invoke.texi (RS/6000 and PowerPC Options): Remove duplicate -maltivec.
[gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2019 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2019 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 Some options take one or more arguments typically separated either
125 by a space or by the equals sign (@samp{=}) from the option name.
126 Unless documented otherwise, an argument can be either numeric or
127 a string. Numeric arguments must typically be small unsigned decimal
128 or hexadecimal integers. Hexadecimal arguments must begin with
129 the @samp{0x} prefix. Arguments to options that specify a size
130 threshold of some sort may be arbitrarily large decimal or hexadecimal
131 integers followed by a byte size suffix designating a multiple of bytes
132 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
133 @code{MB} and @code{MiB} for megabyte and mebibyte, @code{GB} and
134 @code{GiB} for gigabyte and gigibyte, and so on. Such arguments are
135 designated by @var{byte-size} in the following text. Refer to the NIST,
136 IEC, and other relevant national and international standards for the full
137 listing and explanation of the binary and decimal byte size prefixes.
138
139 @c man end
140
141 @xref{Option Index}, for an index to GCC's options.
142
143 @menu
144 * Option Summary:: Brief list of all options, without explanations.
145 * Overall Options:: Controlling the kind of output:
146 an executable, object files, assembler files,
147 or preprocessed source.
148 * Invoking G++:: Compiling C++ programs.
149 * C Dialect Options:: Controlling the variant of C language compiled.
150 * C++ Dialect Options:: Variations on C++.
151 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
152 and Objective-C++.
153 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
154 be formatted.
155 * Warning Options:: How picky should the compiler be?
156 * Debugging Options:: Producing debuggable code.
157 * Optimize Options:: How much optimization?
158 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
159 * Preprocessor Options:: Controlling header files and macro definitions.
160 Also, getting dependency information for Make.
161 * Assembler Options:: Passing options to the assembler.
162 * Link Options:: Specifying libraries and so on.
163 * Directory Options:: Where to find header files and libraries.
164 Where to find the compiler executable files.
165 * Code Gen Options:: Specifying conventions for function calls, data layout
166 and register usage.
167 * Developer Options:: Printing GCC configuration info, statistics, and
168 debugging dumps.
169 * Submodel Options:: Target-specific options, such as compiling for a
170 specific processor variant.
171 * Spec Files:: How to pass switches to sub-processes.
172 * Environment Variables:: Env vars that affect GCC.
173 * Precompiled Headers:: Compiling a header once, and using it many times.
174 @end menu
175
176 @c man begin OPTIONS
177
178 @node Option Summary
179 @section Option Summary
180
181 Here is a summary of all the options, grouped by type. Explanations are
182 in the following sections.
183
184 @table @emph
185 @item Overall Options
186 @xref{Overall Options,,Options Controlling the Kind of Output}.
187 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
188 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
189 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
190 @@@var{file} -ffile-prefix-map=@var{old}=@var{new} @gol
191 -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
192 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
193
194 @item C Language Options
195 @xref{C Dialect Options,,Options Controlling C Dialect}.
196 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
197 -fpermitted-flt-eval-methods=@var{standard} @gol
198 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
199 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
200 -fhosted -ffreestanding @gol
201 -fopenacc -fopenacc-dim=@var{geom} @gol
202 -fopenmp -fopenmp-simd @gol
203 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
204 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
205 -fsigned-bitfields -fsigned-char @gol
206 -funsigned-bitfields -funsigned-char}
207
208 @item C++ Language Options
209 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
210 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
211 -faligned-new=@var{n} -fargs-in-order=@var{n} -fchar8_t -fcheck-new @gol
212 -fconstexpr-depth=@var{n} -fconstexpr-loop-limit=@var{n} @gol
213 -fno-elide-constructors @gol
214 -fno-enforce-eh-specs @gol
215 -fno-gnu-keywords @gol
216 -fno-implicit-templates @gol
217 -fno-implicit-inline-templates @gol
218 -fno-implement-inlines -fms-extensions @gol
219 -fnew-inheriting-ctors @gol
220 -fnew-ttp-matching @gol
221 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
222 -fno-optional-diags -fpermissive @gol
223 -fno-pretty-templates @gol
224 -frepo -fno-rtti -fsized-deallocation @gol
225 -ftemplate-backtrace-limit=@var{n} @gol
226 -ftemplate-depth=@var{n} @gol
227 -fno-threadsafe-statics -fuse-cxa-atexit @gol
228 -fno-weak -nostdinc++ @gol
229 -fvisibility-inlines-hidden @gol
230 -fvisibility-ms-compat @gol
231 -fext-numeric-literals @gol
232 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
233 -Wdelete-non-virtual-dtor -Wdeprecated-copy -Wdeprecated-copy-dtor @gol
234 -Wliteral-suffix @gol
235 -Wmultiple-inheritance -Wno-init-list-lifetime @gol
236 -Wnamespaces -Wnarrowing @gol
237 -Wpessimizing-move -Wredundant-move @gol
238 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
239 -Wnon-virtual-dtor -Wreorder -Wregister @gol
240 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
241 -Wno-non-template-friend -Wold-style-cast @gol
242 -Woverloaded-virtual -Wno-pmf-conversions @gol
243 -Wno-class-conversion -Wno-terminate @gol
244 -Wsign-promo -Wvirtual-inheritance}
245
246 @item Objective-C and Objective-C++ Language Options
247 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
248 Objective-C and Objective-C++ Dialects}.
249 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
250 -fgnu-runtime -fnext-runtime @gol
251 -fno-nil-receivers @gol
252 -fobjc-abi-version=@var{n} @gol
253 -fobjc-call-cxx-cdtors @gol
254 -fobjc-direct-dispatch @gol
255 -fobjc-exceptions @gol
256 -fobjc-gc @gol
257 -fobjc-nilcheck @gol
258 -fobjc-std=objc1 @gol
259 -fno-local-ivars @gol
260 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
261 -freplace-objc-classes @gol
262 -fzero-link @gol
263 -gen-decls @gol
264 -Wassign-intercept @gol
265 -Wno-protocol -Wselector @gol
266 -Wstrict-selector-match @gol
267 -Wundeclared-selector}
268
269 @item Diagnostic Message Formatting Options
270 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
271 @gccoptlist{-fmessage-length=@var{n} @gol
272 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
273 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
274 -fdiagnostics-format=@r{[}text@r{|}json@r{]} @gol
275 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
276 -fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers @gol
277 -fdiagnostics-minimum-margin-width=@var{width} @gol
278 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
279 -fdiagnostics-show-template-tree -fno-elide-type @gol
280 -fno-show-column}
281
282 @item Warning Options
283 @xref{Warning Options,,Options to Request or Suppress Warnings}.
284 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
285 -pedantic-errors @gol
286 -w -Wextra -Wall -Waddress -Waddress-of-packed-member @gol
287 -Waggregate-return -Waligned-new @gol
288 -Walloc-zero -Walloc-size-larger-than=@var{byte-size} @gol
289 -Walloca -Walloca-larger-than=@var{byte-size} @gol
290 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
291 -Wno-attributes -Wno-attribute-alias @gol
292 -Wbool-compare -Wbool-operation @gol
293 -Wno-builtin-declaration-mismatch @gol
294 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
295 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wc++17-compat @gol
296 -Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual @gol
297 -Wchar-subscripts -Wcatch-value -Wcatch-value=@var{n} @gol
298 -Wclobbered -Wcomment -Wconditionally-supported @gol
299 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
300 -Wdelete-incomplete @gol
301 -Wno-attribute-warning @gol
302 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
303 -Wdisabled-optimization @gol
304 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
305 -Wno-div-by-zero -Wdouble-promotion @gol
306 -Wduplicated-branches -Wduplicated-cond @gol
307 -Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined @gol
308 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
309 -Wfloat-equal -Wformat -Wformat=2 @gol
310 -Wno-format-contains-nul -Wno-format-extra-args @gol
311 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
312 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
313 -Wformat-y2k -Wframe-address @gol
314 -Wframe-larger-than=@var{byte-size} -Wno-free-nonheap-object @gol
315 -Wjump-misses-init @gol
316 -Whsa -Wif-not-aligned @gol
317 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
318 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
319 -Wimplicit-function-declaration -Wimplicit-int @gol
320 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
321 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
322 -Winvalid-pch -Wlarger-than=@var{byte-size} @gol
323 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
324 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
325 -Wmisleading-indentation -Wno-missing-attributes -Wmissing-braces @gol
326 -Wmissing-field-initializers -Wmissing-format-attribute @gol
327 -Wmissing-include-dirs -Wmissing-noreturn -Wmissing-profile @gol
328 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
329 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
330 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
331 -Woverride-init-side-effects -Woverlength-strings @gol
332 -Wpacked -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded @gol
333 -Wparentheses -Wno-pedantic-ms-format @gol
334 -Wplacement-new -Wplacement-new=@var{n} @gol
335 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
336 -Wno-pragmas -Wno-prio-ctor-dtor -Wredundant-decls @gol
337 -Wrestrict -Wno-return-local-addr @gol
338 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
339 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
340 -Wshift-overflow -Wshift-overflow=@var{n} @gol
341 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
342 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
343 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
344 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
345 -Wstack-protector -Wstack-usage=@var{byte-size} -Wstrict-aliasing @gol
346 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
347 -Wstringop-overflow=@var{n} -Wstringop-truncation -Wsubobject-linkage @gol
348 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
349 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
350 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
351 -Wswitch-unreachable -Wsync-nand @gol
352 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
353 -Wtype-limits -Wundef @gol
354 -Wuninitialized -Wunknown-pragmas @gol
355 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
356 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
357 -Wunused-parameter -Wno-unused-result @gol
358 -Wunused-value -Wunused-variable @gol
359 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
360 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
361 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
362 -Wvla -Wvla-larger-than=@var{byte-size} -Wvolatile-register-var @gol
363 -Wwrite-strings @gol
364 -Wzero-as-null-pointer-constant}
365
366 @item C and Objective-C-only Warning Options
367 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
368 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
369 -Wold-style-declaration -Wold-style-definition @gol
370 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
371 -Wdeclaration-after-statement -Wpointer-sign}
372
373 @item Debugging Options
374 @xref{Debugging Options,,Options for Debugging Your Program}.
375 @gccoptlist{-g -g@var{level} -gdwarf -gdwarf-@var{version} @gol
376 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
377 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
378 -gas-loc-support -gno-as-loc-support @gol
379 -gas-locview-support -gno-as-locview-support @gol
380 -gcolumn-info -gno-column-info @gol
381 -gstatement-frontiers -gno-statement-frontiers @gol
382 -gvariable-location-views -gno-variable-location-views @gol
383 -ginternal-reset-location-views -gno-internal-reset-location-views @gol
384 -ginline-points -gno-inline-points @gol
385 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
386 -gsplit-dwarf -gdescribe-dies -gno-describe-dies @gol
387 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
388 -fno-eliminate-unused-debug-types @gol
389 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
390 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
391 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
392 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
393 -fvar-tracking -fvar-tracking-assignments}
394
395 @item Optimization Options
396 @xref{Optimize Options,,Options that Control Optimization}.
397 @gccoptlist{-faggressive-loop-optimizations @gol
398 -falign-functions[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
399 -falign-jumps[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
400 -falign-labels[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
401 -falign-loops[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
402 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
403 -fauto-inc-dec -fbranch-probabilities @gol
404 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
405 -fbtr-bb-exclusive -fcaller-saves @gol
406 -fcombine-stack-adjustments -fconserve-stack @gol
407 -fcompare-elim -fcprop-registers -fcrossjumping @gol
408 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
409 -fcx-limited-range @gol
410 -fdata-sections -fdce -fdelayed-branch @gol
411 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
412 -fdevirtualize-at-ltrans -fdse @gol
413 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
414 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
415 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
416 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
417 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
418 -fif-conversion2 -findirect-inlining @gol
419 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
420 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
421 -fipa-bit-cp -fipa-vrp -fipa-pta -fipa-profile -fipa-pure-const @gol
422 -fipa-reference -fipa-reference-addressable @gol
423 -fipa-stack-alignment -fipa-icf -fira-algorithm=@var{algorithm} @gol
424 -flive-patching=@var{level} @gol
425 -fira-region=@var{region} -fira-hoist-pressure @gol
426 -fira-loop-pressure -fno-ira-share-save-slots @gol
427 -fno-ira-share-spill-slots @gol
428 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
429 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
430 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
431 -floop-block -floop-interchange -floop-strip-mine @gol
432 -floop-unroll-and-jam -floop-nest-optimize @gol
433 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
434 -flto-partition=@var{alg} -fmerge-all-constants @gol
435 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
436 -fmove-loop-invariants -fno-branch-count-reg @gol
437 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
438 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
439 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
440 -fno-sched-spec -fno-signed-zeros @gol
441 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
442 -fomit-frame-pointer -foptimize-sibling-calls @gol
443 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
444 -fprefetch-loop-arrays @gol
445 -fprofile-correction @gol
446 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
447 -fprofile-reorder-functions @gol
448 -freciprocal-math -free -frename-registers -freorder-blocks @gol
449 -freorder-blocks-algorithm=@var{algorithm} @gol
450 -freorder-blocks-and-partition -freorder-functions @gol
451 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
452 -frounding-math -fsave-optimization-record @gol
453 -fsched2-use-superblocks -fsched-pressure @gol
454 -fsched-spec-load -fsched-spec-load-dangerous @gol
455 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
456 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
457 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
458 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
459 -fschedule-fusion @gol
460 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
461 -fselective-scheduling -fselective-scheduling2 @gol
462 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
463 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
464 -fsignaling-nans @gol
465 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
466 -fsplit-paths @gol
467 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
468 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
469 -fthread-jumps -ftracer -ftree-bit-ccp @gol
470 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
471 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
472 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
473 -ftree-loop-if-convert -ftree-loop-im @gol
474 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
475 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
476 -ftree-loop-vectorize @gol
477 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
478 -ftree-reassoc -ftree-scev-cprop -ftree-sink -ftree-slsr -ftree-sra @gol
479 -ftree-switch-conversion -ftree-tail-merge @gol
480 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
481 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
482 -funsafe-math-optimizations -funswitch-loops @gol
483 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
484 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
485 --param @var{name}=@var{value}
486 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
487
488 @item Program Instrumentation Options
489 @xref{Instrumentation Options,,Program Instrumentation Options}.
490 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
491 -fprofile-abs-path @gol
492 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
493 -fprofile-update=@var{method} -fprofile-filter-files=@var{regex} @gol
494 -fprofile-exclude-files=@var{regex} @gol
495 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
496 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
497 -fsanitize-undefined-trap-on-error -fbounds-check @gol
498 -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
499 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
500 -fstack-protector-explicit -fstack-check @gol
501 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
502 -fno-stack-limit -fsplit-stack @gol
503 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
504 -fvtv-counts -fvtv-debug @gol
505 -finstrument-functions @gol
506 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
507 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
508
509 @item Preprocessor Options
510 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
511 @gccoptlist{-A@var{question}=@var{answer} @gol
512 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
513 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
514 -dD -dI -dM -dN -dU @gol
515 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
516 -fexec-charset=@var{charset} -fextended-identifiers @gol
517 -finput-charset=@var{charset} -fmacro-prefix-map=@var{old}=@var{new} @gol
518 -fno-canonical-system-headers -fpch-deps -fpch-preprocess @gol
519 -fpreprocessed -ftabstop=@var{width} -ftrack-macro-expansion @gol
520 -fwide-exec-charset=@var{charset} -fworking-directory @gol
521 -H -imacros @var{file} -include @var{file} @gol
522 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
523 -no-integrated-cpp -P -pthread -remap @gol
524 -traditional -traditional-cpp -trigraphs @gol
525 -U@var{macro} -undef @gol
526 -Wp,@var{option} -Xpreprocessor @var{option}}
527
528 @item Assembler Options
529 @xref{Assembler Options,,Passing Options to the Assembler}.
530 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
531
532 @item Linker Options
533 @xref{Link Options,,Options for Linking}.
534 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
535 -nostartfiles -nodefaultlibs -nolibc -nostdlib @gol
536 -e @var{entry} --entry=@var{entry} @gol
537 -pie -pthread -r -rdynamic @gol
538 -s -static -static-pie -static-libgcc -static-libstdc++ @gol
539 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
540 -shared -shared-libgcc -symbolic @gol
541 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
542 -u @var{symbol} -z @var{keyword}}
543
544 @item Directory Options
545 @xref{Directory Options,,Options for Directory Search}.
546 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
547 -idirafter @var{dir} @gol
548 -imacros @var{file} -imultilib @var{dir} @gol
549 -iplugindir=@var{dir} -iprefix @var{file} @gol
550 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
551 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
552 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
553 -nostdinc -nostdinc++ --sysroot=@var{dir}}
554
555 @item Code Generation Options
556 @xref{Code Gen Options,,Options for Code Generation Conventions}.
557 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
558 -ffixed-@var{reg} -fexceptions @gol
559 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
560 -fasynchronous-unwind-tables @gol
561 -fno-gnu-unique @gol
562 -finhibit-size-directive -fno-common -fno-ident @gol
563 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
564 -fno-jump-tables @gol
565 -frecord-gcc-switches @gol
566 -freg-struct-return -fshort-enums -fshort-wchar @gol
567 -fverbose-asm -fpack-struct[=@var{n}] @gol
568 -fleading-underscore -ftls-model=@var{model} @gol
569 -fstack-reuse=@var{reuse_level} @gol
570 -ftrampolines -ftrapv -fwrapv @gol
571 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
572 -fstrict-volatile-bitfields -fsync-libcalls}
573
574 @item Developer Options
575 @xref{Developer Options,,GCC Developer Options}.
576 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
577 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
578 -fdbg-cnt=@var{counter-value-list} @gol
579 -fdisable-ipa-@var{pass_name} @gol
580 -fdisable-rtl-@var{pass_name} @gol
581 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
582 -fdisable-tree-@var{pass_name} @gol
583 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
584 -fdump-debug -fdump-earlydebug @gol
585 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
586 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
587 -fdump-final-insns@r{[}=@var{file}@r{]} @gol
588 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
589 -fdump-lang-all @gol
590 -fdump-lang-@var{switch} @gol
591 -fdump-lang-@var{switch}-@var{options} @gol
592 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
593 -fdump-passes @gol
594 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
595 -fdump-statistics @gol
596 -fdump-tree-all @gol
597 -fdump-tree-@var{switch} @gol
598 -fdump-tree-@var{switch}-@var{options} @gol
599 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
600 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
601 -fenable-@var{kind}-@var{pass} @gol
602 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
603 -fira-verbose=@var{n} @gol
604 -flto-report -flto-report-wpa -fmem-report-wpa @gol
605 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
606 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
607 -fprofile-report @gol
608 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
609 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
610 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
611 -fvar-tracking-assignments-toggle -gtoggle @gol
612 -print-file-name=@var{library} -print-libgcc-file-name @gol
613 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
614 -print-prog-name=@var{program} -print-search-dirs -Q @gol
615 -print-sysroot -print-sysroot-headers-suffix @gol
616 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
617
618 @item Machine-Dependent Options
619 @xref{Submodel Options,,Machine-Dependent Options}.
620 @c This list is ordered alphanumerically by subsection name.
621 @c Try and put the significant identifier (CPU or system) first,
622 @c so users have a clue at guessing where the ones they want will be.
623
624 @emph{AArch64 Options}
625 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
626 -mgeneral-regs-only @gol
627 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
628 -mstrict-align -mno-strict-align @gol
629 -momit-leaf-frame-pointer @gol
630 -mtls-dialect=desc -mtls-dialect=traditional @gol
631 -mtls-size=@var{size} @gol
632 -mfix-cortex-a53-835769 -mfix-cortex-a53-843419 @gol
633 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div @gol
634 -mpc-relative-literal-loads @gol
635 -msign-return-address=@var{scope} @gol
636 -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}] @gol
637 -march=@var{name} -mcpu=@var{name} -mtune=@var{name} @gol
638 -moverride=@var{string} -mverbose-cost-dump @gol
639 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{sysreg} @gol
640 -mstack-protector-guard-offset=@var{offset} -mtrack-speculation }
641
642 @emph{Adapteva Epiphany Options}
643 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
644 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
645 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
646 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
647 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
648 -msplit-vecmove-early -m1reg-@var{reg}}
649
650 @emph{AMD GCN Options}
651 @gccoptlist{-march=@var{gpu} -mtune=@var{gpu} -mstack-size=@var{bytes}}
652
653 @emph{ARC Options}
654 @gccoptlist{-mbarrel-shifter -mjli-always @gol
655 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
656 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
657 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
658 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
659 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
660 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
661 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
662 -mrgf-banked-regs -mlpc-width=@var{width} -G @var{num} @gol
663 -mvolatile-cache -mtp-regno=@var{regno} @gol
664 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
665 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
666 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
667 -mlra-priority-compact mlra-priority-noncompact -mmillicode @gol
668 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
669 -mtune=@var{cpu} -mmultcost=@var{num} -mcode-density-frame @gol
670 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
671 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu} -mrf16 -mbranch-index}
672
673 @emph{ARM Options}
674 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
675 -mabi=@var{name} @gol
676 -mapcs-stack-check -mno-apcs-stack-check @gol
677 -mapcs-reentrant -mno-apcs-reentrant @gol
678 -msched-prolog -mno-sched-prolog @gol
679 -mlittle-endian -mbig-endian @gol
680 -mbe8 -mbe32 @gol
681 -mfloat-abi=@var{name} @gol
682 -mfp16-format=@var{name}
683 -mthumb-interwork -mno-thumb-interwork @gol
684 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
685 -mtune=@var{name} -mprint-tune-info @gol
686 -mstructure-size-boundary=@var{n} @gol
687 -mabort-on-noreturn @gol
688 -mlong-calls -mno-long-calls @gol
689 -msingle-pic-base -mno-single-pic-base @gol
690 -mpic-register=@var{reg} @gol
691 -mnop-fun-dllimport @gol
692 -mpoke-function-name @gol
693 -mthumb -marm -mflip-thumb @gol
694 -mtpcs-frame -mtpcs-leaf-frame @gol
695 -mcaller-super-interworking -mcallee-super-interworking @gol
696 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
697 -mword-relocations @gol
698 -mfix-cortex-m3-ldrd @gol
699 -munaligned-access @gol
700 -mneon-for-64bits @gol
701 -mslow-flash-data @gol
702 -masm-syntax-unified @gol
703 -mrestrict-it @gol
704 -mverbose-cost-dump @gol
705 -mpure-code @gol
706 -mcmse}
707
708 @emph{AVR Options}
709 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
710 -mbranch-cost=@var{cost} @gol
711 -mcall-prologues -mgas-isr-prologues -mint8 @gol
712 -mn_flash=@var{size} -mno-interrupts @gol
713 -mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack @gol
714 -mfract-convert-truncate @gol
715 -mshort-calls -nodevicelib @gol
716 -Waddr-space-convert -Wmisspelled-isr}
717
718 @emph{Blackfin Options}
719 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
720 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
721 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
722 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
723 -mno-id-shared-library -mshared-library-id=@var{n} @gol
724 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
725 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
726 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
727 -micplb}
728
729 @emph{C6X Options}
730 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
731 -msim -msdata=@var{sdata-type}}
732
733 @emph{CRIS Options}
734 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
735 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
736 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
737 -mstack-align -mdata-align -mconst-align @gol
738 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
739 -melf -maout -melinux -mlinux -sim -sim2 @gol
740 -mmul-bug-workaround -mno-mul-bug-workaround}
741
742 @emph{CR16 Options}
743 @gccoptlist{-mmac @gol
744 -mcr16cplus -mcr16c @gol
745 -msim -mint32 -mbit-ops
746 -mdata-model=@var{model}}
747
748 @emph{C-SKY Options}
749 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} @gol
750 -mbig-endian -EB -mlittle-endian -EL @gol
751 -mhard-float -msoft-float -mfpu=@var{fpu} -mdouble-float -mfdivdu @gol
752 -melrw -mistack -mmp -mcp -mcache -msecurity -mtrust @gol
753 -mdsp -medsp -mvdsp @gol
754 -mdiv -msmart -mhigh-registers -manchor @gol
755 -mpushpop -mmultiple-stld -mconstpool -mstack-size -mccrt @gol
756 -mbranch-cost=@var{n} -mcse-cc -msched-prolog}
757
758 @emph{Darwin Options}
759 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
760 -arch_only -bind_at_load -bundle -bundle_loader @gol
761 -client_name -compatibility_version -current_version @gol
762 -dead_strip @gol
763 -dependency-file -dylib_file -dylinker_install_name @gol
764 -dynamic -dynamiclib -exported_symbols_list @gol
765 -filelist -flat_namespace -force_cpusubtype_ALL @gol
766 -force_flat_namespace -headerpad_max_install_names @gol
767 -iframework @gol
768 -image_base -init -install_name -keep_private_externs @gol
769 -multi_module -multiply_defined -multiply_defined_unused @gol
770 -noall_load -no_dead_strip_inits_and_terms @gol
771 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
772 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
773 -private_bundle -read_only_relocs -sectalign @gol
774 -sectobjectsymbols -whyload -seg1addr @gol
775 -sectcreate -sectobjectsymbols -sectorder @gol
776 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
777 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
778 -segprot -segs_read_only_addr -segs_read_write_addr @gol
779 -single_module -static -sub_library -sub_umbrella @gol
780 -twolevel_namespace -umbrella -undefined @gol
781 -unexported_symbols_list -weak_reference_mismatches @gol
782 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
783 -mkernel -mone-byte-bool}
784
785 @emph{DEC Alpha Options}
786 @gccoptlist{-mno-fp-regs -msoft-float @gol
787 -mieee -mieee-with-inexact -mieee-conformant @gol
788 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
789 -mtrap-precision=@var{mode} -mbuild-constants @gol
790 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
791 -mbwx -mmax -mfix -mcix @gol
792 -mfloat-vax -mfloat-ieee @gol
793 -mexplicit-relocs -msmall-data -mlarge-data @gol
794 -msmall-text -mlarge-text @gol
795 -mmemory-latency=@var{time}}
796
797 @emph{FR30 Options}
798 @gccoptlist{-msmall-model -mno-lsim}
799
800 @emph{FT32 Options}
801 @gccoptlist{-msim -mlra -mnodiv -mft32b -mcompress -mnopm}
802
803 @emph{FRV Options}
804 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
805 -mhard-float -msoft-float @gol
806 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
807 -mdouble -mno-double @gol
808 -mmedia -mno-media -mmuladd -mno-muladd @gol
809 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
810 -mlinked-fp -mlong-calls -malign-labels @gol
811 -mlibrary-pic -macc-4 -macc-8 @gol
812 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
813 -moptimize-membar -mno-optimize-membar @gol
814 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
815 -mvliw-branch -mno-vliw-branch @gol
816 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
817 -mno-nested-cond-exec -mtomcat-stats @gol
818 -mTLS -mtls @gol
819 -mcpu=@var{cpu}}
820
821 @emph{GNU/Linux Options}
822 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
823 -tno-android-cc -tno-android-ld}
824
825 @emph{H8/300 Options}
826 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
827
828 @emph{HPPA Options}
829 @gccoptlist{-march=@var{architecture-type} @gol
830 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
831 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
832 -mfixed-range=@var{register-range} @gol
833 -mjump-in-delay -mlinker-opt -mlong-calls @gol
834 -mlong-load-store -mno-disable-fpregs @gol
835 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
836 -mno-jump-in-delay -mno-long-load-store @gol
837 -mno-portable-runtime -mno-soft-float @gol
838 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
839 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
840 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
841 -munix=@var{unix-std} -nolibdld -static -threads}
842
843 @emph{IA-64 Options}
844 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
845 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
846 -mconstant-gp -mauto-pic -mfused-madd @gol
847 -minline-float-divide-min-latency @gol
848 -minline-float-divide-max-throughput @gol
849 -mno-inline-float-divide @gol
850 -minline-int-divide-min-latency @gol
851 -minline-int-divide-max-throughput @gol
852 -mno-inline-int-divide @gol
853 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
854 -mno-inline-sqrt @gol
855 -mdwarf2-asm -mearly-stop-bits @gol
856 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
857 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
858 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
859 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
860 -msched-spec-ldc -msched-spec-control-ldc @gol
861 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
862 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
863 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
864 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
865
866 @emph{LM32 Options}
867 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
868 -msign-extend-enabled -muser-enabled}
869
870 @emph{M32R/D Options}
871 @gccoptlist{-m32r2 -m32rx -m32r @gol
872 -mdebug @gol
873 -malign-loops -mno-align-loops @gol
874 -missue-rate=@var{number} @gol
875 -mbranch-cost=@var{number} @gol
876 -mmodel=@var{code-size-model-type} @gol
877 -msdata=@var{sdata-type} @gol
878 -mno-flush-func -mflush-func=@var{name} @gol
879 -mno-flush-trap -mflush-trap=@var{number} @gol
880 -G @var{num}}
881
882 @emph{M32C Options}
883 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
884
885 @emph{M680x0 Options}
886 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
887 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
888 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
889 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
890 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
891 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
892 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
893 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
894 -mxgot -mno-xgot -mlong-jump-table-offsets}
895
896 @emph{MCore Options}
897 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
898 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
899 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
900 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
901 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
902
903 @emph{MeP Options}
904 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
905 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
906 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
907 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
908 -mtiny=@var{n}}
909
910 @emph{MicroBlaze Options}
911 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
912 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
913 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
914 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
915 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model} @gol
916 -mpic-data-is-text-relative}
917
918 @emph{MIPS Options}
919 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
920 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
921 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
922 -mips16 -mno-mips16 -mflip-mips16 @gol
923 -minterlink-compressed -mno-interlink-compressed @gol
924 -minterlink-mips16 -mno-interlink-mips16 @gol
925 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
926 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
927 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
928 -mno-float -msingle-float -mdouble-float @gol
929 -modd-spreg -mno-odd-spreg @gol
930 -mabs=@var{mode} -mnan=@var{encoding} @gol
931 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
932 -mmcu -mmno-mcu @gol
933 -meva -mno-eva @gol
934 -mvirt -mno-virt @gol
935 -mxpa -mno-xpa @gol
936 -mcrc -mno-crc @gol
937 -mginv -mno-ginv @gol
938 -mmicromips -mno-micromips @gol
939 -mmsa -mno-msa @gol
940 -mloongson-mmi -mno-loongson-mmi @gol
941 -mloongson-ext -mno-loongson-ext @gol
942 -mloongson-ext2 -mno-loongson-ext2 @gol
943 -mfpu=@var{fpu-type} @gol
944 -msmartmips -mno-smartmips @gol
945 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
946 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
947 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
948 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
949 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
950 -membedded-data -mno-embedded-data @gol
951 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
952 -mcode-readable=@var{setting} @gol
953 -msplit-addresses -mno-split-addresses @gol
954 -mexplicit-relocs -mno-explicit-relocs @gol
955 -mcheck-zero-division -mno-check-zero-division @gol
956 -mdivide-traps -mdivide-breaks @gol
957 -mload-store-pairs -mno-load-store-pairs @gol
958 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
959 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
960 -mfix-24k -mno-fix-24k @gol
961 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
962 -mfix-r5900 -mno-fix-r5900 @gol
963 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
964 -mfix-vr4120 -mno-fix-vr4120 @gol
965 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
966 -mflush-func=@var{func} -mno-flush-func @gol
967 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
968 -mcompact-branches=@var{policy} @gol
969 -mfp-exceptions -mno-fp-exceptions @gol
970 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
971 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
972 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
973 -mframe-header-opt -mno-frame-header-opt}
974
975 @emph{MMIX Options}
976 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
977 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
978 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
979 -mno-base-addresses -msingle-exit -mno-single-exit}
980
981 @emph{MN10300 Options}
982 @gccoptlist{-mmult-bug -mno-mult-bug @gol
983 -mno-am33 -mam33 -mam33-2 -mam34 @gol
984 -mtune=@var{cpu-type} @gol
985 -mreturn-pointer-on-d0 @gol
986 -mno-crt0 -mrelax -mliw -msetlb}
987
988 @emph{Moxie Options}
989 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
990
991 @emph{MSP430 Options}
992 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
993 -mwarn-mcu @gol
994 -mcode-region= -mdata-region= @gol
995 -msilicon-errata= -msilicon-errata-warn= @gol
996 -mhwmult= -minrt}
997
998 @emph{NDS32 Options}
999 @gccoptlist{-mbig-endian -mlittle-endian @gol
1000 -mreduced-regs -mfull-regs @gol
1001 -mcmov -mno-cmov @gol
1002 -mext-perf -mno-ext-perf @gol
1003 -mext-perf2 -mno-ext-perf2 @gol
1004 -mext-string -mno-ext-string @gol
1005 -mv3push -mno-v3push @gol
1006 -m16bit -mno-16bit @gol
1007 -misr-vector-size=@var{num} @gol
1008 -mcache-block-size=@var{num} @gol
1009 -march=@var{arch} @gol
1010 -mcmodel=@var{code-model} @gol
1011 -mctor-dtor -mrelax}
1012
1013 @emph{Nios II Options}
1014 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
1015 -mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp} @gol
1016 -mel -meb @gol
1017 -mno-bypass-cache -mbypass-cache @gol
1018 -mno-cache-volatile -mcache-volatile @gol
1019 -mno-fast-sw-div -mfast-sw-div @gol
1020 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
1021 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
1022 -mcustom-fpu-cfg=@var{name} @gol
1023 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
1024 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
1025
1026 @emph{Nvidia PTX Options}
1027 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
1028
1029 @emph{OpenRISC Options}
1030 @gccoptlist{-mboard=@var{name} -mnewlib -mhard-mul -mhard-div @gol
1031 -msoft-mul -msoft-div @gol
1032 -mcmov -mror -msext -msfimm -mshftimm}
1033
1034 @emph{PDP-11 Options}
1035 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
1036 -mint32 -mno-int16 -mint16 -mno-int32 @gol
1037 -msplit -munix-asm -mdec-asm -mgnu-asm -mlra}
1038
1039 @emph{picoChip Options}
1040 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
1041 -msymbol-as-address -mno-inefficient-warnings}
1042
1043 @emph{PowerPC Options}
1044 See RS/6000 and PowerPC Options.
1045
1046 @emph{RISC-V Options}
1047 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
1048 -mplt -mno-plt @gol
1049 -mabi=@var{ABI-string} @gol
1050 -mfdiv -mno-fdiv @gol
1051 -mdiv -mno-div @gol
1052 -march=@var{ISA-string} @gol
1053 -mtune=@var{processor-string} @gol
1054 -mpreferred-stack-boundary=@var{num} @gol
1055 -msmall-data-limit=@var{N-bytes} @gol
1056 -msave-restore -mno-save-restore @gol
1057 -mstrict-align -mno-strict-align @gol
1058 -mcmodel=medlow -mcmodel=medany @gol
1059 -mexplicit-relocs -mno-explicit-relocs @gol
1060 -mrelax -mno-relax}
1061
1062 @emph{RL78 Options}
1063 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
1064 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
1065 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
1066
1067 @emph{RS/6000 and PowerPC Options}
1068 @gccoptlist{-mcpu=@var{cpu-type} @gol
1069 -mtune=@var{cpu-type} @gol
1070 -mcmodel=@var{code-model} @gol
1071 -mpowerpc64 @gol
1072 -maltivec -mno-altivec @gol
1073 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1074 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1075 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1076 -mfprnd -mno-fprnd @gol
1077 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
1078 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1079 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1080 -malign-power -malign-natural @gol
1081 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1082 -mupdate -mno-update @gol
1083 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1084 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1085 -mstrict-align -mno-strict-align -mrelocatable @gol
1086 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1087 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1088 -mdynamic-no-pic -mswdiv -msingle-pic-base @gol
1089 -mprioritize-restricted-insns=@var{priority} @gol
1090 -msched-costly-dep=@var{dependence_type} @gol
1091 -minsert-sched-nops=@var{scheme} @gol
1092 -mcall-aixdesc -mcall-eabi -mcall-freebsd @gol
1093 -mcall-linux -mcall-netbsd -mcall-openbsd @gol
1094 -mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi @gol
1095 -mtraceback=@var{traceback_type} @gol
1096 -maix-struct-return -msvr4-struct-return @gol
1097 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1098 -mlongcall -mno-longcall -mpltseq -mno-pltseq @gol
1099 -mblock-move-inline-limit=@var{num} @gol
1100 -mblock-compare-inline-limit=@var{num} @gol
1101 -mblock-compare-inline-loop-limit=@var{num} @gol
1102 -mstring-compare-inline-limit=@var{num} @gol
1103 -misel -mno-isel @gol
1104 -mvrsave -mno-vrsave @gol
1105 -mmulhw -mno-mulhw @gol
1106 -mdlmzb -mno-dlmzb @gol
1107 -mprototype -mno-prototype @gol
1108 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1109 -msdata=@var{opt} -mreadonly-in-sdata -mvxworks -G @var{num} @gol
1110 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1111 -mno-recip-precision @gol
1112 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1113 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1114 -msave-toc-indirect -mno-save-toc-indirect @gol
1115 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1116 -mcrypto -mno-crypto -mhtm -mno-htm @gol
1117 -mquad-memory -mno-quad-memory @gol
1118 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1119 -mcompat-align-parm -mno-compat-align-parm @gol
1120 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1121 -mgnu-attribute -mno-gnu-attribute @gol
1122 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1123 -mstack-protector-guard-offset=@var{offset}}
1124
1125 @emph{RX Options}
1126 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1127 -mcpu=@gol
1128 -mbig-endian-data -mlittle-endian-data @gol
1129 -msmall-data @gol
1130 -msim -mno-sim@gol
1131 -mas100-syntax -mno-as100-syntax@gol
1132 -mrelax@gol
1133 -mmax-constant-size=@gol
1134 -mint-register=@gol
1135 -mpid@gol
1136 -mallow-string-insns -mno-allow-string-insns@gol
1137 -mjsr@gol
1138 -mno-warn-multiple-fast-interrupts@gol
1139 -msave-acc-in-interrupts}
1140
1141 @emph{S/390 and zSeries Options}
1142 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1143 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1144 -mlong-double-64 -mlong-double-128 @gol
1145 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1146 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1147 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1148 -mhtm -mvx -mzvector @gol
1149 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1150 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1151 -mhotpatch=@var{halfwords},@var{halfwords}}
1152
1153 @emph{Score Options}
1154 @gccoptlist{-meb -mel @gol
1155 -mnhwloop @gol
1156 -muls @gol
1157 -mmac @gol
1158 -mscore5 -mscore5u -mscore7 -mscore7d}
1159
1160 @emph{SH Options}
1161 @gccoptlist{-m1 -m2 -m2e @gol
1162 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1163 -m3 -m3e @gol
1164 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1165 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1166 -mb -ml -mdalign -mrelax @gol
1167 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1168 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1169 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1170 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1171 -maccumulate-outgoing-args @gol
1172 -matomic-model=@var{atomic-model} @gol
1173 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1174 -mcbranch-force-delay-slot @gol
1175 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1176 -mpretend-cmove -mtas}
1177
1178 @emph{Solaris 2 Options}
1179 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1180 -pthreads}
1181
1182 @emph{SPARC Options}
1183 @gccoptlist{-mcpu=@var{cpu-type} @gol
1184 -mtune=@var{cpu-type} @gol
1185 -mcmodel=@var{code-model} @gol
1186 -mmemory-model=@var{mem-model} @gol
1187 -m32 -m64 -mapp-regs -mno-app-regs @gol
1188 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1189 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1190 -mhard-quad-float -msoft-quad-float @gol
1191 -mstack-bias -mno-stack-bias @gol
1192 -mstd-struct-return -mno-std-struct-return @gol
1193 -munaligned-doubles -mno-unaligned-doubles @gol
1194 -muser-mode -mno-user-mode @gol
1195 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1196 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1197 -mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1198 -mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld @gol
1199 -mpopc -mno-popc -msubxc -mno-subxc @gol
1200 -mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc @gol
1201 -mlra -mno-lra}
1202
1203 @emph{SPU Options}
1204 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1205 -msafe-dma -munsafe-dma @gol
1206 -mbranch-hints @gol
1207 -msmall-mem -mlarge-mem -mstdmain @gol
1208 -mfixed-range=@var{register-range} @gol
1209 -mea32 -mea64 @gol
1210 -maddress-space-conversion -mno-address-space-conversion @gol
1211 -mcache-size=@var{cache-size} @gol
1212 -matomic-updates -mno-atomic-updates}
1213
1214 @emph{System V Options}
1215 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1216
1217 @emph{TILE-Gx Options}
1218 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1219 -mcmodel=@var{code-model}}
1220
1221 @emph{TILEPro Options}
1222 @gccoptlist{-mcpu=@var{cpu} -m32}
1223
1224 @emph{V850 Options}
1225 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1226 -mprolog-function -mno-prolog-function -mspace @gol
1227 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1228 -mapp-regs -mno-app-regs @gol
1229 -mdisable-callt -mno-disable-callt @gol
1230 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1231 -mv850e -mv850 -mv850e3v5 @gol
1232 -mloop @gol
1233 -mrelax @gol
1234 -mlong-jumps @gol
1235 -msoft-float @gol
1236 -mhard-float @gol
1237 -mgcc-abi @gol
1238 -mrh850-abi @gol
1239 -mbig-switch}
1240
1241 @emph{VAX Options}
1242 @gccoptlist{-mg -mgnu -munix}
1243
1244 @emph{Visium Options}
1245 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1246 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1247
1248 @emph{VMS Options}
1249 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1250 -mpointer-size=@var{size}}
1251
1252 @emph{VxWorks Options}
1253 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1254 -Xbind-lazy -Xbind-now}
1255
1256 @emph{x86 Options}
1257 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1258 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1259 -mfpmath=@var{unit} @gol
1260 -masm=@var{dialect} -mno-fancy-math-387 @gol
1261 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1262 -mno-wide-multiply -mrtd -malign-double @gol
1263 -mpreferred-stack-boundary=@var{num} @gol
1264 -mincoming-stack-boundary=@var{num} @gol
1265 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1266 -mrecip -mrecip=@var{opt} @gol
1267 -mvzeroupper -mprefer-avx128 -mprefer-vector-width=@var{opt} @gol
1268 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1269 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1270 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1271 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mpconfig -mwbnoinvd @gol
1272 -mptwrite -mprefetchwt1 -mclflushopt -mclwb -mxsavec -mxsaves @gol
1273 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1274 -madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mhle -mlwp @gol
1275 -mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes -mwaitpkg @gol
1276 -mshstk -mmanual-endbr -mforce-indirect-call -mavx512vbmi2 @gol
1277 -mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq @gol
1278 -mavx5124fmaps -mavx512vnni -mavx5124vnniw -mprfchw -mrdpid @gol
1279 -mrdseed -msgx @gol
1280 -mcldemote -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1281 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1282 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1283 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1284 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1285 -mregparm=@var{num} -msseregparm @gol
1286 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1287 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1288 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1289 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1290 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1291 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1292 -minstrument-return=@var{type} -mfentry-name=@var{name} -mfentry-section=@var{name} @gol
1293 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1294 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1295 -mstack-protector-guard-reg=@var{reg} @gol
1296 -mstack-protector-guard-offset=@var{offset} @gol
1297 -mstack-protector-guard-symbol=@var{symbol} @gol
1298 -mgeneral-regs-only -mcall-ms2sysv-xlogues @gol
1299 -mindirect-branch=@var{choice} -mfunction-return=@var{choice} @gol
1300 -mindirect-branch-register}
1301
1302 @emph{x86 Windows Options}
1303 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1304 -mnop-fun-dllimport -mthread @gol
1305 -municode -mwin32 -mwindows -fno-set-stack-executable}
1306
1307 @emph{Xstormy16 Options}
1308 @gccoptlist{-msim}
1309
1310 @emph{Xtensa Options}
1311 @gccoptlist{-mconst16 -mno-const16 @gol
1312 -mfused-madd -mno-fused-madd @gol
1313 -mforce-no-pic @gol
1314 -mserialize-volatile -mno-serialize-volatile @gol
1315 -mtext-section-literals -mno-text-section-literals @gol
1316 -mauto-litpools -mno-auto-litpools @gol
1317 -mtarget-align -mno-target-align @gol
1318 -mlongcalls -mno-longcalls}
1319
1320 @emph{zSeries Options}
1321 See S/390 and zSeries Options.
1322 @end table
1323
1324
1325 @node Overall Options
1326 @section Options Controlling the Kind of Output
1327
1328 Compilation can involve up to four stages: preprocessing, compilation
1329 proper, assembly and linking, always in that order. GCC is capable of
1330 preprocessing and compiling several files either into several
1331 assembler input files, or into one assembler input file; then each
1332 assembler input file produces an object file, and linking combines all
1333 the object files (those newly compiled, and those specified as input)
1334 into an executable file.
1335
1336 @cindex file name suffix
1337 For any given input file, the file name suffix determines what kind of
1338 compilation is done:
1339
1340 @table @gcctabopt
1341 @item @var{file}.c
1342 C source code that must be preprocessed.
1343
1344 @item @var{file}.i
1345 C source code that should not be preprocessed.
1346
1347 @item @var{file}.ii
1348 C++ source code that should not be preprocessed.
1349
1350 @item @var{file}.m
1351 Objective-C source code. Note that you must link with the @file{libobjc}
1352 library to make an Objective-C program work.
1353
1354 @item @var{file}.mi
1355 Objective-C source code that should not be preprocessed.
1356
1357 @item @var{file}.mm
1358 @itemx @var{file}.M
1359 Objective-C++ source code. Note that you must link with the @file{libobjc}
1360 library to make an Objective-C++ program work. Note that @samp{.M} refers
1361 to a literal capital M@.
1362
1363 @item @var{file}.mii
1364 Objective-C++ source code that should not be preprocessed.
1365
1366 @item @var{file}.h
1367 C, C++, Objective-C or Objective-C++ header file to be turned into a
1368 precompiled header (default), or C, C++ header file to be turned into an
1369 Ada spec (via the @option{-fdump-ada-spec} switch).
1370
1371 @item @var{file}.cc
1372 @itemx @var{file}.cp
1373 @itemx @var{file}.cxx
1374 @itemx @var{file}.cpp
1375 @itemx @var{file}.CPP
1376 @itemx @var{file}.c++
1377 @itemx @var{file}.C
1378 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1379 the last two letters must both be literally @samp{x}. Likewise,
1380 @samp{.C} refers to a literal capital C@.
1381
1382 @item @var{file}.mm
1383 @itemx @var{file}.M
1384 Objective-C++ source code that must be preprocessed.
1385
1386 @item @var{file}.mii
1387 Objective-C++ source code that should not be preprocessed.
1388
1389 @item @var{file}.hh
1390 @itemx @var{file}.H
1391 @itemx @var{file}.hp
1392 @itemx @var{file}.hxx
1393 @itemx @var{file}.hpp
1394 @itemx @var{file}.HPP
1395 @itemx @var{file}.h++
1396 @itemx @var{file}.tcc
1397 C++ header file to be turned into a precompiled header or Ada spec.
1398
1399 @item @var{file}.f
1400 @itemx @var{file}.for
1401 @itemx @var{file}.ftn
1402 Fixed form Fortran source code that should not be preprocessed.
1403
1404 @item @var{file}.F
1405 @itemx @var{file}.FOR
1406 @itemx @var{file}.fpp
1407 @itemx @var{file}.FPP
1408 @itemx @var{file}.FTN
1409 Fixed form Fortran source code that must be preprocessed (with the traditional
1410 preprocessor).
1411
1412 @item @var{file}.f90
1413 @itemx @var{file}.f95
1414 @itemx @var{file}.f03
1415 @itemx @var{file}.f08
1416 Free form Fortran source code that should not be preprocessed.
1417
1418 @item @var{file}.F90
1419 @itemx @var{file}.F95
1420 @itemx @var{file}.F03
1421 @itemx @var{file}.F08
1422 Free form Fortran source code that must be preprocessed (with the
1423 traditional preprocessor).
1424
1425 @item @var{file}.go
1426 Go source code.
1427
1428 @item @var{file}.brig
1429 BRIG files (binary representation of HSAIL).
1430
1431 @item @var{file}.d
1432 D source code.
1433
1434 @item @var{file}.di
1435 D interface file.
1436
1437 @item @var{file}.dd
1438 D documentation code (Ddoc).
1439
1440 @item @var{file}.ads
1441 Ada source code file that contains a library unit declaration (a
1442 declaration of a package, subprogram, or generic, or a generic
1443 instantiation), or a library unit renaming declaration (a package,
1444 generic, or subprogram renaming declaration). Such files are also
1445 called @dfn{specs}.
1446
1447 @item @var{file}.adb
1448 Ada source code file containing a library unit body (a subprogram or
1449 package body). Such files are also called @dfn{bodies}.
1450
1451 @c GCC also knows about some suffixes for languages not yet included:
1452 @c Ratfor:
1453 @c @var{file}.r
1454
1455 @item @var{file}.s
1456 Assembler code.
1457
1458 @item @var{file}.S
1459 @itemx @var{file}.sx
1460 Assembler code that must be preprocessed.
1461
1462 @item @var{other}
1463 An object file to be fed straight into linking.
1464 Any file name with no recognized suffix is treated this way.
1465 @end table
1466
1467 @opindex x
1468 You can specify the input language explicitly with the @option{-x} option:
1469
1470 @table @gcctabopt
1471 @item -x @var{language}
1472 Specify explicitly the @var{language} for the following input files
1473 (rather than letting the compiler choose a default based on the file
1474 name suffix). This option applies to all following input files until
1475 the next @option{-x} option. Possible values for @var{language} are:
1476 @smallexample
1477 c c-header cpp-output
1478 c++ c++-header c++-cpp-output
1479 objective-c objective-c-header objective-c-cpp-output
1480 objective-c++ objective-c++-header objective-c++-cpp-output
1481 assembler assembler-with-cpp
1482 ada
1483 d
1484 f77 f77-cpp-input f95 f95-cpp-input
1485 go
1486 brig
1487 @end smallexample
1488
1489 @item -x none
1490 Turn off any specification of a language, so that subsequent files are
1491 handled according to their file name suffixes (as they are if @option{-x}
1492 has not been used at all).
1493 @end table
1494
1495 If you only want some of the stages of compilation, you can use
1496 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1497 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1498 @command{gcc} is to stop. Note that some combinations (for example,
1499 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1500
1501 @table @gcctabopt
1502 @item -c
1503 @opindex c
1504 Compile or assemble the source files, but do not link. The linking
1505 stage simply is not done. The ultimate output is in the form of an
1506 object file for each source file.
1507
1508 By default, the object file name for a source file is made by replacing
1509 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1510
1511 Unrecognized input files, not requiring compilation or assembly, are
1512 ignored.
1513
1514 @item -S
1515 @opindex S
1516 Stop after the stage of compilation proper; do not assemble. The output
1517 is in the form of an assembler code file for each non-assembler input
1518 file specified.
1519
1520 By default, the assembler file name for a source file is made by
1521 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1522
1523 Input files that don't require compilation are ignored.
1524
1525 @item -E
1526 @opindex E
1527 Stop after the preprocessing stage; do not run the compiler proper. The
1528 output is in the form of preprocessed source code, which is sent to the
1529 standard output.
1530
1531 Input files that don't require preprocessing are ignored.
1532
1533 @cindex output file option
1534 @item -o @var{file}
1535 @opindex o
1536 Place output in file @var{file}. This applies to whatever
1537 sort of output is being produced, whether it be an executable file,
1538 an object file, an assembler file or preprocessed C code.
1539
1540 If @option{-o} is not specified, the default is to put an executable
1541 file in @file{a.out}, the object file for
1542 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1543 assembler file in @file{@var{source}.s}, a precompiled header file in
1544 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1545 standard output.
1546
1547 @item -v
1548 @opindex v
1549 Print (on standard error output) the commands executed to run the stages
1550 of compilation. Also print the version number of the compiler driver
1551 program and of the preprocessor and the compiler proper.
1552
1553 @item -###
1554 @opindex ###
1555 Like @option{-v} except the commands are not executed and arguments
1556 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1557 This is useful for shell scripts to capture the driver-generated command lines.
1558
1559 @item --help
1560 @opindex help
1561 Print (on the standard output) a description of the command-line options
1562 understood by @command{gcc}. If the @option{-v} option is also specified
1563 then @option{--help} is also passed on to the various processes
1564 invoked by @command{gcc}, so that they can display the command-line options
1565 they accept. If the @option{-Wextra} option has also been specified
1566 (prior to the @option{--help} option), then command-line options that
1567 have no documentation associated with them are also displayed.
1568
1569 @item --target-help
1570 @opindex target-help
1571 Print (on the standard output) a description of target-specific command-line
1572 options for each tool. For some targets extra target-specific
1573 information may also be printed.
1574
1575 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1576 Print (on the standard output) a description of the command-line
1577 options understood by the compiler that fit into all specified classes
1578 and qualifiers. These are the supported classes:
1579
1580 @table @asis
1581 @item @samp{optimizers}
1582 Display all of the optimization options supported by the
1583 compiler.
1584
1585 @item @samp{warnings}
1586 Display all of the options controlling warning messages
1587 produced by the compiler.
1588
1589 @item @samp{target}
1590 Display target-specific options. Unlike the
1591 @option{--target-help} option however, target-specific options of the
1592 linker and assembler are not displayed. This is because those
1593 tools do not currently support the extended @option{--help=} syntax.
1594
1595 @item @samp{params}
1596 Display the values recognized by the @option{--param}
1597 option.
1598
1599 @item @var{language}
1600 Display the options supported for @var{language}, where
1601 @var{language} is the name of one of the languages supported in this
1602 version of GCC@.
1603
1604 @item @samp{common}
1605 Display the options that are common to all languages.
1606 @end table
1607
1608 These are the supported qualifiers:
1609
1610 @table @asis
1611 @item @samp{undocumented}
1612 Display only those options that are undocumented.
1613
1614 @item @samp{joined}
1615 Display options taking an argument that appears after an equal
1616 sign in the same continuous piece of text, such as:
1617 @samp{--help=target}.
1618
1619 @item @samp{separate}
1620 Display options taking an argument that appears as a separate word
1621 following the original option, such as: @samp{-o output-file}.
1622 @end table
1623
1624 Thus for example to display all the undocumented target-specific
1625 switches supported by the compiler, use:
1626
1627 @smallexample
1628 --help=target,undocumented
1629 @end smallexample
1630
1631 The sense of a qualifier can be inverted by prefixing it with the
1632 @samp{^} character, so for example to display all binary warning
1633 options (i.e., ones that are either on or off and that do not take an
1634 argument) that have a description, use:
1635
1636 @smallexample
1637 --help=warnings,^joined,^undocumented
1638 @end smallexample
1639
1640 The argument to @option{--help=} should not consist solely of inverted
1641 qualifiers.
1642
1643 Combining several classes is possible, although this usually
1644 restricts the output so much that there is nothing to display. One
1645 case where it does work, however, is when one of the classes is
1646 @var{target}. For example, to display all the target-specific
1647 optimization options, use:
1648
1649 @smallexample
1650 --help=target,optimizers
1651 @end smallexample
1652
1653 The @option{--help=} option can be repeated on the command line. Each
1654 successive use displays its requested class of options, skipping
1655 those that have already been displayed. If @option{--help} is also
1656 specified anywhere on the command line then this takes precedence
1657 over any @option{--help=} option.
1658
1659 If the @option{-Q} option appears on the command line before the
1660 @option{--help=} option, then the descriptive text displayed by
1661 @option{--help=} is changed. Instead of describing the displayed
1662 options, an indication is given as to whether the option is enabled,
1663 disabled or set to a specific value (assuming that the compiler
1664 knows this at the point where the @option{--help=} option is used).
1665
1666 Here is a truncated example from the ARM port of @command{gcc}:
1667
1668 @smallexample
1669 % gcc -Q -mabi=2 --help=target -c
1670 The following options are target specific:
1671 -mabi= 2
1672 -mabort-on-noreturn [disabled]
1673 -mapcs [disabled]
1674 @end smallexample
1675
1676 The output is sensitive to the effects of previous command-line
1677 options, so for example it is possible to find out which optimizations
1678 are enabled at @option{-O2} by using:
1679
1680 @smallexample
1681 -Q -O2 --help=optimizers
1682 @end smallexample
1683
1684 Alternatively you can discover which binary optimizations are enabled
1685 by @option{-O3} by using:
1686
1687 @smallexample
1688 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1689 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1690 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1691 @end smallexample
1692
1693 @item --version
1694 @opindex version
1695 Display the version number and copyrights of the invoked GCC@.
1696
1697 @item -pass-exit-codes
1698 @opindex pass-exit-codes
1699 Normally the @command{gcc} program exits with the code of 1 if any
1700 phase of the compiler returns a non-success return code. If you specify
1701 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1702 the numerically highest error produced by any phase returning an error
1703 indication. The C, C++, and Fortran front ends return 4 if an internal
1704 compiler error is encountered.
1705
1706 @item -pipe
1707 @opindex pipe
1708 Use pipes rather than temporary files for communication between the
1709 various stages of compilation. This fails to work on some systems where
1710 the assembler is unable to read from a pipe; but the GNU assembler has
1711 no trouble.
1712
1713 @item -specs=@var{file}
1714 @opindex specs
1715 Process @var{file} after the compiler reads in the standard @file{specs}
1716 file, in order to override the defaults which the @command{gcc} driver
1717 program uses when determining what switches to pass to @command{cc1},
1718 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1719 @option{-specs=@var{file}} can be specified on the command line, and they
1720 are processed in order, from left to right. @xref{Spec Files}, for
1721 information about the format of the @var{file}.
1722
1723 @item -wrapper
1724 @opindex wrapper
1725 Invoke all subcommands under a wrapper program. The name of the
1726 wrapper program and its parameters are passed as a comma separated
1727 list.
1728
1729 @smallexample
1730 gcc -c t.c -wrapper gdb,--args
1731 @end smallexample
1732
1733 @noindent
1734 This invokes all subprograms of @command{gcc} under
1735 @samp{gdb --args}, thus the invocation of @command{cc1} is
1736 @samp{gdb --args cc1 @dots{}}.
1737
1738 @item -ffile-prefix-map=@var{old}=@var{new}
1739 @opindex ffile-prefix-map
1740 When compiling files residing in directory @file{@var{old}}, record
1741 any references to them in the result of the compilation as if the
1742 files resided in directory @file{@var{new}} instead. Specifying this
1743 option is equivalent to specifying all the individual
1744 @option{-f*-prefix-map} options. This can be used to make reproducible
1745 builds that are location independent. See also
1746 @option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
1747
1748 @item -fplugin=@var{name}.so
1749 @opindex fplugin
1750 Load the plugin code in file @var{name}.so, assumed to be a
1751 shared object to be dlopen'd by the compiler. The base name of
1752 the shared object file is used to identify the plugin for the
1753 purposes of argument parsing (See
1754 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1755 Each plugin should define the callback functions specified in the
1756 Plugins API.
1757
1758 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1759 @opindex fplugin-arg
1760 Define an argument called @var{key} with a value of @var{value}
1761 for the plugin called @var{name}.
1762
1763 @item -fdump-ada-spec@r{[}-slim@r{]}
1764 @opindex fdump-ada-spec
1765 For C and C++ source and include files, generate corresponding Ada specs.
1766 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1767 GNAT User's Guide}, which provides detailed documentation on this feature.
1768
1769 @item -fada-spec-parent=@var{unit}
1770 @opindex fada-spec-parent
1771 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1772 Ada specs as child units of parent @var{unit}.
1773
1774 @item -fdump-go-spec=@var{file}
1775 @opindex fdump-go-spec
1776 For input files in any language, generate corresponding Go
1777 declarations in @var{file}. This generates Go @code{const},
1778 @code{type}, @code{var}, and @code{func} declarations which may be a
1779 useful way to start writing a Go interface to code written in some
1780 other language.
1781
1782 @include @value{srcdir}/../libiberty/at-file.texi
1783 @end table
1784
1785 @node Invoking G++
1786 @section Compiling C++ Programs
1787
1788 @cindex suffixes for C++ source
1789 @cindex C++ source file suffixes
1790 C++ source files conventionally use one of the suffixes @samp{.C},
1791 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1792 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1793 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1794 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1795 files with these names and compiles them as C++ programs even if you
1796 call the compiler the same way as for compiling C programs (usually
1797 with the name @command{gcc}).
1798
1799 @findex g++
1800 @findex c++
1801 However, the use of @command{gcc} does not add the C++ library.
1802 @command{g++} is a program that calls GCC and automatically specifies linking
1803 against the C++ library. It treats @samp{.c},
1804 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1805 files unless @option{-x} is used. This program is also useful when
1806 precompiling a C header file with a @samp{.h} extension for use in C++
1807 compilations. On many systems, @command{g++} is also installed with
1808 the name @command{c++}.
1809
1810 @cindex invoking @command{g++}
1811 When you compile C++ programs, you may specify many of the same
1812 command-line options that you use for compiling programs in any
1813 language; or command-line options meaningful for C and related
1814 languages; or options that are meaningful only for C++ programs.
1815 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1816 explanations of options for languages related to C@.
1817 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1818 explanations of options that are meaningful only for C++ programs.
1819
1820 @node C Dialect Options
1821 @section Options Controlling C Dialect
1822 @cindex dialect options
1823 @cindex language dialect options
1824 @cindex options, dialect
1825
1826 The following options control the dialect of C (or languages derived
1827 from C, such as C++, Objective-C and Objective-C++) that the compiler
1828 accepts:
1829
1830 @table @gcctabopt
1831 @cindex ANSI support
1832 @cindex ISO support
1833 @item -ansi
1834 @opindex ansi
1835 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1836 equivalent to @option{-std=c++98}.
1837
1838 This turns off certain features of GCC that are incompatible with ISO
1839 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1840 such as the @code{asm} and @code{typeof} keywords, and
1841 predefined macros such as @code{unix} and @code{vax} that identify the
1842 type of system you are using. It also enables the undesirable and
1843 rarely used ISO trigraph feature. For the C compiler,
1844 it disables recognition of C++ style @samp{//} comments as well as
1845 the @code{inline} keyword.
1846
1847 The alternate keywords @code{__asm__}, @code{__extension__},
1848 @code{__inline__} and @code{__typeof__} continue to work despite
1849 @option{-ansi}. You would not want to use them in an ISO C program, of
1850 course, but it is useful to put them in header files that might be included
1851 in compilations done with @option{-ansi}. Alternate predefined macros
1852 such as @code{__unix__} and @code{__vax__} are also available, with or
1853 without @option{-ansi}.
1854
1855 The @option{-ansi} option does not cause non-ISO programs to be
1856 rejected gratuitously. For that, @option{-Wpedantic} is required in
1857 addition to @option{-ansi}. @xref{Warning Options}.
1858
1859 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1860 option is used. Some header files may notice this macro and refrain
1861 from declaring certain functions or defining certain macros that the
1862 ISO standard doesn't call for; this is to avoid interfering with any
1863 programs that might use these names for other things.
1864
1865 Functions that are normally built in but do not have semantics
1866 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1867 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1868 built-in functions provided by GCC}, for details of the functions
1869 affected.
1870
1871 @item -std=
1872 @opindex std
1873 Determine the language standard. @xref{Standards,,Language Standards
1874 Supported by GCC}, for details of these standard versions. This option
1875 is currently only supported when compiling C or C++.
1876
1877 The compiler can accept several base standards, such as @samp{c90} or
1878 @samp{c++98}, and GNU dialects of those standards, such as
1879 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1880 compiler accepts all programs following that standard plus those
1881 using GNU extensions that do not contradict it. For example,
1882 @option{-std=c90} turns off certain features of GCC that are
1883 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1884 keywords, but not other GNU extensions that do not have a meaning in
1885 ISO C90, such as omitting the middle term of a @code{?:}
1886 expression. On the other hand, when a GNU dialect of a standard is
1887 specified, all features supported by the compiler are enabled, even when
1888 those features change the meaning of the base standard. As a result, some
1889 strict-conforming programs may be rejected. The particular standard
1890 is used by @option{-Wpedantic} to identify which features are GNU
1891 extensions given that version of the standard. For example
1892 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1893 comments, while @option{-std=gnu99 -Wpedantic} does not.
1894
1895 A value for this option must be provided; possible values are
1896
1897 @table @samp
1898 @item c90
1899 @itemx c89
1900 @itemx iso9899:1990
1901 Support all ISO C90 programs (certain GNU extensions that conflict
1902 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1903
1904 @item iso9899:199409
1905 ISO C90 as modified in amendment 1.
1906
1907 @item c99
1908 @itemx c9x
1909 @itemx iso9899:1999
1910 @itemx iso9899:199x
1911 ISO C99. This standard is substantially completely supported, modulo
1912 bugs and floating-point issues
1913 (mainly but not entirely relating to optional C99 features from
1914 Annexes F and G). See
1915 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1916 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1917
1918 @item c11
1919 @itemx c1x
1920 @itemx iso9899:2011
1921 ISO C11, the 2011 revision of the ISO C standard. This standard is
1922 substantially completely supported, modulo bugs, floating-point issues
1923 (mainly but not entirely relating to optional C11 features from
1924 Annexes F and G) and the optional Annexes K (Bounds-checking
1925 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1926
1927 @item c17
1928 @itemx c18
1929 @itemx iso9899:2017
1930 @itemx iso9899:2018
1931 ISO C17, the 2017 revision of the ISO C standard
1932 (published in 2018). This standard is
1933 same as C11 except for corrections of defects (all of which are also
1934 applied with @option{-std=c11}) and a new value of
1935 @code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1936
1937 @item c2x
1938 The next version of the ISO C standard, still under development. The
1939 support for this version is experimental and incomplete.
1940
1941 @item gnu90
1942 @itemx gnu89
1943 GNU dialect of ISO C90 (including some C99 features).
1944
1945 @item gnu99
1946 @itemx gnu9x
1947 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1948
1949 @item gnu11
1950 @itemx gnu1x
1951 GNU dialect of ISO C11.
1952 The name @samp{gnu1x} is deprecated.
1953
1954 @item gnu17
1955 @itemx gnu18
1956 GNU dialect of ISO C17. This is the default for C code.
1957
1958 @item gnu2x
1959 The next version of the ISO C standard, still under development, plus
1960 GNU extensions. The support for this version is experimental and
1961 incomplete.
1962
1963 @item c++98
1964 @itemx c++03
1965 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1966 additional defect reports. Same as @option{-ansi} for C++ code.
1967
1968 @item gnu++98
1969 @itemx gnu++03
1970 GNU dialect of @option{-std=c++98}.
1971
1972 @item c++11
1973 @itemx c++0x
1974 The 2011 ISO C++ standard plus amendments.
1975 The name @samp{c++0x} is deprecated.
1976
1977 @item gnu++11
1978 @itemx gnu++0x
1979 GNU dialect of @option{-std=c++11}.
1980 The name @samp{gnu++0x} is deprecated.
1981
1982 @item c++14
1983 @itemx c++1y
1984 The 2014 ISO C++ standard plus amendments.
1985 The name @samp{c++1y} is deprecated.
1986
1987 @item gnu++14
1988 @itemx gnu++1y
1989 GNU dialect of @option{-std=c++14}.
1990 This is the default for C++ code.
1991 The name @samp{gnu++1y} is deprecated.
1992
1993 @item c++17
1994 @itemx c++1z
1995 The 2017 ISO C++ standard plus amendments.
1996 The name @samp{c++1z} is deprecated.
1997
1998 @item gnu++17
1999 @itemx gnu++1z
2000 GNU dialect of @option{-std=c++17}.
2001 The name @samp{gnu++1z} is deprecated.
2002
2003 @item c++2a
2004 The next revision of the ISO C++ standard, tentatively planned for
2005 2020. Support is highly experimental, and will almost certainly
2006 change in incompatible ways in future releases.
2007
2008 @item gnu++2a
2009 GNU dialect of @option{-std=c++2a}. Support is highly experimental,
2010 and will almost certainly change in incompatible ways in future
2011 releases.
2012 @end table
2013
2014 @item -fgnu89-inline
2015 @opindex fgnu89-inline
2016 The option @option{-fgnu89-inline} tells GCC to use the traditional
2017 GNU semantics for @code{inline} functions when in C99 mode.
2018 @xref{Inline,,An Inline Function is As Fast As a Macro}.
2019 Using this option is roughly equivalent to adding the
2020 @code{gnu_inline} function attribute to all inline functions
2021 (@pxref{Function Attributes}).
2022
2023 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
2024 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
2025 specifies the default behavior).
2026 This option is not supported in @option{-std=c90} or
2027 @option{-std=gnu90} mode.
2028
2029 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
2030 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
2031 in effect for @code{inline} functions. @xref{Common Predefined
2032 Macros,,,cpp,The C Preprocessor}.
2033
2034 @item -fpermitted-flt-eval-methods=@var{style}
2035 @opindex fpermitted-flt-eval-methods
2036 @opindex fpermitted-flt-eval-methods=c11
2037 @opindex fpermitted-flt-eval-methods=ts-18661-3
2038 ISO/IEC TS 18661-3 defines new permissible values for
2039 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
2040 a semantic type that is an interchange or extended format should be
2041 evaluated to the precision and range of that type. These new values are
2042 a superset of those permitted under C99/C11, which does not specify the
2043 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
2044 conforming to C11 may not have been written expecting the possibility of
2045 the new values.
2046
2047 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
2048 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
2049 or the extended set of values specified in ISO/IEC TS 18661-3.
2050
2051 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
2052
2053 The default when in a standards compliant mode (@option{-std=c11} or similar)
2054 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
2055 dialect (@option{-std=gnu11} or similar) is
2056 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
2057
2058 @item -aux-info @var{filename}
2059 @opindex aux-info
2060 Output to the given filename prototyped declarations for all functions
2061 declared and/or defined in a translation unit, including those in header
2062 files. This option is silently ignored in any language other than C@.
2063
2064 Besides declarations, the file indicates, in comments, the origin of
2065 each declaration (source file and line), whether the declaration was
2066 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
2067 @samp{O} for old, respectively, in the first character after the line
2068 number and the colon), and whether it came from a declaration or a
2069 definition (@samp{C} or @samp{F}, respectively, in the following
2070 character). In the case of function definitions, a K&R-style list of
2071 arguments followed by their declarations is also provided, inside
2072 comments, after the declaration.
2073
2074 @item -fallow-parameterless-variadic-functions
2075 @opindex fallow-parameterless-variadic-functions
2076 Accept variadic functions without named parameters.
2077
2078 Although it is possible to define such a function, this is not very
2079 useful as it is not possible to read the arguments. This is only
2080 supported for C as this construct is allowed by C++.
2081
2082 @item -fno-asm
2083 @opindex fno-asm
2084 @opindex fasm
2085 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2086 keyword, so that code can use these words as identifiers. You can use
2087 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2088 instead. @option{-ansi} implies @option{-fno-asm}.
2089
2090 In C++, this switch only affects the @code{typeof} keyword, since
2091 @code{asm} and @code{inline} are standard keywords. You may want to
2092 use the @option{-fno-gnu-keywords} flag instead, which has the same
2093 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2094 switch only affects the @code{asm} and @code{typeof} keywords, since
2095 @code{inline} is a standard keyword in ISO C99.
2096
2097 @item -fno-builtin
2098 @itemx -fno-builtin-@var{function}
2099 @opindex fno-builtin
2100 @opindex fbuiltin
2101 @cindex built-in functions
2102 Don't recognize built-in functions that do not begin with
2103 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
2104 functions provided by GCC}, for details of the functions affected,
2105 including those which are not built-in functions when @option{-ansi} or
2106 @option{-std} options for strict ISO C conformance are used because they
2107 do not have an ISO standard meaning.
2108
2109 GCC normally generates special code to handle certain built-in functions
2110 more efficiently; for instance, calls to @code{alloca} may become single
2111 instructions which adjust the stack directly, and calls to @code{memcpy}
2112 may become inline copy loops. The resulting code is often both smaller
2113 and faster, but since the function calls no longer appear as such, you
2114 cannot set a breakpoint on those calls, nor can you change the behavior
2115 of the functions by linking with a different library. In addition,
2116 when a function is recognized as a built-in function, GCC may use
2117 information about that function to warn about problems with calls to
2118 that function, or to generate more efficient code, even if the
2119 resulting code still contains calls to that function. For example,
2120 warnings are given with @option{-Wformat} for bad calls to
2121 @code{printf} when @code{printf} is built in and @code{strlen} is
2122 known not to modify global memory.
2123
2124 With the @option{-fno-builtin-@var{function}} option
2125 only the built-in function @var{function} is
2126 disabled. @var{function} must not begin with @samp{__builtin_}. If a
2127 function is named that is not built-in in this version of GCC, this
2128 option is ignored. There is no corresponding
2129 @option{-fbuiltin-@var{function}} option; if you wish to enable
2130 built-in functions selectively when using @option{-fno-builtin} or
2131 @option{-ffreestanding}, you may define macros such as:
2132
2133 @smallexample
2134 #define abs(n) __builtin_abs ((n))
2135 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2136 @end smallexample
2137
2138 @item -fgimple
2139 @opindex fgimple
2140
2141 Enable parsing of function definitions marked with @code{__GIMPLE}.
2142 This is an experimental feature that allows unit testing of GIMPLE
2143 passes.
2144
2145 @item -fhosted
2146 @opindex fhosted
2147 @cindex hosted environment
2148
2149 Assert that compilation targets a hosted environment. This implies
2150 @option{-fbuiltin}. A hosted environment is one in which the
2151 entire standard library is available, and in which @code{main} has a return
2152 type of @code{int}. Examples are nearly everything except a kernel.
2153 This is equivalent to @option{-fno-freestanding}.
2154
2155 @item -ffreestanding
2156 @opindex ffreestanding
2157 @cindex hosted environment
2158
2159 Assert that compilation targets a freestanding environment. This
2160 implies @option{-fno-builtin}. A freestanding environment
2161 is one in which the standard library may not exist, and program startup may
2162 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2163 This is equivalent to @option{-fno-hosted}.
2164
2165 @xref{Standards,,Language Standards Supported by GCC}, for details of
2166 freestanding and hosted environments.
2167
2168 @item -fopenacc
2169 @opindex fopenacc
2170 @cindex OpenACC accelerator programming
2171 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2172 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2173 compiler generates accelerated code according to the OpenACC Application
2174 Programming Interface v2.0 @w{@uref{https://www.openacc.org}}. This option
2175 implies @option{-pthread}, and thus is only supported on targets that
2176 have support for @option{-pthread}.
2177
2178 @item -fopenacc-dim=@var{geom}
2179 @opindex fopenacc-dim
2180 @cindex OpenACC accelerator programming
2181 Specify default compute dimensions for parallel offload regions that do
2182 not explicitly specify. The @var{geom} value is a triple of
2183 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2184 can be omitted, to use a target-specific default value.
2185
2186 @item -fopenmp
2187 @opindex fopenmp
2188 @cindex OpenMP parallel
2189 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2190 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2191 compiler generates parallel code according to the OpenMP Application
2192 Program Interface v4.5 @w{@uref{https://www.openmp.org}}. This option
2193 implies @option{-pthread}, and thus is only supported on targets that
2194 have support for @option{-pthread}. @option{-fopenmp} implies
2195 @option{-fopenmp-simd}.
2196
2197 @item -fopenmp-simd
2198 @opindex fopenmp-simd
2199 @cindex OpenMP SIMD
2200 @cindex SIMD
2201 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2202 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2203 are ignored.
2204
2205 @item -fgnu-tm
2206 @opindex fgnu-tm
2207 When the option @option{-fgnu-tm} is specified, the compiler
2208 generates code for the Linux variant of Intel's current Transactional
2209 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2210 an experimental feature whose interface may change in future versions
2211 of GCC, as the official specification changes. Please note that not
2212 all architectures are supported for this feature.
2213
2214 For more information on GCC's support for transactional memory,
2215 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2216 Transactional Memory Library}.
2217
2218 Note that the transactional memory feature is not supported with
2219 non-call exceptions (@option{-fnon-call-exceptions}).
2220
2221 @item -fms-extensions
2222 @opindex fms-extensions
2223 Accept some non-standard constructs used in Microsoft header files.
2224
2225 In C++ code, this allows member names in structures to be similar
2226 to previous types declarations.
2227
2228 @smallexample
2229 typedef int UOW;
2230 struct ABC @{
2231 UOW UOW;
2232 @};
2233 @end smallexample
2234
2235 Some cases of unnamed fields in structures and unions are only
2236 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2237 fields within structs/unions}, for details.
2238
2239 Note that this option is off for all targets but x86
2240 targets using ms-abi.
2241
2242 @item -fplan9-extensions
2243 @opindex fplan9-extensions
2244 Accept some non-standard constructs used in Plan 9 code.
2245
2246 This enables @option{-fms-extensions}, permits passing pointers to
2247 structures with anonymous fields to functions that expect pointers to
2248 elements of the type of the field, and permits referring to anonymous
2249 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2250 struct/union fields within structs/unions}, for details. This is only
2251 supported for C, not C++.
2252
2253 @item -fcond-mismatch
2254 @opindex fcond-mismatch
2255 Allow conditional expressions with mismatched types in the second and
2256 third arguments. The value of such an expression is void. This option
2257 is not supported for C++.
2258
2259 @item -flax-vector-conversions
2260 @opindex flax-vector-conversions
2261 Allow implicit conversions between vectors with differing numbers of
2262 elements and/or incompatible element types. This option should not be
2263 used for new code.
2264
2265 @item -funsigned-char
2266 @opindex funsigned-char
2267 Let the type @code{char} be unsigned, like @code{unsigned char}.
2268
2269 Each kind of machine has a default for what @code{char} should
2270 be. It is either like @code{unsigned char} by default or like
2271 @code{signed char} by default.
2272
2273 Ideally, a portable program should always use @code{signed char} or
2274 @code{unsigned char} when it depends on the signedness of an object.
2275 But many programs have been written to use plain @code{char} and
2276 expect it to be signed, or expect it to be unsigned, depending on the
2277 machines they were written for. This option, and its inverse, let you
2278 make such a program work with the opposite default.
2279
2280 The type @code{char} is always a distinct type from each of
2281 @code{signed char} or @code{unsigned char}, even though its behavior
2282 is always just like one of those two.
2283
2284 @item -fsigned-char
2285 @opindex fsigned-char
2286 Let the type @code{char} be signed, like @code{signed char}.
2287
2288 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2289 the negative form of @option{-funsigned-char}. Likewise, the option
2290 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2291
2292 @item -fsigned-bitfields
2293 @itemx -funsigned-bitfields
2294 @itemx -fno-signed-bitfields
2295 @itemx -fno-unsigned-bitfields
2296 @opindex fsigned-bitfields
2297 @opindex funsigned-bitfields
2298 @opindex fno-signed-bitfields
2299 @opindex fno-unsigned-bitfields
2300 These options control whether a bit-field is signed or unsigned, when the
2301 declaration does not use either @code{signed} or @code{unsigned}. By
2302 default, such a bit-field is signed, because this is consistent: the
2303 basic integer types such as @code{int} are signed types.
2304
2305 @item -fsso-struct=@var{endianness}
2306 @opindex fsso-struct
2307 Set the default scalar storage order of structures and unions to the
2308 specified endianness. The accepted values are @samp{big-endian},
2309 @samp{little-endian} and @samp{native} for the native endianness of
2310 the target (the default). This option is not supported for C++.
2311
2312 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2313 code that is not binary compatible with code generated without it if the
2314 specified endianness is not the native endianness of the target.
2315 @end table
2316
2317 @node C++ Dialect Options
2318 @section Options Controlling C++ Dialect
2319
2320 @cindex compiler options, C++
2321 @cindex C++ options, command-line
2322 @cindex options, C++
2323 This section describes the command-line options that are only meaningful
2324 for C++ programs. You can also use most of the GNU compiler options
2325 regardless of what language your program is in. For example, you
2326 might compile a file @file{firstClass.C} like this:
2327
2328 @smallexample
2329 g++ -g -fstrict-enums -O -c firstClass.C
2330 @end smallexample
2331
2332 @noindent
2333 In this example, only @option{-fstrict-enums} is an option meant
2334 only for C++ programs; you can use the other options with any
2335 language supported by GCC@.
2336
2337 Some options for compiling C programs, such as @option{-std}, are also
2338 relevant for C++ programs.
2339 @xref{C Dialect Options,,Options Controlling C Dialect}.
2340
2341 Here is a list of options that are @emph{only} for compiling C++ programs:
2342
2343 @table @gcctabopt
2344
2345 @item -fabi-version=@var{n}
2346 @opindex fabi-version
2347 Use version @var{n} of the C++ ABI@. The default is version 0.
2348
2349 Version 0 refers to the version conforming most closely to
2350 the C++ ABI specification. Therefore, the ABI obtained using version 0
2351 will change in different versions of G++ as ABI bugs are fixed.
2352
2353 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2354
2355 Version 2 is the version of the C++ ABI that first appeared in G++
2356 3.4, and was the default through G++ 4.9.
2357
2358 Version 3 corrects an error in mangling a constant address as a
2359 template argument.
2360
2361 Version 4, which first appeared in G++ 4.5, implements a standard
2362 mangling for vector types.
2363
2364 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2365 attribute const/volatile on function pointer types, decltype of a
2366 plain decl, and use of a function parameter in the declaration of
2367 another parameter.
2368
2369 Version 6, which first appeared in G++ 4.7, corrects the promotion
2370 behavior of C++11 scoped enums and the mangling of template argument
2371 packs, const/static_cast, prefix ++ and --, and a class scope function
2372 used as a template argument.
2373
2374 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2375 builtin type and corrects the mangling of lambdas in default argument
2376 scope.
2377
2378 Version 8, which first appeared in G++ 4.9, corrects the substitution
2379 behavior of function types with function-cv-qualifiers.
2380
2381 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2382 @code{nullptr_t}.
2383
2384 Version 10, which first appeared in G++ 6.1, adds mangling of
2385 attributes that affect type identity, such as ia32 calling convention
2386 attributes (e.g.@: @samp{stdcall}).
2387
2388 Version 11, which first appeared in G++ 7, corrects the mangling of
2389 sizeof... expressions and operator names. For multiple entities with
2390 the same name within a function, that are declared in different scopes,
2391 the mangling now changes starting with the twelfth occurrence. It also
2392 implies @option{-fnew-inheriting-ctors}.
2393
2394 Version 12, which first appeared in G++ 8, corrects the calling
2395 conventions for empty classes on the x86_64 target and for classes
2396 with only deleted copy/move constructors. It accidentally changes the
2397 calling convention for classes with a deleted copy constructor and a
2398 trivial move constructor.
2399
2400 Version 13, which first appeared in G++ 8.2, fixes the accidental
2401 change in version 12.
2402
2403 See also @option{-Wabi}.
2404
2405 @item -fabi-compat-version=@var{n}
2406 @opindex fabi-compat-version
2407 On targets that support strong aliases, G++
2408 works around mangling changes by creating an alias with the correct
2409 mangled name when defining a symbol with an incorrect mangled name.
2410 This switch specifies which ABI version to use for the alias.
2411
2412 With @option{-fabi-version=0} (the default), this defaults to 11 (GCC 7
2413 compatibility). If another ABI version is explicitly selected, this
2414 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2415 use @option{-fabi-compat-version=2}.
2416
2417 If this option is not provided but @option{-Wabi=@var{n}} is, that
2418 version is used for compatibility aliases. If this option is provided
2419 along with @option{-Wabi} (without the version), the version from this
2420 option is used for the warning.
2421
2422 @item -fno-access-control
2423 @opindex fno-access-control
2424 @opindex faccess-control
2425 Turn off all access checking. This switch is mainly useful for working
2426 around bugs in the access control code.
2427
2428 @item -faligned-new
2429 @opindex faligned-new
2430 Enable support for C++17 @code{new} of types that require more
2431 alignment than @code{void* ::operator new(std::size_t)} provides. A
2432 numeric argument such as @code{-faligned-new=32} can be used to
2433 specify how much alignment (in bytes) is provided by that function,
2434 but few users will need to override the default of
2435 @code{alignof(std::max_align_t)}.
2436
2437 This flag is enabled by default for @option{-std=c++17}.
2438
2439 @item -fchar8_t
2440 @itemx -fno-char8_t
2441 @opindex fchar8_t
2442 @opindex fno-char8_t
2443 Enable support for @code{char8_t} as adopted for C++2a. This includes
2444 the addition of a new @code{char8_t} fundamental type, changes to the
2445 types of UTF-8 string and character literals, new signatures for
2446 user-defined literals, associated standard library updates, and new
2447 @code{__cpp_char8_t} and @code{__cpp_lib_char8_t} feature test macros.
2448
2449 This option enables functions to be overloaded for ordinary and UTF-8
2450 strings:
2451
2452 @smallexample
2453 int f(const char *); // #1
2454 int f(const char8_t *); // #2
2455 int v1 = f("text"); // Calls #1
2456 int v2 = f(u8"text"); // Calls #2
2457 @end smallexample
2458
2459 @noindent
2460 and introduces new signatures for user-defined literals:
2461
2462 @smallexample
2463 int operator""_udl1(char8_t);
2464 int v3 = u8'x'_udl1;
2465 int operator""_udl2(const char8_t*, std::size_t);
2466 int v4 = u8"text"_udl2;
2467 template<typename T, T...> int operator""_udl3();
2468 int v5 = u8"text"_udl3;
2469 @end smallexample
2470
2471 @noindent
2472 The change to the types of UTF-8 string and character literals introduces
2473 incompatibilities with ISO C++11 and later standards. For example, the
2474 following code is well-formed under ISO C++11, but is ill-formed when
2475 @option{-fchar8_t} is specified.
2476
2477 @smallexample
2478 char ca[] = u8"xx"; // error: char-array initialized from wide
2479 // string
2480 const char *cp = u8"xx";// error: invalid conversion from
2481 // `const char8_t*' to `const char*'
2482 int f(const char*);
2483 auto v = f(u8"xx"); // error: invalid conversion from
2484 // `const char8_t*' to `const char*'
2485 std::string s@{u8"xx"@}; // error: no matching function for call to
2486 // `std::basic_string<char>::basic_string()'
2487 using namespace std::literals;
2488 s = u8"xx"s; // error: conversion from
2489 // `basic_string<char8_t>' to non-scalar
2490 // type `basic_string<char>' requested
2491 @end smallexample
2492
2493 @item -fcheck-new
2494 @opindex fcheck-new
2495 Check that the pointer returned by @code{operator new} is non-null
2496 before attempting to modify the storage allocated. This check is
2497 normally unnecessary because the C++ standard specifies that
2498 @code{operator new} only returns @code{0} if it is declared
2499 @code{throw()}, in which case the compiler always checks the
2500 return value even without this option. In all other cases, when
2501 @code{operator new} has a non-empty exception specification, memory
2502 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2503 @samp{new (nothrow)}.
2504
2505 @item -fconcepts
2506 @opindex fconcepts
2507 Enable support for the C++ Extensions for Concepts Technical
2508 Specification, ISO 19217 (2015), which allows code like
2509
2510 @smallexample
2511 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2512 template <Addable T> T add (T a, T b) @{ return a + b; @}
2513 @end smallexample
2514
2515 @item -fconstexpr-depth=@var{n}
2516 @opindex fconstexpr-depth
2517 Set the maximum nested evaluation depth for C++11 constexpr functions
2518 to @var{n}. A limit is needed to detect endless recursion during
2519 constant expression evaluation. The minimum specified by the standard
2520 is 512.
2521
2522 @item -fconstexpr-loop-limit=@var{n}
2523 @opindex fconstexpr-loop-limit
2524 Set the maximum number of iterations for a loop in C++14 constexpr functions
2525 to @var{n}. A limit is needed to detect infinite loops during
2526 constant expression evaluation. The default is 262144 (1<<18).
2527
2528 @item -fdeduce-init-list
2529 @opindex fdeduce-init-list
2530 Enable deduction of a template type parameter as
2531 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2532
2533 @smallexample
2534 template <class T> auto forward(T t) -> decltype (realfn (t))
2535 @{
2536 return realfn (t);
2537 @}
2538
2539 void f()
2540 @{
2541 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2542 @}
2543 @end smallexample
2544
2545 This deduction was implemented as a possible extension to the
2546 originally proposed semantics for the C++11 standard, but was not part
2547 of the final standard, so it is disabled by default. This option is
2548 deprecated, and may be removed in a future version of G++.
2549
2550 @item -fno-elide-constructors
2551 @opindex fno-elide-constructors
2552 @opindex felide-constructors
2553 The C++ standard allows an implementation to omit creating a temporary
2554 that is only used to initialize another object of the same type.
2555 Specifying this option disables that optimization, and forces G++ to
2556 call the copy constructor in all cases. This option also causes G++
2557 to call trivial member functions which otherwise would be expanded inline.
2558
2559 In C++17, the compiler is required to omit these temporaries, but this
2560 option still affects trivial member functions.
2561
2562 @item -fno-enforce-eh-specs
2563 @opindex fno-enforce-eh-specs
2564 @opindex fenforce-eh-specs
2565 Don't generate code to check for violation of exception specifications
2566 at run time. This option violates the C++ standard, but may be useful
2567 for reducing code size in production builds, much like defining
2568 @code{NDEBUG}. This does not give user code permission to throw
2569 exceptions in violation of the exception specifications; the compiler
2570 still optimizes based on the specifications, so throwing an
2571 unexpected exception results in undefined behavior at run time.
2572
2573 @item -fextern-tls-init
2574 @itemx -fno-extern-tls-init
2575 @opindex fextern-tls-init
2576 @opindex fno-extern-tls-init
2577 The C++11 and OpenMP standards allow @code{thread_local} and
2578 @code{threadprivate} variables to have dynamic (runtime)
2579 initialization. To support this, any use of such a variable goes
2580 through a wrapper function that performs any necessary initialization.
2581 When the use and definition of the variable are in the same
2582 translation unit, this overhead can be optimized away, but when the
2583 use is in a different translation unit there is significant overhead
2584 even if the variable doesn't actually need dynamic initialization. If
2585 the programmer can be sure that no use of the variable in a
2586 non-defining TU needs to trigger dynamic initialization (either
2587 because the variable is statically initialized, or a use of the
2588 variable in the defining TU will be executed before any uses in
2589 another TU), they can avoid this overhead with the
2590 @option{-fno-extern-tls-init} option.
2591
2592 On targets that support symbol aliases, the default is
2593 @option{-fextern-tls-init}. On targets that do not support symbol
2594 aliases, the default is @option{-fno-extern-tls-init}.
2595
2596 @item -fno-gnu-keywords
2597 @opindex fno-gnu-keywords
2598 @opindex fgnu-keywords
2599 Do not recognize @code{typeof} as a keyword, so that code can use this
2600 word as an identifier. You can use the keyword @code{__typeof__} instead.
2601 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2602 @option{-std=c++98}, @option{-std=c++11}, etc.
2603
2604 @item -fno-implicit-templates
2605 @opindex fno-implicit-templates
2606 @opindex fimplicit-templates
2607 Never emit code for non-inline templates that are instantiated
2608 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2609 If you use this option, you must take care to structure your code to
2610 include all the necessary explicit instantiations to avoid getting
2611 undefined symbols at link time.
2612 @xref{Template Instantiation}, for more information.
2613
2614 @item -fno-implicit-inline-templates
2615 @opindex fno-implicit-inline-templates
2616 @opindex fimplicit-inline-templates
2617 Don't emit code for implicit instantiations of inline templates, either.
2618 The default is to handle inlines differently so that compiles with and
2619 without optimization need the same set of explicit instantiations.
2620
2621 @item -fno-implement-inlines
2622 @opindex fno-implement-inlines
2623 @opindex fimplement-inlines
2624 To save space, do not emit out-of-line copies of inline functions
2625 controlled by @code{#pragma implementation}. This causes linker
2626 errors if these functions are not inlined everywhere they are called.
2627
2628 @item -fms-extensions
2629 @opindex fms-extensions
2630 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2631 int and getting a pointer to member function via non-standard syntax.
2632
2633 @item -fnew-inheriting-ctors
2634 @opindex fnew-inheriting-ctors
2635 Enable the P0136 adjustment to the semantics of C++11 constructor
2636 inheritance. This is part of C++17 but also considered to be a Defect
2637 Report against C++11 and C++14. This flag is enabled by default
2638 unless @option{-fabi-version=10} or lower is specified.
2639
2640 @item -fnew-ttp-matching
2641 @opindex fnew-ttp-matching
2642 Enable the P0522 resolution to Core issue 150, template template
2643 parameters and default arguments: this allows a template with default
2644 template arguments as an argument for a template template parameter
2645 with fewer template parameters. This flag is enabled by default for
2646 @option{-std=c++17}.
2647
2648 @item -fno-nonansi-builtins
2649 @opindex fno-nonansi-builtins
2650 @opindex fnonansi-builtins
2651 Disable built-in declarations of functions that are not mandated by
2652 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2653 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2654
2655 @item -fnothrow-opt
2656 @opindex fnothrow-opt
2657 Treat a @code{throw()} exception specification as if it were a
2658 @code{noexcept} specification to reduce or eliminate the text size
2659 overhead relative to a function with no exception specification. If
2660 the function has local variables of types with non-trivial
2661 destructors, the exception specification actually makes the
2662 function smaller because the EH cleanups for those variables can be
2663 optimized away. The semantic effect is that an exception thrown out of
2664 a function with such an exception specification results in a call
2665 to @code{terminate} rather than @code{unexpected}.
2666
2667 @item -fno-operator-names
2668 @opindex fno-operator-names
2669 @opindex foperator-names
2670 Do not treat the operator name keywords @code{and}, @code{bitand},
2671 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2672 synonyms as keywords.
2673
2674 @item -fno-optional-diags
2675 @opindex fno-optional-diags
2676 @opindex foptional-diags
2677 Disable diagnostics that the standard says a compiler does not need to
2678 issue. Currently, the only such diagnostic issued by G++ is the one for
2679 a name having multiple meanings within a class.
2680
2681 @item -fpermissive
2682 @opindex fpermissive
2683 Downgrade some diagnostics about nonconformant code from errors to
2684 warnings. Thus, using @option{-fpermissive} allows some
2685 nonconforming code to compile.
2686
2687 @item -fno-pretty-templates
2688 @opindex fno-pretty-templates
2689 @opindex fpretty-templates
2690 When an error message refers to a specialization of a function
2691 template, the compiler normally prints the signature of the
2692 template followed by the template arguments and any typedefs or
2693 typenames in the signature (e.g.@: @code{void f(T) [with T = int]}
2694 rather than @code{void f(int)}) so that it's clear which template is
2695 involved. When an error message refers to a specialization of a class
2696 template, the compiler omits any template arguments that match
2697 the default template arguments for that template. If either of these
2698 behaviors make it harder to understand the error message rather than
2699 easier, you can use @option{-fno-pretty-templates} to disable them.
2700
2701 @item -frepo
2702 @opindex frepo
2703 Enable automatic template instantiation at link time. This option also
2704 implies @option{-fno-implicit-templates}. @xref{Template
2705 Instantiation}, for more information.
2706
2707 @item -fno-rtti
2708 @opindex fno-rtti
2709 @opindex frtti
2710 Disable generation of information about every class with virtual
2711 functions for use by the C++ run-time type identification features
2712 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2713 of the language, you can save some space by using this flag. Note that
2714 exception handling uses the same information, but G++ generates it as
2715 needed. The @code{dynamic_cast} operator can still be used for casts that
2716 do not require run-time type information, i.e.@: casts to @code{void *} or to
2717 unambiguous base classes.
2718
2719 Mixing code compiled with @option{-frtti} with that compiled with
2720 @option{-fno-rtti} may not work. For example, programs may
2721 fail to link if a class compiled with @option{-fno-rtti} is used as a base
2722 for a class compiled with @option{-frtti}.
2723
2724 @item -fsized-deallocation
2725 @opindex fsized-deallocation
2726 Enable the built-in global declarations
2727 @smallexample
2728 void operator delete (void *, std::size_t) noexcept;
2729 void operator delete[] (void *, std::size_t) noexcept;
2730 @end smallexample
2731 as introduced in C++14. This is useful for user-defined replacement
2732 deallocation functions that, for example, use the size of the object
2733 to make deallocation faster. Enabled by default under
2734 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2735 warns about places that might want to add a definition.
2736
2737 @item -fstrict-enums
2738 @opindex fstrict-enums
2739 Allow the compiler to optimize using the assumption that a value of
2740 enumerated type can only be one of the values of the enumeration (as
2741 defined in the C++ standard; basically, a value that can be
2742 represented in the minimum number of bits needed to represent all the
2743 enumerators). This assumption may not be valid if the program uses a
2744 cast to convert an arbitrary integer value to the enumerated type.
2745
2746 @item -fstrong-eval-order
2747 @opindex fstrong-eval-order
2748 Evaluate member access, array subscripting, and shift expressions in
2749 left-to-right order, and evaluate assignment in right-to-left order,
2750 as adopted for C++17. Enabled by default with @option{-std=c++17}.
2751 @option{-fstrong-eval-order=some} enables just the ordering of member
2752 access and shift expressions, and is the default without
2753 @option{-std=c++17}.
2754
2755 @item -ftemplate-backtrace-limit=@var{n}
2756 @opindex ftemplate-backtrace-limit
2757 Set the maximum number of template instantiation notes for a single
2758 warning or error to @var{n}. The default value is 10.
2759
2760 @item -ftemplate-depth=@var{n}
2761 @opindex ftemplate-depth
2762 Set the maximum instantiation depth for template classes to @var{n}.
2763 A limit on the template instantiation depth is needed to detect
2764 endless recursions during template class instantiation. ANSI/ISO C++
2765 conforming programs must not rely on a maximum depth greater than 17
2766 (changed to 1024 in C++11). The default value is 900, as the compiler
2767 can run out of stack space before hitting 1024 in some situations.
2768
2769 @item -fno-threadsafe-statics
2770 @opindex fno-threadsafe-statics
2771 @opindex fthreadsafe-statics
2772 Do not emit the extra code to use the routines specified in the C++
2773 ABI for thread-safe initialization of local statics. You can use this
2774 option to reduce code size slightly in code that doesn't need to be
2775 thread-safe.
2776
2777 @item -fuse-cxa-atexit
2778 @opindex fuse-cxa-atexit
2779 Register destructors for objects with static storage duration with the
2780 @code{__cxa_atexit} function rather than the @code{atexit} function.
2781 This option is required for fully standards-compliant handling of static
2782 destructors, but only works if your C library supports
2783 @code{__cxa_atexit}.
2784
2785 @item -fno-use-cxa-get-exception-ptr
2786 @opindex fno-use-cxa-get-exception-ptr
2787 @opindex fuse-cxa-get-exception-ptr
2788 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2789 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2790 if the runtime routine is not available.
2791
2792 @item -fvisibility-inlines-hidden
2793 @opindex fvisibility-inlines-hidden
2794 This switch declares that the user does not attempt to compare
2795 pointers to inline functions or methods where the addresses of the two functions
2796 are taken in different shared objects.
2797
2798 The effect of this is that GCC may, effectively, mark inline methods with
2799 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2800 appear in the export table of a DSO and do not require a PLT indirection
2801 when used within the DSO@. Enabling this option can have a dramatic effect
2802 on load and link times of a DSO as it massively reduces the size of the
2803 dynamic export table when the library makes heavy use of templates.
2804
2805 The behavior of this switch is not quite the same as marking the
2806 methods as hidden directly, because it does not affect static variables
2807 local to the function or cause the compiler to deduce that
2808 the function is defined in only one shared object.
2809
2810 You may mark a method as having a visibility explicitly to negate the
2811 effect of the switch for that method. For example, if you do want to
2812 compare pointers to a particular inline method, you might mark it as
2813 having default visibility. Marking the enclosing class with explicit
2814 visibility has no effect.
2815
2816 Explicitly instantiated inline methods are unaffected by this option
2817 as their linkage might otherwise cross a shared library boundary.
2818 @xref{Template Instantiation}.
2819
2820 @item -fvisibility-ms-compat
2821 @opindex fvisibility-ms-compat
2822 This flag attempts to use visibility settings to make GCC's C++
2823 linkage model compatible with that of Microsoft Visual Studio.
2824
2825 The flag makes these changes to GCC's linkage model:
2826
2827 @enumerate
2828 @item
2829 It sets the default visibility to @code{hidden}, like
2830 @option{-fvisibility=hidden}.
2831
2832 @item
2833 Types, but not their members, are not hidden by default.
2834
2835 @item
2836 The One Definition Rule is relaxed for types without explicit
2837 visibility specifications that are defined in more than one
2838 shared object: those declarations are permitted if they are
2839 permitted when this option is not used.
2840 @end enumerate
2841
2842 In new code it is better to use @option{-fvisibility=hidden} and
2843 export those classes that are intended to be externally visible.
2844 Unfortunately it is possible for code to rely, perhaps accidentally,
2845 on the Visual Studio behavior.
2846
2847 Among the consequences of these changes are that static data members
2848 of the same type with the same name but defined in different shared
2849 objects are different, so changing one does not change the other;
2850 and that pointers to function members defined in different shared
2851 objects may not compare equal. When this flag is given, it is a
2852 violation of the ODR to define types with the same name differently.
2853
2854 @item -fno-weak
2855 @opindex fno-weak
2856 @opindex fweak
2857 Do not use weak symbol support, even if it is provided by the linker.
2858 By default, G++ uses weak symbols if they are available. This
2859 option exists only for testing, and should not be used by end-users;
2860 it results in inferior code and has no benefits. This option may
2861 be removed in a future release of G++.
2862
2863 @item -nostdinc++
2864 @opindex nostdinc++
2865 Do not search for header files in the standard directories specific to
2866 C++, but do still search the other standard directories. (This option
2867 is used when building the C++ library.)
2868 @end table
2869
2870 In addition, these optimization, warning, and code generation options
2871 have meanings only for C++ programs:
2872
2873 @table @gcctabopt
2874 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2875 @opindex Wabi
2876 @opindex Wno-abi
2877 Warn when G++ it generates code that is probably not compatible with
2878 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2879 ABI with each major release, normally @option{-Wabi} will warn only if
2880 there is a check added later in a release series for an ABI issue
2881 discovered since the initial release. @option{-Wabi} will warn about
2882 more things if an older ABI version is selected (with
2883 @option{-fabi-version=@var{n}}).
2884
2885 @option{-Wabi} can also be used with an explicit version number to
2886 warn about compatibility with a particular @option{-fabi-version}
2887 level, e.g.@: @option{-Wabi=2} to warn about changes relative to
2888 @option{-fabi-version=2}.
2889
2890 If an explicit version number is provided and
2891 @option{-fabi-compat-version} is not specified, the version number
2892 from this option is used for compatibility aliases. If no explicit
2893 version number is provided with this option, but
2894 @option{-fabi-compat-version} is specified, that version number is
2895 used for ABI warnings.
2896
2897 Although an effort has been made to warn about
2898 all such cases, there are probably some cases that are not warned about,
2899 even though G++ is generating incompatible code. There may also be
2900 cases where warnings are emitted even though the code that is generated
2901 is compatible.
2902
2903 You should rewrite your code to avoid these warnings if you are
2904 concerned about the fact that code generated by G++ may not be binary
2905 compatible with code generated by other compilers.
2906
2907 Known incompatibilities in @option{-fabi-version=2} (which was the
2908 default from GCC 3.4 to 4.9) include:
2909
2910 @itemize @bullet
2911
2912 @item
2913 A template with a non-type template parameter of reference type was
2914 mangled incorrectly:
2915 @smallexample
2916 extern int N;
2917 template <int &> struct S @{@};
2918 void n (S<N>) @{2@}
2919 @end smallexample
2920
2921 This was fixed in @option{-fabi-version=3}.
2922
2923 @item
2924 SIMD vector types declared using @code{__attribute ((vector_size))} were
2925 mangled in a non-standard way that does not allow for overloading of
2926 functions taking vectors of different sizes.
2927
2928 The mangling was changed in @option{-fabi-version=4}.
2929
2930 @item
2931 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2932 qualifiers, and @code{decltype} of a plain declaration was folded away.
2933
2934 These mangling issues were fixed in @option{-fabi-version=5}.
2935
2936 @item
2937 Scoped enumerators passed as arguments to a variadic function are
2938 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2939 On most targets this does not actually affect the parameter passing
2940 ABI, as there is no way to pass an argument smaller than @code{int}.
2941
2942 Also, the ABI changed the mangling of template argument packs,
2943 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2944 a class scope function used as a template argument.
2945
2946 These issues were corrected in @option{-fabi-version=6}.
2947
2948 @item
2949 Lambdas in default argument scope were mangled incorrectly, and the
2950 ABI changed the mangling of @code{nullptr_t}.
2951
2952 These issues were corrected in @option{-fabi-version=7}.
2953
2954 @item
2955 When mangling a function type with function-cv-qualifiers, the
2956 un-qualified function type was incorrectly treated as a substitution
2957 candidate.
2958
2959 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2960
2961 @item
2962 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2963 unaligned accesses. Note that this did not affect the ABI of a
2964 function with a @code{nullptr_t} parameter, as parameters have a
2965 minimum alignment.
2966
2967 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2968
2969 @item
2970 Target-specific attributes that affect the identity of a type, such as
2971 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2972 did not affect the mangled name, leading to name collisions when
2973 function pointers were used as template arguments.
2974
2975 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2976
2977 @end itemize
2978
2979 It also warns about psABI-related changes. The known psABI changes at this
2980 point include:
2981
2982 @itemize @bullet
2983
2984 @item
2985 For SysV/x86-64, unions with @code{long double} members are
2986 passed in memory as specified in psABI. For example:
2987
2988 @smallexample
2989 union U @{
2990 long double ld;
2991 int i;
2992 @};
2993 @end smallexample
2994
2995 @noindent
2996 @code{union U} is always passed in memory.
2997
2998 @end itemize
2999
3000 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
3001 @opindex Wabi-tag
3002 @opindex Wabi-tag
3003 Warn when a type with an ABI tag is used in a context that does not
3004 have that ABI tag. See @ref{C++ Attributes} for more information
3005 about ABI tags.
3006
3007 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
3008 @opindex Wctor-dtor-privacy
3009 @opindex Wno-ctor-dtor-privacy
3010 Warn when a class seems unusable because all the constructors or
3011 destructors in that class are private, and it has neither friends nor
3012 public static member functions. Also warn if there are no non-private
3013 methods, and there's at least one private member function that isn't
3014 a constructor or destructor.
3015
3016 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
3017 @opindex Wdelete-non-virtual-dtor
3018 @opindex Wno-delete-non-virtual-dtor
3019 Warn when @code{delete} is used to destroy an instance of a class that
3020 has virtual functions and non-virtual destructor. It is unsafe to delete
3021 an instance of a derived class through a pointer to a base class if the
3022 base class does not have a virtual destructor. This warning is enabled
3023 by @option{-Wall}.
3024
3025 @item -Wdeprecated-copy @r{(C++ and Objective-C++ only)}
3026 @opindex Wdeprecated-copy
3027 @opindex Wno-deprecated-copy
3028 Warn that the implicit declaration of a copy constructor or copy
3029 assignment operator is deprecated if the class has a user-provided
3030 copy constructor or copy assignment operator, in C++11 and up. This
3031 warning is enabled by @option{-Wextra}. With
3032 @option{-Wdeprecated-copy-dtor}, also deprecate if the class has a
3033 user-provided destructor.
3034
3035 @item -Wno-init-list-lifetime @r{(C++ and Objective-C++ only)}
3036 @opindex Winit-list-lifetime
3037 @opindex Wno-init-list-lifetime
3038 Do not warn about uses of @code{std::initializer_list} that are likely
3039 to result in dangling pointers. Since the underlying array for an
3040 @code{initializer_list} is handled like a normal C++ temporary object,
3041 it is easy to inadvertently keep a pointer to the array past the end
3042 of the array's lifetime. For example:
3043
3044 @itemize @bullet
3045 @item
3046 If a function returns a temporary @code{initializer_list}, or a local
3047 @code{initializer_list} variable, the array's lifetime ends at the end
3048 of the return statement, so the value returned has a dangling pointer.
3049
3050 @item
3051 If a new-expression creates an @code{initializer_list}, the array only
3052 lives until the end of the enclosing full-expression, so the
3053 @code{initializer_list} in the heap has a dangling pointer.
3054
3055 @item
3056 When an @code{initializer_list} variable is assigned from a
3057 brace-enclosed initializer list, the temporary array created for the
3058 right side of the assignment only lives until the end of the
3059 full-expression, so at the next statement the @code{initializer_list}
3060 variable has a dangling pointer.
3061
3062 @smallexample
3063 // li's initial underlying array lives as long as li
3064 std::initializer_list<int> li = @{ 1,2,3 @};
3065 // assignment changes li to point to a temporary array
3066 li = @{ 4, 5 @};
3067 // now the temporary is gone and li has a dangling pointer
3068 int i = li.begin()[0] // undefined behavior
3069 @end smallexample
3070
3071 @item
3072 When a list constructor stores the @code{begin} pointer from the
3073 @code{initializer_list} argument, this doesn't extend the lifetime of
3074 the array, so if a class variable is constructed from a temporary
3075 @code{initializer_list}, the pointer is left dangling by the end of
3076 the variable declaration statement.
3077
3078 @end itemize
3079
3080 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
3081 @opindex Wliteral-suffix
3082 @opindex Wno-literal-suffix
3083 Warn when a string or character literal is followed by a ud-suffix which does
3084 not begin with an underscore. As a conforming extension, GCC treats such
3085 suffixes as separate preprocessing tokens in order to maintain backwards
3086 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
3087 For example:
3088
3089 @smallexample
3090 #define __STDC_FORMAT_MACROS
3091 #include <inttypes.h>
3092 #include <stdio.h>
3093
3094 int main() @{
3095 int64_t i64 = 123;
3096 printf("My int64: %" PRId64"\n", i64);
3097 @}
3098 @end smallexample
3099
3100 In this case, @code{PRId64} is treated as a separate preprocessing token.
3101
3102 Additionally, warn when a user-defined literal operator is declared with
3103 a literal suffix identifier that doesn't begin with an underscore. Literal
3104 suffix identifiers that don't begin with an underscore are reserved for
3105 future standardization.
3106
3107 This warning is enabled by default.
3108
3109 @item -Wlto-type-mismatch
3110 @opindex Wlto-type-mismatch
3111 @opindex Wno-lto-type-mismatch
3112
3113 During the link-time optimization warn about type mismatches in
3114 global declarations from different compilation units.
3115 Requires @option{-flto} to be enabled. Enabled by default.
3116
3117 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
3118 @opindex Wnarrowing
3119 @opindex Wno-narrowing
3120 For C++11 and later standards, narrowing conversions are diagnosed by default,
3121 as required by the standard. A narrowing conversion from a constant produces
3122 an error, and a narrowing conversion from a non-constant produces a warning,
3123 but @option{-Wno-narrowing} suppresses the diagnostic.
3124 Note that this does not affect the meaning of well-formed code;
3125 narrowing conversions are still considered ill-formed in SFINAE contexts.
3126
3127 With @option{-Wnarrowing} in C++98, warn when a narrowing
3128 conversion prohibited by C++11 occurs within
3129 @samp{@{ @}}, e.g.
3130
3131 @smallexample
3132 int i = @{ 2.2 @}; // error: narrowing from double to int
3133 @end smallexample
3134
3135 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
3136
3137 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
3138 @opindex Wnoexcept
3139 @opindex Wno-noexcept
3140 Warn when a noexcept-expression evaluates to false because of a call
3141 to a function that does not have a non-throwing exception
3142 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
3143 the compiler to never throw an exception.
3144
3145 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
3146 @opindex Wnoexcept-type
3147 @opindex Wno-noexcept-type
3148 Warn if the C++17 feature making @code{noexcept} part of a function
3149 type changes the mangled name of a symbol relative to C++14. Enabled
3150 by @option{-Wabi} and @option{-Wc++17-compat}.
3151
3152 As an example:
3153
3154 @smallexample
3155 template <class T> void f(T t) @{ t(); @};
3156 void g() noexcept;
3157 void h() @{ f(g); @}
3158 @end smallexample
3159
3160 @noindent
3161 In C++14, @code{f} calls @code{f<void(*)()>}, but in
3162 C++17 it calls @code{f<void(*)()noexcept>}.
3163
3164 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
3165 @opindex Wclass-memaccess
3166 @opindex Wno-class-memaccess
3167 Warn when the destination of a call to a raw memory function such as
3168 @code{memset} or @code{memcpy} is an object of class type, and when writing
3169 into such an object might bypass the class non-trivial or deleted constructor
3170 or copy assignment, violate const-correctness or encapsulation, or corrupt
3171 virtual table pointers. Modifying the representation of such objects may
3172 violate invariants maintained by member functions of the class. For example,
3173 the call to @code{memset} below is undefined because it modifies a non-trivial
3174 class object and is, therefore, diagnosed. The safe way to either initialize
3175 or clear the storage of objects of such types is by using the appropriate
3176 constructor or assignment operator, if one is available.
3177 @smallexample
3178 std::string str = "abc";
3179 memset (&str, 0, sizeof str);
3180 @end smallexample
3181 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
3182 Explicitly casting the pointer to the class object to @code{void *} or
3183 to a type that can be safely accessed by the raw memory function suppresses
3184 the warning.
3185
3186 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
3187 @opindex Wnon-virtual-dtor
3188 @opindex Wno-non-virtual-dtor
3189 Warn when a class has virtual functions and an accessible non-virtual
3190 destructor itself or in an accessible polymorphic base class, in which
3191 case it is possible but unsafe to delete an instance of a derived
3192 class through a pointer to the class itself or base class. This
3193 warning is automatically enabled if @option{-Weffc++} is specified.
3194
3195 @item -Wregister @r{(C++ and Objective-C++ only)}
3196 @opindex Wregister
3197 @opindex Wno-register
3198 Warn on uses of the @code{register} storage class specifier, except
3199 when it is part of the GNU @ref{Explicit Register Variables} extension.
3200 The use of the @code{register} keyword as storage class specifier has
3201 been deprecated in C++11 and removed in C++17.
3202 Enabled by default with @option{-std=c++17}.
3203
3204 @item -Wreorder @r{(C++ and Objective-C++ only)}
3205 @opindex Wreorder
3206 @opindex Wno-reorder
3207 @cindex reordering, warning
3208 @cindex warning for reordering of member initializers
3209 Warn when the order of member initializers given in the code does not
3210 match the order in which they must be executed. For instance:
3211
3212 @smallexample
3213 struct A @{
3214 int i;
3215 int j;
3216 A(): j (0), i (1) @{ @}
3217 @};
3218 @end smallexample
3219
3220 @noindent
3221 The compiler rearranges the member initializers for @code{i}
3222 and @code{j} to match the declaration order of the members, emitting
3223 a warning to that effect. This warning is enabled by @option{-Wall}.
3224
3225 @item -Wno-pessimizing-move @r{(C++ and Objective-C++ only)}
3226 @opindex Wpessimizing-move
3227 @opindex Wno-pessimizing-move
3228 This warning warns when a call to @code{std::move} prevents copy
3229 elision. A typical scenario when copy elision can occur is when returning in
3230 a function with a class return type, when the expression being returned is the
3231 name of a non-volatile automatic object, and is not a function parameter, and
3232 has the same type as the function return type.
3233
3234 @smallexample
3235 struct T @{
3236 @dots{}
3237 @};
3238 T fn()
3239 @{
3240 T t;
3241 @dots{}
3242 return std::move (t);
3243 @}
3244 @end smallexample
3245
3246 But in this example, the @code{std::move} call prevents copy elision.
3247
3248 This warning is enabled by @option{-Wall}.
3249
3250 @item -Wno-redundant-move @r{(C++ and Objective-C++ only)}
3251 @opindex Wredundant-move
3252 @opindex Wno-redundant-move
3253 This warning warns about redundant calls to @code{std::move}; that is, when
3254 a move operation would have been performed even without the @code{std::move}
3255 call. This happens because the compiler is forced to treat the object as if
3256 it were an rvalue in certain situations such as returning a local variable,
3257 where copy elision isn't applicable. Consider:
3258
3259 @smallexample
3260 struct T @{
3261 @dots{}
3262 @};
3263 T fn(T t)
3264 @{
3265 @dots{}
3266 return std::move (t);
3267 @}
3268 @end smallexample
3269
3270 Here, the @code{std::move} call is redundant. Because G++ implements Core
3271 Issue 1579, another example is:
3272
3273 @smallexample
3274 struct T @{ // convertible to U
3275 @dots{}
3276 @};
3277 struct U @{
3278 @dots{}
3279 @};
3280 U fn()
3281 @{
3282 T t;
3283 @dots{}
3284 return std::move (t);
3285 @}
3286 @end smallexample
3287 In this example, copy elision isn't applicable because the type of the
3288 expression being returned and the function return type differ, yet G++
3289 treats the return value as if it were designated by an rvalue.
3290
3291 This warning is enabled by @option{-Wextra}.
3292
3293 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3294 @opindex fext-numeric-literals
3295 @opindex fno-ext-numeric-literals
3296 Accept imaginary, fixed-point, or machine-defined
3297 literal number suffixes as GNU extensions.
3298 When this option is turned off these suffixes are treated
3299 as C++11 user-defined literal numeric suffixes.
3300 This is on by default for all pre-C++11 dialects and all GNU dialects:
3301 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3302 @option{-std=gnu++14}.
3303 This option is off by default
3304 for ISO C++11 onwards (@option{-std=c++11}, ...).
3305 @end table
3306
3307 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3308
3309 @table @gcctabopt
3310 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3311 @opindex Weffc++
3312 @opindex Wno-effc++
3313 Warn about violations of the following style guidelines from Scott Meyers'
3314 @cite{Effective C++} series of books:
3315
3316 @itemize @bullet
3317 @item
3318 Define a copy constructor and an assignment operator for classes
3319 with dynamically-allocated memory.
3320
3321 @item
3322 Prefer initialization to assignment in constructors.
3323
3324 @item
3325 Have @code{operator=} return a reference to @code{*this}.
3326
3327 @item
3328 Don't try to return a reference when you must return an object.
3329
3330 @item
3331 Distinguish between prefix and postfix forms of increment and
3332 decrement operators.
3333
3334 @item
3335 Never overload @code{&&}, @code{||}, or @code{,}.
3336
3337 @end itemize
3338
3339 This option also enables @option{-Wnon-virtual-dtor}, which is also
3340 one of the effective C++ recommendations. However, the check is
3341 extended to warn about the lack of virtual destructor in accessible
3342 non-polymorphic bases classes too.
3343
3344 When selecting this option, be aware that the standard library
3345 headers do not obey all of these guidelines; use @samp{grep -v}
3346 to filter out those warnings.
3347
3348 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3349 @opindex Wstrict-null-sentinel
3350 @opindex Wno-strict-null-sentinel
3351 Warn about the use of an uncasted @code{NULL} as sentinel. When
3352 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3353 to @code{__null}. Although it is a null pointer constant rather than a
3354 null pointer, it is guaranteed to be of the same size as a pointer.
3355 But this use is not portable across different compilers.
3356
3357 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3358 @opindex Wno-non-template-friend
3359 @opindex Wnon-template-friend
3360 Disable warnings when non-template friend functions are declared
3361 within a template. In very old versions of GCC that predate implementation
3362 of the ISO standard, declarations such as
3363 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3364 could be interpreted as a particular specialization of a template
3365 function; the warning exists to diagnose compatibility problems,
3366 and is enabled by default.
3367
3368 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3369 @opindex Wold-style-cast
3370 @opindex Wno-old-style-cast
3371 Warn if an old-style (C-style) cast to a non-void type is used within
3372 a C++ program. The new-style casts (@code{dynamic_cast},
3373 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3374 less vulnerable to unintended effects and much easier to search for.
3375
3376 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3377 @opindex Woverloaded-virtual
3378 @opindex Wno-overloaded-virtual
3379 @cindex overloaded virtual function, warning
3380 @cindex warning for overloaded virtual function
3381 Warn when a function declaration hides virtual functions from a
3382 base class. For example, in:
3383
3384 @smallexample
3385 struct A @{
3386 virtual void f();
3387 @};
3388
3389 struct B: public A @{
3390 void f(int);
3391 @};
3392 @end smallexample
3393
3394 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3395 like:
3396
3397 @smallexample
3398 B* b;
3399 b->f();
3400 @end smallexample
3401
3402 @noindent
3403 fails to compile.
3404
3405 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3406 @opindex Wno-pmf-conversions
3407 @opindex Wpmf-conversions
3408 Disable the diagnostic for converting a bound pointer to member function
3409 to a plain pointer.
3410
3411 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3412 @opindex Wsign-promo
3413 @opindex Wno-sign-promo
3414 Warn when overload resolution chooses a promotion from unsigned or
3415 enumerated type to a signed type, over a conversion to an unsigned type of
3416 the same size. Previous versions of G++ tried to preserve
3417 unsignedness, but the standard mandates the current behavior.
3418
3419 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3420 @opindex Wtemplates
3421 @opindex Wno-templates
3422 Warn when a primary template declaration is encountered. Some coding
3423 rules disallow templates, and this may be used to enforce that rule.
3424 The warning is inactive inside a system header file, such as the STL, so
3425 one can still use the STL. One may also instantiate or specialize
3426 templates.
3427
3428 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3429 @opindex Wmultiple-inheritance
3430 @opindex Wno-multiple-inheritance
3431 Warn when a class is defined with multiple direct base classes. Some
3432 coding rules disallow multiple inheritance, and this may be used to
3433 enforce that rule. The warning is inactive inside a system header file,
3434 such as the STL, so one can still use the STL. One may also define
3435 classes that indirectly use multiple inheritance.
3436
3437 @item -Wvirtual-inheritance
3438 @opindex Wvirtual-inheritance
3439 @opindex Wno-virtual-inheritance
3440 Warn when a class is defined with a virtual direct base class. Some
3441 coding rules disallow multiple inheritance, and this may be used to
3442 enforce that rule. The warning is inactive inside a system header file,
3443 such as the STL, so one can still use the STL. One may also define
3444 classes that indirectly use virtual inheritance.
3445
3446 @item -Wnamespaces
3447 @opindex Wnamespaces
3448 @opindex Wno-namespaces
3449 Warn when a namespace definition is opened. Some coding rules disallow
3450 namespaces, and this may be used to enforce that rule. The warning is
3451 inactive inside a system header file, such as the STL, so one can still
3452 use the STL. One may also use using directives and qualified names.
3453
3454 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3455 @opindex Wterminate
3456 @opindex Wno-terminate
3457 Disable the warning about a throw-expression that will immediately
3458 result in a call to @code{terminate}.
3459
3460 @item -Wno-class-conversion @r{(C++ and Objective-C++ only)}
3461 @opindex Wno-class-conversion
3462 @opindex Wclass-conversion
3463 Disable the warning about the case when a conversion function converts an
3464 object to the same type, to a base class of that type, or to void; such
3465 a conversion function will never be called.
3466 @end table
3467
3468 @node Objective-C and Objective-C++ Dialect Options
3469 @section Options Controlling Objective-C and Objective-C++ Dialects
3470
3471 @cindex compiler options, Objective-C and Objective-C++
3472 @cindex Objective-C and Objective-C++ options, command-line
3473 @cindex options, Objective-C and Objective-C++
3474 (NOTE: This manual does not describe the Objective-C and Objective-C++
3475 languages themselves. @xref{Standards,,Language Standards
3476 Supported by GCC}, for references.)
3477
3478 This section describes the command-line options that are only meaningful
3479 for Objective-C and Objective-C++ programs. You can also use most of
3480 the language-independent GNU compiler options.
3481 For example, you might compile a file @file{some_class.m} like this:
3482
3483 @smallexample
3484 gcc -g -fgnu-runtime -O -c some_class.m
3485 @end smallexample
3486
3487 @noindent
3488 In this example, @option{-fgnu-runtime} is an option meant only for
3489 Objective-C and Objective-C++ programs; you can use the other options with
3490 any language supported by GCC@.
3491
3492 Note that since Objective-C is an extension of the C language, Objective-C
3493 compilations may also use options specific to the C front-end (e.g.,
3494 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3495 C++-specific options (e.g., @option{-Wabi}).
3496
3497 Here is a list of options that are @emph{only} for compiling Objective-C
3498 and Objective-C++ programs:
3499
3500 @table @gcctabopt
3501 @item -fconstant-string-class=@var{class-name}
3502 @opindex fconstant-string-class
3503 Use @var{class-name} as the name of the class to instantiate for each
3504 literal string specified with the syntax @code{@@"@dots{}"}. The default
3505 class name is @code{NXConstantString} if the GNU runtime is being used, and
3506 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3507 @option{-fconstant-cfstrings} option, if also present, overrides the
3508 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3509 to be laid out as constant CoreFoundation strings.
3510
3511 @item -fgnu-runtime
3512 @opindex fgnu-runtime
3513 Generate object code compatible with the standard GNU Objective-C
3514 runtime. This is the default for most types of systems.
3515
3516 @item -fnext-runtime
3517 @opindex fnext-runtime
3518 Generate output compatible with the NeXT runtime. This is the default
3519 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3520 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3521 used.
3522
3523 @item -fno-nil-receivers
3524 @opindex fno-nil-receivers
3525 @opindex fnil-receivers
3526 Assume that all Objective-C message dispatches (@code{[receiver
3527 message:arg]}) in this translation unit ensure that the receiver is
3528 not @code{nil}. This allows for more efficient entry points in the
3529 runtime to be used. This option is only available in conjunction with
3530 the NeXT runtime and ABI version 0 or 1.
3531
3532 @item -fobjc-abi-version=@var{n}
3533 @opindex fobjc-abi-version
3534 Use version @var{n} of the Objective-C ABI for the selected runtime.
3535 This option is currently supported only for the NeXT runtime. In that
3536 case, Version 0 is the traditional (32-bit) ABI without support for
3537 properties and other Objective-C 2.0 additions. Version 1 is the
3538 traditional (32-bit) ABI with support for properties and other
3539 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3540 nothing is specified, the default is Version 0 on 32-bit target
3541 machines, and Version 2 on 64-bit target machines.
3542
3543 @item -fobjc-call-cxx-cdtors
3544 @opindex fobjc-call-cxx-cdtors
3545 For each Objective-C class, check if any of its instance variables is a
3546 C++ object with a non-trivial default constructor. If so, synthesize a
3547 special @code{- (id) .cxx_construct} instance method which runs
3548 non-trivial default constructors on any such instance variables, in order,
3549 and then return @code{self}. Similarly, check if any instance variable
3550 is a C++ object with a non-trivial destructor, and if so, synthesize a
3551 special @code{- (void) .cxx_destruct} method which runs
3552 all such default destructors, in reverse order.
3553
3554 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3555 methods thusly generated only operate on instance variables
3556 declared in the current Objective-C class, and not those inherited
3557 from superclasses. It is the responsibility of the Objective-C
3558 runtime to invoke all such methods in an object's inheritance
3559 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3560 by the runtime immediately after a new object instance is allocated;
3561 the @code{- (void) .cxx_destruct} methods are invoked immediately
3562 before the runtime deallocates an object instance.
3563
3564 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3565 support for invoking the @code{- (id) .cxx_construct} and
3566 @code{- (void) .cxx_destruct} methods.
3567
3568 @item -fobjc-direct-dispatch
3569 @opindex fobjc-direct-dispatch
3570 Allow fast jumps to the message dispatcher. On Darwin this is
3571 accomplished via the comm page.
3572
3573 @item -fobjc-exceptions
3574 @opindex fobjc-exceptions
3575 Enable syntactic support for structured exception handling in
3576 Objective-C, similar to what is offered by C++. This option
3577 is required to use the Objective-C keywords @code{@@try},
3578 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3579 @code{@@synchronized}. This option is available with both the GNU
3580 runtime and the NeXT runtime (but not available in conjunction with
3581 the NeXT runtime on Mac OS X 10.2 and earlier).
3582
3583 @item -fobjc-gc
3584 @opindex fobjc-gc
3585 Enable garbage collection (GC) in Objective-C and Objective-C++
3586 programs. This option is only available with the NeXT runtime; the
3587 GNU runtime has a different garbage collection implementation that
3588 does not require special compiler flags.
3589
3590 @item -fobjc-nilcheck
3591 @opindex fobjc-nilcheck
3592 For the NeXT runtime with version 2 of the ABI, check for a nil
3593 receiver in method invocations before doing the actual method call.
3594 This is the default and can be disabled using
3595 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3596 checked for nil in this way no matter what this flag is set to.
3597 Currently this flag does nothing when the GNU runtime, or an older
3598 version of the NeXT runtime ABI, is used.
3599
3600 @item -fobjc-std=objc1
3601 @opindex fobjc-std
3602 Conform to the language syntax of Objective-C 1.0, the language
3603 recognized by GCC 4.0. This only affects the Objective-C additions to
3604 the C/C++ language; it does not affect conformance to C/C++ standards,
3605 which is controlled by the separate C/C++ dialect option flags. When
3606 this option is used with the Objective-C or Objective-C++ compiler,
3607 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3608 This is useful if you need to make sure that your Objective-C code can
3609 be compiled with older versions of GCC@.
3610
3611 @item -freplace-objc-classes
3612 @opindex freplace-objc-classes
3613 Emit a special marker instructing @command{ld(1)} not to statically link in
3614 the resulting object file, and allow @command{dyld(1)} to load it in at
3615 run time instead. This is used in conjunction with the Fix-and-Continue
3616 debugging mode, where the object file in question may be recompiled and
3617 dynamically reloaded in the course of program execution, without the need
3618 to restart the program itself. Currently, Fix-and-Continue functionality
3619 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3620 and later.
3621
3622 @item -fzero-link
3623 @opindex fzero-link
3624 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3625 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3626 compile time) with static class references that get initialized at load time,
3627 which improves run-time performance. Specifying the @option{-fzero-link} flag
3628 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3629 to be retained. This is useful in Zero-Link debugging mode, since it allows
3630 for individual class implementations to be modified during program execution.
3631 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3632 regardless of command-line options.
3633
3634 @item -fno-local-ivars
3635 @opindex fno-local-ivars
3636 @opindex flocal-ivars
3637 By default instance variables in Objective-C can be accessed as if
3638 they were local variables from within the methods of the class they're
3639 declared in. This can lead to shadowing between instance variables
3640 and other variables declared either locally inside a class method or
3641 globally with the same name. Specifying the @option{-fno-local-ivars}
3642 flag disables this behavior thus avoiding variable shadowing issues.
3643
3644 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3645 @opindex fivar-visibility
3646 Set the default instance variable visibility to the specified option
3647 so that instance variables declared outside the scope of any access
3648 modifier directives default to the specified visibility.
3649
3650 @item -gen-decls
3651 @opindex gen-decls
3652 Dump interface declarations for all classes seen in the source file to a
3653 file named @file{@var{sourcename}.decl}.
3654
3655 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3656 @opindex Wassign-intercept
3657 @opindex Wno-assign-intercept
3658 Warn whenever an Objective-C assignment is being intercepted by the
3659 garbage collector.
3660
3661 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3662 @opindex Wno-protocol
3663 @opindex Wprotocol
3664 If a class is declared to implement a protocol, a warning is issued for
3665 every method in the protocol that is not implemented by the class. The
3666 default behavior is to issue a warning for every method not explicitly
3667 implemented in the class, even if a method implementation is inherited
3668 from the superclass. If you use the @option{-Wno-protocol} option, then
3669 methods inherited from the superclass are considered to be implemented,
3670 and no warning is issued for them.
3671
3672 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3673 @opindex Wselector
3674 @opindex Wno-selector
3675 Warn if multiple methods of different types for the same selector are
3676 found during compilation. The check is performed on the list of methods
3677 in the final stage of compilation. Additionally, a check is performed
3678 for each selector appearing in a @code{@@selector(@dots{})}
3679 expression, and a corresponding method for that selector has been found
3680 during compilation. Because these checks scan the method table only at
3681 the end of compilation, these warnings are not produced if the final
3682 stage of compilation is not reached, for example because an error is
3683 found during compilation, or because the @option{-fsyntax-only} option is
3684 being used.
3685
3686 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3687 @opindex Wstrict-selector-match
3688 @opindex Wno-strict-selector-match
3689 Warn if multiple methods with differing argument and/or return types are
3690 found for a given selector when attempting to send a message using this
3691 selector to a receiver of type @code{id} or @code{Class}. When this flag
3692 is off (which is the default behavior), the compiler omits such warnings
3693 if any differences found are confined to types that share the same size
3694 and alignment.
3695
3696 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3697 @opindex Wundeclared-selector
3698 @opindex Wno-undeclared-selector
3699 Warn if a @code{@@selector(@dots{})} expression referring to an
3700 undeclared selector is found. A selector is considered undeclared if no
3701 method with that name has been declared before the
3702 @code{@@selector(@dots{})} expression, either explicitly in an
3703 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3704 an @code{@@implementation} section. This option always performs its
3705 checks as soon as a @code{@@selector(@dots{})} expression is found,
3706 while @option{-Wselector} only performs its checks in the final stage of
3707 compilation. This also enforces the coding style convention
3708 that methods and selectors must be declared before being used.
3709
3710 @item -print-objc-runtime-info
3711 @opindex print-objc-runtime-info
3712 Generate C header describing the largest structure that is passed by
3713 value, if any.
3714
3715 @end table
3716
3717 @node Diagnostic Message Formatting Options
3718 @section Options to Control Diagnostic Messages Formatting
3719 @cindex options to control diagnostics formatting
3720 @cindex diagnostic messages
3721 @cindex message formatting
3722
3723 Traditionally, diagnostic messages have been formatted irrespective of
3724 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3725 options described below
3726 to control the formatting algorithm for diagnostic messages,
3727 e.g.@: how many characters per line, how often source location
3728 information should be reported. Note that some language front ends may not
3729 honor these options.
3730
3731 @table @gcctabopt
3732 @item -fmessage-length=@var{n}
3733 @opindex fmessage-length
3734 Try to format error messages so that they fit on lines of about
3735 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3736 done; each error message appears on a single line. This is the
3737 default for all front ends.
3738
3739 Note - this option also affects the display of the @samp{#error} and
3740 @samp{#warning} pre-processor directives, and the @samp{deprecated}
3741 function/type/variable attribute. It does not however affect the
3742 @samp{pragma GCC warning} and @samp{pragma GCC error} pragmas.
3743
3744 @item -fdiagnostics-show-location=once
3745 @opindex fdiagnostics-show-location
3746 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3747 reporter to emit source location information @emph{once}; that is, in
3748 case the message is too long to fit on a single physical line and has to
3749 be wrapped, the source location won't be emitted (as prefix) again,
3750 over and over, in subsequent continuation lines. This is the default
3751 behavior.
3752
3753 @item -fdiagnostics-show-location=every-line
3754 Only meaningful in line-wrapping mode. Instructs the diagnostic
3755 messages reporter to emit the same source location information (as
3756 prefix) for physical lines that result from the process of breaking
3757 a message which is too long to fit on a single line.
3758
3759 @item -fdiagnostics-color[=@var{WHEN}]
3760 @itemx -fno-diagnostics-color
3761 @opindex fdiagnostics-color
3762 @cindex highlight, color
3763 @vindex GCC_COLORS @r{environment variable}
3764 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3765 or @samp{auto}. The default depends on how the compiler has been configured,
3766 it can be any of the above @var{WHEN} options or also @samp{never}
3767 if @env{GCC_COLORS} environment variable isn't present in the environment,
3768 and @samp{auto} otherwise.
3769 @samp{auto} means to use color only when the standard error is a terminal.
3770 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3771 aliases for @option{-fdiagnostics-color=always} and
3772 @option{-fdiagnostics-color=never}, respectively.
3773
3774 The colors are defined by the environment variable @env{GCC_COLORS}.
3775 Its value is a colon-separated list of capabilities and Select Graphic
3776 Rendition (SGR) substrings. SGR commands are interpreted by the
3777 terminal or terminal emulator. (See the section in the documentation
3778 of your text terminal for permitted values and their meanings as
3779 character attributes.) These substring values are integers in decimal
3780 representation and can be concatenated with semicolons.
3781 Common values to concatenate include
3782 @samp{1} for bold,
3783 @samp{4} for underline,
3784 @samp{5} for blink,
3785 @samp{7} for inverse,
3786 @samp{39} for default foreground color,
3787 @samp{30} to @samp{37} for foreground colors,
3788 @samp{90} to @samp{97} for 16-color mode foreground colors,
3789 @samp{38;5;0} to @samp{38;5;255}
3790 for 88-color and 256-color modes foreground colors,
3791 @samp{49} for default background color,
3792 @samp{40} to @samp{47} for background colors,
3793 @samp{100} to @samp{107} for 16-color mode background colors,
3794 and @samp{48;5;0} to @samp{48;5;255}
3795 for 88-color and 256-color modes background colors.
3796
3797 The default @env{GCC_COLORS} is
3798 @smallexample
3799 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3800 quote=01:fixit-insert=32:fixit-delete=31:\
3801 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3802 type-diff=01;32
3803 @end smallexample
3804 @noindent
3805 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3806 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3807 @samp{01} is bold, and @samp{31} is red.
3808 Setting @env{GCC_COLORS} to the empty string disables colors.
3809 Supported capabilities are as follows.
3810
3811 @table @code
3812 @item error=
3813 @vindex error GCC_COLORS @r{capability}
3814 SGR substring for error: markers.
3815
3816 @item warning=
3817 @vindex warning GCC_COLORS @r{capability}
3818 SGR substring for warning: markers.
3819
3820 @item note=
3821 @vindex note GCC_COLORS @r{capability}
3822 SGR substring for note: markers.
3823
3824 @item range1=
3825 @vindex range1 GCC_COLORS @r{capability}
3826 SGR substring for first additional range.
3827
3828 @item range2=
3829 @vindex range2 GCC_COLORS @r{capability}
3830 SGR substring for second additional range.
3831
3832 @item locus=
3833 @vindex locus GCC_COLORS @r{capability}
3834 SGR substring for location information, @samp{file:line} or
3835 @samp{file:line:column} etc.
3836
3837 @item quote=
3838 @vindex quote GCC_COLORS @r{capability}
3839 SGR substring for information printed within quotes.
3840
3841 @item fixit-insert=
3842 @vindex fixit-insert GCC_COLORS @r{capability}
3843 SGR substring for fix-it hints suggesting text to
3844 be inserted or replaced.
3845
3846 @item fixit-delete=
3847 @vindex fixit-delete GCC_COLORS @r{capability}
3848 SGR substring for fix-it hints suggesting text to
3849 be deleted.
3850
3851 @item diff-filename=
3852 @vindex diff-filename GCC_COLORS @r{capability}
3853 SGR substring for filename headers within generated patches.
3854
3855 @item diff-hunk=
3856 @vindex diff-hunk GCC_COLORS @r{capability}
3857 SGR substring for the starts of hunks within generated patches.
3858
3859 @item diff-delete=
3860 @vindex diff-delete GCC_COLORS @r{capability}
3861 SGR substring for deleted lines within generated patches.
3862
3863 @item diff-insert=
3864 @vindex diff-insert GCC_COLORS @r{capability}
3865 SGR substring for inserted lines within generated patches.
3866
3867 @item type-diff=
3868 @vindex type-diff GCC_COLORS @r{capability}
3869 SGR substring for highlighting mismatching types within template
3870 arguments in the C++ frontend.
3871 @end table
3872
3873 @item -fno-diagnostics-show-option
3874 @opindex fno-diagnostics-show-option
3875 @opindex fdiagnostics-show-option
3876 By default, each diagnostic emitted includes text indicating the
3877 command-line option that directly controls the diagnostic (if such an
3878 option is known to the diagnostic machinery). Specifying the
3879 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3880
3881 @item -fno-diagnostics-show-caret
3882 @opindex fno-diagnostics-show-caret
3883 @opindex fdiagnostics-show-caret
3884 By default, each diagnostic emitted includes the original source line
3885 and a caret @samp{^} indicating the column. This option suppresses this
3886 information. The source line is truncated to @var{n} characters, if
3887 the @option{-fmessage-length=n} option is given. When the output is done
3888 to the terminal, the width is limited to the width given by the
3889 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3890
3891 @item -fno-diagnostics-show-labels
3892 @opindex fno-diagnostics-show-labels
3893 @opindex fdiagnostics-show-labels
3894 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3895 diagnostics can label ranges of source code with pertinent information, such
3896 as the types of expressions:
3897
3898 @smallexample
3899 printf ("foo %s bar", long_i + long_j);
3900 ~^ ~~~~~~~~~~~~~~~
3901 | |
3902 char * long int
3903 @end smallexample
3904
3905 This option suppresses the printing of these labels (in the example above,
3906 the vertical bars and the ``char *'' and ``long int'' text).
3907
3908 @item -fno-diagnostics-show-line-numbers
3909 @opindex fno-diagnostics-show-line-numbers
3910 @opindex fdiagnostics-show-line-numbers
3911 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3912 a left margin is printed, showing line numbers. This option suppresses this
3913 left margin.
3914
3915 @item -fdiagnostics-minimum-margin-width=@var{width}
3916 @opindex fdiagnostics-minimum-margin-width
3917 This option controls the minimum width of the left margin printed by
3918 @option{-fdiagnostics-show-line-numbers}. It defaults to 6.
3919
3920 @item -fdiagnostics-parseable-fixits
3921 @opindex fdiagnostics-parseable-fixits
3922 Emit fix-it hints in a machine-parseable format, suitable for consumption
3923 by IDEs. For each fix-it, a line will be printed after the relevant
3924 diagnostic, starting with the string ``fix-it:''. For example:
3925
3926 @smallexample
3927 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3928 @end smallexample
3929
3930 The location is expressed as a half-open range, expressed as a count of
3931 bytes, starting at byte 1 for the initial column. In the above example,
3932 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3933 given string:
3934
3935 @smallexample
3936 00000000011111111112222222222
3937 12345678901234567890123456789
3938 gtk_widget_showall (dlg);
3939 ^^^^^^^^^^^^^^^^^^
3940 gtk_widget_show_all
3941 @end smallexample
3942
3943 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3944 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3945 (e.g. vertical tab as ``\013'').
3946
3947 An empty replacement string indicates that the given range is to be removed.
3948 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3949 be inserted at the given position.
3950
3951 @item -fdiagnostics-generate-patch
3952 @opindex fdiagnostics-generate-patch
3953 Print fix-it hints to stderr in unified diff format, after any diagnostics
3954 are printed. For example:
3955
3956 @smallexample
3957 --- test.c
3958 +++ test.c
3959 @@ -42,5 +42,5 @@
3960
3961 void show_cb(GtkDialog *dlg)
3962 @{
3963 - gtk_widget_showall(dlg);
3964 + gtk_widget_show_all(dlg);
3965 @}
3966
3967 @end smallexample
3968
3969 The diff may or may not be colorized, following the same rules
3970 as for diagnostics (see @option{-fdiagnostics-color}).
3971
3972 @item -fdiagnostics-show-template-tree
3973 @opindex fdiagnostics-show-template-tree
3974
3975 In the C++ frontend, when printing diagnostics showing mismatching
3976 template types, such as:
3977
3978 @smallexample
3979 could not convert 'std::map<int, std::vector<double> >()'
3980 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3981 @end smallexample
3982
3983 the @option{-fdiagnostics-show-template-tree} flag enables printing a
3984 tree-like structure showing the common and differing parts of the types,
3985 such as:
3986
3987 @smallexample
3988 map<
3989 [...],
3990 vector<
3991 [double != float]>>
3992 @end smallexample
3993
3994 The parts that differ are highlighted with color (``double'' and
3995 ``float'' in this case).
3996
3997 @item -fno-elide-type
3998 @opindex fno-elide-type
3999 @opindex felide-type
4000 By default when the C++ frontend prints diagnostics showing mismatching
4001 template types, common parts of the types are printed as ``[...]'' to
4002 simplify the error message. For example:
4003
4004 @smallexample
4005 could not convert 'std::map<int, std::vector<double> >()'
4006 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4007 @end smallexample
4008
4009 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
4010 This flag also affects the output of the
4011 @option{-fdiagnostics-show-template-tree} flag.
4012
4013 @item -fno-show-column
4014 @opindex fno-show-column
4015 @opindex fshow-column
4016 Do not print column numbers in diagnostics. This may be necessary if
4017 diagnostics are being scanned by a program that does not understand the
4018 column numbers, such as @command{dejagnu}.
4019
4020 @item -fdiagnostics-format=@var{FORMAT}
4021 @opindex fdiagnostics-format
4022 Select a different format for printing diagnostics.
4023 @var{FORMAT} is @samp{text} or @samp{json}.
4024 The default is @samp{text}.
4025
4026 The @samp{json} format consists of a top-level JSON array containing JSON
4027 objects representing the diagnostics.
4028
4029 The JSON is emitted as one line, without formatting; the examples below
4030 have been formatted for clarity.
4031
4032 Diagnostics can have child diagnostics. For example, this error and note:
4033
4034 @smallexample
4035 misleading-indentation.c:15:3: warning: this 'if' clause does not
4036 guard... [-Wmisleading-indentation]
4037 15 | if (flag)
4038 | ^~
4039 misleading-indentation.c:17:5: note: ...this statement, but the latter
4040 is misleadingly indented as if it were guarded by the 'if'
4041 17 | y = 2;
4042 | ^
4043 @end smallexample
4044
4045 @noindent
4046 might be printed in JSON form (after formatting) like this:
4047
4048 @smallexample
4049 [
4050 @{
4051 "kind": "warning",
4052 "locations": [
4053 @{
4054 "caret": @{
4055 "column": 3,
4056 "file": "misleading-indentation.c",
4057 "line": 15
4058 @},
4059 "finish": @{
4060 "column": 4,
4061 "file": "misleading-indentation.c",
4062 "line": 15
4063 @}
4064 @}
4065 ],
4066 "message": "this \u2018if\u2019 clause does not guard...",
4067 "option": "-Wmisleading-indentation",
4068 "children": [
4069 @{
4070 "kind": "note",
4071 "locations": [
4072 @{
4073 "caret": @{
4074 "column": 5,
4075 "file": "misleading-indentation.c",
4076 "line": 17
4077 @}
4078 @}
4079 ],
4080 "message": "...this statement, but the latter is @dots{}"
4081 @}
4082 ]
4083 @},
4084 @dots{}
4085 ]
4086 @end smallexample
4087
4088 @noindent
4089 where the @code{note} is a child of the @code{warning}.
4090
4091 A diagnostic has a @code{kind}. If this is @code{warning}, then there is
4092 an @code{option} key describing the command-line option controlling the
4093 warning.
4094
4095 A diagnostic can contain zero or more locations. Each location has up
4096 to three positions within it: a @code{caret} position and optional
4097 @code{start} and @code{finish} positions. A location can also have
4098 an optional @code{label} string. For example, this error:
4099
4100 @smallexample
4101 bad-binary-ops.c:64:23: error: invalid operands to binary + (have 'S' @{aka
4102 'struct s'@} and 'T' @{aka 'struct t'@})
4103 64 | return callee_4a () + callee_4b ();
4104 | ~~~~~~~~~~~~ ^ ~~~~~~~~~~~~
4105 | | |
4106 | | T @{aka struct t@}
4107 | S @{aka struct s@}
4108 @end smallexample
4109
4110 @noindent
4111 has three locations. Its primary location is at the ``+'' token at column
4112 23. It has two secondary locations, describing the left and right-hand sides
4113 of the expression, which have labels. It might be printed in JSON form as:
4114
4115 @smallexample
4116 @{
4117 "children": [],
4118 "kind": "error",
4119 "locations": [
4120 @{
4121 "caret": @{
4122 "column": 23, "file": "bad-binary-ops.c", "line": 64
4123 @}
4124 @},
4125 @{
4126 "caret": @{
4127 "column": 10, "file": "bad-binary-ops.c", "line": 64
4128 @},
4129 "finish": @{
4130 "column": 21, "file": "bad-binary-ops.c", "line": 64
4131 @},
4132 "label": "S @{aka struct s@}"
4133 @},
4134 @{
4135 "caret": @{
4136 "column": 25, "file": "bad-binary-ops.c", "line": 64
4137 @},
4138 "finish": @{
4139 "column": 36, "file": "bad-binary-ops.c", "line": 64
4140 @},
4141 "label": "T @{aka struct t@}"
4142 @}
4143 ],
4144 "message": "invalid operands to binary + @dots{}"
4145 @}
4146 @end smallexample
4147
4148 If a diagnostic contains fix-it hints, it has a @code{fixits} array,
4149 consisting of half-open intervals, similar to the output of
4150 @option{-fdiagnostics-parseable-fixits}. For example, this diagnostic
4151 with a replacement fix-it hint:
4152
4153 @smallexample
4154 demo.c:8:15: error: 'struct s' has no member named 'colour'; did you
4155 mean 'color'?
4156 8 | return ptr->colour;
4157 | ^~~~~~
4158 | color
4159 @end smallexample
4160
4161 @noindent
4162 might be printed in JSON form as:
4163
4164 @smallexample
4165 @{
4166 "children": [],
4167 "fixits": [
4168 @{
4169 "next": @{
4170 "column": 21,
4171 "file": "demo.c",
4172 "line": 8
4173 @},
4174 "start": @{
4175 "column": 15,
4176 "file": "demo.c",
4177 "line": 8
4178 @},
4179 "string": "color"
4180 @}
4181 ],
4182 "kind": "error",
4183 "locations": [
4184 @{
4185 "caret": @{
4186 "column": 15,
4187 "file": "demo.c",
4188 "line": 8
4189 @},
4190 "finish": @{
4191 "column": 20,
4192 "file": "demo.c",
4193 "line": 8
4194 @}
4195 @}
4196 ],
4197 "message": "\u2018struct s\u2019 has no member named @dots{}"
4198 @}
4199 @end smallexample
4200
4201 @noindent
4202 where the fix-it hint suggests replacing the text from @code{start} up
4203 to but not including @code{next} with @code{string}'s value. Deletions
4204 are expressed via an empty value for @code{string}, insertions by
4205 having @code{start} equal @code{next}.
4206
4207 @end table
4208
4209 @node Warning Options
4210 @section Options to Request or Suppress Warnings
4211 @cindex options to control warnings
4212 @cindex warning messages
4213 @cindex messages, warning
4214 @cindex suppressing warnings
4215
4216 Warnings are diagnostic messages that report constructions that
4217 are not inherently erroneous but that are risky or suggest there
4218 may have been an error.
4219
4220 The following language-independent options do not enable specific
4221 warnings but control the kinds of diagnostics produced by GCC@.
4222
4223 @table @gcctabopt
4224 @cindex syntax checking
4225 @item -fsyntax-only
4226 @opindex fsyntax-only
4227 Check the code for syntax errors, but don't do anything beyond that.
4228
4229 @item -fmax-errors=@var{n}
4230 @opindex fmax-errors
4231 Limits the maximum number of error messages to @var{n}, at which point
4232 GCC bails out rather than attempting to continue processing the source
4233 code. If @var{n} is 0 (the default), there is no limit on the number
4234 of error messages produced. If @option{-Wfatal-errors} is also
4235 specified, then @option{-Wfatal-errors} takes precedence over this
4236 option.
4237
4238 @item -w
4239 @opindex w
4240 Inhibit all warning messages.
4241
4242 @item -Werror
4243 @opindex Werror
4244 @opindex Wno-error
4245 Make all warnings into errors.
4246
4247 @item -Werror=
4248 @opindex Werror=
4249 @opindex Wno-error=
4250 Make the specified warning into an error. The specifier for a warning
4251 is appended; for example @option{-Werror=switch} turns the warnings
4252 controlled by @option{-Wswitch} into errors. This switch takes a
4253 negative form, to be used to negate @option{-Werror} for specific
4254 warnings; for example @option{-Wno-error=switch} makes
4255 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
4256 is in effect.
4257
4258 The warning message for each controllable warning includes the
4259 option that controls the warning. That option can then be used with
4260 @option{-Werror=} and @option{-Wno-error=} as described above.
4261 (Printing of the option in the warning message can be disabled using the
4262 @option{-fno-diagnostics-show-option} flag.)
4263
4264 Note that specifying @option{-Werror=}@var{foo} automatically implies
4265 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
4266 imply anything.
4267
4268 @item -Wfatal-errors
4269 @opindex Wfatal-errors
4270 @opindex Wno-fatal-errors
4271 This option causes the compiler to abort compilation on the first error
4272 occurred rather than trying to keep going and printing further error
4273 messages.
4274
4275 @end table
4276
4277 You can request many specific warnings with options beginning with
4278 @samp{-W}, for example @option{-Wimplicit} to request warnings on
4279 implicit declarations. Each of these specific warning options also
4280 has a negative form beginning @samp{-Wno-} to turn off warnings; for
4281 example, @option{-Wno-implicit}. This manual lists only one of the
4282 two forms, whichever is not the default. For further
4283 language-specific options also refer to @ref{C++ Dialect Options} and
4284 @ref{Objective-C and Objective-C++ Dialect Options}.
4285
4286 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
4287 options, such as @option{-Wunused}, which may turn on further options,
4288 such as @option{-Wunused-value}. The combined effect of positive and
4289 negative forms is that more specific options have priority over less
4290 specific ones, independently of their position in the command-line. For
4291 options of the same specificity, the last one takes effect. Options
4292 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
4293 as if they appeared at the end of the command-line.
4294
4295 When an unrecognized warning option is requested (e.g.,
4296 @option{-Wunknown-warning}), GCC emits a diagnostic stating
4297 that the option is not recognized. However, if the @option{-Wno-} form
4298 is used, the behavior is slightly different: no diagnostic is
4299 produced for @option{-Wno-unknown-warning} unless other diagnostics
4300 are being produced. This allows the use of new @option{-Wno-} options
4301 with old compilers, but if something goes wrong, the compiler
4302 warns that an unrecognized option is present.
4303
4304 @table @gcctabopt
4305 @item -Wpedantic
4306 @itemx -pedantic
4307 @opindex pedantic
4308 @opindex Wpedantic
4309 @opindex Wno-pedantic
4310 Issue all the warnings demanded by strict ISO C and ISO C++;
4311 reject all programs that use forbidden extensions, and some other
4312 programs that do not follow ISO C and ISO C++. For ISO C, follows the
4313 version of the ISO C standard specified by any @option{-std} option used.
4314
4315 Valid ISO C and ISO C++ programs should compile properly with or without
4316 this option (though a rare few require @option{-ansi} or a
4317 @option{-std} option specifying the required version of ISO C)@. However,
4318 without this option, certain GNU extensions and traditional C and C++
4319 features are supported as well. With this option, they are rejected.
4320
4321 @option{-Wpedantic} does not cause warning messages for use of the
4322 alternate keywords whose names begin and end with @samp{__}. Pedantic
4323 warnings are also disabled in the expression that follows
4324 @code{__extension__}. However, only system header files should use
4325 these escape routes; application programs should avoid them.
4326 @xref{Alternate Keywords}.
4327
4328 Some users try to use @option{-Wpedantic} to check programs for strict ISO
4329 C conformance. They soon find that it does not do quite what they want:
4330 it finds some non-ISO practices, but not all---only those for which
4331 ISO C @emph{requires} a diagnostic, and some others for which
4332 diagnostics have been added.
4333
4334 A feature to report any failure to conform to ISO C might be useful in
4335 some instances, but would require considerable additional work and would
4336 be quite different from @option{-Wpedantic}. We don't have plans to
4337 support such a feature in the near future.
4338
4339 Where the standard specified with @option{-std} represents a GNU
4340 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
4341 corresponding @dfn{base standard}, the version of ISO C on which the GNU
4342 extended dialect is based. Warnings from @option{-Wpedantic} are given
4343 where they are required by the base standard. (It does not make sense
4344 for such warnings to be given only for features not in the specified GNU
4345 C dialect, since by definition the GNU dialects of C include all
4346 features the compiler supports with the given option, and there would be
4347 nothing to warn about.)
4348
4349 @item -pedantic-errors
4350 @opindex pedantic-errors
4351 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
4352 requires a diagnostic, in some cases where there is undefined behavior
4353 at compile-time and in some other cases that do not prevent compilation
4354 of programs that are valid according to the standard. This is not
4355 equivalent to @option{-Werror=pedantic}, since there are errors enabled
4356 by this option and not enabled by the latter and vice versa.
4357
4358 @item -Wall
4359 @opindex Wall
4360 @opindex Wno-all
4361 This enables all the warnings about constructions that some users
4362 consider questionable, and that are easy to avoid (or modify to
4363 prevent the warning), even in conjunction with macros. This also
4364 enables some language-specific warnings described in @ref{C++ Dialect
4365 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
4366
4367 @option{-Wall} turns on the following warning flags:
4368
4369 @gccoptlist{-Waddress @gol
4370 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
4371 -Wbool-compare @gol
4372 -Wbool-operation @gol
4373 -Wc++11-compat -Wc++14-compat @gol
4374 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
4375 -Wchar-subscripts @gol
4376 -Wcomment @gol
4377 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
4378 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
4379 -Wformat @gol
4380 -Wint-in-bool-context @gol
4381 -Wimplicit @r{(C and Objective-C only)} @gol
4382 -Wimplicit-int @r{(C and Objective-C only)} @gol
4383 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
4384 -Winit-self @r{(only for C++)} @gol
4385 -Wlogical-not-parentheses @gol
4386 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
4387 -Wmaybe-uninitialized @gol
4388 -Wmemset-elt-size @gol
4389 -Wmemset-transposed-args @gol
4390 -Wmisleading-indentation @r{(only for C/C++)} @gol
4391 -Wmissing-attributes @gol
4392 -Wmissing-braces @r{(only for C/ObjC)} @gol
4393 -Wmultistatement-macros @gol
4394 -Wnarrowing @r{(only for C++)} @gol
4395 -Wnonnull @gol
4396 -Wnonnull-compare @gol
4397 -Wopenmp-simd @gol
4398 -Wparentheses @gol
4399 -Wpessimizing-move @r{(only for C++)} @gol
4400 -Wpointer-sign @gol
4401 -Wreorder @gol
4402 -Wrestrict @gol
4403 -Wreturn-type @gol
4404 -Wsequence-point @gol
4405 -Wsign-compare @r{(only in C++)} @gol
4406 -Wsizeof-pointer-div @gol
4407 -Wsizeof-pointer-memaccess @gol
4408 -Wstrict-aliasing @gol
4409 -Wstrict-overflow=1 @gol
4410 -Wswitch @gol
4411 -Wtautological-compare @gol
4412 -Wtrigraphs @gol
4413 -Wuninitialized @gol
4414 -Wunknown-pragmas @gol
4415 -Wunused-function @gol
4416 -Wunused-label @gol
4417 -Wunused-value @gol
4418 -Wunused-variable @gol
4419 -Wvolatile-register-var}
4420
4421 Note that some warning flags are not implied by @option{-Wall}. Some of
4422 them warn about constructions that users generally do not consider
4423 questionable, but which occasionally you might wish to check for;
4424 others warn about constructions that are necessary or hard to avoid in
4425 some cases, and there is no simple way to modify the code to suppress
4426 the warning. Some of them are enabled by @option{-Wextra} but many of
4427 them must be enabled individually.
4428
4429 @item -Wextra
4430 @opindex W
4431 @opindex Wextra
4432 @opindex Wno-extra
4433 This enables some extra warning flags that are not enabled by
4434 @option{-Wall}. (This option used to be called @option{-W}. The older
4435 name is still supported, but the newer name is more descriptive.)
4436
4437 @gccoptlist{-Wclobbered @gol
4438 -Wcast-function-type @gol
4439 -Wdeprecated-copy @r{(C++ only)} @gol
4440 -Wempty-body @gol
4441 -Wignored-qualifiers @gol
4442 -Wimplicit-fallthrough=3 @gol
4443 -Wmissing-field-initializers @gol
4444 -Wmissing-parameter-type @r{(C only)} @gol
4445 -Wold-style-declaration @r{(C only)} @gol
4446 -Woverride-init @gol
4447 -Wsign-compare @r{(C only)} @gol
4448 -Wredundant-move @r{(only for C++)} @gol
4449 -Wtype-limits @gol
4450 -Wuninitialized @gol
4451 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
4452 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
4453 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}}
4454
4455
4456 The option @option{-Wextra} also prints warning messages for the
4457 following cases:
4458
4459 @itemize @bullet
4460
4461 @item
4462 A pointer is compared against integer zero with @code{<}, @code{<=},
4463 @code{>}, or @code{>=}.
4464
4465 @item
4466 (C++ only) An enumerator and a non-enumerator both appear in a
4467 conditional expression.
4468
4469 @item
4470 (C++ only) Ambiguous virtual bases.
4471
4472 @item
4473 (C++ only) Subscripting an array that has been declared @code{register}.
4474
4475 @item
4476 (C++ only) Taking the address of a variable that has been declared
4477 @code{register}.
4478
4479 @item
4480 (C++ only) A base class is not initialized in the copy constructor
4481 of a derived class.
4482
4483 @end itemize
4484
4485 @item -Wchar-subscripts
4486 @opindex Wchar-subscripts
4487 @opindex Wno-char-subscripts
4488 Warn if an array subscript has type @code{char}. This is a common cause
4489 of error, as programmers often forget that this type is signed on some
4490 machines.
4491 This warning is enabled by @option{-Wall}.
4492
4493 @item -Wchkp
4494 @opindex Wchkp
4495 @opindex Wno-chkp
4496 Warn about an invalid memory access that is found by Pointer Bounds Checker
4497 (@option{-fcheck-pointer-bounds}).
4498
4499 @item -Wno-coverage-mismatch
4500 @opindex Wno-coverage-mismatch
4501 @opindex Wcoverage-mismatch
4502 Warn if feedback profiles do not match when using the
4503 @option{-fprofile-use} option.
4504 If a source file is changed between compiling with @option{-fprofile-generate}
4505 and with @option{-fprofile-use}, the files with the profile feedback can fail
4506 to match the source file and GCC cannot use the profile feedback
4507 information. By default, this warning is enabled and is treated as an
4508 error. @option{-Wno-coverage-mismatch} can be used to disable the
4509 warning or @option{-Wno-error=coverage-mismatch} can be used to
4510 disable the error. Disabling the error for this warning can result in
4511 poorly optimized code and is useful only in the
4512 case of very minor changes such as bug fixes to an existing code-base.
4513 Completely disabling the warning is not recommended.
4514
4515 @item -Wno-cpp
4516 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
4517
4518 Suppress warning messages emitted by @code{#warning} directives.
4519
4520 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
4521 @opindex Wdouble-promotion
4522 @opindex Wno-double-promotion
4523 Give a warning when a value of type @code{float} is implicitly
4524 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
4525 floating-point unit implement @code{float} in hardware, but emulate
4526 @code{double} in software. On such a machine, doing computations
4527 using @code{double} values is much more expensive because of the
4528 overhead required for software emulation.
4529
4530 It is easy to accidentally do computations with @code{double} because
4531 floating-point literals are implicitly of type @code{double}. For
4532 example, in:
4533 @smallexample
4534 @group
4535 float area(float radius)
4536 @{
4537 return 3.14159 * radius * radius;
4538 @}
4539 @end group
4540 @end smallexample
4541 the compiler performs the entire computation with @code{double}
4542 because the floating-point literal is a @code{double}.
4543
4544 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4545 @opindex Wduplicate-decl-specifier
4546 @opindex Wno-duplicate-decl-specifier
4547 Warn if a declaration has duplicate @code{const}, @code{volatile},
4548 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
4549 @option{-Wall}.
4550
4551 @item -Wformat
4552 @itemx -Wformat=@var{n}
4553 @opindex Wformat
4554 @opindex Wno-format
4555 @opindex ffreestanding
4556 @opindex fno-builtin
4557 @opindex Wformat=
4558 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4559 the arguments supplied have types appropriate to the format string
4560 specified, and that the conversions specified in the format string make
4561 sense. This includes standard functions, and others specified by format
4562 attributes (@pxref{Function Attributes}), in the @code{printf},
4563 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4564 not in the C standard) families (or other target-specific families).
4565 Which functions are checked without format attributes having been
4566 specified depends on the standard version selected, and such checks of
4567 functions without the attribute specified are disabled by
4568 @option{-ffreestanding} or @option{-fno-builtin}.
4569
4570 The formats are checked against the format features supported by GNU
4571 libc version 2.2. These include all ISO C90 and C99 features, as well
4572 as features from the Single Unix Specification and some BSD and GNU
4573 extensions. Other library implementations may not support all these
4574 features; GCC does not support warning about features that go beyond a
4575 particular library's limitations. However, if @option{-Wpedantic} is used
4576 with @option{-Wformat}, warnings are given about format features not
4577 in the selected standard version (but not for @code{strfmon} formats,
4578 since those are not in any version of the C standard). @xref{C Dialect
4579 Options,,Options Controlling C Dialect}.
4580
4581 @table @gcctabopt
4582 @item -Wformat=1
4583 @itemx -Wformat
4584 @opindex Wformat
4585 @opindex Wformat=1
4586 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4587 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4588 @option{-Wformat} also checks for null format arguments for several
4589 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4590 aspects of this level of format checking can be disabled by the
4591 options: @option{-Wno-format-contains-nul},
4592 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4593 @option{-Wformat} is enabled by @option{-Wall}.
4594
4595 @item -Wno-format-contains-nul
4596 @opindex Wno-format-contains-nul
4597 @opindex Wformat-contains-nul
4598 If @option{-Wformat} is specified, do not warn about format strings that
4599 contain NUL bytes.
4600
4601 @item -Wno-format-extra-args
4602 @opindex Wno-format-extra-args
4603 @opindex Wformat-extra-args
4604 If @option{-Wformat} is specified, do not warn about excess arguments to a
4605 @code{printf} or @code{scanf} format function. The C standard specifies
4606 that such arguments are ignored.
4607
4608 Where the unused arguments lie between used arguments that are
4609 specified with @samp{$} operand number specifications, normally
4610 warnings are still given, since the implementation could not know what
4611 type to pass to @code{va_arg} to skip the unused arguments. However,
4612 in the case of @code{scanf} formats, this option suppresses the
4613 warning if the unused arguments are all pointers, since the Single
4614 Unix Specification says that such unused arguments are allowed.
4615
4616 @item -Wformat-overflow
4617 @itemx -Wformat-overflow=@var{level}
4618 @opindex Wformat-overflow
4619 @opindex Wno-format-overflow
4620 Warn about calls to formatted input/output functions such as @code{sprintf}
4621 and @code{vsprintf} that might overflow the destination buffer. When the
4622 exact number of bytes written by a format directive cannot be determined
4623 at compile-time it is estimated based on heuristics that depend on the
4624 @var{level} argument and on optimization. While enabling optimization
4625 will in most cases improve the accuracy of the warning, it may also
4626 result in false positives.
4627
4628 @table @gcctabopt
4629 @item -Wformat-overflow
4630 @itemx -Wformat-overflow=1
4631 @opindex Wformat-overflow
4632 @opindex Wno-format-overflow
4633 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4634 employs a conservative approach that warns only about calls that most
4635 likely overflow the buffer. At this level, numeric arguments to format
4636 directives with unknown values are assumed to have the value of one, and
4637 strings of unknown length to be empty. Numeric arguments that are known
4638 to be bounded to a subrange of their type, or string arguments whose output
4639 is bounded either by their directive's precision or by a finite set of
4640 string literals, are assumed to take on the value within the range that
4641 results in the most bytes on output. For example, the call to @code{sprintf}
4642 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4643 the terminating NUL character (@code{'\0'}) appended by the function
4644 to the destination buffer will be written past its end. Increasing
4645 the size of the buffer by a single byte is sufficient to avoid the
4646 warning, though it may not be sufficient to avoid the overflow.
4647
4648 @smallexample
4649 void f (int a, int b)
4650 @{
4651 char buf [13];
4652 sprintf (buf, "a = %i, b = %i\n", a, b);
4653 @}
4654 @end smallexample
4655
4656 @item -Wformat-overflow=2
4657 Level @var{2} warns also about calls that might overflow the destination
4658 buffer given an argument of sufficient length or magnitude. At level
4659 @var{2}, unknown numeric arguments are assumed to have the minimum
4660 representable value for signed types with a precision greater than 1, and
4661 the maximum representable value otherwise. Unknown string arguments whose
4662 length cannot be assumed to be bounded either by the directive's precision,
4663 or by a finite set of string literals they may evaluate to, or the character
4664 array they may point to, are assumed to be 1 character long.
4665
4666 At level @var{2}, the call in the example above is again diagnosed, but
4667 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4668 @code{%i} directive will write some of its digits beyond the end of
4669 the destination buffer. To make the call safe regardless of the values
4670 of the two variables, the size of the destination buffer must be increased
4671 to at least 34 bytes. GCC includes the minimum size of the buffer in
4672 an informational note following the warning.
4673
4674 An alternative to increasing the size of the destination buffer is to
4675 constrain the range of formatted values. The maximum length of string
4676 arguments can be bounded by specifying the precision in the format
4677 directive. When numeric arguments of format directives can be assumed
4678 to be bounded by less than the precision of their type, choosing
4679 an appropriate length modifier to the format specifier will reduce
4680 the required buffer size. For example, if @var{a} and @var{b} in the
4681 example above can be assumed to be within the precision of
4682 the @code{short int} type then using either the @code{%hi} format
4683 directive or casting the argument to @code{short} reduces the maximum
4684 required size of the buffer to 24 bytes.
4685
4686 @smallexample
4687 void f (int a, int b)
4688 @{
4689 char buf [23];
4690 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4691 @}
4692 @end smallexample
4693 @end table
4694
4695 @item -Wno-format-zero-length
4696 @opindex Wno-format-zero-length
4697 @opindex Wformat-zero-length
4698 If @option{-Wformat} is specified, do not warn about zero-length formats.
4699 The C standard specifies that zero-length formats are allowed.
4700
4701
4702 @item -Wformat=2
4703 @opindex Wformat=2
4704 Enable @option{-Wformat} plus additional format checks. Currently
4705 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4706 -Wformat-y2k}.
4707
4708 @item -Wformat-nonliteral
4709 @opindex Wformat-nonliteral
4710 @opindex Wno-format-nonliteral
4711 If @option{-Wformat} is specified, also warn if the format string is not a
4712 string literal and so cannot be checked, unless the format function
4713 takes its format arguments as a @code{va_list}.
4714
4715 @item -Wformat-security
4716 @opindex Wformat-security
4717 @opindex Wno-format-security
4718 If @option{-Wformat} is specified, also warn about uses of format
4719 functions that represent possible security problems. At present, this
4720 warns about calls to @code{printf} and @code{scanf} functions where the
4721 format string is not a string literal and there are no format arguments,
4722 as in @code{printf (foo);}. This may be a security hole if the format
4723 string came from untrusted input and contains @samp{%n}. (This is
4724 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4725 in future warnings may be added to @option{-Wformat-security} that are not
4726 included in @option{-Wformat-nonliteral}.)
4727
4728 @item -Wformat-signedness
4729 @opindex Wformat-signedness
4730 @opindex Wno-format-signedness
4731 If @option{-Wformat} is specified, also warn if the format string
4732 requires an unsigned argument and the argument is signed and vice versa.
4733
4734 @item -Wformat-truncation
4735 @itemx -Wformat-truncation=@var{level}
4736 @opindex Wformat-truncation
4737 @opindex Wno-format-truncation
4738 Warn about calls to formatted input/output functions such as @code{snprintf}
4739 and @code{vsnprintf} that might result in output truncation. When the exact
4740 number of bytes written by a format directive cannot be determined at
4741 compile-time it is estimated based on heuristics that depend on
4742 the @var{level} argument and on optimization. While enabling optimization
4743 will in most cases improve the accuracy of the warning, it may also result
4744 in false positives. Except as noted otherwise, the option uses the same
4745 logic @option{-Wformat-overflow}.
4746
4747 @table @gcctabopt
4748 @item -Wformat-truncation
4749 @itemx -Wformat-truncation=1
4750 @opindex Wformat-truncation
4751 @opindex Wno-format-truncation
4752 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4753 employs a conservative approach that warns only about calls to bounded
4754 functions whose return value is unused and that will most likely result
4755 in output truncation.
4756
4757 @item -Wformat-truncation=2
4758 Level @var{2} warns also about calls to bounded functions whose return
4759 value is used and that might result in truncation given an argument of
4760 sufficient length or magnitude.
4761 @end table
4762
4763 @item -Wformat-y2k
4764 @opindex Wformat-y2k
4765 @opindex Wno-format-y2k
4766 If @option{-Wformat} is specified, also warn about @code{strftime}
4767 formats that may yield only a two-digit year.
4768 @end table
4769
4770 @item -Wnonnull
4771 @opindex Wnonnull
4772 @opindex Wno-nonnull
4773 Warn about passing a null pointer for arguments marked as
4774 requiring a non-null value by the @code{nonnull} function attribute.
4775
4776 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4777 can be disabled with the @option{-Wno-nonnull} option.
4778
4779 @item -Wnonnull-compare
4780 @opindex Wnonnull-compare
4781 @opindex Wno-nonnull-compare
4782 Warn when comparing an argument marked with the @code{nonnull}
4783 function attribute against null inside the function.
4784
4785 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4786 can be disabled with the @option{-Wno-nonnull-compare} option.
4787
4788 @item -Wnull-dereference
4789 @opindex Wnull-dereference
4790 @opindex Wno-null-dereference
4791 Warn if the compiler detects paths that trigger erroneous or
4792 undefined behavior due to dereferencing a null pointer. This option
4793 is only active when @option{-fdelete-null-pointer-checks} is active,
4794 which is enabled by optimizations in most targets. The precision of
4795 the warnings depends on the optimization options used.
4796
4797 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4798 @opindex Winit-self
4799 @opindex Wno-init-self
4800 Warn about uninitialized variables that are initialized with themselves.
4801 Note this option can only be used with the @option{-Wuninitialized} option.
4802
4803 For example, GCC warns about @code{i} being uninitialized in the
4804 following snippet only when @option{-Winit-self} has been specified:
4805 @smallexample
4806 @group
4807 int f()
4808 @{
4809 int i = i;
4810 return i;
4811 @}
4812 @end group
4813 @end smallexample
4814
4815 This warning is enabled by @option{-Wall} in C++.
4816
4817 @item -Wimplicit-int @r{(C and Objective-C only)}
4818 @opindex Wimplicit-int
4819 @opindex Wno-implicit-int
4820 Warn when a declaration does not specify a type.
4821 This warning is enabled by @option{-Wall}.
4822
4823 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4824 @opindex Wimplicit-function-declaration
4825 @opindex Wno-implicit-function-declaration
4826 Give a warning whenever a function is used before being declared. In
4827 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4828 enabled by default and it is made into an error by
4829 @option{-pedantic-errors}. This warning is also enabled by
4830 @option{-Wall}.
4831
4832 @item -Wimplicit @r{(C and Objective-C only)}
4833 @opindex Wimplicit
4834 @opindex Wno-implicit
4835 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4836 This warning is enabled by @option{-Wall}.
4837
4838 @item -Wimplicit-fallthrough
4839 @opindex Wimplicit-fallthrough
4840 @opindex Wno-implicit-fallthrough
4841 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4842 and @option{-Wno-implicit-fallthrough} is the same as
4843 @option{-Wimplicit-fallthrough=0}.
4844
4845 @item -Wimplicit-fallthrough=@var{n}
4846 @opindex Wimplicit-fallthrough=
4847 Warn when a switch case falls through. For example:
4848
4849 @smallexample
4850 @group
4851 switch (cond)
4852 @{
4853 case 1:
4854 a = 1;
4855 break;
4856 case 2:
4857 a = 2;
4858 case 3:
4859 a = 3;
4860 break;
4861 @}
4862 @end group
4863 @end smallexample
4864
4865 This warning does not warn when the last statement of a case cannot
4866 fall through, e.g. when there is a return statement or a call to function
4867 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4868 also takes into account control flow statements, such as ifs, and only
4869 warns when appropriate. E.g.@:
4870
4871 @smallexample
4872 @group
4873 switch (cond)
4874 @{
4875 case 1:
4876 if (i > 3) @{
4877 bar (5);
4878 break;
4879 @} else if (i < 1) @{
4880 bar (0);
4881 @} else
4882 return;
4883 default:
4884 @dots{}
4885 @}
4886 @end group
4887 @end smallexample
4888
4889 Since there are occasions where a switch case fall through is desirable,
4890 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4891 to be used along with a null statement to suppress this warning that
4892 would normally occur:
4893
4894 @smallexample
4895 @group
4896 switch (cond)
4897 @{
4898 case 1:
4899 bar (0);
4900 __attribute__ ((fallthrough));
4901 default:
4902 @dots{}
4903 @}
4904 @end group
4905 @end smallexample
4906
4907 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4908 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4909 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4910 Instead of these attributes, it is also possible to add a fallthrough comment
4911 to silence the warning. The whole body of the C or C++ style comment should
4912 match the given regular expressions listed below. The option argument @var{n}
4913 specifies what kind of comments are accepted:
4914
4915 @itemize @bullet
4916
4917 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4918
4919 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4920 expression, any comment is used as fallthrough comment.
4921
4922 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4923 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4924
4925 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4926 following regular expressions:
4927
4928 @itemize @bullet
4929
4930 @item @code{-fallthrough}
4931
4932 @item @code{@@fallthrough@@}
4933
4934 @item @code{lint -fallthrough[ \t]*}
4935
4936 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4937
4938 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4939
4940 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4941
4942 @end itemize
4943
4944 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4945 following regular expressions:
4946
4947 @itemize @bullet
4948
4949 @item @code{-fallthrough}
4950
4951 @item @code{@@fallthrough@@}
4952
4953 @item @code{lint -fallthrough[ \t]*}
4954
4955 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4956
4957 @end itemize
4958
4959 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4960 fallthrough comments, only attributes disable the warning.
4961
4962 @end itemize
4963
4964 The comment needs to be followed after optional whitespace and other comments
4965 by @code{case} or @code{default} keywords or by a user label that precedes some
4966 @code{case} or @code{default} label.
4967
4968 @smallexample
4969 @group
4970 switch (cond)
4971 @{
4972 case 1:
4973 bar (0);
4974 /* FALLTHRU */
4975 default:
4976 @dots{}
4977 @}
4978 @end group
4979 @end smallexample
4980
4981 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4982
4983 @item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
4984 @opindex Wif-not-aligned
4985 @opindex Wno-if-not-aligned
4986 Control if warning triggered by the @code{warn_if_not_aligned} attribute
4987 should be issued. This is enabled by default.
4988 Use @option{-Wno-if-not-aligned} to disable it.
4989
4990 @item -Wignored-qualifiers @r{(C and C++ only)}
4991 @opindex Wignored-qualifiers
4992 @opindex Wno-ignored-qualifiers
4993 Warn if the return type of a function has a type qualifier
4994 such as @code{const}. For ISO C such a type qualifier has no effect,
4995 since the value returned by a function is not an lvalue.
4996 For C++, the warning is only emitted for scalar types or @code{void}.
4997 ISO C prohibits qualified @code{void} return types on function
4998 definitions, so such return types always receive a warning
4999 even without this option.
5000
5001 This warning is also enabled by @option{-Wextra}.
5002
5003 @item -Wignored-attributes @r{(C and C++ only)}
5004 @opindex Wignored-attributes
5005 @opindex Wno-ignored-attributes
5006 Warn when an attribute is ignored. This is different from the
5007 @option{-Wattributes} option in that it warns whenever the compiler decides
5008 to drop an attribute, not that the attribute is either unknown, used in a
5009 wrong place, etc. This warning is enabled by default.
5010
5011 @item -Wmain
5012 @opindex Wmain
5013 @opindex Wno-main
5014 Warn if the type of @code{main} is suspicious. @code{main} should be
5015 a function with external linkage, returning int, taking either zero
5016 arguments, two, or three arguments of appropriate types. This warning
5017 is enabled by default in C++ and is enabled by either @option{-Wall}
5018 or @option{-Wpedantic}.
5019
5020 @item -Wmisleading-indentation @r{(C and C++ only)}
5021 @opindex Wmisleading-indentation
5022 @opindex Wno-misleading-indentation
5023 Warn when the indentation of the code does not reflect the block structure.
5024 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
5025 @code{for} clauses with a guarded statement that does not use braces,
5026 followed by an unguarded statement with the same indentation.
5027
5028 In the following example, the call to ``bar'' is misleadingly indented as
5029 if it were guarded by the ``if'' conditional.
5030
5031 @smallexample
5032 if (some_condition ())
5033 foo ();
5034 bar (); /* Gotcha: this is not guarded by the "if". */
5035 @end smallexample
5036
5037 In the case of mixed tabs and spaces, the warning uses the
5038 @option{-ftabstop=} option to determine if the statements line up
5039 (defaulting to 8).
5040
5041 The warning is not issued for code involving multiline preprocessor logic
5042 such as the following example.
5043
5044 @smallexample
5045 if (flagA)
5046 foo (0);
5047 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
5048 if (flagB)
5049 #endif
5050 foo (1);
5051 @end smallexample
5052
5053 The warning is not issued after a @code{#line} directive, since this
5054 typically indicates autogenerated code, and no assumptions can be made
5055 about the layout of the file that the directive references.
5056
5057 This warning is enabled by @option{-Wall} in C and C++.
5058
5059 @item -Wno-missing-attributes
5060 @opindex Wmissing-attributes
5061 @opindex Wno-missing-attributes
5062 Warn when a declaration of a function is missing one or more attributes
5063 that a related function is declared with and whose absence may adversely
5064 affect the correctness or efficiency of generated code. For example,
5065 the warning is issued for declarations of aliases that use attributes
5066 to specify less restrictive requirements than those of their targets.
5067 This typically represents a potential optimization oportunity rather
5068 than a hidden bug. The @option{-Wattribute-alias} option controls warnings
5069 issued for mismatches between declarations of aliases and their targets
5070 that might be indicative of code generation bugs.
5071 Attributes considered include @code{alloc_align}, @code{alloc_size},
5072 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
5073 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
5074 @code{returns_nonnull}, and @code{returns_twice}.
5075
5076 In C++, the warning is issued when an explicit specialization of a primary
5077 template declared with attribute @code{alloc_align}, @code{alloc_size},
5078 @code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
5079 or @code{nonnull} is declared without it. Attributes @code{deprecated},
5080 @code{error}, and @code{warning} suppress the warning.
5081 (@pxref{Function Attributes}).
5082
5083 @option{-Wmissing-attributes} is enabled by @option{-Wall}.
5084
5085 For example, since the declaration of the primary function template
5086 below makes use of both attribute @code{malloc} and @code{alloc_size}
5087 the declaration of the explicit specialization of the template is
5088 diagnosed because it is missing one of the attributes.
5089
5090 @smallexample
5091 template <class T>
5092 T* __attribute__ ((malloc, alloc_size (1)))
5093 allocate (size_t);
5094
5095 template <>
5096 void* __attribute__ ((malloc)) // missing alloc_size
5097 allocate<void> (size_t);
5098 @end smallexample
5099
5100 @item -Wmissing-braces
5101 @opindex Wmissing-braces
5102 @opindex Wno-missing-braces
5103 Warn if an aggregate or union initializer is not fully bracketed. In
5104 the following example, the initializer for @code{a} is not fully
5105 bracketed, but that for @code{b} is fully bracketed. This warning is
5106 enabled by @option{-Wall} in C.
5107
5108 @smallexample
5109 int a[2][2] = @{ 0, 1, 2, 3 @};
5110 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
5111 @end smallexample
5112
5113 This warning is enabled by @option{-Wall}.
5114
5115 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
5116 @opindex Wmissing-include-dirs
5117 @opindex Wno-missing-include-dirs
5118 Warn if a user-supplied include directory does not exist.
5119
5120 @item -Wmissing-profile
5121 @opindex Wmissing-profile
5122 @opindex Wno-missing-profile
5123 Warn if feedback profiles are missing when using the
5124 @option{-fprofile-use} option.
5125 This option diagnoses those cases where a new function or a new file is added
5126 to the user code between compiling with @option{-fprofile-generate} and with
5127 @option{-fprofile-use}, without regenerating the profiles. In these cases, the
5128 profile feedback data files do not contain any profile feedback information for
5129 the newly added function or file respectively. Also, in the case when profile
5130 count data (.gcda) files are removed, GCC cannot use any profile feedback
5131 information. In all these cases, warnings are issued to inform the user that a
5132 profile generation step is due. @option{-Wno-missing-profile} can be used to
5133 disable the warning. Ignoring the warning can result in poorly optimized code.
5134 Completely disabling the warning is not recommended and should be done only
5135 when non-existent profile data is justified.
5136
5137 @item -Wmultistatement-macros
5138 @opindex Wmultistatement-macros
5139 @opindex Wno-multistatement-macros
5140 Warn about unsafe multiple statement macros that appear to be guarded
5141 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
5142 @code{while}, in which only the first statement is actually guarded after
5143 the macro is expanded.
5144
5145 For example:
5146
5147 @smallexample
5148 #define DOIT x++; y++
5149 if (c)
5150 DOIT;
5151 @end smallexample
5152
5153 will increment @code{y} unconditionally, not just when @code{c} holds.
5154 The can usually be fixed by wrapping the macro in a do-while loop:
5155 @smallexample
5156 #define DOIT do @{ x++; y++; @} while (0)
5157 if (c)
5158 DOIT;
5159 @end smallexample
5160
5161 This warning is enabled by @option{-Wall} in C and C++.
5162
5163 @item -Wparentheses
5164 @opindex Wparentheses
5165 @opindex Wno-parentheses
5166 Warn if parentheses are omitted in certain contexts, such
5167 as when there is an assignment in a context where a truth value
5168 is expected, or when operators are nested whose precedence people
5169 often get confused about.
5170
5171 Also warn if a comparison like @code{x<=y<=z} appears; this is
5172 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
5173 interpretation from that of ordinary mathematical notation.
5174
5175 Also warn for dangerous uses of the GNU extension to
5176 @code{?:} with omitted middle operand. When the condition
5177 in the @code{?}: operator is a boolean expression, the omitted value is
5178 always 1. Often programmers expect it to be a value computed
5179 inside the conditional expression instead.
5180
5181 For C++ this also warns for some cases of unnecessary parentheses in
5182 declarations, which can indicate an attempt at a function call instead
5183 of a declaration:
5184 @smallexample
5185 @{
5186 // Declares a local variable called mymutex.
5187 std::unique_lock<std::mutex> (mymutex);
5188 // User meant std::unique_lock<std::mutex> lock (mymutex);
5189 @}
5190 @end smallexample
5191
5192 This warning is enabled by @option{-Wall}.
5193
5194 @item -Wsequence-point
5195 @opindex Wsequence-point
5196 @opindex Wno-sequence-point
5197 Warn about code that may have undefined semantics because of violations
5198 of sequence point rules in the C and C++ standards.
5199
5200 The C and C++ standards define the order in which expressions in a C/C++
5201 program are evaluated in terms of @dfn{sequence points}, which represent
5202 a partial ordering between the execution of parts of the program: those
5203 executed before the sequence point, and those executed after it. These
5204 occur after the evaluation of a full expression (one which is not part
5205 of a larger expression), after the evaluation of the first operand of a
5206 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
5207 function is called (but after the evaluation of its arguments and the
5208 expression denoting the called function), and in certain other places.
5209 Other than as expressed by the sequence point rules, the order of
5210 evaluation of subexpressions of an expression is not specified. All
5211 these rules describe only a partial order rather than a total order,
5212 since, for example, if two functions are called within one expression
5213 with no sequence point between them, the order in which the functions
5214 are called is not specified. However, the standards committee have
5215 ruled that function calls do not overlap.
5216
5217 It is not specified when between sequence points modifications to the
5218 values of objects take effect. Programs whose behavior depends on this
5219 have undefined behavior; the C and C++ standards specify that ``Between
5220 the previous and next sequence point an object shall have its stored
5221 value modified at most once by the evaluation of an expression.
5222 Furthermore, the prior value shall be read only to determine the value
5223 to be stored.''. If a program breaks these rules, the results on any
5224 particular implementation are entirely unpredictable.
5225
5226 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
5227 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
5228 diagnosed by this option, and it may give an occasional false positive
5229 result, but in general it has been found fairly effective at detecting
5230 this sort of problem in programs.
5231
5232 The C++17 standard will define the order of evaluation of operands in
5233 more cases: in particular it requires that the right-hand side of an
5234 assignment be evaluated before the left-hand side, so the above
5235 examples are no longer undefined. But this warning will still warn
5236 about them, to help people avoid writing code that is undefined in C
5237 and earlier revisions of C++.
5238
5239 The standard is worded confusingly, therefore there is some debate
5240 over the precise meaning of the sequence point rules in subtle cases.
5241 Links to discussions of the problem, including proposed formal
5242 definitions, may be found on the GCC readings page, at
5243 @uref{http://gcc.gnu.org/@/readings.html}.
5244
5245 This warning is enabled by @option{-Wall} for C and C++.
5246
5247 @item -Wno-return-local-addr
5248 @opindex Wno-return-local-addr
5249 @opindex Wreturn-local-addr
5250 Do not warn about returning a pointer (or in C++, a reference) to a
5251 variable that goes out of scope after the function returns.
5252
5253 @item -Wreturn-type
5254 @opindex Wreturn-type
5255 @opindex Wno-return-type
5256 Warn whenever a function is defined with a return type that defaults
5257 to @code{int}. Also warn about any @code{return} statement with no
5258 return value in a function whose return type is not @code{void}
5259 (falling off the end of the function body is considered returning
5260 without a value).
5261
5262 For C only, warn about a @code{return} statement with an expression in a
5263 function whose return type is @code{void}, unless the expression type is
5264 also @code{void}. As a GNU extension, the latter case is accepted
5265 without a warning unless @option{-Wpedantic} is used.
5266
5267 For C++, a function without return type always produces a diagnostic
5268 message, even when @option{-Wno-return-type} is specified. The only
5269 exceptions are @code{main} and functions defined in system headers.
5270
5271 This warning is enabled by default for C++ and is enabled by @option{-Wall}.
5272
5273 @item -Wshift-count-negative
5274 @opindex Wshift-count-negative
5275 @opindex Wno-shift-count-negative
5276 Warn if shift count is negative. This warning is enabled by default.
5277
5278 @item -Wshift-count-overflow
5279 @opindex Wshift-count-overflow
5280 @opindex Wno-shift-count-overflow
5281 Warn if shift count >= width of type. This warning is enabled by default.
5282
5283 @item -Wshift-negative-value
5284 @opindex Wshift-negative-value
5285 @opindex Wno-shift-negative-value
5286 Warn if left shifting a negative value. This warning is enabled by
5287 @option{-Wextra} in C99 and C++11 modes (and newer).
5288
5289 @item -Wshift-overflow
5290 @itemx -Wshift-overflow=@var{n}
5291 @opindex Wshift-overflow
5292 @opindex Wno-shift-overflow
5293 Warn about left shift overflows. This warning is enabled by
5294 default in C99 and C++11 modes (and newer).
5295
5296 @table @gcctabopt
5297 @item -Wshift-overflow=1
5298 This is the warning level of @option{-Wshift-overflow} and is enabled
5299 by default in C99 and C++11 modes (and newer). This warning level does
5300 not warn about left-shifting 1 into the sign bit. (However, in C, such
5301 an overflow is still rejected in contexts where an integer constant expression
5302 is required.) No warning is emitted in C++2A mode (and newer), as signed left
5303 shifts always wrap.
5304
5305 @item -Wshift-overflow=2
5306 This warning level also warns about left-shifting 1 into the sign bit,
5307 unless C++14 mode (or newer) is active.
5308 @end table
5309
5310 @item -Wswitch
5311 @opindex Wswitch
5312 @opindex Wno-switch
5313 Warn whenever a @code{switch} statement has an index of enumerated type
5314 and lacks a @code{case} for one or more of the named codes of that
5315 enumeration. (The presence of a @code{default} label prevents this
5316 warning.) @code{case} labels outside the enumeration range also
5317 provoke warnings when this option is used (even if there is a
5318 @code{default} label).
5319 This warning is enabled by @option{-Wall}.
5320
5321 @item -Wswitch-default
5322 @opindex Wswitch-default
5323 @opindex Wno-switch-default
5324 Warn whenever a @code{switch} statement does not have a @code{default}
5325 case.
5326
5327 @item -Wswitch-enum
5328 @opindex Wswitch-enum
5329 @opindex Wno-switch-enum
5330 Warn whenever a @code{switch} statement has an index of enumerated type
5331 and lacks a @code{case} for one or more of the named codes of that
5332 enumeration. @code{case} labels outside the enumeration range also
5333 provoke warnings when this option is used. The only difference
5334 between @option{-Wswitch} and this option is that this option gives a
5335 warning about an omitted enumeration code even if there is a
5336 @code{default} label.
5337
5338 @item -Wswitch-bool
5339 @opindex Wswitch-bool
5340 @opindex Wno-switch-bool
5341 Warn whenever a @code{switch} statement has an index of boolean type
5342 and the case values are outside the range of a boolean type.
5343 It is possible to suppress this warning by casting the controlling
5344 expression to a type other than @code{bool}. For example:
5345 @smallexample
5346 @group
5347 switch ((int) (a == 4))
5348 @{
5349 @dots{}
5350 @}
5351 @end group
5352 @end smallexample
5353 This warning is enabled by default for C and C++ programs.
5354
5355 @item -Wswitch-unreachable
5356 @opindex Wswitch-unreachable
5357 @opindex Wno-switch-unreachable
5358 Warn whenever a @code{switch} statement contains statements between the
5359 controlling expression and the first case label, which will never be
5360 executed. For example:
5361 @smallexample
5362 @group
5363 switch (cond)
5364 @{
5365 i = 15;
5366 @dots{}
5367 case 5:
5368 @dots{}
5369 @}
5370 @end group
5371 @end smallexample
5372 @option{-Wswitch-unreachable} does not warn if the statement between the
5373 controlling expression and the first case label is just a declaration:
5374 @smallexample
5375 @group
5376 switch (cond)
5377 @{
5378 int i;
5379 @dots{}
5380 case 5:
5381 i = 5;
5382 @dots{}
5383 @}
5384 @end group
5385 @end smallexample
5386 This warning is enabled by default for C and C++ programs.
5387
5388 @item -Wsync-nand @r{(C and C++ only)}
5389 @opindex Wsync-nand
5390 @opindex Wno-sync-nand
5391 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
5392 built-in functions are used. These functions changed semantics in GCC 4.4.
5393
5394 @item -Wunused-but-set-parameter
5395 @opindex Wunused-but-set-parameter
5396 @opindex Wno-unused-but-set-parameter
5397 Warn whenever a function parameter is assigned to, but otherwise unused
5398 (aside from its declaration).
5399
5400 To suppress this warning use the @code{unused} attribute
5401 (@pxref{Variable Attributes}).
5402
5403 This warning is also enabled by @option{-Wunused} together with
5404 @option{-Wextra}.
5405
5406 @item -Wunused-but-set-variable
5407 @opindex Wunused-but-set-variable
5408 @opindex Wno-unused-but-set-variable
5409 Warn whenever a local variable is assigned to, but otherwise unused
5410 (aside from its declaration).
5411 This warning is enabled by @option{-Wall}.
5412
5413 To suppress this warning use the @code{unused} attribute
5414 (@pxref{Variable Attributes}).
5415
5416 This warning is also enabled by @option{-Wunused}, which is enabled
5417 by @option{-Wall}.
5418
5419 @item -Wunused-function
5420 @opindex Wunused-function
5421 @opindex Wno-unused-function
5422 Warn whenever a static function is declared but not defined or a
5423 non-inline static function is unused.
5424 This warning is enabled by @option{-Wall}.
5425
5426 @item -Wunused-label
5427 @opindex Wunused-label
5428 @opindex Wno-unused-label
5429 Warn whenever a label is declared but not used.
5430 This warning is enabled by @option{-Wall}.
5431
5432 To suppress this warning use the @code{unused} attribute
5433 (@pxref{Variable Attributes}).
5434
5435 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
5436 @opindex Wunused-local-typedefs
5437 @opindex Wno-unused-local-typedefs
5438 Warn when a typedef locally defined in a function is not used.
5439 This warning is enabled by @option{-Wall}.
5440
5441 @item -Wunused-parameter
5442 @opindex Wunused-parameter
5443 @opindex Wno-unused-parameter
5444 Warn whenever a function parameter is unused aside from its declaration.
5445
5446 To suppress this warning use the @code{unused} attribute
5447 (@pxref{Variable Attributes}).
5448
5449 @item -Wno-unused-result
5450 @opindex Wunused-result
5451 @opindex Wno-unused-result
5452 Do not warn if a caller of a function marked with attribute
5453 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
5454 its return value. The default is @option{-Wunused-result}.
5455
5456 @item -Wunused-variable
5457 @opindex Wunused-variable
5458 @opindex Wno-unused-variable
5459 Warn whenever a local or static variable is unused aside from its
5460 declaration. This option implies @option{-Wunused-const-variable=1} for C,
5461 but not for C++. This warning is enabled by @option{-Wall}.
5462
5463 To suppress this warning use the @code{unused} attribute
5464 (@pxref{Variable Attributes}).
5465
5466 @item -Wunused-const-variable
5467 @itemx -Wunused-const-variable=@var{n}
5468 @opindex Wunused-const-variable
5469 @opindex Wno-unused-const-variable
5470 Warn whenever a constant static variable is unused aside from its declaration.
5471 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
5472 for C, but not for C++. In C this declares variable storage, but in C++ this
5473 is not an error since const variables take the place of @code{#define}s.
5474
5475 To suppress this warning use the @code{unused} attribute
5476 (@pxref{Variable Attributes}).
5477
5478 @table @gcctabopt
5479 @item -Wunused-const-variable=1
5480 This is the warning level that is enabled by @option{-Wunused-variable} for
5481 C. It warns only about unused static const variables defined in the main
5482 compilation unit, but not about static const variables declared in any
5483 header included.
5484
5485 @item -Wunused-const-variable=2
5486 This warning level also warns for unused constant static variables in
5487 headers (excluding system headers). This is the warning level of
5488 @option{-Wunused-const-variable} and must be explicitly requested since
5489 in C++ this isn't an error and in C it might be harder to clean up all
5490 headers included.
5491 @end table
5492
5493 @item -Wunused-value
5494 @opindex Wunused-value
5495 @opindex Wno-unused-value
5496 Warn whenever a statement computes a result that is explicitly not
5497 used. To suppress this warning cast the unused expression to
5498 @code{void}. This includes an expression-statement or the left-hand
5499 side of a comma expression that contains no side effects. For example,
5500 an expression such as @code{x[i,j]} causes a warning, while
5501 @code{x[(void)i,j]} does not.
5502
5503 This warning is enabled by @option{-Wall}.
5504
5505 @item -Wunused
5506 @opindex Wunused
5507 @opindex Wno-unused
5508 All the above @option{-Wunused} options combined.
5509
5510 In order to get a warning about an unused function parameter, you must
5511 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
5512 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
5513
5514 @item -Wuninitialized
5515 @opindex Wuninitialized
5516 @opindex Wno-uninitialized
5517 Warn if an automatic variable is used without first being initialized
5518 or if a variable may be clobbered by a @code{setjmp} call. In C++,
5519 warn if a non-static reference or non-static @code{const} member
5520 appears in a class without constructors.
5521
5522 If you want to warn about code that uses the uninitialized value of the
5523 variable in its own initializer, use the @option{-Winit-self} option.
5524
5525 These warnings occur for individual uninitialized or clobbered
5526 elements of structure, union or array variables as well as for
5527 variables that are uninitialized or clobbered as a whole. They do
5528 not occur for variables or elements declared @code{volatile}. Because
5529 these warnings depend on optimization, the exact variables or elements
5530 for which there are warnings depends on the precise optimization
5531 options and version of GCC used.
5532
5533 Note that there may be no warning about a variable that is used only
5534 to compute a value that itself is never used, because such
5535 computations may be deleted by data flow analysis before the warnings
5536 are printed.
5537
5538 @item -Winvalid-memory-model
5539 @opindex Winvalid-memory-model
5540 @opindex Wno-invalid-memory-model
5541 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
5542 and the C11 atomic generic functions with a memory consistency argument
5543 that is either invalid for the operation or outside the range of values
5544 of the @code{memory_order} enumeration. For example, since the
5545 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
5546 defined for the relaxed, release, and sequentially consistent memory
5547 orders the following code is diagnosed:
5548
5549 @smallexample
5550 void store (int *i)
5551 @{
5552 __atomic_store_n (i, 0, memory_order_consume);
5553 @}
5554 @end smallexample
5555
5556 @option{-Winvalid-memory-model} is enabled by default.
5557
5558 @item -Wmaybe-uninitialized
5559 @opindex Wmaybe-uninitialized
5560 @opindex Wno-maybe-uninitialized
5561 For an automatic (i.e.@: local) variable, if there exists a path from the
5562 function entry to a use of the variable that is initialized, but there exist
5563 some other paths for which the variable is not initialized, the compiler
5564 emits a warning if it cannot prove the uninitialized paths are not
5565 executed at run time.
5566
5567 These warnings are only possible in optimizing compilation, because otherwise
5568 GCC does not keep track of the state of variables.
5569
5570 These warnings are made optional because GCC may not be able to determine when
5571 the code is correct in spite of appearing to have an error. Here is one
5572 example of how this can happen:
5573
5574 @smallexample
5575 @group
5576 @{
5577 int x;
5578 switch (y)
5579 @{
5580 case 1: x = 1;
5581 break;
5582 case 2: x = 4;
5583 break;
5584 case 3: x = 5;
5585 @}
5586 foo (x);
5587 @}
5588 @end group
5589 @end smallexample
5590
5591 @noindent
5592 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
5593 always initialized, but GCC doesn't know this. To suppress the
5594 warning, you need to provide a default case with assert(0) or
5595 similar code.
5596
5597 @cindex @code{longjmp} warnings
5598 This option also warns when a non-volatile automatic variable might be
5599 changed by a call to @code{longjmp}.
5600 The compiler sees only the calls to @code{setjmp}. It cannot know
5601 where @code{longjmp} will be called; in fact, a signal handler could
5602 call it at any point in the code. As a result, you may get a warning
5603 even when there is in fact no problem because @code{longjmp} cannot
5604 in fact be called at the place that would cause a problem.
5605
5606 Some spurious warnings can be avoided if you declare all the functions
5607 you use that never return as @code{noreturn}. @xref{Function
5608 Attributes}.
5609
5610 This warning is enabled by @option{-Wall} or @option{-Wextra}.
5611
5612 @item -Wunknown-pragmas
5613 @opindex Wunknown-pragmas
5614 @opindex Wno-unknown-pragmas
5615 @cindex warning for unknown pragmas
5616 @cindex unknown pragmas, warning
5617 @cindex pragmas, warning of unknown
5618 Warn when a @code{#pragma} directive is encountered that is not understood by
5619 GCC@. If this command-line option is used, warnings are even issued
5620 for unknown pragmas in system header files. This is not the case if
5621 the warnings are only enabled by the @option{-Wall} command-line option.
5622
5623 @item -Wno-pragmas
5624 @opindex Wno-pragmas
5625 @opindex Wpragmas
5626 Do not warn about misuses of pragmas, such as incorrect parameters,
5627 invalid syntax, or conflicts between pragmas. See also
5628 @option{-Wunknown-pragmas}.
5629
5630 @item -Wno-prio-ctor-dtor
5631 @opindex Wno-prio-ctor-dtor
5632 @opindex Wprio-ctor-dtor
5633 Do not warn if a priority from 0 to 100 is used for constructor or destructor.
5634 The use of constructor and destructor attributes allow you to assign a
5635 priority to the constructor/destructor to control its order of execution
5636 before @code{main} is called or after it returns. The priority values must be
5637 greater than 100 as the compiler reserves priority values between 0--100 for
5638 the implementation.
5639
5640 @item -Wstrict-aliasing
5641 @opindex Wstrict-aliasing
5642 @opindex Wno-strict-aliasing
5643 This option is only active when @option{-fstrict-aliasing} is active.
5644 It warns about code that might break the strict aliasing rules that the
5645 compiler is using for optimization. The warning does not catch all
5646 cases, but does attempt to catch the more common pitfalls. It is
5647 included in @option{-Wall}.
5648 It is equivalent to @option{-Wstrict-aliasing=3}
5649
5650 @item -Wstrict-aliasing=n
5651 @opindex Wstrict-aliasing=n
5652 This option is only active when @option{-fstrict-aliasing} is active.
5653 It warns about code that might break the strict aliasing rules that the
5654 compiler is using for optimization.
5655 Higher levels correspond to higher accuracy (fewer false positives).
5656 Higher levels also correspond to more effort, similar to the way @option{-O}
5657 works.
5658 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5659
5660 Level 1: Most aggressive, quick, least accurate.
5661 Possibly useful when higher levels
5662 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5663 false negatives. However, it has many false positives.
5664 Warns for all pointer conversions between possibly incompatible types,
5665 even if never dereferenced. Runs in the front end only.
5666
5667 Level 2: Aggressive, quick, not too precise.
5668 May still have many false positives (not as many as level 1 though),
5669 and few false negatives (but possibly more than level 1).
5670 Unlike level 1, it only warns when an address is taken. Warns about
5671 incomplete types. Runs in the front end only.
5672
5673 Level 3 (default for @option{-Wstrict-aliasing}):
5674 Should have very few false positives and few false
5675 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5676 Takes care of the common pun+dereference pattern in the front end:
5677 @code{*(int*)&some_float}.
5678 If optimization is enabled, it also runs in the back end, where it deals
5679 with multiple statement cases using flow-sensitive points-to information.
5680 Only warns when the converted pointer is dereferenced.
5681 Does not warn about incomplete types.
5682
5683 @item -Wstrict-overflow
5684 @itemx -Wstrict-overflow=@var{n}
5685 @opindex Wstrict-overflow
5686 @opindex Wno-strict-overflow
5687 This option is only active when signed overflow is undefined.
5688 It warns about cases where the compiler optimizes based on the
5689 assumption that signed overflow does not occur. Note that it does not
5690 warn about all cases where the code might overflow: it only warns
5691 about cases where the compiler implements some optimization. Thus
5692 this warning depends on the optimization level.
5693
5694 An optimization that assumes that signed overflow does not occur is
5695 perfectly safe if the values of the variables involved are such that
5696 overflow never does, in fact, occur. Therefore this warning can
5697 easily give a false positive: a warning about code that is not
5698 actually a problem. To help focus on important issues, several
5699 warning levels are defined. No warnings are issued for the use of
5700 undefined signed overflow when estimating how many iterations a loop
5701 requires, in particular when determining whether a loop will be
5702 executed at all.
5703
5704 @table @gcctabopt
5705 @item -Wstrict-overflow=1
5706 Warn about cases that are both questionable and easy to avoid. For
5707 example the compiler simplifies
5708 @code{x + 1 > x} to @code{1}. This level of
5709 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5710 are not, and must be explicitly requested.
5711
5712 @item -Wstrict-overflow=2
5713 Also warn about other cases where a comparison is simplified to a
5714 constant. For example: @code{abs (x) >= 0}. This can only be
5715 simplified when signed integer overflow is undefined, because
5716 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5717 zero. @option{-Wstrict-overflow} (with no level) is the same as
5718 @option{-Wstrict-overflow=2}.
5719
5720 @item -Wstrict-overflow=3
5721 Also warn about other cases where a comparison is simplified. For
5722 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5723
5724 @item -Wstrict-overflow=4
5725 Also warn about other simplifications not covered by the above cases.
5726 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5727
5728 @item -Wstrict-overflow=5
5729 Also warn about cases where the compiler reduces the magnitude of a
5730 constant involved in a comparison. For example: @code{x + 2 > y} is
5731 simplified to @code{x + 1 >= y}. This is reported only at the
5732 highest warning level because this simplification applies to many
5733 comparisons, so this warning level gives a very large number of
5734 false positives.
5735 @end table
5736
5737 @item -Wstringop-overflow
5738 @itemx -Wstringop-overflow=@var{type}
5739 @opindex Wstringop-overflow
5740 @opindex Wno-stringop-overflow
5741 Warn for calls to string manipulation functions such as @code{memcpy} and
5742 @code{strcpy} that are determined to overflow the destination buffer. The
5743 optional argument is one greater than the type of Object Size Checking to
5744 perform to determine the size of the destination. @xref{Object Size Checking}.
5745 The argument is meaningful only for functions that operate on character arrays
5746 but not for raw memory functions like @code{memcpy} which always make use
5747 of Object Size type-0. The option also warns for calls that specify a size
5748 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5749 The option produces the best results with optimization enabled but can detect
5750 a small subset of simple buffer overflows even without optimization in
5751 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5752 correspond to the standard functions. In any case, the option warns about
5753 just a subset of buffer overflows detected by the corresponding overflow
5754 checking built-ins. For example, the option will issue a warning for
5755 the @code{strcpy} call below because it copies at least 5 characters
5756 (the string @code{"blue"} including the terminating NUL) into the buffer
5757 of size 4.
5758
5759 @smallexample
5760 enum Color @{ blue, purple, yellow @};
5761 const char* f (enum Color clr)
5762 @{
5763 static char buf [4];
5764 const char *str;
5765 switch (clr)
5766 @{
5767 case blue: str = "blue"; break;
5768 case purple: str = "purple"; break;
5769 case yellow: str = "yellow"; break;
5770 @}
5771
5772 return strcpy (buf, str); // warning here
5773 @}
5774 @end smallexample
5775
5776 Option @option{-Wstringop-overflow=2} is enabled by default.
5777
5778 @table @gcctabopt
5779 @item -Wstringop-overflow
5780 @itemx -Wstringop-overflow=1
5781 @opindex Wstringop-overflow
5782 @opindex Wno-stringop-overflow
5783 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5784 to determine the sizes of destination objects. This is the default setting
5785 of the option. At this setting the option will not warn for writes past
5786 the end of subobjects of larger objects accessed by pointers unless the
5787 size of the largest surrounding object is known. When the destination may
5788 be one of several objects it is assumed to be the largest one of them. On
5789 Linux systems, when optimization is enabled at this setting the option warns
5790 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5791 a non-zero value.
5792
5793 @item -Wstringop-overflow=2
5794 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5795 to determine the sizes of destination objects. At this setting the option
5796 will warn about overflows when writing to members of the largest complete
5797 objects whose exact size is known. It will, however, not warn for excessive
5798 writes to the same members of unknown objects referenced by pointers since
5799 they may point to arrays containing unknown numbers of elements.
5800
5801 @item -Wstringop-overflow=3
5802 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5803 to determine the sizes of destination objects. At this setting the option
5804 warns about overflowing the smallest object or data member. This is the
5805 most restrictive setting of the option that may result in warnings for safe
5806 code.
5807
5808 @item -Wstringop-overflow=4
5809 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5810 to determine the sizes of destination objects. At this setting the option
5811 will warn about overflowing any data members, and when the destination is
5812 one of several objects it uses the size of the largest of them to decide
5813 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5814 setting of the option may result in warnings for benign code.
5815 @end table
5816
5817 @item -Wstringop-truncation
5818 @opindex Wstringop-truncation
5819 @opindex Wno-stringop-truncation
5820 Warn for calls to bounded string manipulation functions such as @code{strncat},
5821 @code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5822 or leave the destination unchanged.
5823
5824 In the following example, the call to @code{strncat} specifies a bound that
5825 is less than the length of the source string. As a result, the copy of
5826 the source will be truncated and so the call is diagnosed. To avoid the
5827 warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5828
5829 @smallexample
5830 void append (char *buf, size_t bufsize)
5831 @{
5832 strncat (buf, ".txt", 3);
5833 @}
5834 @end smallexample
5835
5836 As another example, the following call to @code{strncpy} results in copying
5837 to @code{d} just the characters preceding the terminating NUL, without
5838 appending the NUL to the end. Assuming the result of @code{strncpy} is
5839 necessarily a NUL-terminated string is a common mistake, and so the call
5840 is diagnosed. To avoid the warning when the result is not expected to be
5841 NUL-terminated, call @code{memcpy} instead.
5842
5843 @smallexample
5844 void copy (char *d, const char *s)
5845 @{
5846 strncpy (d, s, strlen (s));
5847 @}
5848 @end smallexample
5849
5850 In the following example, the call to @code{strncpy} specifies the size
5851 of the destination buffer as the bound. If the length of the source
5852 string is equal to or greater than this size the result of the copy will
5853 not be NUL-terminated. Therefore, the call is also diagnosed. To avoid
5854 the warning, specify @code{sizeof buf - 1} as the bound and set the last
5855 element of the buffer to @code{NUL}.
5856
5857 @smallexample
5858 void copy (const char *s)
5859 @{
5860 char buf[80];
5861 strncpy (buf, s, sizeof buf);
5862 @dots{}
5863 @}
5864 @end smallexample
5865
5866 In situations where a character array is intended to store a sequence
5867 of bytes with no terminating @code{NUL} such an array may be annotated
5868 with attribute @code{nonstring} to avoid this warning. Such arrays,
5869 however, are not suitable arguments to functions that expect
5870 @code{NUL}-terminated strings. To help detect accidental misuses of
5871 such arrays GCC issues warnings unless it can prove that the use is
5872 safe. @xref{Common Variable Attributes}.
5873
5874 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5875 @opindex Wsuggest-attribute=
5876 @opindex Wno-suggest-attribute=
5877 Warn for cases where adding an attribute may be beneficial. The
5878 attributes currently supported are listed below.
5879
5880 @table @gcctabopt
5881 @item -Wsuggest-attribute=pure
5882 @itemx -Wsuggest-attribute=const
5883 @itemx -Wsuggest-attribute=noreturn
5884 @itemx -Wmissing-noreturn
5885 @itemx -Wsuggest-attribute=malloc
5886 @opindex Wsuggest-attribute=pure
5887 @opindex Wno-suggest-attribute=pure
5888 @opindex Wsuggest-attribute=const
5889 @opindex Wno-suggest-attribute=const
5890 @opindex Wsuggest-attribute=noreturn
5891 @opindex Wno-suggest-attribute=noreturn
5892 @opindex Wmissing-noreturn
5893 @opindex Wno-missing-noreturn
5894 @opindex Wsuggest-attribute=malloc
5895 @opindex Wno-suggest-attribute=malloc
5896
5897 Warn about functions that might be candidates for attributes
5898 @code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5899 only warns for functions visible in other compilation units or (in the case of
5900 @code{pure} and @code{const}) if it cannot prove that the function returns
5901 normally. A function returns normally if it doesn't contain an infinite loop or
5902 return abnormally by throwing, calling @code{abort} or trapping. This analysis
5903 requires option @option{-fipa-pure-const}, which is enabled by default at
5904 @option{-O} and higher. Higher optimization levels improve the accuracy
5905 of the analysis.
5906
5907 @item -Wsuggest-attribute=format
5908 @itemx -Wmissing-format-attribute
5909 @opindex Wsuggest-attribute=format
5910 @opindex Wmissing-format-attribute
5911 @opindex Wno-suggest-attribute=format
5912 @opindex Wno-missing-format-attribute
5913 @opindex Wformat
5914 @opindex Wno-format
5915
5916 Warn about function pointers that might be candidates for @code{format}
5917 attributes. Note these are only possible candidates, not absolute ones.
5918 GCC guesses that function pointers with @code{format} attributes that
5919 are used in assignment, initialization, parameter passing or return
5920 statements should have a corresponding @code{format} attribute in the
5921 resulting type. I.e.@: the left-hand side of the assignment or
5922 initialization, the type of the parameter variable, or the return type
5923 of the containing function respectively should also have a @code{format}
5924 attribute to avoid the warning.
5925
5926 GCC also warns about function definitions that might be
5927 candidates for @code{format} attributes. Again, these are only
5928 possible candidates. GCC guesses that @code{format} attributes
5929 might be appropriate for any function that calls a function like
5930 @code{vprintf} or @code{vscanf}, but this might not always be the
5931 case, and some functions for which @code{format} attributes are
5932 appropriate may not be detected.
5933
5934 @item -Wsuggest-attribute=cold
5935 @opindex Wsuggest-attribute=cold
5936 @opindex Wno-suggest-attribute=cold
5937
5938 Warn about functions that might be candidates for @code{cold} attribute. This
5939 is based on static detection and generally will only warn about functions which
5940 always leads to a call to another @code{cold} function such as wrappers of
5941 C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
5942 @end table
5943
5944 @item -Wsuggest-final-types
5945 @opindex Wno-suggest-final-types
5946 @opindex Wsuggest-final-types
5947 Warn about types with virtual methods where code quality would be improved
5948 if the type were declared with the C++11 @code{final} specifier,
5949 or, if possible,
5950 declared in an anonymous namespace. This allows GCC to more aggressively
5951 devirtualize the polymorphic calls. This warning is more effective with link
5952 time optimization, where the information about the class hierarchy graph is
5953 more complete.
5954
5955 @item -Wsuggest-final-methods
5956 @opindex Wno-suggest-final-methods
5957 @opindex Wsuggest-final-methods
5958 Warn about virtual methods where code quality would be improved if the method
5959 were declared with the C++11 @code{final} specifier,
5960 or, if possible, its type were
5961 declared in an anonymous namespace or with the @code{final} specifier.
5962 This warning is
5963 more effective with link-time optimization, where the information about the
5964 class hierarchy graph is more complete. It is recommended to first consider
5965 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
5966 annotations.
5967
5968 @item -Wsuggest-override
5969 Warn about overriding virtual functions that are not marked with the override
5970 keyword.
5971
5972 @item -Walloc-zero
5973 @opindex Wno-alloc-zero
5974 @opindex Walloc-zero
5975 Warn about calls to allocation functions decorated with attribute
5976 @code{alloc_size} that specify zero bytes, including those to the built-in
5977 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
5978 @code{malloc}, and @code{realloc}. Because the behavior of these functions
5979 when called with a zero size differs among implementations (and in the case
5980 of @code{realloc} has been deprecated) relying on it may result in subtle
5981 portability bugs and should be avoided.
5982
5983 @item -Walloc-size-larger-than=@var{byte-size}
5984 @opindex Walloc-size-larger-than=
5985 @opindex Wno-alloc-size-larger-than
5986 Warn about calls to functions decorated with attribute @code{alloc_size}
5987 that attempt to allocate objects larger than the specified number of bytes,
5988 or where the result of the size computation in an integer type with infinite
5989 precision would exceed the value of @samp{PTRDIFF_MAX} on the target.
5990 @option{-Walloc-size-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
5991 Warnings controlled by the option can be disabled either by specifying
5992 @var{byte-size} of @samp{SIZE_MAX} or more or by
5993 @option{-Wno-alloc-size-larger-than}.
5994 @xref{Function Attributes}.
5995
5996 @item -Wno-alloc-size-larger-than
5997 @opindex Wno-alloc-size-larger-than
5998 Disable @option{-Walloc-size-larger-than=} warnings. The option is
5999 equivalent to @option{-Walloc-size-larger-than=}@samp{SIZE_MAX} or
6000 larger.
6001
6002 @item -Walloca
6003 @opindex Wno-alloca
6004 @opindex Walloca
6005 This option warns on all uses of @code{alloca} in the source.
6006
6007 @item -Walloca-larger-than=@var{byte-size}
6008 @opindex Walloca-larger-than=
6009 @opindex Wno-alloca-larger-than
6010 This option warns on calls to @code{alloca} with an integer argument whose
6011 value is either zero, or that is not bounded by a controlling predicate
6012 that limits its value to at most @var{byte-size}. It also warns for calls
6013 to @code{alloca} where the bound value is unknown. Arguments of non-integer
6014 types are considered unbounded even if they appear to be constrained to
6015 the expected range.
6016
6017 For example, a bounded case of @code{alloca} could be:
6018
6019 @smallexample
6020 void func (size_t n)
6021 @{
6022 void *p;
6023 if (n <= 1000)
6024 p = alloca (n);
6025 else
6026 p = malloc (n);
6027 f (p);
6028 @}
6029 @end smallexample
6030
6031 In the above example, passing @code{-Walloca-larger-than=1000} would not
6032 issue a warning because the call to @code{alloca} is known to be at most
6033 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
6034 the compiler would emit a warning.
6035
6036 Unbounded uses, on the other hand, are uses of @code{alloca} with no
6037 controlling predicate constraining its integer argument. For example:
6038
6039 @smallexample
6040 void func ()
6041 @{
6042 void *p = alloca (n);
6043 f (p);
6044 @}
6045 @end smallexample
6046
6047 If @code{-Walloca-larger-than=500} were passed, the above would trigger
6048 a warning, but this time because of the lack of bounds checking.
6049
6050 Note, that even seemingly correct code involving signed integers could
6051 cause a warning:
6052
6053 @smallexample
6054 void func (signed int n)
6055 @{
6056 if (n < 500)
6057 @{
6058 p = alloca (n);
6059 f (p);
6060 @}
6061 @}
6062 @end smallexample
6063
6064 In the above example, @var{n} could be negative, causing a larger than
6065 expected argument to be implicitly cast into the @code{alloca} call.
6066
6067 This option also warns when @code{alloca} is used in a loop.
6068
6069 @option{-Walloca-larger-than=}@samp{PTRDIFF_MAX} is enabled by default
6070 but is usually only effective when @option{-ftree-vrp} is active (default
6071 for @option{-O2} and above).
6072
6073 See also @option{-Wvla-larger-than=}@samp{byte-size}.
6074
6075 @item -Wno-alloca-larger-than
6076 @opindex Wno-alloca-larger-than
6077 Disable @option{-Walloca-larger-than=} warnings. The option is
6078 equivalent to @option{-Walloca-larger-than=}@samp{SIZE_MAX} or larger.
6079
6080 @item -Warray-bounds
6081 @itemx -Warray-bounds=@var{n}
6082 @opindex Wno-array-bounds
6083 @opindex Warray-bounds
6084 This option is only active when @option{-ftree-vrp} is active
6085 (default for @option{-O2} and above). It warns about subscripts to arrays
6086 that are always out of bounds. This warning is enabled by @option{-Wall}.
6087
6088 @table @gcctabopt
6089 @item -Warray-bounds=1
6090 This is the warning level of @option{-Warray-bounds} and is enabled
6091 by @option{-Wall}; higher levels are not, and must be explicitly requested.
6092
6093 @item -Warray-bounds=2
6094 This warning level also warns about out of bounds access for
6095 arrays at the end of a struct and for arrays accessed through
6096 pointers. This warning level may give a larger number of
6097 false positives and is deactivated by default.
6098 @end table
6099
6100 @item -Wattribute-alias=@var{n}
6101 @itemx -Wno-attribute-alias
6102 @opindex -Wattribute-alias
6103 @opindex -Wno-attribute-alias
6104 Warn about declarations using the @code{alias} and similar attributes whose
6105 target is incompatible with the type of the alias.
6106 @xref{Function Attributes,,Declaring Attributes of Functions}.
6107 The @option{-Wattribute-alias=1} is enabled by @option{-Wall}.
6108
6109 @table @gcctabopt
6110 @item -Wattribute-alias=1
6111 The default warning level of the @option{-Wattribute-alias} option diagnoses
6112 incompatibilities between the type of the alias declaration and that of its
6113 target. Such incompatibilities are typically indicative of bugs.
6114
6115 @item -Wattribute-alias=2
6116 At this level @option{-Wattribute-alias} also diagnoses mismatches between
6117 the set of attributes of the alias declaration and the attributes applied
6118 to its target. Although in some cases such mismatches may indicate bugs,
6119 in other cases they may be benign and could be resolved simply by adding
6120 the missing attribute to the target.
6121 @end table
6122
6123 @item -Wbool-compare
6124 @opindex Wno-bool-compare
6125 @opindex Wbool-compare
6126 Warn about boolean expression compared with an integer value different from
6127 @code{true}/@code{false}. For instance, the following comparison is
6128 always false:
6129 @smallexample
6130 int n = 5;
6131 @dots{}
6132 if ((n > 1) == 2) @{ @dots{} @}
6133 @end smallexample
6134 This warning is enabled by @option{-Wall}.
6135
6136 @item -Wbool-operation
6137 @opindex Wno-bool-operation
6138 @opindex Wbool-operation
6139 Warn about suspicious operations on expressions of a boolean type. For
6140 instance, bitwise negation of a boolean is very likely a bug in the program.
6141 For C, this warning also warns about incrementing or decrementing a boolean,
6142 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
6143 Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
6144
6145 This warning is enabled by @option{-Wall}.
6146
6147 @item -Wduplicated-branches
6148 @opindex Wno-duplicated-branches
6149 @opindex Wduplicated-branches
6150 Warn when an if-else has identical branches. This warning detects cases like
6151 @smallexample
6152 if (p != NULL)
6153 return 0;
6154 else
6155 return 0;
6156 @end smallexample
6157 It doesn't warn when both branches contain just a null statement. This warning
6158 also warn for conditional operators:
6159 @smallexample
6160 int i = x ? *p : *p;
6161 @end smallexample
6162
6163 @item -Wduplicated-cond
6164 @opindex Wno-duplicated-cond
6165 @opindex Wduplicated-cond
6166 Warn about duplicated conditions in an if-else-if chain. For instance,
6167 warn for the following code:
6168 @smallexample
6169 if (p->q != NULL) @{ @dots{} @}
6170 else if (p->q != NULL) @{ @dots{} @}
6171 @end smallexample
6172
6173 @item -Wframe-address
6174 @opindex Wno-frame-address
6175 @opindex Wframe-address
6176 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
6177 is called with an argument greater than 0. Such calls may return indeterminate
6178 values or crash the program. The warning is included in @option{-Wall}.
6179
6180 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
6181 @opindex Wno-discarded-qualifiers
6182 @opindex Wdiscarded-qualifiers
6183 Do not warn if type qualifiers on pointers are being discarded.
6184 Typically, the compiler warns if a @code{const char *} variable is
6185 passed to a function that takes a @code{char *} parameter. This option
6186 can be used to suppress such a warning.
6187
6188 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
6189 @opindex Wno-discarded-array-qualifiers
6190 @opindex Wdiscarded-array-qualifiers
6191 Do not warn if type qualifiers on arrays which are pointer targets
6192 are being discarded. Typically, the compiler warns if a
6193 @code{const int (*)[]} variable is passed to a function that
6194 takes a @code{int (*)[]} parameter. This option can be used to
6195 suppress such a warning.
6196
6197 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
6198 @opindex Wno-incompatible-pointer-types
6199 @opindex Wincompatible-pointer-types
6200 Do not warn when there is a conversion between pointers that have incompatible
6201 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
6202 which warns for pointer argument passing or assignment with different
6203 signedness.
6204
6205 @item -Wno-int-conversion @r{(C and Objective-C only)}
6206 @opindex Wno-int-conversion
6207 @opindex Wint-conversion
6208 Do not warn about incompatible integer to pointer and pointer to integer
6209 conversions. This warning is about implicit conversions; for explicit
6210 conversions the warnings @option{-Wno-int-to-pointer-cast} and
6211 @option{-Wno-pointer-to-int-cast} may be used.
6212
6213 @item -Wno-div-by-zero
6214 @opindex Wno-div-by-zero
6215 @opindex Wdiv-by-zero
6216 Do not warn about compile-time integer division by zero. Floating-point
6217 division by zero is not warned about, as it can be a legitimate way of
6218 obtaining infinities and NaNs.
6219
6220 @item -Wsystem-headers
6221 @opindex Wsystem-headers
6222 @opindex Wno-system-headers
6223 @cindex warnings from system headers
6224 @cindex system headers, warnings from
6225 Print warning messages for constructs found in system header files.
6226 Warnings from system headers are normally suppressed, on the assumption
6227 that they usually do not indicate real problems and would only make the
6228 compiler output harder to read. Using this command-line option tells
6229 GCC to emit warnings from system headers as if they occurred in user
6230 code. However, note that using @option{-Wall} in conjunction with this
6231 option does @emph{not} warn about unknown pragmas in system
6232 headers---for that, @option{-Wunknown-pragmas} must also be used.
6233
6234 @item -Wtautological-compare
6235 @opindex Wtautological-compare
6236 @opindex Wno-tautological-compare
6237 Warn if a self-comparison always evaluates to true or false. This
6238 warning detects various mistakes such as:
6239 @smallexample
6240 int i = 1;
6241 @dots{}
6242 if (i > i) @{ @dots{} @}
6243 @end smallexample
6244
6245 This warning also warns about bitwise comparisons that always evaluate
6246 to true or false, for instance:
6247 @smallexample
6248 if ((a & 16) == 10) @{ @dots{} @}
6249 @end smallexample
6250 will always be false.
6251
6252 This warning is enabled by @option{-Wall}.
6253
6254 @item -Wtrampolines
6255 @opindex Wtrampolines
6256 @opindex Wno-trampolines
6257 Warn about trampolines generated for pointers to nested functions.
6258 A trampoline is a small piece of data or code that is created at run
6259 time on the stack when the address of a nested function is taken, and is
6260 used to call the nested function indirectly. For some targets, it is
6261 made up of data only and thus requires no special treatment. But, for
6262 most targets, it is made up of code and thus requires the stack to be
6263 made executable in order for the program to work properly.
6264
6265 @item -Wfloat-equal
6266 @opindex Wfloat-equal
6267 @opindex Wno-float-equal
6268 Warn if floating-point values are used in equality comparisons.
6269
6270 The idea behind this is that sometimes it is convenient (for the
6271 programmer) to consider floating-point values as approximations to
6272 infinitely precise real numbers. If you are doing this, then you need
6273 to compute (by analyzing the code, or in some other way) the maximum or
6274 likely maximum error that the computation introduces, and allow for it
6275 when performing comparisons (and when producing output, but that's a
6276 different problem). In particular, instead of testing for equality, you
6277 should check to see whether the two values have ranges that overlap; and
6278 this is done with the relational operators, so equality comparisons are
6279 probably mistaken.
6280
6281 @item -Wtraditional @r{(C and Objective-C only)}
6282 @opindex Wtraditional
6283 @opindex Wno-traditional
6284 Warn about certain constructs that behave differently in traditional and
6285 ISO C@. Also warn about ISO C constructs that have no traditional C
6286 equivalent, and/or problematic constructs that should be avoided.
6287
6288 @itemize @bullet
6289 @item
6290 Macro parameters that appear within string literals in the macro body.
6291 In traditional C macro replacement takes place within string literals,
6292 but in ISO C it does not.
6293
6294 @item
6295 In traditional C, some preprocessor directives did not exist.
6296 Traditional preprocessors only considered a line to be a directive
6297 if the @samp{#} appeared in column 1 on the line. Therefore
6298 @option{-Wtraditional} warns about directives that traditional C
6299 understands but ignores because the @samp{#} does not appear as the
6300 first character on the line. It also suggests you hide directives like
6301 @code{#pragma} not understood by traditional C by indenting them. Some
6302 traditional implementations do not recognize @code{#elif}, so this option
6303 suggests avoiding it altogether.
6304
6305 @item
6306 A function-like macro that appears without arguments.
6307
6308 @item
6309 The unary plus operator.
6310
6311 @item
6312 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
6313 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
6314 constants.) Note, these suffixes appear in macros defined in the system
6315 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
6316 Use of these macros in user code might normally lead to spurious
6317 warnings, however GCC's integrated preprocessor has enough context to
6318 avoid warning in these cases.
6319
6320 @item
6321 A function declared external in one block and then used after the end of
6322 the block.
6323
6324 @item
6325 A @code{switch} statement has an operand of type @code{long}.
6326
6327 @item
6328 A non-@code{static} function declaration follows a @code{static} one.
6329 This construct is not accepted by some traditional C compilers.
6330
6331 @item
6332 The ISO type of an integer constant has a different width or
6333 signedness from its traditional type. This warning is only issued if
6334 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
6335 typically represent bit patterns, are not warned about.
6336
6337 @item
6338 Usage of ISO string concatenation is detected.
6339
6340 @item
6341 Initialization of automatic aggregates.
6342
6343 @item
6344 Identifier conflicts with labels. Traditional C lacks a separate
6345 namespace for labels.
6346
6347 @item
6348 Initialization of unions. If the initializer is zero, the warning is
6349 omitted. This is done under the assumption that the zero initializer in
6350 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
6351 initializer warnings and relies on default initialization to zero in the
6352 traditional C case.
6353
6354 @item
6355 Conversions by prototypes between fixed/floating-point values and vice
6356 versa. The absence of these prototypes when compiling with traditional
6357 C causes serious problems. This is a subset of the possible
6358 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
6359
6360 @item
6361 Use of ISO C style function definitions. This warning intentionally is
6362 @emph{not} issued for prototype declarations or variadic functions
6363 because these ISO C features appear in your code when using
6364 libiberty's traditional C compatibility macros, @code{PARAMS} and
6365 @code{VPARAMS}. This warning is also bypassed for nested functions
6366 because that feature is already a GCC extension and thus not relevant to
6367 traditional C compatibility.
6368 @end itemize
6369
6370 @item -Wtraditional-conversion @r{(C and Objective-C only)}
6371 @opindex Wtraditional-conversion
6372 @opindex Wno-traditional-conversion
6373 Warn if a prototype causes a type conversion that is different from what
6374 would happen to the same argument in the absence of a prototype. This
6375 includes conversions of fixed point to floating and vice versa, and
6376 conversions changing the width or signedness of a fixed-point argument
6377 except when the same as the default promotion.
6378
6379 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
6380 @opindex Wdeclaration-after-statement
6381 @opindex Wno-declaration-after-statement
6382 Warn when a declaration is found after a statement in a block. This
6383 construct, known from C++, was introduced with ISO C99 and is by default
6384 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
6385
6386 @item -Wshadow
6387 @opindex Wshadow
6388 @opindex Wno-shadow
6389 Warn whenever a local variable or type declaration shadows another
6390 variable, parameter, type, class member (in C++), or instance variable
6391 (in Objective-C) or whenever a built-in function is shadowed. Note
6392 that in C++, the compiler warns if a local variable shadows an
6393 explicit typedef, but not if it shadows a struct/class/enum.
6394 Same as @option{-Wshadow=global}.
6395
6396 @item -Wno-shadow-ivar @r{(Objective-C only)}
6397 @opindex Wno-shadow-ivar
6398 @opindex Wshadow-ivar
6399 Do not warn whenever a local variable shadows an instance variable in an
6400 Objective-C method.
6401
6402 @item -Wshadow=global
6403 @opindex Wshadow=local
6404 The default for @option{-Wshadow}. Warns for any (global) shadowing.
6405
6406 @item -Wshadow=local
6407 @opindex Wshadow=local
6408 Warn when a local variable shadows another local variable or parameter.
6409 This warning is enabled by @option{-Wshadow=global}.
6410
6411 @item -Wshadow=compatible-local
6412 @opindex Wshadow=compatible-local
6413 Warn when a local variable shadows another local variable or parameter
6414 whose type is compatible with that of the shadowing variable. In C++,
6415 type compatibility here means the type of the shadowing variable can be
6416 converted to that of the shadowed variable. The creation of this flag
6417 (in addition to @option{-Wshadow=local}) is based on the idea that when
6418 a local variable shadows another one of incompatible type, it is most
6419 likely intentional, not a bug or typo, as shown in the following example:
6420
6421 @smallexample
6422 @group
6423 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
6424 @{
6425 for (int i = 0; i < N; ++i)
6426 @{
6427 ...
6428 @}
6429 ...
6430 @}
6431 @end group
6432 @end smallexample
6433
6434 Since the two variable @code{i} in the example above have incompatible types,
6435 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
6436 Because their types are incompatible, if a programmer accidentally uses one
6437 in place of the other, type checking will catch that and emit an error or
6438 warning. So not warning (about shadowing) in this case will not lead to
6439 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
6440 possibly reduce the number of warnings triggered by intentional shadowing.
6441
6442 This warning is enabled by @option{-Wshadow=local}.
6443
6444 @item -Wlarger-than=@var{byte-size}
6445 @opindex Wlarger-than=
6446 @opindex Wlarger-than-@var{byte-size}
6447 Warn whenever an object is defined whose size exceeds @var{byte-size}.
6448 @option{-Wlarger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6449 Warnings controlled by the option can be disabled either by specifying
6450 @var{byte-size} of @samp{SIZE_MAX} or more or by
6451 @option{-Wno-larger-than}.
6452
6453 @item -Wno-larger-than
6454 @opindex Wno-larger-than
6455 Disable @option{-Wlarger-than=} warnings. The option is equivalent
6456 to @option{-Wlarger-than=}@samp{SIZE_MAX} or larger.
6457
6458 @item -Wframe-larger-than=@var{byte-size}
6459 @opindex Wframe-larger-than=
6460 @opindex Wno-frame-larger-than
6461 Warn if the size of a function frame exceeds @var{byte-size}.
6462 The computation done to determine the stack frame size is approximate
6463 and not conservative.
6464 The actual requirements may be somewhat greater than @var{byte-size}
6465 even if you do not get a warning. In addition, any space allocated
6466 via @code{alloca}, variable-length arrays, or related constructs
6467 is not included by the compiler when determining
6468 whether or not to issue a warning.
6469 @option{-Wframe-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6470 Warnings controlled by the option can be disabled either by specifying
6471 @var{byte-size} of @samp{SIZE_MAX} or more or by
6472 @option{-Wno-frame-larger-than}.
6473
6474 @item -Wno-frame-larger-than
6475 @opindex Wno-frame-larger-than
6476 Disable @option{-Wframe-larger-than=} warnings. The option is equivalent
6477 to @option{-Wframe-larger-than=}@samp{SIZE_MAX} or larger.
6478
6479 @item -Wno-free-nonheap-object
6480 @opindex Wno-free-nonheap-object
6481 @opindex Wfree-nonheap-object
6482 Do not warn when attempting to free an object that was not allocated
6483 on the heap.
6484
6485 @item -Wstack-usage=@var{byte-size}
6486 @opindex Wstack-usage
6487 @opindex Wno-stack-usage
6488 Warn if the stack usage of a function might exceed @var{byte-size}.
6489 The computation done to determine the stack usage is conservative.
6490 Any space allocated via @code{alloca}, variable-length arrays, or related
6491 constructs is included by the compiler when determining whether or not to
6492 issue a warning.
6493
6494 The message is in keeping with the output of @option{-fstack-usage}.
6495
6496 @itemize
6497 @item
6498 If the stack usage is fully static but exceeds the specified amount, it's:
6499
6500 @smallexample
6501 warning: stack usage is 1120 bytes
6502 @end smallexample
6503 @item
6504 If the stack usage is (partly) dynamic but bounded, it's:
6505
6506 @smallexample
6507 warning: stack usage might be 1648 bytes
6508 @end smallexample
6509 @item
6510 If the stack usage is (partly) dynamic and not bounded, it's:
6511
6512 @smallexample
6513 warning: stack usage might be unbounded
6514 @end smallexample
6515 @end itemize
6516
6517 @option{-Wstack-usage=}@samp{PTRDIFF_MAX} is enabled by default.
6518 Warnings controlled by the option can be disabled either by specifying
6519 @var{byte-size} of @samp{SIZE_MAX} or more or by
6520 @option{-Wno-stack-usage}.
6521
6522 @item -Wno-stack-usage
6523 @opindex Wno-stack-usage
6524 Disable @option{-Wstack-usage=} warnings. The option is equivalent
6525 to @option{-Wstack-usage=}@samp{SIZE_MAX} or larger.
6526
6527 @item -Wunsafe-loop-optimizations
6528 @opindex Wunsafe-loop-optimizations
6529 @opindex Wno-unsafe-loop-optimizations
6530 Warn if the loop cannot be optimized because the compiler cannot
6531 assume anything on the bounds of the loop indices. With
6532 @option{-funsafe-loop-optimizations} warn if the compiler makes
6533 such assumptions.
6534
6535 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
6536 @opindex Wno-pedantic-ms-format
6537 @opindex Wpedantic-ms-format
6538 When used in combination with @option{-Wformat}
6539 and @option{-pedantic} without GNU extensions, this option
6540 disables the warnings about non-ISO @code{printf} / @code{scanf} format
6541 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
6542 which depend on the MS runtime.
6543
6544 @item -Waligned-new
6545 @opindex Waligned-new
6546 @opindex Wno-aligned-new
6547 Warn about a new-expression of a type that requires greater alignment
6548 than the @code{alignof(std::max_align_t)} but uses an allocation
6549 function without an explicit alignment parameter. This option is
6550 enabled by @option{-Wall}.
6551
6552 Normally this only warns about global allocation functions, but
6553 @option{-Waligned-new=all} also warns about class member allocation
6554 functions.
6555
6556 @item -Wplacement-new
6557 @itemx -Wplacement-new=@var{n}
6558 @opindex Wplacement-new
6559 @opindex Wno-placement-new
6560 Warn about placement new expressions with undefined behavior, such as
6561 constructing an object in a buffer that is smaller than the type of
6562 the object. For example, the placement new expression below is diagnosed
6563 because it attempts to construct an array of 64 integers in a buffer only
6564 64 bytes large.
6565 @smallexample
6566 char buf [64];
6567 new (buf) int[64];
6568 @end smallexample
6569 This warning is enabled by default.
6570
6571 @table @gcctabopt
6572 @item -Wplacement-new=1
6573 This is the default warning level of @option{-Wplacement-new}. At this
6574 level the warning is not issued for some strictly undefined constructs that
6575 GCC allows as extensions for compatibility with legacy code. For example,
6576 the following @code{new} expression is not diagnosed at this level even
6577 though it has undefined behavior according to the C++ standard because
6578 it writes past the end of the one-element array.
6579 @smallexample
6580 struct S @{ int n, a[1]; @};
6581 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
6582 new (s->a)int [32]();
6583 @end smallexample
6584
6585 @item -Wplacement-new=2
6586 At this level, in addition to diagnosing all the same constructs as at level
6587 1, a diagnostic is also issued for placement new expressions that construct
6588 an object in the last member of structure whose type is an array of a single
6589 element and whose size is less than the size of the object being constructed.
6590 While the previous example would be diagnosed, the following construct makes
6591 use of the flexible member array extension to avoid the warning at level 2.
6592 @smallexample
6593 struct S @{ int n, a[]; @};
6594 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
6595 new (s->a)int [32]();
6596 @end smallexample
6597
6598 @end table
6599
6600 @item -Wpointer-arith
6601 @opindex Wpointer-arith
6602 @opindex Wno-pointer-arith
6603 Warn about anything that depends on the ``size of'' a function type or
6604 of @code{void}. GNU C assigns these types a size of 1, for
6605 convenience in calculations with @code{void *} pointers and pointers
6606 to functions. In C++, warn also when an arithmetic operation involves
6607 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
6608
6609 @item -Wpointer-compare
6610 @opindex Wpointer-compare
6611 @opindex Wno-pointer-compare
6612 Warn if a pointer is compared with a zero character constant. This usually
6613 means that the pointer was meant to be dereferenced. For example:
6614
6615 @smallexample
6616 const char *p = foo ();
6617 if (p == '\0')
6618 return 42;
6619 @end smallexample
6620
6621 Note that the code above is invalid in C++11.
6622
6623 This warning is enabled by default.
6624
6625 @item -Wtype-limits
6626 @opindex Wtype-limits
6627 @opindex Wno-type-limits
6628 Warn if a comparison is always true or always false due to the limited
6629 range of the data type, but do not warn for constant expressions. For
6630 example, warn if an unsigned variable is compared against zero with
6631 @code{<} or @code{>=}. This warning is also enabled by
6632 @option{-Wextra}.
6633
6634 @item -Wabsolute-value @r{(C and Objective-C only)}
6635 @opindex Wabsolute-value
6636 @opindex Wno-absolute-value
6637 Warn when a wrong absolute value function seems to be used or when it
6638 does not have any effect because its argument is an unsigned type.
6639 This warning be suppressed with an explicit type cast and it is also
6640 enabled by @option{-Wextra}.
6641
6642 @include cppwarnopts.texi
6643
6644 @item -Wbad-function-cast @r{(C and Objective-C only)}
6645 @opindex Wbad-function-cast
6646 @opindex Wno-bad-function-cast
6647 Warn when a function call is cast to a non-matching type.
6648 For example, warn if a call to a function returning an integer type
6649 is cast to a pointer type.
6650
6651 @item -Wc90-c99-compat @r{(C and Objective-C only)}
6652 @opindex Wc90-c99-compat
6653 @opindex Wno-c90-c99-compat
6654 Warn about features not present in ISO C90, but present in ISO C99.
6655 For instance, warn about use of variable length arrays, @code{long long}
6656 type, @code{bool} type, compound literals, designated initializers, and so
6657 on. This option is independent of the standards mode. Warnings are disabled
6658 in the expression that follows @code{__extension__}.
6659
6660 @item -Wc99-c11-compat @r{(C and Objective-C only)}
6661 @opindex Wc99-c11-compat
6662 @opindex Wno-c99-c11-compat
6663 Warn about features not present in ISO C99, but present in ISO C11.
6664 For instance, warn about use of anonymous structures and unions,
6665 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
6666 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
6667 and so on. This option is independent of the standards mode. Warnings are
6668 disabled in the expression that follows @code{__extension__}.
6669
6670 @item -Wc++-compat @r{(C and Objective-C only)}
6671 @opindex Wc++-compat
6672 @opindex Wno-c++-compat
6673 Warn about ISO C constructs that are outside of the common subset of
6674 ISO C and ISO C++, e.g.@: request for implicit conversion from
6675 @code{void *} to a pointer to non-@code{void} type.
6676
6677 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
6678 @opindex Wc++11-compat
6679 @opindex Wno-c++11-compat
6680 Warn about C++ constructs whose meaning differs between ISO C++ 1998
6681 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
6682 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
6683 enabled by @option{-Wall}.
6684
6685 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6686 @opindex Wc++14-compat
6687 @opindex Wno-c++14-compat
6688 Warn about C++ constructs whose meaning differs between ISO C++ 2011
6689 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
6690
6691 @item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6692 @opindex Wc++17-compat
6693 @opindex Wno-c++17-compat
6694 Warn about C++ constructs whose meaning differs between ISO C++ 2014
6695 and ISO C++ 2017. This warning is enabled by @option{-Wall}.
6696
6697 @item -Wcast-qual
6698 @opindex Wcast-qual
6699 @opindex Wno-cast-qual
6700 Warn whenever a pointer is cast so as to remove a type qualifier from
6701 the target type. For example, warn if a @code{const char *} is cast
6702 to an ordinary @code{char *}.
6703
6704 Also warn when making a cast that introduces a type qualifier in an
6705 unsafe way. For example, casting @code{char **} to @code{const char **}
6706 is unsafe, as in this example:
6707
6708 @smallexample
6709 /* p is char ** value. */
6710 const char **q = (const char **) p;
6711 /* Assignment of readonly string to const char * is OK. */
6712 *q = "string";
6713 /* Now char** pointer points to read-only memory. */
6714 **p = 'b';
6715 @end smallexample
6716
6717 @item -Wcast-align
6718 @opindex Wcast-align
6719 @opindex Wno-cast-align
6720 Warn whenever a pointer is cast such that the required alignment of the
6721 target is increased. For example, warn if a @code{char *} is cast to
6722 an @code{int *} on machines where integers can only be accessed at
6723 two- or four-byte boundaries.
6724
6725 @item -Wcast-align=strict
6726 @opindex Wcast-align=strict
6727 Warn whenever a pointer is cast such that the required alignment of the
6728 target is increased. For example, warn if a @code{char *} is cast to
6729 an @code{int *} regardless of the target machine.
6730
6731 @item -Wcast-function-type
6732 @opindex Wcast-function-type
6733 @opindex Wno-cast-function-type
6734 Warn when a function pointer is cast to an incompatible function pointer.
6735 In a cast involving function types with a variable argument list only
6736 the types of initial arguments that are provided are considered.
6737 Any parameter of pointer-type matches any other pointer-type. Any benign
6738 differences in integral types are ignored, like @code{int} vs.@: @code{long}
6739 on ILP32 targets. Likewise type qualifiers are ignored. The function
6740 type @code{void (*) (void)} is special and matches everything, which can
6741 be used to suppress this warning.
6742 In a cast involving pointer to member types this warning warns whenever
6743 the type cast is changing the pointer to member type.
6744 This warning is enabled by @option{-Wextra}.
6745
6746 @item -Wwrite-strings
6747 @opindex Wwrite-strings
6748 @opindex Wno-write-strings
6749 When compiling C, give string constants the type @code{const
6750 char[@var{length}]} so that copying the address of one into a
6751 non-@code{const} @code{char *} pointer produces a warning. These
6752 warnings help you find at compile time code that can try to write
6753 into a string constant, but only if you have been very careful about
6754 using @code{const} in declarations and prototypes. Otherwise, it is
6755 just a nuisance. This is why we did not make @option{-Wall} request
6756 these warnings.
6757
6758 When compiling C++, warn about the deprecated conversion from string
6759 literals to @code{char *}. This warning is enabled by default for C++
6760 programs.
6761
6762 @item -Wcatch-value
6763 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6764 @opindex Wcatch-value
6765 @opindex Wno-catch-value
6766 Warn about catch handlers that do not catch via reference.
6767 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6768 warn about polymorphic class types that are caught by value.
6769 With @option{-Wcatch-value=2} warn about all class types that are caught
6770 by value. With @option{-Wcatch-value=3} warn about all types that are
6771 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6772
6773 @item -Wclobbered
6774 @opindex Wclobbered
6775 @opindex Wno-clobbered
6776 Warn for variables that might be changed by @code{longjmp} or
6777 @code{vfork}. This warning is also enabled by @option{-Wextra}.
6778
6779 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6780 @opindex Wconditionally-supported
6781 @opindex Wno-conditionally-supported
6782 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6783
6784 @item -Wconversion
6785 @opindex Wconversion
6786 @opindex Wno-conversion
6787 Warn for implicit conversions that may alter a value. This includes
6788 conversions between real and integer, like @code{abs (x)} when
6789 @code{x} is @code{double}; conversions between signed and unsigned,
6790 like @code{unsigned ui = -1}; and conversions to smaller types, like
6791 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6792 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6793 changed by the conversion like in @code{abs (2.0)}. Warnings about
6794 conversions between signed and unsigned integers can be disabled by
6795 using @option{-Wno-sign-conversion}.
6796
6797 For C++, also warn for confusing overload resolution for user-defined
6798 conversions; and conversions that never use a type conversion
6799 operator: conversions to @code{void}, the same type, a base class or a
6800 reference to them. Warnings about conversions between signed and
6801 unsigned integers are disabled by default in C++ unless
6802 @option{-Wsign-conversion} is explicitly enabled.
6803
6804 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6805 @opindex Wconversion-null
6806 @opindex Wno-conversion-null
6807 Do not warn for conversions between @code{NULL} and non-pointer
6808 types. @option{-Wconversion-null} is enabled by default.
6809
6810 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6811 @opindex Wzero-as-null-pointer-constant
6812 @opindex Wno-zero-as-null-pointer-constant
6813 Warn when a literal @samp{0} is used as null pointer constant. This can
6814 be useful to facilitate the conversion to @code{nullptr} in C++11.
6815
6816 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6817 @opindex Wsubobject-linkage
6818 @opindex Wno-subobject-linkage
6819 Warn if a class type has a base or a field whose type uses the anonymous
6820 namespace or depends on a type with no linkage. If a type A depends on
6821 a type B with no or internal linkage, defining it in multiple
6822 translation units would be an ODR violation because the meaning of B
6823 is different in each translation unit. If A only appears in a single
6824 translation unit, the best way to silence the warning is to give it
6825 internal linkage by putting it in an anonymous namespace as well. The
6826 compiler doesn't give this warning for types defined in the main .C
6827 file, as those are unlikely to have multiple definitions.
6828 @option{-Wsubobject-linkage} is enabled by default.
6829
6830 @item -Wdangling-else
6831 @opindex Wdangling-else
6832 @opindex Wno-dangling-else
6833 Warn about constructions where there may be confusion to which
6834 @code{if} statement an @code{else} branch belongs. Here is an example of
6835 such a case:
6836
6837 @smallexample
6838 @group
6839 @{
6840 if (a)
6841 if (b)
6842 foo ();
6843 else
6844 bar ();
6845 @}
6846 @end group
6847 @end smallexample
6848
6849 In C/C++, every @code{else} branch belongs to the innermost possible
6850 @code{if} statement, which in this example is @code{if (b)}. This is
6851 often not what the programmer expected, as illustrated in the above
6852 example by indentation the programmer chose. When there is the
6853 potential for this confusion, GCC issues a warning when this flag
6854 is specified. To eliminate the warning, add explicit braces around
6855 the innermost @code{if} statement so there is no way the @code{else}
6856 can belong to the enclosing @code{if}. The resulting code
6857 looks like this:
6858
6859 @smallexample
6860 @group
6861 @{
6862 if (a)
6863 @{
6864 if (b)
6865 foo ();
6866 else
6867 bar ();
6868 @}
6869 @}
6870 @end group
6871 @end smallexample
6872
6873 This warning is enabled by @option{-Wparentheses}.
6874
6875 @item -Wdate-time
6876 @opindex Wdate-time
6877 @opindex Wno-date-time
6878 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6879 are encountered as they might prevent bit-wise-identical reproducible
6880 compilations.
6881
6882 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6883 @opindex Wdelete-incomplete
6884 @opindex Wno-delete-incomplete
6885 Warn when deleting a pointer to incomplete type, which may cause
6886 undefined behavior at runtime. This warning is enabled by default.
6887
6888 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6889 @opindex Wuseless-cast
6890 @opindex Wno-useless-cast
6891 Warn when an expression is casted to its own type.
6892
6893 @item -Wempty-body
6894 @opindex Wempty-body
6895 @opindex Wno-empty-body
6896 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6897 while} statement. This warning is also enabled by @option{-Wextra}.
6898
6899 @item -Wenum-compare
6900 @opindex Wenum-compare
6901 @opindex Wno-enum-compare
6902 Warn about a comparison between values of different enumerated types.
6903 In C++ enumerated type mismatches in conditional expressions are also
6904 diagnosed and the warning is enabled by default. In C this warning is
6905 enabled by @option{-Wall}.
6906
6907 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6908 @opindex Wextra-semi
6909 @opindex Wno-extra-semi
6910 Warn about redundant semicolon after in-class function definition.
6911
6912 @item -Wjump-misses-init @r{(C, Objective-C only)}
6913 @opindex Wjump-misses-init
6914 @opindex Wno-jump-misses-init
6915 Warn if a @code{goto} statement or a @code{switch} statement jumps
6916 forward across the initialization of a variable, or jumps backward to a
6917 label after the variable has been initialized. This only warns about
6918 variables that are initialized when they are declared. This warning is
6919 only supported for C and Objective-C; in C++ this sort of branch is an
6920 error in any case.
6921
6922 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
6923 can be disabled with the @option{-Wno-jump-misses-init} option.
6924
6925 @item -Wsign-compare
6926 @opindex Wsign-compare
6927 @opindex Wno-sign-compare
6928 @cindex warning for comparison of signed and unsigned values
6929 @cindex comparison of signed and unsigned values, warning
6930 @cindex signed and unsigned values, comparison warning
6931 Warn when a comparison between signed and unsigned values could produce
6932 an incorrect result when the signed value is converted to unsigned.
6933 In C++, this warning is also enabled by @option{-Wall}. In C, it is
6934 also enabled by @option{-Wextra}.
6935
6936 @item -Wsign-conversion
6937 @opindex Wsign-conversion
6938 @opindex Wno-sign-conversion
6939 Warn for implicit conversions that may change the sign of an integer
6940 value, like assigning a signed integer expression to an unsigned
6941 integer variable. An explicit cast silences the warning. In C, this
6942 option is enabled also by @option{-Wconversion}.
6943
6944 @item -Wfloat-conversion
6945 @opindex Wfloat-conversion
6946 @opindex Wno-float-conversion
6947 Warn for implicit conversions that reduce the precision of a real value.
6948 This includes conversions from real to integer, and from higher precision
6949 real to lower precision real values. This option is also enabled by
6950 @option{-Wconversion}.
6951
6952 @item -Wno-scalar-storage-order
6953 @opindex Wno-scalar-storage-order
6954 @opindex Wscalar-storage-order
6955 Do not warn on suspicious constructs involving reverse scalar storage order.
6956
6957 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
6958 @opindex Wsized-deallocation
6959 @opindex Wno-sized-deallocation
6960 Warn about a definition of an unsized deallocation function
6961 @smallexample
6962 void operator delete (void *) noexcept;
6963 void operator delete[] (void *) noexcept;
6964 @end smallexample
6965 without a definition of the corresponding sized deallocation function
6966 @smallexample
6967 void operator delete (void *, std::size_t) noexcept;
6968 void operator delete[] (void *, std::size_t) noexcept;
6969 @end smallexample
6970 or vice versa. Enabled by @option{-Wextra} along with
6971 @option{-fsized-deallocation}.
6972
6973 @item -Wsizeof-pointer-div
6974 @opindex Wsizeof-pointer-div
6975 @opindex Wno-sizeof-pointer-div
6976 Warn for suspicious divisions of two sizeof expressions that divide
6977 the pointer size by the element size, which is the usual way to compute
6978 the array size but won't work out correctly with pointers. This warning
6979 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
6980 not an array, but a pointer. This warning is enabled by @option{-Wall}.
6981
6982 @item -Wsizeof-pointer-memaccess
6983 @opindex Wsizeof-pointer-memaccess
6984 @opindex Wno-sizeof-pointer-memaccess
6985 Warn for suspicious length parameters to certain string and memory built-in
6986 functions if the argument uses @code{sizeof}. This warning triggers for
6987 example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
6988 an array, but a pointer, and suggests a possible fix, or about
6989 @code{memcpy (&foo, ptr, sizeof (&foo));}. @option{-Wsizeof-pointer-memaccess}
6990 also warns about calls to bounded string copy functions like @code{strncat}
6991 or @code{strncpy} that specify as the bound a @code{sizeof} expression of
6992 the source array. For example, in the following function the call to
6993 @code{strncat} specifies the size of the source string as the bound. That
6994 is almost certainly a mistake and so the call is diagnosed.
6995 @smallexample
6996 void make_file (const char *name)
6997 @{
6998 char path[PATH_MAX];
6999 strncpy (path, name, sizeof path - 1);
7000 strncat (path, ".text", sizeof ".text");
7001 @dots{}
7002 @}
7003 @end smallexample
7004
7005 The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
7006
7007 @item -Wsizeof-array-argument
7008 @opindex Wsizeof-array-argument
7009 @opindex Wno-sizeof-array-argument
7010 Warn when the @code{sizeof} operator is applied to a parameter that is
7011 declared as an array in a function definition. This warning is enabled by
7012 default for C and C++ programs.
7013
7014 @item -Wmemset-elt-size
7015 @opindex Wmemset-elt-size
7016 @opindex Wno-memset-elt-size
7017 Warn for suspicious calls to the @code{memset} built-in function, if the
7018 first argument references an array, and the third argument is a number
7019 equal to the number of elements, but not equal to the size of the array
7020 in memory. This indicates that the user has omitted a multiplication by
7021 the element size. This warning is enabled by @option{-Wall}.
7022
7023 @item -Wmemset-transposed-args
7024 @opindex Wmemset-transposed-args
7025 @opindex Wno-memset-transposed-args
7026 Warn for suspicious calls to the @code{memset} built-in function where
7027 the second argument is not zero and the third argument is zero. For
7028 example, the call @code{memset (buf, sizeof buf, 0)} is diagnosed because
7029 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostic
7030 is only emitted if the third argument is a literal zero. Otherwise, if
7031 it is an expression that is folded to zero, or a cast of zero to some
7032 type, it is far less likely that the arguments have been mistakenly
7033 transposed and no warning is emitted. This warning is enabled
7034 by @option{-Wall}.
7035
7036 @item -Waddress
7037 @opindex Waddress
7038 @opindex Wno-address
7039 Warn about suspicious uses of memory addresses. These include using
7040 the address of a function in a conditional expression, such as
7041 @code{void func(void); if (func)}, and comparisons against the memory
7042 address of a string literal, such as @code{if (x == "abc")}. Such
7043 uses typically indicate a programmer error: the address of a function
7044 always evaluates to true, so their use in a conditional usually
7045 indicate that the programmer forgot the parentheses in a function
7046 call; and comparisons against string literals result in unspecified
7047 behavior and are not portable in C, so they usually indicate that the
7048 programmer intended to use @code{strcmp}. This warning is enabled by
7049 @option{-Wall}.
7050
7051 @item -Waddress-of-packed-member
7052 @opindex Waddress-of-packed-member
7053 @opindex Wno-address-of-packed-member
7054 Warn when the address of packed member of struct or union is taken,
7055 which usually results in an unaligned pointer value. This is
7056 enabled by default.
7057
7058 @item -Wlogical-op
7059 @opindex Wlogical-op
7060 @opindex Wno-logical-op
7061 Warn about suspicious uses of logical operators in expressions.
7062 This includes using logical operators in contexts where a
7063 bit-wise operator is likely to be expected. Also warns when
7064 the operands of a logical operator are the same:
7065 @smallexample
7066 extern int a;
7067 if (a < 0 && a < 0) @{ @dots{} @}
7068 @end smallexample
7069
7070 @item -Wlogical-not-parentheses
7071 @opindex Wlogical-not-parentheses
7072 @opindex Wno-logical-not-parentheses
7073 Warn about logical not used on the left hand side operand of a comparison.
7074 This option does not warn if the right operand is considered to be a boolean
7075 expression. Its purpose is to detect suspicious code like the following:
7076 @smallexample
7077 int a;
7078 @dots{}
7079 if (!a > 1) @{ @dots{} @}
7080 @end smallexample
7081
7082 It is possible to suppress the warning by wrapping the LHS into
7083 parentheses:
7084 @smallexample
7085 if ((!a) > 1) @{ @dots{} @}
7086 @end smallexample
7087
7088 This warning is enabled by @option{-Wall}.
7089
7090 @item -Waggregate-return
7091 @opindex Waggregate-return
7092 @opindex Wno-aggregate-return
7093 Warn if any functions that return structures or unions are defined or
7094 called. (In languages where you can return an array, this also elicits
7095 a warning.)
7096
7097 @item -Wno-aggressive-loop-optimizations
7098 @opindex Wno-aggressive-loop-optimizations
7099 @opindex Waggressive-loop-optimizations
7100 Warn if in a loop with constant number of iterations the compiler detects
7101 undefined behavior in some statement during one or more of the iterations.
7102
7103 @item -Wno-attributes
7104 @opindex Wno-attributes
7105 @opindex Wattributes
7106 Do not warn if an unexpected @code{__attribute__} is used, such as
7107 unrecognized attributes, function attributes applied to variables,
7108 etc. This does not stop errors for incorrect use of supported
7109 attributes.
7110
7111 @item -Wno-builtin-declaration-mismatch
7112 @opindex Wno-builtin-declaration-mismatch
7113 @opindex Wbuiltin-declaration-mismatch
7114 Warn if a built-in function is declared with an incompatible signature
7115 or as a non-function, or when a built-in function declared with a type
7116 that does not include a prototype is called with arguments whose promoted
7117 types do not match those expected by the function. When @option{-Wextra}
7118 is specified, also warn when a built-in function that takes arguments is
7119 declared without a prototype. The @option{-Wno-builtin-declaration-mismatch}
7120 warning is enabled by default. To avoid the warning include the appropriate
7121 header to bring the prototypes of built-in functions into scope.
7122
7123 For example, the call to @code{memset} below is diagnosed by the warning
7124 because the function expects a value of type @code{size_t} as its argument
7125 but the type of @code{32} is @code{int}. With @option{-Wextra},
7126 the declaration of the function is diagnosed as well.
7127 @smallexample
7128 extern void* memset ();
7129 void f (void *d)
7130 @{
7131 memset (d, '\0', 32);
7132 @}
7133 @end smallexample
7134
7135 @item -Wno-builtin-macro-redefined
7136 @opindex Wno-builtin-macro-redefined
7137 @opindex Wbuiltin-macro-redefined
7138 Do not warn if certain built-in macros are redefined. This suppresses
7139 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
7140 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
7141
7142 @item -Wstrict-prototypes @r{(C and Objective-C only)}
7143 @opindex Wstrict-prototypes
7144 @opindex Wno-strict-prototypes
7145 Warn if a function is declared or defined without specifying the
7146 argument types. (An old-style function definition is permitted without
7147 a warning if preceded by a declaration that specifies the argument
7148 types.)
7149
7150 @item -Wold-style-declaration @r{(C and Objective-C only)}
7151 @opindex Wold-style-declaration
7152 @opindex Wno-old-style-declaration
7153 Warn for obsolescent usages, according to the C Standard, in a
7154 declaration. For example, warn if storage-class specifiers like
7155 @code{static} are not the first things in a declaration. This warning
7156 is also enabled by @option{-Wextra}.
7157
7158 @item -Wold-style-definition @r{(C and Objective-C only)}
7159 @opindex Wold-style-definition
7160 @opindex Wno-old-style-definition
7161 Warn if an old-style function definition is used. A warning is given
7162 even if there is a previous prototype.
7163
7164 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
7165 @opindex Wmissing-parameter-type
7166 @opindex Wno-missing-parameter-type
7167 A function parameter is declared without a type specifier in K&R-style
7168 functions:
7169
7170 @smallexample
7171 void foo(bar) @{ @}
7172 @end smallexample
7173
7174 This warning is also enabled by @option{-Wextra}.
7175
7176 @item -Wmissing-prototypes @r{(C and Objective-C only)}
7177 @opindex Wmissing-prototypes
7178 @opindex Wno-missing-prototypes
7179 Warn if a global function is defined without a previous prototype
7180 declaration. This warning is issued even if the definition itself
7181 provides a prototype. Use this option to detect global functions
7182 that do not have a matching prototype declaration in a header file.
7183 This option is not valid for C++ because all function declarations
7184 provide prototypes and a non-matching declaration declares an
7185 overload rather than conflict with an earlier declaration.
7186 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
7187
7188 @item -Wmissing-declarations
7189 @opindex Wmissing-declarations
7190 @opindex Wno-missing-declarations
7191 Warn if a global function is defined without a previous declaration.
7192 Do so even if the definition itself provides a prototype.
7193 Use this option to detect global functions that are not declared in
7194 header files. In C, no warnings are issued for functions with previous
7195 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
7196 missing prototypes. In C++, no warnings are issued for function templates,
7197 or for inline functions, or for functions in anonymous namespaces.
7198
7199 @item -Wmissing-field-initializers
7200 @opindex Wmissing-field-initializers
7201 @opindex Wno-missing-field-initializers
7202 @opindex W
7203 @opindex Wextra
7204 @opindex Wno-extra
7205 Warn if a structure's initializer has some fields missing. For
7206 example, the following code causes such a warning, because
7207 @code{x.h} is implicitly zero:
7208
7209 @smallexample
7210 struct s @{ int f, g, h; @};
7211 struct s x = @{ 3, 4 @};
7212 @end smallexample
7213
7214 This option does not warn about designated initializers, so the following
7215 modification does not trigger a warning:
7216
7217 @smallexample
7218 struct s @{ int f, g, h; @};
7219 struct s x = @{ .f = 3, .g = 4 @};
7220 @end smallexample
7221
7222 In C this option does not warn about the universal zero initializer
7223 @samp{@{ 0 @}}:
7224
7225 @smallexample
7226 struct s @{ int f, g, h; @};
7227 struct s x = @{ 0 @};
7228 @end smallexample
7229
7230 Likewise, in C++ this option does not warn about the empty @{ @}
7231 initializer, for example:
7232
7233 @smallexample
7234 struct s @{ int f, g, h; @};
7235 s x = @{ @};
7236 @end smallexample
7237
7238 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
7239 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
7240
7241 @item -Wno-multichar
7242 @opindex Wno-multichar
7243 @opindex Wmultichar
7244 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
7245 Usually they indicate a typo in the user's code, as they have
7246 implementation-defined values, and should not be used in portable code.
7247
7248 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
7249 @opindex Wnormalized=
7250 @opindex Wnormalized
7251 @opindex Wno-normalized
7252 @cindex NFC
7253 @cindex NFKC
7254 @cindex character set, input normalization
7255 In ISO C and ISO C++, two identifiers are different if they are
7256 different sequences of characters. However, sometimes when characters
7257 outside the basic ASCII character set are used, you can have two
7258 different character sequences that look the same. To avoid confusion,
7259 the ISO 10646 standard sets out some @dfn{normalization rules} which
7260 when applied ensure that two sequences that look the same are turned into
7261 the same sequence. GCC can warn you if you are using identifiers that
7262 have not been normalized; this option controls that warning.
7263
7264 There are four levels of warning supported by GCC@. The default is
7265 @option{-Wnormalized=nfc}, which warns about any identifier that is
7266 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
7267 recommended form for most uses. It is equivalent to
7268 @option{-Wnormalized}.
7269
7270 Unfortunately, there are some characters allowed in identifiers by
7271 ISO C and ISO C++ that, when turned into NFC, are not allowed in
7272 identifiers. That is, there's no way to use these symbols in portable
7273 ISO C or C++ and have all your identifiers in NFC@.
7274 @option{-Wnormalized=id} suppresses the warning for these characters.
7275 It is hoped that future versions of the standards involved will correct
7276 this, which is why this option is not the default.
7277
7278 You can switch the warning off for all characters by writing
7279 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
7280 only do this if you are using some other normalization scheme (like
7281 ``D''), because otherwise you can easily create bugs that are
7282 literally impossible to see.
7283
7284 Some characters in ISO 10646 have distinct meanings but look identical
7285 in some fonts or display methodologies, especially once formatting has
7286 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
7287 LETTER N'', displays just like a regular @code{n} that has been
7288 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
7289 normalization scheme to convert all these into a standard form as
7290 well, and GCC warns if your code is not in NFKC if you use
7291 @option{-Wnormalized=nfkc}. This warning is comparable to warning
7292 about every identifier that contains the letter O because it might be
7293 confused with the digit 0, and so is not the default, but may be
7294 useful as a local coding convention if the programming environment
7295 cannot be fixed to display these characters distinctly.
7296
7297 @item -Wno-attribute-warning
7298 @opindex Wno-attribute-warning
7299 @opindex Wattribute-warning
7300 Do not warn about usage of functions (@pxref{Function Attributes})
7301 declared with @code{warning} attribute. By default, this warning is
7302 enabled. @option{-Wno-attribute-warning} can be used to disable the
7303 warning or @option{-Wno-error=attribute-warning} can be used to
7304 disable the error when compiled with @option{-Werror} flag.
7305
7306 @item -Wno-deprecated
7307 @opindex Wno-deprecated
7308 @opindex Wdeprecated
7309 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
7310
7311 @item -Wno-deprecated-declarations
7312 @opindex Wno-deprecated-declarations
7313 @opindex Wdeprecated-declarations
7314 Do not warn about uses of functions (@pxref{Function Attributes}),
7315 variables (@pxref{Variable Attributes}), and types (@pxref{Type
7316 Attributes}) marked as deprecated by using the @code{deprecated}
7317 attribute.
7318
7319 @item -Wno-overflow
7320 @opindex Wno-overflow
7321 @opindex Woverflow
7322 Do not warn about compile-time overflow in constant expressions.
7323
7324 @item -Wno-odr
7325 @opindex Wno-odr
7326 @opindex Wodr
7327 Warn about One Definition Rule violations during link-time optimization.
7328 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
7329
7330 @item -Wopenmp-simd
7331 @opindex Wopenmp-simd
7332 @opindex Wno-openmp-simd
7333 Warn if the vectorizer cost model overrides the OpenMP
7334 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
7335 option can be used to relax the cost model.
7336
7337 @item -Woverride-init @r{(C and Objective-C only)}
7338 @opindex Woverride-init
7339 @opindex Wno-override-init
7340 @opindex W
7341 @opindex Wextra
7342 @opindex Wno-extra
7343 Warn if an initialized field without side effects is overridden when
7344 using designated initializers (@pxref{Designated Inits, , Designated
7345 Initializers}).
7346
7347 This warning is included in @option{-Wextra}. To get other
7348 @option{-Wextra} warnings without this one, use @option{-Wextra
7349 -Wno-override-init}.
7350
7351 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
7352 @opindex Woverride-init-side-effects
7353 @opindex Wno-override-init-side-effects
7354 Warn if an initialized field with side effects is overridden when
7355 using designated initializers (@pxref{Designated Inits, , Designated
7356 Initializers}). This warning is enabled by default.
7357
7358 @item -Wpacked
7359 @opindex Wpacked
7360 @opindex Wno-packed
7361 Warn if a structure is given the packed attribute, but the packed
7362 attribute has no effect on the layout or size of the structure.
7363 Such structures may be mis-aligned for little benefit. For
7364 instance, in this code, the variable @code{f.x} in @code{struct bar}
7365 is misaligned even though @code{struct bar} does not itself
7366 have the packed attribute:
7367
7368 @smallexample
7369 @group
7370 struct foo @{
7371 int x;
7372 char a, b, c, d;
7373 @} __attribute__((packed));
7374 struct bar @{
7375 char z;
7376 struct foo f;
7377 @};
7378 @end group
7379 @end smallexample
7380
7381 @item -Wpacked-bitfield-compat
7382 @opindex Wpacked-bitfield-compat
7383 @opindex Wno-packed-bitfield-compat
7384 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
7385 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
7386 the change can lead to differences in the structure layout. GCC
7387 informs you when the offset of such a field has changed in GCC 4.4.
7388 For example there is no longer a 4-bit padding between field @code{a}
7389 and @code{b} in this structure:
7390
7391 @smallexample
7392 struct foo
7393 @{
7394 char a:4;
7395 char b:8;
7396 @} __attribute__ ((packed));
7397 @end smallexample
7398
7399 This warning is enabled by default. Use
7400 @option{-Wno-packed-bitfield-compat} to disable this warning.
7401
7402 @item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
7403 @opindex Wpacked-not-aligned
7404 @opindex Wno-packed-not-aligned
7405 Warn if a structure field with explicitly specified alignment in a
7406 packed struct or union is misaligned. For example, a warning will
7407 be issued on @code{struct S}, like, @code{warning: alignment 1 of
7408 'struct S' is less than 8}, in this code:
7409
7410 @smallexample
7411 @group
7412 struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
7413 struct __attribute__ ((packed)) S @{
7414 struct S8 s8;
7415 @};
7416 @end group
7417 @end smallexample
7418
7419 This warning is enabled by @option{-Wall}.
7420
7421 @item -Wpadded
7422 @opindex Wpadded
7423 @opindex Wno-padded
7424 Warn if padding is included in a structure, either to align an element
7425 of the structure or to align the whole structure. Sometimes when this
7426 happens it is possible to rearrange the fields of the structure to
7427 reduce the padding and so make the structure smaller.
7428
7429 @item -Wredundant-decls
7430 @opindex Wredundant-decls
7431 @opindex Wno-redundant-decls
7432 Warn if anything is declared more than once in the same scope, even in
7433 cases where multiple declaration is valid and changes nothing.
7434
7435 @item -Wno-restrict
7436 @opindex Wrestrict
7437 @opindex Wno-restrict
7438 Warn when an object referenced by a @code{restrict}-qualified parameter
7439 (or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
7440 argument, or when copies between such objects overlap. For example,
7441 the call to the @code{strcpy} function below attempts to truncate the string
7442 by replacing its initial characters with the last four. However, because
7443 the call writes the terminating NUL into @code{a[4]}, the copies overlap and
7444 the call is diagnosed.
7445
7446 @smallexample
7447 void foo (void)
7448 @{
7449 char a[] = "abcd1234";
7450 strcpy (a, a + 4);
7451 @dots{}
7452 @}
7453 @end smallexample
7454 The @option{-Wrestrict} option detects some instances of simple overlap
7455 even without optimization but works best at @option{-O2} and above. It
7456 is included in @option{-Wall}.
7457
7458 @item -Wnested-externs @r{(C and Objective-C only)}
7459 @opindex Wnested-externs
7460 @opindex Wno-nested-externs
7461 Warn if an @code{extern} declaration is encountered within a function.
7462
7463 @item -Wno-inherited-variadic-ctor
7464 @opindex Winherited-variadic-ctor
7465 @opindex Wno-inherited-variadic-ctor
7466 Suppress warnings about use of C++11 inheriting constructors when the
7467 base class inherited from has a C variadic constructor; the warning is
7468 on by default because the ellipsis is not inherited.
7469
7470 @item -Winline
7471 @opindex Winline
7472 @opindex Wno-inline
7473 Warn if a function that is declared as inline cannot be inlined.
7474 Even with this option, the compiler does not warn about failures to
7475 inline functions declared in system headers.
7476
7477 The compiler uses a variety of heuristics to determine whether or not
7478 to inline a function. For example, the compiler takes into account
7479 the size of the function being inlined and the amount of inlining
7480 that has already been done in the current function. Therefore,
7481 seemingly insignificant changes in the source program can cause the
7482 warnings produced by @option{-Winline} to appear or disappear.
7483
7484 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
7485 @opindex Wno-invalid-offsetof
7486 @opindex Winvalid-offsetof
7487 Suppress warnings from applying the @code{offsetof} macro to a non-POD
7488 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
7489 to a non-standard-layout type is undefined. In existing C++ implementations,
7490 however, @code{offsetof} typically gives meaningful results.
7491 This flag is for users who are aware that they are
7492 writing nonportable code and who have deliberately chosen to ignore the
7493 warning about it.
7494
7495 The restrictions on @code{offsetof} may be relaxed in a future version
7496 of the C++ standard.
7497
7498 @item -Wint-in-bool-context
7499 @opindex Wint-in-bool-context
7500 @opindex Wno-int-in-bool-context
7501 Warn for suspicious use of integer values where boolean values are expected,
7502 such as conditional expressions (?:) using non-boolean integer constants in
7503 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
7504 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
7505 for all kinds of multiplications regardless of the data type.
7506 This warning is enabled by @option{-Wall}.
7507
7508 @item -Wno-int-to-pointer-cast
7509 @opindex Wno-int-to-pointer-cast
7510 @opindex Wint-to-pointer-cast
7511 Suppress warnings from casts to pointer type of an integer of a
7512 different size. In C++, casting to a pointer type of smaller size is
7513 an error. @option{Wint-to-pointer-cast} is enabled by default.
7514
7515
7516 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
7517 @opindex Wno-pointer-to-int-cast
7518 @opindex Wpointer-to-int-cast
7519 Suppress warnings from casts from a pointer to an integer type of a
7520 different size.
7521
7522 @item -Winvalid-pch
7523 @opindex Winvalid-pch
7524 @opindex Wno-invalid-pch
7525 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
7526 the search path but cannot be used.
7527
7528 @item -Wlong-long
7529 @opindex Wlong-long
7530 @opindex Wno-long-long
7531 Warn if @code{long long} type is used. This is enabled by either
7532 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
7533 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
7534
7535 @item -Wvariadic-macros
7536 @opindex Wvariadic-macros
7537 @opindex Wno-variadic-macros
7538 Warn if variadic macros are used in ISO C90 mode, or if the GNU
7539 alternate syntax is used in ISO C99 mode. This is enabled by either
7540 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
7541 messages, use @option{-Wno-variadic-macros}.
7542
7543 @item -Wvarargs
7544 @opindex Wvarargs
7545 @opindex Wno-varargs
7546 Warn upon questionable usage of the macros used to handle variable
7547 arguments like @code{va_start}. This is default. To inhibit the
7548 warning messages, use @option{-Wno-varargs}.
7549
7550 @item -Wvector-operation-performance
7551 @opindex Wvector-operation-performance
7552 @opindex Wno-vector-operation-performance
7553 Warn if vector operation is not implemented via SIMD capabilities of the
7554 architecture. Mainly useful for the performance tuning.
7555 Vector operation can be implemented @code{piecewise}, which means that the
7556 scalar operation is performed on every vector element;
7557 @code{in parallel}, which means that the vector operation is implemented
7558 using scalars of wider type, which normally is more performance efficient;
7559 and @code{as a single scalar}, which means that vector fits into a
7560 scalar type.
7561
7562 @item -Wno-virtual-move-assign
7563 @opindex Wvirtual-move-assign
7564 @opindex Wno-virtual-move-assign
7565 Suppress warnings about inheriting from a virtual base with a
7566 non-trivial C++11 move assignment operator. This is dangerous because
7567 if the virtual base is reachable along more than one path, it is
7568 moved multiple times, which can mean both objects end up in the
7569 moved-from state. If the move assignment operator is written to avoid
7570 moving from a moved-from object, this warning can be disabled.
7571
7572 @item -Wvla
7573 @opindex Wvla
7574 @opindex Wno-vla
7575 Warn if a variable-length array is used in the code.
7576 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
7577 the variable-length array.
7578
7579 @item -Wvla-larger-than=@var{byte-size}
7580 @opindex Wvla-larger-than=
7581 @opindex Wno-vla-larger-than
7582 If this option is used, the compiler will warn for declarations of
7583 variable-length arrays whose size is either unbounded, or bounded
7584 by an argument that allows the array size to exceed @var{byte-size}
7585 bytes. This is similar to how @option{-Walloca-larger-than=}@var{byte-size}
7586 works, but with variable-length arrays.
7587
7588 Note that GCC may optimize small variable-length arrays of a known
7589 value into plain arrays, so this warning may not get triggered for
7590 such arrays.
7591
7592 @option{-Wvla-larger-than=}@samp{PTRDIFF_MAX} is enabled by default but
7593 is typically only effective when @option{-ftree-vrp} is active (default
7594 for @option{-O2} and above).
7595
7596 See also @option{-Walloca-larger-than=@var{byte-size}}.
7597
7598 @item -Wno-vla-larger-than
7599 @opindex Wno-vla-larger-than
7600 Disable @option{-Wvla-larger-than=} warnings. The option is equivalent
7601 to @option{-Wvla-larger-than=}@samp{SIZE_MAX} or larger.
7602
7603 @item -Wvolatile-register-var
7604 @opindex Wvolatile-register-var
7605 @opindex Wno-volatile-register-var
7606 Warn if a register variable is declared volatile. The volatile
7607 modifier does not inhibit all optimizations that may eliminate reads
7608 and/or writes to register variables. This warning is enabled by
7609 @option{-Wall}.
7610
7611 @item -Wdisabled-optimization
7612 @opindex Wdisabled-optimization
7613 @opindex Wno-disabled-optimization
7614 Warn if a requested optimization pass is disabled. This warning does
7615 not generally indicate that there is anything wrong with your code; it
7616 merely indicates that GCC's optimizers are unable to handle the code
7617 effectively. Often, the problem is that your code is too big or too
7618 complex; GCC refuses to optimize programs when the optimization
7619 itself is likely to take inordinate amounts of time.
7620
7621 @item -Wpointer-sign @r{(C and Objective-C only)}
7622 @opindex Wpointer-sign
7623 @opindex Wno-pointer-sign
7624 Warn for pointer argument passing or assignment with different signedness.
7625 This option is only supported for C and Objective-C@. It is implied by
7626 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
7627 @option{-Wno-pointer-sign}.
7628
7629 @item -Wstack-protector
7630 @opindex Wstack-protector
7631 @opindex Wno-stack-protector
7632 This option is only active when @option{-fstack-protector} is active. It
7633 warns about functions that are not protected against stack smashing.
7634
7635 @item -Woverlength-strings
7636 @opindex Woverlength-strings
7637 @opindex Wno-overlength-strings
7638 Warn about string constants that are longer than the ``minimum
7639 maximum'' length specified in the C standard. Modern compilers
7640 generally allow string constants that are much longer than the
7641 standard's minimum limit, but very portable programs should avoid
7642 using longer strings.
7643
7644 The limit applies @emph{after} string constant concatenation, and does
7645 not count the trailing NUL@. In C90, the limit was 509 characters; in
7646 C99, it was raised to 4095. C++98 does not specify a normative
7647 minimum maximum, so we do not diagnose overlength strings in C++@.
7648
7649 This option is implied by @option{-Wpedantic}, and can be disabled with
7650 @option{-Wno-overlength-strings}.
7651
7652 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
7653 @opindex Wunsuffixed-float-constants
7654 @opindex Wno-unsuffixed-float-constants
7655
7656 Issue a warning for any floating constant that does not have
7657 a suffix. When used together with @option{-Wsystem-headers} it
7658 warns about such constants in system header files. This can be useful
7659 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
7660 from the decimal floating-point extension to C99.
7661
7662 @item -Wno-designated-init @r{(C and Objective-C only)}
7663 Suppress warnings when a positional initializer is used to initialize
7664 a structure that has been marked with the @code{designated_init}
7665 attribute.
7666
7667 @item -Whsa
7668 Issue a warning when HSAIL cannot be emitted for the compiled function or
7669 OpenMP construct.
7670
7671 @end table
7672
7673 @node Debugging Options
7674 @section Options for Debugging Your Program
7675 @cindex options, debugging
7676 @cindex debugging information options
7677
7678 To tell GCC to emit extra information for use by a debugger, in almost
7679 all cases you need only to add @option{-g} to your other options.
7680
7681 GCC allows you to use @option{-g} with
7682 @option{-O}. The shortcuts taken by optimized code may occasionally
7683 be surprising: some variables you declared may not exist
7684 at all; flow of control may briefly move where you did not expect it;
7685 some statements may not be executed because they compute constant
7686 results or their values are already at hand; some statements may
7687 execute in different places because they have been moved out of loops.
7688 Nevertheless it is possible to debug optimized output. This makes
7689 it reasonable to use the optimizer for programs that might have bugs.
7690
7691 If you are not using some other optimization option, consider
7692 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
7693 With no @option{-O} option at all, some compiler passes that collect
7694 information useful for debugging do not run at all, so that
7695 @option{-Og} may result in a better debugging experience.
7696
7697 @table @gcctabopt
7698 @item -g
7699 @opindex g
7700 Produce debugging information in the operating system's native format
7701 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
7702 information.
7703
7704 On most systems that use stabs format, @option{-g} enables use of extra
7705 debugging information that only GDB can use; this extra information
7706 makes debugging work better in GDB but probably makes other debuggers
7707 crash or
7708 refuse to read the program. If you want to control for certain whether
7709 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
7710 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
7711
7712 @item -ggdb
7713 @opindex ggdb
7714 Produce debugging information for use by GDB@. This means to use the
7715 most expressive format available (DWARF, stabs, or the native format
7716 if neither of those are supported), including GDB extensions if at all
7717 possible.
7718
7719 @item -gdwarf
7720 @itemx -gdwarf-@var{version}
7721 @opindex gdwarf
7722 Produce debugging information in DWARF format (if that is supported).
7723 The value of @var{version} may be either 2, 3, 4 or 5; the default version
7724 for most targets is 4. DWARF Version 5 is only experimental.
7725
7726 Note that with DWARF Version 2, some ports require and always
7727 use some non-conflicting DWARF 3 extensions in the unwind tables.
7728
7729 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
7730 for maximum benefit.
7731
7732 GCC no longer supports DWARF Version 1, which is substantially
7733 different than Version 2 and later. For historical reasons, some
7734 other DWARF-related options such as
7735 @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
7736 in their names, but apply to all currently-supported versions of DWARF.
7737
7738 @item -gstabs
7739 @opindex gstabs
7740 Produce debugging information in stabs format (if that is supported),
7741 without GDB extensions. This is the format used by DBX on most BSD
7742 systems. On MIPS, Alpha and System V Release 4 systems this option
7743 produces stabs debugging output that is not understood by DBX@.
7744 On System V Release 4 systems this option requires the GNU assembler.
7745
7746 @item -gstabs+
7747 @opindex gstabs+
7748 Produce debugging information in stabs format (if that is supported),
7749 using GNU extensions understood only by the GNU debugger (GDB)@. The
7750 use of these extensions is likely to make other debuggers crash or
7751 refuse to read the program.
7752
7753 @item -gxcoff
7754 @opindex gxcoff
7755 Produce debugging information in XCOFF format (if that is supported).
7756 This is the format used by the DBX debugger on IBM RS/6000 systems.
7757
7758 @item -gxcoff+
7759 @opindex gxcoff+
7760 Produce debugging information in XCOFF format (if that is supported),
7761 using GNU extensions understood only by the GNU debugger (GDB)@. The
7762 use of these extensions is likely to make other debuggers crash or
7763 refuse to read the program, and may cause assemblers other than the GNU
7764 assembler (GAS) to fail with an error.
7765
7766 @item -gvms
7767 @opindex gvms
7768 Produce debugging information in Alpha/VMS debug format (if that is
7769 supported). This is the format used by DEBUG on Alpha/VMS systems.
7770
7771 @item -g@var{level}
7772 @itemx -ggdb@var{level}
7773 @itemx -gstabs@var{level}
7774 @itemx -gxcoff@var{level}
7775 @itemx -gvms@var{level}
7776 Request debugging information and also use @var{level} to specify how
7777 much information. The default level is 2.
7778
7779 Level 0 produces no debug information at all. Thus, @option{-g0} negates
7780 @option{-g}.
7781
7782 Level 1 produces minimal information, enough for making backtraces in
7783 parts of the program that you don't plan to debug. This includes
7784 descriptions of functions and external variables, and line number
7785 tables, but no information about local variables.
7786
7787 Level 3 includes extra information, such as all the macro definitions
7788 present in the program. Some debuggers support macro expansion when
7789 you use @option{-g3}.
7790
7791 @option{-gdwarf} does not accept a concatenated debug level, to avoid
7792 confusion with @option{-gdwarf-@var{level}}.
7793 Instead use an additional @option{-g@var{level}} option to change the
7794 debug level for DWARF.
7795
7796 @item -feliminate-unused-debug-symbols
7797 @opindex feliminate-unused-debug-symbols
7798 Produce debugging information in stabs format (if that is supported),
7799 for only symbols that are actually used.
7800
7801 @item -femit-class-debug-always
7802 @opindex femit-class-debug-always
7803 Instead of emitting debugging information for a C++ class in only one
7804 object file, emit it in all object files using the class. This option
7805 should be used only with debuggers that are unable to handle the way GCC
7806 normally emits debugging information for classes because using this
7807 option increases the size of debugging information by as much as a
7808 factor of two.
7809
7810 @item -fno-merge-debug-strings
7811 @opindex fmerge-debug-strings
7812 @opindex fno-merge-debug-strings
7813 Direct the linker to not merge together strings in the debugging
7814 information that are identical in different object files. Merging is
7815 not supported by all assemblers or linkers. Merging decreases the size
7816 of the debug information in the output file at the cost of increasing
7817 link processing time. Merging is enabled by default.
7818
7819 @item -fdebug-prefix-map=@var{old}=@var{new}
7820 @opindex fdebug-prefix-map
7821 When compiling files residing in directory @file{@var{old}}, record
7822 debugging information describing them as if the files resided in
7823 directory @file{@var{new}} instead. This can be used to replace a
7824 build-time path with an install-time path in the debug info. It can
7825 also be used to change an absolute path to a relative path by using
7826 @file{.} for @var{new}. This can give more reproducible builds, which
7827 are location independent, but may require an extra command to tell GDB
7828 where to find the source files. See also @option{-ffile-prefix-map}.
7829
7830 @item -fvar-tracking
7831 @opindex fvar-tracking
7832 Run variable tracking pass. It computes where variables are stored at each
7833 position in code. Better debugging information is then generated
7834 (if the debugging information format supports this information).
7835
7836 It is enabled by default when compiling with optimization (@option{-Os},
7837 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7838 the debug info format supports it.
7839
7840 @item -fvar-tracking-assignments
7841 @opindex fvar-tracking-assignments
7842 @opindex fno-var-tracking-assignments
7843 Annotate assignments to user variables early in the compilation and
7844 attempt to carry the annotations over throughout the compilation all the
7845 way to the end, in an attempt to improve debug information while
7846 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7847
7848 It can be enabled even if var-tracking is disabled, in which case
7849 annotations are created and maintained, but discarded at the end.
7850 By default, this flag is enabled together with @option{-fvar-tracking},
7851 except when selective scheduling is enabled.
7852
7853 @item -gsplit-dwarf
7854 @opindex gsplit-dwarf
7855 Separate as much DWARF debugging information as possible into a
7856 separate output file with the extension @file{.dwo}. This option allows
7857 the build system to avoid linking files with debug information. To
7858 be useful, this option requires a debugger capable of reading @file{.dwo}
7859 files.
7860
7861 @item -gdescribe-dies
7862 @opindex gdescribe-dies
7863 Add description attributes to some DWARF DIEs that have no name attribute,
7864 such as artificial variables, external references and call site
7865 parameter DIEs.
7866
7867 @item -gpubnames
7868 @opindex gpubnames
7869 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7870
7871 @item -ggnu-pubnames
7872 @opindex ggnu-pubnames
7873 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7874 suitable for conversion into a GDB@ index. This option is only useful
7875 with a linker that can produce GDB@ index version 7.
7876
7877 @item -fdebug-types-section
7878 @opindex fdebug-types-section
7879 @opindex fno-debug-types-section
7880 When using DWARF Version 4 or higher, type DIEs can be put into
7881 their own @code{.debug_types} section instead of making them part of the
7882 @code{.debug_info} section. It is more efficient to put them in a separate
7883 comdat section since the linker can then remove duplicates.
7884 But not all DWARF consumers support @code{.debug_types} sections yet
7885 and on some objects @code{.debug_types} produces larger instead of smaller
7886 debugging information.
7887
7888 @item -grecord-gcc-switches
7889 @itemx -gno-record-gcc-switches
7890 @opindex grecord-gcc-switches
7891 @opindex gno-record-gcc-switches
7892 This switch causes the command-line options used to invoke the
7893 compiler that may affect code generation to be appended to the
7894 DW_AT_producer attribute in DWARF debugging information. The options
7895 are concatenated with spaces separating them from each other and from
7896 the compiler version.
7897 It is enabled by default.
7898 See also @option{-frecord-gcc-switches} for another
7899 way of storing compiler options into the object file.
7900
7901 @item -gstrict-dwarf
7902 @opindex gstrict-dwarf
7903 Disallow using extensions of later DWARF standard version than selected
7904 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
7905 DWARF extensions from later standard versions is allowed.
7906
7907 @item -gno-strict-dwarf
7908 @opindex gno-strict-dwarf
7909 Allow using extensions of later DWARF standard version than selected with
7910 @option{-gdwarf-@var{version}}.
7911
7912 @item -gas-loc-support
7913 @opindex gas-loc-support
7914 Inform the compiler that the assembler supports @code{.loc} directives.
7915 It may then use them for the assembler to generate DWARF2+ line number
7916 tables.
7917
7918 This is generally desirable, because assembler-generated line-number
7919 tables are a lot more compact than those the compiler can generate
7920 itself.
7921
7922 This option will be enabled by default if, at GCC configure time, the
7923 assembler was found to support such directives.
7924
7925 @item -gno-as-loc-support
7926 @opindex gno-as-loc-support
7927 Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
7928 line number tables are to be generated.
7929
7930 @item gas-locview-support
7931 @opindex gas-locview-support
7932 Inform the compiler that the assembler supports @code{view} assignment
7933 and reset assertion checking in @code{.loc} directives.
7934
7935 This option will be enabled by default if, at GCC configure time, the
7936 assembler was found to support them.
7937
7938 @item gno-as-locview-support
7939 Force GCC to assign view numbers internally, if
7940 @option{-gvariable-location-views} are explicitly requested.
7941
7942 @item -gcolumn-info
7943 @itemx -gno-column-info
7944 @opindex gcolumn-info
7945 @opindex gno-column-info
7946 Emit location column information into DWARF debugging information, rather
7947 than just file and line.
7948 This option is enabled by default.
7949
7950 @item -gstatement-frontiers
7951 @itemx -gno-statement-frontiers
7952 @opindex gstatement-frontiers
7953 @opindex gno-statement-frontiers
7954 This option causes GCC to create markers in the internal representation
7955 at the beginning of statements, and to keep them roughly in place
7956 throughout compilation, using them to guide the output of @code{is_stmt}
7957 markers in the line number table. This is enabled by default when
7958 compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
7959 @dots{}), and outputting DWARF 2 debug information at the normal level.
7960
7961 @item -gvariable-location-views
7962 @itemx -gvariable-location-views=incompat5
7963 @itemx -gno-variable-location-views
7964 @opindex gvariable-location-views
7965 @opindex gvariable-location-views=incompat5
7966 @opindex gno-variable-location-views
7967 Augment variable location lists with progressive view numbers implied
7968 from the line number table. This enables debug information consumers to
7969 inspect state at certain points of the program, even if no instructions
7970 associated with the corresponding source locations are present at that
7971 point. If the assembler lacks support for view numbers in line number
7972 tables, this will cause the compiler to emit the line number table,
7973 which generally makes them somewhat less compact. The augmented line
7974 number tables and location lists are fully backward-compatible, so they
7975 can be consumed by debug information consumers that are not aware of
7976 these augmentations, but they won't derive any benefit from them either.
7977
7978 This is enabled by default when outputting DWARF 2 debug information at
7979 the normal level, as long as there is assembler support,
7980 @option{-fvar-tracking-assignments} is enabled and
7981 @option{-gstrict-dwarf} is not. When assembler support is not
7982 available, this may still be enabled, but it will force GCC to output
7983 internal line number tables, and if
7984 @option{-ginternal-reset-location-views} is not enabled, that will most
7985 certainly lead to silently mismatching location views.
7986
7987 There is a proposed representation for view numbers that is not backward
7988 compatible with the location list format introduced in DWARF 5, that can
7989 be enabled with @option{-gvariable-location-views=incompat5}. This
7990 option may be removed in the future, is only provided as a reference
7991 implementation of the proposed representation. Debug information
7992 consumers are not expected to support this extended format, and they
7993 would be rendered unable to decode location lists using it.
7994
7995 @item -ginternal-reset-location-views
7996 @itemx -gnointernal-reset-location-views
7997 @opindex ginternal-reset-location-views
7998 @opindex gno-internal-reset-location-views
7999 Attempt to determine location views that can be omitted from location
8000 view lists. This requires the compiler to have very accurate insn
8001 length estimates, which isn't always the case, and it may cause
8002 incorrect view lists to be generated silently when using an assembler
8003 that does not support location view lists. The GNU assembler will flag
8004 any such error as a @code{view number mismatch}. This is only enabled
8005 on ports that define a reliable estimation function.
8006
8007 @item -ginline-points
8008 @itemx -gno-inline-points
8009 @opindex ginline-points
8010 @opindex gno-inline-points
8011 Generate extended debug information for inlined functions. Location
8012 view tracking markers are inserted at inlined entry points, so that
8013 address and view numbers can be computed and output in debug
8014 information. This can be enabled independently of location views, in
8015 which case the view numbers won't be output, but it can only be enabled
8016 along with statement frontiers, and it is only enabled by default if
8017 location views are enabled.
8018
8019 @item -gz@r{[}=@var{type}@r{]}
8020 @opindex gz
8021 Produce compressed debug sections in DWARF format, if that is supported.
8022 If @var{type} is not given, the default type depends on the capabilities
8023 of the assembler and linker used. @var{type} may be one of
8024 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
8025 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
8026 compression in traditional GNU format). If the linker doesn't support
8027 writing compressed debug sections, the option is rejected. Otherwise,
8028 if the assembler does not support them, @option{-gz} is silently ignored
8029 when producing object files.
8030
8031 @item -femit-struct-debug-baseonly
8032 @opindex femit-struct-debug-baseonly
8033 Emit debug information for struct-like types
8034 only when the base name of the compilation source file
8035 matches the base name of file in which the struct is defined.
8036
8037 This option substantially reduces the size of debugging information,
8038 but at significant potential loss in type information to the debugger.
8039 See @option{-femit-struct-debug-reduced} for a less aggressive option.
8040 See @option{-femit-struct-debug-detailed} for more detailed control.
8041
8042 This option works only with DWARF debug output.
8043
8044 @item -femit-struct-debug-reduced
8045 @opindex femit-struct-debug-reduced
8046 Emit debug information for struct-like types
8047 only when the base name of the compilation source file
8048 matches the base name of file in which the type is defined,
8049 unless the struct is a template or defined in a system header.
8050
8051 This option significantly reduces the size of debugging information,
8052 with some potential loss in type information to the debugger.
8053 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
8054 See @option{-femit-struct-debug-detailed} for more detailed control.
8055
8056 This option works only with DWARF debug output.
8057
8058 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
8059 @opindex femit-struct-debug-detailed
8060 Specify the struct-like types
8061 for which the compiler generates debug information.
8062 The intent is to reduce duplicate struct debug information
8063 between different object files within the same program.
8064
8065 This option is a detailed version of
8066 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
8067 which serves for most needs.
8068
8069 A specification has the syntax@*
8070 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
8071
8072 The optional first word limits the specification to
8073 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
8074 A struct type is used directly when it is the type of a variable, member.
8075 Indirect uses arise through pointers to structs.
8076 That is, when use of an incomplete struct is valid, the use is indirect.
8077 An example is
8078 @samp{struct one direct; struct two * indirect;}.
8079
8080 The optional second word limits the specification to
8081 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
8082 Generic structs are a bit complicated to explain.
8083 For C++, these are non-explicit specializations of template classes,
8084 or non-template classes within the above.
8085 Other programming languages have generics,
8086 but @option{-femit-struct-debug-detailed} does not yet implement them.
8087
8088 The third word specifies the source files for those
8089 structs for which the compiler should emit debug information.
8090 The values @samp{none} and @samp{any} have the normal meaning.
8091 The value @samp{base} means that
8092 the base of name of the file in which the type declaration appears
8093 must match the base of the name of the main compilation file.
8094 In practice, this means that when compiling @file{foo.c}, debug information
8095 is generated for types declared in that file and @file{foo.h},
8096 but not other header files.
8097 The value @samp{sys} means those types satisfying @samp{base}
8098 or declared in system or compiler headers.
8099
8100 You may need to experiment to determine the best settings for your application.
8101
8102 The default is @option{-femit-struct-debug-detailed=all}.
8103
8104 This option works only with DWARF debug output.
8105
8106 @item -fno-dwarf2-cfi-asm
8107 @opindex fdwarf2-cfi-asm
8108 @opindex fno-dwarf2-cfi-asm
8109 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
8110 instead of using GAS @code{.cfi_*} directives.
8111
8112 @item -fno-eliminate-unused-debug-types
8113 @opindex feliminate-unused-debug-types
8114 @opindex fno-eliminate-unused-debug-types
8115 Normally, when producing DWARF output, GCC avoids producing debug symbol
8116 output for types that are nowhere used in the source file being compiled.
8117 Sometimes it is useful to have GCC emit debugging
8118 information for all types declared in a compilation
8119 unit, regardless of whether or not they are actually used
8120 in that compilation unit, for example
8121 if, in the debugger, you want to cast a value to a type that is
8122 not actually used in your program (but is declared). More often,
8123 however, this results in a significant amount of wasted space.
8124 @end table
8125
8126 @node Optimize Options
8127 @section Options That Control Optimization
8128 @cindex optimize options
8129 @cindex options, optimization
8130
8131 These options control various sorts of optimizations.
8132
8133 Without any optimization option, the compiler's goal is to reduce the
8134 cost of compilation and to make debugging produce the expected
8135 results. Statements are independent: if you stop the program with a
8136 breakpoint between statements, you can then assign a new value to any
8137 variable or change the program counter to any other statement in the
8138 function and get exactly the results you expect from the source
8139 code.
8140
8141 Turning on optimization flags makes the compiler attempt to improve
8142 the performance and/or code size at the expense of compilation time
8143 and possibly the ability to debug the program.
8144
8145 The compiler performs optimization based on the knowledge it has of the
8146 program. Compiling multiple files at once to a single output file mode allows
8147 the compiler to use information gained from all of the files when compiling
8148 each of them.
8149
8150 Not all optimizations are controlled directly by a flag. Only
8151 optimizations that have a flag are listed in this section.
8152
8153 Most optimizations are completely disabled at @option{-O0} or if an
8154 @option{-O} level is not set on the command line, even if individual
8155 optimization flags are specified. Similarly, @option{-Og} suppresses
8156 many optimization passes.
8157
8158 Depending on the target and how GCC was configured, a slightly different
8159 set of optimizations may be enabled at each @option{-O} level than
8160 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
8161 to find out the exact set of optimizations that are enabled at each level.
8162 @xref{Overall Options}, for examples.
8163
8164 @table @gcctabopt
8165 @item -O
8166 @itemx -O1
8167 @opindex O
8168 @opindex O1
8169 Optimize. Optimizing compilation takes somewhat more time, and a lot
8170 more memory for a large function.
8171
8172 With @option{-O}, the compiler tries to reduce code size and execution
8173 time, without performing any optimizations that take a great deal of
8174 compilation time.
8175
8176 @c Note that in addition to the default_options_table list in opts.c,
8177 @c several optimization flags default to true but control optimization
8178 @c passes that are explicitly disabled at -O0.
8179
8180 @option{-O} turns on the following optimization flags:
8181
8182 @c Please keep the following list alphabetized.
8183 @gccoptlist{-fauto-inc-dec @gol
8184 -fbranch-count-reg @gol
8185 -fcombine-stack-adjustments @gol
8186 -fcompare-elim @gol
8187 -fcprop-registers @gol
8188 -fdce @gol
8189 -fdefer-pop @gol
8190 -fdelayed-branch @gol
8191 -fdse @gol
8192 -fforward-propagate @gol
8193 -fguess-branch-probability @gol
8194 -fif-conversion @gol
8195 -fif-conversion2 @gol
8196 -finline-functions-called-once @gol
8197 -fipa-profile @gol
8198 -fipa-pure-const @gol
8199 -fipa-reference @gol
8200 -fipa-reference-addressable @gol
8201 -fmerge-constants @gol
8202 -fmove-loop-invariants @gol
8203 -fomit-frame-pointer @gol
8204 -freorder-blocks @gol
8205 -fshrink-wrap @gol
8206 -fshrink-wrap-separate @gol
8207 -fsplit-wide-types @gol
8208 -fssa-backprop @gol
8209 -fssa-phiopt @gol
8210 -ftree-bit-ccp @gol
8211 -ftree-ccp @gol
8212 -ftree-ch @gol
8213 -ftree-coalesce-vars @gol
8214 -ftree-copy-prop @gol
8215 -ftree-dce @gol
8216 -ftree-dominator-opts @gol
8217 -ftree-dse @gol
8218 -ftree-forwprop @gol
8219 -ftree-fre @gol
8220 -ftree-phiprop @gol
8221 -ftree-pta @gol
8222 -ftree-scev-cprop @gol
8223 -ftree-sink @gol
8224 -ftree-slsr @gol
8225 -ftree-sra @gol
8226 -ftree-ter @gol
8227 -funit-at-a-time}
8228
8229 @item -O2
8230 @opindex O2
8231 Optimize even more. GCC performs nearly all supported optimizations
8232 that do not involve a space-speed tradeoff.
8233 As compared to @option{-O}, this option increases both compilation time
8234 and the performance of the generated code.
8235
8236 @option{-O2} turns on all optimization flags specified by @option{-O}. It
8237 also turns on the following optimization flags:
8238
8239 @c Please keep the following list alphabetized!
8240 @gccoptlist{-falign-functions -falign-jumps @gol
8241 -falign-labels -falign-loops @gol
8242 -fcaller-saves @gol
8243 -fcode-hoisting @gol
8244 -fcrossjumping @gol
8245 -fcse-follow-jumps -fcse-skip-blocks @gol
8246 -fdelete-null-pointer-checks @gol
8247 -fdevirtualize -fdevirtualize-speculatively @gol
8248 -fexpensive-optimizations @gol
8249 -fgcse -fgcse-lm @gol
8250 -fhoist-adjacent-loads @gol
8251 -finline-small-functions @gol
8252 -findirect-inlining @gol
8253 -fipa-bit-cp -fipa-cp -fipa-icf @gol
8254 -fipa-ra -fipa-sra -fipa-vrp @gol
8255 -fisolate-erroneous-paths-dereference @gol
8256 -flra-remat @gol
8257 -foptimize-sibling-calls @gol
8258 -foptimize-strlen @gol
8259 -fpartial-inlining @gol
8260 -fpeephole2 @gol
8261 -freorder-blocks-algorithm=stc @gol
8262 -freorder-blocks-and-partition -freorder-functions @gol
8263 -frerun-cse-after-loop @gol
8264 -fschedule-insns -fschedule-insns2 @gol
8265 -fsched-interblock -fsched-spec @gol
8266 -fstore-merging @gol
8267 -fstrict-aliasing @gol
8268 -fthread-jumps @gol
8269 -ftree-builtin-call-dce @gol
8270 -ftree-pre @gol
8271 -ftree-switch-conversion -ftree-tail-merge @gol
8272 -ftree-vrp}
8273
8274 Please note the warning under @option{-fgcse} about
8275 invoking @option{-O2} on programs that use computed gotos.
8276
8277 @item -O3
8278 @opindex O3
8279 Optimize yet more. @option{-O3} turns on all optimizations specified
8280 by @option{-O2} and also turns on the following optimization flags:
8281
8282 @c Please keep the following list alphabetized!
8283 @gccoptlist{-fgcse-after-reload @gol
8284 -finline-functions @gol
8285 -fipa-cp-clone
8286 -floop-interchange @gol
8287 -floop-unroll-and-jam @gol
8288 -fpeel-loops @gol
8289 -fpredictive-commoning @gol
8290 -fsplit-paths @gol
8291 -ftree-loop-distribute-patterns @gol
8292 -ftree-loop-distribution @gol
8293 -ftree-loop-vectorize @gol
8294 -ftree-partial-pre @gol
8295 -ftree-slp-vectorize @gol
8296 -funswitch-loops @gol
8297 -fvect-cost-model @gol
8298 -fversion-loops-for-strides}
8299
8300 @item -O0
8301 @opindex O0
8302 Reduce compilation time and make debugging produce the expected
8303 results. This is the default.
8304
8305 @item -Os
8306 @opindex Os
8307 Optimize for size. @option{-Os} enables all @option{-O2} optimizations
8308 except those that often increase code size:
8309
8310 @gccoptlist{-falign-functions -falign-jumps @gol
8311 -falign-labels -falign-loops @gol
8312 -fprefetch-loop-arrays -freorder-blocks-algorithm=stc}
8313
8314 It also enables @option{-finline-functions}, causes the compiler to tune for
8315 code size rather than execution speed, and performs further optimizations
8316 designed to reduce code size.
8317
8318 @item -Ofast
8319 @opindex Ofast
8320 Disregard strict standards compliance. @option{-Ofast} enables all
8321 @option{-O3} optimizations. It also enables optimizations that are not
8322 valid for all standard-compliant programs.
8323 It turns on @option{-ffast-math} and the Fortran-specific
8324 @option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
8325 specified, and @option{-fno-protect-parens}.
8326
8327 @item -Og
8328 @opindex Og
8329 Optimize debugging experience. @option{-Og} should be the optimization
8330 level of choice for the standard edit-compile-debug cycle, offering
8331 a reasonable level of optimization while maintaining fast compilation
8332 and a good debugging experience. It is a better choice than @option{-O0}
8333 for producing debuggable code because some compiler passes
8334 that collect debug information are disabled at @option{-O0}.
8335
8336 Like @option{-O0}, @option{-Og} completely disables a number of
8337 optimization passes so that individual options controlling them have
8338 no effect. Otherwise @option{-Og} enables all @option{-O1}
8339 optimization flags except for those that may interfere with debugging:
8340
8341 @gccoptlist{-fbranch-count-reg -fdelayed-branch @gol
8342 -fif-conversion -fif-conversion2 @gol
8343 -finline-functions-called-once @gol
8344 -fmove-loop-invariants -fssa-phiopt @gol
8345 -ftree-bit-ccp -ftree-pta -ftree-sra}
8346
8347 @end table
8348
8349 If you use multiple @option{-O} options, with or without level numbers,
8350 the last such option is the one that is effective.
8351
8352 Options of the form @option{-f@var{flag}} specify machine-independent
8353 flags. Most flags have both positive and negative forms; the negative
8354 form of @option{-ffoo} is @option{-fno-foo}. In the table
8355 below, only one of the forms is listed---the one you typically
8356 use. You can figure out the other form by either removing @samp{no-}
8357 or adding it.
8358
8359 The following options control specific optimizations. They are either
8360 activated by @option{-O} options or are related to ones that are. You
8361 can use the following flags in the rare cases when ``fine-tuning'' of
8362 optimizations to be performed is desired.
8363
8364 @table @gcctabopt
8365 @item -fno-defer-pop
8366 @opindex fno-defer-pop
8367 @opindex fdefer-pop
8368 For machines that must pop arguments after a function call, always pop
8369 the arguments as soon as each function returns.
8370 At levels @option{-O1} and higher, @option{-fdefer-pop} is the default;
8371 this allows the compiler to let arguments accumulate on the stack for several
8372 function calls and pop them all at once.
8373
8374 @item -fforward-propagate
8375 @opindex fforward-propagate
8376 Perform a forward propagation pass on RTL@. The pass tries to combine two
8377 instructions and checks if the result can be simplified. If loop unrolling
8378 is active, two passes are performed and the second is scheduled after
8379 loop unrolling.
8380
8381 This option is enabled by default at optimization levels @option{-O},
8382 @option{-O2}, @option{-O3}, @option{-Os}.
8383
8384 @item -ffp-contract=@var{style}
8385 @opindex ffp-contract
8386 @option{-ffp-contract=off} disables floating-point expression contraction.
8387 @option{-ffp-contract=fast} enables floating-point expression contraction
8388 such as forming of fused multiply-add operations if the target has
8389 native support for them.
8390 @option{-ffp-contract=on} enables floating-point expression contraction
8391 if allowed by the language standard. This is currently not implemented
8392 and treated equal to @option{-ffp-contract=off}.
8393
8394 The default is @option{-ffp-contract=fast}.
8395
8396 @item -fomit-frame-pointer
8397 @opindex fomit-frame-pointer
8398 Omit the frame pointer in functions that don't need one. This avoids the
8399 instructions to save, set up and restore the frame pointer; on many targets
8400 it also makes an extra register available.
8401
8402 On some targets this flag has no effect because the standard calling sequence
8403 always uses a frame pointer, so it cannot be omitted.
8404
8405 Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
8406 is used in all functions. Several targets always omit the frame pointer in
8407 leaf functions.
8408
8409 Enabled by default at @option{-O} and higher.
8410
8411 @item -foptimize-sibling-calls
8412 @opindex foptimize-sibling-calls
8413 Optimize sibling and tail recursive calls.
8414
8415 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8416
8417 @item -foptimize-strlen
8418 @opindex foptimize-strlen
8419 Optimize various standard C string functions (e.g.@: @code{strlen},
8420 @code{strchr} or @code{strcpy}) and
8421 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
8422
8423 Enabled at levels @option{-O2}, @option{-O3}.
8424
8425 @item -fno-inline
8426 @opindex fno-inline
8427 @opindex finline
8428 Do not expand any functions inline apart from those marked with
8429 the @code{always_inline} attribute. This is the default when not
8430 optimizing.
8431
8432 Single functions can be exempted from inlining by marking them
8433 with the @code{noinline} attribute.
8434
8435 @item -finline-small-functions
8436 @opindex finline-small-functions
8437 Integrate functions into their callers when their body is smaller than expected
8438 function call code (so overall size of program gets smaller). The compiler
8439 heuristically decides which functions are simple enough to be worth integrating
8440 in this way. This inlining applies to all functions, even those not declared
8441 inline.
8442
8443 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8444
8445 @item -findirect-inlining
8446 @opindex findirect-inlining
8447 Inline also indirect calls that are discovered to be known at compile
8448 time thanks to previous inlining. This option has any effect only
8449 when inlining itself is turned on by the @option{-finline-functions}
8450 or @option{-finline-small-functions} options.
8451
8452 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8453
8454 @item -finline-functions
8455 @opindex finline-functions
8456 Consider all functions for inlining, even if they are not declared inline.
8457 The compiler heuristically decides which functions are worth integrating
8458 in this way.
8459
8460 If all calls to a given function are integrated, and the function is
8461 declared @code{static}, then the function is normally not output as
8462 assembler code in its own right.
8463
8464 Enabled at levels @option{-O3}, @option{-Os}. Also enabled
8465 by @option{-fprofile-use} and @option{-fauto-profile}.
8466
8467 @item -finline-functions-called-once
8468 @opindex finline-functions-called-once
8469 Consider all @code{static} functions called once for inlining into their
8470 caller even if they are not marked @code{inline}. If a call to a given
8471 function is integrated, then the function is not output as assembler code
8472 in its own right.
8473
8474 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os},
8475 but not @option{-Og}.
8476
8477 @item -fearly-inlining
8478 @opindex fearly-inlining
8479 Inline functions marked by @code{always_inline} and functions whose body seems
8480 smaller than the function call overhead early before doing
8481 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
8482 makes profiling significantly cheaper and usually inlining faster on programs
8483 having large chains of nested wrapper functions.
8484
8485 Enabled by default.
8486
8487 @item -fipa-sra
8488 @opindex fipa-sra
8489 Perform interprocedural scalar replacement of aggregates, removal of
8490 unused parameters and replacement of parameters passed by reference
8491 by parameters passed by value.
8492
8493 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
8494
8495 @item -finline-limit=@var{n}
8496 @opindex finline-limit
8497 By default, GCC limits the size of functions that can be inlined. This flag
8498 allows coarse control of this limit. @var{n} is the size of functions that
8499 can be inlined in number of pseudo instructions.
8500
8501 Inlining is actually controlled by a number of parameters, which may be
8502 specified individually by using @option{--param @var{name}=@var{value}}.
8503 The @option{-finline-limit=@var{n}} option sets some of these parameters
8504 as follows:
8505
8506 @table @gcctabopt
8507 @item max-inline-insns-single
8508 is set to @var{n}/2.
8509 @item max-inline-insns-auto
8510 is set to @var{n}/2.
8511 @end table
8512
8513 See below for a documentation of the individual
8514 parameters controlling inlining and for the defaults of these parameters.
8515
8516 @emph{Note:} there may be no value to @option{-finline-limit} that results
8517 in default behavior.
8518
8519 @emph{Note:} pseudo instruction represents, in this particular context, an
8520 abstract measurement of function's size. In no way does it represent a count
8521 of assembly instructions and as such its exact meaning might change from one
8522 release to an another.
8523
8524 @item -fno-keep-inline-dllexport
8525 @opindex fno-keep-inline-dllexport
8526 @opindex fkeep-inline-dllexport
8527 This is a more fine-grained version of @option{-fkeep-inline-functions},
8528 which applies only to functions that are declared using the @code{dllexport}
8529 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
8530 Functions}.
8531
8532 @item -fkeep-inline-functions
8533 @opindex fkeep-inline-functions
8534 In C, emit @code{static} functions that are declared @code{inline}
8535 into the object file, even if the function has been inlined into all
8536 of its callers. This switch does not affect functions using the
8537 @code{extern inline} extension in GNU C90@. In C++, emit any and all
8538 inline functions into the object file.
8539
8540 @item -fkeep-static-functions
8541 @opindex fkeep-static-functions
8542 Emit @code{static} functions into the object file, even if the function
8543 is never used.
8544
8545 @item -fkeep-static-consts
8546 @opindex fkeep-static-consts
8547 Emit variables declared @code{static const} when optimization isn't turned
8548 on, even if the variables aren't referenced.
8549
8550 GCC enables this option by default. If you want to force the compiler to
8551 check if a variable is referenced, regardless of whether or not
8552 optimization is turned on, use the @option{-fno-keep-static-consts} option.
8553
8554 @item -fmerge-constants
8555 @opindex fmerge-constants
8556 Attempt to merge identical constants (string constants and floating-point
8557 constants) across compilation units.
8558
8559 This option is the default for optimized compilation if the assembler and
8560 linker support it. Use @option{-fno-merge-constants} to inhibit this
8561 behavior.
8562
8563 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8564
8565 @item -fmerge-all-constants
8566 @opindex fmerge-all-constants
8567 Attempt to merge identical constants and identical variables.
8568
8569 This option implies @option{-fmerge-constants}. In addition to
8570 @option{-fmerge-constants} this considers e.g.@: even constant initialized
8571 arrays or initialized constant variables with integral or floating-point
8572 types. Languages like C or C++ require each variable, including multiple
8573 instances of the same variable in recursive calls, to have distinct locations,
8574 so using this option results in non-conforming
8575 behavior.
8576
8577 @item -fmodulo-sched
8578 @opindex fmodulo-sched
8579 Perform swing modulo scheduling immediately before the first scheduling
8580 pass. This pass looks at innermost loops and reorders their
8581 instructions by overlapping different iterations.
8582
8583 @item -fmodulo-sched-allow-regmoves
8584 @opindex fmodulo-sched-allow-regmoves
8585 Perform more aggressive SMS-based modulo scheduling with register moves
8586 allowed. By setting this flag certain anti-dependences edges are
8587 deleted, which triggers the generation of reg-moves based on the
8588 life-range analysis. This option is effective only with
8589 @option{-fmodulo-sched} enabled.
8590
8591 @item -fno-branch-count-reg
8592 @opindex fno-branch-count-reg
8593 @opindex fbranch-count-reg
8594 Disable the optimization pass that scans for opportunities to use
8595 ``decrement and branch'' instructions on a count register instead of
8596 instruction sequences that decrement a register, compare it against zero, and
8597 then branch based upon the result. This option is only meaningful on
8598 architectures that support such instructions, which include x86, PowerPC,
8599 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
8600 doesn't remove the decrement and branch instructions from the generated
8601 instruction stream introduced by other optimization passes.
8602
8603 The default is @option{-fbranch-count-reg} at @option{-O1} and higher,
8604 except for @option{-Og}.
8605
8606 @item -fno-function-cse
8607 @opindex fno-function-cse
8608 @opindex ffunction-cse
8609 Do not put function addresses in registers; make each instruction that
8610 calls a constant function contain the function's address explicitly.
8611
8612 This option results in less efficient code, but some strange hacks
8613 that alter the assembler output may be confused by the optimizations
8614 performed when this option is not used.
8615
8616 The default is @option{-ffunction-cse}
8617
8618 @item -fno-zero-initialized-in-bss
8619 @opindex fno-zero-initialized-in-bss
8620 @opindex fzero-initialized-in-bss
8621 If the target supports a BSS section, GCC by default puts variables that
8622 are initialized to zero into BSS@. This can save space in the resulting
8623 code.
8624
8625 This option turns off this behavior because some programs explicitly
8626 rely on variables going to the data section---e.g., so that the
8627 resulting executable can find the beginning of that section and/or make
8628 assumptions based on that.
8629
8630 The default is @option{-fzero-initialized-in-bss}.
8631
8632 @item -fthread-jumps
8633 @opindex fthread-jumps
8634 Perform optimizations that check to see if a jump branches to a
8635 location where another comparison subsumed by the first is found. If
8636 so, the first branch is redirected to either the destination of the
8637 second branch or a point immediately following it, depending on whether
8638 the condition is known to be true or false.
8639
8640 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8641
8642 @item -fsplit-wide-types
8643 @opindex fsplit-wide-types
8644 When using a type that occupies multiple registers, such as @code{long
8645 long} on a 32-bit system, split the registers apart and allocate them
8646 independently. This normally generates better code for those types,
8647 but may make debugging more difficult.
8648
8649 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8650 @option{-Os}.
8651
8652 @item -fcse-follow-jumps
8653 @opindex fcse-follow-jumps
8654 In common subexpression elimination (CSE), scan through jump instructions
8655 when the target of the jump is not reached by any other path. For
8656 example, when CSE encounters an @code{if} statement with an
8657 @code{else} clause, CSE follows the jump when the condition
8658 tested is false.
8659
8660 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8661
8662 @item -fcse-skip-blocks
8663 @opindex fcse-skip-blocks
8664 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8665 follow jumps that conditionally skip over blocks. When CSE
8666 encounters a simple @code{if} statement with no else clause,
8667 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8668 body of the @code{if}.
8669
8670 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8671
8672 @item -frerun-cse-after-loop
8673 @opindex frerun-cse-after-loop
8674 Re-run common subexpression elimination after loop optimizations are
8675 performed.
8676
8677 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8678
8679 @item -fgcse
8680 @opindex fgcse
8681 Perform a global common subexpression elimination pass.
8682 This pass also performs global constant and copy propagation.
8683
8684 @emph{Note:} When compiling a program using computed gotos, a GCC
8685 extension, you may get better run-time performance if you disable
8686 the global common subexpression elimination pass by adding
8687 @option{-fno-gcse} to the command line.
8688
8689 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8690
8691 @item -fgcse-lm
8692 @opindex fgcse-lm
8693 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8694 attempts to move loads that are only killed by stores into themselves. This
8695 allows a loop containing a load/store sequence to be changed to a load outside
8696 the loop, and a copy/store within the loop.
8697
8698 Enabled by default when @option{-fgcse} is enabled.
8699
8700 @item -fgcse-sm
8701 @opindex fgcse-sm
8702 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8703 global common subexpression elimination. This pass attempts to move
8704 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8705 loops containing a load/store sequence can be changed to a load before
8706 the loop and a store after the loop.
8707
8708 Not enabled at any optimization level.
8709
8710 @item -fgcse-las
8711 @opindex fgcse-las
8712 When @option{-fgcse-las} is enabled, the global common subexpression
8713 elimination pass eliminates redundant loads that come after stores to the
8714 same memory location (both partial and full redundancies).
8715
8716 Not enabled at any optimization level.
8717
8718 @item -fgcse-after-reload
8719 @opindex fgcse-after-reload
8720 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8721 pass is performed after reload. The purpose of this pass is to clean up
8722 redundant spilling.
8723
8724 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
8725
8726 @item -faggressive-loop-optimizations
8727 @opindex faggressive-loop-optimizations
8728 This option tells the loop optimizer to use language constraints to
8729 derive bounds for the number of iterations of a loop. This assumes that
8730 loop code does not invoke undefined behavior by for example causing signed
8731 integer overflows or out-of-bound array accesses. The bounds for the
8732 number of iterations of a loop are used to guide loop unrolling and peeling
8733 and loop exit test optimizations.
8734 This option is enabled by default.
8735
8736 @item -funconstrained-commons
8737 @opindex funconstrained-commons
8738 This option tells the compiler that variables declared in common blocks
8739 (e.g.@: Fortran) may later be overridden with longer trailing arrays. This
8740 prevents certain optimizations that depend on knowing the array bounds.
8741
8742 @item -fcrossjumping
8743 @opindex fcrossjumping
8744 Perform cross-jumping transformation.
8745 This transformation unifies equivalent code and saves code size. The
8746 resulting code may or may not perform better than without cross-jumping.
8747
8748 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8749
8750 @item -fauto-inc-dec
8751 @opindex fauto-inc-dec
8752 Combine increments or decrements of addresses with memory accesses.
8753 This pass is always skipped on architectures that do not have
8754 instructions to support this. Enabled by default at @option{-O} and
8755 higher on architectures that support this.
8756
8757 @item -fdce
8758 @opindex fdce
8759 Perform dead code elimination (DCE) on RTL@.
8760 Enabled by default at @option{-O} and higher.
8761
8762 @item -fdse
8763 @opindex fdse
8764 Perform dead store elimination (DSE) on RTL@.
8765 Enabled by default at @option{-O} and higher.
8766
8767 @item -fif-conversion
8768 @opindex fif-conversion
8769 Attempt to transform conditional jumps into branch-less equivalents. This
8770 includes use of conditional moves, min, max, set flags and abs instructions, and
8771 some tricks doable by standard arithmetics. The use of conditional execution
8772 on chips where it is available is controlled by @option{-fif-conversion2}.
8773
8774 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8775 not with @option{-Og}.
8776
8777 @item -fif-conversion2
8778 @opindex fif-conversion2
8779 Use conditional execution (where available) to transform conditional jumps into
8780 branch-less equivalents.
8781
8782 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8783 not with @option{-Og}.
8784
8785 @item -fdeclone-ctor-dtor
8786 @opindex fdeclone-ctor-dtor
8787 The C++ ABI requires multiple entry points for constructors and
8788 destructors: one for a base subobject, one for a complete object, and
8789 one for a virtual destructor that calls operator delete afterwards.
8790 For a hierarchy with virtual bases, the base and complete variants are
8791 clones, which means two copies of the function. With this option, the
8792 base and complete variants are changed to be thunks that call a common
8793 implementation.
8794
8795 Enabled by @option{-Os}.
8796
8797 @item -fdelete-null-pointer-checks
8798 @opindex fdelete-null-pointer-checks
8799 Assume that programs cannot safely dereference null pointers, and that
8800 no code or data element resides at address zero.
8801 This option enables simple constant
8802 folding optimizations at all optimization levels. In addition, other
8803 optimization passes in GCC use this flag to control global dataflow
8804 analyses that eliminate useless checks for null pointers; these assume
8805 that a memory access to address zero always results in a trap, so
8806 that if a pointer is checked after it has already been dereferenced,
8807 it cannot be null.
8808
8809 Note however that in some environments this assumption is not true.
8810 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8811 for programs that depend on that behavior.
8812
8813 This option is enabled by default on most targets. On Nios II ELF, it
8814 defaults to off. On AVR, CR16, and MSP430, this option is completely disabled.
8815
8816 Passes that use the dataflow information
8817 are enabled independently at different optimization levels.
8818
8819 @item -fdevirtualize
8820 @opindex fdevirtualize
8821 Attempt to convert calls to virtual functions to direct calls. This
8822 is done both within a procedure and interprocedurally as part of
8823 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8824 propagation (@option{-fipa-cp}).
8825 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8826
8827 @item -fdevirtualize-speculatively
8828 @opindex fdevirtualize-speculatively
8829 Attempt to convert calls to virtual functions to speculative direct calls.
8830 Based on the analysis of the type inheritance graph, determine for a given call
8831 the set of likely targets. If the set is small, preferably of size 1, change
8832 the call into a conditional deciding between direct and indirect calls. The
8833 speculative calls enable more optimizations, such as inlining. When they seem
8834 useless after further optimization, they are converted back into original form.
8835
8836 @item -fdevirtualize-at-ltrans
8837 @opindex fdevirtualize-at-ltrans
8838 Stream extra information needed for aggressive devirtualization when running
8839 the link-time optimizer in local transformation mode.
8840 This option enables more devirtualization but
8841 significantly increases the size of streamed data. For this reason it is
8842 disabled by default.
8843
8844 @item -fexpensive-optimizations
8845 @opindex fexpensive-optimizations
8846 Perform a number of minor optimizations that are relatively expensive.
8847
8848 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8849
8850 @item -free
8851 @opindex free
8852 Attempt to remove redundant extension instructions. This is especially
8853 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8854 registers after writing to their lower 32-bit half.
8855
8856 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8857 @option{-O3}, @option{-Os}.
8858
8859 @item -fno-lifetime-dse
8860 @opindex fno-lifetime-dse
8861 @opindex flifetime-dse
8862 In C++ the value of an object is only affected by changes within its
8863 lifetime: when the constructor begins, the object has an indeterminate
8864 value, and any changes during the lifetime of the object are dead when
8865 the object is destroyed. Normally dead store elimination will take
8866 advantage of this; if your code relies on the value of the object
8867 storage persisting beyond the lifetime of the object, you can use this
8868 flag to disable this optimization. To preserve stores before the
8869 constructor starts (e.g.@: because your operator new clears the object
8870 storage) but still treat the object as dead after the destructor you,
8871 can use @option{-flifetime-dse=1}. The default behavior can be
8872 explicitly selected with @option{-flifetime-dse=2}.
8873 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
8874
8875 @item -flive-range-shrinkage
8876 @opindex flive-range-shrinkage
8877 Attempt to decrease register pressure through register live range
8878 shrinkage. This is helpful for fast processors with small or moderate
8879 size register sets.
8880
8881 @item -fira-algorithm=@var{algorithm}
8882 @opindex fira-algorithm
8883 Use the specified coloring algorithm for the integrated register
8884 allocator. The @var{algorithm} argument can be @samp{priority}, which
8885 specifies Chow's priority coloring, or @samp{CB}, which specifies
8886 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8887 for all architectures, but for those targets that do support it, it is
8888 the default because it generates better code.
8889
8890 @item -fira-region=@var{region}
8891 @opindex fira-region
8892 Use specified regions for the integrated register allocator. The
8893 @var{region} argument should be one of the following:
8894
8895 @table @samp
8896
8897 @item all
8898 Use all loops as register allocation regions.
8899 This can give the best results for machines with a small and/or
8900 irregular register set.
8901
8902 @item mixed
8903 Use all loops except for loops with small register pressure
8904 as the regions. This value usually gives
8905 the best results in most cases and for most architectures,
8906 and is enabled by default when compiling with optimization for speed
8907 (@option{-O}, @option{-O2}, @dots{}).
8908
8909 @item one
8910 Use all functions as a single region.
8911 This typically results in the smallest code size, and is enabled by default for
8912 @option{-Os} or @option{-O0}.
8913
8914 @end table
8915
8916 @item -fira-hoist-pressure
8917 @opindex fira-hoist-pressure
8918 Use IRA to evaluate register pressure in the code hoisting pass for
8919 decisions to hoist expressions. This option usually results in smaller
8920 code, but it can slow the compiler down.
8921
8922 This option is enabled at level @option{-Os} for all targets.
8923
8924 @item -fira-loop-pressure
8925 @opindex fira-loop-pressure
8926 Use IRA to evaluate register pressure in loops for decisions to move
8927 loop invariants. This option usually results in generation
8928 of faster and smaller code on machines with large register files (>= 32
8929 registers), but it can slow the compiler down.
8930
8931 This option is enabled at level @option{-O3} for some targets.
8932
8933 @item -fno-ira-share-save-slots
8934 @opindex fno-ira-share-save-slots
8935 @opindex fira-share-save-slots
8936 Disable sharing of stack slots used for saving call-used hard
8937 registers living through a call. Each hard register gets a
8938 separate stack slot, and as a result function stack frames are
8939 larger.
8940
8941 @item -fno-ira-share-spill-slots
8942 @opindex fno-ira-share-spill-slots
8943 @opindex fira-share-spill-slots
8944 Disable sharing of stack slots allocated for pseudo-registers. Each
8945 pseudo-register that does not get a hard register gets a separate
8946 stack slot, and as a result function stack frames are larger.
8947
8948 @item -flra-remat
8949 @opindex flra-remat
8950 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8951 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8952 values if it is profitable.
8953
8954 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8955
8956 @item -fdelayed-branch
8957 @opindex fdelayed-branch
8958 If supported for the target machine, attempt to reorder instructions
8959 to exploit instruction slots available after delayed branch
8960 instructions.
8961
8962 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os},
8963 but not at @option{-Og}.
8964
8965 @item -fschedule-insns
8966 @opindex fschedule-insns
8967 If supported for the target machine, attempt to reorder instructions to
8968 eliminate execution stalls due to required data being unavailable. This
8969 helps machines that have slow floating point or memory load instructions
8970 by allowing other instructions to be issued until the result of the load
8971 or floating-point instruction is required.
8972
8973 Enabled at levels @option{-O2}, @option{-O3}.
8974
8975 @item -fschedule-insns2
8976 @opindex fschedule-insns2
8977 Similar to @option{-fschedule-insns}, but requests an additional pass of
8978 instruction scheduling after register allocation has been done. This is
8979 especially useful on machines with a relatively small number of
8980 registers and where memory load instructions take more than one cycle.
8981
8982 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8983
8984 @item -fno-sched-interblock
8985 @opindex fno-sched-interblock
8986 @opindex fsched-interblock
8987 Disable instruction scheduling across basic blocks, which
8988 is normally enabled when scheduling before register allocation, i.e.@:
8989 with @option{-fschedule-insns} or at @option{-O2} or higher.
8990
8991 @item -fno-sched-spec
8992 @opindex fno-sched-spec
8993 @opindex fsched-spec
8994 Disable speculative motion of non-load instructions, which
8995 is normally enabled when scheduling before register allocation, i.e.@:
8996 with @option{-fschedule-insns} or at @option{-O2} or higher.
8997
8998 @item -fsched-pressure
8999 @opindex fsched-pressure
9000 Enable register pressure sensitive insn scheduling before register
9001 allocation. This only makes sense when scheduling before register
9002 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
9003 @option{-O2} or higher. Usage of this option can improve the
9004 generated code and decrease its size by preventing register pressure
9005 increase above the number of available hard registers and subsequent
9006 spills in register allocation.
9007
9008 @item -fsched-spec-load
9009 @opindex fsched-spec-load
9010 Allow speculative motion of some load instructions. This only makes
9011 sense when scheduling before register allocation, i.e.@: with
9012 @option{-fschedule-insns} or at @option{-O2} or higher.
9013
9014 @item -fsched-spec-load-dangerous
9015 @opindex fsched-spec-load-dangerous
9016 Allow speculative motion of more load instructions. This only makes
9017 sense when scheduling before register allocation, i.e.@: with
9018 @option{-fschedule-insns} or at @option{-O2} or higher.
9019
9020 @item -fsched-stalled-insns
9021 @itemx -fsched-stalled-insns=@var{n}
9022 @opindex fsched-stalled-insns
9023 Define how many insns (if any) can be moved prematurely from the queue
9024 of stalled insns into the ready list during the second scheduling pass.
9025 @option{-fno-sched-stalled-insns} means that no insns are moved
9026 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
9027 on how many queued insns can be moved prematurely.
9028 @option{-fsched-stalled-insns} without a value is equivalent to
9029 @option{-fsched-stalled-insns=1}.
9030
9031 @item -fsched-stalled-insns-dep
9032 @itemx -fsched-stalled-insns-dep=@var{n}
9033 @opindex fsched-stalled-insns-dep
9034 Define how many insn groups (cycles) are examined for a dependency
9035 on a stalled insn that is a candidate for premature removal from the queue
9036 of stalled insns. This has an effect only during the second scheduling pass,
9037 and only if @option{-fsched-stalled-insns} is used.
9038 @option{-fno-sched-stalled-insns-dep} is equivalent to
9039 @option{-fsched-stalled-insns-dep=0}.
9040 @option{-fsched-stalled-insns-dep} without a value is equivalent to
9041 @option{-fsched-stalled-insns-dep=1}.
9042
9043 @item -fsched2-use-superblocks
9044 @opindex fsched2-use-superblocks
9045 When scheduling after register allocation, use superblock scheduling.
9046 This allows motion across basic block boundaries,
9047 resulting in faster schedules. This option is experimental, as not all machine
9048 descriptions used by GCC model the CPU closely enough to avoid unreliable
9049 results from the algorithm.
9050
9051 This only makes sense when scheduling after register allocation, i.e.@: with
9052 @option{-fschedule-insns2} or at @option{-O2} or higher.
9053
9054 @item -fsched-group-heuristic
9055 @opindex fsched-group-heuristic
9056 Enable the group heuristic in the scheduler. This heuristic favors
9057 the instruction that belongs to a schedule group. This is enabled
9058 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9059 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9060
9061 @item -fsched-critical-path-heuristic
9062 @opindex fsched-critical-path-heuristic
9063 Enable the critical-path heuristic in the scheduler. This heuristic favors
9064 instructions on the critical path. This is enabled by default when
9065 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9066 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9067
9068 @item -fsched-spec-insn-heuristic
9069 @opindex fsched-spec-insn-heuristic
9070 Enable the speculative instruction heuristic in the scheduler. This
9071 heuristic favors speculative instructions with greater dependency weakness.
9072 This is enabled by default when scheduling is enabled, i.e.@:
9073 with @option{-fschedule-insns} or @option{-fschedule-insns2}
9074 or at @option{-O2} or higher.
9075
9076 @item -fsched-rank-heuristic
9077 @opindex fsched-rank-heuristic
9078 Enable the rank heuristic in the scheduler. This heuristic favors
9079 the instruction belonging to a basic block with greater size or frequency.
9080 This is enabled by default when scheduling is enabled, i.e.@:
9081 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9082 at @option{-O2} or higher.
9083
9084 @item -fsched-last-insn-heuristic
9085 @opindex fsched-last-insn-heuristic
9086 Enable the last-instruction heuristic in the scheduler. This heuristic
9087 favors the instruction that is less dependent on the last instruction
9088 scheduled. This is enabled by default when scheduling is enabled,
9089 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9090 at @option{-O2} or higher.
9091
9092 @item -fsched-dep-count-heuristic
9093 @opindex fsched-dep-count-heuristic
9094 Enable the dependent-count heuristic in the scheduler. This heuristic
9095 favors the instruction that has more instructions depending on it.
9096 This is enabled by default when scheduling is enabled, i.e.@:
9097 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9098 at @option{-O2} or higher.
9099
9100 @item -freschedule-modulo-scheduled-loops
9101 @opindex freschedule-modulo-scheduled-loops
9102 Modulo scheduling is performed before traditional scheduling. If a loop
9103 is modulo scheduled, later scheduling passes may change its schedule.
9104 Use this option to control that behavior.
9105
9106 @item -fselective-scheduling
9107 @opindex fselective-scheduling
9108 Schedule instructions using selective scheduling algorithm. Selective
9109 scheduling runs instead of the first scheduler pass.
9110
9111 @item -fselective-scheduling2
9112 @opindex fselective-scheduling2
9113 Schedule instructions using selective scheduling algorithm. Selective
9114 scheduling runs instead of the second scheduler pass.
9115
9116 @item -fsel-sched-pipelining
9117 @opindex fsel-sched-pipelining
9118 Enable software pipelining of innermost loops during selective scheduling.
9119 This option has no effect unless one of @option{-fselective-scheduling} or
9120 @option{-fselective-scheduling2} is turned on.
9121
9122 @item -fsel-sched-pipelining-outer-loops
9123 @opindex fsel-sched-pipelining-outer-loops
9124 When pipelining loops during selective scheduling, also pipeline outer loops.
9125 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
9126
9127 @item -fsemantic-interposition
9128 @opindex fsemantic-interposition
9129 Some object formats, like ELF, allow interposing of symbols by the
9130 dynamic linker.
9131 This means that for symbols exported from the DSO, the compiler cannot perform
9132 interprocedural propagation, inlining and other optimizations in anticipation
9133 that the function or variable in question may change. While this feature is
9134 useful, for example, to rewrite memory allocation functions by a debugging
9135 implementation, it is expensive in the terms of code quality.
9136 With @option{-fno-semantic-interposition} the compiler assumes that
9137 if interposition happens for functions the overwriting function will have
9138 precisely the same semantics (and side effects).
9139 Similarly if interposition happens
9140 for variables, the constructor of the variable will be the same. The flag
9141 has no effect for functions explicitly declared inline
9142 (where it is never allowed for interposition to change semantics)
9143 and for symbols explicitly declared weak.
9144
9145 @item -fshrink-wrap
9146 @opindex fshrink-wrap
9147 Emit function prologues only before parts of the function that need it,
9148 rather than at the top of the function. This flag is enabled by default at
9149 @option{-O} and higher.
9150
9151 @item -fshrink-wrap-separate
9152 @opindex fshrink-wrap-separate
9153 Shrink-wrap separate parts of the prologue and epilogue separately, so that
9154 those parts are only executed when needed.
9155 This option is on by default, but has no effect unless @option{-fshrink-wrap}
9156 is also turned on and the target supports this.
9157
9158 @item -fcaller-saves
9159 @opindex fcaller-saves
9160 Enable allocation of values to registers that are clobbered by
9161 function calls, by emitting extra instructions to save and restore the
9162 registers around such calls. Such allocation is done only when it
9163 seems to result in better code.
9164
9165 This option is always enabled by default on certain machines, usually
9166 those which have no call-preserved registers to use instead.
9167
9168 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9169
9170 @item -fcombine-stack-adjustments
9171 @opindex fcombine-stack-adjustments
9172 Tracks stack adjustments (pushes and pops) and stack memory references
9173 and then tries to find ways to combine them.
9174
9175 Enabled by default at @option{-O1} and higher.
9176
9177 @item -fipa-ra
9178 @opindex fipa-ra
9179 Use caller save registers for allocation if those registers are not used by
9180 any called function. In that case it is not necessary to save and restore
9181 them around calls. This is only possible if called functions are part of
9182 same compilation unit as current function and they are compiled before it.
9183
9184 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
9185 is disabled if generated code will be instrumented for profiling
9186 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
9187 exactly (this happens on targets that do not expose prologues
9188 and epilogues in RTL).
9189
9190 @item -fconserve-stack
9191 @opindex fconserve-stack
9192 Attempt to minimize stack usage. The compiler attempts to use less
9193 stack space, even if that makes the program slower. This option
9194 implies setting the @option{large-stack-frame} parameter to 100
9195 and the @option{large-stack-frame-growth} parameter to 400.
9196
9197 @item -ftree-reassoc
9198 @opindex ftree-reassoc
9199 Perform reassociation on trees. This flag is enabled by default
9200 at @option{-O} and higher.
9201
9202 @item -fcode-hoisting
9203 @opindex fcode-hoisting
9204 Perform code hoisting. Code hoisting tries to move the
9205 evaluation of expressions executed on all paths to the function exit
9206 as early as possible. This is especially useful as a code size
9207 optimization, but it often helps for code speed as well.
9208 This flag is enabled by default at @option{-O2} and higher.
9209
9210 @item -ftree-pre
9211 @opindex ftree-pre
9212 Perform partial redundancy elimination (PRE) on trees. This flag is
9213 enabled by default at @option{-O2} and @option{-O3}.
9214
9215 @item -ftree-partial-pre
9216 @opindex ftree-partial-pre
9217 Make partial redundancy elimination (PRE) more aggressive. This flag is
9218 enabled by default at @option{-O3}.
9219
9220 @item -ftree-forwprop
9221 @opindex ftree-forwprop
9222 Perform forward propagation on trees. This flag is enabled by default
9223 at @option{-O} and higher.
9224
9225 @item -ftree-fre
9226 @opindex ftree-fre
9227 Perform full redundancy elimination (FRE) on trees. The difference
9228 between FRE and PRE is that FRE only considers expressions
9229 that are computed on all paths leading to the redundant computation.
9230 This analysis is faster than PRE, though it exposes fewer redundancies.
9231 This flag is enabled by default at @option{-O} and higher.
9232
9233 @item -ftree-phiprop
9234 @opindex ftree-phiprop
9235 Perform hoisting of loads from conditional pointers on trees. This
9236 pass is enabled by default at @option{-O} and higher.
9237
9238 @item -fhoist-adjacent-loads
9239 @opindex fhoist-adjacent-loads
9240 Speculatively hoist loads from both branches of an if-then-else if the
9241 loads are from adjacent locations in the same structure and the target
9242 architecture has a conditional move instruction. This flag is enabled
9243 by default at @option{-O2} and higher.
9244
9245 @item -ftree-copy-prop
9246 @opindex ftree-copy-prop
9247 Perform copy propagation on trees. This pass eliminates unnecessary
9248 copy operations. This flag is enabled by default at @option{-O} and
9249 higher.
9250
9251 @item -fipa-pure-const
9252 @opindex fipa-pure-const
9253 Discover which functions are pure or constant.
9254 Enabled by default at @option{-O} and higher.
9255
9256 @item -fipa-reference
9257 @opindex fipa-reference
9258 Discover which static variables do not escape the
9259 compilation unit.
9260 Enabled by default at @option{-O} and higher.
9261
9262 @item -fipa-reference-addressable
9263 @opindex fipa-reference-addressable
9264 Discover read-only, write-only and non-addressable static variables.
9265 Enabled by default at @option{-O} and higher.
9266
9267 @item -fipa-stack-alignment
9268 @opindex fipa-stack-alignment
9269 Reduce stack alignment on call sites if possible.
9270 Enabled by default.
9271
9272 @item -fipa-pta
9273 @opindex fipa-pta
9274 Perform interprocedural pointer analysis and interprocedural modification
9275 and reference analysis. This option can cause excessive memory and
9276 compile-time usage on large compilation units. It is not enabled by
9277 default at any optimization level.
9278
9279 @item -fipa-profile
9280 @opindex fipa-profile
9281 Perform interprocedural profile propagation. The functions called only from
9282 cold functions are marked as cold. Also functions executed once (such as
9283 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
9284 functions and loop less parts of functions executed once are then optimized for
9285 size.
9286 Enabled by default at @option{-O} and higher.
9287
9288 @item -fipa-cp
9289 @opindex fipa-cp
9290 Perform interprocedural constant propagation.
9291 This optimization analyzes the program to determine when values passed
9292 to functions are constants and then optimizes accordingly.
9293 This optimization can substantially increase performance
9294 if the application has constants passed to functions.
9295 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
9296 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9297
9298 @item -fipa-cp-clone
9299 @opindex fipa-cp-clone
9300 Perform function cloning to make interprocedural constant propagation stronger.
9301 When enabled, interprocedural constant propagation performs function cloning
9302 when externally visible function can be called with constant arguments.
9303 Because this optimization can create multiple copies of functions,
9304 it may significantly increase code size
9305 (see @option{--param ipcp-unit-growth=@var{value}}).
9306 This flag is enabled by default at @option{-O3}.
9307 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9308
9309 @item -fipa-bit-cp
9310 @opindex fipa-bit-cp
9311 When enabled, perform interprocedural bitwise constant
9312 propagation. This flag is enabled by default at @option{-O2} and
9313 by @option{-fprofile-use} and @option{-fauto-profile}.
9314 It requires that @option{-fipa-cp} is enabled.
9315
9316 @item -fipa-vrp
9317 @opindex fipa-vrp
9318 When enabled, perform interprocedural propagation of value
9319 ranges. This flag is enabled by default at @option{-O2}. It requires
9320 that @option{-fipa-cp} is enabled.
9321
9322 @item -fipa-icf
9323 @opindex fipa-icf
9324 Perform Identical Code Folding for functions and read-only variables.
9325 The optimization reduces code size and may disturb unwind stacks by replacing
9326 a function by equivalent one with a different name. The optimization works
9327 more effectively with link-time optimization enabled.
9328
9329 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
9330 works on different levels and thus the optimizations are not same - there are
9331 equivalences that are found only by GCC and equivalences found only by Gold.
9332
9333 This flag is enabled by default at @option{-O2} and @option{-Os}.
9334
9335 @item -flive-patching=@var{level}
9336 @opindex flive-patching
9337 Control GCC's optimizations to provide a safe compilation for live-patching.
9338
9339 If the compiler's optimization uses a function's body or information extracted
9340 from its body to optimize/change another function, the latter is called an
9341 impacted function of the former. If a function is patched, its impacted
9342 functions should be patched too.
9343
9344 The impacted functions are decided by the compiler's interprocedural
9345 optimizations. For example, inlining a function into its caller, cloning
9346 a function and changing its caller to call this new clone, or extracting
9347 a function's pureness/constness information to optimize its direct or
9348 indirect callers, etc.
9349
9350 Usually, the more IPA optimizations enabled, the larger the number of
9351 impacted functions for each function. In order to control the number of
9352 impacted functions and computed the list of impacted function easily,
9353 we provide control to partially enable IPA optimizations on two different
9354 levels.
9355
9356 The @var{level} argument should be one of the following:
9357
9358 @table @samp
9359
9360 @item inline-clone
9361
9362 Only enable inlining and cloning optimizations, which includes inlining,
9363 cloning, interprocedural scalar replacement of aggregates and partial inlining.
9364 As a result, when patching a function, all its callers and its clones'
9365 callers need to be patched as well.
9366
9367 @option{-flive-patching=inline-clone} disables the following optimization flags:
9368 @gccoptlist{-fwhole-program -fipa-pta -fipa-reference -fipa-ra @gol
9369 -fipa-icf -fipa-icf-functions -fipa-icf-variables @gol
9370 -fipa-bit-cp -fipa-vrp -fipa-pure-const -fipa-reference-addressable @gol
9371 -fipa-stack-alignment}
9372
9373 @item inline-only-static
9374
9375 Only enable inlining of static functions.
9376 As a result, when patching a static function, all its callers need to be
9377 patches as well.
9378
9379 In addition to all the flags that -flive-patching=inline-clone disables,
9380 @option{-flive-patching=inline-only-static} disables the following additional
9381 optimization flags:
9382 @gccoptlist{-fipa-cp-clone -fipa-sra -fpartial-inlining -fipa-cp}
9383
9384 @end table
9385
9386 When -flive-patching specified without any value, the default value
9387 is "inline-clone".
9388
9389 This flag is disabled by default.
9390
9391 Note that -flive-patching is not supported with link-time optimizer.
9392 (@option{-flto}).
9393
9394 @item -fisolate-erroneous-paths-dereference
9395 @opindex fisolate-erroneous-paths-dereference
9396 Detect paths that trigger erroneous or undefined behavior due to
9397 dereferencing a null pointer. Isolate those paths from the main control
9398 flow and turn the statement with erroneous or undefined behavior into a trap.
9399 This flag is enabled by default at @option{-O2} and higher and depends on
9400 @option{-fdelete-null-pointer-checks} also being enabled.
9401
9402 @item -fisolate-erroneous-paths-attribute
9403 @opindex fisolate-erroneous-paths-attribute
9404 Detect paths that trigger erroneous or undefined behavior due to a null value
9405 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
9406 attribute. Isolate those paths from the main control flow and turn the
9407 statement with erroneous or undefined behavior into a trap. This is not
9408 currently enabled, but may be enabled by @option{-O2} in the future.
9409
9410 @item -ftree-sink
9411 @opindex ftree-sink
9412 Perform forward store motion on trees. This flag is
9413 enabled by default at @option{-O} and higher.
9414
9415 @item -ftree-bit-ccp
9416 @opindex ftree-bit-ccp
9417 Perform sparse conditional bit constant propagation on trees and propagate
9418 pointer alignment information.
9419 This pass only operates on local scalar variables and is enabled by default
9420 at @option{-O1} and higher, except for @option{-Og}.
9421 It requires that @option{-ftree-ccp} is enabled.
9422
9423 @item -ftree-ccp
9424 @opindex ftree-ccp
9425 Perform sparse conditional constant propagation (CCP) on trees. This
9426 pass only operates on local scalar variables and is enabled by default
9427 at @option{-O} and higher.
9428
9429 @item -fssa-backprop
9430 @opindex fssa-backprop
9431 Propagate information about uses of a value up the definition chain
9432 in order to simplify the definitions. For example, this pass strips
9433 sign operations if the sign of a value never matters. The flag is
9434 enabled by default at @option{-O} and higher.
9435
9436 @item -fssa-phiopt
9437 @opindex fssa-phiopt
9438 Perform pattern matching on SSA PHI nodes to optimize conditional
9439 code. This pass is enabled by default at @option{-O1} and higher,
9440 except for @option{-Og}.
9441
9442 @item -ftree-switch-conversion
9443 @opindex ftree-switch-conversion
9444 Perform conversion of simple initializations in a switch to
9445 initializations from a scalar array. This flag is enabled by default
9446 at @option{-O2} and higher.
9447
9448 @item -ftree-tail-merge
9449 @opindex ftree-tail-merge
9450 Look for identical code sequences. When found, replace one with a jump to the
9451 other. This optimization is known as tail merging or cross jumping. This flag
9452 is enabled by default at @option{-O2} and higher. The compilation time
9453 in this pass can
9454 be limited using @option{max-tail-merge-comparisons} parameter and
9455 @option{max-tail-merge-iterations} parameter.
9456
9457 @item -ftree-dce
9458 @opindex ftree-dce
9459 Perform dead code elimination (DCE) on trees. This flag is enabled by
9460 default at @option{-O} and higher.
9461
9462 @item -ftree-builtin-call-dce
9463 @opindex ftree-builtin-call-dce
9464 Perform conditional dead code elimination (DCE) for calls to built-in functions
9465 that may set @code{errno} but are otherwise free of side effects. This flag is
9466 enabled by default at @option{-O2} and higher if @option{-Os} is not also
9467 specified.
9468
9469 @item -ftree-dominator-opts
9470 @opindex ftree-dominator-opts
9471 Perform a variety of simple scalar cleanups (constant/copy
9472 propagation, redundancy elimination, range propagation and expression
9473 simplification) based on a dominator tree traversal. This also
9474 performs jump threading (to reduce jumps to jumps). This flag is
9475 enabled by default at @option{-O} and higher.
9476
9477 @item -ftree-dse
9478 @opindex ftree-dse
9479 Perform dead store elimination (DSE) on trees. A dead store is a store into
9480 a memory location that is later overwritten by another store without
9481 any intervening loads. In this case the earlier store can be deleted. This
9482 flag is enabled by default at @option{-O} and higher.
9483
9484 @item -ftree-ch
9485 @opindex ftree-ch
9486 Perform loop header copying on trees. This is beneficial since it increases
9487 effectiveness of code motion optimizations. It also saves one jump. This flag
9488 is enabled by default at @option{-O} and higher. It is not enabled
9489 for @option{-Os}, since it usually increases code size.
9490
9491 @item -ftree-loop-optimize
9492 @opindex ftree-loop-optimize
9493 Perform loop optimizations on trees. This flag is enabled by default
9494 at @option{-O} and higher.
9495
9496 @item -ftree-loop-linear
9497 @itemx -floop-strip-mine
9498 @itemx -floop-block
9499 @opindex ftree-loop-linear
9500 @opindex floop-strip-mine
9501 @opindex floop-block
9502 Perform loop nest optimizations. Same as
9503 @option{-floop-nest-optimize}. To use this code transformation, GCC has
9504 to be configured with @option{--with-isl} to enable the Graphite loop
9505 transformation infrastructure.
9506
9507 @item -fgraphite-identity
9508 @opindex fgraphite-identity
9509 Enable the identity transformation for graphite. For every SCoP we generate
9510 the polyhedral representation and transform it back to gimple. Using
9511 @option{-fgraphite-identity} we can check the costs or benefits of the
9512 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
9513 are also performed by the code generator isl, like index splitting and
9514 dead code elimination in loops.
9515
9516 @item -floop-nest-optimize
9517 @opindex floop-nest-optimize
9518 Enable the isl based loop nest optimizer. This is a generic loop nest
9519 optimizer based on the Pluto optimization algorithms. It calculates a loop
9520 structure optimized for data-locality and parallelism. This option
9521 is experimental.
9522
9523 @item -floop-parallelize-all
9524 @opindex floop-parallelize-all
9525 Use the Graphite data dependence analysis to identify loops that can
9526 be parallelized. Parallelize all the loops that can be analyzed to
9527 not contain loop carried dependences without checking that it is
9528 profitable to parallelize the loops.
9529
9530 @item -ftree-coalesce-vars
9531 @opindex ftree-coalesce-vars
9532 While transforming the program out of the SSA representation, attempt to
9533 reduce copying by coalescing versions of different user-defined
9534 variables, instead of just compiler temporaries. This may severely
9535 limit the ability to debug an optimized program compiled with
9536 @option{-fno-var-tracking-assignments}. In the negated form, this flag
9537 prevents SSA coalescing of user variables. This option is enabled by
9538 default if optimization is enabled, and it does very little otherwise.
9539
9540 @item -ftree-loop-if-convert
9541 @opindex ftree-loop-if-convert
9542 Attempt to transform conditional jumps in the innermost loops to
9543 branch-less equivalents. The intent is to remove control-flow from
9544 the innermost loops in order to improve the ability of the
9545 vectorization pass to handle these loops. This is enabled by default
9546 if vectorization is enabled.
9547
9548 @item -ftree-loop-distribution
9549 @opindex ftree-loop-distribution
9550 Perform loop distribution. This flag can improve cache performance on
9551 big loop bodies and allow further loop optimizations, like
9552 parallelization or vectorization, to take place. For example, the loop
9553 @smallexample
9554 DO I = 1, N
9555 A(I) = B(I) + C
9556 D(I) = E(I) * F
9557 ENDDO
9558 @end smallexample
9559 is transformed to
9560 @smallexample
9561 DO I = 1, N
9562 A(I) = B(I) + C
9563 ENDDO
9564 DO I = 1, N
9565 D(I) = E(I) * F
9566 ENDDO
9567 @end smallexample
9568 This flag is enabled by default at @option{-O3}.
9569 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9570
9571 @item -ftree-loop-distribute-patterns
9572 @opindex ftree-loop-distribute-patterns
9573 Perform loop distribution of patterns that can be code generated with
9574 calls to a library. This flag is enabled by default at @option{-O3}, and
9575 by @option{-fprofile-use} and @option{-fauto-profile}.
9576
9577 This pass distributes the initialization loops and generates a call to
9578 memset zero. For example, the loop
9579 @smallexample
9580 DO I = 1, N
9581 A(I) = 0
9582 B(I) = A(I) + I
9583 ENDDO
9584 @end smallexample
9585 is transformed to
9586 @smallexample
9587 DO I = 1, N
9588 A(I) = 0
9589 ENDDO
9590 DO I = 1, N
9591 B(I) = A(I) + I
9592 ENDDO
9593 @end smallexample
9594 and the initialization loop is transformed into a call to memset zero.
9595 This flag is enabled by default at @option{-O3}.
9596 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9597
9598 @item -floop-interchange
9599 @opindex floop-interchange
9600 Perform loop interchange outside of graphite. This flag can improve cache
9601 performance on loop nest and allow further loop optimizations, like
9602 vectorization, to take place. For example, the loop
9603 @smallexample
9604 for (int i = 0; i < N; i++)
9605 for (int j = 0; j < N; j++)
9606 for (int k = 0; k < N; k++)
9607 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9608 @end smallexample
9609 is transformed to
9610 @smallexample
9611 for (int i = 0; i < N; i++)
9612 for (int k = 0; k < N; k++)
9613 for (int j = 0; j < N; j++)
9614 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9615 @end smallexample
9616 This flag is enabled by default at @option{-O3}.
9617 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9618
9619 @item -floop-unroll-and-jam
9620 @opindex floop-unroll-and-jam
9621 Apply unroll and jam transformations on feasible loops. In a loop
9622 nest this unrolls the outer loop by some factor and fuses the resulting
9623 multiple inner loops. This flag is enabled by default at @option{-O3}.
9624 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9625
9626 @item -ftree-loop-im
9627 @opindex ftree-loop-im
9628 Perform loop invariant motion on trees. This pass moves only invariants that
9629 are hard to handle at RTL level (function calls, operations that expand to
9630 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
9631 operands of conditions that are invariant out of the loop, so that we can use
9632 just trivial invariantness analysis in loop unswitching. The pass also includes
9633 store motion.
9634
9635 @item -ftree-loop-ivcanon
9636 @opindex ftree-loop-ivcanon
9637 Create a canonical counter for number of iterations in loops for which
9638 determining number of iterations requires complicated analysis. Later
9639 optimizations then may determine the number easily. Useful especially
9640 in connection with unrolling.
9641
9642 @item -ftree-scev-cprop
9643 @opindex ftree-scev-cprop
9644 Perform final value replacement. If a variable is modified in a loop
9645 in such a way that its value when exiting the loop can be determined using
9646 only its initial value and the number of loop iterations, replace uses of
9647 the final value by such a computation, provided it is sufficiently cheap.
9648 This reduces data dependencies and may allow further simplifications.
9649 Enabled by default at @option{-O} and higher.
9650
9651 @item -fivopts
9652 @opindex fivopts
9653 Perform induction variable optimizations (strength reduction, induction
9654 variable merging and induction variable elimination) on trees.
9655
9656 @item -ftree-parallelize-loops=n
9657 @opindex ftree-parallelize-loops
9658 Parallelize loops, i.e., split their iteration space to run in n threads.
9659 This is only possible for loops whose iterations are independent
9660 and can be arbitrarily reordered. The optimization is only
9661 profitable on multiprocessor machines, for loops that are CPU-intensive,
9662 rather than constrained e.g.@: by memory bandwidth. This option
9663 implies @option{-pthread}, and thus is only supported on targets
9664 that have support for @option{-pthread}.
9665
9666 @item -ftree-pta
9667 @opindex ftree-pta
9668 Perform function-local points-to analysis on trees. This flag is
9669 enabled by default at @option{-O1} and higher, except for @option{-Og}.
9670
9671 @item -ftree-sra
9672 @opindex ftree-sra
9673 Perform scalar replacement of aggregates. This pass replaces structure
9674 references with scalars to prevent committing structures to memory too
9675 early. This flag is enabled by default at @option{-O1} and higher,
9676 except for @option{-Og}.
9677
9678 @item -fstore-merging
9679 @opindex fstore-merging
9680 Perform merging of narrow stores to consecutive memory addresses. This pass
9681 merges contiguous stores of immediate values narrower than a word into fewer
9682 wider stores to reduce the number of instructions. This is enabled by default
9683 at @option{-O2} and higher as well as @option{-Os}.
9684
9685 @item -ftree-ter
9686 @opindex ftree-ter
9687 Perform temporary expression replacement during the SSA->normal phase. Single
9688 use/single def temporaries are replaced at their use location with their
9689 defining expression. This results in non-GIMPLE code, but gives the expanders
9690 much more complex trees to work on resulting in better RTL generation. This is
9691 enabled by default at @option{-O} and higher.
9692
9693 @item -ftree-slsr
9694 @opindex ftree-slsr
9695 Perform straight-line strength reduction on trees. This recognizes related
9696 expressions involving multiplications and replaces them by less expensive
9697 calculations when possible. This is enabled by default at @option{-O} and
9698 higher.
9699
9700 @item -ftree-vectorize
9701 @opindex ftree-vectorize
9702 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9703 and @option{-ftree-slp-vectorize} if not explicitly specified.
9704
9705 @item -ftree-loop-vectorize
9706 @opindex ftree-loop-vectorize
9707 Perform loop vectorization on trees. This flag is enabled by default at
9708 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9709 and @option{-fauto-profile}.
9710
9711 @item -ftree-slp-vectorize
9712 @opindex ftree-slp-vectorize
9713 Perform basic block vectorization on trees. This flag is enabled by default at
9714 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9715 and @option{-fauto-profile}.
9716
9717 @item -fvect-cost-model=@var{model}
9718 @opindex fvect-cost-model
9719 Alter the cost model used for vectorization. The @var{model} argument
9720 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9721 With the @samp{unlimited} model the vectorized code-path is assumed
9722 to be profitable while with the @samp{dynamic} model a runtime check
9723 guards the vectorized code-path to enable it only for iteration
9724 counts that will likely execute faster than when executing the original
9725 scalar loop. The @samp{cheap} model disables vectorization of
9726 loops where doing so would be cost prohibitive for example due to
9727 required runtime checks for data dependence or alignment but otherwise
9728 is equal to the @samp{dynamic} model.
9729 The default cost model depends on other optimization flags and is
9730 either @samp{dynamic} or @samp{cheap}.
9731
9732 @item -fsimd-cost-model=@var{model}
9733 @opindex fsimd-cost-model
9734 Alter the cost model used for vectorization of loops marked with the OpenMP
9735 simd directive. The @var{model} argument should be one of
9736 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
9737 have the same meaning as described in @option{-fvect-cost-model} and by
9738 default a cost model defined with @option{-fvect-cost-model} is used.
9739
9740 @item -ftree-vrp
9741 @opindex ftree-vrp
9742 Perform Value Range Propagation on trees. This is similar to the
9743 constant propagation pass, but instead of values, ranges of values are
9744 propagated. This allows the optimizers to remove unnecessary range
9745 checks like array bound checks and null pointer checks. This is
9746 enabled by default at @option{-O2} and higher. Null pointer check
9747 elimination is only done if @option{-fdelete-null-pointer-checks} is
9748 enabled.
9749
9750 @item -fsplit-paths
9751 @opindex fsplit-paths
9752 Split paths leading to loop backedges. This can improve dead code
9753 elimination and common subexpression elimination. This is enabled by
9754 default at @option{-O3} and above.
9755
9756 @item -fsplit-ivs-in-unroller
9757 @opindex fsplit-ivs-in-unroller
9758 Enables expression of values of induction variables in later iterations
9759 of the unrolled loop using the value in the first iteration. This breaks
9760 long dependency chains, thus improving efficiency of the scheduling passes.
9761
9762 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9763 same effect. However, that is not reliable in cases where the loop body
9764 is more complicated than a single basic block. It also does not work at all
9765 on some architectures due to restrictions in the CSE pass.
9766
9767 This optimization is enabled by default.
9768
9769 @item -fvariable-expansion-in-unroller
9770 @opindex fvariable-expansion-in-unroller
9771 With this option, the compiler creates multiple copies of some
9772 local variables when unrolling a loop, which can result in superior code.
9773
9774 @item -fpartial-inlining
9775 @opindex fpartial-inlining
9776 Inline parts of functions. This option has any effect only
9777 when inlining itself is turned on by the @option{-finline-functions}
9778 or @option{-finline-small-functions} options.
9779
9780 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9781
9782 @item -fpredictive-commoning
9783 @opindex fpredictive-commoning
9784 Perform predictive commoning optimization, i.e., reusing computations
9785 (especially memory loads and stores) performed in previous
9786 iterations of loops.
9787
9788 This option is enabled at level @option{-O3}.
9789 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9790
9791 @item -fprefetch-loop-arrays
9792 @opindex fprefetch-loop-arrays
9793 If supported by the target machine, generate instructions to prefetch
9794 memory to improve the performance of loops that access large arrays.
9795
9796 This option may generate better or worse code; results are highly
9797 dependent on the structure of loops within the source code.
9798
9799 Disabled at level @option{-Os}.
9800
9801 @item -fno-printf-return-value
9802 @opindex fno-printf-return-value
9803 @opindex fprintf-return-value
9804 Do not substitute constants for known return value of formatted output
9805 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
9806 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
9807 transformation allows GCC to optimize or even eliminate branches based
9808 on the known return value of these functions called with arguments that
9809 are either constant, or whose values are known to be in a range that
9810 makes determining the exact return value possible. For example, when
9811 @option{-fprintf-return-value} is in effect, both the branch and the
9812 body of the @code{if} statement (but not the call to @code{snprint})
9813 can be optimized away when @code{i} is a 32-bit or smaller integer
9814 because the return value is guaranteed to be at most 8.
9815
9816 @smallexample
9817 char buf[9];
9818 if (snprintf (buf, "%08x", i) >= sizeof buf)
9819 @dots{}
9820 @end smallexample
9821
9822 The @option{-fprintf-return-value} option relies on other optimizations
9823 and yields best results with @option{-O2} and above. It works in tandem
9824 with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
9825 options. The @option{-fprintf-return-value} option is enabled by default.
9826
9827 @item -fno-peephole
9828 @itemx -fno-peephole2
9829 @opindex fno-peephole
9830 @opindex fpeephole
9831 @opindex fno-peephole2
9832 @opindex fpeephole2
9833 Disable any machine-specific peephole optimizations. The difference
9834 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9835 are implemented in the compiler; some targets use one, some use the
9836 other, a few use both.
9837
9838 @option{-fpeephole} is enabled by default.
9839 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9840
9841 @item -fno-guess-branch-probability
9842 @opindex fno-guess-branch-probability
9843 @opindex fguess-branch-probability
9844 Do not guess branch probabilities using heuristics.
9845
9846 GCC uses heuristics to guess branch probabilities if they are
9847 not provided by profiling feedback (@option{-fprofile-arcs}). These
9848 heuristics are based on the control flow graph. If some branch probabilities
9849 are specified by @code{__builtin_expect}, then the heuristics are
9850 used to guess branch probabilities for the rest of the control flow graph,
9851 taking the @code{__builtin_expect} info into account. The interactions
9852 between the heuristics and @code{__builtin_expect} can be complex, and in
9853 some cases, it may be useful to disable the heuristics so that the effects
9854 of @code{__builtin_expect} are easier to understand.
9855
9856 It is also possible to specify expected probability of the expression
9857 with @code{__builtin_expect_with_probability} built-in function.
9858
9859 The default is @option{-fguess-branch-probability} at levels
9860 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9861
9862 @item -freorder-blocks
9863 @opindex freorder-blocks
9864 Reorder basic blocks in the compiled function in order to reduce number of
9865 taken branches and improve code locality.
9866
9867 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9868
9869 @item -freorder-blocks-algorithm=@var{algorithm}
9870 @opindex freorder-blocks-algorithm
9871 Use the specified algorithm for basic block reordering. The
9872 @var{algorithm} argument can be @samp{simple}, which does not increase
9873 code size (except sometimes due to secondary effects like alignment),
9874 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9875 put all often executed code together, minimizing the number of branches
9876 executed by making extra copies of code.
9877
9878 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9879 @samp{stc} at levels @option{-O2}, @option{-O3}.
9880
9881 @item -freorder-blocks-and-partition
9882 @opindex freorder-blocks-and-partition
9883 In addition to reordering basic blocks in the compiled function, in order
9884 to reduce number of taken branches, partitions hot and cold basic blocks
9885 into separate sections of the assembly and @file{.o} files, to improve
9886 paging and cache locality performance.
9887
9888 This optimization is automatically turned off in the presence of
9889 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
9890 section attribute and on any architecture that does not support named
9891 sections. When @option{-fsplit-stack} is used this option is not
9892 enabled by default (to avoid linker errors), but may be enabled
9893 explicitly (if using a working linker).
9894
9895 Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
9896
9897 @item -freorder-functions
9898 @opindex freorder-functions
9899 Reorder functions in the object file in order to
9900 improve code locality. This is implemented by using special
9901 subsections @code{.text.hot} for most frequently executed functions and
9902 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
9903 the linker so object file format must support named sections and linker must
9904 place them in a reasonable way.
9905
9906 This option isn't effective unless you either provide profile feedback
9907 (see @option{-fprofile-arcs} for details) or manually annotate functions with
9908 @code{hot} or @code{cold} attributes (@pxref{Common Function Attributes}).
9909
9910 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9911
9912 @item -fstrict-aliasing
9913 @opindex fstrict-aliasing
9914 Allow the compiler to assume the strictest aliasing rules applicable to
9915 the language being compiled. For C (and C++), this activates
9916 optimizations based on the type of expressions. In particular, an
9917 object of one type is assumed never to reside at the same address as an
9918 object of a different type, unless the types are almost the same. For
9919 example, an @code{unsigned int} can alias an @code{int}, but not a
9920 @code{void*} or a @code{double}. A character type may alias any other
9921 type.
9922
9923 @anchor{Type-punning}Pay special attention to code like this:
9924 @smallexample
9925 union a_union @{
9926 int i;
9927 double d;
9928 @};
9929
9930 int f() @{
9931 union a_union t;
9932 t.d = 3.0;
9933 return t.i;
9934 @}
9935 @end smallexample
9936 The practice of reading from a different union member than the one most
9937 recently written to (called ``type-punning'') is common. Even with
9938 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9939 is accessed through the union type. So, the code above works as
9940 expected. @xref{Structures unions enumerations and bit-fields
9941 implementation}. However, this code might not:
9942 @smallexample
9943 int f() @{
9944 union a_union t;
9945 int* ip;
9946 t.d = 3.0;
9947 ip = &t.i;
9948 return *ip;
9949 @}
9950 @end smallexample
9951
9952 Similarly, access by taking the address, casting the resulting pointer
9953 and dereferencing the result has undefined behavior, even if the cast
9954 uses a union type, e.g.:
9955 @smallexample
9956 int f() @{
9957 double d = 3.0;
9958 return ((union a_union *) &d)->i;
9959 @}
9960 @end smallexample
9961
9962 The @option{-fstrict-aliasing} option is enabled at levels
9963 @option{-O2}, @option{-O3}, @option{-Os}.
9964
9965 @item -falign-functions
9966 @itemx -falign-functions=@var{n}
9967 @itemx -falign-functions=@var{n}:@var{m}
9968 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}
9969 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}:@var{m2}
9970 @opindex falign-functions
9971 Align the start of functions to the next power-of-two greater than
9972 @var{n}, skipping up to @var{m}-1 bytes. This ensures that at least
9973 the first @var{m} bytes of the function can be fetched by the CPU
9974 without crossing an @var{n}-byte alignment boundary.
9975
9976 If @var{m} is not specified, it defaults to @var{n}.
9977
9978 Examples: @option{-falign-functions=32} aligns functions to the next
9979 32-byte boundary, @option{-falign-functions=24} aligns to the next
9980 32-byte boundary only if this can be done by skipping 23 bytes or less,
9981 @option{-falign-functions=32:7} aligns to the next
9982 32-byte boundary only if this can be done by skipping 6 bytes or less.
9983
9984 The second pair of @var{n2}:@var{m2} values allows you to specify
9985 a secondary alignment: @option{-falign-functions=64:7:32:3} aligns to
9986 the next 64-byte boundary if this can be done by skipping 6 bytes or less,
9987 otherwise aligns to the next 32-byte boundary if this can be done
9988 by skipping 2 bytes or less.
9989 If @var{m2} is not specified, it defaults to @var{n2}.
9990
9991 Some assemblers only support this flag when @var{n} is a power of two;
9992 in that case, it is rounded up.
9993
9994 @option{-fno-align-functions} and @option{-falign-functions=1} are
9995 equivalent and mean that functions are not aligned.
9996
9997 If @var{n} is not specified or is zero, use a machine-dependent default.
9998 The maximum allowed @var{n} option value is 65536.
9999
10000 Enabled at levels @option{-O2}, @option{-O3}.
10001
10002 @item -flimit-function-alignment
10003 If this option is enabled, the compiler tries to avoid unnecessarily
10004 overaligning functions. It attempts to instruct the assembler to align
10005 by the amount specified by @option{-falign-functions}, but not to
10006 skip more bytes than the size of the function.
10007
10008 @item -falign-labels
10009 @itemx -falign-labels=@var{n}
10010 @itemx -falign-labels=@var{n}:@var{m}
10011 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}
10012 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}:@var{m2}
10013 @opindex falign-labels
10014 Align all branch targets to a power-of-two boundary.
10015
10016 Parameters of this option are analogous to the @option{-falign-functions} option.
10017 @option{-fno-align-labels} and @option{-falign-labels=1} are
10018 equivalent and mean that labels are not aligned.
10019
10020 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
10021 are greater than this value, then their values are used instead.
10022
10023 If @var{n} is not specified or is zero, use a machine-dependent default
10024 which is very likely to be @samp{1}, meaning no alignment.
10025 The maximum allowed @var{n} option value is 65536.
10026
10027 Enabled at levels @option{-O2}, @option{-O3}.
10028
10029 @item -falign-loops
10030 @itemx -falign-loops=@var{n}
10031 @itemx -falign-loops=@var{n}:@var{m}
10032 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}
10033 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}:@var{m2}
10034 @opindex falign-loops
10035 Align loops to a power-of-two boundary. If the loops are executed
10036 many times, this makes up for any execution of the dummy padding
10037 instructions.
10038
10039 Parameters of this option are analogous to the @option{-falign-functions} option.
10040 @option{-fno-align-loops} and @option{-falign-loops=1} are
10041 equivalent and mean that loops are not aligned.
10042 The maximum allowed @var{n} option value is 65536.
10043
10044 If @var{n} is not specified or is zero, use a machine-dependent default.
10045
10046 Enabled at levels @option{-O2}, @option{-O3}.
10047
10048 @item -falign-jumps
10049 @itemx -falign-jumps=@var{n}
10050 @itemx -falign-jumps=@var{n}:@var{m}
10051 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}
10052 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}:@var{m2}
10053 @opindex falign-jumps
10054 Align branch targets to a power-of-two boundary, for branch targets
10055 where the targets can only be reached by jumping. In this case,
10056 no dummy operations need be executed.
10057
10058 Parameters of this option are analogous to the @option{-falign-functions} option.
10059 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
10060 equivalent and mean that loops are not aligned.
10061
10062 If @var{n} is not specified or is zero, use a machine-dependent default.
10063 The maximum allowed @var{n} option value is 65536.
10064
10065 Enabled at levels @option{-O2}, @option{-O3}.
10066
10067 @item -funit-at-a-time
10068 @opindex funit-at-a-time
10069 This option is left for compatibility reasons. @option{-funit-at-a-time}
10070 has no effect, while @option{-fno-unit-at-a-time} implies
10071 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
10072
10073 Enabled by default.
10074
10075 @item -fno-toplevel-reorder
10076 @opindex fno-toplevel-reorder
10077 @opindex ftoplevel-reorder
10078 Do not reorder top-level functions, variables, and @code{asm}
10079 statements. Output them in the same order that they appear in the
10080 input file. When this option is used, unreferenced static variables
10081 are not removed. This option is intended to support existing code
10082 that relies on a particular ordering. For new code, it is better to
10083 use attributes when possible.
10084
10085 @option{-ftoplevel-reorder} is the default at @option{-O1} and higher, and
10086 also at @option{-O0} if @option{-fsection-anchors} is explicitly requested.
10087 Additionally @option{-fno-toplevel-reorder} implies
10088 @option{-fno-section-anchors}.
10089
10090 @item -fweb
10091 @opindex fweb
10092 Constructs webs as commonly used for register allocation purposes and assign
10093 each web individual pseudo register. This allows the register allocation pass
10094 to operate on pseudos directly, but also strengthens several other optimization
10095 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
10096 however, make debugging impossible, since variables no longer stay in a
10097 ``home register''.
10098
10099 Enabled by default with @option{-funroll-loops}.
10100
10101 @item -fwhole-program
10102 @opindex fwhole-program
10103 Assume that the current compilation unit represents the whole program being
10104 compiled. All public functions and variables with the exception of @code{main}
10105 and those merged by attribute @code{externally_visible} become static functions
10106 and in effect are optimized more aggressively by interprocedural optimizers.
10107
10108 This option should not be used in combination with @option{-flto}.
10109 Instead relying on a linker plugin should provide safer and more precise
10110 information.
10111
10112 @item -flto[=@var{n}]
10113 @opindex flto
10114 This option runs the standard link-time optimizer. When invoked
10115 with source code, it generates GIMPLE (one of GCC's internal
10116 representations) and writes it to special ELF sections in the object
10117 file. When the object files are linked together, all the function
10118 bodies are read from these ELF sections and instantiated as if they
10119 had been part of the same translation unit.
10120
10121 To use the link-time optimizer, @option{-flto} and optimization
10122 options should be specified at compile time and during the final link.
10123 It is recommended that you compile all the files participating in the
10124 same link with the same options and also specify those options at
10125 link time.
10126 For example:
10127
10128 @smallexample
10129 gcc -c -O2 -flto foo.c
10130 gcc -c -O2 -flto bar.c
10131 gcc -o myprog -flto -O2 foo.o bar.o
10132 @end smallexample
10133
10134 The first two invocations to GCC save a bytecode representation
10135 of GIMPLE into special ELF sections inside @file{foo.o} and
10136 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
10137 @file{foo.o} and @file{bar.o}, merges the two files into a single
10138 internal image, and compiles the result as usual. Since both
10139 @file{foo.o} and @file{bar.o} are merged into a single image, this
10140 causes all the interprocedural analyses and optimizations in GCC to
10141 work across the two files as if they were a single one. This means,
10142 for example, that the inliner is able to inline functions in
10143 @file{bar.o} into functions in @file{foo.o} and vice-versa.
10144
10145 Another (simpler) way to enable link-time optimization is:
10146
10147 @smallexample
10148 gcc -o myprog -flto -O2 foo.c bar.c
10149 @end smallexample
10150
10151 The above generates bytecode for @file{foo.c} and @file{bar.c},
10152 merges them together into a single GIMPLE representation and optimizes
10153 them as usual to produce @file{myprog}.
10154
10155 The important thing to keep in mind is that to enable link-time
10156 optimizations you need to use the GCC driver to perform the link step.
10157 GCC automatically performs link-time optimization if any of the
10158 objects involved were compiled with the @option{-flto} command-line option.
10159 You can always override
10160 the automatic decision to do link-time optimization
10161 by passing @option{-fno-lto} to the link command.
10162
10163 To make whole program optimization effective, it is necessary to make
10164 certain whole program assumptions. The compiler needs to know
10165 what functions and variables can be accessed by libraries and runtime
10166 outside of the link-time optimized unit. When supported by the linker,
10167 the linker plugin (see @option{-fuse-linker-plugin}) passes information
10168 to the compiler about used and externally visible symbols. When
10169 the linker plugin is not available, @option{-fwhole-program} should be
10170 used to allow the compiler to make these assumptions, which leads
10171 to more aggressive optimization decisions.
10172
10173 When a file is compiled with @option{-flto} without
10174 @option{-fuse-linker-plugin}, the generated object file is larger than
10175 a regular object file because it contains GIMPLE bytecodes and the usual
10176 final code (see @option{-ffat-lto-objects}. This means that
10177 object files with LTO information can be linked as normal object
10178 files; if @option{-fno-lto} is passed to the linker, no
10179 interprocedural optimizations are applied. Note that when
10180 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
10181 but you cannot perform a regular, non-LTO link on them.
10182
10183 When producing the final binary, GCC only
10184 applies link-time optimizations to those files that contain bytecode.
10185 Therefore, you can mix and match object files and libraries with
10186 GIMPLE bytecodes and final object code. GCC automatically selects
10187 which files to optimize in LTO mode and which files to link without
10188 further processing.
10189
10190 Generally, options specified at link time override those
10191 specified at compile time, although in some cases GCC attempts to infer
10192 link-time options from the settings used to compile the input files.
10193
10194 If you do not specify an optimization level option @option{-O} at
10195 link time, then GCC uses the highest optimization level
10196 used when compiling the object files. Note that it is generally
10197 ineffective to specify an optimization level option only at link time and
10198 not at compile time, for two reasons. First, compiling without
10199 optimization suppresses compiler passes that gather information
10200 needed for effective optimization at link time. Second, some early
10201 optimization passes can be performed only at compile time and
10202 not at link time.
10203
10204 There are some code generation flags preserved by GCC when
10205 generating bytecodes, as they need to be used during the final link.
10206 Currently, the following options and their settings are taken from
10207 the first object file that explicitly specifies them:
10208 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
10209 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
10210 and all the @option{-m} target flags.
10211
10212 Certain ABI-changing flags are required to match in all compilation units,
10213 and trying to override this at link time with a conflicting value
10214 is ignored. This includes options such as @option{-freg-struct-return}
10215 and @option{-fpcc-struct-return}.
10216
10217 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
10218 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
10219 are passed through to the link stage and merged conservatively for
10220 conflicting translation units. Specifically
10221 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
10222 precedence; and for example @option{-ffp-contract=off} takes precedence
10223 over @option{-ffp-contract=fast}. You can override them at link time.
10224
10225 If LTO encounters objects with C linkage declared with incompatible
10226 types in separate translation units to be linked together (undefined
10227 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
10228 issued. The behavior is still undefined at run time. Similar
10229 diagnostics may be raised for other languages.
10230
10231 Another feature of LTO is that it is possible to apply interprocedural
10232 optimizations on files written in different languages:
10233
10234 @smallexample
10235 gcc -c -flto foo.c
10236 g++ -c -flto bar.cc
10237 gfortran -c -flto baz.f90
10238 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
10239 @end smallexample
10240
10241 Notice that the final link is done with @command{g++} to get the C++
10242 runtime libraries and @option{-lgfortran} is added to get the Fortran
10243 runtime libraries. In general, when mixing languages in LTO mode, you
10244 should use the same link command options as when mixing languages in a
10245 regular (non-LTO) compilation.
10246
10247 If object files containing GIMPLE bytecode are stored in a library archive, say
10248 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
10249 are using a linker with plugin support. To create static libraries suitable
10250 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
10251 and @command{ranlib};
10252 to show the symbols of object files with GIMPLE bytecode, use
10253 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
10254 and @command{nm} have been compiled with plugin support. At link time, use the
10255 flag @option{-fuse-linker-plugin} to ensure that the library participates in
10256 the LTO optimization process:
10257
10258 @smallexample
10259 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
10260 @end smallexample
10261
10262 With the linker plugin enabled, the linker extracts the needed
10263 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
10264 to make them part of the aggregated GIMPLE image to be optimized.
10265
10266 If you are not using a linker with plugin support and/or do not
10267 enable the linker plugin, then the objects inside @file{libfoo.a}
10268 are extracted and linked as usual, but they do not participate
10269 in the LTO optimization process. In order to make a static library suitable
10270 for both LTO optimization and usual linkage, compile its object files with
10271 @option{-flto} @option{-ffat-lto-objects}.
10272
10273 Link-time optimizations do not require the presence of the whole program to
10274 operate. If the program does not require any symbols to be exported, it is
10275 possible to combine @option{-flto} and @option{-fwhole-program} to allow
10276 the interprocedural optimizers to use more aggressive assumptions which may
10277 lead to improved optimization opportunities.
10278 Use of @option{-fwhole-program} is not needed when linker plugin is
10279 active (see @option{-fuse-linker-plugin}).
10280
10281 The current implementation of LTO makes no
10282 attempt to generate bytecode that is portable between different
10283 types of hosts. The bytecode files are versioned and there is a
10284 strict version check, so bytecode files generated in one version of
10285 GCC do not work with an older or newer version of GCC.
10286
10287 Link-time optimization does not work well with generation of debugging
10288 information on systems other than those using a combination of ELF and
10289 DWARF.
10290
10291 If you specify the optional @var{n}, the optimization and code
10292 generation done at link time is executed in parallel using @var{n}
10293 parallel jobs by utilizing an installed @command{make} program. The
10294 environment variable @env{MAKE} may be used to override the program
10295 used. The default value for @var{n} is 1.
10296
10297 You can also specify @option{-flto=jobserver} to use GNU make's
10298 job server mode to determine the number of parallel jobs. This
10299 is useful when the Makefile calling GCC is already executing in parallel.
10300 You must prepend a @samp{+} to the command recipe in the parent Makefile
10301 for this to work. This option likely only works if @env{MAKE} is
10302 GNU make.
10303
10304 @item -flto-partition=@var{alg}
10305 @opindex flto-partition
10306 Specify the partitioning algorithm used by the link-time optimizer.
10307 The value is either @samp{1to1} to specify a partitioning mirroring
10308 the original source files or @samp{balanced} to specify partitioning
10309 into equally sized chunks (whenever possible) or @samp{max} to create
10310 new partition for every symbol where possible. Specifying @samp{none}
10311 as an algorithm disables partitioning and streaming completely.
10312 The default value is @samp{balanced}. While @samp{1to1} can be used
10313 as an workaround for various code ordering issues, the @samp{max}
10314 partitioning is intended for internal testing only.
10315 The value @samp{one} specifies that exactly one partition should be
10316 used while the value @samp{none} bypasses partitioning and executes
10317 the link-time optimization step directly from the WPA phase.
10318
10319 @item -flto-odr-type-merging
10320 @opindex flto-odr-type-merging
10321 Enable streaming of mangled types names of C++ types and their unification
10322 at link time. This increases size of LTO object files, but enables
10323 diagnostics about One Definition Rule violations.
10324
10325 @item -flto-compression-level=@var{n}
10326 @opindex flto-compression-level
10327 This option specifies the level of compression used for intermediate
10328 language written to LTO object files, and is only meaningful in
10329 conjunction with LTO mode (@option{-flto}). Valid
10330 values are 0 (no compression) to 9 (maximum compression). Values
10331 outside this range are clamped to either 0 or 9. If the option is not
10332 given, a default balanced compression setting is used.
10333
10334 @item -fuse-linker-plugin
10335 @opindex fuse-linker-plugin
10336 Enables the use of a linker plugin during link-time optimization. This
10337 option relies on plugin support in the linker, which is available in gold
10338 or in GNU ld 2.21 or newer.
10339
10340 This option enables the extraction of object files with GIMPLE bytecode out
10341 of library archives. This improves the quality of optimization by exposing
10342 more code to the link-time optimizer. This information specifies what
10343 symbols can be accessed externally (by non-LTO object or during dynamic
10344 linking). Resulting code quality improvements on binaries (and shared
10345 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
10346 See @option{-flto} for a description of the effect of this flag and how to
10347 use it.
10348
10349 This option is enabled by default when LTO support in GCC is enabled
10350 and GCC was configured for use with
10351 a linker supporting plugins (GNU ld 2.21 or newer or gold).
10352
10353 @item -ffat-lto-objects
10354 @opindex ffat-lto-objects
10355 Fat LTO objects are object files that contain both the intermediate language
10356 and the object code. This makes them usable for both LTO linking and normal
10357 linking. This option is effective only when compiling with @option{-flto}
10358 and is ignored at link time.
10359
10360 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
10361 requires the complete toolchain to be aware of LTO. It requires a linker with
10362 linker plugin support for basic functionality. Additionally,
10363 @command{nm}, @command{ar} and @command{ranlib}
10364 need to support linker plugins to allow a full-featured build environment
10365 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
10366 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
10367 to these tools. With non fat LTO makefiles need to be modified to use them.
10368
10369 Note that modern binutils provide plugin auto-load mechanism.
10370 Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
10371 effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
10372 @command{gcc-ranlib}).
10373
10374 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
10375 support.
10376
10377 @item -fcompare-elim
10378 @opindex fcompare-elim
10379 After register allocation and post-register allocation instruction splitting,
10380 identify arithmetic instructions that compute processor flags similar to a
10381 comparison operation based on that arithmetic. If possible, eliminate the
10382 explicit comparison operation.
10383
10384 This pass only applies to certain targets that cannot explicitly represent
10385 the comparison operation before register allocation is complete.
10386
10387 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10388
10389 @item -fcprop-registers
10390 @opindex fcprop-registers
10391 After register allocation and post-register allocation instruction splitting,
10392 perform a copy-propagation pass to try to reduce scheduling dependencies
10393 and occasionally eliminate the copy.
10394
10395 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10396
10397 @item -fprofile-correction
10398 @opindex fprofile-correction
10399 Profiles collected using an instrumented binary for multi-threaded programs may
10400 be inconsistent due to missed counter updates. When this option is specified,
10401 GCC uses heuristics to correct or smooth out such inconsistencies. By
10402 default, GCC emits an error message when an inconsistent profile is detected.
10403
10404 This option is enabled by @option{-fauto-profile}.
10405
10406 @item -fprofile-use
10407 @itemx -fprofile-use=@var{path}
10408 @opindex fprofile-use
10409 Enable profile feedback-directed optimizations,
10410 and the following optimizations, many of which
10411 are generally profitable only with profile feedback available:
10412
10413 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10414 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10415 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10416 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10417 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10418 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10419 -fprofile-reorder-functions}
10420
10421 Before you can use this option, you must first generate profiling information.
10422 @xref{Instrumentation Options}, for information about the
10423 @option{-fprofile-generate} option.
10424
10425 By default, GCC emits an error message if the feedback profiles do not
10426 match the source code. This error can be turned into a warning by using
10427 @option{-Wno-error=coverage-mismatch}. Note this may result in poorly
10428 optimized code. Additionally, by default, GCC also emits a warning message if
10429 the feedback profiles do not exist (see @option{-Wmissing-profile}).
10430
10431 If @var{path} is specified, GCC looks at the @var{path} to find
10432 the profile feedback data files. See @option{-fprofile-dir}.
10433
10434 @item -fauto-profile
10435 @itemx -fauto-profile=@var{path}
10436 @opindex fauto-profile
10437 Enable sampling-based feedback-directed optimizations,
10438 and the following optimizations,
10439 many of which are generally profitable only with profile feedback available:
10440
10441 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10442 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10443 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10444 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10445 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10446 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10447 -fprofile-correction}
10448
10449 @var{path} is the name of a file containing AutoFDO profile information.
10450 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
10451
10452 Producing an AutoFDO profile data file requires running your program
10453 with the @command{perf} utility on a supported GNU/Linux target system.
10454 For more information, see @uref{https://perf.wiki.kernel.org/}.
10455
10456 E.g.
10457 @smallexample
10458 perf record -e br_inst_retired:near_taken -b -o perf.data \
10459 -- your_program
10460 @end smallexample
10461
10462 Then use the @command{create_gcov} tool to convert the raw profile data
10463 to a format that can be used by GCC.@ You must also supply the
10464 unstripped binary for your program to this tool.
10465 See @uref{https://github.com/google/autofdo}.
10466
10467 E.g.
10468 @smallexample
10469 create_gcov --binary=your_program.unstripped --profile=perf.data \
10470 --gcov=profile.afdo
10471 @end smallexample
10472 @end table
10473
10474 The following options control compiler behavior regarding floating-point
10475 arithmetic. These options trade off between speed and
10476 correctness. All must be specifically enabled.
10477
10478 @table @gcctabopt
10479 @item -ffloat-store
10480 @opindex ffloat-store
10481 Do not store floating-point variables in registers, and inhibit other
10482 options that might change whether a floating-point value is taken from a
10483 register or memory.
10484
10485 @cindex floating-point precision
10486 This option prevents undesirable excess precision on machines such as
10487 the 68000 where the floating registers (of the 68881) keep more
10488 precision than a @code{double} is supposed to have. Similarly for the
10489 x86 architecture. For most programs, the excess precision does only
10490 good, but a few programs rely on the precise definition of IEEE floating
10491 point. Use @option{-ffloat-store} for such programs, after modifying
10492 them to store all pertinent intermediate computations into variables.
10493
10494 @item -fexcess-precision=@var{style}
10495 @opindex fexcess-precision
10496 This option allows further control over excess precision on machines
10497 where floating-point operations occur in a format with more precision or
10498 range than the IEEE standard and interchange floating-point types. By
10499 default, @option{-fexcess-precision=fast} is in effect; this means that
10500 operations may be carried out in a wider precision than the types specified
10501 in the source if that would result in faster code, and it is unpredictable
10502 when rounding to the types specified in the source code takes place.
10503 When compiling C, if @option{-fexcess-precision=standard} is specified then
10504 excess precision follows the rules specified in ISO C99; in particular,
10505 both casts and assignments cause values to be rounded to their
10506 semantic types (whereas @option{-ffloat-store} only affects
10507 assignments). This option is enabled by default for C if a strict
10508 conformance option such as @option{-std=c99} is used.
10509 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
10510 regardless of whether a strict conformance option is used.
10511
10512 @opindex mfpmath
10513 @option{-fexcess-precision=standard} is not implemented for languages
10514 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
10515 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
10516 semantics apply without excess precision, and in the latter, rounding
10517 is unpredictable.
10518
10519 @item -ffast-math
10520 @opindex ffast-math
10521 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
10522 @option{-ffinite-math-only}, @option{-fno-rounding-math},
10523 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
10524 @option{-fexcess-precision=fast}.
10525
10526 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
10527
10528 This option is not turned on by any @option{-O} option besides
10529 @option{-Ofast} since it can result in incorrect output for programs
10530 that depend on an exact implementation of IEEE or ISO rules/specifications
10531 for math functions. It may, however, yield faster code for programs
10532 that do not require the guarantees of these specifications.
10533
10534 @item -fno-math-errno
10535 @opindex fno-math-errno
10536 @opindex fmath-errno
10537 Do not set @code{errno} after calling math functions that are executed
10538 with a single instruction, e.g., @code{sqrt}. A program that relies on
10539 IEEE exceptions for math error handling may want to use this flag
10540 for speed while maintaining IEEE arithmetic compatibility.
10541
10542 This option is not turned on by any @option{-O} option since
10543 it can result in incorrect output for programs that depend on
10544 an exact implementation of IEEE or ISO rules/specifications for
10545 math functions. It may, however, yield faster code for programs
10546 that do not require the guarantees of these specifications.
10547
10548 The default is @option{-fmath-errno}.
10549
10550 On Darwin systems, the math library never sets @code{errno}. There is
10551 therefore no reason for the compiler to consider the possibility that
10552 it might, and @option{-fno-math-errno} is the default.
10553
10554 @item -funsafe-math-optimizations
10555 @opindex funsafe-math-optimizations
10556
10557 Allow optimizations for floating-point arithmetic that (a) assume
10558 that arguments and results are valid and (b) may violate IEEE or
10559 ANSI standards. When used at link time, it may include libraries
10560 or startup files that change the default FPU control word or other
10561 similar optimizations.
10562
10563 This option is not turned on by any @option{-O} option since
10564 it can result in incorrect output for programs that depend on
10565 an exact implementation of IEEE or ISO rules/specifications for
10566 math functions. It may, however, yield faster code for programs
10567 that do not require the guarantees of these specifications.
10568 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
10569 @option{-fassociative-math} and @option{-freciprocal-math}.
10570
10571 The default is @option{-fno-unsafe-math-optimizations}.
10572
10573 @item -fassociative-math
10574 @opindex fassociative-math
10575
10576 Allow re-association of operands in series of floating-point operations.
10577 This violates the ISO C and C++ language standard by possibly changing
10578 computation result. NOTE: re-ordering may change the sign of zero as
10579 well as ignore NaNs and inhibit or create underflow or overflow (and
10580 thus cannot be used on code that relies on rounding behavior like
10581 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
10582 and thus may not be used when ordered comparisons are required.
10583 This option requires that both @option{-fno-signed-zeros} and
10584 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
10585 much sense with @option{-frounding-math}. For Fortran the option
10586 is automatically enabled when both @option{-fno-signed-zeros} and
10587 @option{-fno-trapping-math} are in effect.
10588
10589 The default is @option{-fno-associative-math}.
10590
10591 @item -freciprocal-math
10592 @opindex freciprocal-math
10593
10594 Allow the reciprocal of a value to be used instead of dividing by
10595 the value if this enables optimizations. For example @code{x / y}
10596 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
10597 is subject to common subexpression elimination. Note that this loses
10598 precision and increases the number of flops operating on the value.
10599
10600 The default is @option{-fno-reciprocal-math}.
10601
10602 @item -ffinite-math-only
10603 @opindex ffinite-math-only
10604 Allow optimizations for floating-point arithmetic that assume
10605 that arguments and results are not NaNs or +-Infs.
10606
10607 This option is not turned on by any @option{-O} option since
10608 it can result in incorrect output for programs that depend on
10609 an exact implementation of IEEE or ISO rules/specifications for
10610 math functions. It may, however, yield faster code for programs
10611 that do not require the guarantees of these specifications.
10612
10613 The default is @option{-fno-finite-math-only}.
10614
10615 @item -fno-signed-zeros
10616 @opindex fno-signed-zeros
10617 @opindex fsigned-zeros
10618 Allow optimizations for floating-point arithmetic that ignore the
10619 signedness of zero. IEEE arithmetic specifies the behavior of
10620 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
10621 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
10622 This option implies that the sign of a zero result isn't significant.
10623
10624 The default is @option{-fsigned-zeros}.
10625
10626 @item -fno-trapping-math
10627 @opindex fno-trapping-math
10628 @opindex ftrapping-math
10629 Compile code assuming that floating-point operations cannot generate
10630 user-visible traps. These traps include division by zero, overflow,
10631 underflow, inexact result and invalid operation. This option requires
10632 that @option{-fno-signaling-nans} be in effect. Setting this option may
10633 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
10634
10635 This option should never be turned on by any @option{-O} option since
10636 it can result in incorrect output for programs that depend on
10637 an exact implementation of IEEE or ISO rules/specifications for
10638 math functions.
10639
10640 The default is @option{-ftrapping-math}.
10641
10642 @item -frounding-math
10643 @opindex frounding-math
10644 Disable transformations and optimizations that assume default floating-point
10645 rounding behavior. This is round-to-zero for all floating point
10646 to integer conversions, and round-to-nearest for all other arithmetic
10647 truncations. This option should be specified for programs that change
10648 the FP rounding mode dynamically, or that may be executed with a
10649 non-default rounding mode. This option disables constant folding of
10650 floating-point expressions at compile time (which may be affected by
10651 rounding mode) and arithmetic transformations that are unsafe in the
10652 presence of sign-dependent rounding modes.
10653
10654 The default is @option{-fno-rounding-math}.
10655
10656 This option is experimental and does not currently guarantee to
10657 disable all GCC optimizations that are affected by rounding mode.
10658 Future versions of GCC may provide finer control of this setting
10659 using C99's @code{FENV_ACCESS} pragma. This command-line option
10660 will be used to specify the default state for @code{FENV_ACCESS}.
10661
10662 @item -fsignaling-nans
10663 @opindex fsignaling-nans
10664 Compile code assuming that IEEE signaling NaNs may generate user-visible
10665 traps during floating-point operations. Setting this option disables
10666 optimizations that may change the number of exceptions visible with
10667 signaling NaNs. This option implies @option{-ftrapping-math}.
10668
10669 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
10670 be defined.
10671
10672 The default is @option{-fno-signaling-nans}.
10673
10674 This option is experimental and does not currently guarantee to
10675 disable all GCC optimizations that affect signaling NaN behavior.
10676
10677 @item -fno-fp-int-builtin-inexact
10678 @opindex fno-fp-int-builtin-inexact
10679 @opindex ffp-int-builtin-inexact
10680 Do not allow the built-in functions @code{ceil}, @code{floor},
10681 @code{round} and @code{trunc}, and their @code{float} and @code{long
10682 double} variants, to generate code that raises the ``inexact''
10683 floating-point exception for noninteger arguments. ISO C99 and C11
10684 allow these functions to raise the ``inexact'' exception, but ISO/IEC
10685 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
10686 functions to do so.
10687
10688 The default is @option{-ffp-int-builtin-inexact}, allowing the
10689 exception to be raised. This option does nothing unless
10690 @option{-ftrapping-math} is in effect.
10691
10692 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
10693 generate a call to a library function then the ``inexact'' exception
10694 may be raised if the library implementation does not follow TS 18661.
10695
10696 @item -fsingle-precision-constant
10697 @opindex fsingle-precision-constant
10698 Treat floating-point constants as single precision instead of
10699 implicitly converting them to double-precision constants.
10700
10701 @item -fcx-limited-range
10702 @opindex fcx-limited-range
10703 When enabled, this option states that a range reduction step is not
10704 needed when performing complex division. Also, there is no checking
10705 whether the result of a complex multiplication or division is @code{NaN
10706 + I*NaN}, with an attempt to rescue the situation in that case. The
10707 default is @option{-fno-cx-limited-range}, but is enabled by
10708 @option{-ffast-math}.
10709
10710 This option controls the default setting of the ISO C99
10711 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
10712 all languages.
10713
10714 @item -fcx-fortran-rules
10715 @opindex fcx-fortran-rules
10716 Complex multiplication and division follow Fortran rules. Range
10717 reduction is done as part of complex division, but there is no checking
10718 whether the result of a complex multiplication or division is @code{NaN
10719 + I*NaN}, with an attempt to rescue the situation in that case.
10720
10721 The default is @option{-fno-cx-fortran-rules}.
10722
10723 @end table
10724
10725 The following options control optimizations that may improve
10726 performance, but are not enabled by any @option{-O} options. This
10727 section includes experimental options that may produce broken code.
10728
10729 @table @gcctabopt
10730 @item -fbranch-probabilities
10731 @opindex fbranch-probabilities
10732 After running a program compiled with @option{-fprofile-arcs}
10733 (@pxref{Instrumentation Options}),
10734 you can compile it a second time using
10735 @option{-fbranch-probabilities}, to improve optimizations based on
10736 the number of times each branch was taken. When a program
10737 compiled with @option{-fprofile-arcs} exits, it saves arc execution
10738 counts to a file called @file{@var{sourcename}.gcda} for each source
10739 file. The information in this data file is very dependent on the
10740 structure of the generated code, so you must use the same source code
10741 and the same optimization options for both compilations.
10742
10743 With @option{-fbranch-probabilities}, GCC puts a
10744 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10745 These can be used to improve optimization. Currently, they are only
10746 used in one place: in @file{reorg.c}, instead of guessing which path a
10747 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10748 exactly determine which path is taken more often.
10749
10750 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10751
10752 @item -fprofile-values
10753 @opindex fprofile-values
10754 If combined with @option{-fprofile-arcs}, it adds code so that some
10755 data about values of expressions in the program is gathered.
10756
10757 With @option{-fbranch-probabilities}, it reads back the data gathered
10758 from profiling values of expressions for usage in optimizations.
10759
10760 Enabled by @option{-fprofile-generate}, @option{-fprofile-use}, and
10761 @option{-fauto-profile}.
10762
10763 @item -fprofile-reorder-functions
10764 @opindex fprofile-reorder-functions
10765 Function reordering based on profile instrumentation collects
10766 first time of execution of a function and orders these functions
10767 in ascending order.
10768
10769 Enabled with @option{-fprofile-use}.
10770
10771 @item -fvpt
10772 @opindex fvpt
10773 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10774 to add code to gather information about values of expressions.
10775
10776 With @option{-fbranch-probabilities}, it reads back the data gathered
10777 and actually performs the optimizations based on them.
10778 Currently the optimizations include specialization of division operations
10779 using the knowledge about the value of the denominator.
10780
10781 Enabled with @option{-fprofile-use} and @option{-fauto-profile}.
10782
10783 @item -frename-registers
10784 @opindex frename-registers
10785 Attempt to avoid false dependencies in scheduled code by making use
10786 of registers left over after register allocation. This optimization
10787 most benefits processors with lots of registers. Depending on the
10788 debug information format adopted by the target, however, it can
10789 make debugging impossible, since variables no longer stay in
10790 a ``home register''.
10791
10792 Enabled by default with @option{-funroll-loops}.
10793
10794 @item -fschedule-fusion
10795 @opindex fschedule-fusion
10796 Performs a target dependent pass over the instruction stream to schedule
10797 instructions of same type together because target machine can execute them
10798 more efficiently if they are adjacent to each other in the instruction flow.
10799
10800 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10801
10802 @item -ftracer
10803 @opindex ftracer
10804 Perform tail duplication to enlarge superblock size. This transformation
10805 simplifies the control flow of the function allowing other optimizations to do
10806 a better job.
10807
10808 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10809
10810 @item -funroll-loops
10811 @opindex funroll-loops
10812 Unroll loops whose number of iterations can be determined at compile time or
10813 upon entry to the loop. @option{-funroll-loops} implies
10814 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10815 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10816 a small constant number of iterations). This option makes code larger, and may
10817 or may not make it run faster.
10818
10819 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10820
10821 @item -funroll-all-loops
10822 @opindex funroll-all-loops
10823 Unroll all loops, even if their number of iterations is uncertain when
10824 the loop is entered. This usually makes programs run more slowly.
10825 @option{-funroll-all-loops} implies the same options as
10826 @option{-funroll-loops}.
10827
10828 @item -fpeel-loops
10829 @opindex fpeel-loops
10830 Peels loops for which there is enough information that they do not
10831 roll much (from profile feedback or static analysis). It also turns on
10832 complete loop peeling (i.e.@: complete removal of loops with small constant
10833 number of iterations).
10834
10835 Enabled by @option{-O3}, @option{-fprofile-use}, and @option{-fauto-profile}.
10836
10837 @item -fmove-loop-invariants
10838 @opindex fmove-loop-invariants
10839 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10840 at level @option{-O1} and higher, except for @option{-Og}.
10841
10842 @item -fsplit-loops
10843 @opindex fsplit-loops
10844 Split a loop into two if it contains a condition that's always true
10845 for one side of the iteration space and false for the other.
10846
10847 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10848
10849 @item -funswitch-loops
10850 @opindex funswitch-loops
10851 Move branches with loop invariant conditions out of the loop, with duplicates
10852 of the loop on both branches (modified according to result of the condition).
10853
10854 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10855
10856 @item -fversion-loops-for-strides
10857 @opindex fversion-loops-for-strides
10858 If a loop iterates over an array with a variable stride, create another
10859 version of the loop that assumes the stride is always one. For example:
10860
10861 @smallexample
10862 for (int i = 0; i < n; ++i)
10863 x[i * stride] = @dots{};
10864 @end smallexample
10865
10866 becomes:
10867
10868 @smallexample
10869 if (stride == 1)
10870 for (int i = 0; i < n; ++i)
10871 x[i] = @dots{};
10872 else
10873 for (int i = 0; i < n; ++i)
10874 x[i * stride] = @dots{};
10875 @end smallexample
10876
10877 This is particularly useful for assumed-shape arrays in Fortran where
10878 (for example) it allows better vectorization assuming contiguous accesses.
10879 This flag is enabled by default at @option{-O3}.
10880 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10881
10882 @item -ffunction-sections
10883 @itemx -fdata-sections
10884 @opindex ffunction-sections
10885 @opindex fdata-sections
10886 Place each function or data item into its own section in the output
10887 file if the target supports arbitrary sections. The name of the
10888 function or the name of the data item determines the section's name
10889 in the output file.
10890
10891 Use these options on systems where the linker can perform optimizations to
10892 improve locality of reference in the instruction space. Most systems using the
10893 ELF object format have linkers with such optimizations. On AIX, the linker
10894 rearranges sections (CSECTs) based on the call graph. The performance impact
10895 varies.
10896
10897 Together with a linker garbage collection (linker @option{--gc-sections}
10898 option) these options may lead to smaller statically-linked executables (after
10899 stripping).
10900
10901 On ELF/DWARF systems these options do not degenerate the quality of the debug
10902 information. There could be issues with other object files/debug info formats.
10903
10904 Only use these options when there are significant benefits from doing so. When
10905 you specify these options, the assembler and linker create larger object and
10906 executable files and are also slower. These options affect code generation.
10907 They prevent optimizations by the compiler and assembler using relative
10908 locations inside a translation unit since the locations are unknown until
10909 link time. An example of such an optimization is relaxing calls to short call
10910 instructions.
10911
10912 @item -fbranch-target-load-optimize
10913 @opindex fbranch-target-load-optimize
10914 Perform branch target register load optimization before prologue / epilogue
10915 threading.
10916 The use of target registers can typically be exposed only during reload,
10917 thus hoisting loads out of loops and doing inter-block scheduling needs
10918 a separate optimization pass.
10919
10920 @item -fbranch-target-load-optimize2
10921 @opindex fbranch-target-load-optimize2
10922 Perform branch target register load optimization after prologue / epilogue
10923 threading.
10924
10925 @item -fbtr-bb-exclusive
10926 @opindex fbtr-bb-exclusive
10927 When performing branch target register load optimization, don't reuse
10928 branch target registers within any basic block.
10929
10930 @item -fstdarg-opt
10931 @opindex fstdarg-opt
10932 Optimize the prologue of variadic argument functions with respect to usage of
10933 those arguments.
10934
10935 @item -fsection-anchors
10936 @opindex fsection-anchors
10937 Try to reduce the number of symbolic address calculations by using
10938 shared ``anchor'' symbols to address nearby objects. This transformation
10939 can help to reduce the number of GOT entries and GOT accesses on some
10940 targets.
10941
10942 For example, the implementation of the following function @code{foo}:
10943
10944 @smallexample
10945 static int a, b, c;
10946 int foo (void) @{ return a + b + c; @}
10947 @end smallexample
10948
10949 @noindent
10950 usually calculates the addresses of all three variables, but if you
10951 compile it with @option{-fsection-anchors}, it accesses the variables
10952 from a common anchor point instead. The effect is similar to the
10953 following pseudocode (which isn't valid C):
10954
10955 @smallexample
10956 int foo (void)
10957 @{
10958 register int *xr = &x;
10959 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10960 @}
10961 @end smallexample
10962
10963 Not all targets support this option.
10964
10965 @item --param @var{name}=@var{value}
10966 @opindex param
10967 In some places, GCC uses various constants to control the amount of
10968 optimization that is done. For example, GCC does not inline functions
10969 that contain more than a certain number of instructions. You can
10970 control some of these constants on the command line using the
10971 @option{--param} option.
10972
10973 The names of specific parameters, and the meaning of the values, are
10974 tied to the internals of the compiler, and are subject to change
10975 without notice in future releases.
10976
10977 In order to get minimal, maximal and default value of a parameter,
10978 one can use @option{--help=param -Q} options.
10979
10980 In each case, the @var{value} is an integer. The allowable choices for
10981 @var{name} are:
10982
10983 @table @gcctabopt
10984 @item predictable-branch-outcome
10985 When branch is predicted to be taken with probability lower than this threshold
10986 (in percent), then it is considered well predictable.
10987
10988 @item max-rtl-if-conversion-insns
10989 RTL if-conversion tries to remove conditional branches around a block and
10990 replace them with conditionally executed instructions. This parameter
10991 gives the maximum number of instructions in a block which should be
10992 considered for if-conversion. The compiler will
10993 also use other heuristics to decide whether if-conversion is likely to be
10994 profitable.
10995
10996 @item max-rtl-if-conversion-predictable-cost
10997 @itemx max-rtl-if-conversion-unpredictable-cost
10998 RTL if-conversion will try to remove conditional branches around a block
10999 and replace them with conditionally executed instructions. These parameters
11000 give the maximum permissible cost for the sequence that would be generated
11001 by if-conversion depending on whether the branch is statically determined
11002 to be predictable or not. The units for this parameter are the same as
11003 those for the GCC internal seq_cost metric. The compiler will try to
11004 provide a reasonable default for this parameter using the BRANCH_COST
11005 target macro.
11006
11007 @item max-crossjump-edges
11008 The maximum number of incoming edges to consider for cross-jumping.
11009 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
11010 the number of edges incoming to each block. Increasing values mean
11011 more aggressive optimization, making the compilation time increase with
11012 probably small improvement in executable size.
11013
11014 @item min-crossjump-insns
11015 The minimum number of instructions that must be matched at the end
11016 of two blocks before cross-jumping is performed on them. This
11017 value is ignored in the case where all instructions in the block being
11018 cross-jumped from are matched.
11019
11020 @item max-grow-copy-bb-insns
11021 The maximum code size expansion factor when copying basic blocks
11022 instead of jumping. The expansion is relative to a jump instruction.
11023
11024 @item max-goto-duplication-insns
11025 The maximum number of instructions to duplicate to a block that jumps
11026 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
11027 passes, GCC factors computed gotos early in the compilation process,
11028 and unfactors them as late as possible. Only computed jumps at the
11029 end of a basic blocks with no more than max-goto-duplication-insns are
11030 unfactored.
11031
11032 @item max-delay-slot-insn-search
11033 The maximum number of instructions to consider when looking for an
11034 instruction to fill a delay slot. If more than this arbitrary number of
11035 instructions are searched, the time savings from filling the delay slot
11036 are minimal, so stop searching. Increasing values mean more
11037 aggressive optimization, making the compilation time increase with probably
11038 small improvement in execution time.
11039
11040 @item max-delay-slot-live-search
11041 When trying to fill delay slots, the maximum number of instructions to
11042 consider when searching for a block with valid live register
11043 information. Increasing this arbitrarily chosen value means more
11044 aggressive optimization, increasing the compilation time. This parameter
11045 should be removed when the delay slot code is rewritten to maintain the
11046 control-flow graph.
11047
11048 @item max-gcse-memory
11049 The approximate maximum amount of memory that can be allocated in
11050 order to perform the global common subexpression elimination
11051 optimization. If more memory than specified is required, the
11052 optimization is not done.
11053
11054 @item max-gcse-insertion-ratio
11055 If the ratio of expression insertions to deletions is larger than this value
11056 for any expression, then RTL PRE inserts or removes the expression and thus
11057 leaves partially redundant computations in the instruction stream.
11058
11059 @item max-pending-list-length
11060 The maximum number of pending dependencies scheduling allows
11061 before flushing the current state and starting over. Large functions
11062 with few branches or calls can create excessively large lists which
11063 needlessly consume memory and resources.
11064
11065 @item max-modulo-backtrack-attempts
11066 The maximum number of backtrack attempts the scheduler should make
11067 when modulo scheduling a loop. Larger values can exponentially increase
11068 compilation time.
11069
11070 @item max-inline-insns-single
11071 Several parameters control the tree inliner used in GCC@.
11072 This number sets the maximum number of instructions (counted in GCC's
11073 internal representation) in a single function that the tree inliner
11074 considers for inlining. This only affects functions declared
11075 inline and methods implemented in a class declaration (C++).
11076
11077 @item max-inline-insns-auto
11078 When you use @option{-finline-functions} (included in @option{-O3}),
11079 a lot of functions that would otherwise not be considered for inlining
11080 by the compiler are investigated. To those functions, a different
11081 (more restrictive) limit compared to functions declared inline can
11082 be applied.
11083
11084 @item max-inline-insns-small
11085 This is bound applied to calls which are considered relevant with
11086 @option{-finline-small-functions}.
11087
11088 @item max-inline-insns-size
11089 This is bound applied to calls which are optimized for size. Small growth
11090 may be desirable to anticipate optimization oppurtunities exposed by inlining.
11091
11092 @item uninlined-function-insns
11093 Number of instructions accounted by inliner for function overhead such as
11094 function prologue and epilogue.
11095
11096 @item uninlined-function-time
11097 Extra time accounted by inliner for function overhead such as time needed to
11098 execute function prologue and epilogue
11099
11100 @item uninlined-thunk-insns
11101 @item uninlined-thunk-time
11102 Same as @option{--param uninlined-function-insns} and
11103 @option{--param uninlined-function-time} but applied to function thunks
11104
11105 @item inline-min-speedup
11106 When estimated performance improvement of caller + callee runtime exceeds this
11107 threshold (in percent), the function can be inlined regardless of the limit on
11108 @option{--param max-inline-insns-single} and @option{--param
11109 max-inline-insns-auto}.
11110
11111 @item large-function-insns
11112 The limit specifying really large functions. For functions larger than this
11113 limit after inlining, inlining is constrained by
11114 @option{--param large-function-growth}. This parameter is useful primarily
11115 to avoid extreme compilation time caused by non-linear algorithms used by the
11116 back end.
11117
11118 @item large-function-growth
11119 Specifies maximal growth of large function caused by inlining in percents.
11120 For example, parameter value 100 limits large function growth to 2.0 times
11121 the original size.
11122
11123 @item large-unit-insns
11124 The limit specifying large translation unit. Growth caused by inlining of
11125 units larger than this limit is limited by @option{--param inline-unit-growth}.
11126 For small units this might be too tight.
11127 For example, consider a unit consisting of function A
11128 that is inline and B that just calls A three times. If B is small relative to
11129 A, the growth of unit is 300\% and yet such inlining is very sane. For very
11130 large units consisting of small inlineable functions, however, the overall unit
11131 growth limit is needed to avoid exponential explosion of code size. Thus for
11132 smaller units, the size is increased to @option{--param large-unit-insns}
11133 before applying @option{--param inline-unit-growth}.
11134
11135 @item inline-unit-growth
11136 Specifies maximal overall growth of the compilation unit caused by inlining.
11137 For example, parameter value 20 limits unit growth to 1.2 times the original
11138 size. Cold functions (either marked cold via an attribute or by profile
11139 feedback) are not accounted into the unit size.
11140
11141 @item ipcp-unit-growth
11142 Specifies maximal overall growth of the compilation unit caused by
11143 interprocedural constant propagation. For example, parameter value 10 limits
11144 unit growth to 1.1 times the original size.
11145
11146 @item large-stack-frame
11147 The limit specifying large stack frames. While inlining the algorithm is trying
11148 to not grow past this limit too much.
11149
11150 @item large-stack-frame-growth
11151 Specifies maximal growth of large stack frames caused by inlining in percents.
11152 For example, parameter value 1000 limits large stack frame growth to 11 times
11153 the original size.
11154
11155 @item max-inline-insns-recursive
11156 @itemx max-inline-insns-recursive-auto
11157 Specifies the maximum number of instructions an out-of-line copy of a
11158 self-recursive inline
11159 function can grow into by performing recursive inlining.
11160
11161 @option{--param max-inline-insns-recursive} applies to functions
11162 declared inline.
11163 For functions not declared inline, recursive inlining
11164 happens only when @option{-finline-functions} (included in @option{-O3}) is
11165 enabled; @option{--param max-inline-insns-recursive-auto} applies instead.
11166
11167 @item max-inline-recursive-depth
11168 @itemx max-inline-recursive-depth-auto
11169 Specifies the maximum recursion depth used for recursive inlining.
11170
11171 @option{--param max-inline-recursive-depth} applies to functions
11172 declared inline. For functions not declared inline, recursive inlining
11173 happens only when @option{-finline-functions} (included in @option{-O3}) is
11174 enabled; @option{--param max-inline-recursive-depth-auto} applies instead.
11175
11176 @item min-inline-recursive-probability
11177 Recursive inlining is profitable only for function having deep recursion
11178 in average and can hurt for function having little recursion depth by
11179 increasing the prologue size or complexity of function body to other
11180 optimizers.
11181
11182 When profile feedback is available (see @option{-fprofile-generate}) the actual
11183 recursion depth can be guessed from the probability that function recurses
11184 via a given call expression. This parameter limits inlining only to call
11185 expressions whose probability exceeds the given threshold (in percents).
11186
11187 @item early-inlining-insns
11188 Specify growth that the early inliner can make. In effect it increases
11189 the amount of inlining for code having a large abstraction penalty.
11190
11191 @item max-early-inliner-iterations
11192 Limit of iterations of the early inliner. This basically bounds
11193 the number of nested indirect calls the early inliner can resolve.
11194 Deeper chains are still handled by late inlining.
11195
11196 @item comdat-sharing-probability
11197 Probability (in percent) that C++ inline function with comdat visibility
11198 are shared across multiple compilation units.
11199
11200 @item profile-func-internal-id
11201 A parameter to control whether to use function internal id in profile
11202 database lookup. If the value is 0, the compiler uses an id that
11203 is based on function assembler name and filename, which makes old profile
11204 data more tolerant to source changes such as function reordering etc.
11205
11206 @item min-vect-loop-bound
11207 The minimum number of iterations under which loops are not vectorized
11208 when @option{-ftree-vectorize} is used. The number of iterations after
11209 vectorization needs to be greater than the value specified by this option
11210 to allow vectorization.
11211
11212 @item gcse-cost-distance-ratio
11213 Scaling factor in calculation of maximum distance an expression
11214 can be moved by GCSE optimizations. This is currently supported only in the
11215 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
11216 is with simple expressions, i.e., the expressions that have cost
11217 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
11218 hoisting of simple expressions.
11219
11220 @item gcse-unrestricted-cost
11221 Cost, roughly measured as the cost of a single typical machine
11222 instruction, at which GCSE optimizations do not constrain
11223 the distance an expression can travel. This is currently
11224 supported only in the code hoisting pass. The lesser the cost,
11225 the more aggressive code hoisting is. Specifying 0
11226 allows all expressions to travel unrestricted distances.
11227
11228 @item max-hoist-depth
11229 The depth of search in the dominator tree for expressions to hoist.
11230 This is used to avoid quadratic behavior in hoisting algorithm.
11231 The value of 0 does not limit on the search, but may slow down compilation
11232 of huge functions.
11233
11234 @item max-tail-merge-comparisons
11235 The maximum amount of similar bbs to compare a bb with. This is used to
11236 avoid quadratic behavior in tree tail merging.
11237
11238 @item max-tail-merge-iterations
11239 The maximum amount of iterations of the pass over the function. This is used to
11240 limit compilation time in tree tail merging.
11241
11242 @item store-merging-allow-unaligned
11243 Allow the store merging pass to introduce unaligned stores if it is legal to
11244 do so.
11245
11246 @item max-stores-to-merge
11247 The maximum number of stores to attempt to merge into wider stores in the store
11248 merging pass.
11249
11250 @item max-unrolled-insns
11251 The maximum number of instructions that a loop may have to be unrolled.
11252 If a loop is unrolled, this parameter also determines how many times
11253 the loop code is unrolled.
11254
11255 @item max-average-unrolled-insns
11256 The maximum number of instructions biased by probabilities of their execution
11257 that a loop may have to be unrolled. If a loop is unrolled,
11258 this parameter also determines how many times the loop code is unrolled.
11259
11260 @item max-unroll-times
11261 The maximum number of unrollings of a single loop.
11262
11263 @item max-peeled-insns
11264 The maximum number of instructions that a loop may have to be peeled.
11265 If a loop is peeled, this parameter also determines how many times
11266 the loop code is peeled.
11267
11268 @item max-peel-times
11269 The maximum number of peelings of a single loop.
11270
11271 @item max-peel-branches
11272 The maximum number of branches on the hot path through the peeled sequence.
11273
11274 @item max-completely-peeled-insns
11275 The maximum number of insns of a completely peeled loop.
11276
11277 @item max-completely-peel-times
11278 The maximum number of iterations of a loop to be suitable for complete peeling.
11279
11280 @item max-completely-peel-loop-nest-depth
11281 The maximum depth of a loop nest suitable for complete peeling.
11282
11283 @item max-unswitch-insns
11284 The maximum number of insns of an unswitched loop.
11285
11286 @item max-unswitch-level
11287 The maximum number of branches unswitched in a single loop.
11288
11289 @item lim-expensive
11290 The minimum cost of an expensive expression in the loop invariant motion.
11291
11292 @item iv-consider-all-candidates-bound
11293 Bound on number of candidates for induction variables, below which
11294 all candidates are considered for each use in induction variable
11295 optimizations. If there are more candidates than this,
11296 only the most relevant ones are considered to avoid quadratic time complexity.
11297
11298 @item iv-max-considered-uses
11299 The induction variable optimizations give up on loops that contain more
11300 induction variable uses.
11301
11302 @item iv-always-prune-cand-set-bound
11303 If the number of candidates in the set is smaller than this value,
11304 always try to remove unnecessary ivs from the set
11305 when adding a new one.
11306
11307 @item avg-loop-niter
11308 Average number of iterations of a loop.
11309
11310 @item dse-max-object-size
11311 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
11312 Larger values may result in larger compilation times.
11313
11314 @item dse-max-alias-queries-per-store
11315 Maximum number of queries into the alias oracle per store.
11316 Larger values result in larger compilation times and may result in more
11317 removed dead stores.
11318
11319 @item scev-max-expr-size
11320 Bound on size of expressions used in the scalar evolutions analyzer.
11321 Large expressions slow the analyzer.
11322
11323 @item scev-max-expr-complexity
11324 Bound on the complexity of the expressions in the scalar evolutions analyzer.
11325 Complex expressions slow the analyzer.
11326
11327 @item max-tree-if-conversion-phi-args
11328 Maximum number of arguments in a PHI supported by TREE if conversion
11329 unless the loop is marked with simd pragma.
11330
11331 @item vect-max-version-for-alignment-checks
11332 The maximum number of run-time checks that can be performed when
11333 doing loop versioning for alignment in the vectorizer.
11334
11335 @item vect-max-version-for-alias-checks
11336 The maximum number of run-time checks that can be performed when
11337 doing loop versioning for alias in the vectorizer.
11338
11339 @item vect-max-peeling-for-alignment
11340 The maximum number of loop peels to enhance access alignment
11341 for vectorizer. Value -1 means no limit.
11342
11343 @item max-iterations-to-track
11344 The maximum number of iterations of a loop the brute-force algorithm
11345 for analysis of the number of iterations of the loop tries to evaluate.
11346
11347 @item hot-bb-count-ws-permille
11348 A basic block profile count is considered hot if it contributes to
11349 the given permillage (i.e.@: 0...1000) of the entire profiled execution.
11350
11351 @item hot-bb-frequency-fraction
11352 Select fraction of the entry block frequency of executions of basic block in
11353 function given basic block needs to have to be considered hot.
11354
11355 @item max-predicted-iterations
11356 The maximum number of loop iterations we predict statically. This is useful
11357 in cases where a function contains a single loop with known bound and
11358 another loop with unknown bound.
11359 The known number of iterations is predicted correctly, while
11360 the unknown number of iterations average to roughly 10. This means that the
11361 loop without bounds appears artificially cold relative to the other one.
11362
11363 @item builtin-expect-probability
11364 Control the probability of the expression having the specified value. This
11365 parameter takes a percentage (i.e.@: 0 ... 100) as input.
11366
11367 @item builtin-string-cmp-inline-length
11368 The maximum length of a constant string for a builtin string cmp call
11369 eligible for inlining.
11370
11371 @item align-threshold
11372
11373 Select fraction of the maximal frequency of executions of a basic block in
11374 a function to align the basic block.
11375
11376 @item align-loop-iterations
11377
11378 A loop expected to iterate at least the selected number of iterations is
11379 aligned.
11380
11381 @item tracer-dynamic-coverage
11382 @itemx tracer-dynamic-coverage-feedback
11383
11384 This value is used to limit superblock formation once the given percentage of
11385 executed instructions is covered. This limits unnecessary code size
11386 expansion.
11387
11388 The @option{tracer-dynamic-coverage-feedback} parameter
11389 is used only when profile
11390 feedback is available. The real profiles (as opposed to statically estimated
11391 ones) are much less balanced allowing the threshold to be larger value.
11392
11393 @item tracer-max-code-growth
11394 Stop tail duplication once code growth has reached given percentage. This is
11395 a rather artificial limit, as most of the duplicates are eliminated later in
11396 cross jumping, so it may be set to much higher values than is the desired code
11397 growth.
11398
11399 @item tracer-min-branch-ratio
11400
11401 Stop reverse growth when the reverse probability of best edge is less than this
11402 threshold (in percent).
11403
11404 @item tracer-min-branch-probability
11405 @itemx tracer-min-branch-probability-feedback
11406
11407 Stop forward growth if the best edge has probability lower than this
11408 threshold.
11409
11410 Similarly to @option{tracer-dynamic-coverage} two parameters are
11411 provided. @option{tracer-min-branch-probability-feedback} is used for
11412 compilation with profile feedback and @option{tracer-min-branch-probability}
11413 compilation without. The value for compilation with profile feedback
11414 needs to be more conservative (higher) in order to make tracer
11415 effective.
11416
11417 @item stack-clash-protection-guard-size
11418 Specify the size of the operating system provided stack guard as
11419 2 raised to @var{num} bytes. Higher values may reduce the
11420 number of explicit probes, but a value larger than the operating system
11421 provided guard will leave code vulnerable to stack clash style attacks.
11422
11423 @item stack-clash-protection-probe-interval
11424 Stack clash protection involves probing stack space as it is allocated. This
11425 param controls the maximum distance between probes into the stack as 2 raised
11426 to @var{num} bytes. Higher values may reduce the number of explicit probes, but a value
11427 larger than the operating system provided guard will leave code vulnerable to
11428 stack clash style attacks.
11429
11430 @item max-cse-path-length
11431
11432 The maximum number of basic blocks on path that CSE considers.
11433
11434 @item max-cse-insns
11435 The maximum number of instructions CSE processes before flushing.
11436
11437 @item ggc-min-expand
11438
11439 GCC uses a garbage collector to manage its own memory allocation. This
11440 parameter specifies the minimum percentage by which the garbage
11441 collector's heap should be allowed to expand between collections.
11442 Tuning this may improve compilation speed; it has no effect on code
11443 generation.
11444
11445 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
11446 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
11447 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
11448 GCC is not able to calculate RAM on a particular platform, the lower
11449 bound of 30% is used. Setting this parameter and
11450 @option{ggc-min-heapsize} to zero causes a full collection to occur at
11451 every opportunity. This is extremely slow, but can be useful for
11452 debugging.
11453
11454 @item ggc-min-heapsize
11455
11456 Minimum size of the garbage collector's heap before it begins bothering
11457 to collect garbage. The first collection occurs after the heap expands
11458 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
11459 tuning this may improve compilation speed, and has no effect on code
11460 generation.
11461
11462 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
11463 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
11464 with a lower bound of 4096 (four megabytes) and an upper bound of
11465 131072 (128 megabytes). If GCC is not able to calculate RAM on a
11466 particular platform, the lower bound is used. Setting this parameter
11467 very large effectively disables garbage collection. Setting this
11468 parameter and @option{ggc-min-expand} to zero causes a full collection
11469 to occur at every opportunity.
11470
11471 @item max-reload-search-insns
11472 The maximum number of instruction reload should look backward for equivalent
11473 register. Increasing values mean more aggressive optimization, making the
11474 compilation time increase with probably slightly better performance.
11475
11476 @item max-cselib-memory-locations
11477 The maximum number of memory locations cselib should take into account.
11478 Increasing values mean more aggressive optimization, making the compilation time
11479 increase with probably slightly better performance.
11480
11481 @item max-sched-ready-insns
11482 The maximum number of instructions ready to be issued the scheduler should
11483 consider at any given time during the first scheduling pass. Increasing
11484 values mean more thorough searches, making the compilation time increase
11485 with probably little benefit.
11486
11487 @item max-sched-region-blocks
11488 The maximum number of blocks in a region to be considered for
11489 interblock scheduling.
11490
11491 @item max-pipeline-region-blocks
11492 The maximum number of blocks in a region to be considered for
11493 pipelining in the selective scheduler.
11494
11495 @item max-sched-region-insns
11496 The maximum number of insns in a region to be considered for
11497 interblock scheduling.
11498
11499 @item max-pipeline-region-insns
11500 The maximum number of insns in a region to be considered for
11501 pipelining in the selective scheduler.
11502
11503 @item min-spec-prob
11504 The minimum probability (in percents) of reaching a source block
11505 for interblock speculative scheduling.
11506
11507 @item max-sched-extend-regions-iters
11508 The maximum number of iterations through CFG to extend regions.
11509 A value of 0 disables region extensions.
11510
11511 @item max-sched-insn-conflict-delay
11512 The maximum conflict delay for an insn to be considered for speculative motion.
11513
11514 @item sched-spec-prob-cutoff
11515 The minimal probability of speculation success (in percents), so that
11516 speculative insns are scheduled.
11517
11518 @item sched-state-edge-prob-cutoff
11519 The minimum probability an edge must have for the scheduler to save its
11520 state across it.
11521
11522 @item sched-mem-true-dep-cost
11523 Minimal distance (in CPU cycles) between store and load targeting same
11524 memory locations.
11525
11526 @item selsched-max-lookahead
11527 The maximum size of the lookahead window of selective scheduling. It is a
11528 depth of search for available instructions.
11529
11530 @item selsched-max-sched-times
11531 The maximum number of times that an instruction is scheduled during
11532 selective scheduling. This is the limit on the number of iterations
11533 through which the instruction may be pipelined.
11534
11535 @item selsched-insns-to-rename
11536 The maximum number of best instructions in the ready list that are considered
11537 for renaming in the selective scheduler.
11538
11539 @item sms-min-sc
11540 The minimum value of stage count that swing modulo scheduler
11541 generates.
11542
11543 @item max-last-value-rtl
11544 The maximum size measured as number of RTLs that can be recorded in an expression
11545 in combiner for a pseudo register as last known value of that register.
11546
11547 @item max-combine-insns
11548 The maximum number of instructions the RTL combiner tries to combine.
11549
11550 @item integer-share-limit
11551 Small integer constants can use a shared data structure, reducing the
11552 compiler's memory usage and increasing its speed. This sets the maximum
11553 value of a shared integer constant.
11554
11555 @item ssp-buffer-size
11556 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
11557 protection when @option{-fstack-protection} is used.
11558
11559 @item min-size-for-stack-sharing
11560 The minimum size of variables taking part in stack slot sharing when not
11561 optimizing.
11562
11563 @item max-jump-thread-duplication-stmts
11564 Maximum number of statements allowed in a block that needs to be
11565 duplicated when threading jumps.
11566
11567 @item max-fields-for-field-sensitive
11568 Maximum number of fields in a structure treated in
11569 a field sensitive manner during pointer analysis.
11570
11571 @item prefetch-latency
11572 Estimate on average number of instructions that are executed before
11573 prefetch finishes. The distance prefetched ahead is proportional
11574 to this constant. Increasing this number may also lead to less
11575 streams being prefetched (see @option{simultaneous-prefetches}).
11576
11577 @item simultaneous-prefetches
11578 Maximum number of prefetches that can run at the same time.
11579
11580 @item l1-cache-line-size
11581 The size of cache line in L1 data cache, in bytes.
11582
11583 @item l1-cache-size
11584 The size of L1 data cache, in kilobytes.
11585
11586 @item l2-cache-size
11587 The size of L2 data cache, in kilobytes.
11588
11589 @item prefetch-dynamic-strides
11590 Whether the loop array prefetch pass should issue software prefetch hints
11591 for strides that are non-constant. In some cases this may be
11592 beneficial, though the fact the stride is non-constant may make it
11593 hard to predict when there is clear benefit to issuing these hints.
11594
11595 Set to 1 if the prefetch hints should be issued for non-constant
11596 strides. Set to 0 if prefetch hints should be issued only for strides that
11597 are known to be constant and below @option{prefetch-minimum-stride}.
11598
11599 @item prefetch-minimum-stride
11600 Minimum constant stride, in bytes, to start using prefetch hints for. If
11601 the stride is less than this threshold, prefetch hints will not be issued.
11602
11603 This setting is useful for processors that have hardware prefetchers, in
11604 which case there may be conflicts between the hardware prefetchers and
11605 the software prefetchers. If the hardware prefetchers have a maximum
11606 stride they can handle, it should be used here to improve the use of
11607 software prefetchers.
11608
11609 A value of -1 means we don't have a threshold and therefore
11610 prefetch hints can be issued for any constant stride.
11611
11612 This setting is only useful for strides that are known and constant.
11613
11614 @item loop-interchange-max-num-stmts
11615 The maximum number of stmts in a loop to be interchanged.
11616
11617 @item loop-interchange-stride-ratio
11618 The minimum ratio between stride of two loops for interchange to be profitable.
11619
11620 @item min-insn-to-prefetch-ratio
11621 The minimum ratio between the number of instructions and the
11622 number of prefetches to enable prefetching in a loop.
11623
11624 @item prefetch-min-insn-to-mem-ratio
11625 The minimum ratio between the number of instructions and the
11626 number of memory references to enable prefetching in a loop.
11627
11628 @item use-canonical-types
11629 Whether the compiler should use the ``canonical'' type system.
11630 Should always be 1, which uses a more efficient internal
11631 mechanism for comparing types in C++ and Objective-C++. However, if
11632 bugs in the canonical type system are causing compilation failures,
11633 set this value to 0 to disable canonical types.
11634
11635 @item switch-conversion-max-branch-ratio
11636 Switch initialization conversion refuses to create arrays that are
11637 bigger than @option{switch-conversion-max-branch-ratio} times the number of
11638 branches in the switch.
11639
11640 @item max-partial-antic-length
11641 Maximum length of the partial antic set computed during the tree
11642 partial redundancy elimination optimization (@option{-ftree-pre}) when
11643 optimizing at @option{-O3} and above. For some sorts of source code
11644 the enhanced partial redundancy elimination optimization can run away,
11645 consuming all of the memory available on the host machine. This
11646 parameter sets a limit on the length of the sets that are computed,
11647 which prevents the runaway behavior. Setting a value of 0 for
11648 this parameter allows an unlimited set length.
11649
11650 @item rpo-vn-max-loop-depth
11651 Maximum loop depth that is value-numbered optimistically.
11652 When the limit hits the innermost
11653 @var{rpo-vn-max-loop-depth} loops and the outermost loop in the
11654 loop nest are value-numbered optimistically and the remaining ones not.
11655
11656 @item sccvn-max-alias-queries-per-access
11657 Maximum number of alias-oracle queries we perform when looking for
11658 redundancies for loads and stores. If this limit is hit the search
11659 is aborted and the load or store is not considered redundant. The
11660 number of queries is algorithmically limited to the number of
11661 stores on all paths from the load to the function entry.
11662
11663 @item ira-max-loops-num
11664 IRA uses regional register allocation by default. If a function
11665 contains more loops than the number given by this parameter, only at most
11666 the given number of the most frequently-executed loops form regions
11667 for regional register allocation.
11668
11669 @item ira-max-conflict-table-size
11670 Although IRA uses a sophisticated algorithm to compress the conflict
11671 table, the table can still require excessive amounts of memory for
11672 huge functions. If the conflict table for a function could be more
11673 than the size in MB given by this parameter, the register allocator
11674 instead uses a faster, simpler, and lower-quality
11675 algorithm that does not require building a pseudo-register conflict table.
11676
11677 @item ira-loop-reserved-regs
11678 IRA can be used to evaluate more accurate register pressure in loops
11679 for decisions to move loop invariants (see @option{-O3}). The number
11680 of available registers reserved for some other purposes is given
11681 by this parameter. Default of the parameter
11682 is the best found from numerous experiments.
11683
11684 @item lra-inheritance-ebb-probability-cutoff
11685 LRA tries to reuse values reloaded in registers in subsequent insns.
11686 This optimization is called inheritance. EBB is used as a region to
11687 do this optimization. The parameter defines a minimal fall-through
11688 edge probability in percentage used to add BB to inheritance EBB in
11689 LRA. The default value was chosen
11690 from numerous runs of SPEC2000 on x86-64.
11691
11692 @item loop-invariant-max-bbs-in-loop
11693 Loop invariant motion can be very expensive, both in compilation time and
11694 in amount of needed compile-time memory, with very large loops. Loops
11695 with more basic blocks than this parameter won't have loop invariant
11696 motion optimization performed on them.
11697
11698 @item loop-max-datarefs-for-datadeps
11699 Building data dependencies is expensive for very large loops. This
11700 parameter limits the number of data references in loops that are
11701 considered for data dependence analysis. These large loops are no
11702 handled by the optimizations using loop data dependencies.
11703
11704 @item max-vartrack-size
11705 Sets a maximum number of hash table slots to use during variable
11706 tracking dataflow analysis of any function. If this limit is exceeded
11707 with variable tracking at assignments enabled, analysis for that
11708 function is retried without it, after removing all debug insns from
11709 the function. If the limit is exceeded even without debug insns, var
11710 tracking analysis is completely disabled for the function. Setting
11711 the parameter to zero makes it unlimited.
11712
11713 @item max-vartrack-expr-depth
11714 Sets a maximum number of recursion levels when attempting to map
11715 variable names or debug temporaries to value expressions. This trades
11716 compilation time for more complete debug information. If this is set too
11717 low, value expressions that are available and could be represented in
11718 debug information may end up not being used; setting this higher may
11719 enable the compiler to find more complex debug expressions, but compile
11720 time and memory use may grow.
11721
11722 @item max-debug-marker-count
11723 Sets a threshold on the number of debug markers (e.g.@: begin stmt
11724 markers) to avoid complexity explosion at inlining or expanding to RTL.
11725 If a function has more such gimple stmts than the set limit, such stmts
11726 will be dropped from the inlined copy of a function, and from its RTL
11727 expansion.
11728
11729 @item min-nondebug-insn-uid
11730 Use uids starting at this parameter for nondebug insns. The range below
11731 the parameter is reserved exclusively for debug insns created by
11732 @option{-fvar-tracking-assignments}, but debug insns may get
11733 (non-overlapping) uids above it if the reserved range is exhausted.
11734
11735 @item ipa-sra-ptr-growth-factor
11736 IPA-SRA replaces a pointer to an aggregate with one or more new
11737 parameters only when their cumulative size is less or equal to
11738 @option{ipa-sra-ptr-growth-factor} times the size of the original
11739 pointer parameter.
11740
11741 @item sra-max-scalarization-size-Ospeed
11742 @itemx sra-max-scalarization-size-Osize
11743 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
11744 replace scalar parts of aggregates with uses of independent scalar
11745 variables. These parameters control the maximum size, in storage units,
11746 of aggregate which is considered for replacement when compiling for
11747 speed
11748 (@option{sra-max-scalarization-size-Ospeed}) or size
11749 (@option{sra-max-scalarization-size-Osize}) respectively.
11750
11751 @item tm-max-aggregate-size
11752 When making copies of thread-local variables in a transaction, this
11753 parameter specifies the size in bytes after which variables are
11754 saved with the logging functions as opposed to save/restore code
11755 sequence pairs. This option only applies when using
11756 @option{-fgnu-tm}.
11757
11758 @item graphite-max-nb-scop-params
11759 To avoid exponential effects in the Graphite loop transforms, the
11760 number of parameters in a Static Control Part (SCoP) is bounded.
11761 A value of zero can be used to lift
11762 the bound. A variable whose value is unknown at compilation time and
11763 defined outside a SCoP is a parameter of the SCoP.
11764
11765 @item loop-block-tile-size
11766 Loop blocking or strip mining transforms, enabled with
11767 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
11768 loop in the loop nest by a given number of iterations. The strip
11769 length can be changed using the @option{loop-block-tile-size}
11770 parameter.
11771
11772 @item ipa-cp-value-list-size
11773 IPA-CP attempts to track all possible values and types passed to a function's
11774 parameter in order to propagate them and perform devirtualization.
11775 @option{ipa-cp-value-list-size} is the maximum number of values and types it
11776 stores per one formal parameter of a function.
11777
11778 @item ipa-cp-eval-threshold
11779 IPA-CP calculates its own score of cloning profitability heuristics
11780 and performs those cloning opportunities with scores that exceed
11781 @option{ipa-cp-eval-threshold}.
11782
11783 @item ipa-cp-recursion-penalty
11784 Percentage penalty the recursive functions will receive when they
11785 are evaluated for cloning.
11786
11787 @item ipa-cp-single-call-penalty
11788 Percentage penalty functions containing a single call to another
11789 function will receive when they are evaluated for cloning.
11790
11791 @item ipa-max-agg-items
11792 IPA-CP is also capable to propagate a number of scalar values passed
11793 in an aggregate. @option{ipa-max-agg-items} controls the maximum
11794 number of such values per one parameter.
11795
11796 @item ipa-cp-loop-hint-bonus
11797 When IPA-CP determines that a cloning candidate would make the number
11798 of iterations of a loop known, it adds a bonus of
11799 @option{ipa-cp-loop-hint-bonus} to the profitability score of
11800 the candidate.
11801
11802 @item ipa-cp-array-index-hint-bonus
11803 When IPA-CP determines that a cloning candidate would make the index of
11804 an array access known, it adds a bonus of
11805 @option{ipa-cp-array-index-hint-bonus} to the profitability
11806 score of the candidate.
11807
11808 @item ipa-max-aa-steps
11809 During its analysis of function bodies, IPA-CP employs alias analysis
11810 in order to track values pointed to by function parameters. In order
11811 not spend too much time analyzing huge functions, it gives up and
11812 consider all memory clobbered after examining
11813 @option{ipa-max-aa-steps} statements modifying memory.
11814
11815 @item lto-partitions
11816 Specify desired number of partitions produced during WHOPR compilation.
11817 The number of partitions should exceed the number of CPUs used for compilation.
11818
11819 @item lto-min-partition
11820 Size of minimal partition for WHOPR (in estimated instructions).
11821 This prevents expenses of splitting very small programs into too many
11822 partitions.
11823
11824 @item lto-max-partition
11825 Size of max partition for WHOPR (in estimated instructions).
11826 to provide an upper bound for individual size of partition.
11827 Meant to be used only with balanced partitioning.
11828
11829 @item cxx-max-namespaces-for-diagnostic-help
11830 The maximum number of namespaces to consult for suggestions when C++
11831 name lookup fails for an identifier.
11832
11833 @item sink-frequency-threshold
11834 The maximum relative execution frequency (in percents) of the target block
11835 relative to a statement's original block to allow statement sinking of a
11836 statement. Larger numbers result in more aggressive statement sinking.
11837 A small positive adjustment is applied for
11838 statements with memory operands as those are even more profitable so sink.
11839
11840 @item max-stores-to-sink
11841 The maximum number of conditional store pairs that can be sunk. Set to 0
11842 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11843 (@option{-ftree-loop-if-convert}) is disabled.
11844
11845 @item allow-store-data-races
11846 Allow optimizers to introduce new data races on stores.
11847 Set to 1 to allow, otherwise to 0.
11848
11849 @item case-values-threshold
11850 The smallest number of different values for which it is best to use a
11851 jump-table instead of a tree of conditional branches. If the value is
11852 0, use the default for the machine.
11853
11854 @item tree-reassoc-width
11855 Set the maximum number of instructions executed in parallel in
11856 reassociated tree. This parameter overrides target dependent
11857 heuristics used by default if has non zero value.
11858
11859 @item sched-pressure-algorithm
11860 Choose between the two available implementations of
11861 @option{-fsched-pressure}. Algorithm 1 is the original implementation
11862 and is the more likely to prevent instructions from being reordered.
11863 Algorithm 2 was designed to be a compromise between the relatively
11864 conservative approach taken by algorithm 1 and the rather aggressive
11865 approach taken by the default scheduler. It relies more heavily on
11866 having a regular register file and accurate register pressure classes.
11867 See @file{haifa-sched.c} in the GCC sources for more details.
11868
11869 The default choice depends on the target.
11870
11871 @item max-slsr-cand-scan
11872 Set the maximum number of existing candidates that are considered when
11873 seeking a basis for a new straight-line strength reduction candidate.
11874
11875 @item asan-globals
11876 Enable buffer overflow detection for global objects. This kind
11877 of protection is enabled by default if you are using
11878 @option{-fsanitize=address} option.
11879 To disable global objects protection use @option{--param asan-globals=0}.
11880
11881 @item asan-stack
11882 Enable buffer overflow detection for stack objects. This kind of
11883 protection is enabled by default when using @option{-fsanitize=address}.
11884 To disable stack protection use @option{--param asan-stack=0} option.
11885
11886 @item asan-instrument-reads
11887 Enable buffer overflow detection for memory reads. This kind of
11888 protection is enabled by default when using @option{-fsanitize=address}.
11889 To disable memory reads protection use
11890 @option{--param asan-instrument-reads=0}.
11891
11892 @item asan-instrument-writes
11893 Enable buffer overflow detection for memory writes. This kind of
11894 protection is enabled by default when using @option{-fsanitize=address}.
11895 To disable memory writes protection use
11896 @option{--param asan-instrument-writes=0} option.
11897
11898 @item asan-memintrin
11899 Enable detection for built-in functions. This kind of protection
11900 is enabled by default when using @option{-fsanitize=address}.
11901 To disable built-in functions protection use
11902 @option{--param asan-memintrin=0}.
11903
11904 @item asan-use-after-return
11905 Enable detection of use-after-return. This kind of protection
11906 is enabled by default when using the @option{-fsanitize=address} option.
11907 To disable it use @option{--param asan-use-after-return=0}.
11908
11909 Note: By default the check is disabled at run time. To enable it,
11910 add @code{detect_stack_use_after_return=1} to the environment variable
11911 @env{ASAN_OPTIONS}.
11912
11913 @item asan-instrumentation-with-call-threshold
11914 If number of memory accesses in function being instrumented
11915 is greater or equal to this number, use callbacks instead of inline checks.
11916 E.g. to disable inline code use
11917 @option{--param asan-instrumentation-with-call-threshold=0}.
11918
11919 @item use-after-scope-direct-emission-threshold
11920 If the size of a local variable in bytes is smaller or equal to this
11921 number, directly poison (or unpoison) shadow memory instead of using
11922 run-time callbacks.
11923
11924 @item max-fsm-thread-path-insns
11925 Maximum number of instructions to copy when duplicating blocks on a
11926 finite state automaton jump thread path.
11927
11928 @item max-fsm-thread-length
11929 Maximum number of basic blocks on a finite state automaton jump thread
11930 path.
11931
11932 @item max-fsm-thread-paths
11933 Maximum number of new jump thread paths to create for a finite state
11934 automaton.
11935
11936 @item parloops-chunk-size
11937 Chunk size of omp schedule for loops parallelized by parloops.
11938
11939 @item parloops-schedule
11940 Schedule type of omp schedule for loops parallelized by parloops (static,
11941 dynamic, guided, auto, runtime).
11942
11943 @item parloops-min-per-thread
11944 The minimum number of iterations per thread of an innermost parallelized
11945 loop for which the parallelized variant is preferred over the single threaded
11946 one. Note that for a parallelized loop nest the
11947 minimum number of iterations of the outermost loop per thread is two.
11948
11949 @item max-ssa-name-query-depth
11950 Maximum depth of recursion when querying properties of SSA names in things
11951 like fold routines. One level of recursion corresponds to following a
11952 use-def chain.
11953
11954 @item hsa-gen-debug-stores
11955 Enable emission of special debug stores within HSA kernels which are
11956 then read and reported by libgomp plugin. Generation of these stores
11957 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
11958 enable it.
11959
11960 @item max-speculative-devirt-maydefs
11961 The maximum number of may-defs we analyze when looking for a must-def
11962 specifying the dynamic type of an object that invokes a virtual call
11963 we may be able to devirtualize speculatively.
11964
11965 @item max-vrp-switch-assertions
11966 The maximum number of assertions to add along the default edge of a switch
11967 statement during VRP.
11968
11969 @item unroll-jam-min-percent
11970 The minimum percentage of memory references that must be optimized
11971 away for the unroll-and-jam transformation to be considered profitable.
11972
11973 @item unroll-jam-max-unroll
11974 The maximum number of times the outer loop should be unrolled by
11975 the unroll-and-jam transformation.
11976
11977 @item max-rtl-if-conversion-unpredictable-cost
11978 Maximum permissible cost for the sequence that would be generated
11979 by the RTL if-conversion pass for a branch that is considered unpredictable.
11980
11981 @item max-variable-expansions-in-unroller
11982 If @option{-fvariable-expansion-in-unroller} is used, the maximum number
11983 of times that an individual variable will be expanded during loop unrolling.
11984
11985 @item tracer-min-branch-probability-feedback
11986 Stop forward growth if the probability of best edge is less than
11987 this threshold (in percent). Used when profile feedback is available.
11988
11989 @item partial-inlining-entry-probability
11990 Maximum probability of the entry BB of split region
11991 (in percent relative to entry BB of the function)
11992 to make partial inlining happen.
11993
11994 @item max-tracked-strlens
11995 Maximum number of strings for which strlen optimization pass will
11996 track string lengths.
11997
11998 @item gcse-after-reload-partial-fraction
11999 The threshold ratio for performing partial redundancy
12000 elimination after reload.
12001
12002 @item gcse-after-reload-critical-fraction
12003 The threshold ratio of critical edges execution count that
12004 permit performing redundancy elimination after reload.
12005
12006 @item max-loop-header-insns
12007 The maximum number of insns in loop header duplicated
12008 by the copy loop headers pass.
12009
12010 @item vect-epilogues-nomask
12011 Enable loop epilogue vectorization using smaller vector size.
12012
12013 @item slp-max-insns-in-bb
12014 Maximum number of instructions in basic block to be
12015 considered for SLP vectorization.
12016
12017 @item avoid-fma-max-bits
12018 Maximum number of bits for which we avoid creating FMAs.
12019
12020 @item sms-loop-average-count-threshold
12021 A threshold on the average loop count considered by the swing modulo scheduler.
12022
12023 @item sms-dfa-history
12024 The number of cycles the swing modulo scheduler considers when checking
12025 conflicts using DFA.
12026
12027 @item hot-bb-count-fraction
12028 Select fraction of the maximal count of repetitions of basic block
12029 in program given basic block needs
12030 to have to be considered hot (used in non-LTO mode)
12031
12032 @item max-inline-insns-recursive-auto
12033 The maximum number of instructions non-inline function
12034 can grow to via recursive inlining.
12035
12036 @item graphite-allow-codegen-errors
12037 Whether codegen errors should be ICEs when @option{-fchecking}.
12038
12039 @item sms-max-ii-factor
12040 A factor for tuning the upper bound that swing modulo scheduler
12041 uses for scheduling a loop.
12042
12043 @item lra-max-considered-reload-pseudos
12044 The max number of reload pseudos which are considered during
12045 spilling a non-reload pseudo.
12046
12047 @item max-pow-sqrt-depth
12048 Maximum depth of sqrt chains to use when synthesizing exponentiation
12049 by a real constant.
12050
12051 @item max-dse-active-local-stores
12052 Maximum number of active local stores in RTL dead store elimination.
12053
12054 @item asan-instrument-allocas
12055 Enable asan allocas/VLAs protection.
12056
12057 @item max-iterations-computation-cost
12058 Bound on the cost of an expression to compute the number of iterations.
12059
12060 @item max-isl-operations
12061 Maximum number of isl operations, 0 means unlimited.
12062
12063 @item graphite-max-arrays-per-scop
12064 Maximum number of arrays per scop.
12065
12066 @item max-vartrack-reverse-op-size
12067 Max. size of loc list for which reverse ops should be added.
12068
12069 @item unlikely-bb-count-fraction
12070 The minimum fraction of profile runs a given basic block execution count
12071 must be not to be considered unlikely.
12072
12073 @item tracer-dynamic-coverage-feedback
12074 The percentage of function, weighted by execution frequency,
12075 that must be covered by trace formation.
12076 Used when profile feedback is available.
12077
12078 @item max-inline-recursive-depth-auto
12079 The maximum depth of recursive inlining for non-inline functions.
12080
12081 @item fsm-scale-path-stmts
12082 Scale factor to apply to the number of statements in a threading path
12083 when comparing to the number of (scaled) blocks.
12084
12085 @item fsm-maximum-phi-arguments
12086 Maximum number of arguments a PHI may have before the FSM threader
12087 will not try to thread through its block.
12088
12089 @item uninit-control-dep-attempts
12090 Maximum number of nested calls to search for control dependencies
12091 during uninitialized variable analysis.
12092
12093 @item indir-call-topn-profile
12094 Track top N target addresses in indirect-call profile.
12095
12096 @item max-once-peeled-insns
12097 The maximum number of insns of a peeled loop that rolls only once.
12098
12099 @item sra-max-scalarization-size-Osize
12100 Maximum size, in storage units, of an aggregate
12101 which should be considered for scalarization when compiling for size.
12102
12103 @item fsm-scale-path-blocks
12104 Scale factor to apply to the number of blocks in a threading path
12105 when comparing to the number of (scaled) statements.
12106
12107 @item sched-autopref-queue-depth
12108 Hardware autoprefetcher scheduler model control flag.
12109 Number of lookahead cycles the model looks into; at '
12110 ' only enable instruction sorting heuristic.
12111
12112 @item loop-versioning-max-inner-insns
12113 The maximum number of instructions that an inner loop can have
12114 before the loop versioning pass considers it too big to copy.
12115
12116 @item loop-versioning-max-outer-insns
12117 The maximum number of instructions that an outer loop can have
12118 before the loop versioning pass considers it too big to copy,
12119 discounting any instructions in inner loops that directly benefit
12120 from versioning.
12121
12122 @end table
12123 @end table
12124
12125 @node Instrumentation Options
12126 @section Program Instrumentation Options
12127 @cindex instrumentation options
12128 @cindex program instrumentation options
12129 @cindex run-time error checking options
12130 @cindex profiling options
12131 @cindex options, program instrumentation
12132 @cindex options, run-time error checking
12133 @cindex options, profiling
12134
12135 GCC supports a number of command-line options that control adding
12136 run-time instrumentation to the code it normally generates.
12137 For example, one purpose of instrumentation is collect profiling
12138 statistics for use in finding program hot spots, code coverage
12139 analysis, or profile-guided optimizations.
12140 Another class of program instrumentation is adding run-time checking
12141 to detect programming errors like invalid pointer
12142 dereferences or out-of-bounds array accesses, as well as deliberately
12143 hostile attacks such as stack smashing or C++ vtable hijacking.
12144 There is also a general hook which can be used to implement other
12145 forms of tracing or function-level instrumentation for debug or
12146 program analysis purposes.
12147
12148 @table @gcctabopt
12149 @cindex @command{prof}
12150 @cindex @command{gprof}
12151 @item -p
12152 @itemx -pg
12153 @opindex p
12154 @opindex pg
12155 Generate extra code to write profile information suitable for the
12156 analysis program @command{prof} (for @option{-p}) or @command{gprof}
12157 (for @option{-pg}). You must use this option when compiling
12158 the source files you want data about, and you must also use it when
12159 linking.
12160
12161 You can use the function attribute @code{no_instrument_function} to
12162 suppress profiling of individual functions when compiling with these options.
12163 @xref{Common Function Attributes}.
12164
12165 @item -fprofile-arcs
12166 @opindex fprofile-arcs
12167 Add code so that program flow @dfn{arcs} are instrumented. During
12168 execution the program records how many times each branch and call is
12169 executed and how many times it is taken or returns. On targets that support
12170 constructors with priority support, profiling properly handles constructors,
12171 destructors and C++ constructors (and destructors) of classes which are used
12172 as a type of a global variable.
12173
12174 When the compiled
12175 program exits it saves this data to a file called
12176 @file{@var{auxname}.gcda} for each source file. The data may be used for
12177 profile-directed optimizations (@option{-fbranch-probabilities}), or for
12178 test coverage analysis (@option{-ftest-coverage}). Each object file's
12179 @var{auxname} is generated from the name of the output file, if
12180 explicitly specified and it is not the final executable, otherwise it is
12181 the basename of the source file. In both cases any suffix is removed
12182 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
12183 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
12184 @xref{Cross-profiling}.
12185
12186 @cindex @command{gcov}
12187 @item --coverage
12188 @opindex coverage
12189
12190 This option is used to compile and link code instrumented for coverage
12191 analysis. The option is a synonym for @option{-fprofile-arcs}
12192 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
12193 linking). See the documentation for those options for more details.
12194
12195 @itemize
12196
12197 @item
12198 Compile the source files with @option{-fprofile-arcs} plus optimization
12199 and code generation options. For test coverage analysis, use the
12200 additional @option{-ftest-coverage} option. You do not need to profile
12201 every source file in a program.
12202
12203 @item
12204 Compile the source files additionally with @option{-fprofile-abs-path}
12205 to create absolute path names in the @file{.gcno} files. This allows
12206 @command{gcov} to find the correct sources in projects where compilations
12207 occur with different working directories.
12208
12209 @item
12210 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
12211 (the latter implies the former).
12212
12213 @item
12214 Run the program on a representative workload to generate the arc profile
12215 information. This may be repeated any number of times. You can run
12216 concurrent instances of your program, and provided that the file system
12217 supports locking, the data files will be correctly updated. Unless
12218 a strict ISO C dialect option is in effect, @code{fork} calls are
12219 detected and correctly handled without double counting.
12220
12221 @item
12222 For profile-directed optimizations, compile the source files again with
12223 the same optimization and code generation options plus
12224 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
12225 Control Optimization}).
12226
12227 @item
12228 For test coverage analysis, use @command{gcov} to produce human readable
12229 information from the @file{.gcno} and @file{.gcda} files. Refer to the
12230 @command{gcov} documentation for further information.
12231
12232 @end itemize
12233
12234 With @option{-fprofile-arcs}, for each function of your program GCC
12235 creates a program flow graph, then finds a spanning tree for the graph.
12236 Only arcs that are not on the spanning tree have to be instrumented: the
12237 compiler adds code to count the number of times that these arcs are
12238 executed. When an arc is the only exit or only entrance to a block, the
12239 instrumentation code can be added to the block; otherwise, a new basic
12240 block must be created to hold the instrumentation code.
12241
12242 @need 2000
12243 @item -ftest-coverage
12244 @opindex ftest-coverage
12245 Produce a notes file that the @command{gcov} code-coverage utility
12246 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
12247 show program coverage. Each source file's note file is called
12248 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
12249 above for a description of @var{auxname} and instructions on how to
12250 generate test coverage data. Coverage data matches the source files
12251 more closely if you do not optimize.
12252
12253 @item -fprofile-abs-path
12254 @opindex fprofile-abs-path
12255 Automatically convert relative source file names to absolute path names
12256 in the @file{.gcno} files. This allows @command{gcov} to find the correct
12257 sources in projects where compilations occur with different working
12258 directories.
12259
12260 @item -fprofile-dir=@var{path}
12261 @opindex fprofile-dir
12262
12263 Set the directory to search for the profile data files in to @var{path}.
12264 This option affects only the profile data generated by
12265 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
12266 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
12267 and its related options. Both absolute and relative paths can be used.
12268 By default, GCC uses the current directory as @var{path}, thus the
12269 profile data file appears in the same directory as the object file.
12270 In order to prevent the file name clashing, if the object file name is
12271 not an absolute path, we mangle the absolute path of the
12272 @file{@var{sourcename}.gcda} file and use it as the file name of a
12273 @file{.gcda} file.
12274
12275 When an executable is run in a massive parallel environment, it is recommended
12276 to save profile to different folders. That can be done with variables
12277 in @var{path} that are exported during run-time:
12278
12279 @table @gcctabopt
12280
12281 @item %p
12282 process ID.
12283
12284 @item %q@{VAR@}
12285 value of environment variable @var{VAR}
12286
12287 @end table
12288
12289 @item -fprofile-generate
12290 @itemx -fprofile-generate=@var{path}
12291 @opindex fprofile-generate
12292
12293 Enable options usually used for instrumenting application to produce
12294 profile useful for later recompilation with profile feedback based
12295 optimization. You must use @option{-fprofile-generate} both when
12296 compiling and when linking your program.
12297
12298 The following options are enabled:
12299 @option{-fprofile-arcs}, @option{-fprofile-values},
12300 @option{-finline-functions}, and @option{-fipa-bit-cp}.
12301
12302 If @var{path} is specified, GCC looks at the @var{path} to find
12303 the profile feedback data files. See @option{-fprofile-dir}.
12304
12305 To optimize the program based on the collected profile information, use
12306 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
12307
12308 @item -fprofile-update=@var{method}
12309 @opindex fprofile-update
12310
12311 Alter the update method for an application instrumented for profile
12312 feedback based optimization. The @var{method} argument should be one of
12313 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
12314 The first one is useful for single-threaded applications,
12315 while the second one prevents profile corruption by emitting thread-safe code.
12316
12317 @strong{Warning:} When an application does not properly join all threads
12318 (or creates an detached thread), a profile file can be still corrupted.
12319
12320 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
12321 when supported by a target, or to @samp{single} otherwise. The GCC driver
12322 automatically selects @samp{prefer-atomic} when @option{-pthread}
12323 is present in the command line.
12324
12325 @item -fprofile-filter-files=@var{regex}
12326 @opindex fprofile-filter-files
12327
12328 Instrument only functions from files where names match
12329 any regular expression (separated by a semi-colon).
12330
12331 For example, @option{-fprofile-filter-files=main.c;module.*.c} will instrument
12332 only @file{main.c} and all C files starting with 'module'.
12333
12334 @item -fprofile-exclude-files=@var{regex}
12335 @opindex fprofile-exclude-files
12336
12337 Instrument only functions from files where names do not match
12338 all the regular expressions (separated by a semi-colon).
12339
12340 For example, @option{-fprofile-exclude-files=/usr/*} will prevent instrumentation
12341 of all files that are located in @file{/usr/} folder.
12342
12343 @item -fsanitize=address
12344 @opindex fsanitize=address
12345 Enable AddressSanitizer, a fast memory error detector.
12346 Memory access instructions are instrumented to detect
12347 out-of-bounds and use-after-free bugs.
12348 The option enables @option{-fsanitize-address-use-after-scope}.
12349 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
12350 more details. The run-time behavior can be influenced using the
12351 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
12352 the available options are shown at startup of the instrumented program. See
12353 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
12354 for a list of supported options.
12355 The option cannot be combined with @option{-fsanitize=thread}.
12356
12357 @item -fsanitize=kernel-address
12358 @opindex fsanitize=kernel-address
12359 Enable AddressSanitizer for Linux kernel.
12360 See @uref{https://github.com/google/kasan/wiki} for more details.
12361
12362 @item -fsanitize=pointer-compare
12363 @opindex fsanitize=pointer-compare
12364 Instrument comparison operation (<, <=, >, >=) with pointer operands.
12365 The option must be combined with either @option{-fsanitize=kernel-address} or
12366 @option{-fsanitize=address}
12367 The option cannot be combined with @option{-fsanitize=thread}.
12368 Note: By default the check is disabled at run time. To enable it,
12369 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12370 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12371 invalid operation only when both pointers are non-null.
12372
12373 @item -fsanitize=pointer-subtract
12374 @opindex fsanitize=pointer-subtract
12375 Instrument subtraction with pointer operands.
12376 The option must be combined with either @option{-fsanitize=kernel-address} or
12377 @option{-fsanitize=address}
12378 The option cannot be combined with @option{-fsanitize=thread}.
12379 Note: By default the check is disabled at run time. To enable it,
12380 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12381 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12382 invalid operation only when both pointers are non-null.
12383
12384 @item -fsanitize=thread
12385 @opindex fsanitize=thread
12386 Enable ThreadSanitizer, a fast data race detector.
12387 Memory access instructions are instrumented to detect
12388 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
12389 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
12390 environment variable; see
12391 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
12392 supported options.
12393 The option cannot be combined with @option{-fsanitize=address},
12394 @option{-fsanitize=leak}.
12395
12396 Note that sanitized atomic builtins cannot throw exceptions when
12397 operating on invalid memory addresses with non-call exceptions
12398 (@option{-fnon-call-exceptions}).
12399
12400 @item -fsanitize=leak
12401 @opindex fsanitize=leak
12402 Enable LeakSanitizer, a memory leak detector.
12403 This option only matters for linking of executables and
12404 the executable is linked against a library that overrides @code{malloc}
12405 and other allocator functions. See
12406 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
12407 details. The run-time behavior can be influenced using the
12408 @env{LSAN_OPTIONS} environment variable.
12409 The option cannot be combined with @option{-fsanitize=thread}.
12410
12411 @item -fsanitize=undefined
12412 @opindex fsanitize=undefined
12413 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
12414 Various computations are instrumented to detect undefined behavior
12415 at runtime. Current suboptions are:
12416
12417 @table @gcctabopt
12418
12419 @item -fsanitize=shift
12420 @opindex fsanitize=shift
12421 This option enables checking that the result of a shift operation is
12422 not undefined. Note that what exactly is considered undefined differs
12423 slightly between C and C++, as well as between ISO C90 and C99, etc.
12424 This option has two suboptions, @option{-fsanitize=shift-base} and
12425 @option{-fsanitize=shift-exponent}.
12426
12427 @item -fsanitize=shift-exponent
12428 @opindex fsanitize=shift-exponent
12429 This option enables checking that the second argument of a shift operation
12430 is not negative and is smaller than the precision of the promoted first
12431 argument.
12432
12433 @item -fsanitize=shift-base
12434 @opindex fsanitize=shift-base
12435 If the second argument of a shift operation is within range, check that the
12436 result of a shift operation is not undefined. Note that what exactly is
12437 considered undefined differs slightly between C and C++, as well as between
12438 ISO C90 and C99, etc.
12439
12440 @item -fsanitize=integer-divide-by-zero
12441 @opindex fsanitize=integer-divide-by-zero
12442 Detect integer division by zero as well as @code{INT_MIN / -1} division.
12443
12444 @item -fsanitize=unreachable
12445 @opindex fsanitize=unreachable
12446 With this option, the compiler turns the @code{__builtin_unreachable}
12447 call into a diagnostics message call instead. When reaching the
12448 @code{__builtin_unreachable} call, the behavior is undefined.
12449
12450 @item -fsanitize=vla-bound
12451 @opindex fsanitize=vla-bound
12452 This option instructs the compiler to check that the size of a variable
12453 length array is positive.
12454
12455 @item -fsanitize=null
12456 @opindex fsanitize=null
12457 This option enables pointer checking. Particularly, the application
12458 built with this option turned on will issue an error message when it
12459 tries to dereference a NULL pointer, or if a reference (possibly an
12460 rvalue reference) is bound to a NULL pointer, or if a method is invoked
12461 on an object pointed by a NULL pointer.
12462
12463 @item -fsanitize=return
12464 @opindex fsanitize=return
12465 This option enables return statement checking. Programs
12466 built with this option turned on will issue an error message
12467 when the end of a non-void function is reached without actually
12468 returning a value. This option works in C++ only.
12469
12470 @item -fsanitize=signed-integer-overflow
12471 @opindex fsanitize=signed-integer-overflow
12472 This option enables signed integer overflow checking. We check that
12473 the result of @code{+}, @code{*}, and both unary and binary @code{-}
12474 does not overflow in the signed arithmetics. Note, integer promotion
12475 rules must be taken into account. That is, the following is not an
12476 overflow:
12477 @smallexample
12478 signed char a = SCHAR_MAX;
12479 a++;
12480 @end smallexample
12481
12482 @item -fsanitize=bounds
12483 @opindex fsanitize=bounds
12484 This option enables instrumentation of array bounds. Various out of bounds
12485 accesses are detected. Flexible array members, flexible array member-like
12486 arrays, and initializers of variables with static storage are not instrumented.
12487
12488 @item -fsanitize=bounds-strict
12489 @opindex fsanitize=bounds-strict
12490 This option enables strict instrumentation of array bounds. Most out of bounds
12491 accesses are detected, including flexible array members and flexible array
12492 member-like arrays. Initializers of variables with static storage are not
12493 instrumented.
12494
12495 @item -fsanitize=alignment
12496 @opindex fsanitize=alignment
12497
12498 This option enables checking of alignment of pointers when they are
12499 dereferenced, or when a reference is bound to insufficiently aligned target,
12500 or when a method or constructor is invoked on insufficiently aligned object.
12501
12502 @item -fsanitize=object-size
12503 @opindex fsanitize=object-size
12504 This option enables instrumentation of memory references using the
12505 @code{__builtin_object_size} function. Various out of bounds pointer
12506 accesses are detected.
12507
12508 @item -fsanitize=float-divide-by-zero
12509 @opindex fsanitize=float-divide-by-zero
12510 Detect floating-point division by zero. Unlike other similar options,
12511 @option{-fsanitize=float-divide-by-zero} is not enabled by
12512 @option{-fsanitize=undefined}, since floating-point division by zero can
12513 be a legitimate way of obtaining infinities and NaNs.
12514
12515 @item -fsanitize=float-cast-overflow
12516 @opindex fsanitize=float-cast-overflow
12517 This option enables floating-point type to integer conversion checking.
12518 We check that the result of the conversion does not overflow.
12519 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
12520 not enabled by @option{-fsanitize=undefined}.
12521 This option does not work well with @code{FE_INVALID} exceptions enabled.
12522
12523 @item -fsanitize=nonnull-attribute
12524 @opindex fsanitize=nonnull-attribute
12525
12526 This option enables instrumentation of calls, checking whether null values
12527 are not passed to arguments marked as requiring a non-null value by the
12528 @code{nonnull} function attribute.
12529
12530 @item -fsanitize=returns-nonnull-attribute
12531 @opindex fsanitize=returns-nonnull-attribute
12532
12533 This option enables instrumentation of return statements in functions
12534 marked with @code{returns_nonnull} function attribute, to detect returning
12535 of null values from such functions.
12536
12537 @item -fsanitize=bool
12538 @opindex fsanitize=bool
12539
12540 This option enables instrumentation of loads from bool. If a value other
12541 than 0/1 is loaded, a run-time error is issued.
12542
12543 @item -fsanitize=enum
12544 @opindex fsanitize=enum
12545
12546 This option enables instrumentation of loads from an enum type. If
12547 a value outside the range of values for the enum type is loaded,
12548 a run-time error is issued.
12549
12550 @item -fsanitize=vptr
12551 @opindex fsanitize=vptr
12552
12553 This option enables instrumentation of C++ member function calls, member
12554 accesses and some conversions between pointers to base and derived classes,
12555 to verify the referenced object has the correct dynamic type.
12556
12557 @item -fsanitize=pointer-overflow
12558 @opindex fsanitize=pointer-overflow
12559
12560 This option enables instrumentation of pointer arithmetics. If the pointer
12561 arithmetics overflows, a run-time error is issued.
12562
12563 @item -fsanitize=builtin
12564 @opindex fsanitize=builtin
12565
12566 This option enables instrumentation of arguments to selected builtin
12567 functions. If an invalid value is passed to such arguments, a run-time
12568 error is issued. E.g.@ passing 0 as the argument to @code{__builtin_ctz}
12569 or @code{__builtin_clz} invokes undefined behavior and is diagnosed
12570 by this option.
12571
12572 @end table
12573
12574 While @option{-ftrapv} causes traps for signed overflows to be emitted,
12575 @option{-fsanitize=undefined} gives a diagnostic message.
12576 This currently works only for the C family of languages.
12577
12578 @item -fno-sanitize=all
12579 @opindex fno-sanitize=all
12580
12581 This option disables all previously enabled sanitizers.
12582 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
12583 together.
12584
12585 @item -fasan-shadow-offset=@var{number}
12586 @opindex fasan-shadow-offset
12587 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
12588 It is useful for experimenting with different shadow memory layouts in
12589 Kernel AddressSanitizer.
12590
12591 @item -fsanitize-sections=@var{s1},@var{s2},...
12592 @opindex fsanitize-sections
12593 Sanitize global variables in selected user-defined sections. @var{si} may
12594 contain wildcards.
12595
12596 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
12597 @opindex fsanitize-recover
12598 @opindex fno-sanitize-recover
12599 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
12600 mentioned in comma-separated list of @var{opts}. Enabling this option
12601 for a sanitizer component causes it to attempt to continue
12602 running the program as if no error happened. This means multiple
12603 runtime errors can be reported in a single program run, and the exit
12604 code of the program may indicate success even when errors
12605 have been reported. The @option{-fno-sanitize-recover=} option
12606 can be used to alter
12607 this behavior: only the first detected error is reported
12608 and program then exits with a non-zero exit code.
12609
12610 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
12611 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
12612 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
12613 @option{-fsanitize=bounds-strict},
12614 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
12615 For these sanitizers error recovery is turned on by default,
12616 except @option{-fsanitize=address}, for which this feature is experimental.
12617 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
12618 accepted, the former enables recovery for all sanitizers that support it,
12619 the latter disables recovery for all sanitizers that support it.
12620
12621 Even if a recovery mode is turned on the compiler side, it needs to be also
12622 enabled on the runtime library side, otherwise the failures are still fatal.
12623 The runtime library defaults to @code{halt_on_error=0} for
12624 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
12625 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
12626 setting the @code{halt_on_error} flag in the corresponding environment variable.
12627
12628 Syntax without an explicit @var{opts} parameter is deprecated. It is
12629 equivalent to specifying an @var{opts} list of:
12630
12631 @smallexample
12632 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
12633 @end smallexample
12634
12635 @item -fsanitize-address-use-after-scope
12636 @opindex fsanitize-address-use-after-scope
12637 Enable sanitization of local variables to detect use-after-scope bugs.
12638 The option sets @option{-fstack-reuse} to @samp{none}.
12639
12640 @item -fsanitize-undefined-trap-on-error
12641 @opindex fsanitize-undefined-trap-on-error
12642 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
12643 report undefined behavior using @code{__builtin_trap} rather than
12644 a @code{libubsan} library routine. The advantage of this is that the
12645 @code{libubsan} library is not needed and is not linked in, so this
12646 is usable even in freestanding environments.
12647
12648 @item -fsanitize-coverage=trace-pc
12649 @opindex fsanitize-coverage=trace-pc
12650 Enable coverage-guided fuzzing code instrumentation.
12651 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
12652
12653 @item -fsanitize-coverage=trace-cmp
12654 @opindex fsanitize-coverage=trace-cmp
12655 Enable dataflow guided fuzzing code instrumentation.
12656 Inserts a call to @code{__sanitizer_cov_trace_cmp1},
12657 @code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
12658 @code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
12659 variable or @code{__sanitizer_cov_trace_const_cmp1},
12660 @code{__sanitizer_cov_trace_const_cmp2},
12661 @code{__sanitizer_cov_trace_const_cmp4} or
12662 @code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
12663 operand constant, @code{__sanitizer_cov_trace_cmpf} or
12664 @code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
12665 @code{__sanitizer_cov_trace_switch} for switch statements.
12666
12667 @item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
12668 @opindex fcf-protection
12669 Enable code instrumentation of control-flow transfers to increase
12670 program security by checking that target addresses of control-flow
12671 transfer instructions (such as indirect function call, function return,
12672 indirect jump) are valid. This prevents diverting the flow of control
12673 to an unexpected target. This is intended to protect against such
12674 threats as Return-oriented Programming (ROP), and similarly
12675 call/jmp-oriented programming (COP/JOP).
12676
12677 The value @code{branch} tells the compiler to implement checking of
12678 validity of control-flow transfer at the point of indirect branch
12679 instructions, i.e.@: call/jmp instructions. The value @code{return}
12680 implements checking of validity at the point of returning from a
12681 function. The value @code{full} is an alias for specifying both
12682 @code{branch} and @code{return}. The value @code{none} turns off
12683 instrumentation.
12684
12685 The macro @code{__CET__} is defined when @option{-fcf-protection} is
12686 used. The first bit of @code{__CET__} is set to 1 for the value
12687 @code{branch} and the second bit of @code{__CET__} is set to 1 for
12688 the @code{return}.
12689
12690 You can also use the @code{nocf_check} attribute to identify
12691 which functions and calls should be skipped from instrumentation
12692 (@pxref{Function Attributes}).
12693
12694 Currently the x86 GNU/Linux target provides an implementation based
12695 on Intel Control-flow Enforcement Technology (CET).
12696
12697 @item -fstack-protector
12698 @opindex fstack-protector
12699 Emit extra code to check for buffer overflows, such as stack smashing
12700 attacks. This is done by adding a guard variable to functions with
12701 vulnerable objects. This includes functions that call @code{alloca}, and
12702 functions with buffers larger than 8 bytes. The guards are initialized
12703 when a function is entered and then checked when the function exits.
12704 If a guard check fails, an error message is printed and the program exits.
12705
12706 @item -fstack-protector-all
12707 @opindex fstack-protector-all
12708 Like @option{-fstack-protector} except that all functions are protected.
12709
12710 @item -fstack-protector-strong
12711 @opindex fstack-protector-strong
12712 Like @option{-fstack-protector} but includes additional functions to
12713 be protected --- those that have local array definitions, or have
12714 references to local frame addresses.
12715
12716 @item -fstack-protector-explicit
12717 @opindex fstack-protector-explicit
12718 Like @option{-fstack-protector} but only protects those functions which
12719 have the @code{stack_protect} attribute.
12720
12721 @item -fstack-check
12722 @opindex fstack-check
12723 Generate code to verify that you do not go beyond the boundary of the
12724 stack. You should specify this flag if you are running in an
12725 environment with multiple threads, but you only rarely need to specify it in
12726 a single-threaded environment since stack overflow is automatically
12727 detected on nearly all systems if there is only one stack.
12728
12729 Note that this switch does not actually cause checking to be done; the
12730 operating system or the language runtime must do that. The switch causes
12731 generation of code to ensure that they see the stack being extended.
12732
12733 You can additionally specify a string parameter: @samp{no} means no
12734 checking, @samp{generic} means force the use of old-style checking,
12735 @samp{specific} means use the best checking method and is equivalent
12736 to bare @option{-fstack-check}.
12737
12738 Old-style checking is a generic mechanism that requires no specific
12739 target support in the compiler but comes with the following drawbacks:
12740
12741 @enumerate
12742 @item
12743 Modified allocation strategy for large objects: they are always
12744 allocated dynamically if their size exceeds a fixed threshold. Note this
12745 may change the semantics of some code.
12746
12747 @item
12748 Fixed limit on the size of the static frame of functions: when it is
12749 topped by a particular function, stack checking is not reliable and
12750 a warning is issued by the compiler.
12751
12752 @item
12753 Inefficiency: because of both the modified allocation strategy and the
12754 generic implementation, code performance is hampered.
12755 @end enumerate
12756
12757 Note that old-style stack checking is also the fallback method for
12758 @samp{specific} if no target support has been added in the compiler.
12759
12760 @samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
12761 and stack overflows. @samp{specific} is an excellent choice when compiling
12762 Ada code. It is not generally sufficient to protect against stack-clash
12763 attacks. To protect against those you want @samp{-fstack-clash-protection}.
12764
12765 @item -fstack-clash-protection
12766 @opindex fstack-clash-protection
12767 Generate code to prevent stack clash style attacks. When this option is
12768 enabled, the compiler will only allocate one page of stack space at a time
12769 and each page is accessed immediately after allocation. Thus, it prevents
12770 allocations from jumping over any stack guard page provided by the
12771 operating system.
12772
12773 Most targets do not fully support stack clash protection. However, on
12774 those targets @option{-fstack-clash-protection} will protect dynamic stack
12775 allocations. @option{-fstack-clash-protection} may also provide limited
12776 protection for static stack allocations if the target supports
12777 @option{-fstack-check=specific}.
12778
12779 @item -fstack-limit-register=@var{reg}
12780 @itemx -fstack-limit-symbol=@var{sym}
12781 @itemx -fno-stack-limit
12782 @opindex fstack-limit-register
12783 @opindex fstack-limit-symbol
12784 @opindex fno-stack-limit
12785 Generate code to ensure that the stack does not grow beyond a certain value,
12786 either the value of a register or the address of a symbol. If a larger
12787 stack is required, a signal is raised at run time. For most targets,
12788 the signal is raised before the stack overruns the boundary, so
12789 it is possible to catch the signal without taking special precautions.
12790
12791 For instance, if the stack starts at absolute address @samp{0x80000000}
12792 and grows downwards, you can use the flags
12793 @option{-fstack-limit-symbol=__stack_limit} and
12794 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
12795 of 128KB@. Note that this may only work with the GNU linker.
12796
12797 You can locally override stack limit checking by using the
12798 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
12799
12800 @item -fsplit-stack
12801 @opindex fsplit-stack
12802 Generate code to automatically split the stack before it overflows.
12803 The resulting program has a discontiguous stack which can only
12804 overflow if the program is unable to allocate any more memory. This
12805 is most useful when running threaded programs, as it is no longer
12806 necessary to calculate a good stack size to use for each thread. This
12807 is currently only implemented for the x86 targets running
12808 GNU/Linux.
12809
12810 When code compiled with @option{-fsplit-stack} calls code compiled
12811 without @option{-fsplit-stack}, there may not be much stack space
12812 available for the latter code to run. If compiling all code,
12813 including library code, with @option{-fsplit-stack} is not an option,
12814 then the linker can fix up these calls so that the code compiled
12815 without @option{-fsplit-stack} always has a large stack. Support for
12816 this is implemented in the gold linker in GNU binutils release 2.21
12817 and later.
12818
12819 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
12820 @opindex fvtable-verify
12821 This option is only available when compiling C++ code.
12822 It turns on (or off, if using @option{-fvtable-verify=none}) the security
12823 feature that verifies at run time, for every virtual call, that
12824 the vtable pointer through which the call is made is valid for the type of
12825 the object, and has not been corrupted or overwritten. If an invalid vtable
12826 pointer is detected at run time, an error is reported and execution of the
12827 program is immediately halted.
12828
12829 This option causes run-time data structures to be built at program startup,
12830 which are used for verifying the vtable pointers.
12831 The options @samp{std} and @samp{preinit}
12832 control the timing of when these data structures are built. In both cases the
12833 data structures are built before execution reaches @code{main}. Using
12834 @option{-fvtable-verify=std} causes the data structures to be built after
12835 shared libraries have been loaded and initialized.
12836 @option{-fvtable-verify=preinit} causes them to be built before shared
12837 libraries have been loaded and initialized.
12838
12839 If this option appears multiple times in the command line with different
12840 values specified, @samp{none} takes highest priority over both @samp{std} and
12841 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
12842
12843 @item -fvtv-debug
12844 @opindex fvtv-debug
12845 When used in conjunction with @option{-fvtable-verify=std} or
12846 @option{-fvtable-verify=preinit}, causes debug versions of the
12847 runtime functions for the vtable verification feature to be called.
12848 This flag also causes the compiler to log information about which
12849 vtable pointers it finds for each class.
12850 This information is written to a file named @file{vtv_set_ptr_data.log}
12851 in the directory named by the environment variable @env{VTV_LOGS_DIR}
12852 if that is defined or the current working directory otherwise.
12853
12854 Note: This feature @emph{appends} data to the log file. If you want a fresh log
12855 file, be sure to delete any existing one.
12856
12857 @item -fvtv-counts
12858 @opindex fvtv-counts
12859 This is a debugging flag. When used in conjunction with
12860 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
12861 causes the compiler to keep track of the total number of virtual calls
12862 it encounters and the number of verifications it inserts. It also
12863 counts the number of calls to certain run-time library functions
12864 that it inserts and logs this information for each compilation unit.
12865 The compiler writes this information to a file named
12866 @file{vtv_count_data.log} in the directory named by the environment
12867 variable @env{VTV_LOGS_DIR} if that is defined or the current working
12868 directory otherwise. It also counts the size of the vtable pointer sets
12869 for each class, and writes this information to @file{vtv_class_set_sizes.log}
12870 in the same directory.
12871
12872 Note: This feature @emph{appends} data to the log files. To get fresh log
12873 files, be sure to delete any existing ones.
12874
12875 @item -finstrument-functions
12876 @opindex finstrument-functions
12877 Generate instrumentation calls for entry and exit to functions. Just
12878 after function entry and just before function exit, the following
12879 profiling functions are called with the address of the current
12880 function and its call site. (On some platforms,
12881 @code{__builtin_return_address} does not work beyond the current
12882 function, so the call site information may not be available to the
12883 profiling functions otherwise.)
12884
12885 @smallexample
12886 void __cyg_profile_func_enter (void *this_fn,
12887 void *call_site);
12888 void __cyg_profile_func_exit (void *this_fn,
12889 void *call_site);
12890 @end smallexample
12891
12892 The first argument is the address of the start of the current function,
12893 which may be looked up exactly in the symbol table.
12894
12895 This instrumentation is also done for functions expanded inline in other
12896 functions. The profiling calls indicate where, conceptually, the
12897 inline function is entered and exited. This means that addressable
12898 versions of such functions must be available. If all your uses of a
12899 function are expanded inline, this may mean an additional expansion of
12900 code size. If you use @code{extern inline} in your C code, an
12901 addressable version of such functions must be provided. (This is
12902 normally the case anyway, but if you get lucky and the optimizer always
12903 expands the functions inline, you might have gotten away without
12904 providing static copies.)
12905
12906 A function may be given the attribute @code{no_instrument_function}, in
12907 which case this instrumentation is not done. This can be used, for
12908 example, for the profiling functions listed above, high-priority
12909 interrupt routines, and any functions from which the profiling functions
12910 cannot safely be called (perhaps signal handlers, if the profiling
12911 routines generate output or allocate memory).
12912 @xref{Common Function Attributes}.
12913
12914 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
12915 @opindex finstrument-functions-exclude-file-list
12916
12917 Set the list of functions that are excluded from instrumentation (see
12918 the description of @option{-finstrument-functions}). If the file that
12919 contains a function definition matches with one of @var{file}, then
12920 that function is not instrumented. The match is done on substrings:
12921 if the @var{file} parameter is a substring of the file name, it is
12922 considered to be a match.
12923
12924 For example:
12925
12926 @smallexample
12927 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
12928 @end smallexample
12929
12930 @noindent
12931 excludes any inline function defined in files whose pathnames
12932 contain @file{/bits/stl} or @file{include/sys}.
12933
12934 If, for some reason, you want to include letter @samp{,} in one of
12935 @var{sym}, write @samp{\,}. For example,
12936 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
12937 (note the single quote surrounding the option).
12938
12939 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
12940 @opindex finstrument-functions-exclude-function-list
12941
12942 This is similar to @option{-finstrument-functions-exclude-file-list},
12943 but this option sets the list of function names to be excluded from
12944 instrumentation. The function name to be matched is its user-visible
12945 name, such as @code{vector<int> blah(const vector<int> &)}, not the
12946 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
12947 match is done on substrings: if the @var{sym} parameter is a substring
12948 of the function name, it is considered to be a match. For C99 and C++
12949 extended identifiers, the function name must be given in UTF-8, not
12950 using universal character names.
12951
12952 @item -fpatchable-function-entry=@var{N}[,@var{M}]
12953 @opindex fpatchable-function-entry
12954 Generate @var{N} NOPs right at the beginning
12955 of each function, with the function entry point before the @var{M}th NOP.
12956 If @var{M} is omitted, it defaults to @code{0} so the
12957 function entry points to the address just at the first NOP.
12958 The NOP instructions reserve extra space which can be used to patch in
12959 any desired instrumentation at run time, provided that the code segment
12960 is writable. The amount of space is controllable indirectly via
12961 the number of NOPs; the NOP instruction used corresponds to the instruction
12962 emitted by the internal GCC back-end interface @code{gen_nop}. This behavior
12963 is target-specific and may also depend on the architecture variant and/or
12964 other compilation options.
12965
12966 For run-time identification, the starting addresses of these areas,
12967 which correspond to their respective function entries minus @var{M},
12968 are additionally collected in the @code{__patchable_function_entries}
12969 section of the resulting binary.
12970
12971 Note that the value of @code{__attribute__ ((patchable_function_entry
12972 (N,M)))} takes precedence over command-line option
12973 @option{-fpatchable-function-entry=N,M}. This can be used to increase
12974 the area size or to remove it completely on a single function.
12975 If @code{N=0}, no pad location is recorded.
12976
12977 The NOP instructions are inserted at---and maybe before, depending on
12978 @var{M}---the function entry address, even before the prologue.
12979
12980 @end table
12981
12982
12983 @node Preprocessor Options
12984 @section Options Controlling the Preprocessor
12985 @cindex preprocessor options
12986 @cindex options, preprocessor
12987
12988 These options control the C preprocessor, which is run on each C source
12989 file before actual compilation.
12990
12991 If you use the @option{-E} option, nothing is done except preprocessing.
12992 Some of these options make sense only together with @option{-E} because
12993 they cause the preprocessor output to be unsuitable for actual
12994 compilation.
12995
12996 In addition to the options listed here, there are a number of options
12997 to control search paths for include files documented in
12998 @ref{Directory Options}.
12999 Options to control preprocessor diagnostics are listed in
13000 @ref{Warning Options}.
13001
13002 @table @gcctabopt
13003 @include cppopts.texi
13004
13005 @item -Wp,@var{option}
13006 @opindex Wp
13007 You can use @option{-Wp,@var{option}} to bypass the compiler driver
13008 and pass @var{option} directly through to the preprocessor. If
13009 @var{option} contains commas, it is split into multiple options at the
13010 commas. However, many options are modified, translated or interpreted
13011 by the compiler driver before being passed to the preprocessor, and
13012 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
13013 interface is undocumented and subject to change, so whenever possible
13014 you should avoid using @option{-Wp} and let the driver handle the
13015 options instead.
13016
13017 @item -Xpreprocessor @var{option}
13018 @opindex Xpreprocessor
13019 Pass @var{option} as an option to the preprocessor. You can use this to
13020 supply system-specific preprocessor options that GCC does not
13021 recognize.
13022
13023 If you want to pass an option that takes an argument, you must use
13024 @option{-Xpreprocessor} twice, once for the option and once for the argument.
13025
13026 @item -no-integrated-cpp
13027 @opindex no-integrated-cpp
13028 Perform preprocessing as a separate pass before compilation.
13029 By default, GCC performs preprocessing as an integrated part of
13030 input tokenization and parsing.
13031 If this option is provided, the appropriate language front end
13032 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
13033 and Objective-C, respectively) is instead invoked twice,
13034 once for preprocessing only and once for actual compilation
13035 of the preprocessed input.
13036 This option may be useful in conjunction with the @option{-B} or
13037 @option{-wrapper} options to specify an alternate preprocessor or
13038 perform additional processing of the program source between
13039 normal preprocessing and compilation.
13040
13041 @end table
13042
13043 @node Assembler Options
13044 @section Passing Options to the Assembler
13045
13046 @c prevent bad page break with this line
13047 You can pass options to the assembler.
13048
13049 @table @gcctabopt
13050 @item -Wa,@var{option}
13051 @opindex Wa
13052 Pass @var{option} as an option to the assembler. If @var{option}
13053 contains commas, it is split into multiple options at the commas.
13054
13055 @item -Xassembler @var{option}
13056 @opindex Xassembler
13057 Pass @var{option} as an option to the assembler. You can use this to
13058 supply system-specific assembler options that GCC does not
13059 recognize.
13060
13061 If you want to pass an option that takes an argument, you must use
13062 @option{-Xassembler} twice, once for the option and once for the argument.
13063
13064 @end table
13065
13066 @node Link Options
13067 @section Options for Linking
13068 @cindex link options
13069 @cindex options, linking
13070
13071 These options come into play when the compiler links object files into
13072 an executable output file. They are meaningless if the compiler is
13073 not doing a link step.
13074
13075 @table @gcctabopt
13076 @cindex file names
13077 @item @var{object-file-name}
13078 A file name that does not end in a special recognized suffix is
13079 considered to name an object file or library. (Object files are
13080 distinguished from libraries by the linker according to the file
13081 contents.) If linking is done, these object files are used as input
13082 to the linker.
13083
13084 @item -c
13085 @itemx -S
13086 @itemx -E
13087 @opindex c
13088 @opindex S
13089 @opindex E
13090 If any of these options is used, then the linker is not run, and
13091 object file names should not be used as arguments. @xref{Overall
13092 Options}.
13093
13094 @item -flinker-output=@var{type}
13095 @opindex flinker-output
13096 This option controls the code generation of the link time optimizer. By
13097 default the linker output is determined by the linker plugin automatically. For
13098 debugging the compiler and in the case of incremental linking to non-lto object
13099 file is desired, it may be useful to control the type manually.
13100
13101 If @var{type} is @samp{exec} the code generation is configured to produce static
13102 binary. In this case @option{-fpic} and @option{-fpie} are both disabled.
13103
13104 If @var{type} is @samp{dyn} the code generation is configured to produce shared
13105 library. In this case @option{-fpic} or @option{-fPIC} is preserved, but not
13106 enabled automatically. This makes it possible to build shared libraries without
13107 position independent code on architectures this is possible, i.e.@: on x86.
13108
13109 If @var{type} is @samp{pie} the code generation is configured to produce
13110 @option{-fpie} executable. This result in similar optimizations as @samp{exec}
13111 except that @option{-fpie} is not disabled if specified at compilation time.
13112
13113 If @var{type} is @samp{rel} the compiler assumes that incremental linking is
13114 done. The sections containing intermediate code for link-time optimization are
13115 merged, pre-optimized, and output to the resulting object file. In addition, if
13116 @option{-ffat-lto-objects} is specified the binary code is produced for future
13117 non-lto linking. The object file produced by incremental linking will be smaller
13118 than a static library produced from the same object files. At link-time the
13119 result of incremental linking will also load faster to compiler than a static
13120 library assuming that majority of objects in the library are used.
13121
13122 Finally @samp{nolto-rel} configure compiler to for incremental linking where
13123 code generation is forced, final binary is produced and the intermediate code
13124 for later link-time optimization is stripped. When multiple object files are
13125 linked together the resulting code will be optimized better than with link time
13126 optimizations disabled (for example, the cross-module inlining will happen),
13127 most of benefits of whole program optimizations are however lost.
13128
13129 During the incremental link (by @option{-r}) the linker plugin will default to
13130 @option{rel}. With current interfaces to GNU Binutils it is however not
13131 possible to link incrementally LTO objects and non-LTO objects into a single
13132 mixed object file. In the case any of object files in incremental link cannot
13133 be used for link-time optimization the linker plugin will output warning and
13134 use @samp{nolto-rel}. To maintain the whole program optimization it is
13135 recommended to link such objects into static library instead. Alternatively it
13136 is possible to use H.J. Lu's binutils with support for mixed objects.
13137
13138 @item -fuse-ld=bfd
13139 @opindex fuse-ld=bfd
13140 Use the @command{bfd} linker instead of the default linker.
13141
13142 @item -fuse-ld=gold
13143 @opindex fuse-ld=gold
13144 Use the @command{gold} linker instead of the default linker.
13145
13146 @item -fuse-ld=lld
13147 @opindex fuse-ld=lld
13148 Use the LLVM @command{lld} linker instead of the default linker.
13149
13150 @cindex Libraries
13151 @item -l@var{library}
13152 @itemx -l @var{library}
13153 @opindex l
13154 Search the library named @var{library} when linking. (The second
13155 alternative with the library as a separate argument is only for
13156 POSIX compliance and is not recommended.)
13157
13158 The @option{-l} option is passed directly to the linker by GCC. Refer
13159 to your linker documentation for exact details. The general
13160 description below applies to the GNU linker.
13161
13162 The linker searches a standard list of directories for the library.
13163 The directories searched include several standard system directories
13164 plus any that you specify with @option{-L}.
13165
13166 Static libraries are archives of object files, and have file names
13167 like @file{lib@var{library}.a}. Some targets also support shared
13168 libraries, which typically have names like @file{lib@var{library}.so}.
13169 If both static and shared libraries are found, the linker gives
13170 preference to linking with the shared library unless the
13171 @option{-static} option is used.
13172
13173 It makes a difference where in the command you write this option; the
13174 linker searches and processes libraries and object files in the order they
13175 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
13176 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
13177 to functions in @samp{z}, those functions may not be loaded.
13178
13179 @item -lobjc
13180 @opindex lobjc
13181 You need this special case of the @option{-l} option in order to
13182 link an Objective-C or Objective-C++ program.
13183
13184 @item -nostartfiles
13185 @opindex nostartfiles
13186 Do not use the standard system startup files when linking.
13187 The standard system libraries are used normally, unless @option{-nostdlib},
13188 @option{-nolibc}, or @option{-nodefaultlibs} is used.
13189
13190 @item -nodefaultlibs
13191 @opindex nodefaultlibs
13192 Do not use the standard system libraries when linking.
13193 Only the libraries you specify are passed to the linker, and options
13194 specifying linkage of the system libraries, such as @option{-static-libgcc}
13195 or @option{-shared-libgcc}, are ignored.
13196 The standard startup files are used normally, unless @option{-nostartfiles}
13197 is used.
13198
13199 The compiler may generate calls to @code{memcmp},
13200 @code{memset}, @code{memcpy} and @code{memmove}.
13201 These entries are usually resolved by entries in
13202 libc. These entry points should be supplied through some other
13203 mechanism when this option is specified.
13204
13205 @item -nolibc
13206 @opindex nolibc
13207 Do not use the C library or system libraries tightly coupled with it when
13208 linking. Still link with the startup files, @file{libgcc} or toolchain
13209 provided language support libraries such as @file{libgnat}, @file{libgfortran}
13210 or @file{libstdc++} unless options preventing their inclusion are used as
13211 well. This typically removes @option{-lc} from the link command line, as well
13212 as system libraries that normally go with it and become meaningless when
13213 absence of a C library is assumed, for example @option{-lpthread} or
13214 @option{-lm} in some configurations. This is intended for bare-board
13215 targets when there is indeed no C library available.
13216
13217 @item -nostdlib
13218 @opindex nostdlib
13219 Do not use the standard system startup files or libraries when linking.
13220 No startup files and only the libraries you specify are passed to
13221 the linker, and options specifying linkage of the system libraries, such as
13222 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
13223
13224 The compiler may generate calls to @code{memcmp}, @code{memset},
13225 @code{memcpy} and @code{memmove}.
13226 These entries are usually resolved by entries in
13227 libc. These entry points should be supplied through some other
13228 mechanism when this option is specified.
13229
13230 @cindex @option{-lgcc}, use with @option{-nostdlib}
13231 @cindex @option{-nostdlib} and unresolved references
13232 @cindex unresolved references and @option{-nostdlib}
13233 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
13234 @cindex @option{-nodefaultlibs} and unresolved references
13235 @cindex unresolved references and @option{-nodefaultlibs}
13236 One of the standard libraries bypassed by @option{-nostdlib} and
13237 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
13238 which GCC uses to overcome shortcomings of particular machines, or special
13239 needs for some languages.
13240 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
13241 Collection (GCC) Internals},
13242 for more discussion of @file{libgcc.a}.)
13243 In most cases, you need @file{libgcc.a} even when you want to avoid
13244 other standard libraries. In other words, when you specify @option{-nostdlib}
13245 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
13246 This ensures that you have no unresolved references to internal GCC
13247 library subroutines.
13248 (An example of such an internal subroutine is @code{__main}, used to ensure C++
13249 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
13250 GNU Compiler Collection (GCC) Internals}.)
13251
13252 @item -e @var{entry}
13253 @itemx --entry=@var{entry}
13254 @opindex e
13255 @opindex entry
13256
13257 Specify that the program entry point is @var{entry}. The argument is
13258 interpreted by the linker; the GNU linker accepts either a symbol name
13259 or an address.
13260
13261 @item -pie
13262 @opindex pie
13263 Produce a dynamically linked position independent executable on targets
13264 that support it. For predictable results, you must also specify the same
13265 set of options used for compilation (@option{-fpie}, @option{-fPIE},
13266 or model suboptions) when you specify this linker option.
13267
13268 @item -no-pie
13269 @opindex no-pie
13270 Don't produce a dynamically linked position independent executable.
13271
13272 @item -static-pie
13273 @opindex static-pie
13274 Produce a static position independent executable on targets that support
13275 it. A static position independent executable is similar to a static
13276 executable, but can be loaded at any address without a dynamic linker.
13277 For predictable results, you must also specify the same set of options
13278 used for compilation (@option{-fpie}, @option{-fPIE}, or model
13279 suboptions) when you specify this linker option.
13280
13281 @item -pthread
13282 @opindex pthread
13283 Link with the POSIX threads library. This option is supported on
13284 GNU/Linux targets, most other Unix derivatives, and also on
13285 x86 Cygwin and MinGW targets. On some targets this option also sets
13286 flags for the preprocessor, so it should be used consistently for both
13287 compilation and linking.
13288
13289 @item -r
13290 @opindex r
13291 Produce a relocatable object as output. This is also known as partial
13292 linking.
13293
13294 @item -rdynamic
13295 @opindex rdynamic
13296 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
13297 that support it. This instructs the linker to add all symbols, not
13298 only used ones, to the dynamic symbol table. This option is needed
13299 for some uses of @code{dlopen} or to allow obtaining backtraces
13300 from within a program.
13301
13302 @item -s
13303 @opindex s
13304 Remove all symbol table and relocation information from the executable.
13305
13306 @item -static
13307 @opindex static
13308 On systems that support dynamic linking, this overrides @option{-pie}
13309 and prevents linking with the shared libraries. On other systems, this
13310 option has no effect.
13311
13312 @item -shared
13313 @opindex shared
13314 Produce a shared object which can then be linked with other objects to
13315 form an executable. Not all systems support this option. For predictable
13316 results, you must also specify the same set of options used for compilation
13317 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
13318 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
13319 needs to build supplementary stub code for constructors to work. On
13320 multi-libbed systems, @samp{gcc -shared} must select the correct support
13321 libraries to link against. Failing to supply the correct flags may lead
13322 to subtle defects. Supplying them in cases where they are not necessary
13323 is innocuous.}
13324
13325 @item -shared-libgcc
13326 @itemx -static-libgcc
13327 @opindex shared-libgcc
13328 @opindex static-libgcc
13329 On systems that provide @file{libgcc} as a shared library, these options
13330 force the use of either the shared or static version, respectively.
13331 If no shared version of @file{libgcc} was built when the compiler was
13332 configured, these options have no effect.
13333
13334 There are several situations in which an application should use the
13335 shared @file{libgcc} instead of the static version. The most common
13336 of these is when the application wishes to throw and catch exceptions
13337 across different shared libraries. In that case, each of the libraries
13338 as well as the application itself should use the shared @file{libgcc}.
13339
13340 Therefore, the G++ driver automatically adds @option{-shared-libgcc}
13341 whenever you build a shared library or a main executable, because C++
13342 programs typically use exceptions, so this is the right thing to do.
13343
13344 If, instead, you use the GCC driver to create shared libraries, you may
13345 find that they are not always linked with the shared @file{libgcc}.
13346 If GCC finds, at its configuration time, that you have a non-GNU linker
13347 or a GNU linker that does not support option @option{--eh-frame-hdr},
13348 it links the shared version of @file{libgcc} into shared libraries
13349 by default. Otherwise, it takes advantage of the linker and optimizes
13350 away the linking with the shared version of @file{libgcc}, linking with
13351 the static version of libgcc by default. This allows exceptions to
13352 propagate through such shared libraries, without incurring relocation
13353 costs at library load time.
13354
13355 However, if a library or main executable is supposed to throw or catch
13356 exceptions, you must link it using the G++ driver, or using the option
13357 @option{-shared-libgcc}, such that it is linked with the shared
13358 @file{libgcc}.
13359
13360 @item -static-libasan
13361 @opindex static-libasan
13362 When the @option{-fsanitize=address} option is used to link a program,
13363 the GCC driver automatically links against @option{libasan}. If
13364 @file{libasan} is available as a shared library, and the @option{-static}
13365 option is not used, then this links against the shared version of
13366 @file{libasan}. The @option{-static-libasan} option directs the GCC
13367 driver to link @file{libasan} statically, without necessarily linking
13368 other libraries statically.
13369
13370 @item -static-libtsan
13371 @opindex static-libtsan
13372 When the @option{-fsanitize=thread} option is used to link a program,
13373 the GCC driver automatically links against @option{libtsan}. If
13374 @file{libtsan} is available as a shared library, and the @option{-static}
13375 option is not used, then this links against the shared version of
13376 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
13377 driver to link @file{libtsan} statically, without necessarily linking
13378 other libraries statically.
13379
13380 @item -static-liblsan
13381 @opindex static-liblsan
13382 When the @option{-fsanitize=leak} option is used to link a program,
13383 the GCC driver automatically links against @option{liblsan}. If
13384 @file{liblsan} is available as a shared library, and the @option{-static}
13385 option is not used, then this links against the shared version of
13386 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
13387 driver to link @file{liblsan} statically, without necessarily linking
13388 other libraries statically.
13389
13390 @item -static-libubsan
13391 @opindex static-libubsan
13392 When the @option{-fsanitize=undefined} option is used to link a program,
13393 the GCC driver automatically links against @option{libubsan}. If
13394 @file{libubsan} is available as a shared library, and the @option{-static}
13395 option is not used, then this links against the shared version of
13396 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
13397 driver to link @file{libubsan} statically, without necessarily linking
13398 other libraries statically.
13399
13400 @item -static-libstdc++
13401 @opindex static-libstdc++
13402 When the @command{g++} program is used to link a C++ program, it
13403 normally automatically links against @option{libstdc++}. If
13404 @file{libstdc++} is available as a shared library, and the
13405 @option{-static} option is not used, then this links against the
13406 shared version of @file{libstdc++}. That is normally fine. However, it
13407 is sometimes useful to freeze the version of @file{libstdc++} used by
13408 the program without going all the way to a fully static link. The
13409 @option{-static-libstdc++} option directs the @command{g++} driver to
13410 link @file{libstdc++} statically, without necessarily linking other
13411 libraries statically.
13412
13413 @item -symbolic
13414 @opindex symbolic
13415 Bind references to global symbols when building a shared object. Warn
13416 about any unresolved references (unless overridden by the link editor
13417 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
13418 this option.
13419
13420 @item -T @var{script}
13421 @opindex T
13422 @cindex linker script
13423 Use @var{script} as the linker script. This option is supported by most
13424 systems using the GNU linker. On some targets, such as bare-board
13425 targets without an operating system, the @option{-T} option may be required
13426 when linking to avoid references to undefined symbols.
13427
13428 @item -Xlinker @var{option}
13429 @opindex Xlinker
13430 Pass @var{option} as an option to the linker. You can use this to
13431 supply system-specific linker options that GCC does not recognize.
13432
13433 If you want to pass an option that takes a separate argument, you must use
13434 @option{-Xlinker} twice, once for the option and once for the argument.
13435 For example, to pass @option{-assert definitions}, you must write
13436 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
13437 @option{-Xlinker "-assert definitions"}, because this passes the entire
13438 string as a single argument, which is not what the linker expects.
13439
13440 When using the GNU linker, it is usually more convenient to pass
13441 arguments to linker options using the @option{@var{option}=@var{value}}
13442 syntax than as separate arguments. For example, you can specify
13443 @option{-Xlinker -Map=output.map} rather than
13444 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
13445 this syntax for command-line options.
13446
13447 @item -Wl,@var{option}
13448 @opindex Wl
13449 Pass @var{option} as an option to the linker. If @var{option} contains
13450 commas, it is split into multiple options at the commas. You can use this
13451 syntax to pass an argument to the option.
13452 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
13453 linker. When using the GNU linker, you can also get the same effect with
13454 @option{-Wl,-Map=output.map}.
13455
13456 @item -u @var{symbol}
13457 @opindex u
13458 Pretend the symbol @var{symbol} is undefined, to force linking of
13459 library modules to define it. You can use @option{-u} multiple times with
13460 different symbols to force loading of additional library modules.
13461
13462 @item -z @var{keyword}
13463 @opindex z
13464 @option{-z} is passed directly on to the linker along with the keyword
13465 @var{keyword}. See the section in the documentation of your linker for
13466 permitted values and their meanings.
13467 @end table
13468
13469 @node Directory Options
13470 @section Options for Directory Search
13471 @cindex directory options
13472 @cindex options, directory search
13473 @cindex search path
13474
13475 These options specify directories to search for header files, for
13476 libraries and for parts of the compiler:
13477
13478 @table @gcctabopt
13479 @include cppdiropts.texi
13480
13481 @item -iplugindir=@var{dir}
13482 @opindex iplugindir=
13483 Set the directory to search for plugins that are passed
13484 by @option{-fplugin=@var{name}} instead of
13485 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
13486 to be used by the user, but only passed by the driver.
13487
13488 @item -L@var{dir}
13489 @opindex L
13490 Add directory @var{dir} to the list of directories to be searched
13491 for @option{-l}.
13492
13493 @item -B@var{prefix}
13494 @opindex B
13495 This option specifies where to find the executables, libraries,
13496 include files, and data files of the compiler itself.
13497
13498 The compiler driver program runs one or more of the subprograms
13499 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
13500 @var{prefix} as a prefix for each program it tries to run, both with and
13501 without @samp{@var{machine}/@var{version}/} for the corresponding target
13502 machine and compiler version.
13503
13504 For each subprogram to be run, the compiler driver first tries the
13505 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
13506 is not specified, the driver tries two standard prefixes,
13507 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
13508 those results in a file name that is found, the unmodified program
13509 name is searched for using the directories specified in your
13510 @env{PATH} environment variable.
13511
13512 The compiler checks to see if the path provided by @option{-B}
13513 refers to a directory, and if necessary it adds a directory
13514 separator character at the end of the path.
13515
13516 @option{-B} prefixes that effectively specify directory names also apply
13517 to libraries in the linker, because the compiler translates these
13518 options into @option{-L} options for the linker. They also apply to
13519 include files in the preprocessor, because the compiler translates these
13520 options into @option{-isystem} options for the preprocessor. In this case,
13521 the compiler appends @samp{include} to the prefix.
13522
13523 The runtime support file @file{libgcc.a} can also be searched for using
13524 the @option{-B} prefix, if needed. If it is not found there, the two
13525 standard prefixes above are tried, and that is all. The file is left
13526 out of the link if it is not found by those means.
13527
13528 Another way to specify a prefix much like the @option{-B} prefix is to use
13529 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
13530 Variables}.
13531
13532 As a special kludge, if the path provided by @option{-B} is
13533 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
13534 9, then it is replaced by @file{[dir/]include}. This is to help
13535 with boot-strapping the compiler.
13536
13537 @item -no-canonical-prefixes
13538 @opindex no-canonical-prefixes
13539 Do not expand any symbolic links, resolve references to @samp{/../}
13540 or @samp{/./}, or make the path absolute when generating a relative
13541 prefix.
13542
13543 @item --sysroot=@var{dir}
13544 @opindex sysroot
13545 Use @var{dir} as the logical root directory for headers and libraries.
13546 For example, if the compiler normally searches for headers in
13547 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
13548 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
13549
13550 If you use both this option and the @option{-isysroot} option, then
13551 the @option{--sysroot} option applies to libraries, but the
13552 @option{-isysroot} option applies to header files.
13553
13554 The GNU linker (beginning with version 2.16) has the necessary support
13555 for this option. If your linker does not support this option, the
13556 header file aspect of @option{--sysroot} still works, but the
13557 library aspect does not.
13558
13559 @item --no-sysroot-suffix
13560 @opindex no-sysroot-suffix
13561 For some targets, a suffix is added to the root directory specified
13562 with @option{--sysroot}, depending on the other options used, so that
13563 headers may for example be found in
13564 @file{@var{dir}/@var{suffix}/usr/include} instead of
13565 @file{@var{dir}/usr/include}. This option disables the addition of
13566 such a suffix.
13567
13568 @end table
13569
13570 @node Code Gen Options
13571 @section Options for Code Generation Conventions
13572 @cindex code generation conventions
13573 @cindex options, code generation
13574 @cindex run-time options
13575
13576 These machine-independent options control the interface conventions
13577 used in code generation.
13578
13579 Most of them have both positive and negative forms; the negative form
13580 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
13581 one of the forms is listed---the one that is not the default. You
13582 can figure out the other form by either removing @samp{no-} or adding
13583 it.
13584
13585 @table @gcctabopt
13586 @item -fstack-reuse=@var{reuse-level}
13587 @opindex fstack_reuse
13588 This option controls stack space reuse for user declared local/auto variables
13589 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
13590 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
13591 local variables and temporaries, @samp{named_vars} enables the reuse only for
13592 user defined local variables with names, and @samp{none} disables stack reuse
13593 completely. The default value is @samp{all}. The option is needed when the
13594 program extends the lifetime of a scoped local variable or a compiler generated
13595 temporary beyond the end point defined by the language. When a lifetime of
13596 a variable ends, and if the variable lives in memory, the optimizing compiler
13597 has the freedom to reuse its stack space with other temporaries or scoped
13598 local variables whose live range does not overlap with it. Legacy code extending
13599 local lifetime is likely to break with the stack reuse optimization.
13600
13601 For example,
13602
13603 @smallexample
13604 int *p;
13605 @{
13606 int local1;
13607
13608 p = &local1;
13609 local1 = 10;
13610 ....
13611 @}
13612 @{
13613 int local2;
13614 local2 = 20;
13615 ...
13616 @}
13617
13618 if (*p == 10) // out of scope use of local1
13619 @{
13620
13621 @}
13622 @end smallexample
13623
13624 Another example:
13625 @smallexample
13626
13627 struct A
13628 @{
13629 A(int k) : i(k), j(k) @{ @}
13630 int i;
13631 int j;
13632 @};
13633
13634 A *ap;
13635
13636 void foo(const A& ar)
13637 @{
13638 ap = &ar;
13639 @}
13640
13641 void bar()
13642 @{
13643 foo(A(10)); // temp object's lifetime ends when foo returns
13644
13645 @{
13646 A a(20);
13647 ....
13648 @}
13649 ap->i+= 10; // ap references out of scope temp whose space
13650 // is reused with a. What is the value of ap->i?
13651 @}
13652
13653 @end smallexample
13654
13655 The lifetime of a compiler generated temporary is well defined by the C++
13656 standard. When a lifetime of a temporary ends, and if the temporary lives
13657 in memory, the optimizing compiler has the freedom to reuse its stack
13658 space with other temporaries or scoped local variables whose live range
13659 does not overlap with it. However some of the legacy code relies on
13660 the behavior of older compilers in which temporaries' stack space is
13661 not reused, the aggressive stack reuse can lead to runtime errors. This
13662 option is used to control the temporary stack reuse optimization.
13663
13664 @item -ftrapv
13665 @opindex ftrapv
13666 This option generates traps for signed overflow on addition, subtraction,
13667 multiplication operations.
13668 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13669 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13670 @option{-fwrapv} being effective. Note that only active options override, so
13671 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13672 results in @option{-ftrapv} being effective.
13673
13674 @item -fwrapv
13675 @opindex fwrapv
13676 This option instructs the compiler to assume that signed arithmetic
13677 overflow of addition, subtraction and multiplication wraps around
13678 using twos-complement representation. This flag enables some optimizations
13679 and disables others.
13680 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13681 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13682 @option{-fwrapv} being effective. Note that only active options override, so
13683 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13684 results in @option{-ftrapv} being effective.
13685
13686 @item -fwrapv-pointer
13687 @opindex fwrapv-pointer
13688 This option instructs the compiler to assume that pointer arithmetic
13689 overflow on addition and subtraction wraps around using twos-complement
13690 representation. This flag disables some optimizations which assume
13691 pointer overflow is invalid.
13692
13693 @item -fstrict-overflow
13694 @opindex fstrict-overflow
13695 This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
13696 negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
13697
13698 @item -fexceptions
13699 @opindex fexceptions
13700 Enable exception handling. Generates extra code needed to propagate
13701 exceptions. For some targets, this implies GCC generates frame
13702 unwind information for all functions, which can produce significant data
13703 size overhead, although it does not affect execution. If you do not
13704 specify this option, GCC enables it by default for languages like
13705 C++ that normally require exception handling, and disables it for
13706 languages like C that do not normally require it. However, you may need
13707 to enable this option when compiling C code that needs to interoperate
13708 properly with exception handlers written in C++. You may also wish to
13709 disable this option if you are compiling older C++ programs that don't
13710 use exception handling.
13711
13712 @item -fnon-call-exceptions
13713 @opindex fnon-call-exceptions
13714 Generate code that allows trapping instructions to throw exceptions.
13715 Note that this requires platform-specific runtime support that does
13716 not exist everywhere. Moreover, it only allows @emph{trapping}
13717 instructions to throw exceptions, i.e.@: memory references or floating-point
13718 instructions. It does not allow exceptions to be thrown from
13719 arbitrary signal handlers such as @code{SIGALRM}.
13720
13721 @item -fdelete-dead-exceptions
13722 @opindex fdelete-dead-exceptions
13723 Consider that instructions that may throw exceptions but don't otherwise
13724 contribute to the execution of the program can be optimized away.
13725 This option is enabled by default for the Ada front end, as permitted by
13726 the Ada language specification.
13727 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
13728
13729 @item -funwind-tables
13730 @opindex funwind-tables
13731 Similar to @option{-fexceptions}, except that it just generates any needed
13732 static data, but does not affect the generated code in any other way.
13733 You normally do not need to enable this option; instead, a language processor
13734 that needs this handling enables it on your behalf.
13735
13736 @item -fasynchronous-unwind-tables
13737 @opindex fasynchronous-unwind-tables
13738 Generate unwind table in DWARF format, if supported by target machine. The
13739 table is exact at each instruction boundary, so it can be used for stack
13740 unwinding from asynchronous events (such as debugger or garbage collector).
13741
13742 @item -fno-gnu-unique
13743 @opindex fno-gnu-unique
13744 @opindex fgnu-unique
13745 On systems with recent GNU assembler and C library, the C++ compiler
13746 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
13747 of template static data members and static local variables in inline
13748 functions are unique even in the presence of @code{RTLD_LOCAL}; this
13749 is necessary to avoid problems with a library used by two different
13750 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
13751 therefore disagreeing with the other one about the binding of the
13752 symbol. But this causes @code{dlclose} to be ignored for affected
13753 DSOs; if your program relies on reinitialization of a DSO via
13754 @code{dlclose} and @code{dlopen}, you can use
13755 @option{-fno-gnu-unique}.
13756
13757 @item -fpcc-struct-return
13758 @opindex fpcc-struct-return
13759 Return ``short'' @code{struct} and @code{union} values in memory like
13760 longer ones, rather than in registers. This convention is less
13761 efficient, but it has the advantage of allowing intercallability between
13762 GCC-compiled files and files compiled with other compilers, particularly
13763 the Portable C Compiler (pcc).
13764
13765 The precise convention for returning structures in memory depends
13766 on the target configuration macros.
13767
13768 Short structures and unions are those whose size and alignment match
13769 that of some integer type.
13770
13771 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
13772 switch is not binary compatible with code compiled with the
13773 @option{-freg-struct-return} switch.
13774 Use it to conform to a non-default application binary interface.
13775
13776 @item -freg-struct-return
13777 @opindex freg-struct-return
13778 Return @code{struct} and @code{union} values in registers when possible.
13779 This is more efficient for small structures than
13780 @option{-fpcc-struct-return}.
13781
13782 If you specify neither @option{-fpcc-struct-return} nor
13783 @option{-freg-struct-return}, GCC defaults to whichever convention is
13784 standard for the target. If there is no standard convention, GCC
13785 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
13786 the principal compiler. In those cases, we can choose the standard, and
13787 we chose the more efficient register return alternative.
13788
13789 @strong{Warning:} code compiled with the @option{-freg-struct-return}
13790 switch is not binary compatible with code compiled with the
13791 @option{-fpcc-struct-return} switch.
13792 Use it to conform to a non-default application binary interface.
13793
13794 @item -fshort-enums
13795 @opindex fshort-enums
13796 Allocate to an @code{enum} type only as many bytes as it needs for the
13797 declared range of possible values. Specifically, the @code{enum} type
13798 is equivalent to the smallest integer type that has enough room.
13799
13800 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
13801 code that is not binary compatible with code generated without that switch.
13802 Use it to conform to a non-default application binary interface.
13803
13804 @item -fshort-wchar
13805 @opindex fshort-wchar
13806 Override the underlying type for @code{wchar_t} to be @code{short
13807 unsigned int} instead of the default for the target. This option is
13808 useful for building programs to run under WINE@.
13809
13810 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
13811 code that is not binary compatible with code generated without that switch.
13812 Use it to conform to a non-default application binary interface.
13813
13814 @item -fno-common
13815 @opindex fno-common
13816 @opindex fcommon
13817 @cindex tentative definitions
13818 In C code, this option controls the placement of global variables
13819 defined without an initializer, known as @dfn{tentative definitions}
13820 in the C standard. Tentative definitions are distinct from declarations
13821 of a variable with the @code{extern} keyword, which do not allocate storage.
13822
13823 Unix C compilers have traditionally allocated storage for
13824 uninitialized global variables in a common block. This allows the
13825 linker to resolve all tentative definitions of the same variable
13826 in different compilation units to the same object, or to a non-tentative
13827 definition.
13828 This is the behavior specified by @option{-fcommon}, and is the default for
13829 GCC on most targets.
13830 On the other hand, this behavior is not required by ISO
13831 C, and on some targets may carry a speed or code size penalty on
13832 variable references.
13833
13834 The @option{-fno-common} option specifies that the compiler should instead
13835 place uninitialized global variables in the BSS section of the object file.
13836 This inhibits the merging of tentative definitions by the linker so
13837 you get a multiple-definition error if the same
13838 variable is defined in more than one compilation unit.
13839 Compiling with @option{-fno-common} is useful on targets for which
13840 it provides better performance, or if you wish to verify that the
13841 program will work on other systems that always treat uninitialized
13842 variable definitions this way.
13843
13844 @item -fno-ident
13845 @opindex fno-ident
13846 @opindex fident
13847 Ignore the @code{#ident} directive.
13848
13849 @item -finhibit-size-directive
13850 @opindex finhibit-size-directive
13851 Don't output a @code{.size} assembler directive, or anything else that
13852 would cause trouble if the function is split in the middle, and the
13853 two halves are placed at locations far apart in memory. This option is
13854 used when compiling @file{crtstuff.c}; you should not need to use it
13855 for anything else.
13856
13857 @item -fverbose-asm
13858 @opindex fverbose-asm
13859 Put extra commentary information in the generated assembly code to
13860 make it more readable. This option is generally only of use to those
13861 who actually need to read the generated assembly code (perhaps while
13862 debugging the compiler itself).
13863
13864 @option{-fno-verbose-asm}, the default, causes the
13865 extra information to be omitted and is useful when comparing two assembler
13866 files.
13867
13868 The added comments include:
13869
13870 @itemize @bullet
13871
13872 @item
13873 information on the compiler version and command-line options,
13874
13875 @item
13876 the source code lines associated with the assembly instructions,
13877 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
13878
13879 @item
13880 hints on which high-level expressions correspond to
13881 the various assembly instruction operands.
13882
13883 @end itemize
13884
13885 For example, given this C source file:
13886
13887 @smallexample
13888 int test (int n)
13889 @{
13890 int i;
13891 int total = 0;
13892
13893 for (i = 0; i < n; i++)
13894 total += i * i;
13895
13896 return total;
13897 @}
13898 @end smallexample
13899
13900 compiling to (x86_64) assembly via @option{-S} and emitting the result
13901 direct to stdout via @option{-o} @option{-}
13902
13903 @smallexample
13904 gcc -S test.c -fverbose-asm -Os -o -
13905 @end smallexample
13906
13907 gives output similar to this:
13908
13909 @smallexample
13910 .file "test.c"
13911 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
13912 [...snip...]
13913 # options passed:
13914 [...snip...]
13915
13916 .text
13917 .globl test
13918 .type test, @@function
13919 test:
13920 .LFB0:
13921 .cfi_startproc
13922 # test.c:4: int total = 0;
13923 xorl %eax, %eax # <retval>
13924 # test.c:6: for (i = 0; i < n; i++)
13925 xorl %edx, %edx # i
13926 .L2:
13927 # test.c:6: for (i = 0; i < n; i++)
13928 cmpl %edi, %edx # n, i
13929 jge .L5 #,
13930 # test.c:7: total += i * i;
13931 movl %edx, %ecx # i, tmp92
13932 imull %edx, %ecx # i, tmp92
13933 # test.c:6: for (i = 0; i < n; i++)
13934 incl %edx # i
13935 # test.c:7: total += i * i;
13936 addl %ecx, %eax # tmp92, <retval>
13937 jmp .L2 #
13938 .L5:
13939 # test.c:10: @}
13940 ret
13941 .cfi_endproc
13942 .LFE0:
13943 .size test, .-test
13944 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
13945 .section .note.GNU-stack,"",@@progbits
13946 @end smallexample
13947
13948 The comments are intended for humans rather than machines and hence the
13949 precise format of the comments is subject to change.
13950
13951 @item -frecord-gcc-switches
13952 @opindex frecord-gcc-switches
13953 This switch causes the command line used to invoke the
13954 compiler to be recorded into the object file that is being created.
13955 This switch is only implemented on some targets and the exact format
13956 of the recording is target and binary file format dependent, but it
13957 usually takes the form of a section containing ASCII text. This
13958 switch is related to the @option{-fverbose-asm} switch, but that
13959 switch only records information in the assembler output file as
13960 comments, so it never reaches the object file.
13961 See also @option{-grecord-gcc-switches} for another
13962 way of storing compiler options into the object file.
13963
13964 @item -fpic
13965 @opindex fpic
13966 @cindex global offset table
13967 @cindex PIC
13968 Generate position-independent code (PIC) suitable for use in a shared
13969 library, if supported for the target machine. Such code accesses all
13970 constant addresses through a global offset table (GOT)@. The dynamic
13971 loader resolves the GOT entries when the program starts (the dynamic
13972 loader is not part of GCC; it is part of the operating system). If
13973 the GOT size for the linked executable exceeds a machine-specific
13974 maximum size, you get an error message from the linker indicating that
13975 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
13976 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
13977 on the m68k and RS/6000. The x86 has no such limit.)
13978
13979 Position-independent code requires special support, and therefore works
13980 only on certain machines. For the x86, GCC supports PIC for System V
13981 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
13982 position-independent.
13983
13984 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
13985 are defined to 1.
13986
13987 @item -fPIC
13988 @opindex fPIC
13989 If supported for the target machine, emit position-independent code,
13990 suitable for dynamic linking and avoiding any limit on the size of the
13991 global offset table. This option makes a difference on AArch64, m68k,
13992 PowerPC and SPARC@.
13993
13994 Position-independent code requires special support, and therefore works
13995 only on certain machines.
13996
13997 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
13998 are defined to 2.
13999
14000 @item -fpie
14001 @itemx -fPIE
14002 @opindex fpie
14003 @opindex fPIE
14004 These options are similar to @option{-fpic} and @option{-fPIC}, but the
14005 generated position-independent code can be only linked into executables.
14006 Usually these options are used to compile code that will be linked using
14007 the @option{-pie} GCC option.
14008
14009 @option{-fpie} and @option{-fPIE} both define the macros
14010 @code{__pie__} and @code{__PIE__}. The macros have the value 1
14011 for @option{-fpie} and 2 for @option{-fPIE}.
14012
14013 @item -fno-plt
14014 @opindex fno-plt
14015 @opindex fplt
14016 Do not use the PLT for external function calls in position-independent code.
14017 Instead, load the callee address at call sites from the GOT and branch to it.
14018 This leads to more efficient code by eliminating PLT stubs and exposing
14019 GOT loads to optimizations. On architectures such as 32-bit x86 where
14020 PLT stubs expect the GOT pointer in a specific register, this gives more
14021 register allocation freedom to the compiler.
14022 Lazy binding requires use of the PLT;
14023 with @option{-fno-plt} all external symbols are resolved at load time.
14024
14025 Alternatively, the function attribute @code{noplt} can be used to avoid calls
14026 through the PLT for specific external functions.
14027
14028 In position-dependent code, a few targets also convert calls to
14029 functions that are marked to not use the PLT to use the GOT instead.
14030
14031 @item -fno-jump-tables
14032 @opindex fno-jump-tables
14033 @opindex fjump-tables
14034 Do not use jump tables for switch statements even where it would be
14035 more efficient than other code generation strategies. This option is
14036 of use in conjunction with @option{-fpic} or @option{-fPIC} for
14037 building code that forms part of a dynamic linker and cannot
14038 reference the address of a jump table. On some targets, jump tables
14039 do not require a GOT and this option is not needed.
14040
14041 @item -ffixed-@var{reg}
14042 @opindex ffixed
14043 Treat the register named @var{reg} as a fixed register; generated code
14044 should never refer to it (except perhaps as a stack pointer, frame
14045 pointer or in some other fixed role).
14046
14047 @var{reg} must be the name of a register. The register names accepted
14048 are machine-specific and are defined in the @code{REGISTER_NAMES}
14049 macro in the machine description macro file.
14050
14051 This flag does not have a negative form, because it specifies a
14052 three-way choice.
14053
14054 @item -fcall-used-@var{reg}
14055 @opindex fcall-used
14056 Treat the register named @var{reg} as an allocable register that is
14057 clobbered by function calls. It may be allocated for temporaries or
14058 variables that do not live across a call. Functions compiled this way
14059 do not save and restore the register @var{reg}.
14060
14061 It is an error to use this flag with the frame pointer or stack pointer.
14062 Use of this flag for other registers that have fixed pervasive roles in
14063 the machine's execution model produces disastrous results.
14064
14065 This flag does not have a negative form, because it specifies a
14066 three-way choice.
14067
14068 @item -fcall-saved-@var{reg}
14069 @opindex fcall-saved
14070 Treat the register named @var{reg} as an allocable register saved by
14071 functions. It may be allocated even for temporaries or variables that
14072 live across a call. Functions compiled this way save and restore
14073 the register @var{reg} if they use it.
14074
14075 It is an error to use this flag with the frame pointer or stack pointer.
14076 Use of this flag for other registers that have fixed pervasive roles in
14077 the machine's execution model produces disastrous results.
14078
14079 A different sort of disaster results from the use of this flag for
14080 a register in which function values may be returned.
14081
14082 This flag does not have a negative form, because it specifies a
14083 three-way choice.
14084
14085 @item -fpack-struct[=@var{n}]
14086 @opindex fpack-struct
14087 Without a value specified, pack all structure members together without
14088 holes. When a value is specified (which must be a small power of two), pack
14089 structure members according to this value, representing the maximum
14090 alignment (that is, objects with default alignment requirements larger than
14091 this are output potentially unaligned at the next fitting location.
14092
14093 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
14094 code that is not binary compatible with code generated without that switch.
14095 Additionally, it makes the code suboptimal.
14096 Use it to conform to a non-default application binary interface.
14097
14098 @item -fleading-underscore
14099 @opindex fleading-underscore
14100 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
14101 change the way C symbols are represented in the object file. One use
14102 is to help link with legacy assembly code.
14103
14104 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
14105 generate code that is not binary compatible with code generated without that
14106 switch. Use it to conform to a non-default application binary interface.
14107 Not all targets provide complete support for this switch.
14108
14109 @item -ftls-model=@var{model}
14110 @opindex ftls-model
14111 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
14112 The @var{model} argument should be one of @samp{global-dynamic},
14113 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
14114 Note that the choice is subject to optimization: the compiler may use
14115 a more efficient model for symbols not visible outside of the translation
14116 unit, or if @option{-fpic} is not given on the command line.
14117
14118 The default without @option{-fpic} is @samp{initial-exec}; with
14119 @option{-fpic} the default is @samp{global-dynamic}.
14120
14121 @item -ftrampolines
14122 @opindex ftrampolines
14123 For targets that normally need trampolines for nested functions, always
14124 generate them instead of using descriptors. Otherwise, for targets that
14125 do not need them, like for example HP-PA or IA-64, do nothing.
14126
14127 A trampoline is a small piece of code that is created at run time on the
14128 stack when the address of a nested function is taken, and is used to call
14129 the nested function indirectly. Therefore, it requires the stack to be
14130 made executable in order for the program to work properly.
14131
14132 @option{-fno-trampolines} is enabled by default on a language by language
14133 basis to let the compiler avoid generating them, if it computes that this
14134 is safe, and replace them with descriptors. Descriptors are made up of data
14135 only, but the generated code must be prepared to deal with them. As of this
14136 writing, @option{-fno-trampolines} is enabled by default only for Ada.
14137
14138 Moreover, code compiled with @option{-ftrampolines} and code compiled with
14139 @option{-fno-trampolines} are not binary compatible if nested functions are
14140 present. This option must therefore be used on a program-wide basis and be
14141 manipulated with extreme care.
14142
14143 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
14144 @opindex fvisibility
14145 Set the default ELF image symbol visibility to the specified option---all
14146 symbols are marked with this unless overridden within the code.
14147 Using this feature can very substantially improve linking and
14148 load times of shared object libraries, produce more optimized
14149 code, provide near-perfect API export and prevent symbol clashes.
14150 It is @strong{strongly} recommended that you use this in any shared objects
14151 you distribute.
14152
14153 Despite the nomenclature, @samp{default} always means public; i.e.,
14154 available to be linked against from outside the shared object.
14155 @samp{protected} and @samp{internal} are pretty useless in real-world
14156 usage so the only other commonly used option is @samp{hidden}.
14157 The default if @option{-fvisibility} isn't specified is
14158 @samp{default}, i.e., make every symbol public.
14159
14160 A good explanation of the benefits offered by ensuring ELF
14161 symbols have the correct visibility is given by ``How To Write
14162 Shared Libraries'' by Ulrich Drepper (which can be found at
14163 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
14164 solution made possible by this option to marking things hidden when
14165 the default is public is to make the default hidden and mark things
14166 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
14167 and @code{__attribute__ ((visibility("default")))} instead of
14168 @code{__declspec(dllexport)} you get almost identical semantics with
14169 identical syntax. This is a great boon to those working with
14170 cross-platform projects.
14171
14172 For those adding visibility support to existing code, you may find
14173 @code{#pragma GCC visibility} of use. This works by you enclosing
14174 the declarations you wish to set visibility for with (for example)
14175 @code{#pragma GCC visibility push(hidden)} and
14176 @code{#pragma GCC visibility pop}.
14177 Bear in mind that symbol visibility should be viewed @strong{as
14178 part of the API interface contract} and thus all new code should
14179 always specify visibility when it is not the default; i.e., declarations
14180 only for use within the local DSO should @strong{always} be marked explicitly
14181 as hidden as so to avoid PLT indirection overheads---making this
14182 abundantly clear also aids readability and self-documentation of the code.
14183 Note that due to ISO C++ specification requirements, @code{operator new} and
14184 @code{operator delete} must always be of default visibility.
14185
14186 Be aware that headers from outside your project, in particular system
14187 headers and headers from any other library you use, may not be
14188 expecting to be compiled with visibility other than the default. You
14189 may need to explicitly say @code{#pragma GCC visibility push(default)}
14190 before including any such headers.
14191
14192 @code{extern} declarations are not affected by @option{-fvisibility}, so
14193 a lot of code can be recompiled with @option{-fvisibility=hidden} with
14194 no modifications. However, this means that calls to @code{extern}
14195 functions with no explicit visibility use the PLT, so it is more
14196 effective to use @code{__attribute ((visibility))} and/or
14197 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
14198 declarations should be treated as hidden.
14199
14200 Note that @option{-fvisibility} does affect C++ vague linkage
14201 entities. This means that, for instance, an exception class that is
14202 be thrown between DSOs must be explicitly marked with default
14203 visibility so that the @samp{type_info} nodes are unified between
14204 the DSOs.
14205
14206 An overview of these techniques, their benefits and how to use them
14207 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
14208
14209 @item -fstrict-volatile-bitfields
14210 @opindex fstrict-volatile-bitfields
14211 This option should be used if accesses to volatile bit-fields (or other
14212 structure fields, although the compiler usually honors those types
14213 anyway) should use a single access of the width of the
14214 field's type, aligned to a natural alignment if possible. For
14215 example, targets with memory-mapped peripheral registers might require
14216 all such accesses to be 16 bits wide; with this flag you can
14217 declare all peripheral bit-fields as @code{unsigned short} (assuming short
14218 is 16 bits on these targets) to force GCC to use 16-bit accesses
14219 instead of, perhaps, a more efficient 32-bit access.
14220
14221 If this option is disabled, the compiler uses the most efficient
14222 instruction. In the previous example, that might be a 32-bit load
14223 instruction, even though that accesses bytes that do not contain
14224 any portion of the bit-field, or memory-mapped registers unrelated to
14225 the one being updated.
14226
14227 In some cases, such as when the @code{packed} attribute is applied to a
14228 structure field, it may not be possible to access the field with a single
14229 read or write that is correctly aligned for the target machine. In this
14230 case GCC falls back to generating multiple accesses rather than code that
14231 will fault or truncate the result at run time.
14232
14233 Note: Due to restrictions of the C/C++11 memory model, write accesses are
14234 not allowed to touch non bit-field members. It is therefore recommended
14235 to define all bits of the field's type as bit-field members.
14236
14237 The default value of this option is determined by the application binary
14238 interface for the target processor.
14239
14240 @item -fsync-libcalls
14241 @opindex fsync-libcalls
14242 This option controls whether any out-of-line instance of the @code{__sync}
14243 family of functions may be used to implement the C++11 @code{__atomic}
14244 family of functions.
14245
14246 The default value of this option is enabled, thus the only useful form
14247 of the option is @option{-fno-sync-libcalls}. This option is used in
14248 the implementation of the @file{libatomic} runtime library.
14249
14250 @end table
14251
14252 @node Developer Options
14253 @section GCC Developer Options
14254 @cindex developer options
14255 @cindex debugging GCC
14256 @cindex debug dump options
14257 @cindex dump options
14258 @cindex compilation statistics
14259
14260 This section describes command-line options that are primarily of
14261 interest to GCC developers, including options to support compiler
14262 testing and investigation of compiler bugs and compile-time
14263 performance problems. This includes options that produce debug dumps
14264 at various points in the compilation; that print statistics such as
14265 memory use and execution time; and that print information about GCC's
14266 configuration, such as where it searches for libraries. You should
14267 rarely need to use any of these options for ordinary compilation and
14268 linking tasks.
14269
14270 Many developer options that cause GCC to dump output to a file take an
14271 optional @samp{=@var{filename}} suffix. You can specify @samp{stdout}
14272 or @samp{-} to dump to standard output, and @samp{stderr} for standard
14273 error.
14274
14275 If @samp{=@var{filename}} is omitted, a default dump file name is
14276 constructed by concatenating the base dump file name, a pass number,
14277 phase letter, and pass name. The base dump file name is the name of
14278 output file produced by the compiler if explicitly specified and not
14279 an executable; otherwise it is the source file name.
14280 The pass number is determined by the order passes are registered with
14281 the compiler's pass manager.
14282 This is generally the same as the order of execution, but passes
14283 registered by plugins, target-specific passes, or passes that are
14284 otherwise registered late are numbered higher than the pass named
14285 @samp{final}, even if they are executed earlier. The phase letter is
14286 one of @samp{i} (inter-procedural analysis), @samp{l}
14287 (language-specific), @samp{r} (RTL), or @samp{t} (tree).
14288 The files are created in the directory of the output file.
14289
14290 @table @gcctabopt
14291
14292 @item -d@var{letters}
14293 @itemx -fdump-rtl-@var{pass}
14294 @itemx -fdump-rtl-@var{pass}=@var{filename}
14295 @opindex d
14296 @opindex fdump-rtl-@var{pass}
14297 Says to make debugging dumps during compilation at times specified by
14298 @var{letters}. This is used for debugging the RTL-based passes of the
14299 compiler.
14300
14301 Some @option{-d@var{letters}} switches have different meaning when
14302 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
14303 for information about preprocessor-specific dump options.
14304
14305 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
14306 @option{-d} option @var{letters}. Here are the possible
14307 letters for use in @var{pass} and @var{letters}, and their meanings:
14308
14309 @table @gcctabopt
14310
14311 @item -fdump-rtl-alignments
14312 @opindex fdump-rtl-alignments
14313 Dump after branch alignments have been computed.
14314
14315 @item -fdump-rtl-asmcons
14316 @opindex fdump-rtl-asmcons
14317 Dump after fixing rtl statements that have unsatisfied in/out constraints.
14318
14319 @item -fdump-rtl-auto_inc_dec
14320 @opindex fdump-rtl-auto_inc_dec
14321 Dump after auto-inc-dec discovery. This pass is only run on
14322 architectures that have auto inc or auto dec instructions.
14323
14324 @item -fdump-rtl-barriers
14325 @opindex fdump-rtl-barriers
14326 Dump after cleaning up the barrier instructions.
14327
14328 @item -fdump-rtl-bbpart
14329 @opindex fdump-rtl-bbpart
14330 Dump after partitioning hot and cold basic blocks.
14331
14332 @item -fdump-rtl-bbro
14333 @opindex fdump-rtl-bbro
14334 Dump after block reordering.
14335
14336 @item -fdump-rtl-btl1
14337 @itemx -fdump-rtl-btl2
14338 @opindex fdump-rtl-btl2
14339 @opindex fdump-rtl-btl2
14340 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
14341 after the two branch
14342 target load optimization passes.
14343
14344 @item -fdump-rtl-bypass
14345 @opindex fdump-rtl-bypass
14346 Dump after jump bypassing and control flow optimizations.
14347
14348 @item -fdump-rtl-combine
14349 @opindex fdump-rtl-combine
14350 Dump after the RTL instruction combination pass.
14351
14352 @item -fdump-rtl-compgotos
14353 @opindex fdump-rtl-compgotos
14354 Dump after duplicating the computed gotos.
14355
14356 @item -fdump-rtl-ce1
14357 @itemx -fdump-rtl-ce2
14358 @itemx -fdump-rtl-ce3
14359 @opindex fdump-rtl-ce1
14360 @opindex fdump-rtl-ce2
14361 @opindex fdump-rtl-ce3
14362 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
14363 @option{-fdump-rtl-ce3} enable dumping after the three
14364 if conversion passes.
14365
14366 @item -fdump-rtl-cprop_hardreg
14367 @opindex fdump-rtl-cprop_hardreg
14368 Dump after hard register copy propagation.
14369
14370 @item -fdump-rtl-csa
14371 @opindex fdump-rtl-csa
14372 Dump after combining stack adjustments.
14373
14374 @item -fdump-rtl-cse1
14375 @itemx -fdump-rtl-cse2
14376 @opindex fdump-rtl-cse1
14377 @opindex fdump-rtl-cse2
14378 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
14379 the two common subexpression elimination passes.
14380
14381 @item -fdump-rtl-dce
14382 @opindex fdump-rtl-dce
14383 Dump after the standalone dead code elimination passes.
14384
14385 @item -fdump-rtl-dbr
14386 @opindex fdump-rtl-dbr
14387 Dump after delayed branch scheduling.
14388
14389 @item -fdump-rtl-dce1
14390 @itemx -fdump-rtl-dce2
14391 @opindex fdump-rtl-dce1
14392 @opindex fdump-rtl-dce2
14393 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
14394 the two dead store elimination passes.
14395
14396 @item -fdump-rtl-eh
14397 @opindex fdump-rtl-eh
14398 Dump after finalization of EH handling code.
14399
14400 @item -fdump-rtl-eh_ranges
14401 @opindex fdump-rtl-eh_ranges
14402 Dump after conversion of EH handling range regions.
14403
14404 @item -fdump-rtl-expand
14405 @opindex fdump-rtl-expand
14406 Dump after RTL generation.
14407
14408 @item -fdump-rtl-fwprop1
14409 @itemx -fdump-rtl-fwprop2
14410 @opindex fdump-rtl-fwprop1
14411 @opindex fdump-rtl-fwprop2
14412 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
14413 dumping after the two forward propagation passes.
14414
14415 @item -fdump-rtl-gcse1
14416 @itemx -fdump-rtl-gcse2
14417 @opindex fdump-rtl-gcse1
14418 @opindex fdump-rtl-gcse2
14419 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
14420 after global common subexpression elimination.
14421
14422 @item -fdump-rtl-init-regs
14423 @opindex fdump-rtl-init-regs
14424 Dump after the initialization of the registers.
14425
14426 @item -fdump-rtl-initvals
14427 @opindex fdump-rtl-initvals
14428 Dump after the computation of the initial value sets.
14429
14430 @item -fdump-rtl-into_cfglayout
14431 @opindex fdump-rtl-into_cfglayout
14432 Dump after converting to cfglayout mode.
14433
14434 @item -fdump-rtl-ira
14435 @opindex fdump-rtl-ira
14436 Dump after iterated register allocation.
14437
14438 @item -fdump-rtl-jump
14439 @opindex fdump-rtl-jump
14440 Dump after the second jump optimization.
14441
14442 @item -fdump-rtl-loop2
14443 @opindex fdump-rtl-loop2
14444 @option{-fdump-rtl-loop2} enables dumping after the rtl
14445 loop optimization passes.
14446
14447 @item -fdump-rtl-mach
14448 @opindex fdump-rtl-mach
14449 Dump after performing the machine dependent reorganization pass, if that
14450 pass exists.
14451
14452 @item -fdump-rtl-mode_sw
14453 @opindex fdump-rtl-mode_sw
14454 Dump after removing redundant mode switches.
14455
14456 @item -fdump-rtl-rnreg
14457 @opindex fdump-rtl-rnreg
14458 Dump after register renumbering.
14459
14460 @item -fdump-rtl-outof_cfglayout
14461 @opindex fdump-rtl-outof_cfglayout
14462 Dump after converting from cfglayout mode.
14463
14464 @item -fdump-rtl-peephole2
14465 @opindex fdump-rtl-peephole2
14466 Dump after the peephole pass.
14467
14468 @item -fdump-rtl-postreload
14469 @opindex fdump-rtl-postreload
14470 Dump after post-reload optimizations.
14471
14472 @item -fdump-rtl-pro_and_epilogue
14473 @opindex fdump-rtl-pro_and_epilogue
14474 Dump after generating the function prologues and epilogues.
14475
14476 @item -fdump-rtl-sched1
14477 @itemx -fdump-rtl-sched2
14478 @opindex fdump-rtl-sched1
14479 @opindex fdump-rtl-sched2
14480 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
14481 after the basic block scheduling passes.
14482
14483 @item -fdump-rtl-ree
14484 @opindex fdump-rtl-ree
14485 Dump after sign/zero extension elimination.
14486
14487 @item -fdump-rtl-seqabstr
14488 @opindex fdump-rtl-seqabstr
14489 Dump after common sequence discovery.
14490
14491 @item -fdump-rtl-shorten
14492 @opindex fdump-rtl-shorten
14493 Dump after shortening branches.
14494
14495 @item -fdump-rtl-sibling
14496 @opindex fdump-rtl-sibling
14497 Dump after sibling call optimizations.
14498
14499 @item -fdump-rtl-split1
14500 @itemx -fdump-rtl-split2
14501 @itemx -fdump-rtl-split3
14502 @itemx -fdump-rtl-split4
14503 @itemx -fdump-rtl-split5
14504 @opindex fdump-rtl-split1
14505 @opindex fdump-rtl-split2
14506 @opindex fdump-rtl-split3
14507 @opindex fdump-rtl-split4
14508 @opindex fdump-rtl-split5
14509 These options enable dumping after five rounds of
14510 instruction splitting.
14511
14512 @item -fdump-rtl-sms
14513 @opindex fdump-rtl-sms
14514 Dump after modulo scheduling. This pass is only run on some
14515 architectures.
14516
14517 @item -fdump-rtl-stack
14518 @opindex fdump-rtl-stack
14519 Dump after conversion from GCC's ``flat register file'' registers to the
14520 x87's stack-like registers. This pass is only run on x86 variants.
14521
14522 @item -fdump-rtl-subreg1
14523 @itemx -fdump-rtl-subreg2
14524 @opindex fdump-rtl-subreg1
14525 @opindex fdump-rtl-subreg2
14526 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
14527 the two subreg expansion passes.
14528
14529 @item -fdump-rtl-unshare
14530 @opindex fdump-rtl-unshare
14531 Dump after all rtl has been unshared.
14532
14533 @item -fdump-rtl-vartrack
14534 @opindex fdump-rtl-vartrack
14535 Dump after variable tracking.
14536
14537 @item -fdump-rtl-vregs
14538 @opindex fdump-rtl-vregs
14539 Dump after converting virtual registers to hard registers.
14540
14541 @item -fdump-rtl-web
14542 @opindex fdump-rtl-web
14543 Dump after live range splitting.
14544
14545 @item -fdump-rtl-regclass
14546 @itemx -fdump-rtl-subregs_of_mode_init
14547 @itemx -fdump-rtl-subregs_of_mode_finish
14548 @itemx -fdump-rtl-dfinit
14549 @itemx -fdump-rtl-dfinish
14550 @opindex fdump-rtl-regclass
14551 @opindex fdump-rtl-subregs_of_mode_init
14552 @opindex fdump-rtl-subregs_of_mode_finish
14553 @opindex fdump-rtl-dfinit
14554 @opindex fdump-rtl-dfinish
14555 These dumps are defined but always produce empty files.
14556
14557 @item -da
14558 @itemx -fdump-rtl-all
14559 @opindex da
14560 @opindex fdump-rtl-all
14561 Produce all the dumps listed above.
14562
14563 @item -dA
14564 @opindex dA
14565 Annotate the assembler output with miscellaneous debugging information.
14566
14567 @item -dD
14568 @opindex dD
14569 Dump all macro definitions, at the end of preprocessing, in addition to
14570 normal output.
14571
14572 @item -dH
14573 @opindex dH
14574 Produce a core dump whenever an error occurs.
14575
14576 @item -dp
14577 @opindex dp
14578 Annotate the assembler output with a comment indicating which
14579 pattern and alternative is used. The length and cost of each instruction are
14580 also printed.
14581
14582 @item -dP
14583 @opindex dP
14584 Dump the RTL in the assembler output as a comment before each instruction.
14585 Also turns on @option{-dp} annotation.
14586
14587 @item -dx
14588 @opindex dx
14589 Just generate RTL for a function instead of compiling it. Usually used
14590 with @option{-fdump-rtl-expand}.
14591 @end table
14592
14593 @item -fdump-debug
14594 @opindex fdump-debug
14595 Dump debugging information generated during the debug
14596 generation phase.
14597
14598 @item -fdump-earlydebug
14599 @opindex fdump-earlydebug
14600 Dump debugging information generated during the early debug
14601 generation phase.
14602
14603 @item -fdump-noaddr
14604 @opindex fdump-noaddr
14605 When doing debugging dumps, suppress address output. This makes it more
14606 feasible to use diff on debugging dumps for compiler invocations with
14607 different compiler binaries and/or different
14608 text / bss / data / heap / stack / dso start locations.
14609
14610 @item -freport-bug
14611 @opindex freport-bug
14612 Collect and dump debug information into a temporary file if an
14613 internal compiler error (ICE) occurs.
14614
14615 @item -fdump-unnumbered
14616 @opindex fdump-unnumbered
14617 When doing debugging dumps, suppress instruction numbers and address output.
14618 This makes it more feasible to use diff on debugging dumps for compiler
14619 invocations with different options, in particular with and without
14620 @option{-g}.
14621
14622 @item -fdump-unnumbered-links
14623 @opindex fdump-unnumbered-links
14624 When doing debugging dumps (see @option{-d} option above), suppress
14625 instruction numbers for the links to the previous and next instructions
14626 in a sequence.
14627
14628 @item -fdump-ipa-@var{switch}
14629 @itemx -fdump-ipa-@var{switch}-@var{options}
14630 @opindex fdump-ipa
14631 Control the dumping at various stages of inter-procedural analysis
14632 language tree to a file. The file name is generated by appending a
14633 switch specific suffix to the source file name, and the file is created
14634 in the same directory as the output file. The following dumps are
14635 possible:
14636
14637 @table @samp
14638 @item all
14639 Enables all inter-procedural analysis dumps.
14640
14641 @item cgraph
14642 Dumps information about call-graph optimization, unused function removal,
14643 and inlining decisions.
14644
14645 @item inline
14646 Dump after function inlining.
14647
14648 @end table
14649
14650 Additionally, the options @option{-optimized}, @option{-missed},
14651 @option{-note}, and @option{-all} can be provided, with the same meaning
14652 as for @option{-fopt-info}, defaulting to @option{-optimized}.
14653
14654 For example, @option{-fdump-ipa-inline-optimized-missed} will emit
14655 information on callsites that were inlined, along with callsites
14656 that were not inlined.
14657
14658 By default, the dump will contain messages about successful
14659 optimizations (equivalent to @option{-optimized}) together with
14660 low-level details about the analysis.
14661
14662 @item -fdump-lang-all
14663 @itemx -fdump-lang-@var{switch}
14664 @itemx -fdump-lang-@var{switch}-@var{options}
14665 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
14666 @opindex fdump-lang-all
14667 @opindex fdump-lang
14668 Control the dumping of language-specific information. The @var{options}
14669 and @var{filename} portions behave as described in the
14670 @option{-fdump-tree} option. The following @var{switch} values are
14671 accepted:
14672
14673 @table @samp
14674 @item all
14675
14676 Enable all language-specific dumps.
14677
14678 @item class
14679 Dump class hierarchy information. Virtual table information is emitted
14680 unless '@option{slim}' is specified. This option is applicable to C++ only.
14681
14682 @item raw
14683 Dump the raw internal tree data. This option is applicable to C++ only.
14684
14685 @end table
14686
14687 @item -fdump-passes
14688 @opindex fdump-passes
14689 Print on @file{stderr} the list of optimization passes that are turned
14690 on and off by the current command-line options.
14691
14692 @item -fdump-statistics-@var{option}
14693 @opindex fdump-statistics
14694 Enable and control dumping of pass statistics in a separate file. The
14695 file name is generated by appending a suffix ending in
14696 @samp{.statistics} to the source file name, and the file is created in
14697 the same directory as the output file. If the @samp{-@var{option}}
14698 form is used, @samp{-stats} causes counters to be summed over the
14699 whole compilation unit while @samp{-details} dumps every event as
14700 the passes generate them. The default with no option is to sum
14701 counters for each function compiled.
14702
14703 @item -fdump-tree-all
14704 @itemx -fdump-tree-@var{switch}
14705 @itemx -fdump-tree-@var{switch}-@var{options}
14706 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
14707 @opindex fdump-tree-all
14708 @opindex fdump-tree
14709 Control the dumping at various stages of processing the intermediate
14710 language tree to a file. If the @samp{-@var{options}}
14711 form is used, @var{options} is a list of @samp{-} separated options
14712 which control the details of the dump. Not all options are applicable
14713 to all dumps; those that are not meaningful are ignored. The
14714 following options are available
14715
14716 @table @samp
14717 @item address
14718 Print the address of each node. Usually this is not meaningful as it
14719 changes according to the environment and source file. Its primary use
14720 is for tying up a dump file with a debug environment.
14721 @item asmname
14722 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
14723 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
14724 use working backward from mangled names in the assembly file.
14725 @item slim
14726 When dumping front-end intermediate representations, inhibit dumping
14727 of members of a scope or body of a function merely because that scope
14728 has been reached. Only dump such items when they are directly reachable
14729 by some other path.
14730
14731 When dumping pretty-printed trees, this option inhibits dumping the
14732 bodies of control structures.
14733
14734 When dumping RTL, print the RTL in slim (condensed) form instead of
14735 the default LISP-like representation.
14736 @item raw
14737 Print a raw representation of the tree. By default, trees are
14738 pretty-printed into a C-like representation.
14739 @item details
14740 Enable more detailed dumps (not honored by every dump option). Also
14741 include information from the optimization passes.
14742 @item stats
14743 Enable dumping various statistics about the pass (not honored by every dump
14744 option).
14745 @item blocks
14746 Enable showing basic block boundaries (disabled in raw dumps).
14747 @item graph
14748 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
14749 dump a representation of the control flow graph suitable for viewing with
14750 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
14751 the file is pretty-printed as a subgraph, so that GraphViz can render them
14752 all in a single plot.
14753
14754 This option currently only works for RTL dumps, and the RTL is always
14755 dumped in slim form.
14756 @item vops
14757 Enable showing virtual operands for every statement.
14758 @item lineno
14759 Enable showing line numbers for statements.
14760 @item uid
14761 Enable showing the unique ID (@code{DECL_UID}) for each variable.
14762 @item verbose
14763 Enable showing the tree dump for each statement.
14764 @item eh
14765 Enable showing the EH region number holding each statement.
14766 @item scev
14767 Enable showing scalar evolution analysis details.
14768 @item optimized
14769 Enable showing optimization information (only available in certain
14770 passes).
14771 @item missed
14772 Enable showing missed optimization information (only available in certain
14773 passes).
14774 @item note
14775 Enable other detailed optimization information (only available in
14776 certain passes).
14777 @item all
14778 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
14779 and @option{lineno}.
14780 @item optall
14781 Turn on all optimization options, i.e., @option{optimized},
14782 @option{missed}, and @option{note}.
14783 @end table
14784
14785 To determine what tree dumps are available or find the dump for a pass
14786 of interest follow the steps below.
14787
14788 @enumerate
14789 @item
14790 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
14791 look for a code that corresponds to the pass you are interested in.
14792 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
14793 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
14794 The number at the end distinguishes distinct invocations of the same pass.
14795 @item
14796 To enable the creation of the dump file, append the pass code to
14797 the @option{-fdump-} option prefix and invoke GCC with it. For example,
14798 to enable the dump from the Early Value Range Propagation pass, invoke
14799 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
14800 specify the name of the dump file. If you don't specify one, GCC
14801 creates as described below.
14802 @item
14803 Find the pass dump in a file whose name is composed of three components
14804 separated by a period: the name of the source file GCC was invoked to
14805 compile, a numeric suffix indicating the pass number followed by the
14806 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
14807 and finally the pass code. For example, the Early VRP pass dump might
14808 be in a file named @file{myfile.c.038t.evrp} in the current working
14809 directory. Note that the numeric codes are not stable and may change
14810 from one version of GCC to another.
14811 @end enumerate
14812
14813 @item -fopt-info
14814 @itemx -fopt-info-@var{options}
14815 @itemx -fopt-info-@var{options}=@var{filename}
14816 @opindex fopt-info
14817 Controls optimization dumps from various optimization passes. If the
14818 @samp{-@var{options}} form is used, @var{options} is a list of
14819 @samp{-} separated option keywords to select the dump details and
14820 optimizations.
14821
14822 The @var{options} can be divided into three groups:
14823 @enumerate
14824 @item
14825 options describing what kinds of messages should be emitted,
14826 @item
14827 options describing the verbosity of the dump, and
14828 @item
14829 options describing which optimizations should be included.
14830 @end enumerate
14831 The options from each group can be freely mixed as they are
14832 non-overlapping. However, in case of any conflicts,
14833 the later options override the earlier options on the command
14834 line.
14835
14836 The following options control which kinds of messages should be emitted:
14837
14838 @table @samp
14839 @item optimized
14840 Print information when an optimization is successfully applied. It is
14841 up to a pass to decide which information is relevant. For example, the
14842 vectorizer passes print the source location of loops which are
14843 successfully vectorized.
14844 @item missed
14845 Print information about missed optimizations. Individual passes
14846 control which information to include in the output.
14847 @item note
14848 Print verbose information about optimizations, such as certain
14849 transformations, more detailed messages about decisions etc.
14850 @item all
14851 Print detailed optimization information. This includes
14852 @samp{optimized}, @samp{missed}, and @samp{note}.
14853 @end table
14854
14855 The following option controls the dump verbosity:
14856
14857 @table @samp
14858 @item internals
14859 By default, only ``high-level'' messages are emitted. This option enables
14860 additional, more detailed, messages, which are likely to only be of interest
14861 to GCC developers.
14862 @end table
14863
14864 One or more of the following option keywords can be used to describe a
14865 group of optimizations:
14866
14867 @table @samp
14868 @item ipa
14869 Enable dumps from all interprocedural optimizations.
14870 @item loop
14871 Enable dumps from all loop optimizations.
14872 @item inline
14873 Enable dumps from all inlining optimizations.
14874 @item omp
14875 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
14876 @item vec
14877 Enable dumps from all vectorization optimizations.
14878 @item optall
14879 Enable dumps from all optimizations. This is a superset of
14880 the optimization groups listed above.
14881 @end table
14882
14883 If @var{options} is
14884 omitted, it defaults to @samp{optimized-optall}, which means to dump messages
14885 about successful optimizations from all the passes, omitting messages
14886 that are treated as ``internals''.
14887
14888 If the @var{filename} is provided, then the dumps from all the
14889 applicable optimizations are concatenated into the @var{filename}.
14890 Otherwise the dump is output onto @file{stderr}. Though multiple
14891 @option{-fopt-info} options are accepted, only one of them can include
14892 a @var{filename}. If other filenames are provided then all but the
14893 first such option are ignored.
14894
14895 Note that the output @var{filename} is overwritten
14896 in case of multiple translation units. If a combined output from
14897 multiple translation units is desired, @file{stderr} should be used
14898 instead.
14899
14900 In the following example, the optimization info is output to
14901 @file{stderr}:
14902
14903 @smallexample
14904 gcc -O3 -fopt-info
14905 @end smallexample
14906
14907 This example:
14908 @smallexample
14909 gcc -O3 -fopt-info-missed=missed.all
14910 @end smallexample
14911
14912 @noindent
14913 outputs missed optimization report from all the passes into
14914 @file{missed.all}, and this one:
14915
14916 @smallexample
14917 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
14918 @end smallexample
14919
14920 @noindent
14921 prints information about missed optimization opportunities from
14922 vectorization passes on @file{stderr}.
14923 Note that @option{-fopt-info-vec-missed} is equivalent to
14924 @option{-fopt-info-missed-vec}. The order of the optimization group
14925 names and message types listed after @option{-fopt-info} does not matter.
14926
14927 As another example,
14928 @smallexample
14929 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
14930 @end smallexample
14931
14932 @noindent
14933 outputs information about missed optimizations as well as
14934 optimized locations from all the inlining passes into
14935 @file{inline.txt}.
14936
14937 Finally, consider:
14938
14939 @smallexample
14940 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
14941 @end smallexample
14942
14943 @noindent
14944 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
14945 in conflict since only one output file is allowed. In this case, only
14946 the first option takes effect and the subsequent options are
14947 ignored. Thus only @file{vec.miss} is produced which contains
14948 dumps from the vectorizer about missed opportunities.
14949
14950 @item -fsave-optimization-record
14951 @opindex fsave-optimization-record
14952 Write a SRCFILE.opt-record.json.gz file detailing what optimizations
14953 were performed, for those optimizations that support @option{-fopt-info}.
14954
14955 This option is experimental and the format of the data within the
14956 compressed JSON file is subject to change.
14957
14958 It is roughly equivalent to a machine-readable version of
14959 @option{-fopt-info-all}, as a collection of messages with source file,
14960 line number and column number, with the following additional data for
14961 each message:
14962
14963 @itemize @bullet
14964
14965 @item
14966 the execution count of the code being optimized, along with metadata about
14967 whether this was from actual profile data, or just an estimate, allowing
14968 consumers to prioritize messages by code hotness,
14969
14970 @item
14971 the function name of the code being optimized, where applicable,
14972
14973 @item
14974 the ``inlining chain'' for the code being optimized, so that when
14975 a function is inlined into several different places (which might
14976 themselves be inlined), the reader can distinguish between the copies,
14977
14978 @item
14979 objects identifying those parts of the message that refer to expressions,
14980 statements or symbol-table nodes, which of these categories they are, and,
14981 when available, their source code location,
14982
14983 @item
14984 the GCC pass that emitted the message, and
14985
14986 @item
14987 the location in GCC's own code from which the message was emitted
14988
14989 @end itemize
14990
14991 Additionally, some messages are logically nested within other
14992 messages, reflecting implementation details of the optimization
14993 passes.
14994
14995 @item -fsched-verbose=@var{n}
14996 @opindex fsched-verbose
14997 On targets that use instruction scheduling, this option controls the
14998 amount of debugging output the scheduler prints to the dump files.
14999
15000 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
15001 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
15002 For @var{n} greater than one, it also output basic block probabilities,
15003 detailed ready list information and unit/insn info. For @var{n} greater
15004 than two, it includes RTL at abort point, control-flow and regions info.
15005 And for @var{n} over four, @option{-fsched-verbose} also includes
15006 dependence info.
15007
15008
15009
15010 @item -fenable-@var{kind}-@var{pass}
15011 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
15012 @opindex fdisable-
15013 @opindex fenable-
15014
15015 This is a set of options that are used to explicitly disable/enable
15016 optimization passes. These options are intended for use for debugging GCC.
15017 Compiler users should use regular options for enabling/disabling
15018 passes instead.
15019
15020 @table @gcctabopt
15021
15022 @item -fdisable-ipa-@var{pass}
15023 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15024 statically invoked in the compiler multiple times, the pass name should be
15025 appended with a sequential number starting from 1.
15026
15027 @item -fdisable-rtl-@var{pass}
15028 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
15029 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
15030 statically invoked in the compiler multiple times, the pass name should be
15031 appended with a sequential number starting from 1. @var{range-list} is a
15032 comma-separated list of function ranges or assembler names. Each range is a number
15033 pair separated by a colon. The range is inclusive in both ends. If the range
15034 is trivial, the number pair can be simplified as a single number. If the
15035 function's call graph node's @var{uid} falls within one of the specified ranges,
15036 the @var{pass} is disabled for that function. The @var{uid} is shown in the
15037 function header of a dump file, and the pass names can be dumped by using
15038 option @option{-fdump-passes}.
15039
15040 @item -fdisable-tree-@var{pass}
15041 @itemx -fdisable-tree-@var{pass}=@var{range-list}
15042 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
15043 option arguments.
15044
15045 @item -fenable-ipa-@var{pass}
15046 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15047 statically invoked in the compiler multiple times, the pass name should be
15048 appended with a sequential number starting from 1.
15049
15050 @item -fenable-rtl-@var{pass}
15051 @itemx -fenable-rtl-@var{pass}=@var{range-list}
15052 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
15053 description and examples.
15054
15055 @item -fenable-tree-@var{pass}
15056 @itemx -fenable-tree-@var{pass}=@var{range-list}
15057 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
15058 of option arguments.
15059
15060 @end table
15061
15062 Here are some examples showing uses of these options.
15063
15064 @smallexample
15065
15066 # disable ccp1 for all functions
15067 -fdisable-tree-ccp1
15068 # disable complete unroll for function whose cgraph node uid is 1
15069 -fenable-tree-cunroll=1
15070 # disable gcse2 for functions at the following ranges [1,1],
15071 # [300,400], and [400,1000]
15072 # disable gcse2 for functions foo and foo2
15073 -fdisable-rtl-gcse2=foo,foo2
15074 # disable early inlining
15075 -fdisable-tree-einline
15076 # disable ipa inlining
15077 -fdisable-ipa-inline
15078 # enable tree full unroll
15079 -fenable-tree-unroll
15080
15081 @end smallexample
15082
15083 @item -fchecking
15084 @itemx -fchecking=@var{n}
15085 @opindex fchecking
15086 @opindex fno-checking
15087 Enable internal consistency checking. The default depends on
15088 the compiler configuration. @option{-fchecking=2} enables further
15089 internal consistency checking that might affect code generation.
15090
15091 @item -frandom-seed=@var{string}
15092 @opindex frandom-seed
15093 This option provides a seed that GCC uses in place of
15094 random numbers in generating certain symbol names
15095 that have to be different in every compiled file. It is also used to
15096 place unique stamps in coverage data files and the object files that
15097 produce them. You can use the @option{-frandom-seed} option to produce
15098 reproducibly identical object files.
15099
15100 The @var{string} can either be a number (decimal, octal or hex) or an
15101 arbitrary string (in which case it's converted to a number by
15102 computing CRC32).
15103
15104 The @var{string} should be different for every file you compile.
15105
15106 @item -save-temps
15107 @itemx -save-temps=cwd
15108 @opindex save-temps
15109 Store the usual ``temporary'' intermediate files permanently; place them
15110 in the current directory and name them based on the source file. Thus,
15111 compiling @file{foo.c} with @option{-c -save-temps} produces files
15112 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
15113 preprocessed @file{foo.i} output file even though the compiler now
15114 normally uses an integrated preprocessor.
15115
15116 When used in combination with the @option{-x} command-line option,
15117 @option{-save-temps} is sensible enough to avoid over writing an
15118 input source file with the same extension as an intermediate file.
15119 The corresponding intermediate file may be obtained by renaming the
15120 source file before using @option{-save-temps}.
15121
15122 If you invoke GCC in parallel, compiling several different source
15123 files that share a common base name in different subdirectories or the
15124 same source file compiled for multiple output destinations, it is
15125 likely that the different parallel compilers will interfere with each
15126 other, and overwrite the temporary files. For instance:
15127
15128 @smallexample
15129 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
15130 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
15131 @end smallexample
15132
15133 may result in @file{foo.i} and @file{foo.o} being written to
15134 simultaneously by both compilers.
15135
15136 @item -save-temps=obj
15137 @opindex save-temps=obj
15138 Store the usual ``temporary'' intermediate files permanently. If the
15139 @option{-o} option is used, the temporary files are based on the
15140 object file. If the @option{-o} option is not used, the
15141 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
15142
15143 For example:
15144
15145 @smallexample
15146 gcc -save-temps=obj -c foo.c
15147 gcc -save-temps=obj -c bar.c -o dir/xbar.o
15148 gcc -save-temps=obj foobar.c -o dir2/yfoobar
15149 @end smallexample
15150
15151 @noindent
15152 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
15153 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
15154 @file{dir2/yfoobar.o}.
15155
15156 @item -time@r{[}=@var{file}@r{]}
15157 @opindex time
15158 Report the CPU time taken by each subprocess in the compilation
15159 sequence. For C source files, this is the compiler proper and assembler
15160 (plus the linker if linking is done).
15161
15162 Without the specification of an output file, the output looks like this:
15163
15164 @smallexample
15165 # cc1 0.12 0.01
15166 # as 0.00 0.01
15167 @end smallexample
15168
15169 The first number on each line is the ``user time'', that is time spent
15170 executing the program itself. The second number is ``system time'',
15171 time spent executing operating system routines on behalf of the program.
15172 Both numbers are in seconds.
15173
15174 With the specification of an output file, the output is appended to the
15175 named file, and it looks like this:
15176
15177 @smallexample
15178 0.12 0.01 cc1 @var{options}
15179 0.00 0.01 as @var{options}
15180 @end smallexample
15181
15182 The ``user time'' and the ``system time'' are moved before the program
15183 name, and the options passed to the program are displayed, so that one
15184 can later tell what file was being compiled, and with which options.
15185
15186 @item -fdump-final-insns@r{[}=@var{file}@r{]}
15187 @opindex fdump-final-insns
15188 Dump the final internal representation (RTL) to @var{file}. If the
15189 optional argument is omitted (or if @var{file} is @code{.}), the name
15190 of the dump file is determined by appending @code{.gkd} to the
15191 compilation output file name.
15192
15193 @item -fcompare-debug@r{[}=@var{opts}@r{]}
15194 @opindex fcompare-debug
15195 @opindex fno-compare-debug
15196 If no error occurs during compilation, run the compiler a second time,
15197 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
15198 passed to the second compilation. Dump the final internal
15199 representation in both compilations, and print an error if they differ.
15200
15201 If the equal sign is omitted, the default @option{-gtoggle} is used.
15202
15203 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
15204 and nonzero, implicitly enables @option{-fcompare-debug}. If
15205 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
15206 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
15207 is used.
15208
15209 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
15210 is equivalent to @option{-fno-compare-debug}, which disables the dumping
15211 of the final representation and the second compilation, preventing even
15212 @env{GCC_COMPARE_DEBUG} from taking effect.
15213
15214 To verify full coverage during @option{-fcompare-debug} testing, set
15215 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
15216 which GCC rejects as an invalid option in any actual compilation
15217 (rather than preprocessing, assembly or linking). To get just a
15218 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
15219 not overridden} will do.
15220
15221 @item -fcompare-debug-second
15222 @opindex fcompare-debug-second
15223 This option is implicitly passed to the compiler for the second
15224 compilation requested by @option{-fcompare-debug}, along with options to
15225 silence warnings, and omitting other options that would cause the compiler
15226 to produce output to files or to standard output as a side effect. Dump
15227 files and preserved temporary files are renamed so as to contain the
15228 @code{.gk} additional extension during the second compilation, to avoid
15229 overwriting those generated by the first.
15230
15231 When this option is passed to the compiler driver, it causes the
15232 @emph{first} compilation to be skipped, which makes it useful for little
15233 other than debugging the compiler proper.
15234
15235 @item -gtoggle
15236 @opindex gtoggle
15237 Turn off generation of debug info, if leaving out this option
15238 generates it, or turn it on at level 2 otherwise. The position of this
15239 argument in the command line does not matter; it takes effect after all
15240 other options are processed, and it does so only once, no matter how
15241 many times it is given. This is mainly intended to be used with
15242 @option{-fcompare-debug}.
15243
15244 @item -fvar-tracking-assignments-toggle
15245 @opindex fvar-tracking-assignments-toggle
15246 @opindex fno-var-tracking-assignments-toggle
15247 Toggle @option{-fvar-tracking-assignments}, in the same way that
15248 @option{-gtoggle} toggles @option{-g}.
15249
15250 @item -Q
15251 @opindex Q
15252 Makes the compiler print out each function name as it is compiled, and
15253 print some statistics about each pass when it finishes.
15254
15255 @item -ftime-report
15256 @opindex ftime-report
15257 Makes the compiler print some statistics about the time consumed by each
15258 pass when it finishes.
15259
15260 @item -ftime-report-details
15261 @opindex ftime-report-details
15262 Record the time consumed by infrastructure parts separately for each pass.
15263
15264 @item -fira-verbose=@var{n}
15265 @opindex fira-verbose
15266 Control the verbosity of the dump file for the integrated register allocator.
15267 The default value is 5. If the value @var{n} is greater or equal to 10,
15268 the dump output is sent to stderr using the same format as @var{n} minus 10.
15269
15270 @item -flto-report
15271 @opindex flto-report
15272 Prints a report with internal details on the workings of the link-time
15273 optimizer. The contents of this report vary from version to version.
15274 It is meant to be useful to GCC developers when processing object
15275 files in LTO mode (via @option{-flto}).
15276
15277 Disabled by default.
15278
15279 @item -flto-report-wpa
15280 @opindex flto-report-wpa
15281 Like @option{-flto-report}, but only print for the WPA phase of Link
15282 Time Optimization.
15283
15284 @item -fmem-report
15285 @opindex fmem-report
15286 Makes the compiler print some statistics about permanent memory
15287 allocation when it finishes.
15288
15289 @item -fmem-report-wpa
15290 @opindex fmem-report-wpa
15291 Makes the compiler print some statistics about permanent memory
15292 allocation for the WPA phase only.
15293
15294 @item -fpre-ipa-mem-report
15295 @opindex fpre-ipa-mem-report
15296 @item -fpost-ipa-mem-report
15297 @opindex fpost-ipa-mem-report
15298 Makes the compiler print some statistics about permanent memory
15299 allocation before or after interprocedural optimization.
15300
15301 @item -fprofile-report
15302 @opindex fprofile-report
15303 Makes the compiler print some statistics about consistency of the
15304 (estimated) profile and effect of individual passes.
15305
15306 @item -fstack-usage
15307 @opindex fstack-usage
15308 Makes the compiler output stack usage information for the program, on a
15309 per-function basis. The filename for the dump is made by appending
15310 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
15311 the output file, if explicitly specified and it is not an executable,
15312 otherwise it is the basename of the source file. An entry is made up
15313 of three fields:
15314
15315 @itemize
15316 @item
15317 The name of the function.
15318 @item
15319 A number of bytes.
15320 @item
15321 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
15322 @end itemize
15323
15324 The qualifier @code{static} means that the function manipulates the stack
15325 statically: a fixed number of bytes are allocated for the frame on function
15326 entry and released on function exit; no stack adjustments are otherwise made
15327 in the function. The second field is this fixed number of bytes.
15328
15329 The qualifier @code{dynamic} means that the function manipulates the stack
15330 dynamically: in addition to the static allocation described above, stack
15331 adjustments are made in the body of the function, for example to push/pop
15332 arguments around function calls. If the qualifier @code{bounded} is also
15333 present, the amount of these adjustments is bounded at compile time and
15334 the second field is an upper bound of the total amount of stack used by
15335 the function. If it is not present, the amount of these adjustments is
15336 not bounded at compile time and the second field only represents the
15337 bounded part.
15338
15339 @item -fstats
15340 @opindex fstats
15341 Emit statistics about front-end processing at the end of the compilation.
15342 This option is supported only by the C++ front end, and
15343 the information is generally only useful to the G++ development team.
15344
15345 @item -fdbg-cnt-list
15346 @opindex fdbg-cnt-list
15347 Print the name and the counter upper bound for all debug counters.
15348
15349
15350 @item -fdbg-cnt=@var{counter-value-list}
15351 @opindex fdbg-cnt
15352 Set the internal debug counter lower and upper bound. @var{counter-value-list}
15353 is a comma-separated list of @var{name}:@var{lower_bound}:@var{upper_bound}
15354 tuples which sets the lower and the upper bound of each debug
15355 counter @var{name}. The @var{lower_bound} is optional and is zero
15356 initialized if not set.
15357 All debug counters have the initial upper bound of @code{UINT_MAX};
15358 thus @code{dbg_cnt} returns true always unless the upper bound
15359 is set by this option.
15360 For example, with @option{-fdbg-cnt=dce:2:4,tail_call:10},
15361 @code{dbg_cnt(dce)} returns true only for third and fourth invocation.
15362 For @code{dbg_cnt(tail_call)} true is returned for first 10 invocations.
15363
15364 @item -print-file-name=@var{library}
15365 @opindex print-file-name
15366 Print the full absolute name of the library file @var{library} that
15367 would be used when linking---and don't do anything else. With this
15368 option, GCC does not compile or link anything; it just prints the
15369 file name.
15370
15371 @item -print-multi-directory
15372 @opindex print-multi-directory
15373 Print the directory name corresponding to the multilib selected by any
15374 other switches present in the command line. This directory is supposed
15375 to exist in @env{GCC_EXEC_PREFIX}.
15376
15377 @item -print-multi-lib
15378 @opindex print-multi-lib
15379 Print the mapping from multilib directory names to compiler switches
15380 that enable them. The directory name is separated from the switches by
15381 @samp{;}, and each switch starts with an @samp{@@} instead of the
15382 @samp{-}, without spaces between multiple switches. This is supposed to
15383 ease shell processing.
15384
15385 @item -print-multi-os-directory
15386 @opindex print-multi-os-directory
15387 Print the path to OS libraries for the selected
15388 multilib, relative to some @file{lib} subdirectory. If OS libraries are
15389 present in the @file{lib} subdirectory and no multilibs are used, this is
15390 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
15391 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
15392 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
15393 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
15394
15395 @item -print-multiarch
15396 @opindex print-multiarch
15397 Print the path to OS libraries for the selected multiarch,
15398 relative to some @file{lib} subdirectory.
15399
15400 @item -print-prog-name=@var{program}
15401 @opindex print-prog-name
15402 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
15403
15404 @item -print-libgcc-file-name
15405 @opindex print-libgcc-file-name
15406 Same as @option{-print-file-name=libgcc.a}.
15407
15408 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
15409 but you do want to link with @file{libgcc.a}. You can do:
15410
15411 @smallexample
15412 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
15413 @end smallexample
15414
15415 @item -print-search-dirs
15416 @opindex print-search-dirs
15417 Print the name of the configured installation directory and a list of
15418 program and library directories @command{gcc} searches---and don't do anything else.
15419
15420 This is useful when @command{gcc} prints the error message
15421 @samp{installation problem, cannot exec cpp0: No such file or directory}.
15422 To resolve this you either need to put @file{cpp0} and the other compiler
15423 components where @command{gcc} expects to find them, or you can set the environment
15424 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
15425 Don't forget the trailing @samp{/}.
15426 @xref{Environment Variables}.
15427
15428 @item -print-sysroot
15429 @opindex print-sysroot
15430 Print the target sysroot directory that is used during
15431 compilation. This is the target sysroot specified either at configure
15432 time or using the @option{--sysroot} option, possibly with an extra
15433 suffix that depends on compilation options. If no target sysroot is
15434 specified, the option prints nothing.
15435
15436 @item -print-sysroot-headers-suffix
15437 @opindex print-sysroot-headers-suffix
15438 Print the suffix added to the target sysroot when searching for
15439 headers, or give an error if the compiler is not configured with such
15440 a suffix---and don't do anything else.
15441
15442 @item -dumpmachine
15443 @opindex dumpmachine
15444 Print the compiler's target machine (for example,
15445 @samp{i686-pc-linux-gnu})---and don't do anything else.
15446
15447 @item -dumpversion
15448 @opindex dumpversion
15449 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
15450 anything else. This is the compiler version used in filesystem paths and
15451 specs. Depending on how the compiler has been configured it can be just
15452 a single number (major version), two numbers separated by a dot (major and
15453 minor version) or three numbers separated by dots (major, minor and patchlevel
15454 version).
15455
15456 @item -dumpfullversion
15457 @opindex dumpfullversion
15458 Print the full compiler version---and don't do anything else. The output is
15459 always three numbers separated by dots, major, minor and patchlevel version.
15460
15461 @item -dumpspecs
15462 @opindex dumpspecs
15463 Print the compiler's built-in specs---and don't do anything else. (This
15464 is used when GCC itself is being built.) @xref{Spec Files}.
15465 @end table
15466
15467 @node Submodel Options
15468 @section Machine-Dependent Options
15469 @cindex submodel options
15470 @cindex specifying hardware config
15471 @cindex hardware models and configurations, specifying
15472 @cindex target-dependent options
15473 @cindex machine-dependent options
15474
15475 Each target machine supported by GCC can have its own options---for
15476 example, to allow you to compile for a particular processor variant or
15477 ABI, or to control optimizations specific to that machine. By
15478 convention, the names of machine-specific options start with
15479 @samp{-m}.
15480
15481 Some configurations of the compiler also support additional target-specific
15482 options, usually for compatibility with other compilers on the same
15483 platform.
15484
15485 @c This list is ordered alphanumerically by subsection name.
15486 @c It should be the same order and spelling as these options are listed
15487 @c in Machine Dependent Options
15488
15489 @menu
15490 * AArch64 Options::
15491 * Adapteva Epiphany Options::
15492 * AMD GCN Options::
15493 * ARC Options::
15494 * ARM Options::
15495 * AVR Options::
15496 * Blackfin Options::
15497 * C6X Options::
15498 * CRIS Options::
15499 * CR16 Options::
15500 * C-SKY Options::
15501 * Darwin Options::
15502 * DEC Alpha Options::
15503 * FR30 Options::
15504 * FT32 Options::
15505 * FRV Options::
15506 * GNU/Linux Options::
15507 * H8/300 Options::
15508 * HPPA Options::
15509 * IA-64 Options::
15510 * LM32 Options::
15511 * M32C Options::
15512 * M32R/D Options::
15513 * M680x0 Options::
15514 * MCore Options::
15515 * MeP Options::
15516 * MicroBlaze Options::
15517 * MIPS Options::
15518 * MMIX Options::
15519 * MN10300 Options::
15520 * Moxie Options::
15521 * MSP430 Options::
15522 * NDS32 Options::
15523 * Nios II Options::
15524 * Nvidia PTX Options::
15525 * OpenRISC Options::
15526 * PDP-11 Options::
15527 * picoChip Options::
15528 * PowerPC Options::
15529 * RISC-V Options::
15530 * RL78 Options::
15531 * RS/6000 and PowerPC Options::
15532 * RX Options::
15533 * S/390 and zSeries Options::
15534 * Score Options::
15535 * SH Options::
15536 * Solaris 2 Options::
15537 * SPARC Options::
15538 * SPU Options::
15539 * System V Options::
15540 * TILE-Gx Options::
15541 * TILEPro Options::
15542 * V850 Options::
15543 * VAX Options::
15544 * Visium Options::
15545 * VMS Options::
15546 * VxWorks Options::
15547 * x86 Options::
15548 * x86 Windows Options::
15549 * Xstormy16 Options::
15550 * Xtensa Options::
15551 * zSeries Options::
15552 @end menu
15553
15554 @node AArch64 Options
15555 @subsection AArch64 Options
15556 @cindex AArch64 Options
15557
15558 These options are defined for AArch64 implementations:
15559
15560 @table @gcctabopt
15561
15562 @item -mabi=@var{name}
15563 @opindex mabi
15564 Generate code for the specified data model. Permissible values
15565 are @samp{ilp32} for SysV-like data model where int, long int and pointers
15566 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
15567 but long int and pointers are 64 bits.
15568
15569 The default depends on the specific target configuration. Note that
15570 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
15571 entire program with the same ABI, and link with a compatible set of libraries.
15572
15573 @item -mbig-endian
15574 @opindex mbig-endian
15575 Generate big-endian code. This is the default when GCC is configured for an
15576 @samp{aarch64_be-*-*} target.
15577
15578 @item -mgeneral-regs-only
15579 @opindex mgeneral-regs-only
15580 Generate code which uses only the general-purpose registers. This will prevent
15581 the compiler from using floating-point and Advanced SIMD registers but will not
15582 impose any restrictions on the assembler.
15583
15584 @item -mlittle-endian
15585 @opindex mlittle-endian
15586 Generate little-endian code. This is the default when GCC is configured for an
15587 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
15588
15589 @item -mcmodel=tiny
15590 @opindex mcmodel=tiny
15591 Generate code for the tiny code model. The program and its statically defined
15592 symbols must be within 1MB of each other. Programs can be statically or
15593 dynamically linked.
15594
15595 @item -mcmodel=small
15596 @opindex mcmodel=small
15597 Generate code for the small code model. The program and its statically defined
15598 symbols must be within 4GB of each other. Programs can be statically or
15599 dynamically linked. This is the default code model.
15600
15601 @item -mcmodel=large
15602 @opindex mcmodel=large
15603 Generate code for the large code model. This makes no assumptions about
15604 addresses and sizes of sections. Programs can be statically linked only.
15605
15606 @item -mstrict-align
15607 @itemx -mno-strict-align
15608 @opindex mstrict-align
15609 @opindex mno-strict-align
15610 Avoid or allow generating memory accesses that may not be aligned on a natural
15611 object boundary as described in the architecture specification.
15612
15613 @item -momit-leaf-frame-pointer
15614 @itemx -mno-omit-leaf-frame-pointer
15615 @opindex momit-leaf-frame-pointer
15616 @opindex mno-omit-leaf-frame-pointer
15617 Omit or keep the frame pointer in leaf functions. The former behavior is the
15618 default.
15619
15620 @item -mstack-protector-guard=@var{guard}
15621 @itemx -mstack-protector-guard-reg=@var{reg}
15622 @itemx -mstack-protector-guard-offset=@var{offset}
15623 @opindex mstack-protector-guard
15624 @opindex mstack-protector-guard-reg
15625 @opindex mstack-protector-guard-offset
15626 Generate stack protection code using canary at @var{guard}. Supported
15627 locations are @samp{global} for a global canary or @samp{sysreg} for a
15628 canary in an appropriate system register.
15629
15630 With the latter choice the options
15631 @option{-mstack-protector-guard-reg=@var{reg}} and
15632 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15633 which system register to use as base register for reading the canary,
15634 and from what offset from that base register. There is no default
15635 register or offset as this is entirely for use within the Linux
15636 kernel.
15637
15638 @item -mstack-protector-guard=@var{guard}
15639 @itemx -mstack-protector-guard-reg=@var{reg}
15640 @itemx -mstack-protector-guard-offset=@var{offset}
15641 @opindex mstack-protector-guard
15642 @opindex mstack-protector-guard-reg
15643 @opindex mstack-protector-guard-offset
15644 Generate stack protection code using canary at @var{guard}. Supported
15645 locations are @samp{global} for a global canary or @samp{sysreg} for a
15646 canary in an appropriate system register.
15647
15648 With the latter choice the options
15649 @option{-mstack-protector-guard-reg=@var{reg}} and
15650 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15651 which system register to use as base register for reading the canary,
15652 and from what offset from that base register. There is no default
15653 register or offset as this is entirely for use within the Linux
15654 kernel.
15655
15656 @item -mtls-dialect=desc
15657 @opindex mtls-dialect=desc
15658 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
15659 of TLS variables. This is the default.
15660
15661 @item -mtls-dialect=traditional
15662 @opindex mtls-dialect=traditional
15663 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
15664 of TLS variables.
15665
15666 @item -mtls-size=@var{size}
15667 @opindex mtls-size
15668 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
15669 This option requires binutils 2.26 or newer.
15670
15671 @item -mfix-cortex-a53-835769
15672 @itemx -mno-fix-cortex-a53-835769
15673 @opindex mfix-cortex-a53-835769
15674 @opindex mno-fix-cortex-a53-835769
15675 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
15676 This involves inserting a NOP instruction between memory instructions and
15677 64-bit integer multiply-accumulate instructions.
15678
15679 @item -mfix-cortex-a53-843419
15680 @itemx -mno-fix-cortex-a53-843419
15681 @opindex mfix-cortex-a53-843419
15682 @opindex mno-fix-cortex-a53-843419
15683 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
15684 This erratum workaround is made at link time and this will only pass the
15685 corresponding flag to the linker.
15686
15687 @item -mlow-precision-recip-sqrt
15688 @itemx -mno-low-precision-recip-sqrt
15689 @opindex mlow-precision-recip-sqrt
15690 @opindex mno-low-precision-recip-sqrt
15691 Enable or disable the reciprocal square root approximation.
15692 This option only has an effect if @option{-ffast-math} or
15693 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15694 precision of reciprocal square root results to about 16 bits for
15695 single precision and to 32 bits for double precision.
15696
15697 @item -mlow-precision-sqrt
15698 @itemx -mno-low-precision-sqrt
15699 @opindex mlow-precision-sqrt
15700 @opindex mno-low-precision-sqrt
15701 Enable or disable the square root approximation.
15702 This option only has an effect if @option{-ffast-math} or
15703 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15704 precision of square root results to about 16 bits for
15705 single precision and to 32 bits for double precision.
15706 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
15707
15708 @item -mlow-precision-div
15709 @itemx -mno-low-precision-div
15710 @opindex mlow-precision-div
15711 @opindex mno-low-precision-div
15712 Enable or disable the division approximation.
15713 This option only has an effect if @option{-ffast-math} or
15714 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15715 precision of division results to about 16 bits for
15716 single precision and to 32 bits for double precision.
15717
15718 @item -mtrack-speculation
15719 @itemx -mno-track-speculation
15720 Enable or disable generation of additional code to track speculative
15721 execution through conditional branches. The tracking state can then
15722 be used by the compiler when expanding calls to
15723 @code{__builtin_speculation_safe_copy} to permit a more efficient code
15724 sequence to be generated.
15725
15726 @item -march=@var{name}
15727 @opindex march
15728 Specify the name of the target architecture and, optionally, one or
15729 more feature modifiers. This option has the form
15730 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
15731
15732 The permissible values for @var{arch} are @samp{armv8-a},
15733 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a}, @samp{armv8.4-a},
15734 @samp{armv8.5-a} or @var{native}.
15735
15736 The value @samp{armv8.5-a} implies @samp{armv8.4-a} and enables compiler
15737 support for the ARMv8.5-A architecture extensions.
15738
15739 The value @samp{armv8.4-a} implies @samp{armv8.3-a} and enables compiler
15740 support for the ARMv8.4-A architecture extensions.
15741
15742 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
15743 support for the ARMv8.3-A architecture extensions.
15744
15745 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
15746 support for the ARMv8.2-A architecture extensions.
15747
15748 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
15749 support for the ARMv8.1-A architecture extension. In particular, it
15750 enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
15751
15752 The value @samp{native} is available on native AArch64 GNU/Linux and
15753 causes the compiler to pick the architecture of the host system. This
15754 option has no effect if the compiler is unable to recognize the
15755 architecture of the host system,
15756
15757 The permissible values for @var{feature} are listed in the sub-section
15758 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15759 Feature Modifiers}. Where conflicting feature modifiers are
15760 specified, the right-most feature is used.
15761
15762 GCC uses @var{name} to determine what kind of instructions it can emit
15763 when generating assembly code. If @option{-march} is specified
15764 without either of @option{-mtune} or @option{-mcpu} also being
15765 specified, the code is tuned to perform well across a range of target
15766 processors implementing the target architecture.
15767
15768 @item -mtune=@var{name}
15769 @opindex mtune
15770 Specify the name of the target processor for which GCC should tune the
15771 performance of the code. Permissible values for this option are:
15772 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
15773 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
15774 @samp{cortex-a76}, @samp{ares}, @samp{exynos-m1}, @samp{emag}, @samp{falkor},
15775 @samp{qdf24xx}, @samp{saphira}, @samp{phecda}, @samp{xgene1}, @samp{vulcan},
15776 @samp{octeontx}, @samp{octeontx81}, @samp{octeontx83},
15777 @samp{thunderx}, @samp{thunderxt88}, @samp{thunderxt88p1}, @samp{thunderxt81},
15778 @samp{tsv110}, @samp{thunderxt83}, @samp{thunderx2t99},
15779 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15780 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15781 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}
15782 @samp{native}.
15783
15784 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15785 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15786 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55} specify that GCC
15787 should tune for a big.LITTLE system.
15788
15789 Additionally on native AArch64 GNU/Linux systems the value
15790 @samp{native} tunes performance to the host system. This option has no effect
15791 if the compiler is unable to recognize the processor of the host system.
15792
15793 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
15794 are specified, the code is tuned to perform well across a range
15795 of target processors.
15796
15797 This option cannot be suffixed by feature modifiers.
15798
15799 @item -mcpu=@var{name}
15800 @opindex mcpu
15801 Specify the name of the target processor, optionally suffixed by one
15802 or more feature modifiers. This option has the form
15803 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
15804 the permissible values for @var{cpu} are the same as those available
15805 for @option{-mtune}. The permissible values for @var{feature} are
15806 documented in the sub-section on
15807 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15808 Feature Modifiers}. Where conflicting feature modifiers are
15809 specified, the right-most feature is used.
15810
15811 GCC uses @var{name} to determine what kind of instructions it can emit when
15812 generating assembly code (as if by @option{-march}) and to determine
15813 the target processor for which to tune for performance (as if
15814 by @option{-mtune}). Where this option is used in conjunction
15815 with @option{-march} or @option{-mtune}, those options take precedence
15816 over the appropriate part of this option.
15817
15818 @item -moverride=@var{string}
15819 @opindex moverride
15820 Override tuning decisions made by the back-end in response to a
15821 @option{-mtune=} switch. The syntax, semantics, and accepted values
15822 for @var{string} in this option are not guaranteed to be consistent
15823 across releases.
15824
15825 This option is only intended to be useful when developing GCC.
15826
15827 @item -mverbose-cost-dump
15828 @opindex mverbose-cost-dump
15829 Enable verbose cost model dumping in the debug dump files. This option is
15830 provided for use in debugging the compiler.
15831
15832 @item -mpc-relative-literal-loads
15833 @itemx -mno-pc-relative-literal-loads
15834 @opindex mpc-relative-literal-loads
15835 @opindex mno-pc-relative-literal-loads
15836 Enable or disable PC-relative literal loads. With this option literal pools are
15837 accessed using a single instruction and emitted after each function. This
15838 limits the maximum size of functions to 1MB. This is enabled by default for
15839 @option{-mcmodel=tiny}.
15840
15841 @item -msign-return-address=@var{scope}
15842 @opindex msign-return-address
15843 Select the function scope on which return address signing will be applied.
15844 Permissible values are @samp{none}, which disables return address signing,
15845 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
15846 functions, and @samp{all}, which enables pointer signing for all functions. The
15847 default value is @samp{none}. This option has been deprecated by
15848 -mbranch-protection.
15849
15850 @item -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}]
15851 @opindex mbranch-protection
15852 Select the branch protection features to use.
15853 @samp{none} is the default and turns off all types of branch protection.
15854 @samp{standard} turns on all types of branch protection features. If a feature
15855 has additional tuning options, then @samp{standard} sets it to its standard
15856 level.
15857 @samp{pac-ret[+@var{leaf}]} turns on return address signing to its standard
15858 level: signing functions that save the return address to memory (non-leaf
15859 functions will practically always do this) using the a-key. The optional
15860 argument @samp{leaf} can be used to extend the signing to include leaf
15861 functions.
15862 @samp{bti} turns on branch target identification mechanism.
15863
15864 @item -msve-vector-bits=@var{bits}
15865 @opindex msve-vector-bits
15866 Specify the number of bits in an SVE vector register. This option only has
15867 an effect when SVE is enabled.
15868
15869 GCC supports two forms of SVE code generation: ``vector-length
15870 agnostic'' output that works with any size of vector register and
15871 ``vector-length specific'' output that allows GCC to make assumptions
15872 about the vector length when it is useful for optimization reasons.
15873 The possible values of @samp{bits} are: @samp{scalable}, @samp{128},
15874 @samp{256}, @samp{512}, @samp{1024} and @samp{2048}.
15875 Specifying @samp{scalable} selects vector-length agnostic
15876 output. At present @samp{-msve-vector-bits=128} also generates vector-length
15877 agnostic output. All other values generate vector-length specific code.
15878 The behavior of these values may change in future releases and no value except
15879 @samp{scalable} should be relied on for producing code that is portable across
15880 different hardware SVE vector lengths.
15881
15882 The default is @samp{-msve-vector-bits=scalable}, which produces
15883 vector-length agnostic code.
15884 @end table
15885
15886 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
15887 @anchor{aarch64-feature-modifiers}
15888 @cindex @option{-march} feature modifiers
15889 @cindex @option{-mcpu} feature modifiers
15890 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
15891 the following and their inverses @option{no@var{feature}}:
15892
15893 @table @samp
15894 @item crc
15895 Enable CRC extension. This is on by default for
15896 @option{-march=armv8.1-a}.
15897 @item crypto
15898 Enable Crypto extension. This also enables Advanced SIMD and floating-point
15899 instructions.
15900 @item fp
15901 Enable floating-point instructions. This is on by default for all possible
15902 values for options @option{-march} and @option{-mcpu}.
15903 @item simd
15904 Enable Advanced SIMD instructions. This also enables floating-point
15905 instructions. This is on by default for all possible values for options
15906 @option{-march} and @option{-mcpu}.
15907 @item sve
15908 Enable Scalable Vector Extension instructions. This also enables Advanced
15909 SIMD and floating-point instructions.
15910 @item lse
15911 Enable Large System Extension instructions. This is on by default for
15912 @option{-march=armv8.1-a}.
15913 @item rdma
15914 Enable Round Double Multiply Accumulate instructions. This is on by default
15915 for @option{-march=armv8.1-a}.
15916 @item fp16
15917 Enable FP16 extension. This also enables floating-point instructions.
15918 @item fp16fml
15919 Enable FP16 fmla extension. This also enables FP16 extensions and
15920 floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
15921
15922 @item rcpc
15923 Enable the RcPc extension. This does not change code generation from GCC,
15924 but is passed on to the assembler, enabling inline asm statements to use
15925 instructions from the RcPc extension.
15926 @item dotprod
15927 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
15928 @item aes
15929 Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced
15930 SIMD instructions.
15931 @item sha2
15932 Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD instructions.
15933 @item sha3
15934 Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD
15935 instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
15936 @item sm4
15937 Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD instructions.
15938 Use of this option with architectures prior to Armv8.2-A is not supported.
15939 @item profile
15940 Enable the Statistical Profiling extension. This option is only to enable the
15941 extension at the assembler level and does not affect code generation.
15942 @item rng
15943 Enable the Armv8.5-a Random Number instructions. This option is only to
15944 enable the extension at the assembler level and does not affect code
15945 generation.
15946 @item memtag
15947 Enable the Armv8.5-a Memory Tagging Extensions. This option is only to
15948 enable the extension at the assembler level and does not affect code
15949 generation.
15950 @item sb
15951 Enable the Armv8-a Speculation Barrier instruction. This option is only to
15952 enable the extension at the assembler level and does not affect code
15953 generation. This option is enabled by default for @option{-march=armv8.5-a}.
15954 @item ssbs
15955 Enable the Armv8-a Speculative Store Bypass Safe instruction. This option
15956 is only to enable the extension at the assembler level and does not affect code
15957 generation. This option is enabled by default for @option{-march=armv8.5-a}.
15958 @item predres
15959 Enable the Armv8-a Execution and Data Prediction Restriction instructions.
15960 This option is only to enable the extension at the assembler level and does
15961 not affect code generation. This option is enabled by default for
15962 @option{-march=armv8.5-a}.
15963
15964 @end table
15965
15966 Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
15967 which implies @option{fp}.
15968 Conversely, @option{nofp} implies @option{nosimd}, which implies
15969 @option{nocrypto}, @option{noaes} and @option{nosha2}.
15970
15971 @node Adapteva Epiphany Options
15972 @subsection Adapteva Epiphany Options
15973
15974 These @samp{-m} options are defined for Adapteva Epiphany:
15975
15976 @table @gcctabopt
15977 @item -mhalf-reg-file
15978 @opindex mhalf-reg-file
15979 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
15980 That allows code to run on hardware variants that lack these registers.
15981
15982 @item -mprefer-short-insn-regs
15983 @opindex mprefer-short-insn-regs
15984 Preferentially allocate registers that allow short instruction generation.
15985 This can result in increased instruction count, so this may either reduce or
15986 increase overall code size.
15987
15988 @item -mbranch-cost=@var{num}
15989 @opindex mbranch-cost
15990 Set the cost of branches to roughly @var{num} ``simple'' instructions.
15991 This cost is only a heuristic and is not guaranteed to produce
15992 consistent results across releases.
15993
15994 @item -mcmove
15995 @opindex mcmove
15996 Enable the generation of conditional moves.
15997
15998 @item -mnops=@var{num}
15999 @opindex mnops
16000 Emit @var{num} NOPs before every other generated instruction.
16001
16002 @item -mno-soft-cmpsf
16003 @opindex mno-soft-cmpsf
16004 @opindex msoft-cmpsf
16005 For single-precision floating-point comparisons, emit an @code{fsub} instruction
16006 and test the flags. This is faster than a software comparison, but can
16007 get incorrect results in the presence of NaNs, or when two different small
16008 numbers are compared such that their difference is calculated as zero.
16009 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
16010 software comparisons.
16011
16012 @item -mstack-offset=@var{num}
16013 @opindex mstack-offset
16014 Set the offset between the top of the stack and the stack pointer.
16015 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
16016 can be used by leaf functions without stack allocation.
16017 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
16018 Note also that this option changes the ABI; compiling a program with a
16019 different stack offset than the libraries have been compiled with
16020 generally does not work.
16021 This option can be useful if you want to evaluate if a different stack
16022 offset would give you better code, but to actually use a different stack
16023 offset to build working programs, it is recommended to configure the
16024 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
16025
16026 @item -mno-round-nearest
16027 @opindex mno-round-nearest
16028 @opindex mround-nearest
16029 Make the scheduler assume that the rounding mode has been set to
16030 truncating. The default is @option{-mround-nearest}.
16031
16032 @item -mlong-calls
16033 @opindex mlong-calls
16034 If not otherwise specified by an attribute, assume all calls might be beyond
16035 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
16036 function address into a register before performing a (otherwise direct) call.
16037 This is the default.
16038
16039 @item -mshort-calls
16040 @opindex short-calls
16041 If not otherwise specified by an attribute, assume all direct calls are
16042 in the range of the @code{b} / @code{bl} instructions, so use these instructions
16043 for direct calls. The default is @option{-mlong-calls}.
16044
16045 @item -msmall16
16046 @opindex msmall16
16047 Assume addresses can be loaded as 16-bit unsigned values. This does not
16048 apply to function addresses for which @option{-mlong-calls} semantics
16049 are in effect.
16050
16051 @item -mfp-mode=@var{mode}
16052 @opindex mfp-mode
16053 Set the prevailing mode of the floating-point unit.
16054 This determines the floating-point mode that is provided and expected
16055 at function call and return time. Making this mode match the mode you
16056 predominantly need at function start can make your programs smaller and
16057 faster by avoiding unnecessary mode switches.
16058
16059 @var{mode} can be set to one the following values:
16060
16061 @table @samp
16062 @item caller
16063 Any mode at function entry is valid, and retained or restored when
16064 the function returns, and when it calls other functions.
16065 This mode is useful for compiling libraries or other compilation units
16066 you might want to incorporate into different programs with different
16067 prevailing FPU modes, and the convenience of being able to use a single
16068 object file outweighs the size and speed overhead for any extra
16069 mode switching that might be needed, compared with what would be needed
16070 with a more specific choice of prevailing FPU mode.
16071
16072 @item truncate
16073 This is the mode used for floating-point calculations with
16074 truncating (i.e.@: round towards zero) rounding mode. That includes
16075 conversion from floating point to integer.
16076
16077 @item round-nearest
16078 This is the mode used for floating-point calculations with
16079 round-to-nearest-or-even rounding mode.
16080
16081 @item int
16082 This is the mode used to perform integer calculations in the FPU, e.g.@:
16083 integer multiply, or integer multiply-and-accumulate.
16084 @end table
16085
16086 The default is @option{-mfp-mode=caller}
16087
16088 @item -mno-split-lohi
16089 @itemx -mno-postinc
16090 @itemx -mno-postmodify
16091 @opindex mno-split-lohi
16092 @opindex msplit-lohi
16093 @opindex mno-postinc
16094 @opindex mpostinc
16095 @opindex mno-postmodify
16096 @opindex mpostmodify
16097 Code generation tweaks that disable, respectively, splitting of 32-bit
16098 loads, generation of post-increment addresses, and generation of
16099 post-modify addresses. The defaults are @option{msplit-lohi},
16100 @option{-mpost-inc}, and @option{-mpost-modify}.
16101
16102 @item -mnovect-double
16103 @opindex mno-vect-double
16104 @opindex mvect-double
16105 Change the preferred SIMD mode to SImode. The default is
16106 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
16107
16108 @item -max-vect-align=@var{num}
16109 @opindex max-vect-align
16110 The maximum alignment for SIMD vector mode types.
16111 @var{num} may be 4 or 8. The default is 8.
16112 Note that this is an ABI change, even though many library function
16113 interfaces are unaffected if they don't use SIMD vector modes
16114 in places that affect size and/or alignment of relevant types.
16115
16116 @item -msplit-vecmove-early
16117 @opindex msplit-vecmove-early
16118 Split vector moves into single word moves before reload. In theory this
16119 can give better register allocation, but so far the reverse seems to be
16120 generally the case.
16121
16122 @item -m1reg-@var{reg}
16123 @opindex m1reg-
16124 Specify a register to hold the constant @minus{}1, which makes loading small negative
16125 constants and certain bitmasks faster.
16126 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
16127 which specify use of that register as a fixed register,
16128 and @samp{none}, which means that no register is used for this
16129 purpose. The default is @option{-m1reg-none}.
16130
16131 @end table
16132
16133 @node AMD GCN Options
16134 @subsection AMD GCN Options
16135 @cindex AMD GCN Options
16136
16137 These options are defined specifically for the AMD GCN port.
16138
16139 @table @gcctabopt
16140
16141 @item -march=@var{gpu}
16142 @opindex march
16143 @itemx -mtune=@var{gpu}
16144 @opindex mtune
16145 Set architecture type or tuning for @var{gpu}. Supported values for @var{gpu}
16146 are
16147
16148 @table @samp
16149 @opindex fiji
16150 @item fiji
16151 Compile for GCN3 Fiji devices (gfx803).
16152
16153 @item gfx900
16154 Compile for GCN5 Vega 10 devices (gfx900).
16155
16156 @end table
16157
16158 @item -mstack-size=@var{bytes}
16159 @opindex mstack-size
16160 Specify how many @var{bytes} of stack space will be requested for each GPU
16161 thread (wave-front). Beware that there may be many threads and limited memory
16162 available. The size of the stack allocation may also have an impact on
16163 run-time performance. The default is 32KB when using OpenACC or OpenMP, and
16164 1MB otherwise.
16165
16166 @end table
16167
16168 @node ARC Options
16169 @subsection ARC Options
16170 @cindex ARC options
16171
16172 The following options control the architecture variant for which code
16173 is being compiled:
16174
16175 @c architecture variants
16176 @table @gcctabopt
16177
16178 @item -mbarrel-shifter
16179 @opindex mbarrel-shifter
16180 Generate instructions supported by barrel shifter. This is the default
16181 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
16182
16183 @item -mjli-always
16184 @opindex mjli-alawys
16185 Force to call a function using jli_s instruction. This option is
16186 valid only for ARCv2 architecture.
16187
16188 @item -mcpu=@var{cpu}
16189 @opindex mcpu
16190 Set architecture type, register usage, and instruction scheduling
16191 parameters for @var{cpu}. There are also shortcut alias options
16192 available for backward compatibility and convenience. Supported
16193 values for @var{cpu} are
16194
16195 @table @samp
16196 @opindex mA6
16197 @opindex mARC600
16198 @item arc600
16199 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
16200
16201 @item arc601
16202 @opindex mARC601
16203 Compile for ARC601. Alias: @option{-mARC601}.
16204
16205 @item arc700
16206 @opindex mA7
16207 @opindex mARC700
16208 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
16209 This is the default when configured with @option{--with-cpu=arc700}@.
16210
16211 @item arcem
16212 Compile for ARC EM.
16213
16214 @item archs
16215 Compile for ARC HS.
16216
16217 @item em
16218 Compile for ARC EM CPU with no hardware extensions.
16219
16220 @item em4
16221 Compile for ARC EM4 CPU.
16222
16223 @item em4_dmips
16224 Compile for ARC EM4 DMIPS CPU.
16225
16226 @item em4_fpus
16227 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
16228 extension.
16229
16230 @item em4_fpuda
16231 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
16232 double assist instructions.
16233
16234 @item hs
16235 Compile for ARC HS CPU with no hardware extensions except the atomic
16236 instructions.
16237
16238 @item hs34
16239 Compile for ARC HS34 CPU.
16240
16241 @item hs38
16242 Compile for ARC HS38 CPU.
16243
16244 @item hs38_linux
16245 Compile for ARC HS38 CPU with all hardware extensions on.
16246
16247 @item arc600_norm
16248 Compile for ARC 600 CPU with @code{norm} instructions enabled.
16249
16250 @item arc600_mul32x16
16251 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
16252 instructions enabled.
16253
16254 @item arc600_mul64
16255 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
16256 instructions enabled.
16257
16258 @item arc601_norm
16259 Compile for ARC 601 CPU with @code{norm} instructions enabled.
16260
16261 @item arc601_mul32x16
16262 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
16263 instructions enabled.
16264
16265 @item arc601_mul64
16266 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
16267 instructions enabled.
16268
16269 @item nps400
16270 Compile for ARC 700 on NPS400 chip.
16271
16272 @item em_mini
16273 Compile for ARC EM minimalist configuration featuring reduced register
16274 set.
16275
16276 @end table
16277
16278 @item -mdpfp
16279 @opindex mdpfp
16280 @itemx -mdpfp-compact
16281 @opindex mdpfp-compact
16282 Generate double-precision FPX instructions, tuned for the compact
16283 implementation.
16284
16285 @item -mdpfp-fast
16286 @opindex mdpfp-fast
16287 Generate double-precision FPX instructions, tuned for the fast
16288 implementation.
16289
16290 @item -mno-dpfp-lrsr
16291 @opindex mno-dpfp-lrsr
16292 Disable @code{lr} and @code{sr} instructions from using FPX extension
16293 aux registers.
16294
16295 @item -mea
16296 @opindex mea
16297 Generate extended arithmetic instructions. Currently only
16298 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
16299 supported. This is always enabled for @option{-mcpu=ARC700}.
16300
16301 @item -mno-mpy
16302 @opindex mno-mpy
16303 @opindex mmpy
16304 Do not generate @code{mpy}-family instructions for ARC700. This option is
16305 deprecated.
16306
16307 @item -mmul32x16
16308 @opindex mmul32x16
16309 Generate 32x16-bit multiply and multiply-accumulate instructions.
16310
16311 @item -mmul64
16312 @opindex mmul64
16313 Generate @code{mul64} and @code{mulu64} instructions.
16314 Only valid for @option{-mcpu=ARC600}.
16315
16316 @item -mnorm
16317 @opindex mnorm
16318 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
16319 is in effect.
16320
16321 @item -mspfp
16322 @opindex mspfp
16323 @itemx -mspfp-compact
16324 @opindex mspfp-compact
16325 Generate single-precision FPX instructions, tuned for the compact
16326 implementation.
16327
16328 @item -mspfp-fast
16329 @opindex mspfp-fast
16330 Generate single-precision FPX instructions, tuned for the fast
16331 implementation.
16332
16333 @item -msimd
16334 @opindex msimd
16335 Enable generation of ARC SIMD instructions via target-specific
16336 builtins. Only valid for @option{-mcpu=ARC700}.
16337
16338 @item -msoft-float
16339 @opindex msoft-float
16340 This option ignored; it is provided for compatibility purposes only.
16341 Software floating-point code is emitted by default, and this default
16342 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
16343 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
16344 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
16345
16346 @item -mswap
16347 @opindex mswap
16348 Generate @code{swap} instructions.
16349
16350 @item -matomic
16351 @opindex matomic
16352 This enables use of the locked load/store conditional extension to implement
16353 atomic memory built-in functions. Not available for ARC 6xx or ARC
16354 EM cores.
16355
16356 @item -mdiv-rem
16357 @opindex mdiv-rem
16358 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
16359
16360 @item -mcode-density
16361 @opindex mcode-density
16362 Enable code density instructions for ARC EM.
16363 This option is on by default for ARC HS.
16364
16365 @item -mll64
16366 @opindex mll64
16367 Enable double load/store operations for ARC HS cores.
16368
16369 @item -mtp-regno=@var{regno}
16370 @opindex mtp-regno
16371 Specify thread pointer register number.
16372
16373 @item -mmpy-option=@var{multo}
16374 @opindex mmpy-option
16375 Compile ARCv2 code with a multiplier design option. You can specify
16376 the option using either a string or numeric value for @var{multo}.
16377 @samp{wlh1} is the default value. The recognized values are:
16378
16379 @table @samp
16380 @item 0
16381 @itemx none
16382 No multiplier available.
16383
16384 @item 1
16385 @itemx w
16386 16x16 multiplier, fully pipelined.
16387 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
16388
16389 @item 2
16390 @itemx wlh1
16391 32x32 multiplier, fully
16392 pipelined (1 stage). The following instructions are additionally
16393 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16394
16395 @item 3
16396 @itemx wlh2
16397 32x32 multiplier, fully pipelined
16398 (2 stages). The following instructions are additionally enabled: @code{mpy},
16399 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16400
16401 @item 4
16402 @itemx wlh3
16403 Two 16x16 multipliers, blocking,
16404 sequential. The following instructions are additionally enabled: @code{mpy},
16405 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16406
16407 @item 5
16408 @itemx wlh4
16409 One 16x16 multiplier, blocking,
16410 sequential. The following instructions are additionally enabled: @code{mpy},
16411 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16412
16413 @item 6
16414 @itemx wlh5
16415 One 32x4 multiplier, blocking,
16416 sequential. The following instructions are additionally enabled: @code{mpy},
16417 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16418
16419 @item 7
16420 @itemx plus_dmpy
16421 ARC HS SIMD support.
16422
16423 @item 8
16424 @itemx plus_macd
16425 ARC HS SIMD support.
16426
16427 @item 9
16428 @itemx plus_qmacw
16429 ARC HS SIMD support.
16430
16431 @end table
16432
16433 This option is only available for ARCv2 cores@.
16434
16435 @item -mfpu=@var{fpu}
16436 @opindex mfpu
16437 Enables support for specific floating-point hardware extensions for ARCv2
16438 cores. Supported values for @var{fpu} are:
16439
16440 @table @samp
16441
16442 @item fpus
16443 Enables support for single-precision floating-point hardware
16444 extensions@.
16445
16446 @item fpud
16447 Enables support for double-precision floating-point hardware
16448 extensions. The single-precision floating-point extension is also
16449 enabled. Not available for ARC EM@.
16450
16451 @item fpuda
16452 Enables support for double-precision floating-point hardware
16453 extensions using double-precision assist instructions. The single-precision
16454 floating-point extension is also enabled. This option is
16455 only available for ARC EM@.
16456
16457 @item fpuda_div
16458 Enables support for double-precision floating-point hardware
16459 extensions using double-precision assist instructions.
16460 The single-precision floating-point, square-root, and divide
16461 extensions are also enabled. This option is
16462 only available for ARC EM@.
16463
16464 @item fpuda_fma
16465 Enables support for double-precision floating-point hardware
16466 extensions using double-precision assist instructions.
16467 The single-precision floating-point and fused multiply and add
16468 hardware extensions are also enabled. This option is
16469 only available for ARC EM@.
16470
16471 @item fpuda_all
16472 Enables support for double-precision floating-point hardware
16473 extensions using double-precision assist instructions.
16474 All single-precision floating-point hardware extensions are also
16475 enabled. This option is only available for ARC EM@.
16476
16477 @item fpus_div
16478 Enables support for single-precision floating-point, square-root and divide
16479 hardware extensions@.
16480
16481 @item fpud_div
16482 Enables support for double-precision floating-point, square-root and divide
16483 hardware extensions. This option
16484 includes option @samp{fpus_div}. Not available for ARC EM@.
16485
16486 @item fpus_fma
16487 Enables support for single-precision floating-point and
16488 fused multiply and add hardware extensions@.
16489
16490 @item fpud_fma
16491 Enables support for double-precision floating-point and
16492 fused multiply and add hardware extensions. This option
16493 includes option @samp{fpus_fma}. Not available for ARC EM@.
16494
16495 @item fpus_all
16496 Enables support for all single-precision floating-point hardware
16497 extensions@.
16498
16499 @item fpud_all
16500 Enables support for all single- and double-precision floating-point
16501 hardware extensions. Not available for ARC EM@.
16502
16503 @end table
16504
16505 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
16506 @opindex mirq-ctrl-saved
16507 Specifies general-purposes registers that the processor automatically
16508 saves/restores on interrupt entry and exit. @var{register-range} is
16509 specified as two registers separated by a dash. The register range
16510 always starts with @code{r0}, the upper limit is @code{fp} register.
16511 @var{blink} and @var{lp_count} are optional. This option is only
16512 valid for ARC EM and ARC HS cores.
16513
16514 @item -mrgf-banked-regs=@var{number}
16515 @opindex mrgf-banked-regs
16516 Specifies the number of registers replicated in second register bank
16517 on entry to fast interrupt. Fast interrupts are interrupts with the
16518 highest priority level P0. These interrupts save only PC and STATUS32
16519 registers to avoid memory transactions during interrupt entry and exit
16520 sequences. Use this option when you are using fast interrupts in an
16521 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
16522
16523 @item -mlpc-width=@var{width}
16524 @opindex mlpc-width
16525 Specify the width of the @code{lp_count} register. Valid values for
16526 @var{width} are 8, 16, 20, 24, 28 and 32 bits. The default width is
16527 fixed to 32 bits. If the width is less than 32, the compiler does not
16528 attempt to transform loops in your program to use the zero-delay loop
16529 mechanism unless it is known that the @code{lp_count} register can
16530 hold the required loop-counter value. Depending on the width
16531 specified, the compiler and run-time library might continue to use the
16532 loop mechanism for various needs. This option defines macro
16533 @code{__ARC_LPC_WIDTH__} with the value of @var{width}.
16534
16535 @item -mrf16
16536 @opindex mrf16
16537 This option instructs the compiler to generate code for a 16-entry
16538 register file. This option defines the @code{__ARC_RF16__}
16539 preprocessor macro.
16540
16541 @item -mbranch-index
16542 @opindex mbranch-index
16543 Enable use of @code{bi} or @code{bih} instructions to implement jump
16544 tables.
16545
16546 @end table
16547
16548 The following options are passed through to the assembler, and also
16549 define preprocessor macro symbols.
16550
16551 @c Flags used by the assembler, but for which we define preprocessor
16552 @c macro symbols as well.
16553 @table @gcctabopt
16554 @item -mdsp-packa
16555 @opindex mdsp-packa
16556 Passed down to the assembler to enable the DSP Pack A extensions.
16557 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
16558 deprecated.
16559
16560 @item -mdvbf
16561 @opindex mdvbf
16562 Passed down to the assembler to enable the dual Viterbi butterfly
16563 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
16564 option is deprecated.
16565
16566 @c ARC700 4.10 extension instruction
16567 @item -mlock
16568 @opindex mlock
16569 Passed down to the assembler to enable the locked load/store
16570 conditional extension. Also sets the preprocessor symbol
16571 @code{__Xlock}.
16572
16573 @item -mmac-d16
16574 @opindex mmac-d16
16575 Passed down to the assembler. Also sets the preprocessor symbol
16576 @code{__Xxmac_d16}. This option is deprecated.
16577
16578 @item -mmac-24
16579 @opindex mmac-24
16580 Passed down to the assembler. Also sets the preprocessor symbol
16581 @code{__Xxmac_24}. This option is deprecated.
16582
16583 @c ARC700 4.10 extension instruction
16584 @item -mrtsc
16585 @opindex mrtsc
16586 Passed down to the assembler to enable the 64-bit time-stamp counter
16587 extension instruction. Also sets the preprocessor symbol
16588 @code{__Xrtsc}. This option is deprecated.
16589
16590 @c ARC700 4.10 extension instruction
16591 @item -mswape
16592 @opindex mswape
16593 Passed down to the assembler to enable the swap byte ordering
16594 extension instruction. Also sets the preprocessor symbol
16595 @code{__Xswape}.
16596
16597 @item -mtelephony
16598 @opindex mtelephony
16599 Passed down to the assembler to enable dual- and single-operand
16600 instructions for telephony. Also sets the preprocessor symbol
16601 @code{__Xtelephony}. This option is deprecated.
16602
16603 @item -mxy
16604 @opindex mxy
16605 Passed down to the assembler to enable the XY memory extension. Also
16606 sets the preprocessor symbol @code{__Xxy}.
16607
16608 @end table
16609
16610 The following options control how the assembly code is annotated:
16611
16612 @c Assembly annotation options
16613 @table @gcctabopt
16614 @item -misize
16615 @opindex misize
16616 Annotate assembler instructions with estimated addresses.
16617
16618 @item -mannotate-align
16619 @opindex mannotate-align
16620 Explain what alignment considerations lead to the decision to make an
16621 instruction short or long.
16622
16623 @end table
16624
16625 The following options are passed through to the linker:
16626
16627 @c options passed through to the linker
16628 @table @gcctabopt
16629 @item -marclinux
16630 @opindex marclinux
16631 Passed through to the linker, to specify use of the @code{arclinux} emulation.
16632 This option is enabled by default in tool chains built for
16633 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
16634 when profiling is not requested.
16635
16636 @item -marclinux_prof
16637 @opindex marclinux_prof
16638 Passed through to the linker, to specify use of the
16639 @code{arclinux_prof} emulation. This option is enabled by default in
16640 tool chains built for @w{@code{arc-linux-uclibc}} and
16641 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
16642
16643 @end table
16644
16645 The following options control the semantics of generated code:
16646
16647 @c semantically relevant code generation options
16648 @table @gcctabopt
16649 @item -mlong-calls
16650 @opindex mlong-calls
16651 Generate calls as register indirect calls, thus providing access
16652 to the full 32-bit address range.
16653
16654 @item -mmedium-calls
16655 @opindex mmedium-calls
16656 Don't use less than 25-bit addressing range for calls, which is the
16657 offset available for an unconditional branch-and-link
16658 instruction. Conditional execution of function calls is suppressed, to
16659 allow use of the 25-bit range, rather than the 21-bit range with
16660 conditional branch-and-link. This is the default for tool chains built
16661 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
16662
16663 @item -G @var{num}
16664 @opindex G
16665 Put definitions of externally-visible data in a small data section if
16666 that data is no bigger than @var{num} bytes. The default value of
16667 @var{num} is 4 for any ARC configuration, or 8 when we have double
16668 load/store operations.
16669
16670 @item -mno-sdata
16671 @opindex mno-sdata
16672 @opindex msdata
16673 Do not generate sdata references. This is the default for tool chains
16674 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
16675 targets.
16676
16677 @item -mvolatile-cache
16678 @opindex mvolatile-cache
16679 Use ordinarily cached memory accesses for volatile references. This is the
16680 default.
16681
16682 @item -mno-volatile-cache
16683 @opindex mno-volatile-cache
16684 @opindex mvolatile-cache
16685 Enable cache bypass for volatile references.
16686
16687 @end table
16688
16689 The following options fine tune code generation:
16690 @c code generation tuning options
16691 @table @gcctabopt
16692 @item -malign-call
16693 @opindex malign-call
16694 Do alignment optimizations for call instructions.
16695
16696 @item -mauto-modify-reg
16697 @opindex mauto-modify-reg
16698 Enable the use of pre/post modify with register displacement.
16699
16700 @item -mbbit-peephole
16701 @opindex mbbit-peephole
16702 Enable bbit peephole2.
16703
16704 @item -mno-brcc
16705 @opindex mno-brcc
16706 This option disables a target-specific pass in @file{arc_reorg} to
16707 generate compare-and-branch (@code{br@var{cc}}) instructions.
16708 It has no effect on
16709 generation of these instructions driven by the combiner pass.
16710
16711 @item -mcase-vector-pcrel
16712 @opindex mcase-vector-pcrel
16713 Use PC-relative switch case tables to enable case table shortening.
16714 This is the default for @option{-Os}.
16715
16716 @item -mcompact-casesi
16717 @opindex mcompact-casesi
16718 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
16719 and only available for ARCv1 cores. This option is deprecated.
16720
16721 @item -mno-cond-exec
16722 @opindex mno-cond-exec
16723 Disable the ARCompact-specific pass to generate conditional
16724 execution instructions.
16725
16726 Due to delay slot scheduling and interactions between operand numbers,
16727 literal sizes, instruction lengths, and the support for conditional execution,
16728 the target-independent pass to generate conditional execution is often lacking,
16729 so the ARC port has kept a special pass around that tries to find more
16730 conditional execution generation opportunities after register allocation,
16731 branch shortening, and delay slot scheduling have been done. This pass
16732 generally, but not always, improves performance and code size, at the cost of
16733 extra compilation time, which is why there is an option to switch it off.
16734 If you have a problem with call instructions exceeding their allowable
16735 offset range because they are conditionalized, you should consider using
16736 @option{-mmedium-calls} instead.
16737
16738 @item -mearly-cbranchsi
16739 @opindex mearly-cbranchsi
16740 Enable pre-reload use of the @code{cbranchsi} pattern.
16741
16742 @item -mexpand-adddi
16743 @opindex mexpand-adddi
16744 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
16745 @code{add.f}, @code{adc} etc. This option is deprecated.
16746
16747 @item -mindexed-loads
16748 @opindex mindexed-loads
16749 Enable the use of indexed loads. This can be problematic because some
16750 optimizers then assume that indexed stores exist, which is not
16751 the case.
16752
16753 @item -mlra
16754 @opindex mlra
16755 Enable Local Register Allocation. This is still experimental for ARC,
16756 so by default the compiler uses standard reload
16757 (i.e.@: @option{-mno-lra}).
16758
16759 @item -mlra-priority-none
16760 @opindex mlra-priority-none
16761 Don't indicate any priority for target registers.
16762
16763 @item -mlra-priority-compact
16764 @opindex mlra-priority-compact
16765 Indicate target register priority for r0..r3 / r12..r15.
16766
16767 @item -mlra-priority-noncompact
16768 @opindex mlra-priority-noncompact
16769 Reduce target register priority for r0..r3 / r12..r15.
16770
16771 @item -mmillicode
16772 @opindex mmillicode
16773 When optimizing for size (using @option{-Os}), prologues and epilogues
16774 that have to save or restore a large number of registers are often
16775 shortened by using call to a special function in libgcc; this is
16776 referred to as a @emph{millicode} call. As these calls can pose
16777 performance issues, and/or cause linking issues when linking in a
16778 nonstandard way, this option is provided to turn on or off millicode
16779 call generation.
16780
16781 @item -mcode-density-frame
16782 @opindex mcode-density-frame
16783 This option enable the compiler to emit @code{enter} and @code{leave}
16784 instructions. These instructions are only valid for CPUs with
16785 code-density feature.
16786
16787 @item -mmixed-code
16788 @opindex mmixed-code
16789 Tweak register allocation to help 16-bit instruction generation.
16790 This generally has the effect of decreasing the average instruction size
16791 while increasing the instruction count.
16792
16793 @item -mq-class
16794 @opindex mq-class
16795 Enable @samp{q} instruction alternatives.
16796 This is the default for @option{-Os}.
16797
16798 @item -mRcq
16799 @opindex mRcq
16800 Enable @samp{Rcq} constraint handling.
16801 Most short code generation depends on this.
16802 This is the default.
16803
16804 @item -mRcw
16805 @opindex mRcw
16806 Enable @samp{Rcw} constraint handling.
16807 Most ccfsm condexec mostly depends on this.
16808 This is the default.
16809
16810 @item -msize-level=@var{level}
16811 @opindex msize-level
16812 Fine-tune size optimization with regards to instruction lengths and alignment.
16813 The recognized values for @var{level} are:
16814 @table @samp
16815 @item 0
16816 No size optimization. This level is deprecated and treated like @samp{1}.
16817
16818 @item 1
16819 Short instructions are used opportunistically.
16820
16821 @item 2
16822 In addition, alignment of loops and of code after barriers are dropped.
16823
16824 @item 3
16825 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
16826
16827 @end table
16828
16829 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
16830 the behavior when this is not set is equivalent to level @samp{1}.
16831
16832 @item -mtune=@var{cpu}
16833 @opindex mtune
16834 Set instruction scheduling parameters for @var{cpu}, overriding any implied
16835 by @option{-mcpu=}.
16836
16837 Supported values for @var{cpu} are
16838
16839 @table @samp
16840 @item ARC600
16841 Tune for ARC600 CPU.
16842
16843 @item ARC601
16844 Tune for ARC601 CPU.
16845
16846 @item ARC700
16847 Tune for ARC700 CPU with standard multiplier block.
16848
16849 @item ARC700-xmac
16850 Tune for ARC700 CPU with XMAC block.
16851
16852 @item ARC725D
16853 Tune for ARC725D CPU.
16854
16855 @item ARC750D
16856 Tune for ARC750D CPU.
16857
16858 @end table
16859
16860 @item -mmultcost=@var{num}
16861 @opindex mmultcost
16862 Cost to assume for a multiply instruction, with @samp{4} being equal to a
16863 normal instruction.
16864
16865 @item -munalign-prob-threshold=@var{probability}
16866 @opindex munalign-prob-threshold
16867 Set probability threshold for unaligning branches.
16868 When tuning for @samp{ARC700} and optimizing for speed, branches without
16869 filled delay slot are preferably emitted unaligned and long, unless
16870 profiling indicates that the probability for the branch to be taken
16871 is below @var{probability}. @xref{Cross-profiling}.
16872 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
16873
16874 @end table
16875
16876 The following options are maintained for backward compatibility, but
16877 are now deprecated and will be removed in a future release:
16878
16879 @c Deprecated options
16880 @table @gcctabopt
16881
16882 @item -margonaut
16883 @opindex margonaut
16884 Obsolete FPX.
16885
16886 @item -mbig-endian
16887 @opindex mbig-endian
16888 @itemx -EB
16889 @opindex EB
16890 Compile code for big-endian targets. Use of these options is now
16891 deprecated. Big-endian code is supported by configuring GCC to build
16892 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
16893 for which big endian is the default.
16894
16895 @item -mlittle-endian
16896 @opindex mlittle-endian
16897 @itemx -EL
16898 @opindex EL
16899 Compile code for little-endian targets. Use of these options is now
16900 deprecated. Little-endian code is supported by configuring GCC to build
16901 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
16902 for which little endian is the default.
16903
16904 @item -mbarrel_shifter
16905 @opindex mbarrel_shifter
16906 Replaced by @option{-mbarrel-shifter}.
16907
16908 @item -mdpfp_compact
16909 @opindex mdpfp_compact
16910 Replaced by @option{-mdpfp-compact}.
16911
16912 @item -mdpfp_fast
16913 @opindex mdpfp_fast
16914 Replaced by @option{-mdpfp-fast}.
16915
16916 @item -mdsp_packa
16917 @opindex mdsp_packa
16918 Replaced by @option{-mdsp-packa}.
16919
16920 @item -mEA
16921 @opindex mEA
16922 Replaced by @option{-mea}.
16923
16924 @item -mmac_24
16925 @opindex mmac_24
16926 Replaced by @option{-mmac-24}.
16927
16928 @item -mmac_d16
16929 @opindex mmac_d16
16930 Replaced by @option{-mmac-d16}.
16931
16932 @item -mspfp_compact
16933 @opindex mspfp_compact
16934 Replaced by @option{-mspfp-compact}.
16935
16936 @item -mspfp_fast
16937 @opindex mspfp_fast
16938 Replaced by @option{-mspfp-fast}.
16939
16940 @item -mtune=@var{cpu}
16941 @opindex mtune
16942 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
16943 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
16944 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
16945
16946 @item -multcost=@var{num}
16947 @opindex multcost
16948 Replaced by @option{-mmultcost}.
16949
16950 @end table
16951
16952 @node ARM Options
16953 @subsection ARM Options
16954 @cindex ARM options
16955
16956 These @samp{-m} options are defined for the ARM port:
16957
16958 @table @gcctabopt
16959 @item -mabi=@var{name}
16960 @opindex mabi
16961 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
16962 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
16963
16964 @item -mapcs-frame
16965 @opindex mapcs-frame
16966 Generate a stack frame that is compliant with the ARM Procedure Call
16967 Standard for all functions, even if this is not strictly necessary for
16968 correct execution of the code. Specifying @option{-fomit-frame-pointer}
16969 with this option causes the stack frames not to be generated for
16970 leaf functions. The default is @option{-mno-apcs-frame}.
16971 This option is deprecated.
16972
16973 @item -mapcs
16974 @opindex mapcs
16975 This is a synonym for @option{-mapcs-frame} and is deprecated.
16976
16977 @ignore
16978 @c not currently implemented
16979 @item -mapcs-stack-check
16980 @opindex mapcs-stack-check
16981 Generate code to check the amount of stack space available upon entry to
16982 every function (that actually uses some stack space). If there is
16983 insufficient space available then either the function
16984 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
16985 called, depending upon the amount of stack space required. The runtime
16986 system is required to provide these functions. The default is
16987 @option{-mno-apcs-stack-check}, since this produces smaller code.
16988
16989 @c not currently implemented
16990 @item -mapcs-reentrant
16991 @opindex mapcs-reentrant
16992 Generate reentrant, position-independent code. The default is
16993 @option{-mno-apcs-reentrant}.
16994 @end ignore
16995
16996 @item -mthumb-interwork
16997 @opindex mthumb-interwork
16998 Generate code that supports calling between the ARM and Thumb
16999 instruction sets. Without this option, on pre-v5 architectures, the
17000 two instruction sets cannot be reliably used inside one program. The
17001 default is @option{-mno-thumb-interwork}, since slightly larger code
17002 is generated when @option{-mthumb-interwork} is specified. In AAPCS
17003 configurations this option is meaningless.
17004
17005 @item -mno-sched-prolog
17006 @opindex mno-sched-prolog
17007 @opindex msched-prolog
17008 Prevent the reordering of instructions in the function prologue, or the
17009 merging of those instruction with the instructions in the function's
17010 body. This means that all functions start with a recognizable set
17011 of instructions (or in fact one of a choice from a small set of
17012 different function prologues), and this information can be used to
17013 locate the start of functions inside an executable piece of code. The
17014 default is @option{-msched-prolog}.
17015
17016 @item -mfloat-abi=@var{name}
17017 @opindex mfloat-abi
17018 Specifies which floating-point ABI to use. Permissible values
17019 are: @samp{soft}, @samp{softfp} and @samp{hard}.
17020
17021 Specifying @samp{soft} causes GCC to generate output containing
17022 library calls for floating-point operations.
17023 @samp{softfp} allows the generation of code using hardware floating-point
17024 instructions, but still uses the soft-float calling conventions.
17025 @samp{hard} allows generation of floating-point instructions
17026 and uses FPU-specific calling conventions.
17027
17028 The default depends on the specific target configuration. Note that
17029 the hard-float and soft-float ABIs are not link-compatible; you must
17030 compile your entire program with the same ABI, and link with a
17031 compatible set of libraries.
17032
17033 @item -mlittle-endian
17034 @opindex mlittle-endian
17035 Generate code for a processor running in little-endian mode. This is
17036 the default for all standard configurations.
17037
17038 @item -mbig-endian
17039 @opindex mbig-endian
17040 Generate code for a processor running in big-endian mode; the default is
17041 to compile code for a little-endian processor.
17042
17043 @item -mbe8
17044 @itemx -mbe32
17045 @opindex mbe8
17046 When linking a big-endian image select between BE8 and BE32 formats.
17047 The option has no effect for little-endian images and is ignored. The
17048 default is dependent on the selected target architecture. For ARMv6
17049 and later architectures the default is BE8, for older architectures
17050 the default is BE32. BE32 format has been deprecated by ARM.
17051
17052 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
17053 @opindex march
17054 This specifies the name of the target ARM architecture. GCC uses this
17055 name to determine what kind of instructions it can emit when generating
17056 assembly code. This option can be used in conjunction with or instead
17057 of the @option{-mcpu=} option.
17058
17059 Permissible names are:
17060 @samp{armv4t},
17061 @samp{armv5t}, @samp{armv5te},
17062 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
17063 @samp{armv6z}, @samp{armv6zk},
17064 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
17065 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
17066 @samp{armv8.4-a},
17067 @samp{armv8.5-a},
17068 @samp{armv7-r},
17069 @samp{armv8-r},
17070 @samp{armv6-m}, @samp{armv6s-m},
17071 @samp{armv7-m}, @samp{armv7e-m},
17072 @samp{armv8-m.base}, @samp{armv8-m.main},
17073 @samp{iwmmxt} and @samp{iwmmxt2}.
17074
17075 Additionally, the following architectures, which lack support for the
17076 Thumb execution state, are recognized but support is deprecated: @samp{armv4}.
17077
17078 Many of the architectures support extensions. These can be added by
17079 appending @samp{+@var{extension}} to the architecture name. Extension
17080 options are processed in order and capabilities accumulate. An extension
17081 will also enable any necessary base extensions
17082 upon which it depends. For example, the @samp{+crypto} extension
17083 will always enable the @samp{+simd} extension. The exception to the
17084 additive construction is for extensions that are prefixed with
17085 @samp{+no@dots{}}: these extensions disable the specified option and
17086 any other extensions that may depend on the presence of that
17087 extension.
17088
17089 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
17090 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
17091 entirely disabled by the @samp{+nofp} option that follows it.
17092
17093 Most extension names are generically named, but have an effect that is
17094 dependent upon the architecture to which it is applied. For example,
17095 the @samp{+simd} option can be applied to both @samp{armv7-a} and
17096 @samp{armv8-a} architectures, but will enable the original ARMv7-A
17097 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
17098 variant for @samp{armv8-a}.
17099
17100 The table below lists the supported extensions for each architecture.
17101 Architectures not mentioned do not support any extensions.
17102
17103 @table @samp
17104 @item armv5te
17105 @itemx armv6
17106 @itemx armv6j
17107 @itemx armv6k
17108 @itemx armv6kz
17109 @itemx armv6t2
17110 @itemx armv6z
17111 @itemx armv6zk
17112 @table @samp
17113 @item +fp
17114 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
17115 used as an alias for this extension.
17116
17117 @item +nofp
17118 Disable the floating-point instructions.
17119 @end table
17120
17121 @item armv7
17122 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
17123 @table @samp
17124 @item +fp
17125 The VFPv3 floating-point instructions, with 16 double-precision
17126 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17127 for this extension. Note that floating-point is not supported by the
17128 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
17129 ARMv7-R architectures.
17130
17131 @item +nofp
17132 Disable the floating-point instructions.
17133 @end table
17134
17135 @item armv7-a
17136 @table @samp
17137 @item +mp
17138 The multiprocessing extension.
17139
17140 @item +sec
17141 The security extension.
17142
17143 @item +fp
17144 The VFPv3 floating-point instructions, with 16 double-precision
17145 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17146 for this extension.
17147
17148 @item +simd
17149 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17150 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
17151 for this extension.
17152
17153 @item +vfpv3
17154 The VFPv3 floating-point instructions, with 32 double-precision
17155 registers.
17156
17157 @item +vfpv3-d16-fp16
17158 The VFPv3 floating-point instructions, with 16 double-precision
17159 registers and the half-precision floating-point conversion operations.
17160
17161 @item +vfpv3-fp16
17162 The VFPv3 floating-point instructions, with 32 double-precision
17163 registers and the half-precision floating-point conversion operations.
17164
17165 @item +vfpv4-d16
17166 The VFPv4 floating-point instructions, with 16 double-precision
17167 registers.
17168
17169 @item +vfpv4
17170 The VFPv4 floating-point instructions, with 32 double-precision
17171 registers.
17172
17173 @item +neon-fp16
17174 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17175 the half-precision floating-point conversion operations.
17176
17177 @item +neon-vfpv4
17178 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
17179
17180 @item +nosimd
17181 Disable the Advanced SIMD instructions (does not disable floating point).
17182
17183 @item +nofp
17184 Disable the floating-point and Advanced SIMD instructions.
17185 @end table
17186
17187 @item armv7ve
17188 The extended version of the ARMv7-A architecture with support for
17189 virtualization.
17190 @table @samp
17191 @item +fp
17192 The VFPv4 floating-point instructions, with 16 double-precision registers.
17193 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
17194
17195 @item +simd
17196 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
17197 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
17198
17199 @item +vfpv3-d16
17200 The VFPv3 floating-point instructions, with 16 double-precision
17201 registers.
17202
17203 @item +vfpv3
17204 The VFPv3 floating-point instructions, with 32 double-precision
17205 registers.
17206
17207 @item +vfpv3-d16-fp16
17208 The VFPv3 floating-point instructions, with 16 double-precision
17209 registers and the half-precision floating-point conversion operations.
17210
17211 @item +vfpv3-fp16
17212 The VFPv3 floating-point instructions, with 32 double-precision
17213 registers and the half-precision floating-point conversion operations.
17214
17215 @item +vfpv4-d16
17216 The VFPv4 floating-point instructions, with 16 double-precision
17217 registers.
17218
17219 @item +vfpv4
17220 The VFPv4 floating-point instructions, with 32 double-precision
17221 registers.
17222
17223 @item +neon
17224 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17225 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
17226
17227 @item +neon-fp16
17228 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17229 the half-precision floating-point conversion operations.
17230
17231 @item +nosimd
17232 Disable the Advanced SIMD instructions (does not disable floating point).
17233
17234 @item +nofp
17235 Disable the floating-point and Advanced SIMD instructions.
17236 @end table
17237
17238 @item armv8-a
17239 @table @samp
17240 @item +crc
17241 The Cyclic Redundancy Check (CRC) instructions.
17242 @item +simd
17243 The ARMv8-A Advanced SIMD and floating-point instructions.
17244 @item +crypto
17245 The cryptographic instructions.
17246 @item +nocrypto
17247 Disable the cryptographic instructions.
17248 @item +nofp
17249 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17250 @item +sb
17251 Speculation Barrier Instruction.
17252 @item +predres
17253 Execution and Data Prediction Restriction Instructions.
17254 @end table
17255
17256 @item armv8.1-a
17257 @table @samp
17258 @item +simd
17259 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17260
17261 @item +crypto
17262 The cryptographic instructions. This also enables the Advanced SIMD and
17263 floating-point instructions.
17264
17265 @item +nocrypto
17266 Disable the cryptographic instructions.
17267
17268 @item +nofp
17269 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17270
17271 @item +sb
17272 Speculation Barrier Instruction.
17273
17274 @item +predres
17275 Execution and Data Prediction Restriction Instructions.
17276 @end table
17277
17278 @item armv8.2-a
17279 @itemx armv8.3-a
17280 @table @samp
17281 @item +fp16
17282 The half-precision floating-point data processing instructions.
17283 This also enables the Advanced SIMD and floating-point instructions.
17284
17285 @item +fp16fml
17286 The half-precision floating-point fmla extension. This also enables
17287 the half-precision floating-point extension and Advanced SIMD and
17288 floating-point instructions.
17289
17290 @item +simd
17291 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17292
17293 @item +crypto
17294 The cryptographic instructions. This also enables the Advanced SIMD and
17295 floating-point instructions.
17296
17297 @item +dotprod
17298 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
17299
17300 @item +nocrypto
17301 Disable the cryptographic extension.
17302
17303 @item +nofp
17304 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17305
17306 @item +sb
17307 Speculation Barrier Instruction.
17308
17309 @item +predres
17310 Execution and Data Prediction Restriction Instructions.
17311 @end table
17312
17313 @item armv8.4-a
17314 @table @samp
17315 @item +fp16
17316 The half-precision floating-point data processing instructions.
17317 This also enables the Advanced SIMD and floating-point instructions as well
17318 as the Dot Product extension and the half-precision floating-point fmla
17319 extension.
17320
17321 @item +simd
17322 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17323 Dot Product extension.
17324
17325 @item +crypto
17326 The cryptographic instructions. This also enables the Advanced SIMD and
17327 floating-point instructions as well as the Dot Product extension.
17328
17329 @item +nocrypto
17330 Disable the cryptographic extension.
17331
17332 @item +nofp
17333 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17334
17335 @item +sb
17336 Speculation Barrier Instruction.
17337
17338 @item +predres
17339 Execution and Data Prediction Restriction Instructions.
17340 @end table
17341
17342 @item armv8.5-a
17343 @table @samp
17344 @item +fp16
17345 The half-precision floating-point data processing instructions.
17346 This also enables the Advanced SIMD and floating-point instructions as well
17347 as the Dot Product extension and the half-precision floating-point fmla
17348 extension.
17349
17350 @item +simd
17351 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17352 Dot Product extension.
17353
17354 @item +crypto
17355 The cryptographic instructions. This also enables the Advanced SIMD and
17356 floating-point instructions as well as the Dot Product extension.
17357
17358 @item +nocrypto
17359 Disable the cryptographic extension.
17360
17361 @item +nofp
17362 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17363 @end table
17364
17365 @item armv7-r
17366 @table @samp
17367 @item +fp.sp
17368 The single-precision VFPv3 floating-point instructions. The extension
17369 @samp{+vfpv3xd} can be used as an alias for this extension.
17370
17371 @item +fp
17372 The VFPv3 floating-point instructions with 16 double-precision registers.
17373 The extension +vfpv3-d16 can be used as an alias for this extension.
17374
17375 @item +vfpv3xd-d16-fp16
17376 The single-precision VFPv3 floating-point instructions with 16 double-precision
17377 registers and the half-precision floating-point conversion operations.
17378
17379 @item +vfpv3-d16-fp16
17380 The VFPv3 floating-point instructions with 16 double-precision
17381 registers and the half-precision floating-point conversion operations.
17382
17383 @item +nofp
17384 Disable the floating-point extension.
17385
17386 @item +idiv
17387 The ARM-state integer division instructions.
17388
17389 @item +noidiv
17390 Disable the ARM-state integer division extension.
17391 @end table
17392
17393 @item armv7e-m
17394 @table @samp
17395 @item +fp
17396 The single-precision VFPv4 floating-point instructions.
17397
17398 @item +fpv5
17399 The single-precision FPv5 floating-point instructions.
17400
17401 @item +fp.dp
17402 The single- and double-precision FPv5 floating-point instructions.
17403
17404 @item +nofp
17405 Disable the floating-point extensions.
17406 @end table
17407
17408 @item armv8-m.main
17409 @table @samp
17410 @item +dsp
17411 The DSP instructions.
17412
17413 @item +nodsp
17414 Disable the DSP extension.
17415
17416 @item +fp
17417 The single-precision floating-point instructions.
17418
17419 @item +fp.dp
17420 The single- and double-precision floating-point instructions.
17421
17422 @item +nofp
17423 Disable the floating-point extension.
17424 @end table
17425
17426 @item armv8-r
17427 @table @samp
17428 @item +crc
17429 The Cyclic Redundancy Check (CRC) instructions.
17430 @item +fp.sp
17431 The single-precision FPv5 floating-point instructions.
17432 @item +simd
17433 The ARMv8-A Advanced SIMD and floating-point instructions.
17434 @item +crypto
17435 The cryptographic instructions.
17436 @item +nocrypto
17437 Disable the cryptographic instructions.
17438 @item +nofp
17439 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17440 @end table
17441
17442 @end table
17443
17444 @option{-march=native} causes the compiler to auto-detect the architecture
17445 of the build computer. At present, this feature is only supported on
17446 GNU/Linux, and not all architectures are recognized. If the auto-detect
17447 is unsuccessful the option has no effect.
17448
17449 @item -mtune=@var{name}
17450 @opindex mtune
17451 This option specifies the name of the target ARM processor for
17452 which GCC should tune the performance of the code.
17453 For some ARM implementations better performance can be obtained by using
17454 this option.
17455 Permissible names are: @samp{arm7tdmi}, @samp{arm7tdmi-s}, @samp{arm710t},
17456 @samp{arm720t}, @samp{arm740t}, @samp{strongarm}, @samp{strongarm110},
17457 @samp{strongarm1100}, 0@samp{strongarm1110}, @samp{arm8}, @samp{arm810},
17458 @samp{arm9}, @samp{arm9e}, @samp{arm920}, @samp{arm920t}, @samp{arm922t},
17459 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm926ej-s},
17460 @samp{arm940t}, @samp{arm9tdmi}, @samp{arm10tdmi}, @samp{arm1020t},
17461 @samp{arm1026ej-s}, @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
17462 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
17463 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
17464 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
17465 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
17466 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
17467 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
17468 @samp{cortex-a76}, @samp{ares}, @samp{cortex-r4}, @samp{cortex-r4f},
17469 @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52},
17470 @samp{cortex-m0}, @samp{cortex-m0plus}, @samp{cortex-m1}, @samp{cortex-m3},
17471 @samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m23}, @samp{cortex-m33},
17472 @samp{cortex-m1.small-multiply}, @samp{cortex-m0.small-multiply},
17473 @samp{cortex-m0plus.small-multiply}, @samp{exynos-m1}, @samp{marvell-pj4},
17474 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}, @samp{fa526},
17475 @samp{fa626}, @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
17476 @samp{xgene1}.
17477
17478 Additionally, this option can specify that GCC should tune the performance
17479 of the code for a big.LITTLE system. Permissible names are:
17480 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
17481 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17482 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
17483 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}.
17484
17485 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
17486 performance for a blend of processors within architecture @var{arch}.
17487 The aim is to generate code that run well on the current most popular
17488 processors, balancing between optimizations that benefit some CPUs in the
17489 range, and avoiding performance pitfalls of other CPUs. The effects of
17490 this option may change in future GCC versions as CPU models come and go.
17491
17492 @option{-mtune} permits the same extension options as @option{-mcpu}, but
17493 the extension options do not affect the tuning of the generated code.
17494
17495 @option{-mtune=native} causes the compiler to auto-detect the CPU
17496 of the build computer. At present, this feature is only supported on
17497 GNU/Linux, and not all architectures are recognized. If the auto-detect is
17498 unsuccessful the option has no effect.
17499
17500 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
17501 @opindex mcpu
17502 This specifies the name of the target ARM processor. GCC uses this name
17503 to derive the name of the target ARM architecture (as if specified
17504 by @option{-march}) and the ARM processor type for which to tune for
17505 performance (as if specified by @option{-mtune}). Where this option
17506 is used in conjunction with @option{-march} or @option{-mtune},
17507 those options take precedence over the appropriate part of this option.
17508
17509 Many of the supported CPUs implement optional architectural
17510 extensions. Where this is so the architectural extensions are
17511 normally enabled by default. If implementations that lack the
17512 extension exist, then the extension syntax can be used to disable
17513 those extensions that have been omitted. For floating-point and
17514 Advanced SIMD (Neon) instructions, the settings of the options
17515 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
17516 floating-point and Advanced SIMD instructions will only be used if
17517 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
17518 @option{-mfpu} other than @samp{auto} will override the available
17519 floating-point and SIMD extension instructions.
17520
17521 For example, @samp{cortex-a9} can be found in three major
17522 configurations: integer only, with just a floating-point unit or with
17523 floating-point and Advanced SIMD. The default is to enable all the
17524 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
17525 be used to disable just the SIMD or both the SIMD and floating-point
17526 instructions respectively.
17527
17528 Permissible names for this option are the same as those for
17529 @option{-mtune}.
17530
17531 The following extension options are common to the listed CPUs:
17532
17533 @table @samp
17534 @item +nodsp
17535 Disable the DSP instructions on @samp{cortex-m33}.
17536
17537 @item +nofp
17538 Disables the floating-point instructions on @samp{arm9e},
17539 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
17540 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
17541 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
17542 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
17543 Disables the floating-point and SIMD instructions on
17544 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
17545 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
17546 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
17547 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
17548 @samp{cortex-a53} and @samp{cortex-a55}.
17549
17550 @item +nofp.dp
17551 Disables the double-precision component of the floating-point instructions
17552 on @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52} and
17553 @samp{cortex-m7}.
17554
17555 @item +nosimd
17556 Disables the SIMD (but not floating-point) instructions on
17557 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
17558 and @samp{cortex-a9}.
17559
17560 @item +crypto
17561 Enables the cryptographic instructions on @samp{cortex-a32},
17562 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
17563 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
17564 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17565 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
17566 @samp{cortex-a75.cortex-a55}.
17567 @end table
17568
17569 Additionally the @samp{generic-armv7-a} pseudo target defaults to
17570 VFPv3 with 16 double-precision registers. It supports the following
17571 extension options: @samp{mp}, @samp{sec}, @samp{vfpv3-d16},
17572 @samp{vfpv3}, @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16},
17573 @samp{vfpv4-d16}, @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3},
17574 @samp{neon-fp16}, @samp{neon-vfpv4}. The meanings are the same as for
17575 the extensions to @option{-march=armv7-a}.
17576
17577 @option{-mcpu=generic-@var{arch}} is also permissible, and is
17578 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
17579 See @option{-mtune} for more information.
17580
17581 @option{-mcpu=native} causes the compiler to auto-detect the CPU
17582 of the build computer. At present, this feature is only supported on
17583 GNU/Linux, and not all architectures are recognized. If the auto-detect
17584 is unsuccessful the option has no effect.
17585
17586 @item -mfpu=@var{name}
17587 @opindex mfpu
17588 This specifies what floating-point hardware (or hardware emulation) is
17589 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
17590 @samp{vfpv3},
17591 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
17592 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
17593 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
17594 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
17595 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
17596 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
17597 is an alias for @samp{vfpv2}.
17598
17599 The setting @samp{auto} is the default and is special. It causes the
17600 compiler to select the floating-point and Advanced SIMD instructions
17601 based on the settings of @option{-mcpu} and @option{-march}.
17602
17603 If the selected floating-point hardware includes the NEON extension
17604 (e.g.@: @option{-mfpu=neon}), note that floating-point
17605 operations are not generated by GCC's auto-vectorization pass unless
17606 @option{-funsafe-math-optimizations} is also specified. This is
17607 because NEON hardware does not fully implement the IEEE 754 standard for
17608 floating-point arithmetic (in particular denormal values are treated as
17609 zero), so the use of NEON instructions may lead to a loss of precision.
17610
17611 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17612
17613 @item -mfp16-format=@var{name}
17614 @opindex mfp16-format
17615 Specify the format of the @code{__fp16} half-precision floating-point type.
17616 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
17617 the default is @samp{none}, in which case the @code{__fp16} type is not
17618 defined. @xref{Half-Precision}, for more information.
17619
17620 @item -mstructure-size-boundary=@var{n}
17621 @opindex mstructure-size-boundary
17622 The sizes of all structures and unions are rounded up to a multiple
17623 of the number of bits set by this option. Permissible values are 8, 32
17624 and 64. The default value varies for different toolchains. For the COFF
17625 targeted toolchain the default value is 8. A value of 64 is only allowed
17626 if the underlying ABI supports it.
17627
17628 Specifying a larger number can produce faster, more efficient code, but
17629 can also increase the size of the program. Different values are potentially
17630 incompatible. Code compiled with one value cannot necessarily expect to
17631 work with code or libraries compiled with another value, if they exchange
17632 information using structures or unions.
17633
17634 This option is deprecated.
17635
17636 @item -mabort-on-noreturn
17637 @opindex mabort-on-noreturn
17638 Generate a call to the function @code{abort} at the end of a
17639 @code{noreturn} function. It is executed if the function tries to
17640 return.
17641
17642 @item -mlong-calls
17643 @itemx -mno-long-calls
17644 @opindex mlong-calls
17645 @opindex mno-long-calls
17646 Tells the compiler to perform function calls by first loading the
17647 address of the function into a register and then performing a subroutine
17648 call on this register. This switch is needed if the target function
17649 lies outside of the 64-megabyte addressing range of the offset-based
17650 version of subroutine call instruction.
17651
17652 Even if this switch is enabled, not all function calls are turned
17653 into long calls. The heuristic is that static functions, functions
17654 that have the @code{short_call} attribute, functions that are inside
17655 the scope of a @code{#pragma no_long_calls} directive, and functions whose
17656 definitions have already been compiled within the current compilation
17657 unit are not turned into long calls. The exceptions to this rule are
17658 that weak function definitions, functions with the @code{long_call}
17659 attribute or the @code{section} attribute, and functions that are within
17660 the scope of a @code{#pragma long_calls} directive are always
17661 turned into long calls.
17662
17663 This feature is not enabled by default. Specifying
17664 @option{-mno-long-calls} restores the default behavior, as does
17665 placing the function calls within the scope of a @code{#pragma
17666 long_calls_off} directive. Note these switches have no effect on how
17667 the compiler generates code to handle function calls via function
17668 pointers.
17669
17670 @item -msingle-pic-base
17671 @opindex msingle-pic-base
17672 Treat the register used for PIC addressing as read-only, rather than
17673 loading it in the prologue for each function. The runtime system is
17674 responsible for initializing this register with an appropriate value
17675 before execution begins.
17676
17677 @item -mpic-register=@var{reg}
17678 @opindex mpic-register
17679 Specify the register to be used for PIC addressing.
17680 For standard PIC base case, the default is any suitable register
17681 determined by compiler. For single PIC base case, the default is
17682 @samp{R9} if target is EABI based or stack-checking is enabled,
17683 otherwise the default is @samp{R10}.
17684
17685 @item -mpic-data-is-text-relative
17686 @opindex mpic-data-is-text-relative
17687 Assume that the displacement between the text and data segments is fixed
17688 at static link time. This permits using PC-relative addressing
17689 operations to access data known to be in the data segment. For
17690 non-VxWorks RTP targets, this option is enabled by default. When
17691 disabled on such targets, it will enable @option{-msingle-pic-base} by
17692 default.
17693
17694 @item -mpoke-function-name
17695 @opindex mpoke-function-name
17696 Write the name of each function into the text section, directly
17697 preceding the function prologue. The generated code is similar to this:
17698
17699 @smallexample
17700 t0
17701 .ascii "arm_poke_function_name", 0
17702 .align
17703 t1
17704 .word 0xff000000 + (t1 - t0)
17705 arm_poke_function_name
17706 mov ip, sp
17707 stmfd sp!, @{fp, ip, lr, pc@}
17708 sub fp, ip, #4
17709 @end smallexample
17710
17711 When performing a stack backtrace, code can inspect the value of
17712 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
17713 location @code{pc - 12} and the top 8 bits are set, then we know that
17714 there is a function name embedded immediately preceding this location
17715 and has length @code{((pc[-3]) & 0xff000000)}.
17716
17717 @item -mthumb
17718 @itemx -marm
17719 @opindex marm
17720 @opindex mthumb
17721
17722 Select between generating code that executes in ARM and Thumb
17723 states. The default for most configurations is to generate code
17724 that executes in ARM state, but the default can be changed by
17725 configuring GCC with the @option{--with-mode=}@var{state}
17726 configure option.
17727
17728 You can also override the ARM and Thumb mode for each function
17729 by using the @code{target("thumb")} and @code{target("arm")} function attributes
17730 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17731
17732 @item -mflip-thumb
17733 @opindex mflip-thumb
17734 Switch ARM/Thumb modes on alternating functions.
17735 This option is provided for regression testing of mixed Thumb/ARM code
17736 generation, and is not intended for ordinary use in compiling code.
17737
17738 @item -mtpcs-frame
17739 @opindex mtpcs-frame
17740 Generate a stack frame that is compliant with the Thumb Procedure Call
17741 Standard for all non-leaf functions. (A leaf function is one that does
17742 not call any other functions.) The default is @option{-mno-tpcs-frame}.
17743
17744 @item -mtpcs-leaf-frame
17745 @opindex mtpcs-leaf-frame
17746 Generate a stack frame that is compliant with the Thumb Procedure Call
17747 Standard for all leaf functions. (A leaf function is one that does
17748 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
17749
17750 @item -mcallee-super-interworking
17751 @opindex mcallee-super-interworking
17752 Gives all externally visible functions in the file being compiled an ARM
17753 instruction set header which switches to Thumb mode before executing the
17754 rest of the function. This allows these functions to be called from
17755 non-interworking code. This option is not valid in AAPCS configurations
17756 because interworking is enabled by default.
17757
17758 @item -mcaller-super-interworking
17759 @opindex mcaller-super-interworking
17760 Allows calls via function pointers (including virtual functions) to
17761 execute correctly regardless of whether the target code has been
17762 compiled for interworking or not. There is a small overhead in the cost
17763 of executing a function pointer if this option is enabled. This option
17764 is not valid in AAPCS configurations because interworking is enabled
17765 by default.
17766
17767 @item -mtp=@var{name}
17768 @opindex mtp
17769 Specify the access model for the thread local storage pointer. The valid
17770 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
17771 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
17772 (supported in the arm6k architecture), and @samp{auto}, which uses the
17773 best available method for the selected processor. The default setting is
17774 @samp{auto}.
17775
17776 @item -mtls-dialect=@var{dialect}
17777 @opindex mtls-dialect
17778 Specify the dialect to use for accessing thread local storage. Two
17779 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
17780 @samp{gnu} dialect selects the original GNU scheme for supporting
17781 local and global dynamic TLS models. The @samp{gnu2} dialect
17782 selects the GNU descriptor scheme, which provides better performance
17783 for shared libraries. The GNU descriptor scheme is compatible with
17784 the original scheme, but does require new assembler, linker and
17785 library support. Initial and local exec TLS models are unaffected by
17786 this option and always use the original scheme.
17787
17788 @item -mword-relocations
17789 @opindex mword-relocations
17790 Only generate absolute relocations on word-sized values (i.e.@: R_ARM_ABS32).
17791 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
17792 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
17793 is specified. This option conflicts with @option{-mslow-flash-data}.
17794
17795 @item -mfix-cortex-m3-ldrd
17796 @opindex mfix-cortex-m3-ldrd
17797 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
17798 with overlapping destination and base registers are used. This option avoids
17799 generating these instructions. This option is enabled by default when
17800 @option{-mcpu=cortex-m3} is specified.
17801
17802 @item -munaligned-access
17803 @itemx -mno-unaligned-access
17804 @opindex munaligned-access
17805 @opindex mno-unaligned-access
17806 Enables (or disables) reading and writing of 16- and 32- bit values
17807 from addresses that are not 16- or 32- bit aligned. By default
17808 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
17809 ARMv8-M Baseline architectures, and enabled for all other
17810 architectures. If unaligned access is not enabled then words in packed
17811 data structures are accessed a byte at a time.
17812
17813 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
17814 generated object file to either true or false, depending upon the
17815 setting of this option. If unaligned access is enabled then the
17816 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
17817 defined.
17818
17819 @item -mneon-for-64bits
17820 @opindex mneon-for-64bits
17821 Enables using Neon to handle scalar 64-bits operations. This is
17822 disabled by default since the cost of moving data from core registers
17823 to Neon is high.
17824
17825 @item -mslow-flash-data
17826 @opindex mslow-flash-data
17827 Assume loading data from flash is slower than fetching instruction.
17828 Therefore literal load is minimized for better performance.
17829 This option is only supported when compiling for ARMv7 M-profile and
17830 off by default. It conflicts with @option{-mword-relocations}.
17831
17832 @item -masm-syntax-unified
17833 @opindex masm-syntax-unified
17834 Assume inline assembler is using unified asm syntax. The default is
17835 currently off which implies divided syntax. This option has no impact
17836 on Thumb2. However, this may change in future releases of GCC.
17837 Divided syntax should be considered deprecated.
17838
17839 @item -mrestrict-it
17840 @opindex mrestrict-it
17841 Restricts generation of IT blocks to conform to the rules of ARMv8-A.
17842 IT blocks can only contain a single 16-bit instruction from a select
17843 set of instructions. This option is on by default for ARMv8-A Thumb mode.
17844
17845 @item -mprint-tune-info
17846 @opindex mprint-tune-info
17847 Print CPU tuning information as comment in assembler file. This is
17848 an option used only for regression testing of the compiler and not
17849 intended for ordinary use in compiling code. This option is disabled
17850 by default.
17851
17852 @item -mverbose-cost-dump
17853 @opindex mverbose-cost-dump
17854 Enable verbose cost model dumping in the debug dump files. This option is
17855 provided for use in debugging the compiler.
17856
17857 @item -mpure-code
17858 @opindex mpure-code
17859 Do not allow constant data to be placed in code sections.
17860 Additionally, when compiling for ELF object format give all text sections the
17861 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
17862 is only available when generating non-pic code for M-profile targets with the
17863 MOVT instruction.
17864
17865 @item -mcmse
17866 @opindex mcmse
17867 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
17868 Development Tools Engineering Specification", which can be found on
17869 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
17870 @end table
17871
17872 @node AVR Options
17873 @subsection AVR Options
17874 @cindex AVR Options
17875
17876 These options are defined for AVR implementations:
17877
17878 @table @gcctabopt
17879 @item -mmcu=@var{mcu}
17880 @opindex mmcu
17881 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
17882
17883 The default for this option is@tie{}@samp{avr2}.
17884
17885 GCC supports the following AVR devices and ISAs:
17886
17887 @include avr-mmcu.texi
17888
17889 @item -mabsdata
17890 @opindex mabsdata
17891
17892 Assume that all data in static storage can be accessed by LDS / STS
17893 instructions. This option has only an effect on reduced Tiny devices like
17894 ATtiny40. See also the @code{absdata}
17895 @ref{AVR Variable Attributes,variable attribute}.
17896
17897 @item -maccumulate-args
17898 @opindex maccumulate-args
17899 Accumulate outgoing function arguments and acquire/release the needed
17900 stack space for outgoing function arguments once in function
17901 prologue/epilogue. Without this option, outgoing arguments are pushed
17902 before calling a function and popped afterwards.
17903
17904 Popping the arguments after the function call can be expensive on
17905 AVR so that accumulating the stack space might lead to smaller
17906 executables because arguments need not be removed from the
17907 stack after such a function call.
17908
17909 This option can lead to reduced code size for functions that perform
17910 several calls to functions that get their arguments on the stack like
17911 calls to printf-like functions.
17912
17913 @item -mbranch-cost=@var{cost}
17914 @opindex mbranch-cost
17915 Set the branch costs for conditional branch instructions to
17916 @var{cost}. Reasonable values for @var{cost} are small, non-negative
17917 integers. The default branch cost is 0.
17918
17919 @item -mcall-prologues
17920 @opindex mcall-prologues
17921 Functions prologues/epilogues are expanded as calls to appropriate
17922 subroutines. Code size is smaller.
17923
17924 @item -mgas-isr-prologues
17925 @opindex mgas-isr-prologues
17926 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
17927 instruction supported by GNU Binutils.
17928 If this option is on, the feature can still be disabled for individual
17929 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
17930 function attribute. This feature is activated per default
17931 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
17932 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
17933
17934 @item -mint8
17935 @opindex mint8
17936 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
17937 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
17938 and @code{long long} is 4 bytes. Please note that this option does not
17939 conform to the C standards, but it results in smaller code
17940 size.
17941
17942 @item -mmain-is-OS_task
17943 @opindex mmain-is-OS_task
17944 Do not save registers in @code{main}. The effect is the same like
17945 attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
17946 to @code{main}. It is activated per default if optimization is on.
17947
17948 @item -mn-flash=@var{num}
17949 @opindex mn-flash
17950 Assume that the flash memory has a size of
17951 @var{num} times 64@tie{}KiB.
17952
17953 @item -mno-interrupts
17954 @opindex mno-interrupts
17955 Generated code is not compatible with hardware interrupts.
17956 Code size is smaller.
17957
17958 @item -mrelax
17959 @opindex mrelax
17960 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
17961 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
17962 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
17963 the assembler's command line and the @option{--relax} option to the
17964 linker's command line.
17965
17966 Jump relaxing is performed by the linker because jump offsets are not
17967 known before code is located. Therefore, the assembler code generated by the
17968 compiler is the same, but the instructions in the executable may
17969 differ from instructions in the assembler code.
17970
17971 Relaxing must be turned on if linker stubs are needed, see the
17972 section on @code{EIND} and linker stubs below.
17973
17974 @item -mrmw
17975 @opindex mrmw
17976 Assume that the device supports the Read-Modify-Write
17977 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
17978
17979 @item -mshort-calls
17980 @opindex mshort-calls
17981
17982 Assume that @code{RJMP} and @code{RCALL} can target the whole
17983 program memory.
17984
17985 This option is used internally for multilib selection. It is
17986 not an optimization option, and you don't need to set it by hand.
17987
17988 @item -msp8
17989 @opindex msp8
17990 Treat the stack pointer register as an 8-bit register,
17991 i.e.@: assume the high byte of the stack pointer is zero.
17992 In general, you don't need to set this option by hand.
17993
17994 This option is used internally by the compiler to select and
17995 build multilibs for architectures @code{avr2} and @code{avr25}.
17996 These architectures mix devices with and without @code{SPH}.
17997 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
17998 the compiler driver adds or removes this option from the compiler
17999 proper's command line, because the compiler then knows if the device
18000 or architecture has an 8-bit stack pointer and thus no @code{SPH}
18001 register or not.
18002
18003 @item -mstrict-X
18004 @opindex mstrict-X
18005 Use address register @code{X} in a way proposed by the hardware. This means
18006 that @code{X} is only used in indirect, post-increment or
18007 pre-decrement addressing.
18008
18009 Without this option, the @code{X} register may be used in the same way
18010 as @code{Y} or @code{Z} which then is emulated by additional
18011 instructions.
18012 For example, loading a value with @code{X+const} addressing with a
18013 small non-negative @code{const < 64} to a register @var{Rn} is
18014 performed as
18015
18016 @example
18017 adiw r26, const ; X += const
18018 ld @var{Rn}, X ; @var{Rn} = *X
18019 sbiw r26, const ; X -= const
18020 @end example
18021
18022 @item -mtiny-stack
18023 @opindex mtiny-stack
18024 Only change the lower 8@tie{}bits of the stack pointer.
18025
18026 @item -mfract-convert-truncate
18027 @opindex mfract-convert-truncate
18028 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
18029
18030 @item -nodevicelib
18031 @opindex nodevicelib
18032 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
18033
18034 @item -Waddr-space-convert
18035 @opindex Waddr-space-convert
18036 @opindex Wno-addr-space-convert
18037 Warn about conversions between address spaces in the case where the
18038 resulting address space is not contained in the incoming address space.
18039
18040 @item -Wmisspelled-isr
18041 @opindex Wmisspelled-isr
18042 @opindex Wno-misspelled-isr
18043 Warn if the ISR is misspelled, i.e.@: without __vector prefix.
18044 Enabled by default.
18045 @end table
18046
18047 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
18048 @cindex @code{EIND}
18049 Pointers in the implementation are 16@tie{}bits wide.
18050 The address of a function or label is represented as word address so
18051 that indirect jumps and calls can target any code address in the
18052 range of 64@tie{}Ki words.
18053
18054 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
18055 bytes of program memory space, there is a special function register called
18056 @code{EIND} that serves as most significant part of the target address
18057 when @code{EICALL} or @code{EIJMP} instructions are used.
18058
18059 Indirect jumps and calls on these devices are handled as follows by
18060 the compiler and are subject to some limitations:
18061
18062 @itemize @bullet
18063
18064 @item
18065 The compiler never sets @code{EIND}.
18066
18067 @item
18068 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
18069 instructions or might read @code{EIND} directly in order to emulate an
18070 indirect call/jump by means of a @code{RET} instruction.
18071
18072 @item
18073 The compiler assumes that @code{EIND} never changes during the startup
18074 code or during the application. In particular, @code{EIND} is not
18075 saved/restored in function or interrupt service routine
18076 prologue/epilogue.
18077
18078 @item
18079 For indirect calls to functions and computed goto, the linker
18080 generates @emph{stubs}. Stubs are jump pads sometimes also called
18081 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
18082 The stub contains a direct jump to the desired address.
18083
18084 @item
18085 Linker relaxation must be turned on so that the linker generates
18086 the stubs correctly in all situations. See the compiler option
18087 @option{-mrelax} and the linker option @option{--relax}.
18088 There are corner cases where the linker is supposed to generate stubs
18089 but aborts without relaxation and without a helpful error message.
18090
18091 @item
18092 The default linker script is arranged for code with @code{EIND = 0}.
18093 If code is supposed to work for a setup with @code{EIND != 0}, a custom
18094 linker script has to be used in order to place the sections whose
18095 name start with @code{.trampolines} into the segment where @code{EIND}
18096 points to.
18097
18098 @item
18099 The startup code from libgcc never sets @code{EIND}.
18100 Notice that startup code is a blend of code from libgcc and AVR-LibC.
18101 For the impact of AVR-LibC on @code{EIND}, see the
18102 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
18103
18104 @item
18105 It is legitimate for user-specific startup code to set up @code{EIND}
18106 early, for example by means of initialization code located in
18107 section @code{.init3}. Such code runs prior to general startup code
18108 that initializes RAM and calls constructors, but after the bit
18109 of startup code from AVR-LibC that sets @code{EIND} to the segment
18110 where the vector table is located.
18111 @example
18112 #include <avr/io.h>
18113
18114 static void
18115 __attribute__((section(".init3"),naked,used,no_instrument_function))
18116 init3_set_eind (void)
18117 @{
18118 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
18119 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
18120 @}
18121 @end example
18122
18123 @noindent
18124 The @code{__trampolines_start} symbol is defined in the linker script.
18125
18126 @item
18127 Stubs are generated automatically by the linker if
18128 the following two conditions are met:
18129 @itemize @minus
18130
18131 @item The address of a label is taken by means of the @code{gs} modifier
18132 (short for @emph{generate stubs}) like so:
18133 @example
18134 LDI r24, lo8(gs(@var{func}))
18135 LDI r25, hi8(gs(@var{func}))
18136 @end example
18137 @item The final location of that label is in a code segment
18138 @emph{outside} the segment where the stubs are located.
18139 @end itemize
18140
18141 @item
18142 The compiler emits such @code{gs} modifiers for code labels in the
18143 following situations:
18144 @itemize @minus
18145 @item Taking address of a function or code label.
18146 @item Computed goto.
18147 @item If prologue-save function is used, see @option{-mcall-prologues}
18148 command-line option.
18149 @item Switch/case dispatch tables. If you do not want such dispatch
18150 tables you can specify the @option{-fno-jump-tables} command-line option.
18151 @item C and C++ constructors/destructors called during startup/shutdown.
18152 @item If the tools hit a @code{gs()} modifier explained above.
18153 @end itemize
18154
18155 @item
18156 Jumping to non-symbolic addresses like so is @emph{not} supported:
18157
18158 @example
18159 int main (void)
18160 @{
18161 /* Call function at word address 0x2 */
18162 return ((int(*)(void)) 0x2)();
18163 @}
18164 @end example
18165
18166 Instead, a stub has to be set up, i.e.@: the function has to be called
18167 through a symbol (@code{func_4} in the example):
18168
18169 @example
18170 int main (void)
18171 @{
18172 extern int func_4 (void);
18173
18174 /* Call function at byte address 0x4 */
18175 return func_4();
18176 @}
18177 @end example
18178
18179 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
18180 Alternatively, @code{func_4} can be defined in the linker script.
18181 @end itemize
18182
18183 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
18184 @cindex @code{RAMPD}
18185 @cindex @code{RAMPX}
18186 @cindex @code{RAMPY}
18187 @cindex @code{RAMPZ}
18188 Some AVR devices support memories larger than the 64@tie{}KiB range
18189 that can be accessed with 16-bit pointers. To access memory locations
18190 outside this 64@tie{}KiB range, the content of a @code{RAMP}
18191 register is used as high part of the address:
18192 The @code{X}, @code{Y}, @code{Z} address register is concatenated
18193 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
18194 register, respectively, to get a wide address. Similarly,
18195 @code{RAMPD} is used together with direct addressing.
18196
18197 @itemize
18198 @item
18199 The startup code initializes the @code{RAMP} special function
18200 registers with zero.
18201
18202 @item
18203 If a @ref{AVR Named Address Spaces,named address space} other than
18204 generic or @code{__flash} is used, then @code{RAMPZ} is set
18205 as needed before the operation.
18206
18207 @item
18208 If the device supports RAM larger than 64@tie{}KiB and the compiler
18209 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
18210 is reset to zero after the operation.
18211
18212 @item
18213 If the device comes with a specific @code{RAMP} register, the ISR
18214 prologue/epilogue saves/restores that SFR and initializes it with
18215 zero in case the ISR code might (implicitly) use it.
18216
18217 @item
18218 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
18219 If you use inline assembler to read from locations outside the
18220 16-bit address range and change one of the @code{RAMP} registers,
18221 you must reset it to zero after the access.
18222
18223 @end itemize
18224
18225 @subsubsection AVR Built-in Macros
18226
18227 GCC defines several built-in macros so that the user code can test
18228 for the presence or absence of features. Almost any of the following
18229 built-in macros are deduced from device capabilities and thus
18230 triggered by the @option{-mmcu=} command-line option.
18231
18232 For even more AVR-specific built-in macros see
18233 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
18234
18235 @table @code
18236
18237 @item __AVR_ARCH__
18238 Build-in macro that resolves to a decimal number that identifies the
18239 architecture and depends on the @option{-mmcu=@var{mcu}} option.
18240 Possible values are:
18241
18242 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
18243 @code{4}, @code{5}, @code{51}, @code{6}
18244
18245 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
18246 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
18247
18248 respectively and
18249
18250 @code{100},
18251 @code{102}, @code{103}, @code{104},
18252 @code{105}, @code{106}, @code{107}
18253
18254 for @var{mcu}=@code{avrtiny},
18255 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
18256 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
18257 If @var{mcu} specifies a device, this built-in macro is set
18258 accordingly. For example, with @option{-mmcu=atmega8} the macro is
18259 defined to @code{4}.
18260
18261 @item __AVR_@var{Device}__
18262 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
18263 the device's name. For example, @option{-mmcu=atmega8} defines the
18264 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
18265 @code{__AVR_ATtiny261A__}, etc.
18266
18267 The built-in macros' names follow
18268 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
18269 the device name as from the AVR user manual. The difference between
18270 @var{Device} in the built-in macro and @var{device} in
18271 @option{-mmcu=@var{device}} is that the latter is always lowercase.
18272
18273 If @var{device} is not a device but only a core architecture like
18274 @samp{avr51}, this macro is not defined.
18275
18276 @item __AVR_DEVICE_NAME__
18277 Setting @option{-mmcu=@var{device}} defines this built-in macro to
18278 the device's name. For example, with @option{-mmcu=atmega8} the macro
18279 is defined to @code{atmega8}.
18280
18281 If @var{device} is not a device but only a core architecture like
18282 @samp{avr51}, this macro is not defined.
18283
18284 @item __AVR_XMEGA__
18285 The device / architecture belongs to the XMEGA family of devices.
18286
18287 @item __AVR_HAVE_ELPM__
18288 The device has the @code{ELPM} instruction.
18289
18290 @item __AVR_HAVE_ELPMX__
18291 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
18292 R@var{n},Z+} instructions.
18293
18294 @item __AVR_HAVE_MOVW__
18295 The device has the @code{MOVW} instruction to perform 16-bit
18296 register-register moves.
18297
18298 @item __AVR_HAVE_LPMX__
18299 The device has the @code{LPM R@var{n},Z} and
18300 @code{LPM R@var{n},Z+} instructions.
18301
18302 @item __AVR_HAVE_MUL__
18303 The device has a hardware multiplier.
18304
18305 @item __AVR_HAVE_JMP_CALL__
18306 The device has the @code{JMP} and @code{CALL} instructions.
18307 This is the case for devices with more than 8@tie{}KiB of program
18308 memory.
18309
18310 @item __AVR_HAVE_EIJMP_EICALL__
18311 @itemx __AVR_3_BYTE_PC__
18312 The device has the @code{EIJMP} and @code{EICALL} instructions.
18313 This is the case for devices with more than 128@tie{}KiB of program memory.
18314 This also means that the program counter
18315 (PC) is 3@tie{}bytes wide.
18316
18317 @item __AVR_2_BYTE_PC__
18318 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
18319 with up to 128@tie{}KiB of program memory.
18320
18321 @item __AVR_HAVE_8BIT_SP__
18322 @itemx __AVR_HAVE_16BIT_SP__
18323 The stack pointer (SP) register is treated as 8-bit respectively
18324 16-bit register by the compiler.
18325 The definition of these macros is affected by @option{-mtiny-stack}.
18326
18327 @item __AVR_HAVE_SPH__
18328 @itemx __AVR_SP8__
18329 The device has the SPH (high part of stack pointer) special function
18330 register or has an 8-bit stack pointer, respectively.
18331 The definition of these macros is affected by @option{-mmcu=} and
18332 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
18333 by @option{-msp8}.
18334
18335 @item __AVR_HAVE_RAMPD__
18336 @itemx __AVR_HAVE_RAMPX__
18337 @itemx __AVR_HAVE_RAMPY__
18338 @itemx __AVR_HAVE_RAMPZ__
18339 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
18340 @code{RAMPZ} special function register, respectively.
18341
18342 @item __NO_INTERRUPTS__
18343 This macro reflects the @option{-mno-interrupts} command-line option.
18344
18345 @item __AVR_ERRATA_SKIP__
18346 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
18347 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
18348 instructions because of a hardware erratum. Skip instructions are
18349 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
18350 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
18351 set.
18352
18353 @item __AVR_ISA_RMW__
18354 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
18355
18356 @item __AVR_SFR_OFFSET__=@var{offset}
18357 Instructions that can address I/O special function registers directly
18358 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
18359 address as if addressed by an instruction to access RAM like @code{LD}
18360 or @code{STS}. This offset depends on the device architecture and has
18361 to be subtracted from the RAM address in order to get the
18362 respective I/O@tie{}address.
18363
18364 @item __AVR_SHORT_CALLS__
18365 The @option{-mshort-calls} command line option is set.
18366
18367 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
18368 Some devices support reading from flash memory by means of @code{LD*}
18369 instructions. The flash memory is seen in the data address space
18370 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
18371 is not defined, this feature is not available. If defined,
18372 the address space is linear and there is no need to put
18373 @code{.rodata} into RAM. This is handled by the default linker
18374 description file, and is currently available for
18375 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
18376 there is no need to use address spaces like @code{__flash} or
18377 features like attribute @code{progmem} and @code{pgm_read_*}.
18378
18379 @item __WITH_AVRLIBC__
18380 The compiler is configured to be used together with AVR-Libc.
18381 See the @option{--with-avrlibc} configure option.
18382
18383 @end table
18384
18385 @node Blackfin Options
18386 @subsection Blackfin Options
18387 @cindex Blackfin Options
18388
18389 @table @gcctabopt
18390 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
18391 @opindex mcpu=
18392 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
18393 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
18394 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
18395 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
18396 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
18397 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
18398 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
18399 @samp{bf561}, @samp{bf592}.
18400
18401 The optional @var{sirevision} specifies the silicon revision of the target
18402 Blackfin processor. Any workarounds available for the targeted silicon revision
18403 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
18404 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
18405 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
18406 hexadecimal digits representing the major and minor numbers in the silicon
18407 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
18408 is not defined. If @var{sirevision} is @samp{any}, the
18409 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
18410 If this optional @var{sirevision} is not used, GCC assumes the latest known
18411 silicon revision of the targeted Blackfin processor.
18412
18413 GCC defines a preprocessor macro for the specified @var{cpu}.
18414 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
18415 provided by libgloss to be linked in if @option{-msim} is not given.
18416
18417 Without this option, @samp{bf532} is used as the processor by default.
18418
18419 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
18420 only the preprocessor macro is defined.
18421
18422 @item -msim
18423 @opindex msim
18424 Specifies that the program will be run on the simulator. This causes
18425 the simulator BSP provided by libgloss to be linked in. This option
18426 has effect only for @samp{bfin-elf} toolchain.
18427 Certain other options, such as @option{-mid-shared-library} and
18428 @option{-mfdpic}, imply @option{-msim}.
18429
18430 @item -momit-leaf-frame-pointer
18431 @opindex momit-leaf-frame-pointer
18432 Don't keep the frame pointer in a register for leaf functions. This
18433 avoids the instructions to save, set up and restore frame pointers and
18434 makes an extra register available in leaf functions.
18435
18436 @item -mspecld-anomaly
18437 @opindex mspecld-anomaly
18438 When enabled, the compiler ensures that the generated code does not
18439 contain speculative loads after jump instructions. If this option is used,
18440 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
18441
18442 @item -mno-specld-anomaly
18443 @opindex mno-specld-anomaly
18444 @opindex mspecld-anomaly
18445 Don't generate extra code to prevent speculative loads from occurring.
18446
18447 @item -mcsync-anomaly
18448 @opindex mcsync-anomaly
18449 When enabled, the compiler ensures that the generated code does not
18450 contain CSYNC or SSYNC instructions too soon after conditional branches.
18451 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
18452
18453 @item -mno-csync-anomaly
18454 @opindex mno-csync-anomaly
18455 @opindex mcsync-anomaly
18456 Don't generate extra code to prevent CSYNC or SSYNC instructions from
18457 occurring too soon after a conditional branch.
18458
18459 @item -mlow64k
18460 @opindex mlow64k
18461 When enabled, the compiler is free to take advantage of the knowledge that
18462 the entire program fits into the low 64k of memory.
18463
18464 @item -mno-low64k
18465 @opindex mno-low64k
18466 Assume that the program is arbitrarily large. This is the default.
18467
18468 @item -mstack-check-l1
18469 @opindex mstack-check-l1
18470 Do stack checking using information placed into L1 scratchpad memory by the
18471 uClinux kernel.
18472
18473 @item -mid-shared-library
18474 @opindex mid-shared-library
18475 Generate code that supports shared libraries via the library ID method.
18476 This allows for execute in place and shared libraries in an environment
18477 without virtual memory management. This option implies @option{-fPIC}.
18478 With a @samp{bfin-elf} target, this option implies @option{-msim}.
18479
18480 @item -mno-id-shared-library
18481 @opindex mno-id-shared-library
18482 @opindex mid-shared-library
18483 Generate code that doesn't assume ID-based shared libraries are being used.
18484 This is the default.
18485
18486 @item -mleaf-id-shared-library
18487 @opindex mleaf-id-shared-library
18488 Generate code that supports shared libraries via the library ID method,
18489 but assumes that this library or executable won't link against any other
18490 ID shared libraries. That allows the compiler to use faster code for jumps
18491 and calls.
18492
18493 @item -mno-leaf-id-shared-library
18494 @opindex mno-leaf-id-shared-library
18495 @opindex mleaf-id-shared-library
18496 Do not assume that the code being compiled won't link against any ID shared
18497 libraries. Slower code is generated for jump and call insns.
18498
18499 @item -mshared-library-id=n
18500 @opindex mshared-library-id
18501 Specifies the identification number of the ID-based shared library being
18502 compiled. Specifying a value of 0 generates more compact code; specifying
18503 other values forces the allocation of that number to the current
18504 library but is no more space- or time-efficient than omitting this option.
18505
18506 @item -msep-data
18507 @opindex msep-data
18508 Generate code that allows the data segment to be located in a different
18509 area of memory from the text segment. This allows for execute in place in
18510 an environment without virtual memory management by eliminating relocations
18511 against the text section.
18512
18513 @item -mno-sep-data
18514 @opindex mno-sep-data
18515 @opindex msep-data
18516 Generate code that assumes that the data segment follows the text segment.
18517 This is the default.
18518
18519 @item -mlong-calls
18520 @itemx -mno-long-calls
18521 @opindex mlong-calls
18522 @opindex mno-long-calls
18523 Tells the compiler to perform function calls by first loading the
18524 address of the function into a register and then performing a subroutine
18525 call on this register. This switch is needed if the target function
18526 lies outside of the 24-bit addressing range of the offset-based
18527 version of subroutine call instruction.
18528
18529 This feature is not enabled by default. Specifying
18530 @option{-mno-long-calls} restores the default behavior. Note these
18531 switches have no effect on how the compiler generates code to handle
18532 function calls via function pointers.
18533
18534 @item -mfast-fp
18535 @opindex mfast-fp
18536 Link with the fast floating-point library. This library relaxes some of
18537 the IEEE floating-point standard's rules for checking inputs against
18538 Not-a-Number (NAN), in the interest of performance.
18539
18540 @item -minline-plt
18541 @opindex minline-plt
18542 Enable inlining of PLT entries in function calls to functions that are
18543 not known to bind locally. It has no effect without @option{-mfdpic}.
18544
18545 @item -mmulticore
18546 @opindex mmulticore
18547 Build a standalone application for multicore Blackfin processors.
18548 This option causes proper start files and link scripts supporting
18549 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
18550 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
18551
18552 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
18553 selects the one-application-per-core programming model. Without
18554 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
18555 programming model is used. In this model, the main function of Core B
18556 should be named as @code{coreb_main}.
18557
18558 If this option is not used, the single-core application programming
18559 model is used.
18560
18561 @item -mcorea
18562 @opindex mcorea
18563 Build a standalone application for Core A of BF561 when using
18564 the one-application-per-core programming model. Proper start files
18565 and link scripts are used to support Core A, and the macro
18566 @code{__BFIN_COREA} is defined.
18567 This option can only be used in conjunction with @option{-mmulticore}.
18568
18569 @item -mcoreb
18570 @opindex mcoreb
18571 Build a standalone application for Core B of BF561 when using
18572 the one-application-per-core programming model. Proper start files
18573 and link scripts are used to support Core B, and the macro
18574 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
18575 should be used instead of @code{main}.
18576 This option can only be used in conjunction with @option{-mmulticore}.
18577
18578 @item -msdram
18579 @opindex msdram
18580 Build a standalone application for SDRAM. Proper start files and
18581 link scripts are used to put the application into SDRAM, and the macro
18582 @code{__BFIN_SDRAM} is defined.
18583 The loader should initialize SDRAM before loading the application.
18584
18585 @item -micplb
18586 @opindex micplb
18587 Assume that ICPLBs are enabled at run time. This has an effect on certain
18588 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
18589 are enabled; for standalone applications the default is off.
18590 @end table
18591
18592 @node C6X Options
18593 @subsection C6X Options
18594 @cindex C6X Options
18595
18596 @table @gcctabopt
18597 @item -march=@var{name}
18598 @opindex march
18599 This specifies the name of the target architecture. GCC uses this
18600 name to determine what kind of instructions it can emit when generating
18601 assembly code. Permissible names are: @samp{c62x},
18602 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
18603
18604 @item -mbig-endian
18605 @opindex mbig-endian
18606 Generate code for a big-endian target.
18607
18608 @item -mlittle-endian
18609 @opindex mlittle-endian
18610 Generate code for a little-endian target. This is the default.
18611
18612 @item -msim
18613 @opindex msim
18614 Choose startup files and linker script suitable for the simulator.
18615
18616 @item -msdata=default
18617 @opindex msdata=default
18618 Put small global and static data in the @code{.neardata} section,
18619 which is pointed to by register @code{B14}. Put small uninitialized
18620 global and static data in the @code{.bss} section, which is adjacent
18621 to the @code{.neardata} section. Put small read-only data into the
18622 @code{.rodata} section. The corresponding sections used for large
18623 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
18624
18625 @item -msdata=all
18626 @opindex msdata=all
18627 Put all data, not just small objects, into the sections reserved for
18628 small data, and use addressing relative to the @code{B14} register to
18629 access them.
18630
18631 @item -msdata=none
18632 @opindex msdata=none
18633 Make no use of the sections reserved for small data, and use absolute
18634 addresses to access all data. Put all initialized global and static
18635 data in the @code{.fardata} section, and all uninitialized data in the
18636 @code{.far} section. Put all constant data into the @code{.const}
18637 section.
18638 @end table
18639
18640 @node CRIS Options
18641 @subsection CRIS Options
18642 @cindex CRIS Options
18643
18644 These options are defined specifically for the CRIS ports.
18645
18646 @table @gcctabopt
18647 @item -march=@var{architecture-type}
18648 @itemx -mcpu=@var{architecture-type}
18649 @opindex march
18650 @opindex mcpu
18651 Generate code for the specified architecture. The choices for
18652 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
18653 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
18654 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
18655 @samp{v10}.
18656
18657 @item -mtune=@var{architecture-type}
18658 @opindex mtune
18659 Tune to @var{architecture-type} everything applicable about the generated
18660 code, except for the ABI and the set of available instructions. The
18661 choices for @var{architecture-type} are the same as for
18662 @option{-march=@var{architecture-type}}.
18663
18664 @item -mmax-stack-frame=@var{n}
18665 @opindex mmax-stack-frame
18666 Warn when the stack frame of a function exceeds @var{n} bytes.
18667
18668 @item -metrax4
18669 @itemx -metrax100
18670 @opindex metrax4
18671 @opindex metrax100
18672 The options @option{-metrax4} and @option{-metrax100} are synonyms for
18673 @option{-march=v3} and @option{-march=v8} respectively.
18674
18675 @item -mmul-bug-workaround
18676 @itemx -mno-mul-bug-workaround
18677 @opindex mmul-bug-workaround
18678 @opindex mno-mul-bug-workaround
18679 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
18680 models where it applies. This option is active by default.
18681
18682 @item -mpdebug
18683 @opindex mpdebug
18684 Enable CRIS-specific verbose debug-related information in the assembly
18685 code. This option also has the effect of turning off the @samp{#NO_APP}
18686 formatted-code indicator to the assembler at the beginning of the
18687 assembly file.
18688
18689 @item -mcc-init
18690 @opindex mcc-init
18691 Do not use condition-code results from previous instruction; always emit
18692 compare and test instructions before use of condition codes.
18693
18694 @item -mno-side-effects
18695 @opindex mno-side-effects
18696 @opindex mside-effects
18697 Do not emit instructions with side effects in addressing modes other than
18698 post-increment.
18699
18700 @item -mstack-align
18701 @itemx -mno-stack-align
18702 @itemx -mdata-align
18703 @itemx -mno-data-align
18704 @itemx -mconst-align
18705 @itemx -mno-const-align
18706 @opindex mstack-align
18707 @opindex mno-stack-align
18708 @opindex mdata-align
18709 @opindex mno-data-align
18710 @opindex mconst-align
18711 @opindex mno-const-align
18712 These options (@samp{no-} options) arrange (eliminate arrangements) for the
18713 stack frame, individual data and constants to be aligned for the maximum
18714 single data access size for the chosen CPU model. The default is to
18715 arrange for 32-bit alignment. ABI details such as structure layout are
18716 not affected by these options.
18717
18718 @item -m32-bit
18719 @itemx -m16-bit
18720 @itemx -m8-bit
18721 @opindex m32-bit
18722 @opindex m16-bit
18723 @opindex m8-bit
18724 Similar to the stack- data- and const-align options above, these options
18725 arrange for stack frame, writable data and constants to all be 32-bit,
18726 16-bit or 8-bit aligned. The default is 32-bit alignment.
18727
18728 @item -mno-prologue-epilogue
18729 @itemx -mprologue-epilogue
18730 @opindex mno-prologue-epilogue
18731 @opindex mprologue-epilogue
18732 With @option{-mno-prologue-epilogue}, the normal function prologue and
18733 epilogue which set up the stack frame are omitted and no return
18734 instructions or return sequences are generated in the code. Use this
18735 option only together with visual inspection of the compiled code: no
18736 warnings or errors are generated when call-saved registers must be saved,
18737 or storage for local variables needs to be allocated.
18738
18739 @item -mno-gotplt
18740 @itemx -mgotplt
18741 @opindex mno-gotplt
18742 @opindex mgotplt
18743 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
18744 instruction sequences that load addresses for functions from the PLT part
18745 of the GOT rather than (traditional on other architectures) calls to the
18746 PLT@. The default is @option{-mgotplt}.
18747
18748 @item -melf
18749 @opindex melf
18750 Legacy no-op option only recognized with the cris-axis-elf and
18751 cris-axis-linux-gnu targets.
18752
18753 @item -mlinux
18754 @opindex mlinux
18755 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
18756
18757 @item -sim
18758 @opindex sim
18759 This option, recognized for the cris-axis-elf, arranges
18760 to link with input-output functions from a simulator library. Code,
18761 initialized data and zero-initialized data are allocated consecutively.
18762
18763 @item -sim2
18764 @opindex sim2
18765 Like @option{-sim}, but pass linker options to locate initialized data at
18766 0x40000000 and zero-initialized data at 0x80000000.
18767 @end table
18768
18769 @node CR16 Options
18770 @subsection CR16 Options
18771 @cindex CR16 Options
18772
18773 These options are defined specifically for the CR16 ports.
18774
18775 @table @gcctabopt
18776
18777 @item -mmac
18778 @opindex mmac
18779 Enable the use of multiply-accumulate instructions. Disabled by default.
18780
18781 @item -mcr16cplus
18782 @itemx -mcr16c
18783 @opindex mcr16cplus
18784 @opindex mcr16c
18785 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
18786 is default.
18787
18788 @item -msim
18789 @opindex msim
18790 Links the library libsim.a which is in compatible with simulator. Applicable
18791 to ELF compiler only.
18792
18793 @item -mint32
18794 @opindex mint32
18795 Choose integer type as 32-bit wide.
18796
18797 @item -mbit-ops
18798 @opindex mbit-ops
18799 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
18800
18801 @item -mdata-model=@var{model}
18802 @opindex mdata-model
18803 Choose a data model. The choices for @var{model} are @samp{near},
18804 @samp{far} or @samp{medium}. @samp{medium} is default.
18805 However, @samp{far} is not valid with @option{-mcr16c}, as the
18806 CR16C architecture does not support the far data model.
18807 @end table
18808
18809 @node C-SKY Options
18810 @subsection C-SKY Options
18811 @cindex C-SKY Options
18812
18813 GCC supports these options when compiling for C-SKY V2 processors.
18814
18815 @table @gcctabopt
18816
18817 @item -march=@var{arch}
18818 @opindex march=
18819 Specify the C-SKY target architecture. Valid values for @var{arch} are:
18820 @samp{ck801}, @samp{ck802}, @samp{ck803}, @samp{ck807}, and @samp{ck810}.
18821 The default is @samp{ck810}.
18822
18823 @item -mcpu=@var{cpu}
18824 @opindex mcpu=
18825 Specify the C-SKY target processor. Valid values for @var{cpu} are:
18826 @samp{ck801}, @samp{ck801t},
18827 @samp{ck802}, @samp{ck802t}, @samp{ck802j},
18828 @samp{ck803}, @samp{ck803h}, @samp{ck803t}, @samp{ck803ht},
18829 @samp{ck803f}, @samp{ck803fh}, @samp{ck803e}, @samp{ck803eh},
18830 @samp{ck803et}, @samp{ck803eht}, @samp{ck803ef}, @samp{ck803efh},
18831 @samp{ck803ft}, @samp{ck803eft}, @samp{ck803efht}, @samp{ck803r1},
18832 @samp{ck803hr1}, @samp{ck803tr1}, @samp{ck803htr1}, @samp{ck803fr1},
18833 @samp{ck803fhr1}, @samp{ck803er1}, @samp{ck803ehr1}, @samp{ck803etr1},
18834 @samp{ck803ehtr1}, @samp{ck803efr1}, @samp{ck803efhr1}, @samp{ck803ftr1},
18835 @samp{ck803eftr1}, @samp{ck803efhtr1},
18836 @samp{ck803s}, @samp{ck803st}, @samp{ck803se}, @samp{ck803sf},
18837 @samp{ck803sef}, @samp{ck803seft},
18838 @samp{ck807e}, @samp{ck807ef}, @samp{ck807}, @samp{ck807f},
18839 @samp{ck810e}, @samp{ck810et}, @samp{ck810ef}, @samp{ck810eft},
18840 @samp{ck810}, @samp{ck810v}, @samp{ck810f}, @samp{ck810t}, @samp{ck810fv},
18841 @samp{ck810tv}, @samp{ck810ft}, and @samp{ck810ftv}.
18842
18843 @item -mbig-endian
18844 @opindex mbig-endian
18845 @itemx -EB
18846 @opindex EB
18847 @itemx -mlittle-endian
18848 @opindex mlittle-endian
18849 @itemx -EL
18850 @opindex EL
18851
18852 Select big- or little-endian code. The default is little-endian.
18853
18854 @item -mhard-float
18855 @opindex mhard-float
18856 @itemx -msoft-float
18857 @opindex msoft-float
18858
18859 Select hardware or software floating-point implementations.
18860 The default is soft float.
18861
18862 @item -mdouble-float
18863 @itemx -mno-double-float
18864 @opindex mdouble-float
18865 When @option{-mhard-float} is in effect, enable generation of
18866 double-precision float instructions. This is the default except
18867 when compiling for CK803.
18868
18869 @item -mfdivdu
18870 @itemx -mno-fdivdu
18871 @opindex mfdivdu
18872 When @option{-mhard-float} is in effect, enable generation of
18873 @code{frecipd}, @code{fsqrtd}, and @code{fdivd} instructions.
18874 This is the default except when compiling for CK803.
18875
18876 @item -mfpu=@var{fpu}
18877 @opindex mfpu=
18878 Select the floating-point processor. This option can only be used with
18879 @option{-mhard-float}.
18880 Values for @var{fpu} are
18881 @samp{fpv2_sf} (equivalent to @samp{-mno-double-float -mno-fdivdu}),
18882 @samp{fpv2} (@samp{-mdouble-float -mno-divdu}), and
18883 @samp{fpv2_divd} (@samp{-mdouble-float -mdivdu}).
18884
18885 @item -melrw
18886 @itemx -mno-elrw
18887 @opindex melrw
18888 Enable the extended @code{lrw} instruction. This option defaults to on
18889 for CK801 and off otherwise.
18890
18891 @item -mistack
18892 @itemx -mno-istack
18893 @opindex mistack
18894 Enable interrupt stack instructions; the default is off.
18895
18896 The @option{-mistack} option is required to handle the
18897 @code{interrupt} and @code{isr} function attributes
18898 (@pxref{C-SKY Function Attributes}).
18899
18900 @item -mmp
18901 @opindex mmp
18902 Enable multiprocessor instructions; the default is off.
18903
18904 @item -mcp
18905 @opindex mcp
18906 Enable coprocessor instructions; the default is off.
18907
18908 @item -mcache
18909 @opindex mcache
18910 Enable coprocessor instructions; the default is off.
18911
18912 @item -msecurity
18913 @opindex msecurity
18914 Enable C-SKY security instructions; the default is off.
18915
18916 @item -mtrust
18917 @opindex mtrust
18918 Enable C-SKY trust instructions; the default is off.
18919
18920 @item -mdsp
18921 @opindex mdsp
18922 @itemx -medsp
18923 @opindex medsp
18924 @itemx -mvdsp
18925 @opindex mvdsp
18926 Enable C-SKY DSP, Enhanced DSP, or Vector DSP instructions, respectively.
18927 All of these options default to off.
18928
18929 @item -mdiv
18930 @itemx -mno-div
18931 @opindex mdiv
18932 Generate divide instructions. Default is off.
18933
18934 @item -msmart
18935 @itemx -mno-smart
18936 @opindex msmart
18937 Generate code for Smart Mode, using only registers numbered 0-7 to allow
18938 use of 16-bit instructions. This option is ignored for CK801 where this
18939 is the required behavior, and it defaults to on for CK802.
18940 For other targets, the default is off.
18941
18942 @item -mhigh-registers
18943 @itemx -mno-high-registers
18944 @opindex mhigh-registers
18945 Generate code using the high registers numbered 16-31. This option
18946 is not supported on CK801, CK802, or CK803, and is enabled by default
18947 for other processors.
18948
18949 @item -manchor
18950 @itemx -mno-anchor
18951 @opindex manchor
18952 Generate code using global anchor symbol addresses.
18953
18954 @item -mpushpop
18955 @itemx -mno-pushpop
18956 @opindex mpushpop
18957 Generate code using @code{push} and @code{pop} instructions. This option
18958 defaults to on.
18959
18960 @item -mmultiple-stld
18961 @itemx -mstm
18962 @itemx -mno-multiple-stld
18963 @itemx -mno-stm
18964 @opindex mmultiple-stld
18965 Generate code using @code{stm} and @code{ldm} instructions. This option
18966 isn't supported on CK801 but is enabled by default on other processors.
18967
18968 @item -mconstpool
18969 @itemx -mno-constpool
18970 @opindex mconstpool
18971 Create constant pools in the compiler instead of deferring it to the
18972 assembler. This option is the default and required for correct code
18973 generation on CK801 and CK802, and is optional on other processors.
18974
18975 @item -mstack-size
18976 @item -mno-stack-size
18977 @opindex mstack-size
18978 Emit @code{.stack_size} directives for each function in the assembly
18979 output. This option defaults to off.
18980
18981 @item -mccrt
18982 @itemx -mno-ccrt
18983 @opindex mccrt
18984 Generate code for the C-SKY compiler runtime instead of libgcc. This
18985 option defaults to off.
18986
18987 @item -mbranch-cost=@var{n}
18988 @opindex mbranch-cost=
18989 Set the branch costs to roughly @code{n} instructions. The default is 1.
18990
18991 @item -msched-prolog
18992 @itemx -mno-sched-prolog
18993 @opindex msched-prolog
18994 Permit scheduling of function prologue and epilogue sequences. Using
18995 this option can result in code that is not compliant with the C-SKY V2 ABI
18996 prologue requirements and that cannot be debugged or backtraced.
18997 It is disabled by default.
18998
18999 @end table
19000
19001 @node Darwin Options
19002 @subsection Darwin Options
19003 @cindex Darwin options
19004
19005 These options are defined for all architectures running the Darwin operating
19006 system.
19007
19008 FSF GCC on Darwin does not create ``fat'' object files; it creates
19009 an object file for the single architecture that GCC was built to
19010 target. Apple's GCC on Darwin does create ``fat'' files if multiple
19011 @option{-arch} options are used; it does so by running the compiler or
19012 linker multiple times and joining the results together with
19013 @file{lipo}.
19014
19015 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
19016 @samp{i686}) is determined by the flags that specify the ISA
19017 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
19018 @option{-force_cpusubtype_ALL} option can be used to override this.
19019
19020 The Darwin tools vary in their behavior when presented with an ISA
19021 mismatch. The assembler, @file{as}, only permits instructions to
19022 be used that are valid for the subtype of the file it is generating,
19023 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
19024 The linker for shared libraries, @file{/usr/bin/libtool}, fails
19025 and prints an error if asked to create a shared library with a less
19026 restrictive subtype than its input files (for instance, trying to put
19027 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
19028 for executables, @command{ld}, quietly gives the executable the most
19029 restrictive subtype of any of its input files.
19030
19031 @table @gcctabopt
19032 @item -F@var{dir}
19033 @opindex F
19034 Add the framework directory @var{dir} to the head of the list of
19035 directories to be searched for header files. These directories are
19036 interleaved with those specified by @option{-I} options and are
19037 scanned in a left-to-right order.
19038
19039 A framework directory is a directory with frameworks in it. A
19040 framework is a directory with a @file{Headers} and/or
19041 @file{PrivateHeaders} directory contained directly in it that ends
19042 in @file{.framework}. The name of a framework is the name of this
19043 directory excluding the @file{.framework}. Headers associated with
19044 the framework are found in one of those two directories, with
19045 @file{Headers} being searched first. A subframework is a framework
19046 directory that is in a framework's @file{Frameworks} directory.
19047 Includes of subframework headers can only appear in a header of a
19048 framework that contains the subframework, or in a sibling subframework
19049 header. Two subframeworks are siblings if they occur in the same
19050 framework. A subframework should not have the same name as a
19051 framework; a warning is issued if this is violated. Currently a
19052 subframework cannot have subframeworks; in the future, the mechanism
19053 may be extended to support this. The standard frameworks can be found
19054 in @file{/System/Library/Frameworks} and
19055 @file{/Library/Frameworks}. An example include looks like
19056 @code{#include <Framework/header.h>}, where @file{Framework} denotes
19057 the name of the framework and @file{header.h} is found in the
19058 @file{PrivateHeaders} or @file{Headers} directory.
19059
19060 @item -iframework@var{dir}
19061 @opindex iframework
19062 Like @option{-F} except the directory is a treated as a system
19063 directory. The main difference between this @option{-iframework} and
19064 @option{-F} is that with @option{-iframework} the compiler does not
19065 warn about constructs contained within header files found via
19066 @var{dir}. This option is valid only for the C family of languages.
19067
19068 @item -gused
19069 @opindex gused
19070 Emit debugging information for symbols that are used. For stabs
19071 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
19072 This is by default ON@.
19073
19074 @item -gfull
19075 @opindex gfull
19076 Emit debugging information for all symbols and types.
19077
19078 @item -mmacosx-version-min=@var{version}
19079 The earliest version of MacOS X that this executable will run on
19080 is @var{version}. Typical values of @var{version} include @code{10.1},
19081 @code{10.2}, and @code{10.3.9}.
19082
19083 If the compiler was built to use the system's headers by default,
19084 then the default for this option is the system version on which the
19085 compiler is running, otherwise the default is to make choices that
19086 are compatible with as many systems and code bases as possible.
19087
19088 @item -mkernel
19089 @opindex mkernel
19090 Enable kernel development mode. The @option{-mkernel} option sets
19091 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
19092 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
19093 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
19094 applicable. This mode also sets @option{-mno-altivec},
19095 @option{-msoft-float}, @option{-fno-builtin} and
19096 @option{-mlong-branch} for PowerPC targets.
19097
19098 @item -mone-byte-bool
19099 @opindex mone-byte-bool
19100 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
19101 By default @code{sizeof(bool)} is @code{4} when compiling for
19102 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
19103 option has no effect on x86.
19104
19105 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
19106 to generate code that is not binary compatible with code generated
19107 without that switch. Using this switch may require recompiling all
19108 other modules in a program, including system libraries. Use this
19109 switch to conform to a non-default data model.
19110
19111 @item -mfix-and-continue
19112 @itemx -ffix-and-continue
19113 @itemx -findirect-data
19114 @opindex mfix-and-continue
19115 @opindex ffix-and-continue
19116 @opindex findirect-data
19117 Generate code suitable for fast turnaround development, such as to
19118 allow GDB to dynamically load @file{.o} files into already-running
19119 programs. @option{-findirect-data} and @option{-ffix-and-continue}
19120 are provided for backwards compatibility.
19121
19122 @item -all_load
19123 @opindex all_load
19124 Loads all members of static archive libraries.
19125 See man ld(1) for more information.
19126
19127 @item -arch_errors_fatal
19128 @opindex arch_errors_fatal
19129 Cause the errors having to do with files that have the wrong architecture
19130 to be fatal.
19131
19132 @item -bind_at_load
19133 @opindex bind_at_load
19134 Causes the output file to be marked such that the dynamic linker will
19135 bind all undefined references when the file is loaded or launched.
19136
19137 @item -bundle
19138 @opindex bundle
19139 Produce a Mach-o bundle format file.
19140 See man ld(1) for more information.
19141
19142 @item -bundle_loader @var{executable}
19143 @opindex bundle_loader
19144 This option specifies the @var{executable} that will load the build
19145 output file being linked. See man ld(1) for more information.
19146
19147 @item -dynamiclib
19148 @opindex dynamiclib
19149 When passed this option, GCC produces a dynamic library instead of
19150 an executable when linking, using the Darwin @file{libtool} command.
19151
19152 @item -force_cpusubtype_ALL
19153 @opindex force_cpusubtype_ALL
19154 This causes GCC's output file to have the @samp{ALL} subtype, instead of
19155 one controlled by the @option{-mcpu} or @option{-march} option.
19156
19157 @item -allowable_client @var{client_name}
19158 @itemx -client_name
19159 @itemx -compatibility_version
19160 @itemx -current_version
19161 @itemx -dead_strip
19162 @itemx -dependency-file
19163 @itemx -dylib_file
19164 @itemx -dylinker_install_name
19165 @itemx -dynamic
19166 @itemx -exported_symbols_list
19167 @itemx -filelist
19168 @need 800
19169 @itemx -flat_namespace
19170 @itemx -force_flat_namespace
19171 @itemx -headerpad_max_install_names
19172 @itemx -image_base
19173 @itemx -init
19174 @itemx -install_name
19175 @itemx -keep_private_externs
19176 @itemx -multi_module
19177 @itemx -multiply_defined
19178 @itemx -multiply_defined_unused
19179 @need 800
19180 @itemx -noall_load
19181 @itemx -no_dead_strip_inits_and_terms
19182 @itemx -nofixprebinding
19183 @itemx -nomultidefs
19184 @itemx -noprebind
19185 @itemx -noseglinkedit
19186 @itemx -pagezero_size
19187 @itemx -prebind
19188 @itemx -prebind_all_twolevel_modules
19189 @itemx -private_bundle
19190 @need 800
19191 @itemx -read_only_relocs
19192 @itemx -sectalign
19193 @itemx -sectobjectsymbols
19194 @itemx -whyload
19195 @itemx -seg1addr
19196 @itemx -sectcreate
19197 @itemx -sectobjectsymbols
19198 @itemx -sectorder
19199 @itemx -segaddr
19200 @itemx -segs_read_only_addr
19201 @need 800
19202 @itemx -segs_read_write_addr
19203 @itemx -seg_addr_table
19204 @itemx -seg_addr_table_filename
19205 @itemx -seglinkedit
19206 @itemx -segprot
19207 @itemx -segs_read_only_addr
19208 @itemx -segs_read_write_addr
19209 @itemx -single_module
19210 @itemx -static
19211 @itemx -sub_library
19212 @need 800
19213 @itemx -sub_umbrella
19214 @itemx -twolevel_namespace
19215 @itemx -umbrella
19216 @itemx -undefined
19217 @itemx -unexported_symbols_list
19218 @itemx -weak_reference_mismatches
19219 @itemx -whatsloaded
19220 @opindex allowable_client
19221 @opindex client_name
19222 @opindex compatibility_version
19223 @opindex current_version
19224 @opindex dead_strip
19225 @opindex dependency-file
19226 @opindex dylib_file
19227 @opindex dylinker_install_name
19228 @opindex dynamic
19229 @opindex exported_symbols_list
19230 @opindex filelist
19231 @opindex flat_namespace
19232 @opindex force_flat_namespace
19233 @opindex headerpad_max_install_names
19234 @opindex image_base
19235 @opindex init
19236 @opindex install_name
19237 @opindex keep_private_externs
19238 @opindex multi_module
19239 @opindex multiply_defined
19240 @opindex multiply_defined_unused
19241 @opindex noall_load
19242 @opindex no_dead_strip_inits_and_terms
19243 @opindex nofixprebinding
19244 @opindex nomultidefs
19245 @opindex noprebind
19246 @opindex noseglinkedit
19247 @opindex pagezero_size
19248 @opindex prebind
19249 @opindex prebind_all_twolevel_modules
19250 @opindex private_bundle
19251 @opindex read_only_relocs
19252 @opindex sectalign
19253 @opindex sectobjectsymbols
19254 @opindex whyload
19255 @opindex seg1addr
19256 @opindex sectcreate
19257 @opindex sectobjectsymbols
19258 @opindex sectorder
19259 @opindex segaddr
19260 @opindex segs_read_only_addr
19261 @opindex segs_read_write_addr
19262 @opindex seg_addr_table
19263 @opindex seg_addr_table_filename
19264 @opindex seglinkedit
19265 @opindex segprot
19266 @opindex segs_read_only_addr
19267 @opindex segs_read_write_addr
19268 @opindex single_module
19269 @opindex static
19270 @opindex sub_library
19271 @opindex sub_umbrella
19272 @opindex twolevel_namespace
19273 @opindex umbrella
19274 @opindex undefined
19275 @opindex unexported_symbols_list
19276 @opindex weak_reference_mismatches
19277 @opindex whatsloaded
19278 These options are passed to the Darwin linker. The Darwin linker man page
19279 describes them in detail.
19280 @end table
19281
19282 @node DEC Alpha Options
19283 @subsection DEC Alpha Options
19284
19285 These @samp{-m} options are defined for the DEC Alpha implementations:
19286
19287 @table @gcctabopt
19288 @item -mno-soft-float
19289 @itemx -msoft-float
19290 @opindex mno-soft-float
19291 @opindex msoft-float
19292 Use (do not use) the hardware floating-point instructions for
19293 floating-point operations. When @option{-msoft-float} is specified,
19294 functions in @file{libgcc.a} are used to perform floating-point
19295 operations. Unless they are replaced by routines that emulate the
19296 floating-point operations, or compiled in such a way as to call such
19297 emulations routines, these routines issue floating-point
19298 operations. If you are compiling for an Alpha without floating-point
19299 operations, you must ensure that the library is built so as not to call
19300 them.
19301
19302 Note that Alpha implementations without floating-point operations are
19303 required to have floating-point registers.
19304
19305 @item -mfp-reg
19306 @itemx -mno-fp-regs
19307 @opindex mfp-reg
19308 @opindex mno-fp-regs
19309 Generate code that uses (does not use) the floating-point register set.
19310 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
19311 register set is not used, floating-point operands are passed in integer
19312 registers as if they were integers and floating-point results are passed
19313 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
19314 so any function with a floating-point argument or return value called by code
19315 compiled with @option{-mno-fp-regs} must also be compiled with that
19316 option.
19317
19318 A typical use of this option is building a kernel that does not use,
19319 and hence need not save and restore, any floating-point registers.
19320
19321 @item -mieee
19322 @opindex mieee
19323 The Alpha architecture implements floating-point hardware optimized for
19324 maximum performance. It is mostly compliant with the IEEE floating-point
19325 standard. However, for full compliance, software assistance is
19326 required. This option generates code fully IEEE-compliant code
19327 @emph{except} that the @var{inexact-flag} is not maintained (see below).
19328 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
19329 defined during compilation. The resulting code is less efficient but is
19330 able to correctly support denormalized numbers and exceptional IEEE
19331 values such as not-a-number and plus/minus infinity. Other Alpha
19332 compilers call this option @option{-ieee_with_no_inexact}.
19333
19334 @item -mieee-with-inexact
19335 @opindex mieee-with-inexact
19336 This is like @option{-mieee} except the generated code also maintains
19337 the IEEE @var{inexact-flag}. Turning on this option causes the
19338 generated code to implement fully-compliant IEEE math. In addition to
19339 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
19340 macro. On some Alpha implementations the resulting code may execute
19341 significantly slower than the code generated by default. Since there is
19342 very little code that depends on the @var{inexact-flag}, you should
19343 normally not specify this option. Other Alpha compilers call this
19344 option @option{-ieee_with_inexact}.
19345
19346 @item -mfp-trap-mode=@var{trap-mode}
19347 @opindex mfp-trap-mode
19348 This option controls what floating-point related traps are enabled.
19349 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
19350 The trap mode can be set to one of four values:
19351
19352 @table @samp
19353 @item n
19354 This is the default (normal) setting. The only traps that are enabled
19355 are the ones that cannot be disabled in software (e.g., division by zero
19356 trap).
19357
19358 @item u
19359 In addition to the traps enabled by @samp{n}, underflow traps are enabled
19360 as well.
19361
19362 @item su
19363 Like @samp{u}, but the instructions are marked to be safe for software
19364 completion (see Alpha architecture manual for details).
19365
19366 @item sui
19367 Like @samp{su}, but inexact traps are enabled as well.
19368 @end table
19369
19370 @item -mfp-rounding-mode=@var{rounding-mode}
19371 @opindex mfp-rounding-mode
19372 Selects the IEEE rounding mode. Other Alpha compilers call this option
19373 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
19374 of:
19375
19376 @table @samp
19377 @item n
19378 Normal IEEE rounding mode. Floating-point numbers are rounded towards
19379 the nearest machine number or towards the even machine number in case
19380 of a tie.
19381
19382 @item m
19383 Round towards minus infinity.
19384
19385 @item c
19386 Chopped rounding mode. Floating-point numbers are rounded towards zero.
19387
19388 @item d
19389 Dynamic rounding mode. A field in the floating-point control register
19390 (@var{fpcr}, see Alpha architecture reference manual) controls the
19391 rounding mode in effect. The C library initializes this register for
19392 rounding towards plus infinity. Thus, unless your program modifies the
19393 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
19394 @end table
19395
19396 @item -mtrap-precision=@var{trap-precision}
19397 @opindex mtrap-precision
19398 In the Alpha architecture, floating-point traps are imprecise. This
19399 means without software assistance it is impossible to recover from a
19400 floating trap and program execution normally needs to be terminated.
19401 GCC can generate code that can assist operating system trap handlers
19402 in determining the exact location that caused a floating-point trap.
19403 Depending on the requirements of an application, different levels of
19404 precisions can be selected:
19405
19406 @table @samp
19407 @item p
19408 Program precision. This option is the default and means a trap handler
19409 can only identify which program caused a floating-point exception.
19410
19411 @item f
19412 Function precision. The trap handler can determine the function that
19413 caused a floating-point exception.
19414
19415 @item i
19416 Instruction precision. The trap handler can determine the exact
19417 instruction that caused a floating-point exception.
19418 @end table
19419
19420 Other Alpha compilers provide the equivalent options called
19421 @option{-scope_safe} and @option{-resumption_safe}.
19422
19423 @item -mieee-conformant
19424 @opindex mieee-conformant
19425 This option marks the generated code as IEEE conformant. You must not
19426 use this option unless you also specify @option{-mtrap-precision=i} and either
19427 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
19428 is to emit the line @samp{.eflag 48} in the function prologue of the
19429 generated assembly file.
19430
19431 @item -mbuild-constants
19432 @opindex mbuild-constants
19433 Normally GCC examines a 32- or 64-bit integer constant to
19434 see if it can construct it from smaller constants in two or three
19435 instructions. If it cannot, it outputs the constant as a literal and
19436 generates code to load it from the data segment at run time.
19437
19438 Use this option to require GCC to construct @emph{all} integer constants
19439 using code, even if it takes more instructions (the maximum is six).
19440
19441 You typically use this option to build a shared library dynamic
19442 loader. Itself a shared library, it must relocate itself in memory
19443 before it can find the variables and constants in its own data segment.
19444
19445 @item -mbwx
19446 @itemx -mno-bwx
19447 @itemx -mcix
19448 @itemx -mno-cix
19449 @itemx -mfix
19450 @itemx -mno-fix
19451 @itemx -mmax
19452 @itemx -mno-max
19453 @opindex mbwx
19454 @opindex mno-bwx
19455 @opindex mcix
19456 @opindex mno-cix
19457 @opindex mfix
19458 @opindex mno-fix
19459 @opindex mmax
19460 @opindex mno-max
19461 Indicate whether GCC should generate code to use the optional BWX,
19462 CIX, FIX and MAX instruction sets. The default is to use the instruction
19463 sets supported by the CPU type specified via @option{-mcpu=} option or that
19464 of the CPU on which GCC was built if none is specified.
19465
19466 @item -mfloat-vax
19467 @itemx -mfloat-ieee
19468 @opindex mfloat-vax
19469 @opindex mfloat-ieee
19470 Generate code that uses (does not use) VAX F and G floating-point
19471 arithmetic instead of IEEE single and double precision.
19472
19473 @item -mexplicit-relocs
19474 @itemx -mno-explicit-relocs
19475 @opindex mexplicit-relocs
19476 @opindex mno-explicit-relocs
19477 Older Alpha assemblers provided no way to generate symbol relocations
19478 except via assembler macros. Use of these macros does not allow
19479 optimal instruction scheduling. GNU binutils as of version 2.12
19480 supports a new syntax that allows the compiler to explicitly mark
19481 which relocations should apply to which instructions. This option
19482 is mostly useful for debugging, as GCC detects the capabilities of
19483 the assembler when it is built and sets the default accordingly.
19484
19485 @item -msmall-data
19486 @itemx -mlarge-data
19487 @opindex msmall-data
19488 @opindex mlarge-data
19489 When @option{-mexplicit-relocs} is in effect, static data is
19490 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
19491 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
19492 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
19493 16-bit relocations off of the @code{$gp} register. This limits the
19494 size of the small data area to 64KB, but allows the variables to be
19495 directly accessed via a single instruction.
19496
19497 The default is @option{-mlarge-data}. With this option the data area
19498 is limited to just below 2GB@. Programs that require more than 2GB of
19499 data must use @code{malloc} or @code{mmap} to allocate the data in the
19500 heap instead of in the program's data segment.
19501
19502 When generating code for shared libraries, @option{-fpic} implies
19503 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
19504
19505 @item -msmall-text
19506 @itemx -mlarge-text
19507 @opindex msmall-text
19508 @opindex mlarge-text
19509 When @option{-msmall-text} is used, the compiler assumes that the
19510 code of the entire program (or shared library) fits in 4MB, and is
19511 thus reachable with a branch instruction. When @option{-msmall-data}
19512 is used, the compiler can assume that all local symbols share the
19513 same @code{$gp} value, and thus reduce the number of instructions
19514 required for a function call from 4 to 1.
19515
19516 The default is @option{-mlarge-text}.
19517
19518 @item -mcpu=@var{cpu_type}
19519 @opindex mcpu
19520 Set the instruction set and instruction scheduling parameters for
19521 machine type @var{cpu_type}. You can specify either the @samp{EV}
19522 style name or the corresponding chip number. GCC supports scheduling
19523 parameters for the EV4, EV5 and EV6 family of processors and
19524 chooses the default values for the instruction set from the processor
19525 you specify. If you do not specify a processor type, GCC defaults
19526 to the processor on which the compiler was built.
19527
19528 Supported values for @var{cpu_type} are
19529
19530 @table @samp
19531 @item ev4
19532 @itemx ev45
19533 @itemx 21064
19534 Schedules as an EV4 and has no instruction set extensions.
19535
19536 @item ev5
19537 @itemx 21164
19538 Schedules as an EV5 and has no instruction set extensions.
19539
19540 @item ev56
19541 @itemx 21164a
19542 Schedules as an EV5 and supports the BWX extension.
19543
19544 @item pca56
19545 @itemx 21164pc
19546 @itemx 21164PC
19547 Schedules as an EV5 and supports the BWX and MAX extensions.
19548
19549 @item ev6
19550 @itemx 21264
19551 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
19552
19553 @item ev67
19554 @itemx 21264a
19555 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
19556 @end table
19557
19558 Native toolchains also support the value @samp{native},
19559 which selects the best architecture option for the host processor.
19560 @option{-mcpu=native} has no effect if GCC does not recognize
19561 the processor.
19562
19563 @item -mtune=@var{cpu_type}
19564 @opindex mtune
19565 Set only the instruction scheduling parameters for machine type
19566 @var{cpu_type}. The instruction set is not changed.
19567
19568 Native toolchains also support the value @samp{native},
19569 which selects the best architecture option for the host processor.
19570 @option{-mtune=native} has no effect if GCC does not recognize
19571 the processor.
19572
19573 @item -mmemory-latency=@var{time}
19574 @opindex mmemory-latency
19575 Sets the latency the scheduler should assume for typical memory
19576 references as seen by the application. This number is highly
19577 dependent on the memory access patterns used by the application
19578 and the size of the external cache on the machine.
19579
19580 Valid options for @var{time} are
19581
19582 @table @samp
19583 @item @var{number}
19584 A decimal number representing clock cycles.
19585
19586 @item L1
19587 @itemx L2
19588 @itemx L3
19589 @itemx main
19590 The compiler contains estimates of the number of clock cycles for
19591 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
19592 (also called Dcache, Scache, and Bcache), as well as to main memory.
19593 Note that L3 is only valid for EV5.
19594
19595 @end table
19596 @end table
19597
19598 @node FR30 Options
19599 @subsection FR30 Options
19600 @cindex FR30 Options
19601
19602 These options are defined specifically for the FR30 port.
19603
19604 @table @gcctabopt
19605
19606 @item -msmall-model
19607 @opindex msmall-model
19608 Use the small address space model. This can produce smaller code, but
19609 it does assume that all symbolic values and addresses fit into a
19610 20-bit range.
19611
19612 @item -mno-lsim
19613 @opindex mno-lsim
19614 Assume that runtime support has been provided and so there is no need
19615 to include the simulator library (@file{libsim.a}) on the linker
19616 command line.
19617
19618 @end table
19619
19620 @node FT32 Options
19621 @subsection FT32 Options
19622 @cindex FT32 Options
19623
19624 These options are defined specifically for the FT32 port.
19625
19626 @table @gcctabopt
19627
19628 @item -msim
19629 @opindex msim
19630 Specifies that the program will be run on the simulator. This causes
19631 an alternate runtime startup and library to be linked.
19632 You must not use this option when generating programs that will run on
19633 real hardware; you must provide your own runtime library for whatever
19634 I/O functions are needed.
19635
19636 @item -mlra
19637 @opindex mlra
19638 Enable Local Register Allocation. This is still experimental for FT32,
19639 so by default the compiler uses standard reload.
19640
19641 @item -mnodiv
19642 @opindex mnodiv
19643 Do not use div and mod instructions.
19644
19645 @item -mft32b
19646 @opindex mft32b
19647 Enable use of the extended instructions of the FT32B processor.
19648
19649 @item -mcompress
19650 @opindex mcompress
19651 Compress all code using the Ft32B code compression scheme.
19652
19653 @item -mnopm
19654 @opindex mnopm
19655 Do not generate code that reads program memory.
19656
19657 @end table
19658
19659 @node FRV Options
19660 @subsection FRV Options
19661 @cindex FRV Options
19662
19663 @table @gcctabopt
19664 @item -mgpr-32
19665 @opindex mgpr-32
19666
19667 Only use the first 32 general-purpose registers.
19668
19669 @item -mgpr-64
19670 @opindex mgpr-64
19671
19672 Use all 64 general-purpose registers.
19673
19674 @item -mfpr-32
19675 @opindex mfpr-32
19676
19677 Use only the first 32 floating-point registers.
19678
19679 @item -mfpr-64
19680 @opindex mfpr-64
19681
19682 Use all 64 floating-point registers.
19683
19684 @item -mhard-float
19685 @opindex mhard-float
19686
19687 Use hardware instructions for floating-point operations.
19688
19689 @item -msoft-float
19690 @opindex msoft-float
19691
19692 Use library routines for floating-point operations.
19693
19694 @item -malloc-cc
19695 @opindex malloc-cc
19696
19697 Dynamically allocate condition code registers.
19698
19699 @item -mfixed-cc
19700 @opindex mfixed-cc
19701
19702 Do not try to dynamically allocate condition code registers, only
19703 use @code{icc0} and @code{fcc0}.
19704
19705 @item -mdword
19706 @opindex mdword
19707
19708 Change ABI to use double word insns.
19709
19710 @item -mno-dword
19711 @opindex mno-dword
19712 @opindex mdword
19713
19714 Do not use double word instructions.
19715
19716 @item -mdouble
19717 @opindex mdouble
19718
19719 Use floating-point double instructions.
19720
19721 @item -mno-double
19722 @opindex mno-double
19723
19724 Do not use floating-point double instructions.
19725
19726 @item -mmedia
19727 @opindex mmedia
19728
19729 Use media instructions.
19730
19731 @item -mno-media
19732 @opindex mno-media
19733
19734 Do not use media instructions.
19735
19736 @item -mmuladd
19737 @opindex mmuladd
19738
19739 Use multiply and add/subtract instructions.
19740
19741 @item -mno-muladd
19742 @opindex mno-muladd
19743
19744 Do not use multiply and add/subtract instructions.
19745
19746 @item -mfdpic
19747 @opindex mfdpic
19748
19749 Select the FDPIC ABI, which uses function descriptors to represent
19750 pointers to functions. Without any PIC/PIE-related options, it
19751 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
19752 assumes GOT entries and small data are within a 12-bit range from the
19753 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
19754 are computed with 32 bits.
19755 With a @samp{bfin-elf} target, this option implies @option{-msim}.
19756
19757 @item -minline-plt
19758 @opindex minline-plt
19759
19760 Enable inlining of PLT entries in function calls to functions that are
19761 not known to bind locally. It has no effect without @option{-mfdpic}.
19762 It's enabled by default if optimizing for speed and compiling for
19763 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
19764 optimization option such as @option{-O3} or above is present in the
19765 command line.
19766
19767 @item -mTLS
19768 @opindex mTLS
19769
19770 Assume a large TLS segment when generating thread-local code.
19771
19772 @item -mtls
19773 @opindex mtls
19774
19775 Do not assume a large TLS segment when generating thread-local code.
19776
19777 @item -mgprel-ro
19778 @opindex mgprel-ro
19779
19780 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
19781 that is known to be in read-only sections. It's enabled by default,
19782 except for @option{-fpic} or @option{-fpie}: even though it may help
19783 make the global offset table smaller, it trades 1 instruction for 4.
19784 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
19785 one of which may be shared by multiple symbols, and it avoids the need
19786 for a GOT entry for the referenced symbol, so it's more likely to be a
19787 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
19788
19789 @item -multilib-library-pic
19790 @opindex multilib-library-pic
19791
19792 Link with the (library, not FD) pic libraries. It's implied by
19793 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
19794 @option{-fpic} without @option{-mfdpic}. You should never have to use
19795 it explicitly.
19796
19797 @item -mlinked-fp
19798 @opindex mlinked-fp
19799
19800 Follow the EABI requirement of always creating a frame pointer whenever
19801 a stack frame is allocated. This option is enabled by default and can
19802 be disabled with @option{-mno-linked-fp}.
19803
19804 @item -mlong-calls
19805 @opindex mlong-calls
19806
19807 Use indirect addressing to call functions outside the current
19808 compilation unit. This allows the functions to be placed anywhere
19809 within the 32-bit address space.
19810
19811 @item -malign-labels
19812 @opindex malign-labels
19813
19814 Try to align labels to an 8-byte boundary by inserting NOPs into the
19815 previous packet. This option only has an effect when VLIW packing
19816 is enabled. It doesn't create new packets; it merely adds NOPs to
19817 existing ones.
19818
19819 @item -mlibrary-pic
19820 @opindex mlibrary-pic
19821
19822 Generate position-independent EABI code.
19823
19824 @item -macc-4
19825 @opindex macc-4
19826
19827 Use only the first four media accumulator registers.
19828
19829 @item -macc-8
19830 @opindex macc-8
19831
19832 Use all eight media accumulator registers.
19833
19834 @item -mpack
19835 @opindex mpack
19836
19837 Pack VLIW instructions.
19838
19839 @item -mno-pack
19840 @opindex mno-pack
19841
19842 Do not pack VLIW instructions.
19843
19844 @item -mno-eflags
19845 @opindex mno-eflags
19846
19847 Do not mark ABI switches in e_flags.
19848
19849 @item -mcond-move
19850 @opindex mcond-move
19851
19852 Enable the use of conditional-move instructions (default).
19853
19854 This switch is mainly for debugging the compiler and will likely be removed
19855 in a future version.
19856
19857 @item -mno-cond-move
19858 @opindex mno-cond-move
19859
19860 Disable the use of conditional-move instructions.
19861
19862 This switch is mainly for debugging the compiler and will likely be removed
19863 in a future version.
19864
19865 @item -mscc
19866 @opindex mscc
19867
19868 Enable the use of conditional set instructions (default).
19869
19870 This switch is mainly for debugging the compiler and will likely be removed
19871 in a future version.
19872
19873 @item -mno-scc
19874 @opindex mno-scc
19875
19876 Disable the use of conditional set instructions.
19877
19878 This switch is mainly for debugging the compiler and will likely be removed
19879 in a future version.
19880
19881 @item -mcond-exec
19882 @opindex mcond-exec
19883
19884 Enable the use of conditional execution (default).
19885
19886 This switch is mainly for debugging the compiler and will likely be removed
19887 in a future version.
19888
19889 @item -mno-cond-exec
19890 @opindex mno-cond-exec
19891
19892 Disable the use of conditional execution.
19893
19894 This switch is mainly for debugging the compiler and will likely be removed
19895 in a future version.
19896
19897 @item -mvliw-branch
19898 @opindex mvliw-branch
19899
19900 Run a pass to pack branches into VLIW instructions (default).
19901
19902 This switch is mainly for debugging the compiler and will likely be removed
19903 in a future version.
19904
19905 @item -mno-vliw-branch
19906 @opindex mno-vliw-branch
19907
19908 Do not run a pass to pack branches into VLIW instructions.
19909
19910 This switch is mainly for debugging the compiler and will likely be removed
19911 in a future version.
19912
19913 @item -mmulti-cond-exec
19914 @opindex mmulti-cond-exec
19915
19916 Enable optimization of @code{&&} and @code{||} in conditional execution
19917 (default).
19918
19919 This switch is mainly for debugging the compiler and will likely be removed
19920 in a future version.
19921
19922 @item -mno-multi-cond-exec
19923 @opindex mno-multi-cond-exec
19924
19925 Disable optimization of @code{&&} and @code{||} in conditional execution.
19926
19927 This switch is mainly for debugging the compiler and will likely be removed
19928 in a future version.
19929
19930 @item -mnested-cond-exec
19931 @opindex mnested-cond-exec
19932
19933 Enable nested conditional execution optimizations (default).
19934
19935 This switch is mainly for debugging the compiler and will likely be removed
19936 in a future version.
19937
19938 @item -mno-nested-cond-exec
19939 @opindex mno-nested-cond-exec
19940
19941 Disable nested conditional execution optimizations.
19942
19943 This switch is mainly for debugging the compiler and will likely be removed
19944 in a future version.
19945
19946 @item -moptimize-membar
19947 @opindex moptimize-membar
19948
19949 This switch removes redundant @code{membar} instructions from the
19950 compiler-generated code. It is enabled by default.
19951
19952 @item -mno-optimize-membar
19953 @opindex mno-optimize-membar
19954 @opindex moptimize-membar
19955
19956 This switch disables the automatic removal of redundant @code{membar}
19957 instructions from the generated code.
19958
19959 @item -mtomcat-stats
19960 @opindex mtomcat-stats
19961
19962 Cause gas to print out tomcat statistics.
19963
19964 @item -mcpu=@var{cpu}
19965 @opindex mcpu
19966
19967 Select the processor type for which to generate code. Possible values are
19968 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
19969 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
19970
19971 @end table
19972
19973 @node GNU/Linux Options
19974 @subsection GNU/Linux Options
19975
19976 These @samp{-m} options are defined for GNU/Linux targets:
19977
19978 @table @gcctabopt
19979 @item -mglibc
19980 @opindex mglibc
19981 Use the GNU C library. This is the default except
19982 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
19983 @samp{*-*-linux-*android*} targets.
19984
19985 @item -muclibc
19986 @opindex muclibc
19987 Use uClibc C library. This is the default on
19988 @samp{*-*-linux-*uclibc*} targets.
19989
19990 @item -mmusl
19991 @opindex mmusl
19992 Use the musl C library. This is the default on
19993 @samp{*-*-linux-*musl*} targets.
19994
19995 @item -mbionic
19996 @opindex mbionic
19997 Use Bionic C library. This is the default on
19998 @samp{*-*-linux-*android*} targets.
19999
20000 @item -mandroid
20001 @opindex mandroid
20002 Compile code compatible with Android platform. This is the default on
20003 @samp{*-*-linux-*android*} targets.
20004
20005 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
20006 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
20007 this option makes the GCC driver pass Android-specific options to the linker.
20008 Finally, this option causes the preprocessor macro @code{__ANDROID__}
20009 to be defined.
20010
20011 @item -tno-android-cc
20012 @opindex tno-android-cc
20013 Disable compilation effects of @option{-mandroid}, i.e., do not enable
20014 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
20015 @option{-fno-rtti} by default.
20016
20017 @item -tno-android-ld
20018 @opindex tno-android-ld
20019 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
20020 linking options to the linker.
20021
20022 @end table
20023
20024 @node H8/300 Options
20025 @subsection H8/300 Options
20026
20027 These @samp{-m} options are defined for the H8/300 implementations:
20028
20029 @table @gcctabopt
20030 @item -mrelax
20031 @opindex mrelax
20032 Shorten some address references at link time, when possible; uses the
20033 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
20034 ld, Using ld}, for a fuller description.
20035
20036 @item -mh
20037 @opindex mh
20038 Generate code for the H8/300H@.
20039
20040 @item -ms
20041 @opindex ms
20042 Generate code for the H8S@.
20043
20044 @item -mn
20045 @opindex mn
20046 Generate code for the H8S and H8/300H in the normal mode. This switch
20047 must be used either with @option{-mh} or @option{-ms}.
20048
20049 @item -ms2600
20050 @opindex ms2600
20051 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
20052
20053 @item -mexr
20054 @opindex mexr
20055 Extended registers are stored on stack before execution of function
20056 with monitor attribute. Default option is @option{-mexr}.
20057 This option is valid only for H8S targets.
20058
20059 @item -mno-exr
20060 @opindex mno-exr
20061 @opindex mexr
20062 Extended registers are not stored on stack before execution of function
20063 with monitor attribute. Default option is @option{-mno-exr}.
20064 This option is valid only for H8S targets.
20065
20066 @item -mint32
20067 @opindex mint32
20068 Make @code{int} data 32 bits by default.
20069
20070 @item -malign-300
20071 @opindex malign-300
20072 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
20073 The default for the H8/300H and H8S is to align longs and floats on
20074 4-byte boundaries.
20075 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
20076 This option has no effect on the H8/300.
20077 @end table
20078
20079 @node HPPA Options
20080 @subsection HPPA Options
20081 @cindex HPPA Options
20082
20083 These @samp{-m} options are defined for the HPPA family of computers:
20084
20085 @table @gcctabopt
20086 @item -march=@var{architecture-type}
20087 @opindex march
20088 Generate code for the specified architecture. The choices for
20089 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
20090 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
20091 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
20092 architecture option for your machine. Code compiled for lower numbered
20093 architectures runs on higher numbered architectures, but not the
20094 other way around.
20095
20096 @item -mpa-risc-1-0
20097 @itemx -mpa-risc-1-1
20098 @itemx -mpa-risc-2-0
20099 @opindex mpa-risc-1-0
20100 @opindex mpa-risc-1-1
20101 @opindex mpa-risc-2-0
20102 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
20103
20104 @item -mcaller-copies
20105 @opindex mcaller-copies
20106 The caller copies function arguments passed by hidden reference. This
20107 option should be used with care as it is not compatible with the default
20108 32-bit runtime. However, only aggregates larger than eight bytes are
20109 passed by hidden reference and the option provides better compatibility
20110 with OpenMP.
20111
20112 @item -mjump-in-delay
20113 @opindex mjump-in-delay
20114 This option is ignored and provided for compatibility purposes only.
20115
20116 @item -mdisable-fpregs
20117 @opindex mdisable-fpregs
20118 Prevent floating-point registers from being used in any manner. This is
20119 necessary for compiling kernels that perform lazy context switching of
20120 floating-point registers. If you use this option and attempt to perform
20121 floating-point operations, the compiler aborts.
20122
20123 @item -mdisable-indexing
20124 @opindex mdisable-indexing
20125 Prevent the compiler from using indexing address modes. This avoids some
20126 rather obscure problems when compiling MIG generated code under MACH@.
20127
20128 @item -mno-space-regs
20129 @opindex mno-space-regs
20130 @opindex mspace-regs
20131 Generate code that assumes the target has no space registers. This allows
20132 GCC to generate faster indirect calls and use unscaled index address modes.
20133
20134 Such code is suitable for level 0 PA systems and kernels.
20135
20136 @item -mfast-indirect-calls
20137 @opindex mfast-indirect-calls
20138 Generate code that assumes calls never cross space boundaries. This
20139 allows GCC to emit code that performs faster indirect calls.
20140
20141 This option does not work in the presence of shared libraries or nested
20142 functions.
20143
20144 @item -mfixed-range=@var{register-range}
20145 @opindex mfixed-range
20146 Generate code treating the given register range as fixed registers.
20147 A fixed register is one that the register allocator cannot use. This is
20148 useful when compiling kernel code. A register range is specified as
20149 two registers separated by a dash. Multiple register ranges can be
20150 specified separated by a comma.
20151
20152 @item -mlong-load-store
20153 @opindex mlong-load-store
20154 Generate 3-instruction load and store sequences as sometimes required by
20155 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
20156 the HP compilers.
20157
20158 @item -mportable-runtime
20159 @opindex mportable-runtime
20160 Use the portable calling conventions proposed by HP for ELF systems.
20161
20162 @item -mgas
20163 @opindex mgas
20164 Enable the use of assembler directives only GAS understands.
20165
20166 @item -mschedule=@var{cpu-type}
20167 @opindex mschedule
20168 Schedule code according to the constraints for the machine type
20169 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
20170 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
20171 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
20172 proper scheduling option for your machine. The default scheduling is
20173 @samp{8000}.
20174
20175 @item -mlinker-opt
20176 @opindex mlinker-opt
20177 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
20178 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
20179 linkers in which they give bogus error messages when linking some programs.
20180
20181 @item -msoft-float
20182 @opindex msoft-float
20183 Generate output containing library calls for floating point.
20184 @strong{Warning:} the requisite libraries are not available for all HPPA
20185 targets. Normally the facilities of the machine's usual C compiler are
20186 used, but this cannot be done directly in cross-compilation. You must make
20187 your own arrangements to provide suitable library functions for
20188 cross-compilation.
20189
20190 @option{-msoft-float} changes the calling convention in the output file;
20191 therefore, it is only useful if you compile @emph{all} of a program with
20192 this option. In particular, you need to compile @file{libgcc.a}, the
20193 library that comes with GCC, with @option{-msoft-float} in order for
20194 this to work.
20195
20196 @item -msio
20197 @opindex msio
20198 Generate the predefine, @code{_SIO}, for server IO@. The default is
20199 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
20200 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
20201 options are available under HP-UX and HI-UX@.
20202
20203 @item -mgnu-ld
20204 @opindex mgnu-ld
20205 Use options specific to GNU @command{ld}.
20206 This passes @option{-shared} to @command{ld} when
20207 building a shared library. It is the default when GCC is configured,
20208 explicitly or implicitly, with the GNU linker. This option does not
20209 affect which @command{ld} is called; it only changes what parameters
20210 are passed to that @command{ld}.
20211 The @command{ld} that is called is determined by the
20212 @option{--with-ld} configure option, GCC's program search path, and
20213 finally by the user's @env{PATH}. The linker used by GCC can be printed
20214 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
20215 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20216
20217 @item -mhp-ld
20218 @opindex mhp-ld
20219 Use options specific to HP @command{ld}.
20220 This passes @option{-b} to @command{ld} when building
20221 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
20222 links. It is the default when GCC is configured, explicitly or
20223 implicitly, with the HP linker. This option does not affect
20224 which @command{ld} is called; it only changes what parameters are passed to that
20225 @command{ld}.
20226 The @command{ld} that is called is determined by the @option{--with-ld}
20227 configure option, GCC's program search path, and finally by the user's
20228 @env{PATH}. The linker used by GCC can be printed using @samp{which
20229 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
20230 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20231
20232 @item -mlong-calls
20233 @opindex mno-long-calls
20234 @opindex mlong-calls
20235 Generate code that uses long call sequences. This ensures that a call
20236 is always able to reach linker generated stubs. The default is to generate
20237 long calls only when the distance from the call site to the beginning
20238 of the function or translation unit, as the case may be, exceeds a
20239 predefined limit set by the branch type being used. The limits for
20240 normal calls are 7,600,000 and 240,000 bytes, respectively for the
20241 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
20242 240,000 bytes.
20243
20244 Distances are measured from the beginning of functions when using the
20245 @option{-ffunction-sections} option, or when using the @option{-mgas}
20246 and @option{-mno-portable-runtime} options together under HP-UX with
20247 the SOM linker.
20248
20249 It is normally not desirable to use this option as it degrades
20250 performance. However, it may be useful in large applications,
20251 particularly when partial linking is used to build the application.
20252
20253 The types of long calls used depends on the capabilities of the
20254 assembler and linker, and the type of code being generated. The
20255 impact on systems that support long absolute calls, and long pic
20256 symbol-difference or pc-relative calls should be relatively small.
20257 However, an indirect call is used on 32-bit ELF systems in pic code
20258 and it is quite long.
20259
20260 @item -munix=@var{unix-std}
20261 @opindex march
20262 Generate compiler predefines and select a startfile for the specified
20263 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
20264 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
20265 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
20266 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
20267 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
20268 and later.
20269
20270 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
20271 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
20272 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
20273 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
20274 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
20275 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
20276
20277 It is @emph{important} to note that this option changes the interfaces
20278 for various library routines. It also affects the operational behavior
20279 of the C library. Thus, @emph{extreme} care is needed in using this
20280 option.
20281
20282 Library code that is intended to operate with more than one UNIX
20283 standard must test, set and restore the variable @code{__xpg4_extended_mask}
20284 as appropriate. Most GNU software doesn't provide this capability.
20285
20286 @item -nolibdld
20287 @opindex nolibdld
20288 Suppress the generation of link options to search libdld.sl when the
20289 @option{-static} option is specified on HP-UX 10 and later.
20290
20291 @item -static
20292 @opindex static
20293 The HP-UX implementation of setlocale in libc has a dependency on
20294 libdld.sl. There isn't an archive version of libdld.sl. Thus,
20295 when the @option{-static} option is specified, special link options
20296 are needed to resolve this dependency.
20297
20298 On HP-UX 10 and later, the GCC driver adds the necessary options to
20299 link with libdld.sl when the @option{-static} option is specified.
20300 This causes the resulting binary to be dynamic. On the 64-bit port,
20301 the linkers generate dynamic binaries by default in any case. The
20302 @option{-nolibdld} option can be used to prevent the GCC driver from
20303 adding these link options.
20304
20305 @item -threads
20306 @opindex threads
20307 Add support for multithreading with the @dfn{dce thread} library
20308 under HP-UX@. This option sets flags for both the preprocessor and
20309 linker.
20310 @end table
20311
20312 @node IA-64 Options
20313 @subsection IA-64 Options
20314 @cindex IA-64 Options
20315
20316 These are the @samp{-m} options defined for the Intel IA-64 architecture.
20317
20318 @table @gcctabopt
20319 @item -mbig-endian
20320 @opindex mbig-endian
20321 Generate code for a big-endian target. This is the default for HP-UX@.
20322
20323 @item -mlittle-endian
20324 @opindex mlittle-endian
20325 Generate code for a little-endian target. This is the default for AIX5
20326 and GNU/Linux.
20327
20328 @item -mgnu-as
20329 @itemx -mno-gnu-as
20330 @opindex mgnu-as
20331 @opindex mno-gnu-as
20332 Generate (or don't) code for the GNU assembler. This is the default.
20333 @c Also, this is the default if the configure option @option{--with-gnu-as}
20334 @c is used.
20335
20336 @item -mgnu-ld
20337 @itemx -mno-gnu-ld
20338 @opindex mgnu-ld
20339 @opindex mno-gnu-ld
20340 Generate (or don't) code for the GNU linker. This is the default.
20341 @c Also, this is the default if the configure option @option{--with-gnu-ld}
20342 @c is used.
20343
20344 @item -mno-pic
20345 @opindex mno-pic
20346 Generate code that does not use a global pointer register. The result
20347 is not position independent code, and violates the IA-64 ABI@.
20348
20349 @item -mvolatile-asm-stop
20350 @itemx -mno-volatile-asm-stop
20351 @opindex mvolatile-asm-stop
20352 @opindex mno-volatile-asm-stop
20353 Generate (or don't) a stop bit immediately before and after volatile asm
20354 statements.
20355
20356 @item -mregister-names
20357 @itemx -mno-register-names
20358 @opindex mregister-names
20359 @opindex mno-register-names
20360 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
20361 the stacked registers. This may make assembler output more readable.
20362
20363 @item -mno-sdata
20364 @itemx -msdata
20365 @opindex mno-sdata
20366 @opindex msdata
20367 Disable (or enable) optimizations that use the small data section. This may
20368 be useful for working around optimizer bugs.
20369
20370 @item -mconstant-gp
20371 @opindex mconstant-gp
20372 Generate code that uses a single constant global pointer value. This is
20373 useful when compiling kernel code.
20374
20375 @item -mauto-pic
20376 @opindex mauto-pic
20377 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
20378 This is useful when compiling firmware code.
20379
20380 @item -minline-float-divide-min-latency
20381 @opindex minline-float-divide-min-latency
20382 Generate code for inline divides of floating-point values
20383 using the minimum latency algorithm.
20384
20385 @item -minline-float-divide-max-throughput
20386 @opindex minline-float-divide-max-throughput
20387 Generate code for inline divides of floating-point values
20388 using the maximum throughput algorithm.
20389
20390 @item -mno-inline-float-divide
20391 @opindex mno-inline-float-divide
20392 Do not generate inline code for divides of floating-point values.
20393
20394 @item -minline-int-divide-min-latency
20395 @opindex minline-int-divide-min-latency
20396 Generate code for inline divides of integer values
20397 using the minimum latency algorithm.
20398
20399 @item -minline-int-divide-max-throughput
20400 @opindex minline-int-divide-max-throughput
20401 Generate code for inline divides of integer values
20402 using the maximum throughput algorithm.
20403
20404 @item -mno-inline-int-divide
20405 @opindex mno-inline-int-divide
20406 @opindex minline-int-divide
20407 Do not generate inline code for divides of integer values.
20408
20409 @item -minline-sqrt-min-latency
20410 @opindex minline-sqrt-min-latency
20411 Generate code for inline square roots
20412 using the minimum latency algorithm.
20413
20414 @item -minline-sqrt-max-throughput
20415 @opindex minline-sqrt-max-throughput
20416 Generate code for inline square roots
20417 using the maximum throughput algorithm.
20418
20419 @item -mno-inline-sqrt
20420 @opindex mno-inline-sqrt
20421 Do not generate inline code for @code{sqrt}.
20422
20423 @item -mfused-madd
20424 @itemx -mno-fused-madd
20425 @opindex mfused-madd
20426 @opindex mno-fused-madd
20427 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
20428 instructions. The default is to use these instructions.
20429
20430 @item -mno-dwarf2-asm
20431 @itemx -mdwarf2-asm
20432 @opindex mno-dwarf2-asm
20433 @opindex mdwarf2-asm
20434 Don't (or do) generate assembler code for the DWARF line number debugging
20435 info. This may be useful when not using the GNU assembler.
20436
20437 @item -mearly-stop-bits
20438 @itemx -mno-early-stop-bits
20439 @opindex mearly-stop-bits
20440 @opindex mno-early-stop-bits
20441 Allow stop bits to be placed earlier than immediately preceding the
20442 instruction that triggered the stop bit. This can improve instruction
20443 scheduling, but does not always do so.
20444
20445 @item -mfixed-range=@var{register-range}
20446 @opindex mfixed-range
20447 Generate code treating the given register range as fixed registers.
20448 A fixed register is one that the register allocator cannot use. This is
20449 useful when compiling kernel code. A register range is specified as
20450 two registers separated by a dash. Multiple register ranges can be
20451 specified separated by a comma.
20452
20453 @item -mtls-size=@var{tls-size}
20454 @opindex mtls-size
20455 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
20456 64.
20457
20458 @item -mtune=@var{cpu-type}
20459 @opindex mtune
20460 Tune the instruction scheduling for a particular CPU, Valid values are
20461 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
20462 and @samp{mckinley}.
20463
20464 @item -milp32
20465 @itemx -mlp64
20466 @opindex milp32
20467 @opindex mlp64
20468 Generate code for a 32-bit or 64-bit environment.
20469 The 32-bit environment sets int, long and pointer to 32 bits.
20470 The 64-bit environment sets int to 32 bits and long and pointer
20471 to 64 bits. These are HP-UX specific flags.
20472
20473 @item -mno-sched-br-data-spec
20474 @itemx -msched-br-data-spec
20475 @opindex mno-sched-br-data-spec
20476 @opindex msched-br-data-spec
20477 (Dis/En)able data speculative scheduling before reload.
20478 This results in generation of @code{ld.a} instructions and
20479 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20480 The default setting is disabled.
20481
20482 @item -msched-ar-data-spec
20483 @itemx -mno-sched-ar-data-spec
20484 @opindex msched-ar-data-spec
20485 @opindex mno-sched-ar-data-spec
20486 (En/Dis)able data speculative scheduling after reload.
20487 This results in generation of @code{ld.a} instructions and
20488 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20489 The default setting is enabled.
20490
20491 @item -mno-sched-control-spec
20492 @itemx -msched-control-spec
20493 @opindex mno-sched-control-spec
20494 @opindex msched-control-spec
20495 (Dis/En)able control speculative scheduling. This feature is
20496 available only during region scheduling (i.e.@: before reload).
20497 This results in generation of the @code{ld.s} instructions and
20498 the corresponding check instructions @code{chk.s}.
20499 The default setting is disabled.
20500
20501 @item -msched-br-in-data-spec
20502 @itemx -mno-sched-br-in-data-spec
20503 @opindex msched-br-in-data-spec
20504 @opindex mno-sched-br-in-data-spec
20505 (En/Dis)able speculative scheduling of the instructions that
20506 are dependent on the data speculative loads before reload.
20507 This is effective only with @option{-msched-br-data-spec} enabled.
20508 The default setting is enabled.
20509
20510 @item -msched-ar-in-data-spec
20511 @itemx -mno-sched-ar-in-data-spec
20512 @opindex msched-ar-in-data-spec
20513 @opindex mno-sched-ar-in-data-spec
20514 (En/Dis)able speculative scheduling of the instructions that
20515 are dependent on the data speculative loads after reload.
20516 This is effective only with @option{-msched-ar-data-spec} enabled.
20517 The default setting is enabled.
20518
20519 @item -msched-in-control-spec
20520 @itemx -mno-sched-in-control-spec
20521 @opindex msched-in-control-spec
20522 @opindex mno-sched-in-control-spec
20523 (En/Dis)able speculative scheduling of the instructions that
20524 are dependent on the control speculative loads.
20525 This is effective only with @option{-msched-control-spec} enabled.
20526 The default setting is enabled.
20527
20528 @item -mno-sched-prefer-non-data-spec-insns
20529 @itemx -msched-prefer-non-data-spec-insns
20530 @opindex mno-sched-prefer-non-data-spec-insns
20531 @opindex msched-prefer-non-data-spec-insns
20532 If enabled, data-speculative instructions are chosen for schedule
20533 only if there are no other choices at the moment. This makes
20534 the use of the data speculation much more conservative.
20535 The default setting is disabled.
20536
20537 @item -mno-sched-prefer-non-control-spec-insns
20538 @itemx -msched-prefer-non-control-spec-insns
20539 @opindex mno-sched-prefer-non-control-spec-insns
20540 @opindex msched-prefer-non-control-spec-insns
20541 If enabled, control-speculative instructions are chosen for schedule
20542 only if there are no other choices at the moment. This makes
20543 the use of the control speculation much more conservative.
20544 The default setting is disabled.
20545
20546 @item -mno-sched-count-spec-in-critical-path
20547 @itemx -msched-count-spec-in-critical-path
20548 @opindex mno-sched-count-spec-in-critical-path
20549 @opindex msched-count-spec-in-critical-path
20550 If enabled, speculative dependencies are considered during
20551 computation of the instructions priorities. This makes the use of the
20552 speculation a bit more conservative.
20553 The default setting is disabled.
20554
20555 @item -msched-spec-ldc
20556 @opindex msched-spec-ldc
20557 Use a simple data speculation check. This option is on by default.
20558
20559 @item -msched-control-spec-ldc
20560 @opindex msched-spec-ldc
20561 Use a simple check for control speculation. This option is on by default.
20562
20563 @item -msched-stop-bits-after-every-cycle
20564 @opindex msched-stop-bits-after-every-cycle
20565 Place a stop bit after every cycle when scheduling. This option is on
20566 by default.
20567
20568 @item -msched-fp-mem-deps-zero-cost
20569 @opindex msched-fp-mem-deps-zero-cost
20570 Assume that floating-point stores and loads are not likely to cause a conflict
20571 when placed into the same instruction group. This option is disabled by
20572 default.
20573
20574 @item -msel-sched-dont-check-control-spec
20575 @opindex msel-sched-dont-check-control-spec
20576 Generate checks for control speculation in selective scheduling.
20577 This flag is disabled by default.
20578
20579 @item -msched-max-memory-insns=@var{max-insns}
20580 @opindex msched-max-memory-insns
20581 Limit on the number of memory insns per instruction group, giving lower
20582 priority to subsequent memory insns attempting to schedule in the same
20583 instruction group. Frequently useful to prevent cache bank conflicts.
20584 The default value is 1.
20585
20586 @item -msched-max-memory-insns-hard-limit
20587 @opindex msched-max-memory-insns-hard-limit
20588 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
20589 disallowing more than that number in an instruction group.
20590 Otherwise, the limit is ``soft'', meaning that non-memory operations
20591 are preferred when the limit is reached, but memory operations may still
20592 be scheduled.
20593
20594 @end table
20595
20596 @node LM32 Options
20597 @subsection LM32 Options
20598 @cindex LM32 options
20599
20600 These @option{-m} options are defined for the LatticeMico32 architecture:
20601
20602 @table @gcctabopt
20603 @item -mbarrel-shift-enabled
20604 @opindex mbarrel-shift-enabled
20605 Enable barrel-shift instructions.
20606
20607 @item -mdivide-enabled
20608 @opindex mdivide-enabled
20609 Enable divide and modulus instructions.
20610
20611 @item -mmultiply-enabled
20612 @opindex multiply-enabled
20613 Enable multiply instructions.
20614
20615 @item -msign-extend-enabled
20616 @opindex msign-extend-enabled
20617 Enable sign extend instructions.
20618
20619 @item -muser-enabled
20620 @opindex muser-enabled
20621 Enable user-defined instructions.
20622
20623 @end table
20624
20625 @node M32C Options
20626 @subsection M32C Options
20627 @cindex M32C options
20628
20629 @table @gcctabopt
20630 @item -mcpu=@var{name}
20631 @opindex mcpu=
20632 Select the CPU for which code is generated. @var{name} may be one of
20633 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
20634 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
20635 the M32C/80 series.
20636
20637 @item -msim
20638 @opindex msim
20639 Specifies that the program will be run on the simulator. This causes
20640 an alternate runtime library to be linked in which supports, for
20641 example, file I/O@. You must not use this option when generating
20642 programs that will run on real hardware; you must provide your own
20643 runtime library for whatever I/O functions are needed.
20644
20645 @item -memregs=@var{number}
20646 @opindex memregs=
20647 Specifies the number of memory-based pseudo-registers GCC uses
20648 during code generation. These pseudo-registers are used like real
20649 registers, so there is a tradeoff between GCC's ability to fit the
20650 code into available registers, and the performance penalty of using
20651 memory instead of registers. Note that all modules in a program must
20652 be compiled with the same value for this option. Because of that, you
20653 must not use this option with GCC's default runtime libraries.
20654
20655 @end table
20656
20657 @node M32R/D Options
20658 @subsection M32R/D Options
20659 @cindex M32R/D options
20660
20661 These @option{-m} options are defined for Renesas M32R/D architectures:
20662
20663 @table @gcctabopt
20664 @item -m32r2
20665 @opindex m32r2
20666 Generate code for the M32R/2@.
20667
20668 @item -m32rx
20669 @opindex m32rx
20670 Generate code for the M32R/X@.
20671
20672 @item -m32r
20673 @opindex m32r
20674 Generate code for the M32R@. This is the default.
20675
20676 @item -mmodel=small
20677 @opindex mmodel=small
20678 Assume all objects live in the lower 16MB of memory (so that their addresses
20679 can be loaded with the @code{ld24} instruction), and assume all subroutines
20680 are reachable with the @code{bl} instruction.
20681 This is the default.
20682
20683 The addressability of a particular object can be set with the
20684 @code{model} attribute.
20685
20686 @item -mmodel=medium
20687 @opindex mmodel=medium
20688 Assume objects may be anywhere in the 32-bit address space (the compiler
20689 generates @code{seth/add3} instructions to load their addresses), and
20690 assume all subroutines are reachable with the @code{bl} instruction.
20691
20692 @item -mmodel=large
20693 @opindex mmodel=large
20694 Assume objects may be anywhere in the 32-bit address space (the compiler
20695 generates @code{seth/add3} instructions to load their addresses), and
20696 assume subroutines may not be reachable with the @code{bl} instruction
20697 (the compiler generates the much slower @code{seth/add3/jl}
20698 instruction sequence).
20699
20700 @item -msdata=none
20701 @opindex msdata=none
20702 Disable use of the small data area. Variables are put into
20703 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
20704 @code{section} attribute has been specified).
20705 This is the default.
20706
20707 The small data area consists of sections @code{.sdata} and @code{.sbss}.
20708 Objects may be explicitly put in the small data area with the
20709 @code{section} attribute using one of these sections.
20710
20711 @item -msdata=sdata
20712 @opindex msdata=sdata
20713 Put small global and static data in the small data area, but do not
20714 generate special code to reference them.
20715
20716 @item -msdata=use
20717 @opindex msdata=use
20718 Put small global and static data in the small data area, and generate
20719 special instructions to reference them.
20720
20721 @item -G @var{num}
20722 @opindex G
20723 @cindex smaller data references
20724 Put global and static objects less than or equal to @var{num} bytes
20725 into the small data or BSS sections instead of the normal data or BSS
20726 sections. The default value of @var{num} is 8.
20727 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
20728 for this option to have any effect.
20729
20730 All modules should be compiled with the same @option{-G @var{num}} value.
20731 Compiling with different values of @var{num} may or may not work; if it
20732 doesn't the linker gives an error message---incorrect code is not
20733 generated.
20734
20735 @item -mdebug
20736 @opindex mdebug
20737 Makes the M32R-specific code in the compiler display some statistics
20738 that might help in debugging programs.
20739
20740 @item -malign-loops
20741 @opindex malign-loops
20742 Align all loops to a 32-byte boundary.
20743
20744 @item -mno-align-loops
20745 @opindex mno-align-loops
20746 Do not enforce a 32-byte alignment for loops. This is the default.
20747
20748 @item -missue-rate=@var{number}
20749 @opindex missue-rate=@var{number}
20750 Issue @var{number} instructions per cycle. @var{number} can only be 1
20751 or 2.
20752
20753 @item -mbranch-cost=@var{number}
20754 @opindex mbranch-cost=@var{number}
20755 @var{number} can only be 1 or 2. If it is 1 then branches are
20756 preferred over conditional code, if it is 2, then the opposite applies.
20757
20758 @item -mflush-trap=@var{number}
20759 @opindex mflush-trap=@var{number}
20760 Specifies the trap number to use to flush the cache. The default is
20761 12. Valid numbers are between 0 and 15 inclusive.
20762
20763 @item -mno-flush-trap
20764 @opindex mno-flush-trap
20765 Specifies that the cache cannot be flushed by using a trap.
20766
20767 @item -mflush-func=@var{name}
20768 @opindex mflush-func=@var{name}
20769 Specifies the name of the operating system function to call to flush
20770 the cache. The default is @samp{_flush_cache}, but a function call
20771 is only used if a trap is not available.
20772
20773 @item -mno-flush-func
20774 @opindex mno-flush-func
20775 Indicates that there is no OS function for flushing the cache.
20776
20777 @end table
20778
20779 @node M680x0 Options
20780 @subsection M680x0 Options
20781 @cindex M680x0 options
20782
20783 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
20784 The default settings depend on which architecture was selected when
20785 the compiler was configured; the defaults for the most common choices
20786 are given below.
20787
20788 @table @gcctabopt
20789 @item -march=@var{arch}
20790 @opindex march
20791 Generate code for a specific M680x0 or ColdFire instruction set
20792 architecture. Permissible values of @var{arch} for M680x0
20793 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
20794 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
20795 architectures are selected according to Freescale's ISA classification
20796 and the permissible values are: @samp{isaa}, @samp{isaaplus},
20797 @samp{isab} and @samp{isac}.
20798
20799 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
20800 code for a ColdFire target. The @var{arch} in this macro is one of the
20801 @option{-march} arguments given above.
20802
20803 When used together, @option{-march} and @option{-mtune} select code
20804 that runs on a family of similar processors but that is optimized
20805 for a particular microarchitecture.
20806
20807 @item -mcpu=@var{cpu}
20808 @opindex mcpu
20809 Generate code for a specific M680x0 or ColdFire processor.
20810 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
20811 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
20812 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
20813 below, which also classifies the CPUs into families:
20814
20815 @multitable @columnfractions 0.20 0.80
20816 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
20817 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
20818 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
20819 @item @samp{5206e} @tab @samp{5206e}
20820 @item @samp{5208} @tab @samp{5207} @samp{5208}
20821 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
20822 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
20823 @item @samp{5216} @tab @samp{5214} @samp{5216}
20824 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
20825 @item @samp{5225} @tab @samp{5224} @samp{5225}
20826 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
20827 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
20828 @item @samp{5249} @tab @samp{5249}
20829 @item @samp{5250} @tab @samp{5250}
20830 @item @samp{5271} @tab @samp{5270} @samp{5271}
20831 @item @samp{5272} @tab @samp{5272}
20832 @item @samp{5275} @tab @samp{5274} @samp{5275}
20833 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
20834 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
20835 @item @samp{5307} @tab @samp{5307}
20836 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
20837 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
20838 @item @samp{5407} @tab @samp{5407}
20839 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
20840 @end multitable
20841
20842 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
20843 @var{arch} is compatible with @var{cpu}. Other combinations of
20844 @option{-mcpu} and @option{-march} are rejected.
20845
20846 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
20847 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
20848 where the value of @var{family} is given by the table above.
20849
20850 @item -mtune=@var{tune}
20851 @opindex mtune
20852 Tune the code for a particular microarchitecture within the
20853 constraints set by @option{-march} and @option{-mcpu}.
20854 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
20855 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
20856 and @samp{cpu32}. The ColdFire microarchitectures
20857 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
20858
20859 You can also use @option{-mtune=68020-40} for code that needs
20860 to run relatively well on 68020, 68030 and 68040 targets.
20861 @option{-mtune=68020-60} is similar but includes 68060 targets
20862 as well. These two options select the same tuning decisions as
20863 @option{-m68020-40} and @option{-m68020-60} respectively.
20864
20865 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
20866 when tuning for 680x0 architecture @var{arch}. It also defines
20867 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
20868 option is used. If GCC is tuning for a range of architectures,
20869 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
20870 it defines the macros for every architecture in the range.
20871
20872 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
20873 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
20874 of the arguments given above.
20875
20876 @item -m68000
20877 @itemx -mc68000
20878 @opindex m68000
20879 @opindex mc68000
20880 Generate output for a 68000. This is the default
20881 when the compiler is configured for 68000-based systems.
20882 It is equivalent to @option{-march=68000}.
20883
20884 Use this option for microcontrollers with a 68000 or EC000 core,
20885 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
20886
20887 @item -m68010
20888 @opindex m68010
20889 Generate output for a 68010. This is the default
20890 when the compiler is configured for 68010-based systems.
20891 It is equivalent to @option{-march=68010}.
20892
20893 @item -m68020
20894 @itemx -mc68020
20895 @opindex m68020
20896 @opindex mc68020
20897 Generate output for a 68020. This is the default
20898 when the compiler is configured for 68020-based systems.
20899 It is equivalent to @option{-march=68020}.
20900
20901 @item -m68030
20902 @opindex m68030
20903 Generate output for a 68030. This is the default when the compiler is
20904 configured for 68030-based systems. It is equivalent to
20905 @option{-march=68030}.
20906
20907 @item -m68040
20908 @opindex m68040
20909 Generate output for a 68040. This is the default when the compiler is
20910 configured for 68040-based systems. It is equivalent to
20911 @option{-march=68040}.
20912
20913 This option inhibits the use of 68881/68882 instructions that have to be
20914 emulated by software on the 68040. Use this option if your 68040 does not
20915 have code to emulate those instructions.
20916
20917 @item -m68060
20918 @opindex m68060
20919 Generate output for a 68060. This is the default when the compiler is
20920 configured for 68060-based systems. It is equivalent to
20921 @option{-march=68060}.
20922
20923 This option inhibits the use of 68020 and 68881/68882 instructions that
20924 have to be emulated by software on the 68060. Use this option if your 68060
20925 does not have code to emulate those instructions.
20926
20927 @item -mcpu32
20928 @opindex mcpu32
20929 Generate output for a CPU32. This is the default
20930 when the compiler is configured for CPU32-based systems.
20931 It is equivalent to @option{-march=cpu32}.
20932
20933 Use this option for microcontrollers with a
20934 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
20935 68336, 68340, 68341, 68349 and 68360.
20936
20937 @item -m5200
20938 @opindex m5200
20939 Generate output for a 520X ColdFire CPU@. This is the default
20940 when the compiler is configured for 520X-based systems.
20941 It is equivalent to @option{-mcpu=5206}, and is now deprecated
20942 in favor of that option.
20943
20944 Use this option for microcontroller with a 5200 core, including
20945 the MCF5202, MCF5203, MCF5204 and MCF5206.
20946
20947 @item -m5206e
20948 @opindex m5206e
20949 Generate output for a 5206e ColdFire CPU@. The option is now
20950 deprecated in favor of the equivalent @option{-mcpu=5206e}.
20951
20952 @item -m528x
20953 @opindex m528x
20954 Generate output for a member of the ColdFire 528X family.
20955 The option is now deprecated in favor of the equivalent
20956 @option{-mcpu=528x}.
20957
20958 @item -m5307
20959 @opindex m5307
20960 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
20961 in favor of the equivalent @option{-mcpu=5307}.
20962
20963 @item -m5407
20964 @opindex m5407
20965 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
20966 in favor of the equivalent @option{-mcpu=5407}.
20967
20968 @item -mcfv4e
20969 @opindex mcfv4e
20970 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
20971 This includes use of hardware floating-point instructions.
20972 The option is equivalent to @option{-mcpu=547x}, and is now
20973 deprecated in favor of that option.
20974
20975 @item -m68020-40
20976 @opindex m68020-40
20977 Generate output for a 68040, without using any of the new instructions.
20978 This results in code that can run relatively efficiently on either a
20979 68020/68881 or a 68030 or a 68040. The generated code does use the
20980 68881 instructions that are emulated on the 68040.
20981
20982 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
20983
20984 @item -m68020-60
20985 @opindex m68020-60
20986 Generate output for a 68060, without using any of the new instructions.
20987 This results in code that can run relatively efficiently on either a
20988 68020/68881 or a 68030 or a 68040. The generated code does use the
20989 68881 instructions that are emulated on the 68060.
20990
20991 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
20992
20993 @item -mhard-float
20994 @itemx -m68881
20995 @opindex mhard-float
20996 @opindex m68881
20997 Generate floating-point instructions. This is the default for 68020
20998 and above, and for ColdFire devices that have an FPU@. It defines the
20999 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
21000 on ColdFire targets.
21001
21002 @item -msoft-float
21003 @opindex msoft-float
21004 Do not generate floating-point instructions; use library calls instead.
21005 This is the default for 68000, 68010, and 68832 targets. It is also
21006 the default for ColdFire devices that have no FPU.
21007
21008 @item -mdiv
21009 @itemx -mno-div
21010 @opindex mdiv
21011 @opindex mno-div
21012 Generate (do not generate) ColdFire hardware divide and remainder
21013 instructions. If @option{-march} is used without @option{-mcpu},
21014 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
21015 architectures. Otherwise, the default is taken from the target CPU
21016 (either the default CPU, or the one specified by @option{-mcpu}). For
21017 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
21018 @option{-mcpu=5206e}.
21019
21020 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
21021
21022 @item -mshort
21023 @opindex mshort
21024 Consider type @code{int} to be 16 bits wide, like @code{short int}.
21025 Additionally, parameters passed on the stack are also aligned to a
21026 16-bit boundary even on targets whose API mandates promotion to 32-bit.
21027
21028 @item -mno-short
21029 @opindex mno-short
21030 Do not consider type @code{int} to be 16 bits wide. This is the default.
21031
21032 @item -mnobitfield
21033 @itemx -mno-bitfield
21034 @opindex mnobitfield
21035 @opindex mno-bitfield
21036 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
21037 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
21038
21039 @item -mbitfield
21040 @opindex mbitfield
21041 Do use the bit-field instructions. The @option{-m68020} option implies
21042 @option{-mbitfield}. This is the default if you use a configuration
21043 designed for a 68020.
21044
21045 @item -mrtd
21046 @opindex mrtd
21047 Use a different function-calling convention, in which functions
21048 that take a fixed number of arguments return with the @code{rtd}
21049 instruction, which pops their arguments while returning. This
21050 saves one instruction in the caller since there is no need to pop
21051 the arguments there.
21052
21053 This calling convention is incompatible with the one normally
21054 used on Unix, so you cannot use it if you need to call libraries
21055 compiled with the Unix compiler.
21056
21057 Also, you must provide function prototypes for all functions that
21058 take variable numbers of arguments (including @code{printf});
21059 otherwise incorrect code is generated for calls to those
21060 functions.
21061
21062 In addition, seriously incorrect code results if you call a
21063 function with too many arguments. (Normally, extra arguments are
21064 harmlessly ignored.)
21065
21066 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
21067 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
21068
21069 The default is @option{-mno-rtd}.
21070
21071 @item -malign-int
21072 @itemx -mno-align-int
21073 @opindex malign-int
21074 @opindex mno-align-int
21075 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
21076 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
21077 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
21078 Aligning variables on 32-bit boundaries produces code that runs somewhat
21079 faster on processors with 32-bit busses at the expense of more memory.
21080
21081 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
21082 aligns structures containing the above types differently than
21083 most published application binary interface specifications for the m68k.
21084
21085 @item -mpcrel
21086 @opindex mpcrel
21087 Use the pc-relative addressing mode of the 68000 directly, instead of
21088 using a global offset table. At present, this option implies @option{-fpic},
21089 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
21090 not presently supported with @option{-mpcrel}, though this could be supported for
21091 68020 and higher processors.
21092
21093 @item -mno-strict-align
21094 @itemx -mstrict-align
21095 @opindex mno-strict-align
21096 @opindex mstrict-align
21097 Do not (do) assume that unaligned memory references are handled by
21098 the system.
21099
21100 @item -msep-data
21101 Generate code that allows the data segment to be located in a different
21102 area of memory from the text segment. This allows for execute-in-place in
21103 an environment without virtual memory management. This option implies
21104 @option{-fPIC}.
21105
21106 @item -mno-sep-data
21107 Generate code that assumes that the data segment follows the text segment.
21108 This is the default.
21109
21110 @item -mid-shared-library
21111 Generate code that supports shared libraries via the library ID method.
21112 This allows for execute-in-place and shared libraries in an environment
21113 without virtual memory management. This option implies @option{-fPIC}.
21114
21115 @item -mno-id-shared-library
21116 Generate code that doesn't assume ID-based shared libraries are being used.
21117 This is the default.
21118
21119 @item -mshared-library-id=n
21120 Specifies the identification number of the ID-based shared library being
21121 compiled. Specifying a value of 0 generates more compact code; specifying
21122 other values forces the allocation of that number to the current
21123 library, but is no more space- or time-efficient than omitting this option.
21124
21125 @item -mxgot
21126 @itemx -mno-xgot
21127 @opindex mxgot
21128 @opindex mno-xgot
21129 When generating position-independent code for ColdFire, generate code
21130 that works if the GOT has more than 8192 entries. This code is
21131 larger and slower than code generated without this option. On M680x0
21132 processors, this option is not needed; @option{-fPIC} suffices.
21133
21134 GCC normally uses a single instruction to load values from the GOT@.
21135 While this is relatively efficient, it only works if the GOT
21136 is smaller than about 64k. Anything larger causes the linker
21137 to report an error such as:
21138
21139 @cindex relocation truncated to fit (ColdFire)
21140 @smallexample
21141 relocation truncated to fit: R_68K_GOT16O foobar
21142 @end smallexample
21143
21144 If this happens, you should recompile your code with @option{-mxgot}.
21145 It should then work with very large GOTs. However, code generated with
21146 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
21147 the value of a global symbol.
21148
21149 Note that some linkers, including newer versions of the GNU linker,
21150 can create multiple GOTs and sort GOT entries. If you have such a linker,
21151 you should only need to use @option{-mxgot} when compiling a single
21152 object file that accesses more than 8192 GOT entries. Very few do.
21153
21154 These options have no effect unless GCC is generating
21155 position-independent code.
21156
21157 @item -mlong-jump-table-offsets
21158 @opindex mlong-jump-table-offsets
21159 Use 32-bit offsets in @code{switch} tables. The default is to use
21160 16-bit offsets.
21161
21162 @end table
21163
21164 @node MCore Options
21165 @subsection MCore Options
21166 @cindex MCore options
21167
21168 These are the @samp{-m} options defined for the Motorola M*Core
21169 processors.
21170
21171 @table @gcctabopt
21172
21173 @item -mhardlit
21174 @itemx -mno-hardlit
21175 @opindex mhardlit
21176 @opindex mno-hardlit
21177 Inline constants into the code stream if it can be done in two
21178 instructions or less.
21179
21180 @item -mdiv
21181 @itemx -mno-div
21182 @opindex mdiv
21183 @opindex mno-div
21184 Use the divide instruction. (Enabled by default).
21185
21186 @item -mrelax-immediate
21187 @itemx -mno-relax-immediate
21188 @opindex mrelax-immediate
21189 @opindex mno-relax-immediate
21190 Allow arbitrary-sized immediates in bit operations.
21191
21192 @item -mwide-bitfields
21193 @itemx -mno-wide-bitfields
21194 @opindex mwide-bitfields
21195 @opindex mno-wide-bitfields
21196 Always treat bit-fields as @code{int}-sized.
21197
21198 @item -m4byte-functions
21199 @itemx -mno-4byte-functions
21200 @opindex m4byte-functions
21201 @opindex mno-4byte-functions
21202 Force all functions to be aligned to a 4-byte boundary.
21203
21204 @item -mcallgraph-data
21205 @itemx -mno-callgraph-data
21206 @opindex mcallgraph-data
21207 @opindex mno-callgraph-data
21208 Emit callgraph information.
21209
21210 @item -mslow-bytes
21211 @itemx -mno-slow-bytes
21212 @opindex mslow-bytes
21213 @opindex mno-slow-bytes
21214 Prefer word access when reading byte quantities.
21215
21216 @item -mlittle-endian
21217 @itemx -mbig-endian
21218 @opindex mlittle-endian
21219 @opindex mbig-endian
21220 Generate code for a little-endian target.
21221
21222 @item -m210
21223 @itemx -m340
21224 @opindex m210
21225 @opindex m340
21226 Generate code for the 210 processor.
21227
21228 @item -mno-lsim
21229 @opindex mno-lsim
21230 Assume that runtime support has been provided and so omit the
21231 simulator library (@file{libsim.a)} from the linker command line.
21232
21233 @item -mstack-increment=@var{size}
21234 @opindex mstack-increment
21235 Set the maximum amount for a single stack increment operation. Large
21236 values can increase the speed of programs that contain functions
21237 that need a large amount of stack space, but they can also trigger a
21238 segmentation fault if the stack is extended too much. The default
21239 value is 0x1000.
21240
21241 @end table
21242
21243 @node MeP Options
21244 @subsection MeP Options
21245 @cindex MeP options
21246
21247 @table @gcctabopt
21248
21249 @item -mabsdiff
21250 @opindex mabsdiff
21251 Enables the @code{abs} instruction, which is the absolute difference
21252 between two registers.
21253
21254 @item -mall-opts
21255 @opindex mall-opts
21256 Enables all the optional instructions---average, multiply, divide, bit
21257 operations, leading zero, absolute difference, min/max, clip, and
21258 saturation.
21259
21260
21261 @item -maverage
21262 @opindex maverage
21263 Enables the @code{ave} instruction, which computes the average of two
21264 registers.
21265
21266 @item -mbased=@var{n}
21267 @opindex mbased=
21268 Variables of size @var{n} bytes or smaller are placed in the
21269 @code{.based} section by default. Based variables use the @code{$tp}
21270 register as a base register, and there is a 128-byte limit to the
21271 @code{.based} section.
21272
21273 @item -mbitops
21274 @opindex mbitops
21275 Enables the bit operation instructions---bit test (@code{btstm}), set
21276 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
21277 test-and-set (@code{tas}).
21278
21279 @item -mc=@var{name}
21280 @opindex mc=
21281 Selects which section constant data is placed in. @var{name} may
21282 be @samp{tiny}, @samp{near}, or @samp{far}.
21283
21284 @item -mclip
21285 @opindex mclip
21286 Enables the @code{clip} instruction. Note that @option{-mclip} is not
21287 useful unless you also provide @option{-mminmax}.
21288
21289 @item -mconfig=@var{name}
21290 @opindex mconfig=
21291 Selects one of the built-in core configurations. Each MeP chip has
21292 one or more modules in it; each module has a core CPU and a variety of
21293 coprocessors, optional instructions, and peripherals. The
21294 @code{MeP-Integrator} tool, not part of GCC, provides these
21295 configurations through this option; using this option is the same as
21296 using all the corresponding command-line options. The default
21297 configuration is @samp{default}.
21298
21299 @item -mcop
21300 @opindex mcop
21301 Enables the coprocessor instructions. By default, this is a 32-bit
21302 coprocessor. Note that the coprocessor is normally enabled via the
21303 @option{-mconfig=} option.
21304
21305 @item -mcop32
21306 @opindex mcop32
21307 Enables the 32-bit coprocessor's instructions.
21308
21309 @item -mcop64
21310 @opindex mcop64
21311 Enables the 64-bit coprocessor's instructions.
21312
21313 @item -mivc2
21314 @opindex mivc2
21315 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
21316
21317 @item -mdc
21318 @opindex mdc
21319 Causes constant variables to be placed in the @code{.near} section.
21320
21321 @item -mdiv
21322 @opindex mdiv
21323 Enables the @code{div} and @code{divu} instructions.
21324
21325 @item -meb
21326 @opindex meb
21327 Generate big-endian code.
21328
21329 @item -mel
21330 @opindex mel
21331 Generate little-endian code.
21332
21333 @item -mio-volatile
21334 @opindex mio-volatile
21335 Tells the compiler that any variable marked with the @code{io}
21336 attribute is to be considered volatile.
21337
21338 @item -ml
21339 @opindex ml
21340 Causes variables to be assigned to the @code{.far} section by default.
21341
21342 @item -mleadz
21343 @opindex mleadz
21344 Enables the @code{leadz} (leading zero) instruction.
21345
21346 @item -mm
21347 @opindex mm
21348 Causes variables to be assigned to the @code{.near} section by default.
21349
21350 @item -mminmax
21351 @opindex mminmax
21352 Enables the @code{min} and @code{max} instructions.
21353
21354 @item -mmult
21355 @opindex mmult
21356 Enables the multiplication and multiply-accumulate instructions.
21357
21358 @item -mno-opts
21359 @opindex mno-opts
21360 Disables all the optional instructions enabled by @option{-mall-opts}.
21361
21362 @item -mrepeat
21363 @opindex mrepeat
21364 Enables the @code{repeat} and @code{erepeat} instructions, used for
21365 low-overhead looping.
21366
21367 @item -ms
21368 @opindex ms
21369 Causes all variables to default to the @code{.tiny} section. Note
21370 that there is a 65536-byte limit to this section. Accesses to these
21371 variables use the @code{%gp} base register.
21372
21373 @item -msatur
21374 @opindex msatur
21375 Enables the saturation instructions. Note that the compiler does not
21376 currently generate these itself, but this option is included for
21377 compatibility with other tools, like @code{as}.
21378
21379 @item -msdram
21380 @opindex msdram
21381 Link the SDRAM-based runtime instead of the default ROM-based runtime.
21382
21383 @item -msim
21384 @opindex msim
21385 Link the simulator run-time libraries.
21386
21387 @item -msimnovec
21388 @opindex msimnovec
21389 Link the simulator runtime libraries, excluding built-in support
21390 for reset and exception vectors and tables.
21391
21392 @item -mtf
21393 @opindex mtf
21394 Causes all functions to default to the @code{.far} section. Without
21395 this option, functions default to the @code{.near} section.
21396
21397 @item -mtiny=@var{n}
21398 @opindex mtiny=
21399 Variables that are @var{n} bytes or smaller are allocated to the
21400 @code{.tiny} section. These variables use the @code{$gp} base
21401 register. The default for this option is 4, but note that there's a
21402 65536-byte limit to the @code{.tiny} section.
21403
21404 @end table
21405
21406 @node MicroBlaze Options
21407 @subsection MicroBlaze Options
21408 @cindex MicroBlaze Options
21409
21410 @table @gcctabopt
21411
21412 @item -msoft-float
21413 @opindex msoft-float
21414 Use software emulation for floating point (default).
21415
21416 @item -mhard-float
21417 @opindex mhard-float
21418 Use hardware floating-point instructions.
21419
21420 @item -mmemcpy
21421 @opindex mmemcpy
21422 Do not optimize block moves, use @code{memcpy}.
21423
21424 @item -mno-clearbss
21425 @opindex mno-clearbss
21426 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
21427
21428 @item -mcpu=@var{cpu-type}
21429 @opindex mcpu=
21430 Use features of, and schedule code for, the given CPU.
21431 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
21432 where @var{X} is a major version, @var{YY} is the minor version, and
21433 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
21434 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v6.00.a}.
21435
21436 @item -mxl-soft-mul
21437 @opindex mxl-soft-mul
21438 Use software multiply emulation (default).
21439
21440 @item -mxl-soft-div
21441 @opindex mxl-soft-div
21442 Use software emulation for divides (default).
21443
21444 @item -mxl-barrel-shift
21445 @opindex mxl-barrel-shift
21446 Use the hardware barrel shifter.
21447
21448 @item -mxl-pattern-compare
21449 @opindex mxl-pattern-compare
21450 Use pattern compare instructions.
21451
21452 @item -msmall-divides
21453 @opindex msmall-divides
21454 Use table lookup optimization for small signed integer divisions.
21455
21456 @item -mxl-stack-check
21457 @opindex mxl-stack-check
21458 This option is deprecated. Use @option{-fstack-check} instead.
21459
21460 @item -mxl-gp-opt
21461 @opindex mxl-gp-opt
21462 Use GP-relative @code{.sdata}/@code{.sbss} sections.
21463
21464 @item -mxl-multiply-high
21465 @opindex mxl-multiply-high
21466 Use multiply high instructions for high part of 32x32 multiply.
21467
21468 @item -mxl-float-convert
21469 @opindex mxl-float-convert
21470 Use hardware floating-point conversion instructions.
21471
21472 @item -mxl-float-sqrt
21473 @opindex mxl-float-sqrt
21474 Use hardware floating-point square root instruction.
21475
21476 @item -mbig-endian
21477 @opindex mbig-endian
21478 Generate code for a big-endian target.
21479
21480 @item -mlittle-endian
21481 @opindex mlittle-endian
21482 Generate code for a little-endian target.
21483
21484 @item -mxl-reorder
21485 @opindex mxl-reorder
21486 Use reorder instructions (swap and byte reversed load/store).
21487
21488 @item -mxl-mode-@var{app-model}
21489 Select application model @var{app-model}. Valid models are
21490 @table @samp
21491 @item executable
21492 normal executable (default), uses startup code @file{crt0.o}.
21493
21494 @item -mpic-data-is-text-relative
21495 @opindex mpic-data-is-text-relative
21496 Assume that the displacement between the text and data segments is fixed
21497 at static link time. This allows data to be referenced by offset from start of
21498 text address instead of GOT since PC-relative addressing is not supported.
21499
21500 @item xmdstub
21501 for use with Xilinx Microprocessor Debugger (XMD) based
21502 software intrusive debug agent called xmdstub. This uses startup file
21503 @file{crt1.o} and sets the start address of the program to 0x800.
21504
21505 @item bootstrap
21506 for applications that are loaded using a bootloader.
21507 This model uses startup file @file{crt2.o} which does not contain a processor
21508 reset vector handler. This is suitable for transferring control on a
21509 processor reset to the bootloader rather than the application.
21510
21511 @item novectors
21512 for applications that do not require any of the
21513 MicroBlaze vectors. This option may be useful for applications running
21514 within a monitoring application. This model uses @file{crt3.o} as a startup file.
21515 @end table
21516
21517 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
21518 @option{-mxl-mode-@var{app-model}}.
21519
21520 @end table
21521
21522 @node MIPS Options
21523 @subsection MIPS Options
21524 @cindex MIPS options
21525
21526 @table @gcctabopt
21527
21528 @item -EB
21529 @opindex EB
21530 Generate big-endian code.
21531
21532 @item -EL
21533 @opindex EL
21534 Generate little-endian code. This is the default for @samp{mips*el-*-*}
21535 configurations.
21536
21537 @item -march=@var{arch}
21538 @opindex march
21539 Generate code that runs on @var{arch}, which can be the name of a
21540 generic MIPS ISA, or the name of a particular processor.
21541 The ISA names are:
21542 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
21543 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
21544 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
21545 @samp{mips64r5} and @samp{mips64r6}.
21546 The processor names are:
21547 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
21548 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
21549 @samp{5kc}, @samp{5kf},
21550 @samp{20kc},
21551 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
21552 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
21553 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
21554 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
21555 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
21556 @samp{i6400}, @samp{i6500},
21557 @samp{interaptiv},
21558 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a}, @samp{gs464},
21559 @samp{gs464e}, @samp{gs264e},
21560 @samp{m4k},
21561 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
21562 @samp{m5100}, @samp{m5101},
21563 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
21564 @samp{orion},
21565 @samp{p5600}, @samp{p6600},
21566 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
21567 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r5900},
21568 @samp{r6000}, @samp{r8000},
21569 @samp{rm7000}, @samp{rm9000},
21570 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
21571 @samp{sb1},
21572 @samp{sr71000},
21573 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
21574 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
21575 @samp{xlr} and @samp{xlp}.
21576 The special value @samp{from-abi} selects the
21577 most compatible architecture for the selected ABI (that is,
21578 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
21579
21580 The native Linux/GNU toolchain also supports the value @samp{native},
21581 which selects the best architecture option for the host processor.
21582 @option{-march=native} has no effect if GCC does not recognize
21583 the processor.
21584
21585 In processor names, a final @samp{000} can be abbreviated as @samp{k}
21586 (for example, @option{-march=r2k}). Prefixes are optional, and
21587 @samp{vr} may be written @samp{r}.
21588
21589 Names of the form @samp{@var{n}f2_1} refer to processors with
21590 FPUs clocked at half the rate of the core, names of the form
21591 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
21592 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
21593 processors with FPUs clocked a ratio of 3:2 with respect to the core.
21594 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
21595 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
21596 accepted as synonyms for @samp{@var{n}f1_1}.
21597
21598 GCC defines two macros based on the value of this option. The first
21599 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
21600 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
21601 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
21602 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
21603 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
21604
21605 Note that the @code{_MIPS_ARCH} macro uses the processor names given
21606 above. In other words, it has the full prefix and does not
21607 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
21608 the macro names the resolved architecture (either @code{"mips1"} or
21609 @code{"mips3"}). It names the default architecture when no
21610 @option{-march} option is given.
21611
21612 @item -mtune=@var{arch}
21613 @opindex mtune
21614 Optimize for @var{arch}. Among other things, this option controls
21615 the way instructions are scheduled, and the perceived cost of arithmetic
21616 operations. The list of @var{arch} values is the same as for
21617 @option{-march}.
21618
21619 When this option is not used, GCC optimizes for the processor
21620 specified by @option{-march}. By using @option{-march} and
21621 @option{-mtune} together, it is possible to generate code that
21622 runs on a family of processors, but optimize the code for one
21623 particular member of that family.
21624
21625 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
21626 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
21627 @option{-march} ones described above.
21628
21629 @item -mips1
21630 @opindex mips1
21631 Equivalent to @option{-march=mips1}.
21632
21633 @item -mips2
21634 @opindex mips2
21635 Equivalent to @option{-march=mips2}.
21636
21637 @item -mips3
21638 @opindex mips3
21639 Equivalent to @option{-march=mips3}.
21640
21641 @item -mips4
21642 @opindex mips4
21643 Equivalent to @option{-march=mips4}.
21644
21645 @item -mips32
21646 @opindex mips32
21647 Equivalent to @option{-march=mips32}.
21648
21649 @item -mips32r3
21650 @opindex mips32r3
21651 Equivalent to @option{-march=mips32r3}.
21652
21653 @item -mips32r5
21654 @opindex mips32r5
21655 Equivalent to @option{-march=mips32r5}.
21656
21657 @item -mips32r6
21658 @opindex mips32r6
21659 Equivalent to @option{-march=mips32r6}.
21660
21661 @item -mips64
21662 @opindex mips64
21663 Equivalent to @option{-march=mips64}.
21664
21665 @item -mips64r2
21666 @opindex mips64r2
21667 Equivalent to @option{-march=mips64r2}.
21668
21669 @item -mips64r3
21670 @opindex mips64r3
21671 Equivalent to @option{-march=mips64r3}.
21672
21673 @item -mips64r5
21674 @opindex mips64r5
21675 Equivalent to @option{-march=mips64r5}.
21676
21677 @item -mips64r6
21678 @opindex mips64r6
21679 Equivalent to @option{-march=mips64r6}.
21680
21681 @item -mips16
21682 @itemx -mno-mips16
21683 @opindex mips16
21684 @opindex mno-mips16
21685 Generate (do not generate) MIPS16 code. If GCC is targeting a
21686 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
21687
21688 MIPS16 code generation can also be controlled on a per-function basis
21689 by means of @code{mips16} and @code{nomips16} attributes.
21690 @xref{Function Attributes}, for more information.
21691
21692 @item -mflip-mips16
21693 @opindex mflip-mips16
21694 Generate MIPS16 code on alternating functions. This option is provided
21695 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
21696 not intended for ordinary use in compiling user code.
21697
21698 @item -minterlink-compressed
21699 @itemx -mno-interlink-compressed
21700 @opindex minterlink-compressed
21701 @opindex mno-interlink-compressed
21702 Require (do not require) that code using the standard (uncompressed) MIPS ISA
21703 be link-compatible with MIPS16 and microMIPS code, and vice versa.
21704
21705 For example, code using the standard ISA encoding cannot jump directly
21706 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
21707 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
21708 knows that the target of the jump is not compressed.
21709
21710 @item -minterlink-mips16
21711 @itemx -mno-interlink-mips16
21712 @opindex minterlink-mips16
21713 @opindex mno-interlink-mips16
21714 Aliases of @option{-minterlink-compressed} and
21715 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
21716 and are retained for backwards compatibility.
21717
21718 @item -mabi=32
21719 @itemx -mabi=o64
21720 @itemx -mabi=n32
21721 @itemx -mabi=64
21722 @itemx -mabi=eabi
21723 @opindex mabi=32
21724 @opindex mabi=o64
21725 @opindex mabi=n32
21726 @opindex mabi=64
21727 @opindex mabi=eabi
21728 Generate code for the given ABI@.
21729
21730 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
21731 generates 64-bit code when you select a 64-bit architecture, but you
21732 can use @option{-mgp32} to get 32-bit code instead.
21733
21734 For information about the O64 ABI, see
21735 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
21736
21737 GCC supports a variant of the o32 ABI in which floating-point registers
21738 are 64 rather than 32 bits wide. You can select this combination with
21739 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
21740 and @code{mfhc1} instructions and is therefore only supported for
21741 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
21742
21743 The register assignments for arguments and return values remain the
21744 same, but each scalar value is passed in a single 64-bit register
21745 rather than a pair of 32-bit registers. For example, scalar
21746 floating-point values are returned in @samp{$f0} only, not a
21747 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
21748 remains the same in that the even-numbered double-precision registers
21749 are saved.
21750
21751 Two additional variants of the o32 ABI are supported to enable
21752 a transition from 32-bit to 64-bit registers. These are FPXX
21753 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
21754 The FPXX extension mandates that all code must execute correctly
21755 when run using 32-bit or 64-bit registers. The code can be interlinked
21756 with either FP32 or FP64, but not both.
21757 The FP64A extension is similar to the FP64 extension but forbids the
21758 use of odd-numbered single-precision registers. This can be used
21759 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
21760 processors and allows both FP32 and FP64A code to interlink and
21761 run in the same process without changing FPU modes.
21762
21763 @item -mabicalls
21764 @itemx -mno-abicalls
21765 @opindex mabicalls
21766 @opindex mno-abicalls
21767 Generate (do not generate) code that is suitable for SVR4-style
21768 dynamic objects. @option{-mabicalls} is the default for SVR4-based
21769 systems.
21770
21771 @item -mshared
21772 @itemx -mno-shared
21773 Generate (do not generate) code that is fully position-independent,
21774 and that can therefore be linked into shared libraries. This option
21775 only affects @option{-mabicalls}.
21776
21777 All @option{-mabicalls} code has traditionally been position-independent,
21778 regardless of options like @option{-fPIC} and @option{-fpic}. However,
21779 as an extension, the GNU toolchain allows executables to use absolute
21780 accesses for locally-binding symbols. It can also use shorter GP
21781 initialization sequences and generate direct calls to locally-defined
21782 functions. This mode is selected by @option{-mno-shared}.
21783
21784 @option{-mno-shared} depends on binutils 2.16 or higher and generates
21785 objects that can only be linked by the GNU linker. However, the option
21786 does not affect the ABI of the final executable; it only affects the ABI
21787 of relocatable objects. Using @option{-mno-shared} generally makes
21788 executables both smaller and quicker.
21789
21790 @option{-mshared} is the default.
21791
21792 @item -mplt
21793 @itemx -mno-plt
21794 @opindex mplt
21795 @opindex mno-plt
21796 Assume (do not assume) that the static and dynamic linkers
21797 support PLTs and copy relocations. This option only affects
21798 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
21799 has no effect without @option{-msym32}.
21800
21801 You can make @option{-mplt} the default by configuring
21802 GCC with @option{--with-mips-plt}. The default is
21803 @option{-mno-plt} otherwise.
21804
21805 @item -mxgot
21806 @itemx -mno-xgot
21807 @opindex mxgot
21808 @opindex mno-xgot
21809 Lift (do not lift) the usual restrictions on the size of the global
21810 offset table.
21811
21812 GCC normally uses a single instruction to load values from the GOT@.
21813 While this is relatively efficient, it only works if the GOT
21814 is smaller than about 64k. Anything larger causes the linker
21815 to report an error such as:
21816
21817 @cindex relocation truncated to fit (MIPS)
21818 @smallexample
21819 relocation truncated to fit: R_MIPS_GOT16 foobar
21820 @end smallexample
21821
21822 If this happens, you should recompile your code with @option{-mxgot}.
21823 This works with very large GOTs, although the code is also
21824 less efficient, since it takes three instructions to fetch the
21825 value of a global symbol.
21826
21827 Note that some linkers can create multiple GOTs. If you have such a
21828 linker, you should only need to use @option{-mxgot} when a single object
21829 file accesses more than 64k's worth of GOT entries. Very few do.
21830
21831 These options have no effect unless GCC is generating position
21832 independent code.
21833
21834 @item -mgp32
21835 @opindex mgp32
21836 Assume that general-purpose registers are 32 bits wide.
21837
21838 @item -mgp64
21839 @opindex mgp64
21840 Assume that general-purpose registers are 64 bits wide.
21841
21842 @item -mfp32
21843 @opindex mfp32
21844 Assume that floating-point registers are 32 bits wide.
21845
21846 @item -mfp64
21847 @opindex mfp64
21848 Assume that floating-point registers are 64 bits wide.
21849
21850 @item -mfpxx
21851 @opindex mfpxx
21852 Do not assume the width of floating-point registers.
21853
21854 @item -mhard-float
21855 @opindex mhard-float
21856 Use floating-point coprocessor instructions.
21857
21858 @item -msoft-float
21859 @opindex msoft-float
21860 Do not use floating-point coprocessor instructions. Implement
21861 floating-point calculations using library calls instead.
21862
21863 @item -mno-float
21864 @opindex mno-float
21865 Equivalent to @option{-msoft-float}, but additionally asserts that the
21866 program being compiled does not perform any floating-point operations.
21867 This option is presently supported only by some bare-metal MIPS
21868 configurations, where it may select a special set of libraries
21869 that lack all floating-point support (including, for example, the
21870 floating-point @code{printf} formats).
21871 If code compiled with @option{-mno-float} accidentally contains
21872 floating-point operations, it is likely to suffer a link-time
21873 or run-time failure.
21874
21875 @item -msingle-float
21876 @opindex msingle-float
21877 Assume that the floating-point coprocessor only supports single-precision
21878 operations.
21879
21880 @item -mdouble-float
21881 @opindex mdouble-float
21882 Assume that the floating-point coprocessor supports double-precision
21883 operations. This is the default.
21884
21885 @item -modd-spreg
21886 @itemx -mno-odd-spreg
21887 @opindex modd-spreg
21888 @opindex mno-odd-spreg
21889 Enable the use of odd-numbered single-precision floating-point registers
21890 for the o32 ABI. This is the default for processors that are known to
21891 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
21892 is set by default.
21893
21894 @item -mabs=2008
21895 @itemx -mabs=legacy
21896 @opindex mabs=2008
21897 @opindex mabs=legacy
21898 These options control the treatment of the special not-a-number (NaN)
21899 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
21900 @code{neg.@i{fmt}} machine instructions.
21901
21902 By default or when @option{-mabs=legacy} is used the legacy
21903 treatment is selected. In this case these instructions are considered
21904 arithmetic and avoided where correct operation is required and the
21905 input operand might be a NaN. A longer sequence of instructions that
21906 manipulate the sign bit of floating-point datum manually is used
21907 instead unless the @option{-ffinite-math-only} option has also been
21908 specified.
21909
21910 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
21911 this case these instructions are considered non-arithmetic and therefore
21912 operating correctly in all cases, including in particular where the
21913 input operand is a NaN. These instructions are therefore always used
21914 for the respective operations.
21915
21916 @item -mnan=2008
21917 @itemx -mnan=legacy
21918 @opindex mnan=2008
21919 @opindex mnan=legacy
21920 These options control the encoding of the special not-a-number (NaN)
21921 IEEE 754 floating-point data.
21922
21923 The @option{-mnan=legacy} option selects the legacy encoding. In this
21924 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
21925 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
21926 by the first bit of their trailing significand field being 1.
21927
21928 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
21929 this case qNaNs are denoted by the first bit of their trailing
21930 significand field being 1, whereas sNaNs are denoted by the first bit of
21931 their trailing significand field being 0.
21932
21933 The default is @option{-mnan=legacy} unless GCC has been configured with
21934 @option{--with-nan=2008}.
21935
21936 @item -mllsc
21937 @itemx -mno-llsc
21938 @opindex mllsc
21939 @opindex mno-llsc
21940 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
21941 implement atomic memory built-in functions. When neither option is
21942 specified, GCC uses the instructions if the target architecture
21943 supports them.
21944
21945 @option{-mllsc} is useful if the runtime environment can emulate the
21946 instructions and @option{-mno-llsc} can be useful when compiling for
21947 nonstandard ISAs. You can make either option the default by
21948 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
21949 respectively. @option{--with-llsc} is the default for some
21950 configurations; see the installation documentation for details.
21951
21952 @item -mdsp
21953 @itemx -mno-dsp
21954 @opindex mdsp
21955 @opindex mno-dsp
21956 Use (do not use) revision 1 of the MIPS DSP ASE@.
21957 @xref{MIPS DSP Built-in Functions}. This option defines the
21958 preprocessor macro @code{__mips_dsp}. It also defines
21959 @code{__mips_dsp_rev} to 1.
21960
21961 @item -mdspr2
21962 @itemx -mno-dspr2
21963 @opindex mdspr2
21964 @opindex mno-dspr2
21965 Use (do not use) revision 2 of the MIPS DSP ASE@.
21966 @xref{MIPS DSP Built-in Functions}. This option defines the
21967 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
21968 It also defines @code{__mips_dsp_rev} to 2.
21969
21970 @item -msmartmips
21971 @itemx -mno-smartmips
21972 @opindex msmartmips
21973 @opindex mno-smartmips
21974 Use (do not use) the MIPS SmartMIPS ASE.
21975
21976 @item -mpaired-single
21977 @itemx -mno-paired-single
21978 @opindex mpaired-single
21979 @opindex mno-paired-single
21980 Use (do not use) paired-single floating-point instructions.
21981 @xref{MIPS Paired-Single Support}. This option requires
21982 hardware floating-point support to be enabled.
21983
21984 @item -mdmx
21985 @itemx -mno-mdmx
21986 @opindex mdmx
21987 @opindex mno-mdmx
21988 Use (do not use) MIPS Digital Media Extension instructions.
21989 This option can only be used when generating 64-bit code and requires
21990 hardware floating-point support to be enabled.
21991
21992 @item -mips3d
21993 @itemx -mno-mips3d
21994 @opindex mips3d
21995 @opindex mno-mips3d
21996 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
21997 The option @option{-mips3d} implies @option{-mpaired-single}.
21998
21999 @item -mmicromips
22000 @itemx -mno-micromips
22001 @opindex mmicromips
22002 @opindex mno-mmicromips
22003 Generate (do not generate) microMIPS code.
22004
22005 MicroMIPS code generation can also be controlled on a per-function basis
22006 by means of @code{micromips} and @code{nomicromips} attributes.
22007 @xref{Function Attributes}, for more information.
22008
22009 @item -mmt
22010 @itemx -mno-mt
22011 @opindex mmt
22012 @opindex mno-mt
22013 Use (do not use) MT Multithreading instructions.
22014
22015 @item -mmcu
22016 @itemx -mno-mcu
22017 @opindex mmcu
22018 @opindex mno-mcu
22019 Use (do not use) the MIPS MCU ASE instructions.
22020
22021 @item -meva
22022 @itemx -mno-eva
22023 @opindex meva
22024 @opindex mno-eva
22025 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
22026
22027 @item -mvirt
22028 @itemx -mno-virt
22029 @opindex mvirt
22030 @opindex mno-virt
22031 Use (do not use) the MIPS Virtualization (VZ) instructions.
22032
22033 @item -mxpa
22034 @itemx -mno-xpa
22035 @opindex mxpa
22036 @opindex mno-xpa
22037 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
22038
22039 @item -mcrc
22040 @itemx -mno-crc
22041 @opindex mcrc
22042 @opindex mno-crc
22043 Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.
22044
22045 @item -mginv
22046 @itemx -mno-ginv
22047 @opindex mginv
22048 @opindex mno-ginv
22049 Use (do not use) the MIPS Global INValidate (GINV) instructions.
22050
22051 @item -mloongson-mmi
22052 @itemx -mno-loongson-mmi
22053 @opindex mloongson-mmi
22054 @opindex mno-loongson-mmi
22055 Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).
22056
22057 @item -mloongson-ext
22058 @itemx -mno-loongson-ext
22059 @opindex mloongson-ext
22060 @opindex mno-loongson-ext
22061 Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.
22062
22063 @item -mloongson-ext2
22064 @itemx -mno-loongson-ext2
22065 @opindex mloongson-ext2
22066 @opindex mno-loongson-ext2
22067 Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.
22068
22069 @item -mlong64
22070 @opindex mlong64
22071 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
22072 an explanation of the default and the way that the pointer size is
22073 determined.
22074
22075 @item -mlong32
22076 @opindex mlong32
22077 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
22078
22079 The default size of @code{int}s, @code{long}s and pointers depends on
22080 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
22081 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
22082 32-bit @code{long}s. Pointers are the same size as @code{long}s,
22083 or the same size as integer registers, whichever is smaller.
22084
22085 @item -msym32
22086 @itemx -mno-sym32
22087 @opindex msym32
22088 @opindex mno-sym32
22089 Assume (do not assume) that all symbols have 32-bit values, regardless
22090 of the selected ABI@. This option is useful in combination with
22091 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
22092 to generate shorter and faster references to symbolic addresses.
22093
22094 @item -G @var{num}
22095 @opindex G
22096 Put definitions of externally-visible data in a small data section
22097 if that data is no bigger than @var{num} bytes. GCC can then generate
22098 more efficient accesses to the data; see @option{-mgpopt} for details.
22099
22100 The default @option{-G} option depends on the configuration.
22101
22102 @item -mlocal-sdata
22103 @itemx -mno-local-sdata
22104 @opindex mlocal-sdata
22105 @opindex mno-local-sdata
22106 Extend (do not extend) the @option{-G} behavior to local data too,
22107 such as to static variables in C@. @option{-mlocal-sdata} is the
22108 default for all configurations.
22109
22110 If the linker complains that an application is using too much small data,
22111 you might want to try rebuilding the less performance-critical parts with
22112 @option{-mno-local-sdata}. You might also want to build large
22113 libraries with @option{-mno-local-sdata}, so that the libraries leave
22114 more room for the main program.
22115
22116 @item -mextern-sdata
22117 @itemx -mno-extern-sdata
22118 @opindex mextern-sdata
22119 @opindex mno-extern-sdata
22120 Assume (do not assume) that externally-defined data is in
22121 a small data section if the size of that data is within the @option{-G} limit.
22122 @option{-mextern-sdata} is the default for all configurations.
22123
22124 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
22125 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
22126 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
22127 is placed in a small data section. If @var{Var} is defined by another
22128 module, you must either compile that module with a high-enough
22129 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
22130 definition. If @var{Var} is common, you must link the application
22131 with a high-enough @option{-G} setting.
22132
22133 The easiest way of satisfying these restrictions is to compile
22134 and link every module with the same @option{-G} option. However,
22135 you may wish to build a library that supports several different
22136 small data limits. You can do this by compiling the library with
22137 the highest supported @option{-G} setting and additionally using
22138 @option{-mno-extern-sdata} to stop the library from making assumptions
22139 about externally-defined data.
22140
22141 @item -mgpopt
22142 @itemx -mno-gpopt
22143 @opindex mgpopt
22144 @opindex mno-gpopt
22145 Use (do not use) GP-relative accesses for symbols that are known to be
22146 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
22147 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
22148 configurations.
22149
22150 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
22151 might not hold the value of @code{_gp}. For example, if the code is
22152 part of a library that might be used in a boot monitor, programs that
22153 call boot monitor routines pass an unknown value in @code{$gp}.
22154 (In such situations, the boot monitor itself is usually compiled
22155 with @option{-G0}.)
22156
22157 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
22158 @option{-mno-extern-sdata}.
22159
22160 @item -membedded-data
22161 @itemx -mno-embedded-data
22162 @opindex membedded-data
22163 @opindex mno-embedded-data
22164 Allocate variables to the read-only data section first if possible, then
22165 next in the small data section if possible, otherwise in data. This gives
22166 slightly slower code than the default, but reduces the amount of RAM required
22167 when executing, and thus may be preferred for some embedded systems.
22168
22169 @item -muninit-const-in-rodata
22170 @itemx -mno-uninit-const-in-rodata
22171 @opindex muninit-const-in-rodata
22172 @opindex mno-uninit-const-in-rodata
22173 Put uninitialized @code{const} variables in the read-only data section.
22174 This option is only meaningful in conjunction with @option{-membedded-data}.
22175
22176 @item -mcode-readable=@var{setting}
22177 @opindex mcode-readable
22178 Specify whether GCC may generate code that reads from executable sections.
22179 There are three possible settings:
22180
22181 @table @gcctabopt
22182 @item -mcode-readable=yes
22183 Instructions may freely access executable sections. This is the
22184 default setting.
22185
22186 @item -mcode-readable=pcrel
22187 MIPS16 PC-relative load instructions can access executable sections,
22188 but other instructions must not do so. This option is useful on 4KSc
22189 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
22190 It is also useful on processors that can be configured to have a dual
22191 instruction/data SRAM interface and that, like the M4K, automatically
22192 redirect PC-relative loads to the instruction RAM.
22193
22194 @item -mcode-readable=no
22195 Instructions must not access executable sections. This option can be
22196 useful on targets that are configured to have a dual instruction/data
22197 SRAM interface but that (unlike the M4K) do not automatically redirect
22198 PC-relative loads to the instruction RAM.
22199 @end table
22200
22201 @item -msplit-addresses
22202 @itemx -mno-split-addresses
22203 @opindex msplit-addresses
22204 @opindex mno-split-addresses
22205 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
22206 relocation operators. This option has been superseded by
22207 @option{-mexplicit-relocs} but is retained for backwards compatibility.
22208
22209 @item -mexplicit-relocs
22210 @itemx -mno-explicit-relocs
22211 @opindex mexplicit-relocs
22212 @opindex mno-explicit-relocs
22213 Use (do not use) assembler relocation operators when dealing with symbolic
22214 addresses. The alternative, selected by @option{-mno-explicit-relocs},
22215 is to use assembler macros instead.
22216
22217 @option{-mexplicit-relocs} is the default if GCC was configured
22218 to use an assembler that supports relocation operators.
22219
22220 @item -mcheck-zero-division
22221 @itemx -mno-check-zero-division
22222 @opindex mcheck-zero-division
22223 @opindex mno-check-zero-division
22224 Trap (do not trap) on integer division by zero.
22225
22226 The default is @option{-mcheck-zero-division}.
22227
22228 @item -mdivide-traps
22229 @itemx -mdivide-breaks
22230 @opindex mdivide-traps
22231 @opindex mdivide-breaks
22232 MIPS systems check for division by zero by generating either a
22233 conditional trap or a break instruction. Using traps results in
22234 smaller code, but is only supported on MIPS II and later. Also, some
22235 versions of the Linux kernel have a bug that prevents trap from
22236 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
22237 allow conditional traps on architectures that support them and
22238 @option{-mdivide-breaks} to force the use of breaks.
22239
22240 The default is usually @option{-mdivide-traps}, but this can be
22241 overridden at configure time using @option{--with-divide=breaks}.
22242 Divide-by-zero checks can be completely disabled using
22243 @option{-mno-check-zero-division}.
22244
22245 @item -mload-store-pairs
22246 @itemx -mno-load-store-pairs
22247 @opindex mload-store-pairs
22248 @opindex mno-load-store-pairs
22249 Enable (disable) an optimization that pairs consecutive load or store
22250 instructions to enable load/store bonding. This option is enabled by
22251 default but only takes effect when the selected architecture is known
22252 to support bonding.
22253
22254 @item -mmemcpy
22255 @itemx -mno-memcpy
22256 @opindex mmemcpy
22257 @opindex mno-memcpy
22258 Force (do not force) the use of @code{memcpy} for non-trivial block
22259 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
22260 most constant-sized copies.
22261
22262 @item -mlong-calls
22263 @itemx -mno-long-calls
22264 @opindex mlong-calls
22265 @opindex mno-long-calls
22266 Disable (do not disable) use of the @code{jal} instruction. Calling
22267 functions using @code{jal} is more efficient but requires the caller
22268 and callee to be in the same 256 megabyte segment.
22269
22270 This option has no effect on abicalls code. The default is
22271 @option{-mno-long-calls}.
22272
22273 @item -mmad
22274 @itemx -mno-mad
22275 @opindex mmad
22276 @opindex mno-mad
22277 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
22278 instructions, as provided by the R4650 ISA@.
22279
22280 @item -mimadd
22281 @itemx -mno-imadd
22282 @opindex mimadd
22283 @opindex mno-imadd
22284 Enable (disable) use of the @code{madd} and @code{msub} integer
22285 instructions. The default is @option{-mimadd} on architectures
22286 that support @code{madd} and @code{msub} except for the 74k
22287 architecture where it was found to generate slower code.
22288
22289 @item -mfused-madd
22290 @itemx -mno-fused-madd
22291 @opindex mfused-madd
22292 @opindex mno-fused-madd
22293 Enable (disable) use of the floating-point multiply-accumulate
22294 instructions, when they are available. The default is
22295 @option{-mfused-madd}.
22296
22297 On the R8000 CPU when multiply-accumulate instructions are used,
22298 the intermediate product is calculated to infinite precision
22299 and is not subject to the FCSR Flush to Zero bit. This may be
22300 undesirable in some circumstances. On other processors the result
22301 is numerically identical to the equivalent computation using
22302 separate multiply, add, subtract and negate instructions.
22303
22304 @item -nocpp
22305 @opindex nocpp
22306 Tell the MIPS assembler to not run its preprocessor over user
22307 assembler files (with a @samp{.s} suffix) when assembling them.
22308
22309 @item -mfix-24k
22310 @itemx -mno-fix-24k
22311 @opindex mfix-24k
22312 @opindex mno-fix-24k
22313 Work around the 24K E48 (lost data on stores during refill) errata.
22314 The workarounds are implemented by the assembler rather than by GCC@.
22315
22316 @item -mfix-r4000
22317 @itemx -mno-fix-r4000
22318 @opindex mfix-r4000
22319 @opindex mno-fix-r4000
22320 Work around certain R4000 CPU errata:
22321 @itemize @minus
22322 @item
22323 A double-word or a variable shift may give an incorrect result if executed
22324 immediately after starting an integer division.
22325 @item
22326 A double-word or a variable shift may give an incorrect result if executed
22327 while an integer multiplication is in progress.
22328 @item
22329 An integer division may give an incorrect result if started in a delay slot
22330 of a taken branch or a jump.
22331 @end itemize
22332
22333 @item -mfix-r4400
22334 @itemx -mno-fix-r4400
22335 @opindex mfix-r4400
22336 @opindex mno-fix-r4400
22337 Work around certain R4400 CPU errata:
22338 @itemize @minus
22339 @item
22340 A double-word or a variable shift may give an incorrect result if executed
22341 immediately after starting an integer division.
22342 @end itemize
22343
22344 @item -mfix-r10000
22345 @itemx -mno-fix-r10000
22346 @opindex mfix-r10000
22347 @opindex mno-fix-r10000
22348 Work around certain R10000 errata:
22349 @itemize @minus
22350 @item
22351 @code{ll}/@code{sc} sequences may not behave atomically on revisions
22352 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
22353 @end itemize
22354
22355 This option can only be used if the target architecture supports
22356 branch-likely instructions. @option{-mfix-r10000} is the default when
22357 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
22358 otherwise.
22359
22360 @item -mfix-r5900
22361 @itemx -mno-fix-r5900
22362 @opindex mfix-r5900
22363 Do not attempt to schedule the preceding instruction into the delay slot
22364 of a branch instruction placed at the end of a short loop of six
22365 instructions or fewer and always schedule a @code{nop} instruction there
22366 instead. The short loop bug under certain conditions causes loops to
22367 execute only once or twice, due to a hardware bug in the R5900 chip. The
22368 workaround is implemented by the assembler rather than by GCC@.
22369
22370 @item -mfix-rm7000
22371 @itemx -mno-fix-rm7000
22372 @opindex mfix-rm7000
22373 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
22374 workarounds are implemented by the assembler rather than by GCC@.
22375
22376 @item -mfix-vr4120
22377 @itemx -mno-fix-vr4120
22378 @opindex mfix-vr4120
22379 Work around certain VR4120 errata:
22380 @itemize @minus
22381 @item
22382 @code{dmultu} does not always produce the correct result.
22383 @item
22384 @code{div} and @code{ddiv} do not always produce the correct result if one
22385 of the operands is negative.
22386 @end itemize
22387 The workarounds for the division errata rely on special functions in
22388 @file{libgcc.a}. At present, these functions are only provided by
22389 the @code{mips64vr*-elf} configurations.
22390
22391 Other VR4120 errata require a NOP to be inserted between certain pairs of
22392 instructions. These errata are handled by the assembler, not by GCC itself.
22393
22394 @item -mfix-vr4130
22395 @opindex mfix-vr4130
22396 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
22397 workarounds are implemented by the assembler rather than by GCC,
22398 although GCC avoids using @code{mflo} and @code{mfhi} if the
22399 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
22400 instructions are available instead.
22401
22402 @item -mfix-sb1
22403 @itemx -mno-fix-sb1
22404 @opindex mfix-sb1
22405 Work around certain SB-1 CPU core errata.
22406 (This flag currently works around the SB-1 revision 2
22407 ``F1'' and ``F2'' floating-point errata.)
22408
22409 @item -mr10k-cache-barrier=@var{setting}
22410 @opindex mr10k-cache-barrier
22411 Specify whether GCC should insert cache barriers to avoid the
22412 side effects of speculation on R10K processors.
22413
22414 In common with many processors, the R10K tries to predict the outcome
22415 of a conditional branch and speculatively executes instructions from
22416 the ``taken'' branch. It later aborts these instructions if the
22417 predicted outcome is wrong. However, on the R10K, even aborted
22418 instructions can have side effects.
22419
22420 This problem only affects kernel stores and, depending on the system,
22421 kernel loads. As an example, a speculatively-executed store may load
22422 the target memory into cache and mark the cache line as dirty, even if
22423 the store itself is later aborted. If a DMA operation writes to the
22424 same area of memory before the ``dirty'' line is flushed, the cached
22425 data overwrites the DMA-ed data. See the R10K processor manual
22426 for a full description, including other potential problems.
22427
22428 One workaround is to insert cache barrier instructions before every memory
22429 access that might be speculatively executed and that might have side
22430 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
22431 controls GCC's implementation of this workaround. It assumes that
22432 aborted accesses to any byte in the following regions does not have
22433 side effects:
22434
22435 @enumerate
22436 @item
22437 the memory occupied by the current function's stack frame;
22438
22439 @item
22440 the memory occupied by an incoming stack argument;
22441
22442 @item
22443 the memory occupied by an object with a link-time-constant address.
22444 @end enumerate
22445
22446 It is the kernel's responsibility to ensure that speculative
22447 accesses to these regions are indeed safe.
22448
22449 If the input program contains a function declaration such as:
22450
22451 @smallexample
22452 void foo (void);
22453 @end smallexample
22454
22455 then the implementation of @code{foo} must allow @code{j foo} and
22456 @code{jal foo} to be executed speculatively. GCC honors this
22457 restriction for functions it compiles itself. It expects non-GCC
22458 functions (such as hand-written assembly code) to do the same.
22459
22460 The option has three forms:
22461
22462 @table @gcctabopt
22463 @item -mr10k-cache-barrier=load-store
22464 Insert a cache barrier before a load or store that might be
22465 speculatively executed and that might have side effects even
22466 if aborted.
22467
22468 @item -mr10k-cache-barrier=store
22469 Insert a cache barrier before a store that might be speculatively
22470 executed and that might have side effects even if aborted.
22471
22472 @item -mr10k-cache-barrier=none
22473 Disable the insertion of cache barriers. This is the default setting.
22474 @end table
22475
22476 @item -mflush-func=@var{func}
22477 @itemx -mno-flush-func
22478 @opindex mflush-func
22479 Specifies the function to call to flush the I and D caches, or to not
22480 call any such function. If called, the function must take the same
22481 arguments as the common @code{_flush_func}, that is, the address of the
22482 memory range for which the cache is being flushed, the size of the
22483 memory range, and the number 3 (to flush both caches). The default
22484 depends on the target GCC was configured for, but commonly is either
22485 @code{_flush_func} or @code{__cpu_flush}.
22486
22487 @item mbranch-cost=@var{num}
22488 @opindex mbranch-cost
22489 Set the cost of branches to roughly @var{num} ``simple'' instructions.
22490 This cost is only a heuristic and is not guaranteed to produce
22491 consistent results across releases. A zero cost redundantly selects
22492 the default, which is based on the @option{-mtune} setting.
22493
22494 @item -mbranch-likely
22495 @itemx -mno-branch-likely
22496 @opindex mbranch-likely
22497 @opindex mno-branch-likely
22498 Enable or disable use of Branch Likely instructions, regardless of the
22499 default for the selected architecture. By default, Branch Likely
22500 instructions may be generated if they are supported by the selected
22501 architecture. An exception is for the MIPS32 and MIPS64 architectures
22502 and processors that implement those architectures; for those, Branch
22503 Likely instructions are not be generated by default because the MIPS32
22504 and MIPS64 architectures specifically deprecate their use.
22505
22506 @item -mcompact-branches=never
22507 @itemx -mcompact-branches=optimal
22508 @itemx -mcompact-branches=always
22509 @opindex mcompact-branches=never
22510 @opindex mcompact-branches=optimal
22511 @opindex mcompact-branches=always
22512 These options control which form of branches will be generated. The
22513 default is @option{-mcompact-branches=optimal}.
22514
22515 The @option{-mcompact-branches=never} option ensures that compact branch
22516 instructions will never be generated.
22517
22518 The @option{-mcompact-branches=always} option ensures that a compact
22519 branch instruction will be generated if available. If a compact branch
22520 instruction is not available, a delay slot form of the branch will be
22521 used instead.
22522
22523 This option is supported from MIPS Release 6 onwards.
22524
22525 The @option{-mcompact-branches=optimal} option will cause a delay slot
22526 branch to be used if one is available in the current ISA and the delay
22527 slot is successfully filled. If the delay slot is not filled, a compact
22528 branch will be chosen if one is available.
22529
22530 @item -mfp-exceptions
22531 @itemx -mno-fp-exceptions
22532 @opindex mfp-exceptions
22533 Specifies whether FP exceptions are enabled. This affects how
22534 FP instructions are scheduled for some processors.
22535 The default is that FP exceptions are
22536 enabled.
22537
22538 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
22539 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
22540 FP pipe.
22541
22542 @item -mvr4130-align
22543 @itemx -mno-vr4130-align
22544 @opindex mvr4130-align
22545 The VR4130 pipeline is two-way superscalar, but can only issue two
22546 instructions together if the first one is 8-byte aligned. When this
22547 option is enabled, GCC aligns pairs of instructions that it
22548 thinks should execute in parallel.
22549
22550 This option only has an effect when optimizing for the VR4130.
22551 It normally makes code faster, but at the expense of making it bigger.
22552 It is enabled by default at optimization level @option{-O3}.
22553
22554 @item -msynci
22555 @itemx -mno-synci
22556 @opindex msynci
22557 Enable (disable) generation of @code{synci} instructions on
22558 architectures that support it. The @code{synci} instructions (if
22559 enabled) are generated when @code{__builtin___clear_cache} is
22560 compiled.
22561
22562 This option defaults to @option{-mno-synci}, but the default can be
22563 overridden by configuring GCC with @option{--with-synci}.
22564
22565 When compiling code for single processor systems, it is generally safe
22566 to use @code{synci}. However, on many multi-core (SMP) systems, it
22567 does not invalidate the instruction caches on all cores and may lead
22568 to undefined behavior.
22569
22570 @item -mrelax-pic-calls
22571 @itemx -mno-relax-pic-calls
22572 @opindex mrelax-pic-calls
22573 Try to turn PIC calls that are normally dispatched via register
22574 @code{$25} into direct calls. This is only possible if the linker can
22575 resolve the destination at link time and if the destination is within
22576 range for a direct call.
22577
22578 @option{-mrelax-pic-calls} is the default if GCC was configured to use
22579 an assembler and a linker that support the @code{.reloc} assembly
22580 directive and @option{-mexplicit-relocs} is in effect. With
22581 @option{-mno-explicit-relocs}, this optimization can be performed by the
22582 assembler and the linker alone without help from the compiler.
22583
22584 @item -mmcount-ra-address
22585 @itemx -mno-mcount-ra-address
22586 @opindex mmcount-ra-address
22587 @opindex mno-mcount-ra-address
22588 Emit (do not emit) code that allows @code{_mcount} to modify the
22589 calling function's return address. When enabled, this option extends
22590 the usual @code{_mcount} interface with a new @var{ra-address}
22591 parameter, which has type @code{intptr_t *} and is passed in register
22592 @code{$12}. @code{_mcount} can then modify the return address by
22593 doing both of the following:
22594 @itemize
22595 @item
22596 Returning the new address in register @code{$31}.
22597 @item
22598 Storing the new address in @code{*@var{ra-address}},
22599 if @var{ra-address} is nonnull.
22600 @end itemize
22601
22602 The default is @option{-mno-mcount-ra-address}.
22603
22604 @item -mframe-header-opt
22605 @itemx -mno-frame-header-opt
22606 @opindex mframe-header-opt
22607 Enable (disable) frame header optimization in the o32 ABI. When using the
22608 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
22609 function to write out register arguments. When enabled, this optimization
22610 will suppress the allocation of the frame header if it can be determined that
22611 it is unused.
22612
22613 This optimization is off by default at all optimization levels.
22614
22615 @item -mlxc1-sxc1
22616 @itemx -mno-lxc1-sxc1
22617 @opindex mlxc1-sxc1
22618 When applicable, enable (disable) the generation of @code{lwxc1},
22619 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
22620
22621 @item -mmadd4
22622 @itemx -mno-madd4
22623 @opindex mmadd4
22624 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
22625 @code{madd.d} and related instructions. Enabled by default.
22626
22627 @end table
22628
22629 @node MMIX Options
22630 @subsection MMIX Options
22631 @cindex MMIX Options
22632
22633 These options are defined for the MMIX:
22634
22635 @table @gcctabopt
22636 @item -mlibfuncs
22637 @itemx -mno-libfuncs
22638 @opindex mlibfuncs
22639 @opindex mno-libfuncs
22640 Specify that intrinsic library functions are being compiled, passing all
22641 values in registers, no matter the size.
22642
22643 @item -mepsilon
22644 @itemx -mno-epsilon
22645 @opindex mepsilon
22646 @opindex mno-epsilon
22647 Generate floating-point comparison instructions that compare with respect
22648 to the @code{rE} epsilon register.
22649
22650 @item -mabi=mmixware
22651 @itemx -mabi=gnu
22652 @opindex mabi=mmixware
22653 @opindex mabi=gnu
22654 Generate code that passes function parameters and return values that (in
22655 the called function) are seen as registers @code{$0} and up, as opposed to
22656 the GNU ABI which uses global registers @code{$231} and up.
22657
22658 @item -mzero-extend
22659 @itemx -mno-zero-extend
22660 @opindex mzero-extend
22661 @opindex mno-zero-extend
22662 When reading data from memory in sizes shorter than 64 bits, use (do not
22663 use) zero-extending load instructions by default, rather than
22664 sign-extending ones.
22665
22666 @item -mknuthdiv
22667 @itemx -mno-knuthdiv
22668 @opindex mknuthdiv
22669 @opindex mno-knuthdiv
22670 Make the result of a division yielding a remainder have the same sign as
22671 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
22672 remainder follows the sign of the dividend. Both methods are
22673 arithmetically valid, the latter being almost exclusively used.
22674
22675 @item -mtoplevel-symbols
22676 @itemx -mno-toplevel-symbols
22677 @opindex mtoplevel-symbols
22678 @opindex mno-toplevel-symbols
22679 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
22680 code can be used with the @code{PREFIX} assembly directive.
22681
22682 @item -melf
22683 @opindex melf
22684 Generate an executable in the ELF format, rather than the default
22685 @samp{mmo} format used by the @command{mmix} simulator.
22686
22687 @item -mbranch-predict
22688 @itemx -mno-branch-predict
22689 @opindex mbranch-predict
22690 @opindex mno-branch-predict
22691 Use (do not use) the probable-branch instructions, when static branch
22692 prediction indicates a probable branch.
22693
22694 @item -mbase-addresses
22695 @itemx -mno-base-addresses
22696 @opindex mbase-addresses
22697 @opindex mno-base-addresses
22698 Generate (do not generate) code that uses @emph{base addresses}. Using a
22699 base address automatically generates a request (handled by the assembler
22700 and the linker) for a constant to be set up in a global register. The
22701 register is used for one or more base address requests within the range 0
22702 to 255 from the value held in the register. The generally leads to short
22703 and fast code, but the number of different data items that can be
22704 addressed is limited. This means that a program that uses lots of static
22705 data may require @option{-mno-base-addresses}.
22706
22707 @item -msingle-exit
22708 @itemx -mno-single-exit
22709 @opindex msingle-exit
22710 @opindex mno-single-exit
22711 Force (do not force) generated code to have a single exit point in each
22712 function.
22713 @end table
22714
22715 @node MN10300 Options
22716 @subsection MN10300 Options
22717 @cindex MN10300 options
22718
22719 These @option{-m} options are defined for Matsushita MN10300 architectures:
22720
22721 @table @gcctabopt
22722 @item -mmult-bug
22723 @opindex mmult-bug
22724 Generate code to avoid bugs in the multiply instructions for the MN10300
22725 processors. This is the default.
22726
22727 @item -mno-mult-bug
22728 @opindex mno-mult-bug
22729 Do not generate code to avoid bugs in the multiply instructions for the
22730 MN10300 processors.
22731
22732 @item -mam33
22733 @opindex mam33
22734 Generate code using features specific to the AM33 processor.
22735
22736 @item -mno-am33
22737 @opindex mno-am33
22738 Do not generate code using features specific to the AM33 processor. This
22739 is the default.
22740
22741 @item -mam33-2
22742 @opindex mam33-2
22743 Generate code using features specific to the AM33/2.0 processor.
22744
22745 @item -mam34
22746 @opindex mam34
22747 Generate code using features specific to the AM34 processor.
22748
22749 @item -mtune=@var{cpu-type}
22750 @opindex mtune
22751 Use the timing characteristics of the indicated CPU type when
22752 scheduling instructions. This does not change the targeted processor
22753 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
22754 @samp{am33-2} or @samp{am34}.
22755
22756 @item -mreturn-pointer-on-d0
22757 @opindex mreturn-pointer-on-d0
22758 When generating a function that returns a pointer, return the pointer
22759 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
22760 only in @code{a0}, and attempts to call such functions without a prototype
22761 result in errors. Note that this option is on by default; use
22762 @option{-mno-return-pointer-on-d0} to disable it.
22763
22764 @item -mno-crt0
22765 @opindex mno-crt0
22766 Do not link in the C run-time initialization object file.
22767
22768 @item -mrelax
22769 @opindex mrelax
22770 Indicate to the linker that it should perform a relaxation optimization pass
22771 to shorten branches, calls and absolute memory addresses. This option only
22772 has an effect when used on the command line for the final link step.
22773
22774 This option makes symbolic debugging impossible.
22775
22776 @item -mliw
22777 @opindex mliw
22778 Allow the compiler to generate @emph{Long Instruction Word}
22779 instructions if the target is the @samp{AM33} or later. This is the
22780 default. This option defines the preprocessor macro @code{__LIW__}.
22781
22782 @item -mno-liw
22783 @opindex mno-liw
22784 Do not allow the compiler to generate @emph{Long Instruction Word}
22785 instructions. This option defines the preprocessor macro
22786 @code{__NO_LIW__}.
22787
22788 @item -msetlb
22789 @opindex msetlb
22790 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
22791 instructions if the target is the @samp{AM33} or later. This is the
22792 default. This option defines the preprocessor macro @code{__SETLB__}.
22793
22794 @item -mno-setlb
22795 @opindex mno-setlb
22796 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
22797 instructions. This option defines the preprocessor macro
22798 @code{__NO_SETLB__}.
22799
22800 @end table
22801
22802 @node Moxie Options
22803 @subsection Moxie Options
22804 @cindex Moxie Options
22805
22806 @table @gcctabopt
22807
22808 @item -meb
22809 @opindex meb
22810 Generate big-endian code. This is the default for @samp{moxie-*-*}
22811 configurations.
22812
22813 @item -mel
22814 @opindex mel
22815 Generate little-endian code.
22816
22817 @item -mmul.x
22818 @opindex mmul.x
22819 Generate mul.x and umul.x instructions. This is the default for
22820 @samp{moxiebox-*-*} configurations.
22821
22822 @item -mno-crt0
22823 @opindex mno-crt0
22824 Do not link in the C run-time initialization object file.
22825
22826 @end table
22827
22828 @node MSP430 Options
22829 @subsection MSP430 Options
22830 @cindex MSP430 Options
22831
22832 These options are defined for the MSP430:
22833
22834 @table @gcctabopt
22835
22836 @item -masm-hex
22837 @opindex masm-hex
22838 Force assembly output to always use hex constants. Normally such
22839 constants are signed decimals, but this option is available for
22840 testsuite and/or aesthetic purposes.
22841
22842 @item -mmcu=
22843 @opindex mmcu=
22844 Select the MCU to target. This is used to create a C preprocessor
22845 symbol based upon the MCU name, converted to upper case and pre- and
22846 post-fixed with @samp{__}. This in turn is used by the
22847 @file{msp430.h} header file to select an MCU-specific supplementary
22848 header file.
22849
22850 The option also sets the ISA to use. If the MCU name is one that is
22851 known to only support the 430 ISA then that is selected, otherwise the
22852 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
22853 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
22854 name selects the 430X ISA.
22855
22856 In addition an MCU-specific linker script is added to the linker
22857 command line. The script's name is the name of the MCU with
22858 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
22859 command line defines the C preprocessor symbol @code{__XXX__} and
22860 cause the linker to search for a script called @file{xxx.ld}.
22861
22862 This option is also passed on to the assembler.
22863
22864 @item -mwarn-mcu
22865 @itemx -mno-warn-mcu
22866 @opindex mwarn-mcu
22867 @opindex mno-warn-mcu
22868 This option enables or disables warnings about conflicts between the
22869 MCU name specified by the @option{-mmcu} option and the ISA set by the
22870 @option{-mcpu} option and/or the hardware multiply support set by the
22871 @option{-mhwmult} option. It also toggles warnings about unrecognized
22872 MCU names. This option is on by default.
22873
22874 @item -mcpu=
22875 @opindex mcpu=
22876 Specifies the ISA to use. Accepted values are @samp{msp430},
22877 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
22878 @option{-mmcu=} option should be used to select the ISA.
22879
22880 @item -msim
22881 @opindex msim
22882 Link to the simulator runtime libraries and linker script. Overrides
22883 any scripts that would be selected by the @option{-mmcu=} option.
22884
22885 @item -mlarge
22886 @opindex mlarge
22887 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
22888
22889 @item -msmall
22890 @opindex msmall
22891 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
22892
22893 @item -mrelax
22894 @opindex mrelax
22895 This option is passed to the assembler and linker, and allows the
22896 linker to perform certain optimizations that cannot be done until
22897 the final link.
22898
22899 @item mhwmult=
22900 @opindex mhwmult=
22901 Describes the type of hardware multiply supported by the target.
22902 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
22903 for the original 16-bit-only multiply supported by early MCUs.
22904 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
22905 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
22906 A value of @samp{auto} can also be given. This tells GCC to deduce
22907 the hardware multiply support based upon the MCU name provided by the
22908 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
22909 the MCU name is not recognized then no hardware multiply support is
22910 assumed. @code{auto} is the default setting.
22911
22912 Hardware multiplies are normally performed by calling a library
22913 routine. This saves space in the generated code. When compiling at
22914 @option{-O3} or higher however the hardware multiplier is invoked
22915 inline. This makes for bigger, but faster code.
22916
22917 The hardware multiply routines disable interrupts whilst running and
22918 restore the previous interrupt state when they finish. This makes
22919 them safe to use inside interrupt handlers as well as in normal code.
22920
22921 @item -minrt
22922 @opindex minrt
22923 Enable the use of a minimum runtime environment - no static
22924 initializers or constructors. This is intended for memory-constrained
22925 devices. The compiler includes special symbols in some objects
22926 that tell the linker and runtime which code fragments are required.
22927
22928 @item -mcode-region=
22929 @itemx -mdata-region=
22930 @opindex mcode-region
22931 @opindex mdata-region
22932 These options tell the compiler where to place functions and data that
22933 do not have one of the @code{lower}, @code{upper}, @code{either} or
22934 @code{section} attributes. Possible values are @code{lower},
22935 @code{upper}, @code{either} or @code{any}. The first three behave
22936 like the corresponding attribute. The fourth possible value -
22937 @code{any} - is the default. It leaves placement entirely up to the
22938 linker script and how it assigns the standard sections
22939 (@code{.text}, @code{.data}, etc) to the memory regions.
22940
22941 @item -msilicon-errata=
22942 @opindex msilicon-errata
22943 This option passes on a request to assembler to enable the fixes for
22944 the named silicon errata.
22945
22946 @item -msilicon-errata-warn=
22947 @opindex msilicon-errata-warn
22948 This option passes on a request to the assembler to enable warning
22949 messages when a silicon errata might need to be applied.
22950
22951 @end table
22952
22953 @node NDS32 Options
22954 @subsection NDS32 Options
22955 @cindex NDS32 Options
22956
22957 These options are defined for NDS32 implementations:
22958
22959 @table @gcctabopt
22960
22961 @item -mbig-endian
22962 @opindex mbig-endian
22963 Generate code in big-endian mode.
22964
22965 @item -mlittle-endian
22966 @opindex mlittle-endian
22967 Generate code in little-endian mode.
22968
22969 @item -mreduced-regs
22970 @opindex mreduced-regs
22971 Use reduced-set registers for register allocation.
22972
22973 @item -mfull-regs
22974 @opindex mfull-regs
22975 Use full-set registers for register allocation.
22976
22977 @item -mcmov
22978 @opindex mcmov
22979 Generate conditional move instructions.
22980
22981 @item -mno-cmov
22982 @opindex mno-cmov
22983 Do not generate conditional move instructions.
22984
22985 @item -mext-perf
22986 @opindex mext-perf
22987 Generate performance extension instructions.
22988
22989 @item -mno-ext-perf
22990 @opindex mno-ext-perf
22991 Do not generate performance extension instructions.
22992
22993 @item -mext-perf2
22994 @opindex mext-perf2
22995 Generate performance extension 2 instructions.
22996
22997 @item -mno-ext-perf2
22998 @opindex mno-ext-perf2
22999 Do not generate performance extension 2 instructions.
23000
23001 @item -mext-string
23002 @opindex mext-string
23003 Generate string extension instructions.
23004
23005 @item -mno-ext-string
23006 @opindex mno-ext-string
23007 Do not generate string extension instructions.
23008
23009 @item -mv3push
23010 @opindex mv3push
23011 Generate v3 push25/pop25 instructions.
23012
23013 @item -mno-v3push
23014 @opindex mno-v3push
23015 Do not generate v3 push25/pop25 instructions.
23016
23017 @item -m16-bit
23018 @opindex m16-bit
23019 Generate 16-bit instructions.
23020
23021 @item -mno-16-bit
23022 @opindex mno-16-bit
23023 Do not generate 16-bit instructions.
23024
23025 @item -misr-vector-size=@var{num}
23026 @opindex misr-vector-size
23027 Specify the size of each interrupt vector, which must be 4 or 16.
23028
23029 @item -mcache-block-size=@var{num}
23030 @opindex mcache-block-size
23031 Specify the size of each cache block,
23032 which must be a power of 2 between 4 and 512.
23033
23034 @item -march=@var{arch}
23035 @opindex march
23036 Specify the name of the target architecture.
23037
23038 @item -mcmodel=@var{code-model}
23039 @opindex mcmodel
23040 Set the code model to one of
23041 @table @asis
23042 @item @samp{small}
23043 All the data and read-only data segments must be within 512KB addressing space.
23044 The text segment must be within 16MB addressing space.
23045 @item @samp{medium}
23046 The data segment must be within 512KB while the read-only data segment can be
23047 within 4GB addressing space. The text segment should be still within 16MB
23048 addressing space.
23049 @item @samp{large}
23050 All the text and data segments can be within 4GB addressing space.
23051 @end table
23052
23053 @item -mctor-dtor
23054 @opindex mctor-dtor
23055 Enable constructor/destructor feature.
23056
23057 @item -mrelax
23058 @opindex mrelax
23059 Guide linker to relax instructions.
23060
23061 @end table
23062
23063 @node Nios II Options
23064 @subsection Nios II Options
23065 @cindex Nios II options
23066 @cindex Altera Nios II options
23067
23068 These are the options defined for the Altera Nios II processor.
23069
23070 @table @gcctabopt
23071
23072 @item -G @var{num}
23073 @opindex G
23074 @cindex smaller data references
23075 Put global and static objects less than or equal to @var{num} bytes
23076 into the small data or BSS sections instead of the normal data or BSS
23077 sections. The default value of @var{num} is 8.
23078
23079 @item -mgpopt=@var{option}
23080 @itemx -mgpopt
23081 @itemx -mno-gpopt
23082 @opindex mgpopt
23083 @opindex mno-gpopt
23084 Generate (do not generate) GP-relative accesses. The following
23085 @var{option} names are recognized:
23086
23087 @table @samp
23088
23089 @item none
23090 Do not generate GP-relative accesses.
23091
23092 @item local
23093 Generate GP-relative accesses for small data objects that are not
23094 external, weak, or uninitialized common symbols.
23095 Also use GP-relative addressing for objects that
23096 have been explicitly placed in a small data section via a @code{section}
23097 attribute.
23098
23099 @item global
23100 As for @samp{local}, but also generate GP-relative accesses for
23101 small data objects that are external, weak, or common. If you use this option,
23102 you must ensure that all parts of your program (including libraries) are
23103 compiled with the same @option{-G} setting.
23104
23105 @item data
23106 Generate GP-relative accesses for all data objects in the program. If you
23107 use this option, the entire data and BSS segments
23108 of your program must fit in 64K of memory and you must use an appropriate
23109 linker script to allocate them within the addressable range of the
23110 global pointer.
23111
23112 @item all
23113 Generate GP-relative addresses for function pointers as well as data
23114 pointers. If you use this option, the entire text, data, and BSS segments
23115 of your program must fit in 64K of memory and you must use an appropriate
23116 linker script to allocate them within the addressable range of the
23117 global pointer.
23118
23119 @end table
23120
23121 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
23122 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
23123
23124 The default is @option{-mgpopt} except when @option{-fpic} or
23125 @option{-fPIC} is specified to generate position-independent code.
23126 Note that the Nios II ABI does not permit GP-relative accesses from
23127 shared libraries.
23128
23129 You may need to specify @option{-mno-gpopt} explicitly when building
23130 programs that include large amounts of small data, including large
23131 GOT data sections. In this case, the 16-bit offset for GP-relative
23132 addressing may not be large enough to allow access to the entire
23133 small data section.
23134
23135 @item -mgprel-sec=@var{regexp}
23136 @opindex mgprel-sec
23137 This option specifies additional section names that can be accessed via
23138 GP-relative addressing. It is most useful in conjunction with
23139 @code{section} attributes on variable declarations
23140 (@pxref{Common Variable Attributes}) and a custom linker script.
23141 The @var{regexp} is a POSIX Extended Regular Expression.
23142
23143 This option does not affect the behavior of the @option{-G} option, and
23144 the specified sections are in addition to the standard @code{.sdata}
23145 and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
23146
23147 @item -mr0rel-sec=@var{regexp}
23148 @opindex mr0rel-sec
23149 This option specifies names of sections that can be accessed via a
23150 16-bit offset from @code{r0}; that is, in the low 32K or high 32K
23151 of the 32-bit address space. It is most useful in conjunction with
23152 @code{section} attributes on variable declarations
23153 (@pxref{Common Variable Attributes}) and a custom linker script.
23154 The @var{regexp} is a POSIX Extended Regular Expression.
23155
23156 In contrast to the use of GP-relative addressing for small data,
23157 zero-based addressing is never generated by default and there are no
23158 conventional section names used in standard linker scripts for sections
23159 in the low or high areas of memory.
23160
23161 @item -mel
23162 @itemx -meb
23163 @opindex mel
23164 @opindex meb
23165 Generate little-endian (default) or big-endian (experimental) code,
23166 respectively.
23167
23168 @item -march=@var{arch}
23169 @opindex march
23170 This specifies the name of the target Nios II architecture. GCC uses this
23171 name to determine what kind of instructions it can emit when generating
23172 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
23173
23174 The preprocessor macro @code{__nios2_arch__} is available to programs,
23175 with value 1 or 2, indicating the targeted ISA level.
23176
23177 @item -mbypass-cache
23178 @itemx -mno-bypass-cache
23179 @opindex mno-bypass-cache
23180 @opindex mbypass-cache
23181 Force all load and store instructions to always bypass cache by
23182 using I/O variants of the instructions. The default is not to
23183 bypass the cache.
23184
23185 @item -mno-cache-volatile
23186 @itemx -mcache-volatile
23187 @opindex mcache-volatile
23188 @opindex mno-cache-volatile
23189 Volatile memory access bypass the cache using the I/O variants of
23190 the load and store instructions. The default is not to bypass the cache.
23191
23192 @item -mno-fast-sw-div
23193 @itemx -mfast-sw-div
23194 @opindex mno-fast-sw-div
23195 @opindex mfast-sw-div
23196 Do not use table-based fast divide for small numbers. The default
23197 is to use the fast divide at @option{-O3} and above.
23198
23199 @item -mno-hw-mul
23200 @itemx -mhw-mul
23201 @itemx -mno-hw-mulx
23202 @itemx -mhw-mulx
23203 @itemx -mno-hw-div
23204 @itemx -mhw-div
23205 @opindex mno-hw-mul
23206 @opindex mhw-mul
23207 @opindex mno-hw-mulx
23208 @opindex mhw-mulx
23209 @opindex mno-hw-div
23210 @opindex mhw-div
23211 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
23212 instructions by the compiler. The default is to emit @code{mul}
23213 and not emit @code{div} and @code{mulx}.
23214
23215 @item -mbmx
23216 @itemx -mno-bmx
23217 @itemx -mcdx
23218 @itemx -mno-cdx
23219 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
23220 CDX (code density) instructions. Enabling these instructions also
23221 requires @option{-march=r2}. Since these instructions are optional
23222 extensions to the R2 architecture, the default is not to emit them.
23223
23224 @item -mcustom-@var{insn}=@var{N}
23225 @itemx -mno-custom-@var{insn}
23226 @opindex mcustom-@var{insn}
23227 @opindex mno-custom-@var{insn}
23228 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
23229 custom instruction with encoding @var{N} when generating code that uses
23230 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
23231 instruction 253 for single-precision floating-point add operations instead
23232 of the default behavior of using a library call.
23233
23234 The following values of @var{insn} are supported. Except as otherwise
23235 noted, floating-point operations are expected to be implemented with
23236 normal IEEE 754 semantics and correspond directly to the C operators or the
23237 equivalent GCC built-in functions (@pxref{Other Builtins}).
23238
23239 Single-precision floating point:
23240 @table @asis
23241
23242 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
23243 Binary arithmetic operations.
23244
23245 @item @samp{fnegs}
23246 Unary negation.
23247
23248 @item @samp{fabss}
23249 Unary absolute value.
23250
23251 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
23252 Comparison operations.
23253
23254 @item @samp{fmins}, @samp{fmaxs}
23255 Floating-point minimum and maximum. These instructions are only
23256 generated if @option{-ffinite-math-only} is specified.
23257
23258 @item @samp{fsqrts}
23259 Unary square root operation.
23260
23261 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
23262 Floating-point trigonometric and exponential functions. These instructions
23263 are only generated if @option{-funsafe-math-optimizations} is also specified.
23264
23265 @end table
23266
23267 Double-precision floating point:
23268 @table @asis
23269
23270 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
23271 Binary arithmetic operations.
23272
23273 @item @samp{fnegd}
23274 Unary negation.
23275
23276 @item @samp{fabsd}
23277 Unary absolute value.
23278
23279 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
23280 Comparison operations.
23281
23282 @item @samp{fmind}, @samp{fmaxd}
23283 Double-precision minimum and maximum. These instructions are only
23284 generated if @option{-ffinite-math-only} is specified.
23285
23286 @item @samp{fsqrtd}
23287 Unary square root operation.
23288
23289 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
23290 Double-precision trigonometric and exponential functions. These instructions
23291 are only generated if @option{-funsafe-math-optimizations} is also specified.
23292
23293 @end table
23294
23295 Conversions:
23296 @table @asis
23297 @item @samp{fextsd}
23298 Conversion from single precision to double precision.
23299
23300 @item @samp{ftruncds}
23301 Conversion from double precision to single precision.
23302
23303 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
23304 Conversion from floating point to signed or unsigned integer types, with
23305 truncation towards zero.
23306
23307 @item @samp{round}
23308 Conversion from single-precision floating point to signed integer,
23309 rounding to the nearest integer and ties away from zero.
23310 This corresponds to the @code{__builtin_lroundf} function when
23311 @option{-fno-math-errno} is used.
23312
23313 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
23314 Conversion from signed or unsigned integer types to floating-point types.
23315
23316 @end table
23317
23318 In addition, all of the following transfer instructions for internal
23319 registers X and Y must be provided to use any of the double-precision
23320 floating-point instructions. Custom instructions taking two
23321 double-precision source operands expect the first operand in the
23322 64-bit register X. The other operand (or only operand of a unary
23323 operation) is given to the custom arithmetic instruction with the
23324 least significant half in source register @var{src1} and the most
23325 significant half in @var{src2}. A custom instruction that returns a
23326 double-precision result returns the most significant 32 bits in the
23327 destination register and the other half in 32-bit register Y.
23328 GCC automatically generates the necessary code sequences to write
23329 register X and/or read register Y when double-precision floating-point
23330 instructions are used.
23331
23332 @table @asis
23333
23334 @item @samp{fwrx}
23335 Write @var{src1} into the least significant half of X and @var{src2} into
23336 the most significant half of X.
23337
23338 @item @samp{fwry}
23339 Write @var{src1} into Y.
23340
23341 @item @samp{frdxhi}, @samp{frdxlo}
23342 Read the most or least (respectively) significant half of X and store it in
23343 @var{dest}.
23344
23345 @item @samp{frdy}
23346 Read the value of Y and store it into @var{dest}.
23347 @end table
23348
23349 Note that you can gain more local control over generation of Nios II custom
23350 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
23351 and @code{target("no-custom-@var{insn}")} function attributes
23352 (@pxref{Function Attributes})
23353 or pragmas (@pxref{Function Specific Option Pragmas}).
23354
23355 @item -mcustom-fpu-cfg=@var{name}
23356 @opindex mcustom-fpu-cfg
23357
23358 This option enables a predefined, named set of custom instruction encodings
23359 (see @option{-mcustom-@var{insn}} above).
23360 Currently, the following sets are defined:
23361
23362 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
23363 @gccoptlist{-mcustom-fmuls=252 @gol
23364 -mcustom-fadds=253 @gol
23365 -mcustom-fsubs=254 @gol
23366 -fsingle-precision-constant}
23367
23368 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
23369 @gccoptlist{-mcustom-fmuls=252 @gol
23370 -mcustom-fadds=253 @gol
23371 -mcustom-fsubs=254 @gol
23372 -mcustom-fdivs=255 @gol
23373 -fsingle-precision-constant}
23374
23375 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
23376 @gccoptlist{-mcustom-floatus=243 @gol
23377 -mcustom-fixsi=244 @gol
23378 -mcustom-floatis=245 @gol
23379 -mcustom-fcmpgts=246 @gol
23380 -mcustom-fcmples=249 @gol
23381 -mcustom-fcmpeqs=250 @gol
23382 -mcustom-fcmpnes=251 @gol
23383 -mcustom-fmuls=252 @gol
23384 -mcustom-fadds=253 @gol
23385 -mcustom-fsubs=254 @gol
23386 -mcustom-fdivs=255 @gol
23387 -fsingle-precision-constant}
23388
23389 Custom instruction assignments given by individual
23390 @option{-mcustom-@var{insn}=} options override those given by
23391 @option{-mcustom-fpu-cfg=}, regardless of the
23392 order of the options on the command line.
23393
23394 Note that you can gain more local control over selection of a FPU
23395 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
23396 function attribute (@pxref{Function Attributes})
23397 or pragma (@pxref{Function Specific Option Pragmas}).
23398
23399 @end table
23400
23401 These additional @samp{-m} options are available for the Altera Nios II
23402 ELF (bare-metal) target:
23403
23404 @table @gcctabopt
23405
23406 @item -mhal
23407 @opindex mhal
23408 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
23409 startup and termination code, and is typically used in conjunction with
23410 @option{-msys-crt0=} to specify the location of the alternate startup code
23411 provided by the HAL BSP.
23412
23413 @item -msmallc
23414 @opindex msmallc
23415 Link with a limited version of the C library, @option{-lsmallc}, rather than
23416 Newlib.
23417
23418 @item -msys-crt0=@var{startfile}
23419 @opindex msys-crt0
23420 @var{startfile} is the file name of the startfile (crt0) to use
23421 when linking. This option is only useful in conjunction with @option{-mhal}.
23422
23423 @item -msys-lib=@var{systemlib}
23424 @opindex msys-lib
23425 @var{systemlib} is the library name of the library that provides
23426 low-level system calls required by the C library,
23427 e.g.@: @code{read} and @code{write}.
23428 This option is typically used to link with a library provided by a HAL BSP.
23429
23430 @end table
23431
23432 @node Nvidia PTX Options
23433 @subsection Nvidia PTX Options
23434 @cindex Nvidia PTX options
23435 @cindex nvptx options
23436
23437 These options are defined for Nvidia PTX:
23438
23439 @table @gcctabopt
23440
23441 @item -m32
23442 @itemx -m64
23443 @opindex m32
23444 @opindex m64
23445 Generate code for 32-bit or 64-bit ABI.
23446
23447 @item -misa=@var{ISA-string}
23448 @opindex march
23449 Generate code for given the specified PTX ISA (e.g.@: @samp{sm_35}). ISA
23450 strings must be lower-case. Valid ISA strings include @samp{sm_30} and
23451 @samp{sm_35}. The default ISA is sm_30.
23452
23453 @item -mmainkernel
23454 @opindex mmainkernel
23455 Link in code for a __main kernel. This is for stand-alone instead of
23456 offloading execution.
23457
23458 @item -moptimize
23459 @opindex moptimize
23460 Apply partitioned execution optimizations. This is the default when any
23461 level of optimization is selected.
23462
23463 @item -msoft-stack
23464 @opindex msoft-stack
23465 Generate code that does not use @code{.local} memory
23466 directly for stack storage. Instead, a per-warp stack pointer is
23467 maintained explicitly. This enables variable-length stack allocation (with
23468 variable-length arrays or @code{alloca}), and when global memory is used for
23469 underlying storage, makes it possible to access automatic variables from other
23470 threads, or with atomic instructions. This code generation variant is used
23471 for OpenMP offloading, but the option is exposed on its own for the purpose
23472 of testing the compiler; to generate code suitable for linking into programs
23473 using OpenMP offloading, use option @option{-mgomp}.
23474
23475 @item -muniform-simt
23476 @opindex muniform-simt
23477 Switch to code generation variant that allows to execute all threads in each
23478 warp, while maintaining memory state and side effects as if only one thread
23479 in each warp was active outside of OpenMP SIMD regions. All atomic operations
23480 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
23481 current lane index equals the master lane index), and the register being
23482 assigned is copied via a shuffle instruction from the master lane. Outside of
23483 SIMD regions lane 0 is the master; inside, each thread sees itself as the
23484 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
23485 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
23486 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
23487 with current lane index to compute the master lane index.
23488
23489 @item -mgomp
23490 @opindex mgomp
23491 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
23492 @option{-muniform-simt} options, and selects corresponding multilib variant.
23493
23494 @end table
23495
23496 @node OpenRISC Options
23497 @subsection OpenRISC Options
23498 @cindex OpenRISC Options
23499
23500 These options are defined for OpenRISC:
23501
23502 @table @gcctabopt
23503
23504 @item -mboard=@var{name}
23505 @opindex mboard
23506 Configure a board specific runtime. This will be passed to the linker for
23507 newlib board library linking. The default is @code{or1ksim}.
23508
23509 @item -mnewlib
23510 @opindex mnewlib
23511 For compatibility, it's always newlib for elf now.
23512
23513 @item -mhard-div
23514 @opindex mhard-div
23515 Generate code for hardware which supports divide instructions. This is the
23516 default.
23517
23518 @item -mhard-mul
23519 @opindex mhard-mul
23520 Generate code for hardware which supports multiply instructions. This is the
23521 default.
23522
23523 @item -mcmov
23524 @opindex mcmov
23525 Generate code for hardware which supports the conditional move (@code{l.cmov})
23526 instruction.
23527
23528 @item -mror
23529 @opindex mror
23530 Generate code for hardware which supports rotate right instructions.
23531
23532 @item -msext
23533 @opindex msext
23534 Generate code for hardware which supports sign-extension instructions.
23535
23536 @item -msfimm
23537 @opindex msfimm
23538 Generate code for hardware which supports set flag immediate (@code{l.sf*i})
23539 instructions.
23540
23541 @item -mshftimm
23542 @opindex mshftimm
23543 Generate code for hardware which supports shift immediate related instructions
23544 (i.e. @code{l.srai}, @code{l.srli}, @code{l.slli}, @code{1.rori}). Note, to
23545 enable generation of the @code{l.rori} instruction the @option{-mror} flag must
23546 also be specified.
23547
23548 @item -msoft-div
23549 @opindex msoft-div
23550 Generate code for hardware which requires divide instruction emulation.
23551
23552 @item -msoft-mul
23553 @opindex msoft-mul
23554 Generate code for hardware which requires multiply instruction emulation.
23555
23556 @end table
23557
23558 @node PDP-11 Options
23559 @subsection PDP-11 Options
23560 @cindex PDP-11 Options
23561
23562 These options are defined for the PDP-11:
23563
23564 @table @gcctabopt
23565 @item -mfpu
23566 @opindex mfpu
23567 Use hardware FPP floating point. This is the default. (FIS floating
23568 point on the PDP-11/40 is not supported.) Implies -m45.
23569
23570 @item -msoft-float
23571 @opindex msoft-float
23572 Do not use hardware floating point.
23573
23574 @item -mac0
23575 @opindex mac0
23576 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
23577
23578 @item -mno-ac0
23579 @opindex mno-ac0
23580 Return floating-point results in memory. This is the default.
23581
23582 @item -m40
23583 @opindex m40
23584 Generate code for a PDP-11/40. Implies -msoft-float -mno-split.
23585
23586 @item -m45
23587 @opindex m45
23588 Generate code for a PDP-11/45. This is the default.
23589
23590 @item -m10
23591 @opindex m10
23592 Generate code for a PDP-11/10. Implies -msoft-float -mno-split.
23593
23594 @item -mint16
23595 @itemx -mno-int32
23596 @opindex mint16
23597 @opindex mno-int32
23598 Use 16-bit @code{int}. This is the default.
23599
23600 @item -mint32
23601 @itemx -mno-int16
23602 @opindex mint32
23603 @opindex mno-int16
23604 Use 32-bit @code{int}.
23605
23606 @item -msplit
23607 @opindex msplit
23608 Target has split instruction and data space. Implies -m45.
23609
23610 @item -munix-asm
23611 @opindex munix-asm
23612 Use Unix assembler syntax.
23613
23614 @item -mdec-asm
23615 @opindex mdec-asm
23616 Use DEC assembler syntax.
23617
23618 @item -mgnu-asm
23619 @opindex mgnu-asm
23620 Use GNU assembler syntax. This is the default.
23621
23622 @item -mlra
23623 @opindex mlra
23624 Use the new LRA register allocator. By default, the old ``reload''
23625 allocator is used.
23626 @end table
23627
23628 @node picoChip Options
23629 @subsection picoChip Options
23630 @cindex picoChip options
23631
23632 These @samp{-m} options are defined for picoChip implementations:
23633
23634 @table @gcctabopt
23635
23636 @item -mae=@var{ae_type}
23637 @opindex mcpu
23638 Set the instruction set, register set, and instruction scheduling
23639 parameters for array element type @var{ae_type}. Supported values
23640 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
23641
23642 @option{-mae=ANY} selects a completely generic AE type. Code
23643 generated with this option runs on any of the other AE types. The
23644 code is not as efficient as it would be if compiled for a specific
23645 AE type, and some types of operation (e.g., multiplication) do not
23646 work properly on all types of AE.
23647
23648 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
23649 for compiled code, and is the default.
23650
23651 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
23652 option may suffer from poor performance of byte (char) manipulation,
23653 since the DSP AE does not provide hardware support for byte load/stores.
23654
23655 @item -msymbol-as-address
23656 Enable the compiler to directly use a symbol name as an address in a
23657 load/store instruction, without first loading it into a
23658 register. Typically, the use of this option generates larger
23659 programs, which run faster than when the option isn't used. However, the
23660 results vary from program to program, so it is left as a user option,
23661 rather than being permanently enabled.
23662
23663 @item -mno-inefficient-warnings
23664 Disables warnings about the generation of inefficient code. These
23665 warnings can be generated, for example, when compiling code that
23666 performs byte-level memory operations on the MAC AE type. The MAC AE has
23667 no hardware support for byte-level memory operations, so all byte
23668 load/stores must be synthesized from word load/store operations. This is
23669 inefficient and a warning is generated to indicate
23670 that you should rewrite the code to avoid byte operations, or to target
23671 an AE type that has the necessary hardware support. This option disables
23672 these warnings.
23673
23674 @end table
23675
23676 @node PowerPC Options
23677 @subsection PowerPC Options
23678 @cindex PowerPC options
23679
23680 These are listed under @xref{RS/6000 and PowerPC Options}.
23681
23682 @node RISC-V Options
23683 @subsection RISC-V Options
23684 @cindex RISC-V Options
23685
23686 These command-line options are defined for RISC-V targets:
23687
23688 @table @gcctabopt
23689 @item -mbranch-cost=@var{n}
23690 @opindex mbranch-cost
23691 Set the cost of branches to roughly @var{n} instructions.
23692
23693 @item -mplt
23694 @itemx -mno-plt
23695 @opindex plt
23696 When generating PIC code, do or don't allow the use of PLTs. Ignored for
23697 non-PIC. The default is @option{-mplt}.
23698
23699 @item -mabi=@var{ABI-string}
23700 @opindex mabi
23701 Specify integer and floating-point calling convention. @var{ABI-string}
23702 contains two parts: the size of integer types and the registers used for
23703 floating-point types. For example @samp{-march=rv64ifd -mabi=lp64d} means that
23704 @samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
23705 32-bit), and that floating-point values up to 64 bits wide are passed in F
23706 registers. Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
23707 allows the compiler to generate code that uses the F and D extensions but only
23708 allows floating-point values up to 32 bits long to be passed in registers; or
23709 @samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
23710 passed in registers.
23711
23712 The default for this argument is system dependent, users who want a specific
23713 calling convention should specify one explicitly. The valid calling
23714 conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
23715 @samp{lp64f}, and @samp{lp64d}. Some calling conventions are impossible to
23716 implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
23717 invalid because the ABI requires 64-bit values be passed in F registers, but F
23718 registers are only 32 bits wide. There is also the @samp{ilp32e} ABI that can
23719 only be used with the @samp{rv32e} architecture. This ABI is not well
23720 specified at present, and is subject to change.
23721
23722 @item -mfdiv
23723 @itemx -mno-fdiv
23724 @opindex mfdiv
23725 Do or don't use hardware floating-point divide and square root instructions.
23726 This requires the F or D extensions for floating-point registers. The default
23727 is to use them if the specified architecture has these instructions.
23728
23729 @item -mdiv
23730 @itemx -mno-div
23731 @opindex mdiv
23732 Do or don't use hardware instructions for integer division. This requires the
23733 M extension. The default is to use them if the specified architecture has
23734 these instructions.
23735
23736 @item -march=@var{ISA-string}
23737 @opindex march
23738 Generate code for given RISC-V ISA (e.g.@: @samp{rv64im}). ISA strings must be
23739 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, @samp{rv32e}, and
23740 @samp{rv32imaf}.
23741
23742 @item -mtune=@var{processor-string}
23743 @opindex mtune
23744 Optimize the output for the given processor, specified by microarchitecture
23745 name.
23746
23747 @item -mpreferred-stack-boundary=@var{num}
23748 @opindex mpreferred-stack-boundary
23749 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
23750 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
23751 the default is 4 (16 bytes or 128-bits).
23752
23753 @strong{Warning:} If you use this switch, then you must build all modules with
23754 the same value, including any libraries. This includes the system libraries
23755 and startup modules.
23756
23757 @item -msmall-data-limit=@var{n}
23758 @opindex msmall-data-limit
23759 Put global and static data smaller than @var{n} bytes into a special section
23760 (on some targets).
23761
23762 @item -msave-restore
23763 @itemx -mno-save-restore
23764 @opindex msave-restore
23765 Do or don't use smaller but slower prologue and epilogue code that uses
23766 library function calls. The default is to use fast inline prologues and
23767 epilogues.
23768
23769 @item -mstrict-align
23770 @itemx -mno-strict-align
23771 @opindex mstrict-align
23772 Do not or do generate unaligned memory accesses. The default is set depending
23773 on whether the processor we are optimizing for supports fast unaligned access
23774 or not.
23775
23776 @item -mcmodel=medlow
23777 @opindex mcmodel=medlow
23778 Generate code for the medium-low code model. The program and its statically
23779 defined symbols must lie within a single 2 GiB address range and must lie
23780 between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
23781 statically or dynamically linked. This is the default code model.
23782
23783 @item -mcmodel=medany
23784 @opindex mcmodel=medany
23785 Generate code for the medium-any code model. The program and its statically
23786 defined symbols must be within any single 2 GiB address range. Programs can be
23787 statically or dynamically linked.
23788
23789 @item -mexplicit-relocs
23790 @itemx -mno-exlicit-relocs
23791 Use or do not use assembler relocation operators when dealing with symbolic
23792 addresses. The alternative is to use assembler macros instead, which may
23793 limit optimization.
23794
23795 @item -mrelax
23796 @itemx -mno-relax
23797 Take advantage of linker relaxations to reduce the number of instructions
23798 required to materialize symbol addresses. The default is to take advantage of
23799 linker relaxations.
23800
23801 @end table
23802
23803 @node RL78 Options
23804 @subsection RL78 Options
23805 @cindex RL78 Options
23806
23807 @table @gcctabopt
23808
23809 @item -msim
23810 @opindex msim
23811 Links in additional target libraries to support operation within a
23812 simulator.
23813
23814 @item -mmul=none
23815 @itemx -mmul=g10
23816 @itemx -mmul=g13
23817 @itemx -mmul=g14
23818 @itemx -mmul=rl78
23819 @opindex mmul
23820 Specifies the type of hardware multiplication and division support to
23821 be used. The simplest is @code{none}, which uses software for both
23822 multiplication and division. This is the default. The @code{g13}
23823 value is for the hardware multiply/divide peripheral found on the
23824 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
23825 the multiplication and division instructions supported by the RL78/G14
23826 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
23827 the value @code{mg10} is an alias for @code{none}.
23828
23829 In addition a C preprocessor macro is defined, based upon the setting
23830 of this option. Possible values are: @code{__RL78_MUL_NONE__},
23831 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
23832
23833 @item -mcpu=g10
23834 @itemx -mcpu=g13
23835 @itemx -mcpu=g14
23836 @itemx -mcpu=rl78
23837 @opindex mcpu
23838 Specifies the RL78 core to target. The default is the G14 core, also
23839 known as an S3 core or just RL78. The G13 or S2 core does not have
23840 multiply or divide instructions, instead it uses a hardware peripheral
23841 for these operations. The G10 or S1 core does not have register
23842 banks, so it uses a different calling convention.
23843
23844 If this option is set it also selects the type of hardware multiply
23845 support to use, unless this is overridden by an explicit
23846 @option{-mmul=none} option on the command line. Thus specifying
23847 @option{-mcpu=g13} enables the use of the G13 hardware multiply
23848 peripheral and specifying @option{-mcpu=g10} disables the use of
23849 hardware multiplications altogether.
23850
23851 Note, although the RL78/G14 core is the default target, specifying
23852 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
23853 change the behavior of the toolchain since it also enables G14
23854 hardware multiply support. If these options are not specified on the
23855 command line then software multiplication routines will be used even
23856 though the code targets the RL78 core. This is for backwards
23857 compatibility with older toolchains which did not have hardware
23858 multiply and divide support.
23859
23860 In addition a C preprocessor macro is defined, based upon the setting
23861 of this option. Possible values are: @code{__RL78_G10__},
23862 @code{__RL78_G13__} or @code{__RL78_G14__}.
23863
23864 @item -mg10
23865 @itemx -mg13
23866 @itemx -mg14
23867 @itemx -mrl78
23868 @opindex mg10
23869 @opindex mg13
23870 @opindex mg14
23871 @opindex mrl78
23872 These are aliases for the corresponding @option{-mcpu=} option. They
23873 are provided for backwards compatibility.
23874
23875 @item -mallregs
23876 @opindex mallregs
23877 Allow the compiler to use all of the available registers. By default
23878 registers @code{r24..r31} are reserved for use in interrupt handlers.
23879 With this option enabled these registers can be used in ordinary
23880 functions as well.
23881
23882 @item -m64bit-doubles
23883 @itemx -m32bit-doubles
23884 @opindex m64bit-doubles
23885 @opindex m32bit-doubles
23886 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
23887 or 32 bits (@option{-m32bit-doubles}) in size. The default is
23888 @option{-m32bit-doubles}.
23889
23890 @item -msave-mduc-in-interrupts
23891 @itemx -mno-save-mduc-in-interrupts
23892 @opindex msave-mduc-in-interrupts
23893 @opindex mno-save-mduc-in-interrupts
23894 Specifies that interrupt handler functions should preserve the
23895 MDUC registers. This is only necessary if normal code might use
23896 the MDUC registers, for example because it performs multiplication
23897 and division operations. The default is to ignore the MDUC registers
23898 as this makes the interrupt handlers faster. The target option -mg13
23899 needs to be passed for this to work as this feature is only available
23900 on the G13 target (S2 core). The MDUC registers will only be saved
23901 if the interrupt handler performs a multiplication or division
23902 operation or it calls another function.
23903
23904 @end table
23905
23906 @node RS/6000 and PowerPC Options
23907 @subsection IBM RS/6000 and PowerPC Options
23908 @cindex RS/6000 and PowerPC Options
23909 @cindex IBM RS/6000 and PowerPC Options
23910
23911 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
23912 @table @gcctabopt
23913 @item -mpowerpc-gpopt
23914 @itemx -mno-powerpc-gpopt
23915 @itemx -mpowerpc-gfxopt
23916 @itemx -mno-powerpc-gfxopt
23917 @need 800
23918 @itemx -mpowerpc64
23919 @itemx -mno-powerpc64
23920 @itemx -mmfcrf
23921 @itemx -mno-mfcrf
23922 @itemx -mpopcntb
23923 @itemx -mno-popcntb
23924 @itemx -mpopcntd
23925 @itemx -mno-popcntd
23926 @itemx -mfprnd
23927 @itemx -mno-fprnd
23928 @need 800
23929 @itemx -mcmpb
23930 @itemx -mno-cmpb
23931 @itemx -mmfpgpr
23932 @itemx -mno-mfpgpr
23933 @itemx -mhard-dfp
23934 @itemx -mno-hard-dfp
23935 @opindex mpowerpc-gpopt
23936 @opindex mno-powerpc-gpopt
23937 @opindex mpowerpc-gfxopt
23938 @opindex mno-powerpc-gfxopt
23939 @opindex mpowerpc64
23940 @opindex mno-powerpc64
23941 @opindex mmfcrf
23942 @opindex mno-mfcrf
23943 @opindex mpopcntb
23944 @opindex mno-popcntb
23945 @opindex mpopcntd
23946 @opindex mno-popcntd
23947 @opindex mfprnd
23948 @opindex mno-fprnd
23949 @opindex mcmpb
23950 @opindex mno-cmpb
23951 @opindex mmfpgpr
23952 @opindex mno-mfpgpr
23953 @opindex mhard-dfp
23954 @opindex mno-hard-dfp
23955 You use these options to specify which instructions are available on the
23956 processor you are using. The default value of these options is
23957 determined when configuring GCC@. Specifying the
23958 @option{-mcpu=@var{cpu_type}} overrides the specification of these
23959 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
23960 rather than the options listed above.
23961
23962 Specifying @option{-mpowerpc-gpopt} allows
23963 GCC to use the optional PowerPC architecture instructions in the
23964 General Purpose group, including floating-point square root. Specifying
23965 @option{-mpowerpc-gfxopt} allows GCC to
23966 use the optional PowerPC architecture instructions in the Graphics
23967 group, including floating-point select.
23968
23969 The @option{-mmfcrf} option allows GCC to generate the move from
23970 condition register field instruction implemented on the POWER4
23971 processor and other processors that support the PowerPC V2.01
23972 architecture.
23973 The @option{-mpopcntb} option allows GCC to generate the popcount and
23974 double-precision FP reciprocal estimate instruction implemented on the
23975 POWER5 processor and other processors that support the PowerPC V2.02
23976 architecture.
23977 The @option{-mpopcntd} option allows GCC to generate the popcount
23978 instruction implemented on the POWER7 processor and other processors
23979 that support the PowerPC V2.06 architecture.
23980 The @option{-mfprnd} option allows GCC to generate the FP round to
23981 integer instructions implemented on the POWER5+ processor and other
23982 processors that support the PowerPC V2.03 architecture.
23983 The @option{-mcmpb} option allows GCC to generate the compare bytes
23984 instruction implemented on the POWER6 processor and other processors
23985 that support the PowerPC V2.05 architecture.
23986 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
23987 general-purpose register instructions implemented on the POWER6X
23988 processor and other processors that support the extended PowerPC V2.05
23989 architecture.
23990 The @option{-mhard-dfp} option allows GCC to generate the decimal
23991 floating-point instructions implemented on some POWER processors.
23992
23993 The @option{-mpowerpc64} option allows GCC to generate the additional
23994 64-bit instructions that are found in the full PowerPC64 architecture
23995 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
23996 @option{-mno-powerpc64}.
23997
23998 @item -mcpu=@var{cpu_type}
23999 @opindex mcpu
24000 Set architecture type, register usage, and
24001 instruction scheduling parameters for machine type @var{cpu_type}.
24002 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
24003 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
24004 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
24005 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
24006 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
24007 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
24008 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
24009 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
24010 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
24011 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
24012 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
24013 @samp{rs64}, and @samp{native}.
24014
24015 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
24016 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
24017 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
24018 architecture machine types, with an appropriate, generic processor
24019 model assumed for scheduling purposes.
24020
24021 Specifying @samp{native} as cpu type detects and selects the
24022 architecture option that corresponds to the host processor of the
24023 system performing the compilation.
24024 @option{-mcpu=native} has no effect if GCC does not recognize the
24025 processor.
24026
24027 The other options specify a specific processor. Code generated under
24028 those options runs best on that processor, and may not run at all on
24029 others.
24030
24031 The @option{-mcpu} options automatically enable or disable the
24032 following options:
24033
24034 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
24035 -mpopcntb -mpopcntd -mpowerpc64 @gol
24036 -mpowerpc-gpopt -mpowerpc-gfxopt @gol
24037 -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
24038 -mcrypto -mhtm -mpower8-fusion -mpower8-vector @gol
24039 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
24040
24041 The particular options set for any particular CPU varies between
24042 compiler versions, depending on what setting seems to produce optimal
24043 code for that CPU; it doesn't necessarily reflect the actual hardware's
24044 capabilities. If you wish to set an individual option to a particular
24045 value, you may specify it after the @option{-mcpu} option, like
24046 @option{-mcpu=970 -mno-altivec}.
24047
24048 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
24049 not enabled or disabled by the @option{-mcpu} option at present because
24050 AIX does not have full support for these options. You may still
24051 enable or disable them individually if you're sure it'll work in your
24052 environment.
24053
24054 @item -mtune=@var{cpu_type}
24055 @opindex mtune
24056 Set the instruction scheduling parameters for machine type
24057 @var{cpu_type}, but do not set the architecture type or register usage,
24058 as @option{-mcpu=@var{cpu_type}} does. The same
24059 values for @var{cpu_type} are used for @option{-mtune} as for
24060 @option{-mcpu}. If both are specified, the code generated uses the
24061 architecture and registers set by @option{-mcpu}, but the
24062 scheduling parameters set by @option{-mtune}.
24063
24064 @item -mcmodel=small
24065 @opindex mcmodel=small
24066 Generate PowerPC64 code for the small model: The TOC is limited to
24067 64k.
24068
24069 @item -mcmodel=medium
24070 @opindex mcmodel=medium
24071 Generate PowerPC64 code for the medium model: The TOC and other static
24072 data may be up to a total of 4G in size. This is the default for 64-bit
24073 Linux.
24074
24075 @item -mcmodel=large
24076 @opindex mcmodel=large
24077 Generate PowerPC64 code for the large model: The TOC may be up to 4G
24078 in size. Other data and code is only limited by the 64-bit address
24079 space.
24080
24081 @item -maltivec
24082 @itemx -mno-altivec
24083 @opindex maltivec
24084 @opindex mno-altivec
24085 Generate code that uses (does not use) AltiVec instructions, and also
24086 enable the use of built-in functions that allow more direct access to
24087 the AltiVec instruction set. You may also need to set
24088 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
24089 enhancements.
24090
24091 When @option{-maltivec} is used, the element order for AltiVec intrinsics
24092 such as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
24093 match array element order corresponding to the endianness of the
24094 target. That is, element zero identifies the leftmost element in a
24095 vector register when targeting a big-endian platform, and identifies
24096 the rightmost element in a vector register when targeting a
24097 little-endian platform.
24098
24099 @item -mvrsave
24100 @itemx -mno-vrsave
24101 @opindex mvrsave
24102 @opindex mno-vrsave
24103 Generate VRSAVE instructions when generating AltiVec code.
24104
24105 @item -msecure-plt
24106 @opindex msecure-plt
24107 Generate code that allows @command{ld} and @command{ld.so}
24108 to build executables and shared
24109 libraries with non-executable @code{.plt} and @code{.got} sections.
24110 This is a PowerPC
24111 32-bit SYSV ABI option.
24112
24113 @item -mbss-plt
24114 @opindex mbss-plt
24115 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
24116 fills in, and
24117 requires @code{.plt} and @code{.got}
24118 sections that are both writable and executable.
24119 This is a PowerPC 32-bit SYSV ABI option.
24120
24121 @item -misel
24122 @itemx -mno-isel
24123 @opindex misel
24124 @opindex mno-isel
24125 This switch enables or disables the generation of ISEL instructions.
24126
24127 @item -mvsx
24128 @itemx -mno-vsx
24129 @opindex mvsx
24130 @opindex mno-vsx
24131 Generate code that uses (does not use) vector/scalar (VSX)
24132 instructions, and also enable the use of built-in functions that allow
24133 more direct access to the VSX instruction set.
24134
24135 @item -mcrypto
24136 @itemx -mno-crypto
24137 @opindex mcrypto
24138 @opindex mno-crypto
24139 Enable the use (disable) of the built-in functions that allow direct
24140 access to the cryptographic instructions that were added in version
24141 2.07 of the PowerPC ISA.
24142
24143 @item -mhtm
24144 @itemx -mno-htm
24145 @opindex mhtm
24146 @opindex mno-htm
24147 Enable (disable) the use of the built-in functions that allow direct
24148 access to the Hardware Transactional Memory (HTM) instructions that
24149 were added in version 2.07 of the PowerPC ISA.
24150
24151 @item -mpower8-fusion
24152 @itemx -mno-power8-fusion
24153 @opindex mpower8-fusion
24154 @opindex mno-power8-fusion
24155 Generate code that keeps (does not keeps) some integer operations
24156 adjacent so that the instructions can be fused together on power8 and
24157 later processors.
24158
24159 @item -mpower8-vector
24160 @itemx -mno-power8-vector
24161 @opindex mpower8-vector
24162 @opindex mno-power8-vector
24163 Generate code that uses (does not use) the vector and scalar
24164 instructions that were added in version 2.07 of the PowerPC ISA. Also
24165 enable the use of built-in functions that allow more direct access to
24166 the vector instructions.
24167
24168 @item -mquad-memory
24169 @itemx -mno-quad-memory
24170 @opindex mquad-memory
24171 @opindex mno-quad-memory
24172 Generate code that uses (does not use) the non-atomic quad word memory
24173 instructions. The @option{-mquad-memory} option requires use of
24174 64-bit mode.
24175
24176 @item -mquad-memory-atomic
24177 @itemx -mno-quad-memory-atomic
24178 @opindex mquad-memory-atomic
24179 @opindex mno-quad-memory-atomic
24180 Generate code that uses (does not use) the atomic quad word memory
24181 instructions. The @option{-mquad-memory-atomic} option requires use of
24182 64-bit mode.
24183
24184 @item -mfloat128
24185 @itemx -mno-float128
24186 @opindex mfloat128
24187 @opindex mno-float128
24188 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
24189 and use either software emulation for IEEE 128-bit floating point or
24190 hardware instructions.
24191
24192 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
24193 @option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
24194 use the IEEE 128-bit floating point support. The IEEE 128-bit
24195 floating point support only works on PowerPC Linux systems.
24196
24197 The default for @option{-mfloat128} is enabled on PowerPC Linux
24198 systems using the VSX instruction set, and disabled on other systems.
24199
24200 If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
24201 @option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
24202 point support will also enable the generation of ISA 3.0 IEEE 128-bit
24203 floating point instructions. Otherwise, if you do not specify to
24204 generate ISA 3.0 instructions or you are targeting a 32-bit big endian
24205 system, IEEE 128-bit floating point will be done with software
24206 emulation.
24207
24208 @item -mfloat128-hardware
24209 @itemx -mno-float128-hardware
24210 @opindex mfloat128-hardware
24211 @opindex mno-float128-hardware
24212 Enable/disable using ISA 3.0 hardware instructions to support the
24213 @var{__float128} data type.
24214
24215 The default for @option{-mfloat128-hardware} is enabled on PowerPC
24216 Linux systems using the ISA 3.0 instruction set, and disabled on other
24217 systems.
24218
24219 @item -m32
24220 @itemx -m64
24221 @opindex m32
24222 @opindex m64
24223 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
24224 targets (including GNU/Linux). The 32-bit environment sets int, long
24225 and pointer to 32 bits and generates code that runs on any PowerPC
24226 variant. The 64-bit environment sets int to 32 bits and long and
24227 pointer to 64 bits, and generates code for PowerPC64, as for
24228 @option{-mpowerpc64}.
24229
24230 @item -mfull-toc
24231 @itemx -mno-fp-in-toc
24232 @itemx -mno-sum-in-toc
24233 @itemx -mminimal-toc
24234 @opindex mfull-toc
24235 @opindex mno-fp-in-toc
24236 @opindex mno-sum-in-toc
24237 @opindex mminimal-toc
24238 Modify generation of the TOC (Table Of Contents), which is created for
24239 every executable file. The @option{-mfull-toc} option is selected by
24240 default. In that case, GCC allocates at least one TOC entry for
24241 each unique non-automatic variable reference in your program. GCC
24242 also places floating-point constants in the TOC@. However, only
24243 16,384 entries are available in the TOC@.
24244
24245 If you receive a linker error message that saying you have overflowed
24246 the available TOC space, you can reduce the amount of TOC space used
24247 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
24248 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
24249 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
24250 generate code to calculate the sum of an address and a constant at
24251 run time instead of putting that sum into the TOC@. You may specify one
24252 or both of these options. Each causes GCC to produce very slightly
24253 slower and larger code at the expense of conserving TOC space.
24254
24255 If you still run out of space in the TOC even when you specify both of
24256 these options, specify @option{-mminimal-toc} instead. This option causes
24257 GCC to make only one TOC entry for every file. When you specify this
24258 option, GCC produces code that is slower and larger but which
24259 uses extremely little TOC space. You may wish to use this option
24260 only on files that contain less frequently-executed code.
24261
24262 @item -maix64
24263 @itemx -maix32
24264 @opindex maix64
24265 @opindex maix32
24266 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
24267 @code{long} type, and the infrastructure needed to support them.
24268 Specifying @option{-maix64} implies @option{-mpowerpc64},
24269 while @option{-maix32} disables the 64-bit ABI and
24270 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
24271
24272 @item -mxl-compat
24273 @itemx -mno-xl-compat
24274 @opindex mxl-compat
24275 @opindex mno-xl-compat
24276 Produce code that conforms more closely to IBM XL compiler semantics
24277 when using AIX-compatible ABI@. Pass floating-point arguments to
24278 prototyped functions beyond the register save area (RSA) on the stack
24279 in addition to argument FPRs. Do not assume that most significant
24280 double in 128-bit long double value is properly rounded when comparing
24281 values and converting to double. Use XL symbol names for long double
24282 support routines.
24283
24284 The AIX calling convention was extended but not initially documented to
24285 handle an obscure K&R C case of calling a function that takes the
24286 address of its arguments with fewer arguments than declared. IBM XL
24287 compilers access floating-point arguments that do not fit in the
24288 RSA from the stack when a subroutine is compiled without
24289 optimization. Because always storing floating-point arguments on the
24290 stack is inefficient and rarely needed, this option is not enabled by
24291 default and only is necessary when calling subroutines compiled by IBM
24292 XL compilers without optimization.
24293
24294 @item -mpe
24295 @opindex mpe
24296 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
24297 application written to use message passing with special startup code to
24298 enable the application to run. The system must have PE installed in the
24299 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
24300 must be overridden with the @option{-specs=} option to specify the
24301 appropriate directory location. The Parallel Environment does not
24302 support threads, so the @option{-mpe} option and the @option{-pthread}
24303 option are incompatible.
24304
24305 @item -malign-natural
24306 @itemx -malign-power
24307 @opindex malign-natural
24308 @opindex malign-power
24309 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
24310 @option{-malign-natural} overrides the ABI-defined alignment of larger
24311 types, such as floating-point doubles, on their natural size-based boundary.
24312 The option @option{-malign-power} instructs GCC to follow the ABI-specified
24313 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
24314
24315 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
24316 is not supported.
24317
24318 @item -msoft-float
24319 @itemx -mhard-float
24320 @opindex msoft-float
24321 @opindex mhard-float
24322 Generate code that does not use (uses) the floating-point register set.
24323 Software floating-point emulation is provided if you use the
24324 @option{-msoft-float} option, and pass the option to GCC when linking.
24325
24326 @item -mmultiple
24327 @itemx -mno-multiple
24328 @opindex mmultiple
24329 @opindex mno-multiple
24330 Generate code that uses (does not use) the load multiple word
24331 instructions and the store multiple word instructions. These
24332 instructions are generated by default on POWER systems, and not
24333 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
24334 PowerPC systems, since those instructions do not work when the
24335 processor is in little-endian mode. The exceptions are PPC740 and
24336 PPC750 which permit these instructions in little-endian mode.
24337
24338 @item -mupdate
24339 @itemx -mno-update
24340 @opindex mupdate
24341 @opindex mno-update
24342 Generate code that uses (does not use) the load or store instructions
24343 that update the base register to the address of the calculated memory
24344 location. These instructions are generated by default. If you use
24345 @option{-mno-update}, there is a small window between the time that the
24346 stack pointer is updated and the address of the previous frame is
24347 stored, which means code that walks the stack frame across interrupts or
24348 signals may get corrupted data.
24349
24350 @item -mavoid-indexed-addresses
24351 @itemx -mno-avoid-indexed-addresses
24352 @opindex mavoid-indexed-addresses
24353 @opindex mno-avoid-indexed-addresses
24354 Generate code that tries to avoid (not avoid) the use of indexed load
24355 or store instructions. These instructions can incur a performance
24356 penalty on Power6 processors in certain situations, such as when
24357 stepping through large arrays that cross a 16M boundary. This option
24358 is enabled by default when targeting Power6 and disabled otherwise.
24359
24360 @item -mfused-madd
24361 @itemx -mno-fused-madd
24362 @opindex mfused-madd
24363 @opindex mno-fused-madd
24364 Generate code that uses (does not use) the floating-point multiply and
24365 accumulate instructions. These instructions are generated by default
24366 if hardware floating point is used. The machine-dependent
24367 @option{-mfused-madd} option is now mapped to the machine-independent
24368 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
24369 mapped to @option{-ffp-contract=off}.
24370
24371 @item -mmulhw
24372 @itemx -mno-mulhw
24373 @opindex mmulhw
24374 @opindex mno-mulhw
24375 Generate code that uses (does not use) the half-word multiply and
24376 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
24377 These instructions are generated by default when targeting those
24378 processors.
24379
24380 @item -mdlmzb
24381 @itemx -mno-dlmzb
24382 @opindex mdlmzb
24383 @opindex mno-dlmzb
24384 Generate code that uses (does not use) the string-search @samp{dlmzb}
24385 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
24386 generated by default when targeting those processors.
24387
24388 @item -mno-bit-align
24389 @itemx -mbit-align
24390 @opindex mno-bit-align
24391 @opindex mbit-align
24392 On System V.4 and embedded PowerPC systems do not (do) force structures
24393 and unions that contain bit-fields to be aligned to the base type of the
24394 bit-field.
24395
24396 For example, by default a structure containing nothing but 8
24397 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
24398 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
24399 the structure is aligned to a 1-byte boundary and is 1 byte in
24400 size.
24401
24402 @item -mno-strict-align
24403 @itemx -mstrict-align
24404 @opindex mno-strict-align
24405 @opindex mstrict-align
24406 On System V.4 and embedded PowerPC systems do not (do) assume that
24407 unaligned memory references are handled by the system.
24408
24409 @item -mrelocatable
24410 @itemx -mno-relocatable
24411 @opindex mrelocatable
24412 @opindex mno-relocatable
24413 Generate code that allows (does not allow) a static executable to be
24414 relocated to a different address at run time. A simple embedded
24415 PowerPC system loader should relocate the entire contents of
24416 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
24417 a table of 32-bit addresses generated by this option. For this to
24418 work, all objects linked together must be compiled with
24419 @option{-mrelocatable} or @option{-mrelocatable-lib}.
24420 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
24421
24422 @item -mrelocatable-lib
24423 @itemx -mno-relocatable-lib
24424 @opindex mrelocatable-lib
24425 @opindex mno-relocatable-lib
24426 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
24427 @code{.fixup} section to allow static executables to be relocated at
24428 run time, but @option{-mrelocatable-lib} does not use the smaller stack
24429 alignment of @option{-mrelocatable}. Objects compiled with
24430 @option{-mrelocatable-lib} may be linked with objects compiled with
24431 any combination of the @option{-mrelocatable} options.
24432
24433 @item -mno-toc
24434 @itemx -mtoc
24435 @opindex mno-toc
24436 @opindex mtoc
24437 On System V.4 and embedded PowerPC systems do not (do) assume that
24438 register 2 contains a pointer to a global area pointing to the addresses
24439 used in the program.
24440
24441 @item -mlittle
24442 @itemx -mlittle-endian
24443 @opindex mlittle
24444 @opindex mlittle-endian
24445 On System V.4 and embedded PowerPC systems compile code for the
24446 processor in little-endian mode. The @option{-mlittle-endian} option is
24447 the same as @option{-mlittle}.
24448
24449 @item -mbig
24450 @itemx -mbig-endian
24451 @opindex mbig
24452 @opindex mbig-endian
24453 On System V.4 and embedded PowerPC systems compile code for the
24454 processor in big-endian mode. The @option{-mbig-endian} option is
24455 the same as @option{-mbig}.
24456
24457 @item -mdynamic-no-pic
24458 @opindex mdynamic-no-pic
24459 On Darwin and Mac OS X systems, compile code so that it is not
24460 relocatable, but that its external references are relocatable. The
24461 resulting code is suitable for applications, but not shared
24462 libraries.
24463
24464 @item -msingle-pic-base
24465 @opindex msingle-pic-base
24466 Treat the register used for PIC addressing as read-only, rather than
24467 loading it in the prologue for each function. The runtime system is
24468 responsible for initializing this register with an appropriate value
24469 before execution begins.
24470
24471 @item -mprioritize-restricted-insns=@var{priority}
24472 @opindex mprioritize-restricted-insns
24473 This option controls the priority that is assigned to
24474 dispatch-slot restricted instructions during the second scheduling
24475 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
24476 or @samp{2} to assign no, highest, or second-highest (respectively)
24477 priority to dispatch-slot restricted
24478 instructions.
24479
24480 @item -msched-costly-dep=@var{dependence_type}
24481 @opindex msched-costly-dep
24482 This option controls which dependences are considered costly
24483 by the target during instruction scheduling. The argument
24484 @var{dependence_type} takes one of the following values:
24485
24486 @table @asis
24487 @item @samp{no}
24488 No dependence is costly.
24489
24490 @item @samp{all}
24491 All dependences are costly.
24492
24493 @item @samp{true_store_to_load}
24494 A true dependence from store to load is costly.
24495
24496 @item @samp{store_to_load}
24497 Any dependence from store to load is costly.
24498
24499 @item @var{number}
24500 Any dependence for which the latency is greater than or equal to
24501 @var{number} is costly.
24502 @end table
24503
24504 @item -minsert-sched-nops=@var{scheme}
24505 @opindex minsert-sched-nops
24506 This option controls which NOP insertion scheme is used during
24507 the second scheduling pass. The argument @var{scheme} takes one of the
24508 following values:
24509
24510 @table @asis
24511 @item @samp{no}
24512 Don't insert NOPs.
24513
24514 @item @samp{pad}
24515 Pad with NOPs any dispatch group that has vacant issue slots,
24516 according to the scheduler's grouping.
24517
24518 @item @samp{regroup_exact}
24519 Insert NOPs to force costly dependent insns into
24520 separate groups. Insert exactly as many NOPs as needed to force an insn
24521 to a new group, according to the estimated processor grouping.
24522
24523 @item @var{number}
24524 Insert NOPs to force costly dependent insns into
24525 separate groups. Insert @var{number} NOPs to force an insn to a new group.
24526 @end table
24527
24528 @item -mcall-sysv
24529 @opindex mcall-sysv
24530 On System V.4 and embedded PowerPC systems compile code using calling
24531 conventions that adhere to the March 1995 draft of the System V
24532 Application Binary Interface, PowerPC processor supplement. This is the
24533 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
24534
24535 @item -mcall-sysv-eabi
24536 @itemx -mcall-eabi
24537 @opindex mcall-sysv-eabi
24538 @opindex mcall-eabi
24539 Specify both @option{-mcall-sysv} and @option{-meabi} options.
24540
24541 @item -mcall-sysv-noeabi
24542 @opindex mcall-sysv-noeabi
24543 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
24544
24545 @item -mcall-aixdesc
24546 @opindex m
24547 On System V.4 and embedded PowerPC systems compile code for the AIX
24548 operating system.
24549
24550 @item -mcall-linux
24551 @opindex mcall-linux
24552 On System V.4 and embedded PowerPC systems compile code for the
24553 Linux-based GNU system.
24554
24555 @item -mcall-freebsd
24556 @opindex mcall-freebsd
24557 On System V.4 and embedded PowerPC systems compile code for the
24558 FreeBSD operating system.
24559
24560 @item -mcall-netbsd
24561 @opindex mcall-netbsd
24562 On System V.4 and embedded PowerPC systems compile code for the
24563 NetBSD operating system.
24564
24565 @item -mcall-openbsd
24566 @opindex mcall-netbsd
24567 On System V.4 and embedded PowerPC systems compile code for the
24568 OpenBSD operating system.
24569
24570 @item -mtraceback=@var{traceback_type}
24571 @opindex mtraceback
24572 Select the type of traceback table. Valid values for @var{traceback_type}
24573 are @samp{full}, @samp{part}, and @samp{no}.
24574
24575 @item -maix-struct-return
24576 @opindex maix-struct-return
24577 Return all structures in memory (as specified by the AIX ABI)@.
24578
24579 @item -msvr4-struct-return
24580 @opindex msvr4-struct-return
24581 Return structures smaller than 8 bytes in registers (as specified by the
24582 SVR4 ABI)@.
24583
24584 @item -mabi=@var{abi-type}
24585 @opindex mabi
24586 Extend the current ABI with a particular extension, or remove such extension.
24587 Valid values are @samp{altivec}, @samp{no-altivec},
24588 @samp{ibmlongdouble}, @samp{ieeelongdouble},
24589 @samp{elfv1}, @samp{elfv2}@.
24590
24591 @item -mabi=ibmlongdouble
24592 @opindex mabi=ibmlongdouble
24593 Change the current ABI to use IBM extended-precision long double.
24594 This is not likely to work if your system defaults to using IEEE
24595 extended-precision long double. If you change the long double type
24596 from IEEE extended-precision, the compiler will issue a warning unless
24597 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24598 to be enabled.
24599
24600 @item -mabi=ieeelongdouble
24601 @opindex mabi=ieeelongdouble
24602 Change the current ABI to use IEEE extended-precision long double.
24603 This is not likely to work if your system defaults to using IBM
24604 extended-precision long double. If you change the long double type
24605 from IBM extended-precision, the compiler will issue a warning unless
24606 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24607 to be enabled.
24608
24609 @item -mabi=elfv1
24610 @opindex mabi=elfv1
24611 Change the current ABI to use the ELFv1 ABI.
24612 This is the default ABI for big-endian PowerPC 64-bit Linux.
24613 Overriding the default ABI requires special system support and is
24614 likely to fail in spectacular ways.
24615
24616 @item -mabi=elfv2
24617 @opindex mabi=elfv2
24618 Change the current ABI to use the ELFv2 ABI.
24619 This is the default ABI for little-endian PowerPC 64-bit Linux.
24620 Overriding the default ABI requires special system support and is
24621 likely to fail in spectacular ways.
24622
24623 @item -mgnu-attribute
24624 @itemx -mno-gnu-attribute
24625 @opindex mgnu-attribute
24626 @opindex mno-gnu-attribute
24627 Emit .gnu_attribute assembly directives to set tag/value pairs in a
24628 .gnu.attributes section that specify ABI variations in function
24629 parameters or return values.
24630
24631 @item -mprototype
24632 @itemx -mno-prototype
24633 @opindex mprototype
24634 @opindex mno-prototype
24635 On System V.4 and embedded PowerPC systems assume that all calls to
24636 variable argument functions are properly prototyped. Otherwise, the
24637 compiler must insert an instruction before every non-prototyped call to
24638 set or clear bit 6 of the condition code register (@code{CR}) to
24639 indicate whether floating-point values are passed in the floating-point
24640 registers in case the function takes variable arguments. With
24641 @option{-mprototype}, only calls to prototyped variable argument functions
24642 set or clear the bit.
24643
24644 @item -msim
24645 @opindex msim
24646 On embedded PowerPC systems, assume that the startup module is called
24647 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
24648 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
24649 configurations.
24650
24651 @item -mmvme
24652 @opindex mmvme
24653 On embedded PowerPC systems, assume that the startup module is called
24654 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
24655 @file{libc.a}.
24656
24657 @item -mads
24658 @opindex mads
24659 On embedded PowerPC systems, assume that the startup module is called
24660 @file{crt0.o} and the standard C libraries are @file{libads.a} and
24661 @file{libc.a}.
24662
24663 @item -myellowknife
24664 @opindex myellowknife
24665 On embedded PowerPC systems, assume that the startup module is called
24666 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
24667 @file{libc.a}.
24668
24669 @item -mvxworks
24670 @opindex mvxworks
24671 On System V.4 and embedded PowerPC systems, specify that you are
24672 compiling for a VxWorks system.
24673
24674 @item -memb
24675 @opindex memb
24676 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
24677 header to indicate that @samp{eabi} extended relocations are used.
24678
24679 @item -meabi
24680 @itemx -mno-eabi
24681 @opindex meabi
24682 @opindex mno-eabi
24683 On System V.4 and embedded PowerPC systems do (do not) adhere to the
24684 Embedded Applications Binary Interface (EABI), which is a set of
24685 modifications to the System V.4 specifications. Selecting @option{-meabi}
24686 means that the stack is aligned to an 8-byte boundary, a function
24687 @code{__eabi} is called from @code{main} to set up the EABI
24688 environment, and the @option{-msdata} option can use both @code{r2} and
24689 @code{r13} to point to two separate small data areas. Selecting
24690 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
24691 no EABI initialization function is called from @code{main}, and the
24692 @option{-msdata} option only uses @code{r13} to point to a single
24693 small data area. The @option{-meabi} option is on by default if you
24694 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
24695
24696 @item -msdata=eabi
24697 @opindex msdata=eabi
24698 On System V.4 and embedded PowerPC systems, put small initialized
24699 @code{const} global and static data in the @code{.sdata2} section, which
24700 is pointed to by register @code{r2}. Put small initialized
24701 non-@code{const} global and static data in the @code{.sdata} section,
24702 which is pointed to by register @code{r13}. Put small uninitialized
24703 global and static data in the @code{.sbss} section, which is adjacent to
24704 the @code{.sdata} section. The @option{-msdata=eabi} option is
24705 incompatible with the @option{-mrelocatable} option. The
24706 @option{-msdata=eabi} option also sets the @option{-memb} option.
24707
24708 @item -msdata=sysv
24709 @opindex msdata=sysv
24710 On System V.4 and embedded PowerPC systems, put small global and static
24711 data in the @code{.sdata} section, which is pointed to by register
24712 @code{r13}. Put small uninitialized global and static data in the
24713 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
24714 The @option{-msdata=sysv} option is incompatible with the
24715 @option{-mrelocatable} option.
24716
24717 @item -msdata=default
24718 @itemx -msdata
24719 @opindex msdata=default
24720 @opindex msdata
24721 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
24722 compile code the same as @option{-msdata=eabi}, otherwise compile code the
24723 same as @option{-msdata=sysv}.
24724
24725 @item -msdata=data
24726 @opindex msdata=data
24727 On System V.4 and embedded PowerPC systems, put small global
24728 data in the @code{.sdata} section. Put small uninitialized global
24729 data in the @code{.sbss} section. Do not use register @code{r13}
24730 to address small data however. This is the default behavior unless
24731 other @option{-msdata} options are used.
24732
24733 @item -msdata=none
24734 @itemx -mno-sdata
24735 @opindex msdata=none
24736 @opindex mno-sdata
24737 On embedded PowerPC systems, put all initialized global and static data
24738 in the @code{.data} section, and all uninitialized data in the
24739 @code{.bss} section.
24740
24741 @item -mreadonly-in-sdata
24742 @opindex mreadonly-in-sdata
24743 @opindex mno-readonly-in-sdata
24744 Put read-only objects in the @code{.sdata} section as well. This is the
24745 default.
24746
24747 @item -mblock-move-inline-limit=@var{num}
24748 @opindex mblock-move-inline-limit
24749 Inline all block moves (such as calls to @code{memcpy} or structure
24750 copies) less than or equal to @var{num} bytes. The minimum value for
24751 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
24752 targets. The default value is target-specific.
24753
24754 @item -mblock-compare-inline-limit=@var{num}
24755 @opindex mblock-compare-inline-limit
24756 Generate non-looping inline code for all block compares (such as calls
24757 to @code{memcmp} or structure compares) less than or equal to @var{num}
24758 bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
24759 block compare is disabled. The default value is target-specific.
24760
24761 @item -mblock-compare-inline-loop-limit=@var{num}
24762 @opindex mblock-compare-inline-loop-limit
24763 Generate an inline expansion using loop code for all block compares that
24764 are less than or equal to @var{num} bytes, but greater than the limit
24765 for non-loop inline block compare expansion. If the block length is not
24766 constant, at most @var{num} bytes will be compared before @code{memcmp}
24767 is called to compare the remainder of the block. The default value is
24768 target-specific.
24769
24770 @item -mstring-compare-inline-limit=@var{num}
24771 @opindex mstring-compare-inline-limit
24772 Compare at most @var{num} string bytes with inline code.
24773 If the difference or end of string is not found at the
24774 end of the inline compare a call to @code{strcmp} or @code{strncmp} will
24775 take care of the rest of the comparison. The default is 64 bytes.
24776
24777 @item -G @var{num}
24778 @opindex G
24779 @cindex smaller data references (PowerPC)
24780 @cindex .sdata/.sdata2 references (PowerPC)
24781 On embedded PowerPC systems, put global and static items less than or
24782 equal to @var{num} bytes into the small data or BSS sections instead of
24783 the normal data or BSS section. By default, @var{num} is 8. The
24784 @option{-G @var{num}} switch is also passed to the linker.
24785 All modules should be compiled with the same @option{-G @var{num}} value.
24786
24787 @item -mregnames
24788 @itemx -mno-regnames
24789 @opindex mregnames
24790 @opindex mno-regnames
24791 On System V.4 and embedded PowerPC systems do (do not) emit register
24792 names in the assembly language output using symbolic forms.
24793
24794 @item -mlongcall
24795 @itemx -mno-longcall
24796 @opindex mlongcall
24797 @opindex mno-longcall
24798 By default assume that all calls are far away so that a longer and more
24799 expensive calling sequence is required. This is required for calls
24800 farther than 32 megabytes (33,554,432 bytes) from the current location.
24801 A short call is generated if the compiler knows
24802 the call cannot be that far away. This setting can be overridden by
24803 the @code{shortcall} function attribute, or by @code{#pragma
24804 longcall(0)}.
24805
24806 Some linkers are capable of detecting out-of-range calls and generating
24807 glue code on the fly. On these systems, long calls are unnecessary and
24808 generate slower code. As of this writing, the AIX linker can do this,
24809 as can the GNU linker for PowerPC/64. It is planned to add this feature
24810 to the GNU linker for 32-bit PowerPC systems as well.
24811
24812 On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers,
24813 GCC can generate long calls using an inline PLT call sequence (see
24814 @option{-mpltseq}). PowerPC with @option{-mbss-plt} and PowerPC64
24815 ELFv1 (big-endian) do not support inline PLT calls.
24816
24817 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
24818 callee, L42}, plus a @dfn{branch island} (glue code). The two target
24819 addresses represent the callee and the branch island. The
24820 Darwin/PPC linker prefers the first address and generates a @code{bl
24821 callee} if the PPC @code{bl} instruction reaches the callee directly;
24822 otherwise, the linker generates @code{bl L42} to call the branch
24823 island. The branch island is appended to the body of the
24824 calling function; it computes the full 32-bit address of the callee
24825 and jumps to it.
24826
24827 On Mach-O (Darwin) systems, this option directs the compiler emit to
24828 the glue for every direct call, and the Darwin linker decides whether
24829 to use or discard it.
24830
24831 In the future, GCC may ignore all longcall specifications
24832 when the linker is known to generate glue.
24833
24834 @item -mpltseq
24835 @itemx -mno-pltseq
24836 @opindex mpltseq
24837 @opindex mno-pltseq
24838 Implement (do not implement) -fno-plt and long calls using an inline
24839 PLT call sequence that supports lazy linking and long calls to
24840 functions in dlopen'd shared libraries. Inline PLT calls are only
24841 supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU
24842 linkers, and are enabled by default if the support is detected when
24843 configuring GCC, and, in the case of 32-bit PowerPC, if GCC is
24844 configured with @option{--enable-secureplt}. @option{-mpltseq} code
24845 and @option{-mbss-plt} 32-bit PowerPC relocatable objects may not be
24846 linked together.
24847
24848 @item -mtls-markers
24849 @itemx -mno-tls-markers
24850 @opindex mtls-markers
24851 @opindex mno-tls-markers
24852 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
24853 specifying the function argument. The relocation allows the linker to
24854 reliably associate function call with argument setup instructions for
24855 TLS optimization, which in turn allows GCC to better schedule the
24856 sequence.
24857
24858 @item -mrecip
24859 @itemx -mno-recip
24860 @opindex mrecip
24861 This option enables use of the reciprocal estimate and
24862 reciprocal square root estimate instructions with additional
24863 Newton-Raphson steps to increase precision instead of doing a divide or
24864 square root and divide for floating-point arguments. You should use
24865 the @option{-ffast-math} option when using @option{-mrecip} (or at
24866 least @option{-funsafe-math-optimizations},
24867 @option{-ffinite-math-only}, @option{-freciprocal-math} and
24868 @option{-fno-trapping-math}). Note that while the throughput of the
24869 sequence is generally higher than the throughput of the non-reciprocal
24870 instruction, the precision of the sequence can be decreased by up to 2
24871 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
24872 roots.
24873
24874 @item -mrecip=@var{opt}
24875 @opindex mrecip=opt
24876 This option controls which reciprocal estimate instructions
24877 may be used. @var{opt} is a comma-separated list of options, which may
24878 be preceded by a @code{!} to invert the option:
24879
24880 @table @samp
24881
24882 @item all
24883 Enable all estimate instructions.
24884
24885 @item default
24886 Enable the default instructions, equivalent to @option{-mrecip}.
24887
24888 @item none
24889 Disable all estimate instructions, equivalent to @option{-mno-recip}.
24890
24891 @item div
24892 Enable the reciprocal approximation instructions for both
24893 single and double precision.
24894
24895 @item divf
24896 Enable the single-precision reciprocal approximation instructions.
24897
24898 @item divd
24899 Enable the double-precision reciprocal approximation instructions.
24900
24901 @item rsqrt
24902 Enable the reciprocal square root approximation instructions for both
24903 single and double precision.
24904
24905 @item rsqrtf
24906 Enable the single-precision reciprocal square root approximation instructions.
24907
24908 @item rsqrtd
24909 Enable the double-precision reciprocal square root approximation instructions.
24910
24911 @end table
24912
24913 So, for example, @option{-mrecip=all,!rsqrtd} enables
24914 all of the reciprocal estimate instructions, except for the
24915 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
24916 which handle the double-precision reciprocal square root calculations.
24917
24918 @item -mrecip-precision
24919 @itemx -mno-recip-precision
24920 @opindex mrecip-precision
24921 Assume (do not assume) that the reciprocal estimate instructions
24922 provide higher-precision estimates than is mandated by the PowerPC
24923 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
24924 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
24925 The double-precision square root estimate instructions are not generated by
24926 default on low-precision machines, since they do not provide an
24927 estimate that converges after three steps.
24928
24929 @item -mveclibabi=@var{type}
24930 @opindex mveclibabi
24931 Specifies the ABI type to use for vectorizing intrinsics using an
24932 external library. The only type supported at present is @samp{mass},
24933 which specifies to use IBM's Mathematical Acceleration Subsystem
24934 (MASS) libraries for vectorizing intrinsics using external libraries.
24935 GCC currently emits calls to @code{acosd2}, @code{acosf4},
24936 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
24937 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
24938 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
24939 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
24940 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
24941 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
24942 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
24943 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
24944 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
24945 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
24946 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
24947 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
24948 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
24949 for power7. Both @option{-ftree-vectorize} and
24950 @option{-funsafe-math-optimizations} must also be enabled. The MASS
24951 libraries must be specified at link time.
24952
24953 @item -mfriz
24954 @itemx -mno-friz
24955 @opindex mfriz
24956 Generate (do not generate) the @code{friz} instruction when the
24957 @option{-funsafe-math-optimizations} option is used to optimize
24958 rounding of floating-point values to 64-bit integer and back to floating
24959 point. The @code{friz} instruction does not return the same value if
24960 the floating-point number is too large to fit in an integer.
24961
24962 @item -mpointers-to-nested-functions
24963 @itemx -mno-pointers-to-nested-functions
24964 @opindex mpointers-to-nested-functions
24965 Generate (do not generate) code to load up the static chain register
24966 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
24967 systems where a function pointer points to a 3-word descriptor giving
24968 the function address, TOC value to be loaded in register @code{r2}, and
24969 static chain value to be loaded in register @code{r11}. The
24970 @option{-mpointers-to-nested-functions} is on by default. You cannot
24971 call through pointers to nested functions or pointers
24972 to functions compiled in other languages that use the static chain if
24973 you use @option{-mno-pointers-to-nested-functions}.
24974
24975 @item -msave-toc-indirect
24976 @itemx -mno-save-toc-indirect
24977 @opindex msave-toc-indirect
24978 Generate (do not generate) code to save the TOC value in the reserved
24979 stack location in the function prologue if the function calls through
24980 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
24981 saved in the prologue, it is saved just before the call through the
24982 pointer. The @option{-mno-save-toc-indirect} option is the default.
24983
24984 @item -mcompat-align-parm
24985 @itemx -mno-compat-align-parm
24986 @opindex mcompat-align-parm
24987 Generate (do not generate) code to pass structure parameters with a
24988 maximum alignment of 64 bits, for compatibility with older versions
24989 of GCC.
24990
24991 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
24992 structure parameter on a 128-bit boundary when that structure contained
24993 a member requiring 128-bit alignment. This is corrected in more
24994 recent versions of GCC. This option may be used to generate code
24995 that is compatible with functions compiled with older versions of
24996 GCC.
24997
24998 The @option{-mno-compat-align-parm} option is the default.
24999
25000 @item -mstack-protector-guard=@var{guard}
25001 @itemx -mstack-protector-guard-reg=@var{reg}
25002 @itemx -mstack-protector-guard-offset=@var{offset}
25003 @itemx -mstack-protector-guard-symbol=@var{symbol}
25004 @opindex mstack-protector-guard
25005 @opindex mstack-protector-guard-reg
25006 @opindex mstack-protector-guard-offset
25007 @opindex mstack-protector-guard-symbol
25008 Generate stack protection code using canary at @var{guard}. Supported
25009 locations are @samp{global} for global canary or @samp{tls} for per-thread
25010 canary in the TLS block (the default with GNU libc version 2.4 or later).
25011
25012 With the latter choice the options
25013 @option{-mstack-protector-guard-reg=@var{reg}} and
25014 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
25015 which register to use as base register for reading the canary, and from what
25016 offset from that base register. The default for those is as specified in the
25017 relevant ABI. @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
25018 the offset with a symbol reference to a canary in the TLS block.
25019 @end table
25020
25021 @node RX Options
25022 @subsection RX Options
25023 @cindex RX Options
25024
25025 These command-line options are defined for RX targets:
25026
25027 @table @gcctabopt
25028 @item -m64bit-doubles
25029 @itemx -m32bit-doubles
25030 @opindex m64bit-doubles
25031 @opindex m32bit-doubles
25032 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
25033 or 32 bits (@option{-m32bit-doubles}) in size. The default is
25034 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
25035 works on 32-bit values, which is why the default is
25036 @option{-m32bit-doubles}.
25037
25038 @item -fpu
25039 @itemx -nofpu
25040 @opindex fpu
25041 @opindex nofpu
25042 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
25043 floating-point hardware. The default is enabled for the RX600
25044 series and disabled for the RX200 series.
25045
25046 Floating-point instructions are only generated for 32-bit floating-point
25047 values, however, so the FPU hardware is not used for doubles if the
25048 @option{-m64bit-doubles} option is used.
25049
25050 @emph{Note} If the @option{-fpu} option is enabled then
25051 @option{-funsafe-math-optimizations} is also enabled automatically.
25052 This is because the RX FPU instructions are themselves unsafe.
25053
25054 @item -mcpu=@var{name}
25055 @opindex mcpu
25056 Selects the type of RX CPU to be targeted. Currently three types are
25057 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
25058 the specific @samp{RX610} CPU. The default is @samp{RX600}.
25059
25060 The only difference between @samp{RX600} and @samp{RX610} is that the
25061 @samp{RX610} does not support the @code{MVTIPL} instruction.
25062
25063 The @samp{RX200} series does not have a hardware floating-point unit
25064 and so @option{-nofpu} is enabled by default when this type is
25065 selected.
25066
25067 @item -mbig-endian-data
25068 @itemx -mlittle-endian-data
25069 @opindex mbig-endian-data
25070 @opindex mlittle-endian-data
25071 Store data (but not code) in the big-endian format. The default is
25072 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
25073 format.
25074
25075 @item -msmall-data-limit=@var{N}
25076 @opindex msmall-data-limit
25077 Specifies the maximum size in bytes of global and static variables
25078 which can be placed into the small data area. Using the small data
25079 area can lead to smaller and faster code, but the size of area is
25080 limited and it is up to the programmer to ensure that the area does
25081 not overflow. Also when the small data area is used one of the RX's
25082 registers (usually @code{r13}) is reserved for use pointing to this
25083 area, so it is no longer available for use by the compiler. This
25084 could result in slower and/or larger code if variables are pushed onto
25085 the stack instead of being held in this register.
25086
25087 Note, common variables (variables that have not been initialized) and
25088 constants are not placed into the small data area as they are assigned
25089 to other sections in the output executable.
25090
25091 The default value is zero, which disables this feature. Note, this
25092 feature is not enabled by default with higher optimization levels
25093 (@option{-O2} etc) because of the potentially detrimental effects of
25094 reserving a register. It is up to the programmer to experiment and
25095 discover whether this feature is of benefit to their program. See the
25096 description of the @option{-mpid} option for a description of how the
25097 actual register to hold the small data area pointer is chosen.
25098
25099 @item -msim
25100 @itemx -mno-sim
25101 @opindex msim
25102 @opindex mno-sim
25103 Use the simulator runtime. The default is to use the libgloss
25104 board-specific runtime.
25105
25106 @item -mas100-syntax
25107 @itemx -mno-as100-syntax
25108 @opindex mas100-syntax
25109 @opindex mno-as100-syntax
25110 When generating assembler output use a syntax that is compatible with
25111 Renesas's AS100 assembler. This syntax can also be handled by the GAS
25112 assembler, but it has some restrictions so it is not generated by default.
25113
25114 @item -mmax-constant-size=@var{N}
25115 @opindex mmax-constant-size
25116 Specifies the maximum size, in bytes, of a constant that can be used as
25117 an operand in a RX instruction. Although the RX instruction set does
25118 allow constants of up to 4 bytes in length to be used in instructions,
25119 a longer value equates to a longer instruction. Thus in some
25120 circumstances it can be beneficial to restrict the size of constants
25121 that are used in instructions. Constants that are too big are instead
25122 placed into a constant pool and referenced via register indirection.
25123
25124 The value @var{N} can be between 0 and 4. A value of 0 (the default)
25125 or 4 means that constants of any size are allowed.
25126
25127 @item -mrelax
25128 @opindex mrelax
25129 Enable linker relaxation. Linker relaxation is a process whereby the
25130 linker attempts to reduce the size of a program by finding shorter
25131 versions of various instructions. Disabled by default.
25132
25133 @item -mint-register=@var{N}
25134 @opindex mint-register
25135 Specify the number of registers to reserve for fast interrupt handler
25136 functions. The value @var{N} can be between 0 and 4. A value of 1
25137 means that register @code{r13} is reserved for the exclusive use
25138 of fast interrupt handlers. A value of 2 reserves @code{r13} and
25139 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
25140 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
25141 A value of 0, the default, does not reserve any registers.
25142
25143 @item -msave-acc-in-interrupts
25144 @opindex msave-acc-in-interrupts
25145 Specifies that interrupt handler functions should preserve the
25146 accumulator register. This is only necessary if normal code might use
25147 the accumulator register, for example because it performs 64-bit
25148 multiplications. The default is to ignore the accumulator as this
25149 makes the interrupt handlers faster.
25150
25151 @item -mpid
25152 @itemx -mno-pid
25153 @opindex mpid
25154 @opindex mno-pid
25155 Enables the generation of position independent data. When enabled any
25156 access to constant data is done via an offset from a base address
25157 held in a register. This allows the location of constant data to be
25158 determined at run time without requiring the executable to be
25159 relocated, which is a benefit to embedded applications with tight
25160 memory constraints. Data that can be modified is not affected by this
25161 option.
25162
25163 Note, using this feature reserves a register, usually @code{r13}, for
25164 the constant data base address. This can result in slower and/or
25165 larger code, especially in complicated functions.
25166
25167 The actual register chosen to hold the constant data base address
25168 depends upon whether the @option{-msmall-data-limit} and/or the
25169 @option{-mint-register} command-line options are enabled. Starting
25170 with register @code{r13} and proceeding downwards, registers are
25171 allocated first to satisfy the requirements of @option{-mint-register},
25172 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
25173 is possible for the small data area register to be @code{r8} if both
25174 @option{-mint-register=4} and @option{-mpid} are specified on the
25175 command line.
25176
25177 By default this feature is not enabled. The default can be restored
25178 via the @option{-mno-pid} command-line option.
25179
25180 @item -mno-warn-multiple-fast-interrupts
25181 @itemx -mwarn-multiple-fast-interrupts
25182 @opindex mno-warn-multiple-fast-interrupts
25183 @opindex mwarn-multiple-fast-interrupts
25184 Prevents GCC from issuing a warning message if it finds more than one
25185 fast interrupt handler when it is compiling a file. The default is to
25186 issue a warning for each extra fast interrupt handler found, as the RX
25187 only supports one such interrupt.
25188
25189 @item -mallow-string-insns
25190 @itemx -mno-allow-string-insns
25191 @opindex mallow-string-insns
25192 @opindex mno-allow-string-insns
25193 Enables or disables the use of the string manipulation instructions
25194 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
25195 @code{SWHILE} and also the @code{RMPA} instruction. These
25196 instructions may prefetch data, which is not safe to do if accessing
25197 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
25198 for more information).
25199
25200 The default is to allow these instructions, but it is not possible for
25201 GCC to reliably detect all circumstances where a string instruction
25202 might be used to access an I/O register, so their use cannot be
25203 disabled automatically. Instead it is reliant upon the programmer to
25204 use the @option{-mno-allow-string-insns} option if their program
25205 accesses I/O space.
25206
25207 When the instructions are enabled GCC defines the C preprocessor
25208 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
25209 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
25210
25211 @item -mjsr
25212 @itemx -mno-jsr
25213 @opindex mjsr
25214 @opindex mno-jsr
25215 Use only (or not only) @code{JSR} instructions to access functions.
25216 This option can be used when code size exceeds the range of @code{BSR}
25217 instructions. Note that @option{-mno-jsr} does not mean to not use
25218 @code{JSR} but instead means that any type of branch may be used.
25219 @end table
25220
25221 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
25222 has special significance to the RX port when used with the
25223 @code{interrupt} function attribute. This attribute indicates a
25224 function intended to process fast interrupts. GCC ensures
25225 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
25226 and/or @code{r13} and only provided that the normal use of the
25227 corresponding registers have been restricted via the
25228 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
25229 options.
25230
25231 @node S/390 and zSeries Options
25232 @subsection S/390 and zSeries Options
25233 @cindex S/390 and zSeries Options
25234
25235 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
25236
25237 @table @gcctabopt
25238 @item -mhard-float
25239 @itemx -msoft-float
25240 @opindex mhard-float
25241 @opindex msoft-float
25242 Use (do not use) the hardware floating-point instructions and registers
25243 for floating-point operations. When @option{-msoft-float} is specified,
25244 functions in @file{libgcc.a} are used to perform floating-point
25245 operations. When @option{-mhard-float} is specified, the compiler
25246 generates IEEE floating-point instructions. This is the default.
25247
25248 @item -mhard-dfp
25249 @itemx -mno-hard-dfp
25250 @opindex mhard-dfp
25251 @opindex mno-hard-dfp
25252 Use (do not use) the hardware decimal-floating-point instructions for
25253 decimal-floating-point operations. When @option{-mno-hard-dfp} is
25254 specified, functions in @file{libgcc.a} are used to perform
25255 decimal-floating-point operations. When @option{-mhard-dfp} is
25256 specified, the compiler generates decimal-floating-point hardware
25257 instructions. This is the default for @option{-march=z9-ec} or higher.
25258
25259 @item -mlong-double-64
25260 @itemx -mlong-double-128
25261 @opindex mlong-double-64
25262 @opindex mlong-double-128
25263 These switches control the size of @code{long double} type. A size
25264 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25265 type. This is the default.
25266
25267 @item -mbackchain
25268 @itemx -mno-backchain
25269 @opindex mbackchain
25270 @opindex mno-backchain
25271 Store (do not store) the address of the caller's frame as backchain pointer
25272 into the callee's stack frame.
25273 A backchain may be needed to allow debugging using tools that do not understand
25274 DWARF call frame information.
25275 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
25276 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
25277 the backchain is placed into the topmost word of the 96/160 byte register
25278 save area.
25279
25280 In general, code compiled with @option{-mbackchain} is call-compatible with
25281 code compiled with @option{-mmo-backchain}; however, use of the backchain
25282 for debugging purposes usually requires that the whole binary is built with
25283 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
25284 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25285 to build a linux kernel use @option{-msoft-float}.
25286
25287 The default is to not maintain the backchain.
25288
25289 @item -mpacked-stack
25290 @itemx -mno-packed-stack
25291 @opindex mpacked-stack
25292 @opindex mno-packed-stack
25293 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
25294 specified, the compiler uses the all fields of the 96/160 byte register save
25295 area only for their default purpose; unused fields still take up stack space.
25296 When @option{-mpacked-stack} is specified, register save slots are densely
25297 packed at the top of the register save area; unused space is reused for other
25298 purposes, allowing for more efficient use of the available stack space.
25299 However, when @option{-mbackchain} is also in effect, the topmost word of
25300 the save area is always used to store the backchain, and the return address
25301 register is always saved two words below the backchain.
25302
25303 As long as the stack frame backchain is not used, code generated with
25304 @option{-mpacked-stack} is call-compatible with code generated with
25305 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
25306 S/390 or zSeries generated code that uses the stack frame backchain at run
25307 time, not just for debugging purposes. Such code is not call-compatible
25308 with code compiled with @option{-mpacked-stack}. Also, note that the
25309 combination of @option{-mbackchain},
25310 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25311 to build a linux kernel use @option{-msoft-float}.
25312
25313 The default is to not use the packed stack layout.
25314
25315 @item -msmall-exec
25316 @itemx -mno-small-exec
25317 @opindex msmall-exec
25318 @opindex mno-small-exec
25319 Generate (or do not generate) code using the @code{bras} instruction
25320 to do subroutine calls.
25321 This only works reliably if the total executable size does not
25322 exceed 64k. The default is to use the @code{basr} instruction instead,
25323 which does not have this limitation.
25324
25325 @item -m64
25326 @itemx -m31
25327 @opindex m64
25328 @opindex m31
25329 When @option{-m31} is specified, generate code compliant to the
25330 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
25331 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
25332 particular to generate 64-bit instructions. For the @samp{s390}
25333 targets, the default is @option{-m31}, while the @samp{s390x}
25334 targets default to @option{-m64}.
25335
25336 @item -mzarch
25337 @itemx -mesa
25338 @opindex mzarch
25339 @opindex mesa
25340 When @option{-mzarch} is specified, generate code using the
25341 instructions available on z/Architecture.
25342 When @option{-mesa} is specified, generate code using the
25343 instructions available on ESA/390. Note that @option{-mesa} is
25344 not possible with @option{-m64}.
25345 When generating code compliant to the GNU/Linux for S/390 ABI,
25346 the default is @option{-mesa}. When generating code compliant
25347 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
25348
25349 @item -mhtm
25350 @itemx -mno-htm
25351 @opindex mhtm
25352 @opindex mno-htm
25353 The @option{-mhtm} option enables a set of builtins making use of
25354 instructions available with the transactional execution facility
25355 introduced with the IBM zEnterprise EC12 machine generation
25356 @ref{S/390 System z Built-in Functions}.
25357 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
25358
25359 @item -mvx
25360 @itemx -mno-vx
25361 @opindex mvx
25362 @opindex mno-vx
25363 When @option{-mvx} is specified, generate code using the instructions
25364 available with the vector extension facility introduced with the IBM
25365 z13 machine generation.
25366 This option changes the ABI for some vector type values with regard to
25367 alignment and calling conventions. In case vector type values are
25368 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
25369 command will be added to mark the resulting binary with the ABI used.
25370 @option{-mvx} is enabled by default when using @option{-march=z13}.
25371
25372 @item -mzvector
25373 @itemx -mno-zvector
25374 @opindex mzvector
25375 @opindex mno-zvector
25376 The @option{-mzvector} option enables vector language extensions and
25377 builtins using instructions available with the vector extension
25378 facility introduced with the IBM z13 machine generation.
25379 This option adds support for @samp{vector} to be used as a keyword to
25380 define vector type variables and arguments. @samp{vector} is only
25381 available when GNU extensions are enabled. It will not be expanded
25382 when requesting strict standard compliance e.g.@: with @option{-std=c99}.
25383 In addition to the GCC low-level builtins @option{-mzvector} enables
25384 a set of builtins added for compatibility with AltiVec-style
25385 implementations like Power and Cell. In order to make use of these
25386 builtins the header file @file{vecintrin.h} needs to be included.
25387 @option{-mzvector} is disabled by default.
25388
25389 @item -mmvcle
25390 @itemx -mno-mvcle
25391 @opindex mmvcle
25392 @opindex mno-mvcle
25393 Generate (or do not generate) code using the @code{mvcle} instruction
25394 to perform block moves. When @option{-mno-mvcle} is specified,
25395 use a @code{mvc} loop instead. This is the default unless optimizing for
25396 size.
25397
25398 @item -mdebug
25399 @itemx -mno-debug
25400 @opindex mdebug
25401 @opindex mno-debug
25402 Print (or do not print) additional debug information when compiling.
25403 The default is to not print debug information.
25404
25405 @item -march=@var{cpu-type}
25406 @opindex march
25407 Generate code that runs on @var{cpu-type}, which is the name of a
25408 system representing a certain processor type. Possible values for
25409 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
25410 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
25411 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11},
25412 @samp{z14}/@samp{arch12}, and @samp{native}.
25413
25414 The default is @option{-march=z900}.
25415
25416 Specifying @samp{native} as cpu type can be used to select the best
25417 architecture option for the host processor.
25418 @option{-march=native} has no effect if GCC does not recognize the
25419 processor.
25420
25421 @item -mtune=@var{cpu-type}
25422 @opindex mtune
25423 Tune to @var{cpu-type} everything applicable about the generated code,
25424 except for the ABI and the set of available instructions.
25425 The list of @var{cpu-type} values is the same as for @option{-march}.
25426 The default is the value used for @option{-march}.
25427
25428 @item -mtpf-trace
25429 @itemx -mno-tpf-trace
25430 @opindex mtpf-trace
25431 @opindex mno-tpf-trace
25432 Generate code that adds (does not add) in TPF OS specific branches to trace
25433 routines in the operating system. This option is off by default, even
25434 when compiling for the TPF OS@.
25435
25436 @item -mfused-madd
25437 @itemx -mno-fused-madd
25438 @opindex mfused-madd
25439 @opindex mno-fused-madd
25440 Generate code that uses (does not use) the floating-point multiply and
25441 accumulate instructions. These instructions are generated by default if
25442 hardware floating point is used.
25443
25444 @item -mwarn-framesize=@var{framesize}
25445 @opindex mwarn-framesize
25446 Emit a warning if the current function exceeds the given frame size. Because
25447 this is a compile-time check it doesn't need to be a real problem when the program
25448 runs. It is intended to identify functions that most probably cause
25449 a stack overflow. It is useful to be used in an environment with limited stack
25450 size e.g.@: the linux kernel.
25451
25452 @item -mwarn-dynamicstack
25453 @opindex mwarn-dynamicstack
25454 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
25455 arrays. This is generally a bad idea with a limited stack size.
25456
25457 @item -mstack-guard=@var{stack-guard}
25458 @itemx -mstack-size=@var{stack-size}
25459 @opindex mstack-guard
25460 @opindex mstack-size
25461 If these options are provided the S/390 back end emits additional instructions in
25462 the function prologue that trigger a trap if the stack size is @var{stack-guard}
25463 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
25464 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
25465 the frame size of the compiled function is chosen.
25466 These options are intended to be used to help debugging stack overflow problems.
25467 The additionally emitted code causes only little overhead and hence can also be
25468 used in production-like systems without greater performance degradation. The given
25469 values have to be exact powers of 2 and @var{stack-size} has to be greater than
25470 @var{stack-guard} without exceeding 64k.
25471 In order to be efficient the extra code makes the assumption that the stack starts
25472 at an address aligned to the value given by @var{stack-size}.
25473 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
25474
25475 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
25476 @opindex mhotpatch
25477 If the hotpatch option is enabled, a ``hot-patching'' function
25478 prologue is generated for all functions in the compilation unit.
25479 The funtion label is prepended with the given number of two-byte
25480 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
25481 the label, 2 * @var{post-halfwords} bytes are appended, using the
25482 largest NOP like instructions the architecture allows (maximum
25483 1000000).
25484
25485 If both arguments are zero, hotpatching is disabled.
25486
25487 This option can be overridden for individual functions with the
25488 @code{hotpatch} attribute.
25489 @end table
25490
25491 @node Score Options
25492 @subsection Score Options
25493 @cindex Score Options
25494
25495 These options are defined for Score implementations:
25496
25497 @table @gcctabopt
25498 @item -meb
25499 @opindex meb
25500 Compile code for big-endian mode. This is the default.
25501
25502 @item -mel
25503 @opindex mel
25504 Compile code for little-endian mode.
25505
25506 @item -mnhwloop
25507 @opindex mnhwloop
25508 Disable generation of @code{bcnz} instructions.
25509
25510 @item -muls
25511 @opindex muls
25512 Enable generation of unaligned load and store instructions.
25513
25514 @item -mmac
25515 @opindex mmac
25516 Enable the use of multiply-accumulate instructions. Disabled by default.
25517
25518 @item -mscore5
25519 @opindex mscore5
25520 Specify the SCORE5 as the target architecture.
25521
25522 @item -mscore5u
25523 @opindex mscore5u
25524 Specify the SCORE5U of the target architecture.
25525
25526 @item -mscore7
25527 @opindex mscore7
25528 Specify the SCORE7 as the target architecture. This is the default.
25529
25530 @item -mscore7d
25531 @opindex mscore7d
25532 Specify the SCORE7D as the target architecture.
25533 @end table
25534
25535 @node SH Options
25536 @subsection SH Options
25537
25538 These @samp{-m} options are defined for the SH implementations:
25539
25540 @table @gcctabopt
25541 @item -m1
25542 @opindex m1
25543 Generate code for the SH1.
25544
25545 @item -m2
25546 @opindex m2
25547 Generate code for the SH2.
25548
25549 @item -m2e
25550 Generate code for the SH2e.
25551
25552 @item -m2a-nofpu
25553 @opindex m2a-nofpu
25554 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
25555 that the floating-point unit is not used.
25556
25557 @item -m2a-single-only
25558 @opindex m2a-single-only
25559 Generate code for the SH2a-FPU, in such a way that no double-precision
25560 floating-point operations are used.
25561
25562 @item -m2a-single
25563 @opindex m2a-single
25564 Generate code for the SH2a-FPU assuming the floating-point unit is in
25565 single-precision mode by default.
25566
25567 @item -m2a
25568 @opindex m2a
25569 Generate code for the SH2a-FPU assuming the floating-point unit is in
25570 double-precision mode by default.
25571
25572 @item -m3
25573 @opindex m3
25574 Generate code for the SH3.
25575
25576 @item -m3e
25577 @opindex m3e
25578 Generate code for the SH3e.
25579
25580 @item -m4-nofpu
25581 @opindex m4-nofpu
25582 Generate code for the SH4 without a floating-point unit.
25583
25584 @item -m4-single-only
25585 @opindex m4-single-only
25586 Generate code for the SH4 with a floating-point unit that only
25587 supports single-precision arithmetic.
25588
25589 @item -m4-single
25590 @opindex m4-single
25591 Generate code for the SH4 assuming the floating-point unit is in
25592 single-precision mode by default.
25593
25594 @item -m4
25595 @opindex m4
25596 Generate code for the SH4.
25597
25598 @item -m4-100
25599 @opindex m4-100
25600 Generate code for SH4-100.
25601
25602 @item -m4-100-nofpu
25603 @opindex m4-100-nofpu
25604 Generate code for SH4-100 in such a way that the
25605 floating-point unit is not used.
25606
25607 @item -m4-100-single
25608 @opindex m4-100-single
25609 Generate code for SH4-100 assuming the floating-point unit is in
25610 single-precision mode by default.
25611
25612 @item -m4-100-single-only
25613 @opindex m4-100-single-only
25614 Generate code for SH4-100 in such a way that no double-precision
25615 floating-point operations are used.
25616
25617 @item -m4-200
25618 @opindex m4-200
25619 Generate code for SH4-200.
25620
25621 @item -m4-200-nofpu
25622 @opindex m4-200-nofpu
25623 Generate code for SH4-200 without in such a way that the
25624 floating-point unit is not used.
25625
25626 @item -m4-200-single
25627 @opindex m4-200-single
25628 Generate code for SH4-200 assuming the floating-point unit is in
25629 single-precision mode by default.
25630
25631 @item -m4-200-single-only
25632 @opindex m4-200-single-only
25633 Generate code for SH4-200 in such a way that no double-precision
25634 floating-point operations are used.
25635
25636 @item -m4-300
25637 @opindex m4-300
25638 Generate code for SH4-300.
25639
25640 @item -m4-300-nofpu
25641 @opindex m4-300-nofpu
25642 Generate code for SH4-300 without in such a way that the
25643 floating-point unit is not used.
25644
25645 @item -m4-300-single
25646 @opindex m4-300-single
25647 Generate code for SH4-300 in such a way that no double-precision
25648 floating-point operations are used.
25649
25650 @item -m4-300-single-only
25651 @opindex m4-300-single-only
25652 Generate code for SH4-300 in such a way that no double-precision
25653 floating-point operations are used.
25654
25655 @item -m4-340
25656 @opindex m4-340
25657 Generate code for SH4-340 (no MMU, no FPU).
25658
25659 @item -m4-500
25660 @opindex m4-500
25661 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
25662 assembler.
25663
25664 @item -m4a-nofpu
25665 @opindex m4a-nofpu
25666 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
25667 floating-point unit is not used.
25668
25669 @item -m4a-single-only
25670 @opindex m4a-single-only
25671 Generate code for the SH4a, in such a way that no double-precision
25672 floating-point operations are used.
25673
25674 @item -m4a-single
25675 @opindex m4a-single
25676 Generate code for the SH4a assuming the floating-point unit is in
25677 single-precision mode by default.
25678
25679 @item -m4a
25680 @opindex m4a
25681 Generate code for the SH4a.
25682
25683 @item -m4al
25684 @opindex m4al
25685 Same as @option{-m4a-nofpu}, except that it implicitly passes
25686 @option{-dsp} to the assembler. GCC doesn't generate any DSP
25687 instructions at the moment.
25688
25689 @item -mb
25690 @opindex mb
25691 Compile code for the processor in big-endian mode.
25692
25693 @item -ml
25694 @opindex ml
25695 Compile code for the processor in little-endian mode.
25696
25697 @item -mdalign
25698 @opindex mdalign
25699 Align doubles at 64-bit boundaries. Note that this changes the calling
25700 conventions, and thus some functions from the standard C library do
25701 not work unless you recompile it first with @option{-mdalign}.
25702
25703 @item -mrelax
25704 @opindex mrelax
25705 Shorten some address references at link time, when possible; uses the
25706 linker option @option{-relax}.
25707
25708 @item -mbigtable
25709 @opindex mbigtable
25710 Use 32-bit offsets in @code{switch} tables. The default is to use
25711 16-bit offsets.
25712
25713 @item -mbitops
25714 @opindex mbitops
25715 Enable the use of bit manipulation instructions on SH2A.
25716
25717 @item -mfmovd
25718 @opindex mfmovd
25719 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
25720 alignment constraints.
25721
25722 @item -mrenesas
25723 @opindex mrenesas
25724 Comply with the calling conventions defined by Renesas.
25725
25726 @item -mno-renesas
25727 @opindex mno-renesas
25728 Comply with the calling conventions defined for GCC before the Renesas
25729 conventions were available. This option is the default for all
25730 targets of the SH toolchain.
25731
25732 @item -mnomacsave
25733 @opindex mnomacsave
25734 Mark the @code{MAC} register as call-clobbered, even if
25735 @option{-mrenesas} is given.
25736
25737 @item -mieee
25738 @itemx -mno-ieee
25739 @opindex mieee
25740 @opindex mno-ieee
25741 Control the IEEE compliance of floating-point comparisons, which affects the
25742 handling of cases where the result of a comparison is unordered. By default
25743 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
25744 enabled @option{-mno-ieee} is implicitly set, which results in faster
25745 floating-point greater-equal and less-equal comparisons. The implicit settings
25746 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
25747
25748 @item -minline-ic_invalidate
25749 @opindex minline-ic_invalidate
25750 Inline code to invalidate instruction cache entries after setting up
25751 nested function trampolines.
25752 This option has no effect if @option{-musermode} is in effect and the selected
25753 code generation option (e.g.@: @option{-m4}) does not allow the use of the @code{icbi}
25754 instruction.
25755 If the selected code generation option does not allow the use of the @code{icbi}
25756 instruction, and @option{-musermode} is not in effect, the inlined code
25757 manipulates the instruction cache address array directly with an associative
25758 write. This not only requires privileged mode at run time, but it also
25759 fails if the cache line had been mapped via the TLB and has become unmapped.
25760
25761 @item -misize
25762 @opindex misize
25763 Dump instruction size and location in the assembly code.
25764
25765 @item -mpadstruct
25766 @opindex mpadstruct
25767 This option is deprecated. It pads structures to multiple of 4 bytes,
25768 which is incompatible with the SH ABI@.
25769
25770 @item -matomic-model=@var{model}
25771 @opindex matomic-model=@var{model}
25772 Sets the model of atomic operations and additional parameters as a comma
25773 separated list. For details on the atomic built-in functions see
25774 @ref{__atomic Builtins}. The following models and parameters are supported:
25775
25776 @table @samp
25777
25778 @item none
25779 Disable compiler generated atomic sequences and emit library calls for atomic
25780 operations. This is the default if the target is not @code{sh*-*-linux*}.
25781
25782 @item soft-gusa
25783 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
25784 built-in functions. The generated atomic sequences require additional support
25785 from the interrupt/exception handling code of the system and are only suitable
25786 for SH3* and SH4* single-core systems. This option is enabled by default when
25787 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
25788 this option also partially utilizes the hardware atomic instructions
25789 @code{movli.l} and @code{movco.l} to create more efficient code, unless
25790 @samp{strict} is specified.
25791
25792 @item soft-tcb
25793 Generate software atomic sequences that use a variable in the thread control
25794 block. This is a variation of the gUSA sequences which can also be used on
25795 SH1* and SH2* targets. The generated atomic sequences require additional
25796 support from the interrupt/exception handling code of the system and are only
25797 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
25798 parameter has to be specified as well.
25799
25800 @item soft-imask
25801 Generate software atomic sequences that temporarily disable interrupts by
25802 setting @code{SR.IMASK = 1111}. This model works only when the program runs
25803 in privileged mode and is only suitable for single-core systems. Additional
25804 support from the interrupt/exception handling code of the system is not
25805 required. This model is enabled by default when the target is
25806 @code{sh*-*-linux*} and SH1* or SH2*.
25807
25808 @item hard-llcs
25809 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
25810 instructions only. This is only available on SH4A and is suitable for
25811 multi-core systems. Since the hardware instructions support only 32 bit atomic
25812 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
25813 Code compiled with this option is also compatible with other software
25814 atomic model interrupt/exception handling systems if executed on an SH4A
25815 system. Additional support from the interrupt/exception handling code of the
25816 system is not required for this model.
25817
25818 @item gbr-offset=
25819 This parameter specifies the offset in bytes of the variable in the thread
25820 control block structure that should be used by the generated atomic sequences
25821 when the @samp{soft-tcb} model has been selected. For other models this
25822 parameter is ignored. The specified value must be an integer multiple of four
25823 and in the range 0-1020.
25824
25825 @item strict
25826 This parameter prevents mixed usage of multiple atomic models, even if they
25827 are compatible, and makes the compiler generate atomic sequences of the
25828 specified model only.
25829
25830 @end table
25831
25832 @item -mtas
25833 @opindex mtas
25834 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
25835 Notice that depending on the particular hardware and software configuration
25836 this can degrade overall performance due to the operand cache line flushes
25837 that are implied by the @code{tas.b} instruction. On multi-core SH4A
25838 processors the @code{tas.b} instruction must be used with caution since it
25839 can result in data corruption for certain cache configurations.
25840
25841 @item -mprefergot
25842 @opindex mprefergot
25843 When generating position-independent code, emit function calls using
25844 the Global Offset Table instead of the Procedure Linkage Table.
25845
25846 @item -musermode
25847 @itemx -mno-usermode
25848 @opindex musermode
25849 @opindex mno-usermode
25850 Don't allow (allow) the compiler generating privileged mode code. Specifying
25851 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
25852 inlined code would not work in user mode. @option{-musermode} is the default
25853 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
25854 @option{-musermode} has no effect, since there is no user mode.
25855
25856 @item -multcost=@var{number}
25857 @opindex multcost=@var{number}
25858 Set the cost to assume for a multiply insn.
25859
25860 @item -mdiv=@var{strategy}
25861 @opindex mdiv=@var{strategy}
25862 Set the division strategy to be used for integer division operations.
25863 @var{strategy} can be one of:
25864
25865 @table @samp
25866
25867 @item call-div1
25868 Calls a library function that uses the single-step division instruction
25869 @code{div1} to perform the operation. Division by zero calculates an
25870 unspecified result and does not trap. This is the default except for SH4,
25871 SH2A and SHcompact.
25872
25873 @item call-fp
25874 Calls a library function that performs the operation in double precision
25875 floating point. Division by zero causes a floating-point exception. This is
25876 the default for SHcompact with FPU. Specifying this for targets that do not
25877 have a double precision FPU defaults to @code{call-div1}.
25878
25879 @item call-table
25880 Calls a library function that uses a lookup table for small divisors and
25881 the @code{div1} instruction with case distinction for larger divisors. Division
25882 by zero calculates an unspecified result and does not trap. This is the default
25883 for SH4. Specifying this for targets that do not have dynamic shift
25884 instructions defaults to @code{call-div1}.
25885
25886 @end table
25887
25888 When a division strategy has not been specified the default strategy is
25889 selected based on the current target. For SH2A the default strategy is to
25890 use the @code{divs} and @code{divu} instructions instead of library function
25891 calls.
25892
25893 @item -maccumulate-outgoing-args
25894 @opindex maccumulate-outgoing-args
25895 Reserve space once for outgoing arguments in the function prologue rather
25896 than around each call. Generally beneficial for performance and size. Also
25897 needed for unwinding to avoid changing the stack frame around conditional code.
25898
25899 @item -mdivsi3_libfunc=@var{name}
25900 @opindex mdivsi3_libfunc=@var{name}
25901 Set the name of the library function used for 32-bit signed division to
25902 @var{name}.
25903 This only affects the name used in the @samp{call} division strategies, and
25904 the compiler still expects the same sets of input/output/clobbered registers as
25905 if this option were not present.
25906
25907 @item -mfixed-range=@var{register-range}
25908 @opindex mfixed-range
25909 Generate code treating the given register range as fixed registers.
25910 A fixed register is one that the register allocator cannot use. This is
25911 useful when compiling kernel code. A register range is specified as
25912 two registers separated by a dash. Multiple register ranges can be
25913 specified separated by a comma.
25914
25915 @item -mbranch-cost=@var{num}
25916 @opindex mbranch-cost=@var{num}
25917 Assume @var{num} to be the cost for a branch instruction. Higher numbers
25918 make the compiler try to generate more branch-free code if possible.
25919 If not specified the value is selected depending on the processor type that
25920 is being compiled for.
25921
25922 @item -mzdcbranch
25923 @itemx -mno-zdcbranch
25924 @opindex mzdcbranch
25925 @opindex mno-zdcbranch
25926 Assume (do not assume) that zero displacement conditional branch instructions
25927 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
25928 compiler prefers zero displacement branch code sequences. This is
25929 enabled by default when generating code for SH4 and SH4A. It can be explicitly
25930 disabled by specifying @option{-mno-zdcbranch}.
25931
25932 @item -mcbranch-force-delay-slot
25933 @opindex mcbranch-force-delay-slot
25934 Force the usage of delay slots for conditional branches, which stuffs the delay
25935 slot with a @code{nop} if a suitable instruction cannot be found. By default
25936 this option is disabled. It can be enabled to work around hardware bugs as
25937 found in the original SH7055.
25938
25939 @item -mfused-madd
25940 @itemx -mno-fused-madd
25941 @opindex mfused-madd
25942 @opindex mno-fused-madd
25943 Generate code that uses (does not use) the floating-point multiply and
25944 accumulate instructions. These instructions are generated by default
25945 if hardware floating point is used. The machine-dependent
25946 @option{-mfused-madd} option is now mapped to the machine-independent
25947 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
25948 mapped to @option{-ffp-contract=off}.
25949
25950 @item -mfsca
25951 @itemx -mno-fsca
25952 @opindex mfsca
25953 @opindex mno-fsca
25954 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
25955 and cosine approximations. The option @option{-mfsca} must be used in
25956 combination with @option{-funsafe-math-optimizations}. It is enabled by default
25957 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
25958 approximations even if @option{-funsafe-math-optimizations} is in effect.
25959
25960 @item -mfsrra
25961 @itemx -mno-fsrra
25962 @opindex mfsrra
25963 @opindex mno-fsrra
25964 Allow or disallow the compiler to emit the @code{fsrra} instruction for
25965 reciprocal square root approximations. The option @option{-mfsrra} must be used
25966 in combination with @option{-funsafe-math-optimizations} and
25967 @option{-ffinite-math-only}. It is enabled by default when generating code for
25968 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
25969 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
25970 in effect.
25971
25972 @item -mpretend-cmove
25973 @opindex mpretend-cmove
25974 Prefer zero-displacement conditional branches for conditional move instruction
25975 patterns. This can result in faster code on the SH4 processor.
25976
25977 @item -mfdpic
25978 @opindex fdpic
25979 Generate code using the FDPIC ABI.
25980
25981 @end table
25982
25983 @node Solaris 2 Options
25984 @subsection Solaris 2 Options
25985 @cindex Solaris 2 options
25986
25987 These @samp{-m} options are supported on Solaris 2:
25988
25989 @table @gcctabopt
25990 @item -mclear-hwcap
25991 @opindex mclear-hwcap
25992 @option{-mclear-hwcap} tells the compiler to remove the hardware
25993 capabilities generated by the Solaris assembler. This is only necessary
25994 when object files use ISA extensions not supported by the current
25995 machine, but check at runtime whether or not to use them.
25996
25997 @item -mimpure-text
25998 @opindex mimpure-text
25999 @option{-mimpure-text}, used in addition to @option{-shared}, tells
26000 the compiler to not pass @option{-z text} to the linker when linking a
26001 shared object. Using this option, you can link position-dependent
26002 code into a shared object.
26003
26004 @option{-mimpure-text} suppresses the ``relocations remain against
26005 allocatable but non-writable sections'' linker error message.
26006 However, the necessary relocations trigger copy-on-write, and the
26007 shared object is not actually shared across processes. Instead of
26008 using @option{-mimpure-text}, you should compile all source code with
26009 @option{-fpic} or @option{-fPIC}.
26010
26011 @end table
26012
26013 These switches are supported in addition to the above on Solaris 2:
26014
26015 @table @gcctabopt
26016 @item -pthreads
26017 @opindex pthreads
26018 This is a synonym for @option{-pthread}.
26019 @end table
26020
26021 @node SPARC Options
26022 @subsection SPARC Options
26023 @cindex SPARC options
26024
26025 These @samp{-m} options are supported on the SPARC:
26026
26027 @table @gcctabopt
26028 @item -mno-app-regs
26029 @itemx -mapp-regs
26030 @opindex mno-app-regs
26031 @opindex mapp-regs
26032 Specify @option{-mapp-regs} to generate output using the global registers
26033 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
26034 global register 1, each global register 2 through 4 is then treated as an
26035 allocable register that is clobbered by function calls. This is the default.
26036
26037 To be fully SVR4 ABI-compliant at the cost of some performance loss,
26038 specify @option{-mno-app-regs}. You should compile libraries and system
26039 software with this option.
26040
26041 @item -mflat
26042 @itemx -mno-flat
26043 @opindex mflat
26044 @opindex mno-flat
26045 With @option{-mflat}, the compiler does not generate save/restore instructions
26046 and uses a ``flat'' or single register window model. This model is compatible
26047 with the regular register window model. The local registers and the input
26048 registers (0--5) are still treated as ``call-saved'' registers and are
26049 saved on the stack as needed.
26050
26051 With @option{-mno-flat} (the default), the compiler generates save/restore
26052 instructions (except for leaf functions). This is the normal operating mode.
26053
26054 @item -mfpu
26055 @itemx -mhard-float
26056 @opindex mfpu
26057 @opindex mhard-float
26058 Generate output containing floating-point instructions. This is the
26059 default.
26060
26061 @item -mno-fpu
26062 @itemx -msoft-float
26063 @opindex mno-fpu
26064 @opindex msoft-float
26065 Generate output containing library calls for floating point.
26066 @strong{Warning:} the requisite libraries are not available for all SPARC
26067 targets. Normally the facilities of the machine's usual C compiler are
26068 used, but this cannot be done directly in cross-compilation. You must make
26069 your own arrangements to provide suitable library functions for
26070 cross-compilation. The embedded targets @samp{sparc-*-aout} and
26071 @samp{sparclite-*-*} do provide software floating-point support.
26072
26073 @option{-msoft-float} changes the calling convention in the output file;
26074 therefore, it is only useful if you compile @emph{all} of a program with
26075 this option. In particular, you need to compile @file{libgcc.a}, the
26076 library that comes with GCC, with @option{-msoft-float} in order for
26077 this to work.
26078
26079 @item -mhard-quad-float
26080 @opindex mhard-quad-float
26081 Generate output containing quad-word (long double) floating-point
26082 instructions.
26083
26084 @item -msoft-quad-float
26085 @opindex msoft-quad-float
26086 Generate output containing library calls for quad-word (long double)
26087 floating-point instructions. The functions called are those specified
26088 in the SPARC ABI@. This is the default.
26089
26090 As of this writing, there are no SPARC implementations that have hardware
26091 support for the quad-word floating-point instructions. They all invoke
26092 a trap handler for one of these instructions, and then the trap handler
26093 emulates the effect of the instruction. Because of the trap handler overhead,
26094 this is much slower than calling the ABI library routines. Thus the
26095 @option{-msoft-quad-float} option is the default.
26096
26097 @item -mno-unaligned-doubles
26098 @itemx -munaligned-doubles
26099 @opindex mno-unaligned-doubles
26100 @opindex munaligned-doubles
26101 Assume that doubles have 8-byte alignment. This is the default.
26102
26103 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
26104 alignment only if they are contained in another type, or if they have an
26105 absolute address. Otherwise, it assumes they have 4-byte alignment.
26106 Specifying this option avoids some rare compatibility problems with code
26107 generated by other compilers. It is not the default because it results
26108 in a performance loss, especially for floating-point code.
26109
26110 @item -muser-mode
26111 @itemx -mno-user-mode
26112 @opindex muser-mode
26113 @opindex mno-user-mode
26114 Do not generate code that can only run in supervisor mode. This is relevant
26115 only for the @code{casa} instruction emitted for the LEON3 processor. This
26116 is the default.
26117
26118 @item -mfaster-structs
26119 @itemx -mno-faster-structs
26120 @opindex mfaster-structs
26121 @opindex mno-faster-structs
26122 With @option{-mfaster-structs}, the compiler assumes that structures
26123 should have 8-byte alignment. This enables the use of pairs of
26124 @code{ldd} and @code{std} instructions for copies in structure
26125 assignment, in place of twice as many @code{ld} and @code{st} pairs.
26126 However, the use of this changed alignment directly violates the SPARC
26127 ABI@. Thus, it's intended only for use on targets where the developer
26128 acknowledges that their resulting code is not directly in line with
26129 the rules of the ABI@.
26130
26131 @item -mstd-struct-return
26132 @itemx -mno-std-struct-return
26133 @opindex mstd-struct-return
26134 @opindex mno-std-struct-return
26135 With @option{-mstd-struct-return}, the compiler generates checking code
26136 in functions returning structures or unions to detect size mismatches
26137 between the two sides of function calls, as per the 32-bit ABI@.
26138
26139 The default is @option{-mno-std-struct-return}. This option has no effect
26140 in 64-bit mode.
26141
26142 @item -mlra
26143 @itemx -mno-lra
26144 @opindex mlra
26145 @opindex mno-lra
26146 Enable Local Register Allocation. This is the default for SPARC since GCC 7
26147 so @option{-mno-lra} needs to be passed to get old Reload.
26148
26149 @item -mcpu=@var{cpu_type}
26150 @opindex mcpu
26151 Set the instruction set, register set, and instruction scheduling parameters
26152 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
26153 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
26154 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
26155 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
26156 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
26157 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
26158
26159 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
26160 which selects the best architecture option for the host processor.
26161 @option{-mcpu=native} has no effect if GCC does not recognize
26162 the processor.
26163
26164 Default instruction scheduling parameters are used for values that select
26165 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
26166 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
26167
26168 Here is a list of each supported architecture and their supported
26169 implementations.
26170
26171 @table @asis
26172 @item v7
26173 cypress, leon3v7
26174
26175 @item v8
26176 supersparc, hypersparc, leon, leon3
26177
26178 @item sparclite
26179 f930, f934, sparclite86x
26180
26181 @item sparclet
26182 tsc701
26183
26184 @item v9
26185 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
26186 niagara7, m8
26187 @end table
26188
26189 By default (unless configured otherwise), GCC generates code for the V7
26190 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
26191 additionally optimizes it for the Cypress CY7C602 chip, as used in the
26192 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
26193 SPARCStation 1, 2, IPX etc.
26194
26195 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
26196 architecture. The only difference from V7 code is that the compiler emits
26197 the integer multiply and integer divide instructions which exist in SPARC-V8
26198 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
26199 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
26200 2000 series.
26201
26202 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
26203 the SPARC architecture. This adds the integer multiply, integer divide step
26204 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
26205 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
26206 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
26207 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
26208 MB86934 chip, which is the more recent SPARClite with FPU@.
26209
26210 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
26211 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
26212 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
26213 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
26214 optimizes it for the TEMIC SPARClet chip.
26215
26216 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
26217 architecture. This adds 64-bit integer and floating-point move instructions,
26218 3 additional floating-point condition code registers and conditional move
26219 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
26220 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
26221 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
26222 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
26223 @option{-mcpu=niagara}, the compiler additionally optimizes it for
26224 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
26225 additionally optimizes it for Sun UltraSPARC T2 chips. With
26226 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
26227 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
26228 additionally optimizes it for Sun UltraSPARC T4 chips. With
26229 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
26230 Oracle SPARC M7 chips. With @option{-mcpu=m8}, the compiler
26231 additionally optimizes it for Oracle M8 chips.
26232
26233 @item -mtune=@var{cpu_type}
26234 @opindex mtune
26235 Set the instruction scheduling parameters for machine type
26236 @var{cpu_type}, but do not set the instruction set or register set that the
26237 option @option{-mcpu=@var{cpu_type}} does.
26238
26239 The same values for @option{-mcpu=@var{cpu_type}} can be used for
26240 @option{-mtune=@var{cpu_type}}, but the only useful values are those
26241 that select a particular CPU implementation. Those are
26242 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
26243 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
26244 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
26245 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
26246 @samp{niagara4}, @samp{niagara7} and @samp{m8}. With native Solaris
26247 and GNU/Linux toolchains, @samp{native} can also be used.
26248
26249 @item -mv8plus
26250 @itemx -mno-v8plus
26251 @opindex mv8plus
26252 @opindex mno-v8plus
26253 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
26254 difference from the V8 ABI is that the global and out registers are
26255 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
26256 mode for all SPARC-V9 processors.
26257
26258 @item -mvis
26259 @itemx -mno-vis
26260 @opindex mvis
26261 @opindex mno-vis
26262 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
26263 Visual Instruction Set extensions. The default is @option{-mno-vis}.
26264
26265 @item -mvis2
26266 @itemx -mno-vis2
26267 @opindex mvis2
26268 @opindex mno-vis2
26269 With @option{-mvis2}, GCC generates code that takes advantage of
26270 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
26271 default is @option{-mvis2} when targeting a cpu that supports such
26272 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
26273 also sets @option{-mvis}.
26274
26275 @item -mvis3
26276 @itemx -mno-vis3
26277 @opindex mvis3
26278 @opindex mno-vis3
26279 With @option{-mvis3}, GCC generates code that takes advantage of
26280 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
26281 default is @option{-mvis3} when targeting a cpu that supports such
26282 instructions, such as niagara-3 and later. Setting @option{-mvis3}
26283 also sets @option{-mvis2} and @option{-mvis}.
26284
26285 @item -mvis4
26286 @itemx -mno-vis4
26287 @opindex mvis4
26288 @opindex mno-vis4
26289 With @option{-mvis4}, GCC generates code that takes advantage of
26290 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
26291 default is @option{-mvis4} when targeting a cpu that supports such
26292 instructions, such as niagara-7 and later. Setting @option{-mvis4}
26293 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
26294
26295 @item -mvis4b
26296 @itemx -mno-vis4b
26297 @opindex mvis4b
26298 @opindex mno-vis4b
26299 With @option{-mvis4b}, GCC generates code that takes advantage of
26300 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
26301 the additional VIS instructions introduced in the Oracle SPARC
26302 Architecture 2017. The default is @option{-mvis4b} when targeting a
26303 cpu that supports such instructions, such as m8 and later. Setting
26304 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
26305 @option{-mvis2} and @option{-mvis}.
26306
26307 @item -mcbcond
26308 @itemx -mno-cbcond
26309 @opindex mcbcond
26310 @opindex mno-cbcond
26311 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
26312 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
26313 when targeting a CPU that supports such instructions, such as Niagara-4 and
26314 later.
26315
26316 @item -mfmaf
26317 @itemx -mno-fmaf
26318 @opindex mfmaf
26319 @opindex mno-fmaf
26320 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
26321 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
26322 when targeting a CPU that supports such instructions, such as Niagara-3 and
26323 later.
26324
26325 @item -mfsmuld
26326 @itemx -mno-fsmuld
26327 @opindex mfsmuld
26328 @opindex mno-fsmuld
26329 With @option{-mfsmuld}, GCC generates code that takes advantage of the
26330 Floating-point Multiply Single to Double (FsMULd) instruction. The default is
26331 @option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
26332 or V9 with FPU except @option{-mcpu=leon}.
26333
26334 @item -mpopc
26335 @itemx -mno-popc
26336 @opindex mpopc
26337 @opindex mno-popc
26338 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
26339 Population Count instruction. The default is @option{-mpopc}
26340 when targeting a CPU that supports such an instruction, such as Niagara-2 and
26341 later.
26342
26343 @item -msubxc
26344 @itemx -mno-subxc
26345 @opindex msubxc
26346 @opindex mno-subxc
26347 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
26348 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
26349 when targeting a CPU that supports such an instruction, such as Niagara-7 and
26350 later.
26351
26352 @item -mfix-at697f
26353 @opindex mfix-at697f
26354 Enable the documented workaround for the single erratum of the Atmel AT697F
26355 processor (which corresponds to erratum #13 of the AT697E processor).
26356
26357 @item -mfix-ut699
26358 @opindex mfix-ut699
26359 Enable the documented workarounds for the floating-point errata and the data
26360 cache nullify errata of the UT699 processor.
26361
26362 @item -mfix-ut700
26363 @opindex mfix-ut700
26364 Enable the documented workaround for the back-to-back store errata of
26365 the UT699E/UT700 processor.
26366
26367 @item -mfix-gr712rc
26368 @opindex mfix-gr712rc
26369 Enable the documented workaround for the back-to-back store errata of
26370 the GR712RC processor.
26371 @end table
26372
26373 These @samp{-m} options are supported in addition to the above
26374 on SPARC-V9 processors in 64-bit environments:
26375
26376 @table @gcctabopt
26377 @item -m32
26378 @itemx -m64
26379 @opindex m32
26380 @opindex m64
26381 Generate code for a 32-bit or 64-bit environment.
26382 The 32-bit environment sets int, long and pointer to 32 bits.
26383 The 64-bit environment sets int to 32 bits and long and pointer
26384 to 64 bits.
26385
26386 @item -mcmodel=@var{which}
26387 @opindex mcmodel
26388 Set the code model to one of
26389
26390 @table @samp
26391 @item medlow
26392 The Medium/Low code model: 64-bit addresses, programs
26393 must be linked in the low 32 bits of memory. Programs can be statically
26394 or dynamically linked.
26395
26396 @item medmid
26397 The Medium/Middle code model: 64-bit addresses, programs
26398 must be linked in the low 44 bits of memory, the text and data segments must
26399 be less than 2GB in size and the data segment must be located within 2GB of
26400 the text segment.
26401
26402 @item medany
26403 The Medium/Anywhere code model: 64-bit addresses, programs
26404 may be linked anywhere in memory, the text and data segments must be less
26405 than 2GB in size and the data segment must be located within 2GB of the
26406 text segment.
26407
26408 @item embmedany
26409 The Medium/Anywhere code model for embedded systems:
26410 64-bit addresses, the text and data segments must be less than 2GB in
26411 size, both starting anywhere in memory (determined at link time). The
26412 global register %g4 points to the base of the data segment. Programs
26413 are statically linked and PIC is not supported.
26414 @end table
26415
26416 @item -mmemory-model=@var{mem-model}
26417 @opindex mmemory-model
26418 Set the memory model in force on the processor to one of
26419
26420 @table @samp
26421 @item default
26422 The default memory model for the processor and operating system.
26423
26424 @item rmo
26425 Relaxed Memory Order
26426
26427 @item pso
26428 Partial Store Order
26429
26430 @item tso
26431 Total Store Order
26432
26433 @item sc
26434 Sequential Consistency
26435 @end table
26436
26437 These memory models are formally defined in Appendix D of the SPARC-V9
26438 architecture manual, as set in the processor's @code{PSTATE.MM} field.
26439
26440 @item -mstack-bias
26441 @itemx -mno-stack-bias
26442 @opindex mstack-bias
26443 @opindex mno-stack-bias
26444 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
26445 frame pointer if present, are offset by @minus{}2047 which must be added back
26446 when making stack frame references. This is the default in 64-bit mode.
26447 Otherwise, assume no such offset is present.
26448 @end table
26449
26450 @node SPU Options
26451 @subsection SPU Options
26452 @cindex SPU options
26453
26454 These @samp{-m} options are supported on the SPU:
26455
26456 @table @gcctabopt
26457 @item -mwarn-reloc
26458 @itemx -merror-reloc
26459 @opindex mwarn-reloc
26460 @opindex merror-reloc
26461
26462 The loader for SPU does not handle dynamic relocations. By default, GCC
26463 gives an error when it generates code that requires a dynamic
26464 relocation. @option{-mno-error-reloc} disables the error,
26465 @option{-mwarn-reloc} generates a warning instead.
26466
26467 @item -msafe-dma
26468 @itemx -munsafe-dma
26469 @opindex msafe-dma
26470 @opindex munsafe-dma
26471
26472 Instructions that initiate or test completion of DMA must not be
26473 reordered with respect to loads and stores of the memory that is being
26474 accessed.
26475 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
26476 memory accesses, but that can lead to inefficient code in places where the
26477 memory is known to not change. Rather than mark the memory as volatile,
26478 you can use @option{-msafe-dma} to tell the compiler to treat
26479 the DMA instructions as potentially affecting all memory.
26480
26481 @item -mbranch-hints
26482 @opindex mbranch-hints
26483
26484 By default, GCC generates a branch hint instruction to avoid
26485 pipeline stalls for always-taken or probably-taken branches. A hint
26486 is not generated closer than 8 instructions away from its branch.
26487 There is little reason to disable them, except for debugging purposes,
26488 or to make an object a little bit smaller.
26489
26490 @item -msmall-mem
26491 @itemx -mlarge-mem
26492 @opindex msmall-mem
26493 @opindex mlarge-mem
26494
26495 By default, GCC generates code assuming that addresses are never larger
26496 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
26497 a full 32-bit address.
26498
26499 @item -mstdmain
26500 @opindex mstdmain
26501
26502 By default, GCC links against startup code that assumes the SPU-style
26503 main function interface (which has an unconventional parameter list).
26504 With @option{-mstdmain}, GCC links your program against startup
26505 code that assumes a C99-style interface to @code{main}, including a
26506 local copy of @code{argv} strings.
26507
26508 @item -mfixed-range=@var{register-range}
26509 @opindex mfixed-range
26510 Generate code treating the given register range as fixed registers.
26511 A fixed register is one that the register allocator cannot use. This is
26512 useful when compiling kernel code. A register range is specified as
26513 two registers separated by a dash. Multiple register ranges can be
26514 specified separated by a comma.
26515
26516 @item -mea32
26517 @itemx -mea64
26518 @opindex mea32
26519 @opindex mea64
26520 Compile code assuming that pointers to the PPU address space accessed
26521 via the @code{__ea} named address space qualifier are either 32 or 64
26522 bits wide. The default is 32 bits. As this is an ABI-changing option,
26523 all object code in an executable must be compiled with the same setting.
26524
26525 @item -maddress-space-conversion
26526 @itemx -mno-address-space-conversion
26527 @opindex maddress-space-conversion
26528 @opindex mno-address-space-conversion
26529 Allow/disallow treating the @code{__ea} address space as superset
26530 of the generic address space. This enables explicit type casts
26531 between @code{__ea} and generic pointer as well as implicit
26532 conversions of generic pointers to @code{__ea} pointers. The
26533 default is to allow address space pointer conversions.
26534
26535 @item -mcache-size=@var{cache-size}
26536 @opindex mcache-size
26537 This option controls the version of libgcc that the compiler links to an
26538 executable and selects a software-managed cache for accessing variables
26539 in the @code{__ea} address space with a particular cache size. Possible
26540 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
26541 and @samp{128}. The default cache size is 64KB.
26542
26543 @item -matomic-updates
26544 @itemx -mno-atomic-updates
26545 @opindex matomic-updates
26546 @opindex mno-atomic-updates
26547 This option controls the version of libgcc that the compiler links to an
26548 executable and selects whether atomic updates to the software-managed
26549 cache of PPU-side variables are used. If you use atomic updates, changes
26550 to a PPU variable from SPU code using the @code{__ea} named address space
26551 qualifier do not interfere with changes to other PPU variables residing
26552 in the same cache line from PPU code. If you do not use atomic updates,
26553 such interference may occur; however, writing back cache lines is
26554 more efficient. The default behavior is to use atomic updates.
26555
26556 @item -mdual-nops
26557 @itemx -mdual-nops=@var{n}
26558 @opindex mdual-nops
26559 By default, GCC inserts NOPs to increase dual issue when it expects
26560 it to increase performance. @var{n} can be a value from 0 to 10. A
26561 smaller @var{n} inserts fewer NOPs. 10 is the default, 0 is the
26562 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
26563
26564 @item -mhint-max-nops=@var{n}
26565 @opindex mhint-max-nops
26566 Maximum number of NOPs to insert for a branch hint. A branch hint must
26567 be at least 8 instructions away from the branch it is affecting. GCC
26568 inserts up to @var{n} NOPs to enforce this, otherwise it does not
26569 generate the branch hint.
26570
26571 @item -mhint-max-distance=@var{n}
26572 @opindex mhint-max-distance
26573 The encoding of the branch hint instruction limits the hint to be within
26574 256 instructions of the branch it is affecting. By default, GCC makes
26575 sure it is within 125.
26576
26577 @item -msafe-hints
26578 @opindex msafe-hints
26579 Work around a hardware bug that causes the SPU to stall indefinitely.
26580 By default, GCC inserts the @code{hbrp} instruction to make sure
26581 this stall won't happen.
26582
26583 @end table
26584
26585 @node System V Options
26586 @subsection Options for System V
26587
26588 These additional options are available on System V Release 4 for
26589 compatibility with other compilers on those systems:
26590
26591 @table @gcctabopt
26592 @item -G
26593 @opindex G
26594 Create a shared object.
26595 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
26596
26597 @item -Qy
26598 @opindex Qy
26599 Identify the versions of each tool used by the compiler, in a
26600 @code{.ident} assembler directive in the output.
26601
26602 @item -Qn
26603 @opindex Qn
26604 Refrain from adding @code{.ident} directives to the output file (this is
26605 the default).
26606
26607 @item -YP,@var{dirs}
26608 @opindex YP
26609 Search the directories @var{dirs}, and no others, for libraries
26610 specified with @option{-l}.
26611
26612 @item -Ym,@var{dir}
26613 @opindex Ym
26614 Look in the directory @var{dir} to find the M4 preprocessor.
26615 The assembler uses this option.
26616 @c This is supposed to go with a -Yd for predefined M4 macro files, but
26617 @c the generic assembler that comes with Solaris takes just -Ym.
26618 @end table
26619
26620 @node TILE-Gx Options
26621 @subsection TILE-Gx Options
26622 @cindex TILE-Gx options
26623
26624 These @samp{-m} options are supported on the TILE-Gx:
26625
26626 @table @gcctabopt
26627 @item -mcmodel=small
26628 @opindex mcmodel=small
26629 Generate code for the small model. The distance for direct calls is
26630 limited to 500M in either direction. PC-relative addresses are 32
26631 bits. Absolute addresses support the full address range.
26632
26633 @item -mcmodel=large
26634 @opindex mcmodel=large
26635 Generate code for the large model. There is no limitation on call
26636 distance, pc-relative addresses, or absolute addresses.
26637
26638 @item -mcpu=@var{name}
26639 @opindex mcpu
26640 Selects the type of CPU to be targeted. Currently the only supported
26641 type is @samp{tilegx}.
26642
26643 @item -m32
26644 @itemx -m64
26645 @opindex m32
26646 @opindex m64
26647 Generate code for a 32-bit or 64-bit environment. The 32-bit
26648 environment sets int, long, and pointer to 32 bits. The 64-bit
26649 environment sets int to 32 bits and long and pointer to 64 bits.
26650
26651 @item -mbig-endian
26652 @itemx -mlittle-endian
26653 @opindex mbig-endian
26654 @opindex mlittle-endian
26655 Generate code in big/little endian mode, respectively.
26656 @end table
26657
26658 @node TILEPro Options
26659 @subsection TILEPro Options
26660 @cindex TILEPro options
26661
26662 These @samp{-m} options are supported on the TILEPro:
26663
26664 @table @gcctabopt
26665 @item -mcpu=@var{name}
26666 @opindex mcpu
26667 Selects the type of CPU to be targeted. Currently the only supported
26668 type is @samp{tilepro}.
26669
26670 @item -m32
26671 @opindex m32
26672 Generate code for a 32-bit environment, which sets int, long, and
26673 pointer to 32 bits. This is the only supported behavior so the flag
26674 is essentially ignored.
26675 @end table
26676
26677 @node V850 Options
26678 @subsection V850 Options
26679 @cindex V850 Options
26680
26681 These @samp{-m} options are defined for V850 implementations:
26682
26683 @table @gcctabopt
26684 @item -mlong-calls
26685 @itemx -mno-long-calls
26686 @opindex mlong-calls
26687 @opindex mno-long-calls
26688 Treat all calls as being far away (near). If calls are assumed to be
26689 far away, the compiler always loads the function's address into a
26690 register, and calls indirect through the pointer.
26691
26692 @item -mno-ep
26693 @itemx -mep
26694 @opindex mno-ep
26695 @opindex mep
26696 Do not optimize (do optimize) basic blocks that use the same index
26697 pointer 4 or more times to copy pointer into the @code{ep} register, and
26698 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
26699 option is on by default if you optimize.
26700
26701 @item -mno-prolog-function
26702 @itemx -mprolog-function
26703 @opindex mno-prolog-function
26704 @opindex mprolog-function
26705 Do not use (do use) external functions to save and restore registers
26706 at the prologue and epilogue of a function. The external functions
26707 are slower, but use less code space if more than one function saves
26708 the same number of registers. The @option{-mprolog-function} option
26709 is on by default if you optimize.
26710
26711 @item -mspace
26712 @opindex mspace
26713 Try to make the code as small as possible. At present, this just turns
26714 on the @option{-mep} and @option{-mprolog-function} options.
26715
26716 @item -mtda=@var{n}
26717 @opindex mtda
26718 Put static or global variables whose size is @var{n} bytes or less into
26719 the tiny data area that register @code{ep} points to. The tiny data
26720 area can hold up to 256 bytes in total (128 bytes for byte references).
26721
26722 @item -msda=@var{n}
26723 @opindex msda
26724 Put static or global variables whose size is @var{n} bytes or less into
26725 the small data area that register @code{gp} points to. The small data
26726 area can hold up to 64 kilobytes.
26727
26728 @item -mzda=@var{n}
26729 @opindex mzda
26730 Put static or global variables whose size is @var{n} bytes or less into
26731 the first 32 kilobytes of memory.
26732
26733 @item -mv850
26734 @opindex mv850
26735 Specify that the target processor is the V850.
26736
26737 @item -mv850e3v5
26738 @opindex mv850e3v5
26739 Specify that the target processor is the V850E3V5. The preprocessor
26740 constant @code{__v850e3v5__} is defined if this option is used.
26741
26742 @item -mv850e2v4
26743 @opindex mv850e2v4
26744 Specify that the target processor is the V850E3V5. This is an alias for
26745 the @option{-mv850e3v5} option.
26746
26747 @item -mv850e2v3
26748 @opindex mv850e2v3
26749 Specify that the target processor is the V850E2V3. The preprocessor
26750 constant @code{__v850e2v3__} is defined if this option is used.
26751
26752 @item -mv850e2
26753 @opindex mv850e2
26754 Specify that the target processor is the V850E2. The preprocessor
26755 constant @code{__v850e2__} is defined if this option is used.
26756
26757 @item -mv850e1
26758 @opindex mv850e1
26759 Specify that the target processor is the V850E1. The preprocessor
26760 constants @code{__v850e1__} and @code{__v850e__} are defined if
26761 this option is used.
26762
26763 @item -mv850es
26764 @opindex mv850es
26765 Specify that the target processor is the V850ES. This is an alias for
26766 the @option{-mv850e1} option.
26767
26768 @item -mv850e
26769 @opindex mv850e
26770 Specify that the target processor is the V850E@. The preprocessor
26771 constant @code{__v850e__} is defined if this option is used.
26772
26773 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
26774 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
26775 are defined then a default target processor is chosen and the
26776 relevant @samp{__v850*__} preprocessor constant is defined.
26777
26778 The preprocessor constants @code{__v850} and @code{__v851__} are always
26779 defined, regardless of which processor variant is the target.
26780
26781 @item -mdisable-callt
26782 @itemx -mno-disable-callt
26783 @opindex mdisable-callt
26784 @opindex mno-disable-callt
26785 This option suppresses generation of the @code{CALLT} instruction for the
26786 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
26787 architecture.
26788
26789 This option is enabled by default when the RH850 ABI is
26790 in use (see @option{-mrh850-abi}), and disabled by default when the
26791 GCC ABI is in use. If @code{CALLT} instructions are being generated
26792 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
26793
26794 @item -mrelax
26795 @itemx -mno-relax
26796 @opindex mrelax
26797 @opindex mno-relax
26798 Pass on (or do not pass on) the @option{-mrelax} command-line option
26799 to the assembler.
26800
26801 @item -mlong-jumps
26802 @itemx -mno-long-jumps
26803 @opindex mlong-jumps
26804 @opindex mno-long-jumps
26805 Disable (or re-enable) the generation of PC-relative jump instructions.
26806
26807 @item -msoft-float
26808 @itemx -mhard-float
26809 @opindex msoft-float
26810 @opindex mhard-float
26811 Disable (or re-enable) the generation of hardware floating point
26812 instructions. This option is only significant when the target
26813 architecture is @samp{V850E2V3} or higher. If hardware floating point
26814 instructions are being generated then the C preprocessor symbol
26815 @code{__FPU_OK__} is defined, otherwise the symbol
26816 @code{__NO_FPU__} is defined.
26817
26818 @item -mloop
26819 @opindex mloop
26820 Enables the use of the e3v5 LOOP instruction. The use of this
26821 instruction is not enabled by default when the e3v5 architecture is
26822 selected because its use is still experimental.
26823
26824 @item -mrh850-abi
26825 @itemx -mghs
26826 @opindex mrh850-abi
26827 @opindex mghs
26828 Enables support for the RH850 version of the V850 ABI. This is the
26829 default. With this version of the ABI the following rules apply:
26830
26831 @itemize
26832 @item
26833 Integer sized structures and unions are returned via a memory pointer
26834 rather than a register.
26835
26836 @item
26837 Large structures and unions (more than 8 bytes in size) are passed by
26838 value.
26839
26840 @item
26841 Functions are aligned to 16-bit boundaries.
26842
26843 @item
26844 The @option{-m8byte-align} command-line option is supported.
26845
26846 @item
26847 The @option{-mdisable-callt} command-line option is enabled by
26848 default. The @option{-mno-disable-callt} command-line option is not
26849 supported.
26850 @end itemize
26851
26852 When this version of the ABI is enabled the C preprocessor symbol
26853 @code{__V850_RH850_ABI__} is defined.
26854
26855 @item -mgcc-abi
26856 @opindex mgcc-abi
26857 Enables support for the old GCC version of the V850 ABI. With this
26858 version of the ABI the following rules apply:
26859
26860 @itemize
26861 @item
26862 Integer sized structures and unions are returned in register @code{r10}.
26863
26864 @item
26865 Large structures and unions (more than 8 bytes in size) are passed by
26866 reference.
26867
26868 @item
26869 Functions are aligned to 32-bit boundaries, unless optimizing for
26870 size.
26871
26872 @item
26873 The @option{-m8byte-align} command-line option is not supported.
26874
26875 @item
26876 The @option{-mdisable-callt} command-line option is supported but not
26877 enabled by default.
26878 @end itemize
26879
26880 When this version of the ABI is enabled the C preprocessor symbol
26881 @code{__V850_GCC_ABI__} is defined.
26882
26883 @item -m8byte-align
26884 @itemx -mno-8byte-align
26885 @opindex m8byte-align
26886 @opindex mno-8byte-align
26887 Enables support for @code{double} and @code{long long} types to be
26888 aligned on 8-byte boundaries. The default is to restrict the
26889 alignment of all objects to at most 4-bytes. When
26890 @option{-m8byte-align} is in effect the C preprocessor symbol
26891 @code{__V850_8BYTE_ALIGN__} is defined.
26892
26893 @item -mbig-switch
26894 @opindex mbig-switch
26895 Generate code suitable for big switch tables. Use this option only if
26896 the assembler/linker complain about out of range branches within a switch
26897 table.
26898
26899 @item -mapp-regs
26900 @opindex mapp-regs
26901 This option causes r2 and r5 to be used in the code generated by
26902 the compiler. This setting is the default.
26903
26904 @item -mno-app-regs
26905 @opindex mno-app-regs
26906 This option causes r2 and r5 to be treated as fixed registers.
26907
26908 @end table
26909
26910 @node VAX Options
26911 @subsection VAX Options
26912 @cindex VAX options
26913
26914 These @samp{-m} options are defined for the VAX:
26915
26916 @table @gcctabopt
26917 @item -munix
26918 @opindex munix
26919 Do not output certain jump instructions (@code{aobleq} and so on)
26920 that the Unix assembler for the VAX cannot handle across long
26921 ranges.
26922
26923 @item -mgnu
26924 @opindex mgnu
26925 Do output those jump instructions, on the assumption that the
26926 GNU assembler is being used.
26927
26928 @item -mg
26929 @opindex mg
26930 Output code for G-format floating-point numbers instead of D-format.
26931 @end table
26932
26933 @node Visium Options
26934 @subsection Visium Options
26935 @cindex Visium options
26936
26937 @table @gcctabopt
26938
26939 @item -mdebug
26940 @opindex mdebug
26941 A program which performs file I/O and is destined to run on an MCM target
26942 should be linked with this option. It causes the libraries libc.a and
26943 libdebug.a to be linked. The program should be run on the target under
26944 the control of the GDB remote debugging stub.
26945
26946 @item -msim
26947 @opindex msim
26948 A program which performs file I/O and is destined to run on the simulator
26949 should be linked with option. This causes libraries libc.a and libsim.a to
26950 be linked.
26951
26952 @item -mfpu
26953 @itemx -mhard-float
26954 @opindex mfpu
26955 @opindex mhard-float
26956 Generate code containing floating-point instructions. This is the
26957 default.
26958
26959 @item -mno-fpu
26960 @itemx -msoft-float
26961 @opindex mno-fpu
26962 @opindex msoft-float
26963 Generate code containing library calls for floating-point.
26964
26965 @option{-msoft-float} changes the calling convention in the output file;
26966 therefore, it is only useful if you compile @emph{all} of a program with
26967 this option. In particular, you need to compile @file{libgcc.a}, the
26968 library that comes with GCC, with @option{-msoft-float} in order for
26969 this to work.
26970
26971 @item -mcpu=@var{cpu_type}
26972 @opindex mcpu
26973 Set the instruction set, register set, and instruction scheduling parameters
26974 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
26975 @samp{mcm}, @samp{gr5} and @samp{gr6}.
26976
26977 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
26978
26979 By default (unless configured otherwise), GCC generates code for the GR5
26980 variant of the Visium architecture.
26981
26982 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
26983 architecture. The only difference from GR5 code is that the compiler will
26984 generate block move instructions.
26985
26986 @item -mtune=@var{cpu_type}
26987 @opindex mtune
26988 Set the instruction scheduling parameters for machine type @var{cpu_type},
26989 but do not set the instruction set or register set that the option
26990 @option{-mcpu=@var{cpu_type}} would.
26991
26992 @item -msv-mode
26993 @opindex msv-mode
26994 Generate code for the supervisor mode, where there are no restrictions on
26995 the access to general registers. This is the default.
26996
26997 @item -muser-mode
26998 @opindex muser-mode
26999 Generate code for the user mode, where the access to some general registers
27000 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
27001 mode; on the GR6, only registers r29 to r31 are affected.
27002 @end table
27003
27004 @node VMS Options
27005 @subsection VMS Options
27006
27007 These @samp{-m} options are defined for the VMS implementations:
27008
27009 @table @gcctabopt
27010 @item -mvms-return-codes
27011 @opindex mvms-return-codes
27012 Return VMS condition codes from @code{main}. The default is to return POSIX-style
27013 condition (e.g.@: error) codes.
27014
27015 @item -mdebug-main=@var{prefix}
27016 @opindex mdebug-main=@var{prefix}
27017 Flag the first routine whose name starts with @var{prefix} as the main
27018 routine for the debugger.
27019
27020 @item -mmalloc64
27021 @opindex mmalloc64
27022 Default to 64-bit memory allocation routines.
27023
27024 @item -mpointer-size=@var{size}
27025 @opindex mpointer-size=@var{size}
27026 Set the default size of pointers. Possible options for @var{size} are
27027 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
27028 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
27029 The later option disables @code{pragma pointer_size}.
27030 @end table
27031
27032 @node VxWorks Options
27033 @subsection VxWorks Options
27034 @cindex VxWorks Options
27035
27036 The options in this section are defined for all VxWorks targets.
27037 Options specific to the target hardware are listed with the other
27038 options for that target.
27039
27040 @table @gcctabopt
27041 @item -mrtp
27042 @opindex mrtp
27043 GCC can generate code for both VxWorks kernels and real time processes
27044 (RTPs). This option switches from the former to the latter. It also
27045 defines the preprocessor macro @code{__RTP__}.
27046
27047 @item -non-static
27048 @opindex non-static
27049 Link an RTP executable against shared libraries rather than static
27050 libraries. The options @option{-static} and @option{-shared} can
27051 also be used for RTPs (@pxref{Link Options}); @option{-static}
27052 is the default.
27053
27054 @item -Bstatic
27055 @itemx -Bdynamic
27056 @opindex Bstatic
27057 @opindex Bdynamic
27058 These options are passed down to the linker. They are defined for
27059 compatibility with Diab.
27060
27061 @item -Xbind-lazy
27062 @opindex Xbind-lazy
27063 Enable lazy binding of function calls. This option is equivalent to
27064 @option{-Wl,-z,now} and is defined for compatibility with Diab.
27065
27066 @item -Xbind-now
27067 @opindex Xbind-now
27068 Disable lazy binding of function calls. This option is the default and
27069 is defined for compatibility with Diab.
27070 @end table
27071
27072 @node x86 Options
27073 @subsection x86 Options
27074 @cindex x86 Options
27075
27076 These @samp{-m} options are defined for the x86 family of computers.
27077
27078 @table @gcctabopt
27079
27080 @item -march=@var{cpu-type}
27081 @opindex march
27082 Generate instructions for the machine type @var{cpu-type}. In contrast to
27083 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
27084 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
27085 to generate code that may not run at all on processors other than the one
27086 indicated. Specifying @option{-march=@var{cpu-type}} implies
27087 @option{-mtune=@var{cpu-type}}.
27088
27089 The choices for @var{cpu-type} are:
27090
27091 @table @samp
27092 @item native
27093 This selects the CPU to generate code for at compilation time by determining
27094 the processor type of the compiling machine. Using @option{-march=native}
27095 enables all instruction subsets supported by the local machine (hence
27096 the result might not run on different machines). Using @option{-mtune=native}
27097 produces code optimized for the local machine under the constraints
27098 of the selected instruction set.
27099
27100 @item x86-64
27101 A generic CPU with 64-bit extensions.
27102
27103 @item i386
27104 Original Intel i386 CPU@.
27105
27106 @item i486
27107 Intel i486 CPU@. (No scheduling is implemented for this chip.)
27108
27109 @item i586
27110 @itemx pentium
27111 Intel Pentium CPU with no MMX support.
27112
27113 @item lakemont
27114 Intel Lakemont MCU, based on Intel Pentium CPU.
27115
27116 @item pentium-mmx
27117 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
27118
27119 @item pentiumpro
27120 Intel Pentium Pro CPU@.
27121
27122 @item i686
27123 When used with @option{-march}, the Pentium Pro
27124 instruction set is used, so the code runs on all i686 family chips.
27125 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
27126
27127 @item pentium2
27128 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
27129 support.
27130
27131 @item pentium3
27132 @itemx pentium3m
27133 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
27134 set support.
27135
27136 @item pentium-m
27137 Intel Pentium M; low-power version of Intel Pentium III CPU
27138 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
27139
27140 @item pentium4
27141 @itemx pentium4m
27142 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
27143
27144 @item prescott
27145 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
27146 set support.
27147
27148 @item nocona
27149 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
27150 SSE2 and SSE3 instruction set support.
27151
27152 @item core2
27153 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
27154 instruction set support.
27155
27156 @item nehalem
27157 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27158 SSE4.1, SSE4.2 and POPCNT instruction set support.
27159
27160 @item westmere
27161 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27162 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
27163
27164 @item sandybridge
27165 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27166 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
27167
27168 @item ivybridge
27169 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27170 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
27171 instruction set support.
27172
27173 @item haswell
27174 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27175 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27176 BMI, BMI2 and F16C instruction set support.
27177
27178 @item broadwell
27179 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27180 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27181 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
27182
27183 @item skylake
27184 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27185 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27186 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
27187 XSAVES instruction set support.
27188
27189 @item bonnell
27190 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
27191 instruction set support.
27192
27193 @item silvermont
27194 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27195 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
27196
27197 @item goldmont
27198 Intel Goldmont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27199 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT and FSGSBASE
27200 instruction set support.
27201
27202 @item goldmont-plus
27203 Intel Goldmont Plus CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27204 SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE,
27205 PTWRITE, RDPID, SGX and UMIP instruction set support.
27206
27207 @item tremont
27208 Intel Tremont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27209 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, PTWRITE,
27210 RDPID, SGX, UMIP, GFNI-SSE, CLWB and ENCLV instruction set support.
27211
27212 @item knl
27213 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27214 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27215 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
27216 AVX512CD instruction set support.
27217
27218 @item knm
27219 Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27220 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27221 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
27222 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
27223
27224 @item skylake-avx512
27225 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27226 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27227 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
27228 CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
27229
27230 @item cannonlake
27231 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27232 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27233 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27234 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27235 AVX512IFMA, SHA and UMIP instruction set support.
27236
27237 @item icelake-client
27238 Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27239 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27240 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27241 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27242 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27243 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
27244
27245 @item icelake-server
27246 Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27247 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27248 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27249 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27250 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27251 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG and WBNOINVD instruction
27252 set support.
27253
27254 @item cascadelake
27255 Intel Cascadelake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27256 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
27257 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,
27258 AVX512VL, AVX512BW, AVX512DQ, AVX512CD and AVX512VNNI instruction set support.
27259
27260 @item k6
27261 AMD K6 CPU with MMX instruction set support.
27262
27263 @item k6-2
27264 @itemx k6-3
27265 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
27266
27267 @item athlon
27268 @itemx athlon-tbird
27269 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
27270 support.
27271
27272 @item athlon-4
27273 @itemx athlon-xp
27274 @itemx athlon-mp
27275 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
27276 instruction set support.
27277
27278 @item k8
27279 @itemx opteron
27280 @itemx athlon64
27281 @itemx athlon-fx
27282 Processors based on the AMD K8 core with x86-64 instruction set support,
27283 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
27284 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
27285 instruction set extensions.)
27286
27287 @item k8-sse3
27288 @itemx opteron-sse3
27289 @itemx athlon64-sse3
27290 Improved versions of AMD K8 cores with SSE3 instruction set support.
27291
27292 @item amdfam10
27293 @itemx barcelona
27294 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
27295 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
27296 instruction set extensions.)
27297
27298 @item bdver1
27299 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
27300 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
27301 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
27302 @item bdver2
27303 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27304 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
27305 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
27306 extensions.)
27307 @item bdver3
27308 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27309 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
27310 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
27311 64-bit instruction set extensions.
27312 @item bdver4
27313 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27314 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
27315 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
27316 SSE4.2, ABM and 64-bit instruction set extensions.
27317
27318 @item znver1
27319 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27320 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
27321 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
27322 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27323 instruction set extensions.
27324 @item znver2
27325 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27326 supersets BMI, BMI2, ,CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
27327 MWAITX, SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
27328 SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27329 instruction set extensions.)
27330
27331
27332 @item btver1
27333 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
27334 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
27335 instruction set extensions.)
27336
27337 @item btver2
27338 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
27339 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
27340 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
27341
27342 @item winchip-c6
27343 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
27344 set support.
27345
27346 @item winchip2
27347 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
27348 instruction set support.
27349
27350 @item c3
27351 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
27352 (No scheduling is implemented for this chip.)
27353
27354 @item c3-2
27355 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
27356 (No scheduling is implemented for this chip.)
27357
27358 @item c7
27359 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27360 (No scheduling is implemented for this chip.)
27361
27362 @item samuel-2
27363 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
27364 (No scheduling is implemented for this chip.)
27365
27366 @item nehemiah
27367 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
27368 (No scheduling is implemented for this chip.)
27369
27370 @item esther
27371 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27372 (No scheduling is implemented for this chip.)
27373
27374 @item eden-x2
27375 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
27376 (No scheduling is implemented for this chip.)
27377
27378 @item eden-x4
27379 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
27380 AVX and AVX2 instruction set support.
27381 (No scheduling is implemented for this chip.)
27382
27383 @item nano
27384 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27385 instruction set support.
27386 (No scheduling is implemented for this chip.)
27387
27388 @item nano-1000
27389 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27390 instruction set support.
27391 (No scheduling is implemented for this chip.)
27392
27393 @item nano-2000
27394 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27395 instruction set support.
27396 (No scheduling is implemented for this chip.)
27397
27398 @item nano-3000
27399 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27400 instruction set support.
27401 (No scheduling is implemented for this chip.)
27402
27403 @item nano-x2
27404 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27405 instruction set support.
27406 (No scheduling is implemented for this chip.)
27407
27408 @item nano-x4
27409 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27410 instruction set support.
27411 (No scheduling is implemented for this chip.)
27412
27413 @item geode
27414 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
27415 @end table
27416
27417 @item -mtune=@var{cpu-type}
27418 @opindex mtune
27419 Tune to @var{cpu-type} everything applicable about the generated code, except
27420 for the ABI and the set of available instructions.
27421 While picking a specific @var{cpu-type} schedules things appropriately
27422 for that particular chip, the compiler does not generate any code that
27423 cannot run on the default machine type unless you use a
27424 @option{-march=@var{cpu-type}} option.
27425 For example, if GCC is configured for i686-pc-linux-gnu
27426 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
27427 but still runs on i686 machines.
27428
27429 The choices for @var{cpu-type} are the same as for @option{-march}.
27430 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
27431
27432 @table @samp
27433 @item generic
27434 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
27435 If you know the CPU on which your code will run, then you should use
27436 the corresponding @option{-mtune} or @option{-march} option instead of
27437 @option{-mtune=generic}. But, if you do not know exactly what CPU users
27438 of your application will have, then you should use this option.
27439
27440 As new processors are deployed in the marketplace, the behavior of this
27441 option will change. Therefore, if you upgrade to a newer version of
27442 GCC, code generation controlled by this option will change to reflect
27443 the processors
27444 that are most common at the time that version of GCC is released.
27445
27446 There is no @option{-march=generic} option because @option{-march}
27447 indicates the instruction set the compiler can use, and there is no
27448 generic instruction set applicable to all processors. In contrast,
27449 @option{-mtune} indicates the processor (or, in this case, collection of
27450 processors) for which the code is optimized.
27451
27452 @item intel
27453 Produce code optimized for the most current Intel processors, which are
27454 Haswell and Silvermont for this version of GCC. If you know the CPU
27455 on which your code will run, then you should use the corresponding
27456 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
27457 But, if you want your application performs better on both Haswell and
27458 Silvermont, then you should use this option.
27459
27460 As new Intel processors are deployed in the marketplace, the behavior of
27461 this option will change. Therefore, if you upgrade to a newer version of
27462 GCC, code generation controlled by this option will change to reflect
27463 the most current Intel processors at the time that version of GCC is
27464 released.
27465
27466 There is no @option{-march=intel} option because @option{-march} indicates
27467 the instruction set the compiler can use, and there is no common
27468 instruction set applicable to all processors. In contrast,
27469 @option{-mtune} indicates the processor (or, in this case, collection of
27470 processors) for which the code is optimized.
27471 @end table
27472
27473 @item -mcpu=@var{cpu-type}
27474 @opindex mcpu
27475 A deprecated synonym for @option{-mtune}.
27476
27477 @item -mfpmath=@var{unit}
27478 @opindex mfpmath
27479 Generate floating-point arithmetic for selected unit @var{unit}. The choices
27480 for @var{unit} are:
27481
27482 @table @samp
27483 @item 387
27484 Use the standard 387 floating-point coprocessor present on the majority of chips and
27485 emulated otherwise. Code compiled with this option runs almost everywhere.
27486 The temporary results are computed in 80-bit precision instead of the precision
27487 specified by the type, resulting in slightly different results compared to most
27488 of other chips. See @option{-ffloat-store} for more detailed description.
27489
27490 This is the default choice for non-Darwin x86-32 targets.
27491
27492 @item sse
27493 Use scalar floating-point instructions present in the SSE instruction set.
27494 This instruction set is supported by Pentium III and newer chips,
27495 and in the AMD line
27496 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
27497 instruction set supports only single-precision arithmetic, thus the double and
27498 extended-precision arithmetic are still done using 387. A later version, present
27499 only in Pentium 4 and AMD x86-64 chips, supports double-precision
27500 arithmetic too.
27501
27502 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
27503 or @option{-msse2} switches to enable SSE extensions and make this option
27504 effective. For the x86-64 compiler, these extensions are enabled by default.
27505
27506 The resulting code should be considerably faster in the majority of cases and avoid
27507 the numerical instability problems of 387 code, but may break some existing
27508 code that expects temporaries to be 80 bits.
27509
27510 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
27511 and the default choice for x86-32 targets with the SSE2 instruction set
27512 when @option{-ffast-math} is enabled.
27513
27514 @item sse,387
27515 @itemx sse+387
27516 @itemx both
27517 Attempt to utilize both instruction sets at once. This effectively doubles the
27518 amount of available registers, and on chips with separate execution units for
27519 387 and SSE the execution resources too. Use this option with care, as it is
27520 still experimental, because the GCC register allocator does not model separate
27521 functional units well, resulting in unstable performance.
27522 @end table
27523
27524 @item -masm=@var{dialect}
27525 @opindex masm=@var{dialect}
27526 Output assembly instructions using selected @var{dialect}. Also affects
27527 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
27528 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
27529 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
27530 not support @samp{intel}.
27531
27532 @item -mieee-fp
27533 @itemx -mno-ieee-fp
27534 @opindex mieee-fp
27535 @opindex mno-ieee-fp
27536 Control whether or not the compiler uses IEEE floating-point
27537 comparisons. These correctly handle the case where the result of a
27538 comparison is unordered.
27539
27540 @item -m80387
27541 @itemx -mhard-float
27542 @opindex 80387
27543 @opindex mhard-float
27544 Generate output containing 80387 instructions for floating point.
27545
27546 @item -mno-80387
27547 @itemx -msoft-float
27548 @opindex no-80387
27549 @opindex msoft-float
27550 Generate output containing library calls for floating point.
27551
27552 @strong{Warning:} the requisite libraries are not part of GCC@.
27553 Normally the facilities of the machine's usual C compiler are used, but
27554 this cannot be done directly in cross-compilation. You must make your
27555 own arrangements to provide suitable library functions for
27556 cross-compilation.
27557
27558 On machines where a function returns floating-point results in the 80387
27559 register stack, some floating-point opcodes may be emitted even if
27560 @option{-msoft-float} is used.
27561
27562 @item -mno-fp-ret-in-387
27563 @opindex mno-fp-ret-in-387
27564 @opindex mfp-ret-in-387
27565 Do not use the FPU registers for return values of functions.
27566
27567 The usual calling convention has functions return values of types
27568 @code{float} and @code{double} in an FPU register, even if there
27569 is no FPU@. The idea is that the operating system should emulate
27570 an FPU@.
27571
27572 The option @option{-mno-fp-ret-in-387} causes such values to be returned
27573 in ordinary CPU registers instead.
27574
27575 @item -mno-fancy-math-387
27576 @opindex mno-fancy-math-387
27577 @opindex mfancy-math-387
27578 Some 387 emulators do not support the @code{sin}, @code{cos} and
27579 @code{sqrt} instructions for the 387. Specify this option to avoid
27580 generating those instructions.
27581 This option is overridden when @option{-march}
27582 indicates that the target CPU always has an FPU and so the
27583 instruction does not need emulation. These
27584 instructions are not generated unless you also use the
27585 @option{-funsafe-math-optimizations} switch.
27586
27587 @item -malign-double
27588 @itemx -mno-align-double
27589 @opindex malign-double
27590 @opindex mno-align-double
27591 Control whether GCC aligns @code{double}, @code{long double}, and
27592 @code{long long} variables on a two-word boundary or a one-word
27593 boundary. Aligning @code{double} variables on a two-word boundary
27594 produces code that runs somewhat faster on a Pentium at the
27595 expense of more memory.
27596
27597 On x86-64, @option{-malign-double} is enabled by default.
27598
27599 @strong{Warning:} if you use the @option{-malign-double} switch,
27600 structures containing the above types are aligned differently than
27601 the published application binary interface specifications for the x86-32
27602 and are not binary compatible with structures in code compiled
27603 without that switch.
27604
27605 @item -m96bit-long-double
27606 @itemx -m128bit-long-double
27607 @opindex m96bit-long-double
27608 @opindex m128bit-long-double
27609 These switches control the size of @code{long double} type. The x86-32
27610 application binary interface specifies the size to be 96 bits,
27611 so @option{-m96bit-long-double} is the default in 32-bit mode.
27612
27613 Modern architectures (Pentium and newer) prefer @code{long double}
27614 to be aligned to an 8- or 16-byte boundary. In arrays or structures
27615 conforming to the ABI, this is not possible. So specifying
27616 @option{-m128bit-long-double} aligns @code{long double}
27617 to a 16-byte boundary by padding the @code{long double} with an additional
27618 32-bit zero.
27619
27620 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
27621 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
27622
27623 Notice that neither of these options enable any extra precision over the x87
27624 standard of 80 bits for a @code{long double}.
27625
27626 @strong{Warning:} if you override the default value for your target ABI, this
27627 changes the size of
27628 structures and arrays containing @code{long double} variables,
27629 as well as modifying the function calling convention for functions taking
27630 @code{long double}. Hence they are not binary-compatible
27631 with code compiled without that switch.
27632
27633 @item -mlong-double-64
27634 @itemx -mlong-double-80
27635 @itemx -mlong-double-128
27636 @opindex mlong-double-64
27637 @opindex mlong-double-80
27638 @opindex mlong-double-128
27639 These switches control the size of @code{long double} type. A size
27640 of 64 bits makes the @code{long double} type equivalent to the @code{double}
27641 type. This is the default for 32-bit Bionic C library. A size
27642 of 128 bits makes the @code{long double} type equivalent to the
27643 @code{__float128} type. This is the default for 64-bit Bionic C library.
27644
27645 @strong{Warning:} if you override the default value for your target ABI, this
27646 changes the size of
27647 structures and arrays containing @code{long double} variables,
27648 as well as modifying the function calling convention for functions taking
27649 @code{long double}. Hence they are not binary-compatible
27650 with code compiled without that switch.
27651
27652 @item -malign-data=@var{type}
27653 @opindex malign-data
27654 Control how GCC aligns variables. Supported values for @var{type} are
27655 @samp{compat} uses increased alignment value compatible uses GCC 4.8
27656 and earlier, @samp{abi} uses alignment value as specified by the
27657 psABI, and @samp{cacheline} uses increased alignment value to match
27658 the cache line size. @samp{compat} is the default.
27659
27660 @item -mlarge-data-threshold=@var{threshold}
27661 @opindex mlarge-data-threshold
27662 When @option{-mcmodel=medium} is specified, data objects larger than
27663 @var{threshold} are placed in the large data section. This value must be the
27664 same across all objects linked into the binary, and defaults to 65535.
27665
27666 @item -mrtd
27667 @opindex mrtd
27668 Use a different function-calling convention, in which functions that
27669 take a fixed number of arguments return with the @code{ret @var{num}}
27670 instruction, which pops their arguments while returning. This saves one
27671 instruction in the caller since there is no need to pop the arguments
27672 there.
27673
27674 You can specify that an individual function is called with this calling
27675 sequence with the function attribute @code{stdcall}. You can also
27676 override the @option{-mrtd} option by using the function attribute
27677 @code{cdecl}. @xref{Function Attributes}.
27678
27679 @strong{Warning:} this calling convention is incompatible with the one
27680 normally used on Unix, so you cannot use it if you need to call
27681 libraries compiled with the Unix compiler.
27682
27683 Also, you must provide function prototypes for all functions that
27684 take variable numbers of arguments (including @code{printf});
27685 otherwise incorrect code is generated for calls to those
27686 functions.
27687
27688 In addition, seriously incorrect code results if you call a
27689 function with too many arguments. (Normally, extra arguments are
27690 harmlessly ignored.)
27691
27692 @item -mregparm=@var{num}
27693 @opindex mregparm
27694 Control how many registers are used to pass integer arguments. By
27695 default, no registers are used to pass arguments, and at most 3
27696 registers can be used. You can control this behavior for a specific
27697 function by using the function attribute @code{regparm}.
27698 @xref{Function Attributes}.
27699
27700 @strong{Warning:} if you use this switch, and
27701 @var{num} is nonzero, then you must build all modules with the same
27702 value, including any libraries. This includes the system libraries and
27703 startup modules.
27704
27705 @item -msseregparm
27706 @opindex msseregparm
27707 Use SSE register passing conventions for float and double arguments
27708 and return values. You can control this behavior for a specific
27709 function by using the function attribute @code{sseregparm}.
27710 @xref{Function Attributes}.
27711
27712 @strong{Warning:} if you use this switch then you must build all
27713 modules with the same value, including any libraries. This includes
27714 the system libraries and startup modules.
27715
27716 @item -mvect8-ret-in-mem
27717 @opindex mvect8-ret-in-mem
27718 Return 8-byte vectors in memory instead of MMX registers. This is the
27719 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
27720 Studio compilers until version 12. Later compiler versions (starting
27721 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
27722 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
27723 you need to remain compatible with existing code produced by those
27724 previous compiler versions or older versions of GCC@.
27725
27726 @item -mpc32
27727 @itemx -mpc64
27728 @itemx -mpc80
27729 @opindex mpc32
27730 @opindex mpc64
27731 @opindex mpc80
27732
27733 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
27734 is specified, the significands of results of floating-point operations are
27735 rounded to 24 bits (single precision); @option{-mpc64} rounds the
27736 significands of results of floating-point operations to 53 bits (double
27737 precision) and @option{-mpc80} rounds the significands of results of
27738 floating-point operations to 64 bits (extended double precision), which is
27739 the default. When this option is used, floating-point operations in higher
27740 precisions are not available to the programmer without setting the FPU
27741 control word explicitly.
27742
27743 Setting the rounding of floating-point operations to less than the default
27744 80 bits can speed some programs by 2% or more. Note that some mathematical
27745 libraries assume that extended-precision (80-bit) floating-point operations
27746 are enabled by default; routines in such libraries could suffer significant
27747 loss of accuracy, typically through so-called ``catastrophic cancellation'',
27748 when this option is used to set the precision to less than extended precision.
27749
27750 @item -mstackrealign
27751 @opindex mstackrealign
27752 Realign the stack at entry. On the x86, the @option{-mstackrealign}
27753 option generates an alternate prologue and epilogue that realigns the
27754 run-time stack if necessary. This supports mixing legacy codes that keep
27755 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
27756 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
27757 applicable to individual functions.
27758
27759 @item -mpreferred-stack-boundary=@var{num}
27760 @opindex mpreferred-stack-boundary
27761 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
27762 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
27763 the default is 4 (16 bytes or 128 bits).
27764
27765 @strong{Warning:} When generating code for the x86-64 architecture with
27766 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
27767 used to keep the stack boundary aligned to 8 byte boundary. Since
27768 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
27769 intended to be used in controlled environment where stack space is
27770 important limitation. This option leads to wrong code when functions
27771 compiled with 16 byte stack alignment (such as functions from a standard
27772 library) are called with misaligned stack. In this case, SSE
27773 instructions may lead to misaligned memory access traps. In addition,
27774 variable arguments are handled incorrectly for 16 byte aligned
27775 objects (including x87 long double and __int128), leading to wrong
27776 results. You must build all modules with
27777 @option{-mpreferred-stack-boundary=3}, including any libraries. This
27778 includes the system libraries and startup modules.
27779
27780 @item -mincoming-stack-boundary=@var{num}
27781 @opindex mincoming-stack-boundary
27782 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
27783 boundary. If @option{-mincoming-stack-boundary} is not specified,
27784 the one specified by @option{-mpreferred-stack-boundary} is used.
27785
27786 On Pentium and Pentium Pro, @code{double} and @code{long double} values
27787 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
27788 suffer significant run time performance penalties. On Pentium III, the
27789 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
27790 properly if it is not 16-byte aligned.
27791
27792 To ensure proper alignment of this values on the stack, the stack boundary
27793 must be as aligned as that required by any value stored on the stack.
27794 Further, every function must be generated such that it keeps the stack
27795 aligned. Thus calling a function compiled with a higher preferred
27796 stack boundary from a function compiled with a lower preferred stack
27797 boundary most likely misaligns the stack. It is recommended that
27798 libraries that use callbacks always use the default setting.
27799
27800 This extra alignment does consume extra stack space, and generally
27801 increases code size. Code that is sensitive to stack space usage, such
27802 as embedded systems and operating system kernels, may want to reduce the
27803 preferred alignment to @option{-mpreferred-stack-boundary=2}.
27804
27805 @need 200
27806 @item -mmmx
27807 @opindex mmmx
27808 @need 200
27809 @itemx -msse
27810 @opindex msse
27811 @need 200
27812 @itemx -msse2
27813 @opindex msse2
27814 @need 200
27815 @itemx -msse3
27816 @opindex msse3
27817 @need 200
27818 @itemx -mssse3
27819 @opindex mssse3
27820 @need 200
27821 @itemx -msse4
27822 @opindex msse4
27823 @need 200
27824 @itemx -msse4a
27825 @opindex msse4a
27826 @need 200
27827 @itemx -msse4.1
27828 @opindex msse4.1
27829 @need 200
27830 @itemx -msse4.2
27831 @opindex msse4.2
27832 @need 200
27833 @itemx -mavx
27834 @opindex mavx
27835 @need 200
27836 @itemx -mavx2
27837 @opindex mavx2
27838 @need 200
27839 @itemx -mavx512f
27840 @opindex mavx512f
27841 @need 200
27842 @itemx -mavx512pf
27843 @opindex mavx512pf
27844 @need 200
27845 @itemx -mavx512er
27846 @opindex mavx512er
27847 @need 200
27848 @itemx -mavx512cd
27849 @opindex mavx512cd
27850 @need 200
27851 @itemx -mavx512vl
27852 @opindex mavx512vl
27853 @need 200
27854 @itemx -mavx512bw
27855 @opindex mavx512bw
27856 @need 200
27857 @itemx -mavx512dq
27858 @opindex mavx512dq
27859 @need 200
27860 @itemx -mavx512ifma
27861 @opindex mavx512ifma
27862 @need 200
27863 @itemx -mavx512vbmi
27864 @opindex mavx512vbmi
27865 @need 200
27866 @itemx -msha
27867 @opindex msha
27868 @need 200
27869 @itemx -maes
27870 @opindex maes
27871 @need 200
27872 @itemx -mpclmul
27873 @opindex mpclmul
27874 @need 200
27875 @itemx -mclflushopt
27876 @opindex mclflushopt
27877 @need 200
27878 @itemx -mclwb
27879 @opindex mclwb
27880 @need 200
27881 @itemx -mfsgsbase
27882 @opindex mfsgsbase
27883 @need 200
27884 @itemx -mptwrite
27885 @opindex mptwrite
27886 @need 200
27887 @itemx -mrdrnd
27888 @opindex mrdrnd
27889 @need 200
27890 @itemx -mf16c
27891 @opindex mf16c
27892 @need 200
27893 @itemx -mfma
27894 @opindex mfma
27895 @need 200
27896 @itemx -mpconfig
27897 @opindex mpconfig
27898 @need 200
27899 @itemx -mwbnoinvd
27900 @opindex mwbnoinvd
27901 @need 200
27902 @itemx -mfma4
27903 @opindex mfma4
27904 @need 200
27905 @itemx -mprfchw
27906 @opindex mprfchw
27907 @need 200
27908 @itemx -mrdpid
27909 @opindex mrdpid
27910 @need 200
27911 @itemx -mprefetchwt1
27912 @opindex mprefetchwt1
27913 @need 200
27914 @itemx -mrdseed
27915 @opindex mrdseed
27916 @need 200
27917 @itemx -msgx
27918 @opindex msgx
27919 @need 200
27920 @itemx -mxop
27921 @opindex mxop
27922 @need 200
27923 @itemx -mlwp
27924 @opindex mlwp
27925 @need 200
27926 @itemx -m3dnow
27927 @opindex m3dnow
27928 @need 200
27929 @itemx -m3dnowa
27930 @opindex m3dnowa
27931 @need 200
27932 @itemx -mpopcnt
27933 @opindex mpopcnt
27934 @need 200
27935 @itemx -mabm
27936 @opindex mabm
27937 @need 200
27938 @itemx -madx
27939 @opindex madx
27940 @need 200
27941 @itemx -mbmi
27942 @opindex mbmi
27943 @need 200
27944 @itemx -mbmi2
27945 @opindex mbmi2
27946 @need 200
27947 @itemx -mlzcnt
27948 @opindex mlzcnt
27949 @need 200
27950 @itemx -mfxsr
27951 @opindex mfxsr
27952 @need 200
27953 @itemx -mxsave
27954 @opindex mxsave
27955 @need 200
27956 @itemx -mxsaveopt
27957 @opindex mxsaveopt
27958 @need 200
27959 @itemx -mxsavec
27960 @opindex mxsavec
27961 @need 200
27962 @itemx -mxsaves
27963 @opindex mxsaves
27964 @need 200
27965 @itemx -mrtm
27966 @opindex mrtm
27967 @need 200
27968 @itemx -mhle
27969 @opindex mhle
27970 @need 200
27971 @itemx -mtbm
27972 @opindex mtbm
27973 @need 200
27974 @itemx -mmwaitx
27975 @opindex mmwaitx
27976 @need 200
27977 @itemx -mclzero
27978 @opindex mclzero
27979 @need 200
27980 @itemx -mpku
27981 @opindex mpku
27982 @need 200
27983 @itemx -mavx512vbmi2
27984 @opindex mavx512vbmi2
27985 @need 200
27986 @itemx -mgfni
27987 @opindex mgfni
27988 @need 200
27989 @itemx -mvaes
27990 @opindex mvaes
27991 @need 200
27992 @itemx -mwaitpkg
27993 @opindex mwaitpkg
27994 @need 200
27995 @itemx -mvpclmulqdq
27996 @opindex mvpclmulqdq
27997 @need 200
27998 @itemx -mavx512bitalg
27999 @opindex mavx512bitalg
28000 @need 200
28001 @itemx -mmovdiri
28002 @opindex mmovdiri
28003 @need 200
28004 @itemx -mmovdir64b
28005 @opindex mmovdir64b
28006 @need 200
28007 @itemx -mavx512vpopcntdq
28008 @opindex mavx512vpopcntdq
28009 @need 200
28010 @itemx -mavx5124fmaps
28011 @opindex mavx5124fmaps
28012 @need 200
28013 @itemx -mavx512vnni
28014 @opindex mavx512vnni
28015 @need 200
28016 @itemx -mavx5124vnniw
28017 @opindex mavx5124vnniw
28018 @need 200
28019 @itemx -mcldemote
28020 @opindex mcldemote
28021 These switches enable the use of instructions in the MMX, SSE,
28022 SSE2, SSE3, SSSE3, SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F, AVX512PF,
28023 AVX512ER, AVX512CD, AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA,
28024 AES, PCLMUL, CLFLUSHOPT, CLWB, FSGSBASE, PTWRITE, RDRND, F16C, FMA, PCONFIG,
28025 WBNOINVD, FMA4, PREFETCHW, RDPID, PREFETCHWT1, RDSEED, SGX, XOP, LWP,
28026 3DNow!@:, enhanced 3DNow!@:, POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE,
28027 XSAVEOPT, XSAVEC, XSAVES, RTM, HLE, TBM, MWAITX, CLZERO, PKU, AVX512VBMI2,
28028 GFNI, VAES, WAITPKG, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B,
28029 AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, AVX5124VNNIW, or CLDEMOTE
28030 extended instruction sets. Each has a corresponding @option{-mno-} option to
28031 disable use of these instructions.
28032
28033 These extensions are also available as built-in functions: see
28034 @ref{x86 Built-in Functions}, for details of the functions enabled and
28035 disabled by these switches.
28036
28037 To generate SSE/SSE2 instructions automatically from floating-point
28038 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
28039
28040 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
28041 generates new AVX instructions or AVX equivalence for all SSEx instructions
28042 when needed.
28043
28044 These options enable GCC to use these extended instructions in
28045 generated code, even without @option{-mfpmath=sse}. Applications that
28046 perform run-time CPU detection must compile separate files for each
28047 supported architecture, using the appropriate flags. In particular,
28048 the file containing the CPU detection code should be compiled without
28049 these options.
28050
28051 @item -mdump-tune-features
28052 @opindex mdump-tune-features
28053 This option instructs GCC to dump the names of the x86 performance
28054 tuning features and default settings. The names can be used in
28055 @option{-mtune-ctrl=@var{feature-list}}.
28056
28057 @item -mtune-ctrl=@var{feature-list}
28058 @opindex mtune-ctrl=@var{feature-list}
28059 This option is used to do fine grain control of x86 code generation features.
28060 @var{feature-list} is a comma separated list of @var{feature} names. See also
28061 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
28062 on if it is not preceded with @samp{^}, otherwise, it is turned off.
28063 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
28064 developers. Using it may lead to code paths not covered by testing and can
28065 potentially result in compiler ICEs or runtime errors.
28066
28067 @item -mno-default
28068 @opindex mno-default
28069 This option instructs GCC to turn off all tunable features. See also
28070 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
28071
28072 @item -mcld
28073 @opindex mcld
28074 This option instructs GCC to emit a @code{cld} instruction in the prologue
28075 of functions that use string instructions. String instructions depend on
28076 the DF flag to select between autoincrement or autodecrement mode. While the
28077 ABI specifies the DF flag to be cleared on function entry, some operating
28078 systems violate this specification by not clearing the DF flag in their
28079 exception dispatchers. The exception handler can be invoked with the DF flag
28080 set, which leads to wrong direction mode when string instructions are used.
28081 This option can be enabled by default on 32-bit x86 targets by configuring
28082 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
28083 instructions can be suppressed with the @option{-mno-cld} compiler option
28084 in this case.
28085
28086 @item -mvzeroupper
28087 @opindex mvzeroupper
28088 This option instructs GCC to emit a @code{vzeroupper} instruction
28089 before a transfer of control flow out of the function to minimize
28090 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
28091 intrinsics.
28092
28093 @item -mprefer-avx128
28094 @opindex mprefer-avx128
28095 This option instructs GCC to use 128-bit AVX instructions instead of
28096 256-bit AVX instructions in the auto-vectorizer.
28097
28098 @item -mprefer-vector-width=@var{opt}
28099 @opindex mprefer-vector-width
28100 This option instructs GCC to use @var{opt}-bit vector width in instructions
28101 instead of default on the selected platform.
28102
28103 @table @samp
28104 @item none
28105 No extra limitations applied to GCC other than defined by the selected platform.
28106
28107 @item 128
28108 Prefer 128-bit vector width for instructions.
28109
28110 @item 256
28111 Prefer 256-bit vector width for instructions.
28112
28113 @item 512
28114 Prefer 512-bit vector width for instructions.
28115 @end table
28116
28117 @item -mcx16
28118 @opindex mcx16
28119 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
28120 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
28121 objects. This is useful for atomic updates of data structures exceeding one
28122 machine word in size. The compiler uses this instruction to implement
28123 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
28124 128-bit integers, a library call is always used.
28125
28126 @item -msahf
28127 @opindex msahf
28128 This option enables generation of @code{SAHF} instructions in 64-bit code.
28129 Early Intel Pentium 4 CPUs with Intel 64 support,
28130 prior to the introduction of Pentium 4 G1 step in December 2005,
28131 lacked the @code{LAHF} and @code{SAHF} instructions
28132 which are supported by AMD64.
28133 These are load and store instructions, respectively, for certain status flags.
28134 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
28135 @code{drem}, and @code{remainder} built-in functions;
28136 see @ref{Other Builtins} for details.
28137
28138 @item -mmovbe
28139 @opindex mmovbe
28140 This option enables use of the @code{movbe} instruction to implement
28141 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
28142
28143 @item -mshstk
28144 @opindex mshstk
28145 The @option{-mshstk} option enables shadow stack built-in functions
28146 from x86 Control-flow Enforcement Technology (CET).
28147
28148 @item -mcrc32
28149 @opindex mcrc32
28150 This option enables built-in functions @code{__builtin_ia32_crc32qi},
28151 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
28152 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
28153
28154 @item -mrecip
28155 @opindex mrecip
28156 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
28157 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
28158 with an additional Newton-Raphson step
28159 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
28160 (and their vectorized
28161 variants) for single-precision floating-point arguments. These instructions
28162 are generated only when @option{-funsafe-math-optimizations} is enabled
28163 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
28164 Note that while the throughput of the sequence is higher than the throughput
28165 of the non-reciprocal instruction, the precision of the sequence can be
28166 decreased by up to 2 ulp (i.e.@: the inverse of 1.0 equals 0.99999994).
28167
28168 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
28169 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
28170 combination), and doesn't need @option{-mrecip}.
28171
28172 Also note that GCC emits the above sequence with additional Newton-Raphson step
28173 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
28174 already with @option{-ffast-math} (or the above option combination), and
28175 doesn't need @option{-mrecip}.
28176
28177 @item -mrecip=@var{opt}
28178 @opindex mrecip=opt
28179 This option controls which reciprocal estimate instructions
28180 may be used. @var{opt} is a comma-separated list of options, which may
28181 be preceded by a @samp{!} to invert the option:
28182
28183 @table @samp
28184 @item all
28185 Enable all estimate instructions.
28186
28187 @item default
28188 Enable the default instructions, equivalent to @option{-mrecip}.
28189
28190 @item none
28191 Disable all estimate instructions, equivalent to @option{-mno-recip}.
28192
28193 @item div
28194 Enable the approximation for scalar division.
28195
28196 @item vec-div
28197 Enable the approximation for vectorized division.
28198
28199 @item sqrt
28200 Enable the approximation for scalar square root.
28201
28202 @item vec-sqrt
28203 Enable the approximation for vectorized square root.
28204 @end table
28205
28206 So, for example, @option{-mrecip=all,!sqrt} enables
28207 all of the reciprocal approximations, except for square root.
28208
28209 @item -mveclibabi=@var{type}
28210 @opindex mveclibabi
28211 Specifies the ABI type to use for vectorizing intrinsics using an
28212 external library. Supported values for @var{type} are @samp{svml}
28213 for the Intel short
28214 vector math library and @samp{acml} for the AMD math core library.
28215 To use this option, both @option{-ftree-vectorize} and
28216 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
28217 ABI-compatible library must be specified at link time.
28218
28219 GCC currently emits calls to @code{vmldExp2},
28220 @code{vmldLn2}, @code{vmldLog102}, @code{vmldPow2},
28221 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
28222 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
28223 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
28224 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4},
28225 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
28226 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
28227 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
28228 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
28229 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
28230 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
28231 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
28232 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
28233 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
28234 when @option{-mveclibabi=acml} is used.
28235
28236 @item -mabi=@var{name}
28237 @opindex mabi
28238 Generate code for the specified calling convention. Permissible values
28239 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
28240 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
28241 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
28242 You can control this behavior for specific functions by
28243 using the function attributes @code{ms_abi} and @code{sysv_abi}.
28244 @xref{Function Attributes}.
28245
28246 @item -mforce-indirect-call
28247 @opindex mforce-indirect-call
28248 Force all calls to functions to be indirect. This is useful
28249 when using Intel Processor Trace where it generates more precise timing
28250 information for function calls.
28251
28252 @item -mmanual-endbr
28253 @opindex mmanual-endbr
28254 Insert ENDBR instruction at function entry only via the @code{cf_check}
28255 function attribute. This is useful when used with the option
28256 @option{-fcf-protection=branch} to control ENDBR insertion at the
28257 function entry.
28258
28259 @item -mcall-ms2sysv-xlogues
28260 @opindex mcall-ms2sysv-xlogues
28261 @opindex mno-call-ms2sysv-xlogues
28262 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
28263 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
28264 default, the code for saving and restoring these registers is emitted inline,
28265 resulting in fairly lengthy prologues and epilogues. Using
28266 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
28267 use stubs in the static portion of libgcc to perform these saves and restores,
28268 thus reducing function size at the cost of a few extra instructions.
28269
28270 @item -mtls-dialect=@var{type}
28271 @opindex mtls-dialect
28272 Generate code to access thread-local storage using the @samp{gnu} or
28273 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
28274 @samp{gnu2} is more efficient, but it may add compile- and run-time
28275 requirements that cannot be satisfied on all systems.
28276
28277 @item -mpush-args
28278 @itemx -mno-push-args
28279 @opindex mpush-args
28280 @opindex mno-push-args
28281 Use PUSH operations to store outgoing parameters. This method is shorter
28282 and usually equally fast as method using SUB/MOV operations and is enabled
28283 by default. In some cases disabling it may improve performance because of
28284 improved scheduling and reduced dependencies.
28285
28286 @item -maccumulate-outgoing-args
28287 @opindex maccumulate-outgoing-args
28288 If enabled, the maximum amount of space required for outgoing arguments is
28289 computed in the function prologue. This is faster on most modern CPUs
28290 because of reduced dependencies, improved scheduling and reduced stack usage
28291 when the preferred stack boundary is not equal to 2. The drawback is a notable
28292 increase in code size. This switch implies @option{-mno-push-args}.
28293
28294 @item -mthreads
28295 @opindex mthreads
28296 Support thread-safe exception handling on MinGW. Programs that rely
28297 on thread-safe exception handling must compile and link all code with the
28298 @option{-mthreads} option. When compiling, @option{-mthreads} defines
28299 @option{-D_MT}; when linking, it links in a special thread helper library
28300 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
28301
28302 @item -mms-bitfields
28303 @itemx -mno-ms-bitfields
28304 @opindex mms-bitfields
28305 @opindex mno-ms-bitfields
28306
28307 Enable/disable bit-field layout compatible with the native Microsoft
28308 Windows compiler.
28309
28310 If @code{packed} is used on a structure, or if bit-fields are used,
28311 it may be that the Microsoft ABI lays out the structure differently
28312 than the way GCC normally does. Particularly when moving packed
28313 data between functions compiled with GCC and the native Microsoft compiler
28314 (either via function call or as data in a file), it may be necessary to access
28315 either format.
28316
28317 This option is enabled by default for Microsoft Windows
28318 targets. This behavior can also be controlled locally by use of variable
28319 or type attributes. For more information, see @ref{x86 Variable Attributes}
28320 and @ref{x86 Type Attributes}.
28321
28322 The Microsoft structure layout algorithm is fairly simple with the exception
28323 of the bit-field packing.
28324 The padding and alignment of members of structures and whether a bit-field
28325 can straddle a storage-unit boundary are determine by these rules:
28326
28327 @enumerate
28328 @item Structure members are stored sequentially in the order in which they are
28329 declared: the first member has the lowest memory address and the last member
28330 the highest.
28331
28332 @item Every data object has an alignment requirement. The alignment requirement
28333 for all data except structures, unions, and arrays is either the size of the
28334 object or the current packing size (specified with either the
28335 @code{aligned} attribute or the @code{pack} pragma),
28336 whichever is less. For structures, unions, and arrays,
28337 the alignment requirement is the largest alignment requirement of its members.
28338 Every object is allocated an offset so that:
28339
28340 @smallexample
28341 offset % alignment_requirement == 0
28342 @end smallexample
28343
28344 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
28345 unit if the integral types are the same size and if the next bit-field fits
28346 into the current allocation unit without crossing the boundary imposed by the
28347 common alignment requirements of the bit-fields.
28348 @end enumerate
28349
28350 MSVC interprets zero-length bit-fields in the following ways:
28351
28352 @enumerate
28353 @item If a zero-length bit-field is inserted between two bit-fields that
28354 are normally coalesced, the bit-fields are not coalesced.
28355
28356 For example:
28357
28358 @smallexample
28359 struct
28360 @{
28361 unsigned long bf_1 : 12;
28362 unsigned long : 0;
28363 unsigned long bf_2 : 12;
28364 @} t1;
28365 @end smallexample
28366
28367 @noindent
28368 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
28369 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
28370
28371 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
28372 alignment of the zero-length bit-field is greater than the member that follows it,
28373 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
28374
28375 For example:
28376
28377 @smallexample
28378 struct
28379 @{
28380 char foo : 4;
28381 short : 0;
28382 char bar;
28383 @} t2;
28384
28385 struct
28386 @{
28387 char foo : 4;
28388 short : 0;
28389 double bar;
28390 @} t3;
28391 @end smallexample
28392
28393 @noindent
28394 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
28395 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
28396 bit-field does not affect the alignment of @code{bar} or, as a result, the size
28397 of the structure.
28398
28399 Taking this into account, it is important to note the following:
28400
28401 @enumerate
28402 @item If a zero-length bit-field follows a normal bit-field, the type of the
28403 zero-length bit-field may affect the alignment of the structure as whole. For
28404 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
28405 normal bit-field, and is of type short.
28406
28407 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
28408 still affect the alignment of the structure:
28409
28410 @smallexample
28411 struct
28412 @{
28413 char foo : 6;
28414 long : 0;
28415 @} t4;
28416 @end smallexample
28417
28418 @noindent
28419 Here, @code{t4} takes up 4 bytes.
28420 @end enumerate
28421
28422 @item Zero-length bit-fields following non-bit-field members are ignored:
28423
28424 @smallexample
28425 struct
28426 @{
28427 char foo;
28428 long : 0;
28429 char bar;
28430 @} t5;
28431 @end smallexample
28432
28433 @noindent
28434 Here, @code{t5} takes up 2 bytes.
28435 @end enumerate
28436
28437
28438 @item -mno-align-stringops
28439 @opindex mno-align-stringops
28440 @opindex malign-stringops
28441 Do not align the destination of inlined string operations. This switch reduces
28442 code size and improves performance in case the destination is already aligned,
28443 but GCC doesn't know about it.
28444
28445 @item -minline-all-stringops
28446 @opindex minline-all-stringops
28447 By default GCC inlines string operations only when the destination is
28448 known to be aligned to least a 4-byte boundary.
28449 This enables more inlining and increases code
28450 size, but may improve performance of code that depends on fast
28451 @code{memcpy}, @code{strlen},
28452 and @code{memset} for short lengths.
28453
28454 @item -minline-stringops-dynamically
28455 @opindex minline-stringops-dynamically
28456 For string operations of unknown size, use run-time checks with
28457 inline code for small blocks and a library call for large blocks.
28458
28459 @item -mstringop-strategy=@var{alg}
28460 @opindex mstringop-strategy=@var{alg}
28461 Override the internal decision heuristic for the particular algorithm to use
28462 for inlining string operations. The allowed values for @var{alg} are:
28463
28464 @table @samp
28465 @item rep_byte
28466 @itemx rep_4byte
28467 @itemx rep_8byte
28468 Expand using i386 @code{rep} prefix of the specified size.
28469
28470 @item byte_loop
28471 @itemx loop
28472 @itemx unrolled_loop
28473 Expand into an inline loop.
28474
28475 @item libcall
28476 Always use a library call.
28477 @end table
28478
28479 @item -mmemcpy-strategy=@var{strategy}
28480 @opindex mmemcpy-strategy=@var{strategy}
28481 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
28482 should be inlined and what inline algorithm to use when the expected size
28483 of the copy operation is known. @var{strategy}
28484 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
28485 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
28486 the max byte size with which inline algorithm @var{alg} is allowed. For the last
28487 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
28488 in the list must be specified in increasing order. The minimal byte size for
28489 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
28490 preceding range.
28491
28492 @item -mmemset-strategy=@var{strategy}
28493 @opindex mmemset-strategy=@var{strategy}
28494 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
28495 @code{__builtin_memset} expansion.
28496
28497 @item -momit-leaf-frame-pointer
28498 @opindex momit-leaf-frame-pointer
28499 Don't keep the frame pointer in a register for leaf functions. This
28500 avoids the instructions to save, set up, and restore frame pointers and
28501 makes an extra register available in leaf functions. The option
28502 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
28503 which might make debugging harder.
28504
28505 @item -mtls-direct-seg-refs
28506 @itemx -mno-tls-direct-seg-refs
28507 @opindex mtls-direct-seg-refs
28508 Controls whether TLS variables may be accessed with offsets from the
28509 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
28510 or whether the thread base pointer must be added. Whether or not this
28511 is valid depends on the operating system, and whether it maps the
28512 segment to cover the entire TLS area.
28513
28514 For systems that use the GNU C Library, the default is on.
28515
28516 @item -msse2avx
28517 @itemx -mno-sse2avx
28518 @opindex msse2avx
28519 Specify that the assembler should encode SSE instructions with VEX
28520 prefix. The option @option{-mavx} turns this on by default.
28521
28522 @item -mfentry
28523 @itemx -mno-fentry
28524 @opindex mfentry
28525 If profiling is active (@option{-pg}), put the profiling
28526 counter call before the prologue.
28527 Note: On x86 architectures the attribute @code{ms_hook_prologue}
28528 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
28529
28530 @item -mrecord-mcount
28531 @itemx -mno-record-mcount
28532 @opindex mrecord-mcount
28533 If profiling is active (@option{-pg}), generate a __mcount_loc section
28534 that contains pointers to each profiling call. This is useful for
28535 automatically patching and out calls.
28536
28537 @item -mnop-mcount
28538 @itemx -mno-nop-mcount
28539 @opindex mnop-mcount
28540 If profiling is active (@option{-pg}), generate the calls to
28541 the profiling functions as NOPs. This is useful when they
28542 should be patched in later dynamically. This is likely only
28543 useful together with @option{-mrecord-mcount}.
28544
28545 @item -minstrument-return=@var{type}
28546 @opindex minstrument-return
28547 Instrument function exit in -pg -mfentry instrumented functions with
28548 call to specified function. This only instruments true returns ending
28549 with ret, but not sibling calls ending with jump. Valid types
28550 are @var{none} to not instrument, @var{call} to generate a call to __return__,
28551 or @var{nop5} to generate a 5 byte nop.
28552
28553 @item -mrecord-return
28554 @itemx -mno-record-return
28555 @opindex mrecord-return
28556 Generate a __return_loc section pointing to all return instrumentation code.
28557
28558 @item -mfentry-name=@var{name}
28559 @opindex mfentry-name
28560 Set name of __fentry__ symbol called at function entry for -pg -mfentry functions.
28561
28562 @item -mfentry-section=@var{name}
28563 @opindex mfentry-section
28564 Set name of section to record -mrecord-mcount calls (default __mcount_loc).
28565
28566 @item -mskip-rax-setup
28567 @itemx -mno-skip-rax-setup
28568 @opindex mskip-rax-setup
28569 When generating code for the x86-64 architecture with SSE extensions
28570 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
28571 register when there are no variable arguments passed in vector registers.
28572
28573 @strong{Warning:} Since RAX register is used to avoid unnecessarily
28574 saving vector registers on stack when passing variable arguments, the
28575 impacts of this option are callees may waste some stack space,
28576 misbehave or jump to a random location. GCC 4.4 or newer don't have
28577 those issues, regardless the RAX register value.
28578
28579 @item -m8bit-idiv
28580 @itemx -mno-8bit-idiv
28581 @opindex m8bit-idiv
28582 On some processors, like Intel Atom, 8-bit unsigned integer divide is
28583 much faster than 32-bit/64-bit integer divide. This option generates a
28584 run-time check. If both dividend and divisor are within range of 0
28585 to 255, 8-bit unsigned integer divide is used instead of
28586 32-bit/64-bit integer divide.
28587
28588 @item -mavx256-split-unaligned-load
28589 @itemx -mavx256-split-unaligned-store
28590 @opindex mavx256-split-unaligned-load
28591 @opindex mavx256-split-unaligned-store
28592 Split 32-byte AVX unaligned load and store.
28593
28594 @item -mstack-protector-guard=@var{guard}
28595 @itemx -mstack-protector-guard-reg=@var{reg}
28596 @itemx -mstack-protector-guard-offset=@var{offset}
28597 @opindex mstack-protector-guard
28598 @opindex mstack-protector-guard-reg
28599 @opindex mstack-protector-guard-offset
28600 Generate stack protection code using canary at @var{guard}. Supported
28601 locations are @samp{global} for global canary or @samp{tls} for per-thread
28602 canary in the TLS block (the default). This option has effect only when
28603 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
28604
28605 With the latter choice the options
28606 @option{-mstack-protector-guard-reg=@var{reg}} and
28607 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
28608 which segment register (@code{%fs} or @code{%gs}) to use as base register
28609 for reading the canary, and from what offset from that base register.
28610 The default for those is as specified in the relevant ABI.
28611
28612 @item -mgeneral-regs-only
28613 @opindex mgeneral-regs-only
28614 Generate code that uses only the general-purpose registers. This
28615 prevents the compiler from using floating-point, vector, mask and bound
28616 registers.
28617
28618 @item -mindirect-branch=@var{choice}
28619 @opindex mindirect-branch
28620 Convert indirect call and jump with @var{choice}. The default is
28621 @samp{keep}, which keeps indirect call and jump unmodified.
28622 @samp{thunk} converts indirect call and jump to call and return thunk.
28623 @samp{thunk-inline} converts indirect call and jump to inlined call
28624 and return thunk. @samp{thunk-extern} converts indirect call and jump
28625 to external call and return thunk provided in a separate object file.
28626 You can control this behavior for a specific function by using the
28627 function attribute @code{indirect_branch}. @xref{Function Attributes}.
28628
28629 Note that @option{-mcmodel=large} is incompatible with
28630 @option{-mindirect-branch=thunk} and
28631 @option{-mindirect-branch=thunk-extern} since the thunk function may
28632 not be reachable in the large code model.
28633
28634 Note that @option{-mindirect-branch=thunk-extern} is incompatible with
28635 @option{-fcf-protection=branch} since the external thunk cannot be modified
28636 to disable control-flow check.
28637
28638 @item -mfunction-return=@var{choice}
28639 @opindex mfunction-return
28640 Convert function return with @var{choice}. The default is @samp{keep},
28641 which keeps function return unmodified. @samp{thunk} converts function
28642 return to call and return thunk. @samp{thunk-inline} converts function
28643 return to inlined call and return thunk. @samp{thunk-extern} converts
28644 function return to external call and return thunk provided in a separate
28645 object file. You can control this behavior for a specific function by
28646 using the function attribute @code{function_return}.
28647 @xref{Function Attributes}.
28648
28649 Note that @option{-mcmodel=large} is incompatible with
28650 @option{-mfunction-return=thunk} and
28651 @option{-mfunction-return=thunk-extern} since the thunk function may
28652 not be reachable in the large code model.
28653
28654
28655 @item -mindirect-branch-register
28656 @opindex mindirect-branch-register
28657 Force indirect call and jump via register.
28658
28659 @end table
28660
28661 These @samp{-m} switches are supported in addition to the above
28662 on x86-64 processors in 64-bit environments.
28663
28664 @table @gcctabopt
28665 @item -m32
28666 @itemx -m64
28667 @itemx -mx32
28668 @itemx -m16
28669 @itemx -miamcu
28670 @opindex m32
28671 @opindex m64
28672 @opindex mx32
28673 @opindex m16
28674 @opindex miamcu
28675 Generate code for a 16-bit, 32-bit or 64-bit environment.
28676 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
28677 to 32 bits, and
28678 generates code that runs on any i386 system.
28679
28680 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
28681 types to 64 bits, and generates code for the x86-64 architecture.
28682 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
28683 and @option{-mdynamic-no-pic} options.
28684
28685 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
28686 to 32 bits, and
28687 generates code for the x86-64 architecture.
28688
28689 The @option{-m16} option is the same as @option{-m32}, except for that
28690 it outputs the @code{.code16gcc} assembly directive at the beginning of
28691 the assembly output so that the binary can run in 16-bit mode.
28692
28693 The @option{-miamcu} option generates code which conforms to Intel MCU
28694 psABI. It requires the @option{-m32} option to be turned on.
28695
28696 @item -mno-red-zone
28697 @opindex mno-red-zone
28698 @opindex mred-zone
28699 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
28700 by the x86-64 ABI; it is a 128-byte area beyond the location of the
28701 stack pointer that is not modified by signal or interrupt handlers
28702 and therefore can be used for temporary data without adjusting the stack
28703 pointer. The flag @option{-mno-red-zone} disables this red zone.
28704
28705 @item -mcmodel=small
28706 @opindex mcmodel=small
28707 Generate code for the small code model: the program and its symbols must
28708 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
28709 Programs can be statically or dynamically linked. This is the default
28710 code model.
28711
28712 @item -mcmodel=kernel
28713 @opindex mcmodel=kernel
28714 Generate code for the kernel code model. The kernel runs in the
28715 negative 2 GB of the address space.
28716 This model has to be used for Linux kernel code.
28717
28718 @item -mcmodel=medium
28719 @opindex mcmodel=medium
28720 Generate code for the medium model: the program is linked in the lower 2
28721 GB of the address space. Small symbols are also placed there. Symbols
28722 with sizes larger than @option{-mlarge-data-threshold} are put into
28723 large data or BSS sections and can be located above 2GB. Programs can
28724 be statically or dynamically linked.
28725
28726 @item -mcmodel=large
28727 @opindex mcmodel=large
28728 Generate code for the large model. This model makes no assumptions
28729 about addresses and sizes of sections.
28730
28731 @item -maddress-mode=long
28732 @opindex maddress-mode=long
28733 Generate code for long address mode. This is only supported for 64-bit
28734 and x32 environments. It is the default address mode for 64-bit
28735 environments.
28736
28737 @item -maddress-mode=short
28738 @opindex maddress-mode=short
28739 Generate code for short address mode. This is only supported for 32-bit
28740 and x32 environments. It is the default address mode for 32-bit and
28741 x32 environments.
28742 @end table
28743
28744 @node x86 Windows Options
28745 @subsection x86 Windows Options
28746 @cindex x86 Windows Options
28747 @cindex Windows Options for x86
28748
28749 These additional options are available for Microsoft Windows targets:
28750
28751 @table @gcctabopt
28752 @item -mconsole
28753 @opindex mconsole
28754 This option
28755 specifies that a console application is to be generated, by
28756 instructing the linker to set the PE header subsystem type
28757 required for console applications.
28758 This option is available for Cygwin and MinGW targets and is
28759 enabled by default on those targets.
28760
28761 @item -mdll
28762 @opindex mdll
28763 This option is available for Cygwin and MinGW targets. It
28764 specifies that a DLL---a dynamic link library---is to be
28765 generated, enabling the selection of the required runtime
28766 startup object and entry point.
28767
28768 @item -mnop-fun-dllimport
28769 @opindex mnop-fun-dllimport
28770 This option is available for Cygwin and MinGW targets. It
28771 specifies that the @code{dllimport} attribute should be ignored.
28772
28773 @item -mthread
28774 @opindex mthread
28775 This option is available for MinGW targets. It specifies
28776 that MinGW-specific thread support is to be used.
28777
28778 @item -municode
28779 @opindex municode
28780 This option is available for MinGW-w64 targets. It causes
28781 the @code{UNICODE} preprocessor macro to be predefined, and
28782 chooses Unicode-capable runtime startup code.
28783
28784 @item -mwin32
28785 @opindex mwin32
28786 This option is available for Cygwin and MinGW targets. It
28787 specifies that the typical Microsoft Windows predefined macros are to
28788 be set in the pre-processor, but does not influence the choice
28789 of runtime library/startup code.
28790
28791 @item -mwindows
28792 @opindex mwindows
28793 This option is available for Cygwin and MinGW targets. It
28794 specifies that a GUI application is to be generated by
28795 instructing the linker to set the PE header subsystem type
28796 appropriately.
28797
28798 @item -fno-set-stack-executable
28799 @opindex fno-set-stack-executable
28800 @opindex fset-stack-executable
28801 This option is available for MinGW targets. It specifies that
28802 the executable flag for the stack used by nested functions isn't
28803 set. This is necessary for binaries running in kernel mode of
28804 Microsoft Windows, as there the User32 API, which is used to set executable
28805 privileges, isn't available.
28806
28807 @item -fwritable-relocated-rdata
28808 @opindex fno-writable-relocated-rdata
28809 @opindex fwritable-relocated-rdata
28810 This option is available for MinGW and Cygwin targets. It specifies
28811 that relocated-data in read-only section is put into the @code{.data}
28812 section. This is a necessary for older runtimes not supporting
28813 modification of @code{.rdata} sections for pseudo-relocation.
28814
28815 @item -mpe-aligned-commons
28816 @opindex mpe-aligned-commons
28817 This option is available for Cygwin and MinGW targets. It
28818 specifies that the GNU extension to the PE file format that
28819 permits the correct alignment of COMMON variables should be
28820 used when generating code. It is enabled by default if
28821 GCC detects that the target assembler found during configuration
28822 supports the feature.
28823 @end table
28824
28825 See also under @ref{x86 Options} for standard options.
28826
28827 @node Xstormy16 Options
28828 @subsection Xstormy16 Options
28829 @cindex Xstormy16 Options
28830
28831 These options are defined for Xstormy16:
28832
28833 @table @gcctabopt
28834 @item -msim
28835 @opindex msim
28836 Choose startup files and linker script suitable for the simulator.
28837 @end table
28838
28839 @node Xtensa Options
28840 @subsection Xtensa Options
28841 @cindex Xtensa Options
28842
28843 These options are supported for Xtensa targets:
28844
28845 @table @gcctabopt
28846 @item -mconst16
28847 @itemx -mno-const16
28848 @opindex mconst16
28849 @opindex mno-const16
28850 Enable or disable use of @code{CONST16} instructions for loading
28851 constant values. The @code{CONST16} instruction is currently not a
28852 standard option from Tensilica. When enabled, @code{CONST16}
28853 instructions are always used in place of the standard @code{L32R}
28854 instructions. The use of @code{CONST16} is enabled by default only if
28855 the @code{L32R} instruction is not available.
28856
28857 @item -mfused-madd
28858 @itemx -mno-fused-madd
28859 @opindex mfused-madd
28860 @opindex mno-fused-madd
28861 Enable or disable use of fused multiply/add and multiply/subtract
28862 instructions in the floating-point option. This has no effect if the
28863 floating-point option is not also enabled. Disabling fused multiply/add
28864 and multiply/subtract instructions forces the compiler to use separate
28865 instructions for the multiply and add/subtract operations. This may be
28866 desirable in some cases where strict IEEE 754-compliant results are
28867 required: the fused multiply add/subtract instructions do not round the
28868 intermediate result, thereby producing results with @emph{more} bits of
28869 precision than specified by the IEEE standard. Disabling fused multiply
28870 add/subtract instructions also ensures that the program output is not
28871 sensitive to the compiler's ability to combine multiply and add/subtract
28872 operations.
28873
28874 @item -mserialize-volatile
28875 @itemx -mno-serialize-volatile
28876 @opindex mserialize-volatile
28877 @opindex mno-serialize-volatile
28878 When this option is enabled, GCC inserts @code{MEMW} instructions before
28879 @code{volatile} memory references to guarantee sequential consistency.
28880 The default is @option{-mserialize-volatile}. Use
28881 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
28882
28883 @item -mforce-no-pic
28884 @opindex mforce-no-pic
28885 For targets, like GNU/Linux, where all user-mode Xtensa code must be
28886 position-independent code (PIC), this option disables PIC for compiling
28887 kernel code.
28888
28889 @item -mtext-section-literals
28890 @itemx -mno-text-section-literals
28891 @opindex mtext-section-literals
28892 @opindex mno-text-section-literals
28893 These options control the treatment of literal pools. The default is
28894 @option{-mno-text-section-literals}, which places literals in a separate
28895 section in the output file. This allows the literal pool to be placed
28896 in a data RAM/ROM, and it also allows the linker to combine literal
28897 pools from separate object files to remove redundant literals and
28898 improve code size. With @option{-mtext-section-literals}, the literals
28899 are interspersed in the text section in order to keep them as close as
28900 possible to their references. This may be necessary for large assembly
28901 files. Literals for each function are placed right before that function.
28902
28903 @item -mauto-litpools
28904 @itemx -mno-auto-litpools
28905 @opindex mauto-litpools
28906 @opindex mno-auto-litpools
28907 These options control the treatment of literal pools. The default is
28908 @option{-mno-auto-litpools}, which places literals in a separate
28909 section in the output file unless @option{-mtext-section-literals} is
28910 used. With @option{-mauto-litpools} the literals are interspersed in
28911 the text section by the assembler. Compiler does not produce explicit
28912 @code{.literal} directives and loads literals into registers with
28913 @code{MOVI} instructions instead of @code{L32R} to let the assembler
28914 do relaxation and place literals as necessary. This option allows
28915 assembler to create several literal pools per function and assemble
28916 very big functions, which may not be possible with
28917 @option{-mtext-section-literals}.
28918
28919 @item -mtarget-align
28920 @itemx -mno-target-align
28921 @opindex mtarget-align
28922 @opindex mno-target-align
28923 When this option is enabled, GCC instructs the assembler to
28924 automatically align instructions to reduce branch penalties at the
28925 expense of some code density. The assembler attempts to widen density
28926 instructions to align branch targets and the instructions following call
28927 instructions. If there are not enough preceding safe density
28928 instructions to align a target, no widening is performed. The
28929 default is @option{-mtarget-align}. These options do not affect the
28930 treatment of auto-aligned instructions like @code{LOOP}, which the
28931 assembler always aligns, either by widening density instructions or
28932 by inserting NOP instructions.
28933
28934 @item -mlongcalls
28935 @itemx -mno-longcalls
28936 @opindex mlongcalls
28937 @opindex mno-longcalls
28938 When this option is enabled, GCC instructs the assembler to translate
28939 direct calls to indirect calls unless it can determine that the target
28940 of a direct call is in the range allowed by the call instruction. This
28941 translation typically occurs for calls to functions in other source
28942 files. Specifically, the assembler translates a direct @code{CALL}
28943 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
28944 The default is @option{-mno-longcalls}. This option should be used in
28945 programs where the call target can potentially be out of range. This
28946 option is implemented in the assembler, not the compiler, so the
28947 assembly code generated by GCC still shows direct call
28948 instructions---look at the disassembled object code to see the actual
28949 instructions. Note that the assembler uses an indirect call for
28950 every cross-file call, not just those that really are out of range.
28951 @end table
28952
28953 @node zSeries Options
28954 @subsection zSeries Options
28955 @cindex zSeries options
28956
28957 These are listed under @xref{S/390 and zSeries Options}.
28958
28959
28960 @c man end
28961
28962 @node Spec Files
28963 @section Specifying Subprocesses and the Switches to Pass to Them
28964 @cindex Spec Files
28965
28966 @command{gcc} is a driver program. It performs its job by invoking a
28967 sequence of other programs to do the work of compiling, assembling and
28968 linking. GCC interprets its command-line parameters and uses these to
28969 deduce which programs it should invoke, and which command-line options
28970 it ought to place on their command lines. This behavior is controlled
28971 by @dfn{spec strings}. In most cases there is one spec string for each
28972 program that GCC can invoke, but a few programs have multiple spec
28973 strings to control their behavior. The spec strings built into GCC can
28974 be overridden by using the @option{-specs=} command-line switch to specify
28975 a spec file.
28976
28977 @dfn{Spec files} are plain-text files that are used to construct spec
28978 strings. They consist of a sequence of directives separated by blank
28979 lines. The type of directive is determined by the first non-whitespace
28980 character on the line, which can be one of the following:
28981
28982 @table @code
28983 @item %@var{command}
28984 Issues a @var{command} to the spec file processor. The commands that can
28985 appear here are:
28986
28987 @table @code
28988 @item %include <@var{file}>
28989 @cindex @code{%include}
28990 Search for @var{file} and insert its text at the current point in the
28991 specs file.
28992
28993 @item %include_noerr <@var{file}>
28994 @cindex @code{%include_noerr}
28995 Just like @samp{%include}, but do not generate an error message if the include
28996 file cannot be found.
28997
28998 @item %rename @var{old_name} @var{new_name}
28999 @cindex @code{%rename}
29000 Rename the spec string @var{old_name} to @var{new_name}.
29001
29002 @end table
29003
29004 @item *[@var{spec_name}]:
29005 This tells the compiler to create, override or delete the named spec
29006 string. All lines after this directive up to the next directive or
29007 blank line are considered to be the text for the spec string. If this
29008 results in an empty string then the spec is deleted. (Or, if the
29009 spec did not exist, then nothing happens.) Otherwise, if the spec
29010 does not currently exist a new spec is created. If the spec does
29011 exist then its contents are overridden by the text of this
29012 directive, unless the first character of that text is the @samp{+}
29013 character, in which case the text is appended to the spec.
29014
29015 @item [@var{suffix}]:
29016 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
29017 and up to the next directive or blank line are considered to make up the
29018 spec string for the indicated suffix. When the compiler encounters an
29019 input file with the named suffix, it processes the spec string in
29020 order to work out how to compile that file. For example:
29021
29022 @smallexample
29023 .ZZ:
29024 z-compile -input %i
29025 @end smallexample
29026
29027 This says that any input file whose name ends in @samp{.ZZ} should be
29028 passed to the program @samp{z-compile}, which should be invoked with the
29029 command-line switch @option{-input} and with the result of performing the
29030 @samp{%i} substitution. (See below.)
29031
29032 As an alternative to providing a spec string, the text following a
29033 suffix directive can be one of the following:
29034
29035 @table @code
29036 @item @@@var{language}
29037 This says that the suffix is an alias for a known @var{language}. This is
29038 similar to using the @option{-x} command-line switch to GCC to specify a
29039 language explicitly. For example:
29040
29041 @smallexample
29042 .ZZ:
29043 @@c++
29044 @end smallexample
29045
29046 Says that .ZZ files are, in fact, C++ source files.
29047
29048 @item #@var{name}
29049 This causes an error messages saying:
29050
29051 @smallexample
29052 @var{name} compiler not installed on this system.
29053 @end smallexample
29054 @end table
29055
29056 GCC already has an extensive list of suffixes built into it.
29057 This directive adds an entry to the end of the list of suffixes, but
29058 since the list is searched from the end backwards, it is effectively
29059 possible to override earlier entries using this technique.
29060
29061 @end table
29062
29063 GCC has the following spec strings built into it. Spec files can
29064 override these strings or create their own. Note that individual
29065 targets can also add their own spec strings to this list.
29066
29067 @smallexample
29068 asm Options to pass to the assembler
29069 asm_final Options to pass to the assembler post-processor
29070 cpp Options to pass to the C preprocessor
29071 cc1 Options to pass to the C compiler
29072 cc1plus Options to pass to the C++ compiler
29073 endfile Object files to include at the end of the link
29074 link Options to pass to the linker
29075 lib Libraries to include on the command line to the linker
29076 libgcc Decides which GCC support library to pass to the linker
29077 linker Sets the name of the linker
29078 predefines Defines to be passed to the C preprocessor
29079 signed_char Defines to pass to CPP to say whether @code{char} is signed
29080 by default
29081 startfile Object files to include at the start of the link
29082 @end smallexample
29083
29084 Here is a small example of a spec file:
29085
29086 @smallexample
29087 %rename lib old_lib
29088
29089 *lib:
29090 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
29091 @end smallexample
29092
29093 This example renames the spec called @samp{lib} to @samp{old_lib} and
29094 then overrides the previous definition of @samp{lib} with a new one.
29095 The new definition adds in some extra command-line options before
29096 including the text of the old definition.
29097
29098 @dfn{Spec strings} are a list of command-line options to be passed to their
29099 corresponding program. In addition, the spec strings can contain
29100 @samp{%}-prefixed sequences to substitute variable text or to
29101 conditionally insert text into the command line. Using these constructs
29102 it is possible to generate quite complex command lines.
29103
29104 Here is a table of all defined @samp{%}-sequences for spec
29105 strings. Note that spaces are not generated automatically around the
29106 results of expanding these sequences. Therefore you can concatenate them
29107 together or combine them with constant text in a single argument.
29108
29109 @table @code
29110 @item %%
29111 Substitute one @samp{%} into the program name or argument.
29112
29113 @item %i
29114 Substitute the name of the input file being processed.
29115
29116 @item %b
29117 Substitute the basename of the input file being processed.
29118 This is the substring up to (and not including) the last period
29119 and not including the directory.
29120
29121 @item %B
29122 This is the same as @samp{%b}, but include the file suffix (text after
29123 the last period).
29124
29125 @item %d
29126 Marks the argument containing or following the @samp{%d} as a
29127 temporary file name, so that that file is deleted if GCC exits
29128 successfully. Unlike @samp{%g}, this contributes no text to the
29129 argument.
29130
29131 @item %g@var{suffix}
29132 Substitute a file name that has suffix @var{suffix} and is chosen
29133 once per compilation, and mark the argument in the same way as
29134 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
29135 name is now chosen in a way that is hard to predict even when previously
29136 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
29137 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
29138 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
29139 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
29140 was simply substituted with a file name chosen once per compilation,
29141 without regard to any appended suffix (which was therefore treated
29142 just like ordinary text), making such attacks more likely to succeed.
29143
29144 @item %u@var{suffix}
29145 Like @samp{%g}, but generates a new temporary file name
29146 each time it appears instead of once per compilation.
29147
29148 @item %U@var{suffix}
29149 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
29150 new one if there is no such last file name. In the absence of any
29151 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
29152 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
29153 involves the generation of two distinct file names, one
29154 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
29155 simply substituted with a file name chosen for the previous @samp{%u},
29156 without regard to any appended suffix.
29157
29158 @item %j@var{suffix}
29159 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
29160 writable, and if @option{-save-temps} is not used;
29161 otherwise, substitute the name
29162 of a temporary file, just like @samp{%u}. This temporary file is not
29163 meant for communication between processes, but rather as a junk
29164 disposal mechanism.
29165
29166 @item %|@var{suffix}
29167 @itemx %m@var{suffix}
29168 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
29169 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
29170 all. These are the two most common ways to instruct a program that it
29171 should read from standard input or write to standard output. If you
29172 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
29173 construct: see for example @file{f/lang-specs.h}.
29174
29175 @item %.@var{SUFFIX}
29176 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
29177 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
29178 terminated by the next space or %.
29179
29180 @item %w
29181 Marks the argument containing or following the @samp{%w} as the
29182 designated output file of this compilation. This puts the argument
29183 into the sequence of arguments that @samp{%o} substitutes.
29184
29185 @item %o
29186 Substitutes the names of all the output files, with spaces
29187 automatically placed around them. You should write spaces
29188 around the @samp{%o} as well or the results are undefined.
29189 @samp{%o} is for use in the specs for running the linker.
29190 Input files whose names have no recognized suffix are not compiled
29191 at all, but they are included among the output files, so they are
29192 linked.
29193
29194 @item %O
29195 Substitutes the suffix for object files. Note that this is
29196 handled specially when it immediately follows @samp{%g, %u, or %U},
29197 because of the need for those to form complete file names. The
29198 handling is such that @samp{%O} is treated exactly as if it had already
29199 been substituted, except that @samp{%g, %u, and %U} do not currently
29200 support additional @var{suffix} characters following @samp{%O} as they do
29201 following, for example, @samp{.o}.
29202
29203 @item %p
29204 Substitutes the standard macro predefinitions for the
29205 current target machine. Use this when running @command{cpp}.
29206
29207 @item %P
29208 Like @samp{%p}, but puts @samp{__} before and after the name of each
29209 predefined macro, except for macros that start with @samp{__} or with
29210 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
29211 C@.
29212
29213 @item %I
29214 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
29215 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
29216 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
29217 and @option{-imultilib} as necessary.
29218
29219 @item %s
29220 Current argument is the name of a library or startup file of some sort.
29221 Search for that file in a standard list of directories and substitute
29222 the full name found. The current working directory is included in the
29223 list of directories scanned.
29224
29225 @item %T
29226 Current argument is the name of a linker script. Search for that file
29227 in the current list of directories to scan for libraries. If the file
29228 is located insert a @option{--script} option into the command line
29229 followed by the full path name found. If the file is not found then
29230 generate an error message. Note: the current working directory is not
29231 searched.
29232
29233 @item %e@var{str}
29234 Print @var{str} as an error message. @var{str} is terminated by a newline.
29235 Use this when inconsistent options are detected.
29236
29237 @item %(@var{name})
29238 Substitute the contents of spec string @var{name} at this point.
29239
29240 @item %x@{@var{option}@}
29241 Accumulate an option for @samp{%X}.
29242
29243 @item %X
29244 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
29245 spec string.
29246
29247 @item %Y
29248 Output the accumulated assembler options specified by @option{-Wa}.
29249
29250 @item %Z
29251 Output the accumulated preprocessor options specified by @option{-Wp}.
29252
29253 @item %a
29254 Process the @code{asm} spec. This is used to compute the
29255 switches to be passed to the assembler.
29256
29257 @item %A
29258 Process the @code{asm_final} spec. This is a spec string for
29259 passing switches to an assembler post-processor, if such a program is
29260 needed.
29261
29262 @item %l
29263 Process the @code{link} spec. This is the spec for computing the
29264 command line passed to the linker. Typically it makes use of the
29265 @samp{%L %G %S %D and %E} sequences.
29266
29267 @item %D
29268 Dump out a @option{-L} option for each directory that GCC believes might
29269 contain startup files. If the target supports multilibs then the
29270 current multilib directory is prepended to each of these paths.
29271
29272 @item %L
29273 Process the @code{lib} spec. This is a spec string for deciding which
29274 libraries are included on the command line to the linker.
29275
29276 @item %G
29277 Process the @code{libgcc} spec. This is a spec string for deciding
29278 which GCC support library is included on the command line to the linker.
29279
29280 @item %S
29281 Process the @code{startfile} spec. This is a spec for deciding which
29282 object files are the first ones passed to the linker. Typically
29283 this might be a file named @file{crt0.o}.
29284
29285 @item %E
29286 Process the @code{endfile} spec. This is a spec string that specifies
29287 the last object files that are passed to the linker.
29288
29289 @item %C
29290 Process the @code{cpp} spec. This is used to construct the arguments
29291 to be passed to the C preprocessor.
29292
29293 @item %1
29294 Process the @code{cc1} spec. This is used to construct the options to be
29295 passed to the actual C compiler (@command{cc1}).
29296
29297 @item %2
29298 Process the @code{cc1plus} spec. This is used to construct the options to be
29299 passed to the actual C++ compiler (@command{cc1plus}).
29300
29301 @item %*
29302 Substitute the variable part of a matched option. See below.
29303 Note that each comma in the substituted string is replaced by
29304 a single space.
29305
29306 @item %<S
29307 Remove all occurrences of @code{-S} from the command line. Note---this
29308 command is position dependent. @samp{%} commands in the spec string
29309 before this one see @code{-S}, @samp{%} commands in the spec string
29310 after this one do not.
29311
29312 @item %:@var{function}(@var{args})
29313 Call the named function @var{function}, passing it @var{args}.
29314 @var{args} is first processed as a nested spec string, then split
29315 into an argument vector in the usual fashion. The function returns
29316 a string which is processed as if it had appeared literally as part
29317 of the current spec.
29318
29319 The following built-in spec functions are provided:
29320
29321 @table @code
29322 @item @code{getenv}
29323 The @code{getenv} spec function takes two arguments: an environment
29324 variable name and a string. If the environment variable is not
29325 defined, a fatal error is issued. Otherwise, the return value is the
29326 value of the environment variable concatenated with the string. For
29327 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
29328
29329 @smallexample
29330 %:getenv(TOPDIR /include)
29331 @end smallexample
29332
29333 expands to @file{/path/to/top/include}.
29334
29335 @item @code{if-exists}
29336 The @code{if-exists} spec function takes one argument, an absolute
29337 pathname to a file. If the file exists, @code{if-exists} returns the
29338 pathname. Here is a small example of its usage:
29339
29340 @smallexample
29341 *startfile:
29342 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
29343 @end smallexample
29344
29345 @item @code{if-exists-else}
29346 The @code{if-exists-else} spec function is similar to the @code{if-exists}
29347 spec function, except that it takes two arguments. The first argument is
29348 an absolute pathname to a file. If the file exists, @code{if-exists-else}
29349 returns the pathname. If it does not exist, it returns the second argument.
29350 This way, @code{if-exists-else} can be used to select one file or another,
29351 based on the existence of the first. Here is a small example of its usage:
29352
29353 @smallexample
29354 *startfile:
29355 crt0%O%s %:if-exists(crti%O%s) \
29356 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
29357 @end smallexample
29358
29359 @item @code{replace-outfile}
29360 The @code{replace-outfile} spec function takes two arguments. It looks for the
29361 first argument in the outfiles array and replaces it with the second argument. Here
29362 is a small example of its usage:
29363
29364 @smallexample
29365 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
29366 @end smallexample
29367
29368 @item @code{remove-outfile}
29369 The @code{remove-outfile} spec function takes one argument. It looks for the
29370 first argument in the outfiles array and removes it. Here is a small example
29371 its usage:
29372
29373 @smallexample
29374 %:remove-outfile(-lm)
29375 @end smallexample
29376
29377 @item @code{pass-through-libs}
29378 The @code{pass-through-libs} spec function takes any number of arguments. It
29379 finds any @option{-l} options and any non-options ending in @file{.a} (which it
29380 assumes are the names of linker input library archive files) and returns a
29381 result containing all the found arguments each prepended by
29382 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
29383 intended to be passed to the LTO linker plugin.
29384
29385 @smallexample
29386 %:pass-through-libs(%G %L %G)
29387 @end smallexample
29388
29389 @item @code{print-asm-header}
29390 The @code{print-asm-header} function takes no arguments and simply
29391 prints a banner like:
29392
29393 @smallexample
29394 Assembler options
29395 =================
29396
29397 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
29398 @end smallexample
29399
29400 It is used to separate compiler options from assembler options
29401 in the @option{--target-help} output.
29402 @end table
29403
29404 @item %@{S@}
29405 Substitutes the @code{-S} switch, if that switch is given to GCC@.
29406 If that switch is not specified, this substitutes nothing. Note that
29407 the leading dash is omitted when specifying this option, and it is
29408 automatically inserted if the substitution is performed. Thus the spec
29409 string @samp{%@{foo@}} matches the command-line option @option{-foo}
29410 and outputs the command-line option @option{-foo}.
29411
29412 @item %W@{S@}
29413 Like %@{@code{S}@} but mark last argument supplied within as a file to be
29414 deleted on failure.
29415
29416 @item %@{S*@}
29417 Substitutes all the switches specified to GCC whose names start
29418 with @code{-S}, but which also take an argument. This is used for
29419 switches like @option{-o}, @option{-D}, @option{-I}, etc.
29420 GCC considers @option{-o foo} as being
29421 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
29422 text, including the space. Thus two arguments are generated.
29423
29424 @item %@{S*&T*@}
29425 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
29426 (the order of @code{S} and @code{T} in the spec is not significant).
29427 There can be any number of ampersand-separated variables; for each the
29428 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
29429
29430 @item %@{S:X@}
29431 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
29432
29433 @item %@{!S:X@}
29434 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
29435
29436 @item %@{S*:X@}
29437 Substitutes @code{X} if one or more switches whose names start with
29438 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
29439 once, no matter how many such switches appeared. However, if @code{%*}
29440 appears somewhere in @code{X}, then @code{X} is substituted once
29441 for each matching switch, with the @code{%*} replaced by the part of
29442 that switch matching the @code{*}.
29443
29444 If @code{%*} appears as the last part of a spec sequence then a space
29445 is added after the end of the last substitution. If there is more
29446 text in the sequence, however, then a space is not generated. This
29447 allows the @code{%*} substitution to be used as part of a larger
29448 string. For example, a spec string like this:
29449
29450 @smallexample
29451 %@{mcu=*:--script=%*/memory.ld@}
29452 @end smallexample
29453
29454 @noindent
29455 when matching an option like @option{-mcu=newchip} produces:
29456
29457 @smallexample
29458 --script=newchip/memory.ld
29459 @end smallexample
29460
29461 @item %@{.S:X@}
29462 Substitutes @code{X}, if processing a file with suffix @code{S}.
29463
29464 @item %@{!.S:X@}
29465 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
29466
29467 @item %@{,S:X@}
29468 Substitutes @code{X}, if processing a file for language @code{S}.
29469
29470 @item %@{!,S:X@}
29471 Substitutes @code{X}, if not processing a file for language @code{S}.
29472
29473 @item %@{S|P:X@}
29474 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
29475 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
29476 @code{*} sequences as well, although they have a stronger binding than
29477 the @samp{|}. If @code{%*} appears in @code{X}, all of the
29478 alternatives must be starred, and only the first matching alternative
29479 is substituted.
29480
29481 For example, a spec string like this:
29482
29483 @smallexample
29484 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
29485 @end smallexample
29486
29487 @noindent
29488 outputs the following command-line options from the following input
29489 command-line options:
29490
29491 @smallexample
29492 fred.c -foo -baz
29493 jim.d -bar -boggle
29494 -d fred.c -foo -baz -boggle
29495 -d jim.d -bar -baz -boggle
29496 @end smallexample
29497
29498 @item %@{S:X; T:Y; :D@}
29499
29500 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
29501 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
29502 be as many clauses as you need. This may be combined with @code{.},
29503 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
29504
29505
29506 @end table
29507
29508 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
29509 or similar construct can use a backslash to ignore the special meaning
29510 of the character following it, thus allowing literal matching of a
29511 character that is otherwise specially treated. For example,
29512 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
29513 @option{-std=iso9899:1999} option is given.
29514
29515 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
29516 construct may contain other nested @samp{%} constructs or spaces, or
29517 even newlines. They are processed as usual, as described above.
29518 Trailing white space in @code{X} is ignored. White space may also
29519 appear anywhere on the left side of the colon in these constructs,
29520 except between @code{.} or @code{*} and the corresponding word.
29521
29522 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
29523 handled specifically in these constructs. If another value of
29524 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
29525 @option{-W} switch is found later in the command line, the earlier
29526 switch value is ignored, except with @{@code{S}*@} where @code{S} is
29527 just one letter, which passes all matching options.
29528
29529 The character @samp{|} at the beginning of the predicate text is used to
29530 indicate that a command should be piped to the following command, but
29531 only if @option{-pipe} is specified.
29532
29533 It is built into GCC which switches take arguments and which do not.
29534 (You might think it would be useful to generalize this to allow each
29535 compiler's spec to say which switches take arguments. But this cannot
29536 be done in a consistent fashion. GCC cannot even decide which input
29537 files have been specified without knowing which switches take arguments,
29538 and it must know which input files to compile in order to tell which
29539 compilers to run).
29540
29541 GCC also knows implicitly that arguments starting in @option{-l} are to be
29542 treated as compiler output files, and passed to the linker in their
29543 proper position among the other output files.
29544
29545 @node Environment Variables
29546 @section Environment Variables Affecting GCC
29547 @cindex environment variables
29548
29549 @c man begin ENVIRONMENT
29550 This section describes several environment variables that affect how GCC
29551 operates. Some of them work by specifying directories or prefixes to use
29552 when searching for various kinds of files. Some are used to specify other
29553 aspects of the compilation environment.
29554
29555 Note that you can also specify places to search using options such as
29556 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
29557 take precedence over places specified using environment variables, which
29558 in turn take precedence over those specified by the configuration of GCC@.
29559 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
29560 GNU Compiler Collection (GCC) Internals}.
29561
29562 @table @env
29563 @item LANG
29564 @itemx LC_CTYPE
29565 @c @itemx LC_COLLATE
29566 @itemx LC_MESSAGES
29567 @c @itemx LC_MONETARY
29568 @c @itemx LC_NUMERIC
29569 @c @itemx LC_TIME
29570 @itemx LC_ALL
29571 @findex LANG
29572 @findex LC_CTYPE
29573 @c @findex LC_COLLATE
29574 @findex LC_MESSAGES
29575 @c @findex LC_MONETARY
29576 @c @findex LC_NUMERIC
29577 @c @findex LC_TIME
29578 @findex LC_ALL
29579 @cindex locale
29580 These environment variables control the way that GCC uses
29581 localization information which allows GCC to work with different
29582 national conventions. GCC inspects the locale categories
29583 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
29584 so. These locale categories can be set to any value supported by your
29585 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
29586 Kingdom encoded in UTF-8.
29587
29588 The @env{LC_CTYPE} environment variable specifies character
29589 classification. GCC uses it to determine the character boundaries in
29590 a string; this is needed for some multibyte encodings that contain quote
29591 and escape characters that are otherwise interpreted as a string
29592 end or escape.
29593
29594 The @env{LC_MESSAGES} environment variable specifies the language to
29595 use in diagnostic messages.
29596
29597 If the @env{LC_ALL} environment variable is set, it overrides the value
29598 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
29599 and @env{LC_MESSAGES} default to the value of the @env{LANG}
29600 environment variable. If none of these variables are set, GCC
29601 defaults to traditional C English behavior.
29602
29603 @item TMPDIR
29604 @findex TMPDIR
29605 If @env{TMPDIR} is set, it specifies the directory to use for temporary
29606 files. GCC uses temporary files to hold the output of one stage of
29607 compilation which is to be used as input to the next stage: for example,
29608 the output of the preprocessor, which is the input to the compiler
29609 proper.
29610
29611 @item GCC_COMPARE_DEBUG
29612 @findex GCC_COMPARE_DEBUG
29613 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
29614 @option{-fcompare-debug} to the compiler driver. See the documentation
29615 of this option for more details.
29616
29617 @item GCC_EXEC_PREFIX
29618 @findex GCC_EXEC_PREFIX
29619 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
29620 names of the subprograms executed by the compiler. No slash is added
29621 when this prefix is combined with the name of a subprogram, but you can
29622 specify a prefix that ends with a slash if you wish.
29623
29624 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
29625 an appropriate prefix to use based on the pathname it is invoked with.
29626
29627 If GCC cannot find the subprogram using the specified prefix, it
29628 tries looking in the usual places for the subprogram.
29629
29630 The default value of @env{GCC_EXEC_PREFIX} is
29631 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
29632 the installed compiler. In many cases @var{prefix} is the value
29633 of @code{prefix} when you ran the @file{configure} script.
29634
29635 Other prefixes specified with @option{-B} take precedence over this prefix.
29636
29637 This prefix is also used for finding files such as @file{crt0.o} that are
29638 used for linking.
29639
29640 In addition, the prefix is used in an unusual way in finding the
29641 directories to search for header files. For each of the standard
29642 directories whose name normally begins with @samp{/usr/local/lib/gcc}
29643 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
29644 replacing that beginning with the specified prefix to produce an
29645 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
29646 @file{foo/bar} just before it searches the standard directory
29647 @file{/usr/local/lib/bar}.
29648 If a standard directory begins with the configured
29649 @var{prefix} then the value of @var{prefix} is replaced by
29650 @env{GCC_EXEC_PREFIX} when looking for header files.
29651
29652 @item COMPILER_PATH
29653 @findex COMPILER_PATH
29654 The value of @env{COMPILER_PATH} is a colon-separated list of
29655 directories, much like @env{PATH}. GCC tries the directories thus
29656 specified when searching for subprograms, if it cannot find the
29657 subprograms using @env{GCC_EXEC_PREFIX}.
29658
29659 @item LIBRARY_PATH
29660 @findex LIBRARY_PATH
29661 The value of @env{LIBRARY_PATH} is a colon-separated list of
29662 directories, much like @env{PATH}. When configured as a native compiler,
29663 GCC tries the directories thus specified when searching for special
29664 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
29665 using GCC also uses these directories when searching for ordinary
29666 libraries for the @option{-l} option (but directories specified with
29667 @option{-L} come first).
29668
29669 @item LANG
29670 @findex LANG
29671 @cindex locale definition
29672 This variable is used to pass locale information to the compiler. One way in
29673 which this information is used is to determine the character set to be used
29674 when character literals, string literals and comments are parsed in C and C++.
29675 When the compiler is configured to allow multibyte characters,
29676 the following values for @env{LANG} are recognized:
29677
29678 @table @samp
29679 @item C-JIS
29680 Recognize JIS characters.
29681 @item C-SJIS
29682 Recognize SJIS characters.
29683 @item C-EUCJP
29684 Recognize EUCJP characters.
29685 @end table
29686
29687 If @env{LANG} is not defined, or if it has some other value, then the
29688 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
29689 recognize and translate multibyte characters.
29690 @end table
29691
29692 @noindent
29693 Some additional environment variables affect the behavior of the
29694 preprocessor.
29695
29696 @include cppenv.texi
29697
29698 @c man end
29699
29700 @node Precompiled Headers
29701 @section Using Precompiled Headers
29702 @cindex precompiled headers
29703 @cindex speed of compilation
29704
29705 Often large projects have many header files that are included in every
29706 source file. The time the compiler takes to process these header files
29707 over and over again can account for nearly all of the time required to
29708 build the project. To make builds faster, GCC allows you to
29709 @dfn{precompile} a header file.
29710
29711 To create a precompiled header file, simply compile it as you would any
29712 other file, if necessary using the @option{-x} option to make the driver
29713 treat it as a C or C++ header file. You may want to use a
29714 tool like @command{make} to keep the precompiled header up-to-date when
29715 the headers it contains change.
29716
29717 A precompiled header file is searched for when @code{#include} is
29718 seen in the compilation. As it searches for the included file
29719 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
29720 compiler looks for a precompiled header in each directory just before it
29721 looks for the include file in that directory. The name searched for is
29722 the name specified in the @code{#include} with @samp{.gch} appended. If
29723 the precompiled header file cannot be used, it is ignored.
29724
29725 For instance, if you have @code{#include "all.h"}, and you have
29726 @file{all.h.gch} in the same directory as @file{all.h}, then the
29727 precompiled header file is used if possible, and the original
29728 header is used otherwise.
29729
29730 Alternatively, you might decide to put the precompiled header file in a
29731 directory and use @option{-I} to ensure that directory is searched
29732 before (or instead of) the directory containing the original header.
29733 Then, if you want to check that the precompiled header file is always
29734 used, you can put a file of the same name as the original header in this
29735 directory containing an @code{#error} command.
29736
29737 This also works with @option{-include}. So yet another way to use
29738 precompiled headers, good for projects not designed with precompiled
29739 header files in mind, is to simply take most of the header files used by
29740 a project, include them from another header file, precompile that header
29741 file, and @option{-include} the precompiled header. If the header files
29742 have guards against multiple inclusion, they are skipped because
29743 they've already been included (in the precompiled header).
29744
29745 If you need to precompile the same header file for different
29746 languages, targets, or compiler options, you can instead make a
29747 @emph{directory} named like @file{all.h.gch}, and put each precompiled
29748 header in the directory, perhaps using @option{-o}. It doesn't matter
29749 what you call the files in the directory; every precompiled header in
29750 the directory is considered. The first precompiled header
29751 encountered in the directory that is valid for this compilation is
29752 used; they're searched in no particular order.
29753
29754 There are many other possibilities, limited only by your imagination,
29755 good sense, and the constraints of your build system.
29756
29757 A precompiled header file can be used only when these conditions apply:
29758
29759 @itemize
29760 @item
29761 Only one precompiled header can be used in a particular compilation.
29762
29763 @item
29764 A precompiled header cannot be used once the first C token is seen. You
29765 can have preprocessor directives before a precompiled header; you cannot
29766 include a precompiled header from inside another header.
29767
29768 @item
29769 The precompiled header file must be produced for the same language as
29770 the current compilation. You cannot use a C precompiled header for a C++
29771 compilation.
29772
29773 @item
29774 The precompiled header file must have been produced by the same compiler
29775 binary as the current compilation is using.
29776
29777 @item
29778 Any macros defined before the precompiled header is included must
29779 either be defined in the same way as when the precompiled header was
29780 generated, or must not affect the precompiled header, which usually
29781 means that they don't appear in the precompiled header at all.
29782
29783 The @option{-D} option is one way to define a macro before a
29784 precompiled header is included; using a @code{#define} can also do it.
29785 There are also some options that define macros implicitly, like
29786 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
29787 defined this way.
29788
29789 @item If debugging information is output when using the precompiled
29790 header, using @option{-g} or similar, the same kind of debugging information
29791 must have been output when building the precompiled header. However,
29792 a precompiled header built using @option{-g} can be used in a compilation
29793 when no debugging information is being output.
29794
29795 @item The same @option{-m} options must generally be used when building
29796 and using the precompiled header. @xref{Submodel Options},
29797 for any cases where this rule is relaxed.
29798
29799 @item Each of the following options must be the same when building and using
29800 the precompiled header:
29801
29802 @gccoptlist{-fexceptions}
29803
29804 @item
29805 Some other command-line options starting with @option{-f},
29806 @option{-p}, or @option{-O} must be defined in the same way as when
29807 the precompiled header was generated. At present, it's not clear
29808 which options are safe to change and which are not; the safest choice
29809 is to use exactly the same options when generating and using the
29810 precompiled header. The following are known to be safe:
29811
29812 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
29813 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
29814 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
29815 -pedantic-errors}
29816
29817 @end itemize
29818
29819 For all of these except the last, the compiler automatically
29820 ignores the precompiled header if the conditions aren't met. If you
29821 find an option combination that doesn't work and doesn't cause the
29822 precompiled header to be ignored, please consider filing a bug report,
29823 see @ref{Bugs}.
29824
29825 If you do use differing options when generating and using the
29826 precompiled header, the actual behavior is a mixture of the
29827 behavior for the options. For instance, if you use @option{-g} to
29828 generate the precompiled header but not when using it, you may or may
29829 not get debugging information for routines in the precompiled header.