Add 2006 to copyright line
[gcc.git] / gcc / dominance.c
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "obstack.h"
43 #include "basic-block.h"
44 #include "toplev.h"
45 #include "et-forest.h"
46
47 /* Whether the dominators and the postdominators are available. */
48 enum dom_state dom_computed[2];
49
50 /* We name our nodes with integers, beginning with 1. Zero is reserved for
51 'undefined' or 'end of list'. The name of each node is given by the dfs
52 number of the corresponding basic block. Please note, that we include the
53 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
54 support multiple entry points. Its dfs number is of course 1. */
55
56 /* Type of Basic Block aka. TBB */
57 typedef unsigned int TBB;
58
59 /* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
63
64 struct dom_info
65 {
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
82
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representant
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
93
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
98 /* If x is the DFS-index of a node which corresponds with a basic block,
99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
103
104 /* This is the next free DFS number when creating the DFS tree. */
105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
108
109 /* Blocks with bits set here have a fake edge to EXIT. These are used
110 to turn a DFS forest into a proper tree. */
111 bitmap fake_exit_edge;
112 };
113
114 static void init_dom_info (struct dom_info *, enum cdi_direction);
115 static void free_dom_info (struct dom_info *);
116 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
117 enum cdi_direction);
118 static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
119 static void compress (struct dom_info *, TBB);
120 static TBB eval (struct dom_info *, TBB);
121 static void link_roots (struct dom_info *, TBB, TBB);
122 static void calc_idoms (struct dom_info *, enum cdi_direction);
123 void debug_dominance_info (enum cdi_direction);
124
125 /* Keeps track of the*/
126 static unsigned n_bbs_in_dom_tree[2];
127
128 /* Helper macro for allocating and initializing an array,
129 for aesthetic reasons. */
130 #define init_ar(var, type, num, content) \
131 do \
132 { \
133 unsigned int i = 1; /* Catch content == i. */ \
134 if (! (content)) \
135 (var) = XCNEWVEC (type, num); \
136 else \
137 { \
138 (var) = XNEWVEC (type, (num)); \
139 for (i = 0; i < num; i++) \
140 (var)[i] = (content); \
141 } \
142 } \
143 while (0)
144
145 /* Allocate all needed memory in a pessimistic fashion (so we round up).
146 This initializes the contents of DI, which already must be allocated. */
147
148 static void
149 init_dom_info (struct dom_info *di, enum cdi_direction dir)
150 {
151 unsigned int num = n_basic_blocks;
152 init_ar (di->dfs_parent, TBB, num, 0);
153 init_ar (di->path_min, TBB, num, i);
154 init_ar (di->key, TBB, num, i);
155 init_ar (di->dom, TBB, num, 0);
156
157 init_ar (di->bucket, TBB, num, 0);
158 init_ar (di->next_bucket, TBB, num, 0);
159
160 init_ar (di->set_chain, TBB, num, 0);
161 init_ar (di->set_size, unsigned int, num, 1);
162 init_ar (di->set_child, TBB, num, 0);
163
164 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
165 init_ar (di->dfs_to_bb, basic_block, num, 0);
166
167 di->dfsnum = 1;
168 di->nodes = 0;
169
170 di->fake_exit_edge = dir ? BITMAP_ALLOC (NULL) : NULL;
171 }
172
173 #undef init_ar
174
175 /* Free all allocated memory in DI, but not DI itself. */
176
177 static void
178 free_dom_info (struct dom_info *di)
179 {
180 free (di->dfs_parent);
181 free (di->path_min);
182 free (di->key);
183 free (di->dom);
184 free (di->bucket);
185 free (di->next_bucket);
186 free (di->set_chain);
187 free (di->set_size);
188 free (di->set_child);
189 free (di->dfs_order);
190 free (di->dfs_to_bb);
191 BITMAP_FREE (di->fake_exit_edge);
192 }
193
194 /* The nonrecursive variant of creating a DFS tree. DI is our working
195 structure, BB the starting basic block for this tree and REVERSE
196 is true, if predecessors should be visited instead of successors of a
197 node. After this is done all nodes reachable from BB were visited, have
198 assigned their dfs number and are linked together to form a tree. */
199
200 static void
201 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
202 enum cdi_direction reverse)
203 {
204 /* We call this _only_ if bb is not already visited. */
205 edge e;
206 TBB child_i, my_i = 0;
207 edge_iterator *stack;
208 edge_iterator ei, einext;
209 int sp;
210 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
211 problem). */
212 basic_block en_block;
213 /* Ending block. */
214 basic_block ex_block;
215
216 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
217 sp = 0;
218
219 /* Initialize our border blocks, and the first edge. */
220 if (reverse)
221 {
222 ei = ei_start (bb->preds);
223 en_block = EXIT_BLOCK_PTR;
224 ex_block = ENTRY_BLOCK_PTR;
225 }
226 else
227 {
228 ei = ei_start (bb->succs);
229 en_block = ENTRY_BLOCK_PTR;
230 ex_block = EXIT_BLOCK_PTR;
231 }
232
233 /* When the stack is empty we break out of this loop. */
234 while (1)
235 {
236 basic_block bn;
237
238 /* This loop traverses edges e in depth first manner, and fills the
239 stack. */
240 while (!ei_end_p (ei))
241 {
242 e = ei_edge (ei);
243
244 /* Deduce from E the current and the next block (BB and BN), and the
245 next edge. */
246 if (reverse)
247 {
248 bn = e->src;
249
250 /* If the next node BN is either already visited or a border
251 block the current edge is useless, and simply overwritten
252 with the next edge out of the current node. */
253 if (bn == ex_block || di->dfs_order[bn->index])
254 {
255 ei_next (&ei);
256 continue;
257 }
258 bb = e->dest;
259 einext = ei_start (bn->preds);
260 }
261 else
262 {
263 bn = e->dest;
264 if (bn == ex_block || di->dfs_order[bn->index])
265 {
266 ei_next (&ei);
267 continue;
268 }
269 bb = e->src;
270 einext = ei_start (bn->succs);
271 }
272
273 gcc_assert (bn != en_block);
274
275 /* Fill the DFS tree info calculatable _before_ recursing. */
276 if (bb != en_block)
277 my_i = di->dfs_order[bb->index];
278 else
279 my_i = di->dfs_order[last_basic_block];
280 child_i = di->dfs_order[bn->index] = di->dfsnum++;
281 di->dfs_to_bb[child_i] = bn;
282 di->dfs_parent[child_i] = my_i;
283
284 /* Save the current point in the CFG on the stack, and recurse. */
285 stack[sp++] = ei;
286 ei = einext;
287 }
288
289 if (!sp)
290 break;
291 ei = stack[--sp];
292
293 /* OK. The edge-list was exhausted, meaning normally we would
294 end the recursion. After returning from the recursive call,
295 there were (may be) other statements which were run after a
296 child node was completely considered by DFS. Here is the
297 point to do it in the non-recursive variant.
298 E.g. The block just completed is in e->dest for forward DFS,
299 the block not yet completed (the parent of the one above)
300 in e->src. This could be used e.g. for computing the number of
301 descendants or the tree depth. */
302 ei_next (&ei);
303 }
304 free (stack);
305 }
306
307 /* The main entry for calculating the DFS tree or forest. DI is our working
308 structure and REVERSE is true, if we are interested in the reverse flow
309 graph. In that case the result is not necessarily a tree but a forest,
310 because there may be nodes from which the EXIT_BLOCK is unreachable. */
311
312 static void
313 calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
314 {
315 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
316 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
317 di->dfs_order[last_basic_block] = di->dfsnum;
318 di->dfs_to_bb[di->dfsnum] = begin;
319 di->dfsnum++;
320
321 calc_dfs_tree_nonrec (di, begin, reverse);
322
323 if (reverse)
324 {
325 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
326 They are reverse-unreachable. In the dom-case we disallow such
327 nodes, but in post-dom we have to deal with them.
328
329 There are two situations in which this occurs. First, noreturn
330 functions. Second, infinite loops. In the first case we need to
331 pretend that there is an edge to the exit block. In the second
332 case, we wind up with a forest. We need to process all noreturn
333 blocks before we know if we've got any infinite loops. */
334
335 basic_block b;
336 bool saw_unconnected = false;
337
338 FOR_EACH_BB_REVERSE (b)
339 {
340 if (EDGE_COUNT (b->succs) > 0)
341 {
342 if (di->dfs_order[b->index] == 0)
343 saw_unconnected = true;
344 continue;
345 }
346 bitmap_set_bit (di->fake_exit_edge, b->index);
347 di->dfs_order[b->index] = di->dfsnum;
348 di->dfs_to_bb[di->dfsnum] = b;
349 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
350 di->dfsnum++;
351 calc_dfs_tree_nonrec (di, b, reverse);
352 }
353
354 if (saw_unconnected)
355 {
356 FOR_EACH_BB_REVERSE (b)
357 {
358 if (di->dfs_order[b->index])
359 continue;
360 bitmap_set_bit (di->fake_exit_edge, b->index);
361 di->dfs_order[b->index] = di->dfsnum;
362 di->dfs_to_bb[di->dfsnum] = b;
363 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
364 di->dfsnum++;
365 calc_dfs_tree_nonrec (di, b, reverse);
366 }
367 }
368 }
369
370 di->nodes = di->dfsnum - 1;
371
372 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
373 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
374 }
375
376 /* Compress the path from V to the root of its set and update path_min at the
377 same time. After compress(di, V) set_chain[V] is the root of the set V is
378 in and path_min[V] is the node with the smallest key[] value on the path
379 from V to that root. */
380
381 static void
382 compress (struct dom_info *di, TBB v)
383 {
384 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
385 greater than 5 even for huge graphs (I've not seen call depth > 4).
386 Also performance wise compress() ranges _far_ behind eval(). */
387 TBB parent = di->set_chain[v];
388 if (di->set_chain[parent])
389 {
390 compress (di, parent);
391 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
392 di->path_min[v] = di->path_min[parent];
393 di->set_chain[v] = di->set_chain[parent];
394 }
395 }
396
397 /* Compress the path from V to the set root of V if needed (when the root has
398 changed since the last call). Returns the node with the smallest key[]
399 value on the path from V to the root. */
400
401 static inline TBB
402 eval (struct dom_info *di, TBB v)
403 {
404 /* The representant of the set V is in, also called root (as the set
405 representation is a tree). */
406 TBB rep = di->set_chain[v];
407
408 /* V itself is the root. */
409 if (!rep)
410 return di->path_min[v];
411
412 /* Compress only if necessary. */
413 if (di->set_chain[rep])
414 {
415 compress (di, v);
416 rep = di->set_chain[v];
417 }
418
419 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
420 return di->path_min[v];
421 else
422 return di->path_min[rep];
423 }
424
425 /* This essentially merges the two sets of V and W, giving a single set with
426 the new root V. The internal representation of these disjoint sets is a
427 balanced tree. Currently link(V,W) is only used with V being the parent
428 of W. */
429
430 static void
431 link_roots (struct dom_info *di, TBB v, TBB w)
432 {
433 TBB s = w;
434
435 /* Rebalance the tree. */
436 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
437 {
438 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
439 >= 2 * di->set_size[di->set_child[s]])
440 {
441 di->set_chain[di->set_child[s]] = s;
442 di->set_child[s] = di->set_child[di->set_child[s]];
443 }
444 else
445 {
446 di->set_size[di->set_child[s]] = di->set_size[s];
447 s = di->set_chain[s] = di->set_child[s];
448 }
449 }
450
451 di->path_min[s] = di->path_min[w];
452 di->set_size[v] += di->set_size[w];
453 if (di->set_size[v] < 2 * di->set_size[w])
454 {
455 TBB tmp = s;
456 s = di->set_child[v];
457 di->set_child[v] = tmp;
458 }
459
460 /* Merge all subtrees. */
461 while (s)
462 {
463 di->set_chain[s] = v;
464 s = di->set_child[s];
465 }
466 }
467
468 /* This calculates the immediate dominators (or post-dominators if REVERSE is
469 true). DI is our working structure and should hold the DFS forest.
470 On return the immediate dominator to node V is in di->dom[V]. */
471
472 static void
473 calc_idoms (struct dom_info *di, enum cdi_direction reverse)
474 {
475 TBB v, w, k, par;
476 basic_block en_block;
477 edge_iterator ei, einext;
478
479 if (reverse)
480 en_block = EXIT_BLOCK_PTR;
481 else
482 en_block = ENTRY_BLOCK_PTR;
483
484 /* Go backwards in DFS order, to first look at the leafs. */
485 v = di->nodes;
486 while (v > 1)
487 {
488 basic_block bb = di->dfs_to_bb[v];
489 edge e;
490
491 par = di->dfs_parent[v];
492 k = v;
493
494 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
495
496 if (reverse)
497 {
498 /* If this block has a fake edge to exit, process that first. */
499 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
500 {
501 einext = ei;
502 einext.index = 0;
503 goto do_fake_exit_edge;
504 }
505 }
506
507 /* Search all direct predecessors for the smallest node with a path
508 to them. That way we have the smallest node with also a path to
509 us only over nodes behind us. In effect we search for our
510 semidominator. */
511 while (!ei_end_p (ei))
512 {
513 TBB k1;
514 basic_block b;
515
516 e = ei_edge (ei);
517 b = (reverse) ? e->dest : e->src;
518 einext = ei;
519 ei_next (&einext);
520
521 if (b == en_block)
522 {
523 do_fake_exit_edge:
524 k1 = di->dfs_order[last_basic_block];
525 }
526 else
527 k1 = di->dfs_order[b->index];
528
529 /* Call eval() only if really needed. If k1 is above V in DFS tree,
530 then we know, that eval(k1) == k1 and key[k1] == k1. */
531 if (k1 > v)
532 k1 = di->key[eval (di, k1)];
533 if (k1 < k)
534 k = k1;
535
536 ei = einext;
537 }
538
539 di->key[v] = k;
540 link_roots (di, par, v);
541 di->next_bucket[v] = di->bucket[k];
542 di->bucket[k] = v;
543
544 /* Transform semidominators into dominators. */
545 for (w = di->bucket[par]; w; w = di->next_bucket[w])
546 {
547 k = eval (di, w);
548 if (di->key[k] < di->key[w])
549 di->dom[w] = k;
550 else
551 di->dom[w] = par;
552 }
553 /* We don't need to cleanup next_bucket[]. */
554 di->bucket[par] = 0;
555 v--;
556 }
557
558 /* Explicitly define the dominators. */
559 di->dom[1] = 0;
560 for (v = 2; v <= di->nodes; v++)
561 if (di->dom[v] != di->key[v])
562 di->dom[v] = di->dom[di->dom[v]];
563 }
564
565 /* Assign dfs numbers starting from NUM to NODE and its sons. */
566
567 static void
568 assign_dfs_numbers (struct et_node *node, int *num)
569 {
570 struct et_node *son;
571
572 node->dfs_num_in = (*num)++;
573
574 if (node->son)
575 {
576 assign_dfs_numbers (node->son, num);
577 for (son = node->son->right; son != node->son; son = son->right)
578 assign_dfs_numbers (son, num);
579 }
580
581 node->dfs_num_out = (*num)++;
582 }
583
584 /* Compute the data necessary for fast resolving of dominator queries in a
585 static dominator tree. */
586
587 static void
588 compute_dom_fast_query (enum cdi_direction dir)
589 {
590 int num = 0;
591 basic_block bb;
592
593 gcc_assert (dom_info_available_p (dir));
594
595 if (dom_computed[dir] == DOM_OK)
596 return;
597
598 FOR_ALL_BB (bb)
599 {
600 if (!bb->dom[dir]->father)
601 assign_dfs_numbers (bb->dom[dir], &num);
602 }
603
604 dom_computed[dir] = DOM_OK;
605 }
606
607 /* The main entry point into this module. DIR is set depending on whether
608 we want to compute dominators or postdominators. */
609
610 void
611 calculate_dominance_info (enum cdi_direction dir)
612 {
613 struct dom_info di;
614 basic_block b;
615
616 if (dom_computed[dir] == DOM_OK)
617 return;
618
619 if (!dom_info_available_p (dir))
620 {
621 gcc_assert (!n_bbs_in_dom_tree[dir]);
622
623 FOR_ALL_BB (b)
624 {
625 b->dom[dir] = et_new_tree (b);
626 }
627 n_bbs_in_dom_tree[dir] = n_basic_blocks;
628
629 init_dom_info (&di, dir);
630 calc_dfs_tree (&di, dir);
631 calc_idoms (&di, dir);
632
633 FOR_EACH_BB (b)
634 {
635 TBB d = di.dom[di.dfs_order[b->index]];
636
637 if (di.dfs_to_bb[d])
638 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
639 }
640
641 free_dom_info (&di);
642 dom_computed[dir] = DOM_NO_FAST_QUERY;
643 }
644
645 compute_dom_fast_query (dir);
646 }
647
648 /* Free dominance information for direction DIR. */
649 void
650 free_dominance_info (enum cdi_direction dir)
651 {
652 basic_block bb;
653
654 if (!dom_info_available_p (dir))
655 return;
656
657 FOR_ALL_BB (bb)
658 {
659 et_free_tree_force (bb->dom[dir]);
660 bb->dom[dir] = NULL;
661 }
662
663 n_bbs_in_dom_tree[dir] = 0;
664
665 dom_computed[dir] = DOM_NONE;
666 }
667
668 /* Return the immediate dominator of basic block BB. */
669 basic_block
670 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
671 {
672 struct et_node *node = bb->dom[dir];
673
674 gcc_assert (dom_computed[dir]);
675
676 if (!node->father)
677 return NULL;
678
679 return node->father->data;
680 }
681
682 /* Set the immediate dominator of the block possibly removing
683 existing edge. NULL can be used to remove any edge. */
684 inline void
685 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
686 basic_block dominated_by)
687 {
688 struct et_node *node = bb->dom[dir];
689
690 gcc_assert (dom_computed[dir]);
691
692 if (node->father)
693 {
694 if (node->father->data == dominated_by)
695 return;
696 et_split (node);
697 }
698
699 if (dominated_by)
700 et_set_father (node, dominated_by->dom[dir]);
701
702 if (dom_computed[dir] == DOM_OK)
703 dom_computed[dir] = DOM_NO_FAST_QUERY;
704 }
705
706 /* Store all basic blocks immediately dominated by BB into BBS and return
707 their number. */
708 int
709 get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
710 {
711 int n;
712 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
713
714 gcc_assert (dom_computed[dir]);
715
716 if (!son)
717 {
718 *bbs = NULL;
719 return 0;
720 }
721
722 for (ason = son->right, n = 1; ason != son; ason = ason->right)
723 n++;
724
725 *bbs = XNEWVEC (basic_block, n);
726 (*bbs)[0] = son->data;
727 for (ason = son->right, n = 1; ason != son; ason = ason->right)
728 (*bbs)[n++] = ason->data;
729
730 return n;
731 }
732
733 /* Find all basic blocks that are immediately dominated (in direction DIR)
734 by some block between N_REGION ones stored in REGION, except for blocks
735 in the REGION itself. The found blocks are stored to DOMS and their number
736 is returned. */
737
738 unsigned
739 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
740 unsigned n_region, basic_block *doms)
741 {
742 unsigned n_doms = 0, i;
743 basic_block dom;
744
745 for (i = 0; i < n_region; i++)
746 region[i]->flags |= BB_DUPLICATED;
747 for (i = 0; i < n_region; i++)
748 for (dom = first_dom_son (dir, region[i]);
749 dom;
750 dom = next_dom_son (dir, dom))
751 if (!(dom->flags & BB_DUPLICATED))
752 doms[n_doms++] = dom;
753 for (i = 0; i < n_region; i++)
754 region[i]->flags &= ~BB_DUPLICATED;
755
756 return n_doms;
757 }
758
759 /* Redirect all edges pointing to BB to TO. */
760 void
761 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
762 basic_block to)
763 {
764 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
765
766 gcc_assert (dom_computed[dir]);
767
768 if (!bb_node->son)
769 return;
770
771 while (bb_node->son)
772 {
773 son = bb_node->son;
774
775 et_split (son);
776 et_set_father (son, to_node);
777 }
778
779 if (dom_computed[dir] == DOM_OK)
780 dom_computed[dir] = DOM_NO_FAST_QUERY;
781 }
782
783 /* Find first basic block in the tree dominating both BB1 and BB2. */
784 basic_block
785 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
786 {
787 gcc_assert (dom_computed[dir]);
788
789 if (!bb1)
790 return bb2;
791 if (!bb2)
792 return bb1;
793
794 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
795 }
796
797
798 /* Find the nearest common dominator for the basic blocks in BLOCKS,
799 using dominance direction DIR. */
800
801 basic_block
802 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
803 {
804 unsigned i, first;
805 bitmap_iterator bi;
806 basic_block dom;
807
808 first = bitmap_first_set_bit (blocks);
809 dom = BASIC_BLOCK (first);
810 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
811 if (dom != BASIC_BLOCK (i))
812 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
813
814 return dom;
815 }
816
817 /* Given a dominator tree, we can determine whether one thing
818 dominates another in constant time by using two DFS numbers:
819
820 1. The number for when we visit a node on the way down the tree
821 2. The number for when we visit a node on the way back up the tree
822
823 You can view these as bounds for the range of dfs numbers the
824 nodes in the subtree of the dominator tree rooted at that node
825 will contain.
826
827 The dominator tree is always a simple acyclic tree, so there are
828 only three possible relations two nodes in the dominator tree have
829 to each other:
830
831 1. Node A is above Node B (and thus, Node A dominates node B)
832
833 A
834 |
835 C
836 / \
837 B D
838
839
840 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
841 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
842 because we must hit A in the dominator tree *before* B on the walk
843 down, and we will hit A *after* B on the walk back up
844
845 2. Node A is below node B (and thus, node B dominates node A)
846
847
848 B
849 |
850 A
851 / \
852 C D
853
854 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
855 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
856
857 This is because we must hit A in the dominator tree *after* B on
858 the walk down, and we will hit A *before* B on the walk back up
859
860 3. Node A and B are siblings (and thus, neither dominates the other)
861
862 C
863 |
864 D
865 / \
866 A B
867
868 In the above case, DFS_Number_In of A will *always* be <=
869 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
870 DFS_Number_Out of B. This is because we will always finish the dfs
871 walk of one of the subtrees before the other, and thus, the dfs
872 numbers for one subtree can't intersect with the range of dfs
873 numbers for the other subtree. If you swap A and B's position in
874 the dominator tree, the comparison changes direction, but the point
875 is that both comparisons will always go the same way if there is no
876 dominance relationship.
877
878 Thus, it is sufficient to write
879
880 A_Dominates_B (node A, node B)
881 {
882 return DFS_Number_In(A) <= DFS_Number_In(B)
883 && DFS_Number_Out (A) >= DFS_Number_Out(B);
884 }
885
886 A_Dominated_by_B (node A, node B)
887 {
888 return DFS_Number_In(A) >= DFS_Number_In(A)
889 && DFS_Number_Out (A) <= DFS_Number_Out(B);
890 } */
891
892 /* Return TRUE in case BB1 is dominated by BB2. */
893 bool
894 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
895 {
896 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
897
898 gcc_assert (dom_computed[dir]);
899
900 if (dom_computed[dir] == DOM_OK)
901 return (n1->dfs_num_in >= n2->dfs_num_in
902 && n1->dfs_num_out <= n2->dfs_num_out);
903
904 return et_below (n1, n2);
905 }
906
907 /* Verify invariants of dominator structure. */
908 void
909 verify_dominators (enum cdi_direction dir)
910 {
911 int err = 0;
912 basic_block bb;
913
914 gcc_assert (dom_info_available_p (dir));
915
916 FOR_EACH_BB (bb)
917 {
918 basic_block dom_bb;
919 basic_block imm_bb;
920
921 dom_bb = recount_dominator (dir, bb);
922 imm_bb = get_immediate_dominator (dir, bb);
923 if (dom_bb != imm_bb)
924 {
925 if ((dom_bb == NULL) || (imm_bb == NULL))
926 error ("dominator of %d status unknown", bb->index);
927 else
928 error ("dominator of %d should be %d, not %d",
929 bb->index, dom_bb->index, imm_bb->index);
930 err = 1;
931 }
932 }
933
934 if (dir == CDI_DOMINATORS)
935 {
936 FOR_EACH_BB (bb)
937 {
938 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
939 {
940 error ("ENTRY does not dominate bb %d", bb->index);
941 err = 1;
942 }
943 }
944 }
945
946 gcc_assert (!err);
947 }
948
949 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
950 assuming that dominators of other blocks are correct. We also use it to
951 recompute the dominators in a restricted area, by iterating it until it
952 reaches a fixed point. */
953
954 basic_block
955 recount_dominator (enum cdi_direction dir, basic_block bb)
956 {
957 basic_block dom_bb = NULL;
958 edge e;
959 edge_iterator ei;
960
961 gcc_assert (dom_computed[dir]);
962
963 if (dir == CDI_DOMINATORS)
964 {
965 FOR_EACH_EDGE (e, ei, bb->preds)
966 {
967 /* Ignore the predecessors that either are not reachable from
968 the entry block, or whose dominator was not determined yet. */
969 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
970 continue;
971
972 if (!dominated_by_p (dir, e->src, bb))
973 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
974 }
975 }
976 else
977 {
978 FOR_EACH_EDGE (e, ei, bb->succs)
979 {
980 if (!dominated_by_p (dir, e->dest, bb))
981 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
982 }
983 }
984
985 return dom_bb;
986 }
987
988 /* Iteratively recount dominators of BBS. The change is supposed to be local
989 and not to grow further. */
990 void
991 iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
992 {
993 int i, changed = 1;
994 basic_block old_dom, new_dom;
995
996 gcc_assert (dom_computed[dir]);
997
998 for (i = 0; i < n; i++)
999 set_immediate_dominator (dir, bbs[i], NULL);
1000
1001 while (changed)
1002 {
1003 changed = 0;
1004 for (i = 0; i < n; i++)
1005 {
1006 old_dom = get_immediate_dominator (dir, bbs[i]);
1007 new_dom = recount_dominator (dir, bbs[i]);
1008 if (old_dom != new_dom)
1009 {
1010 changed = 1;
1011 set_immediate_dominator (dir, bbs[i], new_dom);
1012 }
1013 }
1014 }
1015
1016 for (i = 0; i < n; i++)
1017 gcc_assert (get_immediate_dominator (dir, bbs[i]));
1018 }
1019
1020 void
1021 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1022 {
1023 gcc_assert (dom_computed[dir]);
1024 gcc_assert (!bb->dom[dir]);
1025
1026 n_bbs_in_dom_tree[dir]++;
1027
1028 bb->dom[dir] = et_new_tree (bb);
1029
1030 if (dom_computed[dir] == DOM_OK)
1031 dom_computed[dir] = DOM_NO_FAST_QUERY;
1032 }
1033
1034 void
1035 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1036 {
1037 gcc_assert (dom_computed[dir]);
1038
1039 et_free_tree (bb->dom[dir]);
1040 bb->dom[dir] = NULL;
1041 n_bbs_in_dom_tree[dir]--;
1042
1043 if (dom_computed[dir] == DOM_OK)
1044 dom_computed[dir] = DOM_NO_FAST_QUERY;
1045 }
1046
1047 /* Returns the first son of BB in the dominator or postdominator tree
1048 as determined by DIR. */
1049
1050 basic_block
1051 first_dom_son (enum cdi_direction dir, basic_block bb)
1052 {
1053 struct et_node *son = bb->dom[dir]->son;
1054
1055 return son ? son->data : NULL;
1056 }
1057
1058 /* Returns the next dominance son after BB in the dominator or postdominator
1059 tree as determined by DIR, or NULL if it was the last one. */
1060
1061 basic_block
1062 next_dom_son (enum cdi_direction dir, basic_block bb)
1063 {
1064 struct et_node *next = bb->dom[dir]->right;
1065
1066 return next->father->son == next ? NULL : next->data;
1067 }
1068
1069 /* Returns true if dominance information for direction DIR is available. */
1070
1071 bool
1072 dom_info_available_p (enum cdi_direction dir)
1073 {
1074 return dom_computed[dir] != DOM_NONE;
1075 }
1076
1077 void
1078 debug_dominance_info (enum cdi_direction dir)
1079 {
1080 basic_block bb, bb2;
1081 FOR_EACH_BB (bb)
1082 if ((bb2 = get_immediate_dominator (dir, bb)))
1083 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1084 }