6fa765ca3dc08a461dee78ab782b8a945211b769
[gcc.git] / gcc / dominance.c
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "obstack.h"
43 #include "basic-block.h"
44 #include "toplev.h"
45 #include "et-forest.h"
46 #include "timevar.h"
47 #include "vecprim.h"
48 #include "pointer-set.h"
49 #include "graphds.h"
50
51 /* Whether the dominators and the postdominators are available. */
52 static enum dom_state dom_computed[2];
53
54 /* We name our nodes with integers, beginning with 1. Zero is reserved for
55 'undefined' or 'end of list'. The name of each node is given by the dfs
56 number of the corresponding basic block. Please note, that we include the
57 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
58 support multiple entry points. Its dfs number is of course 1. */
59
60 /* Type of Basic Block aka. TBB */
61 typedef unsigned int TBB;
62
63 /* We work in a poor-mans object oriented fashion, and carry an instance of
64 this structure through all our 'methods'. It holds various arrays
65 reflecting the (sub)structure of the flowgraph. Most of them are of type
66 TBB and are also indexed by TBB. */
67
68 struct dom_info
69 {
70 /* The parent of a node in the DFS tree. */
71 TBB *dfs_parent;
72 /* For a node x key[x] is roughly the node nearest to the root from which
73 exists a way to x only over nodes behind x. Such a node is also called
74 semidominator. */
75 TBB *key;
76 /* The value in path_min[x] is the node y on the path from x to the root of
77 the tree x is in with the smallest key[y]. */
78 TBB *path_min;
79 /* bucket[x] points to the first node of the set of nodes having x as key. */
80 TBB *bucket;
81 /* And next_bucket[x] points to the next node. */
82 TBB *next_bucket;
83 /* After the algorithm is done, dom[x] contains the immediate dominator
84 of x. */
85 TBB *dom;
86
87 /* The following few fields implement the structures needed for disjoint
88 sets. */
89 /* set_chain[x] is the next node on the path from x to the representant
90 of the set containing x. If set_chain[x]==0 then x is a root. */
91 TBB *set_chain;
92 /* set_size[x] is the number of elements in the set named by x. */
93 unsigned int *set_size;
94 /* set_child[x] is used for balancing the tree representing a set. It can
95 be understood as the next sibling of x. */
96 TBB *set_child;
97
98 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
99 number of that node in DFS order counted from 1. This is an index
100 into most of the other arrays in this structure. */
101 TBB *dfs_order;
102 /* If x is the DFS-index of a node which corresponds with a basic block,
103 dfs_to_bb[x] is that basic block. Note, that in our structure there are
104 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
105 is true for every basic block bb, but not the opposite. */
106 basic_block *dfs_to_bb;
107
108 /* This is the next free DFS number when creating the DFS tree. */
109 unsigned int dfsnum;
110 /* The number of nodes in the DFS tree (==dfsnum-1). */
111 unsigned int nodes;
112
113 /* Blocks with bits set here have a fake edge to EXIT. These are used
114 to turn a DFS forest into a proper tree. */
115 bitmap fake_exit_edge;
116 };
117
118 static void init_dom_info (struct dom_info *, enum cdi_direction);
119 static void free_dom_info (struct dom_info *);
120 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
121 static void calc_dfs_tree (struct dom_info *, bool);
122 static void compress (struct dom_info *, TBB);
123 static TBB eval (struct dom_info *, TBB);
124 static void link_roots (struct dom_info *, TBB, TBB);
125 static void calc_idoms (struct dom_info *, bool);
126 void debug_dominance_info (enum cdi_direction);
127 void debug_dominance_tree (enum cdi_direction, basic_block);
128
129 /* Keeps track of the*/
130 static unsigned n_bbs_in_dom_tree[2];
131
132 /* Helper macro for allocating and initializing an array,
133 for aesthetic reasons. */
134 #define init_ar(var, type, num, content) \
135 do \
136 { \
137 unsigned int i = 1; /* Catch content == i. */ \
138 if (! (content)) \
139 (var) = XCNEWVEC (type, num); \
140 else \
141 { \
142 (var) = XNEWVEC (type, (num)); \
143 for (i = 0; i < num; i++) \
144 (var)[i] = (content); \
145 } \
146 } \
147 while (0)
148
149 /* Allocate all needed memory in a pessimistic fashion (so we round up).
150 This initializes the contents of DI, which already must be allocated. */
151
152 static void
153 init_dom_info (struct dom_info *di, enum cdi_direction dir)
154 {
155 /* We need memory for n_basic_blocks nodes. */
156 unsigned int num = n_basic_blocks;
157 init_ar (di->dfs_parent, TBB, num, 0);
158 init_ar (di->path_min, TBB, num, i);
159 init_ar (di->key, TBB, num, i);
160 init_ar (di->dom, TBB, num, 0);
161
162 init_ar (di->bucket, TBB, num, 0);
163 init_ar (di->next_bucket, TBB, num, 0);
164
165 init_ar (di->set_chain, TBB, num, 0);
166 init_ar (di->set_size, unsigned int, num, 1);
167 init_ar (di->set_child, TBB, num, 0);
168
169 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
170 init_ar (di->dfs_to_bb, basic_block, num, 0);
171
172 di->dfsnum = 1;
173 di->nodes = 0;
174
175 switch (dir)
176 {
177 case CDI_DOMINATORS:
178 di->fake_exit_edge = NULL;
179 break;
180 case CDI_POST_DOMINATORS:
181 di->fake_exit_edge = BITMAP_ALLOC (NULL);
182 break;
183 default:
184 gcc_unreachable ();
185 break;
186 }
187 }
188
189 #undef init_ar
190
191 /* Map dominance calculation type to array index used for various
192 dominance information arrays. This version is simple -- it will need
193 to be modified, obviously, if additional values are added to
194 cdi_direction. */
195
196 static unsigned int
197 dom_convert_dir_to_idx (enum cdi_direction dir)
198 {
199 gcc_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
200 return dir - 1;
201 }
202
203 /* Free all allocated memory in DI, but not DI itself. */
204
205 static void
206 free_dom_info (struct dom_info *di)
207 {
208 free (di->dfs_parent);
209 free (di->path_min);
210 free (di->key);
211 free (di->dom);
212 free (di->bucket);
213 free (di->next_bucket);
214 free (di->set_chain);
215 free (di->set_size);
216 free (di->set_child);
217 free (di->dfs_order);
218 free (di->dfs_to_bb);
219 BITMAP_FREE (di->fake_exit_edge);
220 }
221
222 /* The nonrecursive variant of creating a DFS tree. DI is our working
223 structure, BB the starting basic block for this tree and REVERSE
224 is true, if predecessors should be visited instead of successors of a
225 node. After this is done all nodes reachable from BB were visited, have
226 assigned their dfs number and are linked together to form a tree. */
227
228 static void
229 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
230 {
231 /* We call this _only_ if bb is not already visited. */
232 edge e;
233 TBB child_i, my_i = 0;
234 edge_iterator *stack;
235 edge_iterator ei, einext;
236 int sp;
237 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
238 problem). */
239 basic_block en_block;
240 /* Ending block. */
241 basic_block ex_block;
242
243 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
244 sp = 0;
245
246 /* Initialize our border blocks, and the first edge. */
247 if (reverse)
248 {
249 ei = ei_start (bb->preds);
250 en_block = EXIT_BLOCK_PTR;
251 ex_block = ENTRY_BLOCK_PTR;
252 }
253 else
254 {
255 ei = ei_start (bb->succs);
256 en_block = ENTRY_BLOCK_PTR;
257 ex_block = EXIT_BLOCK_PTR;
258 }
259
260 /* When the stack is empty we break out of this loop. */
261 while (1)
262 {
263 basic_block bn;
264
265 /* This loop traverses edges e in depth first manner, and fills the
266 stack. */
267 while (!ei_end_p (ei))
268 {
269 e = ei_edge (ei);
270
271 /* Deduce from E the current and the next block (BB and BN), and the
272 next edge. */
273 if (reverse)
274 {
275 bn = e->src;
276
277 /* If the next node BN is either already visited or a border
278 block the current edge is useless, and simply overwritten
279 with the next edge out of the current node. */
280 if (bn == ex_block || di->dfs_order[bn->index])
281 {
282 ei_next (&ei);
283 continue;
284 }
285 bb = e->dest;
286 einext = ei_start (bn->preds);
287 }
288 else
289 {
290 bn = e->dest;
291 if (bn == ex_block || di->dfs_order[bn->index])
292 {
293 ei_next (&ei);
294 continue;
295 }
296 bb = e->src;
297 einext = ei_start (bn->succs);
298 }
299
300 gcc_assert (bn != en_block);
301
302 /* Fill the DFS tree info calculatable _before_ recursing. */
303 if (bb != en_block)
304 my_i = di->dfs_order[bb->index];
305 else
306 my_i = di->dfs_order[last_basic_block];
307 child_i = di->dfs_order[bn->index] = di->dfsnum++;
308 di->dfs_to_bb[child_i] = bn;
309 di->dfs_parent[child_i] = my_i;
310
311 /* Save the current point in the CFG on the stack, and recurse. */
312 stack[sp++] = ei;
313 ei = einext;
314 }
315
316 if (!sp)
317 break;
318 ei = stack[--sp];
319
320 /* OK. The edge-list was exhausted, meaning normally we would
321 end the recursion. After returning from the recursive call,
322 there were (may be) other statements which were run after a
323 child node was completely considered by DFS. Here is the
324 point to do it in the non-recursive variant.
325 E.g. The block just completed is in e->dest for forward DFS,
326 the block not yet completed (the parent of the one above)
327 in e->src. This could be used e.g. for computing the number of
328 descendants or the tree depth. */
329 ei_next (&ei);
330 }
331 free (stack);
332 }
333
334 /* The main entry for calculating the DFS tree or forest. DI is our working
335 structure and REVERSE is true, if we are interested in the reverse flow
336 graph. In that case the result is not necessarily a tree but a forest,
337 because there may be nodes from which the EXIT_BLOCK is unreachable. */
338
339 static void
340 calc_dfs_tree (struct dom_info *di, bool reverse)
341 {
342 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
343 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
344 di->dfs_order[last_basic_block] = di->dfsnum;
345 di->dfs_to_bb[di->dfsnum] = begin;
346 di->dfsnum++;
347
348 calc_dfs_tree_nonrec (di, begin, reverse);
349
350 if (reverse)
351 {
352 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
353 They are reverse-unreachable. In the dom-case we disallow such
354 nodes, but in post-dom we have to deal with them.
355
356 There are two situations in which this occurs. First, noreturn
357 functions. Second, infinite loops. In the first case we need to
358 pretend that there is an edge to the exit block. In the second
359 case, we wind up with a forest. We need to process all noreturn
360 blocks before we know if we've got any infinite loops. */
361
362 basic_block b;
363 bool saw_unconnected = false;
364
365 FOR_EACH_BB_REVERSE (b)
366 {
367 if (EDGE_COUNT (b->succs) > 0)
368 {
369 if (di->dfs_order[b->index] == 0)
370 saw_unconnected = true;
371 continue;
372 }
373 bitmap_set_bit (di->fake_exit_edge, b->index);
374 di->dfs_order[b->index] = di->dfsnum;
375 di->dfs_to_bb[di->dfsnum] = b;
376 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
377 di->dfsnum++;
378 calc_dfs_tree_nonrec (di, b, reverse);
379 }
380
381 if (saw_unconnected)
382 {
383 FOR_EACH_BB_REVERSE (b)
384 {
385 if (di->dfs_order[b->index])
386 continue;
387 bitmap_set_bit (di->fake_exit_edge, b->index);
388 di->dfs_order[b->index] = di->dfsnum;
389 di->dfs_to_bb[di->dfsnum] = b;
390 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
391 di->dfsnum++;
392 calc_dfs_tree_nonrec (di, b, reverse);
393 }
394 }
395 }
396
397 di->nodes = di->dfsnum - 1;
398
399 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
400 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
401 }
402
403 /* Compress the path from V to the root of its set and update path_min at the
404 same time. After compress(di, V) set_chain[V] is the root of the set V is
405 in and path_min[V] is the node with the smallest key[] value on the path
406 from V to that root. */
407
408 static void
409 compress (struct dom_info *di, TBB v)
410 {
411 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
412 greater than 5 even for huge graphs (I've not seen call depth > 4).
413 Also performance wise compress() ranges _far_ behind eval(). */
414 TBB parent = di->set_chain[v];
415 if (di->set_chain[parent])
416 {
417 compress (di, parent);
418 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
419 di->path_min[v] = di->path_min[parent];
420 di->set_chain[v] = di->set_chain[parent];
421 }
422 }
423
424 /* Compress the path from V to the set root of V if needed (when the root has
425 changed since the last call). Returns the node with the smallest key[]
426 value on the path from V to the root. */
427
428 static inline TBB
429 eval (struct dom_info *di, TBB v)
430 {
431 /* The representant of the set V is in, also called root (as the set
432 representation is a tree). */
433 TBB rep = di->set_chain[v];
434
435 /* V itself is the root. */
436 if (!rep)
437 return di->path_min[v];
438
439 /* Compress only if necessary. */
440 if (di->set_chain[rep])
441 {
442 compress (di, v);
443 rep = di->set_chain[v];
444 }
445
446 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
447 return di->path_min[v];
448 else
449 return di->path_min[rep];
450 }
451
452 /* This essentially merges the two sets of V and W, giving a single set with
453 the new root V. The internal representation of these disjoint sets is a
454 balanced tree. Currently link(V,W) is only used with V being the parent
455 of W. */
456
457 static void
458 link_roots (struct dom_info *di, TBB v, TBB w)
459 {
460 TBB s = w;
461
462 /* Rebalance the tree. */
463 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
464 {
465 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
466 >= 2 * di->set_size[di->set_child[s]])
467 {
468 di->set_chain[di->set_child[s]] = s;
469 di->set_child[s] = di->set_child[di->set_child[s]];
470 }
471 else
472 {
473 di->set_size[di->set_child[s]] = di->set_size[s];
474 s = di->set_chain[s] = di->set_child[s];
475 }
476 }
477
478 di->path_min[s] = di->path_min[w];
479 di->set_size[v] += di->set_size[w];
480 if (di->set_size[v] < 2 * di->set_size[w])
481 {
482 TBB tmp = s;
483 s = di->set_child[v];
484 di->set_child[v] = tmp;
485 }
486
487 /* Merge all subtrees. */
488 while (s)
489 {
490 di->set_chain[s] = v;
491 s = di->set_child[s];
492 }
493 }
494
495 /* This calculates the immediate dominators (or post-dominators if REVERSE is
496 true). DI is our working structure and should hold the DFS forest.
497 On return the immediate dominator to node V is in di->dom[V]. */
498
499 static void
500 calc_idoms (struct dom_info *di, bool reverse)
501 {
502 TBB v, w, k, par;
503 basic_block en_block;
504 edge_iterator ei, einext;
505
506 if (reverse)
507 en_block = EXIT_BLOCK_PTR;
508 else
509 en_block = ENTRY_BLOCK_PTR;
510
511 /* Go backwards in DFS order, to first look at the leafs. */
512 v = di->nodes;
513 while (v > 1)
514 {
515 basic_block bb = di->dfs_to_bb[v];
516 edge e;
517
518 par = di->dfs_parent[v];
519 k = v;
520
521 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
522
523 if (reverse)
524 {
525 /* If this block has a fake edge to exit, process that first. */
526 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
527 {
528 einext = ei;
529 einext.index = 0;
530 goto do_fake_exit_edge;
531 }
532 }
533
534 /* Search all direct predecessors for the smallest node with a path
535 to them. That way we have the smallest node with also a path to
536 us only over nodes behind us. In effect we search for our
537 semidominator. */
538 while (!ei_end_p (ei))
539 {
540 TBB k1;
541 basic_block b;
542
543 e = ei_edge (ei);
544 b = (reverse) ? e->dest : e->src;
545 einext = ei;
546 ei_next (&einext);
547
548 if (b == en_block)
549 {
550 do_fake_exit_edge:
551 k1 = di->dfs_order[last_basic_block];
552 }
553 else
554 k1 = di->dfs_order[b->index];
555
556 /* Call eval() only if really needed. If k1 is above V in DFS tree,
557 then we know, that eval(k1) == k1 and key[k1] == k1. */
558 if (k1 > v)
559 k1 = di->key[eval (di, k1)];
560 if (k1 < k)
561 k = k1;
562
563 ei = einext;
564 }
565
566 di->key[v] = k;
567 link_roots (di, par, v);
568 di->next_bucket[v] = di->bucket[k];
569 di->bucket[k] = v;
570
571 /* Transform semidominators into dominators. */
572 for (w = di->bucket[par]; w; w = di->next_bucket[w])
573 {
574 k = eval (di, w);
575 if (di->key[k] < di->key[w])
576 di->dom[w] = k;
577 else
578 di->dom[w] = par;
579 }
580 /* We don't need to cleanup next_bucket[]. */
581 di->bucket[par] = 0;
582 v--;
583 }
584
585 /* Explicitly define the dominators. */
586 di->dom[1] = 0;
587 for (v = 2; v <= di->nodes; v++)
588 if (di->dom[v] != di->key[v])
589 di->dom[v] = di->dom[di->dom[v]];
590 }
591
592 /* Assign dfs numbers starting from NUM to NODE and its sons. */
593
594 static void
595 assign_dfs_numbers (struct et_node *node, int *num)
596 {
597 struct et_node *son;
598
599 node->dfs_num_in = (*num)++;
600
601 if (node->son)
602 {
603 assign_dfs_numbers (node->son, num);
604 for (son = node->son->right; son != node->son; son = son->right)
605 assign_dfs_numbers (son, num);
606 }
607
608 node->dfs_num_out = (*num)++;
609 }
610
611 /* Compute the data necessary for fast resolving of dominator queries in a
612 static dominator tree. */
613
614 static void
615 compute_dom_fast_query (enum cdi_direction dir)
616 {
617 int num = 0;
618 basic_block bb;
619 unsigned int dir_index = dom_convert_dir_to_idx (dir);
620
621 gcc_assert (dom_info_available_p (dir));
622
623 if (dom_computed[dir_index] == DOM_OK)
624 return;
625
626 FOR_ALL_BB (bb)
627 {
628 if (!bb->dom[dir_index]->father)
629 assign_dfs_numbers (bb->dom[dir_index], &num);
630 }
631
632 dom_computed[dir_index] = DOM_OK;
633 }
634
635 /* The main entry point into this module. DIR is set depending on whether
636 we want to compute dominators or postdominators. */
637
638 void
639 calculate_dominance_info (enum cdi_direction dir)
640 {
641 struct dom_info di;
642 basic_block b;
643 unsigned int dir_index = dom_convert_dir_to_idx (dir);
644 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
645
646 if (dom_computed[dir_index] == DOM_OK)
647 return;
648
649 timevar_push (TV_DOMINANCE);
650 if (!dom_info_available_p (dir))
651 {
652 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
653
654 FOR_ALL_BB (b)
655 {
656 b->dom[dir_index] = et_new_tree (b);
657 }
658 n_bbs_in_dom_tree[dir_index] = n_basic_blocks;
659
660 init_dom_info (&di, dir);
661 calc_dfs_tree (&di, reverse);
662 calc_idoms (&di, reverse);
663
664 FOR_EACH_BB (b)
665 {
666 TBB d = di.dom[di.dfs_order[b->index]];
667
668 if (di.dfs_to_bb[d])
669 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
670 }
671
672 free_dom_info (&di);
673 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
674 }
675
676 compute_dom_fast_query (dir);
677
678 timevar_pop (TV_DOMINANCE);
679 }
680
681 /* Free dominance information for direction DIR. */
682 void
683 free_dominance_info (enum cdi_direction dir)
684 {
685 basic_block bb;
686 unsigned int dir_index = dom_convert_dir_to_idx (dir);
687
688 if (!dom_info_available_p (dir))
689 return;
690
691 FOR_ALL_BB (bb)
692 {
693 et_free_tree_force (bb->dom[dir_index]);
694 bb->dom[dir_index] = NULL;
695 }
696 et_free_pools ();
697
698 n_bbs_in_dom_tree[dir_index] = 0;
699
700 dom_computed[dir_index] = DOM_NONE;
701 }
702
703 /* Return the immediate dominator of basic block BB. */
704 basic_block
705 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
706 {
707 unsigned int dir_index = dom_convert_dir_to_idx (dir);
708 struct et_node *node = bb->dom[dir_index];
709
710 gcc_assert (dom_computed[dir_index]);
711
712 if (!node->father)
713 return NULL;
714
715 return node->father->data;
716 }
717
718 /* Set the immediate dominator of the block possibly removing
719 existing edge. NULL can be used to remove any edge. */
720 inline void
721 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
722 basic_block dominated_by)
723 {
724 unsigned int dir_index = dom_convert_dir_to_idx (dir);
725 struct et_node *node = bb->dom[dir_index];
726
727 gcc_assert (dom_computed[dir_index]);
728
729 if (node->father)
730 {
731 if (node->father->data == dominated_by)
732 return;
733 et_split (node);
734 }
735
736 if (dominated_by)
737 et_set_father (node, dominated_by->dom[dir_index]);
738
739 if (dom_computed[dir_index] == DOM_OK)
740 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
741 }
742
743 /* Returns the list of basic blocks immediately dominated by BB, in the
744 direction DIR. */
745 VEC (basic_block, heap) *
746 get_dominated_by (enum cdi_direction dir, basic_block bb)
747 {
748 int n;
749 unsigned int dir_index = dom_convert_dir_to_idx (dir);
750 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
751 VEC (basic_block, heap) *bbs = NULL;
752
753 gcc_assert (dom_computed[dir_index]);
754
755 if (!son)
756 return NULL;
757
758 VEC_safe_push (basic_block, heap, bbs, son->data);
759 for (ason = son->right, n = 1; ason != son; ason = ason->right)
760 VEC_safe_push (basic_block, heap, bbs, ason->data);
761
762 return bbs;
763 }
764
765 /* Returns the list of basic blocks that are immediately dominated (in
766 direction DIR) by some block between N_REGION ones stored in REGION,
767 except for blocks in the REGION itself. */
768
769 VEC (basic_block, heap) *
770 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
771 unsigned n_region)
772 {
773 unsigned i;
774 basic_block dom;
775 VEC (basic_block, heap) *doms = NULL;
776
777 for (i = 0; i < n_region; i++)
778 region[i]->flags |= BB_DUPLICATED;
779 for (i = 0; i < n_region; i++)
780 for (dom = first_dom_son (dir, region[i]);
781 dom;
782 dom = next_dom_son (dir, dom))
783 if (!(dom->flags & BB_DUPLICATED))
784 VEC_safe_push (basic_block, heap, doms, dom);
785 for (i = 0; i < n_region; i++)
786 region[i]->flags &= ~BB_DUPLICATED;
787
788 return doms;
789 }
790
791 /* Redirect all edges pointing to BB to TO. */
792 void
793 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
794 basic_block to)
795 {
796 unsigned int dir_index = dom_convert_dir_to_idx (dir);
797 struct et_node *bb_node, *to_node, *son;
798
799 bb_node = bb->dom[dir_index];
800 to_node = to->dom[dir_index];
801
802 gcc_assert (dom_computed[dir_index]);
803
804 if (!bb_node->son)
805 return;
806
807 while (bb_node->son)
808 {
809 son = bb_node->son;
810
811 et_split (son);
812 et_set_father (son, to_node);
813 }
814
815 if (dom_computed[dir_index] == DOM_OK)
816 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
817 }
818
819 /* Find first basic block in the tree dominating both BB1 and BB2. */
820 basic_block
821 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
822 {
823 unsigned int dir_index = dom_convert_dir_to_idx (dir);
824
825 gcc_assert (dom_computed[dir_index]);
826
827 if (!bb1)
828 return bb2;
829 if (!bb2)
830 return bb1;
831
832 return et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
833 }
834
835
836 /* Find the nearest common dominator for the basic blocks in BLOCKS,
837 using dominance direction DIR. */
838
839 basic_block
840 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
841 {
842 unsigned i, first;
843 bitmap_iterator bi;
844 basic_block dom;
845
846 first = bitmap_first_set_bit (blocks);
847 dom = BASIC_BLOCK (first);
848 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
849 if (dom != BASIC_BLOCK (i))
850 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
851
852 return dom;
853 }
854
855 /* Given a dominator tree, we can determine whether one thing
856 dominates another in constant time by using two DFS numbers:
857
858 1. The number for when we visit a node on the way down the tree
859 2. The number for when we visit a node on the way back up the tree
860
861 You can view these as bounds for the range of dfs numbers the
862 nodes in the subtree of the dominator tree rooted at that node
863 will contain.
864
865 The dominator tree is always a simple acyclic tree, so there are
866 only three possible relations two nodes in the dominator tree have
867 to each other:
868
869 1. Node A is above Node B (and thus, Node A dominates node B)
870
871 A
872 |
873 C
874 / \
875 B D
876
877
878 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
879 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
880 because we must hit A in the dominator tree *before* B on the walk
881 down, and we will hit A *after* B on the walk back up
882
883 2. Node A is below node B (and thus, node B dominates node A)
884
885
886 B
887 |
888 A
889 / \
890 C D
891
892 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
893 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
894
895 This is because we must hit A in the dominator tree *after* B on
896 the walk down, and we will hit A *before* B on the walk back up
897
898 3. Node A and B are siblings (and thus, neither dominates the other)
899
900 C
901 |
902 D
903 / \
904 A B
905
906 In the above case, DFS_Number_In of A will *always* be <=
907 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
908 DFS_Number_Out of B. This is because we will always finish the dfs
909 walk of one of the subtrees before the other, and thus, the dfs
910 numbers for one subtree can't intersect with the range of dfs
911 numbers for the other subtree. If you swap A and B's position in
912 the dominator tree, the comparison changes direction, but the point
913 is that both comparisons will always go the same way if there is no
914 dominance relationship.
915
916 Thus, it is sufficient to write
917
918 A_Dominates_B (node A, node B)
919 {
920 return DFS_Number_In(A) <= DFS_Number_In(B)
921 && DFS_Number_Out (A) >= DFS_Number_Out(B);
922 }
923
924 A_Dominated_by_B (node A, node B)
925 {
926 return DFS_Number_In(A) >= DFS_Number_In(A)
927 && DFS_Number_Out (A) <= DFS_Number_Out(B);
928 } */
929
930 /* Return TRUE in case BB1 is dominated by BB2. */
931 bool
932 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
933 {
934 unsigned int dir_index = dom_convert_dir_to_idx (dir);
935 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
936
937 gcc_assert (dom_computed[dir_index]);
938
939 if (dom_computed[dir_index] == DOM_OK)
940 return (n1->dfs_num_in >= n2->dfs_num_in
941 && n1->dfs_num_out <= n2->dfs_num_out);
942
943 return et_below (n1, n2);
944 }
945
946 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
947
948 unsigned
949 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
950 {
951 unsigned int dir_index = dom_convert_dir_to_idx (dir);
952 struct et_node *n = bb->dom[dir_index];
953
954 gcc_assert (dom_computed[dir_index] == DOM_OK);
955 return n->dfs_num_in;
956 }
957
958 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
959
960 unsigned
961 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
962 {
963 unsigned int dir_index = dom_convert_dir_to_idx (dir);
964 struct et_node *n = bb->dom[dir_index];
965
966 gcc_assert (dom_computed[dir_index] == DOM_OK);
967 return n->dfs_num_out;
968 }
969
970 /* Verify invariants of dominator structure. */
971 void
972 verify_dominators (enum cdi_direction dir)
973 {
974 int err = 0;
975 basic_block bb, imm_bb, imm_bb_correct;
976 struct dom_info di;
977 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
978
979 gcc_assert (dom_info_available_p (dir));
980
981 init_dom_info (&di, dir);
982 calc_dfs_tree (&di, reverse);
983 calc_idoms (&di, reverse);
984
985 FOR_EACH_BB (bb)
986 {
987 imm_bb = get_immediate_dominator (dir, bb);
988 if (!imm_bb)
989 {
990 error ("dominator of %d status unknown", bb->index);
991 err = 1;
992 }
993
994 imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
995 if (imm_bb != imm_bb_correct)
996 {
997 error ("dominator of %d should be %d, not %d",
998 bb->index, imm_bb_correct->index, imm_bb->index);
999 err = 1;
1000 }
1001 }
1002
1003 free_dom_info (&di);
1004 gcc_assert (!err);
1005 }
1006
1007 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1008 assuming that dominators of other blocks are correct. We also use it to
1009 recompute the dominators in a restricted area, by iterating it until it
1010 reaches a fixed point. */
1011
1012 basic_block
1013 recompute_dominator (enum cdi_direction dir, basic_block bb)
1014 {
1015 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1016 basic_block dom_bb = NULL;
1017 edge e;
1018 edge_iterator ei;
1019
1020 gcc_assert (dom_computed[dir_index]);
1021
1022 if (dir == CDI_DOMINATORS)
1023 {
1024 FOR_EACH_EDGE (e, ei, bb->preds)
1025 {
1026 if (!dominated_by_p (dir, e->src, bb))
1027 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1028 }
1029 }
1030 else
1031 {
1032 FOR_EACH_EDGE (e, ei, bb->succs)
1033 {
1034 if (!dominated_by_p (dir, e->dest, bb))
1035 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1036 }
1037 }
1038
1039 return dom_bb;
1040 }
1041
1042 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1043 of BBS. We assume that all the immediate dominators except for those of the
1044 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1045 currently recorded immediate dominators of blocks in BBS really dominate the
1046 blocks. The basic blocks for that we determine the dominator are removed
1047 from BBS. */
1048
1049 static void
1050 prune_bbs_to_update_dominators (VEC (basic_block, heap) *bbs,
1051 bool conservative)
1052 {
1053 unsigned i;
1054 bool single;
1055 basic_block bb, dom = NULL;
1056 edge_iterator ei;
1057 edge e;
1058
1059 for (i = 0; VEC_iterate (basic_block, bbs, i, bb);)
1060 {
1061 if (bb == ENTRY_BLOCK_PTR)
1062 goto succeed;
1063
1064 if (single_pred_p (bb))
1065 {
1066 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1067 goto succeed;
1068 }
1069
1070 if (!conservative)
1071 goto fail;
1072
1073 single = true;
1074 dom = NULL;
1075 FOR_EACH_EDGE (e, ei, bb->preds)
1076 {
1077 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1078 continue;
1079
1080 if (!dom)
1081 dom = e->src;
1082 else
1083 {
1084 single = false;
1085 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1086 }
1087 }
1088
1089 gcc_assert (dom != NULL);
1090 if (single
1091 || find_edge (dom, bb))
1092 {
1093 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1094 goto succeed;
1095 }
1096
1097 fail:
1098 i++;
1099 continue;
1100
1101 succeed:
1102 VEC_unordered_remove (basic_block, bbs, i);
1103 }
1104 }
1105
1106 /* Returns root of the dominance tree in the direction DIR that contains
1107 BB. */
1108
1109 static basic_block
1110 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1111 {
1112 return et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1113 }
1114
1115 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1116 for the sons of Y, found using the SON and BROTHER arrays representing
1117 the dominance tree of graph G. BBS maps the vertices of G to the basic
1118 blocks. */
1119
1120 static void
1121 determine_dominators_for_sons (struct graph *g, VEC (basic_block, heap) *bbs,
1122 int y, int *son, int *brother)
1123 {
1124 bitmap gprime;
1125 int i, a, nc;
1126 VEC (int, heap) **sccs;
1127 basic_block bb, dom, ybb;
1128 unsigned si;
1129 edge e;
1130 edge_iterator ei;
1131
1132 if (son[y] == -1)
1133 return;
1134 if (y == (int) VEC_length (basic_block, bbs))
1135 ybb = ENTRY_BLOCK_PTR;
1136 else
1137 ybb = VEC_index (basic_block, bbs, y);
1138
1139 if (brother[son[y]] == -1)
1140 {
1141 /* Handle the common case Y has just one son specially. */
1142 bb = VEC_index (basic_block, bbs, son[y]);
1143 set_immediate_dominator (CDI_DOMINATORS, bb,
1144 recompute_dominator (CDI_DOMINATORS, bb));
1145 identify_vertices (g, y, son[y]);
1146 return;
1147 }
1148
1149 gprime = BITMAP_ALLOC (NULL);
1150 for (a = son[y]; a != -1; a = brother[a])
1151 bitmap_set_bit (gprime, a);
1152
1153 nc = graphds_scc (g, gprime);
1154 BITMAP_FREE (gprime);
1155
1156 sccs = XCNEWVEC (VEC (int, heap) *, nc);
1157 for (a = son[y]; a != -1; a = brother[a])
1158 VEC_safe_push (int, heap, sccs[g->vertices[a].component], a);
1159
1160 for (i = nc - 1; i >= 0; i--)
1161 {
1162 dom = NULL;
1163 for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
1164 {
1165 bb = VEC_index (basic_block, bbs, a);
1166 FOR_EACH_EDGE (e, ei, bb->preds)
1167 {
1168 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1169 continue;
1170
1171 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1172 }
1173 }
1174
1175 gcc_assert (dom != NULL);
1176 for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
1177 {
1178 bb = VEC_index (basic_block, bbs, a);
1179 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1180 }
1181 }
1182
1183 for (i = 0; i < nc; i++)
1184 VEC_free (int, heap, sccs[i]);
1185 free (sccs);
1186
1187 for (a = son[y]; a != -1; a = brother[a])
1188 identify_vertices (g, y, a);
1189 }
1190
1191 /* Recompute dominance information for basic blocks in the set BBS. The
1192 function assumes that the immediate dominators of all the other blocks
1193 in CFG are correct, and that there are no unreachable blocks.
1194
1195 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1196 a block of BBS in the current dominance tree dominate it. */
1197
1198 void
1199 iterate_fix_dominators (enum cdi_direction dir, VEC (basic_block, heap) *bbs,
1200 bool conservative)
1201 {
1202 unsigned i;
1203 basic_block bb, dom;
1204 struct graph *g;
1205 int n, y;
1206 size_t dom_i;
1207 edge e;
1208 edge_iterator ei;
1209 struct pointer_map_t *map;
1210 int *parent, *son, *brother;
1211 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1212
1213 /* We only support updating dominators. There are some problems with
1214 updating postdominators (need to add fake edges from infinite loops
1215 and noreturn functions), and since we do not currently use
1216 iterate_fix_dominators for postdominators, any attempt to handle these
1217 problems would be unused, untested, and almost surely buggy. We keep
1218 the DIR argument for consistency with the rest of the dominator analysis
1219 interface. */
1220 gcc_assert (dir == CDI_DOMINATORS);
1221 gcc_assert (dom_computed[dir_index]);
1222
1223 /* The algorithm we use takes inspiration from the following papers, although
1224 the details are quite different from any of them:
1225
1226 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1227 Dominator Tree of a Reducible Flowgraph
1228 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1229 dominator trees
1230 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1231 Algorithm
1232
1233 First, we use the following heuristics to decrease the size of the BBS
1234 set:
1235 a) if BB has a single predecessor, then its immediate dominator is this
1236 predecessor
1237 additionally, if CONSERVATIVE is true:
1238 b) if all the predecessors of BB except for one (X) are dominated by BB,
1239 then X is the immediate dominator of BB
1240 c) if the nearest common ancestor of the predecessors of BB is X and
1241 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1242
1243 Then, we need to establish the dominance relation among the basic blocks
1244 in BBS. We split the dominance tree by removing the immediate dominator
1245 edges from BBS, creating a forrest F. We form a graph G whose vertices
1246 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1247 X' -> Y in CFG such that X' belongs to the tree of the dominance forrest
1248 whose root is X. We then determine dominance tree of G. Note that
1249 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1250 In this step, we can use arbitrary algorithm to determine dominators.
1251 We decided to prefer the algorithm [3] to the algorithm of
1252 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1253 10 during gcc bootstrap), and [3] should perform better in this case.
1254
1255 Finally, we need to determine the immediate dominators for the basic
1256 blocks of BBS. If the immediate dominator of X in G is Y, then
1257 the immediate dominator of X in CFG belongs to the tree of F rooted in
1258 Y. We process the dominator tree T of G recursively, starting from leaves.
1259 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1260 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1261 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1262 the following observations:
1263 (i) the immediate dominator of all blocks in a strongly connected
1264 component of G' is the same
1265 (ii) if X has no predecessors in G', then the immediate dominator of X
1266 is the nearest common ancestor of the predecessors of X in the
1267 subtree of F rooted in Y
1268 Therefore, it suffices to find the topological ordering of G', and
1269 process the nodes X_i in this order using the rules (i) and (ii).
1270 Then, we contract all the nodes X_i with Y in G, so that the further
1271 steps work correctly. */
1272
1273 if (!conservative)
1274 {
1275 /* Split the tree now. If the idoms of blocks in BBS are not
1276 conservatively correct, setting the dominators using the
1277 heuristics in prune_bbs_to_update_dominators could
1278 create cycles in the dominance "tree", and cause ICE. */
1279 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1280 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1281 }
1282
1283 prune_bbs_to_update_dominators (bbs, conservative);
1284 n = VEC_length (basic_block, bbs);
1285
1286 if (n == 0)
1287 return;
1288
1289 if (n == 1)
1290 {
1291 bb = VEC_index (basic_block, bbs, 0);
1292 set_immediate_dominator (CDI_DOMINATORS, bb,
1293 recompute_dominator (CDI_DOMINATORS, bb));
1294 return;
1295 }
1296
1297 /* Construct the graph G. */
1298 map = pointer_map_create ();
1299 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1300 {
1301 /* If the dominance tree is conservatively correct, split it now. */
1302 if (conservative)
1303 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1304 *pointer_map_insert (map, bb) = (void *) (size_t) i;
1305 }
1306 *pointer_map_insert (map, ENTRY_BLOCK_PTR) = (void *) (size_t) n;
1307
1308 g = new_graph (n + 1);
1309 for (y = 0; y < g->n_vertices; y++)
1310 g->vertices[y].data = BITMAP_ALLOC (NULL);
1311 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1312 {
1313 FOR_EACH_EDGE (e, ei, bb->preds)
1314 {
1315 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1316 if (dom == bb)
1317 continue;
1318
1319 dom_i = (size_t) *pointer_map_contains (map, dom);
1320
1321 /* Do not include parallel edges to G. */
1322 if (bitmap_bit_p (g->vertices[dom_i].data, i))
1323 continue;
1324
1325 bitmap_set_bit (g->vertices[dom_i].data, i);
1326 add_edge (g, dom_i, i);
1327 }
1328 }
1329 for (y = 0; y < g->n_vertices; y++)
1330 BITMAP_FREE (g->vertices[y].data);
1331 pointer_map_destroy (map);
1332
1333 /* Find the dominator tree of G. */
1334 son = XNEWVEC (int, n + 1);
1335 brother = XNEWVEC (int, n + 1);
1336 parent = XNEWVEC (int, n + 1);
1337 graphds_domtree (g, n, parent, son, brother);
1338
1339 /* Finally, traverse the tree and find the immediate dominators. */
1340 for (y = n; son[y] != -1; y = son[y])
1341 continue;
1342 while (y != -1)
1343 {
1344 determine_dominators_for_sons (g, bbs, y, son, brother);
1345
1346 if (brother[y] != -1)
1347 {
1348 y = brother[y];
1349 while (son[y] != -1)
1350 y = son[y];
1351 }
1352 else
1353 y = parent[y];
1354 }
1355
1356 free (son);
1357 free (brother);
1358 free (parent);
1359
1360 free_graph (g);
1361 }
1362
1363 void
1364 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1365 {
1366 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1367
1368 gcc_assert (dom_computed[dir_index]);
1369 gcc_assert (!bb->dom[dir_index]);
1370
1371 n_bbs_in_dom_tree[dir_index]++;
1372
1373 bb->dom[dir_index] = et_new_tree (bb);
1374
1375 if (dom_computed[dir_index] == DOM_OK)
1376 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1377 }
1378
1379 void
1380 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1381 {
1382 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1383
1384 gcc_assert (dom_computed[dir_index]);
1385
1386 et_free_tree (bb->dom[dir_index]);
1387 bb->dom[dir_index] = NULL;
1388 n_bbs_in_dom_tree[dir_index]--;
1389
1390 if (dom_computed[dir_index] == DOM_OK)
1391 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1392 }
1393
1394 /* Returns the first son of BB in the dominator or postdominator tree
1395 as determined by DIR. */
1396
1397 basic_block
1398 first_dom_son (enum cdi_direction dir, basic_block bb)
1399 {
1400 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1401 struct et_node *son = bb->dom[dir_index]->son;
1402
1403 return son ? son->data : NULL;
1404 }
1405
1406 /* Returns the next dominance son after BB in the dominator or postdominator
1407 tree as determined by DIR, or NULL if it was the last one. */
1408
1409 basic_block
1410 next_dom_son (enum cdi_direction dir, basic_block bb)
1411 {
1412 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1413 struct et_node *next = bb->dom[dir_index]->right;
1414
1415 return next->father->son == next ? NULL : next->data;
1416 }
1417
1418 /* Return dominance availability for dominance info DIR. */
1419
1420 enum dom_state
1421 dom_info_state (enum cdi_direction dir)
1422 {
1423 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1424
1425 return dom_computed[dir_index];
1426 }
1427
1428 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1429
1430 void
1431 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1432 {
1433 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1434
1435 dom_computed[dir_index] = new_state;
1436 }
1437
1438 /* Returns true if dominance information for direction DIR is available. */
1439
1440 bool
1441 dom_info_available_p (enum cdi_direction dir)
1442 {
1443 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1444
1445 return dom_computed[dir_index] != DOM_NONE;
1446 }
1447
1448 void
1449 debug_dominance_info (enum cdi_direction dir)
1450 {
1451 basic_block bb, bb2;
1452 FOR_EACH_BB (bb)
1453 if ((bb2 = get_immediate_dominator (dir, bb)))
1454 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1455 }
1456
1457 /* Prints to stderr representation of the dominance tree (for direction DIR)
1458 rooted in ROOT, indented by INDENT tabelators. If INDENT_FIRST is false,
1459 the first line of the output is not indented. */
1460
1461 static void
1462 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1463 unsigned indent, bool indent_first)
1464 {
1465 basic_block son;
1466 unsigned i;
1467 bool first = true;
1468
1469 if (indent_first)
1470 for (i = 0; i < indent; i++)
1471 fprintf (stderr, "\t");
1472 fprintf (stderr, "%d\t", root->index);
1473
1474 for (son = first_dom_son (dir, root);
1475 son;
1476 son = next_dom_son (dir, son))
1477 {
1478 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1479 first = false;
1480 }
1481
1482 if (first)
1483 fprintf (stderr, "\n");
1484 }
1485
1486 /* Prints to stderr representation of the dominance tree (for direction DIR)
1487 rooted in ROOT. */
1488
1489 void
1490 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1491 {
1492 debug_dominance_tree_1 (dir, root, 0, false);
1493 }