Drop excess size used for run time allocated stack variables.
[gcc.git] / gcc / dominance.c
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements the well known algorithm from Lengauer and Tarjan
22 to compute the dominators in a control flow graph. A basic block D is said
23 to dominate another block X, when all paths from the entry node of the CFG
24 to X go also over D. The dominance relation is a transitive reflexive
25 relation and its minimal transitive reduction is a tree, called the
26 dominator tree. So for each block X besides the entry block exists a
27 block I(X), called the immediate dominator of X, which is the parent of X
28 in the dominator tree.
29
30 The algorithm computes this dominator tree implicitly by computing for
31 each block its immediate dominator. We use tree balancing and path
32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
33 slowly growing functional inverse of the Ackerman function. */
34
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "backend.h"
39 #include "timevar.h"
40 #include "diagnostic-core.h"
41 #include "cfganal.h"
42 #include "et-forest.h"
43 #include "graphds.h"
44
45 /* We name our nodes with integers, beginning with 1. Zero is reserved for
46 'undefined' or 'end of list'. The name of each node is given by the dfs
47 number of the corresponding basic block. Please note, that we include the
48 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
49 support multiple entry points. Its dfs number is of course 1. */
50
51 /* Type of Basic Block aka. TBB */
52 typedef unsigned int TBB;
53
54 namespace {
55
56 /* This class holds various arrays reflecting the (sub)structure of the
57 flowgraph. Most of them are of type TBB and are also indexed by TBB. */
58
59 class dom_info
60 {
61 public:
62 dom_info (function *, cdi_direction);
63 ~dom_info ();
64 void calc_dfs_tree ();
65 void calc_idoms ();
66
67 inline basic_block get_idom (basic_block);
68 private:
69 void calc_dfs_tree_nonrec (basic_block);
70 void compress (TBB);
71 TBB eval (TBB);
72 void link_roots (TBB, TBB);
73
74 /* The parent of a node in the DFS tree. */
75 TBB *m_dfs_parent;
76 /* For a node x m_key[x] is roughly the node nearest to the root from which
77 exists a way to x only over nodes behind x. Such a node is also called
78 semidominator. */
79 TBB *m_key;
80 /* The value in m_path_min[x] is the node y on the path from x to the root of
81 the tree x is in with the smallest m_key[y]. */
82 TBB *m_path_min;
83 /* m_bucket[x] points to the first node of the set of nodes having x as
84 key. */
85 TBB *m_bucket;
86 /* And m_next_bucket[x] points to the next node. */
87 TBB *m_next_bucket;
88 /* After the algorithm is done, m_dom[x] contains the immediate dominator
89 of x. */
90 TBB *m_dom;
91
92 /* The following few fields implement the structures needed for disjoint
93 sets. */
94 /* m_set_chain[x] is the next node on the path from x to the representative
95 of the set containing x. If m_set_chain[x]==0 then x is a root. */
96 TBB *m_set_chain;
97 /* m_set_size[x] is the number of elements in the set named by x. */
98 unsigned int *m_set_size;
99 /* m_set_child[x] is used for balancing the tree representing a set. It can
100 be understood as the next sibling of x. */
101 TBB *m_set_child;
102
103 /* If b is the number of a basic block (BB->index), m_dfs_order[b] is the
104 number of that node in DFS order counted from 1. This is an index
105 into most of the other arrays in this structure. */
106 TBB *m_dfs_order;
107 /* Points to last element in m_dfs_order array. */
108 TBB *m_dfs_last;
109 /* If x is the DFS-index of a node which corresponds with a basic block,
110 m_dfs_to_bb[x] is that basic block. Note, that in our structure there are
111 more nodes that basic blocks, so only
112 m_dfs_to_bb[m_dfs_order[bb->index]]==bb is true for every basic block bb,
113 but not the opposite. */
114 basic_block *m_dfs_to_bb;
115
116 /* This is the next free DFS number when creating the DFS tree. */
117 unsigned int m_dfsnum;
118 /* The number of nodes in the DFS tree (==m_dfsnum-1). */
119 unsigned int m_nodes;
120
121 /* Blocks with bits set here have a fake edge to EXIT. These are used
122 to turn a DFS forest into a proper tree. */
123 bitmap m_fake_exit_edge;
124
125 /* Number of basic blocks in the function being compiled. */
126 size_t m_n_basic_blocks;
127
128 /* True, if we are computing postdominators (rather than dominators). */
129 bool m_reverse;
130
131 /* Start block (the entry block for forward problem, exit block for backward
132 problem). */
133 basic_block m_start_block;
134 /* Ending block. */
135 basic_block m_end_block;
136 };
137
138 } // anonymous namespace
139
140 void debug_dominance_info (cdi_direction);
141 void debug_dominance_tree (cdi_direction, basic_block);
142
143 /* Allocate and zero-initialize NUM elements of type T (T must be a
144 POD-type). Note: after transition to C++11 or later,
145 `x = new_zero_array <T> (num);' can be replaced with
146 `x = new T[num] {};'. */
147
148 template<typename T>
149 inline T *new_zero_array (size_t num)
150 {
151 T *result = new T[num];
152 memset (result, 0, sizeof (T) * num);
153 return result;
154 }
155
156 /* Allocate all needed memory in a pessimistic fashion (so we round up). */
157
158 dom_info::dom_info (function *fn, cdi_direction dir)
159 {
160 /* We need memory for n_basic_blocks nodes. */
161 size_t num = m_n_basic_blocks = n_basic_blocks_for_fn (fn);
162 m_dfs_parent = new_zero_array <TBB> (num);
163 m_dom = new_zero_array <TBB> (num);
164
165 m_path_min = new TBB[num];
166 m_key = new TBB[num];
167 m_set_size = new unsigned int[num];
168 for (size_t i = 0; i < num; i++)
169 {
170 m_path_min[i] = m_key[i] = i;
171 m_set_size[i] = 1;
172 }
173
174 m_bucket = new_zero_array <TBB> (num);
175 m_next_bucket = new_zero_array <TBB> (num);
176
177 m_set_chain = new_zero_array <TBB> (num);
178 m_set_child = new_zero_array <TBB> (num);
179
180 unsigned last_bb_index = last_basic_block_for_fn (fn);
181 m_dfs_order = new_zero_array <TBB> (last_bb_index + 1);
182 m_dfs_last = &m_dfs_order[last_bb_index];
183 m_dfs_to_bb = new_zero_array <basic_block> (num);
184
185 m_dfsnum = 1;
186 m_nodes = 0;
187
188 switch (dir)
189 {
190 case CDI_DOMINATORS:
191 m_reverse = false;
192 m_fake_exit_edge = NULL;
193 m_start_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
194 m_end_block = EXIT_BLOCK_PTR_FOR_FN (fn);
195 break;
196 case CDI_POST_DOMINATORS:
197 m_reverse = true;
198 m_fake_exit_edge = BITMAP_ALLOC (NULL);
199 m_start_block = EXIT_BLOCK_PTR_FOR_FN (fn);
200 m_end_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
201 break;
202 default:
203 gcc_unreachable ();
204 }
205 }
206
207 inline basic_block
208 dom_info::get_idom (basic_block bb)
209 {
210 TBB d = m_dom[m_dfs_order[bb->index]];
211 return m_dfs_to_bb[d];
212 }
213
214 /* Map dominance calculation type to array index used for various
215 dominance information arrays. This version is simple -- it will need
216 to be modified, obviously, if additional values are added to
217 cdi_direction. */
218
219 static inline unsigned int
220 dom_convert_dir_to_idx (cdi_direction dir)
221 {
222 gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
223 return dir - 1;
224 }
225
226 /* Free all allocated memory in dom_info. */
227
228 dom_info::~dom_info ()
229 {
230 delete[] m_dfs_parent;
231 delete[] m_path_min;
232 delete[] m_key;
233 delete[] m_dom;
234 delete[] m_bucket;
235 delete[] m_next_bucket;
236 delete[] m_set_chain;
237 delete[] m_set_size;
238 delete[] m_set_child;
239 delete[] m_dfs_order;
240 delete[] m_dfs_to_bb;
241 BITMAP_FREE (m_fake_exit_edge);
242 }
243
244 /* The nonrecursive variant of creating a DFS tree. BB is the starting basic
245 block for this tree and m_reverse is true, if predecessors should be visited
246 instead of successors of a node. After this is done all nodes reachable
247 from BB were visited, have assigned their dfs number and are linked together
248 to form a tree. */
249
250 void
251 dom_info::calc_dfs_tree_nonrec (basic_block bb)
252 {
253 edge_iterator *stack = new edge_iterator[m_n_basic_blocks + 1];
254 int sp = 0;
255
256 /* Initialize the first edge. */
257 edge_iterator ei = m_reverse ? ei_start (bb->preds)
258 : ei_start (bb->succs);
259
260 /* When the stack is empty we break out of this loop. */
261 while (1)
262 {
263 basic_block bn;
264 edge_iterator einext;
265
266 /* This loop traverses edges e in depth first manner, and fills the
267 stack. */
268 while (!ei_end_p (ei))
269 {
270 edge e = ei_edge (ei);
271
272 /* Deduce from E the current and the next block (BB and BN), and the
273 next edge. */
274 if (m_reverse)
275 {
276 bn = e->src;
277
278 /* If the next node BN is either already visited or a border
279 block the current edge is useless, and simply overwritten
280 with the next edge out of the current node. */
281 if (bn == m_end_block || m_dfs_order[bn->index])
282 {
283 ei_next (&ei);
284 continue;
285 }
286 bb = e->dest;
287 einext = ei_start (bn->preds);
288 }
289 else
290 {
291 bn = e->dest;
292 if (bn == m_end_block || m_dfs_order[bn->index])
293 {
294 ei_next (&ei);
295 continue;
296 }
297 bb = e->src;
298 einext = ei_start (bn->succs);
299 }
300
301 gcc_assert (bn != m_start_block);
302
303 /* Fill the DFS tree info calculatable _before_ recursing. */
304 TBB my_i;
305 if (bb != m_start_block)
306 my_i = m_dfs_order[bb->index];
307 else
308 my_i = *m_dfs_last;
309 TBB child_i = m_dfs_order[bn->index] = m_dfsnum++;
310 m_dfs_to_bb[child_i] = bn;
311 m_dfs_parent[child_i] = my_i;
312
313 /* Save the current point in the CFG on the stack, and recurse. */
314 stack[sp++] = ei;
315 ei = einext;
316 }
317
318 if (!sp)
319 break;
320 ei = stack[--sp];
321
322 /* OK. The edge-list was exhausted, meaning normally we would
323 end the recursion. After returning from the recursive call,
324 there were (may be) other statements which were run after a
325 child node was completely considered by DFS. Here is the
326 point to do it in the non-recursive variant.
327 E.g. The block just completed is in e->dest for forward DFS,
328 the block not yet completed (the parent of the one above)
329 in e->src. This could be used e.g. for computing the number of
330 descendants or the tree depth. */
331 ei_next (&ei);
332 }
333 delete[] stack;
334 }
335
336 /* The main entry for calculating the DFS tree or forest. m_reverse is true,
337 if we are interested in the reverse flow graph. In that case the result is
338 not necessarily a tree but a forest, because there may be nodes from which
339 the EXIT_BLOCK is unreachable. */
340
341 void
342 dom_info::calc_dfs_tree ()
343 {
344 *m_dfs_last = m_dfsnum;
345 m_dfs_to_bb[m_dfsnum] = m_start_block;
346 m_dfsnum++;
347
348 calc_dfs_tree_nonrec (m_start_block);
349
350 if (m_reverse)
351 {
352 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
353 They are reverse-unreachable. In the dom-case we disallow such
354 nodes, but in post-dom we have to deal with them.
355
356 There are two situations in which this occurs. First, noreturn
357 functions. Second, infinite loops. In the first case we need to
358 pretend that there is an edge to the exit block. In the second
359 case, we wind up with a forest. We need to process all noreturn
360 blocks before we know if we've got any infinite loops. */
361
362 basic_block b;
363 bool saw_unconnected = false;
364
365 FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
366 {
367 if (EDGE_COUNT (b->succs) > 0)
368 {
369 if (m_dfs_order[b->index] == 0)
370 saw_unconnected = true;
371 continue;
372 }
373 bitmap_set_bit (m_fake_exit_edge, b->index);
374 m_dfs_order[b->index] = m_dfsnum;
375 m_dfs_to_bb[m_dfsnum] = b;
376 m_dfs_parent[m_dfsnum] = *m_dfs_last;
377 m_dfsnum++;
378 calc_dfs_tree_nonrec (b);
379 }
380
381 if (saw_unconnected)
382 {
383 FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
384 {
385 if (m_dfs_order[b->index])
386 continue;
387 basic_block b2 = dfs_find_deadend (b);
388 gcc_checking_assert (m_dfs_order[b2->index] == 0);
389 bitmap_set_bit (m_fake_exit_edge, b2->index);
390 m_dfs_order[b2->index] = m_dfsnum;
391 m_dfs_to_bb[m_dfsnum] = b2;
392 m_dfs_parent[m_dfsnum] = *m_dfs_last;
393 m_dfsnum++;
394 calc_dfs_tree_nonrec (b2);
395 gcc_checking_assert (m_dfs_order[b->index]);
396 }
397 }
398 }
399
400 m_nodes = m_dfsnum - 1;
401
402 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
403 gcc_assert (m_nodes == (unsigned int) m_n_basic_blocks - 1);
404 }
405
406 /* Compress the path from V to the root of its set and update path_min at the
407 same time. After compress(di, V) set_chain[V] is the root of the set V is
408 in and path_min[V] is the node with the smallest key[] value on the path
409 from V to that root. */
410
411 void
412 dom_info::compress (TBB v)
413 {
414 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
415 greater than 5 even for huge graphs (I've not seen call depth > 4).
416 Also performance wise compress() ranges _far_ behind eval(). */
417 TBB parent = m_set_chain[v];
418 if (m_set_chain[parent])
419 {
420 compress (parent);
421 if (m_key[m_path_min[parent]] < m_key[m_path_min[v]])
422 m_path_min[v] = m_path_min[parent];
423 m_set_chain[v] = m_set_chain[parent];
424 }
425 }
426
427 /* Compress the path from V to the set root of V if needed (when the root has
428 changed since the last call). Returns the node with the smallest key[]
429 value on the path from V to the root. */
430
431 inline TBB
432 dom_info::eval (TBB v)
433 {
434 /* The representative of the set V is in, also called root (as the set
435 representation is a tree). */
436 TBB rep = m_set_chain[v];
437
438 /* V itself is the root. */
439 if (!rep)
440 return m_path_min[v];
441
442 /* Compress only if necessary. */
443 if (m_set_chain[rep])
444 {
445 compress (v);
446 rep = m_set_chain[v];
447 }
448
449 if (m_key[m_path_min[rep]] >= m_key[m_path_min[v]])
450 return m_path_min[v];
451 else
452 return m_path_min[rep];
453 }
454
455 /* This essentially merges the two sets of V and W, giving a single set with
456 the new root V. The internal representation of these disjoint sets is a
457 balanced tree. Currently link(V,W) is only used with V being the parent
458 of W. */
459
460 void
461 dom_info::link_roots (TBB v, TBB w)
462 {
463 TBB s = w;
464
465 /* Rebalance the tree. */
466 while (m_key[m_path_min[w]] < m_key[m_path_min[m_set_child[s]]])
467 {
468 if (m_set_size[s] + m_set_size[m_set_child[m_set_child[s]]]
469 >= 2 * m_set_size[m_set_child[s]])
470 {
471 m_set_chain[m_set_child[s]] = s;
472 m_set_child[s] = m_set_child[m_set_child[s]];
473 }
474 else
475 {
476 m_set_size[m_set_child[s]] = m_set_size[s];
477 s = m_set_chain[s] = m_set_child[s];
478 }
479 }
480
481 m_path_min[s] = m_path_min[w];
482 m_set_size[v] += m_set_size[w];
483 if (m_set_size[v] < 2 * m_set_size[w])
484 std::swap (m_set_child[v], s);
485
486 /* Merge all subtrees. */
487 while (s)
488 {
489 m_set_chain[s] = v;
490 s = m_set_child[s];
491 }
492 }
493
494 /* This calculates the immediate dominators (or post-dominators). THIS is our
495 working structure and should hold the DFS forest.
496 On return the immediate dominator to node V is in m_dom[V]. */
497
498 void
499 dom_info::calc_idoms ()
500 {
501 /* Go backwards in DFS order, to first look at the leafs. */
502 for (TBB v = m_nodes; v > 1; v--)
503 {
504 basic_block bb = m_dfs_to_bb[v];
505 edge e;
506
507 TBB par = m_dfs_parent[v];
508 TBB k = v;
509
510 edge_iterator ei = m_reverse ? ei_start (bb->succs)
511 : ei_start (bb->preds);
512 edge_iterator einext;
513
514 if (m_reverse)
515 {
516 /* If this block has a fake edge to exit, process that first. */
517 if (bitmap_bit_p (m_fake_exit_edge, bb->index))
518 {
519 einext = ei;
520 einext.index = 0;
521 goto do_fake_exit_edge;
522 }
523 }
524
525 /* Search all direct predecessors for the smallest node with a path
526 to them. That way we have the smallest node with also a path to
527 us only over nodes behind us. In effect we search for our
528 semidominator. */
529 while (!ei_end_p (ei))
530 {
531 basic_block b;
532 TBB k1;
533
534 e = ei_edge (ei);
535 b = m_reverse ? e->dest : e->src;
536 einext = ei;
537 ei_next (&einext);
538
539 if (b == m_start_block)
540 {
541 do_fake_exit_edge:
542 k1 = *m_dfs_last;
543 }
544 else
545 k1 = m_dfs_order[b->index];
546
547 /* Call eval() only if really needed. If k1 is above V in DFS tree,
548 then we know, that eval(k1) == k1 and key[k1] == k1. */
549 if (k1 > v)
550 k1 = m_key[eval (k1)];
551 if (k1 < k)
552 k = k1;
553
554 ei = einext;
555 }
556
557 m_key[v] = k;
558 link_roots (par, v);
559 m_next_bucket[v] = m_bucket[k];
560 m_bucket[k] = v;
561
562 /* Transform semidominators into dominators. */
563 for (TBB w = m_bucket[par]; w; w = m_next_bucket[w])
564 {
565 k = eval (w);
566 if (m_key[k] < m_key[w])
567 m_dom[w] = k;
568 else
569 m_dom[w] = par;
570 }
571 /* We don't need to cleanup next_bucket[]. */
572 m_bucket[par] = 0;
573 }
574
575 /* Explicitly define the dominators. */
576 m_dom[1] = 0;
577 for (TBB v = 2; v <= m_nodes; v++)
578 if (m_dom[v] != m_key[v])
579 m_dom[v] = m_dom[m_dom[v]];
580 }
581
582 /* Assign dfs numbers starting from NUM to NODE and its sons. */
583
584 static void
585 assign_dfs_numbers (struct et_node *node, int *num)
586 {
587 struct et_node *son;
588
589 node->dfs_num_in = (*num)++;
590
591 if (node->son)
592 {
593 assign_dfs_numbers (node->son, num);
594 for (son = node->son->right; son != node->son; son = son->right)
595 assign_dfs_numbers (son, num);
596 }
597
598 node->dfs_num_out = (*num)++;
599 }
600
601 /* Compute the data necessary for fast resolving of dominator queries in a
602 static dominator tree. */
603
604 static void
605 compute_dom_fast_query (enum cdi_direction dir)
606 {
607 int num = 0;
608 basic_block bb;
609 unsigned int dir_index = dom_convert_dir_to_idx (dir);
610
611 gcc_checking_assert (dom_info_available_p (dir));
612
613 if (dom_computed[dir_index] == DOM_OK)
614 return;
615
616 FOR_ALL_BB_FN (bb, cfun)
617 {
618 if (!bb->dom[dir_index]->father)
619 assign_dfs_numbers (bb->dom[dir_index], &num);
620 }
621
622 dom_computed[dir_index] = DOM_OK;
623 }
624
625 /* The main entry point into this module. DIR is set depending on whether
626 we want to compute dominators or postdominators. */
627
628 void
629 calculate_dominance_info (cdi_direction dir)
630 {
631 unsigned int dir_index = dom_convert_dir_to_idx (dir);
632
633 if (dom_computed[dir_index] == DOM_OK)
634 {
635 checking_verify_dominators (dir);
636 return;
637 }
638
639 timevar_push (TV_DOMINANCE);
640 if (!dom_info_available_p (dir))
641 {
642 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
643
644 basic_block b;
645 FOR_ALL_BB_FN (b, cfun)
646 {
647 b->dom[dir_index] = et_new_tree (b);
648 }
649 n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
650
651 dom_info di (cfun, dir);
652 di.calc_dfs_tree ();
653 di.calc_idoms ();
654
655 FOR_EACH_BB_FN (b, cfun)
656 {
657 if (basic_block d = di.get_idom (b))
658 et_set_father (b->dom[dir_index], d->dom[dir_index]);
659 }
660
661 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
662 }
663 else
664 checking_verify_dominators (dir);
665
666 compute_dom_fast_query (dir);
667
668 timevar_pop (TV_DOMINANCE);
669 }
670
671 /* Free dominance information for direction DIR. */
672 void
673 free_dominance_info (function *fn, enum cdi_direction dir)
674 {
675 basic_block bb;
676 unsigned int dir_index = dom_convert_dir_to_idx (dir);
677
678 if (!dom_info_available_p (fn, dir))
679 return;
680
681 FOR_ALL_BB_FN (bb, fn)
682 {
683 et_free_tree_force (bb->dom[dir_index]);
684 bb->dom[dir_index] = NULL;
685 }
686 et_free_pools ();
687
688 fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
689
690 fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
691 }
692
693 void
694 free_dominance_info (enum cdi_direction dir)
695 {
696 free_dominance_info (cfun, dir);
697 }
698
699 /* Return the immediate dominator of basic block BB. */
700 basic_block
701 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
702 {
703 unsigned int dir_index = dom_convert_dir_to_idx (dir);
704 struct et_node *node = bb->dom[dir_index];
705
706 gcc_checking_assert (dom_computed[dir_index]);
707
708 if (!node->father)
709 return NULL;
710
711 return (basic_block) node->father->data;
712 }
713
714 /* Set the immediate dominator of the block possibly removing
715 existing edge. NULL can be used to remove any edge. */
716 void
717 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
718 basic_block dominated_by)
719 {
720 unsigned int dir_index = dom_convert_dir_to_idx (dir);
721 struct et_node *node = bb->dom[dir_index];
722
723 gcc_checking_assert (dom_computed[dir_index]);
724
725 if (node->father)
726 {
727 if (node->father->data == dominated_by)
728 return;
729 et_split (node);
730 }
731
732 if (dominated_by)
733 et_set_father (node, dominated_by->dom[dir_index]);
734
735 if (dom_computed[dir_index] == DOM_OK)
736 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
737 }
738
739 /* Returns the list of basic blocks immediately dominated by BB, in the
740 direction DIR. */
741 vec<basic_block>
742 get_dominated_by (enum cdi_direction dir, basic_block bb)
743 {
744 unsigned int dir_index = dom_convert_dir_to_idx (dir);
745 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
746 vec<basic_block> bbs = vNULL;
747
748 gcc_checking_assert (dom_computed[dir_index]);
749
750 if (!son)
751 return vNULL;
752
753 bbs.safe_push ((basic_block) son->data);
754 for (ason = son->right; ason != son; ason = ason->right)
755 bbs.safe_push ((basic_block) ason->data);
756
757 return bbs;
758 }
759
760 /* Returns the list of basic blocks that are immediately dominated (in
761 direction DIR) by some block between N_REGION ones stored in REGION,
762 except for blocks in the REGION itself. */
763
764 vec<basic_block>
765 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
766 unsigned n_region)
767 {
768 unsigned i;
769 basic_block dom;
770 vec<basic_block> doms = vNULL;
771
772 for (i = 0; i < n_region; i++)
773 region[i]->flags |= BB_DUPLICATED;
774 for (i = 0; i < n_region; i++)
775 for (dom = first_dom_son (dir, region[i]);
776 dom;
777 dom = next_dom_son (dir, dom))
778 if (!(dom->flags & BB_DUPLICATED))
779 doms.safe_push (dom);
780 for (i = 0; i < n_region; i++)
781 region[i]->flags &= ~BB_DUPLICATED;
782
783 return doms;
784 }
785
786 /* Returns the list of basic blocks including BB dominated by BB, in the
787 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
788 produce a vector containing all dominated blocks. The vector will be sorted
789 in preorder. */
790
791 vec<basic_block>
792 get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
793 {
794 vec<basic_block> bbs = vNULL;
795 unsigned i;
796 unsigned next_level_start;
797
798 i = 0;
799 bbs.safe_push (bb);
800 next_level_start = 1; /* = bbs.length (); */
801
802 do
803 {
804 basic_block son;
805
806 bb = bbs[i++];
807 for (son = first_dom_son (dir, bb);
808 son;
809 son = next_dom_son (dir, son))
810 bbs.safe_push (son);
811
812 if (i == next_level_start && --depth)
813 next_level_start = bbs.length ();
814 }
815 while (i < next_level_start);
816
817 return bbs;
818 }
819
820 /* Returns the list of basic blocks including BB dominated by BB, in the
821 direction DIR. The vector will be sorted in preorder. */
822
823 vec<basic_block>
824 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
825 {
826 return get_dominated_to_depth (dir, bb, 0);
827 }
828
829 /* Redirect all edges pointing to BB to TO. */
830 void
831 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
832 basic_block to)
833 {
834 unsigned int dir_index = dom_convert_dir_to_idx (dir);
835 struct et_node *bb_node, *to_node, *son;
836
837 bb_node = bb->dom[dir_index];
838 to_node = to->dom[dir_index];
839
840 gcc_checking_assert (dom_computed[dir_index]);
841
842 if (!bb_node->son)
843 return;
844
845 while (bb_node->son)
846 {
847 son = bb_node->son;
848
849 et_split (son);
850 et_set_father (son, to_node);
851 }
852
853 if (dom_computed[dir_index] == DOM_OK)
854 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
855 }
856
857 /* Find first basic block in the tree dominating both BB1 and BB2. */
858 basic_block
859 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
860 {
861 unsigned int dir_index = dom_convert_dir_to_idx (dir);
862
863 gcc_checking_assert (dom_computed[dir_index]);
864
865 if (!bb1)
866 return bb2;
867 if (!bb2)
868 return bb1;
869
870 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
871 }
872
873
874 /* Find the nearest common dominator for the basic blocks in BLOCKS,
875 using dominance direction DIR. */
876
877 basic_block
878 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
879 {
880 unsigned i, first;
881 bitmap_iterator bi;
882 basic_block dom;
883
884 first = bitmap_first_set_bit (blocks);
885 dom = BASIC_BLOCK_FOR_FN (cfun, first);
886 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
887 if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
888 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
889
890 return dom;
891 }
892
893 /* Given a dominator tree, we can determine whether one thing
894 dominates another in constant time by using two DFS numbers:
895
896 1. The number for when we visit a node on the way down the tree
897 2. The number for when we visit a node on the way back up the tree
898
899 You can view these as bounds for the range of dfs numbers the
900 nodes in the subtree of the dominator tree rooted at that node
901 will contain.
902
903 The dominator tree is always a simple acyclic tree, so there are
904 only three possible relations two nodes in the dominator tree have
905 to each other:
906
907 1. Node A is above Node B (and thus, Node A dominates node B)
908
909 A
910 |
911 C
912 / \
913 B D
914
915
916 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
917 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
918 because we must hit A in the dominator tree *before* B on the walk
919 down, and we will hit A *after* B on the walk back up
920
921 2. Node A is below node B (and thus, node B dominates node A)
922
923
924 B
925 |
926 A
927 / \
928 C D
929
930 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
931 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
932
933 This is because we must hit A in the dominator tree *after* B on
934 the walk down, and we will hit A *before* B on the walk back up
935
936 3. Node A and B are siblings (and thus, neither dominates the other)
937
938 C
939 |
940 D
941 / \
942 A B
943
944 In the above case, DFS_Number_In of A will *always* be <=
945 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
946 DFS_Number_Out of B. This is because we will always finish the dfs
947 walk of one of the subtrees before the other, and thus, the dfs
948 numbers for one subtree can't intersect with the range of dfs
949 numbers for the other subtree. If you swap A and B's position in
950 the dominator tree, the comparison changes direction, but the point
951 is that both comparisons will always go the same way if there is no
952 dominance relationship.
953
954 Thus, it is sufficient to write
955
956 A_Dominates_B (node A, node B)
957 {
958 return DFS_Number_In(A) <= DFS_Number_In(B)
959 && DFS_Number_Out (A) >= DFS_Number_Out(B);
960 }
961
962 A_Dominated_by_B (node A, node B)
963 {
964 return DFS_Number_In(A) >= DFS_Number_In(B)
965 && DFS_Number_Out (A) <= DFS_Number_Out(B);
966 } */
967
968 /* Return TRUE in case BB1 is dominated by BB2. */
969 bool
970 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
971 {
972 unsigned int dir_index = dom_convert_dir_to_idx (dir);
973 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
974
975 gcc_checking_assert (dom_computed[dir_index]);
976
977 if (dom_computed[dir_index] == DOM_OK)
978 return (n1->dfs_num_in >= n2->dfs_num_in
979 && n1->dfs_num_out <= n2->dfs_num_out);
980
981 return et_below (n1, n2);
982 }
983
984 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
985
986 unsigned
987 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
988 {
989 unsigned int dir_index = dom_convert_dir_to_idx (dir);
990 struct et_node *n = bb->dom[dir_index];
991
992 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
993 return n->dfs_num_in;
994 }
995
996 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
997
998 unsigned
999 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1000 {
1001 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1002 struct et_node *n = bb->dom[dir_index];
1003
1004 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1005 return n->dfs_num_out;
1006 }
1007
1008 /* Verify invariants of dominator structure. */
1009 DEBUG_FUNCTION void
1010 verify_dominators (cdi_direction dir)
1011 {
1012 gcc_assert (dom_info_available_p (dir));
1013
1014 dom_info di (cfun, dir);
1015 di.calc_dfs_tree ();
1016 di.calc_idoms ();
1017
1018 bool err = false;
1019 basic_block bb;
1020 FOR_EACH_BB_FN (bb, cfun)
1021 {
1022 basic_block imm_bb = get_immediate_dominator (dir, bb);
1023 if (!imm_bb)
1024 {
1025 error ("dominator of %d status unknown", bb->index);
1026 err = true;
1027 continue;
1028 }
1029
1030 basic_block imm_bb_correct = di.get_idom (bb);
1031 if (imm_bb != imm_bb_correct)
1032 {
1033 error ("dominator of %d should be %d, not %d",
1034 bb->index, imm_bb_correct->index, imm_bb->index);
1035 err = true;
1036 }
1037 }
1038
1039 gcc_assert (!err);
1040 }
1041
1042 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1043 assuming that dominators of other blocks are correct. We also use it to
1044 recompute the dominators in a restricted area, by iterating it until it
1045 reaches a fixed point. */
1046
1047 basic_block
1048 recompute_dominator (enum cdi_direction dir, basic_block bb)
1049 {
1050 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1051 basic_block dom_bb = NULL;
1052 edge e;
1053 edge_iterator ei;
1054
1055 gcc_checking_assert (dom_computed[dir_index]);
1056
1057 if (dir == CDI_DOMINATORS)
1058 {
1059 FOR_EACH_EDGE (e, ei, bb->preds)
1060 {
1061 if (!dominated_by_p (dir, e->src, bb))
1062 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1063 }
1064 }
1065 else
1066 {
1067 FOR_EACH_EDGE (e, ei, bb->succs)
1068 {
1069 if (!dominated_by_p (dir, e->dest, bb))
1070 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1071 }
1072 }
1073
1074 return dom_bb;
1075 }
1076
1077 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1078 of BBS. We assume that all the immediate dominators except for those of the
1079 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1080 currently recorded immediate dominators of blocks in BBS really dominate the
1081 blocks. The basic blocks for that we determine the dominator are removed
1082 from BBS. */
1083
1084 static void
1085 prune_bbs_to_update_dominators (vec<basic_block> bbs,
1086 bool conservative)
1087 {
1088 unsigned i;
1089 bool single;
1090 basic_block bb, dom = NULL;
1091 edge_iterator ei;
1092 edge e;
1093
1094 for (i = 0; bbs.iterate (i, &bb);)
1095 {
1096 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1097 goto succeed;
1098
1099 if (single_pred_p (bb))
1100 {
1101 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1102 goto succeed;
1103 }
1104
1105 if (!conservative)
1106 goto fail;
1107
1108 single = true;
1109 dom = NULL;
1110 FOR_EACH_EDGE (e, ei, bb->preds)
1111 {
1112 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1113 continue;
1114
1115 if (!dom)
1116 dom = e->src;
1117 else
1118 {
1119 single = false;
1120 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1121 }
1122 }
1123
1124 gcc_assert (dom != NULL);
1125 if (single
1126 || find_edge (dom, bb))
1127 {
1128 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1129 goto succeed;
1130 }
1131
1132 fail:
1133 i++;
1134 continue;
1135
1136 succeed:
1137 bbs.unordered_remove (i);
1138 }
1139 }
1140
1141 /* Returns root of the dominance tree in the direction DIR that contains
1142 BB. */
1143
1144 static basic_block
1145 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1146 {
1147 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1148 }
1149
1150 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1151 for the sons of Y, found using the SON and BROTHER arrays representing
1152 the dominance tree of graph G. BBS maps the vertices of G to the basic
1153 blocks. */
1154
1155 static void
1156 determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
1157 int y, int *son, int *brother)
1158 {
1159 bitmap gprime;
1160 int i, a, nc;
1161 vec<int> *sccs;
1162 basic_block bb, dom, ybb;
1163 unsigned si;
1164 edge e;
1165 edge_iterator ei;
1166
1167 if (son[y] == -1)
1168 return;
1169 if (y == (int) bbs.length ())
1170 ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1171 else
1172 ybb = bbs[y];
1173
1174 if (brother[son[y]] == -1)
1175 {
1176 /* Handle the common case Y has just one son specially. */
1177 bb = bbs[son[y]];
1178 set_immediate_dominator (CDI_DOMINATORS, bb,
1179 recompute_dominator (CDI_DOMINATORS, bb));
1180 identify_vertices (g, y, son[y]);
1181 return;
1182 }
1183
1184 gprime = BITMAP_ALLOC (NULL);
1185 for (a = son[y]; a != -1; a = brother[a])
1186 bitmap_set_bit (gprime, a);
1187
1188 nc = graphds_scc (g, gprime);
1189 BITMAP_FREE (gprime);
1190
1191 /* ??? Needed to work around the pre-processor confusion with
1192 using a multi-argument template type as macro argument. */
1193 typedef vec<int> vec_int_heap;
1194 sccs = XCNEWVEC (vec_int_heap, nc);
1195 for (a = son[y]; a != -1; a = brother[a])
1196 sccs[g->vertices[a].component].safe_push (a);
1197
1198 for (i = nc - 1; i >= 0; i--)
1199 {
1200 dom = NULL;
1201 FOR_EACH_VEC_ELT (sccs[i], si, a)
1202 {
1203 bb = bbs[a];
1204 FOR_EACH_EDGE (e, ei, bb->preds)
1205 {
1206 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1207 continue;
1208
1209 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1210 }
1211 }
1212
1213 gcc_assert (dom != NULL);
1214 FOR_EACH_VEC_ELT (sccs[i], si, a)
1215 {
1216 bb = bbs[a];
1217 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1218 }
1219 }
1220
1221 for (i = 0; i < nc; i++)
1222 sccs[i].release ();
1223 free (sccs);
1224
1225 for (a = son[y]; a != -1; a = brother[a])
1226 identify_vertices (g, y, a);
1227 }
1228
1229 /* Recompute dominance information for basic blocks in the set BBS. The
1230 function assumes that the immediate dominators of all the other blocks
1231 in CFG are correct, and that there are no unreachable blocks.
1232
1233 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1234 a block of BBS in the current dominance tree dominate it. */
1235
1236 void
1237 iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
1238 bool conservative)
1239 {
1240 unsigned i;
1241 basic_block bb, dom;
1242 struct graph *g;
1243 int n, y;
1244 size_t dom_i;
1245 edge e;
1246 edge_iterator ei;
1247 int *parent, *son, *brother;
1248 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1249
1250 /* We only support updating dominators. There are some problems with
1251 updating postdominators (need to add fake edges from infinite loops
1252 and noreturn functions), and since we do not currently use
1253 iterate_fix_dominators for postdominators, any attempt to handle these
1254 problems would be unused, untested, and almost surely buggy. We keep
1255 the DIR argument for consistency with the rest of the dominator analysis
1256 interface. */
1257 gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
1258
1259 /* The algorithm we use takes inspiration from the following papers, although
1260 the details are quite different from any of them:
1261
1262 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1263 Dominator Tree of a Reducible Flowgraph
1264 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1265 dominator trees
1266 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1267 Algorithm
1268
1269 First, we use the following heuristics to decrease the size of the BBS
1270 set:
1271 a) if BB has a single predecessor, then its immediate dominator is this
1272 predecessor
1273 additionally, if CONSERVATIVE is true:
1274 b) if all the predecessors of BB except for one (X) are dominated by BB,
1275 then X is the immediate dominator of BB
1276 c) if the nearest common ancestor of the predecessors of BB is X and
1277 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1278
1279 Then, we need to establish the dominance relation among the basic blocks
1280 in BBS. We split the dominance tree by removing the immediate dominator
1281 edges from BBS, creating a forest F. We form a graph G whose vertices
1282 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1283 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1284 whose root is X. We then determine dominance tree of G. Note that
1285 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1286 In this step, we can use arbitrary algorithm to determine dominators.
1287 We decided to prefer the algorithm [3] to the algorithm of
1288 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1289 10 during gcc bootstrap), and [3] should perform better in this case.
1290
1291 Finally, we need to determine the immediate dominators for the basic
1292 blocks of BBS. If the immediate dominator of X in G is Y, then
1293 the immediate dominator of X in CFG belongs to the tree of F rooted in
1294 Y. We process the dominator tree T of G recursively, starting from leaves.
1295 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1296 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1297 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1298 the following observations:
1299 (i) the immediate dominator of all blocks in a strongly connected
1300 component of G' is the same
1301 (ii) if X has no predecessors in G', then the immediate dominator of X
1302 is the nearest common ancestor of the predecessors of X in the
1303 subtree of F rooted in Y
1304 Therefore, it suffices to find the topological ordering of G', and
1305 process the nodes X_i in this order using the rules (i) and (ii).
1306 Then, we contract all the nodes X_i with Y in G, so that the further
1307 steps work correctly. */
1308
1309 if (!conservative)
1310 {
1311 /* Split the tree now. If the idoms of blocks in BBS are not
1312 conservatively correct, setting the dominators using the
1313 heuristics in prune_bbs_to_update_dominators could
1314 create cycles in the dominance "tree", and cause ICE. */
1315 FOR_EACH_VEC_ELT (bbs, i, bb)
1316 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1317 }
1318
1319 prune_bbs_to_update_dominators (bbs, conservative);
1320 n = bbs.length ();
1321
1322 if (n == 0)
1323 return;
1324
1325 if (n == 1)
1326 {
1327 bb = bbs[0];
1328 set_immediate_dominator (CDI_DOMINATORS, bb,
1329 recompute_dominator (CDI_DOMINATORS, bb));
1330 return;
1331 }
1332
1333 /* Construct the graph G. */
1334 hash_map<basic_block, int> map (251);
1335 FOR_EACH_VEC_ELT (bbs, i, bb)
1336 {
1337 /* If the dominance tree is conservatively correct, split it now. */
1338 if (conservative)
1339 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1340 map.put (bb, i);
1341 }
1342 map.put (ENTRY_BLOCK_PTR_FOR_FN (cfun), n);
1343
1344 g = new_graph (n + 1);
1345 for (y = 0; y < g->n_vertices; y++)
1346 g->vertices[y].data = BITMAP_ALLOC (NULL);
1347 FOR_EACH_VEC_ELT (bbs, i, bb)
1348 {
1349 FOR_EACH_EDGE (e, ei, bb->preds)
1350 {
1351 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1352 if (dom == bb)
1353 continue;
1354
1355 dom_i = *map.get (dom);
1356
1357 /* Do not include parallel edges to G. */
1358 if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
1359 continue;
1360
1361 add_edge (g, dom_i, i);
1362 }
1363 }
1364 for (y = 0; y < g->n_vertices; y++)
1365 BITMAP_FREE (g->vertices[y].data);
1366
1367 /* Find the dominator tree of G. */
1368 son = XNEWVEC (int, n + 1);
1369 brother = XNEWVEC (int, n + 1);
1370 parent = XNEWVEC (int, n + 1);
1371 graphds_domtree (g, n, parent, son, brother);
1372
1373 /* Finally, traverse the tree and find the immediate dominators. */
1374 for (y = n; son[y] != -1; y = son[y])
1375 continue;
1376 while (y != -1)
1377 {
1378 determine_dominators_for_sons (g, bbs, y, son, brother);
1379
1380 if (brother[y] != -1)
1381 {
1382 y = brother[y];
1383 while (son[y] != -1)
1384 y = son[y];
1385 }
1386 else
1387 y = parent[y];
1388 }
1389
1390 free (son);
1391 free (brother);
1392 free (parent);
1393
1394 free_graph (g);
1395 }
1396
1397 void
1398 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1399 {
1400 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1401
1402 gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
1403
1404 n_bbs_in_dom_tree[dir_index]++;
1405
1406 bb->dom[dir_index] = et_new_tree (bb);
1407
1408 if (dom_computed[dir_index] == DOM_OK)
1409 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1410 }
1411
1412 void
1413 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1414 {
1415 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1416
1417 gcc_checking_assert (dom_computed[dir_index]);
1418
1419 et_free_tree (bb->dom[dir_index]);
1420 bb->dom[dir_index] = NULL;
1421 n_bbs_in_dom_tree[dir_index]--;
1422
1423 if (dom_computed[dir_index] == DOM_OK)
1424 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1425 }
1426
1427 /* Returns the first son of BB in the dominator or postdominator tree
1428 as determined by DIR. */
1429
1430 basic_block
1431 first_dom_son (enum cdi_direction dir, basic_block bb)
1432 {
1433 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1434 struct et_node *son = bb->dom[dir_index]->son;
1435
1436 return (basic_block) (son ? son->data : NULL);
1437 }
1438
1439 /* Returns the next dominance son after BB in the dominator or postdominator
1440 tree as determined by DIR, or NULL if it was the last one. */
1441
1442 basic_block
1443 next_dom_son (enum cdi_direction dir, basic_block bb)
1444 {
1445 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1446 struct et_node *next = bb->dom[dir_index]->right;
1447
1448 return (basic_block) (next->father->son == next ? NULL : next->data);
1449 }
1450
1451 /* Return dominance availability for dominance info DIR. */
1452
1453 enum dom_state
1454 dom_info_state (function *fn, enum cdi_direction dir)
1455 {
1456 if (!fn->cfg)
1457 return DOM_NONE;
1458
1459 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1460 return fn->cfg->x_dom_computed[dir_index];
1461 }
1462
1463 enum dom_state
1464 dom_info_state (enum cdi_direction dir)
1465 {
1466 return dom_info_state (cfun, dir);
1467 }
1468
1469 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1470
1471 void
1472 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1473 {
1474 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1475
1476 dom_computed[dir_index] = new_state;
1477 }
1478
1479 /* Returns true if dominance information for direction DIR is available. */
1480
1481 bool
1482 dom_info_available_p (function *fn, enum cdi_direction dir)
1483 {
1484 return dom_info_state (fn, dir) != DOM_NONE;
1485 }
1486
1487 bool
1488 dom_info_available_p (enum cdi_direction dir)
1489 {
1490 return dom_info_available_p (cfun, dir);
1491 }
1492
1493 DEBUG_FUNCTION void
1494 debug_dominance_info (enum cdi_direction dir)
1495 {
1496 basic_block bb, bb2;
1497 FOR_EACH_BB_FN (bb, cfun)
1498 if ((bb2 = get_immediate_dominator (dir, bb)))
1499 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1500 }
1501
1502 /* Prints to stderr representation of the dominance tree (for direction DIR)
1503 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1504 the first line of the output is not indented. */
1505
1506 static void
1507 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1508 unsigned indent, bool indent_first)
1509 {
1510 basic_block son;
1511 unsigned i;
1512 bool first = true;
1513
1514 if (indent_first)
1515 for (i = 0; i < indent; i++)
1516 fprintf (stderr, "\t");
1517 fprintf (stderr, "%d\t", root->index);
1518
1519 for (son = first_dom_son (dir, root);
1520 son;
1521 son = next_dom_son (dir, son))
1522 {
1523 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1524 first = false;
1525 }
1526
1527 if (first)
1528 fprintf (stderr, "\n");
1529 }
1530
1531 /* Prints to stderr representation of the dominance tree (for direction DIR)
1532 rooted in ROOT. */
1533
1534 DEBUG_FUNCTION void
1535 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1536 {
1537 debug_dominance_tree_1 (dir, root, 0, false);
1538 }