{strict} is specified.
21298
21299 @item soft-tcb
21300 Generate software atomic sequences that use a variable in the thread control
21301 block. This is a variation of the gUSA sequences which can also be used on
21302 SH1* and SH2* targets. The generated atomic sequences require additional
21303 support from the interrupt/exception handling code of the system and are only
21304 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
21305 parameter has to be specified as well.
21306
21307 @item soft-imask
21308 Generate software atomic sequences that temporarily disable interrupts by
21309 setting @code{SR.IMASK = 1111}. This model works only when the program runs
21310 in privileged mode and is only suitable for single-core systems. Additional
21311 support from the interrupt/exception handling code of the system is not
21312 required. This model is enabled by default when the target is
21313 @code{sh*-*-linux*} and SH1* or SH2*.
21314
21315 @item hard-llcs
21316 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
21317 instructions only. This is only available on SH4A and is suitable for
21318 multi-core systems. Since the hardware instructions support only 32 bit atomic
21319 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
21320 Code compiled with this option is also compatible with other software
21321 atomic model interrupt/exception handling systems if executed on an SH4A
21322 system. Additional support from the interrupt/exception handling code of the
21323 system is not required for this model.
21324
21325 @item gbr-offset=
21326 This parameter specifies the offset in bytes of the variable in the thread
21327 control block structure that should be used by the generated atomic sequences
21328 when the @samp{soft-tcb} model has been selected. For other models this
21329 parameter is ignored. The specified value must be an integer multiple of four
21330 and in the range 0-1020.
21331
21332 @item strict
21333 This parameter prevents mixed usage of multiple atomic models, even if they
21334 are compatible, and makes the compiler generate atomic sequences of the
21335 specified model only.
21336
21337 @end table
21338
21339 @item -mtas
21340 @opindex mtas
21341 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
21342 Notice that depending on the particular hardware and software configuration
21343 this can degrade overall performance due to the operand cache line flushes
21344 that are implied by the @code{tas.b} instruction. On multi-core SH4A
21345 processors the @code{tas.b} instruction must be used with caution since it
21346 can result in data corruption for certain cache configurations.
21347
21348 @item -mprefergot
21349 @opindex mprefergot
21350 When generating position-independent code, emit function calls using
21351 the Global Offset Table instead of the Procedure Linkage Table.
21352
21353 @item -musermode
21354 @itemx -mno-usermode
21355 @opindex musermode
21356 @opindex mno-usermode
21357 Don't allow (allow) the compiler generating privileged mode code. Specifying
21358 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
21359 inlined code would not work in user mode. @option{-musermode} is the default
21360 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
21361 @option{-musermode} has no effect, since there is no user mode.
21362
21363 @item -multcost=@var{number}
21364 @opindex multcost=@var{number}
21365 Set the cost to assume for a multiply insn.
21366
21367 @item -mdiv=@var{strategy}
21368 @opindex mdiv=@var{strategy}
21369 Set the division strategy to be used for integer division operations.
21370 @var{strategy} can be one of:
21371
21372 @table @samp
21373
21374 @item call-div1
21375 Calls a library function that uses the single-step division instruction
21376 @code{div1} to perform the operation. Division by zero calculates an
21377 unspecified result and does not trap. This is the default except for SH4,
21378 SH2A and SHcompact.
21379
21380 @item call-fp
21381 Calls a library function that performs the operation in double precision
21382 floating point. Division by zero causes a floating-point exception. This is
21383 the default for SHcompact with FPU. Specifying this for targets that do not
21384 have a double precision FPU defaults to @code{call-div1}.
21385
21386 @item call-table
21387 Calls a library function that uses a lookup table for small divisors and
21388 the @code{div1} instruction with case distinction for larger divisors. Division
21389 by zero calculates an unspecified result and does not trap. This is the default
21390 for SH4. Specifying this for targets that do not have dynamic shift
21391 instructions defaults to @code{call-div1}.
21392
21393 @end table
21394
21395 When a division strategy has not been specified the default strategy is
21396 selected based on the current target. For SH2A the default strategy is to
21397 use the @code{divs} and @code{divu} instructions instead of library function
21398 calls.
21399
21400 @item -maccumulate-outgoing-args
21401 @opindex maccumulate-outgoing-args
21402 Reserve space once for outgoing arguments in the function prologue rather
21403 than around each call. Generally beneficial for performance and size. Also
21404 needed for unwinding to avoid changing the stack frame around conditional code.
21405
21406 @item -mdivsi3_libfunc=@var{name}
21407 @opindex mdivsi3_libfunc=@var{name}
21408 Set the name of the library function used for 32-bit signed division to
21409 @var{name}.
21410 This only affects the name used in the @samp{call} division strategies, and
21411 the compiler still expects the same sets of input/output/clobbered registers as
21412 if this option were not present.
21413
21414 @item -mfixed-range=@var{register-range}
21415 @opindex mfixed-range
21416 Generate code treating the given register range as fixed registers.
21417 A fixed register is one that the register allocator can not use. This is
21418 useful when compiling kernel code. A register range is specified as
21419 two registers separated by a dash. Multiple register ranges can be
21420 specified separated by a comma.
21421
21422 @item -mbranch-cost=@var{num}
21423 @opindex mbranch-cost=@var{num}
21424 Assume @var{num} to be the cost for a branch instruction. Higher numbers
21425 make the compiler try to generate more branch-free code if possible.
21426 If not specified the value is selected depending on the processor type that
21427 is being compiled for.
21428
21429 @item -mzdcbranch
21430 @itemx -mno-zdcbranch
21431 @opindex mzdcbranch
21432 @opindex mno-zdcbranch
21433 Assume (do not assume) that zero displacement conditional branch instructions
21434 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
21435 compiler prefers zero displacement branch code sequences. This is
21436 enabled by default when generating code for SH4 and SH4A. It can be explicitly
21437 disabled by specifying @option{-mno-zdcbranch}.
21438
21439 @item -mcbranch-force-delay-slot
21440 @opindex mcbranch-force-delay-slot
21441 Force the usage of delay slots for conditional branches, which stuffs the delay
21442 slot with a @code{nop} if a suitable instruction can't be found. By default
21443 this option is disabled. It can be enabled to work around hardware bugs as
21444 found in the original SH7055.
21445
21446 @item -mfused-madd
21447 @itemx -mno-fused-madd
21448 @opindex mfused-madd
21449 @opindex mno-fused-madd
21450 Generate code that uses (does not use) the floating-point multiply and
21451 accumulate instructions. These instructions are generated by default
21452 if hardware floating point is used. The machine-dependent
21453 @option{-mfused-madd} option is now mapped to the machine-independent
21454 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
21455 mapped to @option{-ffp-contract=off}.
21456
21457 @item -mfsca
21458 @itemx -mno-fsca
21459 @opindex mfsca
21460 @opindex mno-fsca
21461 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
21462 and cosine approximations. The option @option{-mfsca} must be used in
21463 combination with @option{-funsafe-math-optimizations}. It is enabled by default
21464 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
21465 approximations even if @option{-funsafe-math-optimizations} is in effect.
21466
21467 @item -mfsrra
21468 @itemx -mno-fsrra
21469 @opindex mfsrra
21470 @opindex mno-fsrra
21471 Allow or disallow the compiler to emit the @code{fsrra} instruction for
21472 reciprocal square root approximations. The option @option{-mfsrra} must be used
21473 in combination with @option{-funsafe-math-optimizations} and
21474 @option{-ffinite-math-only}. It is enabled by default when generating code for
21475 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
21476 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
21477 in effect.
21478
21479 @item -mpretend-cmove
21480 @opindex mpretend-cmove
21481 Prefer zero-displacement conditional branches for conditional move instruction
21482 patterns. This can result in faster code on the SH4 processor.
21483
21484 @item -mfdpic
21485 @opindex fdpic
21486 Generate code using the FDPIC ABI.
21487
21488 @end table
21489
21490 @node Solaris 2 Options
21491 @subsection Solaris 2 Options
21492 @cindex Solaris 2 options
21493
21494 These @samp{-m} options are supported on Solaris 2:
21495
21496 @table @gcctabopt
21497 @item -mclear-hwcap
21498 @opindex mclear-hwcap
21499 @option{-mclear-hwcap} tells the compiler to remove the hardware
21500 capabilities generated by the Solaris assembler. This is only necessary
21501 when object files use ISA extensions not supported by the current
21502 machine, but check at runtime whether or not to use them.
21503
21504 @item -mimpure-text
21505 @opindex mimpure-text
21506 @option{-mimpure-text}, used in addition to @option{-shared}, tells
21507 the compiler to not pass @option{-z text} to the linker when linking a
21508 shared object. Using this option, you can link position-dependent
21509 code into a shared object.
21510
21511 @option{-mimpure-text} suppresses the ``relocations remain against
21512 allocatable but non-writable sections'' linker error message.
21513 However, the necessary relocations trigger copy-on-write, and the
21514 shared object is not actually shared across processes. Instead of
21515 using @option{-mimpure-text}, you should compile all source code with
21516 @option{-fpic} or @option{-fPIC}.
21517
21518 @end table
21519
21520 These switches are supported in addition to the above on Solaris 2:
21521
21522 @table @gcctabopt
21523 @item -pthreads
21524 @opindex pthreads
21525 Add support for multithreading using the POSIX threads library. This
21526 option sets flags for both the preprocessor and linker. This option does
21527 not affect the thread safety of object code produced by the compiler or
21528 that of libraries supplied with it.
21529
21530 @item -pthread
21531 @opindex pthread
21532 This is a synonym for @option{-pthreads}.
21533 @end table
21534
21535 @node SPARC Options
21536 @subsection SPARC Options
21537 @cindex SPARC options
21538
21539 These @samp{-m} options are supported on the SPARC:
21540
21541 @table @gcctabopt
21542 @item -mno-app-regs
21543 @itemx -mapp-regs
21544 @opindex mno-app-regs
21545 @opindex mapp-regs
21546 Specify @option{-mapp-regs} to generate output using the global registers
21547 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
21548 global register 1, each global register 2 through 4 is then treated as an
21549 allocable register that is clobbered by function calls. This is the default.
21550
21551 To be fully SVR4 ABI-compliant at the cost of some performance loss,
21552 specify @option{-mno-app-regs}. You should compile libraries and system
21553 software with this option.
21554
21555 @item -mflat
21556 @itemx -mno-flat
21557 @opindex mflat
21558 @opindex mno-flat
21559 With @option{-mflat}, the compiler does not generate save/restore instructions
21560 and uses a ``flat'' or single register window model. This model is compatible
21561 with the regular register window model. The local registers and the input
21562 registers (0--5) are still treated as ``call-saved'' registers and are
21563 saved on the stack as needed.
21564
21565 With @option{-mno-flat} (the default), the compiler generates save/restore
21566 instructions (except for leaf functions). This is the normal operating mode.
21567
21568 @item -mfpu
21569 @itemx -mhard-float
21570 @opindex mfpu
21571 @opindex mhard-float
21572 Generate output containing floating-point instructions. This is the
21573 default.
21574
21575 @item -mno-fpu
21576 @itemx -msoft-float
21577 @opindex mno-fpu
21578 @opindex msoft-float
21579 Generate output containing library calls for floating point.
21580 @strong{Warning:} the requisite libraries are not available for all SPARC
21581 targets. Normally the facilities of the machine's usual C compiler are
21582 used, but this cannot be done directly in cross-compilation. You must make
21583 your own arrangements to provide suitable library functions for
21584 cross-compilation. The embedded targets @samp{sparc-*-aout} and
21585 @samp{sparclite-*-*} do provide software floating-point support.
21586
21587 @option{-msoft-float} changes the calling convention in the output file;
21588 therefore, it is only useful if you compile @emph{all} of a program with
21589 this option. In particular, you need to compile @file{libgcc.a}, the
21590 library that comes with GCC, with @option{-msoft-float} in order for
21591 this to work.
21592
21593 @item -mhard-quad-float
21594 @opindex mhard-quad-float
21595 Generate output containing quad-word (long double) floating-point
21596 instructions.
21597
21598 @item -msoft-quad-float
21599 @opindex msoft-quad-float
21600 Generate output containing library calls for quad-word (long double)
21601 floating-point instructions. The functions called are those specified
21602 in the SPARC ABI@. This is the default.
21603
21604 As of this writing, there are no SPARC implementations that have hardware
21605 support for the quad-word floating-point instructions. They all invoke
21606 a trap handler for one of these instructions, and then the trap handler
21607 emulates the effect of the instruction. Because of the trap handler overhead,
21608 this is much slower than calling the ABI library routines. Thus the
21609 @option{-msoft-quad-float} option is the default.
21610
21611 @item -mno-unaligned-doubles
21612 @itemx -munaligned-doubles
21613 @opindex mno-unaligned-doubles
21614 @opindex munaligned-doubles
21615 Assume that doubles have 8-byte alignment. This is the default.
21616
21617 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21618 alignment only if they are contained in another type, or if they have an
21619 absolute address. Otherwise, it assumes they have 4-byte alignment.
21620 Specifying this option avoids some rare compatibility problems with code
21621 generated by other compilers. It is not the default because it results
21622 in a performance loss, especially for floating-point code.
21623
21624 @item -muser-mode
21625 @itemx -mno-user-mode
21626 @opindex muser-mode
21627 @opindex mno-user-mode
21628 Do not generate code that can only run in supervisor mode. This is relevant
21629 only for the @code{casa} instruction emitted for the LEON3 processor. This
21630 is the default.
21631
21632 @item -mfaster-structs
21633 @itemx -mno-faster-structs
21634 @opindex mfaster-structs
21635 @opindex mno-faster-structs
21636 With @option{-mfaster-structs}, the compiler assumes that structures
21637 should have 8-byte alignment. This enables the use of pairs of
21638 @code{ldd} and @code{std} instructions for copies in structure
21639 assignment, in place of twice as many @code{ld} and @code{st} pairs.
21640 However, the use of this changed alignment directly violates the SPARC
21641 ABI@. Thus, it's intended only for use on targets where the developer
21642 acknowledges that their resulting code is not directly in line with
21643 the rules of the ABI@.
21644
21645 @item -mstd-struct-return
21646 @itemx -mno-std-struct-return
21647 @opindex mstd-struct-return
21648 @opindex mno-std-struct-return
21649 With @option{-mstd-struct-return}, the compiler generates checking code
21650 in functions returning structures or unions to detect size mismatches
21651 between the two sides of function calls, as per the 32-bit ABI@.
21652
21653 The default is @option{-mno-std-struct-return}. This option has no effect
21654 in 64-bit mode.
21655
21656 @item -mcpu=@var{cpu_type}
21657 @opindex mcpu
21658 Set the instruction set, register set, and instruction scheduling parameters
21659 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
21660 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21661 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21662 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21663 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21664 @samp{niagara3} and @samp{niagara4}.
21665
21666 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21667 which selects the best architecture option for the host processor.
21668 @option{-mcpu=native} has no effect if GCC does not recognize
21669 the processor.
21670
21671 Default instruction scheduling parameters are used for values that select
21672 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
21673 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
21674
21675 Here is a list of each supported architecture and their supported
21676 implementations.
21677
21678 @table @asis
21679 @item v7
21680 cypress, leon3v7
21681
21682 @item v8
21683 supersparc, hypersparc, leon, leon3
21684
21685 @item sparclite
21686 f930, f934, sparclite86x
21687
21688 @item sparclet
21689 tsc701
21690
21691 @item v9
21692 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21693 @end table
21694
21695 By default (unless configured otherwise), GCC generates code for the V7
21696 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
21697 additionally optimizes it for the Cypress CY7C602 chip, as used in the
21698 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
21699 SPARCStation 1, 2, IPX etc.
21700
21701 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21702 architecture. The only difference from V7 code is that the compiler emits
21703 the integer multiply and integer divide instructions which exist in SPARC-V8
21704 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
21705 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
21706 2000 series.
21707
21708 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21709 the SPARC architecture. This adds the integer multiply, integer divide step
21710 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21711 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21712 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
21713 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21714 MB86934 chip, which is the more recent SPARClite with FPU@.
21715
21716 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21717 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
21718 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21719 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
21720 optimizes it for the TEMIC SPARClet chip.
21721
21722 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21723 architecture. This adds 64-bit integer and floating-point move instructions,
21724 3 additional floating-point condition code registers and conditional move
21725 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
21726 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
21727 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21728 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
21729 @option{-mcpu=niagara}, the compiler additionally optimizes it for
21730 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
21731 additionally optimizes it for Sun UltraSPARC T2 chips. With
21732 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21733 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
21734 additionally optimizes it for Sun UltraSPARC T4 chips.
21735
21736 @item -mtune=@var{cpu_type}
21737 @opindex mtune
21738 Set the instruction scheduling parameters for machine type
21739 @var{cpu_type}, but do not set the instruction set or register set that the
21740 option @option{-mcpu=@var{cpu_type}} does.
21741
21742 The same values for @option{-mcpu=@var{cpu_type}} can be used for
21743 @option{-mtune=@var{cpu_type}}, but the only useful values are those
21744 that select a particular CPU implementation. Those are @samp{cypress},
21745 @samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21746 @samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21747 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21748 @samp{niagara3} and @samp{niagara4}. With native Solaris and GNU/Linux
21749 toolchains, @samp{native} can also be used.
21750
21751 @item -mv8plus
21752 @itemx -mno-v8plus
21753 @opindex mv8plus
21754 @opindex mno-v8plus
21755 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
21756 difference from the V8 ABI is that the global and out registers are
21757 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
21758 mode for all SPARC-V9 processors.
21759
21760 @item -mvis
21761 @itemx -mno-vis
21762 @opindex mvis
21763 @opindex mno-vis
21764 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21765 Visual Instruction Set extensions. The default is @option{-mno-vis}.
21766
21767 @item -mvis2
21768 @itemx -mno-vis2
21769 @opindex mvis2
21770 @opindex mno-vis2
21771 With @option{-mvis2}, GCC generates code that takes advantage of
21772 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
21773 default is @option{-mvis2} when targeting a cpu that supports such
21774 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
21775 also sets @option{-mvis}.
21776
21777 @item -mvis3
21778 @itemx -mno-vis3
21779 @opindex mvis3
21780 @opindex mno-vis3
21781 With @option{-mvis3}, GCC generates code that takes advantage of
21782 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
21783 default is @option{-mvis3} when targeting a cpu that supports such
21784 instructions, such as niagara-3 and later. Setting @option{-mvis3}
21785 also sets @option{-mvis2} and @option{-mvis}.
21786
21787 @item -mcbcond
21788 @itemx -mno-cbcond
21789 @opindex mcbcond
21790 @opindex mno-cbcond
21791 With @option{-mcbcond}, GCC generates code that takes advantage of
21792 compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21793 The default is @option{-mcbcond} when targeting a cpu that supports such
21794 instructions, such as niagara-4 and later.
21795
21796 @item -mpopc
21797 @itemx -mno-popc
21798 @opindex mpopc
21799 @opindex mno-popc
21800 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21801 population count instruction. The default is @option{-mpopc}
21802 when targeting a cpu that supports such instructions, such as Niagara-2 and
21803 later.
21804
21805 @item -mfmaf
21806 @itemx -mno-fmaf
21807 @opindex mfmaf
21808 @opindex mno-fmaf
21809 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21810 Fused Multiply-Add Floating-point extensions. The default is @option{-mfmaf}
21811 when targeting a cpu that supports such instructions, such as Niagara-3 and
21812 later.
21813
21814 @item -mfix-at697f
21815 @opindex mfix-at697f
21816 Enable the documented workaround for the single erratum of the Atmel AT697F
21817 processor (which corresponds to erratum #13 of the AT697E processor).
21818
21819 @item -mfix-ut699
21820 @opindex mfix-ut699
21821 Enable the documented workarounds for the floating-point errata and the data
21822 cache nullify errata of the UT699 processor.
21823 @end table
21824
21825 These @samp{-m} options are supported in addition to the above
21826 on SPARC-V9 processors in 64-bit environments:
21827
21828 @table @gcctabopt
21829 @item -m32
21830 @itemx -m64
21831 @opindex m32
21832 @opindex m64
21833 Generate code for a 32-bit or 64-bit environment.
21834 The 32-bit environment sets int, long and pointer to 32 bits.
21835 The 64-bit environment sets int to 32 bits and long and pointer
21836 to 64 bits.
21837
21838 @item -mcmodel=@var{which}
21839 @opindex mcmodel
21840 Set the code model to one of
21841
21842 @table @samp
21843 @item medlow
21844 The Medium/Low code model: 64-bit addresses, programs
21845 must be linked in the low 32 bits of memory. Programs can be statically
21846 or dynamically linked.
21847
21848 @item medmid
21849 The Medium/Middle code model: 64-bit addresses, programs
21850 must be linked in the low 44 bits of memory, the text and data segments must
21851 be less than 2GB in size and the data segment must be located within 2GB of
21852 the text segment.
21853
21854 @item medany
21855 The Medium/Anywhere code model: 64-bit addresses, programs
21856 may be linked anywhere in memory, the text and data segments must be less
21857 than 2GB in size and the data segment must be located within 2GB of the
21858 text segment.
21859
21860 @item embmedany
21861 The Medium/Anywhere code model for embedded systems:
21862 64-bit addresses, the text and data segments must be less than 2GB in
21863 size, both starting anywhere in memory (determined at link time). The
21864 global register %g4 points to the base of the data segment. Programs
21865 are statically linked and PIC is not supported.
21866 @end table
21867
21868 @item -mmemory-model=@var{mem-model}
21869 @opindex mmemory-model
21870 Set the memory model in force on the processor to one of
21871
21872 @table @samp
21873 @item default
21874 The default memory model for the processor and operating system.
21875
21876 @item rmo
21877 Relaxed Memory Order
21878
21879 @item pso
21880 Partial Store Order
21881
21882 @item tso
21883 Total Store Order
21884
21885 @item sc
21886 Sequential Consistency
21887 @end table
21888
21889 These memory models are formally defined in Appendix D of the Sparc V9
21890 architecture manual, as set in the processor's @code{PSTATE.MM} field.
21891
21892 @item -mstack-bias
21893 @itemx -mno-stack-bias
21894 @opindex mstack-bias
21895 @opindex mno-stack-bias
21896 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
21897 frame pointer if present, are offset by @minus{}2047 which must be added back
21898 when making stack frame references. This is the default in 64-bit mode.
21899 Otherwise, assume no such offset is present.
21900 @end table
21901
21902 @node SPU Options
21903 @subsection SPU Options
21904 @cindex SPU options
21905
21906 These @samp{-m} options are supported on the SPU:
21907
21908 @table @gcctabopt
21909 @item -mwarn-reloc
21910 @itemx -merror-reloc
21911 @opindex mwarn-reloc
21912 @opindex merror-reloc
21913
21914 The loader for SPU does not handle dynamic relocations. By default, GCC
21915 gives an error when it generates code that requires a dynamic
21916 relocation. @option{-mno-error-reloc} disables the error,
21917 @option{-mwarn-reloc} generates a warning instead.
21918
21919 @item -msafe-dma
21920 @itemx -munsafe-dma
21921 @opindex msafe-dma
21922 @opindex munsafe-dma
21923
21924 Instructions that initiate or test completion of DMA must not be
21925 reordered with respect to loads and stores of the memory that is being
21926 accessed.
21927 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
21928 memory accesses, but that can lead to inefficient code in places where the
21929 memory is known to not change. Rather than mark the memory as volatile,
21930 you can use @option{-msafe-dma} to tell the compiler to treat
21931 the DMA instructions as potentially affecting all memory.
21932
21933 @item -mbranch-hints
21934 @opindex mbranch-hints
21935
21936 By default, GCC generates a branch hint instruction to avoid
21937 pipeline stalls for always-taken or probably-taken branches. A hint
21938 is not generated closer than 8 instructions away from its branch.
21939 There is little reason to disable them, except for debugging purposes,
21940 or to make an object a little bit smaller.
21941
21942 @item -msmall-mem
21943 @itemx -mlarge-mem
21944 @opindex msmall-mem
21945 @opindex mlarge-mem
21946
21947 By default, GCC generates code assuming that addresses are never larger
21948 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
21949 a full 32-bit address.
21950
21951 @item -mstdmain
21952 @opindex mstdmain
21953
21954 By default, GCC links against startup code that assumes the SPU-style
21955 main function interface (which has an unconventional parameter list).
21956 With @option{-mstdmain}, GCC links your program against startup
21957 code that assumes a C99-style interface to @code{main}, including a
21958 local copy of @code{argv} strings.
21959
21960 @item -mfixed-range=@var{register-range}
21961 @opindex mfixed-range
21962 Generate code treating the given register range as fixed registers.
21963 A fixed register is one that the register allocator cannot use. This is
21964 useful when compiling kernel code. A register range is specified as
21965 two registers separated by a dash. Multiple register ranges can be
21966 specified separated by a comma.
21967
21968 @item -mea32
21969 @itemx -mea64
21970 @opindex mea32
21971 @opindex mea64
21972 Compile code assuming that pointers to the PPU address space accessed
21973 via the @code{__ea} named address space qualifier are either 32 or 64
21974 bits wide. The default is 32 bits. As this is an ABI-changing option,
21975 all object code in an executable must be compiled with the same setting.
21976
21977 @item -maddress-space-conversion
21978 @itemx -mno-address-space-conversion
21979 @opindex maddress-space-conversion
21980 @opindex mno-address-space-conversion
21981 Allow/disallow treating the @code{__ea} address space as superset
21982 of the generic address space. This enables explicit type casts
21983 between @code{__ea} and generic pointer as well as implicit
21984 conversions of generic pointers to @code{__ea} pointers. The
21985 default is to allow address space pointer conversions.
21986
21987 @item -mcache-size=@var{cache-size}
21988 @opindex mcache-size
21989 This option controls the version of libgcc that the compiler links to an
21990 executable and selects a software-managed cache for accessing variables
21991 in the @code{__ea} address space with a particular cache size. Possible
21992 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
21993 and @samp{128}. The default cache size is 64KB.
21994
21995 @item -matomic-updates
21996 @itemx -mno-atomic-updates
21997 @opindex matomic-updates
21998 @opindex mno-atomic-updates
21999 This option controls the version of libgcc that the compiler links to an
22000 executable and selects whether atomic updates to the software-managed
22001 cache of PPU-side variables are used. If you use atomic updates, changes
22002 to a PPU variable from SPU code using the @code{__ea} named address space
22003 qualifier do not interfere with changes to other PPU variables residing
22004 in the same cache line from PPU code. If you do not use atomic updates,
22005 such interference may occur; however, writing back cache lines is
22006 more efficient. The default behavior is to use atomic updates.
22007
22008 @item -mdual-nops
22009 @itemx -mdual-nops=@var{n}
22010 @opindex mdual-nops
22011 By default, GCC inserts nops to increase dual issue when it expects
22012 it to increase performance. @var{n} can be a value from 0 to 10. A
22013 smaller @var{n} inserts fewer nops. 10 is the default, 0 is the
22014 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
22015
22016 @item -mhint-max-nops=@var{n}
22017 @opindex mhint-max-nops
22018 Maximum number of nops to insert for a branch hint. A branch hint must
22019 be at least 8 instructions away from the branch it is affecting. GCC
22020 inserts up to @var{n} nops to enforce this, otherwise it does not
22021 generate the branch hint.
22022
22023 @item -mhint-max-distance=@var{n}
22024 @opindex mhint-max-distance
22025 The encoding of the branch hint instruction limits the hint to be within
22026 256 instructions of the branch it is affecting. By default, GCC makes
22027 sure it is within 125.
22028
22029 @item -msafe-hints
22030 @opindex msafe-hints
22031 Work around a hardware bug that causes the SPU to stall indefinitely.
22032 By default, GCC inserts the @code{hbrp} instruction to make sure
22033 this stall won't happen.
22034
22035 @end table
22036
22037 @node System V Options
22038 @subsection Options for System V
22039
22040 These additional options are available on System V Release 4 for
22041 compatibility with other compilers on those systems:
22042
22043 @table @gcctabopt
22044 @item -G
22045 @opindex G
22046 Create a shared object.
22047 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
22048
22049 @item -Qy
22050 @opindex Qy
22051 Identify the versions of each tool used by the compiler, in a
22052 @code{.ident} assembler directive in the output.
22053
22054 @item -Qn
22055 @opindex Qn
22056 Refrain from adding @code{.ident} directives to the output file (this is
22057 the default).
22058
22059 @item -YP,@var{dirs}
22060 @opindex YP
22061 Search the directories @var{dirs}, and no others, for libraries
22062 specified with @option{-l}.
22063
22064 @item -Ym,@var{dir}
22065 @opindex Ym
22066 Look in the directory @var{dir} to find the M4 preprocessor.
22067 The assembler uses this option.
22068 @c This is supposed to go with a -Yd for predefined M4 macro files, but
22069 @c the generic assembler that comes with Solaris takes just -Ym.
22070 @end table
22071
22072 @node TILE-Gx Options
22073 @subsection TILE-Gx Options
22074 @cindex TILE-Gx options
22075
22076 These @samp{-m} options are supported on the TILE-Gx:
22077
22078 @table @gcctabopt
22079 @item -mcmodel=small
22080 @opindex mcmodel=small
22081 Generate code for the small model. The distance for direct calls is
22082 limited to 500M in either direction. PC-relative addresses are 32
22083 bits. Absolute addresses support the full address range.
22084
22085 @item -mcmodel=large
22086 @opindex mcmodel=large
22087 Generate code for the large model. There is no limitation on call
22088 distance, pc-relative addresses, or absolute addresses.
22089
22090 @item -mcpu=@var{name}
22091 @opindex mcpu
22092 Selects the type of CPU to be targeted. Currently the only supported
22093 type is @samp{tilegx}.
22094
22095 @item -m32
22096 @itemx -m64
22097 @opindex m32
22098 @opindex m64
22099 Generate code for a 32-bit or 64-bit environment. The 32-bit
22100 environment sets int, long, and pointer to 32 bits. The 64-bit
22101 environment sets int to 32 bits and long and pointer to 64 bits.
22102
22103 @item -mbig-endian
22104 @itemx -mlittle-endian
22105 @opindex mbig-endian
22106 @opindex mlittle-endian
22107 Generate code in big/little endian mode, respectively.
22108 @end table
22109
22110 @node TILEPro Options
22111 @subsection TILEPro Options
22112 @cindex TILEPro options
22113
22114 These @samp{-m} options are supported on the TILEPro:
22115
22116 @table @gcctabopt
22117 @item -mcpu=@var{name}
22118 @opindex mcpu
22119 Selects the type of CPU to be targeted. Currently the only supported
22120 type is @samp{tilepro}.
22121
22122 @item -m32
22123 @opindex m32
22124 Generate code for a 32-bit environment, which sets int, long, and
22125 pointer to 32 bits. This is the only supported behavior so the flag
22126 is essentially ignored.
22127 @end table
22128
22129 @node V850 Options
22130 @subsection V850 Options
22131 @cindex V850 Options
22132
22133 These @samp{-m} options are defined for V850 implementations:
22134
22135 @table @gcctabopt
22136 @item -mlong-calls
22137 @itemx -mno-long-calls
22138 @opindex mlong-calls
22139 @opindex mno-long-calls
22140 Treat all calls as being far away (near). If calls are assumed to be
22141 far away, the compiler always loads the function's address into a
22142 register, and calls indirect through the pointer.
22143
22144 @item -mno-ep
22145 @itemx -mep
22146 @opindex mno-ep
22147 @opindex mep
22148 Do not optimize (do optimize) basic blocks that use the same index
22149 pointer 4 or more times to copy pointer into the @code{ep} register, and
22150 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
22151 option is on by default if you optimize.
22152
22153 @item -mno-prolog-function
22154 @itemx -mprolog-function
22155 @opindex mno-prolog-function
22156 @opindex mprolog-function
22157 Do not use (do use) external functions to save and restore registers
22158 at the prologue and epilogue of a function. The external functions
22159 are slower, but use less code space if more than one function saves
22160 the same number of registers. The @option{-mprolog-function} option
22161 is on by default if you optimize.
22162
22163 @item -mspace
22164 @opindex mspace
22165 Try to make the code as small as possible. At present, this just turns
22166 on the @option{-mep} and @option{-mprolog-function} options.
22167
22168 @item -mtda=@var{n}
22169 @opindex mtda
22170 Put static or global variables whose size is @var{n} bytes or less into
22171 the tiny data area that register @code{ep} points to. The tiny data
22172 area can hold up to 256 bytes in total (128 bytes for byte references).
22173
22174 @item -msda=@var{n}
22175 @opindex msda
22176 Put static or global variables whose size is @var{n} bytes or less into
22177 the small data area that register @code{gp} points to. The small data
22178 area can hold up to 64 kilobytes.
22179
22180 @item -mzda=@var{n}
22181 @opindex mzda
22182 Put static or global variables whose size is @var{n} bytes or less into
22183 the first 32 kilobytes of memory.
22184
22185 @item -mv850
22186 @opindex mv850
22187 Specify that the target processor is the V850.
22188
22189 @item -mv850e3v5
22190 @opindex mv850e3v5
22191 Specify that the target processor is the V850E3V5. The preprocessor
22192 constant @code{__v850e3v5__} is defined if this option is used.
22193
22194 @item -mv850e2v4
22195 @opindex mv850e2v4
22196 Specify that the target processor is the V850E3V5. This is an alias for
22197 the @option{-mv850e3v5} option.
22198
22199 @item -mv850e2v3
22200 @opindex mv850e2v3
22201 Specify that the target processor is the V850E2V3. The preprocessor
22202 constant @code{__v850e2v3__} is defined if this option is used.
22203
22204 @item -mv850e2
22205 @opindex mv850e2
22206 Specify that the target processor is the V850E2. The preprocessor
22207 constant @code{__v850e2__} is defined if this option is used.
22208
22209 @item -mv850e1
22210 @opindex mv850e1
22211 Specify that the target processor is the V850E1. The preprocessor
22212 constants @code{__v850e1__} and @code{__v850e__} are defined if
22213 this option is used.
22214
22215 @item -mv850es
22216 @opindex mv850es
22217 Specify that the target processor is the V850ES. This is an alias for
22218 the @option{-mv850e1} option.
22219
22220 @item -mv850e
22221 @opindex mv850e
22222 Specify that the target processor is the V850E@. The preprocessor
22223 constant @code{__v850e__} is defined if this option is used.
22224
22225 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
22226 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
22227 are defined then a default target processor is chosen and the
22228 relevant @samp{__v850*__} preprocessor constant is defined.
22229
22230 The preprocessor constants @code{__v850} and @code{__v851__} are always
22231 defined, regardless of which processor variant is the target.
22232
22233 @item -mdisable-callt
22234 @itemx -mno-disable-callt
22235 @opindex mdisable-callt
22236 @opindex mno-disable-callt
22237 This option suppresses generation of the @code{CALLT} instruction for the
22238 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
22239 architecture.
22240
22241 This option is enabled by default when the RH850 ABI is
22242 in use (see @option{-mrh850-abi}), and disabled by default when the
22243 GCC ABI is in use. If @code{CALLT} instructions are being generated
22244 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
22245
22246 @item -mrelax
22247 @itemx -mno-relax
22248 @opindex mrelax
22249 @opindex mno-relax
22250 Pass on (or do not pass on) the @option{-mrelax} command-line option
22251 to the assembler.
22252
22253 @item -mlong-jumps
22254 @itemx -mno-long-jumps
22255 @opindex mlong-jumps
22256 @opindex mno-long-jumps
22257 Disable (or re-enable) the generation of PC-relative jump instructions.
22258
22259 @item -msoft-float
22260 @itemx -mhard-float
22261 @opindex msoft-float
22262 @opindex mhard-float
22263 Disable (or re-enable) the generation of hardware floating point
22264 instructions. This option is only significant when the target
22265 architecture is @samp{V850E2V3} or higher. If hardware floating point
22266 instructions are being generated then the C preprocessor symbol
22267 @code{__FPU_OK__} is defined, otherwise the symbol
22268 @code{__NO_FPU__} is defined.
22269
22270 @item -mloop
22271 @opindex mloop
22272 Enables the use of the e3v5 LOOP instruction. The use of this
22273 instruction is not enabled by default when the e3v5 architecture is
22274 selected because its use is still experimental.
22275
22276 @item -mrh850-abi
22277 @itemx -mghs
22278 @opindex mrh850-abi
22279 @opindex mghs
22280 Enables support for the RH850 version of the V850 ABI. This is the
22281 default. With this version of the ABI the following rules apply:
22282
22283 @itemize
22284 @item
22285 Integer sized structures and unions are returned via a memory pointer
22286 rather than a register.
22287
22288 @item
22289 Large structures and unions (more than 8 bytes in size) are passed by
22290 value.
22291
22292 @item
22293 Functions are aligned to 16-bit boundaries.
22294
22295 @item
22296 The @option{-m8byte-align} command-line option is supported.
22297
22298 @item
22299 The @option{-mdisable-callt} command-line option is enabled by
22300 default. The @option{-mno-disable-callt} command-line option is not
22301 supported.
22302 @end itemize
22303
22304 When this version of the ABI is enabled the C preprocessor symbol
22305 @code{__V850_RH850_ABI__} is defined.
22306
22307 @item -mgcc-abi
22308 @opindex mgcc-abi
22309 Enables support for the old GCC version of the V850 ABI. With this
22310 version of the ABI the following rules apply:
22311
22312 @itemize
22313 @item
22314 Integer sized structures and unions are returned in register @code{r10}.
22315
22316 @item
22317 Large structures and unions (more than 8 bytes in size) are passed by
22318 reference.
22319
22320 @item
22321 Functions are aligned to 32-bit boundaries, unless optimizing for
22322 size.
22323
22324 @item
22325 The @option{-m8byte-align} command-line option is not supported.
22326
22327 @item
22328 The @option{-mdisable-callt} command-line option is supported but not
22329 enabled by default.
22330 @end itemize
22331
22332 When this version of the ABI is enabled the C preprocessor symbol
22333 @code{__V850_GCC_ABI__} is defined.
22334
22335 @item -m8byte-align
22336 @itemx -mno-8byte-align
22337 @opindex m8byte-align
22338 @opindex mno-8byte-align
22339 Enables support for @code{double} and @code{long long} types to be
22340 aligned on 8-byte boundaries. The default is to restrict the
22341 alignment of all objects to at most 4-bytes. When
22342 @option{-m8byte-align} is in effect the C preprocessor symbol
22343 @code{__V850_8BYTE_ALIGN__} is defined.
22344
22345 @item -mbig-switch
22346 @opindex mbig-switch
22347 Generate code suitable for big switch tables. Use this option only if
22348 the assembler/linker complain about out of range branches within a switch
22349 table.
22350
22351 @item -mapp-regs
22352 @opindex mapp-regs
22353 This option causes r2 and r5 to be used in the code generated by
22354 the compiler. This setting is the default.
22355
22356 @item -mno-app-regs
22357 @opindex mno-app-regs
22358 This option causes r2 and r5 to be treated as fixed registers.
22359
22360 @end table
22361
22362 @node VAX Options
22363 @subsection VAX Options
22364 @cindex VAX options
22365
22366 These @samp{-m} options are defined for the VAX:
22367
22368 @table @gcctabopt
22369 @item -munix
22370 @opindex munix
22371 Do not output certain jump instructions (@code{aobleq} and so on)
22372 that the Unix assembler for the VAX cannot handle across long
22373 ranges.
22374
22375 @item -mgnu
22376 @opindex mgnu
22377 Do output those jump instructions, on the assumption that the
22378 GNU assembler is being used.
22379
22380 @item -mg
22381 @opindex mg
22382 Output code for G-format floating-point numbers instead of D-format.
22383 @end table
22384
22385 @node Visium Options
22386 @subsection Visium Options
22387 @cindex Visium options
22388
22389 @table @gcctabopt
22390
22391 @item -mdebug
22392 @opindex mdebug
22393 A program which performs file I/O and is destined to run on an MCM target
22394 should be linked with this option. It causes the libraries libc.a and
22395 libdebug.a to be linked. The program should be run on the target under
22396 the control of the GDB remote debugging stub.
22397
22398 @item -msim
22399 @opindex msim
22400 A program which performs file I/O and is destined to run on the simulator
22401 should be linked with option. This causes libraries libc.a and libsim.a to
22402 be linked.
22403
22404 @item -mfpu
22405 @itemx -mhard-float
22406 @opindex mfpu
22407 @opindex mhard-float
22408 Generate code containing floating-point instructions. This is the
22409 default.
22410
22411 @item -mno-fpu
22412 @itemx -msoft-float
22413 @opindex mno-fpu
22414 @opindex msoft-float
22415 Generate code containing library calls for floating-point.
22416
22417 @option{-msoft-float} changes the calling convention in the output file;
22418 therefore, it is only useful if you compile @emph{all} of a program with
22419 this option. In particular, you need to compile @file{libgcc.a}, the
22420 library that comes with GCC, with @option{-msoft-float} in order for
22421 this to work.
22422
22423 @item -mcpu=@var{cpu_type}
22424 @opindex mcpu
22425 Set the instruction set, register set, and instruction scheduling parameters
22426 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
22427 @samp{mcm}, @samp{gr5} and @samp{gr6}.
22428
22429 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
22430
22431 By default (unless configured otherwise), GCC generates code for the GR5
22432 variant of the Visium architecture.
22433
22434 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
22435 architecture. The only difference from GR5 code is that the compiler will
22436 generate block move instructions.
22437
22438 @item -mtune=@var{cpu_type}
22439 @opindex mtune
22440 Set the instruction scheduling parameters for machine type @var{cpu_type},
22441 but do not set the instruction set or register set that the option
22442 @option{-mcpu=@var{cpu_type}} would.
22443
22444 @item -msv-mode
22445 @opindex msv-mode
22446 Generate code for the supervisor mode, where there are no restrictions on
22447 the access to general registers. This is the default.
22448
22449 @item -muser-mode
22450 @opindex muser-mode
22451 Generate code for the user mode, where the access to some general registers
22452 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
22453 mode; on the GR6, only registers r29 to r31 are affected.
22454 @end table
22455
22456 @node VMS Options
22457 @subsection VMS Options
22458
22459 These @samp{-m} options are defined for the VMS implementations:
22460
22461 @table @gcctabopt
22462 @item -mvms-return-codes
22463 @opindex mvms-return-codes
22464 Return VMS condition codes from @code{main}. The default is to return POSIX-style
22465 condition (e.g.@ error) codes.
22466
22467 @item -mdebug-main=@var{prefix}
22468 @opindex mdebug-main=@var{prefix}
22469 Flag the first routine whose name starts with @var{prefix} as the main
22470 routine for the debugger.
22471
22472 @item -mmalloc64
22473 @opindex mmalloc64
22474 Default to 64-bit memory allocation routines.
22475
22476 @item -mpointer-size=@var{size}
22477 @opindex mpointer-size=@var{size}
22478 Set the default size of pointers. Possible options for @var{size} are
22479 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
22480 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
22481 The later option disables @code{pragma pointer_size}.
22482 @end table
22483
22484 @node VxWorks Options
22485 @subsection VxWorks Options
22486 @cindex VxWorks Options
22487
22488 The options in this section are defined for all VxWorks targets.
22489 Options specific to the target hardware are listed with the other
22490 options for that target.
22491
22492 @table @gcctabopt
22493 @item -mrtp
22494 @opindex mrtp
22495 GCC can generate code for both VxWorks kernels and real time processes
22496 (RTPs). This option switches from the former to the latter. It also
22497 defines the preprocessor macro @code{__RTP__}.
22498
22499 @item -non-static
22500 @opindex non-static
22501 Link an RTP executable against shared libraries rather than static
22502 libraries. The options @option{-static} and @option{-shared} can
22503 also be used for RTPs (@pxref{Link Options}); @option{-static}
22504 is the default.
22505
22506 @item -Bstatic
22507 @itemx -Bdynamic
22508 @opindex Bstatic
22509 @opindex Bdynamic
22510 These options are passed down to the linker. They are defined for
22511 compatibility with Diab.
22512
22513 @item -Xbind-lazy
22514 @opindex Xbind-lazy
22515 Enable lazy binding of function calls. This option is equivalent to
22516 @option{-Wl,-z,now} and is defined for compatibility with Diab.
22517
22518 @item -Xbind-now
22519 @opindex Xbind-now
22520 Disable lazy binding of function calls. This option is the default and
22521 is defined for compatibility with Diab.
22522 @end table
22523
22524 @node x86 Options
22525 @subsection x86 Options
22526 @cindex x86 Options
22527
22528 These @samp{-m} options are defined for the x86 family of computers.
22529
22530 @table @gcctabopt
22531
22532 @item -march=@var{cpu-type}
22533 @opindex march
22534 Generate instructions for the machine type @var{cpu-type}. In contrast to
22535 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
22536 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
22537 to generate code that may not run at all on processors other than the one
22538 indicated. Specifying @option{-march=@var{cpu-type}} implies
22539 @option{-mtune=@var{cpu-type}}.
22540
22541 The choices for @var{cpu-type} are:
22542
22543 @table @samp
22544 @item native
22545 This selects the CPU to generate code for at compilation time by determining
22546 the processor type of the compiling machine. Using @option{-march=native}
22547 enables all instruction subsets supported by the local machine (hence
22548 the result might not run on different machines). Using @option{-mtune=native}
22549 produces code optimized for the local machine under the constraints
22550 of the selected instruction set.
22551
22552 @item i386
22553 Original Intel i386 CPU@.
22554
22555 @item i486
22556 Intel i486 CPU@. (No scheduling is implemented for this chip.)
22557
22558 @item i586
22559 @itemx pentium
22560 Intel Pentium CPU with no MMX support.
22561
22562 @item lakemont
22563 Intel Lakemont MCU, based on Intel Pentium CPU.
22564
22565 @item pentium-mmx
22566 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
22567
22568 @item pentiumpro
22569 Intel Pentium Pro CPU@.
22570
22571 @item i686
22572 When used with @option{-march}, the Pentium Pro
22573 instruction set is used, so the code runs on all i686 family chips.
22574 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22575
22576 @item pentium2
22577 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22578 support.
22579
22580 @item pentium3
22581 @itemx pentium3m
22582 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22583 set support.
22584
22585 @item pentium-m
22586 Intel Pentium M; low-power version of Intel Pentium III CPU
22587 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
22588
22589 @item pentium4
22590 @itemx pentium4m
22591 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22592
22593 @item prescott
22594 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22595 set support.
22596
22597 @item nocona
22598 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22599 SSE2 and SSE3 instruction set support.
22600
22601 @item core2
22602 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22603 instruction set support.
22604
22605 @item nehalem
22606 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22607 SSE4.1, SSE4.2 and POPCNT instruction set support.
22608
22609 @item westmere
22610 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22611 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22612
22613 @item sandybridge
22614 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22615 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22616
22617 @item ivybridge
22618 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22619 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22620 instruction set support.
22621
22622 @item haswell
22623 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22624 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22625 BMI, BMI2 and F16C instruction set support.
22626
22627 @item broadwell
22628 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22629 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22630 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22631
22632 @item skylake
22633 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22634 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22635 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
22636 XSAVES instruction set support.
22637
22638 @item bonnell
22639 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22640 instruction set support.
22641
22642 @item silvermont
22643 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22644 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22645
22646 @item knl
22647 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22648 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22649 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22650 AVX512CD instruction set support.
22651
22652 @item skylake-avx512
22653 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22654 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22655 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
22656 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
22657
22658 @item k6
22659 AMD K6 CPU with MMX instruction set support.
22660
22661 @item k6-2
22662 @itemx k6-3
22663 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22664
22665 @item athlon
22666 @itemx athlon-tbird
22667 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22668 support.
22669
22670 @item athlon-4
22671 @itemx athlon-xp
22672 @itemx athlon-mp
22673 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22674 instruction set support.
22675
22676 @item k8
22677 @itemx opteron
22678 @itemx athlon64
22679 @itemx athlon-fx
22680 Processors based on the AMD K8 core with x86-64 instruction set support,
22681 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22682 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22683 instruction set extensions.)
22684
22685 @item k8-sse3
22686 @itemx opteron-sse3
22687 @itemx athlon64-sse3
22688 Improved versions of AMD K8 cores with SSE3 instruction set support.
22689
22690 @item amdfam10
22691 @itemx barcelona
22692 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
22693 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22694 instruction set extensions.)
22695
22696 @item bdver1
22697 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
22698 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22699 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22700 @item bdver2
22701 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22702 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22703 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
22704 extensions.)
22705 @item bdver3
22706 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22707 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
22708 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
22709 64-bit instruction set extensions.
22710 @item bdver4
22711 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22712 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
22713 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
22714 SSE4.2, ABM and 64-bit instruction set extensions.
22715
22716 @item znver1
22717 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
22718 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
22719 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
22720 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
22721 instruction set extensions.
22722
22723 @item btver1
22724 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
22725 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22726 instruction set extensions.)
22727
22728 @item btver2
22729 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22730 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22731 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22732
22733 @item winchip-c6
22734 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22735 set support.
22736
22737 @item winchip2
22738 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22739 instruction set support.
22740
22741 @item c3
22742 VIA C3 CPU with MMX and 3DNow!@: instruction set support. (No scheduling is
22743 implemented for this chip.)
22744
22745 @item c3-2
22746 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22747 (No scheduling is
22748 implemented for this chip.)
22749
22750 @item geode
22751 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22752 @end table
22753
22754 @item -mtune=@var{cpu-type}
22755 @opindex mtune
22756 Tune to @var{cpu-type} everything applicable about the generated code, except
22757 for the ABI and the set of available instructions.
22758 While picking a specific @var{cpu-type} schedules things appropriately
22759 for that particular chip, the compiler does not generate any code that
22760 cannot run on the default machine type unless you use a
22761 @option{-march=@var{cpu-type}} option.
22762 For example, if GCC is configured for i686-pc-linux-gnu
22763 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22764 but still runs on i686 machines.
22765
22766 The choices for @var{cpu-type} are the same as for @option{-march}.
22767 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22768
22769 @table @samp
22770 @item generic
22771 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22772 If you know the CPU on which your code will run, then you should use
22773 the corresponding @option{-mtune} or @option{-march} option instead of
22774 @option{-mtune=generic}. But, if you do not know exactly what CPU users
22775 of your application will have, then you should use this option.
22776
22777 As new processors are deployed in the marketplace, the behavior of this
22778 option will change. Therefore, if you upgrade to a newer version of
22779 GCC, code generation controlled by this option will change to reflect
22780 the processors
22781 that are most common at the time that version of GCC is released.
22782
22783 There is no @option{-march=generic} option because @option{-march}
22784 indicates the instruction set the compiler can use, and there is no
22785 generic instruction set applicable to all processors. In contrast,
22786 @option{-mtune} indicates the processor (or, in this case, collection of
22787 processors) for which the code is optimized.
22788
22789 @item intel
22790 Produce code optimized for the most current Intel processors, which are
22791 Haswell and Silvermont for this version of GCC. If you know the CPU
22792 on which your code will run, then you should use the corresponding
22793 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22794 But, if you want your application performs better on both Haswell and
22795 Silvermont, then you should use this option.
22796
22797 As new Intel processors are deployed in the marketplace, the behavior of
22798 this option will change. Therefore, if you upgrade to a newer version of
22799 GCC, code generation controlled by this option will change to reflect
22800 the most current Intel processors at the time that version of GCC is
22801 released.
22802
22803 There is no @option{-march=intel} option because @option{-march} indicates
22804 the instruction set the compiler can use, and there is no common
22805 instruction set applicable to all processors. In contrast,
22806 @option{-mtune} indicates the processor (or, in this case, collection of
22807 processors) for which the code is optimized.
22808 @end table
22809
22810 @item -mcpu=@var{cpu-type}
22811 @opindex mcpu
22812 A deprecated synonym for @option{-mtune}.
22813
22814 @item -mfpmath=@var{unit}
22815 @opindex mfpmath
22816 Generate floating-point arithmetic for selected unit @var{unit}. The choices
22817 for @var{unit} are:
22818
22819 @table @samp
22820 @item 387
22821 Use the standard 387 floating-point coprocessor present on the majority of chips and
22822 emulated otherwise. Code compiled with this option runs almost everywhere.
22823 The temporary results are computed in 80-bit precision instead of the precision
22824 specified by the type, resulting in slightly different results compared to most
22825 of other chips. See @option{-ffloat-store} for more detailed description.
22826
22827 This is the default choice for x86-32 targets.
22828
22829 @item sse
22830 Use scalar floating-point instructions present in the SSE instruction set.
22831 This instruction set is supported by Pentium III and newer chips,
22832 and in the AMD line
22833 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
22834 instruction set supports only single-precision arithmetic, thus the double and
22835 extended-precision arithmetic are still done using 387. A later version, present
22836 only in Pentium 4 and AMD x86-64 chips, supports double-precision
22837 arithmetic too.
22838
22839 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22840 or @option{-msse2} switches to enable SSE extensions and make this option
22841 effective. For the x86-64 compiler, these extensions are enabled by default.
22842
22843 The resulting code should be considerably faster in the majority of cases and avoid
22844 the numerical instability problems of 387 code, but may break some existing
22845 code that expects temporaries to be 80 bits.
22846
22847 This is the default choice for the x86-64 compiler.
22848
22849 @item sse,387
22850 @itemx sse+387
22851 @itemx both
22852 Attempt to utilize both instruction sets at once. This effectively doubles the
22853 amount of available registers, and on chips with separate execution units for
22854 387 and SSE the execution resources too. Use this option with care, as it is
22855 still experimental, because the GCC register allocator does not model separate
22856 functional units well, resulting in unstable performance.
22857 @end table
22858
22859 @item -masm=@var{dialect}
22860 @opindex masm=@var{dialect}
22861 Output assembly instructions using selected @var{dialect}. Also affects
22862 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
22863 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
22864 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
22865 not support @samp{intel}.
22866
22867 @item -mieee-fp
22868 @itemx -mno-ieee-fp
22869 @opindex mieee-fp
22870 @opindex mno-ieee-fp
22871 Control whether or not the compiler uses IEEE floating-point
22872 comparisons. These correctly handle the case where the result of a
22873 comparison is unordered.
22874
22875 @item -msoft-float
22876 @opindex msoft-float
22877 Generate output containing library calls for floating point.
22878
22879 @strong{Warning:} the requisite libraries are not part of GCC@.
22880 Normally the facilities of the machine's usual C compiler are used, but
22881 this can't be done directly in cross-compilation. You must make your
22882 own arrangements to provide suitable library functions for
22883 cross-compilation.
22884
22885 On machines where a function returns floating-point results in the 80387
22886 register stack, some floating-point opcodes may be emitted even if
22887 @option{-msoft-float} is used.
22888
22889 @item -mno-fp-ret-in-387
22890 @opindex mno-fp-ret-in-387
22891 Do not use the FPU registers for return values of functions.
22892
22893 The usual calling convention has functions return values of types
22894 @code{float} and @code{double} in an FPU register, even if there
22895 is no FPU@. The idea is that the operating system should emulate
22896 an FPU@.
22897
22898 The option @option{-mno-fp-ret-in-387} causes such values to be returned
22899 in ordinary CPU registers instead.
22900
22901 @item -mno-fancy-math-387
22902 @opindex mno-fancy-math-387
22903 Some 387 emulators do not support the @code{sin}, @code{cos} and
22904 @code{sqrt} instructions for the 387. Specify this option to avoid
22905 generating those instructions. This option is the default on
22906 OpenBSD and NetBSD@. This option is overridden when @option{-march}
22907 indicates that the target CPU always has an FPU and so the
22908 instruction does not need emulation. These
22909 instructions are not generated unless you also use the
22910 @option{-funsafe-math-optimizations} switch.
22911
22912 @item -malign-double
22913 @itemx -mno-align-double
22914 @opindex malign-double
22915 @opindex mno-align-double
22916 Control whether GCC aligns @code{double}, @code{long double}, and
22917 @code{long long} variables on a two-word boundary or a one-word
22918 boundary. Aligning @code{double} variables on a two-word boundary
22919 produces code that runs somewhat faster on a Pentium at the
22920 expense of more memory.
22921
22922 On x86-64, @option{-malign-double} is enabled by default.
22923
22924 @strong{Warning:} if you use the @option{-malign-double} switch,
22925 structures containing the above types are aligned differently than
22926 the published application binary interface specifications for the x86-32
22927 and are not binary compatible with structures in code compiled
22928 without that switch.
22929
22930 @item -m96bit-long-double
22931 @itemx -m128bit-long-double
22932 @opindex m96bit-long-double
22933 @opindex m128bit-long-double
22934 These switches control the size of @code{long double} type. The x86-32
22935 application binary interface specifies the size to be 96 bits,
22936 so @option{-m96bit-long-double} is the default in 32-bit mode.
22937
22938 Modern architectures (Pentium and newer) prefer @code{long double}
22939 to be aligned to an 8- or 16-byte boundary. In arrays or structures
22940 conforming to the ABI, this is not possible. So specifying
22941 @option{-m128bit-long-double} aligns @code{long double}
22942 to a 16-byte boundary by padding the @code{long double} with an additional
22943 32-bit zero.
22944
22945 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
22946 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
22947
22948 Notice that neither of these options enable any extra precision over the x87
22949 standard of 80 bits for a @code{long double}.
22950
22951 @strong{Warning:} if you override the default value for your target ABI, this
22952 changes the size of
22953 structures and arrays containing @code{long double} variables,
22954 as well as modifying the function calling convention for functions taking
22955 @code{long double}. Hence they are not binary-compatible
22956 with code compiled without that switch.
22957
22958 @item -mlong-double-64
22959 @itemx -mlong-double-80
22960 @itemx -mlong-double-128
22961 @opindex mlong-double-64
22962 @opindex mlong-double-80
22963 @opindex mlong-double-128
22964 These switches control the size of @code{long double} type. A size
22965 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22966 type. This is the default for 32-bit Bionic C library. A size
22967 of 128 bits makes the @code{long double} type equivalent to the
22968 @code{__float128} type. This is the default for 64-bit Bionic C library.
22969
22970 @strong{Warning:} if you override the default value for your target ABI, this
22971 changes the size of
22972 structures and arrays containing @code{long double} variables,
22973 as well as modifying the function calling convention for functions taking
22974 @code{long double}. Hence they are not binary-compatible
22975 with code compiled without that switch.
22976
22977 @item -malign-data=@var{type}
22978 @opindex malign-data
22979 Control how GCC aligns variables. Supported values for @var{type} are
22980 @samp{compat} uses increased alignment value compatible uses GCC 4.8
22981 and earlier, @samp{abi} uses alignment value as specified by the
22982 psABI, and @samp{cacheline} uses increased alignment value to match
22983 the cache line size. @samp{compat} is the default.
22984
22985 @item -mlarge-data-threshold=@var{threshold}
22986 @opindex mlarge-data-threshold
22987 When @option{-mcmodel=medium} is specified, data objects larger than
22988 @var{threshold} are placed in the large data section. This value must be the
22989 same across all objects linked into the binary, and defaults to 65535.
22990
22991 @item -mrtd
22992 @opindex mrtd
22993 Use a different function-calling convention, in which functions that
22994 take a fixed number of arguments return with the @code{ret @var{num}}
22995 instruction, which pops their arguments while returning. This saves one
22996 instruction in the caller since there is no need to pop the arguments
22997 there.
22998
22999 You can specify that an individual function is called with this calling
23000 sequence with the function attribute @code{stdcall}. You can also
23001 override the @option{-mrtd} option by using the function attribute
23002 @code{cdecl}. @xref{Function Attributes}.
23003
23004 @strong{Warning:} this calling convention is incompatible with the one
23005 normally used on Unix, so you cannot use it if you need to call
23006 libraries compiled with the Unix compiler.
23007
23008 Also, you must provide function prototypes for all functions that
23009 take variable numbers of arguments (including @code{printf});
23010 otherwise incorrect code is generated for calls to those
23011 functions.
23012
23013 In addition, seriously incorrect code results if you call a
23014 function with too many arguments. (Normally, extra arguments are
23015 harmlessly ignored.)
23016
23017 @item -mregparm=@var{num}
23018 @opindex mregparm
23019 Control how many registers are used to pass integer arguments. By
23020 default, no registers are used to pass arguments, and at most 3
23021 registers can be used. You can control this behavior for a specific
23022 function by using the function attribute @code{regparm}.
23023 @xref{Function Attributes}.
23024
23025 @strong{Warning:} if you use this switch, and
23026 @var{num} is nonzero, then you must build all modules with the same
23027 value, including any libraries. This includes the system libraries and
23028 startup modules.
23029
23030 @item -msseregparm
23031 @opindex msseregparm
23032 Use SSE register passing conventions for float and double arguments
23033 and return values. You can control this behavior for a specific
23034 function by using the function attribute @code{sseregparm}.
23035 @xref{Function Attributes}.
23036
23037 @strong{Warning:} if you use this switch then you must build all
23038 modules with the same value, including any libraries. This includes
23039 the system libraries and startup modules.
23040
23041 @item -mvect8-ret-in-mem
23042 @opindex mvect8-ret-in-mem
23043 Return 8-byte vectors in memory instead of MMX registers. This is the
23044 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
23045 Studio compilers until version 12. Later compiler versions (starting
23046 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
23047 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
23048 you need to remain compatible with existing code produced by those
23049 previous compiler versions or older versions of GCC@.
23050
23051 @item -mpc32
23052 @itemx -mpc64
23053 @itemx -mpc80
23054 @opindex mpc32
23055 @opindex mpc64
23056 @opindex mpc80
23057
23058 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
23059 is specified, the significands of results of floating-point operations are
23060 rounded to 24 bits (single precision); @option{-mpc64} rounds the
23061 significands of results of floating-point operations to 53 bits (double
23062 precision) and @option{-mpc80} rounds the significands of results of
23063 floating-point operations to 64 bits (extended double precision), which is
23064 the default. When this option is used, floating-point operations in higher
23065 precisions are not available to the programmer without setting the FPU
23066 control word explicitly.
23067
23068 Setting the rounding of floating-point operations to less than the default
23069 80 bits can speed some programs by 2% or more. Note that some mathematical
23070 libraries assume that extended-precision (80-bit) floating-point operations
23071 are enabled by default; routines in such libraries could suffer significant
23072 loss of accuracy, typically through so-called ``catastrophic cancellation'',
23073 when this option is used to set the precision to less than extended precision.
23074
23075 @item -mstackrealign
23076 @opindex mstackrealign
23077 Realign the stack at entry. On the x86, the @option{-mstackrealign}
23078 option generates an alternate prologue and epilogue that realigns the
23079 run-time stack if necessary. This supports mixing legacy codes that keep
23080 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
23081 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
23082 applicable to individual functions.
23083
23084 @item -mpreferred-stack-boundary=@var{num}
23085 @opindex mpreferred-stack-boundary
23086 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
23087 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
23088 the default is 4 (16 bytes or 128 bits).
23089
23090 @strong{Warning:} When generating code for the x86-64 architecture with
23091 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
23092 used to keep the stack boundary aligned to 8 byte boundary. Since
23093 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
23094 intended to be used in controlled environment where stack space is
23095 important limitation. This option leads to wrong code when functions
23096 compiled with 16 byte stack alignment (such as functions from a standard
23097 library) are called with misaligned stack. In this case, SSE
23098 instructions may lead to misaligned memory access traps. In addition,
23099 variable arguments are handled incorrectly for 16 byte aligned
23100 objects (including x87 long double and __int128), leading to wrong
23101 results. You must build all modules with
23102 @option{-mpreferred-stack-boundary=3}, including any libraries. This
23103 includes the system libraries and startup modules.
23104
23105 @item -mincoming-stack-boundary=@var{num}
23106 @opindex mincoming-stack-boundary
23107 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
23108 boundary. If @option{-mincoming-stack-boundary} is not specified,
23109 the one specified by @option{-mpreferred-stack-boundary} is used.
23110
23111 On Pentium and Pentium Pro, @code{double} and @code{long double} values
23112 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
23113 suffer significant run time performance penalties. On Pentium III, the
23114 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
23115 properly if it is not 16-byte aligned.
23116
23117 To ensure proper alignment of this values on the stack, the stack boundary
23118 must be as aligned as that required by any value stored on the stack.
23119 Further, every function must be generated such that it keeps the stack
23120 aligned. Thus calling a function compiled with a higher preferred
23121 stack boundary from a function compiled with a lower preferred stack
23122 boundary most likely misaligns the stack. It is recommended that
23123 libraries that use callbacks always use the default setting.
23124
23125 This extra alignment does consume extra stack space, and generally
23126 increases code size. Code that is sensitive to stack space usage, such
23127 as embedded systems and operating system kernels, may want to reduce the
23128 preferred alignment to @option{-mpreferred-stack-boundary=2}.
23129
23130 @need 200
23131 @item -mmmx
23132 @opindex mmmx
23133 @need 200
23134 @itemx -msse
23135 @opindex msse
23136 @need 200
23137 @itemx -msse2
23138 @opindex msse2
23139 @need 200
23140 @itemx -msse3
23141 @opindex msse3
23142 @need 200
23143 @itemx -mssse3
23144 @opindex mssse3
23145 @need 200
23146 @itemx -msse4
23147 @opindex msse4
23148 @need 200
23149 @itemx -msse4a
23150 @opindex msse4a
23151 @need 200
23152 @itemx -msse4.1
23153 @opindex msse4.1
23154 @need 200
23155 @itemx -msse4.2
23156 @opindex msse4.2
23157 @need 200
23158 @itemx -mavx
23159 @opindex mavx
23160 @need 200
23161 @itemx -mavx2
23162 @opindex mavx2
23163 @need 200
23164 @itemx -mavx512f
23165 @opindex mavx512f
23166 @need 200
23167 @itemx -mavx512pf
23168 @opindex mavx512pf
23169 @need 200
23170 @itemx -mavx512er
23171 @opindex mavx512er
23172 @need 200
23173 @itemx -mavx512cd
23174 @opindex mavx512cd
23175 @need 200
23176 @itemx -mavx512vl
23177 @opindex mavx512vl
23178 @need 200
23179 @itemx -mavx512bw
23180 @opindex mavx512bw
23181 @need 200
23182 @itemx -mavx512dq
23183 @opindex mavx512dq
23184 @need 200
23185 @itemx -mavx512ifma
23186 @opindex mavx512ifma
23187 @need 200
23188 @itemx -mavx512vbmi
23189 @opindex mavx512vbmi
23190 @need 200
23191 @itemx -msha
23192 @opindex msha
23193 @need 200
23194 @itemx -maes
23195 @opindex maes
23196 @need 200
23197 @itemx -mpclmul
23198 @opindex mpclmul
23199 @need 200
23200 @itemx -mclfushopt
23201 @opindex mclfushopt
23202 @need 200
23203 @itemx -mfsgsbase
23204 @opindex mfsgsbase
23205 @need 200
23206 @itemx -mrdrnd
23207 @opindex mrdrnd
23208 @need 200
23209 @itemx -mf16c
23210 @opindex mf16c
23211 @need 200
23212 @itemx -mfma
23213 @opindex mfma
23214 @need 200
23215 @itemx -mfma4
23216 @opindex mfma4
23217 @need 200
23218 @itemx -mno-fma4
23219 @opindex mno-fma4
23220 @need 200
23221 @itemx -mprefetchwt1
23222 @opindex mprefetchwt1
23223 @need 200
23224 @itemx -mxop
23225 @opindex mxop
23226 @need 200
23227 @itemx -mlwp
23228 @opindex mlwp
23229 @need 200
23230 @itemx -m3dnow
23231 @opindex m3dnow
23232 @need 200
23233 @itemx -mpopcnt
23234 @opindex mpopcnt
23235 @need 200
23236 @itemx -mabm
23237 @opindex mabm
23238 @need 200
23239 @itemx -mbmi
23240 @opindex mbmi
23241 @need 200
23242 @itemx -mbmi2
23243 @need 200
23244 @itemx -mlzcnt
23245 @opindex mlzcnt
23246 @need 200
23247 @itemx -mfxsr
23248 @opindex mfxsr
23249 @need 200
23250 @itemx -mxsave
23251 @opindex mxsave
23252 @need 200
23253 @itemx -mxsaveopt
23254 @opindex mxsaveopt
23255 @need 200
23256 @itemx -mxsavec
23257 @opindex mxsavec
23258 @need 200
23259 @itemx -mxsaves
23260 @opindex mxsaves
23261 @need 200
23262 @itemx -mrtm
23263 @opindex mrtm
23264 @need 200
23265 @itemx -mtbm
23266 @opindex mtbm
23267 @need 200
23268 @itemx -mmpx
23269 @opindex mmpx
23270 @need 200
23271 @itemx -mmwaitx
23272 @opindex mmwaitx
23273 @need 200
23274 @itemx -mclzero
23275 @opindex mclzero
23276 @itemx -mpku
23277 @opindex mpku
23278 These switches enable the use of instructions in the MMX, SSE,
23279 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
23280 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
23281 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA AVX512VBMI, BMI, BMI2, FXSR,
23282 XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU or 3DNow!@:
23283 extended instruction sets. Each has a corresponding @option{-mno-} option
23284 to disable use of these instructions.
23285
23286 These extensions are also available as built-in functions: see
23287 @ref{x86 Built-in Functions}, for details of the functions enabled and
23288 disabled by these switches.
23289
23290 To generate SSE/SSE2 instructions automatically from floating-point
23291 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
23292
23293 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
23294 generates new AVX instructions or AVX equivalence for all SSEx instructions
23295 when needed.
23296
23297 These options enable GCC to use these extended instructions in
23298 generated code, even without @option{-mfpmath=sse}. Applications that
23299 perform run-time CPU detection must compile separate files for each
23300 supported architecture, using the appropriate flags. In particular,
23301 the file containing the CPU detection code should be compiled without
23302 these options.
23303
23304 @item -mdump-tune-features
23305 @opindex mdump-tune-features
23306 This option instructs GCC to dump the names of the x86 performance
23307 tuning features and default settings. The names can be used in
23308 @option{-mtune-ctrl=@var{feature-list}}.
23309
23310 @item -mtune-ctrl=@var{feature-list}
23311 @opindex mtune-ctrl=@var{feature-list}
23312 This option is used to do fine grain control of x86 code generation features.
23313 @var{feature-list} is a comma separated list of @var{feature} names. See also
23314 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
23315 on if it is not preceded with @samp{^}, otherwise, it is turned off.
23316 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
23317 developers. Using it may lead to code paths not covered by testing and can
23318 potentially result in compiler ICEs or runtime errors.
23319
23320 @item -mno-default
23321 @opindex mno-default
23322 This option instructs GCC to turn off all tunable features. See also
23323 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
23324
23325 @item -mcld
23326 @opindex mcld
23327 This option instructs GCC to emit a @code{cld} instruction in the prologue
23328 of functions that use string instructions. String instructions depend on
23329 the DF flag to select between autoincrement or autodecrement mode. While the
23330 ABI specifies the DF flag to be cleared on function entry, some operating
23331 systems violate this specification by not clearing the DF flag in their
23332 exception dispatchers. The exception handler can be invoked with the DF flag
23333 set, which leads to wrong direction mode when string instructions are used.
23334 This option can be enabled by default on 32-bit x86 targets by configuring
23335 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
23336 instructions can be suppressed with the @option{-mno-cld} compiler option
23337 in this case.
23338
23339 @item -mvzeroupper
23340 @opindex mvzeroupper
23341 This option instructs GCC to emit a @code{vzeroupper} instruction
23342 before a transfer of control flow out of the function to minimize
23343 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
23344 intrinsics.
23345
23346 @item -mprefer-avx128
23347 @opindex mprefer-avx128
23348 This option instructs GCC to use 128-bit AVX instructions instead of
23349 256-bit AVX instructions in the auto-vectorizer.
23350
23351 @item -mcx16
23352 @opindex mcx16
23353 This option enables GCC to generate @code{CMPXCHG16B} instructions.
23354 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
23355 (or oword) data types.
23356 This is useful for high-resolution counters that can be updated
23357 by multiple processors (or cores). This instruction is generated as part of
23358 atomic built-in functions: see @ref{__sync Builtins} or
23359 @ref{__atomic Builtins} for details.
23360
23361 @item -msahf
23362 @opindex msahf
23363 This option enables generation of @code{SAHF} instructions in 64-bit code.
23364 Early Intel Pentium 4 CPUs with Intel 64 support,
23365 prior to the introduction of Pentium 4 G1 step in December 2005,
23366 lacked the @code{LAHF} and @code{SAHF} instructions
23367 which are supported by AMD64.
23368 These are load and store instructions, respectively, for certain status flags.
23369 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
23370 @code{drem}, and @code{remainder} built-in functions;
23371 see @ref{Other Builtins} for details.
23372
23373 @item -mmovbe
23374 @opindex mmovbe
23375 This option enables use of the @code{movbe} instruction to implement
23376 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
23377
23378 @item -mcrc32
23379 @opindex mcrc32
23380 This option enables built-in functions @code{__builtin_ia32_crc32qi},
23381 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
23382 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
23383
23384 @item -mrecip
23385 @opindex mrecip
23386 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
23387 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
23388 with an additional Newton-Raphson step
23389 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
23390 (and their vectorized
23391 variants) for single-precision floating-point arguments. These instructions
23392 are generated only when @option{-funsafe-math-optimizations} is enabled
23393 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
23394 Note that while the throughput of the sequence is higher than the throughput
23395 of the non-reciprocal instruction, the precision of the sequence can be
23396 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
23397
23398 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
23399 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
23400 combination), and doesn't need @option{-mrecip}.
23401
23402 Also note that GCC emits the above sequence with additional Newton-Raphson step
23403 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
23404 already with @option{-ffast-math} (or the above option combination), and
23405 doesn't need @option{-mrecip}.
23406
23407 @item -mrecip=@var{opt}
23408 @opindex mrecip=opt
23409 This option controls which reciprocal estimate instructions
23410 may be used. @var{opt} is a comma-separated list of options, which may
23411 be preceded by a @samp{!} to invert the option:
23412
23413 @table @samp
23414 @item all
23415 Enable all estimate instructions.
23416
23417 @item default
23418 Enable the default instructions, equivalent to @option{-mrecip}.
23419
23420 @item none
23421 Disable all estimate instructions, equivalent to @option{-mno-recip}.
23422
23423 @item div
23424 Enable the approximation for scalar division.
23425
23426 @item vec-div
23427 Enable the approximation for vectorized division.
23428
23429 @item sqrt
23430 Enable the approximation for scalar square root.
23431
23432 @item vec-sqrt
23433 Enable the approximation for vectorized square root.
23434 @end table
23435
23436 So, for example, @option{-mrecip=all,!sqrt} enables
23437 all of the reciprocal approximations, except for square root.
23438
23439 @item -mveclibabi=@var{type}
23440 @opindex mveclibabi
23441 Specifies the ABI type to use for vectorizing intrinsics using an
23442 external library. Supported values for @var{type} are @samp{svml}
23443 for the Intel short
23444 vector math library and @samp{acml} for the AMD math core library.
23445 To use this option, both @option{-ftree-vectorize} and
23446 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
23447 ABI-compatible library must be specified at link time.
23448
23449 GCC currently emits calls to @code{vmldExp2},
23450 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
23451 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
23452 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
23453 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
23454 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
23455 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
23456 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
23457 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
23458 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
23459 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
23460 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
23461 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
23462 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
23463 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
23464 when @option{-mveclibabi=acml} is used.
23465
23466 @item -mabi=@var{name}
23467 @opindex mabi
23468 Generate code for the specified calling convention. Permissible values
23469 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
23470 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
23471 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
23472 You can control this behavior for specific functions by
23473 using the function attributes @code{ms_abi} and @code{sysv_abi}.
23474 @xref{Function Attributes}.
23475
23476 @item -mtls-dialect=@var{type}
23477 @opindex mtls-dialect
23478 Generate code to access thread-local storage using the @samp{gnu} or
23479 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
23480 @samp{gnu2} is more efficient, but it may add compile- and run-time
23481 requirements that cannot be satisfied on all systems.
23482
23483 @item -mpush-args
23484 @itemx -mno-push-args
23485 @opindex mpush-args
23486 @opindex mno-push-args
23487 Use PUSH operations to store outgoing parameters. This method is shorter
23488 and usually equally fast as method using SUB/MOV operations and is enabled
23489 by default. In some cases disabling it may improve performance because of
23490 improved scheduling and reduced dependencies.
23491
23492 @item -maccumulate-outgoing-args
23493 @opindex maccumulate-outgoing-args
23494 If enabled, the maximum amount of space required for outgoing arguments is
23495 computed in the function prologue. This is faster on most modern CPUs
23496 because of reduced dependencies, improved scheduling and reduced stack usage
23497 when the preferred stack boundary is not equal to 2. The drawback is a notable
23498 increase in code size. This switch implies @option{-mno-push-args}.
23499
23500 @item -mthreads
23501 @opindex mthreads
23502 Support thread-safe exception handling on MinGW. Programs that rely
23503 on thread-safe exception handling must compile and link all code with the
23504 @option{-mthreads} option. When compiling, @option{-mthreads} defines
23505 @option{-D_MT}; when linking, it links in a special thread helper library
23506 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
23507
23508 @item -mms-bitfields
23509 @itemx -mno-ms-bitfields
23510 @opindex mms-bitfields
23511 @opindex mno-ms-bitfields
23512
23513 Enable/disable bit-field layout compatible with the native Microsoft
23514 Windows compiler.
23515
23516 If @code{packed} is used on a structure, or if bit-fields are used,
23517 it may be that the Microsoft ABI lays out the structure differently
23518 than the way GCC normally does. Particularly when moving packed
23519 data between functions compiled with GCC and the native Microsoft compiler
23520 (either via function call or as data in a file), it may be necessary to access
23521 either format.
23522
23523 This option is enabled by default for Microsoft Windows
23524 targets. This behavior can also be controlled locally by use of variable
23525 or type attributes. For more information, see @ref{x86 Variable Attributes}
23526 and @ref{x86 Type Attributes}.
23527
23528 The Microsoft structure layout algorithm is fairly simple with the exception
23529 of the bit-field packing.
23530 The padding and alignment of members of structures and whether a bit-field
23531 can straddle a storage-unit boundary are determine by these rules:
23532
23533 @enumerate
23534 @item Structure members are stored sequentially in the order in which they are
23535 declared: the first member has the lowest memory address and the last member
23536 the highest.
23537
23538 @item Every data object has an alignment requirement. The alignment requirement
23539 for all data except structures, unions, and arrays is either the size of the
23540 object or the current packing size (specified with either the
23541 @code{aligned} attribute or the @code{pack} pragma),
23542 whichever is less. For structures, unions, and arrays,
23543 the alignment requirement is the largest alignment requirement of its members.
23544 Every object is allocated an offset so that:
23545
23546 @smallexample
23547 offset % alignment_requirement == 0
23548 @end smallexample
23549
23550 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
23551 unit if the integral types are the same size and if the next bit-field fits
23552 into the current allocation unit without crossing the boundary imposed by the
23553 common alignment requirements of the bit-fields.
23554 @end enumerate
23555
23556 MSVC interprets zero-length bit-fields in the following ways:
23557
23558 @enumerate
23559 @item If a zero-length bit-field is inserted between two bit-fields that
23560 are normally coalesced, the bit-fields are not coalesced.
23561
23562 For example:
23563
23564 @smallexample
23565 struct
23566 @{
23567 unsigned long bf_1 : 12;
23568 unsigned long : 0;
23569 unsigned long bf_2 : 12;
23570 @} t1;
23571 @end smallexample
23572
23573 @noindent
23574 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
23575 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
23576
23577 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
23578 alignment of the zero-length bit-field is greater than the member that follows it,
23579 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
23580
23581 For example:
23582
23583 @smallexample
23584 struct
23585 @{
23586 char foo : 4;
23587 short : 0;
23588 char bar;
23589 @} t2;
23590
23591 struct
23592 @{
23593 char foo : 4;
23594 short : 0;
23595 double bar;
23596 @} t3;
23597 @end smallexample
23598
23599 @noindent
23600 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
23601 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
23602 bit-field does not affect the alignment of @code{bar} or, as a result, the size
23603 of the structure.
23604
23605 Taking this into account, it is important to note the following:
23606
23607 @enumerate
23608 @item If a zero-length bit-field follows a normal bit-field, the type of the
23609 zero-length bit-field may affect the alignment of the structure as whole. For
23610 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
23611 normal bit-field, and is of type short.
23612
23613 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
23614 still affect the alignment of the structure:
23615
23616 @smallexample
23617 struct
23618 @{
23619 char foo : 6;
23620 long : 0;
23621 @} t4;
23622 @end smallexample
23623
23624 @noindent
23625 Here, @code{t4} takes up 4 bytes.
23626 @end enumerate
23627
23628 @item Zero-length bit-fields following non-bit-field members are ignored:
23629
23630 @smallexample
23631 struct
23632 @{
23633 char foo;
23634 long : 0;
23635 char bar;
23636 @} t5;
23637 @end smallexample
23638
23639 @noindent
23640 Here, @code{t5} takes up 2 bytes.
23641 @end enumerate
23642
23643
23644 @item -mno-align-stringops
23645 @opindex mno-align-stringops
23646 Do not align the destination of inlined string operations. This switch reduces
23647 code size and improves performance in case the destination is already aligned,
23648 but GCC doesn't know about it.
23649
23650 @item -minline-all-stringops
23651 @opindex minline-all-stringops
23652 By default GCC inlines string operations only when the destination is
23653 known to be aligned to least a 4-byte boundary.
23654 This enables more inlining and increases code
23655 size, but may improve performance of code that depends on fast
23656 @code{memcpy}, @code{strlen},
23657 and @code{memset} for short lengths.
23658
23659 @item -minline-stringops-dynamically
23660 @opindex minline-stringops-dynamically
23661 For string operations of unknown size, use run-time checks with
23662 inline code for small blocks and a library call for large blocks.
23663
23664 @item -mstringop-strategy=@var{alg}
23665 @opindex mstringop-strategy=@var{alg}
23666 Override the internal decision heuristic for the particular algorithm to use
23667 for inlining string operations. The allowed values for @var{alg} are:
23668
23669 @table @samp
23670 @item rep_byte
23671 @itemx rep_4byte
23672 @itemx rep_8byte
23673 Expand using i386 @code{rep} prefix of the specified size.
23674
23675 @item byte_loop
23676 @itemx loop
23677 @itemx unrolled_loop
23678 Expand into an inline loop.
23679
23680 @item libcall
23681 Always use a library call.
23682 @end table
23683
23684 @item -mmemcpy-strategy=@var{strategy}
23685 @opindex mmemcpy-strategy=@var{strategy}
23686 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
23687 should be inlined and what inline algorithm to use when the expected size
23688 of the copy operation is known. @var{strategy}
23689 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
23690 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
23691 the max byte size with which inline algorithm @var{alg} is allowed. For the last
23692 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
23693 in the list must be specified in increasing order. The minimal byte size for
23694 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
23695 preceding range.
23696
23697 @item -mmemset-strategy=@var{strategy}
23698 @opindex mmemset-strategy=@var{strategy}
23699 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
23700 @code{__builtin_memset} expansion.
23701
23702 @item -momit-leaf-frame-pointer
23703 @opindex momit-leaf-frame-pointer
23704 Don't keep the frame pointer in a register for leaf functions. This
23705 avoids the instructions to save, set up, and restore frame pointers and
23706 makes an extra register available in leaf functions. The option
23707 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
23708 which might make debugging harder.
23709
23710 @item -mtls-direct-seg-refs
23711 @itemx -mno-tls-direct-seg-refs
23712 @opindex mtls-direct-seg-refs
23713 Controls whether TLS variables may be accessed with offsets from the
23714 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
23715 or whether the thread base pointer must be added. Whether or not this
23716 is valid depends on the operating system, and whether it maps the
23717 segment to cover the entire TLS area.
23718
23719 For systems that use the GNU C Library, the default is on.
23720
23721 @item -msse2avx
23722 @itemx -mno-sse2avx
23723 @opindex msse2avx
23724 Specify that the assembler should encode SSE instructions with VEX
23725 prefix. The option @option{-mavx} turns this on by default.
23726
23727 @item -mfentry
23728 @itemx -mno-fentry
23729 @opindex mfentry
23730 If profiling is active (@option{-pg}), put the profiling
23731 counter call before the prologue.
23732 Note: On x86 architectures the attribute @code{ms_hook_prologue}
23733 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
23734
23735 @item -mrecord-mcount
23736 @itemx -mno-record-mcount
23737 @opindex mrecord-mcount
23738 If profiling is active (@option{-pg}), generate a __mcount_loc section
23739 that contains pointers to each profiling call. This is useful for
23740 automatically patching and out calls.
23741
23742 @item -mnop-mcount
23743 @itemx -mno-nop-mcount
23744 @opindex mnop-mcount
23745 If profiling is active (@option{-pg}), generate the calls to
23746 the profiling functions as nops. This is useful when they
23747 should be patched in later dynamically. This is likely only
23748 useful together with @option{-mrecord-mcount}.
23749
23750 @item -mskip-rax-setup
23751 @itemx -mno-skip-rax-setup
23752 @opindex mskip-rax-setup
23753 When generating code for the x86-64 architecture with SSE extensions
23754 disabled, @option{-skip-rax-setup} can be used to skip setting up RAX
23755 register when there are no variable arguments passed in vector registers.
23756
23757 @strong{Warning:} Since RAX register is used to avoid unnecessarily
23758 saving vector registers on stack when passing variable arguments, the
23759 impacts of this option are callees may waste some stack space,
23760 misbehave or jump to a random location. GCC 4.4 or newer don't have
23761 those issues, regardless the RAX register value.
23762
23763 @item -m8bit-idiv
23764 @itemx -mno-8bit-idiv
23765 @opindex m8bit-idiv
23766 On some processors, like Intel Atom, 8-bit unsigned integer divide is
23767 much faster than 32-bit/64-bit integer divide. This option generates a
23768 run-time check. If both dividend and divisor are within range of 0
23769 to 255, 8-bit unsigned integer divide is used instead of
23770 32-bit/64-bit integer divide.
23771
23772 @item -mavx256-split-unaligned-load
23773 @itemx -mavx256-split-unaligned-store
23774 @opindex mavx256-split-unaligned-load
23775 @opindex mavx256-split-unaligned-store
23776 Split 32-byte AVX unaligned load and store.
23777
23778 @item -mstack-protector-guard=@var{guard}
23779 @opindex mstack-protector-guard=@var{guard}
23780 Generate stack protection code using canary at @var{guard}. Supported
23781 locations are @samp{global} for global canary or @samp{tls} for per-thread
23782 canary in the TLS block (the default). This option has effect only when
23783 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23784
23785 @item -mmitigate-rop
23786 @opindex mmitigate-rop
23787 Try to avoid generating code sequences that contain unintended return
23788 opcodes, to mitigate against certain forms of attack. At the moment,
23789 this option is limited in what it can do and should not be relied
23790 on to provide serious protection.
23791
23792 @end table
23793
23794 These @samp{-m} switches are supported in addition to the above
23795 on x86-64 processors in 64-bit environments.
23796
23797 @table @gcctabopt
23798 @item -m32
23799 @itemx -m64
23800 @itemx -mx32
23801 @itemx -m16
23802 @itemx -miamcu
23803 @opindex m32
23804 @opindex m64
23805 @opindex mx32
23806 @opindex m16
23807 @opindex miamcu
23808 Generate code for a 16-bit, 32-bit or 64-bit environment.
23809 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23810 to 32 bits, and
23811 generates code that runs on any i386 system.
23812
23813 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23814 types to 64 bits, and generates code for the x86-64 architecture.
23815 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23816 and @option{-mdynamic-no-pic} options.
23817
23818 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23819 to 32 bits, and
23820 generates code for the x86-64 architecture.
23821
23822 The @option{-m16} option is the same as @option{-m32}, except for that
23823 it outputs the @code{.code16gcc} assembly directive at the beginning of
23824 the assembly output so that the binary can run in 16-bit mode.
23825
23826 The @option{-miamcu} option generates code which conforms to Intel MCU
23827 psABI. It requires the @option{-m32} option to be turned on.
23828
23829 @item -mno-red-zone
23830 @opindex mno-red-zone
23831 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
23832 by the x86-64 ABI; it is a 128-byte area beyond the location of the
23833 stack pointer that is not modified by signal or interrupt handlers
23834 and therefore can be used for temporary data without adjusting the stack
23835 pointer. The flag @option{-mno-red-zone} disables this red zone.
23836
23837 @item -mcmodel=small
23838 @opindex mcmodel=small
23839 Generate code for the small code model: the program and its symbols must
23840 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
23841 Programs can be statically or dynamically linked. This is the default
23842 code model.
23843
23844 @item -mcmodel=kernel
23845 @opindex mcmodel=kernel
23846 Generate code for the kernel code model. The kernel runs in the
23847 negative 2 GB of the address space.
23848 This model has to be used for Linux kernel code.
23849
23850 @item -mcmodel=medium
23851 @opindex mcmodel=medium
23852 Generate code for the medium model: the program is linked in the lower 2
23853 GB of the address space. Small symbols are also placed there. Symbols
23854 with sizes larger than @option{-mlarge-data-threshold} are put into
23855 large data or BSS sections and can be located above 2GB. Programs can
23856 be statically or dynamically linked.
23857
23858 @item -mcmodel=large
23859 @opindex mcmodel=large
23860 Generate code for the large model. This model makes no assumptions
23861 about addresses and sizes of sections.
23862
23863 @item -maddress-mode=long
23864 @opindex maddress-mode=long
23865 Generate code for long address mode. This is only supported for 64-bit
23866 and x32 environments. It is the default address mode for 64-bit
23867 environments.
23868
23869 @item -maddress-mode=short
23870 @opindex maddress-mode=short
23871 Generate code for short address mode. This is only supported for 32-bit
23872 and x32 environments. It is the default address mode for 32-bit and
23873 x32 environments.
23874 @end table
23875
23876 @node x86 Windows Options
23877 @subsection x86 Windows Options
23878 @cindex x86 Windows Options
23879 @cindex Windows Options for x86
23880
23881 These additional options are available for Microsoft Windows targets:
23882
23883 @table @gcctabopt
23884 @item -mconsole
23885 @opindex mconsole
23886 This option
23887 specifies that a console application is to be generated, by
23888 instructing the linker to set the PE header subsystem type
23889 required for console applications.
23890 This option is available for Cygwin and MinGW targets and is
23891 enabled by default on those targets.
23892
23893 @item -mdll
23894 @opindex mdll
23895 This option is available for Cygwin and MinGW targets. It
23896 specifies that a DLL---a dynamic link library---is to be
23897 generated, enabling the selection of the required runtime
23898 startup object and entry point.
23899
23900 @item -mnop-fun-dllimport
23901 @opindex mnop-fun-dllimport
23902 This option is available for Cygwin and MinGW targets. It
23903 specifies that the @code{dllimport} attribute should be ignored.
23904
23905 @item -mthread
23906 @opindex mthread
23907 This option is available for MinGW targets. It specifies
23908 that MinGW-specific thread support is to be used.
23909
23910 @item -municode
23911 @opindex municode
23912 This option is available for MinGW-w64 targets. It causes
23913 the @code{UNICODE} preprocessor macro to be predefined, and
23914 chooses Unicode-capable runtime startup code.
23915
23916 @item -mwin32
23917 @opindex mwin32
23918 This option is available for Cygwin and MinGW targets. It
23919 specifies that the typical Microsoft Windows predefined macros are to
23920 be set in the pre-processor, but does not influence the choice
23921 of runtime library/startup code.
23922
23923 @item -mwindows
23924 @opindex mwindows
23925 This option is available for Cygwin and MinGW targets. It
23926 specifies that a GUI application is to be generated by
23927 instructing the linker to set the PE header subsystem type
23928 appropriately.
23929
23930 @item -fno-set-stack-executable
23931 @opindex fno-set-stack-executable
23932 This option is available for MinGW targets. It specifies that
23933 the executable flag for the stack used by nested functions isn't
23934 set. This is necessary for binaries running in kernel mode of
23935 Microsoft Windows, as there the User32 API, which is used to set executable
23936 privileges, isn't available.
23937
23938 @item -fwritable-relocated-rdata
23939 @opindex fno-writable-relocated-rdata
23940 This option is available for MinGW and Cygwin targets. It specifies
23941 that relocated-data in read-only section is put into .data
23942 section. This is a necessary for older runtimes not supporting
23943 modification of .rdata sections for pseudo-relocation.
23944
23945 @item -mpe-aligned-commons
23946 @opindex mpe-aligned-commons
23947 This option is available for Cygwin and MinGW targets. It
23948 specifies that the GNU extension to the PE file format that
23949 permits the correct alignment of COMMON variables should be
23950 used when generating code. It is enabled by default if
23951 GCC detects that the target assembler found during configuration
23952 supports the feature.
23953 @end table
23954
23955 See also under @ref{x86 Options} for standard options.
23956
23957 @node Xstormy16 Options
23958 @subsection Xstormy16 Options
23959 @cindex Xstormy16 Options
23960
23961 These options are defined for Xstormy16:
23962
23963 @table @gcctabopt
23964 @item -msim
23965 @opindex msim
23966 Choose startup files and linker script suitable for the simulator.
23967 @end table
23968
23969 @node Xtensa Options
23970 @subsection Xtensa Options
23971 @cindex Xtensa Options
23972
23973 These options are supported for Xtensa targets:
23974
23975 @table @gcctabopt
23976 @item -mconst16
23977 @itemx -mno-const16
23978 @opindex mconst16
23979 @opindex mno-const16
23980 Enable or disable use of @code{CONST16} instructions for loading
23981 constant values. The @code{CONST16} instruction is currently not a
23982 standard option from Tensilica. When enabled, @code{CONST16}
23983 instructions are always used in place of the standard @code{L32R}
23984 instructions. The use of @code{CONST16} is enabled by default only if
23985 the @code{L32R} instruction is not available.
23986
23987 @item -mfused-madd
23988 @itemx -mno-fused-madd
23989 @opindex mfused-madd
23990 @opindex mno-fused-madd
23991 Enable or disable use of fused multiply/add and multiply/subtract
23992 instructions in the floating-point option. This has no effect if the
23993 floating-point option is not also enabled. Disabling fused multiply/add
23994 and multiply/subtract instructions forces the compiler to use separate
23995 instructions for the multiply and add/subtract operations. This may be
23996 desirable in some cases where strict IEEE 754-compliant results are
23997 required: the fused multiply add/subtract instructions do not round the
23998 intermediate result, thereby producing results with @emph{more} bits of
23999 precision than specified by the IEEE standard. Disabling fused multiply
24000 add/subtract instructions also ensures that the program output is not
24001 sensitive to the compiler's ability to combine multiply and add/subtract
24002 operations.
24003
24004 @item -mserialize-volatile
24005 @itemx -mno-serialize-volatile
24006 @opindex mserialize-volatile
24007 @opindex mno-serialize-volatile
24008 When this option is enabled, GCC inserts @code{MEMW} instructions before
24009 @code{volatile} memory references to guarantee sequential consistency.
24010 The default is @option{-mserialize-volatile}. Use
24011 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
24012
24013 @item -mforce-no-pic
24014 @opindex mforce-no-pic
24015 For targets, like GNU/Linux, where all user-mode Xtensa code must be
24016 position-independent code (PIC), this option disables PIC for compiling
24017 kernel code.
24018
24019 @item -mtext-section-literals
24020 @itemx -mno-text-section-literals
24021 @opindex mtext-section-literals
24022 @opindex mno-text-section-literals
24023 These options control the treatment of literal pools. The default is
24024 @option{-mno-text-section-literals}, which places literals in a separate
24025 section in the output file. This allows the literal pool to be placed
24026 in a data RAM/ROM, and it also allows the linker to combine literal
24027 pools from separate object files to remove redundant literals and
24028 improve code size. With @option{-mtext-section-literals}, the literals
24029 are interspersed in the text section in order to keep them as close as
24030 possible to their references. This may be necessary for large assembly
24031 files. Literals for each function are placed right before that function.
24032
24033 @item -mauto-litpools
24034 @itemx -mno-auto-litpools
24035 @opindex mauto-litpools
24036 @opindex mno-auto-litpools
24037 These options control the treatment of literal pools. The default is
24038 @option{-mno-auto-litpools}, which places literals in a separate
24039 section in the output file unless @option{-mtext-section-literals} is
24040 used. With @option{-mauto-litpools} the literals are interspersed in
24041 the text section by the assembler. Compiler does not produce explicit
24042 @code{.literal} directives and loads literals into registers with
24043 @code{MOVI} instructions instead of @code{L32R} to let the assembler
24044 do relaxation and place literals as necessary. This option allows
24045 assembler to create several literal pools per function and assemble
24046 very big functions, which may not be possible with
24047 @option{-mtext-section-literals}.
24048
24049 @item -mtarget-align
24050 @itemx -mno-target-align
24051 @opindex mtarget-align
24052 @opindex mno-target-align
24053 When this option is enabled, GCC instructs the assembler to
24054 automatically align instructions to reduce branch penalties at the
24055 expense of some code density. The assembler attempts to widen density
24056 instructions to align branch targets and the instructions following call
24057 instructions. If there are not enough preceding safe density
24058 instructions to align a target, no widening is performed. The
24059 default is @option{-mtarget-align}. These options do not affect the
24060 treatment of auto-aligned instructions like @code{LOOP}, which the
24061 assembler always aligns, either by widening density instructions or
24062 by inserting NOP instructions.
24063
24064 @item -mlongcalls
24065 @itemx -mno-longcalls
24066 @opindex mlongcalls
24067 @opindex mno-longcalls
24068 When this option is enabled, GCC instructs the assembler to translate
24069 direct calls to indirect calls unless it can determine that the target
24070 of a direct call is in the range allowed by the call instruction. This
24071 translation typically occurs for calls to functions in other source
24072 files. Specifically, the assembler translates a direct @code{CALL}
24073 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
24074 The default is @option{-mno-longcalls}. This option should be used in
24075 programs where the call target can potentially be out of range. This
24076 option is implemented in the assembler, not the compiler, so the
24077 assembly code generated by GCC still shows direct call
24078 instructions---look at the disassembled object code to see the actual
24079 instructions. Note that the assembler uses an indirect call for
24080 every cross-file call, not just those that really are out of range.
24081 @end table
24082
24083 @node zSeries Options
24084 @subsection zSeries Options
24085 @cindex zSeries options
24086
24087 These are listed under @xref{S/390 and zSeries Options}.
24088
24089 @node Code Gen Options
24090 @section Options for Code Generation Conventions
24091 @cindex code generation conventions
24092 @cindex options, code generation
24093 @cindex run-time options
24094
24095 These machine-independent options control the interface conventions
24096 used in code generation.
24097
24098 Most of them have both positive and negative forms; the negative form
24099 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
24100 one of the forms is listed---the one that is not the default. You
24101 can figure out the other form by either removing @samp{no-} or adding
24102 it.
24103
24104 @table @gcctabopt
24105 @item -fbounds-check
24106 @opindex fbounds-check
24107 For front ends that support it, generate additional code to check that
24108 indices used to access arrays are within the declared range. This is
24109 currently only supported by the Java and Fortran front ends, where
24110 this option defaults to true and false respectively.
24111
24112 @item -fstack-reuse=@var{reuse-level}
24113 @opindex fstack_reuse
24114 This option controls stack space reuse for user declared local/auto variables
24115 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
24116 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
24117 local variables and temporaries, @samp{named_vars} enables the reuse only for
24118 user defined local variables with names, and @samp{none} disables stack reuse
24119 completely. The default value is @samp{all}. The option is needed when the
24120 program extends the lifetime of a scoped local variable or a compiler generated
24121 temporary beyond the end point defined by the language. When a lifetime of
24122 a variable ends, and if the variable lives in memory, the optimizing compiler
24123 has the freedom to reuse its stack space with other temporaries or scoped
24124 local variables whose live range does not overlap with it. Legacy code extending
24125 local lifetime is likely to break with the stack reuse optimization.
24126
24127 For example,
24128
24129 @smallexample
24130 int *p;
24131 @{
24132 int local1;
24133
24134 p = &local1;
24135 local1 = 10;
24136 ....
24137 @}
24138 @{
24139 int local2;
24140 local2 = 20;
24141 ...
24142 @}
24143
24144 if (*p == 10) // out of scope use of local1
24145 @{
24146
24147 @}
24148 @end smallexample
24149
24150 Another example:
24151 @smallexample
24152
24153 struct A
24154 @{
24155 A(int k) : i(k), j(k) @{ @}
24156 int i;
24157 int j;
24158 @};
24159
24160 A *ap;
24161
24162 void foo(const A& ar)
24163 @{
24164 ap = &ar;
24165 @}
24166
24167 void bar()
24168 @{
24169 foo(A(10)); // temp object's lifetime ends when foo returns
24170
24171 @{
24172 A a(20);
24173 ....
24174 @}
24175 ap->i+= 10; // ap references out of scope temp whose space
24176 // is reused with a. What is the value of ap->i?
24177 @}
24178
24179 @end smallexample
24180
24181 The lifetime of a compiler generated temporary is well defined by the C++
24182 standard. When a lifetime of a temporary ends, and if the temporary lives
24183 in memory, the optimizing compiler has the freedom to reuse its stack
24184 space with other temporaries or scoped local variables whose live range
24185 does not overlap with it. However some of the legacy code relies on
24186 the behavior of older compilers in which temporaries' stack space is
24187 not reused, the aggressive stack reuse can lead to runtime errors. This
24188 option is used to control the temporary stack reuse optimization.
24189
24190 @item -ftrapv
24191 @opindex ftrapv
24192 This option generates traps for signed overflow on addition, subtraction,
24193 multiplication operations.
24194 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
24195 @option{-ftrapv} @option{-fwrapv} on the command-line results in
24196 @option{-fwrapv} being effective. Note that only active options override, so
24197 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
24198 results in @option{-ftrapv} being effective.
24199
24200 @item -fwrapv
24201 @opindex fwrapv
24202 This option instructs the compiler to assume that signed arithmetic
24203 overflow of addition, subtraction and multiplication wraps around
24204 using twos-complement representation. This flag enables some optimizations
24205 and disables others. This option is enabled by default for the Java
24206 front end, as required by the Java language specification.
24207 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
24208 @option{-ftrapv} @option{-fwrapv} on the command-line results in
24209 @option{-fwrapv} being effective. Note that only active options override, so
24210 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
24211 results in @option{-ftrapv} being effective.
24212
24213 @item -fexceptions
24214 @opindex fexceptions
24215 Enable exception handling. Generates extra code needed to propagate
24216 exceptions. For some targets, this implies GCC generates frame
24217 unwind information for all functions, which can produce significant data
24218 size overhead, although it does not affect execution. If you do not
24219 specify this option, GCC enables it by default for languages like
24220 C++ that normally require exception handling, and disables it for
24221 languages like C that do not normally require it. However, you may need
24222 to enable this option when compiling C code that needs to interoperate
24223 properly with exception handlers written in C++. You may also wish to
24224 disable this option if you are compiling older C++ programs that don't
24225 use exception handling.
24226
24227 @item -fnon-call-exceptions
24228 @opindex fnon-call-exceptions
24229 Generate code that allows trapping instructions to throw exceptions.
24230 Note that this requires platform-specific runtime support that does
24231 not exist everywhere. Moreover, it only allows @emph{trapping}
24232 instructions to throw exceptions, i.e.@: memory references or floating-point
24233 instructions. It does not allow exceptions to be thrown from
24234 arbitrary signal handlers such as @code{SIGALRM}.
24235
24236 @item -fdelete-dead-exceptions
24237 @opindex fdelete-dead-exceptions
24238 Consider that instructions that may throw exceptions but don't otherwise
24239 contribute to the execution of the program can be optimized away.
24240 This option is enabled by default for the Ada front end, as permitted by
24241 the Ada language specification.
24242 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
24243
24244 @item -funwind-tables
24245 @opindex funwind-tables
24246 Similar to @option{-fexceptions}, except that it just generates any needed
24247 static data, but does not affect the generated code in any other way.
24248 You normally do not need to enable this option; instead, a language processor
24249 that needs this handling enables it on your behalf.
24250
24251 @item -fasynchronous-unwind-tables
24252 @opindex fasynchronous-unwind-tables
24253 Generate unwind table in DWARF 2 format, if supported by target machine. The
24254 table is exact at each instruction boundary, so it can be used for stack
24255 unwinding from asynchronous events (such as debugger or garbage collector).
24256
24257 @item -fno-gnu-unique
24258 @opindex fno-gnu-unique
24259 On systems with recent GNU assembler and C library, the C++ compiler
24260 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
24261 of template static data members and static local variables in inline
24262 functions are unique even in the presence of @code{RTLD_LOCAL}; this
24263 is necessary to avoid problems with a library used by two different
24264 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
24265 therefore disagreeing with the other one about the binding of the
24266 symbol. But this causes @code{dlclose} to be ignored for affected
24267 DSOs; if your program relies on reinitialization of a DSO via
24268 @code{dlclose} and @code{dlopen}, you can use
24269 @option{-fno-gnu-unique}.
24270
24271 @item -fpcc-struct-return
24272 @opindex fpcc-struct-return
24273 Return ``short'' @code{struct} and @code{union} values in memory like
24274 longer ones, rather than in registers. This convention is less
24275 efficient, but it has the advantage of allowing intercallability between
24276 GCC-compiled files and files compiled with other compilers, particularly
24277 the Portable C Compiler (pcc).
24278
24279 The precise convention for returning structures in memory depends
24280 on the target configuration macros.
24281
24282 Short structures and unions are those whose size and alignment match
24283 that of some integer type.
24284
24285 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
24286 switch is not binary compatible with code compiled with the
24287 @option{-freg-struct-return} switch.
24288 Use it to conform to a non-default application binary interface.
24289
24290 @item -freg-struct-return
24291 @opindex freg-struct-return
24292 Return @code{struct} and @code{union} values in registers when possible.
24293 This is more efficient for small structures than
24294 @option{-fpcc-struct-return}.
24295
24296 If you specify neither @option{-fpcc-struct-return} nor
24297 @option{-freg-struct-return}, GCC defaults to whichever convention is
24298 standard for the target. If there is no standard convention, GCC
24299 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
24300 the principal compiler. In those cases, we can choose the standard, and
24301 we chose the more efficient register return alternative.
24302
24303 @strong{Warning:} code compiled with the @option{-freg-struct-return}
24304 switch is not binary compatible with code compiled with the
24305 @option{-fpcc-struct-return} switch.
24306 Use it to conform to a non-default application binary interface.
24307
24308 @item -fshort-enums
24309 @opindex fshort-enums
24310 Allocate to an @code{enum} type only as many bytes as it needs for the
24311 declared range of possible values. Specifically, the @code{enum} type
24312 is equivalent to the smallest integer type that has enough room.
24313
24314 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
24315 code that is not binary compatible with code generated without that switch.
24316 Use it to conform to a non-default application binary interface.
24317
24318 @item -fshort-double
24319 @opindex fshort-double
24320 Use the same size for @code{double} as for @code{float}.
24321
24322 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
24323 code that is not binary compatible with code generated without that switch.
24324 Use it to conform to a non-default application binary interface.
24325
24326 @item -fshort-wchar
24327 @opindex fshort-wchar
24328 Override the underlying type for @code{wchar_t} to be @code{short
24329 unsigned int} instead of the default for the target. This option is
24330 useful for building programs to run under WINE@.
24331
24332 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
24333 code that is not binary compatible with code generated without that switch.
24334 Use it to conform to a non-default application binary interface.
24335
24336 @item -fno-common
24337 @opindex fno-common
24338 In C code, controls the placement of uninitialized global variables.
24339 Unix C compilers have traditionally permitted multiple definitions of
24340 such variables in different compilation units by placing the variables
24341 in a common block.
24342 This is the behavior specified by @option{-fcommon}, and is the default
24343 for GCC on most targets.
24344 On the other hand, this behavior is not required by ISO C, and on some
24345 targets may carry a speed or code size penalty on variable references.
24346 The @option{-fno-common} option specifies that the compiler should place
24347 uninitialized global variables in the data section of the object file,
24348 rather than generating them as common blocks.
24349 This has the effect that if the same variable is declared
24350 (without @code{extern}) in two different compilations,
24351 you get a multiple-definition error when you link them.
24352 In this case, you must compile with @option{-fcommon} instead.
24353 Compiling with @option{-fno-common} is useful on targets for which
24354 it provides better performance, or if you wish to verify that the
24355 program will work on other systems that always treat uninitialized
24356 variable declarations this way.
24357
24358 @item -fno-ident
24359 @opindex fno-ident
24360 Ignore the @code{#ident} directive.
24361
24362 @item -finhibit-size-directive
24363 @opindex finhibit-size-directive
24364 Don't output a @code{.size} assembler directive, or anything else that
24365 would cause trouble if the function is split in the middle, and the
24366 two halves are placed at locations far apart in memory. This option is
24367 used when compiling @file{crtstuff.c}; you should not need to use it
24368 for anything else.
24369
24370 @item -fverbose-asm
24371 @opindex fverbose-asm
24372 Put extra commentary information in the generated assembly code to
24373 make it more readable. This option is generally only of use to those
24374 who actually need to read the generated assembly code (perhaps while
24375 debugging the compiler itself).
24376
24377 @option{-fno-verbose-asm}, the default, causes the
24378 extra information to be omitted and is useful when comparing two assembler
24379 files.
24380
24381 @item -frecord-gcc-switches
24382 @opindex frecord-gcc-switches
24383 This switch causes the command line used to invoke the
24384 compiler to be recorded into the object file that is being created.
24385 This switch is only implemented on some targets and the exact format
24386 of the recording is target and binary file format dependent, but it
24387 usually takes the form of a section containing ASCII text. This
24388 switch is related to the @option{-fverbose-asm} switch, but that
24389 switch only records information in the assembler output file as
24390 comments, so it never reaches the object file.
24391 See also @option{-grecord-gcc-switches} for another
24392 way of storing compiler options into the object file.
24393
24394 @item -fpic
24395 @opindex fpic
24396 @cindex global offset table
24397 @cindex PIC
24398 Generate position-independent code (PIC) suitable for use in a shared
24399 library, if supported for the target machine. Such code accesses all
24400 constant addresses through a global offset table (GOT)@. The dynamic
24401 loader resolves the GOT entries when the program starts (the dynamic
24402 loader is not part of GCC; it is part of the operating system). If
24403 the GOT size for the linked executable exceeds a machine-specific
24404 maximum size, you get an error message from the linker indicating that
24405 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
24406 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
24407 on the m68k and RS/6000. The x86 has no such limit.)
24408
24409 Position-independent code requires special support, and therefore works
24410 only on certain machines. For the x86, GCC supports PIC for System V
24411 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
24412 position-independent.
24413
24414 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
24415 are defined to 1.
24416
24417 @item -fPIC
24418 @opindex fPIC
24419 If supported for the target machine, emit position-independent code,
24420 suitable for dynamic linking and avoiding any limit on the size of the
24421 global offset table. This option makes a difference on AArch64, m68k,
24422 PowerPC and SPARC@.
24423
24424 Position-independent code requires special support, and therefore works
24425 only on certain machines.
24426
24427 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
24428 are defined to 2.
24429
24430 @item -fpie
24431 @itemx -fPIE
24432 @opindex fpie
24433 @opindex fPIE
24434 These options are similar to @option{-fpic} and @option{-fPIC}, but
24435 generated position independent code can be only linked into executables.
24436 Usually these options are used when @option{-pie} GCC option is
24437 used during linking.
24438
24439 @option{-fpie} and @option{-fPIE} both define the macros
24440 @code{__pie__} and @code{__PIE__}. The macros have the value 1
24441 for @option{-fpie} and 2 for @option{-fPIE}.
24442
24443 @item -fno-plt
24444 @opindex fno-plt
24445 Do not use the PLT for external function calls in position-independent code.
24446 Instead, load the callee address at call sites from the GOT and branch to it.
24447 This leads to more efficient code by eliminating PLT stubs and exposing
24448 GOT loads to optimizations. On architectures such as 32-bit x86 where
24449 PLT stubs expect the GOT pointer in a specific register, this gives more
24450 register allocation freedom to the compiler.
24451 Lazy binding requires use of the PLT;
24452 with @option{-fno-plt} all external symbols are resolved at load time.
24453
24454 Alternatively, the function attribute @code{noplt} can be used to avoid calls
24455 through the PLT for specific external functions.
24456
24457 In position-dependent code, a few targets also convert calls to
24458 functions that are marked to not use the PLT to use the GOT instead.
24459
24460 @item -fno-jump-tables
24461 @opindex fno-jump-tables
24462 Do not use jump tables for switch statements even where it would be
24463 more efficient than other code generation strategies. This option is
24464 of use in conjunction with @option{-fpic} or @option{-fPIC} for
24465 building code that forms part of a dynamic linker and cannot
24466 reference the address of a jump table. On some targets, jump tables
24467 do not require a GOT and this option is not needed.
24468
24469 @item -ffixed-@var{reg}
24470 @opindex ffixed
24471 Treat the register named @var{reg} as a fixed register; generated code
24472 should never refer to it (except perhaps as a stack pointer, frame
24473 pointer or in some other fixed role).
24474
24475 @var{reg} must be the name of a register. The register names accepted
24476 are machine-specific and are defined in the @code{REGISTER_NAMES}
24477 macro in the machine description macro file.
24478
24479 This flag does not have a negative form, because it specifies a
24480 three-way choice.
24481
24482 @item -fcall-used-@var{reg}
24483 @opindex fcall-used
24484 Treat the register named @var{reg} as an allocable register that is
24485 clobbered by function calls. It may be allocated for temporaries or
24486 variables that do not live across a call. Functions compiled this way
24487 do not save and restore the register @var{reg}.
24488
24489 It is an error to use this flag with the frame pointer or stack pointer.
24490 Use of this flag for other registers that have fixed pervasive roles in
24491 the machine's execution model produces disastrous results.
24492
24493 This flag does not have a negative form, because it specifies a
24494 three-way choice.
24495
24496 @item -fcall-saved-@var{reg}
24497 @opindex fcall-saved
24498 Treat the register named @var{reg} as an allocable register saved by
24499 functions. It may be allocated even for temporaries or variables that
24500 live across a call. Functions compiled this way save and restore
24501 the register @var{reg} if they use it.
24502
24503 It is an error to use this flag with the frame pointer or stack pointer.
24504 Use of this flag for other registers that have fixed pervasive roles in
24505 the machine's execution model produces disastrous results.
24506
24507 A different sort of disaster results from the use of this flag for
24508 a register in which function values may be returned.
24509
24510 This flag does not have a negative form, because it specifies a
24511 three-way choice.
24512
24513 @item -fpack-struct[=@var{n}]
24514 @opindex fpack-struct
24515 Without a value specified, pack all structure members together without
24516 holes. When a value is specified (which must be a small power of two), pack
24517 structure members according to this value, representing the maximum
24518 alignment (that is, objects with default alignment requirements larger than
24519 this are output potentially unaligned at the next fitting location.
24520
24521 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
24522 code that is not binary compatible with code generated without that switch.
24523 Additionally, it makes the code suboptimal.
24524 Use it to conform to a non-default application binary interface.
24525
24526 @item -finstrument-functions
24527 @opindex finstrument-functions
24528 Generate instrumentation calls for entry and exit to functions. Just
24529 after function entry and just before function exit, the following
24530 profiling functions are called with the address of the current
24531 function and its call site. (On some platforms,
24532 @code{__builtin_return_address} does not work beyond the current
24533 function, so the call site information may not be available to the
24534 profiling functions otherwise.)
24535
24536 @smallexample
24537 void __cyg_profile_func_enter (void *this_fn,
24538 void *call_site);
24539 void __cyg_profile_func_exit (void *this_fn,
24540 void *call_site);
24541 @end smallexample
24542
24543 The first argument is the address of the start of the current function,
24544 which may be looked up exactly in the symbol table.
24545
24546 This instrumentation is also done for functions expanded inline in other
24547 functions. The profiling calls indicate where, conceptually, the
24548 inline function is entered and exited. This means that addressable
24549 versions of such functions must be available. If all your uses of a
24550 function are expanded inline, this may mean an additional expansion of
24551 code size. If you use @code{extern inline} in your C code, an
24552 addressable version of such functions must be provided. (This is
24553 normally the case anyway, but if you get lucky and the optimizer always
24554 expands the functions inline, you might have gotten away without
24555 providing static copies.)
24556
24557 A function may be given the attribute @code{no_instrument_function}, in
24558 which case this instrumentation is not done. This can be used, for
24559 example, for the profiling functions listed above, high-priority
24560 interrupt routines, and any functions from which the profiling functions
24561 cannot safely be called (perhaps signal handlers, if the profiling
24562 routines generate output or allocate memory).
24563
24564 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
24565 @opindex finstrument-functions-exclude-file-list
24566
24567 Set the list of functions that are excluded from instrumentation (see
24568 the description of @option{-finstrument-functions}). If the file that
24569 contains a function definition matches with one of @var{file}, then
24570 that function is not instrumented. The match is done on substrings:
24571 if the @var{file} parameter is a substring of the file name, it is
24572 considered to be a match.
24573
24574 For example:
24575
24576 @smallexample
24577 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
24578 @end smallexample
24579
24580 @noindent
24581 excludes any inline function defined in files whose pathnames
24582 contain @file{/bits/stl} or @file{include/sys}.
24583
24584 If, for some reason, you want to include letter @samp{,} in one of
24585 @var{sym}, write @samp{\,}. For example,
24586 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
24587 (note the single quote surrounding the option).
24588
24589 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
24590 @opindex finstrument-functions-exclude-function-list
24591
24592 This is similar to @option{-finstrument-functions-exclude-file-list},
24593 but this option sets the list of function names to be excluded from
24594 instrumentation. The function name to be matched is its user-visible
24595 name, such as @code{vector<int> blah(const vector<int> &)}, not the
24596 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
24597 match is done on substrings: if the @var{sym} parameter is a substring
24598 of the function name, it is considered to be a match. For C99 and C++
24599 extended identifiers, the function name must be given in UTF-8, not
24600 using universal character names.
24601
24602 @item -fstack-check
24603 @opindex fstack-check
24604 Generate code to verify that you do not go beyond the boundary of the
24605 stack. You should specify this flag if you are running in an
24606 environment with multiple threads, but you only rarely need to specify it in
24607 a single-threaded environment since stack overflow is automatically
24608 detected on nearly all systems if there is only one stack.
24609
24610 Note that this switch does not actually cause checking to be done; the
24611 operating system or the language runtime must do that. The switch causes
24612 generation of code to ensure that they see the stack being extended.
24613
24614 You can additionally specify a string parameter: @samp{no} means no
24615 checking, @samp{generic} means force the use of old-style checking,
24616 @samp{specific} means use the best checking method and is equivalent
24617 to bare @option{-fstack-check}.
24618
24619 Old-style checking is a generic mechanism that requires no specific
24620 target support in the compiler but comes with the following drawbacks:
24621
24622 @enumerate
24623 @item
24624 Modified allocation strategy for large objects: they are always
24625 allocated dynamically if their size exceeds a fixed threshold.
24626
24627 @item
24628 Fixed limit on the size of the static frame of functions: when it is
24629 topped by a particular function, stack checking is not reliable and
24630 a warning is issued by the compiler.
24631
24632 @item
24633 Inefficiency: because of both the modified allocation strategy and the
24634 generic implementation, code performance is hampered.
24635 @end enumerate
24636
24637 Note that old-style stack checking is also the fallback method for
24638 @samp{specific} if no target support has been added in the compiler.
24639
24640 @item -fstack-limit-register=@var{reg}
24641 @itemx -fstack-limit-symbol=@var{sym}
24642 @itemx -fno-stack-limit
24643 @opindex fstack-limit-register
24644 @opindex fstack-limit-symbol
24645 @opindex fno-stack-limit
24646 Generate code to ensure that the stack does not grow beyond a certain value,
24647 either the value of a register or the address of a symbol. If a larger
24648 stack is required, a signal is raised at run time. For most targets,
24649 the signal is raised before the stack overruns the boundary, so
24650 it is possible to catch the signal without taking special precautions.
24651
24652 For instance, if the stack starts at absolute address @samp{0x80000000}
24653 and grows downwards, you can use the flags
24654 @option{-fstack-limit-symbol=__stack_limit} and
24655 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
24656 of 128KB@. Note that this may only work with the GNU linker.
24657
24658 You can locally override stack limit checking by using the
24659 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
24660
24661 @item -fsplit-stack
24662 @opindex fsplit-stack
24663 Generate code to automatically split the stack before it overflows.
24664 The resulting program has a discontiguous stack which can only
24665 overflow if the program is unable to allocate any more memory. This
24666 is most useful when running threaded programs, as it is no longer
24667 necessary to calculate a good stack size to use for each thread. This
24668 is currently only implemented for the x86 targets running
24669 GNU/Linux.
24670
24671 When code compiled with @option{-fsplit-stack} calls code compiled
24672 without @option{-fsplit-stack}, there may not be much stack space
24673 available for the latter code to run. If compiling all code,
24674 including library code, with @option{-fsplit-stack} is not an option,
24675 then the linker can fix up these calls so that the code compiled
24676 without @option{-fsplit-stack} always has a large stack. Support for
24677 this is implemented in the gold linker in GNU binutils release 2.21
24678 and later.
24679
24680 @item -fleading-underscore
24681 @opindex fleading-underscore
24682 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
24683 change the way C symbols are represented in the object file. One use
24684 is to help link with legacy assembly code.
24685
24686 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
24687 generate code that is not binary compatible with code generated without that
24688 switch. Use it to conform to a non-default application binary interface.
24689 Not all targets provide complete support for this switch.
24690
24691 @item -ftls-model=@var{model}
24692 @opindex ftls-model
24693 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
24694 The @var{model} argument should be one of @samp{global-dynamic},
24695 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
24696 Note that the choice is subject to optimization: the compiler may use
24697 a more efficient model for symbols not visible outside of the translation
24698 unit, or if @option{-fpic} is not given on the command line.
24699
24700 The default without @option{-fpic} is @samp{initial-exec}; with
24701 @option{-fpic} the default is @samp{global-dynamic}.
24702
24703 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
24704 @opindex fvisibility
24705 Set the default ELF image symbol visibility to the specified option---all
24706 symbols are marked with this unless overridden within the code.
24707 Using this feature can very substantially improve linking and
24708 load times of shared object libraries, produce more optimized
24709 code, provide near-perfect API export and prevent symbol clashes.
24710 It is @strong{strongly} recommended that you use this in any shared objects
24711 you distribute.
24712
24713 Despite the nomenclature, @samp{default} always means public; i.e.,
24714 available to be linked against from outside the shared object.
24715 @samp{protected} and @samp{internal} are pretty useless in real-world
24716 usage so the only other commonly used option is @samp{hidden}.
24717 The default if @option{-fvisibility} isn't specified is
24718 @samp{default}, i.e., make every symbol public.
24719
24720 A good explanation of the benefits offered by ensuring ELF
24721 symbols have the correct visibility is given by ``How To Write
24722 Shared Libraries'' by Ulrich Drepper (which can be found at
24723 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
24724 solution made possible by this option to marking things hidden when
24725 the default is public is to make the default hidden and mark things
24726 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
24727 and @code{__attribute__ ((visibility("default")))} instead of
24728 @code{__declspec(dllexport)} you get almost identical semantics with
24729 identical syntax. This is a great boon to those working with
24730 cross-platform projects.
24731
24732 For those adding visibility support to existing code, you may find
24733 @code{#pragma GCC visibility} of use. This works by you enclosing
24734 the declarations you wish to set visibility for with (for example)
24735 @code{#pragma GCC visibility push(hidden)} and
24736 @code{#pragma GCC visibility pop}.
24737 Bear in mind that symbol visibility should be viewed @strong{as
24738 part of the API interface contract} and thus all new code should
24739 always specify visibility when it is not the default; i.e., declarations
24740 only for use within the local DSO should @strong{always} be marked explicitly
24741 as hidden as so to avoid PLT indirection overheads---making this
24742 abundantly clear also aids readability and self-documentation of the code.
24743 Note that due to ISO C++ specification requirements, @code{operator new} and
24744 @code{operator delete} must always be of default visibility.
24745
24746 Be aware that headers from outside your project, in particular system
24747 headers and headers from any other library you use, may not be
24748 expecting to be compiled with visibility other than the default. You
24749 may need to explicitly say @code{#pragma GCC visibility push(default)}
24750 before including any such headers.
24751
24752 @code{extern} declarations are not affected by @option{-fvisibility}, so
24753 a lot of code can be recompiled with @option{-fvisibility=hidden} with
24754 no modifications. However, this means that calls to @code{extern}
24755 functions with no explicit visibility use the PLT, so it is more
24756 effective to use @code{__attribute ((visibility))} and/or
24757 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
24758 declarations should be treated as hidden.
24759
24760 Note that @option{-fvisibility} does affect C++ vague linkage
24761 entities. This means that, for instance, an exception class that is
24762 be thrown between DSOs must be explicitly marked with default
24763 visibility so that the @samp{type_info} nodes are unified between
24764 the DSOs.
24765
24766 An overview of these techniques, their benefits and how to use them
24767 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
24768
24769 @item -fstrict-volatile-bitfields
24770 @opindex fstrict-volatile-bitfields
24771 This option should be used if accesses to volatile bit-fields (or other
24772 structure fields, although the compiler usually honors those types
24773 anyway) should use a single access of the width of the
24774 field's type, aligned to a natural alignment if possible. For
24775 example, targets with memory-mapped peripheral registers might require
24776 all such accesses to be 16 bits wide; with this flag you can
24777 declare all peripheral bit-fields as @code{unsigned short} (assuming short
24778 is 16 bits on these targets) to force GCC to use 16-bit accesses
24779 instead of, perhaps, a more efficient 32-bit access.
24780
24781 If this option is disabled, the compiler uses the most efficient
24782 instruction. In the previous example, that might be a 32-bit load
24783 instruction, even though that accesses bytes that do not contain
24784 any portion of the bit-field, or memory-mapped registers unrelated to
24785 the one being updated.
24786
24787 In some cases, such as when the @code{packed} attribute is applied to a
24788 structure field, it may not be possible to access the field with a single
24789 read or write that is correctly aligned for the target machine. In this
24790 case GCC falls back to generating multiple accesses rather than code that
24791 will fault or truncate the result at run time.
24792
24793 Note: Due to restrictions of the C/C++11 memory model, write accesses are
24794 not allowed to touch non bit-field members. It is therefore recommended
24795 to define all bits of the field's type as bit-field members.
24796
24797 The default value of this option is determined by the application binary
24798 interface for the target processor.
24799
24800 @item -fsync-libcalls
24801 @opindex fsync-libcalls
24802 This option controls whether any out-of-line instance of the @code{__sync}
24803 family of functions may be used to implement the C++11 @code{__atomic}
24804 family of functions.
24805
24806 The default value of this option is enabled, thus the only useful form
24807 of the option is @option{-fno-sync-libcalls}. This option is used in
24808 the implementation of the @file{libatomic} runtime library.
24809
24810 @end table
24811
24812 @c man end
24813
24814 @node Environment Variables
24815 @section Environment Variables Affecting GCC
24816 @cindex environment variables
24817
24818 @c man begin ENVIRONMENT
24819 This section describes several environment variables that affect how GCC
24820 operates. Some of them work by specifying directories or prefixes to use
24821 when searching for various kinds of files. Some are used to specify other
24822 aspects of the compilation environment.
24823
24824 Note that you can also specify places to search using options such as
24825 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
24826 take precedence over places specified using environment variables, which
24827 in turn take precedence over those specified by the configuration of GCC@.
24828 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24829 GNU Compiler Collection (GCC) Internals}.
24830
24831 @table @env
24832 @item LANG
24833 @itemx LC_CTYPE
24834 @c @itemx LC_COLLATE
24835 @itemx LC_MESSAGES
24836 @c @itemx LC_MONETARY
24837 @c @itemx LC_NUMERIC
24838 @c @itemx LC_TIME
24839 @itemx LC_ALL
24840 @findex LANG
24841 @findex LC_CTYPE
24842 @c @findex LC_COLLATE
24843 @findex LC_MESSAGES
24844 @c @findex LC_MONETARY
24845 @c @findex LC_NUMERIC
24846 @c @findex LC_TIME
24847 @findex LC_ALL
24848 @cindex locale
24849 These environment variables control the way that GCC uses
24850 localization information which allows GCC to work with different
24851 national conventions. GCC inspects the locale categories
24852 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24853 so. These locale categories can be set to any value supported by your
24854 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
24855 Kingdom encoded in UTF-8.
24856
24857 The @env{LC_CTYPE} environment variable specifies character
24858 classification. GCC uses it to determine the character boundaries in
24859 a string; this is needed for some multibyte encodings that contain quote
24860 and escape characters that are otherwise interpreted as a string
24861 end or escape.
24862
24863 The @env{LC_MESSAGES} environment variable specifies the language to
24864 use in diagnostic messages.
24865
24866 If the @env{LC_ALL} environment variable is set, it overrides the value
24867 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24868 and @env{LC_MESSAGES} default to the value of the @env{LANG}
24869 environment variable. If none of these variables are set, GCC
24870 defaults to traditional C English behavior.
24871
24872 @item TMPDIR
24873 @findex TMPDIR
24874 If @env{TMPDIR} is set, it specifies the directory to use for temporary
24875 files. GCC uses temporary files to hold the output of one stage of
24876 compilation which is to be used as input to the next stage: for example,
24877 the output of the preprocessor, which is the input to the compiler
24878 proper.
24879
24880 @item GCC_COMPARE_DEBUG
24881 @findex GCC_COMPARE_DEBUG
24882 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24883 @option{-fcompare-debug} to the compiler driver. See the documentation
24884 of this option for more details.
24885
24886 @item GCC_EXEC_PREFIX
24887 @findex GCC_EXEC_PREFIX
24888 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24889 names of the subprograms executed by the compiler. No slash is added
24890 when this prefix is combined with the name of a subprogram, but you can
24891 specify a prefix that ends with a slash if you wish.
24892
24893 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24894 an appropriate prefix to use based on the pathname it is invoked with.
24895
24896 If GCC cannot find the subprogram using the specified prefix, it
24897 tries looking in the usual places for the subprogram.
24898
24899 The default value of @env{GCC_EXEC_PREFIX} is
24900 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24901 the installed compiler. In many cases @var{prefix} is the value
24902 of @code{prefix} when you ran the @file{configure} script.
24903
24904 Other prefixes specified with @option{-B} take precedence over this prefix.
24905
24906 This prefix is also used for finding files such as @file{crt0.o} that are
24907 used for linking.
24908
24909 In addition, the prefix is used in an unusual way in finding the
24910 directories to search for header files. For each of the standard
24911 directories whose name normally begins with @samp{/usr/local/lib/gcc}
24912 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24913 replacing that beginning with the specified prefix to produce an
24914 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
24915 @file{foo/bar} just before it searches the standard directory
24916 @file{/usr/local/lib/bar}.
24917 If a standard directory begins with the configured
24918 @var{prefix} then the value of @var{prefix} is replaced by
24919 @env{GCC_EXEC_PREFIX} when looking for header files.
24920
24921 @item COMPILER_PATH
24922 @findex COMPILER_PATH
24923 The value of @env{COMPILER_PATH} is a colon-separated list of
24924 directories, much like @env{PATH}. GCC tries the directories thus
24925 specified when searching for subprograms, if it can't find the
24926 subprograms using @env{GCC_EXEC_PREFIX}.
24927
24928 @item LIBRARY_PATH
24929 @findex LIBRARY_PATH
24930 The value of @env{LIBRARY_PATH} is a colon-separated list of
24931 directories, much like @env{PATH}. When configured as a native compiler,
24932 GCC tries the directories thus specified when searching for special
24933 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking
24934 using GCC also uses these directories when searching for ordinary
24935 libraries for the @option{-l} option (but directories specified with
24936 @option{-L} come first).
24937
24938 @item LANG
24939 @findex LANG
24940 @cindex locale definition
24941 This variable is used to pass locale information to the compiler. One way in
24942 which this information is used is to determine the character set to be used
24943 when character literals, string literals and comments are parsed in C and C++.
24944 When the compiler is configured to allow multibyte characters,
24945 the following values for @env{LANG} are recognized:
24946
24947 @table @samp
24948 @item C-JIS
24949 Recognize JIS characters.
24950 @item C-SJIS
24951 Recognize SJIS characters.
24952 @item C-EUCJP
24953 Recognize EUCJP characters.
24954 @end table
24955
24956 If @env{LANG} is not defined, or if it has some other value, then the
24957 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24958 recognize and translate multibyte characters.
24959 @end table
24960
24961 @noindent
24962 Some additional environment variables affect the behavior of the
24963 preprocessor.
24964
24965 @include cppenv.texi
24966
24967 @c man end
24968
24969 @node Precompiled Headers
24970 @section Using Precompiled Headers
24971 @cindex precompiled headers
24972 @cindex speed of compilation
24973
24974 Often large projects have many header files that are included in every
24975 source file. The time the compiler takes to process these header files
24976 over and over again can account for nearly all of the time required to
24977 build the project. To make builds faster, GCC allows you to
24978 @dfn{precompile} a header file.
24979
24980 To create a precompiled header file, simply compile it as you would any
24981 other file, if necessary using the @option{-x} option to make the driver
24982 treat it as a C or C++ header file. You may want to use a
24983 tool like @command{make} to keep the precompiled header up-to-date when
24984 the headers it contains change.
24985
24986 A precompiled header file is searched for when @code{#include} is
24987 seen in the compilation. As it searches for the included file
24988 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24989 compiler looks for a precompiled header in each directory just before it
24990 looks for the include file in that directory. The name searched for is
24991 the name specified in the @code{#include} with @samp{.gch} appended. If
24992 the precompiled header file can't be used, it is ignored.
24993
24994 For instance, if you have @code{#include "all.h"}, and you have
24995 @file{all.h.gch} in the same directory as @file{all.h}, then the
24996 precompiled header file is used if possible, and the original
24997 header is used otherwise.
24998
24999 Alternatively, you might decide to put the precompiled header file in a
25000 directory and use @option{-I} to ensure that directory is searched
25001 before (or instead of) the directory containing the original header.
25002 Then, if you want to check that the precompiled header file is always
25003 used, you can put a file of the same name as the original header in this
25004 directory containing an @code{#error} command.
25005
25006 This also works with @option{-include}. So yet another way to use
25007 precompiled headers, good for projects not designed with precompiled
25008 header files in mind, is to simply take most of the header files used by
25009 a project, include them from another header file, precompile that header
25010 file, and @option{-include} the precompiled header. If the header files
25011 have guards against multiple inclusion, they are skipped because
25012 they've already been included (in the precompiled header).
25013
25014 If you need to precompile the same header file for different
25015 languages, targets, or compiler options, you can instead make a
25016 @emph{directory} named like @file{all.h.gch}, and put each precompiled
25017 header in the directory, perhaps using @option{-o}. It doesn't matter
25018 what you call the files in the directory; every precompiled header in
25019 the directory is considered. The first precompiled header
25020 encountered in the directory that is valid for this compilation is
25021 used; they're searched in no particular order.
25022
25023 There are many other possibilities, limited only by your imagination,
25024 good sense, and the constraints of your build system.
25025
25026 A precompiled header file can be used only when these conditions apply:
25027
25028 @itemize
25029 @item
25030 Only one precompiled header can be used in a particular compilation.
25031
25032 @item
25033 A precompiled header can't be used once the first C token is seen. You
25034 can have preprocessor directives before a precompiled header; you cannot
25035 include a precompiled header from inside another header.
25036
25037 @item
25038 The precompiled header file must be produced for the same language as
25039 the current compilation. You can't use a C precompiled header for a C++
25040 compilation.
25041
25042 @item
25043 The precompiled header file must have been produced by the same compiler
25044 binary as the current compilation is using.
25045
25046 @item
25047 Any macros defined before the precompiled header is included must
25048 either be defined in the same way as when the precompiled header was
25049 generated, or must not affect the precompiled header, which usually
25050 means that they don't appear in the precompiled header at all.
25051
25052 The @option{-D} option is one way to define a macro before a
25053 precompiled header is included; using a @code{#define} can also do it.
25054 There are also some options that define macros implicitly, like
25055 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
25056 defined this way.
25057
25058 @item If debugging information is output when using the precompiled
25059 header, using @option{-g} or similar, the same kind of debugging information
25060 must have been output when building the precompiled header. However,
25061 a precompiled header built using @option{-g} can be used in a compilation
25062 when no debugging information is being output.
25063
25064 @item The same @option{-m} options must generally be used when building
25065 and using the precompiled header. @xref{Submodel Options},
25066 for any cases where this rule is relaxed.
25067
25068 @item Each of the following options must be the same when building and using
25069 the precompiled header:
25070
25071 @gccoptlist{-fexceptions}
25072
25073 @item
25074 Some other command-line options starting with @option{-f},
25075 @option{-p}, or @option{-O} must be defined in the same way as when
25076 the precompiled header was generated. At present, it's not clear
25077 which options are safe to change and which are not; the safest choice
25078 is to use exactly the same options when generating and using the
25079 precompiled header. The following are known to be safe:
25080
25081 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
25082 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
25083 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
25084 -pedantic-errors}
25085
25086 @end itemize
25087
25088 For all of these except the last, the compiler automatically
25089 ignores the precompiled header if the conditions aren't met. If you
25090 find an option combination that doesn't work and doesn't cause the
25091 precompiled header to be ignored, please consider filing a bug report,
25092 see @ref{Bugs}.
25093
25094 If you do use differing options when generating and using the
25095 precompiled header, the actual behavior is a mixture of the
25096 behavior for the options. For instance, if you use @option{-g} to
25097 generate the precompiled header but not when using it, you may or may
25098 not get debugging information for routines in the precompiled header.