usage.adb: Change "pragma inline" to "pragma Inline" in information and error messages
[gcc.git] / gcc / dominance.c
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "basic-block.h"
43 #include "errors.h"
44 #include "et-forest.h"
45
46 /* Whether the dominators and the postdominators are available. */
47 enum dom_state dom_computed[2];
48
49 /* We name our nodes with integers, beginning with 1. Zero is reserved for
50 'undefined' or 'end of list'. The name of each node is given by the dfs
51 number of the corresponding basic block. Please note, that we include the
52 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
53 support multiple entry points. As it has no real basic block index we use
54 'last_basic_block' for that. Its dfs number is of course 1. */
55
56 /* Type of Basic Block aka. TBB */
57 typedef unsigned int TBB;
58
59 /* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
63
64 struct dom_info
65 {
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
82
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representant
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
93
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
98 /* If x is the DFS-index of a node which corresponds with a basic block,
99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
103
104 /* This is the next free DFS number when creating the DFS tree. */
105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
108
109 /* Blocks with bits set here have a fake edge to EXIT. These are used
110 to turn a DFS forest into a proper tree. */
111 bitmap fake_exit_edge;
112 };
113
114 static void init_dom_info (struct dom_info *, enum cdi_direction);
115 static void free_dom_info (struct dom_info *);
116 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
117 enum cdi_direction);
118 static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
119 static void compress (struct dom_info *, TBB);
120 static TBB eval (struct dom_info *, TBB);
121 static void link_roots (struct dom_info *, TBB, TBB);
122 static void calc_idoms (struct dom_info *, enum cdi_direction);
123 void debug_dominance_info (enum cdi_direction);
124
125 /* Keeps track of the*/
126 static unsigned n_bbs_in_dom_tree[2];
127
128 /* Helper macro for allocating and initializing an array,
129 for aesthetic reasons. */
130 #define init_ar(var, type, num, content) \
131 do \
132 { \
133 unsigned int i = 1; /* Catch content == i. */ \
134 if (! (content)) \
135 (var) = xcalloc ((num), sizeof (type)); \
136 else \
137 { \
138 (var) = xmalloc ((num) * sizeof (type)); \
139 for (i = 0; i < num; i++) \
140 (var)[i] = (content); \
141 } \
142 } \
143 while (0)
144
145 /* Allocate all needed memory in a pessimistic fashion (so we round up).
146 This initializes the contents of DI, which already must be allocated. */
147
148 static void
149 init_dom_info (struct dom_info *di, enum cdi_direction dir)
150 {
151 /* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
152 EXIT_BLOCK. */
153 unsigned int num = n_basic_blocks + 1 + 1;
154 init_ar (di->dfs_parent, TBB, num, 0);
155 init_ar (di->path_min, TBB, num, i);
156 init_ar (di->key, TBB, num, i);
157 init_ar (di->dom, TBB, num, 0);
158
159 init_ar (di->bucket, TBB, num, 0);
160 init_ar (di->next_bucket, TBB, num, 0);
161
162 init_ar (di->set_chain, TBB, num, 0);
163 init_ar (di->set_size, unsigned int, num, 1);
164 init_ar (di->set_child, TBB, num, 0);
165
166 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
167 init_ar (di->dfs_to_bb, basic_block, num, 0);
168
169 di->dfsnum = 1;
170 di->nodes = 0;
171
172 di->fake_exit_edge = dir ? BITMAP_XMALLOC () : NULL;
173 }
174
175 #undef init_ar
176
177 /* Free all allocated memory in DI, but not DI itself. */
178
179 static void
180 free_dom_info (struct dom_info *di)
181 {
182 free (di->dfs_parent);
183 free (di->path_min);
184 free (di->key);
185 free (di->dom);
186 free (di->bucket);
187 free (di->next_bucket);
188 free (di->set_chain);
189 free (di->set_size);
190 free (di->set_child);
191 free (di->dfs_order);
192 free (di->dfs_to_bb);
193 BITMAP_XFREE (di->fake_exit_edge);
194 }
195
196 /* The nonrecursive variant of creating a DFS tree. DI is our working
197 structure, BB the starting basic block for this tree and REVERSE
198 is true, if predecessors should be visited instead of successors of a
199 node. After this is done all nodes reachable from BB were visited, have
200 assigned their dfs number and are linked together to form a tree. */
201
202 static void
203 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
204 enum cdi_direction reverse)
205 {
206 /* We call this _only_ if bb is not already visited. */
207 edge e;
208 TBB child_i, my_i = 0;
209 edge_iterator *stack;
210 edge_iterator ei, einext;
211 int sp;
212 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
213 problem). */
214 basic_block en_block;
215 /* Ending block. */
216 basic_block ex_block;
217
218 stack = xmalloc ((n_basic_blocks + 3) * sizeof (edge_iterator));
219 sp = 0;
220
221 /* Initialize our border blocks, and the first edge. */
222 if (reverse)
223 {
224 ei = ei_start (bb->preds);
225 en_block = EXIT_BLOCK_PTR;
226 ex_block = ENTRY_BLOCK_PTR;
227 }
228 else
229 {
230 ei = ei_start (bb->succs);
231 en_block = ENTRY_BLOCK_PTR;
232 ex_block = EXIT_BLOCK_PTR;
233 }
234
235 /* When the stack is empty we break out of this loop. */
236 while (1)
237 {
238 basic_block bn;
239
240 /* This loop traverses edges e in depth first manner, and fills the
241 stack. */
242 while (!ei_end_p (ei))
243 {
244 e = ei_edge (ei);
245
246 /* Deduce from E the current and the next block (BB and BN), and the
247 next edge. */
248 if (reverse)
249 {
250 bn = e->src;
251
252 /* If the next node BN is either already visited or a border
253 block the current edge is useless, and simply overwritten
254 with the next edge out of the current node. */
255 if (bn == ex_block || di->dfs_order[bn->index])
256 {
257 ei_next (&ei);
258 continue;
259 }
260 bb = e->dest;
261 einext = ei_start (bn->preds);
262 }
263 else
264 {
265 bn = e->dest;
266 if (bn == ex_block || di->dfs_order[bn->index])
267 {
268 ei_next (&ei);
269 continue;
270 }
271 bb = e->src;
272 einext = ei_start (bn->succs);
273 }
274
275 gcc_assert (bn != en_block);
276
277 /* Fill the DFS tree info calculatable _before_ recursing. */
278 if (bb != en_block)
279 my_i = di->dfs_order[bb->index];
280 else
281 my_i = di->dfs_order[last_basic_block];
282 child_i = di->dfs_order[bn->index] = di->dfsnum++;
283 di->dfs_to_bb[child_i] = bn;
284 di->dfs_parent[child_i] = my_i;
285
286 /* Save the current point in the CFG on the stack, and recurse. */
287 stack[sp++] = ei;
288 ei = einext;
289 }
290
291 if (!sp)
292 break;
293 ei = stack[--sp];
294
295 /* OK. The edge-list was exhausted, meaning normally we would
296 end the recursion. After returning from the recursive call,
297 there were (may be) other statements which were run after a
298 child node was completely considered by DFS. Here is the
299 point to do it in the non-recursive variant.
300 E.g. The block just completed is in e->dest for forward DFS,
301 the block not yet completed (the parent of the one above)
302 in e->src. This could be used e.g. for computing the number of
303 descendants or the tree depth. */
304 ei_next (&ei);
305 }
306 free (stack);
307 }
308
309 /* The main entry for calculating the DFS tree or forest. DI is our working
310 structure and REVERSE is true, if we are interested in the reverse flow
311 graph. In that case the result is not necessarily a tree but a forest,
312 because there may be nodes from which the EXIT_BLOCK is unreachable. */
313
314 static void
315 calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
316 {
317 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
318 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
319 di->dfs_order[last_basic_block] = di->dfsnum;
320 di->dfs_to_bb[di->dfsnum] = begin;
321 di->dfsnum++;
322
323 calc_dfs_tree_nonrec (di, begin, reverse);
324
325 if (reverse)
326 {
327 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
328 They are reverse-unreachable. In the dom-case we disallow such
329 nodes, but in post-dom we have to deal with them.
330
331 There are two situations in which this occurs. First, noreturn
332 functions. Second, infinite loops. In the first case we need to
333 pretend that there is an edge to the exit block. In the second
334 case, we wind up with a forest. We need to process all noreturn
335 blocks before we know if we've got any infinite loops. */
336
337 basic_block b;
338 bool saw_unconnected = false;
339
340 FOR_EACH_BB_REVERSE (b)
341 {
342 if (EDGE_COUNT (b->succs) > 0)
343 {
344 if (di->dfs_order[b->index] == 0)
345 saw_unconnected = true;
346 continue;
347 }
348 bitmap_set_bit (di->fake_exit_edge, b->index);
349 di->dfs_order[b->index] = di->dfsnum;
350 di->dfs_to_bb[di->dfsnum] = b;
351 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
352 di->dfsnum++;
353 calc_dfs_tree_nonrec (di, b, reverse);
354 }
355
356 if (saw_unconnected)
357 {
358 FOR_EACH_BB_REVERSE (b)
359 {
360 if (di->dfs_order[b->index])
361 continue;
362 bitmap_set_bit (di->fake_exit_edge, b->index);
363 di->dfs_order[b->index] = di->dfsnum;
364 di->dfs_to_bb[di->dfsnum] = b;
365 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
366 di->dfsnum++;
367 calc_dfs_tree_nonrec (di, b, reverse);
368 }
369 }
370 }
371
372 di->nodes = di->dfsnum - 1;
373
374 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
375 gcc_assert (di->nodes == (unsigned int) n_basic_blocks + 1);
376 }
377
378 /* Compress the path from V to the root of its set and update path_min at the
379 same time. After compress(di, V) set_chain[V] is the root of the set V is
380 in and path_min[V] is the node with the smallest key[] value on the path
381 from V to that root. */
382
383 static void
384 compress (struct dom_info *di, TBB v)
385 {
386 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
387 greater than 5 even for huge graphs (I've not seen call depth > 4).
388 Also performance wise compress() ranges _far_ behind eval(). */
389 TBB parent = di->set_chain[v];
390 if (di->set_chain[parent])
391 {
392 compress (di, parent);
393 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
394 di->path_min[v] = di->path_min[parent];
395 di->set_chain[v] = di->set_chain[parent];
396 }
397 }
398
399 /* Compress the path from V to the set root of V if needed (when the root has
400 changed since the last call). Returns the node with the smallest key[]
401 value on the path from V to the root. */
402
403 static inline TBB
404 eval (struct dom_info *di, TBB v)
405 {
406 /* The representant of the set V is in, also called root (as the set
407 representation is a tree). */
408 TBB rep = di->set_chain[v];
409
410 /* V itself is the root. */
411 if (!rep)
412 return di->path_min[v];
413
414 /* Compress only if necessary. */
415 if (di->set_chain[rep])
416 {
417 compress (di, v);
418 rep = di->set_chain[v];
419 }
420
421 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
422 return di->path_min[v];
423 else
424 return di->path_min[rep];
425 }
426
427 /* This essentially merges the two sets of V and W, giving a single set with
428 the new root V. The internal representation of these disjoint sets is a
429 balanced tree. Currently link(V,W) is only used with V being the parent
430 of W. */
431
432 static void
433 link_roots (struct dom_info *di, TBB v, TBB w)
434 {
435 TBB s = w;
436
437 /* Rebalance the tree. */
438 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
439 {
440 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
441 >= 2 * di->set_size[di->set_child[s]])
442 {
443 di->set_chain[di->set_child[s]] = s;
444 di->set_child[s] = di->set_child[di->set_child[s]];
445 }
446 else
447 {
448 di->set_size[di->set_child[s]] = di->set_size[s];
449 s = di->set_chain[s] = di->set_child[s];
450 }
451 }
452
453 di->path_min[s] = di->path_min[w];
454 di->set_size[v] += di->set_size[w];
455 if (di->set_size[v] < 2 * di->set_size[w])
456 {
457 TBB tmp = s;
458 s = di->set_child[v];
459 di->set_child[v] = tmp;
460 }
461
462 /* Merge all subtrees. */
463 while (s)
464 {
465 di->set_chain[s] = v;
466 s = di->set_child[s];
467 }
468 }
469
470 /* This calculates the immediate dominators (or post-dominators if REVERSE is
471 true). DI is our working structure and should hold the DFS forest.
472 On return the immediate dominator to node V is in di->dom[V]. */
473
474 static void
475 calc_idoms (struct dom_info *di, enum cdi_direction reverse)
476 {
477 TBB v, w, k, par;
478 basic_block en_block;
479 edge_iterator ei, einext;
480
481 if (reverse)
482 en_block = EXIT_BLOCK_PTR;
483 else
484 en_block = ENTRY_BLOCK_PTR;
485
486 /* Go backwards in DFS order, to first look at the leafs. */
487 v = di->nodes;
488 while (v > 1)
489 {
490 basic_block bb = di->dfs_to_bb[v];
491 edge e;
492
493 par = di->dfs_parent[v];
494 k = v;
495
496 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
497
498 if (reverse)
499 {
500 /* If this block has a fake edge to exit, process that first. */
501 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
502 {
503 einext = ei;
504 einext.index = 0;
505 goto do_fake_exit_edge;
506 }
507 }
508
509 /* Search all direct predecessors for the smallest node with a path
510 to them. That way we have the smallest node with also a path to
511 us only over nodes behind us. In effect we search for our
512 semidominator. */
513 while (!ei_end_p (ei))
514 {
515 TBB k1;
516 basic_block b;
517
518 e = ei_edge (ei);
519 b = (reverse) ? e->dest : e->src;
520 einext = ei;
521 ei_next (&einext);
522
523 if (b == en_block)
524 {
525 do_fake_exit_edge:
526 k1 = di->dfs_order[last_basic_block];
527 }
528 else
529 k1 = di->dfs_order[b->index];
530
531 /* Call eval() only if really needed. If k1 is above V in DFS tree,
532 then we know, that eval(k1) == k1 and key[k1] == k1. */
533 if (k1 > v)
534 k1 = di->key[eval (di, k1)];
535 if (k1 < k)
536 k = k1;
537
538 ei = einext;
539 }
540
541 di->key[v] = k;
542 link_roots (di, par, v);
543 di->next_bucket[v] = di->bucket[k];
544 di->bucket[k] = v;
545
546 /* Transform semidominators into dominators. */
547 for (w = di->bucket[par]; w; w = di->next_bucket[w])
548 {
549 k = eval (di, w);
550 if (di->key[k] < di->key[w])
551 di->dom[w] = k;
552 else
553 di->dom[w] = par;
554 }
555 /* We don't need to cleanup next_bucket[]. */
556 di->bucket[par] = 0;
557 v--;
558 }
559
560 /* Explicitly define the dominators. */
561 di->dom[1] = 0;
562 for (v = 2; v <= di->nodes; v++)
563 if (di->dom[v] != di->key[v])
564 di->dom[v] = di->dom[di->dom[v]];
565 }
566
567 /* Assign dfs numbers starting from NUM to NODE and its sons. */
568
569 static void
570 assign_dfs_numbers (struct et_node *node, int *num)
571 {
572 struct et_node *son;
573
574 node->dfs_num_in = (*num)++;
575
576 if (node->son)
577 {
578 assign_dfs_numbers (node->son, num);
579 for (son = node->son->right; son != node->son; son = son->right)
580 assign_dfs_numbers (son, num);
581 }
582
583 node->dfs_num_out = (*num)++;
584 }
585
586 /* Compute the data necessary for fast resolving of dominator queries in a
587 static dominator tree. */
588
589 static void
590 compute_dom_fast_query (enum cdi_direction dir)
591 {
592 int num = 0;
593 basic_block bb;
594
595 gcc_assert (dom_computed[dir] >= DOM_NO_FAST_QUERY);
596
597 if (dom_computed[dir] == DOM_OK)
598 return;
599
600 FOR_ALL_BB (bb)
601 {
602 if (!bb->dom[dir]->father)
603 assign_dfs_numbers (bb->dom[dir], &num);
604 }
605
606 dom_computed[dir] = DOM_OK;
607 }
608
609 /* The main entry point into this module. DIR is set depending on whether
610 we want to compute dominators or postdominators. */
611
612 void
613 calculate_dominance_info (enum cdi_direction dir)
614 {
615 struct dom_info di;
616 basic_block b;
617
618 if (dom_computed[dir] == DOM_OK)
619 return;
620
621 if (dom_computed[dir] != DOM_NO_FAST_QUERY)
622 {
623 if (dom_computed[dir] != DOM_NONE)
624 free_dominance_info (dir);
625
626 gcc_assert (!n_bbs_in_dom_tree[dir]);
627
628 FOR_ALL_BB (b)
629 {
630 b->dom[dir] = et_new_tree (b);
631 }
632 n_bbs_in_dom_tree[dir] = n_basic_blocks + 2;
633
634 init_dom_info (&di, dir);
635 calc_dfs_tree (&di, dir);
636 calc_idoms (&di, dir);
637
638 FOR_EACH_BB (b)
639 {
640 TBB d = di.dom[di.dfs_order[b->index]];
641
642 if (di.dfs_to_bb[d])
643 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
644 }
645
646 free_dom_info (&di);
647 dom_computed[dir] = DOM_NO_FAST_QUERY;
648 }
649
650 compute_dom_fast_query (dir);
651 }
652
653 /* Free dominance information for direction DIR. */
654 void
655 free_dominance_info (enum cdi_direction dir)
656 {
657 basic_block bb;
658
659 if (!dom_computed[dir])
660 return;
661
662 FOR_ALL_BB (bb)
663 {
664 delete_from_dominance_info (dir, bb);
665 }
666
667 /* If there are any nodes left, something is wrong. */
668 gcc_assert (!n_bbs_in_dom_tree[dir]);
669
670 dom_computed[dir] = DOM_NONE;
671 }
672
673 /* Return the immediate dominator of basic block BB. */
674 basic_block
675 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
676 {
677 struct et_node *node = bb->dom[dir];
678
679 gcc_assert (dom_computed[dir]);
680
681 if (!node->father)
682 return NULL;
683
684 return node->father->data;
685 }
686
687 /* Set the immediate dominator of the block possibly removing
688 existing edge. NULL can be used to remove any edge. */
689 inline void
690 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
691 basic_block dominated_by)
692 {
693 struct et_node *node = bb->dom[dir];
694
695 gcc_assert (dom_computed[dir]);
696
697 if (node->father)
698 {
699 if (node->father->data == dominated_by)
700 return;
701 et_split (node);
702 }
703
704 if (dominated_by)
705 et_set_father (node, dominated_by->dom[dir]);
706
707 if (dom_computed[dir] == DOM_OK)
708 dom_computed[dir] = DOM_NO_FAST_QUERY;
709 }
710
711 /* Store all basic blocks immediately dominated by BB into BBS and return
712 their number. */
713 int
714 get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
715 {
716 int n;
717 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
718
719 gcc_assert (dom_computed[dir]);
720
721 if (!son)
722 {
723 *bbs = NULL;
724 return 0;
725 }
726
727 for (ason = son->right, n = 1; ason != son; ason = ason->right)
728 n++;
729
730 *bbs = xmalloc (n * sizeof (basic_block));
731 (*bbs)[0] = son->data;
732 for (ason = son->right, n = 1; ason != son; ason = ason->right)
733 (*bbs)[n++] = ason->data;
734
735 return n;
736 }
737
738 /* Find all basic blocks that are immediately dominated (in direction DIR)
739 by some block between N_REGION ones stored in REGION, except for blocks
740 in the REGION itself. The found blocks are stored to DOMS and their number
741 is returned. */
742
743 unsigned
744 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
745 unsigned n_region, basic_block *doms)
746 {
747 unsigned n_doms = 0, i;
748 basic_block dom;
749
750 for (i = 0; i < n_region; i++)
751 region[i]->rbi->duplicated = 1;
752 for (i = 0; i < n_region; i++)
753 for (dom = first_dom_son (dir, region[i]);
754 dom;
755 dom = next_dom_son (dir, dom))
756 if (!dom->rbi->duplicated)
757 doms[n_doms++] = dom;
758 for (i = 0; i < n_region; i++)
759 region[i]->rbi->duplicated = 0;
760
761 return n_doms;
762 }
763
764 /* Redirect all edges pointing to BB to TO. */
765 void
766 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
767 basic_block to)
768 {
769 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
770
771 gcc_assert (dom_computed[dir]);
772
773 if (!bb_node->son)
774 return;
775
776 while (bb_node->son)
777 {
778 son = bb_node->son;
779
780 et_split (son);
781 et_set_father (son, to_node);
782 }
783
784 if (dom_computed[dir] == DOM_OK)
785 dom_computed[dir] = DOM_NO_FAST_QUERY;
786 }
787
788 /* Find first basic block in the tree dominating both BB1 and BB2. */
789 basic_block
790 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
791 {
792 gcc_assert (dom_computed[dir]);
793
794 if (!bb1)
795 return bb2;
796 if (!bb2)
797 return bb1;
798
799 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
800 }
801
802 /* Return TRUE in case BB1 is dominated by BB2. */
803 bool
804 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
805 {
806 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
807
808 gcc_assert (dom_computed[dir]);
809
810 if (dom_computed[dir] == DOM_OK)
811 return (n1->dfs_num_in >= n2->dfs_num_in
812 && n1->dfs_num_out <= n2->dfs_num_out);
813
814 return et_below (n1, n2);
815 }
816
817 /* Verify invariants of dominator structure. */
818 void
819 verify_dominators (enum cdi_direction dir)
820 {
821 int err = 0;
822 basic_block bb;
823
824 gcc_assert (dom_computed[dir]);
825
826 FOR_EACH_BB (bb)
827 {
828 basic_block dom_bb;
829 basic_block imm_bb;
830
831 dom_bb = recount_dominator (dir, bb);
832 imm_bb = get_immediate_dominator (dir, bb);
833 if (dom_bb != imm_bb)
834 {
835 if ((dom_bb == NULL) || (imm_bb == NULL))
836 error ("dominator of %d status unknown", bb->index);
837 else
838 error ("dominator of %d should be %d, not %d",
839 bb->index, dom_bb->index, imm_bb->index);
840 err = 1;
841 }
842 }
843
844 if (dir == CDI_DOMINATORS
845 && dom_computed[dir] >= DOM_NO_FAST_QUERY)
846 {
847 FOR_EACH_BB (bb)
848 {
849 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
850 {
851 error ("ENTRY does not dominate bb %d", bb->index);
852 err = 1;
853 }
854 }
855 }
856
857 gcc_assert (!err);
858 }
859
860 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
861 assuming that dominators of other blocks are correct. We also use it to
862 recompute the dominators in a restricted area, by iterating it until it
863 reaches a fixed point. */
864
865 basic_block
866 recount_dominator (enum cdi_direction dir, basic_block bb)
867 {
868 basic_block dom_bb = NULL;
869 edge e;
870 edge_iterator ei;
871
872 gcc_assert (dom_computed[dir]);
873
874 if (dir == CDI_DOMINATORS)
875 {
876 FOR_EACH_EDGE (e, ei, bb->preds)
877 {
878 /* Ignore the predecessors that either are not reachable from
879 the entry block, or whose dominator was not determined yet. */
880 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
881 continue;
882
883 if (!dominated_by_p (dir, e->src, bb))
884 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
885 }
886 }
887 else
888 {
889 FOR_EACH_EDGE (e, ei, bb->succs)
890 {
891 if (!dominated_by_p (dir, e->dest, bb))
892 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
893 }
894 }
895
896 return dom_bb;
897 }
898
899 /* Iteratively recount dominators of BBS. The change is supposed to be local
900 and not to grow further. */
901 void
902 iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
903 {
904 int i, changed = 1;
905 basic_block old_dom, new_dom;
906
907 gcc_assert (dom_computed[dir]);
908
909 for (i = 0; i < n; i++)
910 set_immediate_dominator (dir, bbs[i], NULL);
911
912 while (changed)
913 {
914 changed = 0;
915 for (i = 0; i < n; i++)
916 {
917 old_dom = get_immediate_dominator (dir, bbs[i]);
918 new_dom = recount_dominator (dir, bbs[i]);
919 if (old_dom != new_dom)
920 {
921 changed = 1;
922 set_immediate_dominator (dir, bbs[i], new_dom);
923 }
924 }
925 }
926
927 for (i = 0; i < n; i++)
928 gcc_assert (get_immediate_dominator (dir, bbs[i]));
929 }
930
931 void
932 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
933 {
934 gcc_assert (dom_computed[dir]);
935 gcc_assert (!bb->dom[dir]);
936
937 n_bbs_in_dom_tree[dir]++;
938
939 bb->dom[dir] = et_new_tree (bb);
940
941 if (dom_computed[dir] == DOM_OK)
942 dom_computed[dir] = DOM_NO_FAST_QUERY;
943 }
944
945 void
946 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
947 {
948 gcc_assert (dom_computed[dir]);
949
950 et_free_tree (bb->dom[dir]);
951 bb->dom[dir] = NULL;
952 n_bbs_in_dom_tree[dir]--;
953
954 if (dom_computed[dir] == DOM_OK)
955 dom_computed[dir] = DOM_NO_FAST_QUERY;
956 }
957
958 /* Returns the first son of BB in the dominator or postdominator tree
959 as determined by DIR. */
960
961 basic_block
962 first_dom_son (enum cdi_direction dir, basic_block bb)
963 {
964 struct et_node *son = bb->dom[dir]->son;
965
966 return son ? son->data : NULL;
967 }
968
969 /* Returns the next dominance son after BB in the dominator or postdominator
970 tree as determined by DIR, or NULL if it was the last one. */
971
972 basic_block
973 next_dom_son (enum cdi_direction dir, basic_block bb)
974 {
975 struct et_node *next = bb->dom[dir]->right;
976
977 return next->father->son == next ? NULL : next->data;
978 }
979
980 void
981 debug_dominance_info (enum cdi_direction dir)
982 {
983 basic_block bb, bb2;
984 FOR_EACH_BB (bb)
985 if ((bb2 = get_immediate_dominator (dir, bb)))
986 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
987 }