a9af9d52d15939adfebdabdfc4b57cfd82d5d854
[gcc.git] / gcc / dominance.c
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "obstack.h"
43 #include "basic-block.h"
44 #include "toplev.h"
45 #include "et-forest.h"
46 #include "timevar.h"
47
48 /* Whether the dominators and the postdominators are available. */
49 static enum dom_state dom_computed[2];
50
51 /* We name our nodes with integers, beginning with 1. Zero is reserved for
52 'undefined' or 'end of list'. The name of each node is given by the dfs
53 number of the corresponding basic block. Please note, that we include the
54 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
55 support multiple entry points. Its dfs number is of course 1. */
56
57 /* Type of Basic Block aka. TBB */
58 typedef unsigned int TBB;
59
60 /* We work in a poor-mans object oriented fashion, and carry an instance of
61 this structure through all our 'methods'. It holds various arrays
62 reflecting the (sub)structure of the flowgraph. Most of them are of type
63 TBB and are also indexed by TBB. */
64
65 struct dom_info
66 {
67 /* The parent of a node in the DFS tree. */
68 TBB *dfs_parent;
69 /* For a node x key[x] is roughly the node nearest to the root from which
70 exists a way to x only over nodes behind x. Such a node is also called
71 semidominator. */
72 TBB *key;
73 /* The value in path_min[x] is the node y on the path from x to the root of
74 the tree x is in with the smallest key[y]. */
75 TBB *path_min;
76 /* bucket[x] points to the first node of the set of nodes having x as key. */
77 TBB *bucket;
78 /* And next_bucket[x] points to the next node. */
79 TBB *next_bucket;
80 /* After the algorithm is done, dom[x] contains the immediate dominator
81 of x. */
82 TBB *dom;
83
84 /* The following few fields implement the structures needed for disjoint
85 sets. */
86 /* set_chain[x] is the next node on the path from x to the representant
87 of the set containing x. If set_chain[x]==0 then x is a root. */
88 TBB *set_chain;
89 /* set_size[x] is the number of elements in the set named by x. */
90 unsigned int *set_size;
91 /* set_child[x] is used for balancing the tree representing a set. It can
92 be understood as the next sibling of x. */
93 TBB *set_child;
94
95 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
96 number of that node in DFS order counted from 1. This is an index
97 into most of the other arrays in this structure. */
98 TBB *dfs_order;
99 /* If x is the DFS-index of a node which corresponds with a basic block,
100 dfs_to_bb[x] is that basic block. Note, that in our structure there are
101 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
102 is true for every basic block bb, but not the opposite. */
103 basic_block *dfs_to_bb;
104
105 /* This is the next free DFS number when creating the DFS tree. */
106 unsigned int dfsnum;
107 /* The number of nodes in the DFS tree (==dfsnum-1). */
108 unsigned int nodes;
109
110 /* Blocks with bits set here have a fake edge to EXIT. These are used
111 to turn a DFS forest into a proper tree. */
112 bitmap fake_exit_edge;
113 };
114
115 static void init_dom_info (struct dom_info *, enum cdi_direction);
116 static void free_dom_info (struct dom_info *);
117 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
118 static void calc_dfs_tree (struct dom_info *, bool);
119 static void compress (struct dom_info *, TBB);
120 static TBB eval (struct dom_info *, TBB);
121 static void link_roots (struct dom_info *, TBB, TBB);
122 static void calc_idoms (struct dom_info *, bool);
123 void debug_dominance_info (enum cdi_direction);
124
125 /* Keeps track of the*/
126 static unsigned n_bbs_in_dom_tree[2];
127
128 /* Helper macro for allocating and initializing an array,
129 for aesthetic reasons. */
130 #define init_ar(var, type, num, content) \
131 do \
132 { \
133 unsigned int i = 1; /* Catch content == i. */ \
134 if (! (content)) \
135 (var) = XCNEWVEC (type, num); \
136 else \
137 { \
138 (var) = XNEWVEC (type, (num)); \
139 for (i = 0; i < num; i++) \
140 (var)[i] = (content); \
141 } \
142 } \
143 while (0)
144
145 /* Allocate all needed memory in a pessimistic fashion (so we round up).
146 This initializes the contents of DI, which already must be allocated. */
147
148 static void
149 init_dom_info (struct dom_info *di, enum cdi_direction dir)
150 {
151 unsigned int num = n_basic_blocks;
152 init_ar (di->dfs_parent, TBB, num, 0);
153 init_ar (di->path_min, TBB, num, i);
154 init_ar (di->key, TBB, num, i);
155 init_ar (di->dom, TBB, num, 0);
156
157 init_ar (di->bucket, TBB, num, 0);
158 init_ar (di->next_bucket, TBB, num, 0);
159
160 init_ar (di->set_chain, TBB, num, 0);
161 init_ar (di->set_size, unsigned int, num, 1);
162 init_ar (di->set_child, TBB, num, 0);
163
164 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
165 init_ar (di->dfs_to_bb, basic_block, num, 0);
166
167 di->dfsnum = 1;
168 di->nodes = 0;
169
170 switch (dir)
171 {
172 case CDI_DOMINATORS:
173 di->fake_exit_edge = NULL;
174 break;
175 case CDI_POST_DOMINATORS:
176 di->fake_exit_edge = BITMAP_ALLOC (NULL);
177 break;
178 default:
179 gcc_unreachable ();
180 break;
181 }
182 }
183
184 #undef init_ar
185
186 /* Map dominance calculation type to array index used for various
187 dominance information arrays. This version is simple -- it will need
188 to be modified, obviously, if additional values are added to
189 cdi_direction. */
190
191 static unsigned int
192 dom_convert_dir_to_idx (enum cdi_direction dir)
193 {
194 gcc_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
195 return dir - 1;
196 }
197
198 /* Free all allocated memory in DI, but not DI itself. */
199
200 static void
201 free_dom_info (struct dom_info *di)
202 {
203 free (di->dfs_parent);
204 free (di->path_min);
205 free (di->key);
206 free (di->dom);
207 free (di->bucket);
208 free (di->next_bucket);
209 free (di->set_chain);
210 free (di->set_size);
211 free (di->set_child);
212 free (di->dfs_order);
213 free (di->dfs_to_bb);
214 BITMAP_FREE (di->fake_exit_edge);
215 }
216
217 /* The nonrecursive variant of creating a DFS tree. DI is our working
218 structure, BB the starting basic block for this tree and REVERSE
219 is true, if predecessors should be visited instead of successors of a
220 node. After this is done all nodes reachable from BB were visited, have
221 assigned their dfs number and are linked together to form a tree. */
222
223 static void
224 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
225 {
226 /* We call this _only_ if bb is not already visited. */
227 edge e;
228 TBB child_i, my_i = 0;
229 edge_iterator *stack;
230 edge_iterator ei, einext;
231 int sp;
232 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
233 problem). */
234 basic_block en_block;
235 /* Ending block. */
236 basic_block ex_block;
237
238 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
239 sp = 0;
240
241 /* Initialize our border blocks, and the first edge. */
242 if (reverse)
243 {
244 ei = ei_start (bb->preds);
245 en_block = EXIT_BLOCK_PTR;
246 ex_block = ENTRY_BLOCK_PTR;
247 }
248 else
249 {
250 ei = ei_start (bb->succs);
251 en_block = ENTRY_BLOCK_PTR;
252 ex_block = EXIT_BLOCK_PTR;
253 }
254
255 /* When the stack is empty we break out of this loop. */
256 while (1)
257 {
258 basic_block bn;
259
260 /* This loop traverses edges e in depth first manner, and fills the
261 stack. */
262 while (!ei_end_p (ei))
263 {
264 e = ei_edge (ei);
265
266 /* Deduce from E the current and the next block (BB and BN), and the
267 next edge. */
268 if (reverse)
269 {
270 bn = e->src;
271
272 /* If the next node BN is either already visited or a border
273 block the current edge is useless, and simply overwritten
274 with the next edge out of the current node. */
275 if (bn == ex_block || di->dfs_order[bn->index])
276 {
277 ei_next (&ei);
278 continue;
279 }
280 bb = e->dest;
281 einext = ei_start (bn->preds);
282 }
283 else
284 {
285 bn = e->dest;
286 if (bn == ex_block || di->dfs_order[bn->index])
287 {
288 ei_next (&ei);
289 continue;
290 }
291 bb = e->src;
292 einext = ei_start (bn->succs);
293 }
294
295 gcc_assert (bn != en_block);
296
297 /* Fill the DFS tree info calculatable _before_ recursing. */
298 if (bb != en_block)
299 my_i = di->dfs_order[bb->index];
300 else
301 my_i = di->dfs_order[last_basic_block];
302 child_i = di->dfs_order[bn->index] = di->dfsnum++;
303 di->dfs_to_bb[child_i] = bn;
304 di->dfs_parent[child_i] = my_i;
305
306 /* Save the current point in the CFG on the stack, and recurse. */
307 stack[sp++] = ei;
308 ei = einext;
309 }
310
311 if (!sp)
312 break;
313 ei = stack[--sp];
314
315 /* OK. The edge-list was exhausted, meaning normally we would
316 end the recursion. After returning from the recursive call,
317 there were (may be) other statements which were run after a
318 child node was completely considered by DFS. Here is the
319 point to do it in the non-recursive variant.
320 E.g. The block just completed is in e->dest for forward DFS,
321 the block not yet completed (the parent of the one above)
322 in e->src. This could be used e.g. for computing the number of
323 descendants or the tree depth. */
324 ei_next (&ei);
325 }
326 free (stack);
327 }
328
329 /* The main entry for calculating the DFS tree or forest. DI is our working
330 structure and REVERSE is true, if we are interested in the reverse flow
331 graph. In that case the result is not necessarily a tree but a forest,
332 because there may be nodes from which the EXIT_BLOCK is unreachable. */
333
334 static void
335 calc_dfs_tree (struct dom_info *di, bool reverse)
336 {
337 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
338 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
339 di->dfs_order[last_basic_block] = di->dfsnum;
340 di->dfs_to_bb[di->dfsnum] = begin;
341 di->dfsnum++;
342
343 calc_dfs_tree_nonrec (di, begin, reverse);
344
345 if (reverse)
346 {
347 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
348 They are reverse-unreachable. In the dom-case we disallow such
349 nodes, but in post-dom we have to deal with them.
350
351 There are two situations in which this occurs. First, noreturn
352 functions. Second, infinite loops. In the first case we need to
353 pretend that there is an edge to the exit block. In the second
354 case, we wind up with a forest. We need to process all noreturn
355 blocks before we know if we've got any infinite loops. */
356
357 basic_block b;
358 bool saw_unconnected = false;
359
360 FOR_EACH_BB_REVERSE (b)
361 {
362 if (EDGE_COUNT (b->succs) > 0)
363 {
364 if (di->dfs_order[b->index] == 0)
365 saw_unconnected = true;
366 continue;
367 }
368 bitmap_set_bit (di->fake_exit_edge, b->index);
369 di->dfs_order[b->index] = di->dfsnum;
370 di->dfs_to_bb[di->dfsnum] = b;
371 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
372 di->dfsnum++;
373 calc_dfs_tree_nonrec (di, b, reverse);
374 }
375
376 if (saw_unconnected)
377 {
378 FOR_EACH_BB_REVERSE (b)
379 {
380 if (di->dfs_order[b->index])
381 continue;
382 bitmap_set_bit (di->fake_exit_edge, b->index);
383 di->dfs_order[b->index] = di->dfsnum;
384 di->dfs_to_bb[di->dfsnum] = b;
385 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
386 di->dfsnum++;
387 calc_dfs_tree_nonrec (di, b, reverse);
388 }
389 }
390 }
391
392 di->nodes = di->dfsnum - 1;
393
394 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
395 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
396 }
397
398 /* Compress the path from V to the root of its set and update path_min at the
399 same time. After compress(di, V) set_chain[V] is the root of the set V is
400 in and path_min[V] is the node with the smallest key[] value on the path
401 from V to that root. */
402
403 static void
404 compress (struct dom_info *di, TBB v)
405 {
406 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
407 greater than 5 even for huge graphs (I've not seen call depth > 4).
408 Also performance wise compress() ranges _far_ behind eval(). */
409 TBB parent = di->set_chain[v];
410 if (di->set_chain[parent])
411 {
412 compress (di, parent);
413 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
414 di->path_min[v] = di->path_min[parent];
415 di->set_chain[v] = di->set_chain[parent];
416 }
417 }
418
419 /* Compress the path from V to the set root of V if needed (when the root has
420 changed since the last call). Returns the node with the smallest key[]
421 value on the path from V to the root. */
422
423 static inline TBB
424 eval (struct dom_info *di, TBB v)
425 {
426 /* The representant of the set V is in, also called root (as the set
427 representation is a tree). */
428 TBB rep = di->set_chain[v];
429
430 /* V itself is the root. */
431 if (!rep)
432 return di->path_min[v];
433
434 /* Compress only if necessary. */
435 if (di->set_chain[rep])
436 {
437 compress (di, v);
438 rep = di->set_chain[v];
439 }
440
441 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
442 return di->path_min[v];
443 else
444 return di->path_min[rep];
445 }
446
447 /* This essentially merges the two sets of V and W, giving a single set with
448 the new root V. The internal representation of these disjoint sets is a
449 balanced tree. Currently link(V,W) is only used with V being the parent
450 of W. */
451
452 static void
453 link_roots (struct dom_info *di, TBB v, TBB w)
454 {
455 TBB s = w;
456
457 /* Rebalance the tree. */
458 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
459 {
460 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
461 >= 2 * di->set_size[di->set_child[s]])
462 {
463 di->set_chain[di->set_child[s]] = s;
464 di->set_child[s] = di->set_child[di->set_child[s]];
465 }
466 else
467 {
468 di->set_size[di->set_child[s]] = di->set_size[s];
469 s = di->set_chain[s] = di->set_child[s];
470 }
471 }
472
473 di->path_min[s] = di->path_min[w];
474 di->set_size[v] += di->set_size[w];
475 if (di->set_size[v] < 2 * di->set_size[w])
476 {
477 TBB tmp = s;
478 s = di->set_child[v];
479 di->set_child[v] = tmp;
480 }
481
482 /* Merge all subtrees. */
483 while (s)
484 {
485 di->set_chain[s] = v;
486 s = di->set_child[s];
487 }
488 }
489
490 /* This calculates the immediate dominators (or post-dominators if REVERSE is
491 true). DI is our working structure and should hold the DFS forest.
492 On return the immediate dominator to node V is in di->dom[V]. */
493
494 static void
495 calc_idoms (struct dom_info *di, bool reverse)
496 {
497 TBB v, w, k, par;
498 basic_block en_block;
499 edge_iterator ei, einext;
500
501 if (reverse)
502 en_block = EXIT_BLOCK_PTR;
503 else
504 en_block = ENTRY_BLOCK_PTR;
505
506 /* Go backwards in DFS order, to first look at the leafs. */
507 v = di->nodes;
508 while (v > 1)
509 {
510 basic_block bb = di->dfs_to_bb[v];
511 edge e;
512
513 par = di->dfs_parent[v];
514 k = v;
515
516 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
517
518 if (reverse)
519 {
520 /* If this block has a fake edge to exit, process that first. */
521 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
522 {
523 einext = ei;
524 einext.index = 0;
525 goto do_fake_exit_edge;
526 }
527 }
528
529 /* Search all direct predecessors for the smallest node with a path
530 to them. That way we have the smallest node with also a path to
531 us only over nodes behind us. In effect we search for our
532 semidominator. */
533 while (!ei_end_p (ei))
534 {
535 TBB k1;
536 basic_block b;
537
538 e = ei_edge (ei);
539 b = (reverse) ? e->dest : e->src;
540 einext = ei;
541 ei_next (&einext);
542
543 if (b == en_block)
544 {
545 do_fake_exit_edge:
546 k1 = di->dfs_order[last_basic_block];
547 }
548 else
549 k1 = di->dfs_order[b->index];
550
551 /* Call eval() only if really needed. If k1 is above V in DFS tree,
552 then we know, that eval(k1) == k1 and key[k1] == k1. */
553 if (k1 > v)
554 k1 = di->key[eval (di, k1)];
555 if (k1 < k)
556 k = k1;
557
558 ei = einext;
559 }
560
561 di->key[v] = k;
562 link_roots (di, par, v);
563 di->next_bucket[v] = di->bucket[k];
564 di->bucket[k] = v;
565
566 /* Transform semidominators into dominators. */
567 for (w = di->bucket[par]; w; w = di->next_bucket[w])
568 {
569 k = eval (di, w);
570 if (di->key[k] < di->key[w])
571 di->dom[w] = k;
572 else
573 di->dom[w] = par;
574 }
575 /* We don't need to cleanup next_bucket[]. */
576 di->bucket[par] = 0;
577 v--;
578 }
579
580 /* Explicitly define the dominators. */
581 di->dom[1] = 0;
582 for (v = 2; v <= di->nodes; v++)
583 if (di->dom[v] != di->key[v])
584 di->dom[v] = di->dom[di->dom[v]];
585 }
586
587 /* Assign dfs numbers starting from NUM to NODE and its sons. */
588
589 static void
590 assign_dfs_numbers (struct et_node *node, int *num)
591 {
592 struct et_node *son;
593
594 node->dfs_num_in = (*num)++;
595
596 if (node->son)
597 {
598 assign_dfs_numbers (node->son, num);
599 for (son = node->son->right; son != node->son; son = son->right)
600 assign_dfs_numbers (son, num);
601 }
602
603 node->dfs_num_out = (*num)++;
604 }
605
606 /* Compute the data necessary for fast resolving of dominator queries in a
607 static dominator tree. */
608
609 static void
610 compute_dom_fast_query (enum cdi_direction dir)
611 {
612 int num = 0;
613 basic_block bb;
614 unsigned int dir_index = dom_convert_dir_to_idx (dir);
615
616 gcc_assert (dom_info_available_p (dir));
617
618 if (dom_computed[dir_index] == DOM_OK)
619 return;
620
621 FOR_ALL_BB (bb)
622 {
623 if (!bb->dom[dir_index]->father)
624 assign_dfs_numbers (bb->dom[dir_index], &num);
625 }
626
627 dom_computed[dir_index] = DOM_OK;
628 }
629
630 /* The main entry point into this module. DIR is set depending on whether
631 we want to compute dominators or postdominators. */
632
633 void
634 calculate_dominance_info (enum cdi_direction dir)
635 {
636 struct dom_info di;
637 basic_block b;
638 unsigned int dir_index = dom_convert_dir_to_idx (dir);
639 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
640
641 if (dom_computed[dir_index] == DOM_OK)
642 return;
643
644 timevar_push (TV_DOMINANCE);
645 if (!dom_info_available_p (dir))
646 {
647 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
648
649 FOR_ALL_BB (b)
650 {
651 b->dom[dir_index] = et_new_tree (b);
652 }
653 n_bbs_in_dom_tree[dir_index] = n_basic_blocks;
654
655 init_dom_info (&di, dir);
656 calc_dfs_tree (&di, reverse);
657 calc_idoms (&di, reverse);
658
659 FOR_EACH_BB (b)
660 {
661 TBB d = di.dom[di.dfs_order[b->index]];
662
663 if (di.dfs_to_bb[d])
664 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
665 }
666
667 free_dom_info (&di);
668 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
669 }
670
671 compute_dom_fast_query (dir);
672
673 timevar_pop (TV_DOMINANCE);
674 }
675
676 /* Free dominance information for direction DIR. */
677 void
678 free_dominance_info (enum cdi_direction dir)
679 {
680 basic_block bb;
681 unsigned int dir_index = dom_convert_dir_to_idx (dir);
682
683 if (!dom_info_available_p (dir))
684 return;
685
686 FOR_ALL_BB (bb)
687 {
688 et_free_tree_force (bb->dom[dir_index]);
689 bb->dom[dir_index] = NULL;
690 }
691 et_free_pools ();
692
693 n_bbs_in_dom_tree[dir_index] = 0;
694
695 dom_computed[dir_index] = DOM_NONE;
696 }
697
698 /* Return the immediate dominator of basic block BB. */
699 basic_block
700 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
701 {
702 unsigned int dir_index = dom_convert_dir_to_idx (dir);
703 struct et_node *node = bb->dom[dir_index];
704
705 gcc_assert (dom_computed[dir_index]);
706
707 if (!node->father)
708 return NULL;
709
710 return node->father->data;
711 }
712
713 /* Set the immediate dominator of the block possibly removing
714 existing edge. NULL can be used to remove any edge. */
715 inline void
716 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
717 basic_block dominated_by)
718 {
719 unsigned int dir_index = dom_convert_dir_to_idx (dir);
720 struct et_node *node = bb->dom[dir_index];
721
722 gcc_assert (dom_computed[dir_index]);
723
724 if (node->father)
725 {
726 if (node->father->data == dominated_by)
727 return;
728 et_split (node);
729 }
730
731 if (dominated_by)
732 et_set_father (node, dominated_by->dom[dir_index]);
733
734 if (dom_computed[dir_index] == DOM_OK)
735 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
736 }
737
738 /* Store all basic blocks immediately dominated by BB into BBS and return
739 their number. */
740 int
741 get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
742 {
743 unsigned int dir_index = dom_convert_dir_to_idx (dir);
744 int n;
745 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
746
747 gcc_assert (dom_computed[dir_index]);
748
749 if (!son)
750 {
751 *bbs = NULL;
752 return 0;
753 }
754
755 for (ason = son->right, n = 1; ason != son; ason = ason->right)
756 n++;
757
758 *bbs = XNEWVEC (basic_block, n);
759 (*bbs)[0] = son->data;
760 for (ason = son->right, n = 1; ason != son; ason = ason->right)
761 (*bbs)[n++] = ason->data;
762
763 return n;
764 }
765
766 /* Find all basic blocks that are immediately dominated (in direction DIR)
767 by some block between N_REGION ones stored in REGION, except for blocks
768 in the REGION itself. The found blocks are stored to DOMS and their number
769 is returned. */
770
771 unsigned
772 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
773 unsigned n_region, basic_block *doms)
774 {
775 unsigned n_doms = 0, i;
776 basic_block dom;
777
778 for (i = 0; i < n_region; i++)
779 region[i]->flags |= BB_DUPLICATED;
780 for (i = 0; i < n_region; i++)
781 for (dom = first_dom_son (dir, region[i]);
782 dom;
783 dom = next_dom_son (dir, dom))
784 if (!(dom->flags & BB_DUPLICATED))
785 doms[n_doms++] = dom;
786 for (i = 0; i < n_region; i++)
787 region[i]->flags &= ~BB_DUPLICATED;
788
789 return n_doms;
790 }
791
792 /* Redirect all edges pointing to BB to TO. */
793 void
794 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
795 basic_block to)
796 {
797 unsigned int dir_index = dom_convert_dir_to_idx (dir);
798 struct et_node *bb_node, *to_node, *son;
799
800 bb_node = bb->dom[dir_index];
801 to_node = to->dom[dir_index];
802
803 gcc_assert (dom_computed[dir_index]);
804
805 if (!bb_node->son)
806 return;
807
808 while (bb_node->son)
809 {
810 son = bb_node->son;
811
812 et_split (son);
813 et_set_father (son, to_node);
814 }
815
816 if (dom_computed[dir_index] == DOM_OK)
817 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
818 }
819
820 /* Find first basic block in the tree dominating both BB1 and BB2. */
821 basic_block
822 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
823 {
824 unsigned int dir_index = dom_convert_dir_to_idx (dir);
825
826 gcc_assert (dom_computed[dir_index]);
827
828 if (!bb1)
829 return bb2;
830 if (!bb2)
831 return bb1;
832
833 return et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
834 }
835
836
837 /* Find the nearest common dominator for the basic blocks in BLOCKS,
838 using dominance direction DIR. */
839
840 basic_block
841 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
842 {
843 unsigned i, first;
844 bitmap_iterator bi;
845 basic_block dom;
846
847 first = bitmap_first_set_bit (blocks);
848 dom = BASIC_BLOCK (first);
849 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
850 if (dom != BASIC_BLOCK (i))
851 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
852
853 return dom;
854 }
855
856 /* Given a dominator tree, we can determine whether one thing
857 dominates another in constant time by using two DFS numbers:
858
859 1. The number for when we visit a node on the way down the tree
860 2. The number for when we visit a node on the way back up the tree
861
862 You can view these as bounds for the range of dfs numbers the
863 nodes in the subtree of the dominator tree rooted at that node
864 will contain.
865
866 The dominator tree is always a simple acyclic tree, so there are
867 only three possible relations two nodes in the dominator tree have
868 to each other:
869
870 1. Node A is above Node B (and thus, Node A dominates node B)
871
872 A
873 |
874 C
875 / \
876 B D
877
878
879 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
880 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
881 because we must hit A in the dominator tree *before* B on the walk
882 down, and we will hit A *after* B on the walk back up
883
884 2. Node A is below node B (and thus, node B dominates node A)
885
886
887 B
888 |
889 A
890 / \
891 C D
892
893 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
894 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
895
896 This is because we must hit A in the dominator tree *after* B on
897 the walk down, and we will hit A *before* B on the walk back up
898
899 3. Node A and B are siblings (and thus, neither dominates the other)
900
901 C
902 |
903 D
904 / \
905 A B
906
907 In the above case, DFS_Number_In of A will *always* be <=
908 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
909 DFS_Number_Out of B. This is because we will always finish the dfs
910 walk of one of the subtrees before the other, and thus, the dfs
911 numbers for one subtree can't intersect with the range of dfs
912 numbers for the other subtree. If you swap A and B's position in
913 the dominator tree, the comparison changes direction, but the point
914 is that both comparisons will always go the same way if there is no
915 dominance relationship.
916
917 Thus, it is sufficient to write
918
919 A_Dominates_B (node A, node B)
920 {
921 return DFS_Number_In(A) <= DFS_Number_In(B)
922 && DFS_Number_Out (A) >= DFS_Number_Out(B);
923 }
924
925 A_Dominated_by_B (node A, node B)
926 {
927 return DFS_Number_In(A) >= DFS_Number_In(A)
928 && DFS_Number_Out (A) <= DFS_Number_Out(B);
929 } */
930
931 /* Return TRUE in case BB1 is dominated by BB2. */
932 bool
933 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
934 {
935 unsigned int dir_index = dom_convert_dir_to_idx (dir);
936 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
937
938 gcc_assert (dom_computed[dir_index]);
939
940 if (dom_computed[dir_index] == DOM_OK)
941 return (n1->dfs_num_in >= n2->dfs_num_in
942 && n1->dfs_num_out <= n2->dfs_num_out);
943
944 return et_below (n1, n2);
945 }
946
947 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
948
949 unsigned
950 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
951 {
952 unsigned int dir_index = dom_convert_dir_to_idx (dir);
953 struct et_node *n = bb->dom[dir_index];
954
955 gcc_assert (dom_computed[dir_index] == DOM_OK);
956 return n->dfs_num_in;
957 }
958
959 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
960
961 unsigned
962 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
963 {
964 unsigned int dir_index = dom_convert_dir_to_idx (dir);
965 struct et_node *n = bb->dom[dir_index];
966
967 gcc_assert (dom_computed[dir_index] == DOM_OK);
968 return n->dfs_num_out;
969 }
970
971 /* Verify invariants of dominator structure. */
972 void
973 verify_dominators (enum cdi_direction dir)
974 {
975 int err = 0;
976 basic_block bb;
977
978 gcc_assert (dom_info_available_p (dir));
979
980 FOR_EACH_BB (bb)
981 {
982 basic_block dom_bb;
983 basic_block imm_bb;
984
985 dom_bb = recount_dominator (dir, bb);
986 imm_bb = get_immediate_dominator (dir, bb);
987 if (dom_bb != imm_bb)
988 {
989 if ((dom_bb == NULL) || (imm_bb == NULL))
990 error ("dominator of %d status unknown", bb->index);
991 else
992 error ("dominator of %d should be %d, not %d",
993 bb->index, dom_bb->index, imm_bb->index);
994 err = 1;
995 }
996 }
997
998 if (dir == CDI_DOMINATORS)
999 {
1000 FOR_EACH_BB (bb)
1001 {
1002 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
1003 {
1004 error ("ENTRY does not dominate bb %d", bb->index);
1005 err = 1;
1006 }
1007 }
1008 }
1009
1010 gcc_assert (!err);
1011 }
1012
1013 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1014 assuming that dominators of other blocks are correct. We also use it to
1015 recompute the dominators in a restricted area, by iterating it until it
1016 reaches a fixed point. */
1017
1018 basic_block
1019 recount_dominator (enum cdi_direction dir, basic_block bb)
1020 {
1021 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1022 basic_block dom_bb = NULL;
1023 edge e;
1024 edge_iterator ei;
1025
1026 gcc_assert (dom_computed[dir_index]);
1027
1028 if (dir == CDI_DOMINATORS)
1029 {
1030 FOR_EACH_EDGE (e, ei, bb->preds)
1031 {
1032 /* Ignore the predecessors that either are not reachable from
1033 the entry block, or whose dominator was not determined yet. */
1034 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
1035 continue;
1036
1037 if (!dominated_by_p (dir, e->src, bb))
1038 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1039 }
1040 }
1041 else
1042 {
1043 FOR_EACH_EDGE (e, ei, bb->succs)
1044 {
1045 if (!dominated_by_p (dir, e->dest, bb))
1046 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1047 }
1048 }
1049
1050 return dom_bb;
1051 }
1052
1053 /* Iteratively recount dominators of BBS. The change is supposed to be local
1054 and not to grow further. */
1055 void
1056 iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
1057 {
1058 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1059 int i, changed = 1;
1060 basic_block old_dom, new_dom;
1061
1062 gcc_assert (dom_computed[dir_index]);
1063
1064 for (i = 0; i < n; i++)
1065 set_immediate_dominator (dir, bbs[i], NULL);
1066
1067 while (changed)
1068 {
1069 changed = 0;
1070 for (i = 0; i < n; i++)
1071 {
1072 old_dom = get_immediate_dominator (dir, bbs[i]);
1073 new_dom = recount_dominator (dir, bbs[i]);
1074 if (old_dom != new_dom)
1075 {
1076 changed = 1;
1077 set_immediate_dominator (dir, bbs[i], new_dom);
1078 }
1079 }
1080 }
1081
1082 for (i = 0; i < n; i++)
1083 gcc_assert (get_immediate_dominator (dir, bbs[i]));
1084 }
1085
1086 void
1087 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1088 {
1089 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1090
1091 gcc_assert (dom_computed[dir_index]);
1092 gcc_assert (!bb->dom[dir_index]);
1093
1094 n_bbs_in_dom_tree[dir_index]++;
1095
1096 bb->dom[dir_index] = et_new_tree (bb);
1097
1098 if (dom_computed[dir_index] == DOM_OK)
1099 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1100 }
1101
1102 void
1103 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1104 {
1105 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1106
1107 gcc_assert (dom_computed[dir_index]);
1108
1109 et_free_tree (bb->dom[dir_index]);
1110 bb->dom[dir_index] = NULL;
1111 n_bbs_in_dom_tree[dir_index]--;
1112
1113 if (dom_computed[dir_index] == DOM_OK)
1114 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1115 }
1116
1117 /* Returns the first son of BB in the dominator or postdominator tree
1118 as determined by DIR. */
1119
1120 basic_block
1121 first_dom_son (enum cdi_direction dir, basic_block bb)
1122 {
1123 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1124 struct et_node *son = bb->dom[dir_index]->son;
1125
1126 return son ? son->data : NULL;
1127 }
1128
1129 /* Returns the next dominance son after BB in the dominator or postdominator
1130 tree as determined by DIR, or NULL if it was the last one. */
1131
1132 basic_block
1133 next_dom_son (enum cdi_direction dir, basic_block bb)
1134 {
1135 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1136 struct et_node *next = bb->dom[dir_index]->right;
1137
1138 return next->father->son == next ? NULL : next->data;
1139 }
1140
1141 /* Return dominance availability for dominance info DIR. */
1142
1143 enum dom_state
1144 dom_info_state (enum cdi_direction dir)
1145 {
1146 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1147
1148 return dom_computed[dir_index];
1149 }
1150
1151 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1152
1153 void
1154 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1155 {
1156 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1157
1158 dom_computed[dir_index] = new_state;
1159 }
1160
1161 /* Returns true if dominance information for direction DIR is available. */
1162
1163 bool
1164 dom_info_available_p (enum cdi_direction dir)
1165 {
1166 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1167
1168 return dom_computed[dir_index] != DOM_NONE;
1169 }
1170
1171 void
1172 debug_dominance_info (enum cdi_direction dir)
1173 {
1174 basic_block bb, bb2;
1175 FOR_EACH_BB (bb)
1176 if ((bb2 = get_immediate_dominator (dir, bb)))
1177 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1178 }