* doc/invoke.texi (-fdebug-types-section): Fix grammar.
[gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2018 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2018 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 @c man end
125
126 @xref{Option Index}, for an index to GCC's options.
127
128 @menu
129 * Option Summary:: Brief list of all options, without explanations.
130 * Overall Options:: Controlling the kind of output:
131 an executable, object files, assembler files,
132 or preprocessed source.
133 * Invoking G++:: Compiling C++ programs.
134 * C Dialect Options:: Controlling the variant of C language compiled.
135 * C++ Dialect Options:: Variations on C++.
136 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
137 and Objective-C++.
138 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
139 be formatted.
140 * Warning Options:: How picky should the compiler be?
141 * Debugging Options:: Producing debuggable code.
142 * Optimize Options:: How much optimization?
143 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
144 * Preprocessor Options:: Controlling header files and macro definitions.
145 Also, getting dependency information for Make.
146 * Assembler Options:: Passing options to the assembler.
147 * Link Options:: Specifying libraries and so on.
148 * Directory Options:: Where to find header files and libraries.
149 Where to find the compiler executable files.
150 * Code Gen Options:: Specifying conventions for function calls, data layout
151 and register usage.
152 * Developer Options:: Printing GCC configuration info, statistics, and
153 debugging dumps.
154 * Submodel Options:: Target-specific options, such as compiling for a
155 specific processor variant.
156 * Spec Files:: How to pass switches to sub-processes.
157 * Environment Variables:: Env vars that affect GCC.
158 * Precompiled Headers:: Compiling a header once, and using it many times.
159 @end menu
160
161 @c man begin OPTIONS
162
163 @node Option Summary
164 @section Option Summary
165
166 Here is a summary of all the options, grouped by type. Explanations are
167 in the following sections.
168
169 @table @emph
170 @item Overall Options
171 @xref{Overall Options,,Options Controlling the Kind of Output}.
172 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
173 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
174 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
175 @@@var{file} -ffile-prefix-map=@var{old}=@var{new} @gol
176 -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
177 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
178
179 @item C Language Options
180 @xref{C Dialect Options,,Options Controlling C Dialect}.
181 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
182 -fpermitted-flt-eval-methods=@var{standard} @gol
183 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
184 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
185 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
186 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
187 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
188 -fsigned-bitfields -fsigned-char @gol
189 -funsigned-bitfields -funsigned-char}
190
191 @item C++ Language Options
192 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
193 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
194 -faligned-new=@var{n} -fargs-in-order=@var{n} -fcheck-new @gol
195 -fconstexpr-depth=@var{n} -fconstexpr-loop-limit=@var{n} @gol
196 -ffriend-injection @gol
197 -fno-elide-constructors @gol
198 -fno-enforce-eh-specs @gol
199 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
200 -fno-implicit-templates @gol
201 -fno-implicit-inline-templates @gol
202 -fno-implement-inlines -fms-extensions @gol
203 -fnew-inheriting-ctors @gol
204 -fnew-ttp-matching @gol
205 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
206 -fno-optional-diags -fpermissive @gol
207 -fno-pretty-templates @gol
208 -frepo -fno-rtti -fsized-deallocation @gol
209 -ftemplate-backtrace-limit=@var{n} @gol
210 -ftemplate-depth=@var{n} @gol
211 -fno-threadsafe-statics -fuse-cxa-atexit @gol
212 -fno-weak -nostdinc++ @gol
213 -fvisibility-inlines-hidden @gol
214 -fvisibility-ms-compat @gol
215 -fext-numeric-literals @gol
216 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
217 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
218 -Wnamespaces -Wnarrowing @gol
219 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
220 -Wnon-virtual-dtor -Wreorder -Wregister @gol
221 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
222 -Wno-non-template-friend -Wold-style-cast @gol
223 -Woverloaded-virtual -Wno-pmf-conversions @gol
224 -Wsign-promo -Wvirtual-inheritance}
225
226 @item Objective-C and Objective-C++ Language Options
227 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
228 Objective-C and Objective-C++ Dialects}.
229 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
230 -fgnu-runtime -fnext-runtime @gol
231 -fno-nil-receivers @gol
232 -fobjc-abi-version=@var{n} @gol
233 -fobjc-call-cxx-cdtors @gol
234 -fobjc-direct-dispatch @gol
235 -fobjc-exceptions @gol
236 -fobjc-gc @gol
237 -fobjc-nilcheck @gol
238 -fobjc-std=objc1 @gol
239 -fno-local-ivars @gol
240 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
241 -freplace-objc-classes @gol
242 -fzero-link @gol
243 -gen-decls @gol
244 -Wassign-intercept @gol
245 -Wno-protocol -Wselector @gol
246 -Wstrict-selector-match @gol
247 -Wundeclared-selector}
248
249 @item Diagnostic Message Formatting Options
250 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
251 @gccoptlist{-fmessage-length=@var{n} @gol
252 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
253 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
254 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
255 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
256 -fdiagnostics-show-template-tree -fno-elide-type @gol
257 -fno-show-column}
258
259 @item Warning Options
260 @xref{Warning Options,,Options to Request or Suppress Warnings}.
261 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
262 -pedantic-errors @gol
263 -w -Wextra -Wall -Waddress -Waggregate-return @gol
264 -Walloc-zero -Walloc-size-larger-than=@var{n}
265 -Walloca -Walloca-larger-than=@var{n} @gol
266 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
267 -Wno-attributes -Wbool-compare -Wbool-operation @gol
268 -Wno-builtin-declaration-mismatch @gol
269 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
270 -Wc++-compat -Wc++11-compat -Wc++14-compat @gol
271 -Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual @gol
272 -Wchar-subscripts -Wchkp -Wcatch-value -Wcatch-value=@var{n} @gol
273 -Wclobbered -Wcomment -Wconditionally-supported @gol
274 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
275 -Wdelete-incomplete @gol
276 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
277 -Wdisabled-optimization @gol
278 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
279 -Wno-div-by-zero -Wdouble-promotion @gol
280 -Wduplicated-branches -Wduplicated-cond @gol
281 -Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined @gol
282 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
283 -Wfloat-equal -Wformat -Wformat=2 @gol
284 -Wno-format-contains-nul -Wno-format-extra-args @gol
285 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
286 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
287 -Wformat-y2k -Wframe-address @gol
288 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
289 -Wif-not-aligned @gol
290 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
291 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
292 -Wimplicit-function-declaration -Wimplicit-int @gol
293 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
294 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
295 -Winvalid-pch -Wlarger-than=@var{len} @gol
296 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
297 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
298 -Wmisleading-indentation -Wmissing-attributes -Wmissing-braces @gol
299 -Wmissing-field-initializers -Wmissing-include-dirs @gol
300 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
301 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
302 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
303 -Woverride-init-side-effects -Woverlength-strings @gol
304 -Wpacked -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded @gol
305 -Wparentheses -Wno-pedantic-ms-format @gol
306 -Wplacement-new -Wplacement-new=@var{n} @gol
307 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
308 -Wno-pragmas -Wredundant-decls -Wrestrict -Wno-return-local-addr @gol
309 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
310 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
311 -Wshift-overflow -Wshift-overflow=@var{n} @gol
312 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
313 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
314 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
315 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
316 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
317 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
318 -Wstringop-overflow=@var{n} -Wstringop-truncation @gol
319 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
320 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
321 -Wmissing-format-attribute -Wsubobject-linkage @gol
322 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
323 -Wswitch-unreachable -Wsync-nand @gol
324 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
325 -Wtype-limits -Wundef @gol
326 -Wuninitialized -Wunknown-pragmas -Wunsafe-loop-optimizations @gol
327 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
328 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
329 -Wunused-parameter -Wno-unused-result @gol
330 -Wunused-value -Wunused-variable @gol
331 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
332 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
333 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
334 -Wvla -Wvla-larger-than=@var{n} -Wvolatile-register-var -Wwrite-strings @gol
335 -Wzero-as-null-pointer-constant -Whsa}
336
337 @item C and Objective-C-only Warning Options
338 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
339 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
340 -Wold-style-declaration -Wold-style-definition @gol
341 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
342 -Wdeclaration-after-statement -Wpointer-sign}
343
344 @item Debugging Options
345 @xref{Debugging Options,,Options for Debugging Your Program}.
346 @gccoptlist{-g -g@var{level} -gdwarf -gdwarf-@var{version} @gol
347 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
348 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
349 -gas-loc-support -gno-as-loc-support @gol
350 -gas-locview-support -gno-as-locview-support @gol
351 -gcolumn-info -gno-column-info @gol
352 -gstatement-frontiers -gno-statement-frontiers @gol
353 -gvariable-location-views -gno-variable-location-views @gol
354 -ginternal-reset-location-views -gno-internal-reset-location-views @gol
355 -ginline-points -gno-inline-points @gol
356 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
357 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
358 -fno-eliminate-unused-debug-types @gol
359 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
360 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
361 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
362 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
363 -fvar-tracking -fvar-tracking-assignments}
364
365 @item Optimization Options
366 @xref{Optimize Options,,Options that Control Optimization}.
367 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
368 -falign-jumps[=@var{n}] @gol
369 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
370 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
371 -fauto-inc-dec -fbranch-probabilities @gol
372 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
373 -fbtr-bb-exclusive -fcaller-saves @gol
374 -fcombine-stack-adjustments -fconserve-stack @gol
375 -fcompare-elim -fcprop-registers -fcrossjumping @gol
376 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
377 -fcx-limited-range @gol
378 -fdata-sections -fdce -fdelayed-branch @gol
379 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
380 -fdevirtualize-at-ltrans -fdse @gol
381 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
382 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
383 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
384 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
385 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
386 -fif-conversion2 -findirect-inlining @gol
387 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
388 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
389 -fipa-bit-cp -fipa-vrp @gol
390 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
391 -fira-algorithm=@var{algorithm} @gol
392 -fira-region=@var{region} -fira-hoist-pressure @gol
393 -fira-loop-pressure -fno-ira-share-save-slots @gol
394 -fno-ira-share-spill-slots @gol
395 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
396 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
397 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
398 -floop-block -floop-interchange -floop-strip-mine @gol
399 -floop-unroll-and-jam -floop-nest-optimize @gol
400 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
401 -flto-partition=@var{alg} -fmerge-all-constants @gol
402 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
403 -fmove-loop-invariants -fno-branch-count-reg @gol
404 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
405 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
406 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
407 -fno-sched-spec -fno-signed-zeros @gol
408 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
409 -fomit-frame-pointer -foptimize-sibling-calls @gol
410 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
411 -fprefetch-loop-arrays @gol
412 -fprofile-correction @gol
413 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
414 -fprofile-reorder-functions @gol
415 -freciprocal-math -free -frename-registers -freorder-blocks @gol
416 -freorder-blocks-algorithm=@var{algorithm} @gol
417 -freorder-blocks-and-partition -freorder-functions @gol
418 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
419 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
420 -fsched-spec-load -fsched-spec-load-dangerous @gol
421 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
422 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
423 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
424 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
425 -fschedule-fusion @gol
426 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
427 -fselective-scheduling -fselective-scheduling2 @gol
428 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
429 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
430 -fsignaling-nans @gol
431 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
432 -fsplit-paths @gol
433 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
434 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
435 -fthread-jumps -ftracer -ftree-bit-ccp @gol
436 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
437 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
438 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
439 -ftree-loop-if-convert -ftree-loop-im @gol
440 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
441 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
442 -ftree-loop-vectorize @gol
443 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
444 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
445 -ftree-switch-conversion -ftree-tail-merge @gol
446 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
447 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
448 -funsafe-math-optimizations -funswitch-loops @gol
449 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
450 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
451 --param @var{name}=@var{value}
452 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
453
454 @item Program Instrumentation Options
455 @xref{Instrumentation Options,,Program Instrumentation Options}.
456 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
457 -fprofile-abs-path @gol
458 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
459 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
460 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
461 -fsanitize-undefined-trap-on-error -fbounds-check @gol
462 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
463 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
464 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
465 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
466 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
467 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
468 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
469 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
470 -fchkp-use-wrappers -fchkp-flexible-struct-trailing-arrays@gol
471 -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
472 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
473 -fstack-protector-explicit -fstack-check @gol
474 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
475 -fno-stack-limit -fsplit-stack @gol
476 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
477 -fvtv-counts -fvtv-debug @gol
478 -finstrument-functions @gol
479 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
480 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
481
482 @item Preprocessor Options
483 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
484 @gccoptlist{-A@var{question}=@var{answer} @gol
485 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
486 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
487 -dD -dI -dM -dN -dU @gol
488 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
489 -fexec-charset=@var{charset} -fextended-identifiers @gol
490 -finput-charset=@var{charset} -fmacro-prefix-map=@var{old}=@var{new} @gol
491 -fno-canonical-system-headers @gol -fpch-deps -fpch-preprocess @gol
492 -fpreprocessed -ftabstop=@var{width} -ftrack-macro-expansion @gol
493 -fwide-exec-charset=@var{charset} -fworking-directory @gol
494 -H -imacros @var{file} -include @var{file} @gol
495 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
496 -no-integrated-cpp -P -pthread -remap @gol
497 -traditional -traditional-cpp -trigraphs @gol
498 -U@var{macro} -undef @gol
499 -Wp,@var{option} -Xpreprocessor @var{option}}
500
501 @item Assembler Options
502 @xref{Assembler Options,,Passing Options to the Assembler}.
503 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
504
505 @item Linker Options
506 @xref{Link Options,,Options for Linking}.
507 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
508 -nostartfiles -nodefaultlibs -nostdlib -pie -pthread -rdynamic @gol
509 -s -static -static-pie -static-libgcc -static-libstdc++ @gol
510 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
511 -static-libmpx -static-libmpxwrappers @gol
512 -shared -shared-libgcc -symbolic @gol
513 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
514 -u @var{symbol} -z @var{keyword}}
515
516 @item Directory Options
517 @xref{Directory Options,,Options for Directory Search}.
518 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
519 -idirafter @var{dir} @gol
520 -imacros @var{file} -imultilib @var{dir} @gol
521 -iplugindir=@var{dir} -iprefix @var{file} @gol
522 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
523 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
524 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
525 -nostdinc -nostdinc++ --sysroot=@var{dir}}
526
527 @item Code Generation Options
528 @xref{Code Gen Options,,Options for Code Generation Conventions}.
529 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
530 -ffixed-@var{reg} -fexceptions @gol
531 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
532 -fasynchronous-unwind-tables @gol
533 -fno-gnu-unique @gol
534 -finhibit-size-directive -fno-common -fno-ident @gol
535 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
536 -fno-jump-tables @gol
537 -frecord-gcc-switches @gol
538 -freg-struct-return -fshort-enums -fshort-wchar @gol
539 -fverbose-asm -fpack-struct[=@var{n}] @gol
540 -fleading-underscore -ftls-model=@var{model} @gol
541 -fstack-reuse=@var{reuse_level} @gol
542 -ftrampolines -ftrapv -fwrapv @gol
543 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
544 -fstrict-volatile-bitfields -fsync-libcalls}
545
546 @item Developer Options
547 @xref{Developer Options,,GCC Developer Options}.
548 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
549 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
550 -fdbg-cnt=@var{counter-value-list} @gol
551 -fdisable-ipa-@var{pass_name} @gol
552 -fdisable-rtl-@var{pass_name} @gol
553 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
554 -fdisable-tree-@var{pass_name} @gol
555 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
556 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
557 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
558 -fdump-final-insns@r{[}=@var{file}@r{]} @gol
559 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
560 -fdump-lang-all @gol
561 -fdump-lang-@var{switch} @gol
562 -fdump-lang-@var{switch}-@var{options} @gol
563 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
564 -fdump-passes @gol
565 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
566 -fdump-statistics @gol
567 -fdump-tree-all @gol
568 -fdump-tree-@var{switch} @gol
569 -fdump-tree-@var{switch}-@var{options} @gol
570 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
571 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
572 -fenable-@var{kind}-@var{pass} @gol
573 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
574 -fira-verbose=@var{n} @gol
575 -flto-report -flto-report-wpa -fmem-report-wpa @gol
576 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
577 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
578 -fprofile-report @gol
579 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
580 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
581 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
582 -fvar-tracking-assignments-toggle -gtoggle @gol
583 -print-file-name=@var{library} -print-libgcc-file-name @gol
584 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
585 -print-prog-name=@var{program} -print-search-dirs -Q @gol
586 -print-sysroot -print-sysroot-headers-suffix @gol
587 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
588
589 @item Machine-Dependent Options
590 @xref{Submodel Options,,Machine-Dependent Options}.
591 @c This list is ordered alphanumerically by subsection name.
592 @c Try and put the significant identifier (CPU or system) first,
593 @c so users have a clue at guessing where the ones they want will be.
594
595 @emph{AArch64 Options}
596 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
597 -mgeneral-regs-only @gol
598 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
599 -mstrict-align @gol
600 -momit-leaf-frame-pointer @gol
601 -mtls-dialect=desc -mtls-dialect=traditional @gol
602 -mtls-size=@var{size} @gol
603 -mfix-cortex-a53-835769 -mfix-cortex-a53-843419 @gol
604 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div @gol
605 -mpc-relative-literal-loads @gol
606 -msign-return-address=@var{scope} @gol
607 -march=@var{name} -mcpu=@var{name} -mtune=@var{name} @gol
608 -moverride=@var{string} -mverbose-cost-dump}
609
610 @emph{Adapteva Epiphany Options}
611 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
612 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
613 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
614 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
615 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
616 -msplit-vecmove-early -m1reg-@var{reg}}
617
618 @emph{ARC Options}
619 @gccoptlist{-mbarrel-shifter -mjli-always @gol
620 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
621 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
622 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
623 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
624 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
625 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
626 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
627 -mrgf-banked-regs -mlpc-width=@var{width} -G @var{num} @gol
628 -mvolatile-cache -mtp-regno=@var{regno} @gol
629 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
630 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
631 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
632 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
633 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
634 -mtune=@var{cpu} -mmultcost=@var{num} @gol
635 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
636 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu} -mrf16}
637
638 @emph{ARM Options}
639 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
640 -mabi=@var{name} @gol
641 -mapcs-stack-check -mno-apcs-stack-check @gol
642 -mapcs-reentrant -mno-apcs-reentrant @gol
643 -msched-prolog -mno-sched-prolog @gol
644 -mlittle-endian -mbig-endian @gol
645 -mbe8 -mbe32 @gol
646 -mfloat-abi=@var{name} @gol
647 -mfp16-format=@var{name}
648 -mthumb-interwork -mno-thumb-interwork @gol
649 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
650 -mtune=@var{name} -mprint-tune-info @gol
651 -mstructure-size-boundary=@var{n} @gol
652 -mabort-on-noreturn @gol
653 -mlong-calls -mno-long-calls @gol
654 -msingle-pic-base -mno-single-pic-base @gol
655 -mpic-register=@var{reg} @gol
656 -mnop-fun-dllimport @gol
657 -mpoke-function-name @gol
658 -mthumb -marm -mflip-thumb @gol
659 -mtpcs-frame -mtpcs-leaf-frame @gol
660 -mcaller-super-interworking -mcallee-super-interworking @gol
661 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
662 -mword-relocations @gol
663 -mfix-cortex-m3-ldrd @gol
664 -munaligned-access @gol
665 -mneon-for-64bits @gol
666 -mslow-flash-data @gol
667 -masm-syntax-unified @gol
668 -mrestrict-it @gol
669 -mverbose-cost-dump @gol
670 -mpure-code @gol
671 -mcmse}
672
673 @emph{AVR Options}
674 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
675 -mbranch-cost=@var{cost} @gol
676 -mcall-prologues -mgas-isr-prologues -mint8 @gol
677 -mn_flash=@var{size} -mno-interrupts @gol
678 -mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack @gol
679 -mfract-convert-truncate @gol
680 -mshort-calls -nodevicelib @gol
681 -Waddr-space-convert -Wmisspelled-isr}
682
683 @emph{Blackfin Options}
684 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
685 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
686 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
687 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
688 -mno-id-shared-library -mshared-library-id=@var{n} @gol
689 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
690 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
691 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
692 -micplb}
693
694 @emph{C6X Options}
695 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
696 -msim -msdata=@var{sdata-type}}
697
698 @emph{CRIS Options}
699 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
700 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
701 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
702 -mstack-align -mdata-align -mconst-align @gol
703 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
704 -melf -maout -melinux -mlinux -sim -sim2 @gol
705 -mmul-bug-workaround -mno-mul-bug-workaround}
706
707 @emph{CR16 Options}
708 @gccoptlist{-mmac @gol
709 -mcr16cplus -mcr16c @gol
710 -msim -mint32 -mbit-ops
711 -mdata-model=@var{model}}
712
713 @emph{Darwin Options}
714 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
715 -arch_only -bind_at_load -bundle -bundle_loader @gol
716 -client_name -compatibility_version -current_version @gol
717 -dead_strip @gol
718 -dependency-file -dylib_file -dylinker_install_name @gol
719 -dynamic -dynamiclib -exported_symbols_list @gol
720 -filelist -flat_namespace -force_cpusubtype_ALL @gol
721 -force_flat_namespace -headerpad_max_install_names @gol
722 -iframework @gol
723 -image_base -init -install_name -keep_private_externs @gol
724 -multi_module -multiply_defined -multiply_defined_unused @gol
725 -noall_load -no_dead_strip_inits_and_terms @gol
726 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
727 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
728 -private_bundle -read_only_relocs -sectalign @gol
729 -sectobjectsymbols -whyload -seg1addr @gol
730 -sectcreate -sectobjectsymbols -sectorder @gol
731 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
732 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
733 -segprot -segs_read_only_addr -segs_read_write_addr @gol
734 -single_module -static -sub_library -sub_umbrella @gol
735 -twolevel_namespace -umbrella -undefined @gol
736 -unexported_symbols_list -weak_reference_mismatches @gol
737 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
738 -mkernel -mone-byte-bool}
739
740 @emph{DEC Alpha Options}
741 @gccoptlist{-mno-fp-regs -msoft-float @gol
742 -mieee -mieee-with-inexact -mieee-conformant @gol
743 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
744 -mtrap-precision=@var{mode} -mbuild-constants @gol
745 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
746 -mbwx -mmax -mfix -mcix @gol
747 -mfloat-vax -mfloat-ieee @gol
748 -mexplicit-relocs -msmall-data -mlarge-data @gol
749 -msmall-text -mlarge-text @gol
750 -mmemory-latency=@var{time}}
751
752 @emph{FR30 Options}
753 @gccoptlist{-msmall-model -mno-lsim}
754
755 @emph{FT32 Options}
756 @gccoptlist{-msim -mlra -mnodiv -mft32b -mcompress -mnopm}
757
758 @emph{FRV Options}
759 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
760 -mhard-float -msoft-float @gol
761 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
762 -mdouble -mno-double @gol
763 -mmedia -mno-media -mmuladd -mno-muladd @gol
764 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
765 -mlinked-fp -mlong-calls -malign-labels @gol
766 -mlibrary-pic -macc-4 -macc-8 @gol
767 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
768 -moptimize-membar -mno-optimize-membar @gol
769 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
770 -mvliw-branch -mno-vliw-branch @gol
771 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
772 -mno-nested-cond-exec -mtomcat-stats @gol
773 -mTLS -mtls @gol
774 -mcpu=@var{cpu}}
775
776 @emph{GNU/Linux Options}
777 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
778 -tno-android-cc -tno-android-ld}
779
780 @emph{H8/300 Options}
781 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
782
783 @emph{HPPA Options}
784 @gccoptlist{-march=@var{architecture-type} @gol
785 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
786 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
787 -mfixed-range=@var{register-range} @gol
788 -mjump-in-delay -mlinker-opt -mlong-calls @gol
789 -mlong-load-store -mno-disable-fpregs @gol
790 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
791 -mno-jump-in-delay -mno-long-load-store @gol
792 -mno-portable-runtime -mno-soft-float @gol
793 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
794 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
795 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
796 -munix=@var{unix-std} -nolibdld -static -threads}
797
798 @emph{IA-64 Options}
799 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
800 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
801 -mconstant-gp -mauto-pic -mfused-madd @gol
802 -minline-float-divide-min-latency @gol
803 -minline-float-divide-max-throughput @gol
804 -mno-inline-float-divide @gol
805 -minline-int-divide-min-latency @gol
806 -minline-int-divide-max-throughput @gol
807 -mno-inline-int-divide @gol
808 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
809 -mno-inline-sqrt @gol
810 -mdwarf2-asm -mearly-stop-bits @gol
811 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
812 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
813 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
814 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
815 -msched-spec-ldc -msched-spec-control-ldc @gol
816 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
817 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
818 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
819 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
820
821 @emph{LM32 Options}
822 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
823 -msign-extend-enabled -muser-enabled}
824
825 @emph{M32R/D Options}
826 @gccoptlist{-m32r2 -m32rx -m32r @gol
827 -mdebug @gol
828 -malign-loops -mno-align-loops @gol
829 -missue-rate=@var{number} @gol
830 -mbranch-cost=@var{number} @gol
831 -mmodel=@var{code-size-model-type} @gol
832 -msdata=@var{sdata-type} @gol
833 -mno-flush-func -mflush-func=@var{name} @gol
834 -mno-flush-trap -mflush-trap=@var{number} @gol
835 -G @var{num}}
836
837 @emph{M32C Options}
838 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
839
840 @emph{M680x0 Options}
841 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
842 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
843 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
844 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
845 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
846 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
847 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
848 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
849 -mxgot -mno-xgot -mlong-jump-table-offsets}
850
851 @emph{MCore Options}
852 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
853 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
854 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
855 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
856 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
857
858 @emph{MeP Options}
859 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
860 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
861 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
862 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
863 -mtiny=@var{n}}
864
865 @emph{MicroBlaze Options}
866 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
867 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
868 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
869 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
870 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}
871 -mpic-data-is-text-relative}
872
873 @emph{MIPS Options}
874 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
875 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
876 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
877 -mips16 -mno-mips16 -mflip-mips16 @gol
878 -minterlink-compressed -mno-interlink-compressed @gol
879 -minterlink-mips16 -mno-interlink-mips16 @gol
880 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
881 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
882 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
883 -mno-float -msingle-float -mdouble-float @gol
884 -modd-spreg -mno-odd-spreg @gol
885 -mabs=@var{mode} -mnan=@var{encoding} @gol
886 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
887 -mmcu -mmno-mcu @gol
888 -meva -mno-eva @gol
889 -mvirt -mno-virt @gol
890 -mxpa -mno-xpa @gol
891 -mmicromips -mno-micromips @gol
892 -mmsa -mno-msa @gol
893 -mfpu=@var{fpu-type} @gol
894 -msmartmips -mno-smartmips @gol
895 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
896 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
897 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
898 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
899 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
900 -membedded-data -mno-embedded-data @gol
901 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
902 -mcode-readable=@var{setting} @gol
903 -msplit-addresses -mno-split-addresses @gol
904 -mexplicit-relocs -mno-explicit-relocs @gol
905 -mcheck-zero-division -mno-check-zero-division @gol
906 -mdivide-traps -mdivide-breaks @gol
907 -mload-store-pairs -mno-load-store-pairs @gol
908 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
909 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
910 -mfix-24k -mno-fix-24k @gol
911 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
912 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
913 -mfix-vr4120 -mno-fix-vr4120 @gol
914 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
915 -mflush-func=@var{func} -mno-flush-func @gol
916 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
917 -mcompact-branches=@var{policy} @gol
918 -mfp-exceptions -mno-fp-exceptions @gol
919 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
920 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
921 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
922 -mframe-header-opt -mno-frame-header-opt}
923
924 @emph{MMIX Options}
925 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
926 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
927 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
928 -mno-base-addresses -msingle-exit -mno-single-exit}
929
930 @emph{MN10300 Options}
931 @gccoptlist{-mmult-bug -mno-mult-bug @gol
932 -mno-am33 -mam33 -mam33-2 -mam34 @gol
933 -mtune=@var{cpu-type} @gol
934 -mreturn-pointer-on-d0 @gol
935 -mno-crt0 -mrelax -mliw -msetlb}
936
937 @emph{Moxie Options}
938 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
939
940 @emph{MSP430 Options}
941 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
942 -mwarn-mcu @gol
943 -mcode-region= -mdata-region= @gol
944 -msilicon-errata= -msilicon-errata-warn= @gol
945 -mhwmult= -minrt}
946
947 @emph{NDS32 Options}
948 @gccoptlist{-mbig-endian -mlittle-endian @gol
949 -mreduced-regs -mfull-regs @gol
950 -mcmov -mno-cmov @gol
951 -mext-perf -mno-ext-perf @gol
952 -mext-perf2 -mno-ext-perf2 @gol
953 -mext-string -mno-ext-string @gol
954 -mv3push -mno-v3push @gol
955 -m16bit -mno-16bit @gol
956 -misr-vector-size=@var{num} @gol
957 -mcache-block-size=@var{num} @gol
958 -march=@var{arch} @gol
959 -mcmodel=@var{code-model} @gol
960 -mctor-dtor -mrelax}
961
962 @emph{Nios II Options}
963 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
964 -mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp} @gol
965 -mel -meb @gol
966 -mno-bypass-cache -mbypass-cache @gol
967 -mno-cache-volatile -mcache-volatile @gol
968 -mno-fast-sw-div -mfast-sw-div @gol
969 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
970 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
971 -mcustom-fpu-cfg=@var{name} @gol
972 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
973 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
974
975 @emph{Nvidia PTX Options}
976 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
977
978 @emph{PDP-11 Options}
979 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
980 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
981 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
982 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
983 -mbranch-expensive -mbranch-cheap @gol
984 -munix-asm -mdec-asm}
985
986 @emph{picoChip Options}
987 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
988 -msymbol-as-address -mno-inefficient-warnings}
989
990 @emph{PowerPC Options}
991 See RS/6000 and PowerPC Options.
992
993 @emph{PowerPC SPE Options}
994 @gccoptlist{-mcpu=@var{cpu-type} @gol
995 -mtune=@var{cpu-type} @gol
996 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb @gol
997 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
998 -m32 -mxl-compat -mno-xl-compat @gol
999 -malign-power -malign-natural @gol
1000 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1001 -msingle-float -mdouble-float @gol
1002 -mupdate -mno-update @gol
1003 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1004 -mstrict-align -mno-strict-align -mrelocatable @gol
1005 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1006 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1007 -msingle-pic-base @gol
1008 -mprioritize-restricted-insns=@var{priority} @gol
1009 -msched-costly-dep=@var{dependence_type} @gol
1010 -minsert-sched-nops=@var{scheme} @gol
1011 -mcall-sysv -mcall-netbsd @gol
1012 -maix-struct-return -msvr4-struct-return @gol
1013 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1014 -mblock-move-inline-limit=@var{num} @gol
1015 -misel -mno-isel @gol
1016 -misel=yes -misel=no @gol
1017 -mspe -mno-spe @gol
1018 -mspe=yes -mspe=no @gol
1019 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
1020 -mprototype -mno-prototype @gol
1021 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1022 -msdata=@var{opt} -mvxworks -G @var{num} @gol
1023 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1024 -mno-recip-precision @gol
1025 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1026 -msave-toc-indirect -mno-save-toc-indirect @gol
1027 -mcompat-align-parm -mno-compat-align-parm @gol
1028 -mfloat128 -mno-float128 @gol
1029 -mgnu-attribute -mno-gnu-attribute @gol
1030 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1031 -mstack-protector-guard-offset=@var{offset}}
1032
1033 @emph{RISC-V Options}
1034 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
1035 -mplt -mno-plt @gol
1036 -mabi=@var{ABI-string} @gol
1037 -mfdiv -mno-fdiv @gol
1038 -mdiv -mno-div @gol
1039 -march=@var{ISA-string} @gol
1040 -mtune=@var{processor-string} @gol
1041 -mpreferred-stack-boundary=@var{num} @gol
1042 -msmall-data-limit=@var{N-bytes} @gol
1043 -msave-restore -mno-save-restore @gol
1044 -mstrict-align -mno-strict-align @gol
1045 -mcmodel=medlow -mcmodel=medany @gol
1046 -mexplicit-relocs -mno-explicit-relocs @gol
1047 -mrelax -mno-relax @gol}
1048
1049 @emph{RL78 Options}
1050 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
1051 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
1052 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
1053
1054 @emph{RS/6000 and PowerPC Options}
1055 @gccoptlist{-mcpu=@var{cpu-type} @gol
1056 -mtune=@var{cpu-type} @gol
1057 -mcmodel=@var{code-model} @gol
1058 -mpowerpc64 @gol
1059 -maltivec -mno-altivec @gol
1060 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1061 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1062 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1063 -mfprnd -mno-fprnd @gol
1064 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
1065 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1066 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1067 -malign-power -malign-natural @gol
1068 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1069 -msingle-float -mdouble-float -msimple-fpu @gol
1070 -mupdate -mno-update @gol
1071 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1072 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1073 -mstrict-align -mno-strict-align -mrelocatable @gol
1074 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1075 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1076 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
1077 -mprioritize-restricted-insns=@var{priority} @gol
1078 -msched-costly-dep=@var{dependence_type} @gol
1079 -minsert-sched-nops=@var{scheme} @gol
1080 -mcall-aixdesc -mcall-eabi -mcall-freebsd @gol
1081 -mcall-linux -mcall-netbsd -mcall-openbsd @gol
1082 -mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi @gol
1083 -mtraceback=@var{traceback_type} @gol
1084 -maix-struct-return -msvr4-struct-return @gol
1085 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1086 -mblock-move-inline-limit=@var{num} @gol
1087 -mblock-compare-inline-limit=@var{num} @gol
1088 -mblock-compare-inline-loop-limit=@var{num} @gol
1089 -mstring-compare-inline-limit=@var{num} @gol
1090 -misel -mno-isel @gol
1091 -misel=yes -misel=no @gol
1092 -mpaired @gol
1093 -mvrsave -mno-vrsave @gol
1094 -mmulhw -mno-mulhw @gol
1095 -mdlmzb -mno-dlmzb @gol
1096 -mprototype -mno-prototype @gol
1097 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1098 -msdata=@var{opt} -mreadonly-in-sdata -mvxworks -G @var{num} @gol
1099 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1100 -mno-recip-precision @gol
1101 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1102 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1103 -msave-toc-indirect -mno-save-toc-indirect @gol
1104 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1105 -mcrypto -mno-crypto -mhtm -mno-htm @gol
1106 -mquad-memory -mno-quad-memory @gol
1107 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1108 -mcompat-align-parm -mno-compat-align-parm @gol
1109 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1110 -mgnu-attribute -mno-gnu-attribute @gol
1111 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1112 -mstack-protector-guard-offset=@var{offset}}
1113
1114 @emph{RX Options}
1115 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1116 -mcpu=@gol
1117 -mbig-endian-data -mlittle-endian-data @gol
1118 -msmall-data @gol
1119 -msim -mno-sim@gol
1120 -mas100-syntax -mno-as100-syntax@gol
1121 -mrelax@gol
1122 -mmax-constant-size=@gol
1123 -mint-register=@gol
1124 -mpid@gol
1125 -mallow-string-insns -mno-allow-string-insns@gol
1126 -mjsr@gol
1127 -mno-warn-multiple-fast-interrupts@gol
1128 -msave-acc-in-interrupts}
1129
1130 @emph{S/390 and zSeries Options}
1131 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1132 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1133 -mlong-double-64 -mlong-double-128 @gol
1134 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1135 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1136 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1137 -mhtm -mvx -mzvector @gol
1138 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1139 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1140 -mhotpatch=@var{halfwords},@var{halfwords}}
1141
1142 @emph{Score Options}
1143 @gccoptlist{-meb -mel @gol
1144 -mnhwloop @gol
1145 -muls @gol
1146 -mmac @gol
1147 -mscore5 -mscore5u -mscore7 -mscore7d}
1148
1149 @emph{SH Options}
1150 @gccoptlist{-m1 -m2 -m2e @gol
1151 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1152 -m3 -m3e @gol
1153 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1154 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1155 -mb -ml -mdalign -mrelax @gol
1156 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1157 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1158 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1159 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1160 -maccumulate-outgoing-args @gol
1161 -matomic-model=@var{atomic-model} @gol
1162 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1163 -mcbranch-force-delay-slot @gol
1164 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1165 -mpretend-cmove -mtas}
1166
1167 @emph{Solaris 2 Options}
1168 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1169 -pthreads}
1170
1171 @emph{SPARC Options}
1172 @gccoptlist{-mcpu=@var{cpu-type} @gol
1173 -mtune=@var{cpu-type} @gol
1174 -mcmodel=@var{code-model} @gol
1175 -mmemory-model=@var{mem-model} @gol
1176 -m32 -m64 -mapp-regs -mno-app-regs @gol
1177 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1178 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1179 -mhard-quad-float -msoft-quad-float @gol
1180 -mstack-bias -mno-stack-bias @gol
1181 -mstd-struct-return -mno-std-struct-return @gol
1182 -munaligned-doubles -mno-unaligned-doubles @gol
1183 -muser-mode -mno-user-mode @gol
1184 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1185 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1186 -mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1187 -mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld @gol
1188 -mpopc -mno-popc -msubxc -mno-subxc @gol
1189 -mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc @gol
1190 -mlra -mno-lra}
1191
1192 @emph{SPU Options}
1193 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1194 -msafe-dma -munsafe-dma @gol
1195 -mbranch-hints @gol
1196 -msmall-mem -mlarge-mem -mstdmain @gol
1197 -mfixed-range=@var{register-range} @gol
1198 -mea32 -mea64 @gol
1199 -maddress-space-conversion -mno-address-space-conversion @gol
1200 -mcache-size=@var{cache-size} @gol
1201 -matomic-updates -mno-atomic-updates}
1202
1203 @emph{System V Options}
1204 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1205
1206 @emph{TILE-Gx Options}
1207 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1208 -mcmodel=@var{code-model}}
1209
1210 @emph{TILEPro Options}
1211 @gccoptlist{-mcpu=@var{cpu} -m32}
1212
1213 @emph{V850 Options}
1214 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1215 -mprolog-function -mno-prolog-function -mspace @gol
1216 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1217 -mapp-regs -mno-app-regs @gol
1218 -mdisable-callt -mno-disable-callt @gol
1219 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1220 -mv850e -mv850 -mv850e3v5 @gol
1221 -mloop @gol
1222 -mrelax @gol
1223 -mlong-jumps @gol
1224 -msoft-float @gol
1225 -mhard-float @gol
1226 -mgcc-abi @gol
1227 -mrh850-abi @gol
1228 -mbig-switch}
1229
1230 @emph{VAX Options}
1231 @gccoptlist{-mg -mgnu -munix}
1232
1233 @emph{Visium Options}
1234 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1235 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1236
1237 @emph{VMS Options}
1238 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1239 -mpointer-size=@var{size}}
1240
1241 @emph{VxWorks Options}
1242 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1243 -Xbind-lazy -Xbind-now}
1244
1245 @emph{x86 Options}
1246 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1247 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1248 -mfpmath=@var{unit} @gol
1249 -masm=@var{dialect} -mno-fancy-math-387 @gol
1250 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1251 -mno-wide-multiply -mrtd -malign-double @gol
1252 -mpreferred-stack-boundary=@var{num} @gol
1253 -mincoming-stack-boundary=@var{num} @gol
1254 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1255 -mrecip -mrecip=@var{opt} @gol
1256 -mvzeroupper -mprefer-avx128 -mprefer-vector-width=@var{opt} @gol
1257 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1258 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1259 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1260 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mpconfig -mwbnoinvd @gol
1261 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves @gol
1262 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1263 -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx @gol
1264 -mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes @gol
1265 -mshstk -mforce-indirect-call -mavx512vbmi2 @gol
1266 -mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq @gol
1267 -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1268 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1269 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1270 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1271 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1272 -mregparm=@var{num} -msseregparm @gol
1273 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1274 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1275 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1276 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1277 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1278 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1279 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1280 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1281 -mstack-protector-guard-reg=@var{reg} @gol
1282 -mstack-protector-guard-offset=@var{offset} @gol
1283 -mstack-protector-guard-symbol=@var{symbol} -mmitigate-rop @gol
1284 -mgeneral-regs-only -mcall-ms2sysv-xlogues @gol
1285 -mindirect-branch=@var{choice} -mfunction-return=@var{choice} @gol
1286 -mindirect-branch-register}
1287
1288 @emph{x86 Windows Options}
1289 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1290 -mnop-fun-dllimport -mthread @gol
1291 -municode -mwin32 -mwindows -fno-set-stack-executable}
1292
1293 @emph{Xstormy16 Options}
1294 @gccoptlist{-msim}
1295
1296 @emph{Xtensa Options}
1297 @gccoptlist{-mconst16 -mno-const16 @gol
1298 -mfused-madd -mno-fused-madd @gol
1299 -mforce-no-pic @gol
1300 -mserialize-volatile -mno-serialize-volatile @gol
1301 -mtext-section-literals -mno-text-section-literals @gol
1302 -mauto-litpools -mno-auto-litpools @gol
1303 -mtarget-align -mno-target-align @gol
1304 -mlongcalls -mno-longcalls}
1305
1306 @emph{zSeries Options}
1307 See S/390 and zSeries Options.
1308 @end table
1309
1310
1311 @node Overall Options
1312 @section Options Controlling the Kind of Output
1313
1314 Compilation can involve up to four stages: preprocessing, compilation
1315 proper, assembly and linking, always in that order. GCC is capable of
1316 preprocessing and compiling several files either into several
1317 assembler input files, or into one assembler input file; then each
1318 assembler input file produces an object file, and linking combines all
1319 the object files (those newly compiled, and those specified as input)
1320 into an executable file.
1321
1322 @cindex file name suffix
1323 For any given input file, the file name suffix determines what kind of
1324 compilation is done:
1325
1326 @table @gcctabopt
1327 @item @var{file}.c
1328 C source code that must be preprocessed.
1329
1330 @item @var{file}.i
1331 C source code that should not be preprocessed.
1332
1333 @item @var{file}.ii
1334 C++ source code that should not be preprocessed.
1335
1336 @item @var{file}.m
1337 Objective-C source code. Note that you must link with the @file{libobjc}
1338 library to make an Objective-C program work.
1339
1340 @item @var{file}.mi
1341 Objective-C source code that should not be preprocessed.
1342
1343 @item @var{file}.mm
1344 @itemx @var{file}.M
1345 Objective-C++ source code. Note that you must link with the @file{libobjc}
1346 library to make an Objective-C++ program work. Note that @samp{.M} refers
1347 to a literal capital M@.
1348
1349 @item @var{file}.mii
1350 Objective-C++ source code that should not be preprocessed.
1351
1352 @item @var{file}.h
1353 C, C++, Objective-C or Objective-C++ header file to be turned into a
1354 precompiled header (default), or C, C++ header file to be turned into an
1355 Ada spec (via the @option{-fdump-ada-spec} switch).
1356
1357 @item @var{file}.cc
1358 @itemx @var{file}.cp
1359 @itemx @var{file}.cxx
1360 @itemx @var{file}.cpp
1361 @itemx @var{file}.CPP
1362 @itemx @var{file}.c++
1363 @itemx @var{file}.C
1364 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1365 the last two letters must both be literally @samp{x}. Likewise,
1366 @samp{.C} refers to a literal capital C@.
1367
1368 @item @var{file}.mm
1369 @itemx @var{file}.M
1370 Objective-C++ source code that must be preprocessed.
1371
1372 @item @var{file}.mii
1373 Objective-C++ source code that should not be preprocessed.
1374
1375 @item @var{file}.hh
1376 @itemx @var{file}.H
1377 @itemx @var{file}.hp
1378 @itemx @var{file}.hxx
1379 @itemx @var{file}.hpp
1380 @itemx @var{file}.HPP
1381 @itemx @var{file}.h++
1382 @itemx @var{file}.tcc
1383 C++ header file to be turned into a precompiled header or Ada spec.
1384
1385 @item @var{file}.f
1386 @itemx @var{file}.for
1387 @itemx @var{file}.ftn
1388 Fixed form Fortran source code that should not be preprocessed.
1389
1390 @item @var{file}.F
1391 @itemx @var{file}.FOR
1392 @itemx @var{file}.fpp
1393 @itemx @var{file}.FPP
1394 @itemx @var{file}.FTN
1395 Fixed form Fortran source code that must be preprocessed (with the traditional
1396 preprocessor).
1397
1398 @item @var{file}.f90
1399 @itemx @var{file}.f95
1400 @itemx @var{file}.f03
1401 @itemx @var{file}.f08
1402 Free form Fortran source code that should not be preprocessed.
1403
1404 @item @var{file}.F90
1405 @itemx @var{file}.F95
1406 @itemx @var{file}.F03
1407 @itemx @var{file}.F08
1408 Free form Fortran source code that must be preprocessed (with the
1409 traditional preprocessor).
1410
1411 @item @var{file}.go
1412 Go source code.
1413
1414 @item @var{file}.brig
1415 BRIG files (binary representation of HSAIL).
1416
1417 @item @var{file}.ads
1418 Ada source code file that contains a library unit declaration (a
1419 declaration of a package, subprogram, or generic, or a generic
1420 instantiation), or a library unit renaming declaration (a package,
1421 generic, or subprogram renaming declaration). Such files are also
1422 called @dfn{specs}.
1423
1424 @item @var{file}.adb
1425 Ada source code file containing a library unit body (a subprogram or
1426 package body). Such files are also called @dfn{bodies}.
1427
1428 @c GCC also knows about some suffixes for languages not yet included:
1429 @c Pascal:
1430 @c @var{file}.p
1431 @c @var{file}.pas
1432 @c Ratfor:
1433 @c @var{file}.r
1434
1435 @item @var{file}.s
1436 Assembler code.
1437
1438 @item @var{file}.S
1439 @itemx @var{file}.sx
1440 Assembler code that must be preprocessed.
1441
1442 @item @var{other}
1443 An object file to be fed straight into linking.
1444 Any file name with no recognized suffix is treated this way.
1445 @end table
1446
1447 @opindex x
1448 You can specify the input language explicitly with the @option{-x} option:
1449
1450 @table @gcctabopt
1451 @item -x @var{language}
1452 Specify explicitly the @var{language} for the following input files
1453 (rather than letting the compiler choose a default based on the file
1454 name suffix). This option applies to all following input files until
1455 the next @option{-x} option. Possible values for @var{language} are:
1456 @smallexample
1457 c c-header cpp-output
1458 c++ c++-header c++-cpp-output
1459 objective-c objective-c-header objective-c-cpp-output
1460 objective-c++ objective-c++-header objective-c++-cpp-output
1461 assembler assembler-with-cpp
1462 ada
1463 f77 f77-cpp-input f95 f95-cpp-input
1464 go
1465 brig
1466 @end smallexample
1467
1468 @item -x none
1469 Turn off any specification of a language, so that subsequent files are
1470 handled according to their file name suffixes (as they are if @option{-x}
1471 has not been used at all).
1472 @end table
1473
1474 If you only want some of the stages of compilation, you can use
1475 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1476 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1477 @command{gcc} is to stop. Note that some combinations (for example,
1478 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1479
1480 @table @gcctabopt
1481 @item -c
1482 @opindex c
1483 Compile or assemble the source files, but do not link. The linking
1484 stage simply is not done. The ultimate output is in the form of an
1485 object file for each source file.
1486
1487 By default, the object file name for a source file is made by replacing
1488 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1489
1490 Unrecognized input files, not requiring compilation or assembly, are
1491 ignored.
1492
1493 @item -S
1494 @opindex S
1495 Stop after the stage of compilation proper; do not assemble. The output
1496 is in the form of an assembler code file for each non-assembler input
1497 file specified.
1498
1499 By default, the assembler file name for a source file is made by
1500 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1501
1502 Input files that don't require compilation are ignored.
1503
1504 @item -E
1505 @opindex E
1506 Stop after the preprocessing stage; do not run the compiler proper. The
1507 output is in the form of preprocessed source code, which is sent to the
1508 standard output.
1509
1510 Input files that don't require preprocessing are ignored.
1511
1512 @cindex output file option
1513 @item -o @var{file}
1514 @opindex o
1515 Place output in file @var{file}. This applies to whatever
1516 sort of output is being produced, whether it be an executable file,
1517 an object file, an assembler file or preprocessed C code.
1518
1519 If @option{-o} is not specified, the default is to put an executable
1520 file in @file{a.out}, the object file for
1521 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1522 assembler file in @file{@var{source}.s}, a precompiled header file in
1523 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1524 standard output.
1525
1526 @item -v
1527 @opindex v
1528 Print (on standard error output) the commands executed to run the stages
1529 of compilation. Also print the version number of the compiler driver
1530 program and of the preprocessor and the compiler proper.
1531
1532 @item -###
1533 @opindex ###
1534 Like @option{-v} except the commands are not executed and arguments
1535 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1536 This is useful for shell scripts to capture the driver-generated command lines.
1537
1538 @item --help
1539 @opindex help
1540 Print (on the standard output) a description of the command-line options
1541 understood by @command{gcc}. If the @option{-v} option is also specified
1542 then @option{--help} is also passed on to the various processes
1543 invoked by @command{gcc}, so that they can display the command-line options
1544 they accept. If the @option{-Wextra} option has also been specified
1545 (prior to the @option{--help} option), then command-line options that
1546 have no documentation associated with them are also displayed.
1547
1548 @item --target-help
1549 @opindex target-help
1550 Print (on the standard output) a description of target-specific command-line
1551 options for each tool. For some targets extra target-specific
1552 information may also be printed.
1553
1554 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1555 Print (on the standard output) a description of the command-line
1556 options understood by the compiler that fit into all specified classes
1557 and qualifiers. These are the supported classes:
1558
1559 @table @asis
1560 @item @samp{optimizers}
1561 Display all of the optimization options supported by the
1562 compiler.
1563
1564 @item @samp{warnings}
1565 Display all of the options controlling warning messages
1566 produced by the compiler.
1567
1568 @item @samp{target}
1569 Display target-specific options. Unlike the
1570 @option{--target-help} option however, target-specific options of the
1571 linker and assembler are not displayed. This is because those
1572 tools do not currently support the extended @option{--help=} syntax.
1573
1574 @item @samp{params}
1575 Display the values recognized by the @option{--param}
1576 option.
1577
1578 @item @var{language}
1579 Display the options supported for @var{language}, where
1580 @var{language} is the name of one of the languages supported in this
1581 version of GCC@.
1582
1583 @item @samp{common}
1584 Display the options that are common to all languages.
1585 @end table
1586
1587 These are the supported qualifiers:
1588
1589 @table @asis
1590 @item @samp{undocumented}
1591 Display only those options that are undocumented.
1592
1593 @item @samp{joined}
1594 Display options taking an argument that appears after an equal
1595 sign in the same continuous piece of text, such as:
1596 @samp{--help=target}.
1597
1598 @item @samp{separate}
1599 Display options taking an argument that appears as a separate word
1600 following the original option, such as: @samp{-o output-file}.
1601 @end table
1602
1603 Thus for example to display all the undocumented target-specific
1604 switches supported by the compiler, use:
1605
1606 @smallexample
1607 --help=target,undocumented
1608 @end smallexample
1609
1610 The sense of a qualifier can be inverted by prefixing it with the
1611 @samp{^} character, so for example to display all binary warning
1612 options (i.e., ones that are either on or off and that do not take an
1613 argument) that have a description, use:
1614
1615 @smallexample
1616 --help=warnings,^joined,^undocumented
1617 @end smallexample
1618
1619 The argument to @option{--help=} should not consist solely of inverted
1620 qualifiers.
1621
1622 Combining several classes is possible, although this usually
1623 restricts the output so much that there is nothing to display. One
1624 case where it does work, however, is when one of the classes is
1625 @var{target}. For example, to display all the target-specific
1626 optimization options, use:
1627
1628 @smallexample
1629 --help=target,optimizers
1630 @end smallexample
1631
1632 The @option{--help=} option can be repeated on the command line. Each
1633 successive use displays its requested class of options, skipping
1634 those that have already been displayed.
1635
1636 If the @option{-Q} option appears on the command line before the
1637 @option{--help=} option, then the descriptive text displayed by
1638 @option{--help=} is changed. Instead of describing the displayed
1639 options, an indication is given as to whether the option is enabled,
1640 disabled or set to a specific value (assuming that the compiler
1641 knows this at the point where the @option{--help=} option is used).
1642
1643 Here is a truncated example from the ARM port of @command{gcc}:
1644
1645 @smallexample
1646 % gcc -Q -mabi=2 --help=target -c
1647 The following options are target specific:
1648 -mabi= 2
1649 -mabort-on-noreturn [disabled]
1650 -mapcs [disabled]
1651 @end smallexample
1652
1653 The output is sensitive to the effects of previous command-line
1654 options, so for example it is possible to find out which optimizations
1655 are enabled at @option{-O2} by using:
1656
1657 @smallexample
1658 -Q -O2 --help=optimizers
1659 @end smallexample
1660
1661 Alternatively you can discover which binary optimizations are enabled
1662 by @option{-O3} by using:
1663
1664 @smallexample
1665 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1666 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1667 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1668 @end smallexample
1669
1670 @item --version
1671 @opindex version
1672 Display the version number and copyrights of the invoked GCC@.
1673
1674 @item -pass-exit-codes
1675 @opindex pass-exit-codes
1676 Normally the @command{gcc} program exits with the code of 1 if any
1677 phase of the compiler returns a non-success return code. If you specify
1678 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1679 the numerically highest error produced by any phase returning an error
1680 indication. The C, C++, and Fortran front ends return 4 if an internal
1681 compiler error is encountered.
1682
1683 @item -pipe
1684 @opindex pipe
1685 Use pipes rather than temporary files for communication between the
1686 various stages of compilation. This fails to work on some systems where
1687 the assembler is unable to read from a pipe; but the GNU assembler has
1688 no trouble.
1689
1690 @item -specs=@var{file}
1691 @opindex specs
1692 Process @var{file} after the compiler reads in the standard @file{specs}
1693 file, in order to override the defaults which the @command{gcc} driver
1694 program uses when determining what switches to pass to @command{cc1},
1695 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1696 @option{-specs=@var{file}} can be specified on the command line, and they
1697 are processed in order, from left to right. @xref{Spec Files}, for
1698 information about the format of the @var{file}.
1699
1700 @item -wrapper
1701 @opindex wrapper
1702 Invoke all subcommands under a wrapper program. The name of the
1703 wrapper program and its parameters are passed as a comma separated
1704 list.
1705
1706 @smallexample
1707 gcc -c t.c -wrapper gdb,--args
1708 @end smallexample
1709
1710 @noindent
1711 This invokes all subprograms of @command{gcc} under
1712 @samp{gdb --args}, thus the invocation of @command{cc1} is
1713 @samp{gdb --args cc1 @dots{}}.
1714
1715 @item -ffile-prefix-map=@var{old}=@var{new}
1716 @opindex ffile-prefix-map
1717 When compiling files residing in directory @file{@var{old}}, record
1718 any references to them in the result of the compilation as if the
1719 files resided in directory @file{@var{new}} instead. Specifying this
1720 option is equivalent to specifying all the individual
1721 @option{-f*-prefix-map} options. This can be used to make reproducible
1722 builds that are location independent. See also
1723 @option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
1724
1725 @item -fplugin=@var{name}.so
1726 @opindex fplugin
1727 Load the plugin code in file @var{name}.so, assumed to be a
1728 shared object to be dlopen'd by the compiler. The base name of
1729 the shared object file is used to identify the plugin for the
1730 purposes of argument parsing (See
1731 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1732 Each plugin should define the callback functions specified in the
1733 Plugins API.
1734
1735 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1736 @opindex fplugin-arg
1737 Define an argument called @var{key} with a value of @var{value}
1738 for the plugin called @var{name}.
1739
1740 @item -fdump-ada-spec@r{[}-slim@r{]}
1741 @opindex fdump-ada-spec
1742 For C and C++ source and include files, generate corresponding Ada specs.
1743 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1744 GNAT User's Guide}, which provides detailed documentation on this feature.
1745
1746 @item -fada-spec-parent=@var{unit}
1747 @opindex fada-spec-parent
1748 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1749 Ada specs as child units of parent @var{unit}.
1750
1751 @item -fdump-go-spec=@var{file}
1752 @opindex fdump-go-spec
1753 For input files in any language, generate corresponding Go
1754 declarations in @var{file}. This generates Go @code{const},
1755 @code{type}, @code{var}, and @code{func} declarations which may be a
1756 useful way to start writing a Go interface to code written in some
1757 other language.
1758
1759 @include @value{srcdir}/../libiberty/at-file.texi
1760 @end table
1761
1762 @node Invoking G++
1763 @section Compiling C++ Programs
1764
1765 @cindex suffixes for C++ source
1766 @cindex C++ source file suffixes
1767 C++ source files conventionally use one of the suffixes @samp{.C},
1768 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1769 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1770 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1771 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1772 files with these names and compiles them as C++ programs even if you
1773 call the compiler the same way as for compiling C programs (usually
1774 with the name @command{gcc}).
1775
1776 @findex g++
1777 @findex c++
1778 However, the use of @command{gcc} does not add the C++ library.
1779 @command{g++} is a program that calls GCC and automatically specifies linking
1780 against the C++ library. It treats @samp{.c},
1781 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1782 files unless @option{-x} is used. This program is also useful when
1783 precompiling a C header file with a @samp{.h} extension for use in C++
1784 compilations. On many systems, @command{g++} is also installed with
1785 the name @command{c++}.
1786
1787 @cindex invoking @command{g++}
1788 When you compile C++ programs, you may specify many of the same
1789 command-line options that you use for compiling programs in any
1790 language; or command-line options meaningful for C and related
1791 languages; or options that are meaningful only for C++ programs.
1792 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1793 explanations of options for languages related to C@.
1794 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1795 explanations of options that are meaningful only for C++ programs.
1796
1797 @node C Dialect Options
1798 @section Options Controlling C Dialect
1799 @cindex dialect options
1800 @cindex language dialect options
1801 @cindex options, dialect
1802
1803 The following options control the dialect of C (or languages derived
1804 from C, such as C++, Objective-C and Objective-C++) that the compiler
1805 accepts:
1806
1807 @table @gcctabopt
1808 @cindex ANSI support
1809 @cindex ISO support
1810 @item -ansi
1811 @opindex ansi
1812 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1813 equivalent to @option{-std=c++98}.
1814
1815 This turns off certain features of GCC that are incompatible with ISO
1816 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1817 such as the @code{asm} and @code{typeof} keywords, and
1818 predefined macros such as @code{unix} and @code{vax} that identify the
1819 type of system you are using. It also enables the undesirable and
1820 rarely used ISO trigraph feature. For the C compiler,
1821 it disables recognition of C++ style @samp{//} comments as well as
1822 the @code{inline} keyword.
1823
1824 The alternate keywords @code{__asm__}, @code{__extension__},
1825 @code{__inline__} and @code{__typeof__} continue to work despite
1826 @option{-ansi}. You would not want to use them in an ISO C program, of
1827 course, but it is useful to put them in header files that might be included
1828 in compilations done with @option{-ansi}. Alternate predefined macros
1829 such as @code{__unix__} and @code{__vax__} are also available, with or
1830 without @option{-ansi}.
1831
1832 The @option{-ansi} option does not cause non-ISO programs to be
1833 rejected gratuitously. For that, @option{-Wpedantic} is required in
1834 addition to @option{-ansi}. @xref{Warning Options}.
1835
1836 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1837 option is used. Some header files may notice this macro and refrain
1838 from declaring certain functions or defining certain macros that the
1839 ISO standard doesn't call for; this is to avoid interfering with any
1840 programs that might use these names for other things.
1841
1842 Functions that are normally built in but do not have semantics
1843 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1844 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1845 built-in functions provided by GCC}, for details of the functions
1846 affected.
1847
1848 @item -std=
1849 @opindex std
1850 Determine the language standard. @xref{Standards,,Language Standards
1851 Supported by GCC}, for details of these standard versions. This option
1852 is currently only supported when compiling C or C++.
1853
1854 The compiler can accept several base standards, such as @samp{c90} or
1855 @samp{c++98}, and GNU dialects of those standards, such as
1856 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1857 compiler accepts all programs following that standard plus those
1858 using GNU extensions that do not contradict it. For example,
1859 @option{-std=c90} turns off certain features of GCC that are
1860 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1861 keywords, but not other GNU extensions that do not have a meaning in
1862 ISO C90, such as omitting the middle term of a @code{?:}
1863 expression. On the other hand, when a GNU dialect of a standard is
1864 specified, all features supported by the compiler are enabled, even when
1865 those features change the meaning of the base standard. As a result, some
1866 strict-conforming programs may be rejected. The particular standard
1867 is used by @option{-Wpedantic} to identify which features are GNU
1868 extensions given that version of the standard. For example
1869 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1870 comments, while @option{-std=gnu99 -Wpedantic} does not.
1871
1872 A value for this option must be provided; possible values are
1873
1874 @table @samp
1875 @item c90
1876 @itemx c89
1877 @itemx iso9899:1990
1878 Support all ISO C90 programs (certain GNU extensions that conflict
1879 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1880
1881 @item iso9899:199409
1882 ISO C90 as modified in amendment 1.
1883
1884 @item c99
1885 @itemx c9x
1886 @itemx iso9899:1999
1887 @itemx iso9899:199x
1888 ISO C99. This standard is substantially completely supported, modulo
1889 bugs and floating-point issues
1890 (mainly but not entirely relating to optional C99 features from
1891 Annexes F and G). See
1892 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1893 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1894
1895 @item c11
1896 @itemx c1x
1897 @itemx iso9899:2011
1898 ISO C11, the 2011 revision of the ISO C standard. This standard is
1899 substantially completely supported, modulo bugs, floating-point issues
1900 (mainly but not entirely relating to optional C11 features from
1901 Annexes F and G) and the optional Annexes K (Bounds-checking
1902 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1903
1904 @item c17
1905 @itemx c18
1906 @itemx iso9899:2017
1907 @itemx iso9899:2018
1908 ISO C17, the 2017 revision of the ISO C standard (expected to be
1909 published in 2018). This standard is
1910 same as C11 except for corrections of defects (all of which are also
1911 applied with @option{-std=c11}) and a new value of
1912 @code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1913
1914 @item gnu90
1915 @itemx gnu89
1916 GNU dialect of ISO C90 (including some C99 features).
1917
1918 @item gnu99
1919 @itemx gnu9x
1920 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1921
1922 @item gnu11
1923 @itemx gnu1x
1924 GNU dialect of ISO C11.
1925 The name @samp{gnu1x} is deprecated.
1926
1927 @item gnu17
1928 @itemx gnu18
1929 GNU dialect of ISO C17. This is the default for C code.
1930
1931 @item c++98
1932 @itemx c++03
1933 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1934 additional defect reports. Same as @option{-ansi} for C++ code.
1935
1936 @item gnu++98
1937 @itemx gnu++03
1938 GNU dialect of @option{-std=c++98}.
1939
1940 @item c++11
1941 @itemx c++0x
1942 The 2011 ISO C++ standard plus amendments.
1943 The name @samp{c++0x} is deprecated.
1944
1945 @item gnu++11
1946 @itemx gnu++0x
1947 GNU dialect of @option{-std=c++11}.
1948 The name @samp{gnu++0x} is deprecated.
1949
1950 @item c++14
1951 @itemx c++1y
1952 The 2014 ISO C++ standard plus amendments.
1953 The name @samp{c++1y} is deprecated.
1954
1955 @item gnu++14
1956 @itemx gnu++1y
1957 GNU dialect of @option{-std=c++14}.
1958 This is the default for C++ code.
1959 The name @samp{gnu++1y} is deprecated.
1960
1961 @item c++17
1962 @itemx c++1z
1963 The 2017 ISO C++ standard plus amendments.
1964 The name @samp{c++1z} is deprecated.
1965
1966 @item gnu++17
1967 @itemx gnu++1z
1968 GNU dialect of @option{-std=c++17}.
1969 The name @samp{gnu++1z} is deprecated.
1970
1971 @item c++2a
1972 The next revision of the ISO C++ standard, tentatively planned for
1973 2020. Support is highly experimental, and will almost certainly
1974 change in incompatible ways in future releases.
1975
1976 @item gnu++2a
1977 GNU dialect of @option{-std=c++2a}. Support is highly experimental,
1978 and will almost certainly change in incompatible ways in future
1979 releases.
1980 @end table
1981
1982 @item -fgnu89-inline
1983 @opindex fgnu89-inline
1984 The option @option{-fgnu89-inline} tells GCC to use the traditional
1985 GNU semantics for @code{inline} functions when in C99 mode.
1986 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1987 Using this option is roughly equivalent to adding the
1988 @code{gnu_inline} function attribute to all inline functions
1989 (@pxref{Function Attributes}).
1990
1991 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1992 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1993 specifies the default behavior).
1994 This option is not supported in @option{-std=c90} or
1995 @option{-std=gnu90} mode.
1996
1997 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1998 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1999 in effect for @code{inline} functions. @xref{Common Predefined
2000 Macros,,,cpp,The C Preprocessor}.
2001
2002 @item -fpermitted-flt-eval-methods=@var{style}
2003 @opindex fpermitted-flt-eval-methods
2004 @opindex fpermitted-flt-eval-methods=c11
2005 @opindex fpermitted-flt-eval-methods=ts-18661-3
2006 ISO/IEC TS 18661-3 defines new permissible values for
2007 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
2008 a semantic type that is an interchange or extended format should be
2009 evaluated to the precision and range of that type. These new values are
2010 a superset of those permitted under C99/C11, which does not specify the
2011 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
2012 conforming to C11 may not have been written expecting the possibility of
2013 the new values.
2014
2015 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
2016 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
2017 or the extended set of values specified in ISO/IEC TS 18661-3.
2018
2019 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
2020
2021 The default when in a standards compliant mode (@option{-std=c11} or similar)
2022 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
2023 dialect (@option{-std=gnu11} or similar) is
2024 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
2025
2026 @item -aux-info @var{filename}
2027 @opindex aux-info
2028 Output to the given filename prototyped declarations for all functions
2029 declared and/or defined in a translation unit, including those in header
2030 files. This option is silently ignored in any language other than C@.
2031
2032 Besides declarations, the file indicates, in comments, the origin of
2033 each declaration (source file and line), whether the declaration was
2034 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
2035 @samp{O} for old, respectively, in the first character after the line
2036 number and the colon), and whether it came from a declaration or a
2037 definition (@samp{C} or @samp{F}, respectively, in the following
2038 character). In the case of function definitions, a K&R-style list of
2039 arguments followed by their declarations is also provided, inside
2040 comments, after the declaration.
2041
2042 @item -fallow-parameterless-variadic-functions
2043 @opindex fallow-parameterless-variadic-functions
2044 Accept variadic functions without named parameters.
2045
2046 Although it is possible to define such a function, this is not very
2047 useful as it is not possible to read the arguments. This is only
2048 supported for C as this construct is allowed by C++.
2049
2050 @item -fno-asm
2051 @opindex fno-asm
2052 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2053 keyword, so that code can use these words as identifiers. You can use
2054 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2055 instead. @option{-ansi} implies @option{-fno-asm}.
2056
2057 In C++, this switch only affects the @code{typeof} keyword, since
2058 @code{asm} and @code{inline} are standard keywords. You may want to
2059 use the @option{-fno-gnu-keywords} flag instead, which has the same
2060 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2061 switch only affects the @code{asm} and @code{typeof} keywords, since
2062 @code{inline} is a standard keyword in ISO C99.
2063
2064 @item -fno-builtin
2065 @itemx -fno-builtin-@var{function}
2066 @opindex fno-builtin
2067 @cindex built-in functions
2068 Don't recognize built-in functions that do not begin with
2069 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
2070 functions provided by GCC}, for details of the functions affected,
2071 including those which are not built-in functions when @option{-ansi} or
2072 @option{-std} options for strict ISO C conformance are used because they
2073 do not have an ISO standard meaning.
2074
2075 GCC normally generates special code to handle certain built-in functions
2076 more efficiently; for instance, calls to @code{alloca} may become single
2077 instructions which adjust the stack directly, and calls to @code{memcpy}
2078 may become inline copy loops. The resulting code is often both smaller
2079 and faster, but since the function calls no longer appear as such, you
2080 cannot set a breakpoint on those calls, nor can you change the behavior
2081 of the functions by linking with a different library. In addition,
2082 when a function is recognized as a built-in function, GCC may use
2083 information about that function to warn about problems with calls to
2084 that function, or to generate more efficient code, even if the
2085 resulting code still contains calls to that function. For example,
2086 warnings are given with @option{-Wformat} for bad calls to
2087 @code{printf} when @code{printf} is built in and @code{strlen} is
2088 known not to modify global memory.
2089
2090 With the @option{-fno-builtin-@var{function}} option
2091 only the built-in function @var{function} is
2092 disabled. @var{function} must not begin with @samp{__builtin_}. If a
2093 function is named that is not built-in in this version of GCC, this
2094 option is ignored. There is no corresponding
2095 @option{-fbuiltin-@var{function}} option; if you wish to enable
2096 built-in functions selectively when using @option{-fno-builtin} or
2097 @option{-ffreestanding}, you may define macros such as:
2098
2099 @smallexample
2100 #define abs(n) __builtin_abs ((n))
2101 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2102 @end smallexample
2103
2104 @item -fgimple
2105 @opindex fgimple
2106
2107 Enable parsing of function definitions marked with @code{__GIMPLE}.
2108 This is an experimental feature that allows unit testing of GIMPLE
2109 passes.
2110
2111 @item -fhosted
2112 @opindex fhosted
2113 @cindex hosted environment
2114
2115 Assert that compilation targets a hosted environment. This implies
2116 @option{-fbuiltin}. A hosted environment is one in which the
2117 entire standard library is available, and in which @code{main} has a return
2118 type of @code{int}. Examples are nearly everything except a kernel.
2119 This is equivalent to @option{-fno-freestanding}.
2120
2121 @item -ffreestanding
2122 @opindex ffreestanding
2123 @cindex hosted environment
2124
2125 Assert that compilation targets a freestanding environment. This
2126 implies @option{-fno-builtin}. A freestanding environment
2127 is one in which the standard library may not exist, and program startup may
2128 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2129 This is equivalent to @option{-fno-hosted}.
2130
2131 @xref{Standards,,Language Standards Supported by GCC}, for details of
2132 freestanding and hosted environments.
2133
2134 @item -fopenacc
2135 @opindex fopenacc
2136 @cindex OpenACC accelerator programming
2137 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2138 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2139 compiler generates accelerated code according to the OpenACC Application
2140 Programming Interface v2.0 @w{@uref{https://www.openacc.org}}. This option
2141 implies @option{-pthread}, and thus is only supported on targets that
2142 have support for @option{-pthread}.
2143
2144 @item -fopenacc-dim=@var{geom}
2145 @opindex fopenacc-dim
2146 @cindex OpenACC accelerator programming
2147 Specify default compute dimensions for parallel offload regions that do
2148 not explicitly specify. The @var{geom} value is a triple of
2149 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2150 can be omitted, to use a target-specific default value.
2151
2152 @item -fopenmp
2153 @opindex fopenmp
2154 @cindex OpenMP parallel
2155 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2156 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2157 compiler generates parallel code according to the OpenMP Application
2158 Program Interface v4.5 @w{@uref{http://www.openmp.org/}}. This option
2159 implies @option{-pthread}, and thus is only supported on targets that
2160 have support for @option{-pthread}. @option{-fopenmp} implies
2161 @option{-fopenmp-simd}.
2162
2163 @item -fopenmp-simd
2164 @opindex fopenmp-simd
2165 @cindex OpenMP SIMD
2166 @cindex SIMD
2167 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2168 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2169 are ignored.
2170
2171 @item -fgnu-tm
2172 @opindex fgnu-tm
2173 When the option @option{-fgnu-tm} is specified, the compiler
2174 generates code for the Linux variant of Intel's current Transactional
2175 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2176 an experimental feature whose interface may change in future versions
2177 of GCC, as the official specification changes. Please note that not
2178 all architectures are supported for this feature.
2179
2180 For more information on GCC's support for transactional memory,
2181 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2182 Transactional Memory Library}.
2183
2184 Note that the transactional memory feature is not supported with
2185 non-call exceptions (@option{-fnon-call-exceptions}).
2186
2187 @item -fms-extensions
2188 @opindex fms-extensions
2189 Accept some non-standard constructs used in Microsoft header files.
2190
2191 In C++ code, this allows member names in structures to be similar
2192 to previous types declarations.
2193
2194 @smallexample
2195 typedef int UOW;
2196 struct ABC @{
2197 UOW UOW;
2198 @};
2199 @end smallexample
2200
2201 Some cases of unnamed fields in structures and unions are only
2202 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2203 fields within structs/unions}, for details.
2204
2205 Note that this option is off for all targets but x86
2206 targets using ms-abi.
2207
2208 @item -fplan9-extensions
2209 @opindex fplan9-extensions
2210 Accept some non-standard constructs used in Plan 9 code.
2211
2212 This enables @option{-fms-extensions}, permits passing pointers to
2213 structures with anonymous fields to functions that expect pointers to
2214 elements of the type of the field, and permits referring to anonymous
2215 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2216 struct/union fields within structs/unions}, for details. This is only
2217 supported for C, not C++.
2218
2219 @item -fcond-mismatch
2220 @opindex fcond-mismatch
2221 Allow conditional expressions with mismatched types in the second and
2222 third arguments. The value of such an expression is void. This option
2223 is not supported for C++.
2224
2225 @item -flax-vector-conversions
2226 @opindex flax-vector-conversions
2227 Allow implicit conversions between vectors with differing numbers of
2228 elements and/or incompatible element types. This option should not be
2229 used for new code.
2230
2231 @item -funsigned-char
2232 @opindex funsigned-char
2233 Let the type @code{char} be unsigned, like @code{unsigned char}.
2234
2235 Each kind of machine has a default for what @code{char} should
2236 be. It is either like @code{unsigned char} by default or like
2237 @code{signed char} by default.
2238
2239 Ideally, a portable program should always use @code{signed char} or
2240 @code{unsigned char} when it depends on the signedness of an object.
2241 But many programs have been written to use plain @code{char} and
2242 expect it to be signed, or expect it to be unsigned, depending on the
2243 machines they were written for. This option, and its inverse, let you
2244 make such a program work with the opposite default.
2245
2246 The type @code{char} is always a distinct type from each of
2247 @code{signed char} or @code{unsigned char}, even though its behavior
2248 is always just like one of those two.
2249
2250 @item -fsigned-char
2251 @opindex fsigned-char
2252 Let the type @code{char} be signed, like @code{signed char}.
2253
2254 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2255 the negative form of @option{-funsigned-char}. Likewise, the option
2256 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2257
2258 @item -fsigned-bitfields
2259 @itemx -funsigned-bitfields
2260 @itemx -fno-signed-bitfields
2261 @itemx -fno-unsigned-bitfields
2262 @opindex fsigned-bitfields
2263 @opindex funsigned-bitfields
2264 @opindex fno-signed-bitfields
2265 @opindex fno-unsigned-bitfields
2266 These options control whether a bit-field is signed or unsigned, when the
2267 declaration does not use either @code{signed} or @code{unsigned}. By
2268 default, such a bit-field is signed, because this is consistent: the
2269 basic integer types such as @code{int} are signed types.
2270
2271 @item -fsso-struct=@var{endianness}
2272 @opindex fsso-struct
2273 Set the default scalar storage order of structures and unions to the
2274 specified endianness. The accepted values are @samp{big-endian},
2275 @samp{little-endian} and @samp{native} for the native endianness of
2276 the target (the default). This option is not supported for C++.
2277
2278 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2279 code that is not binary compatible with code generated without it if the
2280 specified endianness is not the native endianness of the target.
2281 @end table
2282
2283 @node C++ Dialect Options
2284 @section Options Controlling C++ Dialect
2285
2286 @cindex compiler options, C++
2287 @cindex C++ options, command-line
2288 @cindex options, C++
2289 This section describes the command-line options that are only meaningful
2290 for C++ programs. You can also use most of the GNU compiler options
2291 regardless of what language your program is in. For example, you
2292 might compile a file @file{firstClass.C} like this:
2293
2294 @smallexample
2295 g++ -g -fstrict-enums -O -c firstClass.C
2296 @end smallexample
2297
2298 @noindent
2299 In this example, only @option{-fstrict-enums} is an option meant
2300 only for C++ programs; you can use the other options with any
2301 language supported by GCC@.
2302
2303 Some options for compiling C programs, such as @option{-std}, are also
2304 relevant for C++ programs.
2305 @xref{C Dialect Options,,Options Controlling C Dialect}.
2306
2307 Here is a list of options that are @emph{only} for compiling C++ programs:
2308
2309 @table @gcctabopt
2310
2311 @item -fabi-version=@var{n}
2312 @opindex fabi-version
2313 Use version @var{n} of the C++ ABI@. The default is version 0.
2314
2315 Version 0 refers to the version conforming most closely to
2316 the C++ ABI specification. Therefore, the ABI obtained using version 0
2317 will change in different versions of G++ as ABI bugs are fixed.
2318
2319 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2320
2321 Version 2 is the version of the C++ ABI that first appeared in G++
2322 3.4, and was the default through G++ 4.9.
2323
2324 Version 3 corrects an error in mangling a constant address as a
2325 template argument.
2326
2327 Version 4, which first appeared in G++ 4.5, implements a standard
2328 mangling for vector types.
2329
2330 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2331 attribute const/volatile on function pointer types, decltype of a
2332 plain decl, and use of a function parameter in the declaration of
2333 another parameter.
2334
2335 Version 6, which first appeared in G++ 4.7, corrects the promotion
2336 behavior of C++11 scoped enums and the mangling of template argument
2337 packs, const/static_cast, prefix ++ and --, and a class scope function
2338 used as a template argument.
2339
2340 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2341 builtin type and corrects the mangling of lambdas in default argument
2342 scope.
2343
2344 Version 8, which first appeared in G++ 4.9, corrects the substitution
2345 behavior of function types with function-cv-qualifiers.
2346
2347 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2348 @code{nullptr_t}.
2349
2350 Version 10, which first appeared in G++ 6.1, adds mangling of
2351 attributes that affect type identity, such as ia32 calling convention
2352 attributes (e.g. @samp{stdcall}).
2353
2354 Version 11, which first appeared in G++ 7, corrects the mangling of
2355 sizeof... expressions and operator names. For multiple entities with
2356 the same name within a function, that are declared in different scopes,
2357 the mangling now changes starting with the twelfth occurrence. It also
2358 implies @option{-fnew-inheriting-ctors}.
2359
2360 See also @option{-Wabi}.
2361
2362 @item -fabi-compat-version=@var{n}
2363 @opindex fabi-compat-version
2364 On targets that support strong aliases, G++
2365 works around mangling changes by creating an alias with the correct
2366 mangled name when defining a symbol with an incorrect mangled name.
2367 This switch specifies which ABI version to use for the alias.
2368
2369 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2370 compatibility). If another ABI version is explicitly selected, this
2371 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2372 use @option{-fabi-compat-version=2}.
2373
2374 If this option is not provided but @option{-Wabi=@var{n}} is, that
2375 version is used for compatibility aliases. If this option is provided
2376 along with @option{-Wabi} (without the version), the version from this
2377 option is used for the warning.
2378
2379 @item -fno-access-control
2380 @opindex fno-access-control
2381 Turn off all access checking. This switch is mainly useful for working
2382 around bugs in the access control code.
2383
2384 @item -faligned-new
2385 @opindex faligned-new
2386 Enable support for C++17 @code{new} of types that require more
2387 alignment than @code{void* ::operator new(std::size_t)} provides. A
2388 numeric argument such as @code{-faligned-new=32} can be used to
2389 specify how much alignment (in bytes) is provided by that function,
2390 but few users will need to override the default of
2391 @code{alignof(std::max_align_t)}.
2392
2393 This flag is enabled by default for @option{-std=c++17}.
2394
2395 @item -fcheck-new
2396 @opindex fcheck-new
2397 Check that the pointer returned by @code{operator new} is non-null
2398 before attempting to modify the storage allocated. This check is
2399 normally unnecessary because the C++ standard specifies that
2400 @code{operator new} only returns @code{0} if it is declared
2401 @code{throw()}, in which case the compiler always checks the
2402 return value even without this option. In all other cases, when
2403 @code{operator new} has a non-empty exception specification, memory
2404 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2405 @samp{new (nothrow)}.
2406
2407 @item -fconcepts
2408 @opindex fconcepts
2409 Enable support for the C++ Extensions for Concepts Technical
2410 Specification, ISO 19217 (2015), which allows code like
2411
2412 @smallexample
2413 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2414 template <Addable T> T add (T a, T b) @{ return a + b; @}
2415 @end smallexample
2416
2417 @item -fconstexpr-depth=@var{n}
2418 @opindex fconstexpr-depth
2419 Set the maximum nested evaluation depth for C++11 constexpr functions
2420 to @var{n}. A limit is needed to detect endless recursion during
2421 constant expression evaluation. The minimum specified by the standard
2422 is 512.
2423
2424 @item -fconstexpr-loop-limit=@var{n}
2425 @opindex fconstexpr-loop-limit
2426 Set the maximum number of iterations for a loop in C++14 constexpr functions
2427 to @var{n}. A limit is needed to detect infinite loops during
2428 constant expression evaluation. The default is 262144 (1<<18).
2429
2430 @item -fdeduce-init-list
2431 @opindex fdeduce-init-list
2432 Enable deduction of a template type parameter as
2433 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2434
2435 @smallexample
2436 template <class T> auto forward(T t) -> decltype (realfn (t))
2437 @{
2438 return realfn (t);
2439 @}
2440
2441 void f()
2442 @{
2443 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2444 @}
2445 @end smallexample
2446
2447 This deduction was implemented as a possible extension to the
2448 originally proposed semantics for the C++11 standard, but was not part
2449 of the final standard, so it is disabled by default. This option is
2450 deprecated, and may be removed in a future version of G++.
2451
2452 @item -ffriend-injection
2453 @opindex ffriend-injection
2454 Inject friend functions into the enclosing namespace, so that they are
2455 visible outside the scope of the class in which they are declared.
2456 Friend functions were documented to work this way in the old Annotated
2457 C++ Reference Manual.
2458 However, in ISO C++ a friend function that is not declared
2459 in an enclosing scope can only be found using argument dependent
2460 lookup. GCC defaults to the standard behavior.
2461
2462 This option is deprecated and will be removed.
2463
2464 @item -fno-elide-constructors
2465 @opindex fno-elide-constructors
2466 The C++ standard allows an implementation to omit creating a temporary
2467 that is only used to initialize another object of the same type.
2468 Specifying this option disables that optimization, and forces G++ to
2469 call the copy constructor in all cases. This option also causes G++
2470 to call trivial member functions which otherwise would be expanded inline.
2471
2472 In C++17, the compiler is required to omit these temporaries, but this
2473 option still affects trivial member functions.
2474
2475 @item -fno-enforce-eh-specs
2476 @opindex fno-enforce-eh-specs
2477 Don't generate code to check for violation of exception specifications
2478 at run time. This option violates the C++ standard, but may be useful
2479 for reducing code size in production builds, much like defining
2480 @code{NDEBUG}. This does not give user code permission to throw
2481 exceptions in violation of the exception specifications; the compiler
2482 still optimizes based on the specifications, so throwing an
2483 unexpected exception results in undefined behavior at run time.
2484
2485 @item -fextern-tls-init
2486 @itemx -fno-extern-tls-init
2487 @opindex fextern-tls-init
2488 @opindex fno-extern-tls-init
2489 The C++11 and OpenMP standards allow @code{thread_local} and
2490 @code{threadprivate} variables to have dynamic (runtime)
2491 initialization. To support this, any use of such a variable goes
2492 through a wrapper function that performs any necessary initialization.
2493 When the use and definition of the variable are in the same
2494 translation unit, this overhead can be optimized away, but when the
2495 use is in a different translation unit there is significant overhead
2496 even if the variable doesn't actually need dynamic initialization. If
2497 the programmer can be sure that no use of the variable in a
2498 non-defining TU needs to trigger dynamic initialization (either
2499 because the variable is statically initialized, or a use of the
2500 variable in the defining TU will be executed before any uses in
2501 another TU), they can avoid this overhead with the
2502 @option{-fno-extern-tls-init} option.
2503
2504 On targets that support symbol aliases, the default is
2505 @option{-fextern-tls-init}. On targets that do not support symbol
2506 aliases, the default is @option{-fno-extern-tls-init}.
2507
2508 @item -ffor-scope
2509 @itemx -fno-for-scope
2510 @opindex ffor-scope
2511 @opindex fno-for-scope
2512 If @option{-ffor-scope} is specified, the scope of variables declared in
2513 a @i{for-init-statement} is limited to the @code{for} loop itself,
2514 as specified by the C++ standard.
2515 If @option{-fno-for-scope} is specified, the scope of variables declared in
2516 a @i{for-init-statement} extends to the end of the enclosing scope,
2517 as was the case in old versions of G++, and other (traditional)
2518 implementations of C++.
2519
2520 This option is deprecated and the associated non-standard
2521 functionality will be removed.
2522
2523 @item -fno-gnu-keywords
2524 @opindex fno-gnu-keywords
2525 Do not recognize @code{typeof} as a keyword, so that code can use this
2526 word as an identifier. You can use the keyword @code{__typeof__} instead.
2527 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2528 @option{-std=c++98}, @option{-std=c++11}, etc.
2529
2530 @item -fno-implicit-templates
2531 @opindex fno-implicit-templates
2532 Never emit code for non-inline templates that are instantiated
2533 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2534 @xref{Template Instantiation}, for more information.
2535
2536 @item -fno-implicit-inline-templates
2537 @opindex fno-implicit-inline-templates
2538 Don't emit code for implicit instantiations of inline templates, either.
2539 The default is to handle inlines differently so that compiles with and
2540 without optimization need the same set of explicit instantiations.
2541
2542 @item -fno-implement-inlines
2543 @opindex fno-implement-inlines
2544 To save space, do not emit out-of-line copies of inline functions
2545 controlled by @code{#pragma implementation}. This causes linker
2546 errors if these functions are not inlined everywhere they are called.
2547
2548 @item -fms-extensions
2549 @opindex fms-extensions
2550 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2551 int and getting a pointer to member function via non-standard syntax.
2552
2553 @item -fnew-inheriting-ctors
2554 @opindex fnew-inheriting-ctors
2555 Enable the P0136 adjustment to the semantics of C++11 constructor
2556 inheritance. This is part of C++17 but also considered to be a Defect
2557 Report against C++11 and C++14. This flag is enabled by default
2558 unless @option{-fabi-version=10} or lower is specified.
2559
2560 @item -fnew-ttp-matching
2561 @opindex fnew-ttp-matching
2562 Enable the P0522 resolution to Core issue 150, template template
2563 parameters and default arguments: this allows a template with default
2564 template arguments as an argument for a template template parameter
2565 with fewer template parameters. This flag is enabled by default for
2566 @option{-std=c++17}.
2567
2568 @item -fno-nonansi-builtins
2569 @opindex fno-nonansi-builtins
2570 Disable built-in declarations of functions that are not mandated by
2571 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2572 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2573
2574 @item -fnothrow-opt
2575 @opindex fnothrow-opt
2576 Treat a @code{throw()} exception specification as if it were a
2577 @code{noexcept} specification to reduce or eliminate the text size
2578 overhead relative to a function with no exception specification. If
2579 the function has local variables of types with non-trivial
2580 destructors, the exception specification actually makes the
2581 function smaller because the EH cleanups for those variables can be
2582 optimized away. The semantic effect is that an exception thrown out of
2583 a function with such an exception specification results in a call
2584 to @code{terminate} rather than @code{unexpected}.
2585
2586 @item -fno-operator-names
2587 @opindex fno-operator-names
2588 Do not treat the operator name keywords @code{and}, @code{bitand},
2589 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2590 synonyms as keywords.
2591
2592 @item -fno-optional-diags
2593 @opindex fno-optional-diags
2594 Disable diagnostics that the standard says a compiler does not need to
2595 issue. Currently, the only such diagnostic issued by G++ is the one for
2596 a name having multiple meanings within a class.
2597
2598 @item -fpermissive
2599 @opindex fpermissive
2600 Downgrade some diagnostics about nonconformant code from errors to
2601 warnings. Thus, using @option{-fpermissive} allows some
2602 nonconforming code to compile.
2603
2604 @item -fno-pretty-templates
2605 @opindex fno-pretty-templates
2606 When an error message refers to a specialization of a function
2607 template, the compiler normally prints the signature of the
2608 template followed by the template arguments and any typedefs or
2609 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2610 rather than @code{void f(int)}) so that it's clear which template is
2611 involved. When an error message refers to a specialization of a class
2612 template, the compiler omits any template arguments that match
2613 the default template arguments for that template. If either of these
2614 behaviors make it harder to understand the error message rather than
2615 easier, you can use @option{-fno-pretty-templates} to disable them.
2616
2617 @item -frepo
2618 @opindex frepo
2619 Enable automatic template instantiation at link time. This option also
2620 implies @option{-fno-implicit-templates}. @xref{Template
2621 Instantiation}, for more information.
2622
2623 @item -fno-rtti
2624 @opindex fno-rtti
2625 Disable generation of information about every class with virtual
2626 functions for use by the C++ run-time type identification features
2627 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2628 of the language, you can save some space by using this flag. Note that
2629 exception handling uses the same information, but G++ generates it as
2630 needed. The @code{dynamic_cast} operator can still be used for casts that
2631 do not require run-time type information, i.e.@: casts to @code{void *} or to
2632 unambiguous base classes.
2633
2634 @item -fsized-deallocation
2635 @opindex fsized-deallocation
2636 Enable the built-in global declarations
2637 @smallexample
2638 void operator delete (void *, std::size_t) noexcept;
2639 void operator delete[] (void *, std::size_t) noexcept;
2640 @end smallexample
2641 as introduced in C++14. This is useful for user-defined replacement
2642 deallocation functions that, for example, use the size of the object
2643 to make deallocation faster. Enabled by default under
2644 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2645 warns about places that might want to add a definition.
2646
2647 @item -fstrict-enums
2648 @opindex fstrict-enums
2649 Allow the compiler to optimize using the assumption that a value of
2650 enumerated type can only be one of the values of the enumeration (as
2651 defined in the C++ standard; basically, a value that can be
2652 represented in the minimum number of bits needed to represent all the
2653 enumerators). This assumption may not be valid if the program uses a
2654 cast to convert an arbitrary integer value to the enumerated type.
2655
2656 @item -fstrong-eval-order
2657 @opindex fstrong-eval-order
2658 Evaluate member access, array subscripting, and shift expressions in
2659 left-to-right order, and evaluate assignment in right-to-left order,
2660 as adopted for C++17. Enabled by default with @option{-std=c++17}.
2661 @option{-fstrong-eval-order=some} enables just the ordering of member
2662 access and shift expressions, and is the default without
2663 @option{-std=c++17}.
2664
2665 @item -ftemplate-backtrace-limit=@var{n}
2666 @opindex ftemplate-backtrace-limit
2667 Set the maximum number of template instantiation notes for a single
2668 warning or error to @var{n}. The default value is 10.
2669
2670 @item -ftemplate-depth=@var{n}
2671 @opindex ftemplate-depth
2672 Set the maximum instantiation depth for template classes to @var{n}.
2673 A limit on the template instantiation depth is needed to detect
2674 endless recursions during template class instantiation. ANSI/ISO C++
2675 conforming programs must not rely on a maximum depth greater than 17
2676 (changed to 1024 in C++11). The default value is 900, as the compiler
2677 can run out of stack space before hitting 1024 in some situations.
2678
2679 @item -fno-threadsafe-statics
2680 @opindex fno-threadsafe-statics
2681 Do not emit the extra code to use the routines specified in the C++
2682 ABI for thread-safe initialization of local statics. You can use this
2683 option to reduce code size slightly in code that doesn't need to be
2684 thread-safe.
2685
2686 @item -fuse-cxa-atexit
2687 @opindex fuse-cxa-atexit
2688 Register destructors for objects with static storage duration with the
2689 @code{__cxa_atexit} function rather than the @code{atexit} function.
2690 This option is required for fully standards-compliant handling of static
2691 destructors, but only works if your C library supports
2692 @code{__cxa_atexit}.
2693
2694 @item -fno-use-cxa-get-exception-ptr
2695 @opindex fno-use-cxa-get-exception-ptr
2696 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2697 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2698 if the runtime routine is not available.
2699
2700 @item -fvisibility-inlines-hidden
2701 @opindex fvisibility-inlines-hidden
2702 This switch declares that the user does not attempt to compare
2703 pointers to inline functions or methods where the addresses of the two functions
2704 are taken in different shared objects.
2705
2706 The effect of this is that GCC may, effectively, mark inline methods with
2707 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2708 appear in the export table of a DSO and do not require a PLT indirection
2709 when used within the DSO@. Enabling this option can have a dramatic effect
2710 on load and link times of a DSO as it massively reduces the size of the
2711 dynamic export table when the library makes heavy use of templates.
2712
2713 The behavior of this switch is not quite the same as marking the
2714 methods as hidden directly, because it does not affect static variables
2715 local to the function or cause the compiler to deduce that
2716 the function is defined in only one shared object.
2717
2718 You may mark a method as having a visibility explicitly to negate the
2719 effect of the switch for that method. For example, if you do want to
2720 compare pointers to a particular inline method, you might mark it as
2721 having default visibility. Marking the enclosing class with explicit
2722 visibility has no effect.
2723
2724 Explicitly instantiated inline methods are unaffected by this option
2725 as their linkage might otherwise cross a shared library boundary.
2726 @xref{Template Instantiation}.
2727
2728 @item -fvisibility-ms-compat
2729 @opindex fvisibility-ms-compat
2730 This flag attempts to use visibility settings to make GCC's C++
2731 linkage model compatible with that of Microsoft Visual Studio.
2732
2733 The flag makes these changes to GCC's linkage model:
2734
2735 @enumerate
2736 @item
2737 It sets the default visibility to @code{hidden}, like
2738 @option{-fvisibility=hidden}.
2739
2740 @item
2741 Types, but not their members, are not hidden by default.
2742
2743 @item
2744 The One Definition Rule is relaxed for types without explicit
2745 visibility specifications that are defined in more than one
2746 shared object: those declarations are permitted if they are
2747 permitted when this option is not used.
2748 @end enumerate
2749
2750 In new code it is better to use @option{-fvisibility=hidden} and
2751 export those classes that are intended to be externally visible.
2752 Unfortunately it is possible for code to rely, perhaps accidentally,
2753 on the Visual Studio behavior.
2754
2755 Among the consequences of these changes are that static data members
2756 of the same type with the same name but defined in different shared
2757 objects are different, so changing one does not change the other;
2758 and that pointers to function members defined in different shared
2759 objects may not compare equal. When this flag is given, it is a
2760 violation of the ODR to define types with the same name differently.
2761
2762 @item -fno-weak
2763 @opindex fno-weak
2764 Do not use weak symbol support, even if it is provided by the linker.
2765 By default, G++ uses weak symbols if they are available. This
2766 option exists only for testing, and should not be used by end-users;
2767 it results in inferior code and has no benefits. This option may
2768 be removed in a future release of G++.
2769
2770 @item -nostdinc++
2771 @opindex nostdinc++
2772 Do not search for header files in the standard directories specific to
2773 C++, but do still search the other standard directories. (This option
2774 is used when building the C++ library.)
2775 @end table
2776
2777 In addition, these optimization, warning, and code generation options
2778 have meanings only for C++ programs:
2779
2780 @table @gcctabopt
2781 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2782 @opindex Wabi
2783 @opindex Wno-abi
2784 Warn when G++ it generates code that is probably not compatible with
2785 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2786 ABI with each major release, normally @option{-Wabi} will warn only if
2787 there is a check added later in a release series for an ABI issue
2788 discovered since the initial release. @option{-Wabi} will warn about
2789 more things if an older ABI version is selected (with
2790 @option{-fabi-version=@var{n}}).
2791
2792 @option{-Wabi} can also be used with an explicit version number to
2793 warn about compatibility with a particular @option{-fabi-version}
2794 level, e.g. @option{-Wabi=2} to warn about changes relative to
2795 @option{-fabi-version=2}.
2796
2797 If an explicit version number is provided and
2798 @option{-fabi-compat-version} is not specified, the version number
2799 from this option is used for compatibility aliases. If no explicit
2800 version number is provided with this option, but
2801 @option{-fabi-compat-version} is specified, that version number is
2802 used for ABI warnings.
2803
2804 Although an effort has been made to warn about
2805 all such cases, there are probably some cases that are not warned about,
2806 even though G++ is generating incompatible code. There may also be
2807 cases where warnings are emitted even though the code that is generated
2808 is compatible.
2809
2810 You should rewrite your code to avoid these warnings if you are
2811 concerned about the fact that code generated by G++ may not be binary
2812 compatible with code generated by other compilers.
2813
2814 Known incompatibilities in @option{-fabi-version=2} (which was the
2815 default from GCC 3.4 to 4.9) include:
2816
2817 @itemize @bullet
2818
2819 @item
2820 A template with a non-type template parameter of reference type was
2821 mangled incorrectly:
2822 @smallexample
2823 extern int N;
2824 template <int &> struct S @{@};
2825 void n (S<N>) @{2@}
2826 @end smallexample
2827
2828 This was fixed in @option{-fabi-version=3}.
2829
2830 @item
2831 SIMD vector types declared using @code{__attribute ((vector_size))} were
2832 mangled in a non-standard way that does not allow for overloading of
2833 functions taking vectors of different sizes.
2834
2835 The mangling was changed in @option{-fabi-version=4}.
2836
2837 @item
2838 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2839 qualifiers, and @code{decltype} of a plain declaration was folded away.
2840
2841 These mangling issues were fixed in @option{-fabi-version=5}.
2842
2843 @item
2844 Scoped enumerators passed as arguments to a variadic function are
2845 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2846 On most targets this does not actually affect the parameter passing
2847 ABI, as there is no way to pass an argument smaller than @code{int}.
2848
2849 Also, the ABI changed the mangling of template argument packs,
2850 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2851 a class scope function used as a template argument.
2852
2853 These issues were corrected in @option{-fabi-version=6}.
2854
2855 @item
2856 Lambdas in default argument scope were mangled incorrectly, and the
2857 ABI changed the mangling of @code{nullptr_t}.
2858
2859 These issues were corrected in @option{-fabi-version=7}.
2860
2861 @item
2862 When mangling a function type with function-cv-qualifiers, the
2863 un-qualified function type was incorrectly treated as a substitution
2864 candidate.
2865
2866 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2867
2868 @item
2869 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2870 unaligned accesses. Note that this did not affect the ABI of a
2871 function with a @code{nullptr_t} parameter, as parameters have a
2872 minimum alignment.
2873
2874 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2875
2876 @item
2877 Target-specific attributes that affect the identity of a type, such as
2878 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2879 did not affect the mangled name, leading to name collisions when
2880 function pointers were used as template arguments.
2881
2882 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2883
2884 @end itemize
2885
2886 It also warns about psABI-related changes. The known psABI changes at this
2887 point include:
2888
2889 @itemize @bullet
2890
2891 @item
2892 For SysV/x86-64, unions with @code{long double} members are
2893 passed in memory as specified in psABI. For example:
2894
2895 @smallexample
2896 union U @{
2897 long double ld;
2898 int i;
2899 @};
2900 @end smallexample
2901
2902 @noindent
2903 @code{union U} is always passed in memory.
2904
2905 @end itemize
2906
2907 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2908 @opindex Wabi-tag
2909 @opindex -Wabi-tag
2910 Warn when a type with an ABI tag is used in a context that does not
2911 have that ABI tag. See @ref{C++ Attributes} for more information
2912 about ABI tags.
2913
2914 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2915 @opindex Wctor-dtor-privacy
2916 @opindex Wno-ctor-dtor-privacy
2917 Warn when a class seems unusable because all the constructors or
2918 destructors in that class are private, and it has neither friends nor
2919 public static member functions. Also warn if there are no non-private
2920 methods, and there's at least one private member function that isn't
2921 a constructor or destructor.
2922
2923 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2924 @opindex Wdelete-non-virtual-dtor
2925 @opindex Wno-delete-non-virtual-dtor
2926 Warn when @code{delete} is used to destroy an instance of a class that
2927 has virtual functions and non-virtual destructor. It is unsafe to delete
2928 an instance of a derived class through a pointer to a base class if the
2929 base class does not have a virtual destructor. This warning is enabled
2930 by @option{-Wall}.
2931
2932 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2933 @opindex Wliteral-suffix
2934 @opindex Wno-literal-suffix
2935 Warn when a string or character literal is followed by a ud-suffix which does
2936 not begin with an underscore. As a conforming extension, GCC treats such
2937 suffixes as separate preprocessing tokens in order to maintain backwards
2938 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2939 For example:
2940
2941 @smallexample
2942 #define __STDC_FORMAT_MACROS
2943 #include <inttypes.h>
2944 #include <stdio.h>
2945
2946 int main() @{
2947 int64_t i64 = 123;
2948 printf("My int64: %" PRId64"\n", i64);
2949 @}
2950 @end smallexample
2951
2952 In this case, @code{PRId64} is treated as a separate preprocessing token.
2953
2954 Additionally, warn when a user-defined literal operator is declared with
2955 a literal suffix identifier that doesn't begin with an underscore. Literal
2956 suffix identifiers that don't begin with an underscore are reserved for
2957 future standardization.
2958
2959 This warning is enabled by default.
2960
2961 @item -Wlto-type-mismatch
2962 @opindex Wlto-type-mismatch
2963 @opindex Wno-lto-type-mismatch
2964
2965 During the link-time optimization warn about type mismatches in
2966 global declarations from different compilation units.
2967 Requires @option{-flto} to be enabled. Enabled by default.
2968
2969 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
2970 @opindex Wnarrowing
2971 @opindex Wno-narrowing
2972 For C++11 and later standards, narrowing conversions are diagnosed by default,
2973 as required by the standard. A narrowing conversion from a constant produces
2974 an error, and a narrowing conversion from a non-constant produces a warning,
2975 but @option{-Wno-narrowing} suppresses the diagnostic.
2976 Note that this does not affect the meaning of well-formed code;
2977 narrowing conversions are still considered ill-formed in SFINAE contexts.
2978
2979 With @option{-Wnarrowing} in C++98, warn when a narrowing
2980 conversion prohibited by C++11 occurs within
2981 @samp{@{ @}}, e.g.
2982
2983 @smallexample
2984 int i = @{ 2.2 @}; // error: narrowing from double to int
2985 @end smallexample
2986
2987 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2988
2989 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2990 @opindex Wnoexcept
2991 @opindex Wno-noexcept
2992 Warn when a noexcept-expression evaluates to false because of a call
2993 to a function that does not have a non-throwing exception
2994 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2995 the compiler to never throw an exception.
2996
2997 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
2998 @opindex Wnoexcept-type
2999 @opindex Wno-noexcept-type
3000 Warn if the C++17 feature making @code{noexcept} part of a function
3001 type changes the mangled name of a symbol relative to C++14. Enabled
3002 by @option{-Wabi} and @option{-Wc++17-compat}.
3003
3004 As an example:
3005
3006 @smallexample
3007 template <class T> void f(T t) @{ t(); @};
3008 void g() noexcept;
3009 void h() @{ f(g); @}
3010 @end smallexample
3011
3012 @noindent
3013 In C++14, @code{f} calls calls @code{f<void(*)()>}, but in
3014 C++17 it calls @code{f<void(*)()noexcept>}.
3015
3016 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
3017 @opindex Wclass-memaccess
3018 Warn when the destination of a call to a raw memory function such as
3019 @code{memset} or @code{memcpy} is an object of class type, and when writing
3020 into such an object might bypass the class non-trivial or deleted constructor
3021 or copy assignment, violate const-correctness or encapsulation, or corrupt
3022 virtual table pointers. Modifying the representation of such objects may
3023 violate invariants maintained by member functions of the class. For example,
3024 the call to @code{memset} below is undefined because it modifies a non-trivial
3025 class object and is, therefore, diagnosed. The safe way to either initialize
3026 or clear the storage of objects of such types is by using the appropriate
3027 constructor or assignment operator, if one is available.
3028 @smallexample
3029 std::string str = "abc";
3030 memset (&str, 0, sizeof str);
3031 @end smallexample
3032 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
3033 Explicitly casting the pointer to the class object to @code{void *} or
3034 to a type that can be safely accessed by the raw memory function suppresses
3035 the warning.
3036
3037 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
3038 @opindex Wnon-virtual-dtor
3039 @opindex Wno-non-virtual-dtor
3040 Warn when a class has virtual functions and an accessible non-virtual
3041 destructor itself or in an accessible polymorphic base class, in which
3042 case it is possible but unsafe to delete an instance of a derived
3043 class through a pointer to the class itself or base class. This
3044 warning is automatically enabled if @option{-Weffc++} is specified.
3045
3046 @item -Wregister @r{(C++ and Objective-C++ only)}
3047 @opindex Wregister
3048 @opindex Wno-register
3049 Warn on uses of the @code{register} storage class specifier, except
3050 when it is part of the GNU @ref{Explicit Register Variables} extension.
3051 The use of the @code{register} keyword as storage class specifier has
3052 been deprecated in C++11 and removed in C++17.
3053 Enabled by default with @option{-std=c++17}.
3054
3055 @item -Wreorder @r{(C++ and Objective-C++ only)}
3056 @opindex Wreorder
3057 @opindex Wno-reorder
3058 @cindex reordering, warning
3059 @cindex warning for reordering of member initializers
3060 Warn when the order of member initializers given in the code does not
3061 match the order in which they must be executed. For instance:
3062
3063 @smallexample
3064 struct A @{
3065 int i;
3066 int j;
3067 A(): j (0), i (1) @{ @}
3068 @};
3069 @end smallexample
3070
3071 @noindent
3072 The compiler rearranges the member initializers for @code{i}
3073 and @code{j} to match the declaration order of the members, emitting
3074 a warning to that effect. This warning is enabled by @option{-Wall}.
3075
3076 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3077 @opindex fext-numeric-literals
3078 @opindex fno-ext-numeric-literals
3079 Accept imaginary, fixed-point, or machine-defined
3080 literal number suffixes as GNU extensions.
3081 When this option is turned off these suffixes are treated
3082 as C++11 user-defined literal numeric suffixes.
3083 This is on by default for all pre-C++11 dialects and all GNU dialects:
3084 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3085 @option{-std=gnu++14}.
3086 This option is off by default
3087 for ISO C++11 onwards (@option{-std=c++11}, ...).
3088 @end table
3089
3090 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3091
3092 @table @gcctabopt
3093 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3094 @opindex Weffc++
3095 @opindex Wno-effc++
3096 Warn about violations of the following style guidelines from Scott Meyers'
3097 @cite{Effective C++} series of books:
3098
3099 @itemize @bullet
3100 @item
3101 Define a copy constructor and an assignment operator for classes
3102 with dynamically-allocated memory.
3103
3104 @item
3105 Prefer initialization to assignment in constructors.
3106
3107 @item
3108 Have @code{operator=} return a reference to @code{*this}.
3109
3110 @item
3111 Don't try to return a reference when you must return an object.
3112
3113 @item
3114 Distinguish between prefix and postfix forms of increment and
3115 decrement operators.
3116
3117 @item
3118 Never overload @code{&&}, @code{||}, or @code{,}.
3119
3120 @end itemize
3121
3122 This option also enables @option{-Wnon-virtual-dtor}, which is also
3123 one of the effective C++ recommendations. However, the check is
3124 extended to warn about the lack of virtual destructor in accessible
3125 non-polymorphic bases classes too.
3126
3127 When selecting this option, be aware that the standard library
3128 headers do not obey all of these guidelines; use @samp{grep -v}
3129 to filter out those warnings.
3130
3131 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3132 @opindex Wstrict-null-sentinel
3133 @opindex Wno-strict-null-sentinel
3134 Warn about the use of an uncasted @code{NULL} as sentinel. When
3135 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3136 to @code{__null}. Although it is a null pointer constant rather than a
3137 null pointer, it is guaranteed to be of the same size as a pointer.
3138 But this use is not portable across different compilers.
3139
3140 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3141 @opindex Wno-non-template-friend
3142 @opindex Wnon-template-friend
3143 Disable warnings when non-template friend functions are declared
3144 within a template. In very old versions of GCC that predate implementation
3145 of the ISO standard, declarations such as
3146 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3147 could be interpreted as a particular specialization of a template
3148 function; the warning exists to diagnose compatibility problems,
3149 and is enabled by default.
3150
3151 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3152 @opindex Wold-style-cast
3153 @opindex Wno-old-style-cast
3154 Warn if an old-style (C-style) cast to a non-void type is used within
3155 a C++ program. The new-style casts (@code{dynamic_cast},
3156 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3157 less vulnerable to unintended effects and much easier to search for.
3158
3159 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3160 @opindex Woverloaded-virtual
3161 @opindex Wno-overloaded-virtual
3162 @cindex overloaded virtual function, warning
3163 @cindex warning for overloaded virtual function
3164 Warn when a function declaration hides virtual functions from a
3165 base class. For example, in:
3166
3167 @smallexample
3168 struct A @{
3169 virtual void f();
3170 @};
3171
3172 struct B: public A @{
3173 void f(int);
3174 @};
3175 @end smallexample
3176
3177 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3178 like:
3179
3180 @smallexample
3181 B* b;
3182 b->f();
3183 @end smallexample
3184
3185 @noindent
3186 fails to compile.
3187
3188 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3189 @opindex Wno-pmf-conversions
3190 @opindex Wpmf-conversions
3191 Disable the diagnostic for converting a bound pointer to member function
3192 to a plain pointer.
3193
3194 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3195 @opindex Wsign-promo
3196 @opindex Wno-sign-promo
3197 Warn when overload resolution chooses a promotion from unsigned or
3198 enumerated type to a signed type, over a conversion to an unsigned type of
3199 the same size. Previous versions of G++ tried to preserve
3200 unsignedness, but the standard mandates the current behavior.
3201
3202 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3203 @opindex Wtemplates
3204 Warn when a primary template declaration is encountered. Some coding
3205 rules disallow templates, and this may be used to enforce that rule.
3206 The warning is inactive inside a system header file, such as the STL, so
3207 one can still use the STL. One may also instantiate or specialize
3208 templates.
3209
3210 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3211 @opindex Wmultiple-inheritance
3212 Warn when a class is defined with multiple direct base classes. Some
3213 coding rules disallow multiple inheritance, and this may be used to
3214 enforce that rule. The warning is inactive inside a system header file,
3215 such as the STL, so one can still use the STL. One may also define
3216 classes that indirectly use multiple inheritance.
3217
3218 @item -Wvirtual-inheritance
3219 @opindex Wvirtual-inheritance
3220 Warn when a class is defined with a virtual direct base class. Some
3221 coding rules disallow multiple inheritance, and this may be used to
3222 enforce that rule. The warning is inactive inside a system header file,
3223 such as the STL, so one can still use the STL. One may also define
3224 classes that indirectly use virtual inheritance.
3225
3226 @item -Wnamespaces
3227 @opindex Wnamespaces
3228 Warn when a namespace definition is opened. Some coding rules disallow
3229 namespaces, and this may be used to enforce that rule. The warning is
3230 inactive inside a system header file, such as the STL, so one can still
3231 use the STL. One may also use using directives and qualified names.
3232
3233 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3234 @opindex Wterminate
3235 @opindex Wno-terminate
3236 Disable the warning about a throw-expression that will immediately
3237 result in a call to @code{terminate}.
3238 @end table
3239
3240 @node Objective-C and Objective-C++ Dialect Options
3241 @section Options Controlling Objective-C and Objective-C++ Dialects
3242
3243 @cindex compiler options, Objective-C and Objective-C++
3244 @cindex Objective-C and Objective-C++ options, command-line
3245 @cindex options, Objective-C and Objective-C++
3246 (NOTE: This manual does not describe the Objective-C and Objective-C++
3247 languages themselves. @xref{Standards,,Language Standards
3248 Supported by GCC}, for references.)
3249
3250 This section describes the command-line options that are only meaningful
3251 for Objective-C and Objective-C++ programs. You can also use most of
3252 the language-independent GNU compiler options.
3253 For example, you might compile a file @file{some_class.m} like this:
3254
3255 @smallexample
3256 gcc -g -fgnu-runtime -O -c some_class.m
3257 @end smallexample
3258
3259 @noindent
3260 In this example, @option{-fgnu-runtime} is an option meant only for
3261 Objective-C and Objective-C++ programs; you can use the other options with
3262 any language supported by GCC@.
3263
3264 Note that since Objective-C is an extension of the C language, Objective-C
3265 compilations may also use options specific to the C front-end (e.g.,
3266 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3267 C++-specific options (e.g., @option{-Wabi}).
3268
3269 Here is a list of options that are @emph{only} for compiling Objective-C
3270 and Objective-C++ programs:
3271
3272 @table @gcctabopt
3273 @item -fconstant-string-class=@var{class-name}
3274 @opindex fconstant-string-class
3275 Use @var{class-name} as the name of the class to instantiate for each
3276 literal string specified with the syntax @code{@@"@dots{}"}. The default
3277 class name is @code{NXConstantString} if the GNU runtime is being used, and
3278 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3279 @option{-fconstant-cfstrings} option, if also present, overrides the
3280 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3281 to be laid out as constant CoreFoundation strings.
3282
3283 @item -fgnu-runtime
3284 @opindex fgnu-runtime
3285 Generate object code compatible with the standard GNU Objective-C
3286 runtime. This is the default for most types of systems.
3287
3288 @item -fnext-runtime
3289 @opindex fnext-runtime
3290 Generate output compatible with the NeXT runtime. This is the default
3291 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3292 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3293 used.
3294
3295 @item -fno-nil-receivers
3296 @opindex fno-nil-receivers
3297 Assume that all Objective-C message dispatches (@code{[receiver
3298 message:arg]}) in this translation unit ensure that the receiver is
3299 not @code{nil}. This allows for more efficient entry points in the
3300 runtime to be used. This option is only available in conjunction with
3301 the NeXT runtime and ABI version 0 or 1.
3302
3303 @item -fobjc-abi-version=@var{n}
3304 @opindex fobjc-abi-version
3305 Use version @var{n} of the Objective-C ABI for the selected runtime.
3306 This option is currently supported only for the NeXT runtime. In that
3307 case, Version 0 is the traditional (32-bit) ABI without support for
3308 properties and other Objective-C 2.0 additions. Version 1 is the
3309 traditional (32-bit) ABI with support for properties and other
3310 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3311 nothing is specified, the default is Version 0 on 32-bit target
3312 machines, and Version 2 on 64-bit target machines.
3313
3314 @item -fobjc-call-cxx-cdtors
3315 @opindex fobjc-call-cxx-cdtors
3316 For each Objective-C class, check if any of its instance variables is a
3317 C++ object with a non-trivial default constructor. If so, synthesize a
3318 special @code{- (id) .cxx_construct} instance method which runs
3319 non-trivial default constructors on any such instance variables, in order,
3320 and then return @code{self}. Similarly, check if any instance variable
3321 is a C++ object with a non-trivial destructor, and if so, synthesize a
3322 special @code{- (void) .cxx_destruct} method which runs
3323 all such default destructors, in reverse order.
3324
3325 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3326 methods thusly generated only operate on instance variables
3327 declared in the current Objective-C class, and not those inherited
3328 from superclasses. It is the responsibility of the Objective-C
3329 runtime to invoke all such methods in an object's inheritance
3330 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3331 by the runtime immediately after a new object instance is allocated;
3332 the @code{- (void) .cxx_destruct} methods are invoked immediately
3333 before the runtime deallocates an object instance.
3334
3335 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3336 support for invoking the @code{- (id) .cxx_construct} and
3337 @code{- (void) .cxx_destruct} methods.
3338
3339 @item -fobjc-direct-dispatch
3340 @opindex fobjc-direct-dispatch
3341 Allow fast jumps to the message dispatcher. On Darwin this is
3342 accomplished via the comm page.
3343
3344 @item -fobjc-exceptions
3345 @opindex fobjc-exceptions
3346 Enable syntactic support for structured exception handling in
3347 Objective-C, similar to what is offered by C++. This option
3348 is required to use the Objective-C keywords @code{@@try},
3349 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3350 @code{@@synchronized}. This option is available with both the GNU
3351 runtime and the NeXT runtime (but not available in conjunction with
3352 the NeXT runtime on Mac OS X 10.2 and earlier).
3353
3354 @item -fobjc-gc
3355 @opindex fobjc-gc
3356 Enable garbage collection (GC) in Objective-C and Objective-C++
3357 programs. This option is only available with the NeXT runtime; the
3358 GNU runtime has a different garbage collection implementation that
3359 does not require special compiler flags.
3360
3361 @item -fobjc-nilcheck
3362 @opindex fobjc-nilcheck
3363 For the NeXT runtime with version 2 of the ABI, check for a nil
3364 receiver in method invocations before doing the actual method call.
3365 This is the default and can be disabled using
3366 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3367 checked for nil in this way no matter what this flag is set to.
3368 Currently this flag does nothing when the GNU runtime, or an older
3369 version of the NeXT runtime ABI, is used.
3370
3371 @item -fobjc-std=objc1
3372 @opindex fobjc-std
3373 Conform to the language syntax of Objective-C 1.0, the language
3374 recognized by GCC 4.0. This only affects the Objective-C additions to
3375 the C/C++ language; it does not affect conformance to C/C++ standards,
3376 which is controlled by the separate C/C++ dialect option flags. When
3377 this option is used with the Objective-C or Objective-C++ compiler,
3378 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3379 This is useful if you need to make sure that your Objective-C code can
3380 be compiled with older versions of GCC@.
3381
3382 @item -freplace-objc-classes
3383 @opindex freplace-objc-classes
3384 Emit a special marker instructing @command{ld(1)} not to statically link in
3385 the resulting object file, and allow @command{dyld(1)} to load it in at
3386 run time instead. This is used in conjunction with the Fix-and-Continue
3387 debugging mode, where the object file in question may be recompiled and
3388 dynamically reloaded in the course of program execution, without the need
3389 to restart the program itself. Currently, Fix-and-Continue functionality
3390 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3391 and later.
3392
3393 @item -fzero-link
3394 @opindex fzero-link
3395 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3396 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3397 compile time) with static class references that get initialized at load time,
3398 which improves run-time performance. Specifying the @option{-fzero-link} flag
3399 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3400 to be retained. This is useful in Zero-Link debugging mode, since it allows
3401 for individual class implementations to be modified during program execution.
3402 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3403 regardless of command-line options.
3404
3405 @item -fno-local-ivars
3406 @opindex fno-local-ivars
3407 @opindex flocal-ivars
3408 By default instance variables in Objective-C can be accessed as if
3409 they were local variables from within the methods of the class they're
3410 declared in. This can lead to shadowing between instance variables
3411 and other variables declared either locally inside a class method or
3412 globally with the same name. Specifying the @option{-fno-local-ivars}
3413 flag disables this behavior thus avoiding variable shadowing issues.
3414
3415 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3416 @opindex fivar-visibility
3417 Set the default instance variable visibility to the specified option
3418 so that instance variables declared outside the scope of any access
3419 modifier directives default to the specified visibility.
3420
3421 @item -gen-decls
3422 @opindex gen-decls
3423 Dump interface declarations for all classes seen in the source file to a
3424 file named @file{@var{sourcename}.decl}.
3425
3426 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3427 @opindex Wassign-intercept
3428 @opindex Wno-assign-intercept
3429 Warn whenever an Objective-C assignment is being intercepted by the
3430 garbage collector.
3431
3432 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3433 @opindex Wno-protocol
3434 @opindex Wprotocol
3435 If a class is declared to implement a protocol, a warning is issued for
3436 every method in the protocol that is not implemented by the class. The
3437 default behavior is to issue a warning for every method not explicitly
3438 implemented in the class, even if a method implementation is inherited
3439 from the superclass. If you use the @option{-Wno-protocol} option, then
3440 methods inherited from the superclass are considered to be implemented,
3441 and no warning is issued for them.
3442
3443 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3444 @opindex Wselector
3445 @opindex Wno-selector
3446 Warn if multiple methods of different types for the same selector are
3447 found during compilation. The check is performed on the list of methods
3448 in the final stage of compilation. Additionally, a check is performed
3449 for each selector appearing in a @code{@@selector(@dots{})}
3450 expression, and a corresponding method for that selector has been found
3451 during compilation. Because these checks scan the method table only at
3452 the end of compilation, these warnings are not produced if the final
3453 stage of compilation is not reached, for example because an error is
3454 found during compilation, or because the @option{-fsyntax-only} option is
3455 being used.
3456
3457 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3458 @opindex Wstrict-selector-match
3459 @opindex Wno-strict-selector-match
3460 Warn if multiple methods with differing argument and/or return types are
3461 found for a given selector when attempting to send a message using this
3462 selector to a receiver of type @code{id} or @code{Class}. When this flag
3463 is off (which is the default behavior), the compiler omits such warnings
3464 if any differences found are confined to types that share the same size
3465 and alignment.
3466
3467 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3468 @opindex Wundeclared-selector
3469 @opindex Wno-undeclared-selector
3470 Warn if a @code{@@selector(@dots{})} expression referring to an
3471 undeclared selector is found. A selector is considered undeclared if no
3472 method with that name has been declared before the
3473 @code{@@selector(@dots{})} expression, either explicitly in an
3474 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3475 an @code{@@implementation} section. This option always performs its
3476 checks as soon as a @code{@@selector(@dots{})} expression is found,
3477 while @option{-Wselector} only performs its checks in the final stage of
3478 compilation. This also enforces the coding style convention
3479 that methods and selectors must be declared before being used.
3480
3481 @item -print-objc-runtime-info
3482 @opindex print-objc-runtime-info
3483 Generate C header describing the largest structure that is passed by
3484 value, if any.
3485
3486 @end table
3487
3488 @node Diagnostic Message Formatting Options
3489 @section Options to Control Diagnostic Messages Formatting
3490 @cindex options to control diagnostics formatting
3491 @cindex diagnostic messages
3492 @cindex message formatting
3493
3494 Traditionally, diagnostic messages have been formatted irrespective of
3495 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3496 options described below
3497 to control the formatting algorithm for diagnostic messages,
3498 e.g.@: how many characters per line, how often source location
3499 information should be reported. Note that some language front ends may not
3500 honor these options.
3501
3502 @table @gcctabopt
3503 @item -fmessage-length=@var{n}
3504 @opindex fmessage-length
3505 Try to format error messages so that they fit on lines of about
3506 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3507 done; each error message appears on a single line. This is the
3508 default for all front ends.
3509
3510 @item -fdiagnostics-show-location=once
3511 @opindex fdiagnostics-show-location
3512 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3513 reporter to emit source location information @emph{once}; that is, in
3514 case the message is too long to fit on a single physical line and has to
3515 be wrapped, the source location won't be emitted (as prefix) again,
3516 over and over, in subsequent continuation lines. This is the default
3517 behavior.
3518
3519 @item -fdiagnostics-show-location=every-line
3520 Only meaningful in line-wrapping mode. Instructs the diagnostic
3521 messages reporter to emit the same source location information (as
3522 prefix) for physical lines that result from the process of breaking
3523 a message which is too long to fit on a single line.
3524
3525 @item -fdiagnostics-color[=@var{WHEN}]
3526 @itemx -fno-diagnostics-color
3527 @opindex fdiagnostics-color
3528 @cindex highlight, color
3529 @vindex GCC_COLORS @r{environment variable}
3530 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3531 or @samp{auto}. The default depends on how the compiler has been configured,
3532 it can be any of the above @var{WHEN} options or also @samp{never}
3533 if @env{GCC_COLORS} environment variable isn't present in the environment,
3534 and @samp{auto} otherwise.
3535 @samp{auto} means to use color only when the standard error is a terminal.
3536 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3537 aliases for @option{-fdiagnostics-color=always} and
3538 @option{-fdiagnostics-color=never}, respectively.
3539
3540 The colors are defined by the environment variable @env{GCC_COLORS}.
3541 Its value is a colon-separated list of capabilities and Select Graphic
3542 Rendition (SGR) substrings. SGR commands are interpreted by the
3543 terminal or terminal emulator. (See the section in the documentation
3544 of your text terminal for permitted values and their meanings as
3545 character attributes.) These substring values are integers in decimal
3546 representation and can be concatenated with semicolons.
3547 Common values to concatenate include
3548 @samp{1} for bold,
3549 @samp{4} for underline,
3550 @samp{5} for blink,
3551 @samp{7} for inverse,
3552 @samp{39} for default foreground color,
3553 @samp{30} to @samp{37} for foreground colors,
3554 @samp{90} to @samp{97} for 16-color mode foreground colors,
3555 @samp{38;5;0} to @samp{38;5;255}
3556 for 88-color and 256-color modes foreground colors,
3557 @samp{49} for default background color,
3558 @samp{40} to @samp{47} for background colors,
3559 @samp{100} to @samp{107} for 16-color mode background colors,
3560 and @samp{48;5;0} to @samp{48;5;255}
3561 for 88-color and 256-color modes background colors.
3562
3563 The default @env{GCC_COLORS} is
3564 @smallexample
3565 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3566 quote=01:fixit-insert=32:fixit-delete=31:\
3567 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3568 type-diff=01;32
3569 @end smallexample
3570 @noindent
3571 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3572 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3573 @samp{01} is bold, and @samp{31} is red.
3574 Setting @env{GCC_COLORS} to the empty string disables colors.
3575 Supported capabilities are as follows.
3576
3577 @table @code
3578 @item error=
3579 @vindex error GCC_COLORS @r{capability}
3580 SGR substring for error: markers.
3581
3582 @item warning=
3583 @vindex warning GCC_COLORS @r{capability}
3584 SGR substring for warning: markers.
3585
3586 @item note=
3587 @vindex note GCC_COLORS @r{capability}
3588 SGR substring for note: markers.
3589
3590 @item range1=
3591 @vindex range1 GCC_COLORS @r{capability}
3592 SGR substring for first additional range.
3593
3594 @item range2=
3595 @vindex range2 GCC_COLORS @r{capability}
3596 SGR substring for second additional range.
3597
3598 @item locus=
3599 @vindex locus GCC_COLORS @r{capability}
3600 SGR substring for location information, @samp{file:line} or
3601 @samp{file:line:column} etc.
3602
3603 @item quote=
3604 @vindex quote GCC_COLORS @r{capability}
3605 SGR substring for information printed within quotes.
3606
3607 @item fixit-insert=
3608 @vindex fixit-insert GCC_COLORS @r{capability}
3609 SGR substring for fix-it hints suggesting text to
3610 be inserted or replaced.
3611
3612 @item fixit-delete=
3613 @vindex fixit-delete GCC_COLORS @r{capability}
3614 SGR substring for fix-it hints suggesting text to
3615 be deleted.
3616
3617 @item diff-filename=
3618 @vindex diff-filename GCC_COLORS @r{capability}
3619 SGR substring for filename headers within generated patches.
3620
3621 @item diff-hunk=
3622 @vindex diff-hunk GCC_COLORS @r{capability}
3623 SGR substring for the starts of hunks within generated patches.
3624
3625 @item diff-delete=
3626 @vindex diff-delete GCC_COLORS @r{capability}
3627 SGR substring for deleted lines within generated patches.
3628
3629 @item diff-insert=
3630 @vindex diff-insert GCC_COLORS @r{capability}
3631 SGR substring for inserted lines within generated patches.
3632
3633 @item type-diff=
3634 @vindex type-diff GCC_COLORS @r{capability}
3635 SGR substring for highlighting mismatching types within template
3636 arguments in the C++ frontend.
3637 @end table
3638
3639 @item -fno-diagnostics-show-option
3640 @opindex fno-diagnostics-show-option
3641 @opindex fdiagnostics-show-option
3642 By default, each diagnostic emitted includes text indicating the
3643 command-line option that directly controls the diagnostic (if such an
3644 option is known to the diagnostic machinery). Specifying the
3645 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3646
3647 @item -fno-diagnostics-show-caret
3648 @opindex fno-diagnostics-show-caret
3649 @opindex fdiagnostics-show-caret
3650 By default, each diagnostic emitted includes the original source line
3651 and a caret @samp{^} indicating the column. This option suppresses this
3652 information. The source line is truncated to @var{n} characters, if
3653 the @option{-fmessage-length=n} option is given. When the output is done
3654 to the terminal, the width is limited to the width given by the
3655 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3656
3657 @item -fdiagnostics-parseable-fixits
3658 @opindex fdiagnostics-parseable-fixits
3659 Emit fix-it hints in a machine-parseable format, suitable for consumption
3660 by IDEs. For each fix-it, a line will be printed after the relevant
3661 diagnostic, starting with the string ``fix-it:''. For example:
3662
3663 @smallexample
3664 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3665 @end smallexample
3666
3667 The location is expressed as a half-open range, expressed as a count of
3668 bytes, starting at byte 1 for the initial column. In the above example,
3669 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3670 given string:
3671
3672 @smallexample
3673 00000000011111111112222222222
3674 12345678901234567890123456789
3675 gtk_widget_showall (dlg);
3676 ^^^^^^^^^^^^^^^^^^
3677 gtk_widget_show_all
3678 @end smallexample
3679
3680 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3681 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3682 (e.g. vertical tab as ``\013'').
3683
3684 An empty replacement string indicates that the given range is to be removed.
3685 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3686 be inserted at the given position.
3687
3688 @item -fdiagnostics-generate-patch
3689 @opindex fdiagnostics-generate-patch
3690 Print fix-it hints to stderr in unified diff format, after any diagnostics
3691 are printed. For example:
3692
3693 @smallexample
3694 --- test.c
3695 +++ test.c
3696 @@ -42,5 +42,5 @@
3697
3698 void show_cb(GtkDialog *dlg)
3699 @{
3700 - gtk_widget_showall(dlg);
3701 + gtk_widget_show_all(dlg);
3702 @}
3703
3704 @end smallexample
3705
3706 The diff may or may not be colorized, following the same rules
3707 as for diagnostics (see @option{-fdiagnostics-color}).
3708
3709 @item -fdiagnostics-show-template-tree
3710 @opindex fdiagnostics-show-template-tree
3711
3712 In the C++ frontend, when printing diagnostics showing mismatching
3713 template types, such as:
3714
3715 @smallexample
3716 could not convert 'std::map<int, std::vector<double> >()'
3717 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3718 @end smallexample
3719
3720 the @option{-fdiagnostics-show-template-tree} flag enables printing a
3721 tree-like structure showing the common and differing parts of the types,
3722 such as:
3723
3724 @smallexample
3725 map<
3726 [...],
3727 vector<
3728 [double != float]>>
3729 @end smallexample
3730
3731 The parts that differ are highlighted with color (``double'' and
3732 ``float'' in this case).
3733
3734 @item -fno-elide-type
3735 @opindex fno-elide-type
3736 @opindex felide-type
3737 By default when the C++ frontend prints diagnostics showing mismatching
3738 template types, common parts of the types are printed as ``[...]'' to
3739 simplify the error message. For example:
3740
3741 @smallexample
3742 could not convert 'std::map<int, std::vector<double> >()'
3743 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3744 @end smallexample
3745
3746 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
3747 This flag also affects the output of the
3748 @option{-fdiagnostics-show-template-tree} flag.
3749
3750 @item -fno-show-column
3751 @opindex fno-show-column
3752 Do not print column numbers in diagnostics. This may be necessary if
3753 diagnostics are being scanned by a program that does not understand the
3754 column numbers, such as @command{dejagnu}.
3755
3756 @end table
3757
3758 @node Warning Options
3759 @section Options to Request or Suppress Warnings
3760 @cindex options to control warnings
3761 @cindex warning messages
3762 @cindex messages, warning
3763 @cindex suppressing warnings
3764
3765 Warnings are diagnostic messages that report constructions that
3766 are not inherently erroneous but that are risky or suggest there
3767 may have been an error.
3768
3769 The following language-independent options do not enable specific
3770 warnings but control the kinds of diagnostics produced by GCC@.
3771
3772 @table @gcctabopt
3773 @cindex syntax checking
3774 @item -fsyntax-only
3775 @opindex fsyntax-only
3776 Check the code for syntax errors, but don't do anything beyond that.
3777
3778 @item -fmax-errors=@var{n}
3779 @opindex fmax-errors
3780 Limits the maximum number of error messages to @var{n}, at which point
3781 GCC bails out rather than attempting to continue processing the source
3782 code. If @var{n} is 0 (the default), there is no limit on the number
3783 of error messages produced. If @option{-Wfatal-errors} is also
3784 specified, then @option{-Wfatal-errors} takes precedence over this
3785 option.
3786
3787 @item -w
3788 @opindex w
3789 Inhibit all warning messages.
3790
3791 @item -Werror
3792 @opindex Werror
3793 @opindex Wno-error
3794 Make all warnings into errors.
3795
3796 @item -Werror=
3797 @opindex Werror=
3798 @opindex Wno-error=
3799 Make the specified warning into an error. The specifier for a warning
3800 is appended; for example @option{-Werror=switch} turns the warnings
3801 controlled by @option{-Wswitch} into errors. This switch takes a
3802 negative form, to be used to negate @option{-Werror} for specific
3803 warnings; for example @option{-Wno-error=switch} makes
3804 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3805 is in effect.
3806
3807 The warning message for each controllable warning includes the
3808 option that controls the warning. That option can then be used with
3809 @option{-Werror=} and @option{-Wno-error=} as described above.
3810 (Printing of the option in the warning message can be disabled using the
3811 @option{-fno-diagnostics-show-option} flag.)
3812
3813 Note that specifying @option{-Werror=}@var{foo} automatically implies
3814 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3815 imply anything.
3816
3817 @item -Wfatal-errors
3818 @opindex Wfatal-errors
3819 @opindex Wno-fatal-errors
3820 This option causes the compiler to abort compilation on the first error
3821 occurred rather than trying to keep going and printing further error
3822 messages.
3823
3824 @end table
3825
3826 You can request many specific warnings with options beginning with
3827 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3828 implicit declarations. Each of these specific warning options also
3829 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3830 example, @option{-Wno-implicit}. This manual lists only one of the
3831 two forms, whichever is not the default. For further
3832 language-specific options also refer to @ref{C++ Dialect Options} and
3833 @ref{Objective-C and Objective-C++ Dialect Options}.
3834
3835 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3836 options, such as @option{-Wunused}, which may turn on further options,
3837 such as @option{-Wunused-value}. The combined effect of positive and
3838 negative forms is that more specific options have priority over less
3839 specific ones, independently of their position in the command-line. For
3840 options of the same specificity, the last one takes effect. Options
3841 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3842 as if they appeared at the end of the command-line.
3843
3844 When an unrecognized warning option is requested (e.g.,
3845 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3846 that the option is not recognized. However, if the @option{-Wno-} form
3847 is used, the behavior is slightly different: no diagnostic is
3848 produced for @option{-Wno-unknown-warning} unless other diagnostics
3849 are being produced. This allows the use of new @option{-Wno-} options
3850 with old compilers, but if something goes wrong, the compiler
3851 warns that an unrecognized option is present.
3852
3853 @table @gcctabopt
3854 @item -Wpedantic
3855 @itemx -pedantic
3856 @opindex pedantic
3857 @opindex Wpedantic
3858 Issue all the warnings demanded by strict ISO C and ISO C++;
3859 reject all programs that use forbidden extensions, and some other
3860 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3861 version of the ISO C standard specified by any @option{-std} option used.
3862
3863 Valid ISO C and ISO C++ programs should compile properly with or without
3864 this option (though a rare few require @option{-ansi} or a
3865 @option{-std} option specifying the required version of ISO C)@. However,
3866 without this option, certain GNU extensions and traditional C and C++
3867 features are supported as well. With this option, they are rejected.
3868
3869 @option{-Wpedantic} does not cause warning messages for use of the
3870 alternate keywords whose names begin and end with @samp{__}. Pedantic
3871 warnings are also disabled in the expression that follows
3872 @code{__extension__}. However, only system header files should use
3873 these escape routes; application programs should avoid them.
3874 @xref{Alternate Keywords}.
3875
3876 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3877 C conformance. They soon find that it does not do quite what they want:
3878 it finds some non-ISO practices, but not all---only those for which
3879 ISO C @emph{requires} a diagnostic, and some others for which
3880 diagnostics have been added.
3881
3882 A feature to report any failure to conform to ISO C might be useful in
3883 some instances, but would require considerable additional work and would
3884 be quite different from @option{-Wpedantic}. We don't have plans to
3885 support such a feature in the near future.
3886
3887 Where the standard specified with @option{-std} represents a GNU
3888 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3889 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3890 extended dialect is based. Warnings from @option{-Wpedantic} are given
3891 where they are required by the base standard. (It does not make sense
3892 for such warnings to be given only for features not in the specified GNU
3893 C dialect, since by definition the GNU dialects of C include all
3894 features the compiler supports with the given option, and there would be
3895 nothing to warn about.)
3896
3897 @item -pedantic-errors
3898 @opindex pedantic-errors
3899 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3900 requires a diagnostic, in some cases where there is undefined behavior
3901 at compile-time and in some other cases that do not prevent compilation
3902 of programs that are valid according to the standard. This is not
3903 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3904 by this option and not enabled by the latter and vice versa.
3905
3906 @item -Wall
3907 @opindex Wall
3908 @opindex Wno-all
3909 This enables all the warnings about constructions that some users
3910 consider questionable, and that are easy to avoid (or modify to
3911 prevent the warning), even in conjunction with macros. This also
3912 enables some language-specific warnings described in @ref{C++ Dialect
3913 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3914
3915 @option{-Wall} turns on the following warning flags:
3916
3917 @gccoptlist{-Waddress @gol
3918 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3919 -Wbool-compare @gol
3920 -Wbool-operation @gol
3921 -Wc++11-compat -Wc++14-compat @gol
3922 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
3923 -Wchar-subscripts @gol
3924 -Wcomment @gol
3925 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
3926 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3927 -Wformat @gol
3928 -Wint-in-bool-context @gol
3929 -Wimplicit @r{(C and Objective-C only)} @gol
3930 -Wimplicit-int @r{(C and Objective-C only)} @gol
3931 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3932 -Winit-self @r{(only for C++)} @gol
3933 -Wlogical-not-parentheses @gol
3934 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3935 -Wmaybe-uninitialized @gol
3936 -Wmemset-elt-size @gol
3937 -Wmemset-transposed-args @gol
3938 -Wmisleading-indentation @r{(only for C/C++)} @gol
3939 -Wmissing-attributes @gol
3940 -Wmissing-braces @r{(only for C/ObjC)} @gol
3941 -Wmultistatement-macros @gol
3942 -Wnarrowing @r{(only for C++)} @gol
3943 -Wnonnull @gol
3944 -Wnonnull-compare @gol
3945 -Wopenmp-simd @gol
3946 -Wparentheses @gol
3947 -Wpointer-sign @gol
3948 -Wreorder @gol
3949 -Wrestrict @gol
3950 -Wreturn-type @gol
3951 -Wsequence-point @gol
3952 -Wsign-compare @r{(only in C++)} @gol
3953 -Wsizeof-pointer-div @gol
3954 -Wsizeof-pointer-memaccess @gol
3955 -Wstrict-aliasing @gol
3956 -Wstrict-overflow=1 @gol
3957 -Wswitch @gol
3958 -Wtautological-compare @gol
3959 -Wtrigraphs @gol
3960 -Wuninitialized @gol
3961 -Wunknown-pragmas @gol
3962 -Wunused-function @gol
3963 -Wunused-label @gol
3964 -Wunused-value @gol
3965 -Wunused-variable @gol
3966 -Wvolatile-register-var @gol
3967 }
3968
3969 Note that some warning flags are not implied by @option{-Wall}. Some of
3970 them warn about constructions that users generally do not consider
3971 questionable, but which occasionally you might wish to check for;
3972 others warn about constructions that are necessary or hard to avoid in
3973 some cases, and there is no simple way to modify the code to suppress
3974 the warning. Some of them are enabled by @option{-Wextra} but many of
3975 them must be enabled individually.
3976
3977 @item -Wextra
3978 @opindex W
3979 @opindex Wextra
3980 @opindex Wno-extra
3981 This enables some extra warning flags that are not enabled by
3982 @option{-Wall}. (This option used to be called @option{-W}. The older
3983 name is still supported, but the newer name is more descriptive.)
3984
3985 @gccoptlist{-Wclobbered @gol
3986 -Wcast-function-type @gol
3987 -Wempty-body @gol
3988 -Wignored-qualifiers @gol
3989 -Wimplicit-fallthrough=3 @gol
3990 -Wmissing-field-initializers @gol
3991 -Wmissing-parameter-type @r{(C only)} @gol
3992 -Wold-style-declaration @r{(C only)} @gol
3993 -Woverride-init @gol
3994 -Wsign-compare @r{(C only)} @gol
3995 -Wtype-limits @gol
3996 -Wuninitialized @gol
3997 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
3998 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3999 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
4000 }
4001
4002 The option @option{-Wextra} also prints warning messages for the
4003 following cases:
4004
4005 @itemize @bullet
4006
4007 @item
4008 A pointer is compared against integer zero with @code{<}, @code{<=},
4009 @code{>}, or @code{>=}.
4010
4011 @item
4012 (C++ only) An enumerator and a non-enumerator both appear in a
4013 conditional expression.
4014
4015 @item
4016 (C++ only) Ambiguous virtual bases.
4017
4018 @item
4019 (C++ only) Subscripting an array that has been declared @code{register}.
4020
4021 @item
4022 (C++ only) Taking the address of a variable that has been declared
4023 @code{register}.
4024
4025 @item
4026 (C++ only) A base class is not initialized in the copy constructor
4027 of a derived class.
4028
4029 @end itemize
4030
4031 @item -Wchar-subscripts
4032 @opindex Wchar-subscripts
4033 @opindex Wno-char-subscripts
4034 Warn if an array subscript has type @code{char}. This is a common cause
4035 of error, as programmers often forget that this type is signed on some
4036 machines.
4037 This warning is enabled by @option{-Wall}.
4038
4039 @item -Wchkp
4040 @opindex Wchkp
4041 Warn about an invalid memory access that is found by Pointer Bounds Checker
4042 (@option{-fcheck-pointer-bounds}).
4043
4044 @item -Wno-coverage-mismatch
4045 @opindex Wno-coverage-mismatch
4046 Warn if feedback profiles do not match when using the
4047 @option{-fprofile-use} option.
4048 If a source file is changed between compiling with @option{-fprofile-gen} and
4049 with @option{-fprofile-use}, the files with the profile feedback can fail
4050 to match the source file and GCC cannot use the profile feedback
4051 information. By default, this warning is enabled and is treated as an
4052 error. @option{-Wno-coverage-mismatch} can be used to disable the
4053 warning or @option{-Wno-error=coverage-mismatch} can be used to
4054 disable the error. Disabling the error for this warning can result in
4055 poorly optimized code and is useful only in the
4056 case of very minor changes such as bug fixes to an existing code-base.
4057 Completely disabling the warning is not recommended.
4058
4059 @item -Wno-cpp
4060 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
4061
4062 Suppress warning messages emitted by @code{#warning} directives.
4063
4064 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
4065 @opindex Wdouble-promotion
4066 @opindex Wno-double-promotion
4067 Give a warning when a value of type @code{float} is implicitly
4068 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
4069 floating-point unit implement @code{float} in hardware, but emulate
4070 @code{double} in software. On such a machine, doing computations
4071 using @code{double} values is much more expensive because of the
4072 overhead required for software emulation.
4073
4074 It is easy to accidentally do computations with @code{double} because
4075 floating-point literals are implicitly of type @code{double}. For
4076 example, in:
4077 @smallexample
4078 @group
4079 float area(float radius)
4080 @{
4081 return 3.14159 * radius * radius;
4082 @}
4083 @end group
4084 @end smallexample
4085 the compiler performs the entire computation with @code{double}
4086 because the floating-point literal is a @code{double}.
4087
4088 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4089 @opindex Wduplicate-decl-specifier
4090 @opindex Wno-duplicate-decl-specifier
4091 Warn if a declaration has duplicate @code{const}, @code{volatile},
4092 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
4093 @option{-Wall}.
4094
4095 @item -Wformat
4096 @itemx -Wformat=@var{n}
4097 @opindex Wformat
4098 @opindex Wno-format
4099 @opindex ffreestanding
4100 @opindex fno-builtin
4101 @opindex Wformat=
4102 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4103 the arguments supplied have types appropriate to the format string
4104 specified, and that the conversions specified in the format string make
4105 sense. This includes standard functions, and others specified by format
4106 attributes (@pxref{Function Attributes}), in the @code{printf},
4107 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4108 not in the C standard) families (or other target-specific families).
4109 Which functions are checked without format attributes having been
4110 specified depends on the standard version selected, and such checks of
4111 functions without the attribute specified are disabled by
4112 @option{-ffreestanding} or @option{-fno-builtin}.
4113
4114 The formats are checked against the format features supported by GNU
4115 libc version 2.2. These include all ISO C90 and C99 features, as well
4116 as features from the Single Unix Specification and some BSD and GNU
4117 extensions. Other library implementations may not support all these
4118 features; GCC does not support warning about features that go beyond a
4119 particular library's limitations. However, if @option{-Wpedantic} is used
4120 with @option{-Wformat}, warnings are given about format features not
4121 in the selected standard version (but not for @code{strfmon} formats,
4122 since those are not in any version of the C standard). @xref{C Dialect
4123 Options,,Options Controlling C Dialect}.
4124
4125 @table @gcctabopt
4126 @item -Wformat=1
4127 @itemx -Wformat
4128 @opindex Wformat
4129 @opindex Wformat=1
4130 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4131 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4132 @option{-Wformat} also checks for null format arguments for several
4133 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4134 aspects of this level of format checking can be disabled by the
4135 options: @option{-Wno-format-contains-nul},
4136 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4137 @option{-Wformat} is enabled by @option{-Wall}.
4138
4139 @item -Wno-format-contains-nul
4140 @opindex Wno-format-contains-nul
4141 @opindex Wformat-contains-nul
4142 If @option{-Wformat} is specified, do not warn about format strings that
4143 contain NUL bytes.
4144
4145 @item -Wno-format-extra-args
4146 @opindex Wno-format-extra-args
4147 @opindex Wformat-extra-args
4148 If @option{-Wformat} is specified, do not warn about excess arguments to a
4149 @code{printf} or @code{scanf} format function. The C standard specifies
4150 that such arguments are ignored.
4151
4152 Where the unused arguments lie between used arguments that are
4153 specified with @samp{$} operand number specifications, normally
4154 warnings are still given, since the implementation could not know what
4155 type to pass to @code{va_arg} to skip the unused arguments. However,
4156 in the case of @code{scanf} formats, this option suppresses the
4157 warning if the unused arguments are all pointers, since the Single
4158 Unix Specification says that such unused arguments are allowed.
4159
4160 @item -Wformat-overflow
4161 @itemx -Wformat-overflow=@var{level}
4162 @opindex Wformat-overflow
4163 @opindex Wno-format-overflow
4164 Warn about calls to formatted input/output functions such as @code{sprintf}
4165 and @code{vsprintf} that might overflow the destination buffer. When the
4166 exact number of bytes written by a format directive cannot be determined
4167 at compile-time it is estimated based on heuristics that depend on the
4168 @var{level} argument and on optimization. While enabling optimization
4169 will in most cases improve the accuracy of the warning, it may also
4170 result in false positives.
4171
4172 @table @gcctabopt
4173 @item -Wformat-overflow
4174 @itemx -Wformat-overflow=1
4175 @opindex Wformat-overflow
4176 @opindex Wno-format-overflow
4177 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4178 employs a conservative approach that warns only about calls that most
4179 likely overflow the buffer. At this level, numeric arguments to format
4180 directives with unknown values are assumed to have the value of one, and
4181 strings of unknown length to be empty. Numeric arguments that are known
4182 to be bounded to a subrange of their type, or string arguments whose output
4183 is bounded either by their directive's precision or by a finite set of
4184 string literals, are assumed to take on the value within the range that
4185 results in the most bytes on output. For example, the call to @code{sprintf}
4186 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4187 the terminating NUL character (@code{'\0'}) appended by the function
4188 to the destination buffer will be written past its end. Increasing
4189 the size of the buffer by a single byte is sufficient to avoid the
4190 warning, though it may not be sufficient to avoid the overflow.
4191
4192 @smallexample
4193 void f (int a, int b)
4194 @{
4195 char buf [13];
4196 sprintf (buf, "a = %i, b = %i\n", a, b);
4197 @}
4198 @end smallexample
4199
4200 @item -Wformat-overflow=2
4201 Level @var{2} warns also about calls that might overflow the destination
4202 buffer given an argument of sufficient length or magnitude. At level
4203 @var{2}, unknown numeric arguments are assumed to have the minimum
4204 representable value for signed types with a precision greater than 1, and
4205 the maximum representable value otherwise. Unknown string arguments whose
4206 length cannot be assumed to be bounded either by the directive's precision,
4207 or by a finite set of string literals they may evaluate to, or the character
4208 array they may point to, are assumed to be 1 character long.
4209
4210 At level @var{2}, the call in the example above is again diagnosed, but
4211 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4212 @code{%i} directive will write some of its digits beyond the end of
4213 the destination buffer. To make the call safe regardless of the values
4214 of the two variables, the size of the destination buffer must be increased
4215 to at least 34 bytes. GCC includes the minimum size of the buffer in
4216 an informational note following the warning.
4217
4218 An alternative to increasing the size of the destination buffer is to
4219 constrain the range of formatted values. The maximum length of string
4220 arguments can be bounded by specifying the precision in the format
4221 directive. When numeric arguments of format directives can be assumed
4222 to be bounded by less than the precision of their type, choosing
4223 an appropriate length modifier to the format specifier will reduce
4224 the required buffer size. For example, if @var{a} and @var{b} in the
4225 example above can be assumed to be within the precision of
4226 the @code{short int} type then using either the @code{%hi} format
4227 directive or casting the argument to @code{short} reduces the maximum
4228 required size of the buffer to 24 bytes.
4229
4230 @smallexample
4231 void f (int a, int b)
4232 @{
4233 char buf [23];
4234 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4235 @}
4236 @end smallexample
4237 @end table
4238
4239 @item -Wno-format-zero-length
4240 @opindex Wno-format-zero-length
4241 @opindex Wformat-zero-length
4242 If @option{-Wformat} is specified, do not warn about zero-length formats.
4243 The C standard specifies that zero-length formats are allowed.
4244
4245
4246 @item -Wformat=2
4247 @opindex Wformat=2
4248 Enable @option{-Wformat} plus additional format checks. Currently
4249 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4250 -Wformat-y2k}.
4251
4252 @item -Wformat-nonliteral
4253 @opindex Wformat-nonliteral
4254 @opindex Wno-format-nonliteral
4255 If @option{-Wformat} is specified, also warn if the format string is not a
4256 string literal and so cannot be checked, unless the format function
4257 takes its format arguments as a @code{va_list}.
4258
4259 @item -Wformat-security
4260 @opindex Wformat-security
4261 @opindex Wno-format-security
4262 If @option{-Wformat} is specified, also warn about uses of format
4263 functions that represent possible security problems. At present, this
4264 warns about calls to @code{printf} and @code{scanf} functions where the
4265 format string is not a string literal and there are no format arguments,
4266 as in @code{printf (foo);}. This may be a security hole if the format
4267 string came from untrusted input and contains @samp{%n}. (This is
4268 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4269 in future warnings may be added to @option{-Wformat-security} that are not
4270 included in @option{-Wformat-nonliteral}.)
4271
4272 @item -Wformat-signedness
4273 @opindex Wformat-signedness
4274 @opindex Wno-format-signedness
4275 If @option{-Wformat} is specified, also warn if the format string
4276 requires an unsigned argument and the argument is signed and vice versa.
4277
4278 @item -Wformat-truncation
4279 @itemx -Wformat-truncation=@var{level}
4280 @opindex Wformat-truncation
4281 @opindex Wno-format-truncation
4282 Warn about calls to formatted input/output functions such as @code{snprintf}
4283 and @code{vsnprintf} that might result in output truncation. When the exact
4284 number of bytes written by a format directive cannot be determined at
4285 compile-time it is estimated based on heuristics that depend on
4286 the @var{level} argument and on optimization. While enabling optimization
4287 will in most cases improve the accuracy of the warning, it may also result
4288 in false positives. Except as noted otherwise, the option uses the same
4289 logic @option{-Wformat-overflow}.
4290
4291 @table @gcctabopt
4292 @item -Wformat-truncation
4293 @itemx -Wformat-truncation=1
4294 @opindex Wformat-truncation
4295 @opindex Wno-format-overflow
4296 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4297 employs a conservative approach that warns only about calls to bounded
4298 functions whose return value is unused and that will most likely result
4299 in output truncation.
4300
4301 @item -Wformat-truncation=2
4302 Level @var{2} warns also about calls to bounded functions whose return
4303 value is used and that might result in truncation given an argument of
4304 sufficient length or magnitude.
4305 @end table
4306
4307 @item -Wformat-y2k
4308 @opindex Wformat-y2k
4309 @opindex Wno-format-y2k
4310 If @option{-Wformat} is specified, also warn about @code{strftime}
4311 formats that may yield only a two-digit year.
4312 @end table
4313
4314 @item -Wnonnull
4315 @opindex Wnonnull
4316 @opindex Wno-nonnull
4317 Warn about passing a null pointer for arguments marked as
4318 requiring a non-null value by the @code{nonnull} function attribute.
4319
4320 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4321 can be disabled with the @option{-Wno-nonnull} option.
4322
4323 @item -Wnonnull-compare
4324 @opindex Wnonnull-compare
4325 @opindex Wno-nonnull-compare
4326 Warn when comparing an argument marked with the @code{nonnull}
4327 function attribute against null inside the function.
4328
4329 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4330 can be disabled with the @option{-Wno-nonnull-compare} option.
4331
4332 @item -Wnull-dereference
4333 @opindex Wnull-dereference
4334 @opindex Wno-null-dereference
4335 Warn if the compiler detects paths that trigger erroneous or
4336 undefined behavior due to dereferencing a null pointer. This option
4337 is only active when @option{-fdelete-null-pointer-checks} is active,
4338 which is enabled by optimizations in most targets. The precision of
4339 the warnings depends on the optimization options used.
4340
4341 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4342 @opindex Winit-self
4343 @opindex Wno-init-self
4344 Warn about uninitialized variables that are initialized with themselves.
4345 Note this option can only be used with the @option{-Wuninitialized} option.
4346
4347 For example, GCC warns about @code{i} being uninitialized in the
4348 following snippet only when @option{-Winit-self} has been specified:
4349 @smallexample
4350 @group
4351 int f()
4352 @{
4353 int i = i;
4354 return i;
4355 @}
4356 @end group
4357 @end smallexample
4358
4359 This warning is enabled by @option{-Wall} in C++.
4360
4361 @item -Wimplicit-int @r{(C and Objective-C only)}
4362 @opindex Wimplicit-int
4363 @opindex Wno-implicit-int
4364 Warn when a declaration does not specify a type.
4365 This warning is enabled by @option{-Wall}.
4366
4367 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4368 @opindex Wimplicit-function-declaration
4369 @opindex Wno-implicit-function-declaration
4370 Give a warning whenever a function is used before being declared. In
4371 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4372 enabled by default and it is made into an error by
4373 @option{-pedantic-errors}. This warning is also enabled by
4374 @option{-Wall}.
4375
4376 @item -Wimplicit @r{(C and Objective-C only)}
4377 @opindex Wimplicit
4378 @opindex Wno-implicit
4379 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4380 This warning is enabled by @option{-Wall}.
4381
4382 @item -Wimplicit-fallthrough
4383 @opindex Wimplicit-fallthrough
4384 @opindex Wno-implicit-fallthrough
4385 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4386 and @option{-Wno-implicit-fallthrough} is the same as
4387 @option{-Wimplicit-fallthrough=0}.
4388
4389 @item -Wimplicit-fallthrough=@var{n}
4390 @opindex Wimplicit-fallthrough=
4391 Warn when a switch case falls through. For example:
4392
4393 @smallexample
4394 @group
4395 switch (cond)
4396 @{
4397 case 1:
4398 a = 1;
4399 break;
4400 case 2:
4401 a = 2;
4402 case 3:
4403 a = 3;
4404 break;
4405 @}
4406 @end group
4407 @end smallexample
4408
4409 This warning does not warn when the last statement of a case cannot
4410 fall through, e.g. when there is a return statement or a call to function
4411 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4412 also takes into account control flow statements, such as ifs, and only
4413 warns when appropriate. E.g.@:
4414
4415 @smallexample
4416 @group
4417 switch (cond)
4418 @{
4419 case 1:
4420 if (i > 3) @{
4421 bar (5);
4422 break;
4423 @} else if (i < 1) @{
4424 bar (0);
4425 @} else
4426 return;
4427 default:
4428 @dots{}
4429 @}
4430 @end group
4431 @end smallexample
4432
4433 Since there are occasions where a switch case fall through is desirable,
4434 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4435 to be used along with a null statement to suppress this warning that
4436 would normally occur:
4437
4438 @smallexample
4439 @group
4440 switch (cond)
4441 @{
4442 case 1:
4443 bar (0);
4444 __attribute__ ((fallthrough));
4445 default:
4446 @dots{}
4447 @}
4448 @end group
4449 @end smallexample
4450
4451 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4452 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4453 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4454 Instead of these attributes, it is also possible to add a fallthrough comment
4455 to silence the warning. The whole body of the C or C++ style comment should
4456 match the given regular expressions listed below. The option argument @var{n}
4457 specifies what kind of comments are accepted:
4458
4459 @itemize @bullet
4460
4461 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4462
4463 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4464 expression, any comment is used as fallthrough comment.
4465
4466 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4467 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4468
4469 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4470 following regular expressions:
4471
4472 @itemize @bullet
4473
4474 @item @code{-fallthrough}
4475
4476 @item @code{@@fallthrough@@}
4477
4478 @item @code{lint -fallthrough[ \t]*}
4479
4480 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4481
4482 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4483
4484 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4485
4486 @end itemize
4487
4488 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4489 following regular expressions:
4490
4491 @itemize @bullet
4492
4493 @item @code{-fallthrough}
4494
4495 @item @code{@@fallthrough@@}
4496
4497 @item @code{lint -fallthrough[ \t]*}
4498
4499 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4500
4501 @end itemize
4502
4503 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4504 fallthrough comments, only attributes disable the warning.
4505
4506 @end itemize
4507
4508 The comment needs to be followed after optional whitespace and other comments
4509 by @code{case} or @code{default} keywords or by a user label that precedes some
4510 @code{case} or @code{default} label.
4511
4512 @smallexample
4513 @group
4514 switch (cond)
4515 @{
4516 case 1:
4517 bar (0);
4518 /* FALLTHRU */
4519 default:
4520 @dots{}
4521 @}
4522 @end group
4523 @end smallexample
4524
4525 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4526
4527 @item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
4528 @opindex Wif-not-aligned
4529 @opindex Wno-if-not-aligned
4530 Control if warning triggered by the @code{warn_if_not_aligned} attribute
4531 should be issued. This is is enabled by default.
4532 Use @option{-Wno-if-not-aligned} to disable it.
4533
4534 @item -Wignored-qualifiers @r{(C and C++ only)}
4535 @opindex Wignored-qualifiers
4536 @opindex Wno-ignored-qualifiers
4537 Warn if the return type of a function has a type qualifier
4538 such as @code{const}. For ISO C such a type qualifier has no effect,
4539 since the value returned by a function is not an lvalue.
4540 For C++, the warning is only emitted for scalar types or @code{void}.
4541 ISO C prohibits qualified @code{void} return types on function
4542 definitions, so such return types always receive a warning
4543 even without this option.
4544
4545 This warning is also enabled by @option{-Wextra}.
4546
4547 @item -Wignored-attributes @r{(C and C++ only)}
4548 @opindex Wignored-attributes
4549 @opindex Wno-ignored-attributes
4550 Warn when an attribute is ignored. This is different from the
4551 @option{-Wattributes} option in that it warns whenever the compiler decides
4552 to drop an attribute, not that the attribute is either unknown, used in a
4553 wrong place, etc. This warning is enabled by default.
4554
4555 @item -Wmain
4556 @opindex Wmain
4557 @opindex Wno-main
4558 Warn if the type of @code{main} is suspicious. @code{main} should be
4559 a function with external linkage, returning int, taking either zero
4560 arguments, two, or three arguments of appropriate types. This warning
4561 is enabled by default in C++ and is enabled by either @option{-Wall}
4562 or @option{-Wpedantic}.
4563
4564 @item -Wmisleading-indentation @r{(C and C++ only)}
4565 @opindex Wmisleading-indentation
4566 @opindex Wno-misleading-indentation
4567 Warn when the indentation of the code does not reflect the block structure.
4568 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
4569 @code{for} clauses with a guarded statement that does not use braces,
4570 followed by an unguarded statement with the same indentation.
4571
4572 In the following example, the call to ``bar'' is misleadingly indented as
4573 if it were guarded by the ``if'' conditional.
4574
4575 @smallexample
4576 if (some_condition ())
4577 foo ();
4578 bar (); /* Gotcha: this is not guarded by the "if". */
4579 @end smallexample
4580
4581 In the case of mixed tabs and spaces, the warning uses the
4582 @option{-ftabstop=} option to determine if the statements line up
4583 (defaulting to 8).
4584
4585 The warning is not issued for code involving multiline preprocessor logic
4586 such as the following example.
4587
4588 @smallexample
4589 if (flagA)
4590 foo (0);
4591 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
4592 if (flagB)
4593 #endif
4594 foo (1);
4595 @end smallexample
4596
4597 The warning is not issued after a @code{#line} directive, since this
4598 typically indicates autogenerated code, and no assumptions can be made
4599 about the layout of the file that the directive references.
4600
4601 This warning is enabled by @option{-Wall} in C and C++.
4602
4603 @item -Wmissing-attributes
4604 @opindex Wmissing-attributes
4605 @opindex Wno-missing-attributes
4606 Warn when a declaration of a function is missing one or more attributes
4607 that a related function is declared with and whose absence may adversely
4608 affect the correctness or efficiency of generated code. For example, in
4609 C++, the warning is issued when an explicit specialization of a primary
4610 template declared with attribute @code{alloc_align}, @code{alloc_size},
4611 @code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
4612 or @code{nonnull} is declared without it. Attributes @code{deprecated},
4613 @code{error}, and @code{warning} suppress the warning.
4614 (@pxref{Function Attributes}).
4615
4616 @option{-Wmissing-attributes} is enabled by @option{-Wall}.
4617
4618 For example, since the declaration of the primary function template
4619 below makes use of both attribute @code{malloc} and @code{alloc_size}
4620 the declaration of the explicit specialization of the template is
4621 diagnosed because it is missing one of the attributes.
4622
4623 @smallexample
4624 template <class T>
4625 T* __attribute__ ((malloc, alloc_size (1)))
4626 allocate (size_t);
4627
4628 template <>
4629 void* __attribute__ ((malloc)) // missing alloc_size
4630 allocate<void> (size_t);
4631 @end smallexample
4632
4633 @item -Wmissing-braces
4634 @opindex Wmissing-braces
4635 @opindex Wno-missing-braces
4636 Warn if an aggregate or union initializer is not fully bracketed. In
4637 the following example, the initializer for @code{a} is not fully
4638 bracketed, but that for @code{b} is fully bracketed. This warning is
4639 enabled by @option{-Wall} in C.
4640
4641 @smallexample
4642 int a[2][2] = @{ 0, 1, 2, 3 @};
4643 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
4644 @end smallexample
4645
4646 This warning is enabled by @option{-Wall}.
4647
4648 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
4649 @opindex Wmissing-include-dirs
4650 @opindex Wno-missing-include-dirs
4651 Warn if a user-supplied include directory does not exist.
4652
4653 @item -Wmultistatement-macros
4654 @opindex Wmultistatement-macros
4655 @opindex Wno-multistatement-macros
4656 Warn about unsafe multiple statement macros that appear to be guarded
4657 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
4658 @code{while}, in which only the first statement is actually guarded after
4659 the macro is expanded.
4660
4661 For example:
4662
4663 @smallexample
4664 #define DOIT x++; y++
4665 if (c)
4666 DOIT;
4667 @end smallexample
4668
4669 will increment @code{y} unconditionally, not just when @code{c} holds.
4670 The can usually be fixed by wrapping the macro in a do-while loop:
4671 @smallexample
4672 #define DOIT do @{ x++; y++; @} while (0)
4673 if (c)
4674 DOIT;
4675 @end smallexample
4676
4677 This warning is enabled by @option{-Wall} in C and C++.
4678
4679 @item -Wparentheses
4680 @opindex Wparentheses
4681 @opindex Wno-parentheses
4682 Warn if parentheses are omitted in certain contexts, such
4683 as when there is an assignment in a context where a truth value
4684 is expected, or when operators are nested whose precedence people
4685 often get confused about.
4686
4687 Also warn if a comparison like @code{x<=y<=z} appears; this is
4688 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
4689 interpretation from that of ordinary mathematical notation.
4690
4691 Also warn for dangerous uses of the GNU extension to
4692 @code{?:} with omitted middle operand. When the condition
4693 in the @code{?}: operator is a boolean expression, the omitted value is
4694 always 1. Often programmers expect it to be a value computed
4695 inside the conditional expression instead.
4696
4697 For C++ this also warns for some cases of unnecessary parentheses in
4698 declarations, which can indicate an attempt at a function call instead
4699 of a declaration:
4700 @smallexample
4701 @{
4702 // Declares a local variable called mymutex.
4703 std::unique_lock<std::mutex> (mymutex);
4704 // User meant std::unique_lock<std::mutex> lock (mymutex);
4705 @}
4706 @end smallexample
4707
4708 This warning is enabled by @option{-Wall}.
4709
4710 @item -Wsequence-point
4711 @opindex Wsequence-point
4712 @opindex Wno-sequence-point
4713 Warn about code that may have undefined semantics because of violations
4714 of sequence point rules in the C and C++ standards.
4715
4716 The C and C++ standards define the order in which expressions in a C/C++
4717 program are evaluated in terms of @dfn{sequence points}, which represent
4718 a partial ordering between the execution of parts of the program: those
4719 executed before the sequence point, and those executed after it. These
4720 occur after the evaluation of a full expression (one which is not part
4721 of a larger expression), after the evaluation of the first operand of a
4722 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4723 function is called (but after the evaluation of its arguments and the
4724 expression denoting the called function), and in certain other places.
4725 Other than as expressed by the sequence point rules, the order of
4726 evaluation of subexpressions of an expression is not specified. All
4727 these rules describe only a partial order rather than a total order,
4728 since, for example, if two functions are called within one expression
4729 with no sequence point between them, the order in which the functions
4730 are called is not specified. However, the standards committee have
4731 ruled that function calls do not overlap.
4732
4733 It is not specified when between sequence points modifications to the
4734 values of objects take effect. Programs whose behavior depends on this
4735 have undefined behavior; the C and C++ standards specify that ``Between
4736 the previous and next sequence point an object shall have its stored
4737 value modified at most once by the evaluation of an expression.
4738 Furthermore, the prior value shall be read only to determine the value
4739 to be stored.''. If a program breaks these rules, the results on any
4740 particular implementation are entirely unpredictable.
4741
4742 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4743 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
4744 diagnosed by this option, and it may give an occasional false positive
4745 result, but in general it has been found fairly effective at detecting
4746 this sort of problem in programs.
4747
4748 The C++17 standard will define the order of evaluation of operands in
4749 more cases: in particular it requires that the right-hand side of an
4750 assignment be evaluated before the left-hand side, so the above
4751 examples are no longer undefined. But this warning will still warn
4752 about them, to help people avoid writing code that is undefined in C
4753 and earlier revisions of C++.
4754
4755 The standard is worded confusingly, therefore there is some debate
4756 over the precise meaning of the sequence point rules in subtle cases.
4757 Links to discussions of the problem, including proposed formal
4758 definitions, may be found on the GCC readings page, at
4759 @uref{http://gcc.gnu.org/@/readings.html}.
4760
4761 This warning is enabled by @option{-Wall} for C and C++.
4762
4763 @item -Wno-return-local-addr
4764 @opindex Wno-return-local-addr
4765 @opindex Wreturn-local-addr
4766 Do not warn about returning a pointer (or in C++, a reference) to a
4767 variable that goes out of scope after the function returns.
4768
4769 @item -Wreturn-type
4770 @opindex Wreturn-type
4771 @opindex Wno-return-type
4772 Warn whenever a function is defined with a return type that defaults
4773 to @code{int}. Also warn about any @code{return} statement with no
4774 return value in a function whose return type is not @code{void}
4775 (falling off the end of the function body is considered returning
4776 without a value).
4777
4778 For C only, warn about a @code{return} statement with an expression in a
4779 function whose return type is @code{void}, unless the expression type is
4780 also @code{void}. As a GNU extension, the latter case is accepted
4781 without a warning unless @option{-Wpedantic} is used.
4782
4783 For C++, a function without return type always produces a diagnostic
4784 message, even when @option{-Wno-return-type} is specified. The only
4785 exceptions are @code{main} and functions defined in system headers.
4786
4787 This warning is enabled by default for C++ and is enabled by @option{-Wall}.
4788
4789 @item -Wshift-count-negative
4790 @opindex Wshift-count-negative
4791 @opindex Wno-shift-count-negative
4792 Warn if shift count is negative. This warning is enabled by default.
4793
4794 @item -Wshift-count-overflow
4795 @opindex Wshift-count-overflow
4796 @opindex Wno-shift-count-overflow
4797 Warn if shift count >= width of type. This warning is enabled by default.
4798
4799 @item -Wshift-negative-value
4800 @opindex Wshift-negative-value
4801 @opindex Wno-shift-negative-value
4802 Warn if left shifting a negative value. This warning is enabled by
4803 @option{-Wextra} in C99 and C++11 modes (and newer).
4804
4805 @item -Wshift-overflow
4806 @itemx -Wshift-overflow=@var{n}
4807 @opindex Wshift-overflow
4808 @opindex Wno-shift-overflow
4809 Warn about left shift overflows. This warning is enabled by
4810 default in C99 and C++11 modes (and newer).
4811
4812 @table @gcctabopt
4813 @item -Wshift-overflow=1
4814 This is the warning level of @option{-Wshift-overflow} and is enabled
4815 by default in C99 and C++11 modes (and newer). This warning level does
4816 not warn about left-shifting 1 into the sign bit. (However, in C, such
4817 an overflow is still rejected in contexts where an integer constant expression
4818 is required.)
4819
4820 @item -Wshift-overflow=2
4821 This warning level also warns about left-shifting 1 into the sign bit,
4822 unless C++14 mode is active.
4823 @end table
4824
4825 @item -Wswitch
4826 @opindex Wswitch
4827 @opindex Wno-switch
4828 Warn whenever a @code{switch} statement has an index of enumerated type
4829 and lacks a @code{case} for one or more of the named codes of that
4830 enumeration. (The presence of a @code{default} label prevents this
4831 warning.) @code{case} labels outside the enumeration range also
4832 provoke warnings when this option is used (even if there is a
4833 @code{default} label).
4834 This warning is enabled by @option{-Wall}.
4835
4836 @item -Wswitch-default
4837 @opindex Wswitch-default
4838 @opindex Wno-switch-default
4839 Warn whenever a @code{switch} statement does not have a @code{default}
4840 case.
4841
4842 @item -Wswitch-enum
4843 @opindex Wswitch-enum
4844 @opindex Wno-switch-enum
4845 Warn whenever a @code{switch} statement has an index of enumerated type
4846 and lacks a @code{case} for one or more of the named codes of that
4847 enumeration. @code{case} labels outside the enumeration range also
4848 provoke warnings when this option is used. The only difference
4849 between @option{-Wswitch} and this option is that this option gives a
4850 warning about an omitted enumeration code even if there is a
4851 @code{default} label.
4852
4853 @item -Wswitch-bool
4854 @opindex Wswitch-bool
4855 @opindex Wno-switch-bool
4856 Warn whenever a @code{switch} statement has an index of boolean type
4857 and the case values are outside the range of a boolean type.
4858 It is possible to suppress this warning by casting the controlling
4859 expression to a type other than @code{bool}. For example:
4860 @smallexample
4861 @group
4862 switch ((int) (a == 4))
4863 @{
4864 @dots{}
4865 @}
4866 @end group
4867 @end smallexample
4868 This warning is enabled by default for C and C++ programs.
4869
4870 @item -Wswitch-unreachable
4871 @opindex Wswitch-unreachable
4872 @opindex Wno-switch-unreachable
4873 Warn whenever a @code{switch} statement contains statements between the
4874 controlling expression and the first case label, which will never be
4875 executed. For example:
4876 @smallexample
4877 @group
4878 switch (cond)
4879 @{
4880 i = 15;
4881 @dots{}
4882 case 5:
4883 @dots{}
4884 @}
4885 @end group
4886 @end smallexample
4887 @option{-Wswitch-unreachable} does not warn if the statement between the
4888 controlling expression and the first case label is just a declaration:
4889 @smallexample
4890 @group
4891 switch (cond)
4892 @{
4893 int i;
4894 @dots{}
4895 case 5:
4896 i = 5;
4897 @dots{}
4898 @}
4899 @end group
4900 @end smallexample
4901 This warning is enabled by default for C and C++ programs.
4902
4903 @item -Wsync-nand @r{(C and C++ only)}
4904 @opindex Wsync-nand
4905 @opindex Wno-sync-nand
4906 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4907 built-in functions are used. These functions changed semantics in GCC 4.4.
4908
4909 @item -Wunused-but-set-parameter
4910 @opindex Wunused-but-set-parameter
4911 @opindex Wno-unused-but-set-parameter
4912 Warn whenever a function parameter is assigned to, but otherwise unused
4913 (aside from its declaration).
4914
4915 To suppress this warning use the @code{unused} attribute
4916 (@pxref{Variable Attributes}).
4917
4918 This warning is also enabled by @option{-Wunused} together with
4919 @option{-Wextra}.
4920
4921 @item -Wunused-but-set-variable
4922 @opindex Wunused-but-set-variable
4923 @opindex Wno-unused-but-set-variable
4924 Warn whenever a local variable is assigned to, but otherwise unused
4925 (aside from its declaration).
4926 This warning is enabled by @option{-Wall}.
4927
4928 To suppress this warning use the @code{unused} attribute
4929 (@pxref{Variable Attributes}).
4930
4931 This warning is also enabled by @option{-Wunused}, which is enabled
4932 by @option{-Wall}.
4933
4934 @item -Wunused-function
4935 @opindex Wunused-function
4936 @opindex Wno-unused-function
4937 Warn whenever a static function is declared but not defined or a
4938 non-inline static function is unused.
4939 This warning is enabled by @option{-Wall}.
4940
4941 @item -Wunused-label
4942 @opindex Wunused-label
4943 @opindex Wno-unused-label
4944 Warn whenever a label is declared but not used.
4945 This warning is enabled by @option{-Wall}.
4946
4947 To suppress this warning use the @code{unused} attribute
4948 (@pxref{Variable Attributes}).
4949
4950 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4951 @opindex Wunused-local-typedefs
4952 Warn when a typedef locally defined in a function is not used.
4953 This warning is enabled by @option{-Wall}.
4954
4955 @item -Wunused-parameter
4956 @opindex Wunused-parameter
4957 @opindex Wno-unused-parameter
4958 Warn whenever a function parameter is unused aside from its declaration.
4959
4960 To suppress this warning use the @code{unused} attribute
4961 (@pxref{Variable Attributes}).
4962
4963 @item -Wno-unused-result
4964 @opindex Wunused-result
4965 @opindex Wno-unused-result
4966 Do not warn if a caller of a function marked with attribute
4967 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4968 its return value. The default is @option{-Wunused-result}.
4969
4970 @item -Wunused-variable
4971 @opindex Wunused-variable
4972 @opindex Wno-unused-variable
4973 Warn whenever a local or static variable is unused aside from its
4974 declaration. This option implies @option{-Wunused-const-variable=1} for C,
4975 but not for C++. This warning is enabled by @option{-Wall}.
4976
4977 To suppress this warning use the @code{unused} attribute
4978 (@pxref{Variable Attributes}).
4979
4980 @item -Wunused-const-variable
4981 @itemx -Wunused-const-variable=@var{n}
4982 @opindex Wunused-const-variable
4983 @opindex Wno-unused-const-variable
4984 Warn whenever a constant static variable is unused aside from its declaration.
4985 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
4986 for C, but not for C++. In C this declares variable storage, but in C++ this
4987 is not an error since const variables take the place of @code{#define}s.
4988
4989 To suppress this warning use the @code{unused} attribute
4990 (@pxref{Variable Attributes}).
4991
4992 @table @gcctabopt
4993 @item -Wunused-const-variable=1
4994 This is the warning level that is enabled by @option{-Wunused-variable} for
4995 C. It warns only about unused static const variables defined in the main
4996 compilation unit, but not about static const variables declared in any
4997 header included.
4998
4999 @item -Wunused-const-variable=2
5000 This warning level also warns for unused constant static variables in
5001 headers (excluding system headers). This is the warning level of
5002 @option{-Wunused-const-variable} and must be explicitly requested since
5003 in C++ this isn't an error and in C it might be harder to clean up all
5004 headers included.
5005 @end table
5006
5007 @item -Wunused-value
5008 @opindex Wunused-value
5009 @opindex Wno-unused-value
5010 Warn whenever a statement computes a result that is explicitly not
5011 used. To suppress this warning cast the unused expression to
5012 @code{void}. This includes an expression-statement or the left-hand
5013 side of a comma expression that contains no side effects. For example,
5014 an expression such as @code{x[i,j]} causes a warning, while
5015 @code{x[(void)i,j]} does not.
5016
5017 This warning is enabled by @option{-Wall}.
5018
5019 @item -Wunused
5020 @opindex Wunused
5021 @opindex Wno-unused
5022 All the above @option{-Wunused} options combined.
5023
5024 In order to get a warning about an unused function parameter, you must
5025 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
5026 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
5027
5028 @item -Wuninitialized
5029 @opindex Wuninitialized
5030 @opindex Wno-uninitialized
5031 Warn if an automatic variable is used without first being initialized
5032 or if a variable may be clobbered by a @code{setjmp} call. In C++,
5033 warn if a non-static reference or non-static @code{const} member
5034 appears in a class without constructors.
5035
5036 If you want to warn about code that uses the uninitialized value of the
5037 variable in its own initializer, use the @option{-Winit-self} option.
5038
5039 These warnings occur for individual uninitialized or clobbered
5040 elements of structure, union or array variables as well as for
5041 variables that are uninitialized or clobbered as a whole. They do
5042 not occur for variables or elements declared @code{volatile}. Because
5043 these warnings depend on optimization, the exact variables or elements
5044 for which there are warnings depends on the precise optimization
5045 options and version of GCC used.
5046
5047 Note that there may be no warning about a variable that is used only
5048 to compute a value that itself is never used, because such
5049 computations may be deleted by data flow analysis before the warnings
5050 are printed.
5051
5052 @item -Winvalid-memory-model
5053 @opindex Winvalid-memory-model
5054 @opindex Wno-invalid-memory-model
5055 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
5056 and the C11 atomic generic functions with a memory consistency argument
5057 that is either invalid for the operation or outside the range of values
5058 of the @code{memory_order} enumeration. For example, since the
5059 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
5060 defined for the relaxed, release, and sequentially consistent memory
5061 orders the following code is diagnosed:
5062
5063 @smallexample
5064 void store (int *i)
5065 @{
5066 __atomic_store_n (i, 0, memory_order_consume);
5067 @}
5068 @end smallexample
5069
5070 @option{-Winvalid-memory-model} is enabled by default.
5071
5072 @item -Wmaybe-uninitialized
5073 @opindex Wmaybe-uninitialized
5074 @opindex Wno-maybe-uninitialized
5075 For an automatic (i.e.@ local) variable, if there exists a path from the
5076 function entry to a use of the variable that is initialized, but there exist
5077 some other paths for which the variable is not initialized, the compiler
5078 emits a warning if it cannot prove the uninitialized paths are not
5079 executed at run time.
5080
5081 These warnings are only possible in optimizing compilation, because otherwise
5082 GCC does not keep track of the state of variables.
5083
5084 These warnings are made optional because GCC may not be able to determine when
5085 the code is correct in spite of appearing to have an error. Here is one
5086 example of how this can happen:
5087
5088 @smallexample
5089 @group
5090 @{
5091 int x;
5092 switch (y)
5093 @{
5094 case 1: x = 1;
5095 break;
5096 case 2: x = 4;
5097 break;
5098 case 3: x = 5;
5099 @}
5100 foo (x);
5101 @}
5102 @end group
5103 @end smallexample
5104
5105 @noindent
5106 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
5107 always initialized, but GCC doesn't know this. To suppress the
5108 warning, you need to provide a default case with assert(0) or
5109 similar code.
5110
5111 @cindex @code{longjmp} warnings
5112 This option also warns when a non-volatile automatic variable might be
5113 changed by a call to @code{longjmp}.
5114 The compiler sees only the calls to @code{setjmp}. It cannot know
5115 where @code{longjmp} will be called; in fact, a signal handler could
5116 call it at any point in the code. As a result, you may get a warning
5117 even when there is in fact no problem because @code{longjmp} cannot
5118 in fact be called at the place that would cause a problem.
5119
5120 Some spurious warnings can be avoided if you declare all the functions
5121 you use that never return as @code{noreturn}. @xref{Function
5122 Attributes}.
5123
5124 This warning is enabled by @option{-Wall} or @option{-Wextra}.
5125
5126 @item -Wunknown-pragmas
5127 @opindex Wunknown-pragmas
5128 @opindex Wno-unknown-pragmas
5129 @cindex warning for unknown pragmas
5130 @cindex unknown pragmas, warning
5131 @cindex pragmas, warning of unknown
5132 Warn when a @code{#pragma} directive is encountered that is not understood by
5133 GCC@. If this command-line option is used, warnings are even issued
5134 for unknown pragmas in system header files. This is not the case if
5135 the warnings are only enabled by the @option{-Wall} command-line option.
5136
5137 @item -Wno-pragmas
5138 @opindex Wno-pragmas
5139 @opindex Wpragmas
5140 Do not warn about misuses of pragmas, such as incorrect parameters,
5141 invalid syntax, or conflicts between pragmas. See also
5142 @option{-Wunknown-pragmas}.
5143
5144 @item -Wstrict-aliasing
5145 @opindex Wstrict-aliasing
5146 @opindex Wno-strict-aliasing
5147 This option is only active when @option{-fstrict-aliasing} is active.
5148 It warns about code that might break the strict aliasing rules that the
5149 compiler is using for optimization. The warning does not catch all
5150 cases, but does attempt to catch the more common pitfalls. It is
5151 included in @option{-Wall}.
5152 It is equivalent to @option{-Wstrict-aliasing=3}
5153
5154 @item -Wstrict-aliasing=n
5155 @opindex Wstrict-aliasing=n
5156 This option is only active when @option{-fstrict-aliasing} is active.
5157 It warns about code that might break the strict aliasing rules that the
5158 compiler is using for optimization.
5159 Higher levels correspond to higher accuracy (fewer false positives).
5160 Higher levels also correspond to more effort, similar to the way @option{-O}
5161 works.
5162 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5163
5164 Level 1: Most aggressive, quick, least accurate.
5165 Possibly useful when higher levels
5166 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5167 false negatives. However, it has many false positives.
5168 Warns for all pointer conversions between possibly incompatible types,
5169 even if never dereferenced. Runs in the front end only.
5170
5171 Level 2: Aggressive, quick, not too precise.
5172 May still have many false positives (not as many as level 1 though),
5173 and few false negatives (but possibly more than level 1).
5174 Unlike level 1, it only warns when an address is taken. Warns about
5175 incomplete types. Runs in the front end only.
5176
5177 Level 3 (default for @option{-Wstrict-aliasing}):
5178 Should have very few false positives and few false
5179 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5180 Takes care of the common pun+dereference pattern in the front end:
5181 @code{*(int*)&some_float}.
5182 If optimization is enabled, it also runs in the back end, where it deals
5183 with multiple statement cases using flow-sensitive points-to information.
5184 Only warns when the converted pointer is dereferenced.
5185 Does not warn about incomplete types.
5186
5187 @item -Wstrict-overflow
5188 @itemx -Wstrict-overflow=@var{n}
5189 @opindex Wstrict-overflow
5190 @opindex Wno-strict-overflow
5191 This option is only active when signed overflow is undefined.
5192 It warns about cases where the compiler optimizes based on the
5193 assumption that signed overflow does not occur. Note that it does not
5194 warn about all cases where the code might overflow: it only warns
5195 about cases where the compiler implements some optimization. Thus
5196 this warning depends on the optimization level.
5197
5198 An optimization that assumes that signed overflow does not occur is
5199 perfectly safe if the values of the variables involved are such that
5200 overflow never does, in fact, occur. Therefore this warning can
5201 easily give a false positive: a warning about code that is not
5202 actually a problem. To help focus on important issues, several
5203 warning levels are defined. No warnings are issued for the use of
5204 undefined signed overflow when estimating how many iterations a loop
5205 requires, in particular when determining whether a loop will be
5206 executed at all.
5207
5208 @table @gcctabopt
5209 @item -Wstrict-overflow=1
5210 Warn about cases that are both questionable and easy to avoid. For
5211 example the compiler simplifies
5212 @code{x + 1 > x} to @code{1}. This level of
5213 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5214 are not, and must be explicitly requested.
5215
5216 @item -Wstrict-overflow=2
5217 Also warn about other cases where a comparison is simplified to a
5218 constant. For example: @code{abs (x) >= 0}. This can only be
5219 simplified when signed integer overflow is undefined, because
5220 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5221 zero. @option{-Wstrict-overflow} (with no level) is the same as
5222 @option{-Wstrict-overflow=2}.
5223
5224 @item -Wstrict-overflow=3
5225 Also warn about other cases where a comparison is simplified. For
5226 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5227
5228 @item -Wstrict-overflow=4
5229 Also warn about other simplifications not covered by the above cases.
5230 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5231
5232 @item -Wstrict-overflow=5
5233 Also warn about cases where the compiler reduces the magnitude of a
5234 constant involved in a comparison. For example: @code{x + 2 > y} is
5235 simplified to @code{x + 1 >= y}. This is reported only at the
5236 highest warning level because this simplification applies to many
5237 comparisons, so this warning level gives a very large number of
5238 false positives.
5239 @end table
5240
5241 @item -Wstringop-overflow
5242 @itemx -Wstringop-overflow=@var{type}
5243 @opindex Wstringop-overflow
5244 @opindex Wno-stringop-overflow
5245 Warn for calls to string manipulation functions such as @code{memcpy} and
5246 @code{strcpy} that are determined to overflow the destination buffer. The
5247 optional argument is one greater than the type of Object Size Checking to
5248 perform to determine the size of the destination. @xref{Object Size Checking}.
5249 The argument is meaningful only for functions that operate on character arrays
5250 but not for raw memory functions like @code{memcpy} which always make use
5251 of Object Size type-0. The option also warns for calls that specify a size
5252 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5253 The option produces the best results with optimization enabled but can detect
5254 a small subset of simple buffer overflows even without optimization in
5255 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5256 correspond to the standard functions. In any case, the option warns about
5257 just a subset of buffer overflows detected by the corresponding overflow
5258 checking built-ins. For example, the option will issue a warning for
5259 the @code{strcpy} call below because it copies at least 5 characters
5260 (the string @code{"blue"} including the terminating NUL) into the buffer
5261 of size 4.
5262
5263 @smallexample
5264 enum Color @{ blue, purple, yellow @};
5265 const char* f (enum Color clr)
5266 @{
5267 static char buf [4];
5268 const char *str;
5269 switch (clr)
5270 @{
5271 case blue: str = "blue"; break;
5272 case purple: str = "purple"; break;
5273 case yellow: str = "yellow"; break;
5274 @}
5275
5276 return strcpy (buf, str); // warning here
5277 @}
5278 @end smallexample
5279
5280 Option @option{-Wstringop-overflow=2} is enabled by default.
5281
5282 @table @gcctabopt
5283 @item -Wstringop-overflow
5284 @itemx -Wstringop-overflow=1
5285 @opindex Wstringop-overflow
5286 @opindex Wno-stringop-overflow
5287 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5288 to determine the sizes of destination objects. This is the default setting
5289 of the option. At this setting the option will not warn for writes past
5290 the end of subobjects of larger objects accessed by pointers unless the
5291 size of the largest surrounding object is known. When the destination may
5292 be one of several objects it is assumed to be the largest one of them. On
5293 Linux systems, when optimization is enabled at this setting the option warns
5294 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5295 a non-zero value.
5296
5297 @item -Wstringop-overflow=2
5298 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5299 to determine the sizes of destination objects. At this setting the option
5300 will warn about overflows when writing to members of the largest complete
5301 objects whose exact size is known. It will, however, not warn for excessive
5302 writes to the same members of unknown objects referenced by pointers since
5303 they may point to arrays containing unknown numbers of elements.
5304
5305 @item -Wstringop-overflow=3
5306 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5307 to determine the sizes of destination objects. At this setting the option
5308 warns about overflowing the smallest object or data member. This is the
5309 most restrictive setting of the option that may result in warnings for safe
5310 code.
5311
5312 @item -Wstringop-overflow=4
5313 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5314 to determine the sizes of destination objects. At this setting the option
5315 will warn about overflowing any data members, and when the destination is
5316 one of several objects it uses the size of the largest of them to decide
5317 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5318 setting of the option may result in warnings for benign code.
5319 @end table
5320
5321 @item -Wstringop-truncation
5322 @opindex Wstringop-truncation
5323 @opindex Wno-stringop-truncation
5324 Warn for calls to bounded string manipulation functions such as @code{strncat},
5325 @code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5326 or leave the destination unchanged.
5327
5328 In the following example, the call to @code{strncat} specifies a bound that
5329 is less than the length of the source string. As a result, the copy of
5330 the source will be truncated and so the call is diagnosed. To avoid the
5331 warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5332
5333 @smallexample
5334 void append (char *buf, size_t bufsize)
5335 @{
5336 strncat (buf, ".txt", 3);
5337 @}
5338 @end smallexample
5339
5340 As another example, the following call to @code{strncpy} results in copying
5341 to @code{d} just the characters preceding the terminating NUL, without
5342 appending the NUL to the end. Assuming the result of @code{strncpy} is
5343 necessarily a NUL-terminated string is a common mistake, and so the call
5344 is diagnosed. To avoid the warning when the result is not expected to be
5345 NUL-terminated, call @code{memcpy} instead.
5346
5347 @smallexample
5348 void copy (char *d, const char *s)
5349 @{
5350 strncpy (d, s, strlen (s));
5351 @}
5352 @end smallexample
5353
5354 In the following example, the call to @code{strncpy} specifies the size
5355 of the destination buffer as the bound. If the length of the source
5356 string is equal to or greater than this size the result of the copy will
5357 not be NUL-terminated. Therefore, the call is also diagnosed. To avoid
5358 the warning, specify @code{sizeof buf - 1} as the bound and set the last
5359 element of the buffer to @code{NUL}.
5360
5361 @smallexample
5362 void copy (const char *s)
5363 @{
5364 char buf[80];
5365 strncpy (buf, s, sizeof buf);
5366 @dots{}
5367 @}
5368 @end smallexample
5369
5370 In situations where a character array is intended to store a sequence
5371 of bytes with no terminating @code{NUL} such an array may be annotated
5372 with attribute @code{nonstring} to avoid this warning. Such arrays,
5373 however, are not suitable arguments to functions that expect
5374 @code{NUL}-terminated strings. To help detect accidental misuses of
5375 such arrays GCC issues warnings unless it can prove that the use is
5376 safe. @xref{Common Variable Attributes}.
5377
5378 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5379 @opindex Wsuggest-attribute=
5380 @opindex Wno-suggest-attribute=
5381 Warn for cases where adding an attribute may be beneficial. The
5382 attributes currently supported are listed below.
5383
5384 @table @gcctabopt
5385 @item -Wsuggest-attribute=pure
5386 @itemx -Wsuggest-attribute=const
5387 @itemx -Wsuggest-attribute=noreturn
5388 @itemx -Wsuggest-attribute=malloc
5389 @opindex Wsuggest-attribute=pure
5390 @opindex Wno-suggest-attribute=pure
5391 @opindex Wsuggest-attribute=const
5392 @opindex Wno-suggest-attribute=const
5393 @opindex Wsuggest-attribute=noreturn
5394 @opindex Wno-suggest-attribute=noreturn
5395 @opindex Wsuggest-attribute=malloc
5396 @opindex Wno-suggest-attribute=malloc
5397
5398 Warn about functions that might be candidates for attributes
5399 @code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5400 only warns for functions visible in other compilation units or (in the case of
5401 @code{pure} and @code{const}) if it cannot prove that the function returns
5402 normally. A function returns normally if it doesn't contain an infinite loop or
5403 return abnormally by throwing, calling @code{abort} or trapping. This analysis
5404 requires option @option{-fipa-pure-const}, which is enabled by default at
5405 @option{-O} and higher. Higher optimization levels improve the accuracy
5406 of the analysis.
5407
5408 @item -Wsuggest-attribute=format
5409 @itemx -Wmissing-format-attribute
5410 @opindex Wsuggest-attribute=format
5411 @opindex Wmissing-format-attribute
5412 @opindex Wno-suggest-attribute=format
5413 @opindex Wno-missing-format-attribute
5414 @opindex Wformat
5415 @opindex Wno-format
5416
5417 Warn about function pointers that might be candidates for @code{format}
5418 attributes. Note these are only possible candidates, not absolute ones.
5419 GCC guesses that function pointers with @code{format} attributes that
5420 are used in assignment, initialization, parameter passing or return
5421 statements should have a corresponding @code{format} attribute in the
5422 resulting type. I.e.@: the left-hand side of the assignment or
5423 initialization, the type of the parameter variable, or the return type
5424 of the containing function respectively should also have a @code{format}
5425 attribute to avoid the warning.
5426
5427 GCC also warns about function definitions that might be
5428 candidates for @code{format} attributes. Again, these are only
5429 possible candidates. GCC guesses that @code{format} attributes
5430 might be appropriate for any function that calls a function like
5431 @code{vprintf} or @code{vscanf}, but this might not always be the
5432 case, and some functions for which @code{format} attributes are
5433 appropriate may not be detected.
5434
5435 @item -Wsuggest-attribute=cold
5436 @opindex Wsuggest-attribute=cold
5437 @opindex Wno-suggest-attribute=cold
5438
5439 Warn about functions that might be candidates for @code{cold} attribute. This
5440 is based on static detection and generally will only warn about functions which
5441 always leads to a call to another @code{cold} function such as wrappers of
5442 C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
5443 @end table
5444
5445 @item -Wsuggest-final-types
5446 @opindex Wno-suggest-final-types
5447 @opindex Wsuggest-final-types
5448 Warn about types with virtual methods where code quality would be improved
5449 if the type were declared with the C++11 @code{final} specifier,
5450 or, if possible,
5451 declared in an anonymous namespace. This allows GCC to more aggressively
5452 devirtualize the polymorphic calls. This warning is more effective with link
5453 time optimization, where the information about the class hierarchy graph is
5454 more complete.
5455
5456 @item -Wsuggest-final-methods
5457 @opindex Wno-suggest-final-methods
5458 @opindex Wsuggest-final-methods
5459 Warn about virtual methods where code quality would be improved if the method
5460 were declared with the C++11 @code{final} specifier,
5461 or, if possible, its type were
5462 declared in an anonymous namespace or with the @code{final} specifier.
5463 This warning is
5464 more effective with link-time optimization, where the information about the
5465 class hierarchy graph is more complete. It is recommended to first consider
5466 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
5467 annotations.
5468
5469 @item -Wsuggest-override
5470 Warn about overriding virtual functions that are not marked with the override
5471 keyword.
5472
5473 @item -Walloc-zero
5474 @opindex Wno-alloc-zero
5475 @opindex Walloc-zero
5476 Warn about calls to allocation functions decorated with attribute
5477 @code{alloc_size} that specify zero bytes, including those to the built-in
5478 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
5479 @code{malloc}, and @code{realloc}. Because the behavior of these functions
5480 when called with a zero size differs among implementations (and in the case
5481 of @code{realloc} has been deprecated) relying on it may result in subtle
5482 portability bugs and should be avoided.
5483
5484 @item -Walloc-size-larger-than=@var{n}
5485 Warn about calls to functions decorated with attribute @code{alloc_size}
5486 that attempt to allocate objects larger than the specified number of bytes,
5487 or where the result of the size computation in an integer type with infinite
5488 precision would exceed @code{SIZE_MAX / 2}. The option argument @var{n}
5489 may end in one of the standard suffixes designating a multiple of bytes
5490 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
5491 @code{MB} and @code{MiB} for megabyte and mebibyte, and so on.
5492 @xref{Function Attributes}.
5493
5494 @item -Walloca
5495 @opindex Wno-alloca
5496 @opindex Walloca
5497 This option warns on all uses of @code{alloca} in the source.
5498
5499 @item -Walloca-larger-than=@var{n}
5500 This option warns on calls to @code{alloca} that are not bounded by a
5501 controlling predicate limiting its argument of integer type to at most
5502 @var{n} bytes, or calls to @code{alloca} where the bound is unknown.
5503 Arguments of non-integer types are considered unbounded even if they
5504 appear to be constrained to the expected range.
5505
5506 For example, a bounded case of @code{alloca} could be:
5507
5508 @smallexample
5509 void func (size_t n)
5510 @{
5511 void *p;
5512 if (n <= 1000)
5513 p = alloca (n);
5514 else
5515 p = malloc (n);
5516 f (p);
5517 @}
5518 @end smallexample
5519
5520 In the above example, passing @code{-Walloca-larger-than=1000} would not
5521 issue a warning because the call to @code{alloca} is known to be at most
5522 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
5523 the compiler would emit a warning.
5524
5525 Unbounded uses, on the other hand, are uses of @code{alloca} with no
5526 controlling predicate constraining its integer argument. For example:
5527
5528 @smallexample
5529 void func ()
5530 @{
5531 void *p = alloca (n);
5532 f (p);
5533 @}
5534 @end smallexample
5535
5536 If @code{-Walloca-larger-than=500} were passed, the above would trigger
5537 a warning, but this time because of the lack of bounds checking.
5538
5539 Note, that even seemingly correct code involving signed integers could
5540 cause a warning:
5541
5542 @smallexample
5543 void func (signed int n)
5544 @{
5545 if (n < 500)
5546 @{
5547 p = alloca (n);
5548 f (p);
5549 @}
5550 @}
5551 @end smallexample
5552
5553 In the above example, @var{n} could be negative, causing a larger than
5554 expected argument to be implicitly cast into the @code{alloca} call.
5555
5556 This option also warns when @code{alloca} is used in a loop.
5557
5558 This warning is not enabled by @option{-Wall}, and is only active when
5559 @option{-ftree-vrp} is active (default for @option{-O2} and above).
5560
5561 See also @option{-Wvla-larger-than=@var{n}}.
5562
5563 @item -Warray-bounds
5564 @itemx -Warray-bounds=@var{n}
5565 @opindex Wno-array-bounds
5566 @opindex Warray-bounds
5567 This option is only active when @option{-ftree-vrp} is active
5568 (default for @option{-O2} and above). It warns about subscripts to arrays
5569 that are always out of bounds. This warning is enabled by @option{-Wall}.
5570
5571 @table @gcctabopt
5572 @item -Warray-bounds=1
5573 This is the warning level of @option{-Warray-bounds} and is enabled
5574 by @option{-Wall}; higher levels are not, and must be explicitly requested.
5575
5576 @item -Warray-bounds=2
5577 This warning level also warns about out of bounds access for
5578 arrays at the end of a struct and for arrays accessed through
5579 pointers. This warning level may give a larger number of
5580 false positives and is deactivated by default.
5581 @end table
5582
5583 @item -Wattribute-alias
5584 Warn about declarations using the @code{alias} and similar attributes whose
5585 target is incompatible with the type of the alias. @xref{Function Attributes,
5586 ,Declaring Attributes of Functions}.
5587
5588 @item -Wbool-compare
5589 @opindex Wno-bool-compare
5590 @opindex Wbool-compare
5591 Warn about boolean expression compared with an integer value different from
5592 @code{true}/@code{false}. For instance, the following comparison is
5593 always false:
5594 @smallexample
5595 int n = 5;
5596 @dots{}
5597 if ((n > 1) == 2) @{ @dots{} @}
5598 @end smallexample
5599 This warning is enabled by @option{-Wall}.
5600
5601 @item -Wbool-operation
5602 @opindex Wno-bool-operation
5603 @opindex Wbool-operation
5604 Warn about suspicious operations on expressions of a boolean type. For
5605 instance, bitwise negation of a boolean is very likely a bug in the program.
5606 For C, this warning also warns about incrementing or decrementing a boolean,
5607 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
5608 Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
5609
5610 This warning is enabled by @option{-Wall}.
5611
5612 @item -Wduplicated-branches
5613 @opindex Wno-duplicated-branches
5614 @opindex Wduplicated-branches
5615 Warn when an if-else has identical branches. This warning detects cases like
5616 @smallexample
5617 if (p != NULL)
5618 return 0;
5619 else
5620 return 0;
5621 @end smallexample
5622 It doesn't warn when both branches contain just a null statement. This warning
5623 also warn for conditional operators:
5624 @smallexample
5625 int i = x ? *p : *p;
5626 @end smallexample
5627
5628 @item -Wduplicated-cond
5629 @opindex Wno-duplicated-cond
5630 @opindex Wduplicated-cond
5631 Warn about duplicated conditions in an if-else-if chain. For instance,
5632 warn for the following code:
5633 @smallexample
5634 if (p->q != NULL) @{ @dots{} @}
5635 else if (p->q != NULL) @{ @dots{} @}
5636 @end smallexample
5637
5638 @item -Wframe-address
5639 @opindex Wno-frame-address
5640 @opindex Wframe-address
5641 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
5642 is called with an argument greater than 0. Such calls may return indeterminate
5643 values or crash the program. The warning is included in @option{-Wall}.
5644
5645 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
5646 @opindex Wno-discarded-qualifiers
5647 @opindex Wdiscarded-qualifiers
5648 Do not warn if type qualifiers on pointers are being discarded.
5649 Typically, the compiler warns if a @code{const char *} variable is
5650 passed to a function that takes a @code{char *} parameter. This option
5651 can be used to suppress such a warning.
5652
5653 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
5654 @opindex Wno-discarded-array-qualifiers
5655 @opindex Wdiscarded-array-qualifiers
5656 Do not warn if type qualifiers on arrays which are pointer targets
5657 are being discarded. Typically, the compiler warns if a
5658 @code{const int (*)[]} variable is passed to a function that
5659 takes a @code{int (*)[]} parameter. This option can be used to
5660 suppress such a warning.
5661
5662 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
5663 @opindex Wno-incompatible-pointer-types
5664 @opindex Wincompatible-pointer-types
5665 Do not warn when there is a conversion between pointers that have incompatible
5666 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
5667 which warns for pointer argument passing or assignment with different
5668 signedness.
5669
5670 @item -Wno-int-conversion @r{(C and Objective-C only)}
5671 @opindex Wno-int-conversion
5672 @opindex Wint-conversion
5673 Do not warn about incompatible integer to pointer and pointer to integer
5674 conversions. This warning is about implicit conversions; for explicit
5675 conversions the warnings @option{-Wno-int-to-pointer-cast} and
5676 @option{-Wno-pointer-to-int-cast} may be used.
5677
5678 @item -Wno-div-by-zero
5679 @opindex Wno-div-by-zero
5680 @opindex Wdiv-by-zero
5681 Do not warn about compile-time integer division by zero. Floating-point
5682 division by zero is not warned about, as it can be a legitimate way of
5683 obtaining infinities and NaNs.
5684
5685 @item -Wsystem-headers
5686 @opindex Wsystem-headers
5687 @opindex Wno-system-headers
5688 @cindex warnings from system headers
5689 @cindex system headers, warnings from
5690 Print warning messages for constructs found in system header files.
5691 Warnings from system headers are normally suppressed, on the assumption
5692 that they usually do not indicate real problems and would only make the
5693 compiler output harder to read. Using this command-line option tells
5694 GCC to emit warnings from system headers as if they occurred in user
5695 code. However, note that using @option{-Wall} in conjunction with this
5696 option does @emph{not} warn about unknown pragmas in system
5697 headers---for that, @option{-Wunknown-pragmas} must also be used.
5698
5699 @item -Wtautological-compare
5700 @opindex Wtautological-compare
5701 @opindex Wno-tautological-compare
5702 Warn if a self-comparison always evaluates to true or false. This
5703 warning detects various mistakes such as:
5704 @smallexample
5705 int i = 1;
5706 @dots{}
5707 if (i > i) @{ @dots{} @}
5708 @end smallexample
5709
5710 This warning also warns about bitwise comparisons that always evaluate
5711 to true or false, for instance:
5712 @smallexample
5713 if ((a & 16) == 10) @{ @dots{} @}
5714 @end smallexample
5715 will always be false.
5716
5717 This warning is enabled by @option{-Wall}.
5718
5719 @item -Wtrampolines
5720 @opindex Wtrampolines
5721 @opindex Wno-trampolines
5722 Warn about trampolines generated for pointers to nested functions.
5723 A trampoline is a small piece of data or code that is created at run
5724 time on the stack when the address of a nested function is taken, and is
5725 used to call the nested function indirectly. For some targets, it is
5726 made up of data only and thus requires no special treatment. But, for
5727 most targets, it is made up of code and thus requires the stack to be
5728 made executable in order for the program to work properly.
5729
5730 @item -Wfloat-equal
5731 @opindex Wfloat-equal
5732 @opindex Wno-float-equal
5733 Warn if floating-point values are used in equality comparisons.
5734
5735 The idea behind this is that sometimes it is convenient (for the
5736 programmer) to consider floating-point values as approximations to
5737 infinitely precise real numbers. If you are doing this, then you need
5738 to compute (by analyzing the code, or in some other way) the maximum or
5739 likely maximum error that the computation introduces, and allow for it
5740 when performing comparisons (and when producing output, but that's a
5741 different problem). In particular, instead of testing for equality, you
5742 should check to see whether the two values have ranges that overlap; and
5743 this is done with the relational operators, so equality comparisons are
5744 probably mistaken.
5745
5746 @item -Wtraditional @r{(C and Objective-C only)}
5747 @opindex Wtraditional
5748 @opindex Wno-traditional
5749 Warn about certain constructs that behave differently in traditional and
5750 ISO C@. Also warn about ISO C constructs that have no traditional C
5751 equivalent, and/or problematic constructs that should be avoided.
5752
5753 @itemize @bullet
5754 @item
5755 Macro parameters that appear within string literals in the macro body.
5756 In traditional C macro replacement takes place within string literals,
5757 but in ISO C it does not.
5758
5759 @item
5760 In traditional C, some preprocessor directives did not exist.
5761 Traditional preprocessors only considered a line to be a directive
5762 if the @samp{#} appeared in column 1 on the line. Therefore
5763 @option{-Wtraditional} warns about directives that traditional C
5764 understands but ignores because the @samp{#} does not appear as the
5765 first character on the line. It also suggests you hide directives like
5766 @code{#pragma} not understood by traditional C by indenting them. Some
5767 traditional implementations do not recognize @code{#elif}, so this option
5768 suggests avoiding it altogether.
5769
5770 @item
5771 A function-like macro that appears without arguments.
5772
5773 @item
5774 The unary plus operator.
5775
5776 @item
5777 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
5778 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
5779 constants.) Note, these suffixes appear in macros defined in the system
5780 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
5781 Use of these macros in user code might normally lead to spurious
5782 warnings, however GCC's integrated preprocessor has enough context to
5783 avoid warning in these cases.
5784
5785 @item
5786 A function declared external in one block and then used after the end of
5787 the block.
5788
5789 @item
5790 A @code{switch} statement has an operand of type @code{long}.
5791
5792 @item
5793 A non-@code{static} function declaration follows a @code{static} one.
5794 This construct is not accepted by some traditional C compilers.
5795
5796 @item
5797 The ISO type of an integer constant has a different width or
5798 signedness from its traditional type. This warning is only issued if
5799 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
5800 typically represent bit patterns, are not warned about.
5801
5802 @item
5803 Usage of ISO string concatenation is detected.
5804
5805 @item
5806 Initialization of automatic aggregates.
5807
5808 @item
5809 Identifier conflicts with labels. Traditional C lacks a separate
5810 namespace for labels.
5811
5812 @item
5813 Initialization of unions. If the initializer is zero, the warning is
5814 omitted. This is done under the assumption that the zero initializer in
5815 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
5816 initializer warnings and relies on default initialization to zero in the
5817 traditional C case.
5818
5819 @item
5820 Conversions by prototypes between fixed/floating-point values and vice
5821 versa. The absence of these prototypes when compiling with traditional
5822 C causes serious problems. This is a subset of the possible
5823 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
5824
5825 @item
5826 Use of ISO C style function definitions. This warning intentionally is
5827 @emph{not} issued for prototype declarations or variadic functions
5828 because these ISO C features appear in your code when using
5829 libiberty's traditional C compatibility macros, @code{PARAMS} and
5830 @code{VPARAMS}. This warning is also bypassed for nested functions
5831 because that feature is already a GCC extension and thus not relevant to
5832 traditional C compatibility.
5833 @end itemize
5834
5835 @item -Wtraditional-conversion @r{(C and Objective-C only)}
5836 @opindex Wtraditional-conversion
5837 @opindex Wno-traditional-conversion
5838 Warn if a prototype causes a type conversion that is different from what
5839 would happen to the same argument in the absence of a prototype. This
5840 includes conversions of fixed point to floating and vice versa, and
5841 conversions changing the width or signedness of a fixed-point argument
5842 except when the same as the default promotion.
5843
5844 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
5845 @opindex Wdeclaration-after-statement
5846 @opindex Wno-declaration-after-statement
5847 Warn when a declaration is found after a statement in a block. This
5848 construct, known from C++, was introduced with ISO C99 and is by default
5849 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
5850
5851 @item -Wshadow
5852 @opindex Wshadow
5853 @opindex Wno-shadow
5854 Warn whenever a local variable or type declaration shadows another
5855 variable, parameter, type, class member (in C++), or instance variable
5856 (in Objective-C) or whenever a built-in function is shadowed. Note
5857 that in C++, the compiler warns if a local variable shadows an
5858 explicit typedef, but not if it shadows a struct/class/enum.
5859 Same as @option{-Wshadow=global}.
5860
5861 @item -Wno-shadow-ivar @r{(Objective-C only)}
5862 @opindex Wno-shadow-ivar
5863 @opindex Wshadow-ivar
5864 Do not warn whenever a local variable shadows an instance variable in an
5865 Objective-C method.
5866
5867 @item -Wshadow=global
5868 @opindex Wshadow=local
5869 The default for @option{-Wshadow}. Warns for any (global) shadowing.
5870
5871 @item -Wshadow=local
5872 @opindex Wshadow=local
5873 Warn when a local variable shadows another local variable or parameter.
5874 This warning is enabled by @option{-Wshadow=global}.
5875
5876 @item -Wshadow=compatible-local
5877 @opindex Wshadow=compatible-local
5878 Warn when a local variable shadows another local variable or parameter
5879 whose type is compatible with that of the shadowing variable. In C++,
5880 type compatibility here means the type of the shadowing variable can be
5881 converted to that of the shadowed variable. The creation of this flag
5882 (in addition to @option{-Wshadow=local}) is based on the idea that when
5883 a local variable shadows another one of incompatible type, it is most
5884 likely intentional, not a bug or typo, as shown in the following example:
5885
5886 @smallexample
5887 @group
5888 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
5889 @{
5890 for (int i = 0; i < N; ++i)
5891 @{
5892 ...
5893 @}
5894 ...
5895 @}
5896 @end group
5897 @end smallexample
5898
5899 Since the two variable @code{i} in the example above have incompatible types,
5900 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
5901 Because their types are incompatible, if a programmer accidentally uses one
5902 in place of the other, type checking will catch that and emit an error or
5903 warning. So not warning (about shadowing) in this case will not lead to
5904 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
5905 possibly reduce the number of warnings triggered by intentional shadowing.
5906
5907 This warning is enabled by @option{-Wshadow=local}.
5908
5909 @item -Wlarger-than=@var{len}
5910 @opindex Wlarger-than=@var{len}
5911 @opindex Wlarger-than-@var{len}
5912 Warn whenever an object of larger than @var{len} bytes is defined.
5913
5914 @item -Wframe-larger-than=@var{len}
5915 @opindex Wframe-larger-than
5916 Warn if the size of a function frame is larger than @var{len} bytes.
5917 The computation done to determine the stack frame size is approximate
5918 and not conservative.
5919 The actual requirements may be somewhat greater than @var{len}
5920 even if you do not get a warning. In addition, any space allocated
5921 via @code{alloca}, variable-length arrays, or related constructs
5922 is not included by the compiler when determining
5923 whether or not to issue a warning.
5924
5925 @item -Wno-free-nonheap-object
5926 @opindex Wno-free-nonheap-object
5927 @opindex Wfree-nonheap-object
5928 Do not warn when attempting to free an object that was not allocated
5929 on the heap.
5930
5931 @item -Wstack-usage=@var{len}
5932 @opindex Wstack-usage
5933 Warn if the stack usage of a function might be larger than @var{len} bytes.
5934 The computation done to determine the stack usage is conservative.
5935 Any space allocated via @code{alloca}, variable-length arrays, or related
5936 constructs is included by the compiler when determining whether or not to
5937 issue a warning.
5938
5939 The message is in keeping with the output of @option{-fstack-usage}.
5940
5941 @itemize
5942 @item
5943 If the stack usage is fully static but exceeds the specified amount, it's:
5944
5945 @smallexample
5946 warning: stack usage is 1120 bytes
5947 @end smallexample
5948 @item
5949 If the stack usage is (partly) dynamic but bounded, it's:
5950
5951 @smallexample
5952 warning: stack usage might be 1648 bytes
5953 @end smallexample
5954 @item
5955 If the stack usage is (partly) dynamic and not bounded, it's:
5956
5957 @smallexample
5958 warning: stack usage might be unbounded
5959 @end smallexample
5960 @end itemize
5961
5962 @item -Wunsafe-loop-optimizations
5963 @opindex Wunsafe-loop-optimizations
5964 @opindex Wno-unsafe-loop-optimizations
5965 Warn if the loop cannot be optimized because the compiler cannot
5966 assume anything on the bounds of the loop indices. With
5967 @option{-funsafe-loop-optimizations} warn if the compiler makes
5968 such assumptions.
5969
5970 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
5971 @opindex Wno-pedantic-ms-format
5972 @opindex Wpedantic-ms-format
5973 When used in combination with @option{-Wformat}
5974 and @option{-pedantic} without GNU extensions, this option
5975 disables the warnings about non-ISO @code{printf} / @code{scanf} format
5976 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
5977 which depend on the MS runtime.
5978
5979 @item -Waligned-new
5980 @opindex Waligned-new
5981 @opindex Wno-aligned-new
5982 Warn about a new-expression of a type that requires greater alignment
5983 than the @code{alignof(std::max_align_t)} but uses an allocation
5984 function without an explicit alignment parameter. This option is
5985 enabled by @option{-Wall}.
5986
5987 Normally this only warns about global allocation functions, but
5988 @option{-Waligned-new=all} also warns about class member allocation
5989 functions.
5990
5991 @item -Wplacement-new
5992 @itemx -Wplacement-new=@var{n}
5993 @opindex Wplacement-new
5994 @opindex Wno-placement-new
5995 Warn about placement new expressions with undefined behavior, such as
5996 constructing an object in a buffer that is smaller than the type of
5997 the object. For example, the placement new expression below is diagnosed
5998 because it attempts to construct an array of 64 integers in a buffer only
5999 64 bytes large.
6000 @smallexample
6001 char buf [64];
6002 new (buf) int[64];
6003 @end smallexample
6004 This warning is enabled by default.
6005
6006 @table @gcctabopt
6007 @item -Wplacement-new=1
6008 This is the default warning level of @option{-Wplacement-new}. At this
6009 level the warning is not issued for some strictly undefined constructs that
6010 GCC allows as extensions for compatibility with legacy code. For example,
6011 the following @code{new} expression is not diagnosed at this level even
6012 though it has undefined behavior according to the C++ standard because
6013 it writes past the end of the one-element array.
6014 @smallexample
6015 struct S @{ int n, a[1]; @};
6016 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
6017 new (s->a)int [32]();
6018 @end smallexample
6019
6020 @item -Wplacement-new=2
6021 At this level, in addition to diagnosing all the same constructs as at level
6022 1, a diagnostic is also issued for placement new expressions that construct
6023 an object in the last member of structure whose type is an array of a single
6024 element and whose size is less than the size of the object being constructed.
6025 While the previous example would be diagnosed, the following construct makes
6026 use of the flexible member array extension to avoid the warning at level 2.
6027 @smallexample
6028 struct S @{ int n, a[]; @};
6029 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
6030 new (s->a)int [32]();
6031 @end smallexample
6032
6033 @end table
6034
6035 @item -Wpointer-arith
6036 @opindex Wpointer-arith
6037 @opindex Wno-pointer-arith
6038 Warn about anything that depends on the ``size of'' a function type or
6039 of @code{void}. GNU C assigns these types a size of 1, for
6040 convenience in calculations with @code{void *} pointers and pointers
6041 to functions. In C++, warn also when an arithmetic operation involves
6042 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
6043
6044 @item -Wpointer-compare
6045 @opindex Wpointer-compare
6046 @opindex Wno-pointer-compare
6047 Warn if a pointer is compared with a zero character constant. This usually
6048 means that the pointer was meant to be dereferenced. For example:
6049
6050 @smallexample
6051 const char *p = foo ();
6052 if (p == '\0')
6053 return 42;
6054 @end smallexample
6055
6056 Note that the code above is invalid in C++11.
6057
6058 This warning is enabled by default.
6059
6060 @item -Wtype-limits
6061 @opindex Wtype-limits
6062 @opindex Wno-type-limits
6063 Warn if a comparison is always true or always false due to the limited
6064 range of the data type, but do not warn for constant expressions. For
6065 example, warn if an unsigned variable is compared against zero with
6066 @code{<} or @code{>=}. This warning is also enabled by
6067 @option{-Wextra}.
6068
6069 @include cppwarnopts.texi
6070
6071 @item -Wbad-function-cast @r{(C and Objective-C only)}
6072 @opindex Wbad-function-cast
6073 @opindex Wno-bad-function-cast
6074 Warn when a function call is cast to a non-matching type.
6075 For example, warn if a call to a function returning an integer type
6076 is cast to a pointer type.
6077
6078 @item -Wc90-c99-compat @r{(C and Objective-C only)}
6079 @opindex Wc90-c99-compat
6080 @opindex Wno-c90-c99-compat
6081 Warn about features not present in ISO C90, but present in ISO C99.
6082 For instance, warn about use of variable length arrays, @code{long long}
6083 type, @code{bool} type, compound literals, designated initializers, and so
6084 on. This option is independent of the standards mode. Warnings are disabled
6085 in the expression that follows @code{__extension__}.
6086
6087 @item -Wc99-c11-compat @r{(C and Objective-C only)}
6088 @opindex Wc99-c11-compat
6089 @opindex Wno-c99-c11-compat
6090 Warn about features not present in ISO C99, but present in ISO C11.
6091 For instance, warn about use of anonymous structures and unions,
6092 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
6093 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
6094 and so on. This option is independent of the standards mode. Warnings are
6095 disabled in the expression that follows @code{__extension__}.
6096
6097 @item -Wc++-compat @r{(C and Objective-C only)}
6098 @opindex Wc++-compat
6099 Warn about ISO C constructs that are outside of the common subset of
6100 ISO C and ISO C++, e.g.@: request for implicit conversion from
6101 @code{void *} to a pointer to non-@code{void} type.
6102
6103 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
6104 @opindex Wc++11-compat
6105 Warn about C++ constructs whose meaning differs between ISO C++ 1998
6106 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
6107 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
6108 enabled by @option{-Wall}.
6109
6110 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6111 @opindex Wc++14-compat
6112 Warn about C++ constructs whose meaning differs between ISO C++ 2011
6113 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
6114
6115 @item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6116 @opindex Wc++17-compat
6117 Warn about C++ constructs whose meaning differs between ISO C++ 2014
6118 and ISO C++ 2017. This warning is enabled by @option{-Wall}.
6119
6120 @item -Wcast-qual
6121 @opindex Wcast-qual
6122 @opindex Wno-cast-qual
6123 Warn whenever a pointer is cast so as to remove a type qualifier from
6124 the target type. For example, warn if a @code{const char *} is cast
6125 to an ordinary @code{char *}.
6126
6127 Also warn when making a cast that introduces a type qualifier in an
6128 unsafe way. For example, casting @code{char **} to @code{const char **}
6129 is unsafe, as in this example:
6130
6131 @smallexample
6132 /* p is char ** value. */
6133 const char **q = (const char **) p;
6134 /* Assignment of readonly string to const char * is OK. */
6135 *q = "string";
6136 /* Now char** pointer points to read-only memory. */
6137 **p = 'b';
6138 @end smallexample
6139
6140 @item -Wcast-align
6141 @opindex Wcast-align
6142 @opindex Wno-cast-align
6143 Warn whenever a pointer is cast such that the required alignment of the
6144 target is increased. For example, warn if a @code{char *} is cast to
6145 an @code{int *} on machines where integers can only be accessed at
6146 two- or four-byte boundaries.
6147
6148 @item -Wcast-align=strict
6149 @opindex Wcast-align=strict
6150 Warn whenever a pointer is cast such that the required alignment of the
6151 target is increased. For example, warn if a @code{char *} is cast to
6152 an @code{int *} regardless of the target machine.
6153
6154 @item -Wcast-function-type
6155 @opindex Wcast-function-type
6156 @opindex Wno-cast-function-type
6157 Warn when a function pointer is cast to an incompatible function pointer.
6158 In a cast involving function types with a variable argument list only
6159 the types of initial arguments that are provided are considered.
6160 Any parameter of pointer-type matches any other pointer-type. Any benign
6161 differences in integral types are ignored, like @code{int} vs. @code{long}
6162 on ILP32 targets. Likewise type qualifiers are ignored. The function
6163 type @code{void (*) (void)} is special and matches everything, which can
6164 be used to suppress this warning.
6165 In a cast involving pointer to member types this warning warns whenever
6166 the type cast is changing the pointer to member type.
6167 This warning is enabled by @option{-Wextra}.
6168
6169 @item -Wwrite-strings
6170 @opindex Wwrite-strings
6171 @opindex Wno-write-strings
6172 When compiling C, give string constants the type @code{const
6173 char[@var{length}]} so that copying the address of one into a
6174 non-@code{const} @code{char *} pointer produces a warning. These
6175 warnings help you find at compile time code that can try to write
6176 into a string constant, but only if you have been very careful about
6177 using @code{const} in declarations and prototypes. Otherwise, it is
6178 just a nuisance. This is why we did not make @option{-Wall} request
6179 these warnings.
6180
6181 When compiling C++, warn about the deprecated conversion from string
6182 literals to @code{char *}. This warning is enabled by default for C++
6183 programs.
6184
6185 @item -Wcatch-value
6186 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6187 @opindex Wcatch-value
6188 @opindex Wno-catch-value
6189 Warn about catch handlers that do not catch via reference.
6190 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6191 warn about polymorphic class types that are caught by value.
6192 With @option{-Wcatch-value=2} warn about all class types that are caught
6193 by value. With @option{-Wcatch-value=3} warn about all types that are
6194 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6195
6196 @item -Wclobbered
6197 @opindex Wclobbered
6198 @opindex Wno-clobbered
6199 Warn for variables that might be changed by @code{longjmp} or
6200 @code{vfork}. This warning is also enabled by @option{-Wextra}.
6201
6202 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6203 @opindex Wconditionally-supported
6204 @opindex Wno-conditionally-supported
6205 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6206
6207 @item -Wconversion
6208 @opindex Wconversion
6209 @opindex Wno-conversion
6210 Warn for implicit conversions that may alter a value. This includes
6211 conversions between real and integer, like @code{abs (x)} when
6212 @code{x} is @code{double}; conversions between signed and unsigned,
6213 like @code{unsigned ui = -1}; and conversions to smaller types, like
6214 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6215 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6216 changed by the conversion like in @code{abs (2.0)}. Warnings about
6217 conversions between signed and unsigned integers can be disabled by
6218 using @option{-Wno-sign-conversion}.
6219
6220 For C++, also warn for confusing overload resolution for user-defined
6221 conversions; and conversions that never use a type conversion
6222 operator: conversions to @code{void}, the same type, a base class or a
6223 reference to them. Warnings about conversions between signed and
6224 unsigned integers are disabled by default in C++ unless
6225 @option{-Wsign-conversion} is explicitly enabled.
6226
6227 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6228 @opindex Wconversion-null
6229 @opindex Wno-conversion-null
6230 Do not warn for conversions between @code{NULL} and non-pointer
6231 types. @option{-Wconversion-null} is enabled by default.
6232
6233 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6234 @opindex Wzero-as-null-pointer-constant
6235 @opindex Wno-zero-as-null-pointer-constant
6236 Warn when a literal @samp{0} is used as null pointer constant. This can
6237 be useful to facilitate the conversion to @code{nullptr} in C++11.
6238
6239 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6240 @opindex Wsubobject-linkage
6241 @opindex Wno-subobject-linkage
6242 Warn if a class type has a base or a field whose type uses the anonymous
6243 namespace or depends on a type with no linkage. If a type A depends on
6244 a type B with no or internal linkage, defining it in multiple
6245 translation units would be an ODR violation because the meaning of B
6246 is different in each translation unit. If A only appears in a single
6247 translation unit, the best way to silence the warning is to give it
6248 internal linkage by putting it in an anonymous namespace as well. The
6249 compiler doesn't give this warning for types defined in the main .C
6250 file, as those are unlikely to have multiple definitions.
6251 @option{-Wsubobject-linkage} is enabled by default.
6252
6253 @item -Wdangling-else
6254 @opindex Wdangling-else
6255 @opindex Wno-dangling-else
6256 Warn about constructions where there may be confusion to which
6257 @code{if} statement an @code{else} branch belongs. Here is an example of
6258 such a case:
6259
6260 @smallexample
6261 @group
6262 @{
6263 if (a)
6264 if (b)
6265 foo ();
6266 else
6267 bar ();
6268 @}
6269 @end group
6270 @end smallexample
6271
6272 In C/C++, every @code{else} branch belongs to the innermost possible
6273 @code{if} statement, which in this example is @code{if (b)}. This is
6274 often not what the programmer expected, as illustrated in the above
6275 example by indentation the programmer chose. When there is the
6276 potential for this confusion, GCC issues a warning when this flag
6277 is specified. To eliminate the warning, add explicit braces around
6278 the innermost @code{if} statement so there is no way the @code{else}
6279 can belong to the enclosing @code{if}. The resulting code
6280 looks like this:
6281
6282 @smallexample
6283 @group
6284 @{
6285 if (a)
6286 @{
6287 if (b)
6288 foo ();
6289 else
6290 bar ();
6291 @}
6292 @}
6293 @end group
6294 @end smallexample
6295
6296 This warning is enabled by @option{-Wparentheses}.
6297
6298 @item -Wdate-time
6299 @opindex Wdate-time
6300 @opindex Wno-date-time
6301 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6302 are encountered as they might prevent bit-wise-identical reproducible
6303 compilations.
6304
6305 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6306 @opindex Wdelete-incomplete
6307 @opindex Wno-delete-incomplete
6308 Warn when deleting a pointer to incomplete type, which may cause
6309 undefined behavior at runtime. This warning is enabled by default.
6310
6311 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6312 @opindex Wuseless-cast
6313 @opindex Wno-useless-cast
6314 Warn when an expression is casted to its own type.
6315
6316 @item -Wempty-body
6317 @opindex Wempty-body
6318 @opindex Wno-empty-body
6319 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6320 while} statement. This warning is also enabled by @option{-Wextra}.
6321
6322 @item -Wenum-compare
6323 @opindex Wenum-compare
6324 @opindex Wno-enum-compare
6325 Warn about a comparison between values of different enumerated types.
6326 In C++ enumerated type mismatches in conditional expressions are also
6327 diagnosed and the warning is enabled by default. In C this warning is
6328 enabled by @option{-Wall}.
6329
6330 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6331 @opindex Wextra-semi
6332 @opindex Wno-extra-semi
6333 Warn about redundant semicolon after in-class function definition.
6334
6335 @item -Wjump-misses-init @r{(C, Objective-C only)}
6336 @opindex Wjump-misses-init
6337 @opindex Wno-jump-misses-init
6338 Warn if a @code{goto} statement or a @code{switch} statement jumps
6339 forward across the initialization of a variable, or jumps backward to a
6340 label after the variable has been initialized. This only warns about
6341 variables that are initialized when they are declared. This warning is
6342 only supported for C and Objective-C; in C++ this sort of branch is an
6343 error in any case.
6344
6345 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
6346 can be disabled with the @option{-Wno-jump-misses-init} option.
6347
6348 @item -Wsign-compare
6349 @opindex Wsign-compare
6350 @opindex Wno-sign-compare
6351 @cindex warning for comparison of signed and unsigned values
6352 @cindex comparison of signed and unsigned values, warning
6353 @cindex signed and unsigned values, comparison warning
6354 Warn when a comparison between signed and unsigned values could produce
6355 an incorrect result when the signed value is converted to unsigned.
6356 In C++, this warning is also enabled by @option{-Wall}. In C, it is
6357 also enabled by @option{-Wextra}.
6358
6359 @item -Wsign-conversion
6360 @opindex Wsign-conversion
6361 @opindex Wno-sign-conversion
6362 Warn for implicit conversions that may change the sign of an integer
6363 value, like assigning a signed integer expression to an unsigned
6364 integer variable. An explicit cast silences the warning. In C, this
6365 option is enabled also by @option{-Wconversion}.
6366
6367 @item -Wfloat-conversion
6368 @opindex Wfloat-conversion
6369 @opindex Wno-float-conversion
6370 Warn for implicit conversions that reduce the precision of a real value.
6371 This includes conversions from real to integer, and from higher precision
6372 real to lower precision real values. This option is also enabled by
6373 @option{-Wconversion}.
6374
6375 @item -Wno-scalar-storage-order
6376 @opindex -Wno-scalar-storage-order
6377 @opindex -Wscalar-storage-order
6378 Do not warn on suspicious constructs involving reverse scalar storage order.
6379
6380 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
6381 @opindex Wsized-deallocation
6382 @opindex Wno-sized-deallocation
6383 Warn about a definition of an unsized deallocation function
6384 @smallexample
6385 void operator delete (void *) noexcept;
6386 void operator delete[] (void *) noexcept;
6387 @end smallexample
6388 without a definition of the corresponding sized deallocation function
6389 @smallexample
6390 void operator delete (void *, std::size_t) noexcept;
6391 void operator delete[] (void *, std::size_t) noexcept;
6392 @end smallexample
6393 or vice versa. Enabled by @option{-Wextra} along with
6394 @option{-fsized-deallocation}.
6395
6396 @item -Wsizeof-pointer-div
6397 @opindex Wsizeof-pointer-div
6398 @opindex Wno-sizeof-pointer-div
6399 Warn for suspicious divisions of two sizeof expressions that divide
6400 the pointer size by the element size, which is the usual way to compute
6401 the array size but won't work out correctly with pointers. This warning
6402 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
6403 not an array, but a pointer. This warning is enabled by @option{-Wall}.
6404
6405 @item -Wsizeof-pointer-memaccess
6406 @opindex Wsizeof-pointer-memaccess
6407 @opindex Wno-sizeof-pointer-memaccess
6408 Warn for suspicious length parameters to certain string and memory built-in
6409 functions if the argument uses @code{sizeof}. This warning triggers for
6410 example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
6411 an array, but a pointer, and suggests a possible fix, or about
6412 @code{memcpy (&foo, ptr, sizeof (&foo));}. @option{-Wsizeof-pointer-memaccess}
6413 also warns about calls to bounded string copy functions like @code{strncat}
6414 or @code{strncpy} that specify as the bound a @code{sizeof} expression of
6415 the source array. For example, in the following function the call to
6416 @code{strncat} specifies the size of the source string as the bound. That
6417 is almost certainly a mistake and so the call is diagnosed.
6418 @smallexample
6419 void make_file (const char *name)
6420 @{
6421 char path[PATH_MAX];
6422 strncpy (path, name, sizeof path - 1);
6423 strncat (path, ".text", sizeof ".text");
6424 @dots{}
6425 @}
6426 @end smallexample
6427
6428 The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
6429
6430 @item -Wsizeof-array-argument
6431 @opindex Wsizeof-array-argument
6432 @opindex Wno-sizeof-array-argument
6433 Warn when the @code{sizeof} operator is applied to a parameter that is
6434 declared as an array in a function definition. This warning is enabled by
6435 default for C and C++ programs.
6436
6437 @item -Wmemset-elt-size
6438 @opindex Wmemset-elt-size
6439 @opindex Wno-memset-elt-size
6440 Warn for suspicious calls to the @code{memset} built-in function, if the
6441 first argument references an array, and the third argument is a number
6442 equal to the number of elements, but not equal to the size of the array
6443 in memory. This indicates that the user has omitted a multiplication by
6444 the element size. This warning is enabled by @option{-Wall}.
6445
6446 @item -Wmemset-transposed-args
6447 @opindex Wmemset-transposed-args
6448 @opindex Wno-memset-transposed-args
6449 Warn for suspicious calls to the @code{memset} built-in function, if the
6450 second argument is not zero and the third argument is zero. This warns e.g.@
6451 about @code{memset (buf, sizeof buf, 0)} where most probably
6452 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
6453 is only emitted if the third argument is literal zero. If it is some
6454 expression that is folded to zero, a cast of zero to some type, etc.,
6455 it is far less likely that the user has mistakenly exchanged the arguments
6456 and no warning is emitted. This warning is enabled by @option{-Wall}.
6457
6458 @item -Waddress
6459 @opindex Waddress
6460 @opindex Wno-address
6461 Warn about suspicious uses of memory addresses. These include using
6462 the address of a function in a conditional expression, such as
6463 @code{void func(void); if (func)}, and comparisons against the memory
6464 address of a string literal, such as @code{if (x == "abc")}. Such
6465 uses typically indicate a programmer error: the address of a function
6466 always evaluates to true, so their use in a conditional usually
6467 indicate that the programmer forgot the parentheses in a function
6468 call; and comparisons against string literals result in unspecified
6469 behavior and are not portable in C, so they usually indicate that the
6470 programmer intended to use @code{strcmp}. This warning is enabled by
6471 @option{-Wall}.
6472
6473 @item -Wlogical-op
6474 @opindex Wlogical-op
6475 @opindex Wno-logical-op
6476 Warn about suspicious uses of logical operators in expressions.
6477 This includes using logical operators in contexts where a
6478 bit-wise operator is likely to be expected. Also warns when
6479 the operands of a logical operator are the same:
6480 @smallexample
6481 extern int a;
6482 if (a < 0 && a < 0) @{ @dots{} @}
6483 @end smallexample
6484
6485 @item -Wlogical-not-parentheses
6486 @opindex Wlogical-not-parentheses
6487 @opindex Wno-logical-not-parentheses
6488 Warn about logical not used on the left hand side operand of a comparison.
6489 This option does not warn if the right operand is considered to be a boolean
6490 expression. Its purpose is to detect suspicious code like the following:
6491 @smallexample
6492 int a;
6493 @dots{}
6494 if (!a > 1) @{ @dots{} @}
6495 @end smallexample
6496
6497 It is possible to suppress the warning by wrapping the LHS into
6498 parentheses:
6499 @smallexample
6500 if ((!a) > 1) @{ @dots{} @}
6501 @end smallexample
6502
6503 This warning is enabled by @option{-Wall}.
6504
6505 @item -Waggregate-return
6506 @opindex Waggregate-return
6507 @opindex Wno-aggregate-return
6508 Warn if any functions that return structures or unions are defined or
6509 called. (In languages where you can return an array, this also elicits
6510 a warning.)
6511
6512 @item -Wno-aggressive-loop-optimizations
6513 @opindex Wno-aggressive-loop-optimizations
6514 @opindex Waggressive-loop-optimizations
6515 Warn if in a loop with constant number of iterations the compiler detects
6516 undefined behavior in some statement during one or more of the iterations.
6517
6518 @item -Wno-attributes
6519 @opindex Wno-attributes
6520 @opindex Wattributes
6521 Do not warn if an unexpected @code{__attribute__} is used, such as
6522 unrecognized attributes, function attributes applied to variables,
6523 etc. This does not stop errors for incorrect use of supported
6524 attributes.
6525
6526 @item -Wno-builtin-declaration-mismatch
6527 @opindex Wno-builtin-declaration-mismatch
6528 @opindex Wbuiltin-declaration-mismatch
6529 Warn if a built-in function is declared with the wrong signature or
6530 as non-function.
6531 This warning is enabled by default.
6532
6533 @item -Wno-builtin-macro-redefined
6534 @opindex Wno-builtin-macro-redefined
6535 @opindex Wbuiltin-macro-redefined
6536 Do not warn if certain built-in macros are redefined. This suppresses
6537 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
6538 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
6539
6540 @item -Wstrict-prototypes @r{(C and Objective-C only)}
6541 @opindex Wstrict-prototypes
6542 @opindex Wno-strict-prototypes
6543 Warn if a function is declared or defined without specifying the
6544 argument types. (An old-style function definition is permitted without
6545 a warning if preceded by a declaration that specifies the argument
6546 types.)
6547
6548 @item -Wold-style-declaration @r{(C and Objective-C only)}
6549 @opindex Wold-style-declaration
6550 @opindex Wno-old-style-declaration
6551 Warn for obsolescent usages, according to the C Standard, in a
6552 declaration. For example, warn if storage-class specifiers like
6553 @code{static} are not the first things in a declaration. This warning
6554 is also enabled by @option{-Wextra}.
6555
6556 @item -Wold-style-definition @r{(C and Objective-C only)}
6557 @opindex Wold-style-definition
6558 @opindex Wno-old-style-definition
6559 Warn if an old-style function definition is used. A warning is given
6560 even if there is a previous prototype.
6561
6562 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
6563 @opindex Wmissing-parameter-type
6564 @opindex Wno-missing-parameter-type
6565 A function parameter is declared without a type specifier in K&R-style
6566 functions:
6567
6568 @smallexample
6569 void foo(bar) @{ @}
6570 @end smallexample
6571
6572 This warning is also enabled by @option{-Wextra}.
6573
6574 @item -Wmissing-prototypes @r{(C and Objective-C only)}
6575 @opindex Wmissing-prototypes
6576 @opindex Wno-missing-prototypes
6577 Warn if a global function is defined without a previous prototype
6578 declaration. This warning is issued even if the definition itself
6579 provides a prototype. Use this option to detect global functions
6580 that do not have a matching prototype declaration in a header file.
6581 This option is not valid for C++ because all function declarations
6582 provide prototypes and a non-matching declaration declares an
6583 overload rather than conflict with an earlier declaration.
6584 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
6585
6586 @item -Wmissing-declarations
6587 @opindex Wmissing-declarations
6588 @opindex Wno-missing-declarations
6589 Warn if a global function is defined without a previous declaration.
6590 Do so even if the definition itself provides a prototype.
6591 Use this option to detect global functions that are not declared in
6592 header files. In C, no warnings are issued for functions with previous
6593 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
6594 missing prototypes. In C++, no warnings are issued for function templates,
6595 or for inline functions, or for functions in anonymous namespaces.
6596
6597 @item -Wmissing-field-initializers
6598 @opindex Wmissing-field-initializers
6599 @opindex Wno-missing-field-initializers
6600 @opindex W
6601 @opindex Wextra
6602 @opindex Wno-extra
6603 Warn if a structure's initializer has some fields missing. For
6604 example, the following code causes such a warning, because
6605 @code{x.h} is implicitly zero:
6606
6607 @smallexample
6608 struct s @{ int f, g, h; @};
6609 struct s x = @{ 3, 4 @};
6610 @end smallexample
6611
6612 This option does not warn about designated initializers, so the following
6613 modification does not trigger a warning:
6614
6615 @smallexample
6616 struct s @{ int f, g, h; @};
6617 struct s x = @{ .f = 3, .g = 4 @};
6618 @end smallexample
6619
6620 In C this option does not warn about the universal zero initializer
6621 @samp{@{ 0 @}}:
6622
6623 @smallexample
6624 struct s @{ int f, g, h; @};
6625 struct s x = @{ 0 @};
6626 @end smallexample
6627
6628 Likewise, in C++ this option does not warn about the empty @{ @}
6629 initializer, for example:
6630
6631 @smallexample
6632 struct s @{ int f, g, h; @};
6633 s x = @{ @};
6634 @end smallexample
6635
6636 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
6637 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
6638
6639 @item -Wno-multichar
6640 @opindex Wno-multichar
6641 @opindex Wmultichar
6642 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
6643 Usually they indicate a typo in the user's code, as they have
6644 implementation-defined values, and should not be used in portable code.
6645
6646 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
6647 @opindex Wnormalized=
6648 @opindex Wnormalized
6649 @opindex Wno-normalized
6650 @cindex NFC
6651 @cindex NFKC
6652 @cindex character set, input normalization
6653 In ISO C and ISO C++, two identifiers are different if they are
6654 different sequences of characters. However, sometimes when characters
6655 outside the basic ASCII character set are used, you can have two
6656 different character sequences that look the same. To avoid confusion,
6657 the ISO 10646 standard sets out some @dfn{normalization rules} which
6658 when applied ensure that two sequences that look the same are turned into
6659 the same sequence. GCC can warn you if you are using identifiers that
6660 have not been normalized; this option controls that warning.
6661
6662 There are four levels of warning supported by GCC@. The default is
6663 @option{-Wnormalized=nfc}, which warns about any identifier that is
6664 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
6665 recommended form for most uses. It is equivalent to
6666 @option{-Wnormalized}.
6667
6668 Unfortunately, there are some characters allowed in identifiers by
6669 ISO C and ISO C++ that, when turned into NFC, are not allowed in
6670 identifiers. That is, there's no way to use these symbols in portable
6671 ISO C or C++ and have all your identifiers in NFC@.
6672 @option{-Wnormalized=id} suppresses the warning for these characters.
6673 It is hoped that future versions of the standards involved will correct
6674 this, which is why this option is not the default.
6675
6676 You can switch the warning off for all characters by writing
6677 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
6678 only do this if you are using some other normalization scheme (like
6679 ``D''), because otherwise you can easily create bugs that are
6680 literally impossible to see.
6681
6682 Some characters in ISO 10646 have distinct meanings but look identical
6683 in some fonts or display methodologies, especially once formatting has
6684 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
6685 LETTER N'', displays just like a regular @code{n} that has been
6686 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
6687 normalization scheme to convert all these into a standard form as
6688 well, and GCC warns if your code is not in NFKC if you use
6689 @option{-Wnormalized=nfkc}. This warning is comparable to warning
6690 about every identifier that contains the letter O because it might be
6691 confused with the digit 0, and so is not the default, but may be
6692 useful as a local coding convention if the programming environment
6693 cannot be fixed to display these characters distinctly.
6694
6695 @item -Wno-deprecated
6696 @opindex Wno-deprecated
6697 @opindex Wdeprecated
6698 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
6699
6700 @item -Wno-deprecated-declarations
6701 @opindex Wno-deprecated-declarations
6702 @opindex Wdeprecated-declarations
6703 Do not warn about uses of functions (@pxref{Function Attributes}),
6704 variables (@pxref{Variable Attributes}), and types (@pxref{Type
6705 Attributes}) marked as deprecated by using the @code{deprecated}
6706 attribute.
6707
6708 @item -Wno-overflow
6709 @opindex Wno-overflow
6710 @opindex Woverflow
6711 Do not warn about compile-time overflow in constant expressions.
6712
6713 @item -Wno-odr
6714 @opindex Wno-odr
6715 @opindex Wodr
6716 Warn about One Definition Rule violations during link-time optimization.
6717 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
6718
6719 @item -Wopenmp-simd
6720 @opindex Wopenm-simd
6721 Warn if the vectorizer cost model overrides the OpenMP
6722 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
6723 option can be used to relax the cost model.
6724
6725 @item -Woverride-init @r{(C and Objective-C only)}
6726 @opindex Woverride-init
6727 @opindex Wno-override-init
6728 @opindex W
6729 @opindex Wextra
6730 @opindex Wno-extra
6731 Warn if an initialized field without side effects is overridden when
6732 using designated initializers (@pxref{Designated Inits, , Designated
6733 Initializers}).
6734
6735 This warning is included in @option{-Wextra}. To get other
6736 @option{-Wextra} warnings without this one, use @option{-Wextra
6737 -Wno-override-init}.
6738
6739 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
6740 @opindex Woverride-init-side-effects
6741 @opindex Wno-override-init-side-effects
6742 Warn if an initialized field with side effects is overridden when
6743 using designated initializers (@pxref{Designated Inits, , Designated
6744 Initializers}). This warning is enabled by default.
6745
6746 @item -Wpacked
6747 @opindex Wpacked
6748 @opindex Wno-packed
6749 Warn if a structure is given the packed attribute, but the packed
6750 attribute has no effect on the layout or size of the structure.
6751 Such structures may be mis-aligned for little benefit. For
6752 instance, in this code, the variable @code{f.x} in @code{struct bar}
6753 is misaligned even though @code{struct bar} does not itself
6754 have the packed attribute:
6755
6756 @smallexample
6757 @group
6758 struct foo @{
6759 int x;
6760 char a, b, c, d;
6761 @} __attribute__((packed));
6762 struct bar @{
6763 char z;
6764 struct foo f;
6765 @};
6766 @end group
6767 @end smallexample
6768
6769 @item -Wpacked-bitfield-compat
6770 @opindex Wpacked-bitfield-compat
6771 @opindex Wno-packed-bitfield-compat
6772 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
6773 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
6774 the change can lead to differences in the structure layout. GCC
6775 informs you when the offset of such a field has changed in GCC 4.4.
6776 For example there is no longer a 4-bit padding between field @code{a}
6777 and @code{b} in this structure:
6778
6779 @smallexample
6780 struct foo
6781 @{
6782 char a:4;
6783 char b:8;
6784 @} __attribute__ ((packed));
6785 @end smallexample
6786
6787 This warning is enabled by default. Use
6788 @option{-Wno-packed-bitfield-compat} to disable this warning.
6789
6790 @item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
6791 @opindex Wpacked-not-aligned
6792 @opindex Wno-packed-not-aligned
6793 Warn if a structure field with explicitly specified alignment in a
6794 packed struct or union is misaligned. For example, a warning will
6795 be issued on @code{struct S}, like, @code{warning: alignment 1 of
6796 'struct S' is less than 8}, in this code:
6797
6798 @smallexample
6799 @group
6800 struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
6801 struct __attribute__ ((packed)) S @{
6802 struct S8 s8;
6803 @};
6804 @end group
6805 @end smallexample
6806
6807 This warning is enabled by @option{-Wall}.
6808
6809 @item -Wpadded
6810 @opindex Wpadded
6811 @opindex Wno-padded
6812 Warn if padding is included in a structure, either to align an element
6813 of the structure or to align the whole structure. Sometimes when this
6814 happens it is possible to rearrange the fields of the structure to
6815 reduce the padding and so make the structure smaller.
6816
6817 @item -Wredundant-decls
6818 @opindex Wredundant-decls
6819 @opindex Wno-redundant-decls
6820 Warn if anything is declared more than once in the same scope, even in
6821 cases where multiple declaration is valid and changes nothing.
6822
6823 @item -Wno-restrict
6824 @opindex Wrestrict
6825 @opindex Wno-restrict
6826 Warn when an object referenced by a @code{restrict}-qualified parameter
6827 (or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
6828 argument, or when copies between such objects overlap. For example,
6829 the call to the @code{strcpy} function below attempts to truncate the string
6830 by replacing its initial characters with the last four. However, because
6831 the call writes the terminating NUL into @code{a[4]}, the copies overlap and
6832 the call is diagnosed.
6833
6834 @smallexample
6835 void foo (void)
6836 @{
6837 char a[] = "abcd1234";
6838 strcpy (a, a + 4);
6839 @dots{}
6840 @}
6841 @end smallexample
6842 The @option{-Wrestrict} option detects some instances of simple overlap
6843 even without optimization but works best at @option{-O2} and above. It
6844 is included in @option{-Wall}.
6845
6846 @item -Wnested-externs @r{(C and Objective-C only)}
6847 @opindex Wnested-externs
6848 @opindex Wno-nested-externs
6849 Warn if an @code{extern} declaration is encountered within a function.
6850
6851 @item -Wno-inherited-variadic-ctor
6852 @opindex Winherited-variadic-ctor
6853 @opindex Wno-inherited-variadic-ctor
6854 Suppress warnings about use of C++11 inheriting constructors when the
6855 base class inherited from has a C variadic constructor; the warning is
6856 on by default because the ellipsis is not inherited.
6857
6858 @item -Winline
6859 @opindex Winline
6860 @opindex Wno-inline
6861 Warn if a function that is declared as inline cannot be inlined.
6862 Even with this option, the compiler does not warn about failures to
6863 inline functions declared in system headers.
6864
6865 The compiler uses a variety of heuristics to determine whether or not
6866 to inline a function. For example, the compiler takes into account
6867 the size of the function being inlined and the amount of inlining
6868 that has already been done in the current function. Therefore,
6869 seemingly insignificant changes in the source program can cause the
6870 warnings produced by @option{-Winline} to appear or disappear.
6871
6872 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
6873 @opindex Wno-invalid-offsetof
6874 @opindex Winvalid-offsetof
6875 Suppress warnings from applying the @code{offsetof} macro to a non-POD
6876 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
6877 to a non-standard-layout type is undefined. In existing C++ implementations,
6878 however, @code{offsetof} typically gives meaningful results.
6879 This flag is for users who are aware that they are
6880 writing nonportable code and who have deliberately chosen to ignore the
6881 warning about it.
6882
6883 The restrictions on @code{offsetof} may be relaxed in a future version
6884 of the C++ standard.
6885
6886 @item -Wint-in-bool-context
6887 @opindex Wint-in-bool-context
6888 @opindex Wno-int-in-bool-context
6889 Warn for suspicious use of integer values where boolean values are expected,
6890 such as conditional expressions (?:) using non-boolean integer constants in
6891 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
6892 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
6893 for all kinds of multiplications regardless of the data type.
6894 This warning is enabled by @option{-Wall}.
6895
6896 @item -Wno-int-to-pointer-cast
6897 @opindex Wno-int-to-pointer-cast
6898 @opindex Wint-to-pointer-cast
6899 Suppress warnings from casts to pointer type of an integer of a
6900 different size. In C++, casting to a pointer type of smaller size is
6901 an error. @option{Wint-to-pointer-cast} is enabled by default.
6902
6903
6904 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
6905 @opindex Wno-pointer-to-int-cast
6906 @opindex Wpointer-to-int-cast
6907 Suppress warnings from casts from a pointer to an integer type of a
6908 different size.
6909
6910 @item -Winvalid-pch
6911 @opindex Winvalid-pch
6912 @opindex Wno-invalid-pch
6913 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
6914 the search path but cannot be used.
6915
6916 @item -Wlong-long
6917 @opindex Wlong-long
6918 @opindex Wno-long-long
6919 Warn if @code{long long} type is used. This is enabled by either
6920 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
6921 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
6922
6923 @item -Wvariadic-macros
6924 @opindex Wvariadic-macros
6925 @opindex Wno-variadic-macros
6926 Warn if variadic macros are used in ISO C90 mode, or if the GNU
6927 alternate syntax is used in ISO C99 mode. This is enabled by either
6928 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
6929 messages, use @option{-Wno-variadic-macros}.
6930
6931 @item -Wvarargs
6932 @opindex Wvarargs
6933 @opindex Wno-varargs
6934 Warn upon questionable usage of the macros used to handle variable
6935 arguments like @code{va_start}. This is default. To inhibit the
6936 warning messages, use @option{-Wno-varargs}.
6937
6938 @item -Wvector-operation-performance
6939 @opindex Wvector-operation-performance
6940 @opindex Wno-vector-operation-performance
6941 Warn if vector operation is not implemented via SIMD capabilities of the
6942 architecture. Mainly useful for the performance tuning.
6943 Vector operation can be implemented @code{piecewise}, which means that the
6944 scalar operation is performed on every vector element;
6945 @code{in parallel}, which means that the vector operation is implemented
6946 using scalars of wider type, which normally is more performance efficient;
6947 and @code{as a single scalar}, which means that vector fits into a
6948 scalar type.
6949
6950 @item -Wno-virtual-move-assign
6951 @opindex Wvirtual-move-assign
6952 @opindex Wno-virtual-move-assign
6953 Suppress warnings about inheriting from a virtual base with a
6954 non-trivial C++11 move assignment operator. This is dangerous because
6955 if the virtual base is reachable along more than one path, it is
6956 moved multiple times, which can mean both objects end up in the
6957 moved-from state. If the move assignment operator is written to avoid
6958 moving from a moved-from object, this warning can be disabled.
6959
6960 @item -Wvla
6961 @opindex Wvla
6962 @opindex Wno-vla
6963 Warn if a variable-length array is used in the code.
6964 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
6965 the variable-length array.
6966
6967 @item -Wvla-larger-than=@var{n}
6968 If this option is used, the compiler will warn on uses of
6969 variable-length arrays where the size is either unbounded, or bounded
6970 by an argument that can be larger than @var{n} bytes. This is similar
6971 to how @option{-Walloca-larger-than=@var{n}} works, but with
6972 variable-length arrays.
6973
6974 Note that GCC may optimize small variable-length arrays of a known
6975 value into plain arrays, so this warning may not get triggered for
6976 such arrays.
6977
6978 This warning is not enabled by @option{-Wall}, and is only active when
6979 @option{-ftree-vrp} is active (default for @option{-O2} and above).
6980
6981 See also @option{-Walloca-larger-than=@var{n}}.
6982
6983 @item -Wvolatile-register-var
6984 @opindex Wvolatile-register-var
6985 @opindex Wno-volatile-register-var
6986 Warn if a register variable is declared volatile. The volatile
6987 modifier does not inhibit all optimizations that may eliminate reads
6988 and/or writes to register variables. This warning is enabled by
6989 @option{-Wall}.
6990
6991 @item -Wdisabled-optimization
6992 @opindex Wdisabled-optimization
6993 @opindex Wno-disabled-optimization
6994 Warn if a requested optimization pass is disabled. This warning does
6995 not generally indicate that there is anything wrong with your code; it
6996 merely indicates that GCC's optimizers are unable to handle the code
6997 effectively. Often, the problem is that your code is too big or too
6998 complex; GCC refuses to optimize programs when the optimization
6999 itself is likely to take inordinate amounts of time.
7000
7001 @item -Wpointer-sign @r{(C and Objective-C only)}
7002 @opindex Wpointer-sign
7003 @opindex Wno-pointer-sign
7004 Warn for pointer argument passing or assignment with different signedness.
7005 This option is only supported for C and Objective-C@. It is implied by
7006 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
7007 @option{-Wno-pointer-sign}.
7008
7009 @item -Wstack-protector
7010 @opindex Wstack-protector
7011 @opindex Wno-stack-protector
7012 This option is only active when @option{-fstack-protector} is active. It
7013 warns about functions that are not protected against stack smashing.
7014
7015 @item -Woverlength-strings
7016 @opindex Woverlength-strings
7017 @opindex Wno-overlength-strings
7018 Warn about string constants that are longer than the ``minimum
7019 maximum'' length specified in the C standard. Modern compilers
7020 generally allow string constants that are much longer than the
7021 standard's minimum limit, but very portable programs should avoid
7022 using longer strings.
7023
7024 The limit applies @emph{after} string constant concatenation, and does
7025 not count the trailing NUL@. In C90, the limit was 509 characters; in
7026 C99, it was raised to 4095. C++98 does not specify a normative
7027 minimum maximum, so we do not diagnose overlength strings in C++@.
7028
7029 This option is implied by @option{-Wpedantic}, and can be disabled with
7030 @option{-Wno-overlength-strings}.
7031
7032 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
7033 @opindex Wunsuffixed-float-constants
7034
7035 Issue a warning for any floating constant that does not have
7036 a suffix. When used together with @option{-Wsystem-headers} it
7037 warns about such constants in system header files. This can be useful
7038 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
7039 from the decimal floating-point extension to C99.
7040
7041 @item -Wno-designated-init @r{(C and Objective-C only)}
7042 Suppress warnings when a positional initializer is used to initialize
7043 a structure that has been marked with the @code{designated_init}
7044 attribute.
7045
7046 @item -Whsa
7047 Issue a warning when HSAIL cannot be emitted for the compiled function or
7048 OpenMP construct.
7049
7050 @end table
7051
7052 @node Debugging Options
7053 @section Options for Debugging Your Program
7054 @cindex options, debugging
7055 @cindex debugging information options
7056
7057 To tell GCC to emit extra information for use by a debugger, in almost
7058 all cases you need only to add @option{-g} to your other options.
7059
7060 GCC allows you to use @option{-g} with
7061 @option{-O}. The shortcuts taken by optimized code may occasionally
7062 be surprising: some variables you declared may not exist
7063 at all; flow of control may briefly move where you did not expect it;
7064 some statements may not be executed because they compute constant
7065 results or their values are already at hand; some statements may
7066 execute in different places because they have been moved out of loops.
7067 Nevertheless it is possible to debug optimized output. This makes
7068 it reasonable to use the optimizer for programs that might have bugs.
7069
7070 If you are not using some other optimization option, consider
7071 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
7072 With no @option{-O} option at all, some compiler passes that collect
7073 information useful for debugging do not run at all, so that
7074 @option{-Og} may result in a better debugging experience.
7075
7076 @table @gcctabopt
7077 @item -g
7078 @opindex g
7079 Produce debugging information in the operating system's native format
7080 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
7081 information.
7082
7083 On most systems that use stabs format, @option{-g} enables use of extra
7084 debugging information that only GDB can use; this extra information
7085 makes debugging work better in GDB but probably makes other debuggers
7086 crash or
7087 refuse to read the program. If you want to control for certain whether
7088 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
7089 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
7090
7091 @item -ggdb
7092 @opindex ggdb
7093 Produce debugging information for use by GDB@. This means to use the
7094 most expressive format available (DWARF, stabs, or the native format
7095 if neither of those are supported), including GDB extensions if at all
7096 possible.
7097
7098 @item -gdwarf
7099 @itemx -gdwarf-@var{version}
7100 @opindex gdwarf
7101 Produce debugging information in DWARF format (if that is supported).
7102 The value of @var{version} may be either 2, 3, 4 or 5; the default version
7103 for most targets is 4. DWARF Version 5 is only experimental.
7104
7105 Note that with DWARF Version 2, some ports require and always
7106 use some non-conflicting DWARF 3 extensions in the unwind tables.
7107
7108 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
7109 for maximum benefit.
7110
7111 GCC no longer supports DWARF Version 1, which is substantially
7112 different than Version 2 and later. For historical reasons, some
7113 other DWARF-related options such as
7114 @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
7115 in their names, but apply to all currently-supported versions of DWARF.
7116
7117 @item -gstabs
7118 @opindex gstabs
7119 Produce debugging information in stabs format (if that is supported),
7120 without GDB extensions. This is the format used by DBX on most BSD
7121 systems. On MIPS, Alpha and System V Release 4 systems this option
7122 produces stabs debugging output that is not understood by DBX@.
7123 On System V Release 4 systems this option requires the GNU assembler.
7124
7125 @item -gstabs+
7126 @opindex gstabs+
7127 Produce debugging information in stabs format (if that is supported),
7128 using GNU extensions understood only by the GNU debugger (GDB)@. The
7129 use of these extensions is likely to make other debuggers crash or
7130 refuse to read the program.
7131
7132 @item -gxcoff
7133 @opindex gxcoff
7134 Produce debugging information in XCOFF format (if that is supported).
7135 This is the format used by the DBX debugger on IBM RS/6000 systems.
7136
7137 @item -gxcoff+
7138 @opindex gxcoff+
7139 Produce debugging information in XCOFF format (if that is supported),
7140 using GNU extensions understood only by the GNU debugger (GDB)@. The
7141 use of these extensions is likely to make other debuggers crash or
7142 refuse to read the program, and may cause assemblers other than the GNU
7143 assembler (GAS) to fail with an error.
7144
7145 @item -gvms
7146 @opindex gvms
7147 Produce debugging information in Alpha/VMS debug format (if that is
7148 supported). This is the format used by DEBUG on Alpha/VMS systems.
7149
7150 @item -g@var{level}
7151 @itemx -ggdb@var{level}
7152 @itemx -gstabs@var{level}
7153 @itemx -gxcoff@var{level}
7154 @itemx -gvms@var{level}
7155 Request debugging information and also use @var{level} to specify how
7156 much information. The default level is 2.
7157
7158 Level 0 produces no debug information at all. Thus, @option{-g0} negates
7159 @option{-g}.
7160
7161 Level 1 produces minimal information, enough for making backtraces in
7162 parts of the program that you don't plan to debug. This includes
7163 descriptions of functions and external variables, and line number
7164 tables, but no information about local variables.
7165
7166 Level 3 includes extra information, such as all the macro definitions
7167 present in the program. Some debuggers support macro expansion when
7168 you use @option{-g3}.
7169
7170 @option{-gdwarf} does not accept a concatenated debug level, to avoid
7171 confusion with @option{-gdwarf-@var{level}}.
7172 Instead use an additional @option{-g@var{level}} option to change the
7173 debug level for DWARF.
7174
7175 @item -feliminate-unused-debug-symbols
7176 @opindex feliminate-unused-debug-symbols
7177 Produce debugging information in stabs format (if that is supported),
7178 for only symbols that are actually used.
7179
7180 @item -femit-class-debug-always
7181 @opindex femit-class-debug-always
7182 Instead of emitting debugging information for a C++ class in only one
7183 object file, emit it in all object files using the class. This option
7184 should be used only with debuggers that are unable to handle the way GCC
7185 normally emits debugging information for classes because using this
7186 option increases the size of debugging information by as much as a
7187 factor of two.
7188
7189 @item -fno-merge-debug-strings
7190 @opindex fmerge-debug-strings
7191 @opindex fno-merge-debug-strings
7192 Direct the linker to not merge together strings in the debugging
7193 information that are identical in different object files. Merging is
7194 not supported by all assemblers or linkers. Merging decreases the size
7195 of the debug information in the output file at the cost of increasing
7196 link processing time. Merging is enabled by default.
7197
7198 @item -fdebug-prefix-map=@var{old}=@var{new}
7199 @opindex fdebug-prefix-map
7200 When compiling files residing in directory @file{@var{old}}, record
7201 debugging information describing them as if the files resided in
7202 directory @file{@var{new}} instead. This can be used to replace a
7203 build-time path with an install-time path in the debug info. It can
7204 also be used to change an absolute path to a relative path by using
7205 @file{.} for @var{new}. This can give more reproducible builds, which
7206 are location independent, but may require an extra command to tell GDB
7207 where to find the source files. See also @option{-ffile-prefix-map}.
7208
7209 @item -fvar-tracking
7210 @opindex fvar-tracking
7211 Run variable tracking pass. It computes where variables are stored at each
7212 position in code. Better debugging information is then generated
7213 (if the debugging information format supports this information).
7214
7215 It is enabled by default when compiling with optimization (@option{-Os},
7216 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7217 the debug info format supports it.
7218
7219 @item -fvar-tracking-assignments
7220 @opindex fvar-tracking-assignments
7221 @opindex fno-var-tracking-assignments
7222 Annotate assignments to user variables early in the compilation and
7223 attempt to carry the annotations over throughout the compilation all the
7224 way to the end, in an attempt to improve debug information while
7225 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7226
7227 It can be enabled even if var-tracking is disabled, in which case
7228 annotations are created and maintained, but discarded at the end.
7229 By default, this flag is enabled together with @option{-fvar-tracking},
7230 except when selective scheduling is enabled.
7231
7232 @item -gsplit-dwarf
7233 @opindex gsplit-dwarf
7234 Separate as much DWARF debugging information as possible into a
7235 separate output file with the extension @file{.dwo}. This option allows
7236 the build system to avoid linking files with debug information. To
7237 be useful, this option requires a debugger capable of reading @file{.dwo}
7238 files.
7239
7240 @item -gpubnames
7241 @opindex gpubnames
7242 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7243
7244 @item -ggnu-pubnames
7245 @opindex ggnu-pubnames
7246 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7247 suitable for conversion into a GDB@ index. This option is only useful
7248 with a linker that can produce GDB@ index version 7.
7249
7250 @item -fdebug-types-section
7251 @opindex fdebug-types-section
7252 @opindex fno-debug-types-section
7253 When using DWARF Version 4 or higher, type DIEs can be put into
7254 their own @code{.debug_types} section instead of making them part of the
7255 @code{.debug_info} section. It is more efficient to put them in a separate
7256 comdat section since the linker can then remove duplicates.
7257 But not all DWARF consumers support @code{.debug_types} sections yet
7258 and on some objects @code{.debug_types} produces larger instead of smaller
7259 debugging information.
7260
7261 @item -grecord-gcc-switches
7262 @itemx -gno-record-gcc-switches
7263 @opindex grecord-gcc-switches
7264 @opindex gno-record-gcc-switches
7265 This switch causes the command-line options used to invoke the
7266 compiler that may affect code generation to be appended to the
7267 DW_AT_producer attribute in DWARF debugging information. The options
7268 are concatenated with spaces separating them from each other and from
7269 the compiler version.
7270 It is enabled by default.
7271 See also @option{-frecord-gcc-switches} for another
7272 way of storing compiler options into the object file.
7273
7274 @item -gstrict-dwarf
7275 @opindex gstrict-dwarf
7276 Disallow using extensions of later DWARF standard version than selected
7277 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
7278 DWARF extensions from later standard versions is allowed.
7279
7280 @item -gno-strict-dwarf
7281 @opindex gno-strict-dwarf
7282 Allow using extensions of later DWARF standard version than selected with
7283 @option{-gdwarf-@var{version}}.
7284
7285 @item -gas-loc-support
7286 @opindex gas-loc-support
7287 Inform the compiler that the assembler supports @code{.loc} directives.
7288 It may then use them for the assembler to generate DWARF2+ line number
7289 tables.
7290
7291 This is generally desirable, because assembler-generated line-number
7292 tables are a lot more compact than those the compiler can generate
7293 itself.
7294
7295 This option will be enabled by default if, at GCC configure time, the
7296 assembler was found to support such directives.
7297
7298 @item -gno-as-loc-support
7299 @opindex gno-as-loc-support
7300 Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
7301 line number tables are to be generated.
7302
7303 @item gas-locview-support
7304 @opindex gas-locview-support
7305 Inform the compiler that the assembler supports @code{view} assignment
7306 and reset assertion checking in @code{.loc} directives.
7307
7308 This option will be enabled by default if, at GCC configure time, the
7309 assembler was found to support them.
7310
7311 @item gno-as-locview-support
7312 Force GCC to assign view numbers internally, if
7313 @option{-gvariable-location-views} are explicitly requested.
7314
7315 @item -gcolumn-info
7316 @itemx -gno-column-info
7317 @opindex gcolumn-info
7318 @opindex gno-column-info
7319 Emit location column information into DWARF debugging information, rather
7320 than just file and line.
7321 This option is enabled by default.
7322
7323 @item -gstatement-frontiers
7324 @itemx -gno-statement-frontiers
7325 @opindex gstatement-frontiers
7326 @opindex gno-statement-frontiers
7327 This option causes GCC to create markers in the internal representation
7328 at the beginning of statements, and to keep them roughly in place
7329 throughout compilation, using them to guide the output of @code{is_stmt}
7330 markers in the line number table. This is enabled by default when
7331 compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
7332 @dots{}), and outputting DWARF 2 debug information at the normal level.
7333
7334 @item -gvariable-location-views
7335 @itemx -gvariable-location-views=incompat5
7336 @itemx -gno-variable-location-views
7337 @opindex gvariable-location-views
7338 @opindex gvariable-location-views=incompat5
7339 @opindex gno-variable-location-views
7340 Augment variable location lists with progressive view numbers implied
7341 from the line number table. This enables debug information consumers to
7342 inspect state at certain points of the program, even if no instructions
7343 associated with the corresponding source locations are present at that
7344 point. If the assembler lacks support for view numbers in line number
7345 tables, this will cause the compiler to emit the line number table,
7346 which generally makes them somewhat less compact. The augmented line
7347 number tables and location lists are fully backward-compatible, so they
7348 can be consumed by debug information consumers that are not aware of
7349 these augmentations, but they won't derive any benefit from them either.
7350
7351 This is enabled by default when outputting DWARF 2 debug information at
7352 the normal level, as long as there is assembler support,
7353 @option{-fvar-tracking-assignments} is enabled and
7354 @option{-gstrict-dwarf} is not. When assembler support is not
7355 available, this may still be enabled, but it will force GCC to output
7356 internal line number tables, and if
7357 @option{-ginternal-reset-location-views} is not enabled, that will most
7358 certainly lead to silently mismatching location views.
7359
7360 There is a proposed representation for view numbers that is not backward
7361 compatible with the location list format introduced in DWARF 5, that can
7362 be enabled with @option{-gvariable-location-views=incompat5}. This
7363 option may be removed in the future, is only provided as a reference
7364 implementation of the proposed representation. Debug information
7365 consumers are not expected to support this extended format, and they
7366 would be rendered unable to decode location lists using it.
7367
7368 @item -ginternal-reset-location-views
7369 @itemx -gnointernal-reset-location-views
7370 @opindex ginternal-reset-location-views
7371 @opindex gno-internal-reset-location-views
7372 Attempt to determine location views that can be omitted from location
7373 view lists. This requires the compiler to have very accurate insn
7374 length estimates, which isn't always the case, and it may cause
7375 incorrect view lists to be generated silently when using an assembler
7376 that does not support location view lists. The GNU assembler will flag
7377 any such error as a @code{view number mismatch}. This is only enabled
7378 on ports that define a reliable estimation function.
7379
7380 @item -ginline-points
7381 @itemx -gno-inline-points
7382 @opindex ginline-points
7383 @opindex gno-inline-points
7384 Generate extended debug information for inlined functions. Location
7385 view tracking markers are inserted at inlined entry points, so that
7386 address and view numbers can be computed and output in debug
7387 information. This can be enabled independently of location views, in
7388 which case the view numbers won't be output, but it can only be enabled
7389 along with statement frontiers, and it is only enabled by default if
7390 location views are enabled.
7391
7392 @item -gz@r{[}=@var{type}@r{]}
7393 @opindex gz
7394 Produce compressed debug sections in DWARF format, if that is supported.
7395 If @var{type} is not given, the default type depends on the capabilities
7396 of the assembler and linker used. @var{type} may be one of
7397 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
7398 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
7399 compression in traditional GNU format). If the linker doesn't support
7400 writing compressed debug sections, the option is rejected. Otherwise,
7401 if the assembler does not support them, @option{-gz} is silently ignored
7402 when producing object files.
7403
7404 @item -femit-struct-debug-baseonly
7405 @opindex femit-struct-debug-baseonly
7406 Emit debug information for struct-like types
7407 only when the base name of the compilation source file
7408 matches the base name of file in which the struct is defined.
7409
7410 This option substantially reduces the size of debugging information,
7411 but at significant potential loss in type information to the debugger.
7412 See @option{-femit-struct-debug-reduced} for a less aggressive option.
7413 See @option{-femit-struct-debug-detailed} for more detailed control.
7414
7415 This option works only with DWARF debug output.
7416
7417 @item -femit-struct-debug-reduced
7418 @opindex femit-struct-debug-reduced
7419 Emit debug information for struct-like types
7420 only when the base name of the compilation source file
7421 matches the base name of file in which the type is defined,
7422 unless the struct is a template or defined in a system header.
7423
7424 This option significantly reduces the size of debugging information,
7425 with some potential loss in type information to the debugger.
7426 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
7427 See @option{-femit-struct-debug-detailed} for more detailed control.
7428
7429 This option works only with DWARF debug output.
7430
7431 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
7432 @opindex femit-struct-debug-detailed
7433 Specify the struct-like types
7434 for which the compiler generates debug information.
7435 The intent is to reduce duplicate struct debug information
7436 between different object files within the same program.
7437
7438 This option is a detailed version of
7439 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
7440 which serves for most needs.
7441
7442 A specification has the syntax@*
7443 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
7444
7445 The optional first word limits the specification to
7446 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
7447 A struct type is used directly when it is the type of a variable, member.
7448 Indirect uses arise through pointers to structs.
7449 That is, when use of an incomplete struct is valid, the use is indirect.
7450 An example is
7451 @samp{struct one direct; struct two * indirect;}.
7452
7453 The optional second word limits the specification to
7454 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
7455 Generic structs are a bit complicated to explain.
7456 For C++, these are non-explicit specializations of template classes,
7457 or non-template classes within the above.
7458 Other programming languages have generics,
7459 but @option{-femit-struct-debug-detailed} does not yet implement them.
7460
7461 The third word specifies the source files for those
7462 structs for which the compiler should emit debug information.
7463 The values @samp{none} and @samp{any} have the normal meaning.
7464 The value @samp{base} means that
7465 the base of name of the file in which the type declaration appears
7466 must match the base of the name of the main compilation file.
7467 In practice, this means that when compiling @file{foo.c}, debug information
7468 is generated for types declared in that file and @file{foo.h},
7469 but not other header files.
7470 The value @samp{sys} means those types satisfying @samp{base}
7471 or declared in system or compiler headers.
7472
7473 You may need to experiment to determine the best settings for your application.
7474
7475 The default is @option{-femit-struct-debug-detailed=all}.
7476
7477 This option works only with DWARF debug output.
7478
7479 @item -fno-dwarf2-cfi-asm
7480 @opindex fdwarf2-cfi-asm
7481 @opindex fno-dwarf2-cfi-asm
7482 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
7483 instead of using GAS @code{.cfi_*} directives.
7484
7485 @item -fno-eliminate-unused-debug-types
7486 @opindex feliminate-unused-debug-types
7487 @opindex fno-eliminate-unused-debug-types
7488 Normally, when producing DWARF output, GCC avoids producing debug symbol
7489 output for types that are nowhere used in the source file being compiled.
7490 Sometimes it is useful to have GCC emit debugging
7491 information for all types declared in a compilation
7492 unit, regardless of whether or not they are actually used
7493 in that compilation unit, for example
7494 if, in the debugger, you want to cast a value to a type that is
7495 not actually used in your program (but is declared). More often,
7496 however, this results in a significant amount of wasted space.
7497 @end table
7498
7499 @node Optimize Options
7500 @section Options That Control Optimization
7501 @cindex optimize options
7502 @cindex options, optimization
7503
7504 These options control various sorts of optimizations.
7505
7506 Without any optimization option, the compiler's goal is to reduce the
7507 cost of compilation and to make debugging produce the expected
7508 results. Statements are independent: if you stop the program with a
7509 breakpoint between statements, you can then assign a new value to any
7510 variable or change the program counter to any other statement in the
7511 function and get exactly the results you expect from the source
7512 code.
7513
7514 Turning on optimization flags makes the compiler attempt to improve
7515 the performance and/or code size at the expense of compilation time
7516 and possibly the ability to debug the program.
7517
7518 The compiler performs optimization based on the knowledge it has of the
7519 program. Compiling multiple files at once to a single output file mode allows
7520 the compiler to use information gained from all of the files when compiling
7521 each of them.
7522
7523 Not all optimizations are controlled directly by a flag. Only
7524 optimizations that have a flag are listed in this section.
7525
7526 Most optimizations are only enabled if an @option{-O} level is set on
7527 the command line. Otherwise they are disabled, even if individual
7528 optimization flags are specified.
7529
7530 Depending on the target and how GCC was configured, a slightly different
7531 set of optimizations may be enabled at each @option{-O} level than
7532 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7533 to find out the exact set of optimizations that are enabled at each level.
7534 @xref{Overall Options}, for examples.
7535
7536 @table @gcctabopt
7537 @item -O
7538 @itemx -O1
7539 @opindex O
7540 @opindex O1
7541 Optimize. Optimizing compilation takes somewhat more time, and a lot
7542 more memory for a large function.
7543
7544 With @option{-O}, the compiler tries to reduce code size and execution
7545 time, without performing any optimizations that take a great deal of
7546 compilation time.
7547
7548 @option{-O} turns on the following optimization flags:
7549 @gccoptlist{
7550 -fauto-inc-dec @gol
7551 -fbranch-count-reg @gol
7552 -fcombine-stack-adjustments @gol
7553 -fcompare-elim @gol
7554 -fcprop-registers @gol
7555 -fdce @gol
7556 -fdefer-pop @gol
7557 -fdelayed-branch @gol
7558 -fdse @gol
7559 -fforward-propagate @gol
7560 -fguess-branch-probability @gol
7561 -fif-conversion2 @gol
7562 -fif-conversion @gol
7563 -finline-functions-called-once @gol
7564 -fipa-pure-const @gol
7565 -fipa-profile @gol
7566 -fipa-reference @gol
7567 -fmerge-constants @gol
7568 -fmove-loop-invariants @gol
7569 -fomit-frame-pointer @gol
7570 -freorder-blocks @gol
7571 -fshrink-wrap @gol
7572 -fshrink-wrap-separate @gol
7573 -fsplit-wide-types @gol
7574 -fssa-backprop @gol
7575 -fssa-phiopt @gol
7576 -ftree-bit-ccp @gol
7577 -ftree-ccp @gol
7578 -ftree-ch @gol
7579 -ftree-coalesce-vars @gol
7580 -ftree-copy-prop @gol
7581 -ftree-dce @gol
7582 -ftree-dominator-opts @gol
7583 -ftree-dse @gol
7584 -ftree-forwprop @gol
7585 -ftree-fre @gol
7586 -ftree-phiprop @gol
7587 -ftree-sink @gol
7588 -ftree-slsr @gol
7589 -ftree-sra @gol
7590 -ftree-pta @gol
7591 -ftree-ter @gol
7592 -funit-at-a-time}
7593
7594 @item -O2
7595 @opindex O2
7596 Optimize even more. GCC performs nearly all supported optimizations
7597 that do not involve a space-speed tradeoff.
7598 As compared to @option{-O}, this option increases both compilation time
7599 and the performance of the generated code.
7600
7601 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7602 also turns on the following optimization flags:
7603 @gccoptlist{-fthread-jumps @gol
7604 -falign-functions -falign-jumps @gol
7605 -falign-loops -falign-labels @gol
7606 -fcaller-saves @gol
7607 -fcrossjumping @gol
7608 -fcse-follow-jumps -fcse-skip-blocks @gol
7609 -fdelete-null-pointer-checks @gol
7610 -fdevirtualize -fdevirtualize-speculatively @gol
7611 -fexpensive-optimizations @gol
7612 -fgcse -fgcse-lm @gol
7613 -fhoist-adjacent-loads @gol
7614 -finline-small-functions @gol
7615 -findirect-inlining @gol
7616 -fipa-cp @gol
7617 -fipa-bit-cp @gol
7618 -fipa-vrp @gol
7619 -fipa-sra @gol
7620 -fipa-icf @gol
7621 -fisolate-erroneous-paths-dereference @gol
7622 -flra-remat @gol
7623 -foptimize-sibling-calls @gol
7624 -foptimize-strlen @gol
7625 -fpartial-inlining @gol
7626 -fpeephole2 @gol
7627 -freorder-blocks-algorithm=stc @gol
7628 -freorder-blocks-and-partition -freorder-functions @gol
7629 -frerun-cse-after-loop @gol
7630 -fsched-interblock -fsched-spec @gol
7631 -fschedule-insns -fschedule-insns2 @gol
7632 -fstore-merging @gol
7633 -fstrict-aliasing @gol
7634 -ftree-builtin-call-dce @gol
7635 -ftree-switch-conversion -ftree-tail-merge @gol
7636 -fcode-hoisting @gol
7637 -ftree-pre @gol
7638 -ftree-vrp @gol
7639 -fipa-ra}
7640
7641 Please note the warning under @option{-fgcse} about
7642 invoking @option{-O2} on programs that use computed gotos.
7643
7644 @item -O3
7645 @opindex O3
7646 Optimize yet more. @option{-O3} turns on all optimizations specified
7647 by @option{-O2} and also turns on the following optimization flags:
7648 @gccoptlist{-finline-functions @gol
7649 -funswitch-loops @gol
7650 -fpredictive-commoning @gol
7651 -fgcse-after-reload @gol
7652 -ftree-loop-vectorize @gol
7653 -ftree-loop-distribution @gol
7654 -ftree-loop-distribute-patterns @gol
7655 -floop-interchange @gol
7656 -floop-unroll-and-jam @gol
7657 -fsplit-paths @gol
7658 -ftree-slp-vectorize @gol
7659 -fvect-cost-model @gol
7660 -ftree-partial-pre @gol
7661 -fpeel-loops @gol
7662 -fipa-cp-clone}
7663
7664 @item -O0
7665 @opindex O0
7666 Reduce compilation time and make debugging produce the expected
7667 results. This is the default.
7668
7669 @item -Os
7670 @opindex Os
7671 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7672 do not typically increase code size. It also performs further
7673 optimizations designed to reduce code size.
7674
7675 @option{-Os} disables the following optimization flags:
7676 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7677 -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc @gol
7678 -freorder-blocks-and-partition -fprefetch-loop-arrays}
7679
7680 @item -Ofast
7681 @opindex Ofast
7682 Disregard strict standards compliance. @option{-Ofast} enables all
7683 @option{-O3} optimizations. It also enables optimizations that are not
7684 valid for all standard-compliant programs.
7685 It turns on @option{-ffast-math} and the Fortran-specific
7686 @option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
7687 specified, and @option{-fno-protect-parens}.
7688
7689 @item -Og
7690 @opindex Og
7691 Optimize debugging experience. @option{-Og} enables optimizations
7692 that do not interfere with debugging. It should be the optimization
7693 level of choice for the standard edit-compile-debug cycle, offering
7694 a reasonable level of optimization while maintaining fast compilation
7695 and a good debugging experience.
7696 @end table
7697
7698 If you use multiple @option{-O} options, with or without level numbers,
7699 the last such option is the one that is effective.
7700
7701 Options of the form @option{-f@var{flag}} specify machine-independent
7702 flags. Most flags have both positive and negative forms; the negative
7703 form of @option{-ffoo} is @option{-fno-foo}. In the table
7704 below, only one of the forms is listed---the one you typically
7705 use. You can figure out the other form by either removing @samp{no-}
7706 or adding it.
7707
7708 The following options control specific optimizations. They are either
7709 activated by @option{-O} options or are related to ones that are. You
7710 can use the following flags in the rare cases when ``fine-tuning'' of
7711 optimizations to be performed is desired.
7712
7713 @table @gcctabopt
7714 @item -fno-defer-pop
7715 @opindex fno-defer-pop
7716 Always pop the arguments to each function call as soon as that function
7717 returns. For machines that must pop arguments after a function call,
7718 the compiler normally lets arguments accumulate on the stack for several
7719 function calls and pops them all at once.
7720
7721 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7722
7723 @item -fforward-propagate
7724 @opindex fforward-propagate
7725 Perform a forward propagation pass on RTL@. The pass tries to combine two
7726 instructions and checks if the result can be simplified. If loop unrolling
7727 is active, two passes are performed and the second is scheduled after
7728 loop unrolling.
7729
7730 This option is enabled by default at optimization levels @option{-O},
7731 @option{-O2}, @option{-O3}, @option{-Os}.
7732
7733 @item -ffp-contract=@var{style}
7734 @opindex ffp-contract
7735 @option{-ffp-contract=off} disables floating-point expression contraction.
7736 @option{-ffp-contract=fast} enables floating-point expression contraction
7737 such as forming of fused multiply-add operations if the target has
7738 native support for them.
7739 @option{-ffp-contract=on} enables floating-point expression contraction
7740 if allowed by the language standard. This is currently not implemented
7741 and treated equal to @option{-ffp-contract=off}.
7742
7743 The default is @option{-ffp-contract=fast}.
7744
7745 @item -fomit-frame-pointer
7746 @opindex fomit-frame-pointer
7747 Omit the frame pointer in functions that don't need one. This avoids the
7748 instructions to save, set up and restore the frame pointer; on many targets
7749 it also makes an extra register available.
7750
7751 On some targets this flag has no effect because the standard calling sequence
7752 always uses a frame pointer, so it cannot be omitted.
7753
7754 Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
7755 is used in all functions. Several targets always omit the frame pointer in
7756 leaf functions.
7757
7758 Enabled by default at @option{-O} and higher.
7759
7760 @item -foptimize-sibling-calls
7761 @opindex foptimize-sibling-calls
7762 Optimize sibling and tail recursive calls.
7763
7764 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7765
7766 @item -foptimize-strlen
7767 @opindex foptimize-strlen
7768 Optimize various standard C string functions (e.g. @code{strlen},
7769 @code{strchr} or @code{strcpy}) and
7770 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7771
7772 Enabled at levels @option{-O2}, @option{-O3}.
7773
7774 @item -fno-inline
7775 @opindex fno-inline
7776 Do not expand any functions inline apart from those marked with
7777 the @code{always_inline} attribute. This is the default when not
7778 optimizing.
7779
7780 Single functions can be exempted from inlining by marking them
7781 with the @code{noinline} attribute.
7782
7783 @item -finline-small-functions
7784 @opindex finline-small-functions
7785 Integrate functions into their callers when their body is smaller than expected
7786 function call code (so overall size of program gets smaller). The compiler
7787 heuristically decides which functions are simple enough to be worth integrating
7788 in this way. This inlining applies to all functions, even those not declared
7789 inline.
7790
7791 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7792
7793 @item -findirect-inlining
7794 @opindex findirect-inlining
7795 Inline also indirect calls that are discovered to be known at compile
7796 time thanks to previous inlining. This option has any effect only
7797 when inlining itself is turned on by the @option{-finline-functions}
7798 or @option{-finline-small-functions} options.
7799
7800 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7801
7802 @item -finline-functions
7803 @opindex finline-functions
7804 Consider all functions for inlining, even if they are not declared inline.
7805 The compiler heuristically decides which functions are worth integrating
7806 in this way.
7807
7808 If all calls to a given function are integrated, and the function is
7809 declared @code{static}, then the function is normally not output as
7810 assembler code in its own right.
7811
7812 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7813
7814 @item -finline-functions-called-once
7815 @opindex finline-functions-called-once
7816 Consider all @code{static} functions called once for inlining into their
7817 caller even if they are not marked @code{inline}. If a call to a given
7818 function is integrated, then the function is not output as assembler code
7819 in its own right.
7820
7821 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7822
7823 @item -fearly-inlining
7824 @opindex fearly-inlining
7825 Inline functions marked by @code{always_inline} and functions whose body seems
7826 smaller than the function call overhead early before doing
7827 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7828 makes profiling significantly cheaper and usually inlining faster on programs
7829 having large chains of nested wrapper functions.
7830
7831 Enabled by default.
7832
7833 @item -fipa-sra
7834 @opindex fipa-sra
7835 Perform interprocedural scalar replacement of aggregates, removal of
7836 unused parameters and replacement of parameters passed by reference
7837 by parameters passed by value.
7838
7839 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7840
7841 @item -finline-limit=@var{n}
7842 @opindex finline-limit
7843 By default, GCC limits the size of functions that can be inlined. This flag
7844 allows coarse control of this limit. @var{n} is the size of functions that
7845 can be inlined in number of pseudo instructions.
7846
7847 Inlining is actually controlled by a number of parameters, which may be
7848 specified individually by using @option{--param @var{name}=@var{value}}.
7849 The @option{-finline-limit=@var{n}} option sets some of these parameters
7850 as follows:
7851
7852 @table @gcctabopt
7853 @item max-inline-insns-single
7854 is set to @var{n}/2.
7855 @item max-inline-insns-auto
7856 is set to @var{n}/2.
7857 @end table
7858
7859 See below for a documentation of the individual
7860 parameters controlling inlining and for the defaults of these parameters.
7861
7862 @emph{Note:} there may be no value to @option{-finline-limit} that results
7863 in default behavior.
7864
7865 @emph{Note:} pseudo instruction represents, in this particular context, an
7866 abstract measurement of function's size. In no way does it represent a count
7867 of assembly instructions and as such its exact meaning might change from one
7868 release to an another.
7869
7870 @item -fno-keep-inline-dllexport
7871 @opindex fno-keep-inline-dllexport
7872 This is a more fine-grained version of @option{-fkeep-inline-functions},
7873 which applies only to functions that are declared using the @code{dllexport}
7874 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
7875 Functions}.
7876
7877 @item -fkeep-inline-functions
7878 @opindex fkeep-inline-functions
7879 In C, emit @code{static} functions that are declared @code{inline}
7880 into the object file, even if the function has been inlined into all
7881 of its callers. This switch does not affect functions using the
7882 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7883 inline functions into the object file.
7884
7885 @item -fkeep-static-functions
7886 @opindex fkeep-static-functions
7887 Emit @code{static} functions into the object file, even if the function
7888 is never used.
7889
7890 @item -fkeep-static-consts
7891 @opindex fkeep-static-consts
7892 Emit variables declared @code{static const} when optimization isn't turned
7893 on, even if the variables aren't referenced.
7894
7895 GCC enables this option by default. If you want to force the compiler to
7896 check if a variable is referenced, regardless of whether or not
7897 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7898
7899 @item -fmerge-constants
7900 @opindex fmerge-constants
7901 Attempt to merge identical constants (string constants and floating-point
7902 constants) across compilation units.
7903
7904 This option is the default for optimized compilation if the assembler and
7905 linker support it. Use @option{-fno-merge-constants} to inhibit this
7906 behavior.
7907
7908 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7909
7910 @item -fmerge-all-constants
7911 @opindex fmerge-all-constants
7912 Attempt to merge identical constants and identical variables.
7913
7914 This option implies @option{-fmerge-constants}. In addition to
7915 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7916 arrays or initialized constant variables with integral or floating-point
7917 types. Languages like C or C++ require each variable, including multiple
7918 instances of the same variable in recursive calls, to have distinct locations,
7919 so using this option results in non-conforming
7920 behavior.
7921
7922 @item -fmodulo-sched
7923 @opindex fmodulo-sched
7924 Perform swing modulo scheduling immediately before the first scheduling
7925 pass. This pass looks at innermost loops and reorders their
7926 instructions by overlapping different iterations.
7927
7928 @item -fmodulo-sched-allow-regmoves
7929 @opindex fmodulo-sched-allow-regmoves
7930 Perform more aggressive SMS-based modulo scheduling with register moves
7931 allowed. By setting this flag certain anti-dependences edges are
7932 deleted, which triggers the generation of reg-moves based on the
7933 life-range analysis. This option is effective only with
7934 @option{-fmodulo-sched} enabled.
7935
7936 @item -fno-branch-count-reg
7937 @opindex fno-branch-count-reg
7938 Avoid running a pass scanning for opportunities to use ``decrement and
7939 branch'' instructions on a count register instead of generating sequences
7940 of instructions that decrement a register, compare it against zero, and
7941 then branch based upon the result. This option is only meaningful on
7942 architectures that support such instructions, which include x86, PowerPC,
7943 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
7944 doesn't remove the decrement and branch instructions from the generated
7945 instruction stream introduced by other optimization passes.
7946
7947 Enabled by default at @option{-O1} and higher.
7948
7949 The default is @option{-fbranch-count-reg}.
7950
7951 @item -fno-function-cse
7952 @opindex fno-function-cse
7953 Do not put function addresses in registers; make each instruction that
7954 calls a constant function contain the function's address explicitly.
7955
7956 This option results in less efficient code, but some strange hacks
7957 that alter the assembler output may be confused by the optimizations
7958 performed when this option is not used.
7959
7960 The default is @option{-ffunction-cse}
7961
7962 @item -fno-zero-initialized-in-bss
7963 @opindex fno-zero-initialized-in-bss
7964 If the target supports a BSS section, GCC by default puts variables that
7965 are initialized to zero into BSS@. This can save space in the resulting
7966 code.
7967
7968 This option turns off this behavior because some programs explicitly
7969 rely on variables going to the data section---e.g., so that the
7970 resulting executable can find the beginning of that section and/or make
7971 assumptions based on that.
7972
7973 The default is @option{-fzero-initialized-in-bss}.
7974
7975 @item -fthread-jumps
7976 @opindex fthread-jumps
7977 Perform optimizations that check to see if a jump branches to a
7978 location where another comparison subsumed by the first is found. If
7979 so, the first branch is redirected to either the destination of the
7980 second branch or a point immediately following it, depending on whether
7981 the condition is known to be true or false.
7982
7983 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7984
7985 @item -fsplit-wide-types
7986 @opindex fsplit-wide-types
7987 When using a type that occupies multiple registers, such as @code{long
7988 long} on a 32-bit system, split the registers apart and allocate them
7989 independently. This normally generates better code for those types,
7990 but may make debugging more difficult.
7991
7992 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7993 @option{-Os}.
7994
7995 @item -fcse-follow-jumps
7996 @opindex fcse-follow-jumps
7997 In common subexpression elimination (CSE), scan through jump instructions
7998 when the target of the jump is not reached by any other path. For
7999 example, when CSE encounters an @code{if} statement with an
8000 @code{else} clause, CSE follows the jump when the condition
8001 tested is false.
8002
8003 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8004
8005 @item -fcse-skip-blocks
8006 @opindex fcse-skip-blocks
8007 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8008 follow jumps that conditionally skip over blocks. When CSE
8009 encounters a simple @code{if} statement with no else clause,
8010 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8011 body of the @code{if}.
8012
8013 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8014
8015 @item -frerun-cse-after-loop
8016 @opindex frerun-cse-after-loop
8017 Re-run common subexpression elimination after loop optimizations are
8018 performed.
8019
8020 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8021
8022 @item -fgcse
8023 @opindex fgcse
8024 Perform a global common subexpression elimination pass.
8025 This pass also performs global constant and copy propagation.
8026
8027 @emph{Note:} When compiling a program using computed gotos, a GCC
8028 extension, you may get better run-time performance if you disable
8029 the global common subexpression elimination pass by adding
8030 @option{-fno-gcse} to the command line.
8031
8032 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8033
8034 @item -fgcse-lm
8035 @opindex fgcse-lm
8036 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8037 attempts to move loads that are only killed by stores into themselves. This
8038 allows a loop containing a load/store sequence to be changed to a load outside
8039 the loop, and a copy/store within the loop.
8040
8041 Enabled by default when @option{-fgcse} is enabled.
8042
8043 @item -fgcse-sm
8044 @opindex fgcse-sm
8045 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8046 global common subexpression elimination. This pass attempts to move
8047 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8048 loops containing a load/store sequence can be changed to a load before
8049 the loop and a store after the loop.
8050
8051 Not enabled at any optimization level.
8052
8053 @item -fgcse-las
8054 @opindex fgcse-las
8055 When @option{-fgcse-las} is enabled, the global common subexpression
8056 elimination pass eliminates redundant loads that come after stores to the
8057 same memory location (both partial and full redundancies).
8058
8059 Not enabled at any optimization level.
8060
8061 @item -fgcse-after-reload
8062 @opindex fgcse-after-reload
8063 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8064 pass is performed after reload. The purpose of this pass is to clean up
8065 redundant spilling.
8066
8067 @item -faggressive-loop-optimizations
8068 @opindex faggressive-loop-optimizations
8069 This option tells the loop optimizer to use language constraints to
8070 derive bounds for the number of iterations of a loop. This assumes that
8071 loop code does not invoke undefined behavior by for example causing signed
8072 integer overflows or out-of-bound array accesses. The bounds for the
8073 number of iterations of a loop are used to guide loop unrolling and peeling
8074 and loop exit test optimizations.
8075 This option is enabled by default.
8076
8077 @item -funconstrained-commons
8078 @opindex funconstrained-commons
8079 This option tells the compiler that variables declared in common blocks
8080 (e.g. Fortran) may later be overridden with longer trailing arrays. This
8081 prevents certain optimizations that depend on knowing the array bounds.
8082
8083 @item -fcrossjumping
8084 @opindex fcrossjumping
8085 Perform cross-jumping transformation.
8086 This transformation unifies equivalent code and saves code size. The
8087 resulting code may or may not perform better than without cross-jumping.
8088
8089 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8090
8091 @item -fauto-inc-dec
8092 @opindex fauto-inc-dec
8093 Combine increments or decrements of addresses with memory accesses.
8094 This pass is always skipped on architectures that do not have
8095 instructions to support this. Enabled by default at @option{-O} and
8096 higher on architectures that support this.
8097
8098 @item -fdce
8099 @opindex fdce
8100 Perform dead code elimination (DCE) on RTL@.
8101 Enabled by default at @option{-O} and higher.
8102
8103 @item -fdse
8104 @opindex fdse
8105 Perform dead store elimination (DSE) on RTL@.
8106 Enabled by default at @option{-O} and higher.
8107
8108 @item -fif-conversion
8109 @opindex fif-conversion
8110 Attempt to transform conditional jumps into branch-less equivalents. This
8111 includes use of conditional moves, min, max, set flags and abs instructions, and
8112 some tricks doable by standard arithmetics. The use of conditional execution
8113 on chips where it is available is controlled by @option{-fif-conversion2}.
8114
8115 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8116
8117 @item -fif-conversion2
8118 @opindex fif-conversion2
8119 Use conditional execution (where available) to transform conditional jumps into
8120 branch-less equivalents.
8121
8122 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8123
8124 @item -fdeclone-ctor-dtor
8125 @opindex fdeclone-ctor-dtor
8126 The C++ ABI requires multiple entry points for constructors and
8127 destructors: one for a base subobject, one for a complete object, and
8128 one for a virtual destructor that calls operator delete afterwards.
8129 For a hierarchy with virtual bases, the base and complete variants are
8130 clones, which means two copies of the function. With this option, the
8131 base and complete variants are changed to be thunks that call a common
8132 implementation.
8133
8134 Enabled by @option{-Os}.
8135
8136 @item -fdelete-null-pointer-checks
8137 @opindex fdelete-null-pointer-checks
8138 Assume that programs cannot safely dereference null pointers, and that
8139 no code or data element resides at address zero.
8140 This option enables simple constant
8141 folding optimizations at all optimization levels. In addition, other
8142 optimization passes in GCC use this flag to control global dataflow
8143 analyses that eliminate useless checks for null pointers; these assume
8144 that a memory access to address zero always results in a trap, so
8145 that if a pointer is checked after it has already been dereferenced,
8146 it cannot be null.
8147
8148 Note however that in some environments this assumption is not true.
8149 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8150 for programs that depend on that behavior.
8151
8152 This option is enabled by default on most targets. On Nios II ELF, it
8153 defaults to off. On AVR, CR16, and MSP430, this option is completely disabled.
8154
8155 Passes that use the dataflow information
8156 are enabled independently at different optimization levels.
8157
8158 @item -fdevirtualize
8159 @opindex fdevirtualize
8160 Attempt to convert calls to virtual functions to direct calls. This
8161 is done both within a procedure and interprocedurally as part of
8162 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8163 propagation (@option{-fipa-cp}).
8164 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8165
8166 @item -fdevirtualize-speculatively
8167 @opindex fdevirtualize-speculatively
8168 Attempt to convert calls to virtual functions to speculative direct calls.
8169 Based on the analysis of the type inheritance graph, determine for a given call
8170 the set of likely targets. If the set is small, preferably of size 1, change
8171 the call into a conditional deciding between direct and indirect calls. The
8172 speculative calls enable more optimizations, such as inlining. When they seem
8173 useless after further optimization, they are converted back into original form.
8174
8175 @item -fdevirtualize-at-ltrans
8176 @opindex fdevirtualize-at-ltrans
8177 Stream extra information needed for aggressive devirtualization when running
8178 the link-time optimizer in local transformation mode.
8179 This option enables more devirtualization but
8180 significantly increases the size of streamed data. For this reason it is
8181 disabled by default.
8182
8183 @item -fexpensive-optimizations
8184 @opindex fexpensive-optimizations
8185 Perform a number of minor optimizations that are relatively expensive.
8186
8187 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8188
8189 @item -free
8190 @opindex free
8191 Attempt to remove redundant extension instructions. This is especially
8192 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8193 registers after writing to their lower 32-bit half.
8194
8195 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8196 @option{-O3}, @option{-Os}.
8197
8198 @item -fno-lifetime-dse
8199 @opindex fno-lifetime-dse
8200 In C++ the value of an object is only affected by changes within its
8201 lifetime: when the constructor begins, the object has an indeterminate
8202 value, and any changes during the lifetime of the object are dead when
8203 the object is destroyed. Normally dead store elimination will take
8204 advantage of this; if your code relies on the value of the object
8205 storage persisting beyond the lifetime of the object, you can use this
8206 flag to disable this optimization. To preserve stores before the
8207 constructor starts (e.g. because your operator new clears the object
8208 storage) but still treat the object as dead after the destructor you,
8209 can use @option{-flifetime-dse=1}. The default behavior can be
8210 explicitly selected with @option{-flifetime-dse=2}.
8211 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
8212
8213 @item -flive-range-shrinkage
8214 @opindex flive-range-shrinkage
8215 Attempt to decrease register pressure through register live range
8216 shrinkage. This is helpful for fast processors with small or moderate
8217 size register sets.
8218
8219 @item -fira-algorithm=@var{algorithm}
8220 @opindex fira-algorithm
8221 Use the specified coloring algorithm for the integrated register
8222 allocator. The @var{algorithm} argument can be @samp{priority}, which
8223 specifies Chow's priority coloring, or @samp{CB}, which specifies
8224 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8225 for all architectures, but for those targets that do support it, it is
8226 the default because it generates better code.
8227
8228 @item -fira-region=@var{region}
8229 @opindex fira-region
8230 Use specified regions for the integrated register allocator. The
8231 @var{region} argument should be one of the following:
8232
8233 @table @samp
8234
8235 @item all
8236 Use all loops as register allocation regions.
8237 This can give the best results for machines with a small and/or
8238 irregular register set.
8239
8240 @item mixed
8241 Use all loops except for loops with small register pressure
8242 as the regions. This value usually gives
8243 the best results in most cases and for most architectures,
8244 and is enabled by default when compiling with optimization for speed
8245 (@option{-O}, @option{-O2}, @dots{}).
8246
8247 @item one
8248 Use all functions as a single region.
8249 This typically results in the smallest code size, and is enabled by default for
8250 @option{-Os} or @option{-O0}.
8251
8252 @end table
8253
8254 @item -fira-hoist-pressure
8255 @opindex fira-hoist-pressure
8256 Use IRA to evaluate register pressure in the code hoisting pass for
8257 decisions to hoist expressions. This option usually results in smaller
8258 code, but it can slow the compiler down.
8259
8260 This option is enabled at level @option{-Os} for all targets.
8261
8262 @item -fira-loop-pressure
8263 @opindex fira-loop-pressure
8264 Use IRA to evaluate register pressure in loops for decisions to move
8265 loop invariants. This option usually results in generation
8266 of faster and smaller code on machines with large register files (>= 32
8267 registers), but it can slow the compiler down.
8268
8269 This option is enabled at level @option{-O3} for some targets.
8270
8271 @item -fno-ira-share-save-slots
8272 @opindex fno-ira-share-save-slots
8273 Disable sharing of stack slots used for saving call-used hard
8274 registers living through a call. Each hard register gets a
8275 separate stack slot, and as a result function stack frames are
8276 larger.
8277
8278 @item -fno-ira-share-spill-slots
8279 @opindex fno-ira-share-spill-slots
8280 Disable sharing of stack slots allocated for pseudo-registers. Each
8281 pseudo-register that does not get a hard register gets a separate
8282 stack slot, and as a result function stack frames are larger.
8283
8284 @item -flra-remat
8285 @opindex flra-remat
8286 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8287 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8288 values if it is profitable.
8289
8290 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8291
8292 @item -fdelayed-branch
8293 @opindex fdelayed-branch
8294 If supported for the target machine, attempt to reorder instructions
8295 to exploit instruction slots available after delayed branch
8296 instructions.
8297
8298 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8299
8300 @item -fschedule-insns
8301 @opindex fschedule-insns
8302 If supported for the target machine, attempt to reorder instructions to
8303 eliminate execution stalls due to required data being unavailable. This
8304 helps machines that have slow floating point or memory load instructions
8305 by allowing other instructions to be issued until the result of the load
8306 or floating-point instruction is required.
8307
8308 Enabled at levels @option{-O2}, @option{-O3}.
8309
8310 @item -fschedule-insns2
8311 @opindex fschedule-insns2
8312 Similar to @option{-fschedule-insns}, but requests an additional pass of
8313 instruction scheduling after register allocation has been done. This is
8314 especially useful on machines with a relatively small number of
8315 registers and where memory load instructions take more than one cycle.
8316
8317 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8318
8319 @item -fno-sched-interblock
8320 @opindex fno-sched-interblock
8321 Don't schedule instructions across basic blocks. This is normally
8322 enabled by default when scheduling before register allocation, i.e.@:
8323 with @option{-fschedule-insns} or at @option{-O2} or higher.
8324
8325 @item -fno-sched-spec
8326 @opindex fno-sched-spec
8327 Don't allow speculative motion of non-load instructions. This is normally
8328 enabled by default when scheduling before register allocation, i.e.@:
8329 with @option{-fschedule-insns} or at @option{-O2} or higher.
8330
8331 @item -fsched-pressure
8332 @opindex fsched-pressure
8333 Enable register pressure sensitive insn scheduling before register
8334 allocation. This only makes sense when scheduling before register
8335 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8336 @option{-O2} or higher. Usage of this option can improve the
8337 generated code and decrease its size by preventing register pressure
8338 increase above the number of available hard registers and subsequent
8339 spills in register allocation.
8340
8341 @item -fsched-spec-load
8342 @opindex fsched-spec-load
8343 Allow speculative motion of some load instructions. This only makes
8344 sense when scheduling before register allocation, i.e.@: with
8345 @option{-fschedule-insns} or at @option{-O2} or higher.
8346
8347 @item -fsched-spec-load-dangerous
8348 @opindex fsched-spec-load-dangerous
8349 Allow speculative motion of more load instructions. This only makes
8350 sense when scheduling before register allocation, i.e.@: with
8351 @option{-fschedule-insns} or at @option{-O2} or higher.
8352
8353 @item -fsched-stalled-insns
8354 @itemx -fsched-stalled-insns=@var{n}
8355 @opindex fsched-stalled-insns
8356 Define how many insns (if any) can be moved prematurely from the queue
8357 of stalled insns into the ready list during the second scheduling pass.
8358 @option{-fno-sched-stalled-insns} means that no insns are moved
8359 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8360 on how many queued insns can be moved prematurely.
8361 @option{-fsched-stalled-insns} without a value is equivalent to
8362 @option{-fsched-stalled-insns=1}.
8363
8364 @item -fsched-stalled-insns-dep
8365 @itemx -fsched-stalled-insns-dep=@var{n}
8366 @opindex fsched-stalled-insns-dep
8367 Define how many insn groups (cycles) are examined for a dependency
8368 on a stalled insn that is a candidate for premature removal from the queue
8369 of stalled insns. This has an effect only during the second scheduling pass,
8370 and only if @option{-fsched-stalled-insns} is used.
8371 @option{-fno-sched-stalled-insns-dep} is equivalent to
8372 @option{-fsched-stalled-insns-dep=0}.
8373 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8374 @option{-fsched-stalled-insns-dep=1}.
8375
8376 @item -fsched2-use-superblocks
8377 @opindex fsched2-use-superblocks
8378 When scheduling after register allocation, use superblock scheduling.
8379 This allows motion across basic block boundaries,
8380 resulting in faster schedules. This option is experimental, as not all machine
8381 descriptions used by GCC model the CPU closely enough to avoid unreliable
8382 results from the algorithm.
8383
8384 This only makes sense when scheduling after register allocation, i.e.@: with
8385 @option{-fschedule-insns2} or at @option{-O2} or higher.
8386
8387 @item -fsched-group-heuristic
8388 @opindex fsched-group-heuristic
8389 Enable the group heuristic in the scheduler. This heuristic favors
8390 the instruction that belongs to a schedule group. This is enabled
8391 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8392 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8393
8394 @item -fsched-critical-path-heuristic
8395 @opindex fsched-critical-path-heuristic
8396 Enable the critical-path heuristic in the scheduler. This heuristic favors
8397 instructions on the critical path. This is enabled by default when
8398 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8399 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8400
8401 @item -fsched-spec-insn-heuristic
8402 @opindex fsched-spec-insn-heuristic
8403 Enable the speculative instruction heuristic in the scheduler. This
8404 heuristic favors speculative instructions with greater dependency weakness.
8405 This is enabled by default when scheduling is enabled, i.e.@:
8406 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8407 or at @option{-O2} or higher.
8408
8409 @item -fsched-rank-heuristic
8410 @opindex fsched-rank-heuristic
8411 Enable the rank heuristic in the scheduler. This heuristic favors
8412 the instruction belonging to a basic block with greater size or frequency.
8413 This is enabled by default when scheduling is enabled, i.e.@:
8414 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8415 at @option{-O2} or higher.
8416
8417 @item -fsched-last-insn-heuristic
8418 @opindex fsched-last-insn-heuristic
8419 Enable the last-instruction heuristic in the scheduler. This heuristic
8420 favors the instruction that is less dependent on the last instruction
8421 scheduled. This is enabled by default when scheduling is enabled,
8422 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8423 at @option{-O2} or higher.
8424
8425 @item -fsched-dep-count-heuristic
8426 @opindex fsched-dep-count-heuristic
8427 Enable the dependent-count heuristic in the scheduler. This heuristic
8428 favors the instruction that has more instructions depending on it.
8429 This is enabled by default when scheduling is enabled, i.e.@:
8430 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8431 at @option{-O2} or higher.
8432
8433 @item -freschedule-modulo-scheduled-loops
8434 @opindex freschedule-modulo-scheduled-loops
8435 Modulo scheduling is performed before traditional scheduling. If a loop
8436 is modulo scheduled, later scheduling passes may change its schedule.
8437 Use this option to control that behavior.
8438
8439 @item -fselective-scheduling
8440 @opindex fselective-scheduling
8441 Schedule instructions using selective scheduling algorithm. Selective
8442 scheduling runs instead of the first scheduler pass.
8443
8444 @item -fselective-scheduling2
8445 @opindex fselective-scheduling2
8446 Schedule instructions using selective scheduling algorithm. Selective
8447 scheduling runs instead of the second scheduler pass.
8448
8449 @item -fsel-sched-pipelining
8450 @opindex fsel-sched-pipelining
8451 Enable software pipelining of innermost loops during selective scheduling.
8452 This option has no effect unless one of @option{-fselective-scheduling} or
8453 @option{-fselective-scheduling2} is turned on.
8454
8455 @item -fsel-sched-pipelining-outer-loops
8456 @opindex fsel-sched-pipelining-outer-loops
8457 When pipelining loops during selective scheduling, also pipeline outer loops.
8458 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8459
8460 @item -fsemantic-interposition
8461 @opindex fsemantic-interposition
8462 Some object formats, like ELF, allow interposing of symbols by the
8463 dynamic linker.
8464 This means that for symbols exported from the DSO, the compiler cannot perform
8465 interprocedural propagation, inlining and other optimizations in anticipation
8466 that the function or variable in question may change. While this feature is
8467 useful, for example, to rewrite memory allocation functions by a debugging
8468 implementation, it is expensive in the terms of code quality.
8469 With @option{-fno-semantic-interposition} the compiler assumes that
8470 if interposition happens for functions the overwriting function will have
8471 precisely the same semantics (and side effects).
8472 Similarly if interposition happens
8473 for variables, the constructor of the variable will be the same. The flag
8474 has no effect for functions explicitly declared inline
8475 (where it is never allowed for interposition to change semantics)
8476 and for symbols explicitly declared weak.
8477
8478 @item -fshrink-wrap
8479 @opindex fshrink-wrap
8480 Emit function prologues only before parts of the function that need it,
8481 rather than at the top of the function. This flag is enabled by default at
8482 @option{-O} and higher.
8483
8484 @item -fshrink-wrap-separate
8485 @opindex fshrink-wrap-separate
8486 Shrink-wrap separate parts of the prologue and epilogue separately, so that
8487 those parts are only executed when needed.
8488 This option is on by default, but has no effect unless @option{-fshrink-wrap}
8489 is also turned on and the target supports this.
8490
8491 @item -fcaller-saves
8492 @opindex fcaller-saves
8493 Enable allocation of values to registers that are clobbered by
8494 function calls, by emitting extra instructions to save and restore the
8495 registers around such calls. Such allocation is done only when it
8496 seems to result in better code.
8497
8498 This option is always enabled by default on certain machines, usually
8499 those which have no call-preserved registers to use instead.
8500
8501 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8502
8503 @item -fcombine-stack-adjustments
8504 @opindex fcombine-stack-adjustments
8505 Tracks stack adjustments (pushes and pops) and stack memory references
8506 and then tries to find ways to combine them.
8507
8508 Enabled by default at @option{-O1} and higher.
8509
8510 @item -fipa-ra
8511 @opindex fipa-ra
8512 Use caller save registers for allocation if those registers are not used by
8513 any called function. In that case it is not necessary to save and restore
8514 them around calls. This is only possible if called functions are part of
8515 same compilation unit as current function and they are compiled before it.
8516
8517 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
8518 is disabled if generated code will be instrumented for profiling
8519 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
8520 exactly (this happens on targets that do not expose prologues
8521 and epilogues in RTL).
8522
8523 @item -fconserve-stack
8524 @opindex fconserve-stack
8525 Attempt to minimize stack usage. The compiler attempts to use less
8526 stack space, even if that makes the program slower. This option
8527 implies setting the @option{large-stack-frame} parameter to 100
8528 and the @option{large-stack-frame-growth} parameter to 400.
8529
8530 @item -ftree-reassoc
8531 @opindex ftree-reassoc
8532 Perform reassociation on trees. This flag is enabled by default
8533 at @option{-O} and higher.
8534
8535 @item -fcode-hoisting
8536 @opindex fcode-hoisting
8537 Perform code hoisting. Code hoisting tries to move the
8538 evaluation of expressions executed on all paths to the function exit
8539 as early as possible. This is especially useful as a code size
8540 optimization, but it often helps for code speed as well.
8541 This flag is enabled by default at @option{-O2} and higher.
8542
8543 @item -ftree-pre
8544 @opindex ftree-pre
8545 Perform partial redundancy elimination (PRE) on trees. This flag is
8546 enabled by default at @option{-O2} and @option{-O3}.
8547
8548 @item -ftree-partial-pre
8549 @opindex ftree-partial-pre
8550 Make partial redundancy elimination (PRE) more aggressive. This flag is
8551 enabled by default at @option{-O3}.
8552
8553 @item -ftree-forwprop
8554 @opindex ftree-forwprop
8555 Perform forward propagation on trees. This flag is enabled by default
8556 at @option{-O} and higher.
8557
8558 @item -ftree-fre
8559 @opindex ftree-fre
8560 Perform full redundancy elimination (FRE) on trees. The difference
8561 between FRE and PRE is that FRE only considers expressions
8562 that are computed on all paths leading to the redundant computation.
8563 This analysis is faster than PRE, though it exposes fewer redundancies.
8564 This flag is enabled by default at @option{-O} and higher.
8565
8566 @item -ftree-phiprop
8567 @opindex ftree-phiprop
8568 Perform hoisting of loads from conditional pointers on trees. This
8569 pass is enabled by default at @option{-O} and higher.
8570
8571 @item -fhoist-adjacent-loads
8572 @opindex fhoist-adjacent-loads
8573 Speculatively hoist loads from both branches of an if-then-else if the
8574 loads are from adjacent locations in the same structure and the target
8575 architecture has a conditional move instruction. This flag is enabled
8576 by default at @option{-O2} and higher.
8577
8578 @item -ftree-copy-prop
8579 @opindex ftree-copy-prop
8580 Perform copy propagation on trees. This pass eliminates unnecessary
8581 copy operations. This flag is enabled by default at @option{-O} and
8582 higher.
8583
8584 @item -fipa-pure-const
8585 @opindex fipa-pure-const
8586 Discover which functions are pure or constant.
8587 Enabled by default at @option{-O} and higher.
8588
8589 @item -fipa-reference
8590 @opindex fipa-reference
8591 Discover which static variables do not escape the
8592 compilation unit.
8593 Enabled by default at @option{-O} and higher.
8594
8595 @item -fipa-pta
8596 @opindex fipa-pta
8597 Perform interprocedural pointer analysis and interprocedural modification
8598 and reference analysis. This option can cause excessive memory and
8599 compile-time usage on large compilation units. It is not enabled by
8600 default at any optimization level.
8601
8602 @item -fipa-profile
8603 @opindex fipa-profile
8604 Perform interprocedural profile propagation. The functions called only from
8605 cold functions are marked as cold. Also functions executed once (such as
8606 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8607 functions and loop less parts of functions executed once are then optimized for
8608 size.
8609 Enabled by default at @option{-O} and higher.
8610
8611 @item -fipa-cp
8612 @opindex fipa-cp
8613 Perform interprocedural constant propagation.
8614 This optimization analyzes the program to determine when values passed
8615 to functions are constants and then optimizes accordingly.
8616 This optimization can substantially increase performance
8617 if the application has constants passed to functions.
8618 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8619
8620 @item -fipa-cp-clone
8621 @opindex fipa-cp-clone
8622 Perform function cloning to make interprocedural constant propagation stronger.
8623 When enabled, interprocedural constant propagation performs function cloning
8624 when externally visible function can be called with constant arguments.
8625 Because this optimization can create multiple copies of functions,
8626 it may significantly increase code size
8627 (see @option{--param ipcp-unit-growth=@var{value}}).
8628 This flag is enabled by default at @option{-O3}.
8629
8630 @item -fipa-bit-cp
8631 @opindex -fipa-bit-cp
8632 When enabled, perform interprocedural bitwise constant
8633 propagation. This flag is enabled by default at @option{-O2}. It
8634 requires that @option{-fipa-cp} is enabled.
8635
8636 @item -fipa-vrp
8637 @opindex -fipa-vrp
8638 When enabled, perform interprocedural propagation of value
8639 ranges. This flag is enabled by default at @option{-O2}. It requires
8640 that @option{-fipa-cp} is enabled.
8641
8642 @item -fipa-icf
8643 @opindex fipa-icf
8644 Perform Identical Code Folding for functions and read-only variables.
8645 The optimization reduces code size and may disturb unwind stacks by replacing
8646 a function by equivalent one with a different name. The optimization works
8647 more effectively with link-time optimization enabled.
8648
8649 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8650 works on different levels and thus the optimizations are not same - there are
8651 equivalences that are found only by GCC and equivalences found only by Gold.
8652
8653 This flag is enabled by default at @option{-O2} and @option{-Os}.
8654
8655 @item -fisolate-erroneous-paths-dereference
8656 @opindex fisolate-erroneous-paths-dereference
8657 Detect paths that trigger erroneous or undefined behavior due to
8658 dereferencing a null pointer. Isolate those paths from the main control
8659 flow and turn the statement with erroneous or undefined behavior into a trap.
8660 This flag is enabled by default at @option{-O2} and higher and depends on
8661 @option{-fdelete-null-pointer-checks} also being enabled.
8662
8663 @item -fisolate-erroneous-paths-attribute
8664 @opindex fisolate-erroneous-paths-attribute
8665 Detect paths that trigger erroneous or undefined behavior due to a null value
8666 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8667 attribute. Isolate those paths from the main control flow and turn the
8668 statement with erroneous or undefined behavior into a trap. This is not
8669 currently enabled, but may be enabled by @option{-O2} in the future.
8670
8671 @item -ftree-sink
8672 @opindex ftree-sink
8673 Perform forward store motion on trees. This flag is
8674 enabled by default at @option{-O} and higher.
8675
8676 @item -ftree-bit-ccp
8677 @opindex ftree-bit-ccp
8678 Perform sparse conditional bit constant propagation on trees and propagate
8679 pointer alignment information.
8680 This pass only operates on local scalar variables and is enabled by default
8681 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8682
8683 @item -ftree-ccp
8684 @opindex ftree-ccp
8685 Perform sparse conditional constant propagation (CCP) on trees. This
8686 pass only operates on local scalar variables and is enabled by default
8687 at @option{-O} and higher.
8688
8689 @item -fssa-backprop
8690 @opindex fssa-backprop
8691 Propagate information about uses of a value up the definition chain
8692 in order to simplify the definitions. For example, this pass strips
8693 sign operations if the sign of a value never matters. The flag is
8694 enabled by default at @option{-O} and higher.
8695
8696 @item -fssa-phiopt
8697 @opindex fssa-phiopt
8698 Perform pattern matching on SSA PHI nodes to optimize conditional
8699 code. This pass is enabled by default at @option{-O} and higher.
8700
8701 @item -ftree-switch-conversion
8702 @opindex ftree-switch-conversion
8703 Perform conversion of simple initializations in a switch to
8704 initializations from a scalar array. This flag is enabled by default
8705 at @option{-O2} and higher.
8706
8707 @item -ftree-tail-merge
8708 @opindex ftree-tail-merge
8709 Look for identical code sequences. When found, replace one with a jump to the
8710 other. This optimization is known as tail merging or cross jumping. This flag
8711 is enabled by default at @option{-O2} and higher. The compilation time
8712 in this pass can
8713 be limited using @option{max-tail-merge-comparisons} parameter and
8714 @option{max-tail-merge-iterations} parameter.
8715
8716 @item -ftree-dce
8717 @opindex ftree-dce
8718 Perform dead code elimination (DCE) on trees. This flag is enabled by
8719 default at @option{-O} and higher.
8720
8721 @item -ftree-builtin-call-dce
8722 @opindex ftree-builtin-call-dce
8723 Perform conditional dead code elimination (DCE) for calls to built-in functions
8724 that may set @code{errno} but are otherwise free of side effects. This flag is
8725 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8726 specified.
8727
8728 @item -ftree-dominator-opts
8729 @opindex ftree-dominator-opts
8730 Perform a variety of simple scalar cleanups (constant/copy
8731 propagation, redundancy elimination, range propagation and expression
8732 simplification) based on a dominator tree traversal. This also
8733 performs jump threading (to reduce jumps to jumps). This flag is
8734 enabled by default at @option{-O} and higher.
8735
8736 @item -ftree-dse
8737 @opindex ftree-dse
8738 Perform dead store elimination (DSE) on trees. A dead store is a store into
8739 a memory location that is later overwritten by another store without
8740 any intervening loads. In this case the earlier store can be deleted. This
8741 flag is enabled by default at @option{-O} and higher.
8742
8743 @item -ftree-ch
8744 @opindex ftree-ch
8745 Perform loop header copying on trees. This is beneficial since it increases
8746 effectiveness of code motion optimizations. It also saves one jump. This flag
8747 is enabled by default at @option{-O} and higher. It is not enabled
8748 for @option{-Os}, since it usually increases code size.
8749
8750 @item -ftree-loop-optimize
8751 @opindex ftree-loop-optimize
8752 Perform loop optimizations on trees. This flag is enabled by default
8753 at @option{-O} and higher.
8754
8755 @item -ftree-loop-linear
8756 @itemx -floop-strip-mine
8757 @itemx -floop-block
8758 @opindex ftree-loop-linear
8759 @opindex floop-strip-mine
8760 @opindex floop-block
8761 Perform loop nest optimizations. Same as
8762 @option{-floop-nest-optimize}. To use this code transformation, GCC has
8763 to be configured with @option{--with-isl} to enable the Graphite loop
8764 transformation infrastructure.
8765
8766 @item -fgraphite-identity
8767 @opindex fgraphite-identity
8768 Enable the identity transformation for graphite. For every SCoP we generate
8769 the polyhedral representation and transform it back to gimple. Using
8770 @option{-fgraphite-identity} we can check the costs or benefits of the
8771 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8772 are also performed by the code generator isl, like index splitting and
8773 dead code elimination in loops.
8774
8775 @item -floop-nest-optimize
8776 @opindex floop-nest-optimize
8777 Enable the isl based loop nest optimizer. This is a generic loop nest
8778 optimizer based on the Pluto optimization algorithms. It calculates a loop
8779 structure optimized for data-locality and parallelism. This option
8780 is experimental.
8781
8782 @item -floop-parallelize-all
8783 @opindex floop-parallelize-all
8784 Use the Graphite data dependence analysis to identify loops that can
8785 be parallelized. Parallelize all the loops that can be analyzed to
8786 not contain loop carried dependences without checking that it is
8787 profitable to parallelize the loops.
8788
8789 @item -ftree-coalesce-vars
8790 @opindex ftree-coalesce-vars
8791 While transforming the program out of the SSA representation, attempt to
8792 reduce copying by coalescing versions of different user-defined
8793 variables, instead of just compiler temporaries. This may severely
8794 limit the ability to debug an optimized program compiled with
8795 @option{-fno-var-tracking-assignments}. In the negated form, this flag
8796 prevents SSA coalescing of user variables. This option is enabled by
8797 default if optimization is enabled, and it does very little otherwise.
8798
8799 @item -ftree-loop-if-convert
8800 @opindex ftree-loop-if-convert
8801 Attempt to transform conditional jumps in the innermost loops to
8802 branch-less equivalents. The intent is to remove control-flow from
8803 the innermost loops in order to improve the ability of the
8804 vectorization pass to handle these loops. This is enabled by default
8805 if vectorization is enabled.
8806
8807 @item -ftree-loop-distribution
8808 @opindex ftree-loop-distribution
8809 Perform loop distribution. This flag can improve cache performance on
8810 big loop bodies and allow further loop optimizations, like
8811 parallelization or vectorization, to take place. For example, the loop
8812 @smallexample
8813 DO I = 1, N
8814 A(I) = B(I) + C
8815 D(I) = E(I) * F
8816 ENDDO
8817 @end smallexample
8818 is transformed to
8819 @smallexample
8820 DO I = 1, N
8821 A(I) = B(I) + C
8822 ENDDO
8823 DO I = 1, N
8824 D(I) = E(I) * F
8825 ENDDO
8826 @end smallexample
8827
8828 @item -ftree-loop-distribute-patterns
8829 @opindex ftree-loop-distribute-patterns
8830 Perform loop distribution of patterns that can be code generated with
8831 calls to a library. This flag is enabled by default at @option{-O3}.
8832
8833 This pass distributes the initialization loops and generates a call to
8834 memset zero. For example, the loop
8835 @smallexample
8836 DO I = 1, N
8837 A(I) = 0
8838 B(I) = A(I) + I
8839 ENDDO
8840 @end smallexample
8841 is transformed to
8842 @smallexample
8843 DO I = 1, N
8844 A(I) = 0
8845 ENDDO
8846 DO I = 1, N
8847 B(I) = A(I) + I
8848 ENDDO
8849 @end smallexample
8850 and the initialization loop is transformed into a call to memset zero.
8851
8852 @item -floop-interchange
8853 @opindex floop-interchange
8854 Perform loop interchange outside of graphite. This flag can improve cache
8855 performance on loop nest and allow further loop optimizations, like
8856 vectorization, to take place. For example, the loop
8857 @smallexample
8858 for (int i = 0; i < N; i++)
8859 for (int j = 0; j < N; j++)
8860 for (int k = 0; k < N; k++)
8861 c[i][j] = c[i][j] + a[i][k]*b[k][j];
8862 @end smallexample
8863 is transformed to
8864 @smallexample
8865 for (int i = 0; i < N; i++)
8866 for (int k = 0; k < N; k++)
8867 for (int j = 0; j < N; j++)
8868 c[i][j] = c[i][j] + a[i][k]*b[k][j];
8869 @end smallexample
8870
8871 @item -ftree-loop-im
8872 @opindex ftree-loop-im
8873 Perform loop invariant motion on trees. This pass moves only invariants that
8874 are hard to handle at RTL level (function calls, operations that expand to
8875 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8876 operands of conditions that are invariant out of the loop, so that we can use
8877 just trivial invariantness analysis in loop unswitching. The pass also includes
8878 store motion.
8879
8880 @item -ftree-loop-ivcanon
8881 @opindex ftree-loop-ivcanon
8882 Create a canonical counter for number of iterations in loops for which
8883 determining number of iterations requires complicated analysis. Later
8884 optimizations then may determine the number easily. Useful especially
8885 in connection with unrolling.
8886
8887 @item -fivopts
8888 @opindex fivopts
8889 Perform induction variable optimizations (strength reduction, induction
8890 variable merging and induction variable elimination) on trees.
8891
8892 @item -ftree-parallelize-loops=n
8893 @opindex ftree-parallelize-loops
8894 Parallelize loops, i.e., split their iteration space to run in n threads.
8895 This is only possible for loops whose iterations are independent
8896 and can be arbitrarily reordered. The optimization is only
8897 profitable on multiprocessor machines, for loops that are CPU-intensive,
8898 rather than constrained e.g.@: by memory bandwidth. This option
8899 implies @option{-pthread}, and thus is only supported on targets
8900 that have support for @option{-pthread}.
8901
8902 @item -ftree-pta
8903 @opindex ftree-pta
8904 Perform function-local points-to analysis on trees. This flag is
8905 enabled by default at @option{-O} and higher.
8906
8907 @item -ftree-sra
8908 @opindex ftree-sra
8909 Perform scalar replacement of aggregates. This pass replaces structure
8910 references with scalars to prevent committing structures to memory too
8911 early. This flag is enabled by default at @option{-O} and higher.
8912
8913 @item -fstore-merging
8914 @opindex fstore-merging
8915 Perform merging of narrow stores to consecutive memory addresses. This pass
8916 merges contiguous stores of immediate values narrower than a word into fewer
8917 wider stores to reduce the number of instructions. This is enabled by default
8918 at @option{-O2} and higher as well as @option{-Os}.
8919
8920 @item -ftree-ter
8921 @opindex ftree-ter
8922 Perform temporary expression replacement during the SSA->normal phase. Single
8923 use/single def temporaries are replaced at their use location with their
8924 defining expression. This results in non-GIMPLE code, but gives the expanders
8925 much more complex trees to work on resulting in better RTL generation. This is
8926 enabled by default at @option{-O} and higher.
8927
8928 @item -ftree-slsr
8929 @opindex ftree-slsr
8930 Perform straight-line strength reduction on trees. This recognizes related
8931 expressions involving multiplications and replaces them by less expensive
8932 calculations when possible. This is enabled by default at @option{-O} and
8933 higher.
8934
8935 @item -ftree-vectorize
8936 @opindex ftree-vectorize
8937 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8938 and @option{-ftree-slp-vectorize} if not explicitly specified.
8939
8940 @item -ftree-loop-vectorize
8941 @opindex ftree-loop-vectorize
8942 Perform loop vectorization on trees. This flag is enabled by default at
8943 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8944
8945 @item -ftree-slp-vectorize
8946 @opindex ftree-slp-vectorize
8947 Perform basic block vectorization on trees. This flag is enabled by default at
8948 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8949
8950 @item -fvect-cost-model=@var{model}
8951 @opindex fvect-cost-model
8952 Alter the cost model used for vectorization. The @var{model} argument
8953 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8954 With the @samp{unlimited} model the vectorized code-path is assumed
8955 to be profitable while with the @samp{dynamic} model a runtime check
8956 guards the vectorized code-path to enable it only for iteration
8957 counts that will likely execute faster than when executing the original
8958 scalar loop. The @samp{cheap} model disables vectorization of
8959 loops where doing so would be cost prohibitive for example due to
8960 required runtime checks for data dependence or alignment but otherwise
8961 is equal to the @samp{dynamic} model.
8962 The default cost model depends on other optimization flags and is
8963 either @samp{dynamic} or @samp{cheap}.
8964
8965 @item -fsimd-cost-model=@var{model}
8966 @opindex fsimd-cost-model
8967 Alter the cost model used for vectorization of loops marked with the OpenMP
8968 simd directive. The @var{model} argument should be one of
8969 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
8970 have the same meaning as described in @option{-fvect-cost-model} and by
8971 default a cost model defined with @option{-fvect-cost-model} is used.
8972
8973 @item -ftree-vrp
8974 @opindex ftree-vrp
8975 Perform Value Range Propagation on trees. This is similar to the
8976 constant propagation pass, but instead of values, ranges of values are
8977 propagated. This allows the optimizers to remove unnecessary range
8978 checks like array bound checks and null pointer checks. This is
8979 enabled by default at @option{-O2} and higher. Null pointer check
8980 elimination is only done if @option{-fdelete-null-pointer-checks} is
8981 enabled.
8982
8983 @item -fsplit-paths
8984 @opindex fsplit-paths
8985 Split paths leading to loop backedges. This can improve dead code
8986 elimination and common subexpression elimination. This is enabled by
8987 default at @option{-O2} and above.
8988
8989 @item -fsplit-ivs-in-unroller
8990 @opindex fsplit-ivs-in-unroller
8991 Enables expression of values of induction variables in later iterations
8992 of the unrolled loop using the value in the first iteration. This breaks
8993 long dependency chains, thus improving efficiency of the scheduling passes.
8994
8995 A combination of @option{-fweb} and CSE is often sufficient to obtain the
8996 same effect. However, that is not reliable in cases where the loop body
8997 is more complicated than a single basic block. It also does not work at all
8998 on some architectures due to restrictions in the CSE pass.
8999
9000 This optimization is enabled by default.
9001
9002 @item -fvariable-expansion-in-unroller
9003 @opindex fvariable-expansion-in-unroller
9004 With this option, the compiler creates multiple copies of some
9005 local variables when unrolling a loop, which can result in superior code.
9006
9007 @item -fpartial-inlining
9008 @opindex fpartial-inlining
9009 Inline parts of functions. This option has any effect only
9010 when inlining itself is turned on by the @option{-finline-functions}
9011 or @option{-finline-small-functions} options.
9012
9013 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9014
9015 @item -fpredictive-commoning
9016 @opindex fpredictive-commoning
9017 Perform predictive commoning optimization, i.e., reusing computations
9018 (especially memory loads and stores) performed in previous
9019 iterations of loops.
9020
9021 This option is enabled at level @option{-O3}.
9022
9023 @item -fprefetch-loop-arrays
9024 @opindex fprefetch-loop-arrays
9025 If supported by the target machine, generate instructions to prefetch
9026 memory to improve the performance of loops that access large arrays.
9027
9028 This option may generate better or worse code; results are highly
9029 dependent on the structure of loops within the source code.
9030
9031 Disabled at level @option{-Os}.
9032
9033 @item -fno-printf-return-value
9034 @opindex fno-printf-return-value
9035 Do not substitute constants for known return value of formatted output
9036 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
9037 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
9038 transformation allows GCC to optimize or even eliminate branches based
9039 on the known return value of these functions called with arguments that
9040 are either constant, or whose values are known to be in a range that
9041 makes determining the exact return value possible. For example, when
9042 @option{-fprintf-return-value} is in effect, both the branch and the
9043 body of the @code{if} statement (but not the call to @code{snprint})
9044 can be optimized away when @code{i} is a 32-bit or smaller integer
9045 because the return value is guaranteed to be at most 8.
9046
9047 @smallexample
9048 char buf[9];
9049 if (snprintf (buf, "%08x", i) >= sizeof buf)
9050 @dots{}
9051 @end smallexample
9052
9053 The @option{-fprintf-return-value} option relies on other optimizations
9054 and yields best results with @option{-O2} and above. It works in tandem
9055 with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
9056 options. The @option{-fprintf-return-value} option is enabled by default.
9057
9058 @item -fno-peephole
9059 @itemx -fno-peephole2
9060 @opindex fno-peephole
9061 @opindex fno-peephole2
9062 Disable any machine-specific peephole optimizations. The difference
9063 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9064 are implemented in the compiler; some targets use one, some use the
9065 other, a few use both.
9066
9067 @option{-fpeephole} is enabled by default.
9068 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9069
9070 @item -fno-guess-branch-probability
9071 @opindex fno-guess-branch-probability
9072 Do not guess branch probabilities using heuristics.
9073
9074 GCC uses heuristics to guess branch probabilities if they are
9075 not provided by profiling feedback (@option{-fprofile-arcs}). These
9076 heuristics are based on the control flow graph. If some branch probabilities
9077 are specified by @code{__builtin_expect}, then the heuristics are
9078 used to guess branch probabilities for the rest of the control flow graph,
9079 taking the @code{__builtin_expect} info into account. The interactions
9080 between the heuristics and @code{__builtin_expect} can be complex, and in
9081 some cases, it may be useful to disable the heuristics so that the effects
9082 of @code{__builtin_expect} are easier to understand.
9083
9084 The default is @option{-fguess-branch-probability} at levels
9085 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9086
9087 @item -freorder-blocks
9088 @opindex freorder-blocks
9089 Reorder basic blocks in the compiled function in order to reduce number of
9090 taken branches and improve code locality.
9091
9092 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9093
9094 @item -freorder-blocks-algorithm=@var{algorithm}
9095 @opindex freorder-blocks-algorithm
9096 Use the specified algorithm for basic block reordering. The
9097 @var{algorithm} argument can be @samp{simple}, which does not increase
9098 code size (except sometimes due to secondary effects like alignment),
9099 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9100 put all often executed code together, minimizing the number of branches
9101 executed by making extra copies of code.
9102
9103 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9104 @samp{stc} at levels @option{-O2}, @option{-O3}.
9105
9106 @item -freorder-blocks-and-partition
9107 @opindex freorder-blocks-and-partition
9108 In addition to reordering basic blocks in the compiled function, in order
9109 to reduce number of taken branches, partitions hot and cold basic blocks
9110 into separate sections of the assembly and @file{.o} files, to improve
9111 paging and cache locality performance.
9112
9113 This optimization is automatically turned off in the presence of
9114 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
9115 section attribute and on any architecture that does not support named
9116 sections. When @option{-fsplit-stack} is used this option is not
9117 enabled by default (to avoid linker errors), but may be enabled
9118 explicitly (if using a working linker).
9119
9120 Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
9121
9122 @item -freorder-functions
9123 @opindex freorder-functions
9124 Reorder functions in the object file in order to
9125 improve code locality. This is implemented by using special
9126 subsections @code{.text.hot} for most frequently executed functions and
9127 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
9128 the linker so object file format must support named sections and linker must
9129 place them in a reasonable way.
9130
9131 Also profile feedback must be available to make this option effective. See
9132 @option{-fprofile-arcs} for details.
9133
9134 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9135
9136 @item -fstrict-aliasing
9137 @opindex fstrict-aliasing
9138 Allow the compiler to assume the strictest aliasing rules applicable to
9139 the language being compiled. For C (and C++), this activates
9140 optimizations based on the type of expressions. In particular, an
9141 object of one type is assumed never to reside at the same address as an
9142 object of a different type, unless the types are almost the same. For
9143 example, an @code{unsigned int} can alias an @code{int}, but not a
9144 @code{void*} or a @code{double}. A character type may alias any other
9145 type.
9146
9147 @anchor{Type-punning}Pay special attention to code like this:
9148 @smallexample
9149 union a_union @{
9150 int i;
9151 double d;
9152 @};
9153
9154 int f() @{
9155 union a_union t;
9156 t.d = 3.0;
9157 return t.i;
9158 @}
9159 @end smallexample
9160 The practice of reading from a different union member than the one most
9161 recently written to (called ``type-punning'') is common. Even with
9162 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9163 is accessed through the union type. So, the code above works as
9164 expected. @xref{Structures unions enumerations and bit-fields
9165 implementation}. However, this code might not:
9166 @smallexample
9167 int f() @{
9168 union a_union t;
9169 int* ip;
9170 t.d = 3.0;
9171 ip = &t.i;
9172 return *ip;
9173 @}
9174 @end smallexample
9175
9176 Similarly, access by taking the address, casting the resulting pointer
9177 and dereferencing the result has undefined behavior, even if the cast
9178 uses a union type, e.g.:
9179 @smallexample
9180 int f() @{
9181 double d = 3.0;
9182 return ((union a_union *) &d)->i;
9183 @}
9184 @end smallexample
9185
9186 The @option{-fstrict-aliasing} option is enabled at levels
9187 @option{-O2}, @option{-O3}, @option{-Os}.
9188
9189 @item -falign-functions
9190 @itemx -falign-functions=@var{n}
9191 @opindex falign-functions
9192 Align the start of functions to the next power-of-two greater than
9193 @var{n}, skipping up to @var{n} bytes. For instance,
9194 @option{-falign-functions=32} aligns functions to the next 32-byte
9195 boundary, but @option{-falign-functions=24} aligns to the next
9196 32-byte boundary only if this can be done by skipping 23 bytes or less.
9197
9198 @option{-fno-align-functions} and @option{-falign-functions=1} are
9199 equivalent and mean that functions are not aligned.
9200
9201 Some assemblers only support this flag when @var{n} is a power of two;
9202 in that case, it is rounded up.
9203
9204 If @var{n} is not specified or is zero, use a machine-dependent default.
9205 The maximum allowed @var{n} option value is 65536.
9206
9207 Enabled at levels @option{-O2}, @option{-O3}.
9208
9209 @item -flimit-function-alignment
9210 If this option is enabled, the compiler tries to avoid unnecessarily
9211 overaligning functions. It attempts to instruct the assembler to align
9212 by the amount specified by @option{-falign-functions}, but not to
9213 skip more bytes than the size of the function.
9214
9215 @item -falign-labels
9216 @itemx -falign-labels=@var{n}
9217 @opindex falign-labels
9218 Align all branch targets to a power-of-two boundary, skipping up to
9219 @var{n} bytes like @option{-falign-functions}. This option can easily
9220 make code slower, because it must insert dummy operations for when the
9221 branch target is reached in the usual flow of the code.
9222
9223 @option{-fno-align-labels} and @option{-falign-labels=1} are
9224 equivalent and mean that labels are not aligned.
9225
9226 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9227 are greater than this value, then their values are used instead.
9228
9229 If @var{n} is not specified or is zero, use a machine-dependent default
9230 which is very likely to be @samp{1}, meaning no alignment.
9231 The maximum allowed @var{n} option value is 65536.
9232
9233 Enabled at levels @option{-O2}, @option{-O3}.
9234
9235 @item -falign-loops
9236 @itemx -falign-loops=@var{n}
9237 @opindex falign-loops
9238 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9239 like @option{-falign-functions}. If the loops are
9240 executed many times, this makes up for any execution of the dummy
9241 operations.
9242
9243 @option{-fno-align-loops} and @option{-falign-loops=1} are
9244 equivalent and mean that loops are not aligned.
9245 The maximum allowed @var{n} option value is 65536.
9246
9247 If @var{n} is not specified or is zero, use a machine-dependent default.
9248
9249 Enabled at levels @option{-O2}, @option{-O3}.
9250
9251 @item -falign-jumps
9252 @itemx -falign-jumps=@var{n}
9253 @opindex falign-jumps
9254 Align branch targets to a power-of-two boundary, for branch targets
9255 where the targets can only be reached by jumping, skipping up to @var{n}
9256 bytes like @option{-falign-functions}. In this case, no dummy operations
9257 need be executed.
9258
9259 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9260 equivalent and mean that loops are not aligned.
9261
9262 If @var{n} is not specified or is zero, use a machine-dependent default.
9263 The maximum allowed @var{n} option value is 65536.
9264
9265 Enabled at levels @option{-O2}, @option{-O3}.
9266
9267 @item -funit-at-a-time
9268 @opindex funit-at-a-time
9269 This option is left for compatibility reasons. @option{-funit-at-a-time}
9270 has no effect, while @option{-fno-unit-at-a-time} implies
9271 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9272
9273 Enabled by default.
9274
9275 @item -fno-toplevel-reorder
9276 @opindex fno-toplevel-reorder
9277 Do not reorder top-level functions, variables, and @code{asm}
9278 statements. Output them in the same order that they appear in the
9279 input file. When this option is used, unreferenced static variables
9280 are not removed. This option is intended to support existing code
9281 that relies on a particular ordering. For new code, it is better to
9282 use attributes when possible.
9283
9284 Enabled at level @option{-O0}. When disabled explicitly, it also implies
9285 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9286 targets.
9287
9288 @item -fweb
9289 @opindex fweb
9290 Constructs webs as commonly used for register allocation purposes and assign
9291 each web individual pseudo register. This allows the register allocation pass
9292 to operate on pseudos directly, but also strengthens several other optimization
9293 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
9294 however, make debugging impossible, since variables no longer stay in a
9295 ``home register''.
9296
9297 Enabled by default with @option{-funroll-loops}.
9298
9299 @item -fwhole-program
9300 @opindex fwhole-program
9301 Assume that the current compilation unit represents the whole program being
9302 compiled. All public functions and variables with the exception of @code{main}
9303 and those merged by attribute @code{externally_visible} become static functions
9304 and in effect are optimized more aggressively by interprocedural optimizers.
9305
9306 This option should not be used in combination with @option{-flto}.
9307 Instead relying on a linker plugin should provide safer and more precise
9308 information.
9309
9310 @item -flto[=@var{n}]
9311 @opindex flto
9312 This option runs the standard link-time optimizer. When invoked
9313 with source code, it generates GIMPLE (one of GCC's internal
9314 representations) and writes it to special ELF sections in the object
9315 file. When the object files are linked together, all the function
9316 bodies are read from these ELF sections and instantiated as if they
9317 had been part of the same translation unit.
9318
9319 To use the link-time optimizer, @option{-flto} and optimization
9320 options should be specified at compile time and during the final link.
9321 It is recommended that you compile all the files participating in the
9322 same link with the same options and also specify those options at
9323 link time.
9324 For example:
9325
9326 @smallexample
9327 gcc -c -O2 -flto foo.c
9328 gcc -c -O2 -flto bar.c
9329 gcc -o myprog -flto -O2 foo.o bar.o
9330 @end smallexample
9331
9332 The first two invocations to GCC save a bytecode representation
9333 of GIMPLE into special ELF sections inside @file{foo.o} and
9334 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
9335 @file{foo.o} and @file{bar.o}, merges the two files into a single
9336 internal image, and compiles the result as usual. Since both
9337 @file{foo.o} and @file{bar.o} are merged into a single image, this
9338 causes all the interprocedural analyses and optimizations in GCC to
9339 work across the two files as if they were a single one. This means,
9340 for example, that the inliner is able to inline functions in
9341 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9342
9343 Another (simpler) way to enable link-time optimization is:
9344
9345 @smallexample
9346 gcc -o myprog -flto -O2 foo.c bar.c
9347 @end smallexample
9348
9349 The above generates bytecode for @file{foo.c} and @file{bar.c},
9350 merges them together into a single GIMPLE representation and optimizes
9351 them as usual to produce @file{myprog}.
9352
9353 The only important thing to keep in mind is that to enable link-time
9354 optimizations you need to use the GCC driver to perform the link step.
9355 GCC then automatically performs link-time optimization if any of the
9356 objects involved were compiled with the @option{-flto} command-line option.
9357 You generally
9358 should specify the optimization options to be used for link-time
9359 optimization though GCC tries to be clever at guessing an
9360 optimization level to use from the options used at compile time
9361 if you fail to specify one at link time. You can always override
9362 the automatic decision to do link-time optimization
9363 by passing @option{-fno-lto} to the link command.
9364
9365 To make whole program optimization effective, it is necessary to make
9366 certain whole program assumptions. The compiler needs to know
9367 what functions and variables can be accessed by libraries and runtime
9368 outside of the link-time optimized unit. When supported by the linker,
9369 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9370 to the compiler about used and externally visible symbols. When
9371 the linker plugin is not available, @option{-fwhole-program} should be
9372 used to allow the compiler to make these assumptions, which leads
9373 to more aggressive optimization decisions.
9374
9375 When @option{-fuse-linker-plugin} is not enabled, when a file is
9376 compiled with @option{-flto}, the generated object file is larger than
9377 a regular object file because it contains GIMPLE bytecodes and the usual
9378 final code (see @option{-ffat-lto-objects}. This means that
9379 object files with LTO information can be linked as normal object
9380 files; if @option{-fno-lto} is passed to the linker, no
9381 interprocedural optimizations are applied. Note that when
9382 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
9383 but you cannot perform a regular, non-LTO link on them.
9384
9385 Additionally, the optimization flags used to compile individual files
9386 are not necessarily related to those used at link time. For instance,
9387
9388 @smallexample
9389 gcc -c -O0 -ffat-lto-objects -flto foo.c
9390 gcc -c -O0 -ffat-lto-objects -flto bar.c
9391 gcc -o myprog -O3 foo.o bar.o
9392 @end smallexample
9393
9394 This produces individual object files with unoptimized assembler
9395 code, but the resulting binary @file{myprog} is optimized at
9396 @option{-O3}. If, instead, the final binary is generated with
9397 @option{-fno-lto}, then @file{myprog} is not optimized.
9398
9399 When producing the final binary, GCC only
9400 applies link-time optimizations to those files that contain bytecode.
9401 Therefore, you can mix and match object files and libraries with
9402 GIMPLE bytecodes and final object code. GCC automatically selects
9403 which files to optimize in LTO mode and which files to link without
9404 further processing.
9405
9406 There are some code generation flags preserved by GCC when
9407 generating bytecodes, as they need to be used during the final link
9408 stage. Generally options specified at link time override those
9409 specified at compile time.
9410
9411 If you do not specify an optimization level option @option{-O} at
9412 link time, then GCC uses the highest optimization level
9413 used when compiling the object files.
9414
9415 Currently, the following options and their settings are taken from
9416 the first object file that explicitly specifies them:
9417 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9418 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9419 and all the @option{-m} target flags.
9420
9421 Certain ABI-changing flags are required to match in all compilation units,
9422 and trying to override this at link time with a conflicting value
9423 is ignored. This includes options such as @option{-freg-struct-return}
9424 and @option{-fpcc-struct-return}.
9425
9426 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9427 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9428 are passed through to the link stage and merged conservatively for
9429 conflicting translation units. Specifically
9430 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9431 precedence; and for example @option{-ffp-contract=off} takes precedence
9432 over @option{-ffp-contract=fast}. You can override them at link time.
9433
9434 If LTO encounters objects with C linkage declared with incompatible
9435 types in separate translation units to be linked together (undefined
9436 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9437 issued. The behavior is still undefined at run time. Similar
9438 diagnostics may be raised for other languages.
9439
9440 Another feature of LTO is that it is possible to apply interprocedural
9441 optimizations on files written in different languages:
9442
9443 @smallexample
9444 gcc -c -flto foo.c
9445 g++ -c -flto bar.cc
9446 gfortran -c -flto baz.f90
9447 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9448 @end smallexample
9449
9450 Notice that the final link is done with @command{g++} to get the C++
9451 runtime libraries and @option{-lgfortran} is added to get the Fortran
9452 runtime libraries. In general, when mixing languages in LTO mode, you
9453 should use the same link command options as when mixing languages in a
9454 regular (non-LTO) compilation.
9455
9456 If object files containing GIMPLE bytecode are stored in a library archive, say
9457 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9458 are using a linker with plugin support. To create static libraries suitable
9459 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9460 and @command{ranlib};
9461 to show the symbols of object files with GIMPLE bytecode, use
9462 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9463 and @command{nm} have been compiled with plugin support. At link time, use the the
9464 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9465 the LTO optimization process:
9466
9467 @smallexample
9468 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9469 @end smallexample
9470
9471 With the linker plugin enabled, the linker extracts the needed
9472 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9473 to make them part of the aggregated GIMPLE image to be optimized.
9474
9475 If you are not using a linker with plugin support and/or do not
9476 enable the linker plugin, then the objects inside @file{libfoo.a}
9477 are extracted and linked as usual, but they do not participate
9478 in the LTO optimization process. In order to make a static library suitable
9479 for both LTO optimization and usual linkage, compile its object files with
9480 @option{-flto} @option{-ffat-lto-objects}.
9481
9482 Link-time optimizations do not require the presence of the whole program to
9483 operate. If the program does not require any symbols to be exported, it is
9484 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9485 the interprocedural optimizers to use more aggressive assumptions which may
9486 lead to improved optimization opportunities.
9487 Use of @option{-fwhole-program} is not needed when linker plugin is
9488 active (see @option{-fuse-linker-plugin}).
9489
9490 The current implementation of LTO makes no
9491 attempt to generate bytecode that is portable between different
9492 types of hosts. The bytecode files are versioned and there is a
9493 strict version check, so bytecode files generated in one version of
9494 GCC do not work with an older or newer version of GCC.
9495
9496 Link-time optimization does not work well with generation of debugging
9497 information on systems other than those using a combination of ELF and
9498 DWARF.
9499
9500 If you specify the optional @var{n}, the optimization and code
9501 generation done at link time is executed in parallel using @var{n}
9502 parallel jobs by utilizing an installed @command{make} program. The
9503 environment variable @env{MAKE} may be used to override the program
9504 used. The default value for @var{n} is 1.
9505
9506 You can also specify @option{-flto=jobserver} to use GNU make's
9507 job server mode to determine the number of parallel jobs. This
9508 is useful when the Makefile calling GCC is already executing in parallel.
9509 You must prepend a @samp{+} to the command recipe in the parent Makefile
9510 for this to work. This option likely only works if @env{MAKE} is
9511 GNU make.
9512
9513 @item -flto-partition=@var{alg}
9514 @opindex flto-partition
9515 Specify the partitioning algorithm used by the link-time optimizer.
9516 The value is either @samp{1to1} to specify a partitioning mirroring
9517 the original source files or @samp{balanced} to specify partitioning
9518 into equally sized chunks (whenever possible) or @samp{max} to create
9519 new partition for every symbol where possible. Specifying @samp{none}
9520 as an algorithm disables partitioning and streaming completely.
9521 The default value is @samp{balanced}. While @samp{1to1} can be used
9522 as an workaround for various code ordering issues, the @samp{max}
9523 partitioning is intended for internal testing only.
9524 The value @samp{one} specifies that exactly one partition should be
9525 used while the value @samp{none} bypasses partitioning and executes
9526 the link-time optimization step directly from the WPA phase.
9527
9528 @item -flto-odr-type-merging
9529 @opindex flto-odr-type-merging
9530 Enable streaming of mangled types names of C++ types and their unification
9531 at link time. This increases size of LTO object files, but enables
9532 diagnostics about One Definition Rule violations.
9533
9534 @item -flto-compression-level=@var{n}
9535 @opindex flto-compression-level
9536 This option specifies the level of compression used for intermediate
9537 language written to LTO object files, and is only meaningful in
9538 conjunction with LTO mode (@option{-flto}). Valid
9539 values are 0 (no compression) to 9 (maximum compression). Values
9540 outside this range are clamped to either 0 or 9. If the option is not
9541 given, a default balanced compression setting is used.
9542
9543 @item -fuse-linker-plugin
9544 @opindex fuse-linker-plugin
9545 Enables the use of a linker plugin during link-time optimization. This
9546 option relies on plugin support in the linker, which is available in gold
9547 or in GNU ld 2.21 or newer.
9548
9549 This option enables the extraction of object files with GIMPLE bytecode out
9550 of library archives. This improves the quality of optimization by exposing
9551 more code to the link-time optimizer. This information specifies what
9552 symbols can be accessed externally (by non-LTO object or during dynamic
9553 linking). Resulting code quality improvements on binaries (and shared
9554 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9555 See @option{-flto} for a description of the effect of this flag and how to
9556 use it.
9557
9558 This option is enabled by default when LTO support in GCC is enabled
9559 and GCC was configured for use with
9560 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9561
9562 @item -ffat-lto-objects
9563 @opindex ffat-lto-objects
9564 Fat LTO objects are object files that contain both the intermediate language
9565 and the object code. This makes them usable for both LTO linking and normal
9566 linking. This option is effective only when compiling with @option{-flto}
9567 and is ignored at link time.
9568
9569 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9570 requires the complete toolchain to be aware of LTO. It requires a linker with
9571 linker plugin support for basic functionality. Additionally,
9572 @command{nm}, @command{ar} and @command{ranlib}
9573 need to support linker plugins to allow a full-featured build environment
9574 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9575 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9576 to these tools. With non fat LTO makefiles need to be modified to use them.
9577
9578 Note that modern binutils provide plugin auto-load mechanism.
9579 Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
9580 effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
9581 @command{gcc-ranlib}).
9582
9583 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9584 support.
9585
9586 @item -fcompare-elim
9587 @opindex fcompare-elim
9588 After register allocation and post-register allocation instruction splitting,
9589 identify arithmetic instructions that compute processor flags similar to a
9590 comparison operation based on that arithmetic. If possible, eliminate the
9591 explicit comparison operation.
9592
9593 This pass only applies to certain targets that cannot explicitly represent
9594 the comparison operation before register allocation is complete.
9595
9596 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9597
9598 @item -fcprop-registers
9599 @opindex fcprop-registers
9600 After register allocation and post-register allocation instruction splitting,
9601 perform a copy-propagation pass to try to reduce scheduling dependencies
9602 and occasionally eliminate the copy.
9603
9604 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9605
9606 @item -fprofile-correction
9607 @opindex fprofile-correction
9608 Profiles collected using an instrumented binary for multi-threaded programs may
9609 be inconsistent due to missed counter updates. When this option is specified,
9610 GCC uses heuristics to correct or smooth out such inconsistencies. By
9611 default, GCC emits an error message when an inconsistent profile is detected.
9612
9613 @item -fprofile-use
9614 @itemx -fprofile-use=@var{path}
9615 @opindex fprofile-use
9616 Enable profile feedback-directed optimizations,
9617 and the following optimizations
9618 which are generally profitable only with profile feedback available:
9619 @option{-fbranch-probabilities}, @option{-fvpt},
9620 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9621 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9622
9623 Before you can use this option, you must first generate profiling information.
9624 @xref{Instrumentation Options}, for information about the
9625 @option{-fprofile-generate} option.
9626
9627 By default, GCC emits an error message if the feedback profiles do not
9628 match the source code. This error can be turned into a warning by using
9629 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9630 code.
9631
9632 If @var{path} is specified, GCC looks at the @var{path} to find
9633 the profile feedback data files. See @option{-fprofile-dir}.
9634
9635 @item -fauto-profile
9636 @itemx -fauto-profile=@var{path}
9637 @opindex fauto-profile
9638 Enable sampling-based feedback-directed optimizations,
9639 and the following optimizations
9640 which are generally profitable only with profile feedback available:
9641 @option{-fbranch-probabilities}, @option{-fvpt},
9642 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9643 @option{-ftree-vectorize},
9644 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9645 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9646 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9647
9648 @var{path} is the name of a file containing AutoFDO profile information.
9649 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9650
9651 Producing an AutoFDO profile data file requires running your program
9652 with the @command{perf} utility on a supported GNU/Linux target system.
9653 For more information, see @uref{https://perf.wiki.kernel.org/}.
9654
9655 E.g.
9656 @smallexample
9657 perf record -e br_inst_retired:near_taken -b -o perf.data \
9658 -- your_program
9659 @end smallexample
9660
9661 Then use the @command{create_gcov} tool to convert the raw profile data
9662 to a format that can be used by GCC.@ You must also supply the
9663 unstripped binary for your program to this tool.
9664 See @uref{https://github.com/google/autofdo}.
9665
9666 E.g.
9667 @smallexample
9668 create_gcov --binary=your_program.unstripped --profile=perf.data \
9669 --gcov=profile.afdo
9670 @end smallexample
9671 @end table
9672
9673 The following options control compiler behavior regarding floating-point
9674 arithmetic. These options trade off between speed and
9675 correctness. All must be specifically enabled.
9676
9677 @table @gcctabopt
9678 @item -ffloat-store
9679 @opindex ffloat-store
9680 Do not store floating-point variables in registers, and inhibit other
9681 options that might change whether a floating-point value is taken from a
9682 register or memory.
9683
9684 @cindex floating-point precision
9685 This option prevents undesirable excess precision on machines such as
9686 the 68000 where the floating registers (of the 68881) keep more
9687 precision than a @code{double} is supposed to have. Similarly for the
9688 x86 architecture. For most programs, the excess precision does only
9689 good, but a few programs rely on the precise definition of IEEE floating
9690 point. Use @option{-ffloat-store} for such programs, after modifying
9691 them to store all pertinent intermediate computations into variables.
9692
9693 @item -fexcess-precision=@var{style}
9694 @opindex fexcess-precision
9695 This option allows further control over excess precision on machines
9696 where floating-point operations occur in a format with more precision or
9697 range than the IEEE standard and interchange floating-point types. By
9698 default, @option{-fexcess-precision=fast} is in effect; this means that
9699 operations may be carried out in a wider precision than the types specified
9700 in the source if that would result in faster code, and it is unpredictable
9701 when rounding to the types specified in the source code takes place.
9702 When compiling C, if @option{-fexcess-precision=standard} is specified then
9703 excess precision follows the rules specified in ISO C99; in particular,
9704 both casts and assignments cause values to be rounded to their
9705 semantic types (whereas @option{-ffloat-store} only affects
9706 assignments). This option is enabled by default for C if a strict
9707 conformance option such as @option{-std=c99} is used.
9708 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
9709 regardless of whether a strict conformance option is used.
9710
9711 @opindex mfpmath
9712 @option{-fexcess-precision=standard} is not implemented for languages
9713 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
9714 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9715 semantics apply without excess precision, and in the latter, rounding
9716 is unpredictable.
9717
9718 @item -ffast-math
9719 @opindex ffast-math
9720 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9721 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9722 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
9723 @option{-fexcess-precision=fast}.
9724
9725 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9726
9727 This option is not turned on by any @option{-O} option besides
9728 @option{-Ofast} since it can result in incorrect output for programs
9729 that depend on an exact implementation of IEEE or ISO rules/specifications
9730 for math functions. It may, however, yield faster code for programs
9731 that do not require the guarantees of these specifications.
9732
9733 @item -fno-math-errno
9734 @opindex fno-math-errno
9735 Do not set @code{errno} after calling math functions that are executed
9736 with a single instruction, e.g., @code{sqrt}. A program that relies on
9737 IEEE exceptions for math error handling may want to use this flag
9738 for speed while maintaining IEEE arithmetic compatibility.
9739
9740 This option is not turned on by any @option{-O} option since
9741 it can result in incorrect output for programs that depend on
9742 an exact implementation of IEEE or ISO rules/specifications for
9743 math functions. It may, however, yield faster code for programs
9744 that do not require the guarantees of these specifications.
9745
9746 The default is @option{-fmath-errno}.
9747
9748 On Darwin systems, the math library never sets @code{errno}. There is
9749 therefore no reason for the compiler to consider the possibility that
9750 it might, and @option{-fno-math-errno} is the default.
9751
9752 @item -funsafe-math-optimizations
9753 @opindex funsafe-math-optimizations
9754
9755 Allow optimizations for floating-point arithmetic that (a) assume
9756 that arguments and results are valid and (b) may violate IEEE or
9757 ANSI standards. When used at link time, it may include libraries
9758 or startup files that change the default FPU control word or other
9759 similar optimizations.
9760
9761 This option is not turned on by any @option{-O} option since
9762 it can result in incorrect output for programs that depend on
9763 an exact implementation of IEEE or ISO rules/specifications for
9764 math functions. It may, however, yield faster code for programs
9765 that do not require the guarantees of these specifications.
9766 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9767 @option{-fassociative-math} and @option{-freciprocal-math}.
9768
9769 The default is @option{-fno-unsafe-math-optimizations}.
9770
9771 @item -fassociative-math
9772 @opindex fassociative-math
9773
9774 Allow re-association of operands in series of floating-point operations.
9775 This violates the ISO C and C++ language standard by possibly changing
9776 computation result. NOTE: re-ordering may change the sign of zero as
9777 well as ignore NaNs and inhibit or create underflow or overflow (and
9778 thus cannot be used on code that relies on rounding behavior like
9779 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9780 and thus may not be used when ordered comparisons are required.
9781 This option requires that both @option{-fno-signed-zeros} and
9782 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9783 much sense with @option{-frounding-math}. For Fortran the option
9784 is automatically enabled when both @option{-fno-signed-zeros} and
9785 @option{-fno-trapping-math} are in effect.
9786
9787 The default is @option{-fno-associative-math}.
9788
9789 @item -freciprocal-math
9790 @opindex freciprocal-math
9791
9792 Allow the reciprocal of a value to be used instead of dividing by
9793 the value if this enables optimizations. For example @code{x / y}
9794 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9795 is subject to common subexpression elimination. Note that this loses
9796 precision and increases the number of flops operating on the value.
9797
9798 The default is @option{-fno-reciprocal-math}.
9799
9800 @item -ffinite-math-only
9801 @opindex ffinite-math-only
9802 Allow optimizations for floating-point arithmetic that assume
9803 that arguments and results are not NaNs or +-Infs.
9804
9805 This option is not turned on by any @option{-O} option since
9806 it can result in incorrect output for programs that depend on
9807 an exact implementation of IEEE or ISO rules/specifications for
9808 math functions. It may, however, yield faster code for programs
9809 that do not require the guarantees of these specifications.
9810
9811 The default is @option{-fno-finite-math-only}.
9812
9813 @item -fno-signed-zeros
9814 @opindex fno-signed-zeros
9815 Allow optimizations for floating-point arithmetic that ignore the
9816 signedness of zero. IEEE arithmetic specifies the behavior of
9817 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9818 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9819 This option implies that the sign of a zero result isn't significant.
9820
9821 The default is @option{-fsigned-zeros}.
9822
9823 @item -fno-trapping-math
9824 @opindex fno-trapping-math
9825 Compile code assuming that floating-point operations cannot generate
9826 user-visible traps. These traps include division by zero, overflow,
9827 underflow, inexact result and invalid operation. This option requires
9828 that @option{-fno-signaling-nans} be in effect. Setting this option may
9829 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9830
9831 This option should never be turned on by any @option{-O} option since
9832 it can result in incorrect output for programs that depend on
9833 an exact implementation of IEEE or ISO rules/specifications for
9834 math functions.
9835
9836 The default is @option{-ftrapping-math}.
9837
9838 @item -frounding-math
9839 @opindex frounding-math
9840 Disable transformations and optimizations that assume default floating-point
9841 rounding behavior. This is round-to-zero for all floating point
9842 to integer conversions, and round-to-nearest for all other arithmetic
9843 truncations. This option should be specified for programs that change
9844 the FP rounding mode dynamically, or that may be executed with a
9845 non-default rounding mode. This option disables constant folding of
9846 floating-point expressions at compile time (which may be affected by
9847 rounding mode) and arithmetic transformations that are unsafe in the
9848 presence of sign-dependent rounding modes.
9849
9850 The default is @option{-fno-rounding-math}.
9851
9852 This option is experimental and does not currently guarantee to
9853 disable all GCC optimizations that are affected by rounding mode.
9854 Future versions of GCC may provide finer control of this setting
9855 using C99's @code{FENV_ACCESS} pragma. This command-line option
9856 will be used to specify the default state for @code{FENV_ACCESS}.
9857
9858 @item -fsignaling-nans
9859 @opindex fsignaling-nans
9860 Compile code assuming that IEEE signaling NaNs may generate user-visible
9861 traps during floating-point operations. Setting this option disables
9862 optimizations that may change the number of exceptions visible with
9863 signaling NaNs. This option implies @option{-ftrapping-math}.
9864
9865 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9866 be defined.
9867
9868 The default is @option{-fno-signaling-nans}.
9869
9870 This option is experimental and does not currently guarantee to
9871 disable all GCC optimizations that affect signaling NaN behavior.
9872
9873 @item -fno-fp-int-builtin-inexact
9874 @opindex fno-fp-int-builtin-inexact
9875 Do not allow the built-in functions @code{ceil}, @code{floor},
9876 @code{round} and @code{trunc}, and their @code{float} and @code{long
9877 double} variants, to generate code that raises the ``inexact''
9878 floating-point exception for noninteger arguments. ISO C99 and C11
9879 allow these functions to raise the ``inexact'' exception, but ISO/IEC
9880 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
9881 functions to do so.
9882
9883 The default is @option{-ffp-int-builtin-inexact}, allowing the
9884 exception to be raised. This option does nothing unless
9885 @option{-ftrapping-math} is in effect.
9886
9887 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
9888 generate a call to a library function then the ``inexact'' exception
9889 may be raised if the library implementation does not follow TS 18661.
9890
9891 @item -fsingle-precision-constant
9892 @opindex fsingle-precision-constant
9893 Treat floating-point constants as single precision instead of
9894 implicitly converting them to double-precision constants.
9895
9896 @item -fcx-limited-range
9897 @opindex fcx-limited-range
9898 When enabled, this option states that a range reduction step is not
9899 needed when performing complex division. Also, there is no checking
9900 whether the result of a complex multiplication or division is @code{NaN
9901 + I*NaN}, with an attempt to rescue the situation in that case. The
9902 default is @option{-fno-cx-limited-range}, but is enabled by
9903 @option{-ffast-math}.
9904
9905 This option controls the default setting of the ISO C99
9906 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9907 all languages.
9908
9909 @item -fcx-fortran-rules
9910 @opindex fcx-fortran-rules
9911 Complex multiplication and division follow Fortran rules. Range
9912 reduction is done as part of complex division, but there is no checking
9913 whether the result of a complex multiplication or division is @code{NaN
9914 + I*NaN}, with an attempt to rescue the situation in that case.
9915
9916 The default is @option{-fno-cx-fortran-rules}.
9917
9918 @end table
9919
9920 The following options control optimizations that may improve
9921 performance, but are not enabled by any @option{-O} options. This
9922 section includes experimental options that may produce broken code.
9923
9924 @table @gcctabopt
9925 @item -fbranch-probabilities
9926 @opindex fbranch-probabilities
9927 After running a program compiled with @option{-fprofile-arcs}
9928 (@pxref{Instrumentation Options}),
9929 you can compile it a second time using
9930 @option{-fbranch-probabilities}, to improve optimizations based on
9931 the number of times each branch was taken. When a program
9932 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9933 counts to a file called @file{@var{sourcename}.gcda} for each source
9934 file. The information in this data file is very dependent on the
9935 structure of the generated code, so you must use the same source code
9936 and the same optimization options for both compilations.
9937
9938 With @option{-fbranch-probabilities}, GCC puts a
9939 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9940 These can be used to improve optimization. Currently, they are only
9941 used in one place: in @file{reorg.c}, instead of guessing which path a
9942 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9943 exactly determine which path is taken more often.
9944
9945 @item -fprofile-values
9946 @opindex fprofile-values
9947 If combined with @option{-fprofile-arcs}, it adds code so that some
9948 data about values of expressions in the program is gathered.
9949
9950 With @option{-fbranch-probabilities}, it reads back the data gathered
9951 from profiling values of expressions for usage in optimizations.
9952
9953 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9954
9955 @item -fprofile-reorder-functions
9956 @opindex fprofile-reorder-functions
9957 Function reordering based on profile instrumentation collects
9958 first time of execution of a function and orders these functions
9959 in ascending order.
9960
9961 Enabled with @option{-fprofile-use}.
9962
9963 @item -fvpt
9964 @opindex fvpt
9965 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9966 to add code to gather information about values of expressions.
9967
9968 With @option{-fbranch-probabilities}, it reads back the data gathered
9969 and actually performs the optimizations based on them.
9970 Currently the optimizations include specialization of division operations
9971 using the knowledge about the value of the denominator.
9972
9973 @item -frename-registers
9974 @opindex frename-registers
9975 Attempt to avoid false dependencies in scheduled code by making use
9976 of registers left over after register allocation. This optimization
9977 most benefits processors with lots of registers. Depending on the
9978 debug information format adopted by the target, however, it can
9979 make debugging impossible, since variables no longer stay in
9980 a ``home register''.
9981
9982 Enabled by default with @option{-funroll-loops}.
9983
9984 @item -fschedule-fusion
9985 @opindex fschedule-fusion
9986 Performs a target dependent pass over the instruction stream to schedule
9987 instructions of same type together because target machine can execute them
9988 more efficiently if they are adjacent to each other in the instruction flow.
9989
9990 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9991
9992 @item -ftracer
9993 @opindex ftracer
9994 Perform tail duplication to enlarge superblock size. This transformation
9995 simplifies the control flow of the function allowing other optimizations to do
9996 a better job.
9997
9998 Enabled with @option{-fprofile-use}.
9999
10000 @item -funroll-loops
10001 @opindex funroll-loops
10002 Unroll loops whose number of iterations can be determined at compile time or
10003 upon entry to the loop. @option{-funroll-loops} implies
10004 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10005 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10006 a small constant number of iterations). This option makes code larger, and may
10007 or may not make it run faster.
10008
10009 Enabled with @option{-fprofile-use}.
10010
10011 @item -funroll-all-loops
10012 @opindex funroll-all-loops
10013 Unroll all loops, even if their number of iterations is uncertain when
10014 the loop is entered. This usually makes programs run more slowly.
10015 @option{-funroll-all-loops} implies the same options as
10016 @option{-funroll-loops}.
10017
10018 @item -fpeel-loops
10019 @opindex fpeel-loops
10020 Peels loops for which there is enough information that they do not
10021 roll much (from profile feedback or static analysis). It also turns on
10022 complete loop peeling (i.e.@: complete removal of loops with small constant
10023 number of iterations).
10024
10025 Enabled with @option{-O3} and/or @option{-fprofile-use}.
10026
10027 @item -fmove-loop-invariants
10028 @opindex fmove-loop-invariants
10029 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10030 at level @option{-O1}
10031
10032 @item -fsplit-loops
10033 @opindex fsplit-loops
10034 Split a loop into two if it contains a condition that's always true
10035 for one side of the iteration space and false for the other.
10036
10037 @item -funswitch-loops
10038 @opindex funswitch-loops
10039 Move branches with loop invariant conditions out of the loop, with duplicates
10040 of the loop on both branches (modified according to result of the condition).
10041
10042 @item -floop-unroll-and-jam
10043 @opindex floop-unroll-and-jam
10044 Apply unroll and jam transformations on feasible loops. In a loop
10045 nest this unrolls the outer loop by some factor and fuses the resulting
10046 multiple inner loops.
10047
10048 @item -ffunction-sections
10049 @itemx -fdata-sections
10050 @opindex ffunction-sections
10051 @opindex fdata-sections
10052 Place each function or data item into its own section in the output
10053 file if the target supports arbitrary sections. The name of the
10054 function or the name of the data item determines the section's name
10055 in the output file.
10056
10057 Use these options on systems where the linker can perform optimizations to
10058 improve locality of reference in the instruction space. Most systems using the
10059 ELF object format have linkers with such optimizations. On AIX, the linker
10060 rearranges sections (CSECTs) based on the call graph. The performance impact
10061 varies.
10062
10063 Together with a linker garbage collection (linker @option{--gc-sections}
10064 option) these options may lead to smaller statically-linked executables (after
10065 stripping).
10066
10067 On ELF/DWARF systems these options do not degenerate the quality of the debug
10068 information. There could be issues with other object files/debug info formats.
10069
10070 Only use these options when there are significant benefits from doing so. When
10071 you specify these options, the assembler and linker create larger object and
10072 executable files and are also slower. These options affect code generation.
10073 They prevent optimizations by the compiler and assembler using relative
10074 locations inside a translation unit since the locations are unknown until
10075 link time. An example of such an optimization is relaxing calls to short call
10076 instructions.
10077
10078 @item -fbranch-target-load-optimize
10079 @opindex fbranch-target-load-optimize
10080 Perform branch target register load optimization before prologue / epilogue
10081 threading.
10082 The use of target registers can typically be exposed only during reload,
10083 thus hoisting loads out of loops and doing inter-block scheduling needs
10084 a separate optimization pass.
10085
10086 @item -fbranch-target-load-optimize2
10087 @opindex fbranch-target-load-optimize2
10088 Perform branch target register load optimization after prologue / epilogue
10089 threading.
10090
10091 @item -fbtr-bb-exclusive
10092 @opindex fbtr-bb-exclusive
10093 When performing branch target register load optimization, don't reuse
10094 branch target registers within any basic block.
10095
10096 @item -fstdarg-opt
10097 @opindex fstdarg-opt
10098 Optimize the prologue of variadic argument functions with respect to usage of
10099 those arguments.
10100
10101 @item -fsection-anchors
10102 @opindex fsection-anchors
10103 Try to reduce the number of symbolic address calculations by using
10104 shared ``anchor'' symbols to address nearby objects. This transformation
10105 can help to reduce the number of GOT entries and GOT accesses on some
10106 targets.
10107
10108 For example, the implementation of the following function @code{foo}:
10109
10110 @smallexample
10111 static int a, b, c;
10112 int foo (void) @{ return a + b + c; @}
10113 @end smallexample
10114
10115 @noindent
10116 usually calculates the addresses of all three variables, but if you
10117 compile it with @option{-fsection-anchors}, it accesses the variables
10118 from a common anchor point instead. The effect is similar to the
10119 following pseudocode (which isn't valid C):
10120
10121 @smallexample
10122 int foo (void)
10123 @{
10124 register int *xr = &x;
10125 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10126 @}
10127 @end smallexample
10128
10129 Not all targets support this option.
10130
10131 @item --param @var{name}=@var{value}
10132 @opindex param
10133 In some places, GCC uses various constants to control the amount of
10134 optimization that is done. For example, GCC does not inline functions
10135 that contain more than a certain number of instructions. You can
10136 control some of these constants on the command line using the
10137 @option{--param} option.
10138
10139 The names of specific parameters, and the meaning of the values, are
10140 tied to the internals of the compiler, and are subject to change
10141 without notice in future releases.
10142
10143 In each case, the @var{value} is an integer. The allowable choices for
10144 @var{name} are:
10145
10146 @table @gcctabopt
10147 @item predictable-branch-outcome
10148 When branch is predicted to be taken with probability lower than this threshold
10149 (in percent), then it is considered well predictable. The default is 10.
10150
10151 @item max-rtl-if-conversion-insns
10152 RTL if-conversion tries to remove conditional branches around a block and
10153 replace them with conditionally executed instructions. This parameter
10154 gives the maximum number of instructions in a block which should be
10155 considered for if-conversion. The default is 10, though the compiler will
10156 also use other heuristics to decide whether if-conversion is likely to be
10157 profitable.
10158
10159 @item max-rtl-if-conversion-predictable-cost
10160 @itemx max-rtl-if-conversion-unpredictable-cost
10161 RTL if-conversion will try to remove conditional branches around a block
10162 and replace them with conditionally executed instructions. These parameters
10163 give the maximum permissible cost for the sequence that would be generated
10164 by if-conversion depending on whether the branch is statically determined
10165 to be predictable or not. The units for this parameter are the same as
10166 those for the GCC internal seq_cost metric. The compiler will try to
10167 provide a reasonable default for this parameter using the BRANCH_COST
10168 target macro.
10169
10170 @item max-crossjump-edges
10171 The maximum number of incoming edges to consider for cross-jumping.
10172 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10173 the number of edges incoming to each block. Increasing values mean
10174 more aggressive optimization, making the compilation time increase with
10175 probably small improvement in executable size.
10176
10177 @item min-crossjump-insns
10178 The minimum number of instructions that must be matched at the end
10179 of two blocks before cross-jumping is performed on them. This
10180 value is ignored in the case where all instructions in the block being
10181 cross-jumped from are matched. The default value is 5.
10182
10183 @item max-grow-copy-bb-insns
10184 The maximum code size expansion factor when copying basic blocks
10185 instead of jumping. The expansion is relative to a jump instruction.
10186 The default value is 8.
10187
10188 @item max-goto-duplication-insns
10189 The maximum number of instructions to duplicate to a block that jumps
10190 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
10191 passes, GCC factors computed gotos early in the compilation process,
10192 and unfactors them as late as possible. Only computed jumps at the
10193 end of a basic blocks with no more than max-goto-duplication-insns are
10194 unfactored. The default value is 8.
10195
10196 @item max-delay-slot-insn-search
10197 The maximum number of instructions to consider when looking for an
10198 instruction to fill a delay slot. If more than this arbitrary number of
10199 instructions are searched, the time savings from filling the delay slot
10200 are minimal, so stop searching. Increasing values mean more
10201 aggressive optimization, making the compilation time increase with probably
10202 small improvement in execution time.
10203
10204 @item max-delay-slot-live-search
10205 When trying to fill delay slots, the maximum number of instructions to
10206 consider when searching for a block with valid live register
10207 information. Increasing this arbitrarily chosen value means more
10208 aggressive optimization, increasing the compilation time. This parameter
10209 should be removed when the delay slot code is rewritten to maintain the
10210 control-flow graph.
10211
10212 @item max-gcse-memory
10213 The approximate maximum amount of memory that can be allocated in
10214 order to perform the global common subexpression elimination
10215 optimization. If more memory than specified is required, the
10216 optimization is not done.
10217
10218 @item max-gcse-insertion-ratio
10219 If the ratio of expression insertions to deletions is larger than this value
10220 for any expression, then RTL PRE inserts or removes the expression and thus
10221 leaves partially redundant computations in the instruction stream. The default value is 20.
10222
10223 @item max-pending-list-length
10224 The maximum number of pending dependencies scheduling allows
10225 before flushing the current state and starting over. Large functions
10226 with few branches or calls can create excessively large lists which
10227 needlessly consume memory and resources.
10228
10229 @item max-modulo-backtrack-attempts
10230 The maximum number of backtrack attempts the scheduler should make
10231 when modulo scheduling a loop. Larger values can exponentially increase
10232 compilation time.
10233
10234 @item max-inline-insns-single
10235 Several parameters control the tree inliner used in GCC@.
10236 This number sets the maximum number of instructions (counted in GCC's
10237 internal representation) in a single function that the tree inliner
10238 considers for inlining. This only affects functions declared
10239 inline and methods implemented in a class declaration (C++).
10240 The default value is 400.
10241
10242 @item max-inline-insns-auto
10243 When you use @option{-finline-functions} (included in @option{-O3}),
10244 a lot of functions that would otherwise not be considered for inlining
10245 by the compiler are investigated. To those functions, a different
10246 (more restrictive) limit compared to functions declared inline can
10247 be applied.
10248 The default value is 30.
10249
10250 @item inline-min-speedup
10251 When estimated performance improvement of caller + callee runtime exceeds this
10252 threshold (in percent), the function can be inlined regardless of the limit on
10253 @option{--param max-inline-insns-single} and @option{--param
10254 max-inline-insns-auto}.
10255 The default value is 15.
10256
10257 @item large-function-insns
10258 The limit specifying really large functions. For functions larger than this
10259 limit after inlining, inlining is constrained by
10260 @option{--param large-function-growth}. This parameter is useful primarily
10261 to avoid extreme compilation time caused by non-linear algorithms used by the
10262 back end.
10263 The default value is 2700.
10264
10265 @item large-function-growth
10266 Specifies maximal growth of large function caused by inlining in percents.
10267 The default value is 100 which limits large function growth to 2.0 times
10268 the original size.
10269
10270 @item large-unit-insns
10271 The limit specifying large translation unit. Growth caused by inlining of
10272 units larger than this limit is limited by @option{--param inline-unit-growth}.
10273 For small units this might be too tight.
10274 For example, consider a unit consisting of function A
10275 that is inline and B that just calls A three times. If B is small relative to
10276 A, the growth of unit is 300\% and yet such inlining is very sane. For very
10277 large units consisting of small inlineable functions, however, the overall unit
10278 growth limit is needed to avoid exponential explosion of code size. Thus for
10279 smaller units, the size is increased to @option{--param large-unit-insns}
10280 before applying @option{--param inline-unit-growth}. The default is 10000.
10281
10282 @item inline-unit-growth
10283 Specifies maximal overall growth of the compilation unit caused by inlining.
10284 The default value is 20 which limits unit growth to 1.2 times the original
10285 size. Cold functions (either marked cold via an attribute or by profile
10286 feedback) are not accounted into the unit size.
10287
10288 @item ipcp-unit-growth
10289 Specifies maximal overall growth of the compilation unit caused by
10290 interprocedural constant propagation. The default value is 10 which limits
10291 unit growth to 1.1 times the original size.
10292
10293 @item large-stack-frame
10294 The limit specifying large stack frames. While inlining the algorithm is trying
10295 to not grow past this limit too much. The default value is 256 bytes.
10296
10297 @item large-stack-frame-growth
10298 Specifies maximal growth of large stack frames caused by inlining in percents.
10299 The default value is 1000 which limits large stack frame growth to 11 times
10300 the original size.
10301
10302 @item max-inline-insns-recursive
10303 @itemx max-inline-insns-recursive-auto
10304 Specifies the maximum number of instructions an out-of-line copy of a
10305 self-recursive inline
10306 function can grow into by performing recursive inlining.
10307
10308 @option{--param max-inline-insns-recursive} applies to functions
10309 declared inline.
10310 For functions not declared inline, recursive inlining
10311 happens only when @option{-finline-functions} (included in @option{-O3}) is
10312 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
10313 default value is 450.
10314
10315 @item max-inline-recursive-depth
10316 @itemx max-inline-recursive-depth-auto
10317 Specifies the maximum recursion depth used for recursive inlining.
10318
10319 @option{--param max-inline-recursive-depth} applies to functions
10320 declared inline. For functions not declared inline, recursive inlining
10321 happens only when @option{-finline-functions} (included in @option{-O3}) is
10322 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
10323 default value is 8.
10324
10325 @item min-inline-recursive-probability
10326 Recursive inlining is profitable only for function having deep recursion
10327 in average and can hurt for function having little recursion depth by
10328 increasing the prologue size or complexity of function body to other
10329 optimizers.
10330
10331 When profile feedback is available (see @option{-fprofile-generate}) the actual
10332 recursion depth can be guessed from the probability that function recurses
10333 via a given call expression. This parameter limits inlining only to call
10334 expressions whose probability exceeds the given threshold (in percents).
10335 The default value is 10.
10336
10337 @item early-inlining-insns
10338 Specify growth that the early inliner can make. In effect it increases
10339 the amount of inlining for code having a large abstraction penalty.
10340 The default value is 14.
10341
10342 @item max-early-inliner-iterations
10343 Limit of iterations of the early inliner. This basically bounds
10344 the number of nested indirect calls the early inliner can resolve.
10345 Deeper chains are still handled by late inlining.
10346
10347 @item comdat-sharing-probability
10348 Probability (in percent) that C++ inline function with comdat visibility
10349 are shared across multiple compilation units. The default value is 20.
10350
10351 @item profile-func-internal-id
10352 A parameter to control whether to use function internal id in profile
10353 database lookup. If the value is 0, the compiler uses an id that
10354 is based on function assembler name and filename, which makes old profile
10355 data more tolerant to source changes such as function reordering etc.
10356 The default value is 0.
10357
10358 @item min-vect-loop-bound
10359 The minimum number of iterations under which loops are not vectorized
10360 when @option{-ftree-vectorize} is used. The number of iterations after
10361 vectorization needs to be greater than the value specified by this option
10362 to allow vectorization. The default value is 0.
10363
10364 @item gcse-cost-distance-ratio
10365 Scaling factor in calculation of maximum distance an expression
10366 can be moved by GCSE optimizations. This is currently supported only in the
10367 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
10368 is with simple expressions, i.e., the expressions that have cost
10369 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
10370 hoisting of simple expressions. The default value is 10.
10371
10372 @item gcse-unrestricted-cost
10373 Cost, roughly measured as the cost of a single typical machine
10374 instruction, at which GCSE optimizations do not constrain
10375 the distance an expression can travel. This is currently
10376 supported only in the code hoisting pass. The lesser the cost,
10377 the more aggressive code hoisting is. Specifying 0
10378 allows all expressions to travel unrestricted distances.
10379 The default value is 3.
10380
10381 @item max-hoist-depth
10382 The depth of search in the dominator tree for expressions to hoist.
10383 This is used to avoid quadratic behavior in hoisting algorithm.
10384 The value of 0 does not limit on the search, but may slow down compilation
10385 of huge functions. The default value is 30.
10386
10387 @item max-tail-merge-comparisons
10388 The maximum amount of similar bbs to compare a bb with. This is used to
10389 avoid quadratic behavior in tree tail merging. The default value is 10.
10390
10391 @item max-tail-merge-iterations
10392 The maximum amount of iterations of the pass over the function. This is used to
10393 limit compilation time in tree tail merging. The default value is 2.
10394
10395 @item store-merging-allow-unaligned
10396 Allow the store merging pass to introduce unaligned stores if it is legal to
10397 do so. The default value is 1.
10398
10399 @item max-stores-to-merge
10400 The maximum number of stores to attempt to merge into wider stores in the store
10401 merging pass. The minimum value is 2 and the default is 64.
10402
10403 @item max-unrolled-insns
10404 The maximum number of instructions that a loop may have to be unrolled.
10405 If a loop is unrolled, this parameter also determines how many times
10406 the loop code is unrolled.
10407
10408 @item max-average-unrolled-insns
10409 The maximum number of instructions biased by probabilities of their execution
10410 that a loop may have to be unrolled. If a loop is unrolled,
10411 this parameter also determines how many times the loop code is unrolled.
10412
10413 @item max-unroll-times
10414 The maximum number of unrollings of a single loop.
10415
10416 @item max-peeled-insns
10417 The maximum number of instructions that a loop may have to be peeled.
10418 If a loop is peeled, this parameter also determines how many times
10419 the loop code is peeled.
10420
10421 @item max-peel-times
10422 The maximum number of peelings of a single loop.
10423
10424 @item max-peel-branches
10425 The maximum number of branches on the hot path through the peeled sequence.
10426
10427 @item max-completely-peeled-insns
10428 The maximum number of insns of a completely peeled loop.
10429
10430 @item max-completely-peel-times
10431 The maximum number of iterations of a loop to be suitable for complete peeling.
10432
10433 @item max-completely-peel-loop-nest-depth
10434 The maximum depth of a loop nest suitable for complete peeling.
10435
10436 @item max-unswitch-insns
10437 The maximum number of insns of an unswitched loop.
10438
10439 @item max-unswitch-level
10440 The maximum number of branches unswitched in a single loop.
10441
10442 @item max-loop-headers-insns
10443 The maximum number of insns in loop header duplicated by the copy loop headers
10444 pass.
10445
10446 @item lim-expensive
10447 The minimum cost of an expensive expression in the loop invariant motion.
10448
10449 @item iv-consider-all-candidates-bound
10450 Bound on number of candidates for induction variables, below which
10451 all candidates are considered for each use in induction variable
10452 optimizations. If there are more candidates than this,
10453 only the most relevant ones are considered to avoid quadratic time complexity.
10454
10455 @item iv-max-considered-uses
10456 The induction variable optimizations give up on loops that contain more
10457 induction variable uses.
10458
10459 @item iv-always-prune-cand-set-bound
10460 If the number of candidates in the set is smaller than this value,
10461 always try to remove unnecessary ivs from the set
10462 when adding a new one.
10463
10464 @item avg-loop-niter
10465 Average number of iterations of a loop.
10466
10467 @item dse-max-object-size
10468 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
10469 Larger values may result in larger compilation times.
10470
10471 @item scev-max-expr-size
10472 Bound on size of expressions used in the scalar evolutions analyzer.
10473 Large expressions slow the analyzer.
10474
10475 @item scev-max-expr-complexity
10476 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10477 Complex expressions slow the analyzer.
10478
10479 @item max-tree-if-conversion-phi-args
10480 Maximum number of arguments in a PHI supported by TREE if conversion
10481 unless the loop is marked with simd pragma.
10482
10483 @item vect-max-version-for-alignment-checks
10484 The maximum number of run-time checks that can be performed when
10485 doing loop versioning for alignment in the vectorizer.
10486
10487 @item vect-max-version-for-alias-checks
10488 The maximum number of run-time checks that can be performed when
10489 doing loop versioning for alias in the vectorizer.
10490
10491 @item vect-max-peeling-for-alignment
10492 The maximum number of loop peels to enhance access alignment
10493 for vectorizer. Value -1 means no limit.
10494
10495 @item max-iterations-to-track
10496 The maximum number of iterations of a loop the brute-force algorithm
10497 for analysis of the number of iterations of the loop tries to evaluate.
10498
10499 @item hot-bb-count-ws-permille
10500 A basic block profile count is considered hot if it contributes to
10501 the given permillage (i.e. 0...1000) of the entire profiled execution.
10502
10503 @item hot-bb-frequency-fraction
10504 Select fraction of the entry block frequency of executions of basic block in
10505 function given basic block needs to have to be considered hot.
10506
10507 @item max-predicted-iterations
10508 The maximum number of loop iterations we predict statically. This is useful
10509 in cases where a function contains a single loop with known bound and
10510 another loop with unknown bound.
10511 The known number of iterations is predicted correctly, while
10512 the unknown number of iterations average to roughly 10. This means that the
10513 loop without bounds appears artificially cold relative to the other one.
10514
10515 @item builtin-expect-probability
10516 Control the probability of the expression having the specified value. This
10517 parameter takes a percentage (i.e. 0 ... 100) as input.
10518 The default probability of 90 is obtained empirically.
10519
10520 @item align-threshold
10521
10522 Select fraction of the maximal frequency of executions of a basic block in
10523 a function to align the basic block.
10524
10525 @item align-loop-iterations
10526
10527 A loop expected to iterate at least the selected number of iterations is
10528 aligned.
10529
10530 @item tracer-dynamic-coverage
10531 @itemx tracer-dynamic-coverage-feedback
10532
10533 This value is used to limit superblock formation once the given percentage of
10534 executed instructions is covered. This limits unnecessary code size
10535 expansion.
10536
10537 The @option{tracer-dynamic-coverage-feedback} parameter
10538 is used only when profile
10539 feedback is available. The real profiles (as opposed to statically estimated
10540 ones) are much less balanced allowing the threshold to be larger value.
10541
10542 @item tracer-max-code-growth
10543 Stop tail duplication once code growth has reached given percentage. This is
10544 a rather artificial limit, as most of the duplicates are eliminated later in
10545 cross jumping, so it may be set to much higher values than is the desired code
10546 growth.
10547
10548 @item tracer-min-branch-ratio
10549
10550 Stop reverse growth when the reverse probability of best edge is less than this
10551 threshold (in percent).
10552
10553 @item tracer-min-branch-probability
10554 @itemx tracer-min-branch-probability-feedback
10555
10556 Stop forward growth if the best edge has probability lower than this
10557 threshold.
10558
10559 Similarly to @option{tracer-dynamic-coverage} two parameters are
10560 provided. @option{tracer-min-branch-probability-feedback} is used for
10561 compilation with profile feedback and @option{tracer-min-branch-probability}
10562 compilation without. The value for compilation with profile feedback
10563 needs to be more conservative (higher) in order to make tracer
10564 effective.
10565
10566 @item stack-clash-protection-guard-size
10567 Specify the size of the operating system provided stack guard as
10568 2 raised to @var{num} bytes. The default value is 12 (4096 bytes).
10569 Acceptable values are between 12 and 30. Higher values may reduce the
10570 number of explicit probes, but a value larger than the operating system
10571 provided guard will leave code vulnerable to stack clash style attacks.
10572
10573 @item stack-clash-protection-probe-interval
10574 Stack clash protection involves probing stack space as it is allocated. This
10575 param controls the maximum distance between probes into the stack as 2 raised
10576 to @var{num} bytes. Acceptable values are between 10 and 16 and defaults to
10577 12. Higher values may reduce the number of explicit probes, but a value
10578 larger than the operating system provided guard will leave code vulnerable to
10579 stack clash style attacks.
10580
10581 @item max-cse-path-length
10582
10583 The maximum number of basic blocks on path that CSE considers.
10584 The default is 10.
10585
10586 @item max-cse-insns
10587 The maximum number of instructions CSE processes before flushing.
10588 The default is 1000.
10589
10590 @item ggc-min-expand
10591
10592 GCC uses a garbage collector to manage its own memory allocation. This
10593 parameter specifies the minimum percentage by which the garbage
10594 collector's heap should be allowed to expand between collections.
10595 Tuning this may improve compilation speed; it has no effect on code
10596 generation.
10597
10598 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10599 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10600 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10601 GCC is not able to calculate RAM on a particular platform, the lower
10602 bound of 30% is used. Setting this parameter and
10603 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10604 every opportunity. This is extremely slow, but can be useful for
10605 debugging.
10606
10607 @item ggc-min-heapsize
10608
10609 Minimum size of the garbage collector's heap before it begins bothering
10610 to collect garbage. The first collection occurs after the heap expands
10611 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10612 tuning this may improve compilation speed, and has no effect on code
10613 generation.
10614
10615 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10616 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10617 with a lower bound of 4096 (four megabytes) and an upper bound of
10618 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10619 particular platform, the lower bound is used. Setting this parameter
10620 very large effectively disables garbage collection. Setting this
10621 parameter and @option{ggc-min-expand} to zero causes a full collection
10622 to occur at every opportunity.
10623
10624 @item max-reload-search-insns
10625 The maximum number of instruction reload should look backward for equivalent
10626 register. Increasing values mean more aggressive optimization, making the
10627 compilation time increase with probably slightly better performance.
10628 The default value is 100.
10629
10630 @item max-cselib-memory-locations
10631 The maximum number of memory locations cselib should take into account.
10632 Increasing values mean more aggressive optimization, making the compilation time
10633 increase with probably slightly better performance. The default value is 500.
10634
10635 @item max-sched-ready-insns
10636 The maximum number of instructions ready to be issued the scheduler should
10637 consider at any given time during the first scheduling pass. Increasing
10638 values mean more thorough searches, making the compilation time increase
10639 with probably little benefit. The default value is 100.
10640
10641 @item max-sched-region-blocks
10642 The maximum number of blocks in a region to be considered for
10643 interblock scheduling. The default value is 10.
10644
10645 @item max-pipeline-region-blocks
10646 The maximum number of blocks in a region to be considered for
10647 pipelining in the selective scheduler. The default value is 15.
10648
10649 @item max-sched-region-insns
10650 The maximum number of insns in a region to be considered for
10651 interblock scheduling. The default value is 100.
10652
10653 @item max-pipeline-region-insns
10654 The maximum number of insns in a region to be considered for
10655 pipelining in the selective scheduler. The default value is 200.
10656
10657 @item min-spec-prob
10658 The minimum probability (in percents) of reaching a source block
10659 for interblock speculative scheduling. The default value is 40.
10660
10661 @item max-sched-extend-regions-iters
10662 The maximum number of iterations through CFG to extend regions.
10663 A value of 0 (the default) disables region extensions.
10664
10665 @item max-sched-insn-conflict-delay
10666 The maximum conflict delay for an insn to be considered for speculative motion.
10667 The default value is 3.
10668
10669 @item sched-spec-prob-cutoff
10670 The minimal probability of speculation success (in percents), so that
10671 speculative insns are scheduled.
10672 The default value is 40.
10673
10674 @item sched-state-edge-prob-cutoff
10675 The minimum probability an edge must have for the scheduler to save its
10676 state across it.
10677 The default value is 10.
10678
10679 @item sched-mem-true-dep-cost
10680 Minimal distance (in CPU cycles) between store and load targeting same
10681 memory locations. The default value is 1.
10682
10683 @item selsched-max-lookahead
10684 The maximum size of the lookahead window of selective scheduling. It is a
10685 depth of search for available instructions.
10686 The default value is 50.
10687
10688 @item selsched-max-sched-times
10689 The maximum number of times that an instruction is scheduled during
10690 selective scheduling. This is the limit on the number of iterations
10691 through which the instruction may be pipelined. The default value is 2.
10692
10693 @item selsched-insns-to-rename
10694 The maximum number of best instructions in the ready list that are considered
10695 for renaming in the selective scheduler. The default value is 2.
10696
10697 @item sms-min-sc
10698 The minimum value of stage count that swing modulo scheduler
10699 generates. The default value is 2.
10700
10701 @item max-last-value-rtl
10702 The maximum size measured as number of RTLs that can be recorded in an expression
10703 in combiner for a pseudo register as last known value of that register. The default
10704 is 10000.
10705
10706 @item max-combine-insns
10707 The maximum number of instructions the RTL combiner tries to combine.
10708 The default value is 2 at @option{-Og} and 4 otherwise.
10709
10710 @item integer-share-limit
10711 Small integer constants can use a shared data structure, reducing the
10712 compiler's memory usage and increasing its speed. This sets the maximum
10713 value of a shared integer constant. The default value is 256.
10714
10715 @item ssp-buffer-size
10716 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10717 protection when @option{-fstack-protection} is used.
10718
10719 @item min-size-for-stack-sharing
10720 The minimum size of variables taking part in stack slot sharing when not
10721 optimizing. The default value is 32.
10722
10723 @item max-jump-thread-duplication-stmts
10724 Maximum number of statements allowed in a block that needs to be
10725 duplicated when threading jumps.
10726
10727 @item max-fields-for-field-sensitive
10728 Maximum number of fields in a structure treated in
10729 a field sensitive manner during pointer analysis. The default is zero
10730 for @option{-O0} and @option{-O1},
10731 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10732
10733 @item prefetch-latency
10734 Estimate on average number of instructions that are executed before
10735 prefetch finishes. The distance prefetched ahead is proportional
10736 to this constant. Increasing this number may also lead to less
10737 streams being prefetched (see @option{simultaneous-prefetches}).
10738
10739 @item simultaneous-prefetches
10740 Maximum number of prefetches that can run at the same time.
10741
10742 @item l1-cache-line-size
10743 The size of cache line in L1 cache, in bytes.
10744
10745 @item l1-cache-size
10746 The size of L1 cache, in kilobytes.
10747
10748 @item l2-cache-size
10749 The size of L2 cache, in kilobytes.
10750
10751 @item loop-interchange-max-num-stmts
10752 The maximum number of stmts in a loop to be interchanged.
10753
10754 @item loop-interchange-stride-ratio
10755 The minimum ratio between stride of two loops for interchange to be profitable.
10756
10757 @item min-insn-to-prefetch-ratio
10758 The minimum ratio between the number of instructions and the
10759 number of prefetches to enable prefetching in a loop.
10760
10761 @item prefetch-min-insn-to-mem-ratio
10762 The minimum ratio between the number of instructions and the
10763 number of memory references to enable prefetching in a loop.
10764
10765 @item use-canonical-types
10766 Whether the compiler should use the ``canonical'' type system. By
10767 default, this should always be 1, which uses a more efficient internal
10768 mechanism for comparing types in C++ and Objective-C++. However, if
10769 bugs in the canonical type system are causing compilation failures,
10770 set this value to 0 to disable canonical types.
10771
10772 @item switch-conversion-max-branch-ratio
10773 Switch initialization conversion refuses to create arrays that are
10774 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10775 branches in the switch.
10776
10777 @item max-partial-antic-length
10778 Maximum length of the partial antic set computed during the tree
10779 partial redundancy elimination optimization (@option{-ftree-pre}) when
10780 optimizing at @option{-O3} and above. For some sorts of source code
10781 the enhanced partial redundancy elimination optimization can run away,
10782 consuming all of the memory available on the host machine. This
10783 parameter sets a limit on the length of the sets that are computed,
10784 which prevents the runaway behavior. Setting a value of 0 for
10785 this parameter allows an unlimited set length.
10786
10787 @item sccvn-max-scc-size
10788 Maximum size of a strongly connected component (SCC) during SCCVN
10789 processing. If this limit is hit, SCCVN processing for the whole
10790 function is not done and optimizations depending on it are
10791 disabled. The default maximum SCC size is 10000.
10792
10793 @item sccvn-max-alias-queries-per-access
10794 Maximum number of alias-oracle queries we perform when looking for
10795 redundancies for loads and stores. If this limit is hit the search
10796 is aborted and the load or store is not considered redundant. The
10797 number of queries is algorithmically limited to the number of
10798 stores on all paths from the load to the function entry.
10799 The default maximum number of queries is 1000.
10800
10801 @item ira-max-loops-num
10802 IRA uses regional register allocation by default. If a function
10803 contains more loops than the number given by this parameter, only at most
10804 the given number of the most frequently-executed loops form regions
10805 for regional register allocation. The default value of the
10806 parameter is 100.
10807
10808 @item ira-max-conflict-table-size
10809 Although IRA uses a sophisticated algorithm to compress the conflict
10810 table, the table can still require excessive amounts of memory for
10811 huge functions. If the conflict table for a function could be more
10812 than the size in MB given by this parameter, the register allocator
10813 instead uses a faster, simpler, and lower-quality
10814 algorithm that does not require building a pseudo-register conflict table.
10815 The default value of the parameter is 2000.
10816
10817 @item ira-loop-reserved-regs
10818 IRA can be used to evaluate more accurate register pressure in loops
10819 for decisions to move loop invariants (see @option{-O3}). The number
10820 of available registers reserved for some other purposes is given
10821 by this parameter. The default value of the parameter is 2, which is
10822 the minimal number of registers needed by typical instructions.
10823 This value is the best found from numerous experiments.
10824
10825 @item lra-inheritance-ebb-probability-cutoff
10826 LRA tries to reuse values reloaded in registers in subsequent insns.
10827 This optimization is called inheritance. EBB is used as a region to
10828 do this optimization. The parameter defines a minimal fall-through
10829 edge probability in percentage used to add BB to inheritance EBB in
10830 LRA. The default value of the parameter is 40. The value was chosen
10831 from numerous runs of SPEC2000 on x86-64.
10832
10833 @item loop-invariant-max-bbs-in-loop
10834 Loop invariant motion can be very expensive, both in compilation time and
10835 in amount of needed compile-time memory, with very large loops. Loops
10836 with more basic blocks than this parameter won't have loop invariant
10837 motion optimization performed on them. The default value of the
10838 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10839
10840 @item loop-max-datarefs-for-datadeps
10841 Building data dependencies is expensive for very large loops. This
10842 parameter limits the number of data references in loops that are
10843 considered for data dependence analysis. These large loops are no
10844 handled by the optimizations using loop data dependencies.
10845 The default value is 1000.
10846
10847 @item max-vartrack-size
10848 Sets a maximum number of hash table slots to use during variable
10849 tracking dataflow analysis of any function. If this limit is exceeded
10850 with variable tracking at assignments enabled, analysis for that
10851 function is retried without it, after removing all debug insns from
10852 the function. If the limit is exceeded even without debug insns, var
10853 tracking analysis is completely disabled for the function. Setting
10854 the parameter to zero makes it unlimited.
10855
10856 @item max-vartrack-expr-depth
10857 Sets a maximum number of recursion levels when attempting to map
10858 variable names or debug temporaries to value expressions. This trades
10859 compilation time for more complete debug information. If this is set too
10860 low, value expressions that are available and could be represented in
10861 debug information may end up not being used; setting this higher may
10862 enable the compiler to find more complex debug expressions, but compile
10863 time and memory use may grow. The default is 12.
10864
10865 @item max-debug-marker-count
10866 Sets a threshold on the number of debug markers (e.g. begin stmt
10867 markers) to avoid complexity explosion at inlining or expanding to RTL.
10868 If a function has more such gimple stmts than the set limit, such stmts
10869 will be dropped from the inlined copy of a function, and from its RTL
10870 expansion. The default is 100000.
10871
10872 @item min-nondebug-insn-uid
10873 Use uids starting at this parameter for nondebug insns. The range below
10874 the parameter is reserved exclusively for debug insns created by
10875 @option{-fvar-tracking-assignments}, but debug insns may get
10876 (non-overlapping) uids above it if the reserved range is exhausted.
10877
10878 @item ipa-sra-ptr-growth-factor
10879 IPA-SRA replaces a pointer to an aggregate with one or more new
10880 parameters only when their cumulative size is less or equal to
10881 @option{ipa-sra-ptr-growth-factor} times the size of the original
10882 pointer parameter.
10883
10884 @item sra-max-scalarization-size-Ospeed
10885 @itemx sra-max-scalarization-size-Osize
10886 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10887 replace scalar parts of aggregates with uses of independent scalar
10888 variables. These parameters control the maximum size, in storage units,
10889 of aggregate which is considered for replacement when compiling for
10890 speed
10891 (@option{sra-max-scalarization-size-Ospeed}) or size
10892 (@option{sra-max-scalarization-size-Osize}) respectively.
10893
10894 @item tm-max-aggregate-size
10895 When making copies of thread-local variables in a transaction, this
10896 parameter specifies the size in bytes after which variables are
10897 saved with the logging functions as opposed to save/restore code
10898 sequence pairs. This option only applies when using
10899 @option{-fgnu-tm}.
10900
10901 @item graphite-max-nb-scop-params
10902 To avoid exponential effects in the Graphite loop transforms, the
10903 number of parameters in a Static Control Part (SCoP) is bounded. The
10904 default value is 10 parameters, a value of zero can be used to lift
10905 the bound. A variable whose value is unknown at compilation time and
10906 defined outside a SCoP is a parameter of the SCoP.
10907
10908 @item loop-block-tile-size
10909 Loop blocking or strip mining transforms, enabled with
10910 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10911 loop in the loop nest by a given number of iterations. The strip
10912 length can be changed using the @option{loop-block-tile-size}
10913 parameter. The default value is 51 iterations.
10914
10915 @item loop-unroll-jam-size
10916 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10917 default value is 4.
10918
10919 @item loop-unroll-jam-depth
10920 Specify the dimension to be unrolled (counting from the most inner loop)
10921 for the @option{-floop-unroll-and-jam}. The default value is 2.
10922
10923 @item ipa-cp-value-list-size
10924 IPA-CP attempts to track all possible values and types passed to a function's
10925 parameter in order to propagate them and perform devirtualization.
10926 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10927 stores per one formal parameter of a function.
10928
10929 @item ipa-cp-eval-threshold
10930 IPA-CP calculates its own score of cloning profitability heuristics
10931 and performs those cloning opportunities with scores that exceed
10932 @option{ipa-cp-eval-threshold}.
10933
10934 @item ipa-cp-recursion-penalty
10935 Percentage penalty the recursive functions will receive when they
10936 are evaluated for cloning.
10937
10938 @item ipa-cp-single-call-penalty
10939 Percentage penalty functions containing a single call to another
10940 function will receive when they are evaluated for cloning.
10941
10942
10943 @item ipa-max-agg-items
10944 IPA-CP is also capable to propagate a number of scalar values passed
10945 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10946 number of such values per one parameter.
10947
10948 @item ipa-cp-loop-hint-bonus
10949 When IPA-CP determines that a cloning candidate would make the number
10950 of iterations of a loop known, it adds a bonus of
10951 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10952 the candidate.
10953
10954 @item ipa-cp-array-index-hint-bonus
10955 When IPA-CP determines that a cloning candidate would make the index of
10956 an array access known, it adds a bonus of
10957 @option{ipa-cp-array-index-hint-bonus} to the profitability
10958 score of the candidate.
10959
10960 @item ipa-max-aa-steps
10961 During its analysis of function bodies, IPA-CP employs alias analysis
10962 in order to track values pointed to by function parameters. In order
10963 not spend too much time analyzing huge functions, it gives up and
10964 consider all memory clobbered after examining
10965 @option{ipa-max-aa-steps} statements modifying memory.
10966
10967 @item lto-partitions
10968 Specify desired number of partitions produced during WHOPR compilation.
10969 The number of partitions should exceed the number of CPUs used for compilation.
10970 The default value is 32.
10971
10972 @item lto-min-partition
10973 Size of minimal partition for WHOPR (in estimated instructions).
10974 This prevents expenses of splitting very small programs into too many
10975 partitions.
10976
10977 @item lto-max-partition
10978 Size of max partition for WHOPR (in estimated instructions).
10979 to provide an upper bound for individual size of partition.
10980 Meant to be used only with balanced partitioning.
10981
10982 @item cxx-max-namespaces-for-diagnostic-help
10983 The maximum number of namespaces to consult for suggestions when C++
10984 name lookup fails for an identifier. The default is 1000.
10985
10986 @item sink-frequency-threshold
10987 The maximum relative execution frequency (in percents) of the target block
10988 relative to a statement's original block to allow statement sinking of a
10989 statement. Larger numbers result in more aggressive statement sinking.
10990 The default value is 75. A small positive adjustment is applied for
10991 statements with memory operands as those are even more profitable so sink.
10992
10993 @item max-stores-to-sink
10994 The maximum number of conditional store pairs that can be sunk. Set to 0
10995 if either vectorization (@option{-ftree-vectorize}) or if-conversion
10996 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
10997
10998 @item allow-store-data-races
10999 Allow optimizers to introduce new data races on stores.
11000 Set to 1 to allow, otherwise to 0. This option is enabled by default
11001 at optimization level @option{-Ofast}.
11002
11003 @item case-values-threshold
11004 The smallest number of different values for which it is best to use a
11005 jump-table instead of a tree of conditional branches. If the value is
11006 0, use the default for the machine. The default is 0.
11007
11008 @item tree-reassoc-width
11009 Set the maximum number of instructions executed in parallel in
11010 reassociated tree. This parameter overrides target dependent
11011 heuristics used by default if has non zero value.
11012
11013 @item sched-pressure-algorithm
11014 Choose between the two available implementations of
11015 @option{-fsched-pressure}. Algorithm 1 is the original implementation
11016 and is the more likely to prevent instructions from being reordered.
11017 Algorithm 2 was designed to be a compromise between the relatively
11018 conservative approach taken by algorithm 1 and the rather aggressive
11019 approach taken by the default scheduler. It relies more heavily on
11020 having a regular register file and accurate register pressure classes.
11021 See @file{haifa-sched.c} in the GCC sources for more details.
11022
11023 The default choice depends on the target.
11024
11025 @item max-slsr-cand-scan
11026 Set the maximum number of existing candidates that are considered when
11027 seeking a basis for a new straight-line strength reduction candidate.
11028
11029 @item asan-globals
11030 Enable buffer overflow detection for global objects. This kind
11031 of protection is enabled by default if you are using
11032 @option{-fsanitize=address} option.
11033 To disable global objects protection use @option{--param asan-globals=0}.
11034
11035 @item asan-stack
11036 Enable buffer overflow detection for stack objects. This kind of
11037 protection is enabled by default when using @option{-fsanitize=address}.
11038 To disable stack protection use @option{--param asan-stack=0} option.
11039
11040 @item asan-instrument-reads
11041 Enable buffer overflow detection for memory reads. This kind of
11042 protection is enabled by default when using @option{-fsanitize=address}.
11043 To disable memory reads protection use
11044 @option{--param asan-instrument-reads=0}.
11045
11046 @item asan-instrument-writes
11047 Enable buffer overflow detection for memory writes. This kind of
11048 protection is enabled by default when using @option{-fsanitize=address}.
11049 To disable memory writes protection use
11050 @option{--param asan-instrument-writes=0} option.
11051
11052 @item asan-memintrin
11053 Enable detection for built-in functions. This kind of protection
11054 is enabled by default when using @option{-fsanitize=address}.
11055 To disable built-in functions protection use
11056 @option{--param asan-memintrin=0}.
11057
11058 @item asan-use-after-return
11059 Enable detection of use-after-return. This kind of protection
11060 is enabled by default when using the @option{-fsanitize=address} option.
11061 To disable it use @option{--param asan-use-after-return=0}.
11062
11063 Note: By default the check is disabled at run time. To enable it,
11064 add @code{detect_stack_use_after_return=1} to the environment variable
11065 @env{ASAN_OPTIONS}.
11066
11067 @item asan-instrumentation-with-call-threshold
11068 If number of memory accesses in function being instrumented
11069 is greater or equal to this number, use callbacks instead of inline checks.
11070 E.g. to disable inline code use
11071 @option{--param asan-instrumentation-with-call-threshold=0}.
11072
11073 @item use-after-scope-direct-emission-threshold
11074 If the size of a local variable in bytes is smaller or equal to this
11075 number, directly poison (or unpoison) shadow memory instead of using
11076 run-time callbacks. The default value is 256.
11077
11078 @item chkp-max-ctor-size
11079 Static constructors generated by Pointer Bounds Checker may become very
11080 large and significantly increase compile time at optimization level
11081 @option{-O1} and higher. This parameter is a maximum number of statements
11082 in a single generated constructor. Default value is 5000.
11083
11084 @item max-fsm-thread-path-insns
11085 Maximum number of instructions to copy when duplicating blocks on a
11086 finite state automaton jump thread path. The default is 100.
11087
11088 @item max-fsm-thread-length
11089 Maximum number of basic blocks on a finite state automaton jump thread
11090 path. The default is 10.
11091
11092 @item max-fsm-thread-paths
11093 Maximum number of new jump thread paths to create for a finite state
11094 automaton. The default is 50.
11095
11096 @item parloops-chunk-size
11097 Chunk size of omp schedule for loops parallelized by parloops. The default
11098 is 0.
11099
11100 @item parloops-schedule
11101 Schedule type of omp schedule for loops parallelized by parloops (static,
11102 dynamic, guided, auto, runtime). The default is static.
11103
11104 @item parloops-min-per-thread
11105 The minimum number of iterations per thread of an innermost parallelized
11106 loop for which the parallelized variant is prefered over the single threaded
11107 one. The default is 100. Note that for a parallelized loop nest the
11108 minimum number of iterations of the outermost loop per thread is two.
11109
11110 @item max-ssa-name-query-depth
11111 Maximum depth of recursion when querying properties of SSA names in things
11112 like fold routines. One level of recursion corresponds to following a
11113 use-def chain.
11114
11115 @item hsa-gen-debug-stores
11116 Enable emission of special debug stores within HSA kernels which are
11117 then read and reported by libgomp plugin. Generation of these stores
11118 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
11119 enable it.
11120
11121 @item max-speculative-devirt-maydefs
11122 The maximum number of may-defs we analyze when looking for a must-def
11123 specifying the dynamic type of an object that invokes a virtual call
11124 we may be able to devirtualize speculatively.
11125
11126 @item max-vrp-switch-assertions
11127 The maximum number of assertions to add along the default edge of a switch
11128 statement during VRP. The default is 10.
11129
11130 @item unroll-jam-min-percent
11131 The minimum percentage of memory references that must be optimized
11132 away for the unroll-and-jam transformation to be considered profitable.
11133
11134 @item unroll-jam-max-unroll
11135 The maximum number of times the outer loop should be unrolled by
11136 the unroll-and-jam transformation.
11137 @end table
11138 @end table
11139
11140 @node Instrumentation Options
11141 @section Program Instrumentation Options
11142 @cindex instrumentation options
11143 @cindex program instrumentation options
11144 @cindex run-time error checking options
11145 @cindex profiling options
11146 @cindex options, program instrumentation
11147 @cindex options, run-time error checking
11148 @cindex options, profiling
11149
11150 GCC supports a number of command-line options that control adding
11151 run-time instrumentation to the code it normally generates.
11152 For example, one purpose of instrumentation is collect profiling
11153 statistics for use in finding program hot spots, code coverage
11154 analysis, or profile-guided optimizations.
11155 Another class of program instrumentation is adding run-time checking
11156 to detect programming errors like invalid pointer
11157 dereferences or out-of-bounds array accesses, as well as deliberately
11158 hostile attacks such as stack smashing or C++ vtable hijacking.
11159 There is also a general hook which can be used to implement other
11160 forms of tracing or function-level instrumentation for debug or
11161 program analysis purposes.
11162
11163 @table @gcctabopt
11164 @cindex @command{prof}
11165 @item -p
11166 @opindex p
11167 Generate extra code to write profile information suitable for the
11168 analysis program @command{prof}. You must use this option when compiling
11169 the source files you want data about, and you must also use it when
11170 linking.
11171
11172 @cindex @command{gprof}
11173 @item -pg
11174 @opindex pg
11175 Generate extra code to write profile information suitable for the
11176 analysis program @command{gprof}. You must use this option when compiling
11177 the source files you want data about, and you must also use it when
11178 linking.
11179
11180 @item -fprofile-arcs
11181 @opindex fprofile-arcs
11182 Add code so that program flow @dfn{arcs} are instrumented. During
11183 execution the program records how many times each branch and call is
11184 executed and how many times it is taken or returns. On targets that support
11185 constructors with priority support, profiling properly handles constructors,
11186 destructors and C++ constructors (and destructors) of classes which are used
11187 as a type of a global variable.
11188
11189 When the compiled
11190 program exits it saves this data to a file called
11191 @file{@var{auxname}.gcda} for each source file. The data may be used for
11192 profile-directed optimizations (@option{-fbranch-probabilities}), or for
11193 test coverage analysis (@option{-ftest-coverage}). Each object file's
11194 @var{auxname} is generated from the name of the output file, if
11195 explicitly specified and it is not the final executable, otherwise it is
11196 the basename of the source file. In both cases any suffix is removed
11197 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
11198 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
11199 @xref{Cross-profiling}.
11200
11201 @cindex @command{gcov}
11202 @item --coverage
11203 @opindex coverage
11204
11205 This option is used to compile and link code instrumented for coverage
11206 analysis. The option is a synonym for @option{-fprofile-arcs}
11207 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
11208 linking). See the documentation for those options for more details.
11209
11210 @itemize
11211
11212 @item
11213 Compile the source files with @option{-fprofile-arcs} plus optimization
11214 and code generation options. For test coverage analysis, use the
11215 additional @option{-ftest-coverage} option. You do not need to profile
11216 every source file in a program.
11217
11218 @item
11219 Compile the source files additionally with @option{-fprofile-abs-path}
11220 to create absolute path names in the @file{.gcno} files. This allows
11221 @command{gcov} to find the correct sources in projects where compilations
11222 occur with different working directories.
11223
11224 @item
11225 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
11226 (the latter implies the former).
11227
11228 @item
11229 Run the program on a representative workload to generate the arc profile
11230 information. This may be repeated any number of times. You can run
11231 concurrent instances of your program, and provided that the file system
11232 supports locking, the data files will be correctly updated. Unless
11233 a strict ISO C dialect option is in effect, @code{fork} calls are
11234 detected and correctly handled without double counting.
11235
11236 @item
11237 For profile-directed optimizations, compile the source files again with
11238 the same optimization and code generation options plus
11239 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
11240 Control Optimization}).
11241
11242 @item
11243 For test coverage analysis, use @command{gcov} to produce human readable
11244 information from the @file{.gcno} and @file{.gcda} files. Refer to the
11245 @command{gcov} documentation for further information.
11246
11247 @end itemize
11248
11249 With @option{-fprofile-arcs}, for each function of your program GCC
11250 creates a program flow graph, then finds a spanning tree for the graph.
11251 Only arcs that are not on the spanning tree have to be instrumented: the
11252 compiler adds code to count the number of times that these arcs are
11253 executed. When an arc is the only exit or only entrance to a block, the
11254 instrumentation code can be added to the block; otherwise, a new basic
11255 block must be created to hold the instrumentation code.
11256
11257 @need 2000
11258 @item -ftest-coverage
11259 @opindex ftest-coverage
11260 Produce a notes file that the @command{gcov} code-coverage utility
11261 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
11262 show program coverage. Each source file's note file is called
11263 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
11264 above for a description of @var{auxname} and instructions on how to
11265 generate test coverage data. Coverage data matches the source files
11266 more closely if you do not optimize.
11267
11268 @item -fprofile-abs-path
11269 @opindex fprofile-abs-path
11270 Automatically convert relative source file names to absolute path names
11271 in the @file{.gcno} files. This allows @command{gcov} to find the correct
11272 sources in projects where compilations occur with different working
11273 directories.
11274
11275 @item -fprofile-dir=@var{path}
11276 @opindex fprofile-dir
11277
11278 Set the directory to search for the profile data files in to @var{path}.
11279 This option affects only the profile data generated by
11280 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
11281 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
11282 and its related options. Both absolute and relative paths can be used.
11283 By default, GCC uses the current directory as @var{path}, thus the
11284 profile data file appears in the same directory as the object file.
11285
11286 @item -fprofile-generate
11287 @itemx -fprofile-generate=@var{path}
11288 @opindex fprofile-generate
11289
11290 Enable options usually used for instrumenting application to produce
11291 profile useful for later recompilation with profile feedback based
11292 optimization. You must use @option{-fprofile-generate} both when
11293 compiling and when linking your program.
11294
11295 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
11296
11297 If @var{path} is specified, GCC looks at the @var{path} to find
11298 the profile feedback data files. See @option{-fprofile-dir}.
11299
11300 To optimize the program based on the collected profile information, use
11301 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
11302
11303 @item -fprofile-update=@var{method}
11304 @opindex fprofile-update
11305
11306 Alter the update method for an application instrumented for profile
11307 feedback based optimization. The @var{method} argument should be one of
11308 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
11309 The first one is useful for single-threaded applications,
11310 while the second one prevents profile corruption by emitting thread-safe code.
11311
11312 @strong{Warning:} When an application does not properly join all threads
11313 (or creates an detached thread), a profile file can be still corrupted.
11314
11315 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
11316 when supported by a target, or to @samp{single} otherwise. The GCC driver
11317 automatically selects @samp{prefer-atomic} when @option{-pthread}
11318 is present in the command line.
11319
11320 @item -fsanitize=address
11321 @opindex fsanitize=address
11322 Enable AddressSanitizer, a fast memory error detector.
11323 Memory access instructions are instrumented to detect
11324 out-of-bounds and use-after-free bugs.
11325 The option enables @option{-fsanitize-address-use-after-scope}.
11326 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
11327 more details. The run-time behavior can be influenced using the
11328 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
11329 the available options are shown at startup of the instrumented program. See
11330 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
11331 for a list of supported options.
11332 The option cannot be combined with @option{-fsanitize=thread}
11333 and/or @option{-fcheck-pointer-bounds}.
11334
11335 @item -fsanitize=kernel-address
11336 @opindex fsanitize=kernel-address
11337 Enable AddressSanitizer for Linux kernel.
11338 See @uref{https://github.com/google/kasan/wiki} for more details.
11339 The option cannot be combined with @option{-fcheck-pointer-bounds}.
11340
11341 @item -fsanitize=pointer-compare
11342 @opindex fsanitize=pointer-compare
11343 Instrument comparison operation (<, <=, >, >=) with pointer operands.
11344 The option must be combined with either @option{-fsanitize=kernel-address} or
11345 @option{-fsanitize=address}
11346 The option cannot be combined with @option{-fsanitize=thread}
11347 and/or @option{-fcheck-pointer-bounds}.
11348 Note: By default the check is disabled at run time. To enable it,
11349 add @code{detect_invalid_pointer_pairs=2} to the environment variable
11350 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
11351 invalid operation only when both pointers are non-null.
11352
11353 @item -fsanitize=pointer-subtract
11354 @opindex fsanitize=pointer-subtract
11355 Instrument subtraction with pointer operands.
11356 The option must be combined with either @option{-fsanitize=kernel-address} or
11357 @option{-fsanitize=address}
11358 The option cannot be combined with @option{-fsanitize=thread}
11359 and/or @option{-fcheck-pointer-bounds}.
11360 Note: By default the check is disabled at run time. To enable it,
11361 add @code{detect_invalid_pointer_pairs=2} to the environment variable
11362 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
11363 invalid operation only when both pointers are non-null.
11364
11365 @item -fsanitize=thread
11366 @opindex fsanitize=thread
11367 Enable ThreadSanitizer, a fast data race detector.
11368 Memory access instructions are instrumented to detect
11369 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
11370 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
11371 environment variable; see
11372 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
11373 supported options.
11374 The option cannot be combined with @option{-fsanitize=address},
11375 @option{-fsanitize=leak} and/or @option{-fcheck-pointer-bounds}.
11376
11377 Note that sanitized atomic builtins cannot throw exceptions when
11378 operating on invalid memory addresses with non-call exceptions
11379 (@option{-fnon-call-exceptions}).
11380
11381 @item -fsanitize=leak
11382 @opindex fsanitize=leak
11383 Enable LeakSanitizer, a memory leak detector.
11384 This option only matters for linking of executables and
11385 the executable is linked against a library that overrides @code{malloc}
11386 and other allocator functions. See
11387 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
11388 details. The run-time behavior can be influenced using the
11389 @env{LSAN_OPTIONS} environment variable.
11390 The option cannot be combined with @option{-fsanitize=thread}.
11391
11392 @item -fsanitize=undefined
11393 @opindex fsanitize=undefined
11394 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
11395 Various computations are instrumented to detect undefined behavior
11396 at runtime. Current suboptions are:
11397
11398 @table @gcctabopt
11399
11400 @item -fsanitize=shift
11401 @opindex fsanitize=shift
11402 This option enables checking that the result of a shift operation is
11403 not undefined. Note that what exactly is considered undefined differs
11404 slightly between C and C++, as well as between ISO C90 and C99, etc.
11405 This option has two suboptions, @option{-fsanitize=shift-base} and
11406 @option{-fsanitize=shift-exponent}.
11407
11408 @item -fsanitize=shift-exponent
11409 @opindex fsanitize=shift-exponent
11410 This option enables checking that the second argument of a shift operation
11411 is not negative and is smaller than the precision of the promoted first
11412 argument.
11413
11414 @item -fsanitize=shift-base
11415 @opindex fsanitize=shift-base
11416 If the second argument of a shift operation is within range, check that the
11417 result of a shift operation is not undefined. Note that what exactly is
11418 considered undefined differs slightly between C and C++, as well as between
11419 ISO C90 and C99, etc.
11420
11421 @item -fsanitize=integer-divide-by-zero
11422 @opindex fsanitize=integer-divide-by-zero
11423 Detect integer division by zero as well as @code{INT_MIN / -1} division.
11424
11425 @item -fsanitize=unreachable
11426 @opindex fsanitize=unreachable
11427 With this option, the compiler turns the @code{__builtin_unreachable}
11428 call into a diagnostics message call instead. When reaching the
11429 @code{__builtin_unreachable} call, the behavior is undefined.
11430
11431 @item -fsanitize=vla-bound
11432 @opindex fsanitize=vla-bound
11433 This option instructs the compiler to check that the size of a variable
11434 length array is positive.
11435
11436 @item -fsanitize=null
11437 @opindex fsanitize=null
11438 This option enables pointer checking. Particularly, the application
11439 built with this option turned on will issue an error message when it
11440 tries to dereference a NULL pointer, or if a reference (possibly an
11441 rvalue reference) is bound to a NULL pointer, or if a method is invoked
11442 on an object pointed by a NULL pointer.
11443
11444 @item -fsanitize=return
11445 @opindex fsanitize=return
11446 This option enables return statement checking. Programs
11447 built with this option turned on will issue an error message
11448 when the end of a non-void function is reached without actually
11449 returning a value. This option works in C++ only.
11450
11451 @item -fsanitize=signed-integer-overflow
11452 @opindex fsanitize=signed-integer-overflow
11453 This option enables signed integer overflow checking. We check that
11454 the result of @code{+}, @code{*}, and both unary and binary @code{-}
11455 does not overflow in the signed arithmetics. Note, integer promotion
11456 rules must be taken into account. That is, the following is not an
11457 overflow:
11458 @smallexample
11459 signed char a = SCHAR_MAX;
11460 a++;
11461 @end smallexample
11462
11463 @item -fsanitize=bounds
11464 @opindex fsanitize=bounds
11465 This option enables instrumentation of array bounds. Various out of bounds
11466 accesses are detected. Flexible array members, flexible array member-like
11467 arrays, and initializers of variables with static storage are not instrumented.
11468 The option cannot be combined with @option{-fcheck-pointer-bounds}.
11469
11470 @item -fsanitize=bounds-strict
11471 @opindex fsanitize=bounds-strict
11472 This option enables strict instrumentation of array bounds. Most out of bounds
11473 accesses are detected, including flexible array members and flexible array
11474 member-like arrays. Initializers of variables with static storage are not
11475 instrumented. The option cannot be combined
11476 with @option{-fcheck-pointer-bounds}.
11477
11478 @item -fsanitize=alignment
11479 @opindex fsanitize=alignment
11480
11481 This option enables checking of alignment of pointers when they are
11482 dereferenced, or when a reference is bound to insufficiently aligned target,
11483 or when a method or constructor is invoked on insufficiently aligned object.
11484
11485 @item -fsanitize=object-size
11486 @opindex fsanitize=object-size
11487 This option enables instrumentation of memory references using the
11488 @code{__builtin_object_size} function. Various out of bounds pointer
11489 accesses are detected.
11490
11491 @item -fsanitize=float-divide-by-zero
11492 @opindex fsanitize=float-divide-by-zero
11493 Detect floating-point division by zero. Unlike other similar options,
11494 @option{-fsanitize=float-divide-by-zero} is not enabled by
11495 @option{-fsanitize=undefined}, since floating-point division by zero can
11496 be a legitimate way of obtaining infinities and NaNs.
11497
11498 @item -fsanitize=float-cast-overflow
11499 @opindex fsanitize=float-cast-overflow
11500 This option enables floating-point type to integer conversion checking.
11501 We check that the result of the conversion does not overflow.
11502 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
11503 not enabled by @option{-fsanitize=undefined}.
11504 This option does not work well with @code{FE_INVALID} exceptions enabled.
11505
11506 @item -fsanitize=nonnull-attribute
11507 @opindex fsanitize=nonnull-attribute
11508
11509 This option enables instrumentation of calls, checking whether null values
11510 are not passed to arguments marked as requiring a non-null value by the
11511 @code{nonnull} function attribute.
11512
11513 @item -fsanitize=returns-nonnull-attribute
11514 @opindex fsanitize=returns-nonnull-attribute
11515
11516 This option enables instrumentation of return statements in functions
11517 marked with @code{returns_nonnull} function attribute, to detect returning
11518 of null values from such functions.
11519
11520 @item -fsanitize=bool
11521 @opindex fsanitize=bool
11522
11523 This option enables instrumentation of loads from bool. If a value other
11524 than 0/1 is loaded, a run-time error is issued.
11525
11526 @item -fsanitize=enum
11527 @opindex fsanitize=enum
11528
11529 This option enables instrumentation of loads from an enum type. If
11530 a value outside the range of values for the enum type is loaded,
11531 a run-time error is issued.
11532
11533 @item -fsanitize=vptr
11534 @opindex fsanitize=vptr
11535
11536 This option enables instrumentation of C++ member function calls, member
11537 accesses and some conversions between pointers to base and derived classes,
11538 to verify the referenced object has the correct dynamic type.
11539
11540 @item -fsanitize=pointer-overflow
11541 @opindex fsanitize=pointer-overflow
11542
11543 This option enables instrumentation of pointer arithmetics. If the pointer
11544 arithmetics overflows, a run-time error is issued.
11545
11546 @item -fsanitize=builtin
11547 @opindex fsanitize=builtin
11548
11549 This option enables instrumentation of arguments to selected builtin
11550 functions. If an invalid value is passed to such arguments, a run-time
11551 error is issued. E.g.@ passing 0 as the argument to @code{__builtin_ctz}
11552 or @code{__builtin_clz} invokes undefined behavior and is diagnosed
11553 by this option.
11554
11555 @end table
11556
11557 While @option{-ftrapv} causes traps for signed overflows to be emitted,
11558 @option{-fsanitize=undefined} gives a diagnostic message.
11559 This currently works only for the C family of languages.
11560
11561 @item -fno-sanitize=all
11562 @opindex fno-sanitize=all
11563
11564 This option disables all previously enabled sanitizers.
11565 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
11566 together.
11567
11568 @item -fasan-shadow-offset=@var{number}
11569 @opindex fasan-shadow-offset
11570 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
11571 It is useful for experimenting with different shadow memory layouts in
11572 Kernel AddressSanitizer.
11573
11574 @item -fsanitize-sections=@var{s1},@var{s2},...
11575 @opindex fsanitize-sections
11576 Sanitize global variables in selected user-defined sections. @var{si} may
11577 contain wildcards.
11578
11579 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
11580 @opindex fsanitize-recover
11581 @opindex fno-sanitize-recover
11582 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
11583 mentioned in comma-separated list of @var{opts}. Enabling this option
11584 for a sanitizer component causes it to attempt to continue
11585 running the program as if no error happened. This means multiple
11586 runtime errors can be reported in a single program run, and the exit
11587 code of the program may indicate success even when errors
11588 have been reported. The @option{-fno-sanitize-recover=} option
11589 can be used to alter
11590 this behavior: only the first detected error is reported
11591 and program then exits with a non-zero exit code.
11592
11593 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
11594 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
11595 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
11596 @option{-fsanitize=bounds-strict},
11597 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
11598 For these sanitizers error recovery is turned on by default,
11599 except @option{-fsanitize=address}, for which this feature is experimental.
11600 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
11601 accepted, the former enables recovery for all sanitizers that support it,
11602 the latter disables recovery for all sanitizers that support it.
11603
11604 Even if a recovery mode is turned on the compiler side, it needs to be also
11605 enabled on the runtime library side, otherwise the failures are still fatal.
11606 The runtime library defaults to @code{halt_on_error=0} for
11607 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
11608 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
11609 setting the @code{halt_on_error} flag in the corresponding environment variable.
11610
11611 Syntax without an explicit @var{opts} parameter is deprecated. It is
11612 equivalent to specifying an @var{opts} list of:
11613
11614 @smallexample
11615 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
11616 @end smallexample
11617
11618 @item -fsanitize-address-use-after-scope
11619 @opindex fsanitize-address-use-after-scope
11620 Enable sanitization of local variables to detect use-after-scope bugs.
11621 The option sets @option{-fstack-reuse} to @samp{none}.
11622
11623 @item -fsanitize-undefined-trap-on-error
11624 @opindex fsanitize-undefined-trap-on-error
11625 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
11626 report undefined behavior using @code{__builtin_trap} rather than
11627 a @code{libubsan} library routine. The advantage of this is that the
11628 @code{libubsan} library is not needed and is not linked in, so this
11629 is usable even in freestanding environments.
11630
11631 @item -fsanitize-coverage=trace-pc
11632 @opindex fsanitize-coverage=trace-pc
11633 Enable coverage-guided fuzzing code instrumentation.
11634 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
11635
11636 @item -fsanitize-coverage=trace-cmp
11637 @opindex fsanitize-coverage=trace-cmp
11638 Enable dataflow guided fuzzing code instrumentation.
11639 Inserts a call to @code{__sanitizer_cov_trace_cmp1},
11640 @code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
11641 @code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
11642 variable or @code{__sanitizer_cov_trace_const_cmp1},
11643 @code{__sanitizer_cov_trace_const_cmp2},
11644 @code{__sanitizer_cov_trace_const_cmp4} or
11645 @code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
11646 operand constant, @code{__sanitizer_cov_trace_cmpf} or
11647 @code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
11648 @code{__sanitizer_cov_trace_switch} for switch statements.
11649
11650 @item -fbounds-check
11651 @opindex fbounds-check
11652 For front ends that support it, generate additional code to check that
11653 indices used to access arrays are within the declared range. This is
11654 currently only supported by the Fortran front end, where this option
11655 defaults to false.
11656
11657 @item -fcheck-pointer-bounds
11658 @opindex fcheck-pointer-bounds
11659 @opindex fno-check-pointer-bounds
11660 @cindex Pointer Bounds Checker options
11661 Enable Pointer Bounds Checker instrumentation. Each memory reference
11662 is instrumented with checks of the pointer used for memory access against
11663 bounds associated with that pointer.
11664
11665 Currently there
11666 is only an implementation for Intel MPX available, thus x86 GNU/Linux target
11667 and @option{-mmpx} are required to enable this feature.
11668 MPX-based instrumentation requires
11669 a runtime library to enable MPX in hardware and handle bounds
11670 violation signals. By default when @option{-fcheck-pointer-bounds}
11671 and @option{-mmpx} options are used to link a program, the GCC driver
11672 links against the @file{libmpx} and @file{libmpxwrappers} libraries.
11673 Bounds checking on calls to dynamic libraries requires a linker
11674 with @option{-z bndplt} support; if GCC was configured with a linker
11675 without support for this option (including the Gold linker and older
11676 versions of ld), a warning is given if you link with @option{-mmpx}
11677 without also specifying @option{-static}, since the overall effectiveness
11678 of the bounds checking protection is reduced.
11679 See also @option{-static-libmpxwrappers}.
11680
11681 MPX-based instrumentation
11682 may be used for debugging and also may be included in production code
11683 to increase program security. Depending on usage, you may
11684 have different requirements for the runtime library. The current version
11685 of the MPX runtime library is more oriented for use as a debugging
11686 tool. MPX runtime library usage implies @option{-lpthread}. See
11687 also @option{-static-libmpx}. The runtime library behavior can be
11688 influenced using various @env{CHKP_RT_*} environment variables. See
11689 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
11690 for more details.
11691
11692 Generated instrumentation may be controlled by various
11693 @option{-fchkp-*} options and by the @code{bnd_variable_size}
11694 structure field attribute (@pxref{Type Attributes}) and
11695 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
11696 (@pxref{Function Attributes}). GCC also provides a number of built-in
11697 functions for controlling the Pointer Bounds Checker. @xref{Pointer
11698 Bounds Checker builtins}, for more information.
11699
11700 @item -fchkp-check-incomplete-type
11701 @opindex fchkp-check-incomplete-type
11702 @opindex fno-chkp-check-incomplete-type
11703 Generate pointer bounds checks for variables with incomplete type.
11704 Enabled by default.
11705
11706 @item -fchkp-narrow-bounds
11707 @opindex fchkp-narrow-bounds
11708 @opindex fno-chkp-narrow-bounds
11709 Controls bounds used by Pointer Bounds Checker for pointers to object
11710 fields. If narrowing is enabled then field bounds are used. Otherwise
11711 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
11712 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
11713
11714 @item -fchkp-first-field-has-own-bounds
11715 @opindex fchkp-first-field-has-own-bounds
11716 @opindex fno-chkp-first-field-has-own-bounds
11717 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
11718 first field in the structure. By default a pointer to the first field has
11719 the same bounds as a pointer to the whole structure.
11720
11721 @item -fchkp-flexible-struct-trailing-arrays
11722 @opindex fchkp-flexible-struct-trailing-arrays
11723 @opindex fno-chkp-flexible-struct-trailing-arrays
11724 Forces Pointer Bounds Checker to treat all trailing arrays in structures as
11725 possibly flexible. By default only array fields with zero length or that are
11726 marked with attribute bnd_variable_size are treated as flexible.
11727
11728 @item -fchkp-narrow-to-innermost-array
11729 @opindex fchkp-narrow-to-innermost-array
11730 @opindex fno-chkp-narrow-to-innermost-array
11731 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
11732 case of nested static array access. By default this option is disabled and
11733 bounds of the outermost array are used.
11734
11735 @item -fchkp-optimize
11736 @opindex fchkp-optimize
11737 @opindex fno-chkp-optimize
11738 Enables Pointer Bounds Checker optimizations. Enabled by default at
11739 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
11740
11741 @item -fchkp-use-fast-string-functions
11742 @opindex fchkp-use-fast-string-functions
11743 @opindex fno-chkp-use-fast-string-functions
11744 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
11745 by Pointer Bounds Checker. Disabled by default.
11746
11747 @item -fchkp-use-nochk-string-functions
11748 @opindex fchkp-use-nochk-string-functions
11749 @opindex fno-chkp-use-nochk-string-functions
11750 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
11751 by Pointer Bounds Checker. Disabled by default.
11752
11753 @item -fchkp-use-static-bounds
11754 @opindex fchkp-use-static-bounds
11755 @opindex fno-chkp-use-static-bounds
11756 Allow Pointer Bounds Checker to generate static bounds holding
11757 bounds of static variables. Enabled by default.
11758
11759 @item -fchkp-use-static-const-bounds
11760 @opindex fchkp-use-static-const-bounds
11761 @opindex fno-chkp-use-static-const-bounds
11762 Use statically-initialized bounds for constant bounds instead of
11763 generating them each time they are required. By default enabled when
11764 @option{-fchkp-use-static-bounds} is enabled.
11765
11766 @item -fchkp-treat-zero-dynamic-size-as-infinite
11767 @opindex fchkp-treat-zero-dynamic-size-as-infinite
11768 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
11769 With this option, objects with incomplete type whose
11770 dynamically-obtained size is zero are treated as having infinite size
11771 instead by Pointer Bounds
11772 Checker. This option may be helpful if a program is linked with a library
11773 missing size information for some symbols. Disabled by default.
11774
11775 @item -fchkp-check-read
11776 @opindex fchkp-check-read
11777 @opindex fno-chkp-check-read
11778 Instructs Pointer Bounds Checker to generate checks for all read
11779 accesses to memory. Enabled by default.
11780
11781 @item -fchkp-check-write
11782 @opindex fchkp-check-write
11783 @opindex fno-chkp-check-write
11784 Instructs Pointer Bounds Checker to generate checks for all write
11785 accesses to memory. Enabled by default.
11786
11787 @item -fchkp-store-bounds
11788 @opindex fchkp-store-bounds
11789 @opindex fno-chkp-store-bounds
11790 Instructs Pointer Bounds Checker to generate bounds stores for
11791 pointer writes. Enabled by default.
11792
11793 @item -fchkp-instrument-calls
11794 @opindex fchkp-instrument-calls
11795 @opindex fno-chkp-instrument-calls
11796 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
11797 Enabled by default.
11798
11799 @item -fchkp-instrument-marked-only
11800 @opindex fchkp-instrument-marked-only
11801 @opindex fno-chkp-instrument-marked-only
11802 Instructs Pointer Bounds Checker to instrument only functions
11803 marked with the @code{bnd_instrument} attribute
11804 (@pxref{Function Attributes}). Disabled by default.
11805
11806 @item -fchkp-use-wrappers
11807 @opindex fchkp-use-wrappers
11808 @opindex fno-chkp-use-wrappers
11809 Allows Pointer Bounds Checker to replace calls to built-in functions
11810 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
11811 is used to link a program, the GCC driver automatically links
11812 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
11813 Enabled by default.
11814
11815 @item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
11816 @opindex fcf-protection
11817 Enable code instrumentation of control-flow transfers to increase
11818 program security by checking that target addresses of control-flow
11819 transfer instructions (such as indirect function call, function return,
11820 indirect jump) are valid. This prevents diverting the flow of control
11821 to an unexpected target. This is intended to protect against such
11822 threats as Return-oriented Programming (ROP), and similarly
11823 call/jmp-oriented programming (COP/JOP).
11824
11825 The value @code{branch} tells the compiler to implement checking of
11826 validity of control-flow transfer at the point of indirect branch
11827 instructions, i.e. call/jmp instructions. The value @code{return}
11828 implements checking of validity at the point of returning from a
11829 function. The value @code{full} is an alias for specifying both
11830 @code{branch} and @code{return}. The value @code{none} turns off
11831 instrumentation.
11832
11833 The macro @code{__CET__} is defined when @option{-fcf-protection} is
11834 used. The first bit of @code{__CET__} is set to 1 for the value
11835 @code{branch} and the second bit of @code{__CET__} is set to 1 for
11836 the @code{return}.
11837
11838 You can also use the @code{nocf_check} attribute to identify
11839 which functions and calls should be skipped from instrumentation
11840 (@pxref{Function Attributes}).
11841
11842 Currently the x86 GNU/Linux target provides an implementation based
11843 on Intel Control-flow Enforcement Technology (CET).
11844
11845 @item -fstack-protector
11846 @opindex fstack-protector
11847 Emit extra code to check for buffer overflows, such as stack smashing
11848 attacks. This is done by adding a guard variable to functions with
11849 vulnerable objects. This includes functions that call @code{alloca}, and
11850 functions with buffers larger than 8 bytes. The guards are initialized
11851 when a function is entered and then checked when the function exits.
11852 If a guard check fails, an error message is printed and the program exits.
11853
11854 @item -fstack-protector-all
11855 @opindex fstack-protector-all
11856 Like @option{-fstack-protector} except that all functions are protected.
11857
11858 @item -fstack-protector-strong
11859 @opindex fstack-protector-strong
11860 Like @option{-fstack-protector} but includes additional functions to
11861 be protected --- those that have local array definitions, or have
11862 references to local frame addresses.
11863
11864 @item -fstack-protector-explicit
11865 @opindex fstack-protector-explicit
11866 Like @option{-fstack-protector} but only protects those functions which
11867 have the @code{stack_protect} attribute.
11868
11869 @item -fstack-check
11870 @opindex fstack-check
11871 Generate code to verify that you do not go beyond the boundary of the
11872 stack. You should specify this flag if you are running in an
11873 environment with multiple threads, but you only rarely need to specify it in
11874 a single-threaded environment since stack overflow is automatically
11875 detected on nearly all systems if there is only one stack.
11876
11877 Note that this switch does not actually cause checking to be done; the
11878 operating system or the language runtime must do that. The switch causes
11879 generation of code to ensure that they see the stack being extended.
11880
11881 You can additionally specify a string parameter: @samp{no} means no
11882 checking, @samp{generic} means force the use of old-style checking,
11883 @samp{specific} means use the best checking method and is equivalent
11884 to bare @option{-fstack-check}.
11885
11886 Old-style checking is a generic mechanism that requires no specific
11887 target support in the compiler but comes with the following drawbacks:
11888
11889 @enumerate
11890 @item
11891 Modified allocation strategy for large objects: they are always
11892 allocated dynamically if their size exceeds a fixed threshold. Note this
11893 may change the semantics of some code.
11894
11895 @item
11896 Fixed limit on the size of the static frame of functions: when it is
11897 topped by a particular function, stack checking is not reliable and
11898 a warning is issued by the compiler.
11899
11900 @item
11901 Inefficiency: because of both the modified allocation strategy and the
11902 generic implementation, code performance is hampered.
11903 @end enumerate
11904
11905 Note that old-style stack checking is also the fallback method for
11906 @samp{specific} if no target support has been added in the compiler.
11907
11908 @samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
11909 and stack overflows. @samp{specific} is an excellent choice when compiling
11910 Ada code. It is not generally sufficient to protect against stack-clash
11911 attacks. To protect against those you want @samp{-fstack-clash-protection}.
11912
11913 @item -fstack-clash-protection
11914 @opindex fstack-clash-protection
11915 Generate code to prevent stack clash style attacks. When this option is
11916 enabled, the compiler will only allocate one page of stack space at a time
11917 and each page is accessed immediately after allocation. Thus, it prevents
11918 allocations from jumping over any stack guard page provided by the
11919 operating system.
11920
11921 Most targets do not fully support stack clash protection. However, on
11922 those targets @option{-fstack-clash-protection} will protect dynamic stack
11923 allocations. @option{-fstack-clash-protection} may also provide limited
11924 protection for static stack allocations if the target supports
11925 @option{-fstack-check=specific}.
11926
11927 @item -fstack-limit-register=@var{reg}
11928 @itemx -fstack-limit-symbol=@var{sym}
11929 @itemx -fno-stack-limit
11930 @opindex fstack-limit-register
11931 @opindex fstack-limit-symbol
11932 @opindex fno-stack-limit
11933 Generate code to ensure that the stack does not grow beyond a certain value,
11934 either the value of a register or the address of a symbol. If a larger
11935 stack is required, a signal is raised at run time. For most targets,
11936 the signal is raised before the stack overruns the boundary, so
11937 it is possible to catch the signal without taking special precautions.
11938
11939 For instance, if the stack starts at absolute address @samp{0x80000000}
11940 and grows downwards, you can use the flags
11941 @option{-fstack-limit-symbol=__stack_limit} and
11942 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
11943 of 128KB@. Note that this may only work with the GNU linker.
11944
11945 You can locally override stack limit checking by using the
11946 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
11947
11948 @item -fsplit-stack
11949 @opindex fsplit-stack
11950 Generate code to automatically split the stack before it overflows.
11951 The resulting program has a discontiguous stack which can only
11952 overflow if the program is unable to allocate any more memory. This
11953 is most useful when running threaded programs, as it is no longer
11954 necessary to calculate a good stack size to use for each thread. This
11955 is currently only implemented for the x86 targets running
11956 GNU/Linux.
11957
11958 When code compiled with @option{-fsplit-stack} calls code compiled
11959 without @option{-fsplit-stack}, there may not be much stack space
11960 available for the latter code to run. If compiling all code,
11961 including library code, with @option{-fsplit-stack} is not an option,
11962 then the linker can fix up these calls so that the code compiled
11963 without @option{-fsplit-stack} always has a large stack. Support for
11964 this is implemented in the gold linker in GNU binutils release 2.21
11965 and later.
11966
11967 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
11968 @opindex fvtable-verify
11969 This option is only available when compiling C++ code.
11970 It turns on (or off, if using @option{-fvtable-verify=none}) the security
11971 feature that verifies at run time, for every virtual call, that
11972 the vtable pointer through which the call is made is valid for the type of
11973 the object, and has not been corrupted or overwritten. If an invalid vtable
11974 pointer is detected at run time, an error is reported and execution of the
11975 program is immediately halted.
11976
11977 This option causes run-time data structures to be built at program startup,
11978 which are used for verifying the vtable pointers.
11979 The options @samp{std} and @samp{preinit}
11980 control the timing of when these data structures are built. In both cases the
11981 data structures are built before execution reaches @code{main}. Using
11982 @option{-fvtable-verify=std} causes the data structures to be built after
11983 shared libraries have been loaded and initialized.
11984 @option{-fvtable-verify=preinit} causes them to be built before shared
11985 libraries have been loaded and initialized.
11986
11987 If this option appears multiple times in the command line with different
11988 values specified, @samp{none} takes highest priority over both @samp{std} and
11989 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
11990
11991 @item -fvtv-debug
11992 @opindex fvtv-debug
11993 When used in conjunction with @option{-fvtable-verify=std} or
11994 @option{-fvtable-verify=preinit}, causes debug versions of the
11995 runtime functions for the vtable verification feature to be called.
11996 This flag also causes the compiler to log information about which
11997 vtable pointers it finds for each class.
11998 This information is written to a file named @file{vtv_set_ptr_data.log}
11999 in the directory named by the environment variable @env{VTV_LOGS_DIR}
12000 if that is defined or the current working directory otherwise.
12001
12002 Note: This feature @emph{appends} data to the log file. If you want a fresh log
12003 file, be sure to delete any existing one.
12004
12005 @item -fvtv-counts
12006 @opindex fvtv-counts
12007 This is a debugging flag. When used in conjunction with
12008 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
12009 causes the compiler to keep track of the total number of virtual calls
12010 it encounters and the number of verifications it inserts. It also
12011 counts the number of calls to certain run-time library functions
12012 that it inserts and logs this information for each compilation unit.
12013 The compiler writes this information to a file named
12014 @file{vtv_count_data.log} in the directory named by the environment
12015 variable @env{VTV_LOGS_DIR} if that is defined or the current working
12016 directory otherwise. It also counts the size of the vtable pointer sets
12017 for each class, and writes this information to @file{vtv_class_set_sizes.log}
12018 in the same directory.
12019
12020 Note: This feature @emph{appends} data to the log files. To get fresh log
12021 files, be sure to delete any existing ones.
12022
12023 @item -finstrument-functions
12024 @opindex finstrument-functions
12025 Generate instrumentation calls for entry and exit to functions. Just
12026 after function entry and just before function exit, the following
12027 profiling functions are called with the address of the current
12028 function and its call site. (On some platforms,
12029 @code{__builtin_return_address} does not work beyond the current
12030 function, so the call site information may not be available to the
12031 profiling functions otherwise.)
12032
12033 @smallexample
12034 void __cyg_profile_func_enter (void *this_fn,
12035 void *call_site);
12036 void __cyg_profile_func_exit (void *this_fn,
12037 void *call_site);
12038 @end smallexample
12039
12040 The first argument is the address of the start of the current function,
12041 which may be looked up exactly in the symbol table.
12042
12043 This instrumentation is also done for functions expanded inline in other
12044 functions. The profiling calls indicate where, conceptually, the
12045 inline function is entered and exited. This means that addressable
12046 versions of such functions must be available. If all your uses of a
12047 function are expanded inline, this may mean an additional expansion of
12048 code size. If you use @code{extern inline} in your C code, an
12049 addressable version of such functions must be provided. (This is
12050 normally the case anyway, but if you get lucky and the optimizer always
12051 expands the functions inline, you might have gotten away without
12052 providing static copies.)
12053
12054 A function may be given the attribute @code{no_instrument_function}, in
12055 which case this instrumentation is not done. This can be used, for
12056 example, for the profiling functions listed above, high-priority
12057 interrupt routines, and any functions from which the profiling functions
12058 cannot safely be called (perhaps signal handlers, if the profiling
12059 routines generate output or allocate memory).
12060
12061 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
12062 @opindex finstrument-functions-exclude-file-list
12063
12064 Set the list of functions that are excluded from instrumentation (see
12065 the description of @option{-finstrument-functions}). If the file that
12066 contains a function definition matches with one of @var{file}, then
12067 that function is not instrumented. The match is done on substrings:
12068 if the @var{file} parameter is a substring of the file name, it is
12069 considered to be a match.
12070
12071 For example:
12072
12073 @smallexample
12074 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
12075 @end smallexample
12076
12077 @noindent
12078 excludes any inline function defined in files whose pathnames
12079 contain @file{/bits/stl} or @file{include/sys}.
12080
12081 If, for some reason, you want to include letter @samp{,} in one of
12082 @var{sym}, write @samp{\,}. For example,
12083 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
12084 (note the single quote surrounding the option).
12085
12086 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
12087 @opindex finstrument-functions-exclude-function-list
12088
12089 This is similar to @option{-finstrument-functions-exclude-file-list},
12090 but this option sets the list of function names to be excluded from
12091 instrumentation. The function name to be matched is its user-visible
12092 name, such as @code{vector<int> blah(const vector<int> &)}, not the
12093 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
12094 match is done on substrings: if the @var{sym} parameter is a substring
12095 of the function name, it is considered to be a match. For C99 and C++
12096 extended identifiers, the function name must be given in UTF-8, not
12097 using universal character names.
12098
12099 @item -fpatchable-function-entry=@var{N}[,@var{M}]
12100 @opindex fpatchable-function-entry
12101 Generate @var{N} NOPs right at the beginning
12102 of each function, with the function entry point before the @var{M}th NOP.
12103 If @var{M} is omitted, it defaults to @code{0} so the
12104 function entry points to the address just at the first NOP.
12105 The NOP instructions reserve extra space which can be used to patch in
12106 any desired instrumentation at run time, provided that the code segment
12107 is writable. The amount of space is controllable indirectly via
12108 the number of NOPs; the NOP instruction used corresponds to the instruction
12109 emitted by the internal GCC back-end interface @code{gen_nop}. This behavior
12110 is target-specific and may also depend on the architecture variant and/or
12111 other compilation options.
12112
12113 For run-time identification, the starting addresses of these areas,
12114 which correspond to their respective function entries minus @var{M},
12115 are additionally collected in the @code{__patchable_function_entries}
12116 section of the resulting binary.
12117
12118 Note that the value of @code{__attribute__ ((patchable_function_entry
12119 (N,M)))} takes precedence over command-line option
12120 @option{-fpatchable-function-entry=N,M}. This can be used to increase
12121 the area size or to remove it completely on a single function.
12122 If @code{N=0}, no pad location is recorded.
12123
12124 The NOP instructions are inserted at---and maybe before, depending on
12125 @var{M}---the function entry address, even before the prologue.
12126
12127 @end table
12128
12129
12130 @node Preprocessor Options
12131 @section Options Controlling the Preprocessor
12132 @cindex preprocessor options
12133 @cindex options, preprocessor
12134
12135 These options control the C preprocessor, which is run on each C source
12136 file before actual compilation.
12137
12138 If you use the @option{-E} option, nothing is done except preprocessing.
12139 Some of these options make sense only together with @option{-E} because
12140 they cause the preprocessor output to be unsuitable for actual
12141 compilation.
12142
12143 In addition to the options listed here, there are a number of options
12144 to control search paths for include files documented in
12145 @ref{Directory Options}.
12146 Options to control preprocessor diagnostics are listed in
12147 @ref{Warning Options}.
12148
12149 @table @gcctabopt
12150 @include cppopts.texi
12151
12152 @item -Wp,@var{option}
12153 @opindex Wp
12154 You can use @option{-Wp,@var{option}} to bypass the compiler driver
12155 and pass @var{option} directly through to the preprocessor. If
12156 @var{option} contains commas, it is split into multiple options at the
12157 commas. However, many options are modified, translated or interpreted
12158 by the compiler driver before being passed to the preprocessor, and
12159 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
12160 interface is undocumented and subject to change, so whenever possible
12161 you should avoid using @option{-Wp} and let the driver handle the
12162 options instead.
12163
12164 @item -Xpreprocessor @var{option}
12165 @opindex Xpreprocessor
12166 Pass @var{option} as an option to the preprocessor. You can use this to
12167 supply system-specific preprocessor options that GCC does not
12168 recognize.
12169
12170 If you want to pass an option that takes an argument, you must use
12171 @option{-Xpreprocessor} twice, once for the option and once for the argument.
12172
12173 @item -no-integrated-cpp
12174 @opindex no-integrated-cpp
12175 Perform preprocessing as a separate pass before compilation.
12176 By default, GCC performs preprocessing as an integrated part of
12177 input tokenization and parsing.
12178 If this option is provided, the appropriate language front end
12179 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
12180 and Objective-C, respectively) is instead invoked twice,
12181 once for preprocessing only and once for actual compilation
12182 of the preprocessed input.
12183 This option may be useful in conjunction with the @option{-B} or
12184 @option{-wrapper} options to specify an alternate preprocessor or
12185 perform additional processing of the program source between
12186 normal preprocessing and compilation.
12187
12188 @end table
12189
12190 @node Assembler Options
12191 @section Passing Options to the Assembler
12192
12193 @c prevent bad page break with this line
12194 You can pass options to the assembler.
12195
12196 @table @gcctabopt
12197 @item -Wa,@var{option}
12198 @opindex Wa
12199 Pass @var{option} as an option to the assembler. If @var{option}
12200 contains commas, it is split into multiple options at the commas.
12201
12202 @item -Xassembler @var{option}
12203 @opindex Xassembler
12204 Pass @var{option} as an option to the assembler. You can use this to
12205 supply system-specific assembler options that GCC does not
12206 recognize.
12207
12208 If you want to pass an option that takes an argument, you must use
12209 @option{-Xassembler} twice, once for the option and once for the argument.
12210
12211 @end table
12212
12213 @node Link Options
12214 @section Options for Linking
12215 @cindex link options
12216 @cindex options, linking
12217
12218 These options come into play when the compiler links object files into
12219 an executable output file. They are meaningless if the compiler is
12220 not doing a link step.
12221
12222 @table @gcctabopt
12223 @cindex file names
12224 @item @var{object-file-name}
12225 A file name that does not end in a special recognized suffix is
12226 considered to name an object file or library. (Object files are
12227 distinguished from libraries by the linker according to the file
12228 contents.) If linking is done, these object files are used as input
12229 to the linker.
12230
12231 @item -c
12232 @itemx -S
12233 @itemx -E
12234 @opindex c
12235 @opindex S
12236 @opindex E
12237 If any of these options is used, then the linker is not run, and
12238 object file names should not be used as arguments. @xref{Overall
12239 Options}.
12240
12241 @item -fuse-ld=bfd
12242 @opindex fuse-ld=bfd
12243 Use the @command{bfd} linker instead of the default linker.
12244
12245 @item -fuse-ld=gold
12246 @opindex fuse-ld=gold
12247 Use the @command{gold} linker instead of the default linker.
12248
12249 @cindex Libraries
12250 @item -l@var{library}
12251 @itemx -l @var{library}
12252 @opindex l
12253 Search the library named @var{library} when linking. (The second
12254 alternative with the library as a separate argument is only for
12255 POSIX compliance and is not recommended.)
12256
12257 It makes a difference where in the command you write this option; the
12258 linker searches and processes libraries and object files in the order they
12259 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
12260 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
12261 to functions in @samp{z}, those functions may not be loaded.
12262
12263 The linker searches a standard list of directories for the library,
12264 which is actually a file named @file{lib@var{library}.a}. The linker
12265 then uses this file as if it had been specified precisely by name.
12266
12267 The directories searched include several standard system directories
12268 plus any that you specify with @option{-L}.
12269
12270 Normally the files found this way are library files---archive files
12271 whose members are object files. The linker handles an archive file by
12272 scanning through it for members which define symbols that have so far
12273 been referenced but not defined. But if the file that is found is an
12274 ordinary object file, it is linked in the usual fashion. The only
12275 difference between using an @option{-l} option and specifying a file name
12276 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
12277 and searches several directories.
12278
12279 @item -lobjc
12280 @opindex lobjc
12281 You need this special case of the @option{-l} option in order to
12282 link an Objective-C or Objective-C++ program.
12283
12284 @item -nostartfiles
12285 @opindex nostartfiles
12286 Do not use the standard system startup files when linking.
12287 The standard system libraries are used normally, unless @option{-nostdlib}
12288 or @option{-nodefaultlibs} is used.
12289
12290 @item -nodefaultlibs
12291 @opindex nodefaultlibs
12292 Do not use the standard system libraries when linking.
12293 Only the libraries you specify are passed to the linker, and options
12294 specifying linkage of the system libraries, such as @option{-static-libgcc}
12295 or @option{-shared-libgcc}, are ignored.
12296 The standard startup files are used normally, unless @option{-nostartfiles}
12297 is used.
12298
12299 The compiler may generate calls to @code{memcmp},
12300 @code{memset}, @code{memcpy} and @code{memmove}.
12301 These entries are usually resolved by entries in
12302 libc. These entry points should be supplied through some other
12303 mechanism when this option is specified.
12304
12305 @item -nostdlib
12306 @opindex nostdlib
12307 Do not use the standard system startup files or libraries when linking.
12308 No startup files and only the libraries you specify are passed to
12309 the linker, and options specifying linkage of the system libraries, such as
12310 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
12311
12312 The compiler may generate calls to @code{memcmp}, @code{memset},
12313 @code{memcpy} and @code{memmove}.
12314 These entries are usually resolved by entries in
12315 libc. These entry points should be supplied through some other
12316 mechanism when this option is specified.
12317
12318 @cindex @option{-lgcc}, use with @option{-nostdlib}
12319 @cindex @option{-nostdlib} and unresolved references
12320 @cindex unresolved references and @option{-nostdlib}
12321 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
12322 @cindex @option{-nodefaultlibs} and unresolved references
12323 @cindex unresolved references and @option{-nodefaultlibs}
12324 One of the standard libraries bypassed by @option{-nostdlib} and
12325 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
12326 which GCC uses to overcome shortcomings of particular machines, or special
12327 needs for some languages.
12328 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
12329 Collection (GCC) Internals},
12330 for more discussion of @file{libgcc.a}.)
12331 In most cases, you need @file{libgcc.a} even when you want to avoid
12332 other standard libraries. In other words, when you specify @option{-nostdlib}
12333 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
12334 This ensures that you have no unresolved references to internal GCC
12335 library subroutines.
12336 (An example of such an internal subroutine is @code{__main}, used to ensure C++
12337 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
12338 GNU Compiler Collection (GCC) Internals}.)
12339
12340 @item -pie
12341 @opindex pie
12342 Produce a dynamically linked position independent executable on targets
12343 that support it. For predictable results, you must also specify the same
12344 set of options used for compilation (@option{-fpie}, @option{-fPIE},
12345 or model suboptions) when you specify this linker option.
12346
12347 @item -no-pie
12348 @opindex no-pie
12349 Don't produce a dynamically linked position independent executable.
12350
12351 @item -static-pie
12352 @opindex static-pie
12353 Produce a static position independent executable on targets that support
12354 it. A static position independent executable is similar to a static
12355 executable, but can be loaded at any address without a dynamic linker.
12356 For predictable results, you must also specify the same set of options
12357 used for compilation (@option{-fpie}, @option{-fPIE}, or model
12358 suboptions) when you specify this linker option.
12359
12360 @item -pthread
12361 @opindex pthread
12362 Link with the POSIX threads library. This option is supported on
12363 GNU/Linux targets, most other Unix derivatives, and also on
12364 x86 Cygwin and MinGW targets. On some targets this option also sets
12365 flags for the preprocessor, so it should be used consistently for both
12366 compilation and linking.
12367
12368 @item -rdynamic
12369 @opindex rdynamic
12370 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
12371 that support it. This instructs the linker to add all symbols, not
12372 only used ones, to the dynamic symbol table. This option is needed
12373 for some uses of @code{dlopen} or to allow obtaining backtraces
12374 from within a program.
12375
12376 @item -s
12377 @opindex s
12378 Remove all symbol table and relocation information from the executable.
12379
12380 @item -static
12381 @opindex static
12382 On systems that support dynamic linking, this overrides @option{-pie}
12383 and prevents linking with the shared libraries. On other systems, this
12384 option has no effect.
12385
12386 @item -shared
12387 @opindex shared
12388 Produce a shared object which can then be linked with other objects to
12389 form an executable. Not all systems support this option. For predictable
12390 results, you must also specify the same set of options used for compilation
12391 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
12392 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
12393 needs to build supplementary stub code for constructors to work. On
12394 multi-libbed systems, @samp{gcc -shared} must select the correct support
12395 libraries to link against. Failing to supply the correct flags may lead
12396 to subtle defects. Supplying them in cases where they are not necessary
12397 is innocuous.}
12398
12399 @item -shared-libgcc
12400 @itemx -static-libgcc
12401 @opindex shared-libgcc
12402 @opindex static-libgcc
12403 On systems that provide @file{libgcc} as a shared library, these options
12404 force the use of either the shared or static version, respectively.
12405 If no shared version of @file{libgcc} was built when the compiler was
12406 configured, these options have no effect.
12407
12408 There are several situations in which an application should use the
12409 shared @file{libgcc} instead of the static version. The most common
12410 of these is when the application wishes to throw and catch exceptions
12411 across different shared libraries. In that case, each of the libraries
12412 as well as the application itself should use the shared @file{libgcc}.
12413
12414 Therefore, the G++ and driver automatically adds @option{-shared-libgcc}
12415 whenever you build a shared library or a main executable, because C++
12416 programs typically use exceptions, so this is the right thing to do.
12417
12418 If, instead, you use the GCC driver to create shared libraries, you may
12419 find that they are not always linked with the shared @file{libgcc}.
12420 If GCC finds, at its configuration time, that you have a non-GNU linker
12421 or a GNU linker that does not support option @option{--eh-frame-hdr},
12422 it links the shared version of @file{libgcc} into shared libraries
12423 by default. Otherwise, it takes advantage of the linker and optimizes
12424 away the linking with the shared version of @file{libgcc}, linking with
12425 the static version of libgcc by default. This allows exceptions to
12426 propagate through such shared libraries, without incurring relocation
12427 costs at library load time.
12428
12429 However, if a library or main executable is supposed to throw or catch
12430 exceptions, you must link it using the G++ driver, as appropriate
12431 for the languages used in the program, or using the option
12432 @option{-shared-libgcc}, such that it is linked with the shared
12433 @file{libgcc}.
12434
12435 @item -static-libasan
12436 @opindex static-libasan
12437 When the @option{-fsanitize=address} option is used to link a program,
12438 the GCC driver automatically links against @option{libasan}. If
12439 @file{libasan} is available as a shared library, and the @option{-static}
12440 option is not used, then this links against the shared version of
12441 @file{libasan}. The @option{-static-libasan} option directs the GCC
12442 driver to link @file{libasan} statically, without necessarily linking
12443 other libraries statically.
12444
12445 @item -static-libtsan
12446 @opindex static-libtsan
12447 When the @option{-fsanitize=thread} option is used to link a program,
12448 the GCC driver automatically links against @option{libtsan}. If
12449 @file{libtsan} is available as a shared library, and the @option{-static}
12450 option is not used, then this links against the shared version of
12451 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
12452 driver to link @file{libtsan} statically, without necessarily linking
12453 other libraries statically.
12454
12455 @item -static-liblsan
12456 @opindex static-liblsan
12457 When the @option{-fsanitize=leak} option is used to link a program,
12458 the GCC driver automatically links against @option{liblsan}. If
12459 @file{liblsan} is available as a shared library, and the @option{-static}
12460 option is not used, then this links against the shared version of
12461 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
12462 driver to link @file{liblsan} statically, without necessarily linking
12463 other libraries statically.
12464
12465 @item -static-libubsan
12466 @opindex static-libubsan
12467 When the @option{-fsanitize=undefined} option is used to link a program,
12468 the GCC driver automatically links against @option{libubsan}. If
12469 @file{libubsan} is available as a shared library, and the @option{-static}
12470 option is not used, then this links against the shared version of
12471 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
12472 driver to link @file{libubsan} statically, without necessarily linking
12473 other libraries statically.
12474
12475 @item -static-libmpx
12476 @opindex static-libmpx
12477 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
12478 used to link a program, the GCC driver automatically links against
12479 @file{libmpx}. If @file{libmpx} is available as a shared library,
12480 and the @option{-static} option is not used, then this links against
12481 the shared version of @file{libmpx}. The @option{-static-libmpx}
12482 option directs the GCC driver to link @file{libmpx} statically,
12483 without necessarily linking other libraries statically.
12484
12485 @item -static-libmpxwrappers
12486 @opindex static-libmpxwrappers
12487 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
12488 to link a program without also using @option{-fno-chkp-use-wrappers}, the
12489 GCC driver automatically links against @file{libmpxwrappers}. If
12490 @file{libmpxwrappers} is available as a shared library, and the
12491 @option{-static} option is not used, then this links against the shared
12492 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
12493 option directs the GCC driver to link @file{libmpxwrappers} statically,
12494 without necessarily linking other libraries statically.
12495
12496 @item -static-libstdc++
12497 @opindex static-libstdc++
12498 When the @command{g++} program is used to link a C++ program, it
12499 normally automatically links against @option{libstdc++}. If
12500 @file{libstdc++} is available as a shared library, and the
12501 @option{-static} option is not used, then this links against the
12502 shared version of @file{libstdc++}. That is normally fine. However, it
12503 is sometimes useful to freeze the version of @file{libstdc++} used by
12504 the program without going all the way to a fully static link. The
12505 @option{-static-libstdc++} option directs the @command{g++} driver to
12506 link @file{libstdc++} statically, without necessarily linking other
12507 libraries statically.
12508
12509 @item -symbolic
12510 @opindex symbolic
12511 Bind references to global symbols when building a shared object. Warn
12512 about any unresolved references (unless overridden by the link editor
12513 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
12514 this option.
12515
12516 @item -T @var{script}
12517 @opindex T
12518 @cindex linker script
12519 Use @var{script} as the linker script. This option is supported by most
12520 systems using the GNU linker. On some targets, such as bare-board
12521 targets without an operating system, the @option{-T} option may be required
12522 when linking to avoid references to undefined symbols.
12523
12524 @item -Xlinker @var{option}
12525 @opindex Xlinker
12526 Pass @var{option} as an option to the linker. You can use this to
12527 supply system-specific linker options that GCC does not recognize.
12528
12529 If you want to pass an option that takes a separate argument, you must use
12530 @option{-Xlinker} twice, once for the option and once for the argument.
12531 For example, to pass @option{-assert definitions}, you must write
12532 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
12533 @option{-Xlinker "-assert definitions"}, because this passes the entire
12534 string as a single argument, which is not what the linker expects.
12535
12536 When using the GNU linker, it is usually more convenient to pass
12537 arguments to linker options using the @option{@var{option}=@var{value}}
12538 syntax than as separate arguments. For example, you can specify
12539 @option{-Xlinker -Map=output.map} rather than
12540 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
12541 this syntax for command-line options.
12542
12543 @item -Wl,@var{option}
12544 @opindex Wl
12545 Pass @var{option} as an option to the linker. If @var{option} contains
12546 commas, it is split into multiple options at the commas. You can use this
12547 syntax to pass an argument to the option.
12548 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
12549 linker. When using the GNU linker, you can also get the same effect with
12550 @option{-Wl,-Map=output.map}.
12551
12552 @item -u @var{symbol}
12553 @opindex u
12554 Pretend the symbol @var{symbol} is undefined, to force linking of
12555 library modules to define it. You can use @option{-u} multiple times with
12556 different symbols to force loading of additional library modules.
12557
12558 @item -z @var{keyword}
12559 @opindex z
12560 @option{-z} is passed directly on to the linker along with the keyword
12561 @var{keyword}. See the section in the documentation of your linker for
12562 permitted values and their meanings.
12563 @end table
12564
12565 @node Directory Options
12566 @section Options for Directory Search
12567 @cindex directory options
12568 @cindex options, directory search
12569 @cindex search path
12570
12571 These options specify directories to search for header files, for
12572 libraries and for parts of the compiler:
12573
12574 @table @gcctabopt
12575 @include cppdiropts.texi
12576
12577 @item -iplugindir=@var{dir}
12578 @opindex iplugindir=
12579 Set the directory to search for plugins that are passed
12580 by @option{-fplugin=@var{name}} instead of
12581 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
12582 to be used by the user, but only passed by the driver.
12583
12584 @item -L@var{dir}
12585 @opindex L
12586 Add directory @var{dir} to the list of directories to be searched
12587 for @option{-l}.
12588
12589 @item -B@var{prefix}
12590 @opindex B
12591 This option specifies where to find the executables, libraries,
12592 include files, and data files of the compiler itself.
12593
12594 The compiler driver program runs one or more of the subprograms
12595 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
12596 @var{prefix} as a prefix for each program it tries to run, both with and
12597 without @samp{@var{machine}/@var{version}/} for the corresponding target
12598 machine and compiler version.
12599
12600 For each subprogram to be run, the compiler driver first tries the
12601 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
12602 is not specified, the driver tries two standard prefixes,
12603 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
12604 those results in a file name that is found, the unmodified program
12605 name is searched for using the directories specified in your
12606 @env{PATH} environment variable.
12607
12608 The compiler checks to see if the path provided by @option{-B}
12609 refers to a directory, and if necessary it adds a directory
12610 separator character at the end of the path.
12611
12612 @option{-B} prefixes that effectively specify directory names also apply
12613 to libraries in the linker, because the compiler translates these
12614 options into @option{-L} options for the linker. They also apply to
12615 include files in the preprocessor, because the compiler translates these
12616 options into @option{-isystem} options for the preprocessor. In this case,
12617 the compiler appends @samp{include} to the prefix.
12618
12619 The runtime support file @file{libgcc.a} can also be searched for using
12620 the @option{-B} prefix, if needed. If it is not found there, the two
12621 standard prefixes above are tried, and that is all. The file is left
12622 out of the link if it is not found by those means.
12623
12624 Another way to specify a prefix much like the @option{-B} prefix is to use
12625 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
12626 Variables}.
12627
12628 As a special kludge, if the path provided by @option{-B} is
12629 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
12630 9, then it is replaced by @file{[dir/]include}. This is to help
12631 with boot-strapping the compiler.
12632
12633 @item -no-canonical-prefixes
12634 @opindex no-canonical-prefixes
12635 Do not expand any symbolic links, resolve references to @samp{/../}
12636 or @samp{/./}, or make the path absolute when generating a relative
12637 prefix.
12638
12639 @item --sysroot=@var{dir}
12640 @opindex sysroot
12641 Use @var{dir} as the logical root directory for headers and libraries.
12642 For example, if the compiler normally searches for headers in
12643 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
12644 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
12645
12646 If you use both this option and the @option{-isysroot} option, then
12647 the @option{--sysroot} option applies to libraries, but the
12648 @option{-isysroot} option applies to header files.
12649
12650 The GNU linker (beginning with version 2.16) has the necessary support
12651 for this option. If your linker does not support this option, the
12652 header file aspect of @option{--sysroot} still works, but the
12653 library aspect does not.
12654
12655 @item --no-sysroot-suffix
12656 @opindex no-sysroot-suffix
12657 For some targets, a suffix is added to the root directory specified
12658 with @option{--sysroot}, depending on the other options used, so that
12659 headers may for example be found in
12660 @file{@var{dir}/@var{suffix}/usr/include} instead of
12661 @file{@var{dir}/usr/include}. This option disables the addition of
12662 such a suffix.
12663
12664 @end table
12665
12666 @node Code Gen Options
12667 @section Options for Code Generation Conventions
12668 @cindex code generation conventions
12669 @cindex options, code generation
12670 @cindex run-time options
12671
12672 These machine-independent options control the interface conventions
12673 used in code generation.
12674
12675 Most of them have both positive and negative forms; the negative form
12676 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
12677 one of the forms is listed---the one that is not the default. You
12678 can figure out the other form by either removing @samp{no-} or adding
12679 it.
12680
12681 @table @gcctabopt
12682 @item -fstack-reuse=@var{reuse-level}
12683 @opindex fstack_reuse
12684 This option controls stack space reuse for user declared local/auto variables
12685 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
12686 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
12687 local variables and temporaries, @samp{named_vars} enables the reuse only for
12688 user defined local variables with names, and @samp{none} disables stack reuse
12689 completely. The default value is @samp{all}. The option is needed when the
12690 program extends the lifetime of a scoped local variable or a compiler generated
12691 temporary beyond the end point defined by the language. When a lifetime of
12692 a variable ends, and if the variable lives in memory, the optimizing compiler
12693 has the freedom to reuse its stack space with other temporaries or scoped
12694 local variables whose live range does not overlap with it. Legacy code extending
12695 local lifetime is likely to break with the stack reuse optimization.
12696
12697 For example,
12698
12699 @smallexample
12700 int *p;
12701 @{
12702 int local1;
12703
12704 p = &local1;
12705 local1 = 10;
12706 ....
12707 @}
12708 @{
12709 int local2;
12710 local2 = 20;
12711 ...
12712 @}
12713
12714 if (*p == 10) // out of scope use of local1
12715 @{
12716
12717 @}
12718 @end smallexample
12719
12720 Another example:
12721 @smallexample
12722
12723 struct A
12724 @{
12725 A(int k) : i(k), j(k) @{ @}
12726 int i;
12727 int j;
12728 @};
12729
12730 A *ap;
12731
12732 void foo(const A& ar)
12733 @{
12734 ap = &ar;
12735 @}
12736
12737 void bar()
12738 @{
12739 foo(A(10)); // temp object's lifetime ends when foo returns
12740
12741 @{
12742 A a(20);
12743 ....
12744 @}
12745 ap->i+= 10; // ap references out of scope temp whose space
12746 // is reused with a. What is the value of ap->i?
12747 @}
12748
12749 @end smallexample
12750
12751 The lifetime of a compiler generated temporary is well defined by the C++
12752 standard. When a lifetime of a temporary ends, and if the temporary lives
12753 in memory, the optimizing compiler has the freedom to reuse its stack
12754 space with other temporaries or scoped local variables whose live range
12755 does not overlap with it. However some of the legacy code relies on
12756 the behavior of older compilers in which temporaries' stack space is
12757 not reused, the aggressive stack reuse can lead to runtime errors. This
12758 option is used to control the temporary stack reuse optimization.
12759
12760 @item -ftrapv
12761 @opindex ftrapv
12762 This option generates traps for signed overflow on addition, subtraction,
12763 multiplication operations.
12764 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12765 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12766 @option{-fwrapv} being effective. Note that only active options override, so
12767 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12768 results in @option{-ftrapv} being effective.
12769
12770 @item -fwrapv
12771 @opindex fwrapv
12772 This option instructs the compiler to assume that signed arithmetic
12773 overflow of addition, subtraction and multiplication wraps around
12774 using twos-complement representation. This flag enables some optimizations
12775 and disables others.
12776 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12777 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12778 @option{-fwrapv} being effective. Note that only active options override, so
12779 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12780 results in @option{-ftrapv} being effective.
12781
12782 @item -fwrapv-pointer
12783 @opindex fwrapv-pointer
12784 This option instructs the compiler to assume that pointer arithmetic
12785 overflow on addition and subtraction wraps around using twos-complement
12786 representation. This flag disables some optimizations which assume
12787 pointer overflow is invalid.
12788
12789 @item -fstrict-overflow
12790 @opindex fstrict-overflow
12791 This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
12792 negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
12793
12794 @item -fexceptions
12795 @opindex fexceptions
12796 Enable exception handling. Generates extra code needed to propagate
12797 exceptions. For some targets, this implies GCC generates frame
12798 unwind information for all functions, which can produce significant data
12799 size overhead, although it does not affect execution. If you do not
12800 specify this option, GCC enables it by default for languages like
12801 C++ that normally require exception handling, and disables it for
12802 languages like C that do not normally require it. However, you may need
12803 to enable this option when compiling C code that needs to interoperate
12804 properly with exception handlers written in C++. You may also wish to
12805 disable this option if you are compiling older C++ programs that don't
12806 use exception handling.
12807
12808 @item -fnon-call-exceptions
12809 @opindex fnon-call-exceptions
12810 Generate code that allows trapping instructions to throw exceptions.
12811 Note that this requires platform-specific runtime support that does
12812 not exist everywhere. Moreover, it only allows @emph{trapping}
12813 instructions to throw exceptions, i.e.@: memory references or floating-point
12814 instructions. It does not allow exceptions to be thrown from
12815 arbitrary signal handlers such as @code{SIGALRM}.
12816
12817 @item -fdelete-dead-exceptions
12818 @opindex fdelete-dead-exceptions
12819 Consider that instructions that may throw exceptions but don't otherwise
12820 contribute to the execution of the program can be optimized away.
12821 This option is enabled by default for the Ada front end, as permitted by
12822 the Ada language specification.
12823 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
12824
12825 @item -funwind-tables
12826 @opindex funwind-tables
12827 Similar to @option{-fexceptions}, except that it just generates any needed
12828 static data, but does not affect the generated code in any other way.
12829 You normally do not need to enable this option; instead, a language processor
12830 that needs this handling enables it on your behalf.
12831
12832 @item -fasynchronous-unwind-tables
12833 @opindex fasynchronous-unwind-tables
12834 Generate unwind table in DWARF format, if supported by target machine. The
12835 table is exact at each instruction boundary, so it can be used for stack
12836 unwinding from asynchronous events (such as debugger or garbage collector).
12837
12838 @item -fno-gnu-unique
12839 @opindex fno-gnu-unique
12840 On systems with recent GNU assembler and C library, the C++ compiler
12841 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
12842 of template static data members and static local variables in inline
12843 functions are unique even in the presence of @code{RTLD_LOCAL}; this
12844 is necessary to avoid problems with a library used by two different
12845 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
12846 therefore disagreeing with the other one about the binding of the
12847 symbol. But this causes @code{dlclose} to be ignored for affected
12848 DSOs; if your program relies on reinitialization of a DSO via
12849 @code{dlclose} and @code{dlopen}, you can use
12850 @option{-fno-gnu-unique}.
12851
12852 @item -fpcc-struct-return
12853 @opindex fpcc-struct-return
12854 Return ``short'' @code{struct} and @code{union} values in memory like
12855 longer ones, rather than in registers. This convention is less
12856 efficient, but it has the advantage of allowing intercallability between
12857 GCC-compiled files and files compiled with other compilers, particularly
12858 the Portable C Compiler (pcc).
12859
12860 The precise convention for returning structures in memory depends
12861 on the target configuration macros.
12862
12863 Short structures and unions are those whose size and alignment match
12864 that of some integer type.
12865
12866 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
12867 switch is not binary compatible with code compiled with the
12868 @option{-freg-struct-return} switch.
12869 Use it to conform to a non-default application binary interface.
12870
12871 @item -freg-struct-return
12872 @opindex freg-struct-return
12873 Return @code{struct} and @code{union} values in registers when possible.
12874 This is more efficient for small structures than
12875 @option{-fpcc-struct-return}.
12876
12877 If you specify neither @option{-fpcc-struct-return} nor
12878 @option{-freg-struct-return}, GCC defaults to whichever convention is
12879 standard for the target. If there is no standard convention, GCC
12880 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
12881 the principal compiler. In those cases, we can choose the standard, and
12882 we chose the more efficient register return alternative.
12883
12884 @strong{Warning:} code compiled with the @option{-freg-struct-return}
12885 switch is not binary compatible with code compiled with the
12886 @option{-fpcc-struct-return} switch.
12887 Use it to conform to a non-default application binary interface.
12888
12889 @item -fshort-enums
12890 @opindex fshort-enums
12891 Allocate to an @code{enum} type only as many bytes as it needs for the
12892 declared range of possible values. Specifically, the @code{enum} type
12893 is equivalent to the smallest integer type that has enough room.
12894
12895 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
12896 code that is not binary compatible with code generated without that switch.
12897 Use it to conform to a non-default application binary interface.
12898
12899 @item -fshort-wchar
12900 @opindex fshort-wchar
12901 Override the underlying type for @code{wchar_t} to be @code{short
12902 unsigned int} instead of the default for the target. This option is
12903 useful for building programs to run under WINE@.
12904
12905 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
12906 code that is not binary compatible with code generated without that switch.
12907 Use it to conform to a non-default application binary interface.
12908
12909 @item -fno-common
12910 @opindex fno-common
12911 @cindex tentative definitions
12912 In C code, this option controls the placement of global variables
12913 defined without an initializer, known as @dfn{tentative definitions}
12914 in the C standard. Tentative definitions are distinct from declarations
12915 of a variable with the @code{extern} keyword, which do not allocate storage.
12916
12917 Unix C compilers have traditionally allocated storage for
12918 uninitialized global variables in a common block. This allows the
12919 linker to resolve all tentative definitions of the same variable
12920 in different compilation units to the same object, or to a non-tentative
12921 definition.
12922 This is the behavior specified by @option{-fcommon}, and is the default for
12923 GCC on most targets.
12924 On the other hand, this behavior is not required by ISO
12925 C, and on some targets may carry a speed or code size penalty on
12926 variable references.
12927
12928 The @option{-fno-common} option specifies that the compiler should instead
12929 place uninitialized global variables in the data section of the object file.
12930 This inhibits the merging of tentative definitions by the linker so
12931 you get a multiple-definition error if the same
12932 variable is defined in more than one compilation unit.
12933 Compiling with @option{-fno-common} is useful on targets for which
12934 it provides better performance, or if you wish to verify that the
12935 program will work on other systems that always treat uninitialized
12936 variable definitions this way.
12937
12938 @item -fno-ident
12939 @opindex fno-ident
12940 Ignore the @code{#ident} directive.
12941
12942 @item -finhibit-size-directive
12943 @opindex finhibit-size-directive
12944 Don't output a @code{.size} assembler directive, or anything else that
12945 would cause trouble if the function is split in the middle, and the
12946 two halves are placed at locations far apart in memory. This option is
12947 used when compiling @file{crtstuff.c}; you should not need to use it
12948 for anything else.
12949
12950 @item -fverbose-asm
12951 @opindex fverbose-asm
12952 Put extra commentary information in the generated assembly code to
12953 make it more readable. This option is generally only of use to those
12954 who actually need to read the generated assembly code (perhaps while
12955 debugging the compiler itself).
12956
12957 @option{-fno-verbose-asm}, the default, causes the
12958 extra information to be omitted and is useful when comparing two assembler
12959 files.
12960
12961 The added comments include:
12962
12963 @itemize @bullet
12964
12965 @item
12966 information on the compiler version and command-line options,
12967
12968 @item
12969 the source code lines associated with the assembly instructions,
12970 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
12971
12972 @item
12973 hints on which high-level expressions correspond to
12974 the various assembly instruction operands.
12975
12976 @end itemize
12977
12978 For example, given this C source file:
12979
12980 @smallexample
12981 int test (int n)
12982 @{
12983 int i;
12984 int total = 0;
12985
12986 for (i = 0; i < n; i++)
12987 total += i * i;
12988
12989 return total;
12990 @}
12991 @end smallexample
12992
12993 compiling to (x86_64) assembly via @option{-S} and emitting the result
12994 direct to stdout via @option{-o} @option{-}
12995
12996 @smallexample
12997 gcc -S test.c -fverbose-asm -Os -o -
12998 @end smallexample
12999
13000 gives output similar to this:
13001
13002 @smallexample
13003 .file "test.c"
13004 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
13005 [...snip...]
13006 # options passed:
13007 [...snip...]
13008
13009 .text
13010 .globl test
13011 .type test, @@function
13012 test:
13013 .LFB0:
13014 .cfi_startproc
13015 # test.c:4: int total = 0;
13016 xorl %eax, %eax # <retval>
13017 # test.c:6: for (i = 0; i < n; i++)
13018 xorl %edx, %edx # i
13019 .L2:
13020 # test.c:6: for (i = 0; i < n; i++)
13021 cmpl %edi, %edx # n, i
13022 jge .L5 #,
13023 # test.c:7: total += i * i;
13024 movl %edx, %ecx # i, tmp92
13025 imull %edx, %ecx # i, tmp92
13026 # test.c:6: for (i = 0; i < n; i++)
13027 incl %edx # i
13028 # test.c:7: total += i * i;
13029 addl %ecx, %eax # tmp92, <retval>
13030 jmp .L2 #
13031 .L5:
13032 # test.c:10: @}
13033 ret
13034 .cfi_endproc
13035 .LFE0:
13036 .size test, .-test
13037 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
13038 .section .note.GNU-stack,"",@@progbits
13039 @end smallexample
13040
13041 The comments are intended for humans rather than machines and hence the
13042 precise format of the comments is subject to change.
13043
13044 @item -frecord-gcc-switches
13045 @opindex frecord-gcc-switches
13046 This switch causes the command line used to invoke the
13047 compiler to be recorded into the object file that is being created.
13048 This switch is only implemented on some targets and the exact format
13049 of the recording is target and binary file format dependent, but it
13050 usually takes the form of a section containing ASCII text. This
13051 switch is related to the @option{-fverbose-asm} switch, but that
13052 switch only records information in the assembler output file as
13053 comments, so it never reaches the object file.
13054 See also @option{-grecord-gcc-switches} for another
13055 way of storing compiler options into the object file.
13056
13057 @item -fpic
13058 @opindex fpic
13059 @cindex global offset table
13060 @cindex PIC
13061 Generate position-independent code (PIC) suitable for use in a shared
13062 library, if supported for the target machine. Such code accesses all
13063 constant addresses through a global offset table (GOT)@. The dynamic
13064 loader resolves the GOT entries when the program starts (the dynamic
13065 loader is not part of GCC; it is part of the operating system). If
13066 the GOT size for the linked executable exceeds a machine-specific
13067 maximum size, you get an error message from the linker indicating that
13068 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
13069 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
13070 on the m68k and RS/6000. The x86 has no such limit.)
13071
13072 Position-independent code requires special support, and therefore works
13073 only on certain machines. For the x86, GCC supports PIC for System V
13074 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
13075 position-independent.
13076
13077 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
13078 are defined to 1.
13079
13080 @item -fPIC
13081 @opindex fPIC
13082 If supported for the target machine, emit position-independent code,
13083 suitable for dynamic linking and avoiding any limit on the size of the
13084 global offset table. This option makes a difference on AArch64, m68k,
13085 PowerPC and SPARC@.
13086
13087 Position-independent code requires special support, and therefore works
13088 only on certain machines.
13089
13090 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
13091 are defined to 2.
13092
13093 @item -fpie
13094 @itemx -fPIE
13095 @opindex fpie
13096 @opindex fPIE
13097 These options are similar to @option{-fpic} and @option{-fPIC}, but
13098 generated position independent code can be only linked into executables.
13099 Usually these options are used when @option{-pie} GCC option is
13100 used during linking.
13101
13102 @option{-fpie} and @option{-fPIE} both define the macros
13103 @code{__pie__} and @code{__PIE__}. The macros have the value 1
13104 for @option{-fpie} and 2 for @option{-fPIE}.
13105
13106 @item -fno-plt
13107 @opindex fno-plt
13108 Do not use the PLT for external function calls in position-independent code.
13109 Instead, load the callee address at call sites from the GOT and branch to it.
13110 This leads to more efficient code by eliminating PLT stubs and exposing
13111 GOT loads to optimizations. On architectures such as 32-bit x86 where
13112 PLT stubs expect the GOT pointer in a specific register, this gives more
13113 register allocation freedom to the compiler.
13114 Lazy binding requires use of the PLT;
13115 with @option{-fno-plt} all external symbols are resolved at load time.
13116
13117 Alternatively, the function attribute @code{noplt} can be used to avoid calls
13118 through the PLT for specific external functions.
13119
13120 In position-dependent code, a few targets also convert calls to
13121 functions that are marked to not use the PLT to use the GOT instead.
13122
13123 @item -fno-jump-tables
13124 @opindex fno-jump-tables
13125 Do not use jump tables for switch statements even where it would be
13126 more efficient than other code generation strategies. This option is
13127 of use in conjunction with @option{-fpic} or @option{-fPIC} for
13128 building code that forms part of a dynamic linker and cannot
13129 reference the address of a jump table. On some targets, jump tables
13130 do not require a GOT and this option is not needed.
13131
13132 @item -ffixed-@var{reg}
13133 @opindex ffixed
13134 Treat the register named @var{reg} as a fixed register; generated code
13135 should never refer to it (except perhaps as a stack pointer, frame
13136 pointer or in some other fixed role).
13137
13138 @var{reg} must be the name of a register. The register names accepted
13139 are machine-specific and are defined in the @code{REGISTER_NAMES}
13140 macro in the machine description macro file.
13141
13142 This flag does not have a negative form, because it specifies a
13143 three-way choice.
13144
13145 @item -fcall-used-@var{reg}
13146 @opindex fcall-used
13147 Treat the register named @var{reg} as an allocable register that is
13148 clobbered by function calls. It may be allocated for temporaries or
13149 variables that do not live across a call. Functions compiled this way
13150 do not save and restore the register @var{reg}.
13151
13152 It is an error to use this flag with the frame pointer or stack pointer.
13153 Use of this flag for other registers that have fixed pervasive roles in
13154 the machine's execution model produces disastrous results.
13155
13156 This flag does not have a negative form, because it specifies a
13157 three-way choice.
13158
13159 @item -fcall-saved-@var{reg}
13160 @opindex fcall-saved
13161 Treat the register named @var{reg} as an allocable register saved by
13162 functions. It may be allocated even for temporaries or variables that
13163 live across a call. Functions compiled this way save and restore
13164 the register @var{reg} if they use it.
13165
13166 It is an error to use this flag with the frame pointer or stack pointer.
13167 Use of this flag for other registers that have fixed pervasive roles in
13168 the machine's execution model produces disastrous results.
13169
13170 A different sort of disaster results from the use of this flag for
13171 a register in which function values may be returned.
13172
13173 This flag does not have a negative form, because it specifies a
13174 three-way choice.
13175
13176 @item -fpack-struct[=@var{n}]
13177 @opindex fpack-struct
13178 Without a value specified, pack all structure members together without
13179 holes. When a value is specified (which must be a small power of two), pack
13180 structure members according to this value, representing the maximum
13181 alignment (that is, objects with default alignment requirements larger than
13182 this are output potentially unaligned at the next fitting location.
13183
13184 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
13185 code that is not binary compatible with code generated without that switch.
13186 Additionally, it makes the code suboptimal.
13187 Use it to conform to a non-default application binary interface.
13188
13189 @item -fleading-underscore
13190 @opindex fleading-underscore
13191 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
13192 change the way C symbols are represented in the object file. One use
13193 is to help link with legacy assembly code.
13194
13195 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
13196 generate code that is not binary compatible with code generated without that
13197 switch. Use it to conform to a non-default application binary interface.
13198 Not all targets provide complete support for this switch.
13199
13200 @item -ftls-model=@var{model}
13201 @opindex ftls-model
13202 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
13203 The @var{model} argument should be one of @samp{global-dynamic},
13204 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
13205 Note that the choice is subject to optimization: the compiler may use
13206 a more efficient model for symbols not visible outside of the translation
13207 unit, or if @option{-fpic} is not given on the command line.
13208
13209 The default without @option{-fpic} is @samp{initial-exec}; with
13210 @option{-fpic} the default is @samp{global-dynamic}.
13211
13212 @item -ftrampolines
13213 @opindex ftrampolines
13214 For targets that normally need trampolines for nested functions, always
13215 generate them instead of using descriptors. Otherwise, for targets that
13216 do not need them, like for example HP-PA or IA-64, do nothing.
13217
13218 A trampoline is a small piece of code that is created at run time on the
13219 stack when the address of a nested function is taken, and is used to call
13220 the nested function indirectly. Therefore, it requires the stack to be
13221 made executable in order for the program to work properly.
13222
13223 @option{-fno-trampolines} is enabled by default on a language by language
13224 basis to let the compiler avoid generating them, if it computes that this
13225 is safe, and replace them with descriptors. Descriptors are made up of data
13226 only, but the generated code must be prepared to deal with them. As of this
13227 writing, @option{-fno-trampolines} is enabled by default only for Ada.
13228
13229 Moreover, code compiled with @option{-ftrampolines} and code compiled with
13230 @option{-fno-trampolines} are not binary compatible if nested functions are
13231 present. This option must therefore be used on a program-wide basis and be
13232 manipulated with extreme care.
13233
13234 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
13235 @opindex fvisibility
13236 Set the default ELF image symbol visibility to the specified option---all
13237 symbols are marked with this unless overridden within the code.
13238 Using this feature can very substantially improve linking and
13239 load times of shared object libraries, produce more optimized
13240 code, provide near-perfect API export and prevent symbol clashes.
13241 It is @strong{strongly} recommended that you use this in any shared objects
13242 you distribute.
13243
13244 Despite the nomenclature, @samp{default} always means public; i.e.,
13245 available to be linked against from outside the shared object.
13246 @samp{protected} and @samp{internal} are pretty useless in real-world
13247 usage so the only other commonly used option is @samp{hidden}.
13248 The default if @option{-fvisibility} isn't specified is
13249 @samp{default}, i.e., make every symbol public.
13250
13251 A good explanation of the benefits offered by ensuring ELF
13252 symbols have the correct visibility is given by ``How To Write
13253 Shared Libraries'' by Ulrich Drepper (which can be found at
13254 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
13255 solution made possible by this option to marking things hidden when
13256 the default is public is to make the default hidden and mark things
13257 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
13258 and @code{__attribute__ ((visibility("default")))} instead of
13259 @code{__declspec(dllexport)} you get almost identical semantics with
13260 identical syntax. This is a great boon to those working with
13261 cross-platform projects.
13262
13263 For those adding visibility support to existing code, you may find
13264 @code{#pragma GCC visibility} of use. This works by you enclosing
13265 the declarations you wish to set visibility for with (for example)
13266 @code{#pragma GCC visibility push(hidden)} and
13267 @code{#pragma GCC visibility pop}.
13268 Bear in mind that symbol visibility should be viewed @strong{as
13269 part of the API interface contract} and thus all new code should
13270 always specify visibility when it is not the default; i.e., declarations
13271 only for use within the local DSO should @strong{always} be marked explicitly
13272 as hidden as so to avoid PLT indirection overheads---making this
13273 abundantly clear also aids readability and self-documentation of the code.
13274 Note that due to ISO C++ specification requirements, @code{operator new} and
13275 @code{operator delete} must always be of default visibility.
13276
13277 Be aware that headers from outside your project, in particular system
13278 headers and headers from any other library you use, may not be
13279 expecting to be compiled with visibility other than the default. You
13280 may need to explicitly say @code{#pragma GCC visibility push(default)}
13281 before including any such headers.
13282
13283 @code{extern} declarations are not affected by @option{-fvisibility}, so
13284 a lot of code can be recompiled with @option{-fvisibility=hidden} with
13285 no modifications. However, this means that calls to @code{extern}
13286 functions with no explicit visibility use the PLT, so it is more
13287 effective to use @code{__attribute ((visibility))} and/or
13288 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
13289 declarations should be treated as hidden.
13290
13291 Note that @option{-fvisibility} does affect C++ vague linkage
13292 entities. This means that, for instance, an exception class that is
13293 be thrown between DSOs must be explicitly marked with default
13294 visibility so that the @samp{type_info} nodes are unified between
13295 the DSOs.
13296
13297 An overview of these techniques, their benefits and how to use them
13298 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
13299
13300 @item -fstrict-volatile-bitfields
13301 @opindex fstrict-volatile-bitfields
13302 This option should be used if accesses to volatile bit-fields (or other
13303 structure fields, although the compiler usually honors those types
13304 anyway) should use a single access of the width of the
13305 field's type, aligned to a natural alignment if possible. For
13306 example, targets with memory-mapped peripheral registers might require
13307 all such accesses to be 16 bits wide; with this flag you can
13308 declare all peripheral bit-fields as @code{unsigned short} (assuming short
13309 is 16 bits on these targets) to force GCC to use 16-bit accesses
13310 instead of, perhaps, a more efficient 32-bit access.
13311
13312 If this option is disabled, the compiler uses the most efficient
13313 instruction. In the previous example, that might be a 32-bit load
13314 instruction, even though that accesses bytes that do not contain
13315 any portion of the bit-field, or memory-mapped registers unrelated to
13316 the one being updated.
13317
13318 In some cases, such as when the @code{packed} attribute is applied to a
13319 structure field, it may not be possible to access the field with a single
13320 read or write that is correctly aligned for the target machine. In this
13321 case GCC falls back to generating multiple accesses rather than code that
13322 will fault or truncate the result at run time.
13323
13324 Note: Due to restrictions of the C/C++11 memory model, write accesses are
13325 not allowed to touch non bit-field members. It is therefore recommended
13326 to define all bits of the field's type as bit-field members.
13327
13328 The default value of this option is determined by the application binary
13329 interface for the target processor.
13330
13331 @item -fsync-libcalls
13332 @opindex fsync-libcalls
13333 This option controls whether any out-of-line instance of the @code{__sync}
13334 family of functions may be used to implement the C++11 @code{__atomic}
13335 family of functions.
13336
13337 The default value of this option is enabled, thus the only useful form
13338 of the option is @option{-fno-sync-libcalls}. This option is used in
13339 the implementation of the @file{libatomic} runtime library.
13340
13341 @end table
13342
13343 @node Developer Options
13344 @section GCC Developer Options
13345 @cindex developer options
13346 @cindex debugging GCC
13347 @cindex debug dump options
13348 @cindex dump options
13349 @cindex compilation statistics
13350
13351 This section describes command-line options that are primarily of
13352 interest to GCC developers, including options to support compiler
13353 testing and investigation of compiler bugs and compile-time
13354 performance problems. This includes options that produce debug dumps
13355 at various points in the compilation; that print statistics such as
13356 memory use and execution time; and that print information about GCC's
13357 configuration, such as where it searches for libraries. You should
13358 rarely need to use any of these options for ordinary compilation and
13359 linking tasks.
13360
13361 Many developer options that cause GCC to dump output to a file take an
13362 optional @samp{=@var{filename}} suffix. You can specify @samp{stdout}
13363 or @samp{-} to dump to standard output, and @samp{stderr} for standard
13364 error.
13365
13366 If @samp{=@var{filename}} is omitted, a default dump file name is
13367 constructed by concatenating the base dump file name, a pass number,
13368 phase letter, and pass name. The base dump file name is the name of
13369 output file produced by the compiler if explicitly specified and not
13370 an executable; otherwise it is the source file name.
13371 The pass number is determined by the order passes are registered with
13372 the compiler's pass manager.
13373 This is generally the same as the order of execution, but passes
13374 registered by plugins, target-specific passes, or passes that are
13375 otherwise registered late are numbered higher than the pass named
13376 @samp{final}, even if they are executed earlier. The phase letter is
13377 one of @samp{i} (inter-procedural analysis), @samp{l}
13378 (language-specific), @samp{r} (RTL), or @samp{t} (tree).
13379 The files are created in the directory of the output file.
13380
13381 @table @gcctabopt
13382
13383 @item -d@var{letters}
13384 @itemx -fdump-rtl-@var{pass}
13385 @itemx -fdump-rtl-@var{pass}=@var{filename}
13386 @opindex d
13387 @opindex fdump-rtl-@var{pass}
13388 Says to make debugging dumps during compilation at times specified by
13389 @var{letters}. This is used for debugging the RTL-based passes of the
13390 compiler.
13391
13392 Some @option{-d@var{letters}} switches have different meaning when
13393 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
13394 for information about preprocessor-specific dump options.
13395
13396 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
13397 @option{-d} option @var{letters}. Here are the possible
13398 letters for use in @var{pass} and @var{letters}, and their meanings:
13399
13400 @table @gcctabopt
13401
13402 @item -fdump-rtl-alignments
13403 @opindex fdump-rtl-alignments
13404 Dump after branch alignments have been computed.
13405
13406 @item -fdump-rtl-asmcons
13407 @opindex fdump-rtl-asmcons
13408 Dump after fixing rtl statements that have unsatisfied in/out constraints.
13409
13410 @item -fdump-rtl-auto_inc_dec
13411 @opindex fdump-rtl-auto_inc_dec
13412 Dump after auto-inc-dec discovery. This pass is only run on
13413 architectures that have auto inc or auto dec instructions.
13414
13415 @item -fdump-rtl-barriers
13416 @opindex fdump-rtl-barriers
13417 Dump after cleaning up the barrier instructions.
13418
13419 @item -fdump-rtl-bbpart
13420 @opindex fdump-rtl-bbpart
13421 Dump after partitioning hot and cold basic blocks.
13422
13423 @item -fdump-rtl-bbro
13424 @opindex fdump-rtl-bbro
13425 Dump after block reordering.
13426
13427 @item -fdump-rtl-btl1
13428 @itemx -fdump-rtl-btl2
13429 @opindex fdump-rtl-btl2
13430 @opindex fdump-rtl-btl2
13431 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
13432 after the two branch
13433 target load optimization passes.
13434
13435 @item -fdump-rtl-bypass
13436 @opindex fdump-rtl-bypass
13437 Dump after jump bypassing and control flow optimizations.
13438
13439 @item -fdump-rtl-combine
13440 @opindex fdump-rtl-combine
13441 Dump after the RTL instruction combination pass.
13442
13443 @item -fdump-rtl-compgotos
13444 @opindex fdump-rtl-compgotos
13445 Dump after duplicating the computed gotos.
13446
13447 @item -fdump-rtl-ce1
13448 @itemx -fdump-rtl-ce2
13449 @itemx -fdump-rtl-ce3
13450 @opindex fdump-rtl-ce1
13451 @opindex fdump-rtl-ce2
13452 @opindex fdump-rtl-ce3
13453 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
13454 @option{-fdump-rtl-ce3} enable dumping after the three
13455 if conversion passes.
13456
13457 @item -fdump-rtl-cprop_hardreg
13458 @opindex fdump-rtl-cprop_hardreg
13459 Dump after hard register copy propagation.
13460
13461 @item -fdump-rtl-csa
13462 @opindex fdump-rtl-csa
13463 Dump after combining stack adjustments.
13464
13465 @item -fdump-rtl-cse1
13466 @itemx -fdump-rtl-cse2
13467 @opindex fdump-rtl-cse1
13468 @opindex fdump-rtl-cse2
13469 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
13470 the two common subexpression elimination passes.
13471
13472 @item -fdump-rtl-dce
13473 @opindex fdump-rtl-dce
13474 Dump after the standalone dead code elimination passes.
13475
13476 @item -fdump-rtl-dbr
13477 @opindex fdump-rtl-dbr
13478 Dump after delayed branch scheduling.
13479
13480 @item -fdump-rtl-dce1
13481 @itemx -fdump-rtl-dce2
13482 @opindex fdump-rtl-dce1
13483 @opindex fdump-rtl-dce2
13484 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
13485 the two dead store elimination passes.
13486
13487 @item -fdump-rtl-eh
13488 @opindex fdump-rtl-eh
13489 Dump after finalization of EH handling code.
13490
13491 @item -fdump-rtl-eh_ranges
13492 @opindex fdump-rtl-eh_ranges
13493 Dump after conversion of EH handling range regions.
13494
13495 @item -fdump-rtl-expand
13496 @opindex fdump-rtl-expand
13497 Dump after RTL generation.
13498
13499 @item -fdump-rtl-fwprop1
13500 @itemx -fdump-rtl-fwprop2
13501 @opindex fdump-rtl-fwprop1
13502 @opindex fdump-rtl-fwprop2
13503 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
13504 dumping after the two forward propagation passes.
13505
13506 @item -fdump-rtl-gcse1
13507 @itemx -fdump-rtl-gcse2
13508 @opindex fdump-rtl-gcse1
13509 @opindex fdump-rtl-gcse2
13510 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
13511 after global common subexpression elimination.
13512
13513 @item -fdump-rtl-init-regs
13514 @opindex fdump-rtl-init-regs
13515 Dump after the initialization of the registers.
13516
13517 @item -fdump-rtl-initvals
13518 @opindex fdump-rtl-initvals
13519 Dump after the computation of the initial value sets.
13520
13521 @item -fdump-rtl-into_cfglayout
13522 @opindex fdump-rtl-into_cfglayout
13523 Dump after converting to cfglayout mode.
13524
13525 @item -fdump-rtl-ira
13526 @opindex fdump-rtl-ira
13527 Dump after iterated register allocation.
13528
13529 @item -fdump-rtl-jump
13530 @opindex fdump-rtl-jump
13531 Dump after the second jump optimization.
13532
13533 @item -fdump-rtl-loop2
13534 @opindex fdump-rtl-loop2
13535 @option{-fdump-rtl-loop2} enables dumping after the rtl
13536 loop optimization passes.
13537
13538 @item -fdump-rtl-mach
13539 @opindex fdump-rtl-mach
13540 Dump after performing the machine dependent reorganization pass, if that
13541 pass exists.
13542
13543 @item -fdump-rtl-mode_sw
13544 @opindex fdump-rtl-mode_sw
13545 Dump after removing redundant mode switches.
13546
13547 @item -fdump-rtl-rnreg
13548 @opindex fdump-rtl-rnreg
13549 Dump after register renumbering.
13550
13551 @item -fdump-rtl-outof_cfglayout
13552 @opindex fdump-rtl-outof_cfglayout
13553 Dump after converting from cfglayout mode.
13554
13555 @item -fdump-rtl-peephole2
13556 @opindex fdump-rtl-peephole2
13557 Dump after the peephole pass.
13558
13559 @item -fdump-rtl-postreload
13560 @opindex fdump-rtl-postreload
13561 Dump after post-reload optimizations.
13562
13563 @item -fdump-rtl-pro_and_epilogue
13564 @opindex fdump-rtl-pro_and_epilogue
13565 Dump after generating the function prologues and epilogues.
13566
13567 @item -fdump-rtl-sched1
13568 @itemx -fdump-rtl-sched2
13569 @opindex fdump-rtl-sched1
13570 @opindex fdump-rtl-sched2
13571 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
13572 after the basic block scheduling passes.
13573
13574 @item -fdump-rtl-ree
13575 @opindex fdump-rtl-ree
13576 Dump after sign/zero extension elimination.
13577
13578 @item -fdump-rtl-seqabstr
13579 @opindex fdump-rtl-seqabstr
13580 Dump after common sequence discovery.
13581
13582 @item -fdump-rtl-shorten
13583 @opindex fdump-rtl-shorten
13584 Dump after shortening branches.
13585
13586 @item -fdump-rtl-sibling
13587 @opindex fdump-rtl-sibling
13588 Dump after sibling call optimizations.
13589
13590 @item -fdump-rtl-split1
13591 @itemx -fdump-rtl-split2
13592 @itemx -fdump-rtl-split3
13593 @itemx -fdump-rtl-split4
13594 @itemx -fdump-rtl-split5
13595 @opindex fdump-rtl-split1
13596 @opindex fdump-rtl-split2
13597 @opindex fdump-rtl-split3
13598 @opindex fdump-rtl-split4
13599 @opindex fdump-rtl-split5
13600 These options enable dumping after five rounds of
13601 instruction splitting.
13602
13603 @item -fdump-rtl-sms
13604 @opindex fdump-rtl-sms
13605 Dump after modulo scheduling. This pass is only run on some
13606 architectures.
13607
13608 @item -fdump-rtl-stack
13609 @opindex fdump-rtl-stack
13610 Dump after conversion from GCC's ``flat register file'' registers to the
13611 x87's stack-like registers. This pass is only run on x86 variants.
13612
13613 @item -fdump-rtl-subreg1
13614 @itemx -fdump-rtl-subreg2
13615 @opindex fdump-rtl-subreg1
13616 @opindex fdump-rtl-subreg2
13617 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
13618 the two subreg expansion passes.
13619
13620 @item -fdump-rtl-unshare
13621 @opindex fdump-rtl-unshare
13622 Dump after all rtl has been unshared.
13623
13624 @item -fdump-rtl-vartrack
13625 @opindex fdump-rtl-vartrack
13626 Dump after variable tracking.
13627
13628 @item -fdump-rtl-vregs
13629 @opindex fdump-rtl-vregs
13630 Dump after converting virtual registers to hard registers.
13631
13632 @item -fdump-rtl-web
13633 @opindex fdump-rtl-web
13634 Dump after live range splitting.
13635
13636 @item -fdump-rtl-regclass
13637 @itemx -fdump-rtl-subregs_of_mode_init
13638 @itemx -fdump-rtl-subregs_of_mode_finish
13639 @itemx -fdump-rtl-dfinit
13640 @itemx -fdump-rtl-dfinish
13641 @opindex fdump-rtl-regclass
13642 @opindex fdump-rtl-subregs_of_mode_init
13643 @opindex fdump-rtl-subregs_of_mode_finish
13644 @opindex fdump-rtl-dfinit
13645 @opindex fdump-rtl-dfinish
13646 These dumps are defined but always produce empty files.
13647
13648 @item -da
13649 @itemx -fdump-rtl-all
13650 @opindex da
13651 @opindex fdump-rtl-all
13652 Produce all the dumps listed above.
13653
13654 @item -dA
13655 @opindex dA
13656 Annotate the assembler output with miscellaneous debugging information.
13657
13658 @item -dD
13659 @opindex dD
13660 Dump all macro definitions, at the end of preprocessing, in addition to
13661 normal output.
13662
13663 @item -dH
13664 @opindex dH
13665 Produce a core dump whenever an error occurs.
13666
13667 @item -dp
13668 @opindex dp
13669 Annotate the assembler output with a comment indicating which
13670 pattern and alternative is used. The length and cost of each instruction are
13671 also printed.
13672
13673 @item -dP
13674 @opindex dP
13675 Dump the RTL in the assembler output as a comment before each instruction.
13676 Also turns on @option{-dp} annotation.
13677
13678 @item -dx
13679 @opindex dx
13680 Just generate RTL for a function instead of compiling it. Usually used
13681 with @option{-fdump-rtl-expand}.
13682 @end table
13683
13684 @item -fdump-noaddr
13685 @opindex fdump-noaddr
13686 When doing debugging dumps, suppress address output. This makes it more
13687 feasible to use diff on debugging dumps for compiler invocations with
13688 different compiler binaries and/or different
13689 text / bss / data / heap / stack / dso start locations.
13690
13691 @item -freport-bug
13692 @opindex freport-bug
13693 Collect and dump debug information into a temporary file if an
13694 internal compiler error (ICE) occurs.
13695
13696 @item -fdump-unnumbered
13697 @opindex fdump-unnumbered
13698 When doing debugging dumps, suppress instruction numbers and address output.
13699 This makes it more feasible to use diff on debugging dumps for compiler
13700 invocations with different options, in particular with and without
13701 @option{-g}.
13702
13703 @item -fdump-unnumbered-links
13704 @opindex fdump-unnumbered-links
13705 When doing debugging dumps (see @option{-d} option above), suppress
13706 instruction numbers for the links to the previous and next instructions
13707 in a sequence.
13708
13709 @item -fdump-ipa-@var{switch}
13710 @opindex fdump-ipa
13711 Control the dumping at various stages of inter-procedural analysis
13712 language tree to a file. The file name is generated by appending a
13713 switch specific suffix to the source file name, and the file is created
13714 in the same directory as the output file. The following dumps are
13715 possible:
13716
13717 @table @samp
13718 @item all
13719 Enables all inter-procedural analysis dumps.
13720
13721 @item cgraph
13722 Dumps information about call-graph optimization, unused function removal,
13723 and inlining decisions.
13724
13725 @item inline
13726 Dump after function inlining.
13727
13728 @end table
13729
13730 @item -fdump-lang-all
13731 @itemx -fdump-lang-@var{switch}
13732 @itemx -fdump-lang-@var{switch}-@var{options}
13733 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
13734 @opindex fdump-lang-all
13735 @opindex fdump-lang
13736 Control the dumping of language-specific information. The @var{options}
13737 and @var{filename} portions behave as described in the
13738 @option{-fdump-tree} option. The following @var{switch} values are
13739 accepted:
13740
13741 @table @samp
13742 @item all
13743
13744 Enable all language-specific dumps.
13745
13746 @item class
13747 Dump class hierarchy information. Virtual table information is emitted
13748 unless '@option{slim}' is specified. This option is applicable to C++ only.
13749
13750 @item raw
13751 Dump the raw internal tree data. This option is applicable to C++ only.
13752
13753 @end table
13754
13755 @item -fdump-passes
13756 @opindex fdump-passes
13757 Print on @file{stderr} the list of optimization passes that are turned
13758 on and off by the current command-line options.
13759
13760 @item -fdump-statistics-@var{option}
13761 @opindex fdump-statistics
13762 Enable and control dumping of pass statistics in a separate file. The
13763 file name is generated by appending a suffix ending in
13764 @samp{.statistics} to the source file name, and the file is created in
13765 the same directory as the output file. If the @samp{-@var{option}}
13766 form is used, @samp{-stats} causes counters to be summed over the
13767 whole compilation unit while @samp{-details} dumps every event as
13768 the passes generate them. The default with no option is to sum
13769 counters for each function compiled.
13770
13771 @item -fdump-tree-all
13772 @itemx -fdump-tree-@var{switch}
13773 @itemx -fdump-tree-@var{switch}-@var{options}
13774 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
13775 @opindex fdump-tree-all
13776 @opindex fdump-tree
13777 Control the dumping at various stages of processing the intermediate
13778 language tree to a file. If the @samp{-@var{options}}
13779 form is used, @var{options} is a list of @samp{-} separated options
13780 which control the details of the dump. Not all options are applicable
13781 to all dumps; those that are not meaningful are ignored. The
13782 following options are available
13783
13784 @table @samp
13785 @item address
13786 Print the address of each node. Usually this is not meaningful as it
13787 changes according to the environment and source file. Its primary use
13788 is for tying up a dump file with a debug environment.
13789 @item asmname
13790 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
13791 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
13792 use working backward from mangled names in the assembly file.
13793 @item slim
13794 When dumping front-end intermediate representations, inhibit dumping
13795 of members of a scope or body of a function merely because that scope
13796 has been reached. Only dump such items when they are directly reachable
13797 by some other path.
13798
13799 When dumping pretty-printed trees, this option inhibits dumping the
13800 bodies of control structures.
13801
13802 When dumping RTL, print the RTL in slim (condensed) form instead of
13803 the default LISP-like representation.
13804 @item raw
13805 Print a raw representation of the tree. By default, trees are
13806 pretty-printed into a C-like representation.
13807 @item details
13808 Enable more detailed dumps (not honored by every dump option). Also
13809 include information from the optimization passes.
13810 @item stats
13811 Enable dumping various statistics about the pass (not honored by every dump
13812 option).
13813 @item blocks
13814 Enable showing basic block boundaries (disabled in raw dumps).
13815 @item graph
13816 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
13817 dump a representation of the control flow graph suitable for viewing with
13818 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
13819 the file is pretty-printed as a subgraph, so that GraphViz can render them
13820 all in a single plot.
13821
13822 This option currently only works for RTL dumps, and the RTL is always
13823 dumped in slim form.
13824 @item vops
13825 Enable showing virtual operands for every statement.
13826 @item lineno
13827 Enable showing line numbers for statements.
13828 @item uid
13829 Enable showing the unique ID (@code{DECL_UID}) for each variable.
13830 @item verbose
13831 Enable showing the tree dump for each statement.
13832 @item eh
13833 Enable showing the EH region number holding each statement.
13834 @item scev
13835 Enable showing scalar evolution analysis details.
13836 @item optimized
13837 Enable showing optimization information (only available in certain
13838 passes).
13839 @item missed
13840 Enable showing missed optimization information (only available in certain
13841 passes).
13842 @item note
13843 Enable other detailed optimization information (only available in
13844 certain passes).
13845 @item all
13846 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
13847 and @option{lineno}.
13848 @item optall
13849 Turn on all optimization options, i.e., @option{optimized},
13850 @option{missed}, and @option{note}.
13851 @end table
13852
13853 To determine what tree dumps are available or find the dump for a pass
13854 of interest follow the steps below.
13855
13856 @enumerate
13857 @item
13858 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
13859 look for a code that corresponds to the pass you are interested in.
13860 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
13861 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
13862 The number at the end distinguishes distinct invocations of the same pass.
13863 @item
13864 To enable the creation of the dump file, append the pass code to
13865 the @option{-fdump-} option prefix and invoke GCC with it. For example,
13866 to enable the dump from the Early Value Range Propagation pass, invoke
13867 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
13868 specify the name of the dump file. If you don't specify one, GCC
13869 creates as described below.
13870 @item
13871 Find the pass dump in a file whose name is composed of three components
13872 separated by a period: the name of the source file GCC was invoked to
13873 compile, a numeric suffix indicating the pass number followed by the
13874 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
13875 and finally the pass code. For example, the Early VRP pass dump might
13876 be in a file named @file{myfile.c.038t.evrp} in the current working
13877 directory. Note that the numeric codes are not stable and may change
13878 from one version of GCC to another.
13879 @end enumerate
13880
13881 @item -fopt-info
13882 @itemx -fopt-info-@var{options}
13883 @itemx -fopt-info-@var{options}=@var{filename}
13884 @opindex fopt-info
13885 Controls optimization dumps from various optimization passes. If the
13886 @samp{-@var{options}} form is used, @var{options} is a list of
13887 @samp{-} separated option keywords to select the dump details and
13888 optimizations.
13889
13890 The @var{options} can be divided into two groups: options describing the
13891 verbosity of the dump, and options describing which optimizations
13892 should be included. The options from both the groups can be freely
13893 mixed as they are non-overlapping. However, in case of any conflicts,
13894 the later options override the earlier options on the command
13895 line.
13896
13897 The following options control the dump verbosity:
13898
13899 @table @samp
13900 @item optimized
13901 Print information when an optimization is successfully applied. It is
13902 up to a pass to decide which information is relevant. For example, the
13903 vectorizer passes print the source location of loops which are
13904 successfully vectorized.
13905 @item missed
13906 Print information about missed optimizations. Individual passes
13907 control which information to include in the output.
13908 @item note
13909 Print verbose information about optimizations, such as certain
13910 transformations, more detailed messages about decisions etc.
13911 @item all
13912 Print detailed optimization information. This includes
13913 @samp{optimized}, @samp{missed}, and @samp{note}.
13914 @end table
13915
13916 One or more of the following option keywords can be used to describe a
13917 group of optimizations:
13918
13919 @table @samp
13920 @item ipa
13921 Enable dumps from all interprocedural optimizations.
13922 @item loop
13923 Enable dumps from all loop optimizations.
13924 @item inline
13925 Enable dumps from all inlining optimizations.
13926 @item omp
13927 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
13928 @item vec
13929 Enable dumps from all vectorization optimizations.
13930 @item optall
13931 Enable dumps from all optimizations. This is a superset of
13932 the optimization groups listed above.
13933 @end table
13934
13935 If @var{options} is
13936 omitted, it defaults to @samp{optimized-optall}, which means to dump all
13937 info about successful optimizations from all the passes.
13938
13939 If the @var{filename} is provided, then the dumps from all the
13940 applicable optimizations are concatenated into the @var{filename}.
13941 Otherwise the dump is output onto @file{stderr}. Though multiple
13942 @option{-fopt-info} options are accepted, only one of them can include
13943 a @var{filename}. If other filenames are provided then all but the
13944 first such option are ignored.
13945
13946 Note that the output @var{filename} is overwritten
13947 in case of multiple translation units. If a combined output from
13948 multiple translation units is desired, @file{stderr} should be used
13949 instead.
13950
13951 In the following example, the optimization info is output to
13952 @file{stderr}:
13953
13954 @smallexample
13955 gcc -O3 -fopt-info
13956 @end smallexample
13957
13958 This example:
13959 @smallexample
13960 gcc -O3 -fopt-info-missed=missed.all
13961 @end smallexample
13962
13963 @noindent
13964 outputs missed optimization report from all the passes into
13965 @file{missed.all}, and this one:
13966
13967 @smallexample
13968 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
13969 @end smallexample
13970
13971 @noindent
13972 prints information about missed optimization opportunities from
13973 vectorization passes on @file{stderr}.
13974 Note that @option{-fopt-info-vec-missed} is equivalent to
13975 @option{-fopt-info-missed-vec}. The order of the optimization group
13976 names and message types listed after @option{-fopt-info} does not matter.
13977
13978 As another example,
13979 @smallexample
13980 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
13981 @end smallexample
13982
13983 @noindent
13984 outputs information about missed optimizations as well as
13985 optimized locations from all the inlining passes into
13986 @file{inline.txt}.
13987
13988 Finally, consider:
13989
13990 @smallexample
13991 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
13992 @end smallexample
13993
13994 @noindent
13995 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
13996 in conflict since only one output file is allowed. In this case, only
13997 the first option takes effect and the subsequent options are
13998 ignored. Thus only @file{vec.miss} is produced which contains
13999 dumps from the vectorizer about missed opportunities.
14000
14001 @item -fsched-verbose=@var{n}
14002 @opindex fsched-verbose
14003 On targets that use instruction scheduling, this option controls the
14004 amount of debugging output the scheduler prints to the dump files.
14005
14006 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
14007 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
14008 For @var{n} greater than one, it also output basic block probabilities,
14009 detailed ready list information and unit/insn info. For @var{n} greater
14010 than two, it includes RTL at abort point, control-flow and regions info.
14011 And for @var{n} over four, @option{-fsched-verbose} also includes
14012 dependence info.
14013
14014
14015
14016 @item -fenable-@var{kind}-@var{pass}
14017 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
14018 @opindex fdisable-
14019 @opindex fenable-
14020
14021 This is a set of options that are used to explicitly disable/enable
14022 optimization passes. These options are intended for use for debugging GCC.
14023 Compiler users should use regular options for enabling/disabling
14024 passes instead.
14025
14026 @table @gcctabopt
14027
14028 @item -fdisable-ipa-@var{pass}
14029 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
14030 statically invoked in the compiler multiple times, the pass name should be
14031 appended with a sequential number starting from 1.
14032
14033 @item -fdisable-rtl-@var{pass}
14034 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
14035 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
14036 statically invoked in the compiler multiple times, the pass name should be
14037 appended with a sequential number starting from 1. @var{range-list} is a
14038 comma-separated list of function ranges or assembler names. Each range is a number
14039 pair separated by a colon. The range is inclusive in both ends. If the range
14040 is trivial, the number pair can be simplified as a single number. If the
14041 function's call graph node's @var{uid} falls within one of the specified ranges,
14042 the @var{pass} is disabled for that function. The @var{uid} is shown in the
14043 function header of a dump file, and the pass names can be dumped by using
14044 option @option{-fdump-passes}.
14045
14046 @item -fdisable-tree-@var{pass}
14047 @itemx -fdisable-tree-@var{pass}=@var{range-list}
14048 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
14049 option arguments.
14050
14051 @item -fenable-ipa-@var{pass}
14052 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
14053 statically invoked in the compiler multiple times, the pass name should be
14054 appended with a sequential number starting from 1.
14055
14056 @item -fenable-rtl-@var{pass}
14057 @itemx -fenable-rtl-@var{pass}=@var{range-list}
14058 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
14059 description and examples.
14060
14061 @item -fenable-tree-@var{pass}
14062 @itemx -fenable-tree-@var{pass}=@var{range-list}
14063 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
14064 of option arguments.
14065
14066 @end table
14067
14068 Here are some examples showing uses of these options.
14069
14070 @smallexample
14071
14072 # disable ccp1 for all functions
14073 -fdisable-tree-ccp1
14074 # disable complete unroll for function whose cgraph node uid is 1
14075 -fenable-tree-cunroll=1
14076 # disable gcse2 for functions at the following ranges [1,1],
14077 # [300,400], and [400,1000]
14078 # disable gcse2 for functions foo and foo2
14079 -fdisable-rtl-gcse2=foo,foo2
14080 # disable early inlining
14081 -fdisable-tree-einline
14082 # disable ipa inlining
14083 -fdisable-ipa-inline
14084 # enable tree full unroll
14085 -fenable-tree-unroll
14086
14087 @end smallexample
14088
14089 @item -fchecking
14090 @itemx -fchecking=@var{n}
14091 @opindex fchecking
14092 @opindex fno-checking
14093 Enable internal consistency checking. The default depends on
14094 the compiler configuration. @option{-fchecking=2} enables further
14095 internal consistency checking that might affect code generation.
14096
14097 @item -frandom-seed=@var{string}
14098 @opindex frandom-seed
14099 This option provides a seed that GCC uses in place of
14100 random numbers in generating certain symbol names
14101 that have to be different in every compiled file. It is also used to
14102 place unique stamps in coverage data files and the object files that
14103 produce them. You can use the @option{-frandom-seed} option to produce
14104 reproducibly identical object files.
14105
14106 The @var{string} can either be a number (decimal, octal or hex) or an
14107 arbitrary string (in which case it's converted to a number by
14108 computing CRC32).
14109
14110 The @var{string} should be different for every file you compile.
14111
14112 @item -save-temps
14113 @itemx -save-temps=cwd
14114 @opindex save-temps
14115 Store the usual ``temporary'' intermediate files permanently; place them
14116 in the current directory and name them based on the source file. Thus,
14117 compiling @file{foo.c} with @option{-c -save-temps} produces files
14118 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
14119 preprocessed @file{foo.i} output file even though the compiler now
14120 normally uses an integrated preprocessor.
14121
14122 When used in combination with the @option{-x} command-line option,
14123 @option{-save-temps} is sensible enough to avoid over writing an
14124 input source file with the same extension as an intermediate file.
14125 The corresponding intermediate file may be obtained by renaming the
14126 source file before using @option{-save-temps}.
14127
14128 If you invoke GCC in parallel, compiling several different source
14129 files that share a common base name in different subdirectories or the
14130 same source file compiled for multiple output destinations, it is
14131 likely that the different parallel compilers will interfere with each
14132 other, and overwrite the temporary files. For instance:
14133
14134 @smallexample
14135 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
14136 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
14137 @end smallexample
14138
14139 may result in @file{foo.i} and @file{foo.o} being written to
14140 simultaneously by both compilers.
14141
14142 @item -save-temps=obj
14143 @opindex save-temps=obj
14144 Store the usual ``temporary'' intermediate files permanently. If the
14145 @option{-o} option is used, the temporary files are based on the
14146 object file. If the @option{-o} option is not used, the
14147 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
14148
14149 For example:
14150
14151 @smallexample
14152 gcc -save-temps=obj -c foo.c
14153 gcc -save-temps=obj -c bar.c -o dir/xbar.o
14154 gcc -save-temps=obj foobar.c -o dir2/yfoobar
14155 @end smallexample
14156
14157 @noindent
14158 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
14159 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
14160 @file{dir2/yfoobar.o}.
14161
14162 @item -time@r{[}=@var{file}@r{]}
14163 @opindex time
14164 Report the CPU time taken by each subprocess in the compilation
14165 sequence. For C source files, this is the compiler proper and assembler
14166 (plus the linker if linking is done).
14167
14168 Without the specification of an output file, the output looks like this:
14169
14170 @smallexample
14171 # cc1 0.12 0.01
14172 # as 0.00 0.01
14173 @end smallexample
14174
14175 The first number on each line is the ``user time'', that is time spent
14176 executing the program itself. The second number is ``system time'',
14177 time spent executing operating system routines on behalf of the program.
14178 Both numbers are in seconds.
14179
14180 With the specification of an output file, the output is appended to the
14181 named file, and it looks like this:
14182
14183 @smallexample
14184 0.12 0.01 cc1 @var{options}
14185 0.00 0.01 as @var{options}
14186 @end smallexample
14187
14188 The ``user time'' and the ``system time'' are moved before the program
14189 name, and the options passed to the program are displayed, so that one
14190 can later tell what file was being compiled, and with which options.
14191
14192 @item -fdump-final-insns@r{[}=@var{file}@r{]}
14193 @opindex fdump-final-insns
14194 Dump the final internal representation (RTL) to @var{file}. If the
14195 optional argument is omitted (or if @var{file} is @code{.}), the name
14196 of the dump file is determined by appending @code{.gkd} to the
14197 compilation output file name.
14198
14199 @item -fcompare-debug@r{[}=@var{opts}@r{]}
14200 @opindex fcompare-debug
14201 @opindex fno-compare-debug
14202 If no error occurs during compilation, run the compiler a second time,
14203 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
14204 passed to the second compilation. Dump the final internal
14205 representation in both compilations, and print an error if they differ.
14206
14207 If the equal sign is omitted, the default @option{-gtoggle} is used.
14208
14209 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
14210 and nonzero, implicitly enables @option{-fcompare-debug}. If
14211 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
14212 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
14213 is used.
14214
14215 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
14216 is equivalent to @option{-fno-compare-debug}, which disables the dumping
14217 of the final representation and the second compilation, preventing even
14218 @env{GCC_COMPARE_DEBUG} from taking effect.
14219
14220 To verify full coverage during @option{-fcompare-debug} testing, set
14221 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
14222 which GCC rejects as an invalid option in any actual compilation
14223 (rather than preprocessing, assembly or linking). To get just a
14224 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
14225 not overridden} will do.
14226
14227 @item -fcompare-debug-second
14228 @opindex fcompare-debug-second
14229 This option is implicitly passed to the compiler for the second
14230 compilation requested by @option{-fcompare-debug}, along with options to
14231 silence warnings, and omitting other options that would cause the compiler
14232 to produce output to files or to standard output as a side effect. Dump
14233 files and preserved temporary files are renamed so as to contain the
14234 @code{.gk} additional extension during the second compilation, to avoid
14235 overwriting those generated by the first.
14236
14237 When this option is passed to the compiler driver, it causes the
14238 @emph{first} compilation to be skipped, which makes it useful for little
14239 other than debugging the compiler proper.
14240
14241 @item -gtoggle
14242 @opindex gtoggle
14243 Turn off generation of debug info, if leaving out this option
14244 generates it, or turn it on at level 2 otherwise. The position of this
14245 argument in the command line does not matter; it takes effect after all
14246 other options are processed, and it does so only once, no matter how
14247 many times it is given. This is mainly intended to be used with
14248 @option{-fcompare-debug}.
14249
14250 @item -fvar-tracking-assignments-toggle
14251 @opindex fvar-tracking-assignments-toggle
14252 @opindex fno-var-tracking-assignments-toggle
14253 Toggle @option{-fvar-tracking-assignments}, in the same way that
14254 @option{-gtoggle} toggles @option{-g}.
14255
14256 @item -Q
14257 @opindex Q
14258 Makes the compiler print out each function name as it is compiled, and
14259 print some statistics about each pass when it finishes.
14260
14261 @item -ftime-report
14262 @opindex ftime-report
14263 Makes the compiler print some statistics about the time consumed by each
14264 pass when it finishes.
14265
14266 @item -ftime-report-details
14267 @opindex ftime-report-details
14268 Record the time consumed by infrastructure parts separately for each pass.
14269
14270 @item -fira-verbose=@var{n}
14271 @opindex fira-verbose
14272 Control the verbosity of the dump file for the integrated register allocator.
14273 The default value is 5. If the value @var{n} is greater or equal to 10,
14274 the dump output is sent to stderr using the same format as @var{n} minus 10.
14275
14276 @item -flto-report
14277 @opindex flto-report
14278 Prints a report with internal details on the workings of the link-time
14279 optimizer. The contents of this report vary from version to version.
14280 It is meant to be useful to GCC developers when processing object
14281 files in LTO mode (via @option{-flto}).
14282
14283 Disabled by default.
14284
14285 @item -flto-report-wpa
14286 @opindex flto-report-wpa
14287 Like @option{-flto-report}, but only print for the WPA phase of Link
14288 Time Optimization.
14289
14290 @item -fmem-report
14291 @opindex fmem-report
14292 Makes the compiler print some statistics about permanent memory
14293 allocation when it finishes.
14294
14295 @item -fmem-report-wpa
14296 @opindex fmem-report-wpa
14297 Makes the compiler print some statistics about permanent memory
14298 allocation for the WPA phase only.
14299
14300 @item -fpre-ipa-mem-report
14301 @opindex fpre-ipa-mem-report
14302 @item -fpost-ipa-mem-report
14303 @opindex fpost-ipa-mem-report
14304 Makes the compiler print some statistics about permanent memory
14305 allocation before or after interprocedural optimization.
14306
14307 @item -fprofile-report
14308 @opindex fprofile-report
14309 Makes the compiler print some statistics about consistency of the
14310 (estimated) profile and effect of individual passes.
14311
14312 @item -fstack-usage
14313 @opindex fstack-usage
14314 Makes the compiler output stack usage information for the program, on a
14315 per-function basis. The filename for the dump is made by appending
14316 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
14317 the output file, if explicitly specified and it is not an executable,
14318 otherwise it is the basename of the source file. An entry is made up
14319 of three fields:
14320
14321 @itemize
14322 @item
14323 The name of the function.
14324 @item
14325 A number of bytes.
14326 @item
14327 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
14328 @end itemize
14329
14330 The qualifier @code{static} means that the function manipulates the stack
14331 statically: a fixed number of bytes are allocated for the frame on function
14332 entry and released on function exit; no stack adjustments are otherwise made
14333 in the function. The second field is this fixed number of bytes.
14334
14335 The qualifier @code{dynamic} means that the function manipulates the stack
14336 dynamically: in addition to the static allocation described above, stack
14337 adjustments are made in the body of the function, for example to push/pop
14338 arguments around function calls. If the qualifier @code{bounded} is also
14339 present, the amount of these adjustments is bounded at compile time and
14340 the second field is an upper bound of the total amount of stack used by
14341 the function. If it is not present, the amount of these adjustments is
14342 not bounded at compile time and the second field only represents the
14343 bounded part.
14344
14345 @item -fstats
14346 @opindex fstats
14347 Emit statistics about front-end processing at the end of the compilation.
14348 This option is supported only by the C++ front end, and
14349 the information is generally only useful to the G++ development team.
14350
14351 @item -fdbg-cnt-list
14352 @opindex fdbg-cnt-list
14353 Print the name and the counter upper bound for all debug counters.
14354
14355
14356 @item -fdbg-cnt=@var{counter-value-list}
14357 @opindex fdbg-cnt
14358 Set the internal debug counter upper bound. @var{counter-value-list}
14359 is a comma-separated list of @var{name}:@var{value} pairs
14360 which sets the upper bound of each debug counter @var{name} to @var{value}.
14361 All debug counters have the initial upper bound of @code{UINT_MAX};
14362 thus @code{dbg_cnt} returns true always unless the upper bound
14363 is set by this option.
14364 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
14365 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
14366
14367 @item -print-file-name=@var{library}
14368 @opindex print-file-name
14369 Print the full absolute name of the library file @var{library} that
14370 would be used when linking---and don't do anything else. With this
14371 option, GCC does not compile or link anything; it just prints the
14372 file name.
14373
14374 @item -print-multi-directory
14375 @opindex print-multi-directory
14376 Print the directory name corresponding to the multilib selected by any
14377 other switches present in the command line. This directory is supposed
14378 to exist in @env{GCC_EXEC_PREFIX}.
14379
14380 @item -print-multi-lib
14381 @opindex print-multi-lib
14382 Print the mapping from multilib directory names to compiler switches
14383 that enable them. The directory name is separated from the switches by
14384 @samp{;}, and each switch starts with an @samp{@@} instead of the
14385 @samp{-}, without spaces between multiple switches. This is supposed to
14386 ease shell processing.
14387
14388 @item -print-multi-os-directory
14389 @opindex print-multi-os-directory
14390 Print the path to OS libraries for the selected
14391 multilib, relative to some @file{lib} subdirectory. If OS libraries are
14392 present in the @file{lib} subdirectory and no multilibs are used, this is
14393 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
14394 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
14395 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
14396 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
14397
14398 @item -print-multiarch
14399 @opindex print-multiarch
14400 Print the path to OS libraries for the selected multiarch,
14401 relative to some @file{lib} subdirectory.
14402
14403 @item -print-prog-name=@var{program}
14404 @opindex print-prog-name
14405 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
14406
14407 @item -print-libgcc-file-name
14408 @opindex print-libgcc-file-name
14409 Same as @option{-print-file-name=libgcc.a}.
14410
14411 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
14412 but you do want to link with @file{libgcc.a}. You can do:
14413
14414 @smallexample
14415 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
14416 @end smallexample
14417
14418 @item -print-search-dirs
14419 @opindex print-search-dirs
14420 Print the name of the configured installation directory and a list of
14421 program and library directories @command{gcc} searches---and don't do anything else.
14422
14423 This is useful when @command{gcc} prints the error message
14424 @samp{installation problem, cannot exec cpp0: No such file or directory}.
14425 To resolve this you either need to put @file{cpp0} and the other compiler
14426 components where @command{gcc} expects to find them, or you can set the environment
14427 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
14428 Don't forget the trailing @samp{/}.
14429 @xref{Environment Variables}.
14430
14431 @item -print-sysroot
14432 @opindex print-sysroot
14433 Print the target sysroot directory that is used during
14434 compilation. This is the target sysroot specified either at configure
14435 time or using the @option{--sysroot} option, possibly with an extra
14436 suffix that depends on compilation options. If no target sysroot is
14437 specified, the option prints nothing.
14438
14439 @item -print-sysroot-headers-suffix
14440 @opindex print-sysroot-headers-suffix
14441 Print the suffix added to the target sysroot when searching for
14442 headers, or give an error if the compiler is not configured with such
14443 a suffix---and don't do anything else.
14444
14445 @item -dumpmachine
14446 @opindex dumpmachine
14447 Print the compiler's target machine (for example,
14448 @samp{i686-pc-linux-gnu})---and don't do anything else.
14449
14450 @item -dumpversion
14451 @opindex dumpversion
14452 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
14453 anything else. This is the compiler version used in filesystem paths,
14454 specs, can be depending on how the compiler has been configured just
14455 a single number (major version), two numbers separated by dot (major and
14456 minor version) or three numbers separated by dots (major, minor and patchlevel
14457 version).
14458
14459 @item -dumpfullversion
14460 @opindex dumpfullversion
14461 Print the full compiler version, always 3 numbers separated by dots,
14462 major, minor and patchlevel version.
14463
14464 @item -dumpspecs
14465 @opindex dumpspecs
14466 Print the compiler's built-in specs---and don't do anything else. (This
14467 is used when GCC itself is being built.) @xref{Spec Files}.
14468 @end table
14469
14470 @node Submodel Options
14471 @section Machine-Dependent Options
14472 @cindex submodel options
14473 @cindex specifying hardware config
14474 @cindex hardware models and configurations, specifying
14475 @cindex target-dependent options
14476 @cindex machine-dependent options
14477
14478 Each target machine supported by GCC can have its own options---for
14479 example, to allow you to compile for a particular processor variant or
14480 ABI, or to control optimizations specific to that machine. By
14481 convention, the names of machine-specific options start with
14482 @samp{-m}.
14483
14484 Some configurations of the compiler also support additional target-specific
14485 options, usually for compatibility with other compilers on the same
14486 platform.
14487
14488 @c This list is ordered alphanumerically by subsection name.
14489 @c It should be the same order and spelling as these options are listed
14490 @c in Machine Dependent Options
14491
14492 @menu
14493 * AArch64 Options::
14494 * Adapteva Epiphany Options::
14495 * ARC Options::
14496 * ARM Options::
14497 * AVR Options::
14498 * Blackfin Options::
14499 * C6X Options::
14500 * CRIS Options::
14501 * CR16 Options::
14502 * Darwin Options::
14503 * DEC Alpha Options::
14504 * FR30 Options::
14505 * FT32 Options::
14506 * FRV Options::
14507 * GNU/Linux Options::
14508 * H8/300 Options::
14509 * HPPA Options::
14510 * IA-64 Options::
14511 * LM32 Options::
14512 * M32C Options::
14513 * M32R/D Options::
14514 * M680x0 Options::
14515 * MCore Options::
14516 * MeP Options::
14517 * MicroBlaze Options::
14518 * MIPS Options::
14519 * MMIX Options::
14520 * MN10300 Options::
14521 * Moxie Options::
14522 * MSP430 Options::
14523 * NDS32 Options::
14524 * Nios II Options::
14525 * Nvidia PTX Options::
14526 * PDP-11 Options::
14527 * picoChip Options::
14528 * PowerPC Options::
14529 * PowerPC SPE Options::
14530 * RISC-V Options::
14531 * RL78 Options::
14532 * RS/6000 and PowerPC Options::
14533 * RX Options::
14534 * S/390 and zSeries Options::
14535 * Score Options::
14536 * SH Options::
14537 * Solaris 2 Options::
14538 * SPARC Options::
14539 * SPU Options::
14540 * System V Options::
14541 * TILE-Gx Options::
14542 * TILEPro Options::
14543 * V850 Options::
14544 * VAX Options::
14545 * Visium Options::
14546 * VMS Options::
14547 * VxWorks Options::
14548 * x86 Options::
14549 * x86 Windows Options::
14550 * Xstormy16 Options::
14551 * Xtensa Options::
14552 * zSeries Options::
14553 @end menu
14554
14555 @node AArch64 Options
14556 @subsection AArch64 Options
14557 @cindex AArch64 Options
14558
14559 These options are defined for AArch64 implementations:
14560
14561 @table @gcctabopt
14562
14563 @item -mabi=@var{name}
14564 @opindex mabi
14565 Generate code for the specified data model. Permissible values
14566 are @samp{ilp32} for SysV-like data model where int, long int and pointers
14567 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
14568 but long int and pointers are 64 bits.
14569
14570 The default depends on the specific target configuration. Note that
14571 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
14572 entire program with the same ABI, and link with a compatible set of libraries.
14573
14574 @item -mbig-endian
14575 @opindex mbig-endian
14576 Generate big-endian code. This is the default when GCC is configured for an
14577 @samp{aarch64_be-*-*} target.
14578
14579 @item -mgeneral-regs-only
14580 @opindex mgeneral-regs-only
14581 Generate code which uses only the general-purpose registers. This will prevent
14582 the compiler from using floating-point and Advanced SIMD registers but will not
14583 impose any restrictions on the assembler.
14584
14585 @item -mlittle-endian
14586 @opindex mlittle-endian
14587 Generate little-endian code. This is the default when GCC is configured for an
14588 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
14589
14590 @item -mcmodel=tiny
14591 @opindex mcmodel=tiny
14592 Generate code for the tiny code model. The program and its statically defined
14593 symbols must be within 1MB of each other. Programs can be statically or
14594 dynamically linked.
14595
14596 @item -mcmodel=small
14597 @opindex mcmodel=small
14598 Generate code for the small code model. The program and its statically defined
14599 symbols must be within 4GB of each other. Programs can be statically or
14600 dynamically linked. This is the default code model.
14601
14602 @item -mcmodel=large
14603 @opindex mcmodel=large
14604 Generate code for the large code model. This makes no assumptions about
14605 addresses and sizes of sections. Programs can be statically linked only.
14606
14607 @item -mstrict-align
14608 @opindex mstrict-align
14609 Avoid generating memory accesses that may not be aligned on a natural object
14610 boundary as described in the architecture specification.
14611
14612 @item -momit-leaf-frame-pointer
14613 @itemx -mno-omit-leaf-frame-pointer
14614 @opindex momit-leaf-frame-pointer
14615 @opindex mno-omit-leaf-frame-pointer
14616 Omit or keep the frame pointer in leaf functions. The former behavior is the
14617 default.
14618
14619 @item -mtls-dialect=desc
14620 @opindex mtls-dialect=desc
14621 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
14622 of TLS variables. This is the default.
14623
14624 @item -mtls-dialect=traditional
14625 @opindex mtls-dialect=traditional
14626 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
14627 of TLS variables.
14628
14629 @item -mtls-size=@var{size}
14630 @opindex mtls-size
14631 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
14632 This option requires binutils 2.26 or newer.
14633
14634 @item -mfix-cortex-a53-835769
14635 @itemx -mno-fix-cortex-a53-835769
14636 @opindex mfix-cortex-a53-835769
14637 @opindex mno-fix-cortex-a53-835769
14638 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
14639 This involves inserting a NOP instruction between memory instructions and
14640 64-bit integer multiply-accumulate instructions.
14641
14642 @item -mfix-cortex-a53-843419
14643 @itemx -mno-fix-cortex-a53-843419
14644 @opindex mfix-cortex-a53-843419
14645 @opindex mno-fix-cortex-a53-843419
14646 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
14647 This erratum workaround is made at link time and this will only pass the
14648 corresponding flag to the linker.
14649
14650 @item -mlow-precision-recip-sqrt
14651 @itemx -mno-low-precision-recip-sqrt
14652 @opindex mlow-precision-recip-sqrt
14653 @opindex mno-low-precision-recip-sqrt
14654 Enable or disable the reciprocal square root approximation.
14655 This option only has an effect if @option{-ffast-math} or
14656 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14657 precision of reciprocal square root results to about 16 bits for
14658 single precision and to 32 bits for double precision.
14659
14660 @item -mlow-precision-sqrt
14661 @itemx -mno-low-precision-sqrt
14662 @opindex -mlow-precision-sqrt
14663 @opindex -mno-low-precision-sqrt
14664 Enable or disable the square root approximation.
14665 This option only has an effect if @option{-ffast-math} or
14666 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14667 precision of square root results to about 16 bits for
14668 single precision and to 32 bits for double precision.
14669 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
14670
14671 @item -mlow-precision-div
14672 @itemx -mno-low-precision-div
14673 @opindex -mlow-precision-div
14674 @opindex -mno-low-precision-div
14675 Enable or disable the division approximation.
14676 This option only has an effect if @option{-ffast-math} or
14677 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14678 precision of division results to about 16 bits for
14679 single precision and to 32 bits for double precision.
14680
14681 @item -march=@var{name}
14682 @opindex march
14683 Specify the name of the target architecture and, optionally, one or
14684 more feature modifiers. This option has the form
14685 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
14686
14687 The permissible values for @var{arch} are @samp{armv8-a},
14688 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a} or @samp{armv8.4-a}
14689 or @var{native}.
14690
14691 The value @samp{armv8.4-a} implies @samp{armv8.3-a} and enables compiler
14692 support for the ARMv8.4-A architecture extensions.
14693
14694 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
14695 support for the ARMv8.3-A architecture extensions.
14696
14697 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
14698 support for the ARMv8.2-A architecture extensions.
14699
14700 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
14701 support for the ARMv8.1-A architecture extension. In particular, it
14702 enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
14703
14704 The value @samp{native} is available on native AArch64 GNU/Linux and
14705 causes the compiler to pick the architecture of the host system. This
14706 option has no effect if the compiler is unable to recognize the
14707 architecture of the host system,
14708
14709 The permissible values for @var{feature} are listed in the sub-section
14710 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14711 Feature Modifiers}. Where conflicting feature modifiers are
14712 specified, the right-most feature is used.
14713
14714 GCC uses @var{name} to determine what kind of instructions it can emit
14715 when generating assembly code. If @option{-march} is specified
14716 without either of @option{-mtune} or @option{-mcpu} also being
14717 specified, the code is tuned to perform well across a range of target
14718 processors implementing the target architecture.
14719
14720 @item -mtune=@var{name}
14721 @opindex mtune
14722 Specify the name of the target processor for which GCC should tune the
14723 performance of the code. Permissible values for this option are:
14724 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
14725 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
14726 @samp{exynos-m1}, @samp{falkor}, @samp{qdf24xx}, @samp{saphira},
14727 @samp{xgene1}, @samp{vulcan}, @samp{thunderx},
14728 @samp{thunderxt88}, @samp{thunderxt88p1}, @samp{thunderxt81},
14729 @samp{thunderxt83}, @samp{thunderx2t99}, @samp{cortex-a57.cortex-a53},
14730 @samp{cortex-a72.cortex-a53}, @samp{cortex-a73.cortex-a35},
14731 @samp{cortex-a73.cortex-a53}, @samp{cortex-a75.cortex-a55},
14732 @samp{native}.
14733
14734 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
14735 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
14736 @samp{cortex-a75.cortex-a55} specify that GCC should tune for a
14737 big.LITTLE system.
14738
14739 Additionally on native AArch64 GNU/Linux systems the value
14740 @samp{native} tunes performance to the host system. This option has no effect
14741 if the compiler is unable to recognize the processor of the host system.
14742
14743 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
14744 are specified, the code is tuned to perform well across a range
14745 of target processors.
14746
14747 This option cannot be suffixed by feature modifiers.
14748
14749 @item -mcpu=@var{name}
14750 @opindex mcpu
14751 Specify the name of the target processor, optionally suffixed by one
14752 or more feature modifiers. This option has the form
14753 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
14754 the permissible values for @var{cpu} are the same as those available
14755 for @option{-mtune}. The permissible values for @var{feature} are
14756 documented in the sub-section on
14757 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14758 Feature Modifiers}. Where conflicting feature modifiers are
14759 specified, the right-most feature is used.
14760
14761 GCC uses @var{name} to determine what kind of instructions it can emit when
14762 generating assembly code (as if by @option{-march}) and to determine
14763 the target processor for which to tune for performance (as if
14764 by @option{-mtune}). Where this option is used in conjunction
14765 with @option{-march} or @option{-mtune}, those options take precedence
14766 over the appropriate part of this option.
14767
14768 @item -moverride=@var{string}
14769 @opindex moverride
14770 Override tuning decisions made by the back-end in response to a
14771 @option{-mtune=} switch. The syntax, semantics, and accepted values
14772 for @var{string} in this option are not guaranteed to be consistent
14773 across releases.
14774
14775 This option is only intended to be useful when developing GCC.
14776
14777 @item -mverbose-cost-dump
14778 @opindex mverbose-cost-dump
14779 Enable verbose cost model dumping in the debug dump files. This option is
14780 provided for use in debugging the compiler.
14781
14782 @item -mpc-relative-literal-loads
14783 @itemx -mno-pc-relative-literal-loads
14784 @opindex mpc-relative-literal-loads
14785 @opindex mno-pc-relative-literal-loads
14786 Enable or disable PC-relative literal loads. With this option literal pools are
14787 accessed using a single instruction and emitted after each function. This
14788 limits the maximum size of functions to 1MB. This is enabled by default for
14789 @option{-mcmodel=tiny}.
14790
14791 @item -msign-return-address=@var{scope}
14792 @opindex msign-return-address
14793 Select the function scope on which return address signing will be applied.
14794 Permissible values are @samp{none}, which disables return address signing,
14795 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
14796 functions, and @samp{all}, which enables pointer signing for all functions. The
14797 default value is @samp{none}.
14798
14799 @item -msve-vector-bits=@var{bits}
14800 @opindex msve-vector-bits
14801 Specify the number of bits in an SVE vector register. This option only has
14802 an effect when SVE is enabled.
14803
14804 GCC supports two forms of SVE code generation: ``vector-length
14805 agnostic'' output that works with any size of vector register and
14806 ``vector-length specific'' output that only works when the vector
14807 registers are a particular size. Replacing @var{bits} with
14808 @samp{scalable} selects vector-length agnostic output while
14809 replacing it with a number selects vector-length specific output.
14810 The possible lengths in the latter case are: 128, 256, 512, 1024
14811 and 2048. @samp{scalable} is the default.
14812
14813 At present, @samp{-msve-vector-bits=128} produces the same output
14814 as @samp{-msve-vector-bits=scalable}.
14815
14816 @end table
14817
14818 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
14819 @anchor{aarch64-feature-modifiers}
14820 @cindex @option{-march} feature modifiers
14821 @cindex @option{-mcpu} feature modifiers
14822 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
14823 the following and their inverses @option{no@var{feature}}:
14824
14825 @table @samp
14826 @item crc
14827 Enable CRC extension. This is on by default for
14828 @option{-march=armv8.1-a}.
14829 @item crypto
14830 Enable Crypto extension. This also enables Advanced SIMD and floating-point
14831 instructions.
14832 @item fp
14833 Enable floating-point instructions. This is on by default for all possible
14834 values for options @option{-march} and @option{-mcpu}.
14835 @item simd
14836 Enable Advanced SIMD instructions. This also enables floating-point
14837 instructions. This is on by default for all possible values for options
14838 @option{-march} and @option{-mcpu}.
14839 @item sve
14840 Enable Scalable Vector Extension instructions. This also enables Advanced
14841 SIMD and floating-point instructions.
14842 @item lse
14843 Enable Large System Extension instructions. This is on by default for
14844 @option{-march=armv8.1-a}.
14845 @item rdma
14846 Enable Round Double Multiply Accumulate instructions. This is on by default
14847 for @option{-march=armv8.1-a}.
14848 @item fp16
14849 Enable FP16 extension. This also enables floating-point instructions.
14850 @item fp16fml
14851 Enable FP16 fmla extension. This also enables FP16 extensions and
14852 floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
14853
14854 @item rcpc
14855 Enable the RcPc extension. This does not change code generation from GCC,
14856 but is passed on to the assembler, enabling inline asm statements to use
14857 instructions from the RcPc extension.
14858 @item dotprod
14859 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
14860 @item aes
14861 Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced
14862 SIMD instructions.
14863 @item sha2
14864 Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD instructions.
14865 @item sha3
14866 Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD
14867 instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
14868 @item sm4
14869 Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD instructions.
14870 Use of this option with architectures prior to Armv8.2-A is not supported.
14871
14872 @end table
14873
14874 Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
14875 which implies @option{fp}.
14876 Conversely, @option{nofp} implies @option{nosimd}, which implies
14877 @option{nocrypto}, @option{noaes} and @option{nosha2}.
14878
14879 @node Adapteva Epiphany Options
14880 @subsection Adapteva Epiphany Options
14881
14882 These @samp{-m} options are defined for Adapteva Epiphany:
14883
14884 @table @gcctabopt
14885 @item -mhalf-reg-file
14886 @opindex mhalf-reg-file
14887 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
14888 That allows code to run on hardware variants that lack these registers.
14889
14890 @item -mprefer-short-insn-regs
14891 @opindex mprefer-short-insn-regs
14892 Preferentially allocate registers that allow short instruction generation.
14893 This can result in increased instruction count, so this may either reduce or
14894 increase overall code size.
14895
14896 @item -mbranch-cost=@var{num}
14897 @opindex mbranch-cost
14898 Set the cost of branches to roughly @var{num} ``simple'' instructions.
14899 This cost is only a heuristic and is not guaranteed to produce
14900 consistent results across releases.
14901
14902 @item -mcmove
14903 @opindex mcmove
14904 Enable the generation of conditional moves.
14905
14906 @item -mnops=@var{num}
14907 @opindex mnops
14908 Emit @var{num} NOPs before every other generated instruction.
14909
14910 @item -mno-soft-cmpsf
14911 @opindex mno-soft-cmpsf
14912 For single-precision floating-point comparisons, emit an @code{fsub} instruction
14913 and test the flags. This is faster than a software comparison, but can
14914 get incorrect results in the presence of NaNs, or when two different small
14915 numbers are compared such that their difference is calculated as zero.
14916 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
14917 software comparisons.
14918
14919 @item -mstack-offset=@var{num}
14920 @opindex mstack-offset
14921 Set the offset between the top of the stack and the stack pointer.
14922 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
14923 can be used by leaf functions without stack allocation.
14924 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
14925 Note also that this option changes the ABI; compiling a program with a
14926 different stack offset than the libraries have been compiled with
14927 generally does not work.
14928 This option can be useful if you want to evaluate if a different stack
14929 offset would give you better code, but to actually use a different stack
14930 offset to build working programs, it is recommended to configure the
14931 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
14932
14933 @item -mno-round-nearest
14934 @opindex mno-round-nearest
14935 Make the scheduler assume that the rounding mode has been set to
14936 truncating. The default is @option{-mround-nearest}.
14937
14938 @item -mlong-calls
14939 @opindex mlong-calls
14940 If not otherwise specified by an attribute, assume all calls might be beyond
14941 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
14942 function address into a register before performing a (otherwise direct) call.
14943 This is the default.
14944
14945 @item -mshort-calls
14946 @opindex short-calls
14947 If not otherwise specified by an attribute, assume all direct calls are
14948 in the range of the @code{b} / @code{bl} instructions, so use these instructions
14949 for direct calls. The default is @option{-mlong-calls}.
14950
14951 @item -msmall16
14952 @opindex msmall16
14953 Assume addresses can be loaded as 16-bit unsigned values. This does not
14954 apply to function addresses for which @option{-mlong-calls} semantics
14955 are in effect.
14956
14957 @item -mfp-mode=@var{mode}
14958 @opindex mfp-mode
14959 Set the prevailing mode of the floating-point unit.
14960 This determines the floating-point mode that is provided and expected
14961 at function call and return time. Making this mode match the mode you
14962 predominantly need at function start can make your programs smaller and
14963 faster by avoiding unnecessary mode switches.
14964
14965 @var{mode} can be set to one the following values:
14966
14967 @table @samp
14968 @item caller
14969 Any mode at function entry is valid, and retained or restored when
14970 the function returns, and when it calls other functions.
14971 This mode is useful for compiling libraries or other compilation units
14972 you might want to incorporate into different programs with different
14973 prevailing FPU modes, and the convenience of being able to use a single
14974 object file outweighs the size and speed overhead for any extra
14975 mode switching that might be needed, compared with what would be needed
14976 with a more specific choice of prevailing FPU mode.
14977
14978 @item truncate
14979 This is the mode used for floating-point calculations with
14980 truncating (i.e.@: round towards zero) rounding mode. That includes
14981 conversion from floating point to integer.
14982
14983 @item round-nearest
14984 This is the mode used for floating-point calculations with
14985 round-to-nearest-or-even rounding mode.
14986
14987 @item int
14988 This is the mode used to perform integer calculations in the FPU, e.g.@:
14989 integer multiply, or integer multiply-and-accumulate.
14990 @end table
14991
14992 The default is @option{-mfp-mode=caller}
14993
14994 @item -mnosplit-lohi
14995 @itemx -mno-postinc
14996 @itemx -mno-postmodify
14997 @opindex mnosplit-lohi
14998 @opindex mno-postinc
14999 @opindex mno-postmodify
15000 Code generation tweaks that disable, respectively, splitting of 32-bit
15001 loads, generation of post-increment addresses, and generation of
15002 post-modify addresses. The defaults are @option{msplit-lohi},
15003 @option{-mpost-inc}, and @option{-mpost-modify}.
15004
15005 @item -mnovect-double
15006 @opindex mno-vect-double
15007 Change the preferred SIMD mode to SImode. The default is
15008 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
15009
15010 @item -max-vect-align=@var{num}
15011 @opindex max-vect-align
15012 The maximum alignment for SIMD vector mode types.
15013 @var{num} may be 4 or 8. The default is 8.
15014 Note that this is an ABI change, even though many library function
15015 interfaces are unaffected if they don't use SIMD vector modes
15016 in places that affect size and/or alignment of relevant types.
15017
15018 @item -msplit-vecmove-early
15019 @opindex msplit-vecmove-early
15020 Split vector moves into single word moves before reload. In theory this
15021 can give better register allocation, but so far the reverse seems to be
15022 generally the case.
15023
15024 @item -m1reg-@var{reg}
15025 @opindex m1reg-
15026 Specify a register to hold the constant @minus{}1, which makes loading small negative
15027 constants and certain bitmasks faster.
15028 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
15029 which specify use of that register as a fixed register,
15030 and @samp{none}, which means that no register is used for this
15031 purpose. The default is @option{-m1reg-none}.
15032
15033 @end table
15034
15035 @node ARC Options
15036 @subsection ARC Options
15037 @cindex ARC options
15038
15039 The following options control the architecture variant for which code
15040 is being compiled:
15041
15042 @c architecture variants
15043 @table @gcctabopt
15044
15045 @item -mbarrel-shifter
15046 @opindex mbarrel-shifter
15047 Generate instructions supported by barrel shifter. This is the default
15048 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
15049
15050 @item -mjli-always
15051 @opindex mjli-alawys
15052 Force to call a function using jli_s instruction. This option is
15053 valid only for ARCv2 architecture.
15054
15055 @item -mcpu=@var{cpu}
15056 @opindex mcpu
15057 Set architecture type, register usage, and instruction scheduling
15058 parameters for @var{cpu}. There are also shortcut alias options
15059 available for backward compatibility and convenience. Supported
15060 values for @var{cpu} are
15061
15062 @table @samp
15063 @opindex mA6
15064 @opindex mARC600
15065 @item arc600
15066 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
15067
15068 @item arc601
15069 @opindex mARC601
15070 Compile for ARC601. Alias: @option{-mARC601}.
15071
15072 @item arc700
15073 @opindex mA7
15074 @opindex mARC700
15075 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
15076 This is the default when configured with @option{--with-cpu=arc700}@.
15077
15078 @item arcem
15079 Compile for ARC EM.
15080
15081 @item archs
15082 Compile for ARC HS.
15083
15084 @item em
15085 Compile for ARC EM CPU with no hardware extensions.
15086
15087 @item em4
15088 Compile for ARC EM4 CPU.
15089
15090 @item em4_dmips
15091 Compile for ARC EM4 DMIPS CPU.
15092
15093 @item em4_fpus
15094 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
15095 extension.
15096
15097 @item em4_fpuda
15098 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
15099 double assist instructions.
15100
15101 @item hs
15102 Compile for ARC HS CPU with no hardware extensions except the atomic
15103 instructions.
15104
15105 @item hs34
15106 Compile for ARC HS34 CPU.
15107
15108 @item hs38
15109 Compile for ARC HS38 CPU.
15110
15111 @item hs38_linux
15112 Compile for ARC HS38 CPU with all hardware extensions on.
15113
15114 @item arc600_norm
15115 Compile for ARC 600 CPU with @code{norm} instructions enabled.
15116
15117 @item arc600_mul32x16
15118 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
15119 instructions enabled.
15120
15121 @item arc600_mul64
15122 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
15123 instructions enabled.
15124
15125 @item arc601_norm
15126 Compile for ARC 601 CPU with @code{norm} instructions enabled.
15127
15128 @item arc601_mul32x16
15129 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
15130 instructions enabled.
15131
15132 @item arc601_mul64
15133 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
15134 instructions enabled.
15135
15136 @item nps400
15137 Compile for ARC 700 on NPS400 chip.
15138
15139 @item em_mini
15140 Compile for ARC EM minimalist configuration featuring reduced register
15141 set.
15142
15143 @end table
15144
15145 @item -mdpfp
15146 @opindex mdpfp
15147 @itemx -mdpfp-compact
15148 @opindex mdpfp-compact
15149 Generate double-precision FPX instructions, tuned for the compact
15150 implementation.
15151
15152 @item -mdpfp-fast
15153 @opindex mdpfp-fast
15154 Generate double-precision FPX instructions, tuned for the fast
15155 implementation.
15156
15157 @item -mno-dpfp-lrsr
15158 @opindex mno-dpfp-lrsr
15159 Disable @code{lr} and @code{sr} instructions from using FPX extension
15160 aux registers.
15161
15162 @item -mea
15163 @opindex mea
15164 Generate extended arithmetic instructions. Currently only
15165 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
15166 supported. This is always enabled for @option{-mcpu=ARC700}.
15167
15168 @item -mno-mpy
15169 @opindex mno-mpy
15170 Do not generate @code{mpy}-family instructions for ARC700. This option is
15171 deprecated.
15172
15173 @item -mmul32x16
15174 @opindex mmul32x16
15175 Generate 32x16-bit multiply and multiply-accumulate instructions.
15176
15177 @item -mmul64
15178 @opindex mmul64
15179 Generate @code{mul64} and @code{mulu64} instructions.
15180 Only valid for @option{-mcpu=ARC600}.
15181
15182 @item -mnorm
15183 @opindex mnorm
15184 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
15185 is in effect.
15186
15187 @item -mspfp
15188 @opindex mspfp
15189 @itemx -mspfp-compact
15190 @opindex mspfp-compact
15191 Generate single-precision FPX instructions, tuned for the compact
15192 implementation.
15193
15194 @item -mspfp-fast
15195 @opindex mspfp-fast
15196 Generate single-precision FPX instructions, tuned for the fast
15197 implementation.
15198
15199 @item -msimd
15200 @opindex msimd
15201 Enable generation of ARC SIMD instructions via target-specific
15202 builtins. Only valid for @option{-mcpu=ARC700}.
15203
15204 @item -msoft-float
15205 @opindex msoft-float
15206 This option ignored; it is provided for compatibility purposes only.
15207 Software floating-point code is emitted by default, and this default
15208 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
15209 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
15210 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
15211
15212 @item -mswap
15213 @opindex mswap
15214 Generate @code{swap} instructions.
15215
15216 @item -matomic
15217 @opindex matomic
15218 This enables use of the locked load/store conditional extension to implement
15219 atomic memory built-in functions. Not available for ARC 6xx or ARC
15220 EM cores.
15221
15222 @item -mdiv-rem
15223 @opindex mdiv-rem
15224 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
15225
15226 @item -mcode-density
15227 @opindex mcode-density
15228 Enable code density instructions for ARC EM.
15229 This option is on by default for ARC HS.
15230
15231 @item -mll64
15232 @opindex mll64
15233 Enable double load/store operations for ARC HS cores.
15234
15235 @item -mtp-regno=@var{regno}
15236 @opindex mtp-regno
15237 Specify thread pointer register number.
15238
15239 @item -mmpy-option=@var{multo}
15240 @opindex mmpy-option
15241 Compile ARCv2 code with a multiplier design option. You can specify
15242 the option using either a string or numeric value for @var{multo}.
15243 @samp{wlh1} is the default value. The recognized values are:
15244
15245 @table @samp
15246 @item 0
15247 @itemx none
15248 No multiplier available.
15249
15250 @item 1
15251 @itemx w
15252 16x16 multiplier, fully pipelined.
15253 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
15254
15255 @item 2
15256 @itemx wlh1
15257 32x32 multiplier, fully
15258 pipelined (1 stage). The following instructions are additionally
15259 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15260
15261 @item 3
15262 @itemx wlh2
15263 32x32 multiplier, fully pipelined
15264 (2 stages). The following instructions are additionally enabled: @code{mpy},
15265 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15266
15267 @item 4
15268 @itemx wlh3
15269 Two 16x16 multipliers, blocking,
15270 sequential. The following instructions are additionally enabled: @code{mpy},
15271 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15272
15273 @item 5
15274 @itemx wlh4
15275 One 16x16 multiplier, blocking,
15276 sequential. The following instructions are additionally enabled: @code{mpy},
15277 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15278
15279 @item 6
15280 @itemx wlh5
15281 One 32x4 multiplier, blocking,
15282 sequential. The following instructions are additionally enabled: @code{mpy},
15283 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15284
15285 @item 7
15286 @itemx plus_dmpy
15287 ARC HS SIMD support.
15288
15289 @item 8
15290 @itemx plus_macd
15291 ARC HS SIMD support.
15292
15293 @item 9
15294 @itemx plus_qmacw
15295 ARC HS SIMD support.
15296
15297 @end table
15298
15299 This option is only available for ARCv2 cores@.
15300
15301 @item -mfpu=@var{fpu}
15302 @opindex mfpu
15303 Enables support for specific floating-point hardware extensions for ARCv2
15304 cores. Supported values for @var{fpu} are:
15305
15306 @table @samp
15307
15308 @item fpus
15309 Enables support for single-precision floating-point hardware
15310 extensions@.
15311
15312 @item fpud
15313 Enables support for double-precision floating-point hardware
15314 extensions. The single-precision floating-point extension is also
15315 enabled. Not available for ARC EM@.
15316
15317 @item fpuda
15318 Enables support for double-precision floating-point hardware
15319 extensions using double-precision assist instructions. The single-precision
15320 floating-point extension is also enabled. This option is
15321 only available for ARC EM@.
15322
15323 @item fpuda_div
15324 Enables support for double-precision floating-point hardware
15325 extensions using double-precision assist instructions.
15326 The single-precision floating-point, square-root, and divide
15327 extensions are also enabled. This option is
15328 only available for ARC EM@.
15329
15330 @item fpuda_fma
15331 Enables support for double-precision floating-point hardware
15332 extensions using double-precision assist instructions.
15333 The single-precision floating-point and fused multiply and add
15334 hardware extensions are also enabled. This option is
15335 only available for ARC EM@.
15336
15337 @item fpuda_all
15338 Enables support for double-precision floating-point hardware
15339 extensions using double-precision assist instructions.
15340 All single-precision floating-point hardware extensions are also
15341 enabled. This option is only available for ARC EM@.
15342
15343 @item fpus_div
15344 Enables support for single-precision floating-point, square-root and divide
15345 hardware extensions@.
15346
15347 @item fpud_div
15348 Enables support for double-precision floating-point, square-root and divide
15349 hardware extensions. This option
15350 includes option @samp{fpus_div}. Not available for ARC EM@.
15351
15352 @item fpus_fma
15353 Enables support for single-precision floating-point and
15354 fused multiply and add hardware extensions@.
15355
15356 @item fpud_fma
15357 Enables support for double-precision floating-point and
15358 fused multiply and add hardware extensions. This option
15359 includes option @samp{fpus_fma}. Not available for ARC EM@.
15360
15361 @item fpus_all
15362 Enables support for all single-precision floating-point hardware
15363 extensions@.
15364
15365 @item fpud_all
15366 Enables support for all single- and double-precision floating-point
15367 hardware extensions. Not available for ARC EM@.
15368
15369 @end table
15370
15371 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
15372 @opindex mirq-ctrl-saved
15373 Specifies general-purposes registers that the processor automatically
15374 saves/restores on interrupt entry and exit. @var{register-range} is
15375 specified as two registers separated by a dash. The register range
15376 always starts with @code{r0}, the upper limit is @code{fp} register.
15377 @var{blink} and @var{lp_count} are optional. This option is only
15378 valid for ARC EM and ARC HS cores.
15379
15380 @item -mrgf-banked-regs=@var{number}
15381 @opindex mrgf-banked-regs
15382 Specifies the number of registers replicated in second register bank
15383 on entry to fast interrupt. Fast interrupts are interrupts with the
15384 highest priority level P0. These interrupts save only PC and STATUS32
15385 registers to avoid memory transactions during interrupt entry and exit
15386 sequences. Use this option when you are using fast interrupts in an
15387 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
15388
15389 @item -mlpc-width=@var{width}
15390 @opindex mlpc-width
15391 Specify the width of the @code{lp_count} register. Valid values for
15392 @var{width} are 8, 16, 20, 24, 28 and 32 bits. The default width is
15393 fixed to 32 bits. If the width is less than 32, the compiler does not
15394 attempt to transform loops in your program to use the zero-delay loop
15395 mechanism unless it is known that the @code{lp_count} register can
15396 hold the required loop-counter value. Depending on the width
15397 specified, the compiler and run-time library might continue to use the
15398 loop mechanism for various needs. This option defines macro
15399 @code{__ARC_LPC_WIDTH__} with the value of @var{width}.
15400
15401 @item -mrf16
15402 @opindex mrf16
15403 This option instructs the compiler to generate code for a 16-entry
15404 register file. This option defines the @code{__ARC_RF16__}
15405 preprocessor macro.
15406
15407 @end table
15408
15409 The following options are passed through to the assembler, and also
15410 define preprocessor macro symbols.
15411
15412 @c Flags used by the assembler, but for which we define preprocessor
15413 @c macro symbols as well.
15414 @table @gcctabopt
15415 @item -mdsp-packa
15416 @opindex mdsp-packa
15417 Passed down to the assembler to enable the DSP Pack A extensions.
15418 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
15419 deprecated.
15420
15421 @item -mdvbf
15422 @opindex mdvbf
15423 Passed down to the assembler to enable the dual Viterbi butterfly
15424 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
15425 option is deprecated.
15426
15427 @c ARC700 4.10 extension instruction
15428 @item -mlock
15429 @opindex mlock
15430 Passed down to the assembler to enable the locked load/store
15431 conditional extension. Also sets the preprocessor symbol
15432 @code{__Xlock}.
15433
15434 @item -mmac-d16
15435 @opindex mmac-d16
15436 Passed down to the assembler. Also sets the preprocessor symbol
15437 @code{__Xxmac_d16}. This option is deprecated.
15438
15439 @item -mmac-24
15440 @opindex mmac-24
15441 Passed down to the assembler. Also sets the preprocessor symbol
15442 @code{__Xxmac_24}. This option is deprecated.
15443
15444 @c ARC700 4.10 extension instruction
15445 @item -mrtsc
15446 @opindex mrtsc
15447 Passed down to the assembler to enable the 64-bit time-stamp counter
15448 extension instruction. Also sets the preprocessor symbol
15449 @code{__Xrtsc}. This option is deprecated.
15450
15451 @c ARC700 4.10 extension instruction
15452 @item -mswape
15453 @opindex mswape
15454 Passed down to the assembler to enable the swap byte ordering
15455 extension instruction. Also sets the preprocessor symbol
15456 @code{__Xswape}.
15457
15458 @item -mtelephony
15459 @opindex mtelephony
15460 Passed down to the assembler to enable dual- and single-operand
15461 instructions for telephony. Also sets the preprocessor symbol
15462 @code{__Xtelephony}. This option is deprecated.
15463
15464 @item -mxy
15465 @opindex mxy
15466 Passed down to the assembler to enable the XY memory extension. Also
15467 sets the preprocessor symbol @code{__Xxy}.
15468
15469 @end table
15470
15471 The following options control how the assembly code is annotated:
15472
15473 @c Assembly annotation options
15474 @table @gcctabopt
15475 @item -misize
15476 @opindex misize
15477 Annotate assembler instructions with estimated addresses.
15478
15479 @item -mannotate-align
15480 @opindex mannotate-align
15481 Explain what alignment considerations lead to the decision to make an
15482 instruction short or long.
15483
15484 @end table
15485
15486 The following options are passed through to the linker:
15487
15488 @c options passed through to the linker
15489 @table @gcctabopt
15490 @item -marclinux
15491 @opindex marclinux
15492 Passed through to the linker, to specify use of the @code{arclinux} emulation.
15493 This option is enabled by default in tool chains built for
15494 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
15495 when profiling is not requested.
15496
15497 @item -marclinux_prof
15498 @opindex marclinux_prof
15499 Passed through to the linker, to specify use of the
15500 @code{arclinux_prof} emulation. This option is enabled by default in
15501 tool chains built for @w{@code{arc-linux-uclibc}} and
15502 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
15503
15504 @end table
15505
15506 The following options control the semantics of generated code:
15507
15508 @c semantically relevant code generation options
15509 @table @gcctabopt
15510 @item -mlong-calls
15511 @opindex mlong-calls
15512 Generate calls as register indirect calls, thus providing access
15513 to the full 32-bit address range.
15514
15515 @item -mmedium-calls
15516 @opindex mmedium-calls
15517 Don't use less than 25-bit addressing range for calls, which is the
15518 offset available for an unconditional branch-and-link
15519 instruction. Conditional execution of function calls is suppressed, to
15520 allow use of the 25-bit range, rather than the 21-bit range with
15521 conditional branch-and-link. This is the default for tool chains built
15522 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
15523
15524 @item -G @var{num}
15525 @opindex G
15526 Put definitions of externally-visible data in a small data section if
15527 that data is no bigger than @var{num} bytes. The default value of
15528 @var{num} is 4 for any ARC configuration, or 8 when we have double
15529 load/store operations.
15530
15531 @item -mno-sdata
15532 @opindex mno-sdata
15533 Do not generate sdata references. This is the default for tool chains
15534 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
15535 targets.
15536
15537 @item -mvolatile-cache
15538 @opindex mvolatile-cache
15539 Use ordinarily cached memory accesses for volatile references. This is the
15540 default.
15541
15542 @item -mno-volatile-cache
15543 @opindex mno-volatile-cache
15544 Enable cache bypass for volatile references.
15545
15546 @end table
15547
15548 The following options fine tune code generation:
15549 @c code generation tuning options
15550 @table @gcctabopt
15551 @item -malign-call
15552 @opindex malign-call
15553 Do alignment optimizations for call instructions.
15554
15555 @item -mauto-modify-reg
15556 @opindex mauto-modify-reg
15557 Enable the use of pre/post modify with register displacement.
15558
15559 @item -mbbit-peephole
15560 @opindex mbbit-peephole
15561 Enable bbit peephole2.
15562
15563 @item -mno-brcc
15564 @opindex mno-brcc
15565 This option disables a target-specific pass in @file{arc_reorg} to
15566 generate compare-and-branch (@code{br@var{cc}}) instructions.
15567 It has no effect on
15568 generation of these instructions driven by the combiner pass.
15569
15570 @item -mcase-vector-pcrel
15571 @opindex mcase-vector-pcrel
15572 Use PC-relative switch case tables to enable case table shortening.
15573 This is the default for @option{-Os}.
15574
15575 @item -mcompact-casesi
15576 @opindex mcompact-casesi
15577 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
15578 and only available for ARCv1 cores.
15579
15580 @item -mno-cond-exec
15581 @opindex mno-cond-exec
15582 Disable the ARCompact-specific pass to generate conditional
15583 execution instructions.
15584
15585 Due to delay slot scheduling and interactions between operand numbers,
15586 literal sizes, instruction lengths, and the support for conditional execution,
15587 the target-independent pass to generate conditional execution is often lacking,
15588 so the ARC port has kept a special pass around that tries to find more
15589 conditional execution generation opportunities after register allocation,
15590 branch shortening, and delay slot scheduling have been done. This pass
15591 generally, but not always, improves performance and code size, at the cost of
15592 extra compilation time, which is why there is an option to switch it off.
15593 If you have a problem with call instructions exceeding their allowable
15594 offset range because they are conditionalized, you should consider using
15595 @option{-mmedium-calls} instead.
15596
15597 @item -mearly-cbranchsi
15598 @opindex mearly-cbranchsi
15599 Enable pre-reload use of the @code{cbranchsi} pattern.
15600
15601 @item -mexpand-adddi
15602 @opindex mexpand-adddi
15603 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
15604 @code{add.f}, @code{adc} etc. This option is deprecated.
15605
15606 @item -mindexed-loads
15607 @opindex mindexed-loads
15608 Enable the use of indexed loads. This can be problematic because some
15609 optimizers then assume that indexed stores exist, which is not
15610 the case.
15611
15612 @item -mlra
15613 @opindex mlra
15614 Enable Local Register Allocation. This is still experimental for ARC,
15615 so by default the compiler uses standard reload
15616 (i.e. @option{-mno-lra}).
15617
15618 @item -mlra-priority-none
15619 @opindex mlra-priority-none
15620 Don't indicate any priority for target registers.
15621
15622 @item -mlra-priority-compact
15623 @opindex mlra-priority-compact
15624 Indicate target register priority for r0..r3 / r12..r15.
15625
15626 @item -mlra-priority-noncompact
15627 @opindex mlra-priority-noncompact
15628 Reduce target register priority for r0..r3 / r12..r15.
15629
15630 @item -mno-millicode
15631 @opindex mno-millicode
15632 When optimizing for size (using @option{-Os}), prologues and epilogues
15633 that have to save or restore a large number of registers are often
15634 shortened by using call to a special function in libgcc; this is
15635 referred to as a @emph{millicode} call. As these calls can pose
15636 performance issues, and/or cause linking issues when linking in a
15637 nonstandard way, this option is provided to turn off millicode call
15638 generation.
15639
15640 @item -mmixed-code
15641 @opindex mmixed-code
15642 Tweak register allocation to help 16-bit instruction generation.
15643 This generally has the effect of decreasing the average instruction size
15644 while increasing the instruction count.
15645
15646 @item -mq-class
15647 @opindex mq-class
15648 Enable @samp{q} instruction alternatives.
15649 This is the default for @option{-Os}.
15650
15651 @item -mRcq
15652 @opindex mRcq
15653 Enable @samp{Rcq} constraint handling.
15654 Most short code generation depends on this.
15655 This is the default.
15656
15657 @item -mRcw
15658 @opindex mRcw
15659 Enable @samp{Rcw} constraint handling.
15660 Most ccfsm condexec mostly depends on this.
15661 This is the default.
15662
15663 @item -msize-level=@var{level}
15664 @opindex msize-level
15665 Fine-tune size optimization with regards to instruction lengths and alignment.
15666 The recognized values for @var{level} are:
15667 @table @samp
15668 @item 0
15669 No size optimization. This level is deprecated and treated like @samp{1}.
15670
15671 @item 1
15672 Short instructions are used opportunistically.
15673
15674 @item 2
15675 In addition, alignment of loops and of code after barriers are dropped.
15676
15677 @item 3
15678 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
15679
15680 @end table
15681
15682 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
15683 the behavior when this is not set is equivalent to level @samp{1}.
15684
15685 @item -mtune=@var{cpu}
15686 @opindex mtune
15687 Set instruction scheduling parameters for @var{cpu}, overriding any implied
15688 by @option{-mcpu=}.
15689
15690 Supported values for @var{cpu} are
15691
15692 @table @samp
15693 @item ARC600
15694 Tune for ARC600 CPU.
15695
15696 @item ARC601
15697 Tune for ARC601 CPU.
15698
15699 @item ARC700
15700 Tune for ARC700 CPU with standard multiplier block.
15701
15702 @item ARC700-xmac
15703 Tune for ARC700 CPU with XMAC block.
15704
15705 @item ARC725D
15706 Tune for ARC725D CPU.
15707
15708 @item ARC750D
15709 Tune for ARC750D CPU.
15710
15711 @end table
15712
15713 @item -mmultcost=@var{num}
15714 @opindex mmultcost
15715 Cost to assume for a multiply instruction, with @samp{4} being equal to a
15716 normal instruction.
15717
15718 @item -munalign-prob-threshold=@var{probability}
15719 @opindex munalign-prob-threshold
15720 Set probability threshold for unaligning branches.
15721 When tuning for @samp{ARC700} and optimizing for speed, branches without
15722 filled delay slot are preferably emitted unaligned and long, unless
15723 profiling indicates that the probability for the branch to be taken
15724 is below @var{probability}. @xref{Cross-profiling}.
15725 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
15726
15727 @end table
15728
15729 The following options are maintained for backward compatibility, but
15730 are now deprecated and will be removed in a future release:
15731
15732 @c Deprecated options
15733 @table @gcctabopt
15734
15735 @item -margonaut
15736 @opindex margonaut
15737 Obsolete FPX.
15738
15739 @item -mbig-endian
15740 @opindex mbig-endian
15741 @itemx -EB
15742 @opindex EB
15743 Compile code for big-endian targets. Use of these options is now
15744 deprecated. Big-endian code is supported by configuring GCC to build
15745 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
15746 for which big endian is the default.
15747
15748 @item -mlittle-endian
15749 @opindex mlittle-endian
15750 @itemx -EL
15751 @opindex EL
15752 Compile code for little-endian targets. Use of these options is now
15753 deprecated. Little-endian code is supported by configuring GCC to build
15754 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
15755 for which little endian is the default.
15756
15757 @item -mbarrel_shifter
15758 @opindex mbarrel_shifter
15759 Replaced by @option{-mbarrel-shifter}.
15760
15761 @item -mdpfp_compact
15762 @opindex mdpfp_compact
15763 Replaced by @option{-mdpfp-compact}.
15764
15765 @item -mdpfp_fast
15766 @opindex mdpfp_fast
15767 Replaced by @option{-mdpfp-fast}.
15768
15769 @item -mdsp_packa
15770 @opindex mdsp_packa
15771 Replaced by @option{-mdsp-packa}.
15772
15773 @item -mEA
15774 @opindex mEA
15775 Replaced by @option{-mea}.
15776
15777 @item -mmac_24
15778 @opindex mmac_24
15779 Replaced by @option{-mmac-24}.
15780
15781 @item -mmac_d16
15782 @opindex mmac_d16
15783 Replaced by @option{-mmac-d16}.
15784
15785 @item -mspfp_compact
15786 @opindex mspfp_compact
15787 Replaced by @option{-mspfp-compact}.
15788
15789 @item -mspfp_fast
15790 @opindex mspfp_fast
15791 Replaced by @option{-mspfp-fast}.
15792
15793 @item -mtune=@var{cpu}
15794 @opindex mtune
15795 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
15796 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
15797 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
15798
15799 @item -multcost=@var{num}
15800 @opindex multcost
15801 Replaced by @option{-mmultcost}.
15802
15803 @end table
15804
15805 @node ARM Options
15806 @subsection ARM Options
15807 @cindex ARM options
15808
15809 These @samp{-m} options are defined for the ARM port:
15810
15811 @table @gcctabopt
15812 @item -mabi=@var{name}
15813 @opindex mabi
15814 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
15815 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
15816
15817 @item -mapcs-frame
15818 @opindex mapcs-frame
15819 Generate a stack frame that is compliant with the ARM Procedure Call
15820 Standard for all functions, even if this is not strictly necessary for
15821 correct execution of the code. Specifying @option{-fomit-frame-pointer}
15822 with this option causes the stack frames not to be generated for
15823 leaf functions. The default is @option{-mno-apcs-frame}.
15824 This option is deprecated.
15825
15826 @item -mapcs
15827 @opindex mapcs
15828 This is a synonym for @option{-mapcs-frame} and is deprecated.
15829
15830 @ignore
15831 @c not currently implemented
15832 @item -mapcs-stack-check
15833 @opindex mapcs-stack-check
15834 Generate code to check the amount of stack space available upon entry to
15835 every function (that actually uses some stack space). If there is
15836 insufficient space available then either the function
15837 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
15838 called, depending upon the amount of stack space required. The runtime
15839 system is required to provide these functions. The default is
15840 @option{-mno-apcs-stack-check}, since this produces smaller code.
15841
15842 @c not currently implemented
15843 @item -mapcs-reentrant
15844 @opindex mapcs-reentrant
15845 Generate reentrant, position-independent code. The default is
15846 @option{-mno-apcs-reentrant}.
15847 @end ignore
15848
15849 @item -mthumb-interwork
15850 @opindex mthumb-interwork
15851 Generate code that supports calling between the ARM and Thumb
15852 instruction sets. Without this option, on pre-v5 architectures, the
15853 two instruction sets cannot be reliably used inside one program. The
15854 default is @option{-mno-thumb-interwork}, since slightly larger code
15855 is generated when @option{-mthumb-interwork} is specified. In AAPCS
15856 configurations this option is meaningless.
15857
15858 @item -mno-sched-prolog
15859 @opindex mno-sched-prolog
15860 Prevent the reordering of instructions in the function prologue, or the
15861 merging of those instruction with the instructions in the function's
15862 body. This means that all functions start with a recognizable set
15863 of instructions (or in fact one of a choice from a small set of
15864 different function prologues), and this information can be used to
15865 locate the start of functions inside an executable piece of code. The
15866 default is @option{-msched-prolog}.
15867
15868 @item -mfloat-abi=@var{name}
15869 @opindex mfloat-abi
15870 Specifies which floating-point ABI to use. Permissible values
15871 are: @samp{soft}, @samp{softfp} and @samp{hard}.
15872
15873 Specifying @samp{soft} causes GCC to generate output containing
15874 library calls for floating-point operations.
15875 @samp{softfp} allows the generation of code using hardware floating-point
15876 instructions, but still uses the soft-float calling conventions.
15877 @samp{hard} allows generation of floating-point instructions
15878 and uses FPU-specific calling conventions.
15879
15880 The default depends on the specific target configuration. Note that
15881 the hard-float and soft-float ABIs are not link-compatible; you must
15882 compile your entire program with the same ABI, and link with a
15883 compatible set of libraries.
15884
15885 @item -mlittle-endian
15886 @opindex mlittle-endian
15887 Generate code for a processor running in little-endian mode. This is
15888 the default for all standard configurations.
15889
15890 @item -mbig-endian
15891 @opindex mbig-endian
15892 Generate code for a processor running in big-endian mode; the default is
15893 to compile code for a little-endian processor.
15894
15895 @item -mbe8
15896 @itemx -mbe32
15897 @opindex mbe8
15898 When linking a big-endian image select between BE8 and BE32 formats.
15899 The option has no effect for little-endian images and is ignored. The
15900 default is dependent on the selected target architecture. For ARMv6
15901 and later architectures the default is BE8, for older architectures
15902 the default is BE32. BE32 format has been deprecated by ARM.
15903
15904 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
15905 @opindex march
15906 This specifies the name of the target ARM architecture. GCC uses this
15907 name to determine what kind of instructions it can emit when generating
15908 assembly code. This option can be used in conjunction with or instead
15909 of the @option{-mcpu=} option.
15910
15911 Permissible names are:
15912 @samp{armv4t},
15913 @samp{armv5t}, @samp{armv5te},
15914 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
15915 @samp{armv6z}, @samp{armv6zk},
15916 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
15917 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
15918 @samp{armv8.4-a},
15919 @samp{armv7-r},
15920 @samp{armv8-r},
15921 @samp{armv6-m}, @samp{armv6s-m},
15922 @samp{armv7-m}, @samp{armv7e-m},
15923 @samp{armv8-m.base}, @samp{armv8-m.main},
15924 @samp{iwmmxt} and @samp{iwmmxt2}.
15925
15926 Additionally, the following architectures, which lack support for the
15927 Thumb execution state, are recognized but support is deprecated:
15928 @samp{armv2}, @samp{armv2a}, @samp{armv3}, @samp{armv3m},
15929 @samp{armv4}, @samp{armv5} and @samp{armv5e}.
15930
15931 Many of the architectures support extensions. These can be added by
15932 appending @samp{+@var{extension}} to the architecture name. Extension
15933 options are processed in order and capabilities accumulate. An extension
15934 will also enable any necessary base extensions
15935 upon which it depends. For example, the @samp{+crypto} extension
15936 will always enable the @samp{+simd} extension. The exception to the
15937 additive construction is for extensions that are prefixed with
15938 @samp{+no@dots{}}: these extensions disable the specified option and
15939 any other extensions that may depend on the presence of that
15940 extension.
15941
15942 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
15943 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
15944 entirely disabled by the @samp{+nofp} option that follows it.
15945
15946 Most extension names are generically named, but have an effect that is
15947 dependent upon the architecture to which it is applied. For example,
15948 the @samp{+simd} option can be applied to both @samp{armv7-a} and
15949 @samp{armv8-a} architectures, but will enable the original ARMv7-A
15950 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
15951 variant for @samp{armv8-a}.
15952
15953 The table below lists the supported extensions for each architecture.
15954 Architectures not mentioned do not support any extensions.
15955
15956 @table @samp
15957 @item armv5e
15958 @itemx armv5te
15959 @itemx armv6
15960 @itemx armv6j
15961 @itemx armv6k
15962 @itemx armv6kz
15963 @itemx armv6t2
15964 @itemx armv6z
15965 @itemx armv6zk
15966 @table @samp
15967 @item +fp
15968 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
15969 used as an alias for this extension.
15970
15971 @item +nofp
15972 Disable the floating-point instructions.
15973 @end table
15974
15975 @item armv7
15976 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
15977 @table @samp
15978 @item +fp
15979 The VFPv3 floating-point instructions, with 16 double-precision
15980 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15981 for this extension. Note that floating-point is not supported by the
15982 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
15983 ARMv7-R architectures.
15984
15985 @item +nofp
15986 Disable the floating-point instructions.
15987 @end table
15988
15989 @item armv7-a
15990 @table @samp
15991 @item +fp
15992 The VFPv3 floating-point instructions, with 16 double-precision
15993 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15994 for this extension.
15995
15996 @item +simd
15997 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15998 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
15999 for this extension.
16000
16001 @item +vfpv3
16002 The VFPv3 floating-point instructions, with 32 double-precision
16003 registers.
16004
16005 @item +vfpv3-d16-fp16
16006 The VFPv3 floating-point instructions, with 16 double-precision
16007 registers and the half-precision floating-point conversion operations.
16008
16009 @item +vfpv3-fp16
16010 The VFPv3 floating-point instructions, with 32 double-precision
16011 registers and the half-precision floating-point conversion operations.
16012
16013 @item +vfpv4-d16
16014 The VFPv4 floating-point instructions, with 16 double-precision
16015 registers.
16016
16017 @item +vfpv4
16018 The VFPv4 floating-point instructions, with 32 double-precision
16019 registers.
16020
16021 @item +neon-fp16
16022 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
16023 the half-precision floating-point conversion operations.
16024
16025 @item +neon-vfpv4
16026 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
16027
16028 @item +nosimd
16029 Disable the Advanced SIMD instructions (does not disable floating point).
16030
16031 @item +nofp
16032 Disable the floating-point and Advanced SIMD instructions.
16033 @end table
16034
16035 @item armv7ve
16036 The extended version of the ARMv7-A architecture with support for
16037 virtualization.
16038 @table @samp
16039 @item +fp
16040 The VFPv4 floating-point instructions, with 16 double-precision registers.
16041 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
16042
16043 @item +simd
16044 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
16045 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
16046
16047 @item +vfpv3-d16
16048 The VFPv3 floating-point instructions, with 16 double-precision
16049 registers.
16050
16051 @item +vfpv3
16052 The VFPv3 floating-point instructions, with 32 double-precision
16053 registers.
16054
16055 @item +vfpv3-d16-fp16
16056 The VFPv3 floating-point instructions, with 16 double-precision
16057 registers and the half-precision floating-point conversion operations.
16058
16059 @item +vfpv3-fp16
16060 The VFPv3 floating-point instructions, with 32 double-precision
16061 registers and the half-precision floating-point conversion operations.
16062
16063 @item +vfpv4-d16
16064 The VFPv4 floating-point instructions, with 16 double-precision
16065 registers.
16066
16067 @item +vfpv4
16068 The VFPv4 floating-point instructions, with 32 double-precision
16069 registers.
16070
16071 @item +neon
16072 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
16073 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
16074
16075 @item +neon-fp16
16076 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
16077 the half-precision floating-point conversion operations.
16078
16079 @item +nosimd
16080 Disable the Advanced SIMD instructions (does not disable floating point).
16081
16082 @item +nofp
16083 Disable the floating-point and Advanced SIMD instructions.
16084 @end table
16085
16086 @item armv8-a
16087 @table @samp
16088 @item +crc
16089 The Cyclic Redundancy Check (CRC) instructions.
16090 @item +simd
16091 The ARMv8-A Advanced SIMD and floating-point instructions.
16092 @item +crypto
16093 The cryptographic instructions.
16094 @item +nocrypto
16095 Disable the cryptographic instructions.
16096 @item +nofp
16097 Disable the floating-point, Advanced SIMD and cryptographic instructions.
16098 @end table
16099
16100 @item armv8.1-a
16101 @table @samp
16102 @item +simd
16103 The ARMv8.1-A Advanced SIMD and floating-point instructions.
16104
16105 @item +crypto
16106 The cryptographic instructions. This also enables the Advanced SIMD and
16107 floating-point instructions.
16108
16109 @item +nocrypto
16110 Disable the cryptographic instructions.
16111
16112 @item +nofp
16113 Disable the floating-point, Advanced SIMD and cryptographic instructions.
16114 @end table
16115
16116 @item armv8.2-a
16117 @itemx armv8.3-a
16118 @table @samp
16119 @item +fp16
16120 The half-precision floating-point data processing instructions.
16121 This also enables the Advanced SIMD and floating-point instructions.
16122
16123 @item +fp16fml
16124 The half-precision floating-point fmla extension. This also enables
16125 the half-precision floating-point extension and Advanced SIMD and
16126 floating-point instructions.
16127
16128 @item +simd
16129 The ARMv8.1-A Advanced SIMD and floating-point instructions.
16130
16131 @item +crypto
16132 The cryptographic instructions. This also enables the Advanced SIMD and
16133 floating-point instructions.
16134
16135 @item +dotprod
16136 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
16137
16138 @item +nocrypto
16139 Disable the cryptographic extension.
16140
16141 @item +nofp
16142 Disable the floating-point, Advanced SIMD and cryptographic instructions.
16143 @end table
16144
16145 @item armv8.4-a
16146 @table @samp
16147 @item +fp16
16148 The half-precision floating-point data processing instructions.
16149 This also enables the Advanced SIMD and floating-point instructions as well
16150 as the Dot Product extension and the half-precision floating-point fmla
16151 extension.
16152
16153 @item +simd
16154 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
16155 Dot Product extension.
16156
16157 @item +crypto
16158 The cryptographic instructions. This also enables the Advanced SIMD and
16159 floating-point instructions as well as the Dot Product extension.
16160
16161 @item +nocrypto
16162 Disable the cryptographic extension.
16163
16164 @item +nofp
16165 Disable the floating-point, Advanced SIMD and cryptographic instructions.
16166 @end table
16167
16168 @item armv7-r
16169 @table @samp
16170 @item +fp.sp
16171 The single-precision VFPv3 floating-point instructions. The extension
16172 @samp{+vfpv3xd} can be used as an alias for this extension.
16173
16174 @item +fp
16175 The VFPv3 floating-point instructions with 16 double-precision registers.
16176 The extension +vfpv3-d16 can be used as an alias for this extension.
16177
16178 @item +nofp
16179 Disable the floating-point extension.
16180
16181 @item +idiv
16182 The ARM-state integer division instructions.
16183
16184 @item +noidiv
16185 Disable the ARM-state integer division extension.
16186 @end table
16187
16188 @item armv7e-m
16189 @table @samp
16190 @item +fp
16191 The single-precision VFPv4 floating-point instructions.
16192
16193 @item +fpv5
16194 The single-precision FPv5 floating-point instructions.
16195
16196 @item +fp.dp
16197 The single- and double-precision FPv5 floating-point instructions.
16198
16199 @item +nofp
16200 Disable the floating-point extensions.
16201 @end table
16202
16203 @item armv8-m.main
16204 @table @samp
16205 @item +dsp
16206 The DSP instructions.
16207
16208 @item +nodsp
16209 Disable the DSP extension.
16210
16211 @item +fp
16212 The single-precision floating-point instructions.
16213
16214 @item +fp.dp
16215 The single- and double-precision floating-point instructions.
16216
16217 @item +nofp
16218 Disable the floating-point extension.
16219 @end table
16220
16221 @item armv8-r
16222 @table @samp
16223 @item +crc
16224 The Cyclic Redundancy Check (CRC) instructions.
16225 @item +fp.sp
16226 The single-precision FPv5 floating-point instructions.
16227 @item +simd
16228 The ARMv8-A Advanced SIMD and floating-point instructions.
16229 @item +crypto
16230 The cryptographic instructions.
16231 @item +nocrypto
16232 Disable the cryptographic instructions.
16233 @item +nofp
16234 Disable the floating-point, Advanced SIMD and cryptographic instructions.
16235 @end table
16236
16237 @end table
16238
16239 @option{-march=native} causes the compiler to auto-detect the architecture
16240 of the build computer. At present, this feature is only supported on
16241 GNU/Linux, and not all architectures are recognized. If the auto-detect
16242 is unsuccessful the option has no effect.
16243
16244 @item -mtune=@var{name}
16245 @opindex mtune
16246 This option specifies the name of the target ARM processor for
16247 which GCC should tune the performance of the code.
16248 For some ARM implementations better performance can be obtained by using
16249 this option.
16250 Permissible names are: @samp{arm2}, @samp{arm250},
16251 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
16252 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
16253 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
16254 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
16255 @samp{arm720},
16256 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
16257 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
16258 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
16259 @samp{strongarm1110},
16260 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
16261 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
16262 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
16263 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
16264 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
16265 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
16266 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
16267 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
16268 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
16269 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
16270 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
16271 @samp{cortex-r4}, @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7},
16272 @samp{cortex-r8}, @samp{cortex-r52},
16273 @samp{cortex-m33},
16274 @samp{cortex-m23},
16275 @samp{cortex-m7},
16276 @samp{cortex-m4},
16277 @samp{cortex-m3},
16278 @samp{cortex-m1},
16279 @samp{cortex-m0},
16280 @samp{cortex-m0plus},
16281 @samp{cortex-m1.small-multiply},
16282 @samp{cortex-m0.small-multiply},
16283 @samp{cortex-m0plus.small-multiply},
16284 @samp{exynos-m1},
16285 @samp{marvell-pj4},
16286 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
16287 @samp{fa526}, @samp{fa626},
16288 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
16289 @samp{xgene1}.
16290
16291 Additionally, this option can specify that GCC should tune the performance
16292 of the code for a big.LITTLE system. Permissible names are:
16293 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
16294 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
16295 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
16296 @samp{cortex-a75.cortex-a55}.
16297
16298 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
16299 performance for a blend of processors within architecture @var{arch}.
16300 The aim is to generate code that run well on the current most popular
16301 processors, balancing between optimizations that benefit some CPUs in the
16302 range, and avoiding performance pitfalls of other CPUs. The effects of
16303 this option may change in future GCC versions as CPU models come and go.
16304
16305 @option{-mtune} permits the same extension options as @option{-mcpu}, but
16306 the extension options do not affect the tuning of the generated code.
16307
16308 @option{-mtune=native} causes the compiler to auto-detect the CPU
16309 of the build computer. At present, this feature is only supported on
16310 GNU/Linux, and not all architectures are recognized. If the auto-detect is
16311 unsuccessful the option has no effect.
16312
16313 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
16314 @opindex mcpu
16315 This specifies the name of the target ARM processor. GCC uses this name
16316 to derive the name of the target ARM architecture (as if specified
16317 by @option{-march}) and the ARM processor type for which to tune for
16318 performance (as if specified by @option{-mtune}). Where this option
16319 is used in conjunction with @option{-march} or @option{-mtune},
16320 those options take precedence over the appropriate part of this option.
16321
16322 Many of the supported CPUs implement optional architectural
16323 extensions. Where this is so the architectural extensions are
16324 normally enabled by default. If implementations that lack the
16325 extension exist, then the extension syntax can be used to disable
16326 those extensions that have been omitted. For floating-point and
16327 Advanced SIMD (Neon) instructions, the settings of the options
16328 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
16329 floating-point and Advanced SIMD instructions will only be used if
16330 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
16331 @option{-mfpu} other than @samp{auto} will override the available
16332 floating-point and SIMD extension instructions.
16333
16334 For example, @samp{cortex-a9} can be found in three major
16335 configurations: integer only, with just a floating-point unit or with
16336 floating-point and Advanced SIMD. The default is to enable all the
16337 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
16338 be used to disable just the SIMD or both the SIMD and floating-point
16339 instructions respectively.
16340
16341 Permissible names for this option are the same as those for
16342 @option{-mtune}.
16343
16344 The following extension options are common to the listed CPUs:
16345
16346 @table @samp
16347 @item +nodsp
16348 Disable the DSP instructions on @samp{cortex-m33}.
16349
16350 @item +nofp
16351 Disables the floating-point instructions on @samp{arm9e},
16352 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
16353 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
16354 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
16355 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
16356 Disables the floating-point and SIMD instructions on
16357 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
16358 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
16359 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
16360 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
16361 @samp{cortex-a53} and @samp{cortex-a55}.
16362
16363 @item +nofp.dp
16364 Disables the double-precision component of the floating-point instructions
16365 on @samp{cortex-r5}, @samp{cortex-r52} and @samp{cortex-m7}.
16366
16367 @item +nosimd
16368 Disables the SIMD (but not floating-point) instructions on
16369 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
16370 and @samp{cortex-a9}.
16371
16372 @item +crypto
16373 Enables the cryptographic instructions on @samp{cortex-a32},
16374 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
16375 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
16376 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
16377 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
16378 @samp{cortex-a75.cortex-a55}.
16379 @end table
16380
16381 Additionally the @samp{generic-armv7-a} pseudo target defaults to
16382 VFPv3 with 16 double-precision registers. It supports the following
16383 extension options: @samp{vfpv3-d16}, @samp{vfpv3},
16384 @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16}, @samp{vfpv4-d16},
16385 @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3}, @samp{neon-fp16},
16386 @samp{neon-vfpv4}. The meanings are the same as for the extensions to
16387 @option{-march=armv7-a}.
16388
16389 @option{-mcpu=generic-@var{arch}} is also permissible, and is
16390 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
16391 See @option{-mtune} for more information.
16392
16393 @option{-mcpu=native} causes the compiler to auto-detect the CPU
16394 of the build computer. At present, this feature is only supported on
16395 GNU/Linux, and not all architectures are recognized. If the auto-detect
16396 is unsuccessful the option has no effect.
16397
16398 @item -mfpu=@var{name}
16399 @opindex mfpu
16400 This specifies what floating-point hardware (or hardware emulation) is
16401 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
16402 @samp{vfpv3},
16403 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
16404 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
16405 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
16406 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
16407 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
16408 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
16409 is an alias for @samp{vfpv2}.
16410
16411 The setting @samp{auto} is the default and is special. It causes the
16412 compiler to select the floating-point and Advanced SIMD instructions
16413 based on the settings of @option{-mcpu} and @option{-march}.
16414
16415 If the selected floating-point hardware includes the NEON extension
16416 (e.g. @option{-mfpu=neon}), note that floating-point
16417 operations are not generated by GCC's auto-vectorization pass unless
16418 @option{-funsafe-math-optimizations} is also specified. This is
16419 because NEON hardware does not fully implement the IEEE 754 standard for
16420 floating-point arithmetic (in particular denormal values are treated as
16421 zero), so the use of NEON instructions may lead to a loss of precision.
16422
16423 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
16424
16425 @item -mfp16-format=@var{name}
16426 @opindex mfp16-format
16427 Specify the format of the @code{__fp16} half-precision floating-point type.
16428 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
16429 the default is @samp{none}, in which case the @code{__fp16} type is not
16430 defined. @xref{Half-Precision}, for more information.
16431
16432 @item -mstructure-size-boundary=@var{n}
16433 @opindex mstructure-size-boundary
16434 The sizes of all structures and unions are rounded up to a multiple
16435 of the number of bits set by this option. Permissible values are 8, 32
16436 and 64. The default value varies for different toolchains. For the COFF
16437 targeted toolchain the default value is 8. A value of 64 is only allowed
16438 if the underlying ABI supports it.
16439
16440 Specifying a larger number can produce faster, more efficient code, but
16441 can also increase the size of the program. Different values are potentially
16442 incompatible. Code compiled with one value cannot necessarily expect to
16443 work with code or libraries compiled with another value, if they exchange
16444 information using structures or unions.
16445
16446 This option is deprecated.
16447
16448 @item -mabort-on-noreturn
16449 @opindex mabort-on-noreturn
16450 Generate a call to the function @code{abort} at the end of a
16451 @code{noreturn} function. It is executed if the function tries to
16452 return.
16453
16454 @item -mlong-calls
16455 @itemx -mno-long-calls
16456 @opindex mlong-calls
16457 @opindex mno-long-calls
16458 Tells the compiler to perform function calls by first loading the
16459 address of the function into a register and then performing a subroutine
16460 call on this register. This switch is needed if the target function
16461 lies outside of the 64-megabyte addressing range of the offset-based
16462 version of subroutine call instruction.
16463
16464 Even if this switch is enabled, not all function calls are turned
16465 into long calls. The heuristic is that static functions, functions
16466 that have the @code{short_call} attribute, functions that are inside
16467 the scope of a @code{#pragma no_long_calls} directive, and functions whose
16468 definitions have already been compiled within the current compilation
16469 unit are not turned into long calls. The exceptions to this rule are
16470 that weak function definitions, functions with the @code{long_call}
16471 attribute or the @code{section} attribute, and functions that are within
16472 the scope of a @code{#pragma long_calls} directive are always
16473 turned into long calls.
16474
16475 This feature is not enabled by default. Specifying
16476 @option{-mno-long-calls} restores the default behavior, as does
16477 placing the function calls within the scope of a @code{#pragma
16478 long_calls_off} directive. Note these switches have no effect on how
16479 the compiler generates code to handle function calls via function
16480 pointers.
16481
16482 @item -msingle-pic-base
16483 @opindex msingle-pic-base
16484 Treat the register used for PIC addressing as read-only, rather than
16485 loading it in the prologue for each function. The runtime system is
16486 responsible for initializing this register with an appropriate value
16487 before execution begins.
16488
16489 @item -mpic-register=@var{reg}
16490 @opindex mpic-register
16491 Specify the register to be used for PIC addressing.
16492 For standard PIC base case, the default is any suitable register
16493 determined by compiler. For single PIC base case, the default is
16494 @samp{R9} if target is EABI based or stack-checking is enabled,
16495 otherwise the default is @samp{R10}.
16496
16497 @item -mpic-data-is-text-relative
16498 @opindex mpic-data-is-text-relative
16499 Assume that the displacement between the text and data segments is fixed
16500 at static link time. This permits using PC-relative addressing
16501 operations to access data known to be in the data segment. For
16502 non-VxWorks RTP targets, this option is enabled by default. When
16503 disabled on such targets, it will enable @option{-msingle-pic-base} by
16504 default.
16505
16506 @item -mpoke-function-name
16507 @opindex mpoke-function-name
16508 Write the name of each function into the text section, directly
16509 preceding the function prologue. The generated code is similar to this:
16510
16511 @smallexample
16512 t0
16513 .ascii "arm_poke_function_name", 0
16514 .align
16515 t1
16516 .word 0xff000000 + (t1 - t0)
16517 arm_poke_function_name
16518 mov ip, sp
16519 stmfd sp!, @{fp, ip, lr, pc@}
16520 sub fp, ip, #4
16521 @end smallexample
16522
16523 When performing a stack backtrace, code can inspect the value of
16524 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
16525 location @code{pc - 12} and the top 8 bits are set, then we know that
16526 there is a function name embedded immediately preceding this location
16527 and has length @code{((pc[-3]) & 0xff000000)}.
16528
16529 @item -mthumb
16530 @itemx -marm
16531 @opindex marm
16532 @opindex mthumb
16533
16534 Select between generating code that executes in ARM and Thumb
16535 states. The default for most configurations is to generate code
16536 that executes in ARM state, but the default can be changed by
16537 configuring GCC with the @option{--with-mode=}@var{state}
16538 configure option.
16539
16540 You can also override the ARM and Thumb mode for each function
16541 by using the @code{target("thumb")} and @code{target("arm")} function attributes
16542 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
16543
16544 @item -mflip-thumb
16545 @opindex mflip-thumb
16546 Switch ARM/Thumb modes on alternating functions.
16547 This option is provided for regression testing of mixed Thumb/ARM code
16548 generation, and is not intended for ordinary use in compiling code.
16549
16550 @item -mtpcs-frame
16551 @opindex mtpcs-frame
16552 Generate a stack frame that is compliant with the Thumb Procedure Call
16553 Standard for all non-leaf functions. (A leaf function is one that does
16554 not call any other functions.) The default is @option{-mno-tpcs-frame}.
16555
16556 @item -mtpcs-leaf-frame
16557 @opindex mtpcs-leaf-frame
16558 Generate a stack frame that is compliant with the Thumb Procedure Call
16559 Standard for all leaf functions. (A leaf function is one that does
16560 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
16561
16562 @item -mcallee-super-interworking
16563 @opindex mcallee-super-interworking
16564 Gives all externally visible functions in the file being compiled an ARM
16565 instruction set header which switches to Thumb mode before executing the
16566 rest of the function. This allows these functions to be called from
16567 non-interworking code. This option is not valid in AAPCS configurations
16568 because interworking is enabled by default.
16569
16570 @item -mcaller-super-interworking
16571 @opindex mcaller-super-interworking
16572 Allows calls via function pointers (including virtual functions) to
16573 execute correctly regardless of whether the target code has been
16574 compiled for interworking or not. There is a small overhead in the cost
16575 of executing a function pointer if this option is enabled. This option
16576 is not valid in AAPCS configurations because interworking is enabled
16577 by default.
16578
16579 @item -mtp=@var{name}
16580 @opindex mtp
16581 Specify the access model for the thread local storage pointer. The valid
16582 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
16583 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
16584 (supported in the arm6k architecture), and @samp{auto}, which uses the
16585 best available method for the selected processor. The default setting is
16586 @samp{auto}.
16587
16588 @item -mtls-dialect=@var{dialect}
16589 @opindex mtls-dialect
16590 Specify the dialect to use for accessing thread local storage. Two
16591 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
16592 @samp{gnu} dialect selects the original GNU scheme for supporting
16593 local and global dynamic TLS models. The @samp{gnu2} dialect
16594 selects the GNU descriptor scheme, which provides better performance
16595 for shared libraries. The GNU descriptor scheme is compatible with
16596 the original scheme, but does require new assembler, linker and
16597 library support. Initial and local exec TLS models are unaffected by
16598 this option and always use the original scheme.
16599
16600 @item -mword-relocations
16601 @opindex mword-relocations
16602 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
16603 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
16604 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
16605 is specified.
16606
16607 @item -mfix-cortex-m3-ldrd
16608 @opindex mfix-cortex-m3-ldrd
16609 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
16610 with overlapping destination and base registers are used. This option avoids
16611 generating these instructions. This option is enabled by default when
16612 @option{-mcpu=cortex-m3} is specified.
16613
16614 @item -munaligned-access
16615 @itemx -mno-unaligned-access
16616 @opindex munaligned-access
16617 @opindex mno-unaligned-access
16618 Enables (or disables) reading and writing of 16- and 32- bit values
16619 from addresses that are not 16- or 32- bit aligned. By default
16620 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
16621 ARMv8-M Baseline architectures, and enabled for all other
16622 architectures. If unaligned access is not enabled then words in packed
16623 data structures are accessed a byte at a time.
16624
16625 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
16626 generated object file to either true or false, depending upon the
16627 setting of this option. If unaligned access is enabled then the
16628 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
16629 defined.
16630
16631 @item -mneon-for-64bits
16632 @opindex mneon-for-64bits
16633 Enables using Neon to handle scalar 64-bits operations. This is
16634 disabled by default since the cost of moving data from core registers
16635 to Neon is high.
16636
16637 @item -mslow-flash-data
16638 @opindex mslow-flash-data
16639 Assume loading data from flash is slower than fetching instruction.
16640 Therefore literal load is minimized for better performance.
16641 This option is only supported when compiling for ARMv7 M-profile and
16642 off by default.
16643
16644 @item -masm-syntax-unified
16645 @opindex masm-syntax-unified
16646 Assume inline assembler is using unified asm syntax. The default is
16647 currently off which implies divided syntax. This option has no impact
16648 on Thumb2. However, this may change in future releases of GCC.
16649 Divided syntax should be considered deprecated.
16650
16651 @item -mrestrict-it
16652 @opindex mrestrict-it
16653 Restricts generation of IT blocks to conform to the rules of ARMv8-A.
16654 IT blocks can only contain a single 16-bit instruction from a select
16655 set of instructions. This option is on by default for ARMv8-A Thumb mode.
16656
16657 @item -mprint-tune-info
16658 @opindex mprint-tune-info
16659 Print CPU tuning information as comment in assembler file. This is
16660 an option used only for regression testing of the compiler and not
16661 intended for ordinary use in compiling code. This option is disabled
16662 by default.
16663
16664 @item -mverbose-cost-dump
16665 @opindex mverbose-cost-dump
16666 Enable verbose cost model dumping in the debug dump files. This option is
16667 provided for use in debugging the compiler.
16668
16669 @item -mpure-code
16670 @opindex mpure-code
16671 Do not allow constant data to be placed in code sections.
16672 Additionally, when compiling for ELF object format give all text sections the
16673 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
16674 is only available when generating non-pic code for M-profile targets with the
16675 MOVT instruction.
16676
16677 @item -mcmse
16678 @opindex mcmse
16679 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
16680 Development Tools Engineering Specification", which can be found on
16681 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
16682 @end table
16683
16684 @node AVR Options
16685 @subsection AVR Options
16686 @cindex AVR Options
16687
16688 These options are defined for AVR implementations:
16689
16690 @table @gcctabopt
16691 @item -mmcu=@var{mcu}
16692 @opindex mmcu
16693 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
16694
16695 The default for this option is@tie{}@samp{avr2}.
16696
16697 GCC supports the following AVR devices and ISAs:
16698
16699 @include avr-mmcu.texi
16700
16701 @item -mabsdata
16702 @opindex mabsdata
16703
16704 Assume that all data in static storage can be accessed by LDS / STS
16705 instructions. This option has only an effect on reduced Tiny devices like
16706 ATtiny40. See also the @code{absdata}
16707 @ref{AVR Variable Attributes,variable attribute}.
16708
16709 @item -maccumulate-args
16710 @opindex maccumulate-args
16711 Accumulate outgoing function arguments and acquire/release the needed
16712 stack space for outgoing function arguments once in function
16713 prologue/epilogue. Without this option, outgoing arguments are pushed
16714 before calling a function and popped afterwards.
16715
16716 Popping the arguments after the function call can be expensive on
16717 AVR so that accumulating the stack space might lead to smaller
16718 executables because arguments need not be removed from the
16719 stack after such a function call.
16720
16721 This option can lead to reduced code size for functions that perform
16722 several calls to functions that get their arguments on the stack like
16723 calls to printf-like functions.
16724
16725 @item -mbranch-cost=@var{cost}
16726 @opindex mbranch-cost
16727 Set the branch costs for conditional branch instructions to
16728 @var{cost}. Reasonable values for @var{cost} are small, non-negative
16729 integers. The default branch cost is 0.
16730
16731 @item -mcall-prologues
16732 @opindex mcall-prologues
16733 Functions prologues/epilogues are expanded as calls to appropriate
16734 subroutines. Code size is smaller.
16735
16736 @item -mgas-isr-prologues
16737 @opindex mgas-isr-prologues
16738 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
16739 instruction supported by GNU Binutils.
16740 If this option is on, the feature can still be disabled for individual
16741 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
16742 function attribute. This feature is activated per default
16743 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
16744 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
16745
16746 @item -mint8
16747 @opindex mint8
16748 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
16749 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
16750 and @code{long long} is 4 bytes. Please note that this option does not
16751 conform to the C standards, but it results in smaller code
16752 size.
16753
16754 @item -mmain-is-OS_task
16755 @opindex mmain-is-OS_task
16756 Do not save registers in @code{main}. The effect is the same like
16757 attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
16758 to @code{main}. It is activated per default if optimization is on.
16759
16760 @item -mn-flash=@var{num}
16761 @opindex mn-flash
16762 Assume that the flash memory has a size of
16763 @var{num} times 64@tie{}KiB.
16764
16765 @item -mno-interrupts
16766 @opindex mno-interrupts
16767 Generated code is not compatible with hardware interrupts.
16768 Code size is smaller.
16769
16770 @item -mrelax
16771 @opindex mrelax
16772 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
16773 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
16774 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
16775 the assembler's command line and the @option{--relax} option to the
16776 linker's command line.
16777
16778 Jump relaxing is performed by the linker because jump offsets are not
16779 known before code is located. Therefore, the assembler code generated by the
16780 compiler is the same, but the instructions in the executable may
16781 differ from instructions in the assembler code.
16782
16783 Relaxing must be turned on if linker stubs are needed, see the
16784 section on @code{EIND} and linker stubs below.
16785
16786 @item -mrmw
16787 @opindex mrmw
16788 Assume that the device supports the Read-Modify-Write
16789 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
16790
16791 @item -mshort-calls
16792 @opindex mshort-calls
16793
16794 Assume that @code{RJMP} and @code{RCALL} can target the whole
16795 program memory.
16796
16797 This option is used internally for multilib selection. It is
16798 not an optimization option, and you don't need to set it by hand.
16799
16800 @item -msp8
16801 @opindex msp8
16802 Treat the stack pointer register as an 8-bit register,
16803 i.e.@: assume the high byte of the stack pointer is zero.
16804 In general, you don't need to set this option by hand.
16805
16806 This option is used internally by the compiler to select and
16807 build multilibs for architectures @code{avr2} and @code{avr25}.
16808 These architectures mix devices with and without @code{SPH}.
16809 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
16810 the compiler driver adds or removes this option from the compiler
16811 proper's command line, because the compiler then knows if the device
16812 or architecture has an 8-bit stack pointer and thus no @code{SPH}
16813 register or not.
16814
16815 @item -mstrict-X
16816 @opindex mstrict-X
16817 Use address register @code{X} in a way proposed by the hardware. This means
16818 that @code{X} is only used in indirect, post-increment or
16819 pre-decrement addressing.
16820
16821 Without this option, the @code{X} register may be used in the same way
16822 as @code{Y} or @code{Z} which then is emulated by additional
16823 instructions.
16824 For example, loading a value with @code{X+const} addressing with a
16825 small non-negative @code{const < 64} to a register @var{Rn} is
16826 performed as
16827
16828 @example
16829 adiw r26, const ; X += const
16830 ld @var{Rn}, X ; @var{Rn} = *X
16831 sbiw r26, const ; X -= const
16832 @end example
16833
16834 @item -mtiny-stack
16835 @opindex mtiny-stack
16836 Only change the lower 8@tie{}bits of the stack pointer.
16837
16838 @item -mfract-convert-truncate
16839 @opindex mfract-convert-truncate
16840 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
16841
16842 @item -nodevicelib
16843 @opindex nodevicelib
16844 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
16845
16846 @item -Waddr-space-convert
16847 @opindex Waddr-space-convert
16848 Warn about conversions between address spaces in the case where the
16849 resulting address space is not contained in the incoming address space.
16850
16851 @item -Wmisspelled-isr
16852 @opindex Wmisspelled-isr
16853 Warn if the ISR is misspelled, i.e. without __vector prefix.
16854 Enabled by default.
16855 @end table
16856
16857 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
16858 @cindex @code{EIND}
16859 Pointers in the implementation are 16@tie{}bits wide.
16860 The address of a function or label is represented as word address so
16861 that indirect jumps and calls can target any code address in the
16862 range of 64@tie{}Ki words.
16863
16864 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
16865 bytes of program memory space, there is a special function register called
16866 @code{EIND} that serves as most significant part of the target address
16867 when @code{EICALL} or @code{EIJMP} instructions are used.
16868
16869 Indirect jumps and calls on these devices are handled as follows by
16870 the compiler and are subject to some limitations:
16871
16872 @itemize @bullet
16873
16874 @item
16875 The compiler never sets @code{EIND}.
16876
16877 @item
16878 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
16879 instructions or might read @code{EIND} directly in order to emulate an
16880 indirect call/jump by means of a @code{RET} instruction.
16881
16882 @item
16883 The compiler assumes that @code{EIND} never changes during the startup
16884 code or during the application. In particular, @code{EIND} is not
16885 saved/restored in function or interrupt service routine
16886 prologue/epilogue.
16887
16888 @item
16889 For indirect calls to functions and computed goto, the linker
16890 generates @emph{stubs}. Stubs are jump pads sometimes also called
16891 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
16892 The stub contains a direct jump to the desired address.
16893
16894 @item
16895 Linker relaxation must be turned on so that the linker generates
16896 the stubs correctly in all situations. See the compiler option
16897 @option{-mrelax} and the linker option @option{--relax}.
16898 There are corner cases where the linker is supposed to generate stubs
16899 but aborts without relaxation and without a helpful error message.
16900
16901 @item
16902 The default linker script is arranged for code with @code{EIND = 0}.
16903 If code is supposed to work for a setup with @code{EIND != 0}, a custom
16904 linker script has to be used in order to place the sections whose
16905 name start with @code{.trampolines} into the segment where @code{EIND}
16906 points to.
16907
16908 @item
16909 The startup code from libgcc never sets @code{EIND}.
16910 Notice that startup code is a blend of code from libgcc and AVR-LibC.
16911 For the impact of AVR-LibC on @code{EIND}, see the
16912 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
16913
16914 @item
16915 It is legitimate for user-specific startup code to set up @code{EIND}
16916 early, for example by means of initialization code located in
16917 section @code{.init3}. Such code runs prior to general startup code
16918 that initializes RAM and calls constructors, but after the bit
16919 of startup code from AVR-LibC that sets @code{EIND} to the segment
16920 where the vector table is located.
16921 @example
16922 #include <avr/io.h>
16923
16924 static void
16925 __attribute__((section(".init3"),naked,used,no_instrument_function))
16926 init3_set_eind (void)
16927 @{
16928 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
16929 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
16930 @}
16931 @end example
16932
16933 @noindent
16934 The @code{__trampolines_start} symbol is defined in the linker script.
16935
16936 @item
16937 Stubs are generated automatically by the linker if
16938 the following two conditions are met:
16939 @itemize @minus
16940
16941 @item The address of a label is taken by means of the @code{gs} modifier
16942 (short for @emph{generate stubs}) like so:
16943 @example
16944 LDI r24, lo8(gs(@var{func}))
16945 LDI r25, hi8(gs(@var{func}))
16946 @end example
16947 @item The final location of that label is in a code segment
16948 @emph{outside} the segment where the stubs are located.
16949 @end itemize
16950
16951 @item
16952 The compiler emits such @code{gs} modifiers for code labels in the
16953 following situations:
16954 @itemize @minus
16955 @item Taking address of a function or code label.
16956 @item Computed goto.
16957 @item If prologue-save function is used, see @option{-mcall-prologues}
16958 command-line option.
16959 @item Switch/case dispatch tables. If you do not want such dispatch
16960 tables you can specify the @option{-fno-jump-tables} command-line option.
16961 @item C and C++ constructors/destructors called during startup/shutdown.
16962 @item If the tools hit a @code{gs()} modifier explained above.
16963 @end itemize
16964
16965 @item
16966 Jumping to non-symbolic addresses like so is @emph{not} supported:
16967
16968 @example
16969 int main (void)
16970 @{
16971 /* Call function at word address 0x2 */
16972 return ((int(*)(void)) 0x2)();
16973 @}
16974 @end example
16975
16976 Instead, a stub has to be set up, i.e.@: the function has to be called
16977 through a symbol (@code{func_4} in the example):
16978
16979 @example
16980 int main (void)
16981 @{
16982 extern int func_4 (void);
16983
16984 /* Call function at byte address 0x4 */
16985 return func_4();
16986 @}
16987 @end example
16988
16989 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
16990 Alternatively, @code{func_4} can be defined in the linker script.
16991 @end itemize
16992
16993 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
16994 @cindex @code{RAMPD}
16995 @cindex @code{RAMPX}
16996 @cindex @code{RAMPY}
16997 @cindex @code{RAMPZ}
16998 Some AVR devices support memories larger than the 64@tie{}KiB range
16999 that can be accessed with 16-bit pointers. To access memory locations
17000 outside this 64@tie{}KiB range, the content of a @code{RAMP}
17001 register is used as high part of the address:
17002 The @code{X}, @code{Y}, @code{Z} address register is concatenated
17003 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
17004 register, respectively, to get a wide address. Similarly,
17005 @code{RAMPD} is used together with direct addressing.
17006
17007 @itemize
17008 @item
17009 The startup code initializes the @code{RAMP} special function
17010 registers with zero.
17011
17012 @item
17013 If a @ref{AVR Named Address Spaces,named address space} other than
17014 generic or @code{__flash} is used, then @code{RAMPZ} is set
17015 as needed before the operation.
17016
17017 @item
17018 If the device supports RAM larger than 64@tie{}KiB and the compiler
17019 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
17020 is reset to zero after the operation.
17021
17022 @item
17023 If the device comes with a specific @code{RAMP} register, the ISR
17024 prologue/epilogue saves/restores that SFR and initializes it with
17025 zero in case the ISR code might (implicitly) use it.
17026
17027 @item
17028 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
17029 If you use inline assembler to read from locations outside the
17030 16-bit address range and change one of the @code{RAMP} registers,
17031 you must reset it to zero after the access.
17032
17033 @end itemize
17034
17035 @subsubsection AVR Built-in Macros
17036
17037 GCC defines several built-in macros so that the user code can test
17038 for the presence or absence of features. Almost any of the following
17039 built-in macros are deduced from device capabilities and thus
17040 triggered by the @option{-mmcu=} command-line option.
17041
17042 For even more AVR-specific built-in macros see
17043 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
17044
17045 @table @code
17046
17047 @item __AVR_ARCH__
17048 Build-in macro that resolves to a decimal number that identifies the
17049 architecture and depends on the @option{-mmcu=@var{mcu}} option.
17050 Possible values are:
17051
17052 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
17053 @code{4}, @code{5}, @code{51}, @code{6}
17054
17055 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
17056 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
17057
17058 respectively and
17059
17060 @code{100},
17061 @code{102}, @code{103}, @code{104},
17062 @code{105}, @code{106}, @code{107}
17063
17064 for @var{mcu}=@code{avrtiny},
17065 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
17066 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
17067 If @var{mcu} specifies a device, this built-in macro is set
17068 accordingly. For example, with @option{-mmcu=atmega8} the macro is
17069 defined to @code{4}.
17070
17071 @item __AVR_@var{Device}__
17072 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
17073 the device's name. For example, @option{-mmcu=atmega8} defines the
17074 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
17075 @code{__AVR_ATtiny261A__}, etc.
17076
17077 The built-in macros' names follow
17078 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
17079 the device name as from the AVR user manual. The difference between
17080 @var{Device} in the built-in macro and @var{device} in
17081 @option{-mmcu=@var{device}} is that the latter is always lowercase.
17082
17083 If @var{device} is not a device but only a core architecture like
17084 @samp{avr51}, this macro is not defined.
17085
17086 @item __AVR_DEVICE_NAME__
17087 Setting @option{-mmcu=@var{device}} defines this built-in macro to
17088 the device's name. For example, with @option{-mmcu=atmega8} the macro
17089 is defined to @code{atmega8}.
17090
17091 If @var{device} is not a device but only a core architecture like
17092 @samp{avr51}, this macro is not defined.
17093
17094 @item __AVR_XMEGA__
17095 The device / architecture belongs to the XMEGA family of devices.
17096
17097 @item __AVR_HAVE_ELPM__
17098 The device has the @code{ELPM} instruction.
17099
17100 @item __AVR_HAVE_ELPMX__
17101 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
17102 R@var{n},Z+} instructions.
17103
17104 @item __AVR_HAVE_MOVW__
17105 The device has the @code{MOVW} instruction to perform 16-bit
17106 register-register moves.
17107
17108 @item __AVR_HAVE_LPMX__
17109 The device has the @code{LPM R@var{n},Z} and
17110 @code{LPM R@var{n},Z+} instructions.
17111
17112 @item __AVR_HAVE_MUL__
17113 The device has a hardware multiplier.
17114
17115 @item __AVR_HAVE_JMP_CALL__
17116 The device has the @code{JMP} and @code{CALL} instructions.
17117 This is the case for devices with more than 8@tie{}KiB of program
17118 memory.
17119
17120 @item __AVR_HAVE_EIJMP_EICALL__
17121 @itemx __AVR_3_BYTE_PC__
17122 The device has the @code{EIJMP} and @code{EICALL} instructions.
17123 This is the case for devices with more than 128@tie{}KiB of program memory.
17124 This also means that the program counter
17125 (PC) is 3@tie{}bytes wide.
17126
17127 @item __AVR_2_BYTE_PC__
17128 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
17129 with up to 128@tie{}KiB of program memory.
17130
17131 @item __AVR_HAVE_8BIT_SP__
17132 @itemx __AVR_HAVE_16BIT_SP__
17133 The stack pointer (SP) register is treated as 8-bit respectively
17134 16-bit register by the compiler.
17135 The definition of these macros is affected by @option{-mtiny-stack}.
17136
17137 @item __AVR_HAVE_SPH__
17138 @itemx __AVR_SP8__
17139 The device has the SPH (high part of stack pointer) special function
17140 register or has an 8-bit stack pointer, respectively.
17141 The definition of these macros is affected by @option{-mmcu=} and
17142 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
17143 by @option{-msp8}.
17144
17145 @item __AVR_HAVE_RAMPD__
17146 @itemx __AVR_HAVE_RAMPX__
17147 @itemx __AVR_HAVE_RAMPY__
17148 @itemx __AVR_HAVE_RAMPZ__
17149 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
17150 @code{RAMPZ} special function register, respectively.
17151
17152 @item __NO_INTERRUPTS__
17153 This macro reflects the @option{-mno-interrupts} command-line option.
17154
17155 @item __AVR_ERRATA_SKIP__
17156 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
17157 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
17158 instructions because of a hardware erratum. Skip instructions are
17159 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
17160 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
17161 set.
17162
17163 @item __AVR_ISA_RMW__
17164 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
17165
17166 @item __AVR_SFR_OFFSET__=@var{offset}
17167 Instructions that can address I/O special function registers directly
17168 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
17169 address as if addressed by an instruction to access RAM like @code{LD}
17170 or @code{STS}. This offset depends on the device architecture and has
17171 to be subtracted from the RAM address in order to get the
17172 respective I/O@tie{}address.
17173
17174 @item __AVR_SHORT_CALLS__
17175 The @option{-mshort-calls} command line option is set.
17176
17177 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
17178 Some devices support reading from flash memory by means of @code{LD*}
17179 instructions. The flash memory is seen in the data address space
17180 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
17181 is not defined, this feature is not available. If defined,
17182 the address space is linear and there is no need to put
17183 @code{.rodata} into RAM. This is handled by the default linker
17184 description file, and is currently available for
17185 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
17186 there is no need to use address spaces like @code{__flash} or
17187 features like attribute @code{progmem} and @code{pgm_read_*}.
17188
17189 @item __WITH_AVRLIBC__
17190 The compiler is configured to be used together with AVR-Libc.
17191 See the @option{--with-avrlibc} configure option.
17192
17193 @end table
17194
17195 @node Blackfin Options
17196 @subsection Blackfin Options
17197 @cindex Blackfin Options
17198
17199 @table @gcctabopt
17200 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
17201 @opindex mcpu=
17202 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
17203 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
17204 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
17205 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
17206 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
17207 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
17208 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
17209 @samp{bf561}, @samp{bf592}.
17210
17211 The optional @var{sirevision} specifies the silicon revision of the target
17212 Blackfin processor. Any workarounds available for the targeted silicon revision
17213 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
17214 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
17215 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
17216 hexadecimal digits representing the major and minor numbers in the silicon
17217 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
17218 is not defined. If @var{sirevision} is @samp{any}, the
17219 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
17220 If this optional @var{sirevision} is not used, GCC assumes the latest known
17221 silicon revision of the targeted Blackfin processor.
17222
17223 GCC defines a preprocessor macro for the specified @var{cpu}.
17224 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
17225 provided by libgloss to be linked in if @option{-msim} is not given.
17226
17227 Without this option, @samp{bf532} is used as the processor by default.
17228
17229 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
17230 only the preprocessor macro is defined.
17231
17232 @item -msim
17233 @opindex msim
17234 Specifies that the program will be run on the simulator. This causes
17235 the simulator BSP provided by libgloss to be linked in. This option
17236 has effect only for @samp{bfin-elf} toolchain.
17237 Certain other options, such as @option{-mid-shared-library} and
17238 @option{-mfdpic}, imply @option{-msim}.
17239
17240 @item -momit-leaf-frame-pointer
17241 @opindex momit-leaf-frame-pointer
17242 Don't keep the frame pointer in a register for leaf functions. This
17243 avoids the instructions to save, set up and restore frame pointers and
17244 makes an extra register available in leaf functions.
17245
17246 @item -mspecld-anomaly
17247 @opindex mspecld-anomaly
17248 When enabled, the compiler ensures that the generated code does not
17249 contain speculative loads after jump instructions. If this option is used,
17250 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
17251
17252 @item -mno-specld-anomaly
17253 @opindex mno-specld-anomaly
17254 Don't generate extra code to prevent speculative loads from occurring.
17255
17256 @item -mcsync-anomaly
17257 @opindex mcsync-anomaly
17258 When enabled, the compiler ensures that the generated code does not
17259 contain CSYNC or SSYNC instructions too soon after conditional branches.
17260 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
17261
17262 @item -mno-csync-anomaly
17263 @opindex mno-csync-anomaly
17264 Don't generate extra code to prevent CSYNC or SSYNC instructions from
17265 occurring too soon after a conditional branch.
17266
17267 @item -mlow-64k
17268 @opindex mlow-64k
17269 When enabled, the compiler is free to take advantage of the knowledge that
17270 the entire program fits into the low 64k of memory.
17271
17272 @item -mno-low-64k
17273 @opindex mno-low-64k
17274 Assume that the program is arbitrarily large. This is the default.
17275
17276 @item -mstack-check-l1
17277 @opindex mstack-check-l1
17278 Do stack checking using information placed into L1 scratchpad memory by the
17279 uClinux kernel.
17280
17281 @item -mid-shared-library
17282 @opindex mid-shared-library
17283 Generate code that supports shared libraries via the library ID method.
17284 This allows for execute in place and shared libraries in an environment
17285 without virtual memory management. This option implies @option{-fPIC}.
17286 With a @samp{bfin-elf} target, this option implies @option{-msim}.
17287
17288 @item -mno-id-shared-library
17289 @opindex mno-id-shared-library
17290 Generate code that doesn't assume ID-based shared libraries are being used.
17291 This is the default.
17292
17293 @item -mleaf-id-shared-library
17294 @opindex mleaf-id-shared-library
17295 Generate code that supports shared libraries via the library ID method,
17296 but assumes that this library or executable won't link against any other
17297 ID shared libraries. That allows the compiler to use faster code for jumps
17298 and calls.
17299
17300 @item -mno-leaf-id-shared-library
17301 @opindex mno-leaf-id-shared-library
17302 Do not assume that the code being compiled won't link against any ID shared
17303 libraries. Slower code is generated for jump and call insns.
17304
17305 @item -mshared-library-id=n
17306 @opindex mshared-library-id
17307 Specifies the identification number of the ID-based shared library being
17308 compiled. Specifying a value of 0 generates more compact code; specifying
17309 other values forces the allocation of that number to the current
17310 library but is no more space- or time-efficient than omitting this option.
17311
17312 @item -msep-data
17313 @opindex msep-data
17314 Generate code that allows the data segment to be located in a different
17315 area of memory from the text segment. This allows for execute in place in
17316 an environment without virtual memory management by eliminating relocations
17317 against the text section.
17318
17319 @item -mno-sep-data
17320 @opindex mno-sep-data
17321 Generate code that assumes that the data segment follows the text segment.
17322 This is the default.
17323
17324 @item -mlong-calls
17325 @itemx -mno-long-calls
17326 @opindex mlong-calls
17327 @opindex mno-long-calls
17328 Tells the compiler to perform function calls by first loading the
17329 address of the function into a register and then performing a subroutine
17330 call on this register. This switch is needed if the target function
17331 lies outside of the 24-bit addressing range of the offset-based
17332 version of subroutine call instruction.
17333
17334 This feature is not enabled by default. Specifying
17335 @option{-mno-long-calls} restores the default behavior. Note these
17336 switches have no effect on how the compiler generates code to handle
17337 function calls via function pointers.
17338
17339 @item -mfast-fp
17340 @opindex mfast-fp
17341 Link with the fast floating-point library. This library relaxes some of
17342 the IEEE floating-point standard's rules for checking inputs against
17343 Not-a-Number (NAN), in the interest of performance.
17344
17345 @item -minline-plt
17346 @opindex minline-plt
17347 Enable inlining of PLT entries in function calls to functions that are
17348 not known to bind locally. It has no effect without @option{-mfdpic}.
17349
17350 @item -mmulticore
17351 @opindex mmulticore
17352 Build a standalone application for multicore Blackfin processors.
17353 This option causes proper start files and link scripts supporting
17354 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
17355 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
17356
17357 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
17358 selects the one-application-per-core programming model. Without
17359 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
17360 programming model is used. In this model, the main function of Core B
17361 should be named as @code{coreb_main}.
17362
17363 If this option is not used, the single-core application programming
17364 model is used.
17365
17366 @item -mcorea
17367 @opindex mcorea
17368 Build a standalone application for Core A of BF561 when using
17369 the one-application-per-core programming model. Proper start files
17370 and link scripts are used to support Core A, and the macro
17371 @code{__BFIN_COREA} is defined.
17372 This option can only be used in conjunction with @option{-mmulticore}.
17373
17374 @item -mcoreb
17375 @opindex mcoreb
17376 Build a standalone application for Core B of BF561 when using
17377 the one-application-per-core programming model. Proper start files
17378 and link scripts are used to support Core B, and the macro
17379 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
17380 should be used instead of @code{main}.
17381 This option can only be used in conjunction with @option{-mmulticore}.
17382
17383 @item -msdram
17384 @opindex msdram
17385 Build a standalone application for SDRAM. Proper start files and
17386 link scripts are used to put the application into SDRAM, and the macro
17387 @code{__BFIN_SDRAM} is defined.
17388 The loader should initialize SDRAM before loading the application.
17389
17390 @item -micplb
17391 @opindex micplb
17392 Assume that ICPLBs are enabled at run time. This has an effect on certain
17393 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
17394 are enabled; for standalone applications the default is off.
17395 @end table
17396
17397 @node C6X Options
17398 @subsection C6X Options
17399 @cindex C6X Options
17400
17401 @table @gcctabopt
17402 @item -march=@var{name}
17403 @opindex march
17404 This specifies the name of the target architecture. GCC uses this
17405 name to determine what kind of instructions it can emit when generating
17406 assembly code. Permissible names are: @samp{c62x},
17407 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
17408
17409 @item -mbig-endian
17410 @opindex mbig-endian
17411 Generate code for a big-endian target.
17412
17413 @item -mlittle-endian
17414 @opindex mlittle-endian
17415 Generate code for a little-endian target. This is the default.
17416
17417 @item -msim
17418 @opindex msim
17419 Choose startup files and linker script suitable for the simulator.
17420
17421 @item -msdata=default
17422 @opindex msdata=default
17423 Put small global and static data in the @code{.neardata} section,
17424 which is pointed to by register @code{B14}. Put small uninitialized
17425 global and static data in the @code{.bss} section, which is adjacent
17426 to the @code{.neardata} section. Put small read-only data into the
17427 @code{.rodata} section. The corresponding sections used for large
17428 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
17429
17430 @item -msdata=all
17431 @opindex msdata=all
17432 Put all data, not just small objects, into the sections reserved for
17433 small data, and use addressing relative to the @code{B14} register to
17434 access them.
17435
17436 @item -msdata=none
17437 @opindex msdata=none
17438 Make no use of the sections reserved for small data, and use absolute
17439 addresses to access all data. Put all initialized global and static
17440 data in the @code{.fardata} section, and all uninitialized data in the
17441 @code{.far} section. Put all constant data into the @code{.const}
17442 section.
17443 @end table
17444
17445 @node CRIS Options
17446 @subsection CRIS Options
17447 @cindex CRIS Options
17448
17449 These options are defined specifically for the CRIS ports.
17450
17451 @table @gcctabopt
17452 @item -march=@var{architecture-type}
17453 @itemx -mcpu=@var{architecture-type}
17454 @opindex march
17455 @opindex mcpu
17456 Generate code for the specified architecture. The choices for
17457 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
17458 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
17459 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
17460 @samp{v10}.
17461
17462 @item -mtune=@var{architecture-type}
17463 @opindex mtune
17464 Tune to @var{architecture-type} everything applicable about the generated
17465 code, except for the ABI and the set of available instructions. The
17466 choices for @var{architecture-type} are the same as for
17467 @option{-march=@var{architecture-type}}.
17468
17469 @item -mmax-stack-frame=@var{n}
17470 @opindex mmax-stack-frame
17471 Warn when the stack frame of a function exceeds @var{n} bytes.
17472
17473 @item -metrax4
17474 @itemx -metrax100
17475 @opindex metrax4
17476 @opindex metrax100
17477 The options @option{-metrax4} and @option{-metrax100} are synonyms for
17478 @option{-march=v3} and @option{-march=v8} respectively.
17479
17480 @item -mmul-bug-workaround
17481 @itemx -mno-mul-bug-workaround
17482 @opindex mmul-bug-workaround
17483 @opindex mno-mul-bug-workaround
17484 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
17485 models where it applies. This option is active by default.
17486
17487 @item -mpdebug
17488 @opindex mpdebug
17489 Enable CRIS-specific verbose debug-related information in the assembly
17490 code. This option also has the effect of turning off the @samp{#NO_APP}
17491 formatted-code indicator to the assembler at the beginning of the
17492 assembly file.
17493
17494 @item -mcc-init
17495 @opindex mcc-init
17496 Do not use condition-code results from previous instruction; always emit
17497 compare and test instructions before use of condition codes.
17498
17499 @item -mno-side-effects
17500 @opindex mno-side-effects
17501 Do not emit instructions with side effects in addressing modes other than
17502 post-increment.
17503
17504 @item -mstack-align
17505 @itemx -mno-stack-align
17506 @itemx -mdata-align
17507 @itemx -mno-data-align
17508 @itemx -mconst-align
17509 @itemx -mno-const-align
17510 @opindex mstack-align
17511 @opindex mno-stack-align
17512 @opindex mdata-align
17513 @opindex mno-data-align
17514 @opindex mconst-align
17515 @opindex mno-const-align
17516 These options (@samp{no-} options) arrange (eliminate arrangements) for the
17517 stack frame, individual data and constants to be aligned for the maximum
17518 single data access size for the chosen CPU model. The default is to
17519 arrange for 32-bit alignment. ABI details such as structure layout are
17520 not affected by these options.
17521
17522 @item -m32-bit
17523 @itemx -m16-bit
17524 @itemx -m8-bit
17525 @opindex m32-bit
17526 @opindex m16-bit
17527 @opindex m8-bit
17528 Similar to the stack- data- and const-align options above, these options
17529 arrange for stack frame, writable data and constants to all be 32-bit,
17530 16-bit or 8-bit aligned. The default is 32-bit alignment.
17531
17532 @item -mno-prologue-epilogue
17533 @itemx -mprologue-epilogue
17534 @opindex mno-prologue-epilogue
17535 @opindex mprologue-epilogue
17536 With @option{-mno-prologue-epilogue}, the normal function prologue and
17537 epilogue which set up the stack frame are omitted and no return
17538 instructions or return sequences are generated in the code. Use this
17539 option only together with visual inspection of the compiled code: no
17540 warnings or errors are generated when call-saved registers must be saved,
17541 or storage for local variables needs to be allocated.
17542
17543 @item -mno-gotplt
17544 @itemx -mgotplt
17545 @opindex mno-gotplt
17546 @opindex mgotplt
17547 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
17548 instruction sequences that load addresses for functions from the PLT part
17549 of the GOT rather than (traditional on other architectures) calls to the
17550 PLT@. The default is @option{-mgotplt}.
17551
17552 @item -melf
17553 @opindex melf
17554 Legacy no-op option only recognized with the cris-axis-elf and
17555 cris-axis-linux-gnu targets.
17556
17557 @item -mlinux
17558 @opindex mlinux
17559 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
17560
17561 @item -sim
17562 @opindex sim
17563 This option, recognized for the cris-axis-elf, arranges
17564 to link with input-output functions from a simulator library. Code,
17565 initialized data and zero-initialized data are allocated consecutively.
17566
17567 @item -sim2
17568 @opindex sim2
17569 Like @option{-sim}, but pass linker options to locate initialized data at
17570 0x40000000 and zero-initialized data at 0x80000000.
17571 @end table
17572
17573 @node CR16 Options
17574 @subsection CR16 Options
17575 @cindex CR16 Options
17576
17577 These options are defined specifically for the CR16 ports.
17578
17579 @table @gcctabopt
17580
17581 @item -mmac
17582 @opindex mmac
17583 Enable the use of multiply-accumulate instructions. Disabled by default.
17584
17585 @item -mcr16cplus
17586 @itemx -mcr16c
17587 @opindex mcr16cplus
17588 @opindex mcr16c
17589 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
17590 is default.
17591
17592 @item -msim
17593 @opindex msim
17594 Links the library libsim.a which is in compatible with simulator. Applicable
17595 to ELF compiler only.
17596
17597 @item -mint32
17598 @opindex mint32
17599 Choose integer type as 32-bit wide.
17600
17601 @item -mbit-ops
17602 @opindex mbit-ops
17603 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
17604
17605 @item -mdata-model=@var{model}
17606 @opindex mdata-model
17607 Choose a data model. The choices for @var{model} are @samp{near},
17608 @samp{far} or @samp{medium}. @samp{medium} is default.
17609 However, @samp{far} is not valid with @option{-mcr16c}, as the
17610 CR16C architecture does not support the far data model.
17611 @end table
17612
17613 @node Darwin Options
17614 @subsection Darwin Options
17615 @cindex Darwin options
17616
17617 These options are defined for all architectures running the Darwin operating
17618 system.
17619
17620 FSF GCC on Darwin does not create ``fat'' object files; it creates
17621 an object file for the single architecture that GCC was built to
17622 target. Apple's GCC on Darwin does create ``fat'' files if multiple
17623 @option{-arch} options are used; it does so by running the compiler or
17624 linker multiple times and joining the results together with
17625 @file{lipo}.
17626
17627 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
17628 @samp{i686}) is determined by the flags that specify the ISA
17629 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
17630 @option{-force_cpusubtype_ALL} option can be used to override this.
17631
17632 The Darwin tools vary in their behavior when presented with an ISA
17633 mismatch. The assembler, @file{as}, only permits instructions to
17634 be used that are valid for the subtype of the file it is generating,
17635 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
17636 The linker for shared libraries, @file{/usr/bin/libtool}, fails
17637 and prints an error if asked to create a shared library with a less
17638 restrictive subtype than its input files (for instance, trying to put
17639 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
17640 for executables, @command{ld}, quietly gives the executable the most
17641 restrictive subtype of any of its input files.
17642
17643 @table @gcctabopt
17644 @item -F@var{dir}
17645 @opindex F
17646 Add the framework directory @var{dir} to the head of the list of
17647 directories to be searched for header files. These directories are
17648 interleaved with those specified by @option{-I} options and are
17649 scanned in a left-to-right order.
17650
17651 A framework directory is a directory with frameworks in it. A
17652 framework is a directory with a @file{Headers} and/or
17653 @file{PrivateHeaders} directory contained directly in it that ends
17654 in @file{.framework}. The name of a framework is the name of this
17655 directory excluding the @file{.framework}. Headers associated with
17656 the framework are found in one of those two directories, with
17657 @file{Headers} being searched first. A subframework is a framework
17658 directory that is in a framework's @file{Frameworks} directory.
17659 Includes of subframework headers can only appear in a header of a
17660 framework that contains the subframework, or in a sibling subframework
17661 header. Two subframeworks are siblings if they occur in the same
17662 framework. A subframework should not have the same name as a
17663 framework; a warning is issued if this is violated. Currently a
17664 subframework cannot have subframeworks; in the future, the mechanism
17665 may be extended to support this. The standard frameworks can be found
17666 in @file{/System/Library/Frameworks} and
17667 @file{/Library/Frameworks}. An example include looks like
17668 @code{#include <Framework/header.h>}, where @file{Framework} denotes
17669 the name of the framework and @file{header.h} is found in the
17670 @file{PrivateHeaders} or @file{Headers} directory.
17671
17672 @item -iframework@var{dir}
17673 @opindex iframework
17674 Like @option{-F} except the directory is a treated as a system
17675 directory. The main difference between this @option{-iframework} and
17676 @option{-F} is that with @option{-iframework} the compiler does not
17677 warn about constructs contained within header files found via
17678 @var{dir}. This option is valid only for the C family of languages.
17679
17680 @item -gused
17681 @opindex gused
17682 Emit debugging information for symbols that are used. For stabs
17683 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
17684 This is by default ON@.
17685
17686 @item -gfull
17687 @opindex gfull
17688 Emit debugging information for all symbols and types.
17689
17690 @item -mmacosx-version-min=@var{version}
17691 The earliest version of MacOS X that this executable will run on
17692 is @var{version}. Typical values of @var{version} include @code{10.1},
17693 @code{10.2}, and @code{10.3.9}.
17694
17695 If the compiler was built to use the system's headers by default,
17696 then the default for this option is the system version on which the
17697 compiler is running, otherwise the default is to make choices that
17698 are compatible with as many systems and code bases as possible.
17699
17700 @item -mkernel
17701 @opindex mkernel
17702 Enable kernel development mode. The @option{-mkernel} option sets
17703 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
17704 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
17705 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
17706 applicable. This mode also sets @option{-mno-altivec},
17707 @option{-msoft-float}, @option{-fno-builtin} and
17708 @option{-mlong-branch} for PowerPC targets.
17709
17710 @item -mone-byte-bool
17711 @opindex mone-byte-bool
17712 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
17713 By default @code{sizeof(bool)} is @code{4} when compiling for
17714 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
17715 option has no effect on x86.
17716
17717 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
17718 to generate code that is not binary compatible with code generated
17719 without that switch. Using this switch may require recompiling all
17720 other modules in a program, including system libraries. Use this
17721 switch to conform to a non-default data model.
17722
17723 @item -mfix-and-continue
17724 @itemx -ffix-and-continue
17725 @itemx -findirect-data
17726 @opindex mfix-and-continue
17727 @opindex ffix-and-continue
17728 @opindex findirect-data
17729 Generate code suitable for fast turnaround development, such as to
17730 allow GDB to dynamically load @file{.o} files into already-running
17731 programs. @option{-findirect-data} and @option{-ffix-and-continue}
17732 are provided for backwards compatibility.
17733
17734 @item -all_load
17735 @opindex all_load
17736 Loads all members of static archive libraries.
17737 See man ld(1) for more information.
17738
17739 @item -arch_errors_fatal
17740 @opindex arch_errors_fatal
17741 Cause the errors having to do with files that have the wrong architecture
17742 to be fatal.
17743
17744 @item -bind_at_load
17745 @opindex bind_at_load
17746 Causes the output file to be marked such that the dynamic linker will
17747 bind all undefined references when the file is loaded or launched.
17748
17749 @item -bundle
17750 @opindex bundle
17751 Produce a Mach-o bundle format file.
17752 See man ld(1) for more information.
17753
17754 @item -bundle_loader @var{executable}
17755 @opindex bundle_loader
17756 This option specifies the @var{executable} that will load the build
17757 output file being linked. See man ld(1) for more information.
17758
17759 @item -dynamiclib
17760 @opindex dynamiclib
17761 When passed this option, GCC produces a dynamic library instead of
17762 an executable when linking, using the Darwin @file{libtool} command.
17763
17764 @item -force_cpusubtype_ALL
17765 @opindex force_cpusubtype_ALL
17766 This causes GCC's output file to have the @samp{ALL} subtype, instead of
17767 one controlled by the @option{-mcpu} or @option{-march} option.
17768
17769 @item -allowable_client @var{client_name}
17770 @itemx -client_name
17771 @itemx -compatibility_version
17772 @itemx -current_version
17773 @itemx -dead_strip
17774 @itemx -dependency-file
17775 @itemx -dylib_file
17776 @itemx -dylinker_install_name
17777 @itemx -dynamic
17778 @itemx -exported_symbols_list
17779 @itemx -filelist
17780 @need 800
17781 @itemx -flat_namespace
17782 @itemx -force_flat_namespace
17783 @itemx -headerpad_max_install_names
17784 @itemx -image_base
17785 @itemx -init
17786 @itemx -install_name
17787 @itemx -keep_private_externs
17788 @itemx -multi_module
17789 @itemx -multiply_defined
17790 @itemx -multiply_defined_unused
17791 @need 800
17792 @itemx -noall_load
17793 @itemx -no_dead_strip_inits_and_terms
17794 @itemx -nofixprebinding
17795 @itemx -nomultidefs
17796 @itemx -noprebind
17797 @itemx -noseglinkedit
17798 @itemx -pagezero_size
17799 @itemx -prebind
17800 @itemx -prebind_all_twolevel_modules
17801 @itemx -private_bundle
17802 @need 800
17803 @itemx -read_only_relocs
17804 @itemx -sectalign
17805 @itemx -sectobjectsymbols
17806 @itemx -whyload
17807 @itemx -seg1addr
17808 @itemx -sectcreate
17809 @itemx -sectobjectsymbols
17810 @itemx -sectorder
17811 @itemx -segaddr
17812 @itemx -segs_read_only_addr
17813 @need 800
17814 @itemx -segs_read_write_addr
17815 @itemx -seg_addr_table
17816 @itemx -seg_addr_table_filename
17817 @itemx -seglinkedit
17818 @itemx -segprot
17819 @itemx -segs_read_only_addr
17820 @itemx -segs_read_write_addr
17821 @itemx -single_module
17822 @itemx -static
17823 @itemx -sub_library
17824 @need 800
17825 @itemx -sub_umbrella
17826 @itemx -twolevel_namespace
17827 @itemx -umbrella
17828 @itemx -undefined
17829 @itemx -unexported_symbols_list
17830 @itemx -weak_reference_mismatches
17831 @itemx -whatsloaded
17832 @opindex allowable_client
17833 @opindex client_name
17834 @opindex compatibility_version
17835 @opindex current_version
17836 @opindex dead_strip
17837 @opindex dependency-file
17838 @opindex dylib_file
17839 @opindex dylinker_install_name
17840 @opindex dynamic
17841 @opindex exported_symbols_list
17842 @opindex filelist
17843 @opindex flat_namespace
17844 @opindex force_flat_namespace
17845 @opindex headerpad_max_install_names
17846 @opindex image_base
17847 @opindex init
17848 @opindex install_name
17849 @opindex keep_private_externs
17850 @opindex multi_module
17851 @opindex multiply_defined
17852 @opindex multiply_defined_unused
17853 @opindex noall_load
17854 @opindex no_dead_strip_inits_and_terms
17855 @opindex nofixprebinding
17856 @opindex nomultidefs
17857 @opindex noprebind
17858 @opindex noseglinkedit
17859 @opindex pagezero_size
17860 @opindex prebind
17861 @opindex prebind_all_twolevel_modules
17862 @opindex private_bundle
17863 @opindex read_only_relocs
17864 @opindex sectalign
17865 @opindex sectobjectsymbols
17866 @opindex whyload
17867 @opindex seg1addr
17868 @opindex sectcreate
17869 @opindex sectobjectsymbols
17870 @opindex sectorder
17871 @opindex segaddr
17872 @opindex segs_read_only_addr
17873 @opindex segs_read_write_addr
17874 @opindex seg_addr_table
17875 @opindex seg_addr_table_filename
17876 @opindex seglinkedit
17877 @opindex segprot
17878 @opindex segs_read_only_addr
17879 @opindex segs_read_write_addr
17880 @opindex single_module
17881 @opindex static
17882 @opindex sub_library
17883 @opindex sub_umbrella
17884 @opindex twolevel_namespace
17885 @opindex umbrella
17886 @opindex undefined
17887 @opindex unexported_symbols_list
17888 @opindex weak_reference_mismatches
17889 @opindex whatsloaded
17890 These options are passed to the Darwin linker. The Darwin linker man page
17891 describes them in detail.
17892 @end table
17893
17894 @node DEC Alpha Options
17895 @subsection DEC Alpha Options
17896
17897 These @samp{-m} options are defined for the DEC Alpha implementations:
17898
17899 @table @gcctabopt
17900 @item -mno-soft-float
17901 @itemx -msoft-float
17902 @opindex mno-soft-float
17903 @opindex msoft-float
17904 Use (do not use) the hardware floating-point instructions for
17905 floating-point operations. When @option{-msoft-float} is specified,
17906 functions in @file{libgcc.a} are used to perform floating-point
17907 operations. Unless they are replaced by routines that emulate the
17908 floating-point operations, or compiled in such a way as to call such
17909 emulations routines, these routines issue floating-point
17910 operations. If you are compiling for an Alpha without floating-point
17911 operations, you must ensure that the library is built so as not to call
17912 them.
17913
17914 Note that Alpha implementations without floating-point operations are
17915 required to have floating-point registers.
17916
17917 @item -mfp-reg
17918 @itemx -mno-fp-regs
17919 @opindex mfp-reg
17920 @opindex mno-fp-regs
17921 Generate code that uses (does not use) the floating-point register set.
17922 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
17923 register set is not used, floating-point operands are passed in integer
17924 registers as if they were integers and floating-point results are passed
17925 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
17926 so any function with a floating-point argument or return value called by code
17927 compiled with @option{-mno-fp-regs} must also be compiled with that
17928 option.
17929
17930 A typical use of this option is building a kernel that does not use,
17931 and hence need not save and restore, any floating-point registers.
17932
17933 @item -mieee
17934 @opindex mieee
17935 The Alpha architecture implements floating-point hardware optimized for
17936 maximum performance. It is mostly compliant with the IEEE floating-point
17937 standard. However, for full compliance, software assistance is
17938 required. This option generates code fully IEEE-compliant code
17939 @emph{except} that the @var{inexact-flag} is not maintained (see below).
17940 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
17941 defined during compilation. The resulting code is less efficient but is
17942 able to correctly support denormalized numbers and exceptional IEEE
17943 values such as not-a-number and plus/minus infinity. Other Alpha
17944 compilers call this option @option{-ieee_with_no_inexact}.
17945
17946 @item -mieee-with-inexact
17947 @opindex mieee-with-inexact
17948 This is like @option{-mieee} except the generated code also maintains
17949 the IEEE @var{inexact-flag}. Turning on this option causes the
17950 generated code to implement fully-compliant IEEE math. In addition to
17951 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
17952 macro. On some Alpha implementations the resulting code may execute
17953 significantly slower than the code generated by default. Since there is
17954 very little code that depends on the @var{inexact-flag}, you should
17955 normally not specify this option. Other Alpha compilers call this
17956 option @option{-ieee_with_inexact}.
17957
17958 @item -mfp-trap-mode=@var{trap-mode}
17959 @opindex mfp-trap-mode
17960 This option controls what floating-point related traps are enabled.
17961 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
17962 The trap mode can be set to one of four values:
17963
17964 @table @samp
17965 @item n
17966 This is the default (normal) setting. The only traps that are enabled
17967 are the ones that cannot be disabled in software (e.g., division by zero
17968 trap).
17969
17970 @item u
17971 In addition to the traps enabled by @samp{n}, underflow traps are enabled
17972 as well.
17973
17974 @item su
17975 Like @samp{u}, but the instructions are marked to be safe for software
17976 completion (see Alpha architecture manual for details).
17977
17978 @item sui
17979 Like @samp{su}, but inexact traps are enabled as well.
17980 @end table
17981
17982 @item -mfp-rounding-mode=@var{rounding-mode}
17983 @opindex mfp-rounding-mode
17984 Selects the IEEE rounding mode. Other Alpha compilers call this option
17985 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
17986 of:
17987
17988 @table @samp
17989 @item n
17990 Normal IEEE rounding mode. Floating-point numbers are rounded towards
17991 the nearest machine number or towards the even machine number in case
17992 of a tie.
17993
17994 @item m
17995 Round towards minus infinity.
17996
17997 @item c
17998 Chopped rounding mode. Floating-point numbers are rounded towards zero.
17999
18000 @item d
18001 Dynamic rounding mode. A field in the floating-point control register
18002 (@var{fpcr}, see Alpha architecture reference manual) controls the
18003 rounding mode in effect. The C library initializes this register for
18004 rounding towards plus infinity. Thus, unless your program modifies the
18005 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
18006 @end table
18007
18008 @item -mtrap-precision=@var{trap-precision}
18009 @opindex mtrap-precision
18010 In the Alpha architecture, floating-point traps are imprecise. This
18011 means without software assistance it is impossible to recover from a
18012 floating trap and program execution normally needs to be terminated.
18013 GCC can generate code that can assist operating system trap handlers
18014 in determining the exact location that caused a floating-point trap.
18015 Depending on the requirements of an application, different levels of
18016 precisions can be selected:
18017
18018 @table @samp
18019 @item p
18020 Program precision. This option is the default and means a trap handler
18021 can only identify which program caused a floating-point exception.
18022
18023 @item f
18024 Function precision. The trap handler can determine the function that
18025 caused a floating-point exception.
18026
18027 @item i
18028 Instruction precision. The trap handler can determine the exact
18029 instruction that caused a floating-point exception.
18030 @end table
18031
18032 Other Alpha compilers provide the equivalent options called
18033 @option{-scope_safe} and @option{-resumption_safe}.
18034
18035 @item -mieee-conformant
18036 @opindex mieee-conformant
18037 This option marks the generated code as IEEE conformant. You must not
18038 use this option unless you also specify @option{-mtrap-precision=i} and either
18039 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
18040 is to emit the line @samp{.eflag 48} in the function prologue of the
18041 generated assembly file.
18042
18043 @item -mbuild-constants
18044 @opindex mbuild-constants
18045 Normally GCC examines a 32- or 64-bit integer constant to
18046 see if it can construct it from smaller constants in two or three
18047 instructions. If it cannot, it outputs the constant as a literal and
18048 generates code to load it from the data segment at run time.
18049
18050 Use this option to require GCC to construct @emph{all} integer constants
18051 using code, even if it takes more instructions (the maximum is six).
18052
18053 You typically use this option to build a shared library dynamic
18054 loader. Itself a shared library, it must relocate itself in memory
18055 before it can find the variables and constants in its own data segment.
18056
18057 @item -mbwx
18058 @itemx -mno-bwx
18059 @itemx -mcix
18060 @itemx -mno-cix
18061 @itemx -mfix
18062 @itemx -mno-fix
18063 @itemx -mmax
18064 @itemx -mno-max
18065 @opindex mbwx
18066 @opindex mno-bwx
18067 @opindex mcix
18068 @opindex mno-cix
18069 @opindex mfix
18070 @opindex mno-fix
18071 @opindex mmax
18072 @opindex mno-max
18073 Indicate whether GCC should generate code to use the optional BWX,
18074 CIX, FIX and MAX instruction sets. The default is to use the instruction
18075 sets supported by the CPU type specified via @option{-mcpu=} option or that
18076 of the CPU on which GCC was built if none is specified.
18077
18078 @item -mfloat-vax
18079 @itemx -mfloat-ieee
18080 @opindex mfloat-vax
18081 @opindex mfloat-ieee
18082 Generate code that uses (does not use) VAX F and G floating-point
18083 arithmetic instead of IEEE single and double precision.
18084
18085 @item -mexplicit-relocs
18086 @itemx -mno-explicit-relocs
18087 @opindex mexplicit-relocs
18088 @opindex mno-explicit-relocs
18089 Older Alpha assemblers provided no way to generate symbol relocations
18090 except via assembler macros. Use of these macros does not allow
18091 optimal instruction scheduling. GNU binutils as of version 2.12
18092 supports a new syntax that allows the compiler to explicitly mark
18093 which relocations should apply to which instructions. This option
18094 is mostly useful for debugging, as GCC detects the capabilities of
18095 the assembler when it is built and sets the default accordingly.
18096
18097 @item -msmall-data
18098 @itemx -mlarge-data
18099 @opindex msmall-data
18100 @opindex mlarge-data
18101 When @option{-mexplicit-relocs} is in effect, static data is
18102 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
18103 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
18104 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
18105 16-bit relocations off of the @code{$gp} register. This limits the
18106 size of the small data area to 64KB, but allows the variables to be
18107 directly accessed via a single instruction.
18108
18109 The default is @option{-mlarge-data}. With this option the data area
18110 is limited to just below 2GB@. Programs that require more than 2GB of
18111 data must use @code{malloc} or @code{mmap} to allocate the data in the
18112 heap instead of in the program's data segment.
18113
18114 When generating code for shared libraries, @option{-fpic} implies
18115 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
18116
18117 @item -msmall-text
18118 @itemx -mlarge-text
18119 @opindex msmall-text
18120 @opindex mlarge-text
18121 When @option{-msmall-text} is used, the compiler assumes that the
18122 code of the entire program (or shared library) fits in 4MB, and is
18123 thus reachable with a branch instruction. When @option{-msmall-data}
18124 is used, the compiler can assume that all local symbols share the
18125 same @code{$gp} value, and thus reduce the number of instructions
18126 required for a function call from 4 to 1.
18127
18128 The default is @option{-mlarge-text}.
18129
18130 @item -mcpu=@var{cpu_type}
18131 @opindex mcpu
18132 Set the instruction set and instruction scheduling parameters for
18133 machine type @var{cpu_type}. You can specify either the @samp{EV}
18134 style name or the corresponding chip number. GCC supports scheduling
18135 parameters for the EV4, EV5 and EV6 family of processors and
18136 chooses the default values for the instruction set from the processor
18137 you specify. If you do not specify a processor type, GCC defaults
18138 to the processor on which the compiler was built.
18139
18140 Supported values for @var{cpu_type} are
18141
18142 @table @samp
18143 @item ev4
18144 @itemx ev45
18145 @itemx 21064
18146 Schedules as an EV4 and has no instruction set extensions.
18147
18148 @item ev5
18149 @itemx 21164
18150 Schedules as an EV5 and has no instruction set extensions.
18151
18152 @item ev56
18153 @itemx 21164a
18154 Schedules as an EV5 and supports the BWX extension.
18155
18156 @item pca56
18157 @itemx 21164pc
18158 @itemx 21164PC
18159 Schedules as an EV5 and supports the BWX and MAX extensions.
18160
18161 @item ev6
18162 @itemx 21264
18163 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
18164
18165 @item ev67
18166 @itemx 21264a
18167 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
18168 @end table
18169
18170 Native toolchains also support the value @samp{native},
18171 which selects the best architecture option for the host processor.
18172 @option{-mcpu=native} has no effect if GCC does not recognize
18173 the processor.
18174
18175 @item -mtune=@var{cpu_type}
18176 @opindex mtune
18177 Set only the instruction scheduling parameters for machine type
18178 @var{cpu_type}. The instruction set is not changed.
18179
18180 Native toolchains also support the value @samp{native},
18181 which selects the best architecture option for the host processor.
18182 @option{-mtune=native} has no effect if GCC does not recognize
18183 the processor.
18184
18185 @item -mmemory-latency=@var{time}
18186 @opindex mmemory-latency
18187 Sets the latency the scheduler should assume for typical memory
18188 references as seen by the application. This number is highly
18189 dependent on the memory access patterns used by the application
18190 and the size of the external cache on the machine.
18191
18192 Valid options for @var{time} are
18193
18194 @table @samp
18195 @item @var{number}
18196 A decimal number representing clock cycles.
18197
18198 @item L1
18199 @itemx L2
18200 @itemx L3
18201 @itemx main
18202 The compiler contains estimates of the number of clock cycles for
18203 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
18204 (also called Dcache, Scache, and Bcache), as well as to main memory.
18205 Note that L3 is only valid for EV5.
18206
18207 @end table
18208 @end table
18209
18210 @node FR30 Options
18211 @subsection FR30 Options
18212 @cindex FR30 Options
18213
18214 These options are defined specifically for the FR30 port.
18215
18216 @table @gcctabopt
18217
18218 @item -msmall-model
18219 @opindex msmall-model
18220 Use the small address space model. This can produce smaller code, but
18221 it does assume that all symbolic values and addresses fit into a
18222 20-bit range.
18223
18224 @item -mno-lsim
18225 @opindex mno-lsim
18226 Assume that runtime support has been provided and so there is no need
18227 to include the simulator library (@file{libsim.a}) on the linker
18228 command line.
18229
18230 @end table
18231
18232 @node FT32 Options
18233 @subsection FT32 Options
18234 @cindex FT32 Options
18235
18236 These options are defined specifically for the FT32 port.
18237
18238 @table @gcctabopt
18239
18240 @item -msim
18241 @opindex msim
18242 Specifies that the program will be run on the simulator. This causes
18243 an alternate runtime startup and library to be linked.
18244 You must not use this option when generating programs that will run on
18245 real hardware; you must provide your own runtime library for whatever
18246 I/O functions are needed.
18247
18248 @item -mlra
18249 @opindex mlra
18250 Enable Local Register Allocation. This is still experimental for FT32,
18251 so by default the compiler uses standard reload.
18252
18253 @item -mnodiv
18254 @opindex mnodiv
18255 Do not use div and mod instructions.
18256
18257 @item -mft32b
18258 @opindex mft32b
18259 Enable use of the extended instructions of the FT32B processor.
18260
18261 @item -mcompress
18262 @opindex mcompress
18263 Compress all code using the Ft32B code compression scheme.
18264
18265 @item -mnopm
18266 @opindex mnopm
18267 Do not generate code that reads program memory.
18268
18269 @end table
18270
18271 @node FRV Options
18272 @subsection FRV Options
18273 @cindex FRV Options
18274
18275 @table @gcctabopt
18276 @item -mgpr-32
18277 @opindex mgpr-32
18278
18279 Only use the first 32 general-purpose registers.
18280
18281 @item -mgpr-64
18282 @opindex mgpr-64
18283
18284 Use all 64 general-purpose registers.
18285
18286 @item -mfpr-32
18287 @opindex mfpr-32
18288
18289 Use only the first 32 floating-point registers.
18290
18291 @item -mfpr-64
18292 @opindex mfpr-64
18293
18294 Use all 64 floating-point registers.
18295
18296 @item -mhard-float
18297 @opindex mhard-float
18298
18299 Use hardware instructions for floating-point operations.
18300
18301 @item -msoft-float
18302 @opindex msoft-float
18303
18304 Use library routines for floating-point operations.
18305
18306 @item -malloc-cc
18307 @opindex malloc-cc
18308
18309 Dynamically allocate condition code registers.
18310
18311 @item -mfixed-cc
18312 @opindex mfixed-cc
18313
18314 Do not try to dynamically allocate condition code registers, only
18315 use @code{icc0} and @code{fcc0}.
18316
18317 @item -mdword
18318 @opindex mdword
18319
18320 Change ABI to use double word insns.
18321
18322 @item -mno-dword
18323 @opindex mno-dword
18324
18325 Do not use double word instructions.
18326
18327 @item -mdouble
18328 @opindex mdouble
18329
18330 Use floating-point double instructions.
18331
18332 @item -mno-double
18333 @opindex mno-double
18334
18335 Do not use floating-point double instructions.
18336
18337 @item -mmedia
18338 @opindex mmedia
18339
18340 Use media instructions.
18341
18342 @item -mno-media
18343 @opindex mno-media
18344
18345 Do not use media instructions.
18346
18347 @item -mmuladd
18348 @opindex mmuladd
18349
18350 Use multiply and add/subtract instructions.
18351
18352 @item -mno-muladd
18353 @opindex mno-muladd
18354
18355 Do not use multiply and add/subtract instructions.
18356
18357 @item -mfdpic
18358 @opindex mfdpic
18359
18360 Select the FDPIC ABI, which uses function descriptors to represent
18361 pointers to functions. Without any PIC/PIE-related options, it
18362 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
18363 assumes GOT entries and small data are within a 12-bit range from the
18364 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
18365 are computed with 32 bits.
18366 With a @samp{bfin-elf} target, this option implies @option{-msim}.
18367
18368 @item -minline-plt
18369 @opindex minline-plt
18370
18371 Enable inlining of PLT entries in function calls to functions that are
18372 not known to bind locally. It has no effect without @option{-mfdpic}.
18373 It's enabled by default if optimizing for speed and compiling for
18374 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
18375 optimization option such as @option{-O3} or above is present in the
18376 command line.
18377
18378 @item -mTLS
18379 @opindex mTLS
18380
18381 Assume a large TLS segment when generating thread-local code.
18382
18383 @item -mtls
18384 @opindex mtls
18385
18386 Do not assume a large TLS segment when generating thread-local code.
18387
18388 @item -mgprel-ro
18389 @opindex mgprel-ro
18390
18391 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
18392 that is known to be in read-only sections. It's enabled by default,
18393 except for @option{-fpic} or @option{-fpie}: even though it may help
18394 make the global offset table smaller, it trades 1 instruction for 4.
18395 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
18396 one of which may be shared by multiple symbols, and it avoids the need
18397 for a GOT entry for the referenced symbol, so it's more likely to be a
18398 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
18399
18400 @item -multilib-library-pic
18401 @opindex multilib-library-pic
18402
18403 Link with the (library, not FD) pic libraries. It's implied by
18404 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
18405 @option{-fpic} without @option{-mfdpic}. You should never have to use
18406 it explicitly.
18407
18408 @item -mlinked-fp
18409 @opindex mlinked-fp
18410
18411 Follow the EABI requirement of always creating a frame pointer whenever
18412 a stack frame is allocated. This option is enabled by default and can
18413 be disabled with @option{-mno-linked-fp}.
18414
18415 @item -mlong-calls
18416 @opindex mlong-calls
18417
18418 Use indirect addressing to call functions outside the current
18419 compilation unit. This allows the functions to be placed anywhere
18420 within the 32-bit address space.
18421
18422 @item -malign-labels
18423 @opindex malign-labels
18424
18425 Try to align labels to an 8-byte boundary by inserting NOPs into the
18426 previous packet. This option only has an effect when VLIW packing
18427 is enabled. It doesn't create new packets; it merely adds NOPs to
18428 existing ones.
18429
18430 @item -mlibrary-pic
18431 @opindex mlibrary-pic
18432
18433 Generate position-independent EABI code.
18434
18435 @item -macc-4
18436 @opindex macc-4
18437
18438 Use only the first four media accumulator registers.
18439
18440 @item -macc-8
18441 @opindex macc-8
18442
18443 Use all eight media accumulator registers.
18444
18445 @item -mpack
18446 @opindex mpack
18447
18448 Pack VLIW instructions.
18449
18450 @item -mno-pack
18451 @opindex mno-pack
18452
18453 Do not pack VLIW instructions.
18454
18455 @item -mno-eflags
18456 @opindex mno-eflags
18457
18458 Do not mark ABI switches in e_flags.
18459
18460 @item -mcond-move
18461 @opindex mcond-move
18462
18463 Enable the use of conditional-move instructions (default).
18464
18465 This switch is mainly for debugging the compiler and will likely be removed
18466 in a future version.
18467
18468 @item -mno-cond-move
18469 @opindex mno-cond-move
18470
18471 Disable the use of conditional-move instructions.
18472
18473 This switch is mainly for debugging the compiler and will likely be removed
18474 in a future version.
18475
18476 @item -mscc
18477 @opindex mscc
18478
18479 Enable the use of conditional set instructions (default).
18480
18481 This switch is mainly for debugging the compiler and will likely be removed
18482 in a future version.
18483
18484 @item -mno-scc
18485 @opindex mno-scc
18486
18487 Disable the use of conditional set instructions.
18488
18489 This switch is mainly for debugging the compiler and will likely be removed
18490 in a future version.
18491
18492 @item -mcond-exec
18493 @opindex mcond-exec
18494
18495 Enable the use of conditional execution (default).
18496
18497 This switch is mainly for debugging the compiler and will likely be removed
18498 in a future version.
18499
18500 @item -mno-cond-exec
18501 @opindex mno-cond-exec
18502
18503 Disable the use of conditional execution.
18504
18505 This switch is mainly for debugging the compiler and will likely be removed
18506 in a future version.
18507
18508 @item -mvliw-branch
18509 @opindex mvliw-branch
18510
18511 Run a pass to pack branches into VLIW instructions (default).
18512
18513 This switch is mainly for debugging the compiler and will likely be removed
18514 in a future version.
18515
18516 @item -mno-vliw-branch
18517 @opindex mno-vliw-branch
18518
18519 Do not run a pass to pack branches into VLIW instructions.
18520
18521 This switch is mainly for debugging the compiler and will likely be removed
18522 in a future version.
18523
18524 @item -mmulti-cond-exec
18525 @opindex mmulti-cond-exec
18526
18527 Enable optimization of @code{&&} and @code{||} in conditional execution
18528 (default).
18529
18530 This switch is mainly for debugging the compiler and will likely be removed
18531 in a future version.
18532
18533 @item -mno-multi-cond-exec
18534 @opindex mno-multi-cond-exec
18535
18536 Disable optimization of @code{&&} and @code{||} in conditional execution.
18537
18538 This switch is mainly for debugging the compiler and will likely be removed
18539 in a future version.
18540
18541 @item -mnested-cond-exec
18542 @opindex mnested-cond-exec
18543
18544 Enable nested conditional execution optimizations (default).
18545
18546 This switch is mainly for debugging the compiler and will likely be removed
18547 in a future version.
18548
18549 @item -mno-nested-cond-exec
18550 @opindex mno-nested-cond-exec
18551
18552 Disable nested conditional execution optimizations.
18553
18554 This switch is mainly for debugging the compiler and will likely be removed
18555 in a future version.
18556
18557 @item -moptimize-membar
18558 @opindex moptimize-membar
18559
18560 This switch removes redundant @code{membar} instructions from the
18561 compiler-generated code. It is enabled by default.
18562
18563 @item -mno-optimize-membar
18564 @opindex mno-optimize-membar
18565
18566 This switch disables the automatic removal of redundant @code{membar}
18567 instructions from the generated code.
18568
18569 @item -mtomcat-stats
18570 @opindex mtomcat-stats
18571
18572 Cause gas to print out tomcat statistics.
18573
18574 @item -mcpu=@var{cpu}
18575 @opindex mcpu
18576
18577 Select the processor type for which to generate code. Possible values are
18578 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
18579 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
18580
18581 @end table
18582
18583 @node GNU/Linux Options
18584 @subsection GNU/Linux Options
18585
18586 These @samp{-m} options are defined for GNU/Linux targets:
18587
18588 @table @gcctabopt
18589 @item -mglibc
18590 @opindex mglibc
18591 Use the GNU C library. This is the default except
18592 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
18593 @samp{*-*-linux-*android*} targets.
18594
18595 @item -muclibc
18596 @opindex muclibc
18597 Use uClibc C library. This is the default on
18598 @samp{*-*-linux-*uclibc*} targets.
18599
18600 @item -mmusl
18601 @opindex mmusl
18602 Use the musl C library. This is the default on
18603 @samp{*-*-linux-*musl*} targets.
18604
18605 @item -mbionic
18606 @opindex mbionic
18607 Use Bionic C library. This is the default on
18608 @samp{*-*-linux-*android*} targets.
18609
18610 @item -mandroid
18611 @opindex mandroid
18612 Compile code compatible with Android platform. This is the default on
18613 @samp{*-*-linux-*android*} targets.
18614
18615 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
18616 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
18617 this option makes the GCC driver pass Android-specific options to the linker.
18618 Finally, this option causes the preprocessor macro @code{__ANDROID__}
18619 to be defined.
18620
18621 @item -tno-android-cc
18622 @opindex tno-android-cc
18623 Disable compilation effects of @option{-mandroid}, i.e., do not enable
18624 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
18625 @option{-fno-rtti} by default.
18626
18627 @item -tno-android-ld
18628 @opindex tno-android-ld
18629 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
18630 linking options to the linker.
18631
18632 @end table
18633
18634 @node H8/300 Options
18635 @subsection H8/300 Options
18636
18637 These @samp{-m} options are defined for the H8/300 implementations:
18638
18639 @table @gcctabopt
18640 @item -mrelax
18641 @opindex mrelax
18642 Shorten some address references at link time, when possible; uses the
18643 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
18644 ld, Using ld}, for a fuller description.
18645
18646 @item -mh
18647 @opindex mh
18648 Generate code for the H8/300H@.
18649
18650 @item -ms
18651 @opindex ms
18652 Generate code for the H8S@.
18653
18654 @item -mn
18655 @opindex mn
18656 Generate code for the H8S and H8/300H in the normal mode. This switch
18657 must be used either with @option{-mh} or @option{-ms}.
18658
18659 @item -ms2600
18660 @opindex ms2600
18661 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
18662
18663 @item -mexr
18664 @opindex mexr
18665 Extended registers are stored on stack before execution of function
18666 with monitor attribute. Default option is @option{-mexr}.
18667 This option is valid only for H8S targets.
18668
18669 @item -mno-exr
18670 @opindex mno-exr
18671 Extended registers are not stored on stack before execution of function
18672 with monitor attribute. Default option is @option{-mno-exr}.
18673 This option is valid only for H8S targets.
18674
18675 @item -mint32
18676 @opindex mint32
18677 Make @code{int} data 32 bits by default.
18678
18679 @item -malign-300
18680 @opindex malign-300
18681 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
18682 The default for the H8/300H and H8S is to align longs and floats on
18683 4-byte boundaries.
18684 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
18685 This option has no effect on the H8/300.
18686 @end table
18687
18688 @node HPPA Options
18689 @subsection HPPA Options
18690 @cindex HPPA Options
18691
18692 These @samp{-m} options are defined for the HPPA family of computers:
18693
18694 @table @gcctabopt
18695 @item -march=@var{architecture-type}
18696 @opindex march
18697 Generate code for the specified architecture. The choices for
18698 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
18699 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
18700 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
18701 architecture option for your machine. Code compiled for lower numbered
18702 architectures runs on higher numbered architectures, but not the
18703 other way around.
18704
18705 @item -mpa-risc-1-0
18706 @itemx -mpa-risc-1-1
18707 @itemx -mpa-risc-2-0
18708 @opindex mpa-risc-1-0
18709 @opindex mpa-risc-1-1
18710 @opindex mpa-risc-2-0
18711 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
18712
18713 @item -mcaller-copies
18714 @opindex mcaller-copies
18715 The caller copies function arguments passed by hidden reference. This
18716 option should be used with care as it is not compatible with the default
18717 32-bit runtime. However, only aggregates larger than eight bytes are
18718 passed by hidden reference and the option provides better compatibility
18719 with OpenMP.
18720
18721 @item -mjump-in-delay
18722 @opindex mjump-in-delay
18723 This option is ignored and provided for compatibility purposes only.
18724
18725 @item -mdisable-fpregs
18726 @opindex mdisable-fpregs
18727 Prevent floating-point registers from being used in any manner. This is
18728 necessary for compiling kernels that perform lazy context switching of
18729 floating-point registers. If you use this option and attempt to perform
18730 floating-point operations, the compiler aborts.
18731
18732 @item -mdisable-indexing
18733 @opindex mdisable-indexing
18734 Prevent the compiler from using indexing address modes. This avoids some
18735 rather obscure problems when compiling MIG generated code under MACH@.
18736
18737 @item -mno-space-regs
18738 @opindex mno-space-regs
18739 Generate code that assumes the target has no space registers. This allows
18740 GCC to generate faster indirect calls and use unscaled index address modes.
18741
18742 Such code is suitable for level 0 PA systems and kernels.
18743
18744 @item -mfast-indirect-calls
18745 @opindex mfast-indirect-calls
18746 Generate code that assumes calls never cross space boundaries. This
18747 allows GCC to emit code that performs faster indirect calls.
18748
18749 This option does not work in the presence of shared libraries or nested
18750 functions.
18751
18752 @item -mfixed-range=@var{register-range}
18753 @opindex mfixed-range
18754 Generate code treating the given register range as fixed registers.
18755 A fixed register is one that the register allocator cannot use. This is
18756 useful when compiling kernel code. A register range is specified as
18757 two registers separated by a dash. Multiple register ranges can be
18758 specified separated by a comma.
18759
18760 @item -mlong-load-store
18761 @opindex mlong-load-store
18762 Generate 3-instruction load and store sequences as sometimes required by
18763 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
18764 the HP compilers.
18765
18766 @item -mportable-runtime
18767 @opindex mportable-runtime
18768 Use the portable calling conventions proposed by HP for ELF systems.
18769
18770 @item -mgas
18771 @opindex mgas
18772 Enable the use of assembler directives only GAS understands.
18773
18774 @item -mschedule=@var{cpu-type}
18775 @opindex mschedule
18776 Schedule code according to the constraints for the machine type
18777 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
18778 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
18779 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
18780 proper scheduling option for your machine. The default scheduling is
18781 @samp{8000}.
18782
18783 @item -mlinker-opt
18784 @opindex mlinker-opt
18785 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
18786 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
18787 linkers in which they give bogus error messages when linking some programs.
18788
18789 @item -msoft-float
18790 @opindex msoft-float
18791 Generate output containing library calls for floating point.
18792 @strong{Warning:} the requisite libraries are not available for all HPPA
18793 targets. Normally the facilities of the machine's usual C compiler are
18794 used, but this cannot be done directly in cross-compilation. You must make
18795 your own arrangements to provide suitable library functions for
18796 cross-compilation.
18797
18798 @option{-msoft-float} changes the calling convention in the output file;
18799 therefore, it is only useful if you compile @emph{all} of a program with
18800 this option. In particular, you need to compile @file{libgcc.a}, the
18801 library that comes with GCC, with @option{-msoft-float} in order for
18802 this to work.
18803
18804 @item -msio
18805 @opindex msio
18806 Generate the predefine, @code{_SIO}, for server IO@. The default is
18807 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
18808 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
18809 options are available under HP-UX and HI-UX@.
18810
18811 @item -mgnu-ld
18812 @opindex mgnu-ld
18813 Use options specific to GNU @command{ld}.
18814 This passes @option{-shared} to @command{ld} when
18815 building a shared library. It is the default when GCC is configured,
18816 explicitly or implicitly, with the GNU linker. This option does not
18817 affect which @command{ld} is called; it only changes what parameters
18818 are passed to that @command{ld}.
18819 The @command{ld} that is called is determined by the
18820 @option{--with-ld} configure option, GCC's program search path, and
18821 finally by the user's @env{PATH}. The linker used by GCC can be printed
18822 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
18823 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18824
18825 @item -mhp-ld
18826 @opindex mhp-ld
18827 Use options specific to HP @command{ld}.
18828 This passes @option{-b} to @command{ld} when building
18829 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
18830 links. It is the default when GCC is configured, explicitly or
18831 implicitly, with the HP linker. This option does not affect
18832 which @command{ld} is called; it only changes what parameters are passed to that
18833 @command{ld}.
18834 The @command{ld} that is called is determined by the @option{--with-ld}
18835 configure option, GCC's program search path, and finally by the user's
18836 @env{PATH}. The linker used by GCC can be printed using @samp{which
18837 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
18838 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18839
18840 @item -mlong-calls
18841 @opindex mno-long-calls
18842 Generate code that uses long call sequences. This ensures that a call
18843 is always able to reach linker generated stubs. The default is to generate
18844 long calls only when the distance from the call site to the beginning
18845 of the function or translation unit, as the case may be, exceeds a
18846 predefined limit set by the branch type being used. The limits for
18847 normal calls are 7,600,000 and 240,000 bytes, respectively for the
18848 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
18849 240,000 bytes.
18850
18851 Distances are measured from the beginning of functions when using the
18852 @option{-ffunction-sections} option, or when using the @option{-mgas}
18853 and @option{-mno-portable-runtime} options together under HP-UX with
18854 the SOM linker.
18855
18856 It is normally not desirable to use this option as it degrades
18857 performance. However, it may be useful in large applications,
18858 particularly when partial linking is used to build the application.
18859
18860 The types of long calls used depends on the capabilities of the
18861 assembler and linker, and the type of code being generated. The
18862 impact on systems that support long absolute calls, and long pic
18863 symbol-difference or pc-relative calls should be relatively small.
18864 However, an indirect call is used on 32-bit ELF systems in pic code
18865 and it is quite long.
18866
18867 @item -munix=@var{unix-std}
18868 @opindex march
18869 Generate compiler predefines and select a startfile for the specified
18870 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
18871 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
18872 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
18873 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
18874 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
18875 and later.
18876
18877 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
18878 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
18879 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
18880 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
18881 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
18882 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
18883
18884 It is @emph{important} to note that this option changes the interfaces
18885 for various library routines. It also affects the operational behavior
18886 of the C library. Thus, @emph{extreme} care is needed in using this
18887 option.
18888
18889 Library code that is intended to operate with more than one UNIX
18890 standard must test, set and restore the variable @code{__xpg4_extended_mask}
18891 as appropriate. Most GNU software doesn't provide this capability.
18892
18893 @item -nolibdld
18894 @opindex nolibdld
18895 Suppress the generation of link options to search libdld.sl when the
18896 @option{-static} option is specified on HP-UX 10 and later.
18897
18898 @item -static
18899 @opindex static
18900 The HP-UX implementation of setlocale in libc has a dependency on
18901 libdld.sl. There isn't an archive version of libdld.sl. Thus,
18902 when the @option{-static} option is specified, special link options
18903 are needed to resolve this dependency.
18904
18905 On HP-UX 10 and later, the GCC driver adds the necessary options to
18906 link with libdld.sl when the @option{-static} option is specified.
18907 This causes the resulting binary to be dynamic. On the 64-bit port,
18908 the linkers generate dynamic binaries by default in any case. The
18909 @option{-nolibdld} option can be used to prevent the GCC driver from
18910 adding these link options.
18911
18912 @item -threads
18913 @opindex threads
18914 Add support for multithreading with the @dfn{dce thread} library
18915 under HP-UX@. This option sets flags for both the preprocessor and
18916 linker.
18917 @end table
18918
18919 @node IA-64 Options
18920 @subsection IA-64 Options
18921 @cindex IA-64 Options
18922
18923 These are the @samp{-m} options defined for the Intel IA-64 architecture.
18924
18925 @table @gcctabopt
18926 @item -mbig-endian
18927 @opindex mbig-endian
18928 Generate code for a big-endian target. This is the default for HP-UX@.
18929
18930 @item -mlittle-endian
18931 @opindex mlittle-endian
18932 Generate code for a little-endian target. This is the default for AIX5
18933 and GNU/Linux.
18934
18935 @item -mgnu-as
18936 @itemx -mno-gnu-as
18937 @opindex mgnu-as
18938 @opindex mno-gnu-as
18939 Generate (or don't) code for the GNU assembler. This is the default.
18940 @c Also, this is the default if the configure option @option{--with-gnu-as}
18941 @c is used.
18942
18943 @item -mgnu-ld
18944 @itemx -mno-gnu-ld
18945 @opindex mgnu-ld
18946 @opindex mno-gnu-ld
18947 Generate (or don't) code for the GNU linker. This is the default.
18948 @c Also, this is the default if the configure option @option{--with-gnu-ld}
18949 @c is used.
18950
18951 @item -mno-pic
18952 @opindex mno-pic
18953 Generate code that does not use a global pointer register. The result
18954 is not position independent code, and violates the IA-64 ABI@.
18955
18956 @item -mvolatile-asm-stop
18957 @itemx -mno-volatile-asm-stop
18958 @opindex mvolatile-asm-stop
18959 @opindex mno-volatile-asm-stop
18960 Generate (or don't) a stop bit immediately before and after volatile asm
18961 statements.
18962
18963 @item -mregister-names
18964 @itemx -mno-register-names
18965 @opindex mregister-names
18966 @opindex mno-register-names
18967 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
18968 the stacked registers. This may make assembler output more readable.
18969
18970 @item -mno-sdata
18971 @itemx -msdata
18972 @opindex mno-sdata
18973 @opindex msdata
18974 Disable (or enable) optimizations that use the small data section. This may
18975 be useful for working around optimizer bugs.
18976
18977 @item -mconstant-gp
18978 @opindex mconstant-gp
18979 Generate code that uses a single constant global pointer value. This is
18980 useful when compiling kernel code.
18981
18982 @item -mauto-pic
18983 @opindex mauto-pic
18984 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
18985 This is useful when compiling firmware code.
18986
18987 @item -minline-float-divide-min-latency
18988 @opindex minline-float-divide-min-latency
18989 Generate code for inline divides of floating-point values
18990 using the minimum latency algorithm.
18991
18992 @item -minline-float-divide-max-throughput
18993 @opindex minline-float-divide-max-throughput
18994 Generate code for inline divides of floating-point values
18995 using the maximum throughput algorithm.
18996
18997 @item -mno-inline-float-divide
18998 @opindex mno-inline-float-divide
18999 Do not generate inline code for divides of floating-point values.
19000
19001 @item -minline-int-divide-min-latency
19002 @opindex minline-int-divide-min-latency
19003 Generate code for inline divides of integer values
19004 using the minimum latency algorithm.
19005
19006 @item -minline-int-divide-max-throughput
19007 @opindex minline-int-divide-max-throughput
19008 Generate code for inline divides of integer values
19009 using the maximum throughput algorithm.
19010
19011 @item -mno-inline-int-divide
19012 @opindex mno-inline-int-divide
19013 Do not generate inline code for divides of integer values.
19014
19015 @item -minline-sqrt-min-latency
19016 @opindex minline-sqrt-min-latency
19017 Generate code for inline square roots
19018 using the minimum latency algorithm.
19019
19020 @item -minline-sqrt-max-throughput
19021 @opindex minline-sqrt-max-throughput
19022 Generate code for inline square roots
19023 using the maximum throughput algorithm.
19024
19025 @item -mno-inline-sqrt
19026 @opindex mno-inline-sqrt
19027 Do not generate inline code for @code{sqrt}.
19028
19029 @item -mfused-madd
19030 @itemx -mno-fused-madd
19031 @opindex mfused-madd
19032 @opindex mno-fused-madd
19033 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
19034 instructions. The default is to use these instructions.
19035
19036 @item -mno-dwarf2-asm
19037 @itemx -mdwarf2-asm
19038 @opindex mno-dwarf2-asm
19039 @opindex mdwarf2-asm
19040 Don't (or do) generate assembler code for the DWARF line number debugging
19041 info. This may be useful when not using the GNU assembler.
19042
19043 @item -mearly-stop-bits
19044 @itemx -mno-early-stop-bits
19045 @opindex mearly-stop-bits
19046 @opindex mno-early-stop-bits
19047 Allow stop bits to be placed earlier than immediately preceding the
19048 instruction that triggered the stop bit. This can improve instruction
19049 scheduling, but does not always do so.
19050
19051 @item -mfixed-range=@var{register-range}
19052 @opindex mfixed-range
19053 Generate code treating the given register range as fixed registers.
19054 A fixed register is one that the register allocator cannot use. This is
19055 useful when compiling kernel code. A register range is specified as
19056 two registers separated by a dash. Multiple register ranges can be
19057 specified separated by a comma.
19058
19059 @item -mtls-size=@var{tls-size}
19060 @opindex mtls-size
19061 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
19062 64.
19063
19064 @item -mtune=@var{cpu-type}
19065 @opindex mtune
19066 Tune the instruction scheduling for a particular CPU, Valid values are
19067 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
19068 and @samp{mckinley}.
19069
19070 @item -milp32
19071 @itemx -mlp64
19072 @opindex milp32
19073 @opindex mlp64
19074 Generate code for a 32-bit or 64-bit environment.
19075 The 32-bit environment sets int, long and pointer to 32 bits.
19076 The 64-bit environment sets int to 32 bits and long and pointer
19077 to 64 bits. These are HP-UX specific flags.
19078
19079 @item -mno-sched-br-data-spec
19080 @itemx -msched-br-data-spec
19081 @opindex mno-sched-br-data-spec
19082 @opindex msched-br-data-spec
19083 (Dis/En)able data speculative scheduling before reload.
19084 This results in generation of @code{ld.a} instructions and
19085 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
19086 The default setting is disabled.
19087
19088 @item -msched-ar-data-spec
19089 @itemx -mno-sched-ar-data-spec
19090 @opindex msched-ar-data-spec
19091 @opindex mno-sched-ar-data-spec
19092 (En/Dis)able data speculative scheduling after reload.
19093 This results in generation of @code{ld.a} instructions and
19094 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
19095 The default setting is enabled.
19096
19097 @item -mno-sched-control-spec
19098 @itemx -msched-control-spec
19099 @opindex mno-sched-control-spec
19100 @opindex msched-control-spec
19101 (Dis/En)able control speculative scheduling. This feature is
19102 available only during region scheduling (i.e.@: before reload).
19103 This results in generation of the @code{ld.s} instructions and
19104 the corresponding check instructions @code{chk.s}.
19105 The default setting is disabled.
19106
19107 @item -msched-br-in-data-spec
19108 @itemx -mno-sched-br-in-data-spec
19109 @opindex msched-br-in-data-spec
19110 @opindex mno-sched-br-in-data-spec
19111 (En/Dis)able speculative scheduling of the instructions that
19112 are dependent on the data speculative loads before reload.
19113 This is effective only with @option{-msched-br-data-spec} enabled.
19114 The default setting is enabled.
19115
19116 @item -msched-ar-in-data-spec
19117 @itemx -mno-sched-ar-in-data-spec
19118 @opindex msched-ar-in-data-spec
19119 @opindex mno-sched-ar-in-data-spec
19120 (En/Dis)able speculative scheduling of the instructions that
19121 are dependent on the data speculative loads after reload.
19122 This is effective only with @option{-msched-ar-data-spec} enabled.
19123 The default setting is enabled.
19124
19125 @item -msched-in-control-spec
19126 @itemx -mno-sched-in-control-spec
19127 @opindex msched-in-control-spec
19128 @opindex mno-sched-in-control-spec
19129 (En/Dis)able speculative scheduling of the instructions that
19130 are dependent on the control speculative loads.
19131 This is effective only with @option{-msched-control-spec} enabled.
19132 The default setting is enabled.
19133
19134 @item -mno-sched-prefer-non-data-spec-insns
19135 @itemx -msched-prefer-non-data-spec-insns
19136 @opindex mno-sched-prefer-non-data-spec-insns
19137 @opindex msched-prefer-non-data-spec-insns
19138 If enabled, data-speculative instructions are chosen for schedule
19139 only if there are no other choices at the moment. This makes
19140 the use of the data speculation much more conservative.
19141 The default setting is disabled.
19142
19143 @item -mno-sched-prefer-non-control-spec-insns
19144 @itemx -msched-prefer-non-control-spec-insns
19145 @opindex mno-sched-prefer-non-control-spec-insns
19146 @opindex msched-prefer-non-control-spec-insns
19147 If enabled, control-speculative instructions are chosen for schedule
19148 only if there are no other choices at the moment. This makes
19149 the use of the control speculation much more conservative.
19150 The default setting is disabled.
19151
19152 @item -mno-sched-count-spec-in-critical-path
19153 @itemx -msched-count-spec-in-critical-path
19154 @opindex mno-sched-count-spec-in-critical-path
19155 @opindex msched-count-spec-in-critical-path
19156 If enabled, speculative dependencies are considered during
19157 computation of the instructions priorities. This makes the use of the
19158 speculation a bit more conservative.
19159 The default setting is disabled.
19160
19161 @item -msched-spec-ldc
19162 @opindex msched-spec-ldc
19163 Use a simple data speculation check. This option is on by default.
19164
19165 @item -msched-control-spec-ldc
19166 @opindex msched-spec-ldc
19167 Use a simple check for control speculation. This option is on by default.
19168
19169 @item -msched-stop-bits-after-every-cycle
19170 @opindex msched-stop-bits-after-every-cycle
19171 Place a stop bit after every cycle when scheduling. This option is on
19172 by default.
19173
19174 @item -msched-fp-mem-deps-zero-cost
19175 @opindex msched-fp-mem-deps-zero-cost
19176 Assume that floating-point stores and loads are not likely to cause a conflict
19177 when placed into the same instruction group. This option is disabled by
19178 default.
19179
19180 @item -msel-sched-dont-check-control-spec
19181 @opindex msel-sched-dont-check-control-spec
19182 Generate checks for control speculation in selective scheduling.
19183 This flag is disabled by default.
19184
19185 @item -msched-max-memory-insns=@var{max-insns}
19186 @opindex msched-max-memory-insns
19187 Limit on the number of memory insns per instruction group, giving lower
19188 priority to subsequent memory insns attempting to schedule in the same
19189 instruction group. Frequently useful to prevent cache bank conflicts.
19190 The default value is 1.
19191
19192 @item -msched-max-memory-insns-hard-limit
19193 @opindex msched-max-memory-insns-hard-limit
19194 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
19195 disallowing more than that number in an instruction group.
19196 Otherwise, the limit is ``soft'', meaning that non-memory operations
19197 are preferred when the limit is reached, but memory operations may still
19198 be scheduled.
19199
19200 @end table
19201
19202 @node LM32 Options
19203 @subsection LM32 Options
19204 @cindex LM32 options
19205
19206 These @option{-m} options are defined for the LatticeMico32 architecture:
19207
19208 @table @gcctabopt
19209 @item -mbarrel-shift-enabled
19210 @opindex mbarrel-shift-enabled
19211 Enable barrel-shift instructions.
19212
19213 @item -mdivide-enabled
19214 @opindex mdivide-enabled
19215 Enable divide and modulus instructions.
19216
19217 @item -mmultiply-enabled
19218 @opindex multiply-enabled
19219 Enable multiply instructions.
19220
19221 @item -msign-extend-enabled
19222 @opindex msign-extend-enabled
19223 Enable sign extend instructions.
19224
19225 @item -muser-enabled
19226 @opindex muser-enabled
19227 Enable user-defined instructions.
19228
19229 @end table
19230
19231 @node M32C Options
19232 @subsection M32C Options
19233 @cindex M32C options
19234
19235 @table @gcctabopt
19236 @item -mcpu=@var{name}
19237 @opindex mcpu=
19238 Select the CPU for which code is generated. @var{name} may be one of
19239 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
19240 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
19241 the M32C/80 series.
19242
19243 @item -msim
19244 @opindex msim
19245 Specifies that the program will be run on the simulator. This causes
19246 an alternate runtime library to be linked in which supports, for
19247 example, file I/O@. You must not use this option when generating
19248 programs that will run on real hardware; you must provide your own
19249 runtime library for whatever I/O functions are needed.
19250
19251 @item -memregs=@var{number}
19252 @opindex memregs=
19253 Specifies the number of memory-based pseudo-registers GCC uses
19254 during code generation. These pseudo-registers are used like real
19255 registers, so there is a tradeoff between GCC's ability to fit the
19256 code into available registers, and the performance penalty of using
19257 memory instead of registers. Note that all modules in a program must
19258 be compiled with the same value for this option. Because of that, you
19259 must not use this option with GCC's default runtime libraries.
19260
19261 @end table
19262
19263 @node M32R/D Options
19264 @subsection M32R/D Options
19265 @cindex M32R/D options
19266
19267 These @option{-m} options are defined for Renesas M32R/D architectures:
19268
19269 @table @gcctabopt
19270 @item -m32r2
19271 @opindex m32r2
19272 Generate code for the M32R/2@.
19273
19274 @item -m32rx
19275 @opindex m32rx
19276 Generate code for the M32R/X@.
19277
19278 @item -m32r
19279 @opindex m32r
19280 Generate code for the M32R@. This is the default.
19281
19282 @item -mmodel=small
19283 @opindex mmodel=small
19284 Assume all objects live in the lower 16MB of memory (so that their addresses
19285 can be loaded with the @code{ld24} instruction), and assume all subroutines
19286 are reachable with the @code{bl} instruction.
19287 This is the default.
19288
19289 The addressability of a particular object can be set with the
19290 @code{model} attribute.
19291
19292 @item -mmodel=medium
19293 @opindex mmodel=medium
19294 Assume objects may be anywhere in the 32-bit address space (the compiler
19295 generates @code{seth/add3} instructions to load their addresses), and
19296 assume all subroutines are reachable with the @code{bl} instruction.
19297
19298 @item -mmodel=large
19299 @opindex mmodel=large
19300 Assume objects may be anywhere in the 32-bit address space (the compiler
19301 generates @code{seth/add3} instructions to load their addresses), and
19302 assume subroutines may not be reachable with the @code{bl} instruction
19303 (the compiler generates the much slower @code{seth/add3/jl}
19304 instruction sequence).
19305
19306 @item -msdata=none
19307 @opindex msdata=none
19308 Disable use of the small data area. Variables are put into
19309 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
19310 @code{section} attribute has been specified).
19311 This is the default.
19312
19313 The small data area consists of sections @code{.sdata} and @code{.sbss}.
19314 Objects may be explicitly put in the small data area with the
19315 @code{section} attribute using one of these sections.
19316
19317 @item -msdata=sdata
19318 @opindex msdata=sdata
19319 Put small global and static data in the small data area, but do not
19320 generate special code to reference them.
19321
19322 @item -msdata=use
19323 @opindex msdata=use
19324 Put small global and static data in the small data area, and generate
19325 special instructions to reference them.
19326
19327 @item -G @var{num}
19328 @opindex G
19329 @cindex smaller data references
19330 Put global and static objects less than or equal to @var{num} bytes
19331 into the small data or BSS sections instead of the normal data or BSS
19332 sections. The default value of @var{num} is 8.
19333 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
19334 for this option to have any effect.
19335
19336 All modules should be compiled with the same @option{-G @var{num}} value.
19337 Compiling with different values of @var{num} may or may not work; if it
19338 doesn't the linker gives an error message---incorrect code is not
19339 generated.
19340
19341 @item -mdebug
19342 @opindex mdebug
19343 Makes the M32R-specific code in the compiler display some statistics
19344 that might help in debugging programs.
19345
19346 @item -malign-loops
19347 @opindex malign-loops
19348 Align all loops to a 32-byte boundary.
19349
19350 @item -mno-align-loops
19351 @opindex mno-align-loops
19352 Do not enforce a 32-byte alignment for loops. This is the default.
19353
19354 @item -missue-rate=@var{number}
19355 @opindex missue-rate=@var{number}
19356 Issue @var{number} instructions per cycle. @var{number} can only be 1
19357 or 2.
19358
19359 @item -mbranch-cost=@var{number}
19360 @opindex mbranch-cost=@var{number}
19361 @var{number} can only be 1 or 2. If it is 1 then branches are
19362 preferred over conditional code, if it is 2, then the opposite applies.
19363
19364 @item -mflush-trap=@var{number}
19365 @opindex mflush-trap=@var{number}
19366 Specifies the trap number to use to flush the cache. The default is
19367 12. Valid numbers are between 0 and 15 inclusive.
19368
19369 @item -mno-flush-trap
19370 @opindex mno-flush-trap
19371 Specifies that the cache cannot be flushed by using a trap.
19372
19373 @item -mflush-func=@var{name}
19374 @opindex mflush-func=@var{name}
19375 Specifies the name of the operating system function to call to flush
19376 the cache. The default is @samp{_flush_cache}, but a function call
19377 is only used if a trap is not available.
19378
19379 @item -mno-flush-func
19380 @opindex mno-flush-func
19381 Indicates that there is no OS function for flushing the cache.
19382
19383 @end table
19384
19385 @node M680x0 Options
19386 @subsection M680x0 Options
19387 @cindex M680x0 options
19388
19389 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
19390 The default settings depend on which architecture was selected when
19391 the compiler was configured; the defaults for the most common choices
19392 are given below.
19393
19394 @table @gcctabopt
19395 @item -march=@var{arch}
19396 @opindex march
19397 Generate code for a specific M680x0 or ColdFire instruction set
19398 architecture. Permissible values of @var{arch} for M680x0
19399 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
19400 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
19401 architectures are selected according to Freescale's ISA classification
19402 and the permissible values are: @samp{isaa}, @samp{isaaplus},
19403 @samp{isab} and @samp{isac}.
19404
19405 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
19406 code for a ColdFire target. The @var{arch} in this macro is one of the
19407 @option{-march} arguments given above.
19408
19409 When used together, @option{-march} and @option{-mtune} select code
19410 that runs on a family of similar processors but that is optimized
19411 for a particular microarchitecture.
19412
19413 @item -mcpu=@var{cpu}
19414 @opindex mcpu
19415 Generate code for a specific M680x0 or ColdFire processor.
19416 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
19417 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
19418 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
19419 below, which also classifies the CPUs into families:
19420
19421 @multitable @columnfractions 0.20 0.80
19422 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
19423 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
19424 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
19425 @item @samp{5206e} @tab @samp{5206e}
19426 @item @samp{5208} @tab @samp{5207} @samp{5208}
19427 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
19428 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
19429 @item @samp{5216} @tab @samp{5214} @samp{5216}
19430 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
19431 @item @samp{5225} @tab @samp{5224} @samp{5225}
19432 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
19433 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
19434 @item @samp{5249} @tab @samp{5249}
19435 @item @samp{5250} @tab @samp{5250}
19436 @item @samp{5271} @tab @samp{5270} @samp{5271}
19437 @item @samp{5272} @tab @samp{5272}
19438 @item @samp{5275} @tab @samp{5274} @samp{5275}
19439 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
19440 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
19441 @item @samp{5307} @tab @samp{5307}
19442 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
19443 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
19444 @item @samp{5407} @tab @samp{5407}
19445 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
19446 @end multitable
19447
19448 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
19449 @var{arch} is compatible with @var{cpu}. Other combinations of
19450 @option{-mcpu} and @option{-march} are rejected.
19451
19452 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
19453 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
19454 where the value of @var{family} is given by the table above.
19455
19456 @item -mtune=@var{tune}
19457 @opindex mtune
19458 Tune the code for a particular microarchitecture within the
19459 constraints set by @option{-march} and @option{-mcpu}.
19460 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
19461 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
19462 and @samp{cpu32}. The ColdFire microarchitectures
19463 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
19464
19465 You can also use @option{-mtune=68020-40} for code that needs
19466 to run relatively well on 68020, 68030 and 68040 targets.
19467 @option{-mtune=68020-60} is similar but includes 68060 targets
19468 as well. These two options select the same tuning decisions as
19469 @option{-m68020-40} and @option{-m68020-60} respectively.
19470
19471 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
19472 when tuning for 680x0 architecture @var{arch}. It also defines
19473 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
19474 option is used. If GCC is tuning for a range of architectures,
19475 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
19476 it defines the macros for every architecture in the range.
19477
19478 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
19479 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
19480 of the arguments given above.
19481
19482 @item -m68000
19483 @itemx -mc68000
19484 @opindex m68000
19485 @opindex mc68000
19486 Generate output for a 68000. This is the default
19487 when the compiler is configured for 68000-based systems.
19488 It is equivalent to @option{-march=68000}.
19489
19490 Use this option for microcontrollers with a 68000 or EC000 core,
19491 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
19492
19493 @item -m68010
19494 @opindex m68010
19495 Generate output for a 68010. This is the default
19496 when the compiler is configured for 68010-based systems.
19497 It is equivalent to @option{-march=68010}.
19498
19499 @item -m68020
19500 @itemx -mc68020
19501 @opindex m68020
19502 @opindex mc68020
19503 Generate output for a 68020. This is the default
19504 when the compiler is configured for 68020-based systems.
19505 It is equivalent to @option{-march=68020}.
19506
19507 @item -m68030
19508 @opindex m68030
19509 Generate output for a 68030. This is the default when the compiler is
19510 configured for 68030-based systems. It is equivalent to
19511 @option{-march=68030}.
19512
19513 @item -m68040
19514 @opindex m68040
19515 Generate output for a 68040. This is the default when the compiler is
19516 configured for 68040-based systems. It is equivalent to
19517 @option{-march=68040}.
19518
19519 This option inhibits the use of 68881/68882 instructions that have to be
19520 emulated by software on the 68040. Use this option if your 68040 does not
19521 have code to emulate those instructions.
19522
19523 @item -m68060
19524 @opindex m68060
19525 Generate output for a 68060. This is the default when the compiler is
19526 configured for 68060-based systems. It is equivalent to
19527 @option{-march=68060}.
19528
19529 This option inhibits the use of 68020 and 68881/68882 instructions that
19530 have to be emulated by software on the 68060. Use this option if your 68060
19531 does not have code to emulate those instructions.
19532
19533 @item -mcpu32
19534 @opindex mcpu32
19535 Generate output for a CPU32. This is the default
19536 when the compiler is configured for CPU32-based systems.
19537 It is equivalent to @option{-march=cpu32}.
19538
19539 Use this option for microcontrollers with a
19540 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
19541 68336, 68340, 68341, 68349 and 68360.
19542
19543 @item -m5200
19544 @opindex m5200
19545 Generate output for a 520X ColdFire CPU@. This is the default
19546 when the compiler is configured for 520X-based systems.
19547 It is equivalent to @option{-mcpu=5206}, and is now deprecated
19548 in favor of that option.
19549
19550 Use this option for microcontroller with a 5200 core, including
19551 the MCF5202, MCF5203, MCF5204 and MCF5206.
19552
19553 @item -m5206e
19554 @opindex m5206e
19555 Generate output for a 5206e ColdFire CPU@. The option is now
19556 deprecated in favor of the equivalent @option{-mcpu=5206e}.
19557
19558 @item -m528x
19559 @opindex m528x
19560 Generate output for a member of the ColdFire 528X family.
19561 The option is now deprecated in favor of the equivalent
19562 @option{-mcpu=528x}.
19563
19564 @item -m5307
19565 @opindex m5307
19566 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
19567 in favor of the equivalent @option{-mcpu=5307}.
19568
19569 @item -m5407
19570 @opindex m5407
19571 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
19572 in favor of the equivalent @option{-mcpu=5407}.
19573
19574 @item -mcfv4e
19575 @opindex mcfv4e
19576 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
19577 This includes use of hardware floating-point instructions.
19578 The option is equivalent to @option{-mcpu=547x}, and is now
19579 deprecated in favor of that option.
19580
19581 @item -m68020-40
19582 @opindex m68020-40
19583 Generate output for a 68040, without using any of the new instructions.
19584 This results in code that can run relatively efficiently on either a
19585 68020/68881 or a 68030 or a 68040. The generated code does use the
19586 68881 instructions that are emulated on the 68040.
19587
19588 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
19589
19590 @item -m68020-60
19591 @opindex m68020-60
19592 Generate output for a 68060, without using any of the new instructions.
19593 This results in code that can run relatively efficiently on either a
19594 68020/68881 or a 68030 or a 68040. The generated code does use the
19595 68881 instructions that are emulated on the 68060.
19596
19597 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
19598
19599 @item -mhard-float
19600 @itemx -m68881
19601 @opindex mhard-float
19602 @opindex m68881
19603 Generate floating-point instructions. This is the default for 68020
19604 and above, and for ColdFire devices that have an FPU@. It defines the
19605 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
19606 on ColdFire targets.
19607
19608 @item -msoft-float
19609 @opindex msoft-float
19610 Do not generate floating-point instructions; use library calls instead.
19611 This is the default for 68000, 68010, and 68832 targets. It is also
19612 the default for ColdFire devices that have no FPU.
19613
19614 @item -mdiv
19615 @itemx -mno-div
19616 @opindex mdiv
19617 @opindex mno-div
19618 Generate (do not generate) ColdFire hardware divide and remainder
19619 instructions. If @option{-march} is used without @option{-mcpu},
19620 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
19621 architectures. Otherwise, the default is taken from the target CPU
19622 (either the default CPU, or the one specified by @option{-mcpu}). For
19623 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
19624 @option{-mcpu=5206e}.
19625
19626 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
19627
19628 @item -mshort
19629 @opindex mshort
19630 Consider type @code{int} to be 16 bits wide, like @code{short int}.
19631 Additionally, parameters passed on the stack are also aligned to a
19632 16-bit boundary even on targets whose API mandates promotion to 32-bit.
19633
19634 @item -mno-short
19635 @opindex mno-short
19636 Do not consider type @code{int} to be 16 bits wide. This is the default.
19637
19638 @item -mnobitfield
19639 @itemx -mno-bitfield
19640 @opindex mnobitfield
19641 @opindex mno-bitfield
19642 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
19643 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
19644
19645 @item -mbitfield
19646 @opindex mbitfield
19647 Do use the bit-field instructions. The @option{-m68020} option implies
19648 @option{-mbitfield}. This is the default if you use a configuration
19649 designed for a 68020.
19650
19651 @item -mrtd
19652 @opindex mrtd
19653 Use a different function-calling convention, in which functions
19654 that take a fixed number of arguments return with the @code{rtd}
19655 instruction, which pops their arguments while returning. This
19656 saves one instruction in the caller since there is no need to pop
19657 the arguments there.
19658
19659 This calling convention is incompatible with the one normally
19660 used on Unix, so you cannot use it if you need to call libraries
19661 compiled with the Unix compiler.
19662
19663 Also, you must provide function prototypes for all functions that
19664 take variable numbers of arguments (including @code{printf});
19665 otherwise incorrect code is generated for calls to those
19666 functions.
19667
19668 In addition, seriously incorrect code results if you call a
19669 function with too many arguments. (Normally, extra arguments are
19670 harmlessly ignored.)
19671
19672 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
19673 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
19674
19675 @item -mno-rtd
19676 @opindex mno-rtd
19677 Do not use the calling conventions selected by @option{-mrtd}.
19678 This is the default.
19679
19680 @item -malign-int
19681 @itemx -mno-align-int
19682 @opindex malign-int
19683 @opindex mno-align-int
19684 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
19685 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
19686 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
19687 Aligning variables on 32-bit boundaries produces code that runs somewhat
19688 faster on processors with 32-bit busses at the expense of more memory.
19689
19690 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
19691 aligns structures containing the above types differently than
19692 most published application binary interface specifications for the m68k.
19693
19694 @item -mpcrel
19695 @opindex mpcrel
19696 Use the pc-relative addressing mode of the 68000 directly, instead of
19697 using a global offset table. At present, this option implies @option{-fpic},
19698 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
19699 not presently supported with @option{-mpcrel}, though this could be supported for
19700 68020 and higher processors.
19701
19702 @item -mno-strict-align
19703 @itemx -mstrict-align
19704 @opindex mno-strict-align
19705 @opindex mstrict-align
19706 Do not (do) assume that unaligned memory references are handled by
19707 the system.
19708
19709 @item -msep-data
19710 Generate code that allows the data segment to be located in a different
19711 area of memory from the text segment. This allows for execute-in-place in
19712 an environment without virtual memory management. This option implies
19713 @option{-fPIC}.
19714
19715 @item -mno-sep-data
19716 Generate code that assumes that the data segment follows the text segment.
19717 This is the default.
19718
19719 @item -mid-shared-library
19720 Generate code that supports shared libraries via the library ID method.
19721 This allows for execute-in-place and shared libraries in an environment
19722 without virtual memory management. This option implies @option{-fPIC}.
19723
19724 @item -mno-id-shared-library
19725 Generate code that doesn't assume ID-based shared libraries are being used.
19726 This is the default.
19727
19728 @item -mshared-library-id=n
19729 Specifies the identification number of the ID-based shared library being
19730 compiled. Specifying a value of 0 generates more compact code; specifying
19731 other values forces the allocation of that number to the current
19732 library, but is no more space- or time-efficient than omitting this option.
19733
19734 @item -mxgot
19735 @itemx -mno-xgot
19736 @opindex mxgot
19737 @opindex mno-xgot
19738 When generating position-independent code for ColdFire, generate code
19739 that works if the GOT has more than 8192 entries. This code is
19740 larger and slower than code generated without this option. On M680x0
19741 processors, this option is not needed; @option{-fPIC} suffices.
19742
19743 GCC normally uses a single instruction to load values from the GOT@.
19744 While this is relatively efficient, it only works if the GOT
19745 is smaller than about 64k. Anything larger causes the linker
19746 to report an error such as:
19747
19748 @cindex relocation truncated to fit (ColdFire)
19749 @smallexample
19750 relocation truncated to fit: R_68K_GOT16O foobar
19751 @end smallexample
19752
19753 If this happens, you should recompile your code with @option{-mxgot}.
19754 It should then work with very large GOTs. However, code generated with
19755 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
19756 the value of a global symbol.
19757
19758 Note that some linkers, including newer versions of the GNU linker,
19759 can create multiple GOTs and sort GOT entries. If you have such a linker,
19760 you should only need to use @option{-mxgot} when compiling a single
19761 object file that accesses more than 8192 GOT entries. Very few do.
19762
19763 These options have no effect unless GCC is generating
19764 position-independent code.
19765
19766 @item -mlong-jump-table-offsets
19767 @opindex mlong-jump-table-offsets
19768 Use 32-bit offsets in @code{switch} tables. The default is to use
19769 16-bit offsets.
19770
19771 @end table
19772
19773 @node MCore Options
19774 @subsection MCore Options
19775 @cindex MCore options
19776
19777 These are the @samp{-m} options defined for the Motorola M*Core
19778 processors.
19779
19780 @table @gcctabopt
19781
19782 @item -mhardlit
19783 @itemx -mno-hardlit
19784 @opindex mhardlit
19785 @opindex mno-hardlit
19786 Inline constants into the code stream if it can be done in two
19787 instructions or less.
19788
19789 @item -mdiv
19790 @itemx -mno-div
19791 @opindex mdiv
19792 @opindex mno-div
19793 Use the divide instruction. (Enabled by default).
19794
19795 @item -mrelax-immediate
19796 @itemx -mno-relax-immediate
19797 @opindex mrelax-immediate
19798 @opindex mno-relax-immediate
19799 Allow arbitrary-sized immediates in bit operations.
19800
19801 @item -mwide-bitfields
19802 @itemx -mno-wide-bitfields
19803 @opindex mwide-bitfields
19804 @opindex mno-wide-bitfields
19805 Always treat bit-fields as @code{int}-sized.
19806
19807 @item -m4byte-functions
19808 @itemx -mno-4byte-functions
19809 @opindex m4byte-functions
19810 @opindex mno-4byte-functions
19811 Force all functions to be aligned to a 4-byte boundary.
19812
19813 @item -mcallgraph-data
19814 @itemx -mno-callgraph-data
19815 @opindex mcallgraph-data
19816 @opindex mno-callgraph-data
19817 Emit callgraph information.
19818
19819 @item -mslow-bytes
19820 @itemx -mno-slow-bytes
19821 @opindex mslow-bytes
19822 @opindex mno-slow-bytes
19823 Prefer word access when reading byte quantities.
19824
19825 @item -mlittle-endian
19826 @itemx -mbig-endian
19827 @opindex mlittle-endian
19828 @opindex mbig-endian
19829 Generate code for a little-endian target.
19830
19831 @item -m210
19832 @itemx -m340
19833 @opindex m210
19834 @opindex m340
19835 Generate code for the 210 processor.
19836
19837 @item -mno-lsim
19838 @opindex mno-lsim
19839 Assume that runtime support has been provided and so omit the
19840 simulator library (@file{libsim.a)} from the linker command line.
19841
19842 @item -mstack-increment=@var{size}
19843 @opindex mstack-increment
19844 Set the maximum amount for a single stack increment operation. Large
19845 values can increase the speed of programs that contain functions
19846 that need a large amount of stack space, but they can also trigger a
19847 segmentation fault if the stack is extended too much. The default
19848 value is 0x1000.
19849
19850 @end table
19851
19852 @node MeP Options
19853 @subsection MeP Options
19854 @cindex MeP options
19855
19856 @table @gcctabopt
19857
19858 @item -mabsdiff
19859 @opindex mabsdiff
19860 Enables the @code{abs} instruction, which is the absolute difference
19861 between two registers.
19862
19863 @item -mall-opts
19864 @opindex mall-opts
19865 Enables all the optional instructions---average, multiply, divide, bit
19866 operations, leading zero, absolute difference, min/max, clip, and
19867 saturation.
19868
19869
19870 @item -maverage
19871 @opindex maverage
19872 Enables the @code{ave} instruction, which computes the average of two
19873 registers.
19874
19875 @item -mbased=@var{n}
19876 @opindex mbased=
19877 Variables of size @var{n} bytes or smaller are placed in the
19878 @code{.based} section by default. Based variables use the @code{$tp}
19879 register as a base register, and there is a 128-byte limit to the
19880 @code{.based} section.
19881
19882 @item -mbitops
19883 @opindex mbitops
19884 Enables the bit operation instructions---bit test (@code{btstm}), set
19885 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
19886 test-and-set (@code{tas}).
19887
19888 @item -mc=@var{name}
19889 @opindex mc=
19890 Selects which section constant data is placed in. @var{name} may
19891 be @samp{tiny}, @samp{near}, or @samp{far}.
19892
19893 @item -mclip
19894 @opindex mclip
19895 Enables the @code{clip} instruction. Note that @option{-mclip} is not
19896 useful unless you also provide @option{-mminmax}.
19897
19898 @item -mconfig=@var{name}
19899 @opindex mconfig=
19900 Selects one of the built-in core configurations. Each MeP chip has
19901 one or more modules in it; each module has a core CPU and a variety of
19902 coprocessors, optional instructions, and peripherals. The
19903 @code{MeP-Integrator} tool, not part of GCC, provides these
19904 configurations through this option; using this option is the same as
19905 using all the corresponding command-line options. The default
19906 configuration is @samp{default}.
19907
19908 @item -mcop
19909 @opindex mcop
19910 Enables the coprocessor instructions. By default, this is a 32-bit
19911 coprocessor. Note that the coprocessor is normally enabled via the
19912 @option{-mconfig=} option.
19913
19914 @item -mcop32
19915 @opindex mcop32
19916 Enables the 32-bit coprocessor's instructions.
19917
19918 @item -mcop64
19919 @opindex mcop64
19920 Enables the 64-bit coprocessor's instructions.
19921
19922 @item -mivc2
19923 @opindex mivc2
19924 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
19925
19926 @item -mdc
19927 @opindex mdc
19928 Causes constant variables to be placed in the @code{.near} section.
19929
19930 @item -mdiv
19931 @opindex mdiv
19932 Enables the @code{div} and @code{divu} instructions.
19933
19934 @item -meb
19935 @opindex meb
19936 Generate big-endian code.
19937
19938 @item -mel
19939 @opindex mel
19940 Generate little-endian code.
19941
19942 @item -mio-volatile
19943 @opindex mio-volatile
19944 Tells the compiler that any variable marked with the @code{io}
19945 attribute is to be considered volatile.
19946
19947 @item -ml
19948 @opindex ml
19949 Causes variables to be assigned to the @code{.far} section by default.
19950
19951 @item -mleadz
19952 @opindex mleadz
19953 Enables the @code{leadz} (leading zero) instruction.
19954
19955 @item -mm
19956 @opindex mm
19957 Causes variables to be assigned to the @code{.near} section by default.
19958
19959 @item -mminmax
19960 @opindex mminmax
19961 Enables the @code{min} and @code{max} instructions.
19962
19963 @item -mmult
19964 @opindex mmult
19965 Enables the multiplication and multiply-accumulate instructions.
19966
19967 @item -mno-opts
19968 @opindex mno-opts
19969 Disables all the optional instructions enabled by @option{-mall-opts}.
19970
19971 @item -mrepeat
19972 @opindex mrepeat
19973 Enables the @code{repeat} and @code{erepeat} instructions, used for
19974 low-overhead looping.
19975
19976 @item -ms
19977 @opindex ms
19978 Causes all variables to default to the @code{.tiny} section. Note
19979 that there is a 65536-byte limit to this section. Accesses to these
19980 variables use the @code{%gp} base register.
19981
19982 @item -msatur
19983 @opindex msatur
19984 Enables the saturation instructions. Note that the compiler does not
19985 currently generate these itself, but this option is included for
19986 compatibility with other tools, like @code{as}.
19987
19988 @item -msdram
19989 @opindex msdram
19990 Link the SDRAM-based runtime instead of the default ROM-based runtime.
19991
19992 @item -msim
19993 @opindex msim
19994 Link the simulator run-time libraries.
19995
19996 @item -msimnovec
19997 @opindex msimnovec
19998 Link the simulator runtime libraries, excluding built-in support
19999 for reset and exception vectors and tables.
20000
20001 @item -mtf
20002 @opindex mtf
20003 Causes all functions to default to the @code{.far} section. Without
20004 this option, functions default to the @code{.near} section.
20005
20006 @item -mtiny=@var{n}
20007 @opindex mtiny=
20008 Variables that are @var{n} bytes or smaller are allocated to the
20009 @code{.tiny} section. These variables use the @code{$gp} base
20010 register. The default for this option is 4, but note that there's a
20011 65536-byte limit to the @code{.tiny} section.
20012
20013 @end table
20014
20015 @node MicroBlaze Options
20016 @subsection MicroBlaze Options
20017 @cindex MicroBlaze Options
20018
20019 @table @gcctabopt
20020
20021 @item -msoft-float
20022 @opindex msoft-float
20023 Use software emulation for floating point (default).
20024
20025 @item -mhard-float
20026 @opindex mhard-float
20027 Use hardware floating-point instructions.
20028
20029 @item -mmemcpy
20030 @opindex mmemcpy
20031 Do not optimize block moves, use @code{memcpy}.
20032
20033 @item -mno-clearbss
20034 @opindex mno-clearbss
20035 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
20036
20037 @item -mcpu=@var{cpu-type}
20038 @opindex mcpu=
20039 Use features of, and schedule code for, the given CPU.
20040 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
20041 where @var{X} is a major version, @var{YY} is the minor version, and
20042 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
20043 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
20044
20045 @item -mxl-soft-mul
20046 @opindex mxl-soft-mul
20047 Use software multiply emulation (default).
20048
20049 @item -mxl-soft-div
20050 @opindex mxl-soft-div
20051 Use software emulation for divides (default).
20052
20053 @item -mxl-barrel-shift
20054 @opindex mxl-barrel-shift
20055 Use the hardware barrel shifter.
20056
20057 @item -mxl-pattern-compare
20058 @opindex mxl-pattern-compare
20059 Use pattern compare instructions.
20060
20061 @item -msmall-divides
20062 @opindex msmall-divides
20063 Use table lookup optimization for small signed integer divisions.
20064
20065 @item -mxl-stack-check
20066 @opindex mxl-stack-check
20067 This option is deprecated. Use @option{-fstack-check} instead.
20068
20069 @item -mxl-gp-opt
20070 @opindex mxl-gp-opt
20071 Use GP-relative @code{.sdata}/@code{.sbss} sections.
20072
20073 @item -mxl-multiply-high
20074 @opindex mxl-multiply-high
20075 Use multiply high instructions for high part of 32x32 multiply.
20076
20077 @item -mxl-float-convert
20078 @opindex mxl-float-convert
20079 Use hardware floating-point conversion instructions.
20080
20081 @item -mxl-float-sqrt
20082 @opindex mxl-float-sqrt
20083 Use hardware floating-point square root instruction.
20084
20085 @item -mbig-endian
20086 @opindex mbig-endian
20087 Generate code for a big-endian target.
20088
20089 @item -mlittle-endian
20090 @opindex mlittle-endian
20091 Generate code for a little-endian target.
20092
20093 @item -mxl-reorder
20094 @opindex mxl-reorder
20095 Use reorder instructions (swap and byte reversed load/store).
20096
20097 @item -mxl-mode-@var{app-model}
20098 Select application model @var{app-model}. Valid models are
20099 @table @samp
20100 @item executable
20101 normal executable (default), uses startup code @file{crt0.o}.
20102
20103 @item -mpic-data-is-text-relative
20104 @opindex mpic-data-is-text-relative
20105 Assume that the displacement between the text and data segments is fixed
20106 at static link time. This allows data to be referenced by offset from start of
20107 text address instead of GOT since PC-relative addressing is not supported.
20108
20109 @item xmdstub
20110 for use with Xilinx Microprocessor Debugger (XMD) based
20111 software intrusive debug agent called xmdstub. This uses startup file
20112 @file{crt1.o} and sets the start address of the program to 0x800.
20113
20114 @item bootstrap
20115 for applications that are loaded using a bootloader.
20116 This model uses startup file @file{crt2.o} which does not contain a processor
20117 reset vector handler. This is suitable for transferring control on a
20118 processor reset to the bootloader rather than the application.
20119
20120 @item novectors
20121 for applications that do not require any of the
20122 MicroBlaze vectors. This option may be useful for applications running
20123 within a monitoring application. This model uses @file{crt3.o} as a startup file.
20124 @end table
20125
20126 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
20127 @option{-mxl-mode-@var{app-model}}.
20128
20129 @end table
20130
20131 @node MIPS Options
20132 @subsection MIPS Options
20133 @cindex MIPS options
20134
20135 @table @gcctabopt
20136
20137 @item -EB
20138 @opindex EB
20139 Generate big-endian code.
20140
20141 @item -EL
20142 @opindex EL
20143 Generate little-endian code. This is the default for @samp{mips*el-*-*}
20144 configurations.
20145
20146 @item -march=@var{arch}
20147 @opindex march
20148 Generate code that runs on @var{arch}, which can be the name of a
20149 generic MIPS ISA, or the name of a particular processor.
20150 The ISA names are:
20151 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
20152 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
20153 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
20154 @samp{mips64r5} and @samp{mips64r6}.
20155 The processor names are:
20156 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
20157 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
20158 @samp{5kc}, @samp{5kf},
20159 @samp{20kc},
20160 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
20161 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
20162 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
20163 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
20164 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
20165 @samp{i6400},
20166 @samp{interaptiv},
20167 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
20168 @samp{m4k},
20169 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
20170 @samp{m5100}, @samp{m5101},
20171 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
20172 @samp{orion},
20173 @samp{p5600},
20174 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
20175 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
20176 @samp{rm7000}, @samp{rm9000},
20177 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
20178 @samp{sb1},
20179 @samp{sr71000},
20180 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
20181 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
20182 @samp{xlr} and @samp{xlp}.
20183 The special value @samp{from-abi} selects the
20184 most compatible architecture for the selected ABI (that is,
20185 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
20186
20187 The native Linux/GNU toolchain also supports the value @samp{native},
20188 which selects the best architecture option for the host processor.
20189 @option{-march=native} has no effect if GCC does not recognize
20190 the processor.
20191
20192 In processor names, a final @samp{000} can be abbreviated as @samp{k}
20193 (for example, @option{-march=r2k}). Prefixes are optional, and
20194 @samp{vr} may be written @samp{r}.
20195
20196 Names of the form @samp{@var{n}f2_1} refer to processors with
20197 FPUs clocked at half the rate of the core, names of the form
20198 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
20199 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
20200 processors with FPUs clocked a ratio of 3:2 with respect to the core.
20201 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
20202 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
20203 accepted as synonyms for @samp{@var{n}f1_1}.
20204
20205 GCC defines two macros based on the value of this option. The first
20206 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
20207 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
20208 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
20209 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
20210 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
20211
20212 Note that the @code{_MIPS_ARCH} macro uses the processor names given
20213 above. In other words, it has the full prefix and does not
20214 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
20215 the macro names the resolved architecture (either @code{"mips1"} or
20216 @code{"mips3"}). It names the default architecture when no
20217 @option{-march} option is given.
20218
20219 @item -mtune=@var{arch}
20220 @opindex mtune
20221 Optimize for @var{arch}. Among other things, this option controls
20222 the way instructions are scheduled, and the perceived cost of arithmetic
20223 operations. The list of @var{arch} values is the same as for
20224 @option{-march}.
20225
20226 When this option is not used, GCC optimizes for the processor
20227 specified by @option{-march}. By using @option{-march} and
20228 @option{-mtune} together, it is possible to generate code that
20229 runs on a family of processors, but optimize the code for one
20230 particular member of that family.
20231
20232 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
20233 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
20234 @option{-march} ones described above.
20235
20236 @item -mips1
20237 @opindex mips1
20238 Equivalent to @option{-march=mips1}.
20239
20240 @item -mips2
20241 @opindex mips2
20242 Equivalent to @option{-march=mips2}.
20243
20244 @item -mips3
20245 @opindex mips3
20246 Equivalent to @option{-march=mips3}.
20247
20248 @item -mips4
20249 @opindex mips4
20250 Equivalent to @option{-march=mips4}.
20251
20252 @item -mips32
20253 @opindex mips32
20254 Equivalent to @option{-march=mips32}.
20255
20256 @item -mips32r3
20257 @opindex mips32r3
20258 Equivalent to @option{-march=mips32r3}.
20259
20260 @item -mips32r5
20261 @opindex mips32r5
20262 Equivalent to @option{-march=mips32r5}.
20263
20264 @item -mips32r6
20265 @opindex mips32r6
20266 Equivalent to @option{-march=mips32r6}.
20267
20268 @item -mips64
20269 @opindex mips64
20270 Equivalent to @option{-march=mips64}.
20271
20272 @item -mips64r2
20273 @opindex mips64r2
20274 Equivalent to @option{-march=mips64r2}.
20275
20276 @item -mips64r3
20277 @opindex mips64r3
20278 Equivalent to @option{-march=mips64r3}.
20279
20280 @item -mips64r5
20281 @opindex mips64r5
20282 Equivalent to @option{-march=mips64r5}.
20283
20284 @item -mips64r6
20285 @opindex mips64r6
20286 Equivalent to @option{-march=mips64r6}.
20287
20288 @item -mips16
20289 @itemx -mno-mips16
20290 @opindex mips16
20291 @opindex mno-mips16
20292 Generate (do not generate) MIPS16 code. If GCC is targeting a
20293 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
20294
20295 MIPS16 code generation can also be controlled on a per-function basis
20296 by means of @code{mips16} and @code{nomips16} attributes.
20297 @xref{Function Attributes}, for more information.
20298
20299 @item -mflip-mips16
20300 @opindex mflip-mips16
20301 Generate MIPS16 code on alternating functions. This option is provided
20302 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
20303 not intended for ordinary use in compiling user code.
20304
20305 @item -minterlink-compressed
20306 @itemx -mno-interlink-compressed
20307 @opindex minterlink-compressed
20308 @opindex mno-interlink-compressed
20309 Require (do not require) that code using the standard (uncompressed) MIPS ISA
20310 be link-compatible with MIPS16 and microMIPS code, and vice versa.
20311
20312 For example, code using the standard ISA encoding cannot jump directly
20313 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
20314 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
20315 knows that the target of the jump is not compressed.
20316
20317 @item -minterlink-mips16
20318 @itemx -mno-interlink-mips16
20319 @opindex minterlink-mips16
20320 @opindex mno-interlink-mips16
20321 Aliases of @option{-minterlink-compressed} and
20322 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
20323 and are retained for backwards compatibility.
20324
20325 @item -mabi=32
20326 @itemx -mabi=o64
20327 @itemx -mabi=n32
20328 @itemx -mabi=64
20329 @itemx -mabi=eabi
20330 @opindex mabi=32
20331 @opindex mabi=o64
20332 @opindex mabi=n32
20333 @opindex mabi=64
20334 @opindex mabi=eabi
20335 Generate code for the given ABI@.
20336
20337 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
20338 generates 64-bit code when you select a 64-bit architecture, but you
20339 can use @option{-mgp32} to get 32-bit code instead.
20340
20341 For information about the O64 ABI, see
20342 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
20343
20344 GCC supports a variant of the o32 ABI in which floating-point registers
20345 are 64 rather than 32 bits wide. You can select this combination with
20346 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
20347 and @code{mfhc1} instructions and is therefore only supported for
20348 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
20349
20350 The register assignments for arguments and return values remain the
20351 same, but each scalar value is passed in a single 64-bit register
20352 rather than a pair of 32-bit registers. For example, scalar
20353 floating-point values are returned in @samp{$f0} only, not a
20354 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
20355 remains the same in that the even-numbered double-precision registers
20356 are saved.
20357
20358 Two additional variants of the o32 ABI are supported to enable
20359 a transition from 32-bit to 64-bit registers. These are FPXX
20360 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
20361 The FPXX extension mandates that all code must execute correctly
20362 when run using 32-bit or 64-bit registers. The code can be interlinked
20363 with either FP32 or FP64, but not both.
20364 The FP64A extension is similar to the FP64 extension but forbids the
20365 use of odd-numbered single-precision registers. This can be used
20366 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
20367 processors and allows both FP32 and FP64A code to interlink and
20368 run in the same process without changing FPU modes.
20369
20370 @item -mabicalls
20371 @itemx -mno-abicalls
20372 @opindex mabicalls
20373 @opindex mno-abicalls
20374 Generate (do not generate) code that is suitable for SVR4-style
20375 dynamic objects. @option{-mabicalls} is the default for SVR4-based
20376 systems.
20377
20378 @item -mshared
20379 @itemx -mno-shared
20380 Generate (do not generate) code that is fully position-independent,
20381 and that can therefore be linked into shared libraries. This option
20382 only affects @option{-mabicalls}.
20383
20384 All @option{-mabicalls} code has traditionally been position-independent,
20385 regardless of options like @option{-fPIC} and @option{-fpic}. However,
20386 as an extension, the GNU toolchain allows executables to use absolute
20387 accesses for locally-binding symbols. It can also use shorter GP
20388 initialization sequences and generate direct calls to locally-defined
20389 functions. This mode is selected by @option{-mno-shared}.
20390
20391 @option{-mno-shared} depends on binutils 2.16 or higher and generates
20392 objects that can only be linked by the GNU linker. However, the option
20393 does not affect the ABI of the final executable; it only affects the ABI
20394 of relocatable objects. Using @option{-mno-shared} generally makes
20395 executables both smaller and quicker.
20396
20397 @option{-mshared} is the default.
20398
20399 @item -mplt
20400 @itemx -mno-plt
20401 @opindex mplt
20402 @opindex mno-plt
20403 Assume (do not assume) that the static and dynamic linkers
20404 support PLTs and copy relocations. This option only affects
20405 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
20406 has no effect without @option{-msym32}.
20407
20408 You can make @option{-mplt} the default by configuring
20409 GCC with @option{--with-mips-plt}. The default is
20410 @option{-mno-plt} otherwise.
20411
20412 @item -mxgot
20413 @itemx -mno-xgot
20414 @opindex mxgot
20415 @opindex mno-xgot
20416 Lift (do not lift) the usual restrictions on the size of the global
20417 offset table.
20418
20419 GCC normally uses a single instruction to load values from the GOT@.
20420 While this is relatively efficient, it only works if the GOT
20421 is smaller than about 64k. Anything larger causes the linker
20422 to report an error such as:
20423
20424 @cindex relocation truncated to fit (MIPS)
20425 @smallexample
20426 relocation truncated to fit: R_MIPS_GOT16 foobar
20427 @end smallexample
20428
20429 If this happens, you should recompile your code with @option{-mxgot}.
20430 This works with very large GOTs, although the code is also
20431 less efficient, since it takes three instructions to fetch the
20432 value of a global symbol.
20433
20434 Note that some linkers can create multiple GOTs. If you have such a
20435 linker, you should only need to use @option{-mxgot} when a single object
20436 file accesses more than 64k's worth of GOT entries. Very few do.
20437
20438 These options have no effect unless GCC is generating position
20439 independent code.
20440
20441 @item -mgp32
20442 @opindex mgp32
20443 Assume that general-purpose registers are 32 bits wide.
20444
20445 @item -mgp64
20446 @opindex mgp64
20447 Assume that general-purpose registers are 64 bits wide.
20448
20449 @item -mfp32
20450 @opindex mfp32
20451 Assume that floating-point registers are 32 bits wide.
20452
20453 @item -mfp64
20454 @opindex mfp64
20455 Assume that floating-point registers are 64 bits wide.
20456
20457 @item -mfpxx
20458 @opindex mfpxx
20459 Do not assume the width of floating-point registers.
20460
20461 @item -mhard-float
20462 @opindex mhard-float
20463 Use floating-point coprocessor instructions.
20464
20465 @item -msoft-float
20466 @opindex msoft-float
20467 Do not use floating-point coprocessor instructions. Implement
20468 floating-point calculations using library calls instead.
20469
20470 @item -mno-float
20471 @opindex mno-float
20472 Equivalent to @option{-msoft-float}, but additionally asserts that the
20473 program being compiled does not perform any floating-point operations.
20474 This option is presently supported only by some bare-metal MIPS
20475 configurations, where it may select a special set of libraries
20476 that lack all floating-point support (including, for example, the
20477 floating-point @code{printf} formats).
20478 If code compiled with @option{-mno-float} accidentally contains
20479 floating-point operations, it is likely to suffer a link-time
20480 or run-time failure.
20481
20482 @item -msingle-float
20483 @opindex msingle-float
20484 Assume that the floating-point coprocessor only supports single-precision
20485 operations.
20486
20487 @item -mdouble-float
20488 @opindex mdouble-float
20489 Assume that the floating-point coprocessor supports double-precision
20490 operations. This is the default.
20491
20492 @item -modd-spreg
20493 @itemx -mno-odd-spreg
20494 @opindex modd-spreg
20495 @opindex mno-odd-spreg
20496 Enable the use of odd-numbered single-precision floating-point registers
20497 for the o32 ABI. This is the default for processors that are known to
20498 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
20499 is set by default.
20500
20501 @item -mabs=2008
20502 @itemx -mabs=legacy
20503 @opindex mabs=2008
20504 @opindex mabs=legacy
20505 These options control the treatment of the special not-a-number (NaN)
20506 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
20507 @code{neg.@i{fmt}} machine instructions.
20508
20509 By default or when @option{-mabs=legacy} is used the legacy
20510 treatment is selected. In this case these instructions are considered
20511 arithmetic and avoided where correct operation is required and the
20512 input operand might be a NaN. A longer sequence of instructions that
20513 manipulate the sign bit of floating-point datum manually is used
20514 instead unless the @option{-ffinite-math-only} option has also been
20515 specified.
20516
20517 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
20518 this case these instructions are considered non-arithmetic and therefore
20519 operating correctly in all cases, including in particular where the
20520 input operand is a NaN. These instructions are therefore always used
20521 for the respective operations.
20522
20523 @item -mnan=2008
20524 @itemx -mnan=legacy
20525 @opindex mnan=2008
20526 @opindex mnan=legacy
20527 These options control the encoding of the special not-a-number (NaN)
20528 IEEE 754 floating-point data.
20529
20530 The @option{-mnan=legacy} option selects the legacy encoding. In this
20531 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
20532 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
20533 by the first bit of their trailing significand field being 1.
20534
20535 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
20536 this case qNaNs are denoted by the first bit of their trailing
20537 significand field being 1, whereas sNaNs are denoted by the first bit of
20538 their trailing significand field being 0.
20539
20540 The default is @option{-mnan=legacy} unless GCC has been configured with
20541 @option{--with-nan=2008}.
20542
20543 @item -mllsc
20544 @itemx -mno-llsc
20545 @opindex mllsc
20546 @opindex mno-llsc
20547 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
20548 implement atomic memory built-in functions. When neither option is
20549 specified, GCC uses the instructions if the target architecture
20550 supports them.
20551
20552 @option{-mllsc} is useful if the runtime environment can emulate the
20553 instructions and @option{-mno-llsc} can be useful when compiling for
20554 nonstandard ISAs. You can make either option the default by
20555 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
20556 respectively. @option{--with-llsc} is the default for some
20557 configurations; see the installation documentation for details.
20558
20559 @item -mdsp
20560 @itemx -mno-dsp
20561 @opindex mdsp
20562 @opindex mno-dsp
20563 Use (do not use) revision 1 of the MIPS DSP ASE@.
20564 @xref{MIPS DSP Built-in Functions}. This option defines the
20565 preprocessor macro @code{__mips_dsp}. It also defines
20566 @code{__mips_dsp_rev} to 1.
20567
20568 @item -mdspr2
20569 @itemx -mno-dspr2
20570 @opindex mdspr2
20571 @opindex mno-dspr2
20572 Use (do not use) revision 2 of the MIPS DSP ASE@.
20573 @xref{MIPS DSP Built-in Functions}. This option defines the
20574 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
20575 It also defines @code{__mips_dsp_rev} to 2.
20576
20577 @item -msmartmips
20578 @itemx -mno-smartmips
20579 @opindex msmartmips
20580 @opindex mno-smartmips
20581 Use (do not use) the MIPS SmartMIPS ASE.
20582
20583 @item -mpaired-single
20584 @itemx -mno-paired-single
20585 @opindex mpaired-single
20586 @opindex mno-paired-single
20587 Use (do not use) paired-single floating-point instructions.
20588 @xref{MIPS Paired-Single Support}. This option requires
20589 hardware floating-point support to be enabled.
20590
20591 @item -mdmx
20592 @itemx -mno-mdmx
20593 @opindex mdmx
20594 @opindex mno-mdmx
20595 Use (do not use) MIPS Digital Media Extension instructions.
20596 This option can only be used when generating 64-bit code and requires
20597 hardware floating-point support to be enabled.
20598
20599 @item -mips3d
20600 @itemx -mno-mips3d
20601 @opindex mips3d
20602 @opindex mno-mips3d
20603 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
20604 The option @option{-mips3d} implies @option{-mpaired-single}.
20605
20606 @item -mmicromips
20607 @itemx -mno-micromips
20608 @opindex mmicromips
20609 @opindex mno-mmicromips
20610 Generate (do not generate) microMIPS code.
20611
20612 MicroMIPS code generation can also be controlled on a per-function basis
20613 by means of @code{micromips} and @code{nomicromips} attributes.
20614 @xref{Function Attributes}, for more information.
20615
20616 @item -mmt
20617 @itemx -mno-mt
20618 @opindex mmt
20619 @opindex mno-mt
20620 Use (do not use) MT Multithreading instructions.
20621
20622 @item -mmcu
20623 @itemx -mno-mcu
20624 @opindex mmcu
20625 @opindex mno-mcu
20626 Use (do not use) the MIPS MCU ASE instructions.
20627
20628 @item -meva
20629 @itemx -mno-eva
20630 @opindex meva
20631 @opindex mno-eva
20632 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
20633
20634 @item -mvirt
20635 @itemx -mno-virt
20636 @opindex mvirt
20637 @opindex mno-virt
20638 Use (do not use) the MIPS Virtualization (VZ) instructions.
20639
20640 @item -mxpa
20641 @itemx -mno-xpa
20642 @opindex mxpa
20643 @opindex mno-xpa
20644 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
20645
20646 @item -mlong64
20647 @opindex mlong64
20648 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
20649 an explanation of the default and the way that the pointer size is
20650 determined.
20651
20652 @item -mlong32
20653 @opindex mlong32
20654 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
20655
20656 The default size of @code{int}s, @code{long}s and pointers depends on
20657 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
20658 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
20659 32-bit @code{long}s. Pointers are the same size as @code{long}s,
20660 or the same size as integer registers, whichever is smaller.
20661
20662 @item -msym32
20663 @itemx -mno-sym32
20664 @opindex msym32
20665 @opindex mno-sym32
20666 Assume (do not assume) that all symbols have 32-bit values, regardless
20667 of the selected ABI@. This option is useful in combination with
20668 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
20669 to generate shorter and faster references to symbolic addresses.
20670
20671 @item -G @var{num}
20672 @opindex G
20673 Put definitions of externally-visible data in a small data section
20674 if that data is no bigger than @var{num} bytes. GCC can then generate
20675 more efficient accesses to the data; see @option{-mgpopt} for details.
20676
20677 The default @option{-G} option depends on the configuration.
20678
20679 @item -mlocal-sdata
20680 @itemx -mno-local-sdata
20681 @opindex mlocal-sdata
20682 @opindex mno-local-sdata
20683 Extend (do not extend) the @option{-G} behavior to local data too,
20684 such as to static variables in C@. @option{-mlocal-sdata} is the
20685 default for all configurations.
20686
20687 If the linker complains that an application is using too much small data,
20688 you might want to try rebuilding the less performance-critical parts with
20689 @option{-mno-local-sdata}. You might also want to build large
20690 libraries with @option{-mno-local-sdata}, so that the libraries leave
20691 more room for the main program.
20692
20693 @item -mextern-sdata
20694 @itemx -mno-extern-sdata
20695 @opindex mextern-sdata
20696 @opindex mno-extern-sdata
20697 Assume (do not assume) that externally-defined data is in
20698 a small data section if the size of that data is within the @option{-G} limit.
20699 @option{-mextern-sdata} is the default for all configurations.
20700
20701 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
20702 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
20703 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
20704 is placed in a small data section. If @var{Var} is defined by another
20705 module, you must either compile that module with a high-enough
20706 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
20707 definition. If @var{Var} is common, you must link the application
20708 with a high-enough @option{-G} setting.
20709
20710 The easiest way of satisfying these restrictions is to compile
20711 and link every module with the same @option{-G} option. However,
20712 you may wish to build a library that supports several different
20713 small data limits. You can do this by compiling the library with
20714 the highest supported @option{-G} setting and additionally using
20715 @option{-mno-extern-sdata} to stop the library from making assumptions
20716 about externally-defined data.
20717
20718 @item -mgpopt
20719 @itemx -mno-gpopt
20720 @opindex mgpopt
20721 @opindex mno-gpopt
20722 Use (do not use) GP-relative accesses for symbols that are known to be
20723 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
20724 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
20725 configurations.
20726
20727 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
20728 might not hold the value of @code{_gp}. For example, if the code is
20729 part of a library that might be used in a boot monitor, programs that
20730 call boot monitor routines pass an unknown value in @code{$gp}.
20731 (In such situations, the boot monitor itself is usually compiled
20732 with @option{-G0}.)
20733
20734 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
20735 @option{-mno-extern-sdata}.
20736
20737 @item -membedded-data
20738 @itemx -mno-embedded-data
20739 @opindex membedded-data
20740 @opindex mno-embedded-data
20741 Allocate variables to the read-only data section first if possible, then
20742 next in the small data section if possible, otherwise in data. This gives
20743 slightly slower code than the default, but reduces the amount of RAM required
20744 when executing, and thus may be preferred for some embedded systems.
20745
20746 @item -muninit-const-in-rodata
20747 @itemx -mno-uninit-const-in-rodata
20748 @opindex muninit-const-in-rodata
20749 @opindex mno-uninit-const-in-rodata
20750 Put uninitialized @code{const} variables in the read-only data section.
20751 This option is only meaningful in conjunction with @option{-membedded-data}.
20752
20753 @item -mcode-readable=@var{setting}
20754 @opindex mcode-readable
20755 Specify whether GCC may generate code that reads from executable sections.
20756 There are three possible settings:
20757
20758 @table @gcctabopt
20759 @item -mcode-readable=yes
20760 Instructions may freely access executable sections. This is the
20761 default setting.
20762
20763 @item -mcode-readable=pcrel
20764 MIPS16 PC-relative load instructions can access executable sections,
20765 but other instructions must not do so. This option is useful on 4KSc
20766 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
20767 It is also useful on processors that can be configured to have a dual
20768 instruction/data SRAM interface and that, like the M4K, automatically
20769 redirect PC-relative loads to the instruction RAM.
20770
20771 @item -mcode-readable=no
20772 Instructions must not access executable sections. This option can be
20773 useful on targets that are configured to have a dual instruction/data
20774 SRAM interface but that (unlike the M4K) do not automatically redirect
20775 PC-relative loads to the instruction RAM.
20776 @end table
20777
20778 @item -msplit-addresses
20779 @itemx -mno-split-addresses
20780 @opindex msplit-addresses
20781 @opindex mno-split-addresses
20782 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
20783 relocation operators. This option has been superseded by
20784 @option{-mexplicit-relocs} but is retained for backwards compatibility.
20785
20786 @item -mexplicit-relocs
20787 @itemx -mno-explicit-relocs
20788 @opindex mexplicit-relocs
20789 @opindex mno-explicit-relocs
20790 Use (do not use) assembler relocation operators when dealing with symbolic
20791 addresses. The alternative, selected by @option{-mno-explicit-relocs},
20792 is to use assembler macros instead.
20793
20794 @option{-mexplicit-relocs} is the default if GCC was configured
20795 to use an assembler that supports relocation operators.
20796
20797 @item -mcheck-zero-division
20798 @itemx -mno-check-zero-division
20799 @opindex mcheck-zero-division
20800 @opindex mno-check-zero-division
20801 Trap (do not trap) on integer division by zero.
20802
20803 The default is @option{-mcheck-zero-division}.
20804
20805 @item -mdivide-traps
20806 @itemx -mdivide-breaks
20807 @opindex mdivide-traps
20808 @opindex mdivide-breaks
20809 MIPS systems check for division by zero by generating either a
20810 conditional trap or a break instruction. Using traps results in
20811 smaller code, but is only supported on MIPS II and later. Also, some
20812 versions of the Linux kernel have a bug that prevents trap from
20813 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
20814 allow conditional traps on architectures that support them and
20815 @option{-mdivide-breaks} to force the use of breaks.
20816
20817 The default is usually @option{-mdivide-traps}, but this can be
20818 overridden at configure time using @option{--with-divide=breaks}.
20819 Divide-by-zero checks can be completely disabled using
20820 @option{-mno-check-zero-division}.
20821
20822 @item -mload-store-pairs
20823 @itemx -mno-load-store-pairs
20824 @opindex mload-store-pairs
20825 @opindex mno-load-store-pairs
20826 Enable (disable) an optimization that pairs consecutive load or store
20827 instructions to enable load/store bonding. This option is enabled by
20828 default but only takes effect when the selected architecture is known
20829 to support bonding.
20830
20831 @item -mmemcpy
20832 @itemx -mno-memcpy
20833 @opindex mmemcpy
20834 @opindex mno-memcpy
20835 Force (do not force) the use of @code{memcpy} for non-trivial block
20836 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
20837 most constant-sized copies.
20838
20839 @item -mlong-calls
20840 @itemx -mno-long-calls
20841 @opindex mlong-calls
20842 @opindex mno-long-calls
20843 Disable (do not disable) use of the @code{jal} instruction. Calling
20844 functions using @code{jal} is more efficient but requires the caller
20845 and callee to be in the same 256 megabyte segment.
20846
20847 This option has no effect on abicalls code. The default is
20848 @option{-mno-long-calls}.
20849
20850 @item -mmad
20851 @itemx -mno-mad
20852 @opindex mmad
20853 @opindex mno-mad
20854 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
20855 instructions, as provided by the R4650 ISA@.
20856
20857 @item -mimadd
20858 @itemx -mno-imadd
20859 @opindex mimadd
20860 @opindex mno-imadd
20861 Enable (disable) use of the @code{madd} and @code{msub} integer
20862 instructions. The default is @option{-mimadd} on architectures
20863 that support @code{madd} and @code{msub} except for the 74k
20864 architecture where it was found to generate slower code.
20865
20866 @item -mfused-madd
20867 @itemx -mno-fused-madd
20868 @opindex mfused-madd
20869 @opindex mno-fused-madd
20870 Enable (disable) use of the floating-point multiply-accumulate
20871 instructions, when they are available. The default is
20872 @option{-mfused-madd}.
20873
20874 On the R8000 CPU when multiply-accumulate instructions are used,
20875 the intermediate product is calculated to infinite precision
20876 and is not subject to the FCSR Flush to Zero bit. This may be
20877 undesirable in some circumstances. On other processors the result
20878 is numerically identical to the equivalent computation using
20879 separate multiply, add, subtract and negate instructions.
20880
20881 @item -nocpp
20882 @opindex nocpp
20883 Tell the MIPS assembler to not run its preprocessor over user
20884 assembler files (with a @samp{.s} suffix) when assembling them.
20885
20886 @item -mfix-24k
20887 @itemx -mno-fix-24k
20888 @opindex mfix-24k
20889 @opindex mno-fix-24k
20890 Work around the 24K E48 (lost data on stores during refill) errata.
20891 The workarounds are implemented by the assembler rather than by GCC@.
20892
20893 @item -mfix-r4000
20894 @itemx -mno-fix-r4000
20895 @opindex mfix-r4000
20896 @opindex mno-fix-r4000
20897 Work around certain R4000 CPU errata:
20898 @itemize @minus
20899 @item
20900 A double-word or a variable shift may give an incorrect result if executed
20901 immediately after starting an integer division.
20902 @item
20903 A double-word or a variable shift may give an incorrect result if executed
20904 while an integer multiplication is in progress.
20905 @item
20906 An integer division may give an incorrect result if started in a delay slot
20907 of a taken branch or a jump.
20908 @end itemize
20909
20910 @item -mfix-r4400
20911 @itemx -mno-fix-r4400
20912 @opindex mfix-r4400
20913 @opindex mno-fix-r4400
20914 Work around certain R4400 CPU errata:
20915 @itemize @minus
20916 @item
20917 A double-word or a variable shift may give an incorrect result if executed
20918 immediately after starting an integer division.
20919 @end itemize
20920
20921 @item -mfix-r10000
20922 @itemx -mno-fix-r10000
20923 @opindex mfix-r10000
20924 @opindex mno-fix-r10000
20925 Work around certain R10000 errata:
20926 @itemize @minus
20927 @item
20928 @code{ll}/@code{sc} sequences may not behave atomically on revisions
20929 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
20930 @end itemize
20931
20932 This option can only be used if the target architecture supports
20933 branch-likely instructions. @option{-mfix-r10000} is the default when
20934 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
20935 otherwise.
20936
20937 @item -mfix-rm7000
20938 @itemx -mno-fix-rm7000
20939 @opindex mfix-rm7000
20940 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
20941 workarounds are implemented by the assembler rather than by GCC@.
20942
20943 @item -mfix-vr4120
20944 @itemx -mno-fix-vr4120
20945 @opindex mfix-vr4120
20946 Work around certain VR4120 errata:
20947 @itemize @minus
20948 @item
20949 @code{dmultu} does not always produce the correct result.
20950 @item
20951 @code{div} and @code{ddiv} do not always produce the correct result if one
20952 of the operands is negative.
20953 @end itemize
20954 The workarounds for the division errata rely on special functions in
20955 @file{libgcc.a}. At present, these functions are only provided by
20956 the @code{mips64vr*-elf} configurations.
20957
20958 Other VR4120 errata require a NOP to be inserted between certain pairs of
20959 instructions. These errata are handled by the assembler, not by GCC itself.
20960
20961 @item -mfix-vr4130
20962 @opindex mfix-vr4130
20963 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
20964 workarounds are implemented by the assembler rather than by GCC,
20965 although GCC avoids using @code{mflo} and @code{mfhi} if the
20966 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
20967 instructions are available instead.
20968
20969 @item -mfix-sb1
20970 @itemx -mno-fix-sb1
20971 @opindex mfix-sb1
20972 Work around certain SB-1 CPU core errata.
20973 (This flag currently works around the SB-1 revision 2
20974 ``F1'' and ``F2'' floating-point errata.)
20975
20976 @item -mr10k-cache-barrier=@var{setting}
20977 @opindex mr10k-cache-barrier
20978 Specify whether GCC should insert cache barriers to avoid the
20979 side effects of speculation on R10K processors.
20980
20981 In common with many processors, the R10K tries to predict the outcome
20982 of a conditional branch and speculatively executes instructions from
20983 the ``taken'' branch. It later aborts these instructions if the
20984 predicted outcome is wrong. However, on the R10K, even aborted
20985 instructions can have side effects.
20986
20987 This problem only affects kernel stores and, depending on the system,
20988 kernel loads. As an example, a speculatively-executed store may load
20989 the target memory into cache and mark the cache line as dirty, even if
20990 the store itself is later aborted. If a DMA operation writes to the
20991 same area of memory before the ``dirty'' line is flushed, the cached
20992 data overwrites the DMA-ed data. See the R10K processor manual
20993 for a full description, including other potential problems.
20994
20995 One workaround is to insert cache barrier instructions before every memory
20996 access that might be speculatively executed and that might have side
20997 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
20998 controls GCC's implementation of this workaround. It assumes that
20999 aborted accesses to any byte in the following regions does not have
21000 side effects:
21001
21002 @enumerate
21003 @item
21004 the memory occupied by the current function's stack frame;
21005
21006 @item
21007 the memory occupied by an incoming stack argument;
21008
21009 @item
21010 the memory occupied by an object with a link-time-constant address.
21011 @end enumerate
21012
21013 It is the kernel's responsibility to ensure that speculative
21014 accesses to these regions are indeed safe.
21015
21016 If the input program contains a function declaration such as:
21017
21018 @smallexample
21019 void foo (void);
21020 @end smallexample
21021
21022 then the implementation of @code{foo} must allow @code{j foo} and
21023 @code{jal foo} to be executed speculatively. GCC honors this
21024 restriction for functions it compiles itself. It expects non-GCC
21025 functions (such as hand-written assembly code) to do the same.
21026
21027 The option has three forms:
21028
21029 @table @gcctabopt
21030 @item -mr10k-cache-barrier=load-store
21031 Insert a cache barrier before a load or store that might be
21032 speculatively executed and that might have side effects even
21033 if aborted.
21034
21035 @item -mr10k-cache-barrier=store
21036 Insert a cache barrier before a store that might be speculatively
21037 executed and that might have side effects even if aborted.
21038
21039 @item -mr10k-cache-barrier=none
21040 Disable the insertion of cache barriers. This is the default setting.
21041 @end table
21042
21043 @item -mflush-func=@var{func}
21044 @itemx -mno-flush-func
21045 @opindex mflush-func
21046 Specifies the function to call to flush the I and D caches, or to not
21047 call any such function. If called, the function must take the same
21048 arguments as the common @code{_flush_func}, that is, the address of the
21049 memory range for which the cache is being flushed, the size of the
21050 memory range, and the number 3 (to flush both caches). The default
21051 depends on the target GCC was configured for, but commonly is either
21052 @code{_flush_func} or @code{__cpu_flush}.
21053
21054 @item mbranch-cost=@var{num}
21055 @opindex mbranch-cost
21056 Set the cost of branches to roughly @var{num} ``simple'' instructions.
21057 This cost is only a heuristic and is not guaranteed to produce
21058 consistent results across releases. A zero cost redundantly selects
21059 the default, which is based on the @option{-mtune} setting.
21060
21061 @item -mbranch-likely
21062 @itemx -mno-branch-likely
21063 @opindex mbranch-likely
21064 @opindex mno-branch-likely
21065 Enable or disable use of Branch Likely instructions, regardless of the
21066 default for the selected architecture. By default, Branch Likely
21067 instructions may be generated if they are supported by the selected
21068 architecture. An exception is for the MIPS32 and MIPS64 architectures
21069 and processors that implement those architectures; for those, Branch
21070 Likely instructions are not be generated by default because the MIPS32
21071 and MIPS64 architectures specifically deprecate their use.
21072
21073 @item -mcompact-branches=never
21074 @itemx -mcompact-branches=optimal
21075 @itemx -mcompact-branches=always
21076 @opindex mcompact-branches=never
21077 @opindex mcompact-branches=optimal
21078 @opindex mcompact-branches=always
21079 These options control which form of branches will be generated. The
21080 default is @option{-mcompact-branches=optimal}.
21081
21082 The @option{-mcompact-branches=never} option ensures that compact branch
21083 instructions will never be generated.
21084
21085 The @option{-mcompact-branches=always} option ensures that a compact
21086 branch instruction will be generated if available. If a compact branch
21087 instruction is not available, a delay slot form of the branch will be
21088 used instead.
21089
21090 This option is supported from MIPS Release 6 onwards.
21091
21092 The @option{-mcompact-branches=optimal} option will cause a delay slot
21093 branch to be used if one is available in the current ISA and the delay
21094 slot is successfully filled. If the delay slot is not filled, a compact
21095 branch will be chosen if one is available.
21096
21097 @item -mfp-exceptions
21098 @itemx -mno-fp-exceptions
21099 @opindex mfp-exceptions
21100 Specifies whether FP exceptions are enabled. This affects how
21101 FP instructions are scheduled for some processors.
21102 The default is that FP exceptions are
21103 enabled.
21104
21105 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
21106 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
21107 FP pipe.
21108
21109 @item -mvr4130-align
21110 @itemx -mno-vr4130-align
21111 @opindex mvr4130-align
21112 The VR4130 pipeline is two-way superscalar, but can only issue two
21113 instructions together if the first one is 8-byte aligned. When this
21114 option is enabled, GCC aligns pairs of instructions that it
21115 thinks should execute in parallel.
21116
21117 This option only has an effect when optimizing for the VR4130.
21118 It normally makes code faster, but at the expense of making it bigger.
21119 It is enabled by default at optimization level @option{-O3}.
21120
21121 @item -msynci
21122 @itemx -mno-synci
21123 @opindex msynci
21124 Enable (disable) generation of @code{synci} instructions on
21125 architectures that support it. The @code{synci} instructions (if
21126 enabled) are generated when @code{__builtin___clear_cache} is
21127 compiled.
21128
21129 This option defaults to @option{-mno-synci}, but the default can be
21130 overridden by configuring GCC with @option{--with-synci}.
21131
21132 When compiling code for single processor systems, it is generally safe
21133 to use @code{synci}. However, on many multi-core (SMP) systems, it
21134 does not invalidate the instruction caches on all cores and may lead
21135 to undefined behavior.
21136
21137 @item -mrelax-pic-calls
21138 @itemx -mno-relax-pic-calls
21139 @opindex mrelax-pic-calls
21140 Try to turn PIC calls that are normally dispatched via register
21141 @code{$25} into direct calls. This is only possible if the linker can
21142 resolve the destination at link time and if the destination is within
21143 range for a direct call.
21144
21145 @option{-mrelax-pic-calls} is the default if GCC was configured to use
21146 an assembler and a linker that support the @code{.reloc} assembly
21147 directive and @option{-mexplicit-relocs} is in effect. With
21148 @option{-mno-explicit-relocs}, this optimization can be performed by the
21149 assembler and the linker alone without help from the compiler.
21150
21151 @item -mmcount-ra-address
21152 @itemx -mno-mcount-ra-address
21153 @opindex mmcount-ra-address
21154 @opindex mno-mcount-ra-address
21155 Emit (do not emit) code that allows @code{_mcount} to modify the
21156 calling function's return address. When enabled, this option extends
21157 the usual @code{_mcount} interface with a new @var{ra-address}
21158 parameter, which has type @code{intptr_t *} and is passed in register
21159 @code{$12}. @code{_mcount} can then modify the return address by
21160 doing both of the following:
21161 @itemize
21162 @item
21163 Returning the new address in register @code{$31}.
21164 @item
21165 Storing the new address in @code{*@var{ra-address}},
21166 if @var{ra-address} is nonnull.
21167 @end itemize
21168
21169 The default is @option{-mno-mcount-ra-address}.
21170
21171 @item -mframe-header-opt
21172 @itemx -mno-frame-header-opt
21173 @opindex mframe-header-opt
21174 Enable (disable) frame header optimization in the o32 ABI. When using the
21175 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
21176 function to write out register arguments. When enabled, this optimization
21177 will suppress the allocation of the frame header if it can be determined that
21178 it is unused.
21179
21180 This optimization is off by default at all optimization levels.
21181
21182 @item -mlxc1-sxc1
21183 @itemx -mno-lxc1-sxc1
21184 @opindex mlxc1-sxc1
21185 When applicable, enable (disable) the generation of @code{lwxc1},
21186 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
21187
21188 @item -mmadd4
21189 @itemx -mno-madd4
21190 @opindex mmadd4
21191 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
21192 @code{madd.d} and related instructions. Enabled by default.
21193
21194 @end table
21195
21196 @node MMIX Options
21197 @subsection MMIX Options
21198 @cindex MMIX Options
21199
21200 These options are defined for the MMIX:
21201
21202 @table @gcctabopt
21203 @item -mlibfuncs
21204 @itemx -mno-libfuncs
21205 @opindex mlibfuncs
21206 @opindex mno-libfuncs
21207 Specify that intrinsic library functions are being compiled, passing all
21208 values in registers, no matter the size.
21209
21210 @item -mepsilon
21211 @itemx -mno-epsilon
21212 @opindex mepsilon
21213 @opindex mno-epsilon
21214 Generate floating-point comparison instructions that compare with respect
21215 to the @code{rE} epsilon register.
21216
21217 @item -mabi=mmixware
21218 @itemx -mabi=gnu
21219 @opindex mabi=mmixware
21220 @opindex mabi=gnu
21221 Generate code that passes function parameters and return values that (in
21222 the called function) are seen as registers @code{$0} and up, as opposed to
21223 the GNU ABI which uses global registers @code{$231} and up.
21224
21225 @item -mzero-extend
21226 @itemx -mno-zero-extend
21227 @opindex mzero-extend
21228 @opindex mno-zero-extend
21229 When reading data from memory in sizes shorter than 64 bits, use (do not
21230 use) zero-extending load instructions by default, rather than
21231 sign-extending ones.
21232
21233 @item -mknuthdiv
21234 @itemx -mno-knuthdiv
21235 @opindex mknuthdiv
21236 @opindex mno-knuthdiv
21237 Make the result of a division yielding a remainder have the same sign as
21238 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
21239 remainder follows the sign of the dividend. Both methods are
21240 arithmetically valid, the latter being almost exclusively used.
21241
21242 @item -mtoplevel-symbols
21243 @itemx -mno-toplevel-symbols
21244 @opindex mtoplevel-symbols
21245 @opindex mno-toplevel-symbols
21246 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
21247 code can be used with the @code{PREFIX} assembly directive.
21248
21249 @item -melf
21250 @opindex melf
21251 Generate an executable in the ELF format, rather than the default
21252 @samp{mmo} format used by the @command{mmix} simulator.
21253
21254 @item -mbranch-predict
21255 @itemx -mno-branch-predict
21256 @opindex mbranch-predict
21257 @opindex mno-branch-predict
21258 Use (do not use) the probable-branch instructions, when static branch
21259 prediction indicates a probable branch.
21260
21261 @item -mbase-addresses
21262 @itemx -mno-base-addresses
21263 @opindex mbase-addresses
21264 @opindex mno-base-addresses
21265 Generate (do not generate) code that uses @emph{base addresses}. Using a
21266 base address automatically generates a request (handled by the assembler
21267 and the linker) for a constant to be set up in a global register. The
21268 register is used for one or more base address requests within the range 0
21269 to 255 from the value held in the register. The generally leads to short
21270 and fast code, but the number of different data items that can be
21271 addressed is limited. This means that a program that uses lots of static
21272 data may require @option{-mno-base-addresses}.
21273
21274 @item -msingle-exit
21275 @itemx -mno-single-exit
21276 @opindex msingle-exit
21277 @opindex mno-single-exit
21278 Force (do not force) generated code to have a single exit point in each
21279 function.
21280 @end table
21281
21282 @node MN10300 Options
21283 @subsection MN10300 Options
21284 @cindex MN10300 options
21285
21286 These @option{-m} options are defined for Matsushita MN10300 architectures:
21287
21288 @table @gcctabopt
21289 @item -mmult-bug
21290 @opindex mmult-bug
21291 Generate code to avoid bugs in the multiply instructions for the MN10300
21292 processors. This is the default.
21293
21294 @item -mno-mult-bug
21295 @opindex mno-mult-bug
21296 Do not generate code to avoid bugs in the multiply instructions for the
21297 MN10300 processors.
21298
21299 @item -mam33
21300 @opindex mam33
21301 Generate code using features specific to the AM33 processor.
21302
21303 @item -mno-am33
21304 @opindex mno-am33
21305 Do not generate code using features specific to the AM33 processor. This
21306 is the default.
21307
21308 @item -mam33-2
21309 @opindex mam33-2
21310 Generate code using features specific to the AM33/2.0 processor.
21311
21312 @item -mam34
21313 @opindex mam34
21314 Generate code using features specific to the AM34 processor.
21315
21316 @item -mtune=@var{cpu-type}
21317 @opindex mtune
21318 Use the timing characteristics of the indicated CPU type when
21319 scheduling instructions. This does not change the targeted processor
21320 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
21321 @samp{am33-2} or @samp{am34}.
21322
21323 @item -mreturn-pointer-on-d0
21324 @opindex mreturn-pointer-on-d0
21325 When generating a function that returns a pointer, return the pointer
21326 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
21327 only in @code{a0}, and attempts to call such functions without a prototype
21328 result in errors. Note that this option is on by default; use
21329 @option{-mno-return-pointer-on-d0} to disable it.
21330
21331 @item -mno-crt0
21332 @opindex mno-crt0
21333 Do not link in the C run-time initialization object file.
21334
21335 @item -mrelax
21336 @opindex mrelax
21337 Indicate to the linker that it should perform a relaxation optimization pass
21338 to shorten branches, calls and absolute memory addresses. This option only
21339 has an effect when used on the command line for the final link step.
21340
21341 This option makes symbolic debugging impossible.
21342
21343 @item -mliw
21344 @opindex mliw
21345 Allow the compiler to generate @emph{Long Instruction Word}
21346 instructions if the target is the @samp{AM33} or later. This is the
21347 default. This option defines the preprocessor macro @code{__LIW__}.
21348
21349 @item -mnoliw
21350 @opindex mnoliw
21351 Do not allow the compiler to generate @emph{Long Instruction Word}
21352 instructions. This option defines the preprocessor macro
21353 @code{__NO_LIW__}.
21354
21355 @item -msetlb
21356 @opindex msetlb
21357 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
21358 instructions if the target is the @samp{AM33} or later. This is the
21359 default. This option defines the preprocessor macro @code{__SETLB__}.
21360
21361 @item -mnosetlb
21362 @opindex mnosetlb
21363 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
21364 instructions. This option defines the preprocessor macro
21365 @code{__NO_SETLB__}.
21366
21367 @end table
21368
21369 @node Moxie Options
21370 @subsection Moxie Options
21371 @cindex Moxie Options
21372
21373 @table @gcctabopt
21374
21375 @item -meb
21376 @opindex meb
21377 Generate big-endian code. This is the default for @samp{moxie-*-*}
21378 configurations.
21379
21380 @item -mel
21381 @opindex mel
21382 Generate little-endian code.
21383
21384 @item -mmul.x
21385 @opindex mmul.x
21386 Generate mul.x and umul.x instructions. This is the default for
21387 @samp{moxiebox-*-*} configurations.
21388
21389 @item -mno-crt0
21390 @opindex mno-crt0
21391 Do not link in the C run-time initialization object file.
21392
21393 @end table
21394
21395 @node MSP430 Options
21396 @subsection MSP430 Options
21397 @cindex MSP430 Options
21398
21399 These options are defined for the MSP430:
21400
21401 @table @gcctabopt
21402
21403 @item -masm-hex
21404 @opindex masm-hex
21405 Force assembly output to always use hex constants. Normally such
21406 constants are signed decimals, but this option is available for
21407 testsuite and/or aesthetic purposes.
21408
21409 @item -mmcu=
21410 @opindex mmcu=
21411 Select the MCU to target. This is used to create a C preprocessor
21412 symbol based upon the MCU name, converted to upper case and pre- and
21413 post-fixed with @samp{__}. This in turn is used by the
21414 @file{msp430.h} header file to select an MCU-specific supplementary
21415 header file.
21416
21417 The option also sets the ISA to use. If the MCU name is one that is
21418 known to only support the 430 ISA then that is selected, otherwise the
21419 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
21420 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
21421 name selects the 430X ISA.
21422
21423 In addition an MCU-specific linker script is added to the linker
21424 command line. The script's name is the name of the MCU with
21425 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
21426 command line defines the C preprocessor symbol @code{__XXX__} and
21427 cause the linker to search for a script called @file{xxx.ld}.
21428
21429 This option is also passed on to the assembler.
21430
21431 @item -mwarn-mcu
21432 @itemx -mno-warn-mcu
21433 @opindex mwarn-mcu
21434 @opindex mno-warn-mcu
21435 This option enables or disables warnings about conflicts between the
21436 MCU name specified by the @option{-mmcu} option and the ISA set by the
21437 @option{-mcpu} option and/or the hardware multiply support set by the
21438 @option{-mhwmult} option. It also toggles warnings about unrecognized
21439 MCU names. This option is on by default.
21440
21441 @item -mcpu=
21442 @opindex mcpu=
21443 Specifies the ISA to use. Accepted values are @samp{msp430},
21444 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
21445 @option{-mmcu=} option should be used to select the ISA.
21446
21447 @item -msim
21448 @opindex msim
21449 Link to the simulator runtime libraries and linker script. Overrides
21450 any scripts that would be selected by the @option{-mmcu=} option.
21451
21452 @item -mlarge
21453 @opindex mlarge
21454 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
21455
21456 @item -msmall
21457 @opindex msmall
21458 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
21459
21460 @item -mrelax
21461 @opindex mrelax
21462 This option is passed to the assembler and linker, and allows the
21463 linker to perform certain optimizations that cannot be done until
21464 the final link.
21465
21466 @item mhwmult=
21467 @opindex mhwmult=
21468 Describes the type of hardware multiply supported by the target.
21469 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
21470 for the original 16-bit-only multiply supported by early MCUs.
21471 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
21472 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
21473 A value of @samp{auto} can also be given. This tells GCC to deduce
21474 the hardware multiply support based upon the MCU name provided by the
21475 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
21476 the MCU name is not recognized then no hardware multiply support is
21477 assumed. @code{auto} is the default setting.
21478
21479 Hardware multiplies are normally performed by calling a library
21480 routine. This saves space in the generated code. When compiling at
21481 @option{-O3} or higher however the hardware multiplier is invoked
21482 inline. This makes for bigger, but faster code.
21483
21484 The hardware multiply routines disable interrupts whilst running and
21485 restore the previous interrupt state when they finish. This makes
21486 them safe to use inside interrupt handlers as well as in normal code.
21487
21488 @item -minrt
21489 @opindex minrt
21490 Enable the use of a minimum runtime environment - no static
21491 initializers or constructors. This is intended for memory-constrained
21492 devices. The compiler includes special symbols in some objects
21493 that tell the linker and runtime which code fragments are required.
21494
21495 @item -mcode-region=
21496 @itemx -mdata-region=
21497 @opindex mcode-region
21498 @opindex mdata-region
21499 These options tell the compiler where to place functions and data that
21500 do not have one of the @code{lower}, @code{upper}, @code{either} or
21501 @code{section} attributes. Possible values are @code{lower},
21502 @code{upper}, @code{either} or @code{any}. The first three behave
21503 like the corresponding attribute. The fourth possible value -
21504 @code{any} - is the default. It leaves placement entirely up to the
21505 linker script and how it assigns the standard sections
21506 (@code{.text}, @code{.data}, etc) to the memory regions.
21507
21508 @item -msilicon-errata=
21509 @opindex msilicon-errata
21510 This option passes on a request to assembler to enable the fixes for
21511 the named silicon errata.
21512
21513 @item -msilicon-errata-warn=
21514 @opindex msilicon-errata-warn
21515 This option passes on a request to the assembler to enable warning
21516 messages when a silicon errata might need to be applied.
21517
21518 @end table
21519
21520 @node NDS32 Options
21521 @subsection NDS32 Options
21522 @cindex NDS32 Options
21523
21524 These options are defined for NDS32 implementations:
21525
21526 @table @gcctabopt
21527
21528 @item -mbig-endian
21529 @opindex mbig-endian
21530 Generate code in big-endian mode.
21531
21532 @item -mlittle-endian
21533 @opindex mlittle-endian
21534 Generate code in little-endian mode.
21535
21536 @item -mreduced-regs
21537 @opindex mreduced-regs
21538 Use reduced-set registers for register allocation.
21539
21540 @item -mfull-regs
21541 @opindex mfull-regs
21542 Use full-set registers for register allocation.
21543
21544 @item -mcmov
21545 @opindex mcmov
21546 Generate conditional move instructions.
21547
21548 @item -mno-cmov
21549 @opindex mno-cmov
21550 Do not generate conditional move instructions.
21551
21552 @item -mext-perf
21553 @opindex mperf-ext
21554 Generate performance extension instructions.
21555
21556 @item -mno-ext-perf
21557 @opindex mno-perf-ext
21558 Do not generate performance extension instructions.
21559
21560 @item -mext-perf2
21561 @opindex mperf-ext
21562 Generate performance extension 2 instructions.
21563
21564 @item -mno-ext-perf2
21565 @opindex mno-perf-ext
21566 Do not generate performance extension 2 instructions.
21567
21568 @item -mext-string
21569 @opindex mperf-ext
21570 Generate string extension instructions.
21571
21572 @item -mno-ext-string
21573 @opindex mno-perf-ext
21574 Do not generate string extension instructions.
21575
21576 @item -mv3push
21577 @opindex mv3push
21578 Generate v3 push25/pop25 instructions.
21579
21580 @item -mno-v3push
21581 @opindex mno-v3push
21582 Do not generate v3 push25/pop25 instructions.
21583
21584 @item -m16-bit
21585 @opindex m16-bit
21586 Generate 16-bit instructions.
21587
21588 @item -mno-16-bit
21589 @opindex mno-16-bit
21590 Do not generate 16-bit instructions.
21591
21592 @item -misr-vector-size=@var{num}
21593 @opindex misr-vector-size
21594 Specify the size of each interrupt vector, which must be 4 or 16.
21595
21596 @item -mcache-block-size=@var{num}
21597 @opindex mcache-block-size
21598 Specify the size of each cache block,
21599 which must be a power of 2 between 4 and 512.
21600
21601 @item -march=@var{arch}
21602 @opindex march
21603 Specify the name of the target architecture.
21604
21605 @item -mcmodel=@var{code-model}
21606 @opindex mcmodel
21607 Set the code model to one of
21608 @table @asis
21609 @item @samp{small}
21610 All the data and read-only data segments must be within 512KB addressing space.
21611 The text segment must be within 16MB addressing space.
21612 @item @samp{medium}
21613 The data segment must be within 512KB while the read-only data segment can be
21614 within 4GB addressing space. The text segment should be still within 16MB
21615 addressing space.
21616 @item @samp{large}
21617 All the text and data segments can be within 4GB addressing space.
21618 @end table
21619
21620 @item -mctor-dtor
21621 @opindex mctor-dtor
21622 Enable constructor/destructor feature.
21623
21624 @item -mrelax
21625 @opindex mrelax
21626 Guide linker to relax instructions.
21627
21628 @end table
21629
21630 @node Nios II Options
21631 @subsection Nios II Options
21632 @cindex Nios II options
21633 @cindex Altera Nios II options
21634
21635 These are the options defined for the Altera Nios II processor.
21636
21637 @table @gcctabopt
21638
21639 @item -G @var{num}
21640 @opindex G
21641 @cindex smaller data references
21642 Put global and static objects less than or equal to @var{num} bytes
21643 into the small data or BSS sections instead of the normal data or BSS
21644 sections. The default value of @var{num} is 8.
21645
21646 @item -mgpopt=@var{option}
21647 @itemx -mgpopt
21648 @itemx -mno-gpopt
21649 @opindex mgpopt
21650 @opindex mno-gpopt
21651 Generate (do not generate) GP-relative accesses. The following
21652 @var{option} names are recognized:
21653
21654 @table @samp
21655
21656 @item none
21657 Do not generate GP-relative accesses.
21658
21659 @item local
21660 Generate GP-relative accesses for small data objects that are not
21661 external, weak, or uninitialized common symbols.
21662 Also use GP-relative addressing for objects that
21663 have been explicitly placed in a small data section via a @code{section}
21664 attribute.
21665
21666 @item global
21667 As for @samp{local}, but also generate GP-relative accesses for
21668 small data objects that are external, weak, or common. If you use this option,
21669 you must ensure that all parts of your program (including libraries) are
21670 compiled with the same @option{-G} setting.
21671
21672 @item data
21673 Generate GP-relative accesses for all data objects in the program. If you
21674 use this option, the entire data and BSS segments
21675 of your program must fit in 64K of memory and you must use an appropriate
21676 linker script to allocate them within the addressable range of the
21677 global pointer.
21678
21679 @item all
21680 Generate GP-relative addresses for function pointers as well as data
21681 pointers. If you use this option, the entire text, data, and BSS segments
21682 of your program must fit in 64K of memory and you must use an appropriate
21683 linker script to allocate them within the addressable range of the
21684 global pointer.
21685
21686 @end table
21687
21688 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
21689 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
21690
21691 The default is @option{-mgpopt} except when @option{-fpic} or
21692 @option{-fPIC} is specified to generate position-independent code.
21693 Note that the Nios II ABI does not permit GP-relative accesses from
21694 shared libraries.
21695
21696 You may need to specify @option{-mno-gpopt} explicitly when building
21697 programs that include large amounts of small data, including large
21698 GOT data sections. In this case, the 16-bit offset for GP-relative
21699 addressing may not be large enough to allow access to the entire
21700 small data section.
21701
21702 @item -mgprel-sec=@var{regexp}
21703 @opindex mgprel-sec
21704 This option specifies additional section names that can be accessed via
21705 GP-relative addressing. It is most useful in conjunction with
21706 @code{section} attributes on variable declarations
21707 (@pxref{Common Variable Attributes}) and a custom linker script.
21708 The @var{regexp} is a POSIX Extended Regular Expression.
21709
21710 This option does not affect the behavior of the @option{-G} option, and
21711 and the specified sections are in addition to the standard @code{.sdata}
21712 and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
21713
21714 @item -mr0rel-sec=@var{regexp}
21715 @opindex mr0rel-sec
21716 This option specifies names of sections that can be accessed via a
21717 16-bit offset from @code{r0}; that is, in the low 32K or high 32K
21718 of the 32-bit address space. It is most useful in conjunction with
21719 @code{section} attributes on variable declarations
21720 (@pxref{Common Variable Attributes}) and a custom linker script.
21721 The @var{regexp} is a POSIX Extended Regular Expression.
21722
21723 In contrast to the use of GP-relative addressing for small data,
21724 zero-based addressing is never generated by default and there are no
21725 conventional section names used in standard linker scripts for sections
21726 in the low or high areas of memory.
21727
21728 @item -mel
21729 @itemx -meb
21730 @opindex mel
21731 @opindex meb
21732 Generate little-endian (default) or big-endian (experimental) code,
21733 respectively.
21734
21735 @item -march=@var{arch}
21736 @opindex march
21737 This specifies the name of the target Nios II architecture. GCC uses this
21738 name to determine what kind of instructions it can emit when generating
21739 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
21740
21741 The preprocessor macro @code{__nios2_arch__} is available to programs,
21742 with value 1 or 2, indicating the targeted ISA level.
21743
21744 @item -mbypass-cache
21745 @itemx -mno-bypass-cache
21746 @opindex mno-bypass-cache
21747 @opindex mbypass-cache
21748 Force all load and store instructions to always bypass cache by
21749 using I/O variants of the instructions. The default is not to
21750 bypass the cache.
21751
21752 @item -mno-cache-volatile
21753 @itemx -mcache-volatile
21754 @opindex mcache-volatile
21755 @opindex mno-cache-volatile
21756 Volatile memory access bypass the cache using the I/O variants of
21757 the load and store instructions. The default is not to bypass the cache.
21758
21759 @item -mno-fast-sw-div
21760 @itemx -mfast-sw-div
21761 @opindex mno-fast-sw-div
21762 @opindex mfast-sw-div
21763 Do not use table-based fast divide for small numbers. The default
21764 is to use the fast divide at @option{-O3} and above.
21765
21766 @item -mno-hw-mul
21767 @itemx -mhw-mul
21768 @itemx -mno-hw-mulx
21769 @itemx -mhw-mulx
21770 @itemx -mno-hw-div
21771 @itemx -mhw-div
21772 @opindex mno-hw-mul
21773 @opindex mhw-mul
21774 @opindex mno-hw-mulx
21775 @opindex mhw-mulx
21776 @opindex mno-hw-div
21777 @opindex mhw-div
21778 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
21779 instructions by the compiler. The default is to emit @code{mul}
21780 and not emit @code{div} and @code{mulx}.
21781
21782 @item -mbmx
21783 @itemx -mno-bmx
21784 @itemx -mcdx
21785 @itemx -mno-cdx
21786 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
21787 CDX (code density) instructions. Enabling these instructions also
21788 requires @option{-march=r2}. Since these instructions are optional
21789 extensions to the R2 architecture, the default is not to emit them.
21790
21791 @item -mcustom-@var{insn}=@var{N}
21792 @itemx -mno-custom-@var{insn}
21793 @opindex mcustom-@var{insn}
21794 @opindex mno-custom-@var{insn}
21795 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
21796 custom instruction with encoding @var{N} when generating code that uses
21797 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
21798 instruction 253 for single-precision floating-point add operations instead
21799 of the default behavior of using a library call.
21800
21801 The following values of @var{insn} are supported. Except as otherwise
21802 noted, floating-point operations are expected to be implemented with
21803 normal IEEE 754 semantics and correspond directly to the C operators or the
21804 equivalent GCC built-in functions (@pxref{Other Builtins}).
21805
21806 Single-precision floating point:
21807 @table @asis
21808
21809 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
21810 Binary arithmetic operations.
21811
21812 @item @samp{fnegs}
21813 Unary negation.
21814
21815 @item @samp{fabss}
21816 Unary absolute value.
21817
21818 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
21819 Comparison operations.
21820
21821 @item @samp{fmins}, @samp{fmaxs}
21822 Floating-point minimum and maximum. These instructions are only
21823 generated if @option{-ffinite-math-only} is specified.
21824
21825 @item @samp{fsqrts}
21826 Unary square root operation.
21827
21828 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
21829 Floating-point trigonometric and exponential functions. These instructions
21830 are only generated if @option{-funsafe-math-optimizations} is also specified.
21831
21832 @end table
21833
21834 Double-precision floating point:
21835 @table @asis
21836
21837 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
21838 Binary arithmetic operations.
21839
21840 @item @samp{fnegd}
21841 Unary negation.
21842
21843 @item @samp{fabsd}
21844 Unary absolute value.
21845
21846 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
21847 Comparison operations.
21848
21849 @item @samp{fmind}, @samp{fmaxd}
21850 Double-precision minimum and maximum. These instructions are only
21851 generated if @option{-ffinite-math-only} is specified.
21852
21853 @item @samp{fsqrtd}
21854 Unary square root operation.
21855
21856 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
21857 Double-precision trigonometric and exponential functions. These instructions
21858 are only generated if @option{-funsafe-math-optimizations} is also specified.
21859
21860 @end table
21861
21862 Conversions:
21863 @table @asis
21864 @item @samp{fextsd}
21865 Conversion from single precision to double precision.
21866
21867 @item @samp{ftruncds}
21868 Conversion from double precision to single precision.
21869
21870 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
21871 Conversion from floating point to signed or unsigned integer types, with
21872 truncation towards zero.
21873
21874 @item @samp{round}
21875 Conversion from single-precision floating point to signed integer,
21876 rounding to the nearest integer and ties away from zero.
21877 This corresponds to the @code{__builtin_lroundf} function when
21878 @option{-fno-math-errno} is used.
21879
21880 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
21881 Conversion from signed or unsigned integer types to floating-point types.
21882
21883 @end table
21884
21885 In addition, all of the following transfer instructions for internal
21886 registers X and Y must be provided to use any of the double-precision
21887 floating-point instructions. Custom instructions taking two
21888 double-precision source operands expect the first operand in the
21889 64-bit register X. The other operand (or only operand of a unary
21890 operation) is given to the custom arithmetic instruction with the
21891 least significant half in source register @var{src1} and the most
21892 significant half in @var{src2}. A custom instruction that returns a
21893 double-precision result returns the most significant 32 bits in the
21894 destination register and the other half in 32-bit register Y.
21895 GCC automatically generates the necessary code sequences to write
21896 register X and/or read register Y when double-precision floating-point
21897 instructions are used.
21898
21899 @table @asis
21900
21901 @item @samp{fwrx}
21902 Write @var{src1} into the least significant half of X and @var{src2} into
21903 the most significant half of X.
21904
21905 @item @samp{fwry}
21906 Write @var{src1} into Y.
21907
21908 @item @samp{frdxhi}, @samp{frdxlo}
21909 Read the most or least (respectively) significant half of X and store it in
21910 @var{dest}.
21911
21912 @item @samp{frdy}
21913 Read the value of Y and store it into @var{dest}.
21914 @end table
21915
21916 Note that you can gain more local control over generation of Nios II custom
21917 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
21918 and @code{target("no-custom-@var{insn}")} function attributes
21919 (@pxref{Function Attributes})
21920 or pragmas (@pxref{Function Specific Option Pragmas}).
21921
21922 @item -mcustom-fpu-cfg=@var{name}
21923 @opindex mcustom-fpu-cfg
21924
21925 This option enables a predefined, named set of custom instruction encodings
21926 (see @option{-mcustom-@var{insn}} above).
21927 Currently, the following sets are defined:
21928
21929 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
21930 @gccoptlist{-mcustom-fmuls=252 @gol
21931 -mcustom-fadds=253 @gol
21932 -mcustom-fsubs=254 @gol
21933 -fsingle-precision-constant}
21934
21935 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
21936 @gccoptlist{-mcustom-fmuls=252 @gol
21937 -mcustom-fadds=253 @gol
21938 -mcustom-fsubs=254 @gol
21939 -mcustom-fdivs=255 @gol
21940 -fsingle-precision-constant}
21941
21942 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
21943 @gccoptlist{-mcustom-floatus=243 @gol
21944 -mcustom-fixsi=244 @gol
21945 -mcustom-floatis=245 @gol
21946 -mcustom-fcmpgts=246 @gol
21947 -mcustom-fcmples=249 @gol
21948 -mcustom-fcmpeqs=250 @gol
21949 -mcustom-fcmpnes=251 @gol
21950 -mcustom-fmuls=252 @gol
21951 -mcustom-fadds=253 @gol
21952 -mcustom-fsubs=254 @gol
21953 -mcustom-fdivs=255 @gol
21954 -fsingle-precision-constant}
21955
21956 Custom instruction assignments given by individual
21957 @option{-mcustom-@var{insn}=} options override those given by
21958 @option{-mcustom-fpu-cfg=}, regardless of the
21959 order of the options on the command line.
21960
21961 Note that you can gain more local control over selection of a FPU
21962 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
21963 function attribute (@pxref{Function Attributes})
21964 or pragma (@pxref{Function Specific Option Pragmas}).
21965
21966 @end table
21967
21968 These additional @samp{-m} options are available for the Altera Nios II
21969 ELF (bare-metal) target:
21970
21971 @table @gcctabopt
21972
21973 @item -mhal
21974 @opindex mhal
21975 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
21976 startup and termination code, and is typically used in conjunction with
21977 @option{-msys-crt0=} to specify the location of the alternate startup code
21978 provided by the HAL BSP.
21979
21980 @item -msmallc
21981 @opindex msmallc
21982 Link with a limited version of the C library, @option{-lsmallc}, rather than
21983 Newlib.
21984
21985 @item -msys-crt0=@var{startfile}
21986 @opindex msys-crt0
21987 @var{startfile} is the file name of the startfile (crt0) to use
21988 when linking. This option is only useful in conjunction with @option{-mhal}.
21989
21990 @item -msys-lib=@var{systemlib}
21991 @opindex msys-lib
21992 @var{systemlib} is the library name of the library that provides
21993 low-level system calls required by the C library,
21994 e.g. @code{read} and @code{write}.
21995 This option is typically used to link with a library provided by a HAL BSP.
21996
21997 @end table
21998
21999 @node Nvidia PTX Options
22000 @subsection Nvidia PTX Options
22001 @cindex Nvidia PTX options
22002 @cindex nvptx options
22003
22004 These options are defined for Nvidia PTX:
22005
22006 @table @gcctabopt
22007
22008 @item -m32
22009 @itemx -m64
22010 @opindex m32
22011 @opindex m64
22012 Generate code for 32-bit or 64-bit ABI.
22013
22014 @item -mmainkernel
22015 @opindex mmainkernel
22016 Link in code for a __main kernel. This is for stand-alone instead of
22017 offloading execution.
22018
22019 @item -moptimize
22020 @opindex moptimize
22021 Apply partitioned execution optimizations. This is the default when any
22022 level of optimization is selected.
22023
22024 @item -msoft-stack
22025 @opindex msoft-stack
22026 Generate code that does not use @code{.local} memory
22027 directly for stack storage. Instead, a per-warp stack pointer is
22028 maintained explicitly. This enables variable-length stack allocation (with
22029 variable-length arrays or @code{alloca}), and when global memory is used for
22030 underlying storage, makes it possible to access automatic variables from other
22031 threads, or with atomic instructions. This code generation variant is used
22032 for OpenMP offloading, but the option is exposed on its own for the purpose
22033 of testing the compiler; to generate code suitable for linking into programs
22034 using OpenMP offloading, use option @option{-mgomp}.
22035
22036 @item -muniform-simt
22037 @opindex muniform-simt
22038 Switch to code generation variant that allows to execute all threads in each
22039 warp, while maintaining memory state and side effects as if only one thread
22040 in each warp was active outside of OpenMP SIMD regions. All atomic operations
22041 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
22042 current lane index equals the master lane index), and the register being
22043 assigned is copied via a shuffle instruction from the master lane. Outside of
22044 SIMD regions lane 0 is the master; inside, each thread sees itself as the
22045 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
22046 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
22047 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
22048 with current lane index to compute the master lane index.
22049
22050 @item -mgomp
22051 @opindex mgomp
22052 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
22053 @option{-muniform-simt} options, and selects corresponding multilib variant.
22054
22055 @end table
22056
22057 @node PDP-11 Options
22058 @subsection PDP-11 Options
22059 @cindex PDP-11 Options
22060
22061 These options are defined for the PDP-11:
22062
22063 @table @gcctabopt
22064 @item -mfpu
22065 @opindex mfpu
22066 Use hardware FPP floating point. This is the default. (FIS floating
22067 point on the PDP-11/40 is not supported.)
22068
22069 @item -msoft-float
22070 @opindex msoft-float
22071 Do not use hardware floating point.
22072
22073 @item -mac0
22074 @opindex mac0
22075 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
22076
22077 @item -mno-ac0
22078 @opindex mno-ac0
22079 Return floating-point results in memory. This is the default.
22080
22081 @item -m40
22082 @opindex m40
22083 Generate code for a PDP-11/40.
22084
22085 @item -m45
22086 @opindex m45
22087 Generate code for a PDP-11/45. This is the default.
22088
22089 @item -m10
22090 @opindex m10
22091 Generate code for a PDP-11/10.
22092
22093 @item -mbcopy-builtin
22094 @opindex mbcopy-builtin
22095 Use inline @code{movmemhi} patterns for copying memory. This is the
22096 default.
22097
22098 @item -mbcopy
22099 @opindex mbcopy
22100 Do not use inline @code{movmemhi} patterns for copying memory.
22101
22102 @item -mint16
22103 @itemx -mno-int32
22104 @opindex mint16
22105 @opindex mno-int32
22106 Use 16-bit @code{int}. This is the default.
22107
22108 @item -mint32
22109 @itemx -mno-int16
22110 @opindex mint32
22111 @opindex mno-int16
22112 Use 32-bit @code{int}.
22113
22114 @item -mfloat64
22115 @itemx -mno-float32
22116 @opindex mfloat64
22117 @opindex mno-float32
22118 Use 64-bit @code{float}. This is the default.
22119
22120 @item -mfloat32
22121 @itemx -mno-float64
22122 @opindex mfloat32
22123 @opindex mno-float64
22124 Use 32-bit @code{float}.
22125
22126 @item -mabshi
22127 @opindex mabshi
22128 Use @code{abshi2} pattern. This is the default.
22129
22130 @item -mno-abshi
22131 @opindex mno-abshi
22132 Do not use @code{abshi2} pattern.
22133
22134 @item -mbranch-expensive
22135 @opindex mbranch-expensive
22136 Pretend that branches are expensive. This is for experimenting with
22137 code generation only.
22138
22139 @item -mbranch-cheap
22140 @opindex mbranch-cheap
22141 Do not pretend that branches are expensive. This is the default.
22142
22143 @item -munix-asm
22144 @opindex munix-asm
22145 Use Unix assembler syntax. This is the default when configured for
22146 @samp{pdp11-*-bsd}.
22147
22148 @item -mdec-asm
22149 @opindex mdec-asm
22150 Use DEC assembler syntax. This is the default when configured for any
22151 PDP-11 target other than @samp{pdp11-*-bsd}.
22152 @end table
22153
22154 @node picoChip Options
22155 @subsection picoChip Options
22156 @cindex picoChip options
22157
22158 These @samp{-m} options are defined for picoChip implementations:
22159
22160 @table @gcctabopt
22161
22162 @item -mae=@var{ae_type}
22163 @opindex mcpu
22164 Set the instruction set, register set, and instruction scheduling
22165 parameters for array element type @var{ae_type}. Supported values
22166 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
22167
22168 @option{-mae=ANY} selects a completely generic AE type. Code
22169 generated with this option runs on any of the other AE types. The
22170 code is not as efficient as it would be if compiled for a specific
22171 AE type, and some types of operation (e.g., multiplication) do not
22172 work properly on all types of AE.
22173
22174 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
22175 for compiled code, and is the default.
22176
22177 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
22178 option may suffer from poor performance of byte (char) manipulation,
22179 since the DSP AE does not provide hardware support for byte load/stores.
22180
22181 @item -msymbol-as-address
22182 Enable the compiler to directly use a symbol name as an address in a
22183 load/store instruction, without first loading it into a
22184 register. Typically, the use of this option generates larger
22185 programs, which run faster than when the option isn't used. However, the
22186 results vary from program to program, so it is left as a user option,
22187 rather than being permanently enabled.
22188
22189 @item -mno-inefficient-warnings
22190 Disables warnings about the generation of inefficient code. These
22191 warnings can be generated, for example, when compiling code that
22192 performs byte-level memory operations on the MAC AE type. The MAC AE has
22193 no hardware support for byte-level memory operations, so all byte
22194 load/stores must be synthesized from word load/store operations. This is
22195 inefficient and a warning is generated to indicate
22196 that you should rewrite the code to avoid byte operations, or to target
22197 an AE type that has the necessary hardware support. This option disables
22198 these warnings.
22199
22200 @end table
22201
22202 @node PowerPC Options
22203 @subsection PowerPC Options
22204 @cindex PowerPC options
22205
22206 These are listed under @xref{RS/6000 and PowerPC Options}.
22207
22208 @node PowerPC SPE Options
22209 @subsection PowerPC SPE Options
22210 @cindex PowerPC SPE options
22211
22212 These @samp{-m} options are defined for PowerPC SPE:
22213 @table @gcctabopt
22214 @item -mmfcrf
22215 @itemx -mno-mfcrf
22216 @itemx -mpopcntb
22217 @itemx -mno-popcntb
22218 @opindex mmfcrf
22219 @opindex mno-mfcrf
22220 @opindex mpopcntb
22221 @opindex mno-popcntb
22222 You use these options to specify which instructions are available on the
22223 processor you are using. The default value of these options is
22224 determined when configuring GCC@. Specifying the
22225 @option{-mcpu=@var{cpu_type}} overrides the specification of these
22226 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
22227 rather than the options listed above.
22228
22229 The @option{-mmfcrf} option allows GCC to generate the move from
22230 condition register field instruction implemented on the POWER4
22231 processor and other processors that support the PowerPC V2.01
22232 architecture.
22233 The @option{-mpopcntb} option allows GCC to generate the popcount and
22234 double-precision FP reciprocal estimate instruction implemented on the
22235 POWER5 processor and other processors that support the PowerPC V2.02
22236 architecture.
22237
22238 @item -mcpu=@var{cpu_type}
22239 @opindex mcpu
22240 Set architecture type, register usage, and
22241 instruction scheduling parameters for machine type @var{cpu_type}.
22242 Supported values for @var{cpu_type} are @samp{8540}, @samp{8548},
22243 and @samp{native}.
22244
22245 @option{-mcpu=powerpc} specifies pure 32-bit PowerPC (either
22246 endian), with an appropriate, generic processor model assumed for
22247 scheduling purposes.
22248
22249 Specifying @samp{native} as cpu type detects and selects the
22250 architecture option that corresponds to the host processor of the
22251 system performing the compilation.
22252 @option{-mcpu=native} has no effect if GCC does not recognize the
22253 processor.
22254
22255 The other options specify a specific processor. Code generated under
22256 those options runs best on that processor, and may not run at all on
22257 others.
22258
22259 The @option{-mcpu} options automatically enable or disable the
22260 following options:
22261
22262 @gccoptlist{-mhard-float -mmfcrf -mmultiple @gol
22263 -mpopcntb -mpopcntd @gol
22264 -msingle-float -mdouble-float @gol
22265 -mfloat128}
22266
22267 The particular options set for any particular CPU varies between
22268 compiler versions, depending on what setting seems to produce optimal
22269 code for that CPU; it doesn't necessarily reflect the actual hardware's
22270 capabilities. If you wish to set an individual option to a particular
22271 value, you may specify it after the @option{-mcpu} option, like
22272 @option{-mcpu=8548}.
22273
22274 @item -mtune=@var{cpu_type}
22275 @opindex mtune
22276 Set the instruction scheduling parameters for machine type
22277 @var{cpu_type}, but do not set the architecture type or register usage,
22278 as @option{-mcpu=@var{cpu_type}} does. The same
22279 values for @var{cpu_type} are used for @option{-mtune} as for
22280 @option{-mcpu}. If both are specified, the code generated uses the
22281 architecture and registers set by @option{-mcpu}, but the
22282 scheduling parameters set by @option{-mtune}.
22283
22284 @item -msecure-plt
22285 @opindex msecure-plt
22286 Generate code that allows @command{ld} and @command{ld.so}
22287 to build executables and shared
22288 libraries with non-executable @code{.plt} and @code{.got} sections.
22289 This is a PowerPC
22290 32-bit SYSV ABI option.
22291
22292 @item -mbss-plt
22293 @opindex mbss-plt
22294 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
22295 fills in, and
22296 requires @code{.plt} and @code{.got}
22297 sections that are both writable and executable.
22298 This is a PowerPC 32-bit SYSV ABI option.
22299
22300 @item -misel
22301 @itemx -mno-isel
22302 @opindex misel
22303 @opindex mno-isel
22304 This switch enables or disables the generation of ISEL instructions.
22305
22306 @item -misel=@var{yes/no}
22307 This switch has been deprecated. Use @option{-misel} and
22308 @option{-mno-isel} instead.
22309
22310 @item -mspe
22311 @itemx -mno-spe
22312 @opindex mspe
22313 @opindex mno-spe
22314 This switch enables or disables the generation of SPE simd
22315 instructions.
22316
22317 @item -mspe=@var{yes/no}
22318 This option has been deprecated. Use @option{-mspe} and
22319 @option{-mno-spe} instead.
22320
22321 @item -mfloat128
22322 @itemx -mno-float128
22323 @opindex mfloat128
22324 @opindex mno-float128
22325 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
22326 and use either software emulation for IEEE 128-bit floating point or
22327 hardware instructions.
22328
22329 @item -mfloat-gprs=@var{yes/single/double/no}
22330 @itemx -mfloat-gprs
22331 @opindex mfloat-gprs
22332 This switch enables or disables the generation of floating-point
22333 operations on the general-purpose registers for architectures that
22334 support it.
22335
22336 The argument @samp{yes} or @samp{single} enables the use of
22337 single-precision floating-point operations.
22338
22339 The argument @samp{double} enables the use of single and
22340 double-precision floating-point operations.
22341
22342 The argument @samp{no} disables floating-point operations on the
22343 general-purpose registers.
22344
22345 This option is currently only available on the MPC854x.
22346
22347 @item -mfull-toc
22348 @itemx -mno-fp-in-toc
22349 @itemx -mno-sum-in-toc
22350 @itemx -mminimal-toc
22351 @opindex mfull-toc
22352 @opindex mno-fp-in-toc
22353 @opindex mno-sum-in-toc
22354 @opindex mminimal-toc
22355 Modify generation of the TOC (Table Of Contents), which is created for
22356 every executable file. The @option{-mfull-toc} option is selected by
22357 default. In that case, GCC allocates at least one TOC entry for
22358 each unique non-automatic variable reference in your program. GCC
22359 also places floating-point constants in the TOC@. However, only
22360 16,384 entries are available in the TOC@.
22361
22362 If you receive a linker error message that saying you have overflowed
22363 the available TOC space, you can reduce the amount of TOC space used
22364 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
22365 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
22366 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
22367 generate code to calculate the sum of an address and a constant at
22368 run time instead of putting that sum into the TOC@. You may specify one
22369 or both of these options. Each causes GCC to produce very slightly
22370 slower and larger code at the expense of conserving TOC space.
22371
22372 If you still run out of space in the TOC even when you specify both of
22373 these options, specify @option{-mminimal-toc} instead. This option causes
22374 GCC to make only one TOC entry for every file. When you specify this
22375 option, GCC produces code that is slower and larger but which
22376 uses extremely little TOC space. You may wish to use this option
22377 only on files that contain less frequently-executed code.
22378
22379 @item -maix32
22380 @opindex maix32
22381 Disables the 64-bit ABI. GCC defaults to @option{-maix32}.
22382
22383 @item -mxl-compat
22384 @itemx -mno-xl-compat
22385 @opindex mxl-compat
22386 @opindex mno-xl-compat
22387 Produce code that conforms more closely to IBM XL compiler semantics
22388 when using AIX-compatible ABI@. Pass floating-point arguments to
22389 prototyped functions beyond the register save area (RSA) on the stack
22390 in addition to argument FPRs. Do not assume that most significant
22391 double in 128-bit long double value is properly rounded when comparing
22392 values and converting to double. Use XL symbol names for long double
22393 support routines.
22394
22395 The AIX calling convention was extended but not initially documented to
22396 handle an obscure K&R C case of calling a function that takes the
22397 address of its arguments with fewer arguments than declared. IBM XL
22398 compilers access floating-point arguments that do not fit in the
22399 RSA from the stack when a subroutine is compiled without
22400 optimization. Because always storing floating-point arguments on the
22401 stack is inefficient and rarely needed, this option is not enabled by
22402 default and only is necessary when calling subroutines compiled by IBM
22403 XL compilers without optimization.
22404
22405 @item -malign-natural
22406 @itemx -malign-power
22407 @opindex malign-natural
22408 @opindex malign-power
22409 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
22410 @option{-malign-natural} overrides the ABI-defined alignment of larger
22411 types, such as floating-point doubles, on their natural size-based boundary.
22412 The option @option{-malign-power} instructs GCC to follow the ABI-specified
22413 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
22414
22415 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
22416 is not supported.
22417
22418 @item -msoft-float
22419 @itemx -mhard-float
22420 @opindex msoft-float
22421 @opindex mhard-float
22422 Generate code that does not use (uses) the floating-point register set.
22423 Software floating-point emulation is provided if you use the
22424 @option{-msoft-float} option, and pass the option to GCC when linking.
22425
22426 @item -msingle-float
22427 @itemx -mdouble-float
22428 @opindex msingle-float
22429 @opindex mdouble-float
22430 Generate code for single- or double-precision floating-point operations.
22431 @option{-mdouble-float} implies @option{-msingle-float}.
22432
22433 @item -mmultiple
22434 @itemx -mno-multiple
22435 @opindex mmultiple
22436 @opindex mno-multiple
22437 Generate code that uses (does not use) the load multiple word
22438 instructions and the store multiple word instructions. These
22439 instructions are generated by default on POWER systems, and not
22440 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
22441 PowerPC systems, since those instructions do not work when the
22442 processor is in little-endian mode. The exceptions are PPC740 and
22443 PPC750 which permit these instructions in little-endian mode.
22444
22445 @item -mupdate
22446 @itemx -mno-update
22447 @opindex mupdate
22448 @opindex mno-update
22449 Generate code that uses (does not use) the load or store instructions
22450 that update the base register to the address of the calculated memory
22451 location. These instructions are generated by default. If you use
22452 @option{-mno-update}, there is a small window between the time that the
22453 stack pointer is updated and the address of the previous frame is
22454 stored, which means code that walks the stack frame across interrupts or
22455 signals may get corrupted data.
22456
22457 @item -mavoid-indexed-addresses
22458 @itemx -mno-avoid-indexed-addresses
22459 @opindex mavoid-indexed-addresses
22460 @opindex mno-avoid-indexed-addresses
22461 Generate code that tries to avoid (not avoid) the use of indexed load
22462 or store instructions. These instructions can incur a performance
22463 penalty on Power6 processors in certain situations, such as when
22464 stepping through large arrays that cross a 16M boundary. This option
22465 is enabled by default when targeting Power6 and disabled otherwise.
22466
22467 @item -mfused-madd
22468 @itemx -mno-fused-madd
22469 @opindex mfused-madd
22470 @opindex mno-fused-madd
22471 Generate code that uses (does not use) the floating-point multiply and
22472 accumulate instructions. These instructions are generated by default
22473 if hardware floating point is used. The machine-dependent
22474 @option{-mfused-madd} option is now mapped to the machine-independent
22475 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
22476 mapped to @option{-ffp-contract=off}.
22477
22478 @item -mno-strict-align
22479 @itemx -mstrict-align
22480 @opindex mno-strict-align
22481 @opindex mstrict-align
22482 On System V.4 and embedded PowerPC systems do not (do) assume that
22483 unaligned memory references are handled by the system.
22484
22485 @item -mrelocatable
22486 @itemx -mno-relocatable
22487 @opindex mrelocatable
22488 @opindex mno-relocatable
22489 Generate code that allows (does not allow) a static executable to be
22490 relocated to a different address at run time. A simple embedded
22491 PowerPC system loader should relocate the entire contents of
22492 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
22493 a table of 32-bit addresses generated by this option. For this to
22494 work, all objects linked together must be compiled with
22495 @option{-mrelocatable} or @option{-mrelocatable-lib}.
22496 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
22497
22498 @item -mrelocatable-lib
22499 @itemx -mno-relocatable-lib
22500 @opindex mrelocatable-lib
22501 @opindex mno-relocatable-lib
22502 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
22503 @code{.fixup} section to allow static executables to be relocated at
22504 run time, but @option{-mrelocatable-lib} does not use the smaller stack
22505 alignment of @option{-mrelocatable}. Objects compiled with
22506 @option{-mrelocatable-lib} may be linked with objects compiled with
22507 any combination of the @option{-mrelocatable} options.
22508
22509 @item -mno-toc
22510 @itemx -mtoc
22511 @opindex mno-toc
22512 @opindex mtoc
22513 On System V.4 and embedded PowerPC systems do not (do) assume that
22514 register 2 contains a pointer to a global area pointing to the addresses
22515 used in the program.
22516
22517 @item -mlittle
22518 @itemx -mlittle-endian
22519 @opindex mlittle
22520 @opindex mlittle-endian
22521 On System V.4 and embedded PowerPC systems compile code for the
22522 processor in little-endian mode. The @option{-mlittle-endian} option is
22523 the same as @option{-mlittle}.
22524
22525 @item -mbig
22526 @itemx -mbig-endian
22527 @opindex mbig
22528 @opindex mbig-endian
22529 On System V.4 and embedded PowerPC systems compile code for the
22530 processor in big-endian mode. The @option{-mbig-endian} option is
22531 the same as @option{-mbig}.
22532
22533 @item -mdynamic-no-pic
22534 @opindex mdynamic-no-pic
22535 On Darwin and Mac OS X systems, compile code so that it is not
22536 relocatable, but that its external references are relocatable. The
22537 resulting code is suitable for applications, but not shared
22538 libraries.
22539
22540 @item -msingle-pic-base
22541 @opindex msingle-pic-base
22542 Treat the register used for PIC addressing as read-only, rather than
22543 loading it in the prologue for each function. The runtime system is
22544 responsible for initializing this register with an appropriate value
22545 before execution begins.
22546
22547 @item -mprioritize-restricted-insns=@var{priority}
22548 @opindex mprioritize-restricted-insns
22549 This option controls the priority that is assigned to
22550 dispatch-slot restricted instructions during the second scheduling
22551 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
22552 or @samp{2} to assign no, highest, or second-highest (respectively)
22553 priority to dispatch-slot restricted
22554 instructions.
22555
22556 @item -msched-costly-dep=@var{dependence_type}
22557 @opindex msched-costly-dep
22558 This option controls which dependences are considered costly
22559 by the target during instruction scheduling. The argument
22560 @var{dependence_type} takes one of the following values:
22561
22562 @table @asis
22563 @item @samp{no}
22564 No dependence is costly.
22565
22566 @item @samp{all}
22567 All dependences are costly.
22568
22569 @item @samp{true_store_to_load}
22570 A true dependence from store to load is costly.
22571
22572 @item @samp{store_to_load}
22573 Any dependence from store to load is costly.
22574
22575 @item @var{number}
22576 Any dependence for which the latency is greater than or equal to
22577 @var{number} is costly.
22578 @end table
22579
22580 @item -minsert-sched-nops=@var{scheme}
22581 @opindex minsert-sched-nops
22582 This option controls which NOP insertion scheme is used during
22583 the second scheduling pass. The argument @var{scheme} takes one of the
22584 following values:
22585
22586 @table @asis
22587 @item @samp{no}
22588 Don't insert NOPs.
22589
22590 @item @samp{pad}
22591 Pad with NOPs any dispatch group that has vacant issue slots,
22592 according to the scheduler's grouping.
22593
22594 @item @samp{regroup_exact}
22595 Insert NOPs to force costly dependent insns into
22596 separate groups. Insert exactly as many NOPs as needed to force an insn
22597 to a new group, according to the estimated processor grouping.
22598
22599 @item @var{number}
22600 Insert NOPs to force costly dependent insns into
22601 separate groups. Insert @var{number} NOPs to force an insn to a new group.
22602 @end table
22603
22604 @item -mcall-sysv
22605 @opindex mcall-sysv
22606 On System V.4 and embedded PowerPC systems compile code using calling
22607 conventions that adhere to the March 1995 draft of the System V
22608 Application Binary Interface, PowerPC processor supplement. This is the
22609 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
22610
22611 @item -mcall-sysv-eabi
22612 @itemx -mcall-eabi
22613 @opindex mcall-sysv-eabi
22614 @opindex mcall-eabi
22615 Specify both @option{-mcall-sysv} and @option{-meabi} options.
22616
22617 @item -mcall-sysv-noeabi
22618 @opindex mcall-sysv-noeabi
22619 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
22620
22621 @item -mcall-aixdesc
22622 @opindex m
22623 On System V.4 and embedded PowerPC systems compile code for the AIX
22624 operating system.
22625
22626 @item -mcall-linux
22627 @opindex mcall-linux
22628 On System V.4 and embedded PowerPC systems compile code for the
22629 Linux-based GNU system.
22630
22631 @item -mcall-freebsd
22632 @opindex mcall-freebsd
22633 On System V.4 and embedded PowerPC systems compile code for the
22634 FreeBSD operating system.
22635
22636 @item -mcall-netbsd
22637 @opindex mcall-netbsd
22638 On System V.4 and embedded PowerPC systems compile code for the
22639 NetBSD operating system.
22640
22641 @item -mcall-openbsd
22642 @opindex mcall-netbsd
22643 On System V.4 and embedded PowerPC systems compile code for the
22644 OpenBSD operating system.
22645
22646 @item -maix-struct-return
22647 @opindex maix-struct-return
22648 Return all structures in memory (as specified by the AIX ABI)@.
22649
22650 @item -msvr4-struct-return
22651 @opindex msvr4-struct-return
22652 Return structures smaller than 8 bytes in registers (as specified by the
22653 SVR4 ABI)@.
22654
22655 @item -mabi=@var{abi-type}
22656 @opindex mabi
22657 Extend the current ABI with a particular extension, or remove such extension.
22658 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
22659 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
22660 @samp{elfv1}, @samp{elfv2}@.
22661
22662 @item -mabi=spe
22663 @opindex mabi=spe
22664 Extend the current ABI with SPE ABI extensions. This does not change
22665 the default ABI, instead it adds the SPE ABI extensions to the current
22666 ABI@.
22667
22668 @item -mabi=no-spe
22669 @opindex mabi=no-spe
22670 Disable Book-E SPE ABI extensions for the current ABI@.
22671
22672 @item -mabi=ibmlongdouble
22673 @opindex mabi=ibmlongdouble
22674 Change the current ABI to use IBM extended-precision long double.
22675 This is not likely to work if your system defaults to using IEEE
22676 extended-precision long double. If you change the long double type
22677 from IEEE extended-precision, the compiler will issue a warning unless
22678 you use the @option{-Wno-psabi} option.
22679
22680 @item -mabi=ieeelongdouble
22681 @opindex mabi=ieeelongdouble
22682 Change the current ABI to use IEEE extended-precision long double.
22683 This is not likely to work if your system defaults to using IBM
22684 extended-precision long double. If you change the long double type
22685 from IBM extended-precision, the compiler will issue a warning unless
22686 you use the @option{-Wno-psabi} option.
22687
22688 @item -mabi=elfv1
22689 @opindex mabi=elfv1
22690 Change the current ABI to use the ELFv1 ABI.
22691 This is the default ABI for big-endian PowerPC 64-bit Linux.
22692 Overriding the default ABI requires special system support and is
22693 likely to fail in spectacular ways.
22694
22695 @item -mabi=elfv2
22696 @opindex mabi=elfv2
22697 Change the current ABI to use the ELFv2 ABI.
22698 This is the default ABI for little-endian PowerPC 64-bit Linux.
22699 Overriding the default ABI requires special system support and is
22700 likely to fail in spectacular ways.
22701
22702 @item -mgnu-attribute
22703 @itemx -mno-gnu-attribute
22704 @opindex mgnu-attribute
22705 @opindex mno-gnu-attribute
22706 Emit .gnu_attribute assembly directives to set tag/value pairs in a
22707 .gnu.attributes section that specify ABI variations in function
22708 parameters or return values.
22709
22710 @item -mprototype
22711 @itemx -mno-prototype
22712 @opindex mprototype
22713 @opindex mno-prototype
22714 On System V.4 and embedded PowerPC systems assume that all calls to
22715 variable argument functions are properly prototyped. Otherwise, the
22716 compiler must insert an instruction before every non-prototyped call to
22717 set or clear bit 6 of the condition code register (@code{CR}) to
22718 indicate whether floating-point values are passed in the floating-point
22719 registers in case the function takes variable arguments. With
22720 @option{-mprototype}, only calls to prototyped variable argument functions
22721 set or clear the bit.
22722
22723 @item -msim
22724 @opindex msim
22725 On embedded PowerPC systems, assume that the startup module is called
22726 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
22727 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
22728 configurations.
22729
22730 @item -mmvme
22731 @opindex mmvme
22732 On embedded PowerPC systems, assume that the startup module is called
22733 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
22734 @file{libc.a}.
22735
22736 @item -mads
22737 @opindex mads
22738 On embedded PowerPC systems, assume that the startup module is called
22739 @file{crt0.o} and the standard C libraries are @file{libads.a} and
22740 @file{libc.a}.
22741
22742 @item -myellowknife
22743 @opindex myellowknife
22744 On embedded PowerPC systems, assume that the startup module is called
22745 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
22746 @file{libc.a}.
22747
22748 @item -mvxworks
22749 @opindex mvxworks
22750 On System V.4 and embedded PowerPC systems, specify that you are
22751 compiling for a VxWorks system.
22752
22753 @item -memb
22754 @opindex memb
22755 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
22756 header to indicate that @samp{eabi} extended relocations are used.
22757
22758 @item -meabi
22759 @itemx -mno-eabi
22760 @opindex meabi
22761 @opindex mno-eabi
22762 On System V.4 and embedded PowerPC systems do (do not) adhere to the
22763 Embedded Applications Binary Interface (EABI), which is a set of
22764 modifications to the System V.4 specifications. Selecting @option{-meabi}
22765 means that the stack is aligned to an 8-byte boundary, a function
22766 @code{__eabi} is called from @code{main} to set up the EABI
22767 environment, and the @option{-msdata} option can use both @code{r2} and
22768 @code{r13} to point to two separate small data areas. Selecting
22769 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
22770 no EABI initialization function is called from @code{main}, and the
22771 @option{-msdata} option only uses @code{r13} to point to a single
22772 small data area. The @option{-meabi} option is on by default if you
22773 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
22774
22775 @item -msdata=eabi
22776 @opindex msdata=eabi
22777 On System V.4 and embedded PowerPC systems, put small initialized
22778 @code{const} global and static data in the @code{.sdata2} section, which
22779 is pointed to by register @code{r2}. Put small initialized
22780 non-@code{const} global and static data in the @code{.sdata} section,
22781 which is pointed to by register @code{r13}. Put small uninitialized
22782 global and static data in the @code{.sbss} section, which is adjacent to
22783 the @code{.sdata} section. The @option{-msdata=eabi} option is
22784 incompatible with the @option{-mrelocatable} option. The
22785 @option{-msdata=eabi} option also sets the @option{-memb} option.
22786
22787 @item -msdata=sysv
22788 @opindex msdata=sysv
22789 On System V.4 and embedded PowerPC systems, put small global and static
22790 data in the @code{.sdata} section, which is pointed to by register
22791 @code{r13}. Put small uninitialized global and static data in the
22792 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
22793 The @option{-msdata=sysv} option is incompatible with the
22794 @option{-mrelocatable} option.
22795
22796 @item -msdata=default
22797 @itemx -msdata
22798 @opindex msdata=default
22799 @opindex msdata
22800 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
22801 compile code the same as @option{-msdata=eabi}, otherwise compile code the
22802 same as @option{-msdata=sysv}.
22803
22804 @item -msdata=data
22805 @opindex msdata=data
22806 On System V.4 and embedded PowerPC systems, put small global
22807 data in the @code{.sdata} section. Put small uninitialized global
22808 data in the @code{.sbss} section. Do not use register @code{r13}
22809 to address small data however. This is the default behavior unless
22810 other @option{-msdata} options are used.
22811
22812 @item -msdata=none
22813 @itemx -mno-sdata
22814 @opindex msdata=none
22815 @opindex mno-sdata
22816 On embedded PowerPC systems, put all initialized global and static data
22817 in the @code{.data} section, and all uninitialized data in the
22818 @code{.bss} section.
22819
22820 @item -mblock-move-inline-limit=@var{num}
22821 @opindex mblock-move-inline-limit
22822 Inline all block moves (such as calls to @code{memcpy} or structure
22823 copies) less than or equal to @var{num} bytes. The minimum value for
22824 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
22825 targets. The default value is target-specific.
22826
22827 @item -G @var{num}
22828 @opindex G
22829 @cindex smaller data references (PowerPC)
22830 @cindex .sdata/.sdata2 references (PowerPC)
22831 On embedded PowerPC systems, put global and static items less than or
22832 equal to @var{num} bytes into the small data or BSS sections instead of
22833 the normal data or BSS section. By default, @var{num} is 8. The
22834 @option{-G @var{num}} switch is also passed to the linker.
22835 All modules should be compiled with the same @option{-G @var{num}} value.
22836
22837 @item -mregnames
22838 @itemx -mno-regnames
22839 @opindex mregnames
22840 @opindex mno-regnames
22841 On System V.4 and embedded PowerPC systems do (do not) emit register
22842 names in the assembly language output using symbolic forms.
22843
22844 @item -mlongcall
22845 @itemx -mno-longcall
22846 @opindex mlongcall
22847 @opindex mno-longcall
22848 By default assume that all calls are far away so that a longer and more
22849 expensive calling sequence is required. This is required for calls
22850 farther than 32 megabytes (33,554,432 bytes) from the current location.
22851 A short call is generated if the compiler knows
22852 the call cannot be that far away. This setting can be overridden by
22853 the @code{shortcall} function attribute, or by @code{#pragma
22854 longcall(0)}.
22855
22856 Some linkers are capable of detecting out-of-range calls and generating
22857 glue code on the fly. On these systems, long calls are unnecessary and
22858 generate slower code. As of this writing, the AIX linker can do this,
22859 as can the GNU linker for PowerPC/64. It is planned to add this feature
22860 to the GNU linker for 32-bit PowerPC systems as well.
22861
22862 In the future, GCC may ignore all longcall specifications
22863 when the linker is known to generate glue.
22864
22865 @item -mtls-markers
22866 @itemx -mno-tls-markers
22867 @opindex mtls-markers
22868 @opindex mno-tls-markers
22869 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
22870 specifying the function argument. The relocation allows the linker to
22871 reliably associate function call with argument setup instructions for
22872 TLS optimization, which in turn allows GCC to better schedule the
22873 sequence.
22874
22875 @item -mrecip
22876 @itemx -mno-recip
22877 @opindex mrecip
22878 This option enables use of the reciprocal estimate and
22879 reciprocal square root estimate instructions with additional
22880 Newton-Raphson steps to increase precision instead of doing a divide or
22881 square root and divide for floating-point arguments. You should use
22882 the @option{-ffast-math} option when using @option{-mrecip} (or at
22883 least @option{-funsafe-math-optimizations},
22884 @option{-ffinite-math-only}, @option{-freciprocal-math} and
22885 @option{-fno-trapping-math}). Note that while the throughput of the
22886 sequence is generally higher than the throughput of the non-reciprocal
22887 instruction, the precision of the sequence can be decreased by up to 2
22888 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
22889 roots.
22890
22891 @item -mrecip=@var{opt}
22892 @opindex mrecip=opt
22893 This option controls which reciprocal estimate instructions
22894 may be used. @var{opt} is a comma-separated list of options, which may
22895 be preceded by a @code{!} to invert the option:
22896
22897 @table @samp
22898
22899 @item all
22900 Enable all estimate instructions.
22901
22902 @item default
22903 Enable the default instructions, equivalent to @option{-mrecip}.
22904
22905 @item none
22906 Disable all estimate instructions, equivalent to @option{-mno-recip}.
22907
22908 @item div
22909 Enable the reciprocal approximation instructions for both
22910 single and double precision.
22911
22912 @item divf
22913 Enable the single-precision reciprocal approximation instructions.
22914
22915 @item divd
22916 Enable the double-precision reciprocal approximation instructions.
22917
22918 @item rsqrt
22919 Enable the reciprocal square root approximation instructions for both
22920 single and double precision.
22921
22922 @item rsqrtf
22923 Enable the single-precision reciprocal square root approximation instructions.
22924
22925 @item rsqrtd
22926 Enable the double-precision reciprocal square root approximation instructions.
22927
22928 @end table
22929
22930 So, for example, @option{-mrecip=all,!rsqrtd} enables
22931 all of the reciprocal estimate instructions, except for the
22932 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
22933 which handle the double-precision reciprocal square root calculations.
22934
22935 @item -mrecip-precision
22936 @itemx -mno-recip-precision
22937 @opindex mrecip-precision
22938 Assume (do not assume) that the reciprocal estimate instructions
22939 provide higher-precision estimates than is mandated by the PowerPC
22940 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
22941 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
22942 The double-precision square root estimate instructions are not generated by
22943 default on low-precision machines, since they do not provide an
22944 estimate that converges after three steps.
22945
22946 @item -mpointers-to-nested-functions
22947 @itemx -mno-pointers-to-nested-functions
22948 @opindex mpointers-to-nested-functions
22949 Generate (do not generate) code to load up the static chain register
22950 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
22951 systems where a function pointer points to a 3-word descriptor giving
22952 the function address, TOC value to be loaded in register @code{r2}, and
22953 static chain value to be loaded in register @code{r11}. The
22954 @option{-mpointers-to-nested-functions} is on by default. You cannot
22955 call through pointers to nested functions or pointers
22956 to functions compiled in other languages that use the static chain if
22957 you use @option{-mno-pointers-to-nested-functions}.
22958
22959 @item -msave-toc-indirect
22960 @itemx -mno-save-toc-indirect
22961 @opindex msave-toc-indirect
22962 Generate (do not generate) code to save the TOC value in the reserved
22963 stack location in the function prologue if the function calls through
22964 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
22965 saved in the prologue, it is saved just before the call through the
22966 pointer. The @option{-mno-save-toc-indirect} option is the default.
22967
22968 @item -mcompat-align-parm
22969 @itemx -mno-compat-align-parm
22970 @opindex mcompat-align-parm
22971 Generate (do not generate) code to pass structure parameters with a
22972 maximum alignment of 64 bits, for compatibility with older versions
22973 of GCC.
22974
22975 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
22976 structure parameter on a 128-bit boundary when that structure contained
22977 a member requiring 128-bit alignment. This is corrected in more
22978 recent versions of GCC. This option may be used to generate code
22979 that is compatible with functions compiled with older versions of
22980 GCC.
22981
22982 The @option{-mno-compat-align-parm} option is the default.
22983
22984 @item -mstack-protector-guard=@var{guard}
22985 @itemx -mstack-protector-guard-reg=@var{reg}
22986 @itemx -mstack-protector-guard-offset=@var{offset}
22987 @itemx -mstack-protector-guard-symbol=@var{symbol}
22988 @opindex mstack-protector-guard
22989 @opindex mstack-protector-guard-reg
22990 @opindex mstack-protector-guard-offset
22991 @opindex mstack-protector-guard-symbol
22992 Generate stack protection code using canary at @var{guard}. Supported
22993 locations are @samp{global} for global canary or @samp{tls} for per-thread
22994 canary in the TLS block (the default with GNU libc version 2.4 or later).
22995
22996 With the latter choice the options
22997 @option{-mstack-protector-guard-reg=@var{reg}} and
22998 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
22999 which register to use as base register for reading the canary, and from what
23000 offset from that base register. The default for those is as specified in the
23001 relevant ABI. @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
23002 the offset with a symbol reference to a canary in the TLS block.
23003 @end table
23004
23005
23006 @node RISC-V Options
23007 @subsection RISC-V Options
23008 @cindex RISC-V Options
23009
23010 These command-line options are defined for RISC-V targets:
23011
23012 @table @gcctabopt
23013 @item -mbranch-cost=@var{n}
23014 @opindex mbranch-cost
23015 Set the cost of branches to roughly @var{n} instructions.
23016
23017 @item -mplt
23018 @itemx -mno-plt
23019 @opindex plt
23020 When generating PIC code, do or don't allow the use of PLTs. Ignored for
23021 non-PIC. The default is @option{-mplt}.
23022
23023 @item -mabi=@var{ABI-string}
23024 @opindex mabi
23025 Specify integer and floating-point calling convention. @var{ABI-string}
23026 contains two parts: the size of integer types and the registers used for
23027 floating-point types. For example @samp{-march=rv64ifd -mabi=lp64d} means that
23028 @samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
23029 32-bit), and that floating-point values up to 64 bits wide are passed in F
23030 registers. Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
23031 allows the compiler to generate code that uses the F and D extensions but only
23032 allows floating-point values up to 32 bits long to be passed in registers; or
23033 @samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
23034 passed in registers.
23035
23036 The default for this argument is system dependent, users who want a specific
23037 calling convention should specify one explicitly. The valid calling
23038 conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
23039 @samp{lp64f}, and @samp{lp64d}. Some calling conventions are impossible to
23040 implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
23041 invalid because the ABI requires 64-bit values be passed in F registers, but F
23042 registers are only 32 bits wide.
23043
23044 @item -mfdiv
23045 @itemx -mno-fdiv
23046 @opindex mfdiv
23047 Do or don't use hardware floating-point divide and square root instructions.
23048 This requires the F or D extensions for floating-point registers. The default
23049 is to use them if the specified architecture has these instructions.
23050
23051 @item -mdiv
23052 @itemx -mno-div
23053 @opindex mdiv
23054 Do or don't use hardware instructions for integer division. This requires the
23055 M extension. The default is to use them if the specified architecture has
23056 these instructions.
23057
23058 @item -march=@var{ISA-string}
23059 @opindex march
23060 Generate code for given RISC-V ISA (e.g.@ @samp{rv64im}). ISA strings must be
23061 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, and @samp{rv32imaf}.
23062
23063 @item -mtune=@var{processor-string}
23064 @opindex mtune
23065 Optimize the output for the given processor, specified by microarchitecture
23066 name.
23067
23068 @item -mpreferred-stack-boundary=@var{num}
23069 @opindex mpreferred-stack-boundary
23070 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
23071 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
23072 the default is 4 (16 bytes or 128-bits).
23073
23074 @strong{Warning:} If you use this switch, then you must build all modules with
23075 the same value, including any libraries. This includes the system libraries
23076 and startup modules.
23077
23078 @item -msmall-data-limit=@var{n}
23079 @opindex msmall-data-limit
23080 Put global and static data smaller than @var{n} bytes into a special section
23081 (on some targets).
23082
23083 @item -msave-restore
23084 @itemx -mno-save-restore
23085 @opindex msave-restore
23086 Do or don't use smaller but slower prologue and epilogue code that uses
23087 library function calls. The default is to use fast inline prologues and
23088 epilogues.
23089
23090 @item -mstrict-align
23091 @itemx -mno-strict-align
23092 @opindex mstrict-align
23093 Do not or do generate unaligned memory accesses. The default is set depending
23094 on whether the processor we are optimizing for supports fast unaligned access
23095 or not.
23096
23097 @item -mcmodel=medlow
23098 @opindex mcmodel=medlow
23099 Generate code for the medium-low code model. The program and its statically
23100 defined symbols must lie within a single 2 GiB address range and must lie
23101 between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
23102 statically or dynamically linked. This is the default code model.
23103
23104 @item -mcmodel=medany
23105 @opindex mcmodel=medany
23106 Generate code for the medium-any code model. The program and its statically
23107 defined symbols must be within any single 2 GiB address range. Programs can be
23108 statically or dynamically linked.
23109
23110 @item -mexplicit-relocs
23111 @itemx -mno-exlicit-relocs
23112 Use or do not use assembler relocation operators when dealing with symbolic
23113 addresses. The alternative is to use assembler macros instead, which may
23114 limit optimization.
23115
23116 @item -mrelax
23117 @itemx -mno-relax
23118 Take advantage of linker relaxations to reduce the number of instructions
23119 required to materialize symbol addresses. The default is to take advantage of
23120 linker relaxations.
23121
23122 @end table
23123
23124 @node RL78 Options
23125 @subsection RL78 Options
23126 @cindex RL78 Options
23127
23128 @table @gcctabopt
23129
23130 @item -msim
23131 @opindex msim
23132 Links in additional target libraries to support operation within a
23133 simulator.
23134
23135 @item -mmul=none
23136 @itemx -mmul=g10
23137 @itemx -mmul=g13
23138 @itemx -mmul=g14
23139 @itemx -mmul=rl78
23140 @opindex mmul
23141 Specifies the type of hardware multiplication and division support to
23142 be used. The simplest is @code{none}, which uses software for both
23143 multiplication and division. This is the default. The @code{g13}
23144 value is for the hardware multiply/divide peripheral found on the
23145 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
23146 the multiplication and division instructions supported by the RL78/G14
23147 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
23148 the value @code{mg10} is an alias for @code{none}.
23149
23150 In addition a C preprocessor macro is defined, based upon the setting
23151 of this option. Possible values are: @code{__RL78_MUL_NONE__},
23152 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
23153
23154 @item -mcpu=g10
23155 @itemx -mcpu=g13
23156 @itemx -mcpu=g14
23157 @itemx -mcpu=rl78
23158 @opindex mcpu
23159 Specifies the RL78 core to target. The default is the G14 core, also
23160 known as an S3 core or just RL78. The G13 or S2 core does not have
23161 multiply or divide instructions, instead it uses a hardware peripheral
23162 for these operations. The G10 or S1 core does not have register
23163 banks, so it uses a different calling convention.
23164
23165 If this option is set it also selects the type of hardware multiply
23166 support to use, unless this is overridden by an explicit
23167 @option{-mmul=none} option on the command line. Thus specifying
23168 @option{-mcpu=g13} enables the use of the G13 hardware multiply
23169 peripheral and specifying @option{-mcpu=g10} disables the use of
23170 hardware multiplications altogether.
23171
23172 Note, although the RL78/G14 core is the default target, specifying
23173 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
23174 change the behavior of the toolchain since it also enables G14
23175 hardware multiply support. If these options are not specified on the
23176 command line then software multiplication routines will be used even
23177 though the code targets the RL78 core. This is for backwards
23178 compatibility with older toolchains which did not have hardware
23179 multiply and divide support.
23180
23181 In addition a C preprocessor macro is defined, based upon the setting
23182 of this option. Possible values are: @code{__RL78_G10__},
23183 @code{__RL78_G13__} or @code{__RL78_G14__}.
23184
23185 @item -mg10
23186 @itemx -mg13
23187 @itemx -mg14
23188 @itemx -mrl78
23189 @opindex mg10
23190 @opindex mg13
23191 @opindex mg14
23192 @opindex mrl78
23193 These are aliases for the corresponding @option{-mcpu=} option. They
23194 are provided for backwards compatibility.
23195
23196 @item -mallregs
23197 @opindex mallregs
23198 Allow the compiler to use all of the available registers. By default
23199 registers @code{r24..r31} are reserved for use in interrupt handlers.
23200 With this option enabled these registers can be used in ordinary
23201 functions as well.
23202
23203 @item -m64bit-doubles
23204 @itemx -m32bit-doubles
23205 @opindex m64bit-doubles
23206 @opindex m32bit-doubles
23207 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
23208 or 32 bits (@option{-m32bit-doubles}) in size. The default is
23209 @option{-m32bit-doubles}.
23210
23211 @item -msave-mduc-in-interrupts
23212 @itemx -mno-save-mduc-in-interrupts
23213 @opindex msave-mduc-in-interrupts
23214 @opindex mno-save-mduc-in-interrupts
23215 Specifies that interrupt handler functions should preserve the
23216 MDUC registers. This is only necessary if normal code might use
23217 the MDUC registers, for example because it performs multiplication
23218 and division operations. The default is to ignore the MDUC registers
23219 as this makes the interrupt handlers faster. The target option -mg13
23220 needs to be passed for this to work as this feature is only available
23221 on the G13 target (S2 core). The MDUC registers will only be saved
23222 if the interrupt handler performs a multiplication or division
23223 operation or it calls another function.
23224
23225 @end table
23226
23227 @node RS/6000 and PowerPC Options
23228 @subsection IBM RS/6000 and PowerPC Options
23229 @cindex RS/6000 and PowerPC Options
23230 @cindex IBM RS/6000 and PowerPC Options
23231
23232 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
23233 @table @gcctabopt
23234 @item -mpowerpc-gpopt
23235 @itemx -mno-powerpc-gpopt
23236 @itemx -mpowerpc-gfxopt
23237 @itemx -mno-powerpc-gfxopt
23238 @need 800
23239 @itemx -mpowerpc64
23240 @itemx -mno-powerpc64
23241 @itemx -mmfcrf
23242 @itemx -mno-mfcrf
23243 @itemx -mpopcntb
23244 @itemx -mno-popcntb
23245 @itemx -mpopcntd
23246 @itemx -mno-popcntd
23247 @itemx -mfprnd
23248 @itemx -mno-fprnd
23249 @need 800
23250 @itemx -mcmpb
23251 @itemx -mno-cmpb
23252 @itemx -mmfpgpr
23253 @itemx -mno-mfpgpr
23254 @itemx -mhard-dfp
23255 @itemx -mno-hard-dfp
23256 @opindex mpowerpc-gpopt
23257 @opindex mno-powerpc-gpopt
23258 @opindex mpowerpc-gfxopt
23259 @opindex mno-powerpc-gfxopt
23260 @opindex mpowerpc64
23261 @opindex mno-powerpc64
23262 @opindex mmfcrf
23263 @opindex mno-mfcrf
23264 @opindex mpopcntb
23265 @opindex mno-popcntb
23266 @opindex mpopcntd
23267 @opindex mno-popcntd
23268 @opindex mfprnd
23269 @opindex mno-fprnd
23270 @opindex mcmpb
23271 @opindex mno-cmpb
23272 @opindex mmfpgpr
23273 @opindex mno-mfpgpr
23274 @opindex mhard-dfp
23275 @opindex mno-hard-dfp
23276 You use these options to specify which instructions are available on the
23277 processor you are using. The default value of these options is
23278 determined when configuring GCC@. Specifying the
23279 @option{-mcpu=@var{cpu_type}} overrides the specification of these
23280 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
23281 rather than the options listed above.
23282
23283 Specifying @option{-mpowerpc-gpopt} allows
23284 GCC to use the optional PowerPC architecture instructions in the
23285 General Purpose group, including floating-point square root. Specifying
23286 @option{-mpowerpc-gfxopt} allows GCC to
23287 use the optional PowerPC architecture instructions in the Graphics
23288 group, including floating-point select.
23289
23290 The @option{-mmfcrf} option allows GCC to generate the move from
23291 condition register field instruction implemented on the POWER4
23292 processor and other processors that support the PowerPC V2.01
23293 architecture.
23294 The @option{-mpopcntb} option allows GCC to generate the popcount and
23295 double-precision FP reciprocal estimate instruction implemented on the
23296 POWER5 processor and other processors that support the PowerPC V2.02
23297 architecture.
23298 The @option{-mpopcntd} option allows GCC to generate the popcount
23299 instruction implemented on the POWER7 processor and other processors
23300 that support the PowerPC V2.06 architecture.
23301 The @option{-mfprnd} option allows GCC to generate the FP round to
23302 integer instructions implemented on the POWER5+ processor and other
23303 processors that support the PowerPC V2.03 architecture.
23304 The @option{-mcmpb} option allows GCC to generate the compare bytes
23305 instruction implemented on the POWER6 processor and other processors
23306 that support the PowerPC V2.05 architecture.
23307 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
23308 general-purpose register instructions implemented on the POWER6X
23309 processor and other processors that support the extended PowerPC V2.05
23310 architecture.
23311 The @option{-mhard-dfp} option allows GCC to generate the decimal
23312 floating-point instructions implemented on some POWER processors.
23313
23314 The @option{-mpowerpc64} option allows GCC to generate the additional
23315 64-bit instructions that are found in the full PowerPC64 architecture
23316 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
23317 @option{-mno-powerpc64}.
23318
23319 @item -mcpu=@var{cpu_type}
23320 @opindex mcpu
23321 Set architecture type, register usage, and
23322 instruction scheduling parameters for machine type @var{cpu_type}.
23323 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
23324 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
23325 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
23326 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
23327 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
23328 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
23329 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
23330 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
23331 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
23332 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
23333 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
23334 @samp{rs64}, and @samp{native}.
23335
23336 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
23337 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
23338 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
23339 architecture machine types, with an appropriate, generic processor
23340 model assumed for scheduling purposes.
23341
23342 Specifying @samp{native} as cpu type detects and selects the
23343 architecture option that corresponds to the host processor of the
23344 system performing the compilation.
23345 @option{-mcpu=native} has no effect if GCC does not recognize the
23346 processor.
23347
23348 The other options specify a specific processor. Code generated under
23349 those options runs best on that processor, and may not run at all on
23350 others.
23351
23352 The @option{-mcpu} options automatically enable or disable the
23353 following options:
23354
23355 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
23356 -mpopcntb -mpopcntd -mpowerpc64 @gol
23357 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
23358 -msimple-fpu -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
23359 -mcrypto -mhtm -mpower8-fusion -mpower8-vector @gol
23360 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
23361
23362 The particular options set for any particular CPU varies between
23363 compiler versions, depending on what setting seems to produce optimal
23364 code for that CPU; it doesn't necessarily reflect the actual hardware's
23365 capabilities. If you wish to set an individual option to a particular
23366 value, you may specify it after the @option{-mcpu} option, like
23367 @option{-mcpu=970 -mno-altivec}.
23368
23369 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
23370 not enabled or disabled by the @option{-mcpu} option at present because
23371 AIX does not have full support for these options. You may still
23372 enable or disable them individually if you're sure it'll work in your
23373 environment.
23374
23375 @item -mtune=@var{cpu_type}
23376 @opindex mtune
23377 Set the instruction scheduling parameters for machine type
23378 @var{cpu_type}, but do not set the architecture type or register usage,
23379 as @option{-mcpu=@var{cpu_type}} does. The same
23380 values for @var{cpu_type} are used for @option{-mtune} as for
23381 @option{-mcpu}. If both are specified, the code generated uses the
23382 architecture and registers set by @option{-mcpu}, but the
23383 scheduling parameters set by @option{-mtune}.
23384
23385 @item -mcmodel=small
23386 @opindex mcmodel=small
23387 Generate PowerPC64 code for the small model: The TOC is limited to
23388 64k.
23389
23390 @item -mcmodel=medium
23391 @opindex mcmodel=medium
23392 Generate PowerPC64 code for the medium model: The TOC and other static
23393 data may be up to a total of 4G in size. This is the default for 64-bit
23394 Linux.
23395
23396 @item -mcmodel=large
23397 @opindex mcmodel=large
23398 Generate PowerPC64 code for the large model: The TOC may be up to 4G
23399 in size. Other data and code is only limited by the 64-bit address
23400 space.
23401
23402 @item -maltivec
23403 @itemx -mno-altivec
23404 @opindex maltivec
23405 @opindex mno-altivec
23406 Generate code that uses (does not use) AltiVec instructions, and also
23407 enable the use of built-in functions that allow more direct access to
23408 the AltiVec instruction set. You may also need to set
23409 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
23410 enhancements.
23411
23412 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
23413 @option{-maltivec=be}, the element order for AltiVec intrinsics such
23414 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
23415 match array element order corresponding to the endianness of the
23416 target. That is, element zero identifies the leftmost element in a
23417 vector register when targeting a big-endian platform, and identifies
23418 the rightmost element in a vector register when targeting a
23419 little-endian platform.
23420
23421 @item -maltivec=be
23422 @opindex maltivec=be
23423 Generate AltiVec instructions using big-endian element order,
23424 regardless of whether the target is big- or little-endian. This is
23425 the default when targeting a big-endian platform. Using this option
23426 is currently deprecated. Support for this feature will be removed in
23427 GCC 9.
23428
23429 The element order is used to interpret element numbers in AltiVec
23430 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
23431 @code{vec_insert}. By default, these match array element order
23432 corresponding to the endianness for the target.
23433
23434 @item -maltivec=le
23435 @opindex maltivec=le
23436 Generate AltiVec instructions using little-endian element order,
23437 regardless of whether the target is big- or little-endian. This is
23438 the default when targeting a little-endian platform. This option is
23439 currently ignored when targeting a big-endian platform.
23440
23441 The element order is used to interpret element numbers in AltiVec
23442 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
23443 @code{vec_insert}. By default, these match array element order
23444 corresponding to the endianness for the target.
23445
23446 @item -mvrsave
23447 @itemx -mno-vrsave
23448 @opindex mvrsave
23449 @opindex mno-vrsave
23450 Generate VRSAVE instructions when generating AltiVec code.
23451
23452 @item -msecure-plt
23453 @opindex msecure-plt
23454 Generate code that allows @command{ld} and @command{ld.so}
23455 to build executables and shared
23456 libraries with non-executable @code{.plt} and @code{.got} sections.
23457 This is a PowerPC
23458 32-bit SYSV ABI option.
23459
23460 @item -mbss-plt
23461 @opindex mbss-plt
23462 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
23463 fills in, and
23464 requires @code{.plt} and @code{.got}
23465 sections that are both writable and executable.
23466 This is a PowerPC 32-bit SYSV ABI option.
23467
23468 @item -misel
23469 @itemx -mno-isel
23470 @opindex misel
23471 @opindex mno-isel
23472 This switch enables or disables the generation of ISEL instructions.
23473
23474 @item -misel=@var{yes/no}
23475 This switch has been deprecated. Use @option{-misel} and
23476 @option{-mno-isel} instead.
23477
23478 @item -mpaired
23479 @itemx -mno-paired
23480 @opindex mpaired
23481 @opindex mno-paired
23482 This switch enables or disables the generation of PAIRED simd
23483 instructions.
23484
23485 @item -mvsx
23486 @itemx -mno-vsx
23487 @opindex mvsx
23488 @opindex mno-vsx
23489 Generate code that uses (does not use) vector/scalar (VSX)
23490 instructions, and also enable the use of built-in functions that allow
23491 more direct access to the VSX instruction set.
23492
23493 @item -mcrypto
23494 @itemx -mno-crypto
23495 @opindex mcrypto
23496 @opindex mno-crypto
23497 Enable the use (disable) of the built-in functions that allow direct
23498 access to the cryptographic instructions that were added in version
23499 2.07 of the PowerPC ISA.
23500
23501 @item -mhtm
23502 @itemx -mno-htm
23503 @opindex mhtm
23504 @opindex mno-htm
23505 Enable (disable) the use of the built-in functions that allow direct
23506 access to the Hardware Transactional Memory (HTM) instructions that
23507 were added in version 2.07 of the PowerPC ISA.
23508
23509 @item -mpower8-fusion
23510 @itemx -mno-power8-fusion
23511 @opindex mpower8-fusion
23512 @opindex mno-power8-fusion
23513 Generate code that keeps (does not keeps) some integer operations
23514 adjacent so that the instructions can be fused together on power8 and
23515 later processors.
23516
23517 @item -mpower8-vector
23518 @itemx -mno-power8-vector
23519 @opindex mpower8-vector
23520 @opindex mno-power8-vector
23521 Generate code that uses (does not use) the vector and scalar
23522 instructions that were added in version 2.07 of the PowerPC ISA. Also
23523 enable the use of built-in functions that allow more direct access to
23524 the vector instructions.
23525
23526 @item -mquad-memory
23527 @itemx -mno-quad-memory
23528 @opindex mquad-memory
23529 @opindex mno-quad-memory
23530 Generate code that uses (does not use) the non-atomic quad word memory
23531 instructions. The @option{-mquad-memory} option requires use of
23532 64-bit mode.
23533
23534 @item -mquad-memory-atomic
23535 @itemx -mno-quad-memory-atomic
23536 @opindex mquad-memory-atomic
23537 @opindex mno-quad-memory-atomic
23538 Generate code that uses (does not use) the atomic quad word memory
23539 instructions. The @option{-mquad-memory-atomic} option requires use of
23540 64-bit mode.
23541
23542 @item -mfloat128
23543 @itemx -mno-float128
23544 @opindex mfloat128
23545 @opindex mno-float128
23546 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
23547 and use either software emulation for IEEE 128-bit floating point or
23548 hardware instructions.
23549
23550 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
23551 @option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
23552 use the IEEE 128-bit floating point support. The IEEE 128-bit
23553 floating point support only works on PowerPC Linux systems.
23554
23555 The default for @option{-mfloat128} is enabled on PowerPC Linux
23556 systems using the VSX instruction set, and disabled on other systems.
23557
23558 If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
23559 @option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
23560 point support will also enable the generation of ISA 3.0 IEEE 128-bit
23561 floating point instructions. Otherwise, if you do not specify to
23562 generate ISA 3.0 instructions or you are targeting a 32-bit big endian
23563 system, IEEE 128-bit floating point will be done with software
23564 emulation.
23565
23566 @item -mfloat128-hardware
23567 @itemx -mno-float128-hardware
23568 @opindex mfloat128-hardware
23569 @opindex mno-float128-hardware
23570 Enable/disable using ISA 3.0 hardware instructions to support the
23571 @var{__float128} data type.
23572
23573 The default for @option{-mfloat128-hardware} is enabled on PowerPC
23574 Linux systems using the ISA 3.0 instruction set, and disabled on other
23575 systems.
23576
23577 @item -m32
23578 @itemx -m64
23579 @opindex m32
23580 @opindex m64
23581 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
23582 targets (including GNU/Linux). The 32-bit environment sets int, long
23583 and pointer to 32 bits and generates code that runs on any PowerPC
23584 variant. The 64-bit environment sets int to 32 bits and long and
23585 pointer to 64 bits, and generates code for PowerPC64, as for
23586 @option{-mpowerpc64}.
23587
23588 @item -mfull-toc
23589 @itemx -mno-fp-in-toc
23590 @itemx -mno-sum-in-toc
23591 @itemx -mminimal-toc
23592 @opindex mfull-toc
23593 @opindex mno-fp-in-toc
23594 @opindex mno-sum-in-toc
23595 @opindex mminimal-toc
23596 Modify generation of the TOC (Table Of Contents), which is created for
23597 every executable file. The @option{-mfull-toc} option is selected by
23598 default. In that case, GCC allocates at least one TOC entry for
23599 each unique non-automatic variable reference in your program. GCC
23600 also places floating-point constants in the TOC@. However, only
23601 16,384 entries are available in the TOC@.
23602
23603 If you receive a linker error message that saying you have overflowed
23604 the available TOC space, you can reduce the amount of TOC space used
23605 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
23606 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
23607 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
23608 generate code to calculate the sum of an address and a constant at
23609 run time instead of putting that sum into the TOC@. You may specify one
23610 or both of these options. Each causes GCC to produce very slightly
23611 slower and larger code at the expense of conserving TOC space.
23612
23613 If you still run out of space in the TOC even when you specify both of
23614 these options, specify @option{-mminimal-toc} instead. This option causes
23615 GCC to make only one TOC entry for every file. When you specify this
23616 option, GCC produces code that is slower and larger but which
23617 uses extremely little TOC space. You may wish to use this option
23618 only on files that contain less frequently-executed code.
23619
23620 @item -maix64
23621 @itemx -maix32
23622 @opindex maix64
23623 @opindex maix32
23624 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
23625 @code{long} type, and the infrastructure needed to support them.
23626 Specifying @option{-maix64} implies @option{-mpowerpc64},
23627 while @option{-maix32} disables the 64-bit ABI and
23628 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
23629
23630 @item -mxl-compat
23631 @itemx -mno-xl-compat
23632 @opindex mxl-compat
23633 @opindex mno-xl-compat
23634 Produce code that conforms more closely to IBM XL compiler semantics
23635 when using AIX-compatible ABI@. Pass floating-point arguments to
23636 prototyped functions beyond the register save area (RSA) on the stack
23637 in addition to argument FPRs. Do not assume that most significant
23638 double in 128-bit long double value is properly rounded when comparing
23639 values and converting to double. Use XL symbol names for long double
23640 support routines.
23641
23642 The AIX calling convention was extended but not initially documented to
23643 handle an obscure K&R C case of calling a function that takes the
23644 address of its arguments with fewer arguments than declared. IBM XL
23645 compilers access floating-point arguments that do not fit in the
23646 RSA from the stack when a subroutine is compiled without
23647 optimization. Because always storing floating-point arguments on the
23648 stack is inefficient and rarely needed, this option is not enabled by
23649 default and only is necessary when calling subroutines compiled by IBM
23650 XL compilers without optimization.
23651
23652 @item -mpe
23653 @opindex mpe
23654 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
23655 application written to use message passing with special startup code to
23656 enable the application to run. The system must have PE installed in the
23657 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
23658 must be overridden with the @option{-specs=} option to specify the
23659 appropriate directory location. The Parallel Environment does not
23660 support threads, so the @option{-mpe} option and the @option{-pthread}
23661 option are incompatible.
23662
23663 @item -malign-natural
23664 @itemx -malign-power
23665 @opindex malign-natural
23666 @opindex malign-power
23667 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
23668 @option{-malign-natural} overrides the ABI-defined alignment of larger
23669 types, such as floating-point doubles, on their natural size-based boundary.
23670 The option @option{-malign-power} instructs GCC to follow the ABI-specified
23671 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
23672
23673 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
23674 is not supported.
23675
23676 @item -msoft-float
23677 @itemx -mhard-float
23678 @opindex msoft-float
23679 @opindex mhard-float
23680 Generate code that does not use (uses) the floating-point register set.
23681 Software floating-point emulation is provided if you use the
23682 @option{-msoft-float} option, and pass the option to GCC when linking.
23683
23684 @item -msingle-float
23685 @itemx -mdouble-float
23686 @opindex msingle-float
23687 @opindex mdouble-float
23688 Generate code for single- or double-precision floating-point operations.
23689 @option{-mdouble-float} implies @option{-msingle-float}.
23690
23691 @item -msimple-fpu
23692 @opindex msimple-fpu
23693 Do not generate @code{sqrt} and @code{div} instructions for hardware
23694 floating-point unit.
23695
23696 @item -mfpu=@var{name}
23697 @opindex mfpu
23698 Specify type of floating-point unit. Valid values for @var{name} are
23699 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
23700 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
23701 @samp{sp_full} (equivalent to @option{-msingle-float}),
23702 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
23703
23704 @item -mxilinx-fpu
23705 @opindex mxilinx-fpu
23706 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
23707
23708 @item -mmultiple
23709 @itemx -mno-multiple
23710 @opindex mmultiple
23711 @opindex mno-multiple
23712 Generate code that uses (does not use) the load multiple word
23713 instructions and the store multiple word instructions. These
23714 instructions are generated by default on POWER systems, and not
23715 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
23716 PowerPC systems, since those instructions do not work when the
23717 processor is in little-endian mode. The exceptions are PPC740 and
23718 PPC750 which permit these instructions in little-endian mode.
23719
23720 @item -mupdate
23721 @itemx -mno-update
23722 @opindex mupdate
23723 @opindex mno-update
23724 Generate code that uses (does not use) the load or store instructions
23725 that update the base register to the address of the calculated memory
23726 location. These instructions are generated by default. If you use
23727 @option{-mno-update}, there is a small window between the time that the
23728 stack pointer is updated and the address of the previous frame is
23729 stored, which means code that walks the stack frame across interrupts or
23730 signals may get corrupted data.
23731
23732 @item -mavoid-indexed-addresses
23733 @itemx -mno-avoid-indexed-addresses
23734 @opindex mavoid-indexed-addresses
23735 @opindex mno-avoid-indexed-addresses
23736 Generate code that tries to avoid (not avoid) the use of indexed load
23737 or store instructions. These instructions can incur a performance
23738 penalty on Power6 processors in certain situations, such as when
23739 stepping through large arrays that cross a 16M boundary. This option
23740 is enabled by default when targeting Power6 and disabled otherwise.
23741
23742 @item -mfused-madd
23743 @itemx -mno-fused-madd
23744 @opindex mfused-madd
23745 @opindex mno-fused-madd
23746 Generate code that uses (does not use) the floating-point multiply and
23747 accumulate instructions. These instructions are generated by default
23748 if hardware floating point is used. The machine-dependent
23749 @option{-mfused-madd} option is now mapped to the machine-independent
23750 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
23751 mapped to @option{-ffp-contract=off}.
23752
23753 @item -mmulhw
23754 @itemx -mno-mulhw
23755 @opindex mmulhw
23756 @opindex mno-mulhw
23757 Generate code that uses (does not use) the half-word multiply and
23758 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
23759 These instructions are generated by default when targeting those
23760 processors.
23761
23762 @item -mdlmzb
23763 @itemx -mno-dlmzb
23764 @opindex mdlmzb
23765 @opindex mno-dlmzb
23766 Generate code that uses (does not use) the string-search @samp{dlmzb}
23767 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
23768 generated by default when targeting those processors.
23769
23770 @item -mno-bit-align
23771 @itemx -mbit-align
23772 @opindex mno-bit-align
23773 @opindex mbit-align
23774 On System V.4 and embedded PowerPC systems do not (do) force structures
23775 and unions that contain bit-fields to be aligned to the base type of the
23776 bit-field.
23777
23778 For example, by default a structure containing nothing but 8
23779 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
23780 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
23781 the structure is aligned to a 1-byte boundary and is 1 byte in
23782 size.
23783
23784 @item -mno-strict-align
23785 @itemx -mstrict-align
23786 @opindex mno-strict-align
23787 @opindex mstrict-align
23788 On System V.4 and embedded PowerPC systems do not (do) assume that
23789 unaligned memory references are handled by the system.
23790
23791 @item -mrelocatable
23792 @itemx -mno-relocatable
23793 @opindex mrelocatable
23794 @opindex mno-relocatable
23795 Generate code that allows (does not allow) a static executable to be
23796 relocated to a different address at run time. A simple embedded
23797 PowerPC system loader should relocate the entire contents of
23798 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
23799 a table of 32-bit addresses generated by this option. For this to
23800 work, all objects linked together must be compiled with
23801 @option{-mrelocatable} or @option{-mrelocatable-lib}.
23802 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
23803
23804 @item -mrelocatable-lib
23805 @itemx -mno-relocatable-lib
23806 @opindex mrelocatable-lib
23807 @opindex mno-relocatable-lib
23808 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
23809 @code{.fixup} section to allow static executables to be relocated at
23810 run time, but @option{-mrelocatable-lib} does not use the smaller stack
23811 alignment of @option{-mrelocatable}. Objects compiled with
23812 @option{-mrelocatable-lib} may be linked with objects compiled with
23813 any combination of the @option{-mrelocatable} options.
23814
23815 @item -mno-toc
23816 @itemx -mtoc
23817 @opindex mno-toc
23818 @opindex mtoc
23819 On System V.4 and embedded PowerPC systems do not (do) assume that
23820 register 2 contains a pointer to a global area pointing to the addresses
23821 used in the program.
23822
23823 @item -mlittle
23824 @itemx -mlittle-endian
23825 @opindex mlittle
23826 @opindex mlittle-endian
23827 On System V.4 and embedded PowerPC systems compile code for the
23828 processor in little-endian mode. The @option{-mlittle-endian} option is
23829 the same as @option{-mlittle}.
23830
23831 @item -mbig
23832 @itemx -mbig-endian
23833 @opindex mbig
23834 @opindex mbig-endian
23835 On System V.4 and embedded PowerPC systems compile code for the
23836 processor in big-endian mode. The @option{-mbig-endian} option is
23837 the same as @option{-mbig}.
23838
23839 @item -mdynamic-no-pic
23840 @opindex mdynamic-no-pic
23841 On Darwin and Mac OS X systems, compile code so that it is not
23842 relocatable, but that its external references are relocatable. The
23843 resulting code is suitable for applications, but not shared
23844 libraries.
23845
23846 @item -msingle-pic-base
23847 @opindex msingle-pic-base
23848 Treat the register used for PIC addressing as read-only, rather than
23849 loading it in the prologue for each function. The runtime system is
23850 responsible for initializing this register with an appropriate value
23851 before execution begins.
23852
23853 @item -mprioritize-restricted-insns=@var{priority}
23854 @opindex mprioritize-restricted-insns
23855 This option controls the priority that is assigned to
23856 dispatch-slot restricted instructions during the second scheduling
23857 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
23858 or @samp{2} to assign no, highest, or second-highest (respectively)
23859 priority to dispatch-slot restricted
23860 instructions.
23861
23862 @item -msched-costly-dep=@var{dependence_type}
23863 @opindex msched-costly-dep
23864 This option controls which dependences are considered costly
23865 by the target during instruction scheduling. The argument
23866 @var{dependence_type} takes one of the following values:
23867
23868 @table @asis
23869 @item @samp{no}
23870 No dependence is costly.
23871
23872 @item @samp{all}
23873 All dependences are costly.
23874
23875 @item @samp{true_store_to_load}
23876 A true dependence from store to load is costly.
23877
23878 @item @samp{store_to_load}
23879 Any dependence from store to load is costly.
23880
23881 @item @var{number}
23882 Any dependence for which the latency is greater than or equal to
23883 @var{number} is costly.
23884 @end table
23885
23886 @item -minsert-sched-nops=@var{scheme}
23887 @opindex minsert-sched-nops
23888 This option controls which NOP insertion scheme is used during
23889 the second scheduling pass. The argument @var{scheme} takes one of the
23890 following values:
23891
23892 @table @asis
23893 @item @samp{no}
23894 Don't insert NOPs.
23895
23896 @item @samp{pad}
23897 Pad with NOPs any dispatch group that has vacant issue slots,
23898 according to the scheduler's grouping.
23899
23900 @item @samp{regroup_exact}
23901 Insert NOPs to force costly dependent insns into
23902 separate groups. Insert exactly as many NOPs as needed to force an insn
23903 to a new group, according to the estimated processor grouping.
23904
23905 @item @var{number}
23906 Insert NOPs to force costly dependent insns into
23907 separate groups. Insert @var{number} NOPs to force an insn to a new group.
23908 @end table
23909
23910 @item -mcall-sysv
23911 @opindex mcall-sysv
23912 On System V.4 and embedded PowerPC systems compile code using calling
23913 conventions that adhere to the March 1995 draft of the System V
23914 Application Binary Interface, PowerPC processor supplement. This is the
23915 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
23916
23917 @item -mcall-sysv-eabi
23918 @itemx -mcall-eabi
23919 @opindex mcall-sysv-eabi
23920 @opindex mcall-eabi
23921 Specify both @option{-mcall-sysv} and @option{-meabi} options.
23922
23923 @item -mcall-sysv-noeabi
23924 @opindex mcall-sysv-noeabi
23925 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
23926
23927 @item -mcall-aixdesc
23928 @opindex m
23929 On System V.4 and embedded PowerPC systems compile code for the AIX
23930 operating system.
23931
23932 @item -mcall-linux
23933 @opindex mcall-linux
23934 On System V.4 and embedded PowerPC systems compile code for the
23935 Linux-based GNU system.
23936
23937 @item -mcall-freebsd
23938 @opindex mcall-freebsd
23939 On System V.4 and embedded PowerPC systems compile code for the
23940 FreeBSD operating system.
23941
23942 @item -mcall-netbsd
23943 @opindex mcall-netbsd
23944 On System V.4 and embedded PowerPC systems compile code for the
23945 NetBSD operating system.
23946
23947 @item -mcall-openbsd
23948 @opindex mcall-netbsd
23949 On System V.4 and embedded PowerPC systems compile code for the
23950 OpenBSD operating system.
23951
23952 @item -mtraceback=@var{traceback_type}
23953 @opindex mtraceback
23954 Select the type of traceback table. Valid values for @var{traceback_type}
23955 are @samp{full}, @samp{part}, and @samp{no}.
23956
23957 @item -maix-struct-return
23958 @opindex maix-struct-return
23959 Return all structures in memory (as specified by the AIX ABI)@.
23960
23961 @item -msvr4-struct-return
23962 @opindex msvr4-struct-return
23963 Return structures smaller than 8 bytes in registers (as specified by the
23964 SVR4 ABI)@.
23965
23966 @item -mabi=@var{abi-type}
23967 @opindex mabi
23968 Extend the current ABI with a particular extension, or remove such extension.
23969 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
23970 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
23971 @samp{elfv1}, @samp{elfv2}@.
23972
23973 @item -mabi=ibmlongdouble
23974 @opindex mabi=ibmlongdouble
23975 Change the current ABI to use IBM extended-precision long double.
23976 This is not likely to work if your system defaults to using IEEE
23977 extended-precision long double. If you change the long double type
23978 from IEEE extended-precision, the compiler will issue a warning unless
23979 you use the @option{-Wno-psabi} option.
23980
23981 @item -mabi=ieeelongdouble
23982 @opindex mabi=ieeelongdouble
23983 Change the current ABI to use IEEE extended-precision long double.
23984 This is not likely to work if your system defaults to using IBM
23985 extended-precision long double. If you change the long double type
23986 from IBM extended-precision, the compiler will issue a warning unless
23987 you use the @option{-Wno-psabi} option.
23988
23989 @item -mabi=elfv1
23990 @opindex mabi=elfv1
23991 Change the current ABI to use the ELFv1 ABI.
23992 This is the default ABI for big-endian PowerPC 64-bit Linux.
23993 Overriding the default ABI requires special system support and is
23994 likely to fail in spectacular ways.
23995
23996 @item -mabi=elfv2
23997 @opindex mabi=elfv2
23998 Change the current ABI to use the ELFv2 ABI.
23999 This is the default ABI for little-endian PowerPC 64-bit Linux.
24000 Overriding the default ABI requires special system support and is
24001 likely to fail in spectacular ways.
24002
24003 @item -mgnu-attribute
24004 @itemx -mno-gnu-attribute
24005 @opindex mgnu-attribute
24006 @opindex mno-gnu-attribute
24007 Emit .gnu_attribute assembly directives to set tag/value pairs in a
24008 .gnu.attributes section that specify ABI variations in function
24009 parameters or return values.
24010
24011 @item -mprototype
24012 @itemx -mno-prototype
24013 @opindex mprototype
24014 @opindex mno-prototype
24015 On System V.4 and embedded PowerPC systems assume that all calls to
24016 variable argument functions are properly prototyped. Otherwise, the
24017 compiler must insert an instruction before every non-prototyped call to
24018 set or clear bit 6 of the condition code register (@code{CR}) to
24019 indicate whether floating-point values are passed in the floating-point
24020 registers in case the function takes variable arguments. With
24021 @option{-mprototype}, only calls to prototyped variable argument functions
24022 set or clear the bit.
24023
24024 @item -msim
24025 @opindex msim
24026 On embedded PowerPC systems, assume that the startup module is called
24027 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
24028 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
24029 configurations.
24030
24031 @item -mmvme
24032 @opindex mmvme
24033 On embedded PowerPC systems, assume that the startup module is called
24034 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
24035 @file{libc.a}.
24036
24037 @item -mads
24038 @opindex mads
24039 On embedded PowerPC systems, assume that the startup module is called
24040 @file{crt0.o} and the standard C libraries are @file{libads.a} and
24041 @file{libc.a}.
24042
24043 @item -myellowknife
24044 @opindex myellowknife
24045 On embedded PowerPC systems, assume that the startup module is called
24046 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
24047 @file{libc.a}.
24048
24049 @item -mvxworks
24050 @opindex mvxworks
24051 On System V.4 and embedded PowerPC systems, specify that you are
24052 compiling for a VxWorks system.
24053
24054 @item -memb
24055 @opindex memb
24056 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
24057 header to indicate that @samp{eabi} extended relocations are used.
24058
24059 @item -meabi
24060 @itemx -mno-eabi
24061 @opindex meabi
24062 @opindex mno-eabi
24063 On System V.4 and embedded PowerPC systems do (do not) adhere to the
24064 Embedded Applications Binary Interface (EABI), which is a set of
24065 modifications to the System V.4 specifications. Selecting @option{-meabi}
24066 means that the stack is aligned to an 8-byte boundary, a function
24067 @code{__eabi} is called from @code{main} to set up the EABI
24068 environment, and the @option{-msdata} option can use both @code{r2} and
24069 @code{r13} to point to two separate small data areas. Selecting
24070 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
24071 no EABI initialization function is called from @code{main}, and the
24072 @option{-msdata} option only uses @code{r13} to point to a single
24073 small data area. The @option{-meabi} option is on by default if you
24074 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
24075
24076 @item -msdata=eabi
24077 @opindex msdata=eabi
24078 On System V.4 and embedded PowerPC systems, put small initialized
24079 @code{const} global and static data in the @code{.sdata2} section, which
24080 is pointed to by register @code{r2}. Put small initialized
24081 non-@code{const} global and static data in the @code{.sdata} section,
24082 which is pointed to by register @code{r13}. Put small uninitialized
24083 global and static data in the @code{.sbss} section, which is adjacent to
24084 the @code{.sdata} section. The @option{-msdata=eabi} option is
24085 incompatible with the @option{-mrelocatable} option. The
24086 @option{-msdata=eabi} option also sets the @option{-memb} option.
24087
24088 @item -msdata=sysv
24089 @opindex msdata=sysv
24090 On System V.4 and embedded PowerPC systems, put small global and static
24091 data in the @code{.sdata} section, which is pointed to by register
24092 @code{r13}. Put small uninitialized global and static data in the
24093 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
24094 The @option{-msdata=sysv} option is incompatible with the
24095 @option{-mrelocatable} option.
24096
24097 @item -msdata=default
24098 @itemx -msdata
24099 @opindex msdata=default
24100 @opindex msdata
24101 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
24102 compile code the same as @option{-msdata=eabi}, otherwise compile code the
24103 same as @option{-msdata=sysv}.
24104
24105 @item -msdata=data
24106 @opindex msdata=data
24107 On System V.4 and embedded PowerPC systems, put small global
24108 data in the @code{.sdata} section. Put small uninitialized global
24109 data in the @code{.sbss} section. Do not use register @code{r13}
24110 to address small data however. This is the default behavior unless
24111 other @option{-msdata} options are used.
24112
24113 @item -msdata=none
24114 @itemx -mno-sdata
24115 @opindex msdata=none
24116 @opindex mno-sdata
24117 On embedded PowerPC systems, put all initialized global and static data
24118 in the @code{.data} section, and all uninitialized data in the
24119 @code{.bss} section.
24120
24121 @item -mreadonly-in-sdata
24122 @itemx -mreadonly-in-sdata
24123 @opindex mreadonly-in-sdata
24124 @opindex mno-readonly-in-sdata
24125 Put read-only objects in the @code{.sdata} section as well. This is the
24126 default.
24127
24128 @item -mblock-move-inline-limit=@var{num}
24129 @opindex mblock-move-inline-limit
24130 Inline all block moves (such as calls to @code{memcpy} or structure
24131 copies) less than or equal to @var{num} bytes. The minimum value for
24132 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
24133 targets. The default value is target-specific.
24134
24135 @item -mblock-compare-inline-limit=@var{num}
24136 @opindex mblock-compare-inline-limit
24137 Generate non-looping inline code for all block compares (such as calls
24138 to @code{memcmp} or structure compares) less than or equal to @var{num}
24139 bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
24140 block compare is disabled. The default value is target-specific.
24141
24142 @item -mblock-compare-inline-loop-limit=@var{num}
24143 @opindex mblock-compare-inline-loop-limit
24144 Generate an inline expansion using loop code for all block compares that
24145 are less than or equal to @var{num} bytes, but greater than the limit
24146 for non-loop inline block compare expansion. If the block length is not
24147 constant, at most @var{num} bytes will be compared before @code{memcmp}
24148 is called to compare the remainder of the block. The default value is
24149 target-specific.
24150
24151 @item -mstring-compare-inline-limit=@var{num}
24152 @opindex mstring-compare-inline-limit
24153 Generate at most @var{num} pairs of load instructions to compare the
24154 string inline. If the difference or end of string is not found at the
24155 end of the inline compare a call to @code{strcmp} or @code{strncmp} will
24156 take care of the rest of the comparison. The default is 8 pairs of
24157 loads, which will compare 64 bytes on a 64-bit target and 32 bytes on a
24158 32-bit target.
24159
24160 @item -G @var{num}
24161 @opindex G
24162 @cindex smaller data references (PowerPC)
24163 @cindex .sdata/.sdata2 references (PowerPC)
24164 On embedded PowerPC systems, put global and static items less than or
24165 equal to @var{num} bytes into the small data or BSS sections instead of
24166 the normal data or BSS section. By default, @var{num} is 8. The
24167 @option{-G @var{num}} switch is also passed to the linker.
24168 All modules should be compiled with the same @option{-G @var{num}} value.
24169
24170 @item -mregnames
24171 @itemx -mno-regnames
24172 @opindex mregnames
24173 @opindex mno-regnames
24174 On System V.4 and embedded PowerPC systems do (do not) emit register
24175 names in the assembly language output using symbolic forms.
24176
24177 @item -mlongcall
24178 @itemx -mno-longcall
24179 @opindex mlongcall
24180 @opindex mno-longcall
24181 By default assume that all calls are far away so that a longer and more
24182 expensive calling sequence is required. This is required for calls
24183 farther than 32 megabytes (33,554,432 bytes) from the current location.
24184 A short call is generated if the compiler knows
24185 the call cannot be that far away. This setting can be overridden by
24186 the @code{shortcall} function attribute, or by @code{#pragma
24187 longcall(0)}.
24188
24189 Some linkers are capable of detecting out-of-range calls and generating
24190 glue code on the fly. On these systems, long calls are unnecessary and
24191 generate slower code. As of this writing, the AIX linker can do this,
24192 as can the GNU linker for PowerPC/64. It is planned to add this feature
24193 to the GNU linker for 32-bit PowerPC systems as well.
24194
24195 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
24196 callee, L42}, plus a @dfn{branch island} (glue code). The two target
24197 addresses represent the callee and the branch island. The
24198 Darwin/PPC linker prefers the first address and generates a @code{bl
24199 callee} if the PPC @code{bl} instruction reaches the callee directly;
24200 otherwise, the linker generates @code{bl L42} to call the branch
24201 island. The branch island is appended to the body of the
24202 calling function; it computes the full 32-bit address of the callee
24203 and jumps to it.
24204
24205 On Mach-O (Darwin) systems, this option directs the compiler emit to
24206 the glue for every direct call, and the Darwin linker decides whether
24207 to use or discard it.
24208
24209 In the future, GCC may ignore all longcall specifications
24210 when the linker is known to generate glue.
24211
24212 @item -mtls-markers
24213 @itemx -mno-tls-markers
24214 @opindex mtls-markers
24215 @opindex mno-tls-markers
24216 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
24217 specifying the function argument. The relocation allows the linker to
24218 reliably associate function call with argument setup instructions for
24219 TLS optimization, which in turn allows GCC to better schedule the
24220 sequence.
24221
24222 @item -mrecip
24223 @itemx -mno-recip
24224 @opindex mrecip
24225 This option enables use of the reciprocal estimate and
24226 reciprocal square root estimate instructions with additional
24227 Newton-Raphson steps to increase precision instead of doing a divide or
24228 square root and divide for floating-point arguments. You should use
24229 the @option{-ffast-math} option when using @option{-mrecip} (or at
24230 least @option{-funsafe-math-optimizations},
24231 @option{-ffinite-math-only}, @option{-freciprocal-math} and
24232 @option{-fno-trapping-math}). Note that while the throughput of the
24233 sequence is generally higher than the throughput of the non-reciprocal
24234 instruction, the precision of the sequence can be decreased by up to 2
24235 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
24236 roots.
24237
24238 @item -mrecip=@var{opt}
24239 @opindex mrecip=opt
24240 This option controls which reciprocal estimate instructions
24241 may be used. @var{opt} is a comma-separated list of options, which may
24242 be preceded by a @code{!} to invert the option:
24243
24244 @table @samp
24245
24246 @item all
24247 Enable all estimate instructions.
24248
24249 @item default
24250 Enable the default instructions, equivalent to @option{-mrecip}.
24251
24252 @item none
24253 Disable all estimate instructions, equivalent to @option{-mno-recip}.
24254
24255 @item div
24256 Enable the reciprocal approximation instructions for both
24257 single and double precision.
24258
24259 @item divf
24260 Enable the single-precision reciprocal approximation instructions.
24261
24262 @item divd
24263 Enable the double-precision reciprocal approximation instructions.
24264
24265 @item rsqrt
24266 Enable the reciprocal square root approximation instructions for both
24267 single and double precision.
24268
24269 @item rsqrtf
24270 Enable the single-precision reciprocal square root approximation instructions.
24271
24272 @item rsqrtd
24273 Enable the double-precision reciprocal square root approximation instructions.
24274
24275 @end table
24276
24277 So, for example, @option{-mrecip=all,!rsqrtd} enables
24278 all of the reciprocal estimate instructions, except for the
24279 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
24280 which handle the double-precision reciprocal square root calculations.
24281
24282 @item -mrecip-precision
24283 @itemx -mno-recip-precision
24284 @opindex mrecip-precision
24285 Assume (do not assume) that the reciprocal estimate instructions
24286 provide higher-precision estimates than is mandated by the PowerPC
24287 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
24288 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
24289 The double-precision square root estimate instructions are not generated by
24290 default on low-precision machines, since they do not provide an
24291 estimate that converges after three steps.
24292
24293 @item -mveclibabi=@var{type}
24294 @opindex mveclibabi
24295 Specifies the ABI type to use for vectorizing intrinsics using an
24296 external library. The only type supported at present is @samp{mass},
24297 which specifies to use IBM's Mathematical Acceleration Subsystem
24298 (MASS) libraries for vectorizing intrinsics using external libraries.
24299 GCC currently emits calls to @code{acosd2}, @code{acosf4},
24300 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
24301 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
24302 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
24303 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
24304 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
24305 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
24306 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
24307 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
24308 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
24309 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
24310 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
24311 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
24312 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
24313 for power7. Both @option{-ftree-vectorize} and
24314 @option{-funsafe-math-optimizations} must also be enabled. The MASS
24315 libraries must be specified at link time.
24316
24317 @item -mfriz
24318 @itemx -mno-friz
24319 @opindex mfriz
24320 Generate (do not generate) the @code{friz} instruction when the
24321 @option{-funsafe-math-optimizations} option is used to optimize
24322 rounding of floating-point values to 64-bit integer and back to floating
24323 point. The @code{friz} instruction does not return the same value if
24324 the floating-point number is too large to fit in an integer.
24325
24326 @item -mpointers-to-nested-functions
24327 @itemx -mno-pointers-to-nested-functions
24328 @opindex mpointers-to-nested-functions
24329 Generate (do not generate) code to load up the static chain register
24330 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
24331 systems where a function pointer points to a 3-word descriptor giving
24332 the function address, TOC value to be loaded in register @code{r2}, and
24333 static chain value to be loaded in register @code{r11}. The
24334 @option{-mpointers-to-nested-functions} is on by default. You cannot
24335 call through pointers to nested functions or pointers
24336 to functions compiled in other languages that use the static chain if
24337 you use @option{-mno-pointers-to-nested-functions}.
24338
24339 @item -msave-toc-indirect
24340 @itemx -mno-save-toc-indirect
24341 @opindex msave-toc-indirect
24342 Generate (do not generate) code to save the TOC value in the reserved
24343 stack location in the function prologue if the function calls through
24344 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
24345 saved in the prologue, it is saved just before the call through the
24346 pointer. The @option{-mno-save-toc-indirect} option is the default.
24347
24348 @item -mcompat-align-parm
24349 @itemx -mno-compat-align-parm
24350 @opindex mcompat-align-parm
24351 Generate (do not generate) code to pass structure parameters with a
24352 maximum alignment of 64 bits, for compatibility with older versions
24353 of GCC.
24354
24355 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
24356 structure parameter on a 128-bit boundary when that structure contained
24357 a member requiring 128-bit alignment. This is corrected in more
24358 recent versions of GCC. This option may be used to generate code
24359 that is compatible with functions compiled with older versions of
24360 GCC.
24361
24362 The @option{-mno-compat-align-parm} option is the default.
24363
24364 @item -mstack-protector-guard=@var{guard}
24365 @itemx -mstack-protector-guard-reg=@var{reg}
24366 @itemx -mstack-protector-guard-offset=@var{offset}
24367 @itemx -mstack-protector-guard-symbol=@var{symbol}
24368 @opindex mstack-protector-guard
24369 @opindex mstack-protector-guard-reg
24370 @opindex mstack-protector-guard-offset
24371 @opindex mstack-protector-guard-symbol
24372 Generate stack protection code using canary at @var{guard}. Supported
24373 locations are @samp{global} for global canary or @samp{tls} for per-thread
24374 canary in the TLS block (the default with GNU libc version 2.4 or later).
24375
24376 With the latter choice the options
24377 @option{-mstack-protector-guard-reg=@var{reg}} and
24378 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
24379 which register to use as base register for reading the canary, and from what
24380 offset from that base register. The default for those is as specified in the
24381 relevant ABI. @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
24382 the offset with a symbol reference to a canary in the TLS block.
24383 @end table
24384
24385 @node RX Options
24386 @subsection RX Options
24387 @cindex RX Options
24388
24389 These command-line options are defined for RX targets:
24390
24391 @table @gcctabopt
24392 @item -m64bit-doubles
24393 @itemx -m32bit-doubles
24394 @opindex m64bit-doubles
24395 @opindex m32bit-doubles
24396 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
24397 or 32 bits (@option{-m32bit-doubles}) in size. The default is
24398 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
24399 works on 32-bit values, which is why the default is
24400 @option{-m32bit-doubles}.
24401
24402 @item -fpu
24403 @itemx -nofpu
24404 @opindex fpu
24405 @opindex nofpu
24406 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
24407 floating-point hardware. The default is enabled for the RX600
24408 series and disabled for the RX200 series.
24409
24410 Floating-point instructions are only generated for 32-bit floating-point
24411 values, however, so the FPU hardware is not used for doubles if the
24412 @option{-m64bit-doubles} option is used.
24413
24414 @emph{Note} If the @option{-fpu} option is enabled then
24415 @option{-funsafe-math-optimizations} is also enabled automatically.
24416 This is because the RX FPU instructions are themselves unsafe.
24417
24418 @item -mcpu=@var{name}
24419 @opindex mcpu
24420 Selects the type of RX CPU to be targeted. Currently three types are
24421 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
24422 the specific @samp{RX610} CPU. The default is @samp{RX600}.
24423
24424 The only difference between @samp{RX600} and @samp{RX610} is that the
24425 @samp{RX610} does not support the @code{MVTIPL} instruction.
24426
24427 The @samp{RX200} series does not have a hardware floating-point unit
24428 and so @option{-nofpu} is enabled by default when this type is
24429 selected.
24430
24431 @item -mbig-endian-data
24432 @itemx -mlittle-endian-data
24433 @opindex mbig-endian-data
24434 @opindex mlittle-endian-data
24435 Store data (but not code) in the big-endian format. The default is
24436 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
24437 format.
24438
24439 @item -msmall-data-limit=@var{N}
24440 @opindex msmall-data-limit
24441 Specifies the maximum size in bytes of global and static variables
24442 which can be placed into the small data area. Using the small data
24443 area can lead to smaller and faster code, but the size of area is
24444 limited and it is up to the programmer to ensure that the area does
24445 not overflow. Also when the small data area is used one of the RX's
24446 registers (usually @code{r13}) is reserved for use pointing to this
24447 area, so it is no longer available for use by the compiler. This
24448 could result in slower and/or larger code if variables are pushed onto
24449 the stack instead of being held in this register.
24450
24451 Note, common variables (variables that have not been initialized) and
24452 constants are not placed into the small data area as they are assigned
24453 to other sections in the output executable.
24454
24455 The default value is zero, which disables this feature. Note, this
24456 feature is not enabled by default with higher optimization levels
24457 (@option{-O2} etc) because of the potentially detrimental effects of
24458 reserving a register. It is up to the programmer to experiment and
24459 discover whether this feature is of benefit to their program. See the
24460 description of the @option{-mpid} option for a description of how the
24461 actual register to hold the small data area pointer is chosen.
24462
24463 @item -msim
24464 @itemx -mno-sim
24465 @opindex msim
24466 @opindex mno-sim
24467 Use the simulator runtime. The default is to use the libgloss
24468 board-specific runtime.
24469
24470 @item -mas100-syntax
24471 @itemx -mno-as100-syntax
24472 @opindex mas100-syntax
24473 @opindex mno-as100-syntax
24474 When generating assembler output use a syntax that is compatible with
24475 Renesas's AS100 assembler. This syntax can also be handled by the GAS
24476 assembler, but it has some restrictions so it is not generated by default.
24477
24478 @item -mmax-constant-size=@var{N}
24479 @opindex mmax-constant-size
24480 Specifies the maximum size, in bytes, of a constant that can be used as
24481 an operand in a RX instruction. Although the RX instruction set does
24482 allow constants of up to 4 bytes in length to be used in instructions,
24483 a longer value equates to a longer instruction. Thus in some
24484 circumstances it can be beneficial to restrict the size of constants
24485 that are used in instructions. Constants that are too big are instead
24486 placed into a constant pool and referenced via register indirection.
24487
24488 The value @var{N} can be between 0 and 4. A value of 0 (the default)
24489 or 4 means that constants of any size are allowed.
24490
24491 @item -mrelax
24492 @opindex mrelax
24493 Enable linker relaxation. Linker relaxation is a process whereby the
24494 linker attempts to reduce the size of a program by finding shorter
24495 versions of various instructions. Disabled by default.
24496
24497 @item -mint-register=@var{N}
24498 @opindex mint-register
24499 Specify the number of registers to reserve for fast interrupt handler
24500 functions. The value @var{N} can be between 0 and 4. A value of 1
24501 means that register @code{r13} is reserved for the exclusive use
24502 of fast interrupt handlers. A value of 2 reserves @code{r13} and
24503 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
24504 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
24505 A value of 0, the default, does not reserve any registers.
24506
24507 @item -msave-acc-in-interrupts
24508 @opindex msave-acc-in-interrupts
24509 Specifies that interrupt handler functions should preserve the
24510 accumulator register. This is only necessary if normal code might use
24511 the accumulator register, for example because it performs 64-bit
24512 multiplications. The default is to ignore the accumulator as this
24513 makes the interrupt handlers faster.
24514
24515 @item -mpid
24516 @itemx -mno-pid
24517 @opindex mpid
24518 @opindex mno-pid
24519 Enables the generation of position independent data. When enabled any
24520 access to constant data is done via an offset from a base address
24521 held in a register. This allows the location of constant data to be
24522 determined at run time without requiring the executable to be
24523 relocated, which is a benefit to embedded applications with tight
24524 memory constraints. Data that can be modified is not affected by this
24525 option.
24526
24527 Note, using this feature reserves a register, usually @code{r13}, for
24528 the constant data base address. This can result in slower and/or
24529 larger code, especially in complicated functions.
24530
24531 The actual register chosen to hold the constant data base address
24532 depends upon whether the @option{-msmall-data-limit} and/or the
24533 @option{-mint-register} command-line options are enabled. Starting
24534 with register @code{r13} and proceeding downwards, registers are
24535 allocated first to satisfy the requirements of @option{-mint-register},
24536 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
24537 is possible for the small data area register to be @code{r8} if both
24538 @option{-mint-register=4} and @option{-mpid} are specified on the
24539 command line.
24540
24541 By default this feature is not enabled. The default can be restored
24542 via the @option{-mno-pid} command-line option.
24543
24544 @item -mno-warn-multiple-fast-interrupts
24545 @itemx -mwarn-multiple-fast-interrupts
24546 @opindex mno-warn-multiple-fast-interrupts
24547 @opindex mwarn-multiple-fast-interrupts
24548 Prevents GCC from issuing a warning message if it finds more than one
24549 fast interrupt handler when it is compiling a file. The default is to
24550 issue a warning for each extra fast interrupt handler found, as the RX
24551 only supports one such interrupt.
24552
24553 @item -mallow-string-insns
24554 @itemx -mno-allow-string-insns
24555 @opindex mallow-string-insns
24556 @opindex mno-allow-string-insns
24557 Enables or disables the use of the string manipulation instructions
24558 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
24559 @code{SWHILE} and also the @code{RMPA} instruction. These
24560 instructions may prefetch data, which is not safe to do if accessing
24561 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
24562 for more information).
24563
24564 The default is to allow these instructions, but it is not possible for
24565 GCC to reliably detect all circumstances where a string instruction
24566 might be used to access an I/O register, so their use cannot be
24567 disabled automatically. Instead it is reliant upon the programmer to
24568 use the @option{-mno-allow-string-insns} option if their program
24569 accesses I/O space.
24570
24571 When the instructions are enabled GCC defines the C preprocessor
24572 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
24573 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
24574
24575 @item -mjsr
24576 @itemx -mno-jsr
24577 @opindex mjsr
24578 @opindex mno-jsr
24579 Use only (or not only) @code{JSR} instructions to access functions.
24580 This option can be used when code size exceeds the range of @code{BSR}
24581 instructions. Note that @option{-mno-jsr} does not mean to not use
24582 @code{JSR} but instead means that any type of branch may be used.
24583 @end table
24584
24585 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
24586 has special significance to the RX port when used with the
24587 @code{interrupt} function attribute. This attribute indicates a
24588 function intended to process fast interrupts. GCC ensures
24589 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
24590 and/or @code{r13} and only provided that the normal use of the
24591 corresponding registers have been restricted via the
24592 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
24593 options.
24594
24595 @node S/390 and zSeries Options
24596 @subsection S/390 and zSeries Options
24597 @cindex S/390 and zSeries Options
24598
24599 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
24600
24601 @table @gcctabopt
24602 @item -mhard-float
24603 @itemx -msoft-float
24604 @opindex mhard-float
24605 @opindex msoft-float
24606 Use (do not use) the hardware floating-point instructions and registers
24607 for floating-point operations. When @option{-msoft-float} is specified,
24608 functions in @file{libgcc.a} are used to perform floating-point
24609 operations. When @option{-mhard-float} is specified, the compiler
24610 generates IEEE floating-point instructions. This is the default.
24611
24612 @item -mhard-dfp
24613 @itemx -mno-hard-dfp
24614 @opindex mhard-dfp
24615 @opindex mno-hard-dfp
24616 Use (do not use) the hardware decimal-floating-point instructions for
24617 decimal-floating-point operations. When @option{-mno-hard-dfp} is
24618 specified, functions in @file{libgcc.a} are used to perform
24619 decimal-floating-point operations. When @option{-mhard-dfp} is
24620 specified, the compiler generates decimal-floating-point hardware
24621 instructions. This is the default for @option{-march=z9-ec} or higher.
24622
24623 @item -mlong-double-64
24624 @itemx -mlong-double-128
24625 @opindex mlong-double-64
24626 @opindex mlong-double-128
24627 These switches control the size of @code{long double} type. A size
24628 of 64 bits makes the @code{long double} type equivalent to the @code{double}
24629 type. This is the default.
24630
24631 @item -mbackchain
24632 @itemx -mno-backchain
24633 @opindex mbackchain
24634 @opindex mno-backchain
24635 Store (do not store) the address of the caller's frame as backchain pointer
24636 into the callee's stack frame.
24637 A backchain may be needed to allow debugging using tools that do not understand
24638 DWARF call frame information.
24639 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
24640 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
24641 the backchain is placed into the topmost word of the 96/160 byte register
24642 save area.
24643
24644 In general, code compiled with @option{-mbackchain} is call-compatible with
24645 code compiled with @option{-mmo-backchain}; however, use of the backchain
24646 for debugging purposes usually requires that the whole binary is built with
24647 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
24648 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
24649 to build a linux kernel use @option{-msoft-float}.
24650
24651 The default is to not maintain the backchain.
24652
24653 @item -mpacked-stack
24654 @itemx -mno-packed-stack
24655 @opindex mpacked-stack
24656 @opindex mno-packed-stack
24657 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
24658 specified, the compiler uses the all fields of the 96/160 byte register save
24659 area only for their default purpose; unused fields still take up stack space.
24660 When @option{-mpacked-stack} is specified, register save slots are densely
24661 packed at the top of the register save area; unused space is reused for other
24662 purposes, allowing for more efficient use of the available stack space.
24663 However, when @option{-mbackchain} is also in effect, the topmost word of
24664 the save area is always used to store the backchain, and the return address
24665 register is always saved two words below the backchain.
24666
24667 As long as the stack frame backchain is not used, code generated with
24668 @option{-mpacked-stack} is call-compatible with code generated with
24669 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
24670 S/390 or zSeries generated code that uses the stack frame backchain at run
24671 time, not just for debugging purposes. Such code is not call-compatible
24672 with code compiled with @option{-mpacked-stack}. Also, note that the
24673 combination of @option{-mbackchain},
24674 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
24675 to build a linux kernel use @option{-msoft-float}.
24676
24677 The default is to not use the packed stack layout.
24678
24679 @item -msmall-exec
24680 @itemx -mno-small-exec
24681 @opindex msmall-exec
24682 @opindex mno-small-exec
24683 Generate (or do not generate) code using the @code{bras} instruction
24684 to do subroutine calls.
24685 This only works reliably if the total executable size does not
24686 exceed 64k. The default is to use the @code{basr} instruction instead,
24687 which does not have this limitation.
24688
24689 @item -m64
24690 @itemx -m31
24691 @opindex m64
24692 @opindex m31
24693 When @option{-m31} is specified, generate code compliant to the
24694 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
24695 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
24696 particular to generate 64-bit instructions. For the @samp{s390}
24697 targets, the default is @option{-m31}, while the @samp{s390x}
24698 targets default to @option{-m64}.
24699
24700 @item -mzarch
24701 @itemx -mesa
24702 @opindex mzarch
24703 @opindex mesa
24704 When @option{-mzarch} is specified, generate code using the
24705 instructions available on z/Architecture.
24706 When @option{-mesa} is specified, generate code using the
24707 instructions available on ESA/390. Note that @option{-mesa} is
24708 not possible with @option{-m64}.
24709 When generating code compliant to the GNU/Linux for S/390 ABI,
24710 the default is @option{-mesa}. When generating code compliant
24711 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
24712
24713 @item -mhtm
24714 @itemx -mno-htm
24715 @opindex mhtm
24716 @opindex mno-htm
24717 The @option{-mhtm} option enables a set of builtins making use of
24718 instructions available with the transactional execution facility
24719 introduced with the IBM zEnterprise EC12 machine generation
24720 @ref{S/390 System z Built-in Functions}.
24721 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
24722
24723 @item -mvx
24724 @itemx -mno-vx
24725 @opindex mvx
24726 @opindex mno-vx
24727 When @option{-mvx} is specified, generate code using the instructions
24728 available with the vector extension facility introduced with the IBM
24729 z13 machine generation.
24730 This option changes the ABI for some vector type values with regard to
24731 alignment and calling conventions. In case vector type values are
24732 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
24733 command will be added to mark the resulting binary with the ABI used.
24734 @option{-mvx} is enabled by default when using @option{-march=z13}.
24735
24736 @item -mzvector
24737 @itemx -mno-zvector
24738 @opindex mzvector
24739 @opindex mno-zvector
24740 The @option{-mzvector} option enables vector language extensions and
24741 builtins using instructions available with the vector extension
24742 facility introduced with the IBM z13 machine generation.
24743 This option adds support for @samp{vector} to be used as a keyword to
24744 define vector type variables and arguments. @samp{vector} is only
24745 available when GNU extensions are enabled. It will not be expanded
24746 when requesting strict standard compliance e.g. with @option{-std=c99}.
24747 In addition to the GCC low-level builtins @option{-mzvector} enables
24748 a set of builtins added for compatibility with AltiVec-style
24749 implementations like Power and Cell. In order to make use of these
24750 builtins the header file @file{vecintrin.h} needs to be included.
24751 @option{-mzvector} is disabled by default.
24752
24753 @item -mmvcle
24754 @itemx -mno-mvcle
24755 @opindex mmvcle
24756 @opindex mno-mvcle
24757 Generate (or do not generate) code using the @code{mvcle} instruction
24758 to perform block moves. When @option{-mno-mvcle} is specified,
24759 use a @code{mvc} loop instead. This is the default unless optimizing for
24760 size.
24761
24762 @item -mdebug
24763 @itemx -mno-debug
24764 @opindex mdebug
24765 @opindex mno-debug
24766 Print (or do not print) additional debug information when compiling.
24767 The default is to not print debug information.
24768
24769 @item -march=@var{cpu-type}
24770 @opindex march
24771 Generate code that runs on @var{cpu-type}, which is the name of a
24772 system representing a certain processor type. Possible values for
24773 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
24774 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
24775 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11}, and
24776 @samp{native}.
24777
24778 The default is @option{-march=z900}. @samp{g5}/@samp{arch3} and
24779 @samp{g6} are deprecated and will be removed with future releases.
24780
24781 Specifying @samp{native} as cpu type can be used to select the best
24782 architecture option for the host processor.
24783 @option{-march=native} has no effect if GCC does not recognize the
24784 processor.
24785
24786 @item -mtune=@var{cpu-type}
24787 @opindex mtune
24788 Tune to @var{cpu-type} everything applicable about the generated code,
24789 except for the ABI and the set of available instructions.
24790 The list of @var{cpu-type} values is the same as for @option{-march}.
24791 The default is the value used for @option{-march}.
24792
24793 @item -mtpf-trace
24794 @itemx -mno-tpf-trace
24795 @opindex mtpf-trace
24796 @opindex mno-tpf-trace
24797 Generate code that adds (does not add) in TPF OS specific branches to trace
24798 routines in the operating system. This option is off by default, even
24799 when compiling for the TPF OS@.
24800
24801 @item -mfused-madd
24802 @itemx -mno-fused-madd
24803 @opindex mfused-madd
24804 @opindex mno-fused-madd
24805 Generate code that uses (does not use) the floating-point multiply and
24806 accumulate instructions. These instructions are generated by default if
24807 hardware floating point is used.
24808
24809 @item -mwarn-framesize=@var{framesize}
24810 @opindex mwarn-framesize
24811 Emit a warning if the current function exceeds the given frame size. Because
24812 this is a compile-time check it doesn't need to be a real problem when the program
24813 runs. It is intended to identify functions that most probably cause
24814 a stack overflow. It is useful to be used in an environment with limited stack
24815 size e.g.@: the linux kernel.
24816
24817 @item -mwarn-dynamicstack
24818 @opindex mwarn-dynamicstack
24819 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
24820 arrays. This is generally a bad idea with a limited stack size.
24821
24822 @item -mstack-guard=@var{stack-guard}
24823 @itemx -mstack-size=@var{stack-size}
24824 @opindex mstack-guard
24825 @opindex mstack-size
24826 If these options are provided the S/390 back end emits additional instructions in
24827 the function prologue that trigger a trap if the stack size is @var{stack-guard}
24828 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
24829 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
24830 the frame size of the compiled function is chosen.
24831 These options are intended to be used to help debugging stack overflow problems.
24832 The additionally emitted code causes only little overhead and hence can also be
24833 used in production-like systems without greater performance degradation. The given
24834 values have to be exact powers of 2 and @var{stack-size} has to be greater than
24835 @var{stack-guard} without exceeding 64k.
24836 In order to be efficient the extra code makes the assumption that the stack starts
24837 at an address aligned to the value given by @var{stack-size}.
24838 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
24839
24840 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
24841 @opindex mhotpatch
24842 If the hotpatch option is enabled, a ``hot-patching'' function
24843 prologue is generated for all functions in the compilation unit.
24844 The funtion label is prepended with the given number of two-byte
24845 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
24846 the label, 2 * @var{post-halfwords} bytes are appended, using the
24847 largest NOP like instructions the architecture allows (maximum
24848 1000000).
24849
24850 If both arguments are zero, hotpatching is disabled.
24851
24852 This option can be overridden for individual functions with the
24853 @code{hotpatch} attribute.
24854 @end table
24855
24856 @node Score Options
24857 @subsection Score Options
24858 @cindex Score Options
24859
24860 These options are defined for Score implementations:
24861
24862 @table @gcctabopt
24863 @item -meb
24864 @opindex meb
24865 Compile code for big-endian mode. This is the default.
24866
24867 @item -mel
24868 @opindex mel
24869 Compile code for little-endian mode.
24870
24871 @item -mnhwloop
24872 @opindex mnhwloop
24873 Disable generation of @code{bcnz} instructions.
24874
24875 @item -muls
24876 @opindex muls
24877 Enable generation of unaligned load and store instructions.
24878
24879 @item -mmac
24880 @opindex mmac
24881 Enable the use of multiply-accumulate instructions. Disabled by default.
24882
24883 @item -mscore5
24884 @opindex mscore5
24885 Specify the SCORE5 as the target architecture.
24886
24887 @item -mscore5u
24888 @opindex mscore5u
24889 Specify the SCORE5U of the target architecture.
24890
24891 @item -mscore7
24892 @opindex mscore7
24893 Specify the SCORE7 as the target architecture. This is the default.
24894
24895 @item -mscore7d
24896 @opindex mscore7d
24897 Specify the SCORE7D as the target architecture.
24898 @end table
24899
24900 @node SH Options
24901 @subsection SH Options
24902
24903 These @samp{-m} options are defined for the SH implementations:
24904
24905 @table @gcctabopt
24906 @item -m1
24907 @opindex m1
24908 Generate code for the SH1.
24909
24910 @item -m2
24911 @opindex m2
24912 Generate code for the SH2.
24913
24914 @item -m2e
24915 Generate code for the SH2e.
24916
24917 @item -m2a-nofpu
24918 @opindex m2a-nofpu
24919 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
24920 that the floating-point unit is not used.
24921
24922 @item -m2a-single-only
24923 @opindex m2a-single-only
24924 Generate code for the SH2a-FPU, in such a way that no double-precision
24925 floating-point operations are used.
24926
24927 @item -m2a-single
24928 @opindex m2a-single
24929 Generate code for the SH2a-FPU assuming the floating-point unit is in
24930 single-precision mode by default.
24931
24932 @item -m2a
24933 @opindex m2a
24934 Generate code for the SH2a-FPU assuming the floating-point unit is in
24935 double-precision mode by default.
24936
24937 @item -m3
24938 @opindex m3
24939 Generate code for the SH3.
24940
24941 @item -m3e
24942 @opindex m3e
24943 Generate code for the SH3e.
24944
24945 @item -m4-nofpu
24946 @opindex m4-nofpu
24947 Generate code for the SH4 without a floating-point unit.
24948
24949 @item -m4-single-only
24950 @opindex m4-single-only
24951 Generate code for the SH4 with a floating-point unit that only
24952 supports single-precision arithmetic.
24953
24954 @item -m4-single
24955 @opindex m4-single
24956 Generate code for the SH4 assuming the floating-point unit is in
24957 single-precision mode by default.
24958
24959 @item -m4
24960 @opindex m4
24961 Generate code for the SH4.
24962
24963 @item -m4-100
24964 @opindex m4-100
24965 Generate code for SH4-100.
24966
24967 @item -m4-100-nofpu
24968 @opindex m4-100-nofpu
24969 Generate code for SH4-100 in such a way that the
24970 floating-point unit is not used.
24971
24972 @item -m4-100-single
24973 @opindex m4-100-single
24974 Generate code for SH4-100 assuming the floating-point unit is in
24975 single-precision mode by default.
24976
24977 @item -m4-100-single-only
24978 @opindex m4-100-single-only
24979 Generate code for SH4-100 in such a way that no double-precision
24980 floating-point operations are used.
24981
24982 @item -m4-200
24983 @opindex m4-200
24984 Generate code for SH4-200.
24985
24986 @item -m4-200-nofpu
24987 @opindex m4-200-nofpu
24988 Generate code for SH4-200 without in such a way that the
24989 floating-point unit is not used.
24990
24991 @item -m4-200-single
24992 @opindex m4-200-single
24993 Generate code for SH4-200 assuming the floating-point unit is in
24994 single-precision mode by default.
24995
24996 @item -m4-200-single-only
24997 @opindex m4-200-single-only
24998 Generate code for SH4-200 in such a way that no double-precision
24999 floating-point operations are used.
25000
25001 @item -m4-300
25002 @opindex m4-300
25003 Generate code for SH4-300.
25004
25005 @item -m4-300-nofpu
25006 @opindex m4-300-nofpu
25007 Generate code for SH4-300 without in such a way that the
25008 floating-point unit is not used.
25009
25010 @item -m4-300-single
25011 @opindex m4-300-single
25012 Generate code for SH4-300 in such a way that no double-precision
25013 floating-point operations are used.
25014
25015 @item -m4-300-single-only
25016 @opindex m4-300-single-only
25017 Generate code for SH4-300 in such a way that no double-precision
25018 floating-point operations are used.
25019
25020 @item -m4-340
25021 @opindex m4-340
25022 Generate code for SH4-340 (no MMU, no FPU).
25023
25024 @item -m4-500
25025 @opindex m4-500
25026 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
25027 assembler.
25028
25029 @item -m4a-nofpu
25030 @opindex m4a-nofpu
25031 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
25032 floating-point unit is not used.
25033
25034 @item -m4a-single-only
25035 @opindex m4a-single-only
25036 Generate code for the SH4a, in such a way that no double-precision
25037 floating-point operations are used.
25038
25039 @item -m4a-single
25040 @opindex m4a-single
25041 Generate code for the SH4a assuming the floating-point unit is in
25042 single-precision mode by default.
25043
25044 @item -m4a
25045 @opindex m4a
25046 Generate code for the SH4a.
25047
25048 @item -m4al
25049 @opindex m4al
25050 Same as @option{-m4a-nofpu}, except that it implicitly passes
25051 @option{-dsp} to the assembler. GCC doesn't generate any DSP
25052 instructions at the moment.
25053
25054 @item -mb
25055 @opindex mb
25056 Compile code for the processor in big-endian mode.
25057
25058 @item -ml
25059 @opindex ml
25060 Compile code for the processor in little-endian mode.
25061
25062 @item -mdalign
25063 @opindex mdalign
25064 Align doubles at 64-bit boundaries. Note that this changes the calling
25065 conventions, and thus some functions from the standard C library do
25066 not work unless you recompile it first with @option{-mdalign}.
25067
25068 @item -mrelax
25069 @opindex mrelax
25070 Shorten some address references at link time, when possible; uses the
25071 linker option @option{-relax}.
25072
25073 @item -mbigtable
25074 @opindex mbigtable
25075 Use 32-bit offsets in @code{switch} tables. The default is to use
25076 16-bit offsets.
25077
25078 @item -mbitops
25079 @opindex mbitops
25080 Enable the use of bit manipulation instructions on SH2A.
25081
25082 @item -mfmovd
25083 @opindex mfmovd
25084 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
25085 alignment constraints.
25086
25087 @item -mrenesas
25088 @opindex mrenesas
25089 Comply with the calling conventions defined by Renesas.
25090
25091 @item -mno-renesas
25092 @opindex mno-renesas
25093 Comply with the calling conventions defined for GCC before the Renesas
25094 conventions were available. This option is the default for all
25095 targets of the SH toolchain.
25096
25097 @item -mnomacsave
25098 @opindex mnomacsave
25099 Mark the @code{MAC} register as call-clobbered, even if
25100 @option{-mrenesas} is given.
25101
25102 @item -mieee
25103 @itemx -mno-ieee
25104 @opindex mieee
25105 @opindex mno-ieee
25106 Control the IEEE compliance of floating-point comparisons, which affects the
25107 handling of cases where the result of a comparison is unordered. By default
25108 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
25109 enabled @option{-mno-ieee} is implicitly set, which results in faster
25110 floating-point greater-equal and less-equal comparisons. The implicit settings
25111 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
25112
25113 @item -minline-ic_invalidate
25114 @opindex minline-ic_invalidate
25115 Inline code to invalidate instruction cache entries after setting up
25116 nested function trampolines.
25117 This option has no effect if @option{-musermode} is in effect and the selected
25118 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
25119 instruction.
25120 If the selected code generation option does not allow the use of the @code{icbi}
25121 instruction, and @option{-musermode} is not in effect, the inlined code
25122 manipulates the instruction cache address array directly with an associative
25123 write. This not only requires privileged mode at run time, but it also
25124 fails if the cache line had been mapped via the TLB and has become unmapped.
25125
25126 @item -misize
25127 @opindex misize
25128 Dump instruction size and location in the assembly code.
25129
25130 @item -mpadstruct
25131 @opindex mpadstruct
25132 This option is deprecated. It pads structures to multiple of 4 bytes,
25133 which is incompatible with the SH ABI@.
25134
25135 @item -matomic-model=@var{model}
25136 @opindex matomic-model=@var{model}
25137 Sets the model of atomic operations and additional parameters as a comma
25138 separated list. For details on the atomic built-in functions see
25139 @ref{__atomic Builtins}. The following models and parameters are supported:
25140
25141 @table @samp
25142
25143 @item none
25144 Disable compiler generated atomic sequences and emit library calls for atomic
25145 operations. This is the default if the target is not @code{sh*-*-linux*}.
25146
25147 @item soft-gusa
25148 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
25149 built-in functions. The generated atomic sequences require additional support
25150 from the interrupt/exception handling code of the system and are only suitable
25151 for SH3* and SH4* single-core systems. This option is enabled by default when
25152 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
25153 this option also partially utilizes the hardware atomic instructions
25154 @code{movli.l} and @code{movco.l} to create more efficient code, unless
25155 @samp{strict} is specified.
25156
25157 @item soft-tcb
25158 Generate software atomic sequences that use a variable in the thread control
25159 block. This is a variation of the gUSA sequences which can also be used on
25160 SH1* and SH2* targets. The generated atomic sequences require additional
25161 support from the interrupt/exception handling code of the system and are only
25162 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
25163 parameter has to be specified as well.
25164
25165 @item soft-imask
25166 Generate software atomic sequences that temporarily disable interrupts by
25167 setting @code{SR.IMASK = 1111}. This model works only when the program runs
25168 in privileged mode and is only suitable for single-core systems. Additional
25169 support from the interrupt/exception handling code of the system is not
25170 required. This model is enabled by default when the target is
25171 @code{sh*-*-linux*} and SH1* or SH2*.
25172
25173 @item hard-llcs
25174 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
25175 instructions only. This is only available on SH4A and is suitable for
25176 multi-core systems. Since the hardware instructions support only 32 bit atomic
25177 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
25178 Code compiled with this option is also compatible with other software
25179 atomic model interrupt/exception handling systems if executed on an SH4A
25180 system. Additional support from the interrupt/exception handling code of the
25181 system is not required for this model.
25182
25183 @item gbr-offset=
25184 This parameter specifies the offset in bytes of the variable in the thread
25185 control block structure that should be used by the generated atomic sequences
25186 when the @samp{soft-tcb} model has been selected. For other models this
25187 parameter is ignored. The specified value must be an integer multiple of four
25188 and in the range 0-1020.
25189
25190 @item strict
25191 This parameter prevents mixed usage of multiple atomic models, even if they
25192 are compatible, and makes the compiler generate atomic sequences of the
25193 specified model only.
25194
25195 @end table
25196
25197 @item -mtas
25198 @opindex mtas
25199 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
25200 Notice that depending on the particular hardware and software configuration
25201 this can degrade overall performance due to the operand cache line flushes
25202 that are implied by the @code{tas.b} instruction. On multi-core SH4A
25203 processors the @code{tas.b} instruction must be used with caution since it
25204 can result in data corruption for certain cache configurations.
25205
25206 @item -mprefergot
25207 @opindex mprefergot
25208 When generating position-independent code, emit function calls using
25209 the Global Offset Table instead of the Procedure Linkage Table.
25210
25211 @item -musermode
25212 @itemx -mno-usermode
25213 @opindex musermode
25214 @opindex mno-usermode
25215 Don't allow (allow) the compiler generating privileged mode code. Specifying
25216 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
25217 inlined code would not work in user mode. @option{-musermode} is the default
25218 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
25219 @option{-musermode} has no effect, since there is no user mode.
25220
25221 @item -multcost=@var{number}
25222 @opindex multcost=@var{number}
25223 Set the cost to assume for a multiply insn.
25224
25225 @item -mdiv=@var{strategy}
25226 @opindex mdiv=@var{strategy}
25227 Set the division strategy to be used for integer division operations.
25228 @var{strategy} can be one of:
25229
25230 @table @samp
25231
25232 @item call-div1
25233 Calls a library function that uses the single-step division instruction
25234 @code{div1} to perform the operation. Division by zero calculates an
25235 unspecified result and does not trap. This is the default except for SH4,
25236 SH2A and SHcompact.
25237
25238 @item call-fp
25239 Calls a library function that performs the operation in double precision
25240 floating point. Division by zero causes a floating-point exception. This is
25241 the default for SHcompact with FPU. Specifying this for targets that do not
25242 have a double precision FPU defaults to @code{call-div1}.
25243
25244 @item call-table
25245 Calls a library function that uses a lookup table for small divisors and
25246 the @code{div1} instruction with case distinction for larger divisors. Division
25247 by zero calculates an unspecified result and does not trap. This is the default
25248 for SH4. Specifying this for targets that do not have dynamic shift
25249 instructions defaults to @code{call-div1}.
25250
25251 @end table
25252
25253 When a division strategy has not been specified the default strategy is
25254 selected based on the current target. For SH2A the default strategy is to
25255 use the @code{divs} and @code{divu} instructions instead of library function
25256 calls.
25257
25258 @item -maccumulate-outgoing-args
25259 @opindex maccumulate-outgoing-args
25260 Reserve space once for outgoing arguments in the function prologue rather
25261 than around each call. Generally beneficial for performance and size. Also
25262 needed for unwinding to avoid changing the stack frame around conditional code.
25263
25264 @item -mdivsi3_libfunc=@var{name}
25265 @opindex mdivsi3_libfunc=@var{name}
25266 Set the name of the library function used for 32-bit signed division to
25267 @var{name}.
25268 This only affects the name used in the @samp{call} division strategies, and
25269 the compiler still expects the same sets of input/output/clobbered registers as
25270 if this option were not present.
25271
25272 @item -mfixed-range=@var{register-range}
25273 @opindex mfixed-range
25274 Generate code treating the given register range as fixed registers.
25275 A fixed register is one that the register allocator can not use. This is
25276 useful when compiling kernel code. A register range is specified as
25277 two registers separated by a dash. Multiple register ranges can be
25278 specified separated by a comma.
25279
25280 @item -mbranch-cost=@var{num}
25281 @opindex mbranch-cost=@var{num}
25282 Assume @var{num} to be the cost for a branch instruction. Higher numbers
25283 make the compiler try to generate more branch-free code if possible.
25284 If not specified the value is selected depending on the processor type that
25285 is being compiled for.
25286
25287 @item -mzdcbranch
25288 @itemx -mno-zdcbranch
25289 @opindex mzdcbranch
25290 @opindex mno-zdcbranch
25291 Assume (do not assume) that zero displacement conditional branch instructions
25292 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
25293 compiler prefers zero displacement branch code sequences. This is
25294 enabled by default when generating code for SH4 and SH4A. It can be explicitly
25295 disabled by specifying @option{-mno-zdcbranch}.
25296
25297 @item -mcbranch-force-delay-slot
25298 @opindex mcbranch-force-delay-slot
25299 Force the usage of delay slots for conditional branches, which stuffs the delay
25300 slot with a @code{nop} if a suitable instruction cannot be found. By default
25301 this option is disabled. It can be enabled to work around hardware bugs as
25302 found in the original SH7055.
25303
25304 @item -mfused-madd
25305 @itemx -mno-fused-madd
25306 @opindex mfused-madd
25307 @opindex mno-fused-madd
25308 Generate code that uses (does not use) the floating-point multiply and
25309 accumulate instructions. These instructions are generated by default
25310 if hardware floating point is used. The machine-dependent
25311 @option{-mfused-madd} option is now mapped to the machine-independent
25312 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
25313 mapped to @option{-ffp-contract=off}.
25314
25315 @item -mfsca
25316 @itemx -mno-fsca
25317 @opindex mfsca
25318 @opindex mno-fsca
25319 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
25320 and cosine approximations. The option @option{-mfsca} must be used in
25321 combination with @option{-funsafe-math-optimizations}. It is enabled by default
25322 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
25323 approximations even if @option{-funsafe-math-optimizations} is in effect.
25324
25325 @item -mfsrra
25326 @itemx -mno-fsrra
25327 @opindex mfsrra
25328 @opindex mno-fsrra
25329 Allow or disallow the compiler to emit the @code{fsrra} instruction for
25330 reciprocal square root approximations. The option @option{-mfsrra} must be used
25331 in combination with @option{-funsafe-math-optimizations} and
25332 @option{-ffinite-math-only}. It is enabled by default when generating code for
25333 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
25334 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
25335 in effect.
25336
25337 @item -mpretend-cmove
25338 @opindex mpretend-cmove
25339 Prefer zero-displacement conditional branches for conditional move instruction
25340 patterns. This can result in faster code on the SH4 processor.
25341
25342 @item -mfdpic
25343 @opindex fdpic
25344 Generate code using the FDPIC ABI.
25345
25346 @end table
25347
25348 @node Solaris 2 Options
25349 @subsection Solaris 2 Options
25350 @cindex Solaris 2 options
25351
25352 These @samp{-m} options are supported on Solaris 2:
25353
25354 @table @gcctabopt
25355 @item -mclear-hwcap
25356 @opindex mclear-hwcap
25357 @option{-mclear-hwcap} tells the compiler to remove the hardware
25358 capabilities generated by the Solaris assembler. This is only necessary
25359 when object files use ISA extensions not supported by the current
25360 machine, but check at runtime whether or not to use them.
25361
25362 @item -mimpure-text
25363 @opindex mimpure-text
25364 @option{-mimpure-text}, used in addition to @option{-shared}, tells
25365 the compiler to not pass @option{-z text} to the linker when linking a
25366 shared object. Using this option, you can link position-dependent
25367 code into a shared object.
25368
25369 @option{-mimpure-text} suppresses the ``relocations remain against
25370 allocatable but non-writable sections'' linker error message.
25371 However, the necessary relocations trigger copy-on-write, and the
25372 shared object is not actually shared across processes. Instead of
25373 using @option{-mimpure-text}, you should compile all source code with
25374 @option{-fpic} or @option{-fPIC}.
25375
25376 @end table
25377
25378 These switches are supported in addition to the above on Solaris 2:
25379
25380 @table @gcctabopt
25381 @item -pthreads
25382 @opindex pthreads
25383 This is a synonym for @option{-pthread}.
25384 @end table
25385
25386 @node SPARC Options
25387 @subsection SPARC Options
25388 @cindex SPARC options
25389
25390 These @samp{-m} options are supported on the SPARC:
25391
25392 @table @gcctabopt
25393 @item -mno-app-regs
25394 @itemx -mapp-regs
25395 @opindex mno-app-regs
25396 @opindex mapp-regs
25397 Specify @option{-mapp-regs} to generate output using the global registers
25398 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
25399 global register 1, each global register 2 through 4 is then treated as an
25400 allocable register that is clobbered by function calls. This is the default.
25401
25402 To be fully SVR4 ABI-compliant at the cost of some performance loss,
25403 specify @option{-mno-app-regs}. You should compile libraries and system
25404 software with this option.
25405
25406 @item -mflat
25407 @itemx -mno-flat
25408 @opindex mflat
25409 @opindex mno-flat
25410 With @option{-mflat}, the compiler does not generate save/restore instructions
25411 and uses a ``flat'' or single register window model. This model is compatible
25412 with the regular register window model. The local registers and the input
25413 registers (0--5) are still treated as ``call-saved'' registers and are
25414 saved on the stack as needed.
25415
25416 With @option{-mno-flat} (the default), the compiler generates save/restore
25417 instructions (except for leaf functions). This is the normal operating mode.
25418
25419 @item -mfpu
25420 @itemx -mhard-float
25421 @opindex mfpu
25422 @opindex mhard-float
25423 Generate output containing floating-point instructions. This is the
25424 default.
25425
25426 @item -mno-fpu
25427 @itemx -msoft-float
25428 @opindex mno-fpu
25429 @opindex msoft-float
25430 Generate output containing library calls for floating point.
25431 @strong{Warning:} the requisite libraries are not available for all SPARC
25432 targets. Normally the facilities of the machine's usual C compiler are
25433 used, but this cannot be done directly in cross-compilation. You must make
25434 your own arrangements to provide suitable library functions for
25435 cross-compilation. The embedded targets @samp{sparc-*-aout} and
25436 @samp{sparclite-*-*} do provide software floating-point support.
25437
25438 @option{-msoft-float} changes the calling convention in the output file;
25439 therefore, it is only useful if you compile @emph{all} of a program with
25440 this option. In particular, you need to compile @file{libgcc.a}, the
25441 library that comes with GCC, with @option{-msoft-float} in order for
25442 this to work.
25443
25444 @item -mhard-quad-float
25445 @opindex mhard-quad-float
25446 Generate output containing quad-word (long double) floating-point
25447 instructions.
25448
25449 @item -msoft-quad-float
25450 @opindex msoft-quad-float
25451 Generate output containing library calls for quad-word (long double)
25452 floating-point instructions. The functions called are those specified
25453 in the SPARC ABI@. This is the default.
25454
25455 As of this writing, there are no SPARC implementations that have hardware
25456 support for the quad-word floating-point instructions. They all invoke
25457 a trap handler for one of these instructions, and then the trap handler
25458 emulates the effect of the instruction. Because of the trap handler overhead,
25459 this is much slower than calling the ABI library routines. Thus the
25460 @option{-msoft-quad-float} option is the default.
25461
25462 @item -mno-unaligned-doubles
25463 @itemx -munaligned-doubles
25464 @opindex mno-unaligned-doubles
25465 @opindex munaligned-doubles
25466 Assume that doubles have 8-byte alignment. This is the default.
25467
25468 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
25469 alignment only if they are contained in another type, or if they have an
25470 absolute address. Otherwise, it assumes they have 4-byte alignment.
25471 Specifying this option avoids some rare compatibility problems with code
25472 generated by other compilers. It is not the default because it results
25473 in a performance loss, especially for floating-point code.
25474
25475 @item -muser-mode
25476 @itemx -mno-user-mode
25477 @opindex muser-mode
25478 @opindex mno-user-mode
25479 Do not generate code that can only run in supervisor mode. This is relevant
25480 only for the @code{casa} instruction emitted for the LEON3 processor. This
25481 is the default.
25482
25483 @item -mfaster-structs
25484 @itemx -mno-faster-structs
25485 @opindex mfaster-structs
25486 @opindex mno-faster-structs
25487 With @option{-mfaster-structs}, the compiler assumes that structures
25488 should have 8-byte alignment. This enables the use of pairs of
25489 @code{ldd} and @code{std} instructions for copies in structure
25490 assignment, in place of twice as many @code{ld} and @code{st} pairs.
25491 However, the use of this changed alignment directly violates the SPARC
25492 ABI@. Thus, it's intended only for use on targets where the developer
25493 acknowledges that their resulting code is not directly in line with
25494 the rules of the ABI@.
25495
25496 @item -mstd-struct-return
25497 @itemx -mno-std-struct-return
25498 @opindex mstd-struct-return
25499 @opindex mno-std-struct-return
25500 With @option{-mstd-struct-return}, the compiler generates checking code
25501 in functions returning structures or unions to detect size mismatches
25502 between the two sides of function calls, as per the 32-bit ABI@.
25503
25504 The default is @option{-mno-std-struct-return}. This option has no effect
25505 in 64-bit mode.
25506
25507 @item -mlra
25508 @itemx -mno-lra
25509 @opindex mlra
25510 @opindex mno-lra
25511 Enable Local Register Allocation. This is the default for SPARC since GCC 7
25512 so @option{-mno-lra} needs to be passed to get old Reload.
25513
25514 @item -mcpu=@var{cpu_type}
25515 @opindex mcpu
25516 Set the instruction set, register set, and instruction scheduling parameters
25517 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
25518 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
25519 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
25520 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
25521 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
25522 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
25523
25524 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
25525 which selects the best architecture option for the host processor.
25526 @option{-mcpu=native} has no effect if GCC does not recognize
25527 the processor.
25528
25529 Default instruction scheduling parameters are used for values that select
25530 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
25531 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
25532
25533 Here is a list of each supported architecture and their supported
25534 implementations.
25535
25536 @table @asis
25537 @item v7
25538 cypress, leon3v7
25539
25540 @item v8
25541 supersparc, hypersparc, leon, leon3
25542
25543 @item sparclite
25544 f930, f934, sparclite86x
25545
25546 @item sparclet
25547 tsc701
25548
25549 @item v9
25550 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
25551 niagara7, m8
25552 @end table
25553
25554 By default (unless configured otherwise), GCC generates code for the V7
25555 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
25556 additionally optimizes it for the Cypress CY7C602 chip, as used in the
25557 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
25558 SPARCStation 1, 2, IPX etc.
25559
25560 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
25561 architecture. The only difference from V7 code is that the compiler emits
25562 the integer multiply and integer divide instructions which exist in SPARC-V8
25563 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
25564 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
25565 2000 series.
25566
25567 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
25568 the SPARC architecture. This adds the integer multiply, integer divide step
25569 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
25570 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
25571 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
25572 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
25573 MB86934 chip, which is the more recent SPARClite with FPU@.
25574
25575 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
25576 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
25577 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
25578 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
25579 optimizes it for the TEMIC SPARClet chip.
25580
25581 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
25582 architecture. This adds 64-bit integer and floating-point move instructions,
25583 3 additional floating-point condition code registers and conditional move
25584 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
25585 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
25586 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
25587 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
25588 @option{-mcpu=niagara}, the compiler additionally optimizes it for
25589 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
25590 additionally optimizes it for Sun UltraSPARC T2 chips. With
25591 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
25592 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
25593 additionally optimizes it for Sun UltraSPARC T4 chips. With
25594 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
25595 Oracle SPARC M7 chips. With @option{-mcpu=m8}, the compiler
25596 additionally optimizes it for Oracle M8 chips.
25597
25598 @item -mtune=@var{cpu_type}
25599 @opindex mtune
25600 Set the instruction scheduling parameters for machine type
25601 @var{cpu_type}, but do not set the instruction set or register set that the
25602 option @option{-mcpu=@var{cpu_type}} does.
25603
25604 The same values for @option{-mcpu=@var{cpu_type}} can be used for
25605 @option{-mtune=@var{cpu_type}}, but the only useful values are those
25606 that select a particular CPU implementation. Those are
25607 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
25608 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
25609 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
25610 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
25611 @samp{niagara4}, @samp{niagara7} and @samp{m8}. With native Solaris
25612 and GNU/Linux toolchains, @samp{native} can also be used.
25613
25614 @item -mv8plus
25615 @itemx -mno-v8plus
25616 @opindex mv8plus
25617 @opindex mno-v8plus
25618 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
25619 difference from the V8 ABI is that the global and out registers are
25620 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
25621 mode for all SPARC-V9 processors.
25622
25623 @item -mvis
25624 @itemx -mno-vis
25625 @opindex mvis
25626 @opindex mno-vis
25627 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
25628 Visual Instruction Set extensions. The default is @option{-mno-vis}.
25629
25630 @item -mvis2
25631 @itemx -mno-vis2
25632 @opindex mvis2
25633 @opindex mno-vis2
25634 With @option{-mvis2}, GCC generates code that takes advantage of
25635 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
25636 default is @option{-mvis2} when targeting a cpu that supports such
25637 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
25638 also sets @option{-mvis}.
25639
25640 @item -mvis3
25641 @itemx -mno-vis3
25642 @opindex mvis3
25643 @opindex mno-vis3
25644 With @option{-mvis3}, GCC generates code that takes advantage of
25645 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
25646 default is @option{-mvis3} when targeting a cpu that supports such
25647 instructions, such as niagara-3 and later. Setting @option{-mvis3}
25648 also sets @option{-mvis2} and @option{-mvis}.
25649
25650 @item -mvis4
25651 @itemx -mno-vis4
25652 @opindex mvis4
25653 @opindex mno-vis4
25654 With @option{-mvis4}, GCC generates code that takes advantage of
25655 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
25656 default is @option{-mvis4} when targeting a cpu that supports such
25657 instructions, such as niagara-7 and later. Setting @option{-mvis4}
25658 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
25659
25660 @item -mvis4b
25661 @itemx -mno-vis4b
25662 @opindex mvis4b
25663 @opindex mno-vis4b
25664 With @option{-mvis4b}, GCC generates code that takes advantage of
25665 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
25666 the additional VIS instructions introduced in the Oracle SPARC
25667 Architecture 2017. The default is @option{-mvis4b} when targeting a
25668 cpu that supports such instructions, such as m8 and later. Setting
25669 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
25670 @option{-mvis2} and @option{-mvis}.
25671
25672 @item -mcbcond
25673 @itemx -mno-cbcond
25674 @opindex mcbcond
25675 @opindex mno-cbcond
25676 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
25677 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
25678 when targeting a CPU that supports such instructions, such as Niagara-4 and
25679 later.
25680
25681 @item -mfmaf
25682 @itemx -mno-fmaf
25683 @opindex mfmaf
25684 @opindex mno-fmaf
25685 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
25686 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
25687 when targeting a CPU that supports such instructions, such as Niagara-3 and
25688 later.
25689
25690 @item -mfsmuld
25691 @itemx -mno-fsmuld
25692 @opindex mfsmuld
25693 @opindex mno-fsmuld
25694 With @option{-mfsmuld}, GCC generates code that takes advantage of the
25695 Floating-point Multiply Single to Double (FsMULd) instruction. The default is
25696 @option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
25697 or V9 with FPU except @option{-mcpu=leon}.
25698
25699 @item -mpopc
25700 @itemx -mno-popc
25701 @opindex mpopc
25702 @opindex mno-popc
25703 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
25704 Population Count instruction. The default is @option{-mpopc}
25705 when targeting a CPU that supports such an instruction, such as Niagara-2 and
25706 later.
25707
25708 @item -msubxc
25709 @itemx -mno-subxc
25710 @opindex msubxc
25711 @opindex mno-subxc
25712 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
25713 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
25714 when targeting a CPU that supports such an instruction, such as Niagara-7 and
25715 later.
25716
25717 @item -mfix-at697f
25718 @opindex mfix-at697f
25719 Enable the documented workaround for the single erratum of the Atmel AT697F
25720 processor (which corresponds to erratum #13 of the AT697E processor).
25721
25722 @item -mfix-ut699
25723 @opindex mfix-ut699
25724 Enable the documented workarounds for the floating-point errata and the data
25725 cache nullify errata of the UT699 processor.
25726
25727 @item -mfix-ut700
25728 @opindex mfix-ut700
25729 Enable the documented workaround for the back-to-back store errata of
25730 the UT699E/UT700 processor.
25731
25732 @item -mfix-gr712rc
25733 @opindex mfix-gr712rc
25734 Enable the documented workaround for the back-to-back store errata of
25735 the GR712RC processor.
25736 @end table
25737
25738 These @samp{-m} options are supported in addition to the above
25739 on SPARC-V9 processors in 64-bit environments:
25740
25741 @table @gcctabopt
25742 @item -m32
25743 @itemx -m64
25744 @opindex m32
25745 @opindex m64
25746 Generate code for a 32-bit or 64-bit environment.
25747 The 32-bit environment sets int, long and pointer to 32 bits.
25748 The 64-bit environment sets int to 32 bits and long and pointer
25749 to 64 bits.
25750
25751 @item -mcmodel=@var{which}
25752 @opindex mcmodel
25753 Set the code model to one of
25754
25755 @table @samp
25756 @item medlow
25757 The Medium/Low code model: 64-bit addresses, programs
25758 must be linked in the low 32 bits of memory. Programs can be statically
25759 or dynamically linked.
25760
25761 @item medmid
25762 The Medium/Middle code model: 64-bit addresses, programs
25763 must be linked in the low 44 bits of memory, the text and data segments must
25764 be less than 2GB in size and the data segment must be located within 2GB of
25765 the text segment.
25766
25767 @item medany
25768 The Medium/Anywhere code model: 64-bit addresses, programs
25769 may be linked anywhere in memory, the text and data segments must be less
25770 than 2GB in size and the data segment must be located within 2GB of the
25771 text segment.
25772
25773 @item embmedany
25774 The Medium/Anywhere code model for embedded systems:
25775 64-bit addresses, the text and data segments must be less than 2GB in
25776 size, both starting anywhere in memory (determined at link time). The
25777 global register %g4 points to the base of the data segment. Programs
25778 are statically linked and PIC is not supported.
25779 @end table
25780
25781 @item -mmemory-model=@var{mem-model}
25782 @opindex mmemory-model
25783 Set the memory model in force on the processor to one of
25784
25785 @table @samp
25786 @item default
25787 The default memory model for the processor and operating system.
25788
25789 @item rmo
25790 Relaxed Memory Order
25791
25792 @item pso
25793 Partial Store Order
25794
25795 @item tso
25796 Total Store Order
25797
25798 @item sc
25799 Sequential Consistency
25800 @end table
25801
25802 These memory models are formally defined in Appendix D of the SPARC-V9
25803 architecture manual, as set in the processor's @code{PSTATE.MM} field.
25804
25805 @item -mstack-bias
25806 @itemx -mno-stack-bias
25807 @opindex mstack-bias
25808 @opindex mno-stack-bias
25809 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
25810 frame pointer if present, are offset by @minus{}2047 which must be added back
25811 when making stack frame references. This is the default in 64-bit mode.
25812 Otherwise, assume no such offset is present.
25813 @end table
25814
25815 @node SPU Options
25816 @subsection SPU Options
25817 @cindex SPU options
25818
25819 These @samp{-m} options are supported on the SPU:
25820
25821 @table @gcctabopt
25822 @item -mwarn-reloc
25823 @itemx -merror-reloc
25824 @opindex mwarn-reloc
25825 @opindex merror-reloc
25826
25827 The loader for SPU does not handle dynamic relocations. By default, GCC
25828 gives an error when it generates code that requires a dynamic
25829 relocation. @option{-mno-error-reloc} disables the error,
25830 @option{-mwarn-reloc} generates a warning instead.
25831
25832 @item -msafe-dma
25833 @itemx -munsafe-dma
25834 @opindex msafe-dma
25835 @opindex munsafe-dma
25836
25837 Instructions that initiate or test completion of DMA must not be
25838 reordered with respect to loads and stores of the memory that is being
25839 accessed.
25840 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
25841 memory accesses, but that can lead to inefficient code in places where the
25842 memory is known to not change. Rather than mark the memory as volatile,
25843 you can use @option{-msafe-dma} to tell the compiler to treat
25844 the DMA instructions as potentially affecting all memory.
25845
25846 @item -mbranch-hints
25847 @opindex mbranch-hints
25848
25849 By default, GCC generates a branch hint instruction to avoid
25850 pipeline stalls for always-taken or probably-taken branches. A hint
25851 is not generated closer than 8 instructions away from its branch.
25852 There is little reason to disable them, except for debugging purposes,
25853 or to make an object a little bit smaller.
25854
25855 @item -msmall-mem
25856 @itemx -mlarge-mem
25857 @opindex msmall-mem
25858 @opindex mlarge-mem
25859
25860 By default, GCC generates code assuming that addresses are never larger
25861 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
25862 a full 32-bit address.
25863
25864 @item -mstdmain
25865 @opindex mstdmain
25866
25867 By default, GCC links against startup code that assumes the SPU-style
25868 main function interface (which has an unconventional parameter list).
25869 With @option{-mstdmain}, GCC links your program against startup
25870 code that assumes a C99-style interface to @code{main}, including a
25871 local copy of @code{argv} strings.
25872
25873 @item -mfixed-range=@var{register-range}
25874 @opindex mfixed-range
25875 Generate code treating the given register range as fixed registers.
25876 A fixed register is one that the register allocator cannot use. This is
25877 useful when compiling kernel code. A register range is specified as
25878 two registers separated by a dash. Multiple register ranges can be
25879 specified separated by a comma.
25880
25881 @item -mea32
25882 @itemx -mea64
25883 @opindex mea32
25884 @opindex mea64
25885 Compile code assuming that pointers to the PPU address space accessed
25886 via the @code{__ea} named address space qualifier are either 32 or 64
25887 bits wide. The default is 32 bits. As this is an ABI-changing option,
25888 all object code in an executable must be compiled with the same setting.
25889
25890 @item -maddress-space-conversion
25891 @itemx -mno-address-space-conversion
25892 @opindex maddress-space-conversion
25893 @opindex mno-address-space-conversion
25894 Allow/disallow treating the @code{__ea} address space as superset
25895 of the generic address space. This enables explicit type casts
25896 between @code{__ea} and generic pointer as well as implicit
25897 conversions of generic pointers to @code{__ea} pointers. The
25898 default is to allow address space pointer conversions.
25899
25900 @item -mcache-size=@var{cache-size}
25901 @opindex mcache-size
25902 This option controls the version of libgcc that the compiler links to an
25903 executable and selects a software-managed cache for accessing variables
25904 in the @code{__ea} address space with a particular cache size. Possible
25905 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
25906 and @samp{128}. The default cache size is 64KB.
25907
25908 @item -matomic-updates
25909 @itemx -mno-atomic-updates
25910 @opindex matomic-updates
25911 @opindex mno-atomic-updates
25912 This option controls the version of libgcc that the compiler links to an
25913 executable and selects whether atomic updates to the software-managed
25914 cache of PPU-side variables are used. If you use atomic updates, changes
25915 to a PPU variable from SPU code using the @code{__ea} named address space
25916 qualifier do not interfere with changes to other PPU variables residing
25917 in the same cache line from PPU code. If you do not use atomic updates,
25918 such interference may occur; however, writing back cache lines is
25919 more efficient. The default behavior is to use atomic updates.
25920
25921 @item -mdual-nops
25922 @itemx -mdual-nops=@var{n}
25923 @opindex mdual-nops
25924 By default, GCC inserts NOPs to increase dual issue when it expects
25925 it to increase performance. @var{n} can be a value from 0 to 10. A
25926 smaller @var{n} inserts fewer NOPs. 10 is the default, 0 is the
25927 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
25928
25929 @item -mhint-max-nops=@var{n}
25930 @opindex mhint-max-nops
25931 Maximum number of NOPs to insert for a branch hint. A branch hint must
25932 be at least 8 instructions away from the branch it is affecting. GCC
25933 inserts up to @var{n} NOPs to enforce this, otherwise it does not
25934 generate the branch hint.
25935
25936 @item -mhint-max-distance=@var{n}
25937 @opindex mhint-max-distance
25938 The encoding of the branch hint instruction limits the hint to be within
25939 256 instructions of the branch it is affecting. By default, GCC makes
25940 sure it is within 125.
25941
25942 @item -msafe-hints
25943 @opindex msafe-hints
25944 Work around a hardware bug that causes the SPU to stall indefinitely.
25945 By default, GCC inserts the @code{hbrp} instruction to make sure
25946 this stall won't happen.
25947
25948 @end table
25949
25950 @node System V Options
25951 @subsection Options for System V
25952
25953 These additional options are available on System V Release 4 for
25954 compatibility with other compilers on those systems:
25955
25956 @table @gcctabopt
25957 @item -G
25958 @opindex G
25959 Create a shared object.
25960 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
25961
25962 @item -Qy
25963 @opindex Qy
25964 Identify the versions of each tool used by the compiler, in a
25965 @code{.ident} assembler directive in the output.
25966
25967 @item -Qn
25968 @opindex Qn
25969 Refrain from adding @code{.ident} directives to the output file (this is
25970 the default).
25971
25972 @item -YP,@var{dirs}
25973 @opindex YP
25974 Search the directories @var{dirs}, and no others, for libraries
25975 specified with @option{-l}.
25976
25977 @item -Ym,@var{dir}
25978 @opindex Ym
25979 Look in the directory @var{dir} to find the M4 preprocessor.
25980 The assembler uses this option.
25981 @c This is supposed to go with a -Yd for predefined M4 macro files, but
25982 @c the generic assembler that comes with Solaris takes just -Ym.
25983 @end table
25984
25985 @node TILE-Gx Options
25986 @subsection TILE-Gx Options
25987 @cindex TILE-Gx options
25988
25989 These @samp{-m} options are supported on the TILE-Gx:
25990
25991 @table @gcctabopt
25992 @item -mcmodel=small
25993 @opindex mcmodel=small
25994 Generate code for the small model. The distance for direct calls is
25995 limited to 500M in either direction. PC-relative addresses are 32
25996 bits. Absolute addresses support the full address range.
25997
25998 @item -mcmodel=large
25999 @opindex mcmodel=large
26000 Generate code for the large model. There is no limitation on call
26001 distance, pc-relative addresses, or absolute addresses.
26002
26003 @item -mcpu=@var{name}
26004 @opindex mcpu
26005 Selects the type of CPU to be targeted. Currently the only supported
26006 type is @samp{tilegx}.
26007
26008 @item -m32
26009 @itemx -m64
26010 @opindex m32
26011 @opindex m64
26012 Generate code for a 32-bit or 64-bit environment. The 32-bit
26013 environment sets int, long, and pointer to 32 bits. The 64-bit
26014 environment sets int to 32 bits and long and pointer to 64 bits.
26015
26016 @item -mbig-endian
26017 @itemx -mlittle-endian
26018 @opindex mbig-endian
26019 @opindex mlittle-endian
26020 Generate code in big/little endian mode, respectively.
26021 @end table
26022
26023 @node TILEPro Options
26024 @subsection TILEPro Options
26025 @cindex TILEPro options
26026
26027 These @samp{-m} options are supported on the TILEPro:
26028
26029 @table @gcctabopt
26030 @item -mcpu=@var{name}
26031 @opindex mcpu
26032 Selects the type of CPU to be targeted. Currently the only supported
26033 type is @samp{tilepro}.
26034
26035 @item -m32
26036 @opindex m32
26037 Generate code for a 32-bit environment, which sets int, long, and
26038 pointer to 32 bits. This is the only supported behavior so the flag
26039 is essentially ignored.
26040 @end table
26041
26042 @node V850 Options
26043 @subsection V850 Options
26044 @cindex V850 Options
26045
26046 These @samp{-m} options are defined for V850 implementations:
26047
26048 @table @gcctabopt
26049 @item -mlong-calls
26050 @itemx -mno-long-calls
26051 @opindex mlong-calls
26052 @opindex mno-long-calls
26053 Treat all calls as being far away (near). If calls are assumed to be
26054 far away, the compiler always loads the function's address into a
26055 register, and calls indirect through the pointer.
26056
26057 @item -mno-ep
26058 @itemx -mep
26059 @opindex mno-ep
26060 @opindex mep
26061 Do not optimize (do optimize) basic blocks that use the same index
26062 pointer 4 or more times to copy pointer into the @code{ep} register, and
26063 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
26064 option is on by default if you optimize.
26065
26066 @item -mno-prolog-function
26067 @itemx -mprolog-function
26068 @opindex mno-prolog-function
26069 @opindex mprolog-function
26070 Do not use (do use) external functions to save and restore registers
26071 at the prologue and epilogue of a function. The external functions
26072 are slower, but use less code space if more than one function saves
26073 the same number of registers. The @option{-mprolog-function} option
26074 is on by default if you optimize.
26075
26076 @item -mspace
26077 @opindex mspace
26078 Try to make the code as small as possible. At present, this just turns
26079 on the @option{-mep} and @option{-mprolog-function} options.
26080
26081 @item -mtda=@var{n}
26082 @opindex mtda
26083 Put static or global variables whose size is @var{n} bytes or less into
26084 the tiny data area that register @code{ep} points to. The tiny data
26085 area can hold up to 256 bytes in total (128 bytes for byte references).
26086
26087 @item -msda=@var{n}
26088 @opindex msda
26089 Put static or global variables whose size is @var{n} bytes or less into
26090 the small data area that register @code{gp} points to. The small data
26091 area can hold up to 64 kilobytes.
26092
26093 @item -mzda=@var{n}
26094 @opindex mzda
26095 Put static or global variables whose size is @var{n} bytes or less into
26096 the first 32 kilobytes of memory.
26097
26098 @item -mv850
26099 @opindex mv850
26100 Specify that the target processor is the V850.
26101
26102 @item -mv850e3v5
26103 @opindex mv850e3v5
26104 Specify that the target processor is the V850E3V5. The preprocessor
26105 constant @code{__v850e3v5__} is defined if this option is used.
26106
26107 @item -mv850e2v4
26108 @opindex mv850e2v4
26109 Specify that the target processor is the V850E3V5. This is an alias for
26110 the @option{-mv850e3v5} option.
26111
26112 @item -mv850e2v3
26113 @opindex mv850e2v3
26114 Specify that the target processor is the V850E2V3. The preprocessor
26115 constant @code{__v850e2v3__} is defined if this option is used.
26116
26117 @item -mv850e2
26118 @opindex mv850e2
26119 Specify that the target processor is the V850E2. The preprocessor
26120 constant @code{__v850e2__} is defined if this option is used.
26121
26122 @item -mv850e1
26123 @opindex mv850e1
26124 Specify that the target processor is the V850E1. The preprocessor
26125 constants @code{__v850e1__} and @code{__v850e__} are defined if
26126 this option is used.
26127
26128 @item -mv850es
26129 @opindex mv850es
26130 Specify that the target processor is the V850ES. This is an alias for
26131 the @option{-mv850e1} option.
26132
26133 @item -mv850e
26134 @opindex mv850e
26135 Specify that the target processor is the V850E@. The preprocessor
26136 constant @code{__v850e__} is defined if this option is used.
26137
26138 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
26139 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
26140 are defined then a default target processor is chosen and the
26141 relevant @samp{__v850*__} preprocessor constant is defined.
26142
26143 The preprocessor constants @code{__v850} and @code{__v851__} are always
26144 defined, regardless of which processor variant is the target.
26145
26146 @item -mdisable-callt
26147 @itemx -mno-disable-callt
26148 @opindex mdisable-callt
26149 @opindex mno-disable-callt
26150 This option suppresses generation of the @code{CALLT} instruction for the
26151 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
26152 architecture.
26153
26154 This option is enabled by default when the RH850 ABI is
26155 in use (see @option{-mrh850-abi}), and disabled by default when the
26156 GCC ABI is in use. If @code{CALLT} instructions are being generated
26157 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
26158
26159 @item -mrelax
26160 @itemx -mno-relax
26161 @opindex mrelax
26162 @opindex mno-relax
26163 Pass on (or do not pass on) the @option{-mrelax} command-line option
26164 to the assembler.
26165
26166 @item -mlong-jumps
26167 @itemx -mno-long-jumps
26168 @opindex mlong-jumps
26169 @opindex mno-long-jumps
26170 Disable (or re-enable) the generation of PC-relative jump instructions.
26171
26172 @item -msoft-float
26173 @itemx -mhard-float
26174 @opindex msoft-float
26175 @opindex mhard-float
26176 Disable (or re-enable) the generation of hardware floating point
26177 instructions. This option is only significant when the target
26178 architecture is @samp{V850E2V3} or higher. If hardware floating point
26179 instructions are being generated then the C preprocessor symbol
26180 @code{__FPU_OK__} is defined, otherwise the symbol
26181 @code{__NO_FPU__} is defined.
26182
26183 @item -mloop
26184 @opindex mloop
26185 Enables the use of the e3v5 LOOP instruction. The use of this
26186 instruction is not enabled by default when the e3v5 architecture is
26187 selected because its use is still experimental.
26188
26189 @item -mrh850-abi
26190 @itemx -mghs
26191 @opindex mrh850-abi
26192 @opindex mghs
26193 Enables support for the RH850 version of the V850 ABI. This is the
26194 default. With this version of the ABI the following rules apply:
26195
26196 @itemize
26197 @item
26198 Integer sized structures and unions are returned via a memory pointer
26199 rather than a register.
26200
26201 @item
26202 Large structures and unions (more than 8 bytes in size) are passed by
26203 value.
26204
26205 @item
26206 Functions are aligned to 16-bit boundaries.
26207
26208 @item
26209 The @option{-m8byte-align} command-line option is supported.
26210
26211 @item
26212 The @option{-mdisable-callt} command-line option is enabled by
26213 default. The @option{-mno-disable-callt} command-line option is not
26214 supported.
26215 @end itemize
26216
26217 When this version of the ABI is enabled the C preprocessor symbol
26218 @code{__V850_RH850_ABI__} is defined.
26219
26220 @item -mgcc-abi
26221 @opindex mgcc-abi
26222 Enables support for the old GCC version of the V850 ABI. With this
26223 version of the ABI the following rules apply:
26224
26225 @itemize
26226 @item
26227 Integer sized structures and unions are returned in register @code{r10}.
26228
26229 @item
26230 Large structures and unions (more than 8 bytes in size) are passed by
26231 reference.
26232
26233 @item
26234 Functions are aligned to 32-bit boundaries, unless optimizing for
26235 size.
26236
26237 @item
26238 The @option{-m8byte-align} command-line option is not supported.
26239
26240 @item
26241 The @option{-mdisable-callt} command-line option is supported but not
26242 enabled by default.
26243 @end itemize
26244
26245 When this version of the ABI is enabled the C preprocessor symbol
26246 @code{__V850_GCC_ABI__} is defined.
26247
26248 @item -m8byte-align
26249 @itemx -mno-8byte-align
26250 @opindex m8byte-align
26251 @opindex mno-8byte-align
26252 Enables support for @code{double} and @code{long long} types to be
26253 aligned on 8-byte boundaries. The default is to restrict the
26254 alignment of all objects to at most 4-bytes. When
26255 @option{-m8byte-align} is in effect the C preprocessor symbol
26256 @code{__V850_8BYTE_ALIGN__} is defined.
26257
26258 @item -mbig-switch
26259 @opindex mbig-switch
26260 Generate code suitable for big switch tables. Use this option only if
26261 the assembler/linker complain about out of range branches within a switch
26262 table.
26263
26264 @item -mapp-regs
26265 @opindex mapp-regs
26266 This option causes r2 and r5 to be used in the code generated by
26267 the compiler. This setting is the default.
26268
26269 @item -mno-app-regs
26270 @opindex mno-app-regs
26271 This option causes r2 and r5 to be treated as fixed registers.
26272
26273 @end table
26274
26275 @node VAX Options
26276 @subsection VAX Options
26277 @cindex VAX options
26278
26279 These @samp{-m} options are defined for the VAX:
26280
26281 @table @gcctabopt
26282 @item -munix
26283 @opindex munix
26284 Do not output certain jump instructions (@code{aobleq} and so on)
26285 that the Unix assembler for the VAX cannot handle across long
26286 ranges.
26287
26288 @item -mgnu
26289 @opindex mgnu
26290 Do output those jump instructions, on the assumption that the
26291 GNU assembler is being used.
26292
26293 @item -mg
26294 @opindex mg
26295 Output code for G-format floating-point numbers instead of D-format.
26296 @end table
26297
26298 @node Visium Options
26299 @subsection Visium Options
26300 @cindex Visium options
26301
26302 @table @gcctabopt
26303
26304 @item -mdebug
26305 @opindex mdebug
26306 A program which performs file I/O and is destined to run on an MCM target
26307 should be linked with this option. It causes the libraries libc.a and
26308 libdebug.a to be linked. The program should be run on the target under
26309 the control of the GDB remote debugging stub.
26310
26311 @item -msim
26312 @opindex msim
26313 A program which performs file I/O and is destined to run on the simulator
26314 should be linked with option. This causes libraries libc.a and libsim.a to
26315 be linked.
26316
26317 @item -mfpu
26318 @itemx -mhard-float
26319 @opindex mfpu
26320 @opindex mhard-float
26321 Generate code containing floating-point instructions. This is the
26322 default.
26323
26324 @item -mno-fpu
26325 @itemx -msoft-float
26326 @opindex mno-fpu
26327 @opindex msoft-float
26328 Generate code containing library calls for floating-point.
26329
26330 @option{-msoft-float} changes the calling convention in the output file;
26331 therefore, it is only useful if you compile @emph{all} of a program with
26332 this option. In particular, you need to compile @file{libgcc.a}, the
26333 library that comes with GCC, with @option{-msoft-float} in order for
26334 this to work.
26335
26336 @item -mcpu=@var{cpu_type}
26337 @opindex mcpu
26338 Set the instruction set, register set, and instruction scheduling parameters
26339 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
26340 @samp{mcm}, @samp{gr5} and @samp{gr6}.
26341
26342 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
26343
26344 By default (unless configured otherwise), GCC generates code for the GR5
26345 variant of the Visium architecture.
26346
26347 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
26348 architecture. The only difference from GR5 code is that the compiler will
26349 generate block move instructions.
26350
26351 @item -mtune=@var{cpu_type}
26352 @opindex mtune
26353 Set the instruction scheduling parameters for machine type @var{cpu_type},
26354 but do not set the instruction set or register set that the option
26355 @option{-mcpu=@var{cpu_type}} would.
26356
26357 @item -msv-mode
26358 @opindex msv-mode
26359 Generate code for the supervisor mode, where there are no restrictions on
26360 the access to general registers. This is the default.
26361
26362 @item -muser-mode
26363 @opindex muser-mode
26364 Generate code for the user mode, where the access to some general registers
26365 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
26366 mode; on the GR6, only registers r29 to r31 are affected.
26367 @end table
26368
26369 @node VMS Options
26370 @subsection VMS Options
26371
26372 These @samp{-m} options are defined for the VMS implementations:
26373
26374 @table @gcctabopt
26375 @item -mvms-return-codes
26376 @opindex mvms-return-codes
26377 Return VMS condition codes from @code{main}. The default is to return POSIX-style
26378 condition (e.g.@ error) codes.
26379
26380 @item -mdebug-main=@var{prefix}
26381 @opindex mdebug-main=@var{prefix}
26382 Flag the first routine whose name starts with @var{prefix} as the main
26383 routine for the debugger.
26384
26385 @item -mmalloc64
26386 @opindex mmalloc64
26387 Default to 64-bit memory allocation routines.
26388
26389 @item -mpointer-size=@var{size}
26390 @opindex mpointer-size=@var{size}
26391 Set the default size of pointers. Possible options for @var{size} are
26392 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
26393 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
26394 The later option disables @code{pragma pointer_size}.
26395 @end table
26396
26397 @node VxWorks Options
26398 @subsection VxWorks Options
26399 @cindex VxWorks Options
26400
26401 The options in this section are defined for all VxWorks targets.
26402 Options specific to the target hardware are listed with the other
26403 options for that target.
26404
26405 @table @gcctabopt
26406 @item -mrtp
26407 @opindex mrtp
26408 GCC can generate code for both VxWorks kernels and real time processes
26409 (RTPs). This option switches from the former to the latter. It also
26410 defines the preprocessor macro @code{__RTP__}.
26411
26412 @item -non-static
26413 @opindex non-static
26414 Link an RTP executable against shared libraries rather than static
26415 libraries. The options @option{-static} and @option{-shared} can
26416 also be used for RTPs (@pxref{Link Options}); @option{-static}
26417 is the default.
26418
26419 @item -Bstatic
26420 @itemx -Bdynamic
26421 @opindex Bstatic
26422 @opindex Bdynamic
26423 These options are passed down to the linker. They are defined for
26424 compatibility with Diab.
26425
26426 @item -Xbind-lazy
26427 @opindex Xbind-lazy
26428 Enable lazy binding of function calls. This option is equivalent to
26429 @option{-Wl,-z,now} and is defined for compatibility with Diab.
26430
26431 @item -Xbind-now
26432 @opindex Xbind-now
26433 Disable lazy binding of function calls. This option is the default and
26434 is defined for compatibility with Diab.
26435 @end table
26436
26437 @node x86 Options
26438 @subsection x86 Options
26439 @cindex x86 Options
26440
26441 These @samp{-m} options are defined for the x86 family of computers.
26442
26443 @table @gcctabopt
26444
26445 @item -march=@var{cpu-type}
26446 @opindex march
26447 Generate instructions for the machine type @var{cpu-type}. In contrast to
26448 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
26449 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
26450 to generate code that may not run at all on processors other than the one
26451 indicated. Specifying @option{-march=@var{cpu-type}} implies
26452 @option{-mtune=@var{cpu-type}}.
26453
26454 The choices for @var{cpu-type} are:
26455
26456 @table @samp
26457 @item native
26458 This selects the CPU to generate code for at compilation time by determining
26459 the processor type of the compiling machine. Using @option{-march=native}
26460 enables all instruction subsets supported by the local machine (hence
26461 the result might not run on different machines). Using @option{-mtune=native}
26462 produces code optimized for the local machine under the constraints
26463 of the selected instruction set.
26464
26465 @item x86-64
26466 A generic CPU with 64-bit extensions.
26467
26468 @item i386
26469 Original Intel i386 CPU@.
26470
26471 @item i486
26472 Intel i486 CPU@. (No scheduling is implemented for this chip.)
26473
26474 @item i586
26475 @itemx pentium
26476 Intel Pentium CPU with no MMX support.
26477
26478 @item lakemont
26479 Intel Lakemont MCU, based on Intel Pentium CPU.
26480
26481 @item pentium-mmx
26482 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
26483
26484 @item pentiumpro
26485 Intel Pentium Pro CPU@.
26486
26487 @item i686
26488 When used with @option{-march}, the Pentium Pro
26489 instruction set is used, so the code runs on all i686 family chips.
26490 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
26491
26492 @item pentium2
26493 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
26494 support.
26495
26496 @item pentium3
26497 @itemx pentium3m
26498 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
26499 set support.
26500
26501 @item pentium-m
26502 Intel Pentium M; low-power version of Intel Pentium III CPU
26503 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
26504
26505 @item pentium4
26506 @itemx pentium4m
26507 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
26508
26509 @item prescott
26510 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
26511 set support.
26512
26513 @item nocona
26514 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
26515 SSE2 and SSE3 instruction set support.
26516
26517 @item core2
26518 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
26519 instruction set support.
26520
26521 @item nehalem
26522 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
26523 SSE4.1, SSE4.2 and POPCNT instruction set support.
26524
26525 @item westmere
26526 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
26527 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
26528
26529 @item sandybridge
26530 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
26531 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
26532
26533 @item ivybridge
26534 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
26535 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
26536 instruction set support.
26537
26538 @item haswell
26539 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
26540 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26541 BMI, BMI2 and F16C instruction set support.
26542
26543 @item broadwell
26544 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
26545 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26546 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
26547
26548 @item skylake
26549 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
26550 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26551 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
26552 XSAVES instruction set support.
26553
26554 @item bonnell
26555 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
26556 instruction set support.
26557
26558 @item silvermont
26559 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
26560 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
26561
26562 @item knl
26563 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
26564 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26565 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
26566 AVX512CD instruction set support.
26567
26568 @item knm
26569 Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
26570 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26571 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
26572 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
26573
26574 @item skylake-avx512
26575 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
26576 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
26577 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
26578 CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
26579
26580 @item cannonlake
26581 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
26582 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
26583 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
26584 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
26585 AVX512IFMA, SHA and UMIP instruction set support.
26586
26587 @item icelake-client
26588 Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
26589 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
26590 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
26591 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
26592 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
26593 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
26594
26595 @item icelake-server
26596 Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
26597 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
26598 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
26599 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
26600 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
26601 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG and WBNOINVD instruction
26602 set support.
26603
26604 @item k6
26605 AMD K6 CPU with MMX instruction set support.
26606
26607 @item k6-2
26608 @itemx k6-3
26609 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
26610
26611 @item athlon
26612 @itemx athlon-tbird
26613 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
26614 support.
26615
26616 @item athlon-4
26617 @itemx athlon-xp
26618 @itemx athlon-mp
26619 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
26620 instruction set support.
26621
26622 @item k8
26623 @itemx opteron
26624 @itemx athlon64
26625 @itemx athlon-fx
26626 Processors based on the AMD K8 core with x86-64 instruction set support,
26627 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
26628 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
26629 instruction set extensions.)
26630
26631 @item k8-sse3
26632 @itemx opteron-sse3
26633 @itemx athlon64-sse3
26634 Improved versions of AMD K8 cores with SSE3 instruction set support.
26635
26636 @item amdfam10
26637 @itemx barcelona
26638 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
26639 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
26640 instruction set extensions.)
26641
26642 @item bdver1
26643 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
26644 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
26645 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
26646 @item bdver2
26647 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
26648 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
26649 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
26650 extensions.)
26651 @item bdver3
26652 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
26653 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
26654 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
26655 64-bit instruction set extensions.
26656 @item bdver4
26657 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
26658 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
26659 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
26660 SSE4.2, ABM and 64-bit instruction set extensions.
26661
26662 @item znver1
26663 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
26664 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
26665 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
26666 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
26667 instruction set extensions.
26668
26669 @item btver1
26670 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
26671 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
26672 instruction set extensions.)
26673
26674 @item btver2
26675 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
26676 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
26677 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
26678
26679 @item winchip-c6
26680 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
26681 set support.
26682
26683 @item winchip2
26684 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
26685 instruction set support.
26686
26687 @item c3
26688 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
26689 (No scheduling is implemented for this chip.)
26690
26691 @item c3-2
26692 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
26693 (No scheduling is implemented for this chip.)
26694
26695 @item c7
26696 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
26697 (No scheduling is implemented for this chip.)
26698
26699 @item samuel-2
26700 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
26701 (No scheduling is implemented for this chip.)
26702
26703 @item nehemiah
26704 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
26705 (No scheduling is implemented for this chip.)
26706
26707 @item esther
26708 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
26709 (No scheduling is implemented for this chip.)
26710
26711 @item eden-x2
26712 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
26713 (No scheduling is implemented for this chip.)
26714
26715 @item eden-x4
26716 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
26717 AVX and AVX2 instruction set support.
26718 (No scheduling is implemented for this chip.)
26719
26720 @item nano
26721 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
26722 instruction set support.
26723 (No scheduling is implemented for this chip.)
26724
26725 @item nano-1000
26726 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
26727 instruction set support.
26728 (No scheduling is implemented for this chip.)
26729
26730 @item nano-2000
26731 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
26732 instruction set support.
26733 (No scheduling is implemented for this chip.)
26734
26735 @item nano-3000
26736 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
26737 instruction set support.
26738 (No scheduling is implemented for this chip.)
26739
26740 @item nano-x2
26741 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
26742 instruction set support.
26743 (No scheduling is implemented for this chip.)
26744
26745 @item nano-x4
26746 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
26747 instruction set support.
26748 (No scheduling is implemented for this chip.)
26749
26750 @item geode
26751 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
26752 @end table
26753
26754 @item -mtune=@var{cpu-type}
26755 @opindex mtune
26756 Tune to @var{cpu-type} everything applicable about the generated code, except
26757 for the ABI and the set of available instructions.
26758 While picking a specific @var{cpu-type} schedules things appropriately
26759 for that particular chip, the compiler does not generate any code that
26760 cannot run on the default machine type unless you use a
26761 @option{-march=@var{cpu-type}} option.
26762 For example, if GCC is configured for i686-pc-linux-gnu
26763 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
26764 but still runs on i686 machines.
26765
26766 The choices for @var{cpu-type} are the same as for @option{-march}.
26767 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
26768
26769 @table @samp
26770 @item generic
26771 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
26772 If you know the CPU on which your code will run, then you should use
26773 the corresponding @option{-mtune} or @option{-march} option instead of
26774 @option{-mtune=generic}. But, if you do not know exactly what CPU users
26775 of your application will have, then you should use this option.
26776
26777 As new processors are deployed in the marketplace, the behavior of this
26778 option will change. Therefore, if you upgrade to a newer version of
26779 GCC, code generation controlled by this option will change to reflect
26780 the processors
26781 that are most common at the time that version of GCC is released.
26782
26783 There is no @option{-march=generic} option because @option{-march}
26784 indicates the instruction set the compiler can use, and there is no
26785 generic instruction set applicable to all processors. In contrast,
26786 @option{-mtune} indicates the processor (or, in this case, collection of
26787 processors) for which the code is optimized.
26788
26789 @item intel
26790 Produce code optimized for the most current Intel processors, which are
26791 Haswell and Silvermont for this version of GCC. If you know the CPU
26792 on which your code will run, then you should use the corresponding
26793 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
26794 But, if you want your application performs better on both Haswell and
26795 Silvermont, then you should use this option.
26796
26797 As new Intel processors are deployed in the marketplace, the behavior of
26798 this option will change. Therefore, if you upgrade to a newer version of
26799 GCC, code generation controlled by this option will change to reflect
26800 the most current Intel processors at the time that version of GCC is
26801 released.
26802
26803 There is no @option{-march=intel} option because @option{-march} indicates
26804 the instruction set the compiler can use, and there is no common
26805 instruction set applicable to all processors. In contrast,
26806 @option{-mtune} indicates the processor (or, in this case, collection of
26807 processors) for which the code is optimized.
26808 @end table
26809
26810 @item -mcpu=@var{cpu-type}
26811 @opindex mcpu
26812 A deprecated synonym for @option{-mtune}.
26813
26814 @item -mfpmath=@var{unit}
26815 @opindex mfpmath
26816 Generate floating-point arithmetic for selected unit @var{unit}. The choices
26817 for @var{unit} are:
26818
26819 @table @samp
26820 @item 387
26821 Use the standard 387 floating-point coprocessor present on the majority of chips and
26822 emulated otherwise. Code compiled with this option runs almost everywhere.
26823 The temporary results are computed in 80-bit precision instead of the precision
26824 specified by the type, resulting in slightly different results compared to most
26825 of other chips. See @option{-ffloat-store} for more detailed description.
26826
26827 This is the default choice for non-Darwin x86-32 targets.
26828
26829 @item sse
26830 Use scalar floating-point instructions present in the SSE instruction set.
26831 This instruction set is supported by Pentium III and newer chips,
26832 and in the AMD line
26833 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
26834 instruction set supports only single-precision arithmetic, thus the double and
26835 extended-precision arithmetic are still done using 387. A later version, present
26836 only in Pentium 4 and AMD x86-64 chips, supports double-precision
26837 arithmetic too.
26838
26839 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
26840 or @option{-msse2} switches to enable SSE extensions and make this option
26841 effective. For the x86-64 compiler, these extensions are enabled by default.
26842
26843 The resulting code should be considerably faster in the majority of cases and avoid
26844 the numerical instability problems of 387 code, but may break some existing
26845 code that expects temporaries to be 80 bits.
26846
26847 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
26848 and the default choice for x86-32 targets with the SSE2 instruction set
26849 when @option{-ffast-math} is enabled.
26850
26851 @item sse,387
26852 @itemx sse+387
26853 @itemx both
26854 Attempt to utilize both instruction sets at once. This effectively doubles the
26855 amount of available registers, and on chips with separate execution units for
26856 387 and SSE the execution resources too. Use this option with care, as it is
26857 still experimental, because the GCC register allocator does not model separate
26858 functional units well, resulting in unstable performance.
26859 @end table
26860
26861 @item -masm=@var{dialect}
26862 @opindex masm=@var{dialect}
26863 Output assembly instructions using selected @var{dialect}. Also affects
26864 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
26865 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
26866 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
26867 not support @samp{intel}.
26868
26869 @item -mieee-fp
26870 @itemx -mno-ieee-fp
26871 @opindex mieee-fp
26872 @opindex mno-ieee-fp
26873 Control whether or not the compiler uses IEEE floating-point
26874 comparisons. These correctly handle the case where the result of a
26875 comparison is unordered.
26876
26877 @item -m80387
26878 @itemx -mhard-float
26879 @opindex 80387
26880 @opindex mhard-float
26881 Generate output containing 80387 instructions for floating point.
26882
26883 @item -mno-80387
26884 @itemx -msoft-float
26885 @opindex no-80387
26886 @opindex msoft-float
26887 Generate output containing library calls for floating point.
26888
26889 @strong{Warning:} the requisite libraries are not part of GCC@.
26890 Normally the facilities of the machine's usual C compiler are used, but
26891 this cannot be done directly in cross-compilation. You must make your
26892 own arrangements to provide suitable library functions for
26893 cross-compilation.
26894
26895 On machines where a function returns floating-point results in the 80387
26896 register stack, some floating-point opcodes may be emitted even if
26897 @option{-msoft-float} is used.
26898
26899 @item -mno-fp-ret-in-387
26900 @opindex mno-fp-ret-in-387
26901 Do not use the FPU registers for return values of functions.
26902
26903 The usual calling convention has functions return values of types
26904 @code{float} and @code{double} in an FPU register, even if there
26905 is no FPU@. The idea is that the operating system should emulate
26906 an FPU@.
26907
26908 The option @option{-mno-fp-ret-in-387} causes such values to be returned
26909 in ordinary CPU registers instead.
26910
26911 @item -mno-fancy-math-387
26912 @opindex mno-fancy-math-387
26913 Some 387 emulators do not support the @code{sin}, @code{cos} and
26914 @code{sqrt} instructions for the 387. Specify this option to avoid
26915 generating those instructions. This option is the default on
26916 OpenBSD and NetBSD@. This option is overridden when @option{-march}
26917 indicates that the target CPU always has an FPU and so the
26918 instruction does not need emulation. These
26919 instructions are not generated unless you also use the
26920 @option{-funsafe-math-optimizations} switch.
26921
26922 @item -malign-double
26923 @itemx -mno-align-double
26924 @opindex malign-double
26925 @opindex mno-align-double
26926 Control whether GCC aligns @code{double}, @code{long double}, and
26927 @code{long long} variables on a two-word boundary or a one-word
26928 boundary. Aligning @code{double} variables on a two-word boundary
26929 produces code that runs somewhat faster on a Pentium at the
26930 expense of more memory.
26931
26932 On x86-64, @option{-malign-double} is enabled by default.
26933
26934 @strong{Warning:} if you use the @option{-malign-double} switch,
26935 structures containing the above types are aligned differently than
26936 the published application binary interface specifications for the x86-32
26937 and are not binary compatible with structures in code compiled
26938 without that switch.
26939
26940 @item -m96bit-long-double
26941 @itemx -m128bit-long-double
26942 @opindex m96bit-long-double
26943 @opindex m128bit-long-double
26944 These switches control the size of @code{long double} type. The x86-32
26945 application binary interface specifies the size to be 96 bits,
26946 so @option{-m96bit-long-double} is the default in 32-bit mode.
26947
26948 Modern architectures (Pentium and newer) prefer @code{long double}
26949 to be aligned to an 8- or 16-byte boundary. In arrays or structures
26950 conforming to the ABI, this is not possible. So specifying
26951 @option{-m128bit-long-double} aligns @code{long double}
26952 to a 16-byte boundary by padding the @code{long double} with an additional
26953 32-bit zero.
26954
26955 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
26956 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
26957
26958 Notice that neither of these options enable any extra precision over the x87
26959 standard of 80 bits for a @code{long double}.
26960
26961 @strong{Warning:} if you override the default value for your target ABI, this
26962 changes the size of
26963 structures and arrays containing @code{long double} variables,
26964 as well as modifying the function calling convention for functions taking
26965 @code{long double}. Hence they are not binary-compatible
26966 with code compiled without that switch.
26967
26968 @item -mlong-double-64
26969 @itemx -mlong-double-80
26970 @itemx -mlong-double-128
26971 @opindex mlong-double-64
26972 @opindex mlong-double-80
26973 @opindex mlong-double-128
26974 These switches control the size of @code{long double} type. A size
26975 of 64 bits makes the @code{long double} type equivalent to the @code{double}
26976 type. This is the default for 32-bit Bionic C library. A size
26977 of 128 bits makes the @code{long double} type equivalent to the
26978 @code{__float128} type. This is the default for 64-bit Bionic C library.
26979
26980 @strong{Warning:} if you override the default value for your target ABI, this
26981 changes the size of
26982 structures and arrays containing @code{long double} variables,
26983 as well as modifying the function calling convention for functions taking
26984 @code{long double}. Hence they are not binary-compatible
26985 with code compiled without that switch.
26986
26987 @item -malign-data=@var{type}
26988 @opindex malign-data
26989 Control how GCC aligns variables. Supported values for @var{type} are
26990 @samp{compat} uses increased alignment value compatible uses GCC 4.8
26991 and earlier, @samp{abi} uses alignment value as specified by the
26992 psABI, and @samp{cacheline} uses increased alignment value to match
26993 the cache line size. @samp{compat} is the default.
26994
26995 @item -mlarge-data-threshold=@var{threshold}
26996 @opindex mlarge-data-threshold
26997 When @option{-mcmodel=medium} is specified, data objects larger than
26998 @var{threshold} are placed in the large data section. This value must be the
26999 same across all objects linked into the binary, and defaults to 65535.
27000
27001 @item -mrtd
27002 @opindex mrtd
27003 Use a different function-calling convention, in which functions that
27004 take a fixed number of arguments return with the @code{ret @var{num}}
27005 instruction, which pops their arguments while returning. This saves one
27006 instruction in the caller since there is no need to pop the arguments
27007 there.
27008
27009 You can specify that an individual function is called with this calling
27010 sequence with the function attribute @code{stdcall}. You can also
27011 override the @option{-mrtd} option by using the function attribute
27012 @code{cdecl}. @xref{Function Attributes}.
27013
27014 @strong{Warning:} this calling convention is incompatible with the one
27015 normally used on Unix, so you cannot use it if you need to call
27016 libraries compiled with the Unix compiler.
27017
27018 Also, you must provide function prototypes for all functions that
27019 take variable numbers of arguments (including @code{printf});
27020 otherwise incorrect code is generated for calls to those
27021 functions.
27022
27023 In addition, seriously incorrect code results if you call a
27024 function with too many arguments. (Normally, extra arguments are
27025 harmlessly ignored.)
27026
27027 @item -mregparm=@var{num}
27028 @opindex mregparm
27029 Control how many registers are used to pass integer arguments. By
27030 default, no registers are used to pass arguments, and at most 3
27031 registers can be used. You can control this behavior for a specific
27032 function by using the function attribute @code{regparm}.
27033 @xref{Function Attributes}.
27034
27035 @strong{Warning:} if you use this switch, and
27036 @var{num} is nonzero, then you must build all modules with the same
27037 value, including any libraries. This includes the system libraries and
27038 startup modules.
27039
27040 @item -msseregparm
27041 @opindex msseregparm
27042 Use SSE register passing conventions for float and double arguments
27043 and return values. You can control this behavior for a specific
27044 function by using the function attribute @code{sseregparm}.
27045 @xref{Function Attributes}.
27046
27047 @strong{Warning:} if you use this switch then you must build all
27048 modules with the same value, including any libraries. This includes
27049 the system libraries and startup modules.
27050
27051 @item -mvect8-ret-in-mem
27052 @opindex mvect8-ret-in-mem
27053 Return 8-byte vectors in memory instead of MMX registers. This is the
27054 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
27055 Studio compilers until version 12. Later compiler versions (starting
27056 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
27057 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
27058 you need to remain compatible with existing code produced by those
27059 previous compiler versions or older versions of GCC@.
27060
27061 @item -mpc32
27062 @itemx -mpc64
27063 @itemx -mpc80
27064 @opindex mpc32
27065 @opindex mpc64
27066 @opindex mpc80
27067
27068 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
27069 is specified, the significands of results of floating-point operations are
27070 rounded to 24 bits (single precision); @option{-mpc64} rounds the
27071 significands of results of floating-point operations to 53 bits (double
27072 precision) and @option{-mpc80} rounds the significands of results of
27073 floating-point operations to 64 bits (extended double precision), which is
27074 the default. When this option is used, floating-point operations in higher
27075 precisions are not available to the programmer without setting the FPU
27076 control word explicitly.
27077
27078 Setting the rounding of floating-point operations to less than the default
27079 80 bits can speed some programs by 2% or more. Note that some mathematical
27080 libraries assume that extended-precision (80-bit) floating-point operations
27081 are enabled by default; routines in such libraries could suffer significant
27082 loss of accuracy, typically through so-called ``catastrophic cancellation'',
27083 when this option is used to set the precision to less than extended precision.
27084
27085 @item -mstackrealign
27086 @opindex mstackrealign
27087 Realign the stack at entry. On the x86, the @option{-mstackrealign}
27088 option generates an alternate prologue and epilogue that realigns the
27089 run-time stack if necessary. This supports mixing legacy codes that keep
27090 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
27091 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
27092 applicable to individual functions.
27093
27094 @item -mpreferred-stack-boundary=@var{num}
27095 @opindex mpreferred-stack-boundary
27096 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
27097 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
27098 the default is 4 (16 bytes or 128 bits).
27099
27100 @strong{Warning:} When generating code for the x86-64 architecture with
27101 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
27102 used to keep the stack boundary aligned to 8 byte boundary. Since
27103 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
27104 intended to be used in controlled environment where stack space is
27105 important limitation. This option leads to wrong code when functions
27106 compiled with 16 byte stack alignment (such as functions from a standard
27107 library) are called with misaligned stack. In this case, SSE
27108 instructions may lead to misaligned memory access traps. In addition,
27109 variable arguments are handled incorrectly for 16 byte aligned
27110 objects (including x87 long double and __int128), leading to wrong
27111 results. You must build all modules with
27112 @option{-mpreferred-stack-boundary=3}, including any libraries. This
27113 includes the system libraries and startup modules.
27114
27115 @item -mincoming-stack-boundary=@var{num}
27116 @opindex mincoming-stack-boundary
27117 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
27118 boundary. If @option{-mincoming-stack-boundary} is not specified,
27119 the one specified by @option{-mpreferred-stack-boundary} is used.
27120
27121 On Pentium and Pentium Pro, @code{double} and @code{long double} values
27122 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
27123 suffer significant run time performance penalties. On Pentium III, the
27124 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
27125 properly if it is not 16-byte aligned.
27126
27127 To ensure proper alignment of this values on the stack, the stack boundary
27128 must be as aligned as that required by any value stored on the stack.
27129 Further, every function must be generated such that it keeps the stack
27130 aligned. Thus calling a function compiled with a higher preferred
27131 stack boundary from a function compiled with a lower preferred stack
27132 boundary most likely misaligns the stack. It is recommended that
27133 libraries that use callbacks always use the default setting.
27134
27135 This extra alignment does consume extra stack space, and generally
27136 increases code size. Code that is sensitive to stack space usage, such
27137 as embedded systems and operating system kernels, may want to reduce the
27138 preferred alignment to @option{-mpreferred-stack-boundary=2}.
27139
27140 @need 200
27141 @item -mmmx
27142 @opindex mmmx
27143 @need 200
27144 @itemx -msse
27145 @opindex msse
27146 @need 200
27147 @itemx -msse2
27148 @opindex msse2
27149 @need 200
27150 @itemx -msse3
27151 @opindex msse3
27152 @need 200
27153 @itemx -mssse3
27154 @opindex mssse3
27155 @need 200
27156 @itemx -msse4
27157 @opindex msse4
27158 @need 200
27159 @itemx -msse4a
27160 @opindex msse4a
27161 @need 200
27162 @itemx -msse4.1
27163 @opindex msse4.1
27164 @need 200
27165 @itemx -msse4.2
27166 @opindex msse4.2
27167 @need 200
27168 @itemx -mavx
27169 @opindex mavx
27170 @need 200
27171 @itemx -mavx2
27172 @opindex mavx2
27173 @need 200
27174 @itemx -mavx512f
27175 @opindex mavx512f
27176 @need 200
27177 @itemx -mavx512pf
27178 @opindex mavx512pf
27179 @need 200
27180 @itemx -mavx512er
27181 @opindex mavx512er
27182 @need 200
27183 @itemx -mavx512cd
27184 @opindex mavx512cd
27185 @need 200
27186 @itemx -mavx512vl
27187 @opindex mavx512vl
27188 @need 200
27189 @itemx -mavx512bw
27190 @opindex mavx512bw
27191 @need 200
27192 @itemx -mavx512dq
27193 @opindex mavx512dq
27194 @need 200
27195 @itemx -mavx512ifma
27196 @opindex mavx512ifma
27197 @need 200
27198 @itemx -mavx512vbmi
27199 @opindex mavx512vbmi
27200 @need 200
27201 @itemx -msha
27202 @opindex msha
27203 @need 200
27204 @itemx -maes
27205 @opindex maes
27206 @need 200
27207 @itemx -mpclmul
27208 @opindex mpclmul
27209 @need 200
27210 @itemx -mclflushopt
27211 @opindex mclflushopt
27212 @need 200
27213 @itemx -mfsgsbase
27214 @opindex mfsgsbase
27215 @need 200
27216 @itemx -mrdrnd
27217 @opindex mrdrnd
27218 @need 200
27219 @itemx -mf16c
27220 @opindex mf16c
27221 @need 200
27222 @itemx -mfma
27223 @opindex mfma
27224 @need 200
27225 @itemx -mpconfig
27226 @opindex mpconfig
27227 @need 200
27228 @itemx -mwbnoinvd
27229 @opindex mwbnoinvd
27230 @need 200
27231 @itemx -mfma4
27232 @opindex mfma4
27233 @need 200
27234 @itemx -mprefetchwt1
27235 @opindex mprefetchwt1
27236 @need 200
27237 @itemx -mxop
27238 @opindex mxop
27239 @need 200
27240 @itemx -mlwp
27241 @opindex mlwp
27242 @need 200
27243 @itemx -m3dnow
27244 @opindex m3dnow
27245 @need 200
27246 @itemx -m3dnowa
27247 @opindex m3dnowa
27248 @need 200
27249 @itemx -mpopcnt
27250 @opindex mpopcnt
27251 @need 200
27252 @itemx -mabm
27253 @opindex mabm
27254 @need 200
27255 @itemx -mbmi
27256 @opindex mbmi
27257 @need 200
27258 @itemx -mbmi2
27259 @need 200
27260 @itemx -mlzcnt
27261 @opindex mlzcnt
27262 @need 200
27263 @itemx -mfxsr
27264 @opindex mfxsr
27265 @need 200
27266 @itemx -mxsave
27267 @opindex mxsave
27268 @need 200
27269 @itemx -mxsaveopt
27270 @opindex mxsaveopt
27271 @need 200
27272 @itemx -mxsavec
27273 @opindex mxsavec
27274 @need 200
27275 @itemx -mxsaves
27276 @opindex mxsaves
27277 @need 200
27278 @itemx -mrtm
27279 @opindex mrtm
27280 @need 200
27281 @itemx -mtbm
27282 @opindex mtbm
27283 @need 200
27284 @itemx -mmpx
27285 @opindex mmpx
27286 @need 200
27287 @itemx -mmwaitx
27288 @opindex mmwaitx
27289 @need 200
27290 @itemx -mclzero
27291 @opindex mclzero
27292 @need 200
27293 @itemx -mpku
27294 @opindex mpku
27295 @need 200
27296 @itemx -mavx512vbmi2
27297 @opindex mavx512vbmi2
27298 @need 200
27299 @itemx -mgfni
27300 @opindex mgfni
27301 @need 200
27302 @itemx -mvaes
27303 @opindex mvaes
27304 @need 200
27305 @itemx -mvpclmulqdq
27306 @opindex mvpclmulqdq
27307 @need 200
27308 @itemx -mavx512bitalg
27309 @opindex mavx512bitalg
27310 @need 200
27311 @itemx -mmovdiri
27312 @opindex mmovdiri
27313 @need 200
27314 @itemx -mmovdir64b
27315 @opindex mmovdir64b
27316 @need 200
27317 @itemx -mavx512vpopcntdq
27318 @opindex mavx512vpopcntdq
27319 These switches enable the use of instructions in the MMX, SSE,
27320 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
27321 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
27322 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, BMI, BMI2, VAES,
27323 FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU, IBT, SHSTK, AVX512VBMI2,
27324 GFNI, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B,
27325 AVX512VPOPCNTDQ3DNow!@: or enhanced 3DNow!@: extended instruction sets.
27326 Each has a corresponding @option{-mno-} option to disable use of these
27327 instructions.
27328
27329 These extensions are also available as built-in functions: see
27330 @ref{x86 Built-in Functions}, for details of the functions enabled and
27331 disabled by these switches.
27332
27333 To generate SSE/SSE2 instructions automatically from floating-point
27334 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
27335
27336 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
27337 generates new AVX instructions or AVX equivalence for all SSEx instructions
27338 when needed.
27339
27340 These options enable GCC to use these extended instructions in
27341 generated code, even without @option{-mfpmath=sse}. Applications that
27342 perform run-time CPU detection must compile separate files for each
27343 supported architecture, using the appropriate flags. In particular,
27344 the file containing the CPU detection code should be compiled without
27345 these options.
27346
27347 @item -mdump-tune-features
27348 @opindex mdump-tune-features
27349 This option instructs GCC to dump the names of the x86 performance
27350 tuning features and default settings. The names can be used in
27351 @option{-mtune-ctrl=@var{feature-list}}.
27352
27353 @item -mtune-ctrl=@var{feature-list}
27354 @opindex mtune-ctrl=@var{feature-list}
27355 This option is used to do fine grain control of x86 code generation features.
27356 @var{feature-list} is a comma separated list of @var{feature} names. See also
27357 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
27358 on if it is not preceded with @samp{^}, otherwise, it is turned off.
27359 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
27360 developers. Using it may lead to code paths not covered by testing and can
27361 potentially result in compiler ICEs or runtime errors.
27362
27363 @item -mno-default
27364 @opindex mno-default
27365 This option instructs GCC to turn off all tunable features. See also
27366 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
27367
27368 @item -mcld
27369 @opindex mcld
27370 This option instructs GCC to emit a @code{cld} instruction in the prologue
27371 of functions that use string instructions. String instructions depend on
27372 the DF flag to select between autoincrement or autodecrement mode. While the
27373 ABI specifies the DF flag to be cleared on function entry, some operating
27374 systems violate this specification by not clearing the DF flag in their
27375 exception dispatchers. The exception handler can be invoked with the DF flag
27376 set, which leads to wrong direction mode when string instructions are used.
27377 This option can be enabled by default on 32-bit x86 targets by configuring
27378 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
27379 instructions can be suppressed with the @option{-mno-cld} compiler option
27380 in this case.
27381
27382 @item -mvzeroupper
27383 @opindex mvzeroupper
27384 This option instructs GCC to emit a @code{vzeroupper} instruction
27385 before a transfer of control flow out of the function to minimize
27386 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
27387 intrinsics.
27388
27389 @item -mprefer-avx128
27390 @opindex mprefer-avx128
27391 This option instructs GCC to use 128-bit AVX instructions instead of
27392 256-bit AVX instructions in the auto-vectorizer.
27393
27394 @item -mprefer-vector-width=@var{opt}
27395 @opindex mprefer-vector-width
27396 This option instructs GCC to use @var{opt}-bit vector width in instructions
27397 instead of default on the selected platform.
27398
27399 @table @samp
27400 @item none
27401 No extra limitations applied to GCC other than defined by the selected platform.
27402
27403 @item 128
27404 Prefer 128-bit vector width for instructions.
27405
27406 @item 256
27407 Prefer 256-bit vector width for instructions.
27408
27409 @item 512
27410 Prefer 512-bit vector width for instructions.
27411 @end table
27412
27413 @item -mcx16
27414 @opindex mcx16
27415 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
27416 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
27417 objects. This is useful for atomic updates of data structures exceeding one
27418 machine word in size. The compiler uses this instruction to implement
27419 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
27420 128-bit integers, a library call is always used.
27421
27422 @item -msahf
27423 @opindex msahf
27424 This option enables generation of @code{SAHF} instructions in 64-bit code.
27425 Early Intel Pentium 4 CPUs with Intel 64 support,
27426 prior to the introduction of Pentium 4 G1 step in December 2005,
27427 lacked the @code{LAHF} and @code{SAHF} instructions
27428 which are supported by AMD64.
27429 These are load and store instructions, respectively, for certain status flags.
27430 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
27431 @code{drem}, and @code{remainder} built-in functions;
27432 see @ref{Other Builtins} for details.
27433
27434 @item -mmovbe
27435 @opindex mmovbe
27436 This option enables use of the @code{movbe} instruction to implement
27437 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
27438
27439 @item -mshstk
27440 @opindex mshstk
27441 The @option{-mshstk} option enables shadow stack built-in functions
27442 from x86 Control-flow Enforcement Technology (CET).
27443
27444 @item -mcrc32
27445 @opindex mcrc32
27446 This option enables built-in functions @code{__builtin_ia32_crc32qi},
27447 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
27448 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
27449
27450 @item -mrecip
27451 @opindex mrecip
27452 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
27453 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
27454 with an additional Newton-Raphson step
27455 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
27456 (and their vectorized
27457 variants) for single-precision floating-point arguments. These instructions
27458 are generated only when @option{-funsafe-math-optimizations} is enabled
27459 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
27460 Note that while the throughput of the sequence is higher than the throughput
27461 of the non-reciprocal instruction, the precision of the sequence can be
27462 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
27463
27464 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
27465 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
27466 combination), and doesn't need @option{-mrecip}.
27467
27468 Also note that GCC emits the above sequence with additional Newton-Raphson step
27469 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
27470 already with @option{-ffast-math} (or the above option combination), and
27471 doesn't need @option{-mrecip}.
27472
27473 @item -mrecip=@var{opt}
27474 @opindex mrecip=opt
27475 This option controls which reciprocal estimate instructions
27476 may be used. @var{opt} is a comma-separated list of options, which may
27477 be preceded by a @samp{!} to invert the option:
27478
27479 @table @samp
27480 @item all
27481 Enable all estimate instructions.
27482
27483 @item default
27484 Enable the default instructions, equivalent to @option{-mrecip}.
27485
27486 @item none
27487 Disable all estimate instructions, equivalent to @option{-mno-recip}.
27488
27489 @item div
27490 Enable the approximation for scalar division.
27491
27492 @item vec-div
27493 Enable the approximation for vectorized division.
27494
27495 @item sqrt
27496 Enable the approximation for scalar square root.
27497
27498 @item vec-sqrt
27499 Enable the approximation for vectorized square root.
27500 @end table
27501
27502 So, for example, @option{-mrecip=all,!sqrt} enables
27503 all of the reciprocal approximations, except for square root.
27504
27505 @item -mveclibabi=@var{type}
27506 @opindex mveclibabi
27507 Specifies the ABI type to use for vectorizing intrinsics using an
27508 external library. Supported values for @var{type} are @samp{svml}
27509 for the Intel short
27510 vector math library and @samp{acml} for the AMD math core library.
27511 To use this option, both @option{-ftree-vectorize} and
27512 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
27513 ABI-compatible library must be specified at link time.
27514
27515 GCC currently emits calls to @code{vmldExp2},
27516 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
27517 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
27518 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
27519 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
27520 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
27521 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
27522 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
27523 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
27524 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
27525 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
27526 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
27527 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
27528 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
27529 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
27530 when @option{-mveclibabi=acml} is used.
27531
27532 @item -mabi=@var{name}
27533 @opindex mabi
27534 Generate code for the specified calling convention. Permissible values
27535 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
27536 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
27537 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
27538 You can control this behavior for specific functions by
27539 using the function attributes @code{ms_abi} and @code{sysv_abi}.
27540 @xref{Function Attributes}.
27541
27542 @item -mforce-indirect-call
27543 @opindex mforce-indirect-call
27544 Force all calls to functions to be indirect. This is useful
27545 when using Intel Processor Trace where it generates more precise timing
27546 information for function calls.
27547
27548 @item -mcall-ms2sysv-xlogues
27549 @opindex mcall-ms2sysv-xlogues
27550 @opindex mno-call-ms2sysv-xlogues
27551 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
27552 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
27553 default, the code for saving and restoring these registers is emitted inline,
27554 resulting in fairly lengthy prologues and epilogues. Using
27555 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
27556 use stubs in the static portion of libgcc to perform these saves and restores,
27557 thus reducing function size at the cost of a few extra instructions.
27558
27559 @item -mtls-dialect=@var{type}
27560 @opindex mtls-dialect
27561 Generate code to access thread-local storage using the @samp{gnu} or
27562 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
27563 @samp{gnu2} is more efficient, but it may add compile- and run-time
27564 requirements that cannot be satisfied on all systems.
27565
27566 @item -mpush-args
27567 @itemx -mno-push-args
27568 @opindex mpush-args
27569 @opindex mno-push-args
27570 Use PUSH operations to store outgoing parameters. This method is shorter
27571 and usually equally fast as method using SUB/MOV operations and is enabled
27572 by default. In some cases disabling it may improve performance because of
27573 improved scheduling and reduced dependencies.
27574
27575 @item -maccumulate-outgoing-args
27576 @opindex maccumulate-outgoing-args
27577 If enabled, the maximum amount of space required for outgoing arguments is
27578 computed in the function prologue. This is faster on most modern CPUs
27579 because of reduced dependencies, improved scheduling and reduced stack usage
27580 when the preferred stack boundary is not equal to 2. The drawback is a notable
27581 increase in code size. This switch implies @option{-mno-push-args}.
27582
27583 @item -mthreads
27584 @opindex mthreads
27585 Support thread-safe exception handling on MinGW. Programs that rely
27586 on thread-safe exception handling must compile and link all code with the
27587 @option{-mthreads} option. When compiling, @option{-mthreads} defines
27588 @option{-D_MT}; when linking, it links in a special thread helper library
27589 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
27590
27591 @item -mms-bitfields
27592 @itemx -mno-ms-bitfields
27593 @opindex mms-bitfields
27594 @opindex mno-ms-bitfields
27595
27596 Enable/disable bit-field layout compatible with the native Microsoft
27597 Windows compiler.
27598
27599 If @code{packed} is used on a structure, or if bit-fields are used,
27600 it may be that the Microsoft ABI lays out the structure differently
27601 than the way GCC normally does. Particularly when moving packed
27602 data between functions compiled with GCC and the native Microsoft compiler
27603 (either via function call or as data in a file), it may be necessary to access
27604 either format.
27605
27606 This option is enabled by default for Microsoft Windows
27607 targets. This behavior can also be controlled locally by use of variable
27608 or type attributes. For more information, see @ref{x86 Variable Attributes}
27609 and @ref{x86 Type Attributes}.
27610
27611 The Microsoft structure layout algorithm is fairly simple with the exception
27612 of the bit-field packing.
27613 The padding and alignment of members of structures and whether a bit-field
27614 can straddle a storage-unit boundary are determine by these rules:
27615
27616 @enumerate
27617 @item Structure members are stored sequentially in the order in which they are
27618 declared: the first member has the lowest memory address and the last member
27619 the highest.
27620
27621 @item Every data object has an alignment requirement. The alignment requirement
27622 for all data except structures, unions, and arrays is either the size of the
27623 object or the current packing size (specified with either the
27624 @code{aligned} attribute or the @code{pack} pragma),
27625 whichever is less. For structures, unions, and arrays,
27626 the alignment requirement is the largest alignment requirement of its members.
27627 Every object is allocated an offset so that:
27628
27629 @smallexample
27630 offset % alignment_requirement == 0
27631 @end smallexample
27632
27633 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
27634 unit if the integral types are the same size and if the next bit-field fits
27635 into the current allocation unit without crossing the boundary imposed by the
27636 common alignment requirements of the bit-fields.
27637 @end enumerate
27638
27639 MSVC interprets zero-length bit-fields in the following ways:
27640
27641 @enumerate
27642 @item If a zero-length bit-field is inserted between two bit-fields that
27643 are normally coalesced, the bit-fields are not coalesced.
27644
27645 For example:
27646
27647 @smallexample
27648 struct
27649 @{
27650 unsigned long bf_1 : 12;
27651 unsigned long : 0;
27652 unsigned long bf_2 : 12;
27653 @} t1;
27654 @end smallexample
27655
27656 @noindent
27657 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
27658 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
27659
27660 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
27661 alignment of the zero-length bit-field is greater than the member that follows it,
27662 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
27663
27664 For example:
27665
27666 @smallexample
27667 struct
27668 @{
27669 char foo : 4;
27670 short : 0;
27671 char bar;
27672 @} t2;
27673
27674 struct
27675 @{
27676 char foo : 4;
27677 short : 0;
27678 double bar;
27679 @} t3;
27680 @end smallexample
27681
27682 @noindent
27683 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
27684 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
27685 bit-field does not affect the alignment of @code{bar} or, as a result, the size
27686 of the structure.
27687
27688 Taking this into account, it is important to note the following:
27689
27690 @enumerate
27691 @item If a zero-length bit-field follows a normal bit-field, the type of the
27692 zero-length bit-field may affect the alignment of the structure as whole. For
27693 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
27694 normal bit-field, and is of type short.
27695
27696 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
27697 still affect the alignment of the structure:
27698
27699 @smallexample
27700 struct
27701 @{
27702 char foo : 6;
27703 long : 0;
27704 @} t4;
27705 @end smallexample
27706
27707 @noindent
27708 Here, @code{t4} takes up 4 bytes.
27709 @end enumerate
27710
27711 @item Zero-length bit-fields following non-bit-field members are ignored:
27712
27713 @smallexample
27714 struct
27715 @{
27716 char foo;
27717 long : 0;
27718 char bar;
27719 @} t5;
27720 @end smallexample
27721
27722 @noindent
27723 Here, @code{t5} takes up 2 bytes.
27724 @end enumerate
27725
27726
27727 @item -mno-align-stringops
27728 @opindex mno-align-stringops
27729 Do not align the destination of inlined string operations. This switch reduces
27730 code size and improves performance in case the destination is already aligned,
27731 but GCC doesn't know about it.
27732
27733 @item -minline-all-stringops
27734 @opindex minline-all-stringops
27735 By default GCC inlines string operations only when the destination is
27736 known to be aligned to least a 4-byte boundary.
27737 This enables more inlining and increases code
27738 size, but may improve performance of code that depends on fast
27739 @code{memcpy}, @code{strlen},
27740 and @code{memset} for short lengths.
27741
27742 @item -minline-stringops-dynamically
27743 @opindex minline-stringops-dynamically
27744 For string operations of unknown size, use run-time checks with
27745 inline code for small blocks and a library call for large blocks.
27746
27747 @item -mstringop-strategy=@var{alg}
27748 @opindex mstringop-strategy=@var{alg}
27749 Override the internal decision heuristic for the particular algorithm to use
27750 for inlining string operations. The allowed values for @var{alg} are:
27751
27752 @table @samp
27753 @item rep_byte
27754 @itemx rep_4byte
27755 @itemx rep_8byte
27756 Expand using i386 @code{rep} prefix of the specified size.
27757
27758 @item byte_loop
27759 @itemx loop
27760 @itemx unrolled_loop
27761 Expand into an inline loop.
27762
27763 @item libcall
27764 Always use a library call.
27765 @end table
27766
27767 @item -mmemcpy-strategy=@var{strategy}
27768 @opindex mmemcpy-strategy=@var{strategy}
27769 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
27770 should be inlined and what inline algorithm to use when the expected size
27771 of the copy operation is known. @var{strategy}
27772 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
27773 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
27774 the max byte size with which inline algorithm @var{alg} is allowed. For the last
27775 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
27776 in the list must be specified in increasing order. The minimal byte size for
27777 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
27778 preceding range.
27779
27780 @item -mmemset-strategy=@var{strategy}
27781 @opindex mmemset-strategy=@var{strategy}
27782 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
27783 @code{__builtin_memset} expansion.
27784
27785 @item -momit-leaf-frame-pointer
27786 @opindex momit-leaf-frame-pointer
27787 Don't keep the frame pointer in a register for leaf functions. This
27788 avoids the instructions to save, set up, and restore frame pointers and
27789 makes an extra register available in leaf functions. The option
27790 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
27791 which might make debugging harder.
27792
27793 @item -mtls-direct-seg-refs
27794 @itemx -mno-tls-direct-seg-refs
27795 @opindex mtls-direct-seg-refs
27796 Controls whether TLS variables may be accessed with offsets from the
27797 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
27798 or whether the thread base pointer must be added. Whether or not this
27799 is valid depends on the operating system, and whether it maps the
27800 segment to cover the entire TLS area.
27801
27802 For systems that use the GNU C Library, the default is on.
27803
27804 @item -msse2avx
27805 @itemx -mno-sse2avx
27806 @opindex msse2avx
27807 Specify that the assembler should encode SSE instructions with VEX
27808 prefix. The option @option{-mavx} turns this on by default.
27809
27810 @item -mfentry
27811 @itemx -mno-fentry
27812 @opindex mfentry
27813 If profiling is active (@option{-pg}), put the profiling
27814 counter call before the prologue.
27815 Note: On x86 architectures the attribute @code{ms_hook_prologue}
27816 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
27817
27818 @item -mrecord-mcount
27819 @itemx -mno-record-mcount
27820 @opindex mrecord-mcount
27821 If profiling is active (@option{-pg}), generate a __mcount_loc section
27822 that contains pointers to each profiling call. This is useful for
27823 automatically patching and out calls.
27824
27825 @item -mnop-mcount
27826 @itemx -mno-nop-mcount
27827 @opindex mnop-mcount
27828 If profiling is active (@option{-pg}), generate the calls to
27829 the profiling functions as NOPs. This is useful when they
27830 should be patched in later dynamically. This is likely only
27831 useful together with @option{-mrecord-mcount}.
27832
27833 @item -mskip-rax-setup
27834 @itemx -mno-skip-rax-setup
27835 @opindex mskip-rax-setup
27836 When generating code for the x86-64 architecture with SSE extensions
27837 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
27838 register when there are no variable arguments passed in vector registers.
27839
27840 @strong{Warning:} Since RAX register is used to avoid unnecessarily
27841 saving vector registers on stack when passing variable arguments, the
27842 impacts of this option are callees may waste some stack space,
27843 misbehave or jump to a random location. GCC 4.4 or newer don't have
27844 those issues, regardless the RAX register value.
27845
27846 @item -m8bit-idiv
27847 @itemx -mno-8bit-idiv
27848 @opindex m8bit-idiv
27849 On some processors, like Intel Atom, 8-bit unsigned integer divide is
27850 much faster than 32-bit/64-bit integer divide. This option generates a
27851 run-time check. If both dividend and divisor are within range of 0
27852 to 255, 8-bit unsigned integer divide is used instead of
27853 32-bit/64-bit integer divide.
27854
27855 @item -mavx256-split-unaligned-load
27856 @itemx -mavx256-split-unaligned-store
27857 @opindex mavx256-split-unaligned-load
27858 @opindex mavx256-split-unaligned-store
27859 Split 32-byte AVX unaligned load and store.
27860
27861 @item -mstack-protector-guard=@var{guard}
27862 @itemx -mstack-protector-guard-reg=@var{reg}
27863 @itemx -mstack-protector-guard-offset=@var{offset}
27864 @opindex mstack-protector-guard
27865 @opindex mstack-protector-guard-reg
27866 @opindex mstack-protector-guard-offset
27867 Generate stack protection code using canary at @var{guard}. Supported
27868 locations are @samp{global} for global canary or @samp{tls} for per-thread
27869 canary in the TLS block (the default). This option has effect only when
27870 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
27871
27872 With the latter choice the options
27873 @option{-mstack-protector-guard-reg=@var{reg}} and
27874 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
27875 which segment register (@code{%fs} or @code{%gs}) to use as base register
27876 for reading the canary, and from what offset from that base register.
27877 The default for those is as specified in the relevant ABI.
27878
27879 @item -mmitigate-rop
27880 @opindex mmitigate-rop
27881 Try to avoid generating code sequences that contain unintended return
27882 opcodes, to mitigate against certain forms of attack. At the moment,
27883 this option is limited in what it can do and should not be relied
27884 on to provide serious protection.
27885
27886 @item -mgeneral-regs-only
27887 @opindex mgeneral-regs-only
27888 Generate code that uses only the general-purpose registers. This
27889 prevents the compiler from using floating-point, vector, mask and bound
27890 registers.
27891
27892 @item -mindirect-branch=@var{choice}
27893 @opindex -mindirect-branch
27894 Convert indirect call and jump with @var{choice}. The default is
27895 @samp{keep}, which keeps indirect call and jump unmodified.
27896 @samp{thunk} converts indirect call and jump to call and return thunk.
27897 @samp{thunk-inline} converts indirect call and jump to inlined call
27898 and return thunk. @samp{thunk-extern} converts indirect call and jump
27899 to external call and return thunk provided in a separate object file.
27900 You can control this behavior for a specific function by using the
27901 function attribute @code{indirect_branch}. @xref{Function Attributes}.
27902
27903 Note that @option{-mcmodel=large} is incompatible with
27904 @option{-mindirect-branch=thunk} and
27905 @option{-mindirect-branch=thunk-extern} since the thunk function may
27906 not be reachable in the large code model.
27907
27908 Note that @option{-mindirect-branch=thunk-extern} is incompatible with
27909 @option{-fcf-protection=branch} and @option{-fcheck-pointer-bounds}
27910 since the external thunk can not be modified to disable control-flow
27911 check.
27912
27913 @item -mfunction-return=@var{choice}
27914 @opindex -mfunction-return
27915 Convert function return with @var{choice}. The default is @samp{keep},
27916 which keeps function return unmodified. @samp{thunk} converts function
27917 return to call and return thunk. @samp{thunk-inline} converts function
27918 return to inlined call and return thunk. @samp{thunk-extern} converts
27919 function return to external call and return thunk provided in a separate
27920 object file. You can control this behavior for a specific function by
27921 using the function attribute @code{function_return}.
27922 @xref{Function Attributes}.
27923
27924 Note that @option{-mcmodel=large} is incompatible with
27925 @option{-mfunction-return=thunk} and
27926 @option{-mfunction-return=thunk-extern} since the thunk function may
27927 not be reachable in the large code model.
27928
27929
27930 @item -mindirect-branch-register
27931 @opindex -mindirect-branch-register
27932 Force indirect call and jump via register.
27933
27934 @end table
27935
27936 These @samp{-m} switches are supported in addition to the above
27937 on x86-64 processors in 64-bit environments.
27938
27939 @table @gcctabopt
27940 @item -m32
27941 @itemx -m64
27942 @itemx -mx32
27943 @itemx -m16
27944 @itemx -miamcu
27945 @opindex m32
27946 @opindex m64
27947 @opindex mx32
27948 @opindex m16
27949 @opindex miamcu
27950 Generate code for a 16-bit, 32-bit or 64-bit environment.
27951 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
27952 to 32 bits, and
27953 generates code that runs on any i386 system.
27954
27955 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
27956 types to 64 bits, and generates code for the x86-64 architecture.
27957 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
27958 and @option{-mdynamic-no-pic} options.
27959
27960 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
27961 to 32 bits, and
27962 generates code for the x86-64 architecture.
27963
27964 The @option{-m16} option is the same as @option{-m32}, except for that
27965 it outputs the @code{.code16gcc} assembly directive at the beginning of
27966 the assembly output so that the binary can run in 16-bit mode.
27967
27968 The @option{-miamcu} option generates code which conforms to Intel MCU
27969 psABI. It requires the @option{-m32} option to be turned on.
27970
27971 @item -mno-red-zone
27972 @opindex mno-red-zone
27973 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
27974 by the x86-64 ABI; it is a 128-byte area beyond the location of the
27975 stack pointer that is not modified by signal or interrupt handlers
27976 and therefore can be used for temporary data without adjusting the stack
27977 pointer. The flag @option{-mno-red-zone} disables this red zone.
27978
27979 @item -mcmodel=small
27980 @opindex mcmodel=small
27981 Generate code for the small code model: the program and its symbols must
27982 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
27983 Programs can be statically or dynamically linked. This is the default
27984 code model.
27985
27986 @item -mcmodel=kernel
27987 @opindex mcmodel=kernel
27988 Generate code for the kernel code model. The kernel runs in the
27989 negative 2 GB of the address space.
27990 This model has to be used for Linux kernel code.
27991
27992 @item -mcmodel=medium
27993 @opindex mcmodel=medium
27994 Generate code for the medium model: the program is linked in the lower 2
27995 GB of the address space. Small symbols are also placed there. Symbols
27996 with sizes larger than @option{-mlarge-data-threshold} are put into
27997 large data or BSS sections and can be located above 2GB. Programs can
27998 be statically or dynamically linked.
27999
28000 @item -mcmodel=large
28001 @opindex mcmodel=large
28002 Generate code for the large model. This model makes no assumptions
28003 about addresses and sizes of sections.
28004
28005 @item -maddress-mode=long
28006 @opindex maddress-mode=long
28007 Generate code for long address mode. This is only supported for 64-bit
28008 and x32 environments. It is the default address mode for 64-bit
28009 environments.
28010
28011 @item -maddress-mode=short
28012 @opindex maddress-mode=short
28013 Generate code for short address mode. This is only supported for 32-bit
28014 and x32 environments. It is the default address mode for 32-bit and
28015 x32 environments.
28016 @end table
28017
28018 @node x86 Windows Options
28019 @subsection x86 Windows Options
28020 @cindex x86 Windows Options
28021 @cindex Windows Options for x86
28022
28023 These additional options are available for Microsoft Windows targets:
28024
28025 @table @gcctabopt
28026 @item -mconsole
28027 @opindex mconsole
28028 This option
28029 specifies that a console application is to be generated, by
28030 instructing the linker to set the PE header subsystem type
28031 required for console applications.
28032 This option is available for Cygwin and MinGW targets and is
28033 enabled by default on those targets.
28034
28035 @item -mdll
28036 @opindex mdll
28037 This option is available for Cygwin and MinGW targets. It
28038 specifies that a DLL---a dynamic link library---is to be
28039 generated, enabling the selection of the required runtime
28040 startup object and entry point.
28041
28042 @item -mnop-fun-dllimport
28043 @opindex mnop-fun-dllimport
28044 This option is available for Cygwin and MinGW targets. It
28045 specifies that the @code{dllimport} attribute should be ignored.
28046
28047 @item -mthread
28048 @opindex mthread
28049 This option is available for MinGW targets. It specifies
28050 that MinGW-specific thread support is to be used.
28051
28052 @item -municode
28053 @opindex municode
28054 This option is available for MinGW-w64 targets. It causes
28055 the @code{UNICODE} preprocessor macro to be predefined, and
28056 chooses Unicode-capable runtime startup code.
28057
28058 @item -mwin32
28059 @opindex mwin32
28060 This option is available for Cygwin and MinGW targets. It
28061 specifies that the typical Microsoft Windows predefined macros are to
28062 be set in the pre-processor, but does not influence the choice
28063 of runtime library/startup code.
28064
28065 @item -mwindows
28066 @opindex mwindows
28067 This option is available for Cygwin and MinGW targets. It
28068 specifies that a GUI application is to be generated by
28069 instructing the linker to set the PE header subsystem type
28070 appropriately.
28071
28072 @item -fno-set-stack-executable
28073 @opindex fno-set-stack-executable
28074 This option is available for MinGW targets. It specifies that
28075 the executable flag for the stack used by nested functions isn't
28076 set. This is necessary for binaries running in kernel mode of
28077 Microsoft Windows, as there the User32 API, which is used to set executable
28078 privileges, isn't available.
28079
28080 @item -fwritable-relocated-rdata
28081 @opindex fno-writable-relocated-rdata
28082 This option is available for MinGW and Cygwin targets. It specifies
28083 that relocated-data in read-only section is put into the @code{.data}
28084 section. This is a necessary for older runtimes not supporting
28085 modification of @code{.rdata} sections for pseudo-relocation.
28086
28087 @item -mpe-aligned-commons
28088 @opindex mpe-aligned-commons
28089 This option is available for Cygwin and MinGW targets. It
28090 specifies that the GNU extension to the PE file format that
28091 permits the correct alignment of COMMON variables should be
28092 used when generating code. It is enabled by default if
28093 GCC detects that the target assembler found during configuration
28094 supports the feature.
28095 @end table
28096
28097 See also under @ref{x86 Options} for standard options.
28098
28099 @node Xstormy16 Options
28100 @subsection Xstormy16 Options
28101 @cindex Xstormy16 Options
28102
28103 These options are defined for Xstormy16:
28104
28105 @table @gcctabopt
28106 @item -msim
28107 @opindex msim
28108 Choose startup files and linker script suitable for the simulator.
28109 @end table
28110
28111 @node Xtensa Options
28112 @subsection Xtensa Options
28113 @cindex Xtensa Options
28114
28115 These options are supported for Xtensa targets:
28116
28117 @table @gcctabopt
28118 @item -mconst16
28119 @itemx -mno-const16
28120 @opindex mconst16
28121 @opindex mno-const16
28122 Enable or disable use of @code{CONST16} instructions for loading
28123 constant values. The @code{CONST16} instruction is currently not a
28124 standard option from Tensilica. When enabled, @code{CONST16}
28125 instructions are always used in place of the standard @code{L32R}
28126 instructions. The use of @code{CONST16} is enabled by default only if
28127 the @code{L32R} instruction is not available.
28128
28129 @item -mfused-madd
28130 @itemx -mno-fused-madd
28131 @opindex mfused-madd
28132 @opindex mno-fused-madd
28133 Enable or disable use of fused multiply/add and multiply/subtract
28134 instructions in the floating-point option. This has no effect if the
28135 floating-point option is not also enabled. Disabling fused multiply/add
28136 and multiply/subtract instructions forces the compiler to use separate
28137 instructions for the multiply and add/subtract operations. This may be
28138 desirable in some cases where strict IEEE 754-compliant results are
28139 required: the fused multiply add/subtract instructions do not round the
28140 intermediate result, thereby producing results with @emph{more} bits of
28141 precision than specified by the IEEE standard. Disabling fused multiply
28142 add/subtract instructions also ensures that the program output is not
28143 sensitive to the compiler's ability to combine multiply and add/subtract
28144 operations.
28145
28146 @item -mserialize-volatile
28147 @itemx -mno-serialize-volatile
28148 @opindex mserialize-volatile
28149 @opindex mno-serialize-volatile
28150 When this option is enabled, GCC inserts @code{MEMW} instructions before
28151 @code{volatile} memory references to guarantee sequential consistency.
28152 The default is @option{-mserialize-volatile}. Use
28153 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
28154
28155 @item -mforce-no-pic
28156 @opindex mforce-no-pic
28157 For targets, like GNU/Linux, where all user-mode Xtensa code must be
28158 position-independent code (PIC), this option disables PIC for compiling
28159 kernel code.
28160
28161 @item -mtext-section-literals
28162 @itemx -mno-text-section-literals
28163 @opindex mtext-section-literals
28164 @opindex mno-text-section-literals
28165 These options control the treatment of literal pools. The default is
28166 @option{-mno-text-section-literals}, which places literals in a separate
28167 section in the output file. This allows the literal pool to be placed
28168 in a data RAM/ROM, and it also allows the linker to combine literal
28169 pools from separate object files to remove redundant literals and
28170 improve code size. With @option{-mtext-section-literals}, the literals
28171 are interspersed in the text section in order to keep them as close as
28172 possible to their references. This may be necessary for large assembly
28173 files. Literals for each function are placed right before that function.
28174
28175 @item -mauto-litpools
28176 @itemx -mno-auto-litpools
28177 @opindex mauto-litpools
28178 @opindex mno-auto-litpools
28179 These options control the treatment of literal pools. The default is
28180 @option{-mno-auto-litpools}, which places literals in a separate
28181 section in the output file unless @option{-mtext-section-literals} is
28182 used. With @option{-mauto-litpools} the literals are interspersed in
28183 the text section by the assembler. Compiler does not produce explicit
28184 @code{.literal} directives and loads literals into registers with
28185 @code{MOVI} instructions instead of @code{L32R} to let the assembler
28186 do relaxation and place literals as necessary. This option allows
28187 assembler to create several literal pools per function and assemble
28188 very big functions, which may not be possible with
28189 @option{-mtext-section-literals}.
28190
28191 @item -mtarget-align
28192 @itemx -mno-target-align
28193 @opindex mtarget-align
28194 @opindex mno-target-align
28195 When this option is enabled, GCC instructs the assembler to
28196 automatically align instructions to reduce branch penalties at the
28197 expense of some code density. The assembler attempts to widen density
28198 instructions to align branch targets and the instructions following call
28199 instructions. If there are not enough preceding safe density
28200 instructions to align a target, no widening is performed. The
28201 default is @option{-mtarget-align}. These options do not affect the
28202 treatment of auto-aligned instructions like @code{LOOP}, which the
28203 assembler always aligns, either by widening density instructions or
28204 by inserting NOP instructions.
28205
28206 @item -mlongcalls
28207 @itemx -mno-longcalls
28208 @opindex mlongcalls
28209 @opindex mno-longcalls
28210 When this option is enabled, GCC instructs the assembler to translate
28211 direct calls to indirect calls unless it can determine that the target
28212 of a direct call is in the range allowed by the call instruction. This
28213 translation typically occurs for calls to functions in other source
28214 files. Specifically, the assembler translates a direct @code{CALL}
28215 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
28216 The default is @option{-mno-longcalls}. This option should be used in
28217 programs where the call target can potentially be out of range. This
28218 option is implemented in the assembler, not the compiler, so the
28219 assembly code generated by GCC still shows direct call
28220 instructions---look at the disassembled object code to see the actual
28221 instructions. Note that the assembler uses an indirect call for
28222 every cross-file call, not just those that really are out of range.
28223 @end table
28224
28225 @node zSeries Options
28226 @subsection zSeries Options
28227 @cindex zSeries options
28228
28229 These are listed under @xref{S/390 and zSeries Options}.
28230
28231
28232 @c man end
28233
28234 @node Spec Files
28235 @section Specifying Subprocesses and the Switches to Pass to Them
28236 @cindex Spec Files
28237
28238 @command{gcc} is a driver program. It performs its job by invoking a
28239 sequence of other programs to do the work of compiling, assembling and
28240 linking. GCC interprets its command-line parameters and uses these to
28241 deduce which programs it should invoke, and which command-line options
28242 it ought to place on their command lines. This behavior is controlled
28243 by @dfn{spec strings}. In most cases there is one spec string for each
28244 program that GCC can invoke, but a few programs have multiple spec
28245 strings to control their behavior. The spec strings built into GCC can
28246 be overridden by using the @option{-specs=} command-line switch to specify
28247 a spec file.
28248
28249 @dfn{Spec files} are plain-text files that are used to construct spec
28250 strings. They consist of a sequence of directives separated by blank
28251 lines. The type of directive is determined by the first non-whitespace
28252 character on the line, which can be one of the following:
28253
28254 @table @code
28255 @item %@var{command}
28256 Issues a @var{command} to the spec file processor. The commands that can
28257 appear here are:
28258
28259 @table @code
28260 @item %include <@var{file}>
28261 @cindex @code{%include}
28262 Search for @var{file} and insert its text at the current point in the
28263 specs file.
28264
28265 @item %include_noerr <@var{file}>
28266 @cindex @code{%include_noerr}
28267 Just like @samp{%include}, but do not generate an error message if the include
28268 file cannot be found.
28269
28270 @item %rename @var{old_name} @var{new_name}
28271 @cindex @code{%rename}
28272 Rename the spec string @var{old_name} to @var{new_name}.
28273
28274 @end table
28275
28276 @item *[@var{spec_name}]:
28277 This tells the compiler to create, override or delete the named spec
28278 string. All lines after this directive up to the next directive or
28279 blank line are considered to be the text for the spec string. If this
28280 results in an empty string then the spec is deleted. (Or, if the
28281 spec did not exist, then nothing happens.) Otherwise, if the spec
28282 does not currently exist a new spec is created. If the spec does
28283 exist then its contents are overridden by the text of this
28284 directive, unless the first character of that text is the @samp{+}
28285 character, in which case the text is appended to the spec.
28286
28287 @item [@var{suffix}]:
28288 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
28289 and up to the next directive or blank line are considered to make up the
28290 spec string for the indicated suffix. When the compiler encounters an
28291 input file with the named suffix, it processes the spec string in
28292 order to work out how to compile that file. For example:
28293
28294 @smallexample
28295 .ZZ:
28296 z-compile -input %i
28297 @end smallexample
28298
28299 This says that any input file whose name ends in @samp{.ZZ} should be
28300 passed to the program @samp{z-compile}, which should be invoked with the
28301 command-line switch @option{-input} and with the result of performing the
28302 @samp{%i} substitution. (See below.)
28303
28304 As an alternative to providing a spec string, the text following a
28305 suffix directive can be one of the following:
28306
28307 @table @code
28308 @item @@@var{language}
28309 This says that the suffix is an alias for a known @var{language}. This is
28310 similar to using the @option{-x} command-line switch to GCC to specify a
28311 language explicitly. For example:
28312
28313 @smallexample
28314 .ZZ:
28315 @@c++
28316 @end smallexample
28317
28318 Says that .ZZ files are, in fact, C++ source files.
28319
28320 @item #@var{name}
28321 This causes an error messages saying:
28322
28323 @smallexample
28324 @var{name} compiler not installed on this system.
28325 @end smallexample
28326 @end table
28327
28328 GCC already has an extensive list of suffixes built into it.
28329 This directive adds an entry to the end of the list of suffixes, but
28330 since the list is searched from the end backwards, it is effectively
28331 possible to override earlier entries using this technique.
28332
28333 @end table
28334
28335 GCC has the following spec strings built into it. Spec files can
28336 override these strings or create their own. Note that individual
28337 targets can also add their own spec strings to this list.
28338
28339 @smallexample
28340 asm Options to pass to the assembler
28341 asm_final Options to pass to the assembler post-processor
28342 cpp Options to pass to the C preprocessor
28343 cc1 Options to pass to the C compiler
28344 cc1plus Options to pass to the C++ compiler
28345 endfile Object files to include at the end of the link
28346 link Options to pass to the linker
28347 lib Libraries to include on the command line to the linker
28348 libgcc Decides which GCC support library to pass to the linker
28349 linker Sets the name of the linker
28350 predefines Defines to be passed to the C preprocessor
28351 signed_char Defines to pass to CPP to say whether @code{char} is signed
28352 by default
28353 startfile Object files to include at the start of the link
28354 @end smallexample
28355
28356 Here is a small example of a spec file:
28357
28358 @smallexample
28359 %rename lib old_lib
28360
28361 *lib:
28362 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
28363 @end smallexample
28364
28365 This example renames the spec called @samp{lib} to @samp{old_lib} and
28366 then overrides the previous definition of @samp{lib} with a new one.
28367 The new definition adds in some extra command-line options before
28368 including the text of the old definition.
28369
28370 @dfn{Spec strings} are a list of command-line options to be passed to their
28371 corresponding program. In addition, the spec strings can contain
28372 @samp{%}-prefixed sequences to substitute variable text or to
28373 conditionally insert text into the command line. Using these constructs
28374 it is possible to generate quite complex command lines.
28375
28376 Here is a table of all defined @samp{%}-sequences for spec
28377 strings. Note that spaces are not generated automatically around the
28378 results of expanding these sequences. Therefore you can concatenate them
28379 together or combine them with constant text in a single argument.
28380
28381 @table @code
28382 @item %%
28383 Substitute one @samp{%} into the program name or argument.
28384
28385 @item %i
28386 Substitute the name of the input file being processed.
28387
28388 @item %b
28389 Substitute the basename of the input file being processed.
28390 This is the substring up to (and not including) the last period
28391 and not including the directory.
28392
28393 @item %B
28394 This is the same as @samp{%b}, but include the file suffix (text after
28395 the last period).
28396
28397 @item %d
28398 Marks the argument containing or following the @samp{%d} as a
28399 temporary file name, so that that file is deleted if GCC exits
28400 successfully. Unlike @samp{%g}, this contributes no text to the
28401 argument.
28402
28403 @item %g@var{suffix}
28404 Substitute a file name that has suffix @var{suffix} and is chosen
28405 once per compilation, and mark the argument in the same way as
28406 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
28407 name is now chosen in a way that is hard to predict even when previously
28408 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
28409 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
28410 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
28411 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
28412 was simply substituted with a file name chosen once per compilation,
28413 without regard to any appended suffix (which was therefore treated
28414 just like ordinary text), making such attacks more likely to succeed.
28415
28416 @item %u@var{suffix}
28417 Like @samp{%g}, but generates a new temporary file name
28418 each time it appears instead of once per compilation.
28419
28420 @item %U@var{suffix}
28421 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
28422 new one if there is no such last file name. In the absence of any
28423 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
28424 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
28425 involves the generation of two distinct file names, one
28426 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
28427 simply substituted with a file name chosen for the previous @samp{%u},
28428 without regard to any appended suffix.
28429
28430 @item %j@var{suffix}
28431 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
28432 writable, and if @option{-save-temps} is not used;
28433 otherwise, substitute the name
28434 of a temporary file, just like @samp{%u}. This temporary file is not
28435 meant for communication between processes, but rather as a junk
28436 disposal mechanism.
28437
28438 @item %|@var{suffix}
28439 @itemx %m@var{suffix}
28440 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
28441 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
28442 all. These are the two most common ways to instruct a program that it
28443 should read from standard input or write to standard output. If you
28444 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
28445 construct: see for example @file{f/lang-specs.h}.
28446
28447 @item %.@var{SUFFIX}
28448 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
28449 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
28450 terminated by the next space or %.
28451
28452 @item %w
28453 Marks the argument containing or following the @samp{%w} as the
28454 designated output file of this compilation. This puts the argument
28455 into the sequence of arguments that @samp{%o} substitutes.
28456
28457 @item %o
28458 Substitutes the names of all the output files, with spaces
28459 automatically placed around them. You should write spaces
28460 around the @samp{%o} as well or the results are undefined.
28461 @samp{%o} is for use in the specs for running the linker.
28462 Input files whose names have no recognized suffix are not compiled
28463 at all, but they are included among the output files, so they are
28464 linked.
28465
28466 @item %O
28467 Substitutes the suffix for object files. Note that this is
28468 handled specially when it immediately follows @samp{%g, %u, or %U},
28469 because of the need for those to form complete file names. The
28470 handling is such that @samp{%O} is treated exactly as if it had already
28471 been substituted, except that @samp{%g, %u, and %U} do not currently
28472 support additional @var{suffix} characters following @samp{%O} as they do
28473 following, for example, @samp{.o}.
28474
28475 @item %p
28476 Substitutes the standard macro predefinitions for the
28477 current target machine. Use this when running @command{cpp}.
28478
28479 @item %P
28480 Like @samp{%p}, but puts @samp{__} before and after the name of each
28481 predefined macro, except for macros that start with @samp{__} or with
28482 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
28483 C@.
28484
28485 @item %I
28486 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
28487 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
28488 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
28489 and @option{-imultilib} as necessary.
28490
28491 @item %s
28492 Current argument is the name of a library or startup file of some sort.
28493 Search for that file in a standard list of directories and substitute
28494 the full name found. The current working directory is included in the
28495 list of directories scanned.
28496
28497 @item %T
28498 Current argument is the name of a linker script. Search for that file
28499 in the current list of directories to scan for libraries. If the file
28500 is located insert a @option{--script} option into the command line
28501 followed by the full path name found. If the file is not found then
28502 generate an error message. Note: the current working directory is not
28503 searched.
28504
28505 @item %e@var{str}
28506 Print @var{str} as an error message. @var{str} is terminated by a newline.
28507 Use this when inconsistent options are detected.
28508
28509 @item %(@var{name})
28510 Substitute the contents of spec string @var{name} at this point.
28511
28512 @item %x@{@var{option}@}
28513 Accumulate an option for @samp{%X}.
28514
28515 @item %X
28516 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
28517 spec string.
28518
28519 @item %Y
28520 Output the accumulated assembler options specified by @option{-Wa}.
28521
28522 @item %Z
28523 Output the accumulated preprocessor options specified by @option{-Wp}.
28524
28525 @item %a
28526 Process the @code{asm} spec. This is used to compute the
28527 switches to be passed to the assembler.
28528
28529 @item %A
28530 Process the @code{asm_final} spec. This is a spec string for
28531 passing switches to an assembler post-processor, if such a program is
28532 needed.
28533
28534 @item %l
28535 Process the @code{link} spec. This is the spec for computing the
28536 command line passed to the linker. Typically it makes use of the
28537 @samp{%L %G %S %D and %E} sequences.
28538
28539 @item %D
28540 Dump out a @option{-L} option for each directory that GCC believes might
28541 contain startup files. If the target supports multilibs then the
28542 current multilib directory is prepended to each of these paths.
28543
28544 @item %L
28545 Process the @code{lib} spec. This is a spec string for deciding which
28546 libraries are included on the command line to the linker.
28547
28548 @item %G
28549 Process the @code{libgcc} spec. This is a spec string for deciding
28550 which GCC support library is included on the command line to the linker.
28551
28552 @item %S
28553 Process the @code{startfile} spec. This is a spec for deciding which
28554 object files are the first ones passed to the linker. Typically
28555 this might be a file named @file{crt0.o}.
28556
28557 @item %E
28558 Process the @code{endfile} spec. This is a spec string that specifies
28559 the last object files that are passed to the linker.
28560
28561 @item %C
28562 Process the @code{cpp} spec. This is used to construct the arguments
28563 to be passed to the C preprocessor.
28564
28565 @item %1
28566 Process the @code{cc1} spec. This is used to construct the options to be
28567 passed to the actual C compiler (@command{cc1}).
28568
28569 @item %2
28570 Process the @code{cc1plus} spec. This is used to construct the options to be
28571 passed to the actual C++ compiler (@command{cc1plus}).
28572
28573 @item %*
28574 Substitute the variable part of a matched option. See below.
28575 Note that each comma in the substituted string is replaced by
28576 a single space.
28577
28578 @item %<S
28579 Remove all occurrences of @code{-S} from the command line. Note---this
28580 command is position dependent. @samp{%} commands in the spec string
28581 before this one see @code{-S}, @samp{%} commands in the spec string
28582 after this one do not.
28583
28584 @item %:@var{function}(@var{args})
28585 Call the named function @var{function}, passing it @var{args}.
28586 @var{args} is first processed as a nested spec string, then split
28587 into an argument vector in the usual fashion. The function returns
28588 a string which is processed as if it had appeared literally as part
28589 of the current spec.
28590
28591 The following built-in spec functions are provided:
28592
28593 @table @code
28594 @item @code{getenv}
28595 The @code{getenv} spec function takes two arguments: an environment
28596 variable name and a string. If the environment variable is not
28597 defined, a fatal error is issued. Otherwise, the return value is the
28598 value of the environment variable concatenated with the string. For
28599 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
28600
28601 @smallexample
28602 %:getenv(TOPDIR /include)
28603 @end smallexample
28604
28605 expands to @file{/path/to/top/include}.
28606
28607 @item @code{if-exists}
28608 The @code{if-exists} spec function takes one argument, an absolute
28609 pathname to a file. If the file exists, @code{if-exists} returns the
28610 pathname. Here is a small example of its usage:
28611
28612 @smallexample
28613 *startfile:
28614 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
28615 @end smallexample
28616
28617 @item @code{if-exists-else}
28618 The @code{if-exists-else} spec function is similar to the @code{if-exists}
28619 spec function, except that it takes two arguments. The first argument is
28620 an absolute pathname to a file. If the file exists, @code{if-exists-else}
28621 returns the pathname. If it does not exist, it returns the second argument.
28622 This way, @code{if-exists-else} can be used to select one file or another,
28623 based on the existence of the first. Here is a small example of its usage:
28624
28625 @smallexample
28626 *startfile:
28627 crt0%O%s %:if-exists(crti%O%s) \
28628 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
28629 @end smallexample
28630
28631 @item @code{replace-outfile}
28632 The @code{replace-outfile} spec function takes two arguments. It looks for the
28633 first argument in the outfiles array and replaces it with the second argument. Here
28634 is a small example of its usage:
28635
28636 @smallexample
28637 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
28638 @end smallexample
28639
28640 @item @code{remove-outfile}
28641 The @code{remove-outfile} spec function takes one argument. It looks for the
28642 first argument in the outfiles array and removes it. Here is a small example
28643 its usage:
28644
28645 @smallexample
28646 %:remove-outfile(-lm)
28647 @end smallexample
28648
28649 @item @code{pass-through-libs}
28650 The @code{pass-through-libs} spec function takes any number of arguments. It
28651 finds any @option{-l} options and any non-options ending in @file{.a} (which it
28652 assumes are the names of linker input library archive files) and returns a
28653 result containing all the found arguments each prepended by
28654 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
28655 intended to be passed to the LTO linker plugin.
28656
28657 @smallexample
28658 %:pass-through-libs(%G %L %G)
28659 @end smallexample
28660
28661 @item @code{print-asm-header}
28662 The @code{print-asm-header} function takes no arguments and simply
28663 prints a banner like:
28664
28665 @smallexample
28666 Assembler options
28667 =================
28668
28669 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
28670 @end smallexample
28671
28672 It is used to separate compiler options from assembler options
28673 in the @option{--target-help} output.
28674 @end table
28675
28676 @item %@{S@}
28677 Substitutes the @code{-S} switch, if that switch is given to GCC@.
28678 If that switch is not specified, this substitutes nothing. Note that
28679 the leading dash is omitted when specifying this option, and it is
28680 automatically inserted if the substitution is performed. Thus the spec
28681 string @samp{%@{foo@}} matches the command-line option @option{-foo}
28682 and outputs the command-line option @option{-foo}.
28683
28684 @item %W@{S@}
28685 Like %@{@code{S}@} but mark last argument supplied within as a file to be
28686 deleted on failure.
28687
28688 @item %@{S*@}
28689 Substitutes all the switches specified to GCC whose names start
28690 with @code{-S}, but which also take an argument. This is used for
28691 switches like @option{-o}, @option{-D}, @option{-I}, etc.
28692 GCC considers @option{-o foo} as being
28693 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
28694 text, including the space. Thus two arguments are generated.
28695
28696 @item %@{S*&T*@}
28697 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
28698 (the order of @code{S} and @code{T} in the spec is not significant).
28699 There can be any number of ampersand-separated variables; for each the
28700 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
28701
28702 @item %@{S:X@}
28703 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
28704
28705 @item %@{!S:X@}
28706 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
28707
28708 @item %@{S*:X@}
28709 Substitutes @code{X} if one or more switches whose names start with
28710 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
28711 once, no matter how many such switches appeared. However, if @code{%*}
28712 appears somewhere in @code{X}, then @code{X} is substituted once
28713 for each matching switch, with the @code{%*} replaced by the part of
28714 that switch matching the @code{*}.
28715
28716 If @code{%*} appears as the last part of a spec sequence then a space
28717 is added after the end of the last substitution. If there is more
28718 text in the sequence, however, then a space is not generated. This
28719 allows the @code{%*} substitution to be used as part of a larger
28720 string. For example, a spec string like this:
28721
28722 @smallexample
28723 %@{mcu=*:--script=%*/memory.ld@}
28724 @end smallexample
28725
28726 @noindent
28727 when matching an option like @option{-mcu=newchip} produces:
28728
28729 @smallexample
28730 --script=newchip/memory.ld
28731 @end smallexample
28732
28733 @item %@{.S:X@}
28734 Substitutes @code{X}, if processing a file with suffix @code{S}.
28735
28736 @item %@{!.S:X@}
28737 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
28738
28739 @item %@{,S:X@}
28740 Substitutes @code{X}, if processing a file for language @code{S}.
28741
28742 @item %@{!,S:X@}
28743 Substitutes @code{X}, if not processing a file for language @code{S}.
28744
28745 @item %@{S|P:X@}
28746 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
28747 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
28748 @code{*} sequences as well, although they have a stronger binding than
28749 the @samp{|}. If @code{%*} appears in @code{X}, all of the
28750 alternatives must be starred, and only the first matching alternative
28751 is substituted.
28752
28753 For example, a spec string like this:
28754
28755 @smallexample
28756 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
28757 @end smallexample
28758
28759 @noindent
28760 outputs the following command-line options from the following input
28761 command-line options:
28762
28763 @smallexample
28764 fred.c -foo -baz
28765 jim.d -bar -boggle
28766 -d fred.c -foo -baz -boggle
28767 -d jim.d -bar -baz -boggle
28768 @end smallexample
28769
28770 @item %@{S:X; T:Y; :D@}
28771
28772 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
28773 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
28774 be as many clauses as you need. This may be combined with @code{.},
28775 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
28776
28777
28778 @end table
28779
28780 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
28781 or similar construct can use a backslash to ignore the special meaning
28782 of the character following it, thus allowing literal matching of a
28783 character that is otherwise specially treated. For example,
28784 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
28785 @option{-std=iso9899:1999} option is given.
28786
28787 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
28788 construct may contain other nested @samp{%} constructs or spaces, or
28789 even newlines. They are processed as usual, as described above.
28790 Trailing white space in @code{X} is ignored. White space may also
28791 appear anywhere on the left side of the colon in these constructs,
28792 except between @code{.} or @code{*} and the corresponding word.
28793
28794 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
28795 handled specifically in these constructs. If another value of
28796 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
28797 @option{-W} switch is found later in the command line, the earlier
28798 switch value is ignored, except with @{@code{S}*@} where @code{S} is
28799 just one letter, which passes all matching options.
28800
28801 The character @samp{|} at the beginning of the predicate text is used to
28802 indicate that a command should be piped to the following command, but
28803 only if @option{-pipe} is specified.
28804
28805 It is built into GCC which switches take arguments and which do not.
28806 (You might think it would be useful to generalize this to allow each
28807 compiler's spec to say which switches take arguments. But this cannot
28808 be done in a consistent fashion. GCC cannot even decide which input
28809 files have been specified without knowing which switches take arguments,
28810 and it must know which input files to compile in order to tell which
28811 compilers to run).
28812
28813 GCC also knows implicitly that arguments starting in @option{-l} are to be
28814 treated as compiler output files, and passed to the linker in their
28815 proper position among the other output files.
28816
28817 @node Environment Variables
28818 @section Environment Variables Affecting GCC
28819 @cindex environment variables
28820
28821 @c man begin ENVIRONMENT
28822 This section describes several environment variables that affect how GCC
28823 operates. Some of them work by specifying directories or prefixes to use
28824 when searching for various kinds of files. Some are used to specify other
28825 aspects of the compilation environment.
28826
28827 Note that you can also specify places to search using options such as
28828 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
28829 take precedence over places specified using environment variables, which
28830 in turn take precedence over those specified by the configuration of GCC@.
28831 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
28832 GNU Compiler Collection (GCC) Internals}.
28833
28834 @table @env
28835 @item LANG
28836 @itemx LC_CTYPE
28837 @c @itemx LC_COLLATE
28838 @itemx LC_MESSAGES
28839 @c @itemx LC_MONETARY
28840 @c @itemx LC_NUMERIC
28841 @c @itemx LC_TIME
28842 @itemx LC_ALL
28843 @findex LANG
28844 @findex LC_CTYPE
28845 @c @findex LC_COLLATE
28846 @findex LC_MESSAGES
28847 @c @findex LC_MONETARY
28848 @c @findex LC_NUMERIC
28849 @c @findex LC_TIME
28850 @findex LC_ALL
28851 @cindex locale
28852 These environment variables control the way that GCC uses
28853 localization information which allows GCC to work with different
28854 national conventions. GCC inspects the locale categories
28855 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
28856 so. These locale categories can be set to any value supported by your
28857 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
28858 Kingdom encoded in UTF-8.
28859
28860 The @env{LC_CTYPE} environment variable specifies character
28861 classification. GCC uses it to determine the character boundaries in
28862 a string; this is needed for some multibyte encodings that contain quote
28863 and escape characters that are otherwise interpreted as a string
28864 end or escape.
28865
28866 The @env{LC_MESSAGES} environment variable specifies the language to
28867 use in diagnostic messages.
28868
28869 If the @env{LC_ALL} environment variable is set, it overrides the value
28870 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
28871 and @env{LC_MESSAGES} default to the value of the @env{LANG}
28872 environment variable. If none of these variables are set, GCC
28873 defaults to traditional C English behavior.
28874
28875 @item TMPDIR
28876 @findex TMPDIR
28877 If @env{TMPDIR} is set, it specifies the directory to use for temporary
28878 files. GCC uses temporary files to hold the output of one stage of
28879 compilation which is to be used as input to the next stage: for example,
28880 the output of the preprocessor, which is the input to the compiler
28881 proper.
28882
28883 @item GCC_COMPARE_DEBUG
28884 @findex GCC_COMPARE_DEBUG
28885 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
28886 @option{-fcompare-debug} to the compiler driver. See the documentation
28887 of this option for more details.
28888
28889 @item GCC_EXEC_PREFIX
28890 @findex GCC_EXEC_PREFIX
28891 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
28892 names of the subprograms executed by the compiler. No slash is added
28893 when this prefix is combined with the name of a subprogram, but you can
28894 specify a prefix that ends with a slash if you wish.
28895
28896 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
28897 an appropriate prefix to use based on the pathname it is invoked with.
28898
28899 If GCC cannot find the subprogram using the specified prefix, it
28900 tries looking in the usual places for the subprogram.
28901
28902 The default value of @env{GCC_EXEC_PREFIX} is
28903 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
28904 the installed compiler. In many cases @var{prefix} is the value
28905 of @code{prefix} when you ran the @file{configure} script.
28906
28907 Other prefixes specified with @option{-B} take precedence over this prefix.
28908
28909 This prefix is also used for finding files such as @file{crt0.o} that are
28910 used for linking.
28911
28912 In addition, the prefix is used in an unusual way in finding the
28913 directories to search for header files. For each of the standard
28914 directories whose name normally begins with @samp{/usr/local/lib/gcc}
28915 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
28916 replacing that beginning with the specified prefix to produce an
28917 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
28918 @file{foo/bar} just before it searches the standard directory
28919 @file{/usr/local/lib/bar}.
28920 If a standard directory begins with the configured
28921 @var{prefix} then the value of @var{prefix} is replaced by
28922 @env{GCC_EXEC_PREFIX} when looking for header files.
28923
28924 @item COMPILER_PATH
28925 @findex COMPILER_PATH
28926 The value of @env{COMPILER_PATH} is a colon-separated list of
28927 directories, much like @env{PATH}. GCC tries the directories thus
28928 specified when searching for subprograms, if it cannot find the
28929 subprograms using @env{GCC_EXEC_PREFIX}.
28930
28931 @item LIBRARY_PATH
28932 @findex LIBRARY_PATH
28933 The value of @env{LIBRARY_PATH} is a colon-separated list of
28934 directories, much like @env{PATH}. When configured as a native compiler,
28935 GCC tries the directories thus specified when searching for special
28936 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
28937 using GCC also uses these directories when searching for ordinary
28938 libraries for the @option{-l} option (but directories specified with
28939 @option{-L} come first).
28940
28941 @item LANG
28942 @findex LANG
28943 @cindex locale definition
28944 This variable is used to pass locale information to the compiler. One way in
28945 which this information is used is to determine the character set to be used
28946 when character literals, string literals and comments are parsed in C and C++.
28947 When the compiler is configured to allow multibyte characters,
28948 the following values for @env{LANG} are recognized:
28949
28950 @table @samp
28951 @item C-JIS
28952 Recognize JIS characters.
28953 @item C-SJIS
28954 Recognize SJIS characters.
28955 @item C-EUCJP
28956 Recognize EUCJP characters.
28957 @end table
28958
28959 If @env{LANG} is not defined, or if it has some other value, then the
28960 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
28961 recognize and translate multibyte characters.
28962 @end table
28963
28964 @noindent
28965 Some additional environment variables affect the behavior of the
28966 preprocessor.
28967
28968 @include cppenv.texi
28969
28970 @c man end
28971
28972 @node Precompiled Headers
28973 @section Using Precompiled Headers
28974 @cindex precompiled headers
28975 @cindex speed of compilation
28976
28977 Often large projects have many header files that are included in every
28978 source file. The time the compiler takes to process these header files
28979 over and over again can account for nearly all of the time required to
28980 build the project. To make builds faster, GCC allows you to
28981 @dfn{precompile} a header file.
28982
28983 To create a precompiled header file, simply compile it as you would any
28984 other file, if necessary using the @option{-x} option to make the driver
28985 treat it as a C or C++ header file. You may want to use a
28986 tool like @command{make} to keep the precompiled header up-to-date when
28987 the headers it contains change.
28988
28989 A precompiled header file is searched for when @code{#include} is
28990 seen in the compilation. As it searches for the included file
28991 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
28992 compiler looks for a precompiled header in each directory just before it
28993 looks for the include file in that directory. The name searched for is
28994 the name specified in the @code{#include} with @samp{.gch} appended. If
28995 the precompiled header file cannot be used, it is ignored.
28996
28997 For instance, if you have @code{#include "all.h"}, and you have
28998 @file{all.h.gch} in the same directory as @file{all.h}, then the
28999 precompiled header file is used if possible, and the original
29000 header is used otherwise.
29001
29002 Alternatively, you might decide to put the precompiled header file in a
29003 directory and use @option{-I} to ensure that directory is searched
29004 before (or instead of) the directory containing the original header.
29005 Then, if you want to check that the precompiled header file is always
29006 used, you can put a file of the same name as the original header in this
29007 directory containing an @code{#error} command.
29008
29009 This also works with @option{-include}. So yet another way to use
29010 precompiled headers, good for projects not designed with precompiled
29011 header files in mind, is to simply take most of the header files used by
29012 a project, include them from another header file, precompile that header
29013 file, and @option{-include} the precompiled header. If the header files
29014 have guards against multiple inclusion, they are skipped because
29015 they've already been included (in the precompiled header).
29016
29017 If you need to precompile the same header file for different
29018 languages, targets, or compiler options, you can instead make a
29019 @emph{directory} named like @file{all.h.gch}, and put each precompiled
29020 header in the directory, perhaps using @option{-o}. It doesn't matter
29021 what you call the files in the directory; every precompiled header in
29022 the directory is considered. The first precompiled header
29023 encountered in the directory that is valid for this compilation is
29024 used; they're searched in no particular order.
29025
29026 There are many other possibilities, limited only by your imagination,
29027 good sense, and the constraints of your build system.
29028
29029 A precompiled header file can be used only when these conditions apply:
29030
29031 @itemize
29032 @item
29033 Only one precompiled header can be used in a particular compilation.
29034
29035 @item
29036 A precompiled header cannot be used once the first C token is seen. You
29037 can have preprocessor directives before a precompiled header; you cannot
29038 include a precompiled header from inside another header.
29039
29040 @item
29041 The precompiled header file must be produced for the same language as
29042 the current compilation. You cannot use a C precompiled header for a C++
29043 compilation.
29044
29045 @item
29046 The precompiled header file must have been produced by the same compiler
29047 binary as the current compilation is using.
29048
29049 @item
29050 Any macros defined before the precompiled header is included must
29051 either be defined in the same way as when the precompiled header was
29052 generated, or must not affect the precompiled header, which usually
29053 means that they don't appear in the precompiled header at all.
29054
29055 The @option{-D} option is one way to define a macro before a
29056 precompiled header is included; using a @code{#define} can also do it.
29057 There are also some options that define macros implicitly, like
29058 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
29059 defined this way.
29060
29061 @item If debugging information is output when using the precompiled
29062 header, using @option{-g} or similar, the same kind of debugging information
29063 must have been output when building the precompiled header. However,
29064 a precompiled header built using @option{-g} can be used in a compilation
29065 when no debugging information is being output.
29066
29067 @item The same @option{-m} options must generally be used when building
29068 and using the precompiled header. @xref{Submodel Options},
29069 for any cases where this rule is relaxed.
29070
29071 @item Each of the following options must be the same when building and using
29072 the precompiled header:
29073
29074 @gccoptlist{-fexceptions}
29075
29076 @item
29077 Some other command-line options starting with @option{-f},
29078 @option{-p}, or @option{-O} must be defined in the same way as when
29079 the precompiled header was generated. At present, it's not clear
29080 which options are safe to change and which are not; the safest choice
29081 is to use exactly the same options when generating and using the
29082 precompiled header. The following are known to be safe:
29083
29084 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
29085 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
29086 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
29087 -pedantic-errors}
29088
29089 @end itemize
29090
29091 For all of these except the last, the compiler automatically
29092 ignores the precompiled header if the conditions aren't met. If you
29093 find an option combination that doesn't work and doesn't cause the
29094 precompiled header to be ignored, please consider filing a bug report,
29095 see @ref{Bugs}.
29096
29097 If you do use differing options when generating and using the
29098 precompiled header, the actual behavior is a mixture of the
29099 behavior for the options. For instance, if you use @option{-g} to
29100 generate the precompiled header but not when using it, you may or may
29101 not get debugging information for routines in the precompiled header.