rs6000.md (fseldfsf4): Add TARGET_SINGLE_FLOAT condition.
[gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "hashtab.h"
29 #include "tm.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "flags.h"
36 #include "df.h"
37 #include "cselib.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "alloc-pool.h"
41 #include "alias.h"
42 #include "insn-config.h"
43 #include "expr.h"
44 #include "recog.h"
45 #include "dse.h"
46 #include "optabs.h"
47 #include "dbgcnt.h"
48
49 /* This file contains three techniques for performing Dead Store
50 Elimination (dse).
51
52 * The first technique performs dse locally on any base address. It
53 is based on the cselib which is a local value numbering technique.
54 This technique is local to a basic block but deals with a fairly
55 general addresses.
56
57 * The second technique performs dse globally but is restricted to
58 base addresses that are either constant or are relative to the
59 frame_pointer.
60
61 * The third technique, (which is only done after register allocation)
62 processes the spill spill slots. This differs from the second
63 technique because it takes advantage of the fact that spilling is
64 completely free from the effects of aliasing.
65
66 Logically, dse is a backwards dataflow problem. A store can be
67 deleted if it if cannot be reached in the backward direction by any
68 use of the value being stored. However, the local technique uses a
69 forwards scan of the basic block because cselib requires that the
70 block be processed in that order.
71
72 The pass is logically broken into 7 steps:
73
74 0) Initialization.
75
76 1) The local algorithm, as well as scanning the insns for the two
77 global algorithms.
78
79 2) Analysis to see if the global algs are necessary. In the case
80 of stores base on a constant address, there must be at least two
81 stores to that address, to make it possible to delete some of the
82 stores. In the case of stores off of the frame or spill related
83 stores, only one store to an address is necessary because those
84 stores die at the end of the function.
85
86 3) Set up the global dataflow equations based on processing the
87 info parsed in the first step.
88
89 4) Solve the dataflow equations.
90
91 5) Delete the insns that the global analysis has indicated are
92 unnecessary.
93
94 6) Cleanup.
95
96 This step uses cselib and canon_rtx to build the largest expression
97 possible for each address. This pass is a forwards pass through
98 each basic block. From the point of view of the global technique,
99 the first pass could examine a block in either direction. The
100 forwards ordering is to accommodate cselib.
101
102 We a simplifying assumption: addresses fall into four broad
103 categories:
104
105 1) base has rtx_varies_p == false, offset is constant.
106 2) base has rtx_varies_p == false, offset variable.
107 3) base has rtx_varies_p == true, offset constant.
108 4) base has rtx_varies_p == true, offset variable.
109
110 The local passes are able to process all 4 kinds of addresses. The
111 global pass only handles (1).
112
113 The global problem is formulated as follows:
114
115 A store, S1, to address A, where A is not relative to the stack
116 frame, can be eliminated if all paths from S1 to the end of the
117 of the function contain another store to A before a read to A.
118
119 If the address A is relative to the stack frame, a store S2 to A
120 can be eliminated if there are no paths from S1 that reach the
121 end of the function that read A before another store to A. In
122 this case S2 can be deleted if there are paths to from S2 to the
123 end of the function that have no reads or writes to A. This
124 second case allows stores to the stack frame to be deleted that
125 would otherwise die when the function returns. This cannot be
126 done if stores_off_frame_dead_at_return is not true. See the doc
127 for that variable for when this variable is false.
128
129 The global problem is formulated as a backwards set union
130 dataflow problem where the stores are the gens and reads are the
131 kills. Set union problems are rare and require some special
132 handling given our representation of bitmaps. A straightforward
133 implementation of requires a lot of bitmaps filled with 1s.
134 These are expensive and cumbersome in our bitmap formulation so
135 care has been taken to avoid large vectors filled with 1s. See
136 the comments in bb_info and in the dataflow confluence functions
137 for details.
138
139 There are two places for further enhancements to this algorithm:
140
141 1) The original dse which was embedded in a pass called flow also
142 did local address forwarding. For example in
143
144 A <- r100
145 ... <- A
146
147 flow would replace the right hand side of the second insn with a
148 reference to r100. Most of the information is available to add this
149 to this pass. It has not done it because it is a lot of work in
150 the case that either r100 is assigned to between the first and
151 second insn and/or the second insn is a load of part of the value
152 stored by the first insn.
153
154 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
155 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
156 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
157 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
158
159 2) The cleaning up of spill code is quite profitable. It currently
160 depends on reading tea leaves and chicken entrails left by reload.
161 This pass depends on reload creating a singleton alias set for each
162 spill slot and telling the next dse pass which of these alias sets
163 are the singletons. Rather than analyze the addresses of the
164 spills, dse's spill processing just does analysis of the loads and
165 stores that use those alias sets. There are three cases where this
166 falls short:
167
168 a) Reload sometimes creates the slot for one mode of access, and
169 then inserts loads and/or stores for a smaller mode. In this
170 case, the current code just punts on the slot. The proper thing
171 to do is to back out and use one bit vector position for each
172 byte of the entity associated with the slot. This depends on
173 KNOWING that reload always generates the accesses for each of the
174 bytes in some canonical (read that easy to understand several
175 passes after reload happens) way.
176
177 b) Reload sometimes decides that spill slot it allocated was not
178 large enough for the mode and goes back and allocates more slots
179 with the same mode and alias set. The backout in this case is a
180 little more graceful than (a). In this case the slot is unmarked
181 as being a spill slot and if final address comes out to be based
182 off the frame pointer, the global algorithm handles this slot.
183
184 c) For any pass that may prespill, there is currently no
185 mechanism to tell the dse pass that the slot being used has the
186 special properties that reload uses. It may be that all that is
187 required is to have those passes make the same calls that reload
188 does, assuming that the alias sets can be manipulated in the same
189 way. */
190
191 /* There are limits to the size of constant offsets we model for the
192 global problem. There are certainly test cases, that exceed this
193 limit, however, it is unlikely that there are important programs
194 that really have constant offsets this size. */
195 #define MAX_OFFSET (64 * 1024)
196
197
198 static bitmap scratch = NULL;
199 struct insn_info;
200
201 /* This structure holds information about a candidate store. */
202 struct store_info
203 {
204
205 /* False means this is a clobber. */
206 bool is_set;
207
208 /* The id of the mem group of the base address. If rtx_varies_p is
209 true, this is -1. Otherwise, it is the index into the group
210 table. */
211 int group_id;
212
213 /* This is the cselib value. */
214 cselib_val *cse_base;
215
216 /* This canonized mem. */
217 rtx mem;
218
219 /* The result of get_addr on mem. */
220 rtx mem_addr;
221
222 /* If this is non-zero, it is the alias set of a spill location. */
223 alias_set_type alias_set;
224
225 /* The offset of the first and byte before the last byte associated
226 with the operation. */
227 int begin, end;
228
229 /* An bitmask as wide as the number of bytes in the word that
230 contains a 1 if the byte may be needed. The store is unused if
231 all of the bits are 0. */
232 unsigned HOST_WIDE_INT positions_needed;
233
234 /* The next store info for this insn. */
235 struct store_info *next;
236
237 /* The right hand side of the store. This is used if there is a
238 subsequent reload of the mems address somewhere later in the
239 basic block. */
240 rtx rhs;
241 };
242
243 /* Return a bitmask with the first N low bits set. */
244
245 static unsigned HOST_WIDE_INT
246 lowpart_bitmask (int n)
247 {
248 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
249 return mask >> (HOST_BITS_PER_WIDE_INT - n);
250 }
251
252 typedef struct store_info *store_info_t;
253 static alloc_pool cse_store_info_pool;
254 static alloc_pool rtx_store_info_pool;
255
256 /* This structure holds information about a load. These are only
257 built for rtx bases. */
258 struct read_info
259 {
260 /* The id of the mem group of the base address. */
261 int group_id;
262
263 /* If this is non-zero, it is the alias set of a spill location. */
264 alias_set_type alias_set;
265
266 /* The offset of the first and byte after the last byte associated
267 with the operation. If begin == end == 0, the read did not have
268 a constant offset. */
269 int begin, end;
270
271 /* The mem being read. */
272 rtx mem;
273
274 /* The next read_info for this insn. */
275 struct read_info *next;
276 };
277 typedef struct read_info *read_info_t;
278 static alloc_pool read_info_pool;
279
280
281 /* One of these records is created for each insn. */
282
283 struct insn_info
284 {
285 /* Set true if the insn contains a store but the insn itself cannot
286 be deleted. This is set if the insn is a parallel and there is
287 more than one non dead output or if the insn is in some way
288 volatile. */
289 bool cannot_delete;
290
291 /* This field is only used by the global algorithm. It is set true
292 if the insn contains any read of mem except for a (1). This is
293 also set if the insn is a call or has a clobber mem. If the insn
294 contains a wild read, the use_rec will be null. */
295 bool wild_read;
296
297 /* This field is only used for the processing of const functions.
298 These functions cannot read memory, but they can read the stack
299 because that is where they may get their parms. We need to be
300 this conservative because, like the store motion pass, we don't
301 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
302 Moreover, we need to distinguish two cases:
303 1. Before reload (register elimination), the stores related to
304 outgoing arguments are stack pointer based and thus deemed
305 of non-constant base in this pass. This requires special
306 handling but also means that the frame pointer based stores
307 need not be killed upon encountering a const function call.
308 2. After reload, the stores related to outgoing arguments can be
309 either stack pointer or hard frame pointer based. This means
310 that we have no other choice than also killing all the frame
311 pointer based stores upon encountering a const function call.
312 This field is set after reload for const function calls. Having
313 this set is less severe than a wild read, it just means that all
314 the frame related stores are killed rather than all the stores. */
315 bool frame_read;
316
317 /* This field is only used for the processing of const functions.
318 It is set if the insn may contain a stack pointer based store. */
319 bool stack_pointer_based;
320
321 /* This is true if any of the sets within the store contains a
322 cselib base. Such stores can only be deleted by the local
323 algorithm. */
324 bool contains_cselib_groups;
325
326 /* The insn. */
327 rtx insn;
328
329 /* The list of mem sets or mem clobbers that are contained in this
330 insn. If the insn is deletable, it contains only one mem set.
331 But it could also contain clobbers. Insns that contain more than
332 one mem set are not deletable, but each of those mems are here in
333 order to provide info to delete other insns. */
334 store_info_t store_rec;
335
336 /* The linked list of mem uses in this insn. Only the reads from
337 rtx bases are listed here. The reads to cselib bases are
338 completely processed during the first scan and so are never
339 created. */
340 read_info_t read_rec;
341
342 /* The prev insn in the basic block. */
343 struct insn_info * prev_insn;
344
345 /* The linked list of insns that are in consideration for removal in
346 the forwards pass thru the basic block. This pointer may be
347 trash as it is not cleared when a wild read occurs. The only
348 time it is guaranteed to be correct is when the traversal starts
349 at active_local_stores. */
350 struct insn_info * next_local_store;
351 };
352
353 typedef struct insn_info *insn_info_t;
354 static alloc_pool insn_info_pool;
355
356 /* The linked list of stores that are under consideration in this
357 basic block. */
358 static insn_info_t active_local_stores;
359
360 struct bb_info
361 {
362
363 /* Pointer to the insn info for the last insn in the block. These
364 are linked so this is how all of the insns are reached. During
365 scanning this is the current insn being scanned. */
366 insn_info_t last_insn;
367
368 /* The info for the global dataflow problem. */
369
370
371 /* This is set if the transfer function should and in the wild_read
372 bitmap before applying the kill and gen sets. That vector knocks
373 out most of the bits in the bitmap and thus speeds up the
374 operations. */
375 bool apply_wild_read;
376
377 /* The set of store positions that exist in this block before a wild read. */
378 bitmap gen;
379
380 /* The set of load positions that exist in this block above the
381 same position of a store. */
382 bitmap kill;
383
384 /* The set of stores that reach the top of the block without being
385 killed by a read.
386
387 Do not represent the in if it is all ones. Note that this is
388 what the bitvector should logically be initialized to for a set
389 intersection problem. However, like the kill set, this is too
390 expensive. So initially, the in set will only be created for the
391 exit block and any block that contains a wild read. */
392 bitmap in;
393
394 /* The set of stores that reach the bottom of the block from it's
395 successors.
396
397 Do not represent the in if it is all ones. Note that this is
398 what the bitvector should logically be initialized to for a set
399 intersection problem. However, like the kill and in set, this is
400 too expensive. So what is done is that the confluence operator
401 just initializes the vector from one of the out sets of the
402 successors of the block. */
403 bitmap out;
404 };
405
406 typedef struct bb_info *bb_info_t;
407 static alloc_pool bb_info_pool;
408
409 /* Table to hold all bb_infos. */
410 static bb_info_t *bb_table;
411
412 /* There is a group_info for each rtx base that is used to reference
413 memory. There are also not many of the rtx bases because they are
414 very limited in scope. */
415
416 struct group_info
417 {
418 /* The actual base of the address. */
419 rtx rtx_base;
420
421 /* The sequential id of the base. This allows us to have a
422 canonical ordering of these that is not based on addresses. */
423 int id;
424
425 /* A mem wrapped around the base pointer for the group in order to
426 do read dependency. */
427 rtx base_mem;
428
429 /* Canonized version of base_mem, most likely the same thing. */
430 rtx canon_base_mem;
431
432 /* These two sets of two bitmaps are used to keep track of how many
433 stores are actually referencing that position from this base. We
434 only do this for rtx bases as this will be used to assign
435 positions in the bitmaps for the global problem. Bit N is set in
436 store1 on the first store for offset N. Bit N is set in store2
437 for the second store to offset N. This is all we need since we
438 only care about offsets that have two or more stores for them.
439
440 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
441 for 0 and greater offsets.
442
443 There is one special case here, for stores into the stack frame,
444 we will or store1 into store2 before deciding which stores look
445 at globally. This is because stores to the stack frame that have
446 no other reads before the end of the function can also be
447 deleted. */
448 bitmap store1_n, store1_p, store2_n, store2_p;
449
450 /* The positions in this bitmap have the same assignments as the in,
451 out, gen and kill bitmaps. This bitmap is all zeros except for
452 the positions that are occupied by stores for this group. */
453 bitmap group_kill;
454
455 /* True if there are any positions that are to be processed
456 globally. */
457 bool process_globally;
458
459 /* True if the base of this group is either the frame_pointer or
460 hard_frame_pointer. */
461 bool frame_related;
462
463 /* The offset_map is used to map the offsets from this base into
464 positions in the global bitmaps. It is only created after all of
465 the all of stores have been scanned and we know which ones we
466 care about. */
467 int *offset_map_n, *offset_map_p;
468 int offset_map_size_n, offset_map_size_p;
469 };
470 typedef struct group_info *group_info_t;
471 typedef const struct group_info *const_group_info_t;
472 static alloc_pool rtx_group_info_pool;
473
474 /* Tables of group_info structures, hashed by base value. */
475 static htab_t rtx_group_table;
476
477 /* Index into the rtx_group_vec. */
478 static int rtx_group_next_id;
479
480 DEF_VEC_P(group_info_t);
481 DEF_VEC_ALLOC_P(group_info_t,heap);
482
483 static VEC(group_info_t,heap) *rtx_group_vec;
484
485
486 /* This structure holds the set of changes that are being deferred
487 when removing read operation. See replace_read. */
488 struct deferred_change
489 {
490
491 /* The mem that is being replaced. */
492 rtx *loc;
493
494 /* The reg it is being replaced with. */
495 rtx reg;
496
497 struct deferred_change *next;
498 };
499
500 typedef struct deferred_change *deferred_change_t;
501 static alloc_pool deferred_change_pool;
502
503 static deferred_change_t deferred_change_list = NULL;
504
505 /* This are used to hold the alias sets of spill variables. Since
506 these are never aliased and there may be a lot of them, it makes
507 sense to treat them specially. This bitvector is only allocated in
508 calls from dse_record_singleton_alias_set which currently is only
509 made during reload1. So when dse is called before reload this
510 mechanism does nothing. */
511
512 static bitmap clear_alias_sets = NULL;
513
514 /* The set of clear_alias_sets that have been disqualified because
515 there are loads or stores using a different mode than the alias set
516 was registered with. */
517 static bitmap disqualified_clear_alias_sets = NULL;
518
519 /* The group that holds all of the clear_alias_sets. */
520 static group_info_t clear_alias_group;
521
522 /* The modes of the clear_alias_sets. */
523 static htab_t clear_alias_mode_table;
524
525 /* Hash table element to look up the mode for an alias set. */
526 struct clear_alias_mode_holder
527 {
528 alias_set_type alias_set;
529 enum machine_mode mode;
530 };
531
532 static alloc_pool clear_alias_mode_pool;
533
534 /* This is true except if cfun->stdarg -- i.e. we cannot do
535 this for vararg functions because they play games with the frame. */
536 static bool stores_off_frame_dead_at_return;
537
538 /* Counter for stats. */
539 static int globally_deleted;
540 static int locally_deleted;
541 static int spill_deleted;
542
543 static bitmap all_blocks;
544
545 /* The number of bits used in the global bitmaps. */
546 static unsigned int current_position;
547
548
549 static bool gate_dse (void);
550 static bool gate_dse1 (void);
551 static bool gate_dse2 (void);
552
553 \f
554 /*----------------------------------------------------------------------------
555 Zeroth step.
556
557 Initialization.
558 ----------------------------------------------------------------------------*/
559
560 /* Hashtable callbacks for maintaining the "bases" field of
561 store_group_info, given that the addresses are function invariants. */
562
563 static int
564 clear_alias_mode_eq (const void *p1, const void *p2)
565 {
566 const struct clear_alias_mode_holder * h1
567 = (const struct clear_alias_mode_holder *) p1;
568 const struct clear_alias_mode_holder * h2
569 = (const struct clear_alias_mode_holder *) p2;
570 return h1->alias_set == h2->alias_set;
571 }
572
573
574 static hashval_t
575 clear_alias_mode_hash (const void *p)
576 {
577 const struct clear_alias_mode_holder *holder
578 = (const struct clear_alias_mode_holder *) p;
579 return holder->alias_set;
580 }
581
582
583 /* Find the entry associated with ALIAS_SET. */
584
585 static struct clear_alias_mode_holder *
586 clear_alias_set_lookup (alias_set_type alias_set)
587 {
588 struct clear_alias_mode_holder tmp_holder;
589 void **slot;
590
591 tmp_holder.alias_set = alias_set;
592 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
593 gcc_assert (*slot);
594
595 return (struct clear_alias_mode_holder *) *slot;
596 }
597
598
599 /* Hashtable callbacks for maintaining the "bases" field of
600 store_group_info, given that the addresses are function invariants. */
601
602 static int
603 invariant_group_base_eq (const void *p1, const void *p2)
604 {
605 const_group_info_t gi1 = (const_group_info_t) p1;
606 const_group_info_t gi2 = (const_group_info_t) p2;
607 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
608 }
609
610
611 static hashval_t
612 invariant_group_base_hash (const void *p)
613 {
614 const_group_info_t gi = (const_group_info_t) p;
615 int do_not_record;
616 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
617 }
618
619
620 /* Get the GROUP for BASE. Add a new group if it is not there. */
621
622 static group_info_t
623 get_group_info (rtx base)
624 {
625 struct group_info tmp_gi;
626 group_info_t gi;
627 void **slot;
628
629 if (base)
630 {
631 /* Find the store_base_info structure for BASE, creating a new one
632 if necessary. */
633 tmp_gi.rtx_base = base;
634 slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
635 gi = (group_info_t) *slot;
636 }
637 else
638 {
639 if (!clear_alias_group)
640 {
641 clear_alias_group = gi =
642 (group_info_t) pool_alloc (rtx_group_info_pool);
643 memset (gi, 0, sizeof (struct group_info));
644 gi->id = rtx_group_next_id++;
645 gi->store1_n = BITMAP_ALLOC (NULL);
646 gi->store1_p = BITMAP_ALLOC (NULL);
647 gi->store2_n = BITMAP_ALLOC (NULL);
648 gi->store2_p = BITMAP_ALLOC (NULL);
649 gi->group_kill = BITMAP_ALLOC (NULL);
650 gi->process_globally = false;
651 gi->offset_map_size_n = 0;
652 gi->offset_map_size_p = 0;
653 gi->offset_map_n = NULL;
654 gi->offset_map_p = NULL;
655 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
656 }
657 return clear_alias_group;
658 }
659
660 if (gi == NULL)
661 {
662 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
663 gi->rtx_base = base;
664 gi->id = rtx_group_next_id++;
665 gi->base_mem = gen_rtx_MEM (QImode, base);
666 gi->canon_base_mem = canon_rtx (gi->base_mem);
667 gi->store1_n = BITMAP_ALLOC (NULL);
668 gi->store1_p = BITMAP_ALLOC (NULL);
669 gi->store2_n = BITMAP_ALLOC (NULL);
670 gi->store2_p = BITMAP_ALLOC (NULL);
671 gi->group_kill = BITMAP_ALLOC (NULL);
672 gi->process_globally = false;
673 gi->frame_related =
674 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
675 gi->offset_map_size_n = 0;
676 gi->offset_map_size_p = 0;
677 gi->offset_map_n = NULL;
678 gi->offset_map_p = NULL;
679 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
680 }
681
682 return gi;
683 }
684
685
686 /* Initialization of data structures. */
687
688 static void
689 dse_step0 (void)
690 {
691 locally_deleted = 0;
692 globally_deleted = 0;
693 spill_deleted = 0;
694
695 scratch = BITMAP_ALLOC (NULL);
696
697 rtx_store_info_pool
698 = create_alloc_pool ("rtx_store_info_pool",
699 sizeof (struct store_info), 100);
700 read_info_pool
701 = create_alloc_pool ("read_info_pool",
702 sizeof (struct read_info), 100);
703 insn_info_pool
704 = create_alloc_pool ("insn_info_pool",
705 sizeof (struct insn_info), 100);
706 bb_info_pool
707 = create_alloc_pool ("bb_info_pool",
708 sizeof (struct bb_info), 100);
709 rtx_group_info_pool
710 = create_alloc_pool ("rtx_group_info_pool",
711 sizeof (struct group_info), 100);
712 deferred_change_pool
713 = create_alloc_pool ("deferred_change_pool",
714 sizeof (struct deferred_change), 10);
715
716 rtx_group_table = htab_create (11, invariant_group_base_hash,
717 invariant_group_base_eq, NULL);
718
719 bb_table = XCNEWVEC (bb_info_t, last_basic_block);
720 rtx_group_next_id = 0;
721
722 stores_off_frame_dead_at_return = !cfun->stdarg;
723
724 init_alias_analysis ();
725
726 if (clear_alias_sets)
727 clear_alias_group = get_group_info (NULL);
728 else
729 clear_alias_group = NULL;
730 }
731
732
733 \f
734 /*----------------------------------------------------------------------------
735 First step.
736
737 Scan all of the insns. Any random ordering of the blocks is fine.
738 Each block is scanned in forward order to accommodate cselib which
739 is used to remove stores with non-constant bases.
740 ----------------------------------------------------------------------------*/
741
742 /* Delete all of the store_info recs from INSN_INFO. */
743
744 static void
745 free_store_info (insn_info_t insn_info)
746 {
747 store_info_t store_info = insn_info->store_rec;
748 while (store_info)
749 {
750 store_info_t next = store_info->next;
751 if (store_info->cse_base)
752 pool_free (cse_store_info_pool, store_info);
753 else
754 pool_free (rtx_store_info_pool, store_info);
755 store_info = next;
756 }
757
758 insn_info->cannot_delete = true;
759 insn_info->contains_cselib_groups = false;
760 insn_info->store_rec = NULL;
761 }
762
763
764 struct insn_size {
765 int size;
766 rtx insn;
767 };
768
769
770 /* Add an insn to do the add inside a x if it is a
771 PRE/POST-INC/DEC/MODIFY. D is an structure containing the insn and
772 the size of the mode of the MEM that this is inside of. */
773
774 static int
775 replace_inc_dec (rtx *r, void *d)
776 {
777 rtx x = *r;
778 struct insn_size *data = (struct insn_size *)d;
779 switch (GET_CODE (x))
780 {
781 case PRE_INC:
782 case POST_INC:
783 {
784 rtx r1 = XEXP (x, 0);
785 rtx c = gen_int_mode (Pmode, data->size);
786 emit_insn_before (gen_rtx_SET (Pmode, r1,
787 gen_rtx_PLUS (Pmode, r1, c)),
788 data->insn);
789 return -1;
790 }
791
792 case PRE_DEC:
793 case POST_DEC:
794 {
795 rtx r1 = XEXP (x, 0);
796 rtx c = gen_int_mode (Pmode, -data->size);
797 emit_insn_before (gen_rtx_SET (Pmode, r1,
798 gen_rtx_PLUS (Pmode, r1, c)),
799 data->insn);
800 return -1;
801 }
802
803 case PRE_MODIFY:
804 case POST_MODIFY:
805 {
806 /* We can reuse the add because we are about to delete the
807 insn that contained it. */
808 rtx add = XEXP (x, 0);
809 rtx r1 = XEXP (add, 0);
810 emit_insn_before (gen_rtx_SET (Pmode, r1, add), data->insn);
811 return -1;
812 }
813
814 default:
815 return 0;
816 }
817 }
818
819
820 /* If X is a MEM, check the address to see if it is PRE/POST-INC/DEC/MODIFY
821 and generate an add to replace that. */
822
823 static int
824 replace_inc_dec_mem (rtx *r, void *d)
825 {
826 rtx x = *r;
827 if (x != NULL_RTX && MEM_P (x))
828 {
829 struct insn_size data;
830
831 data.size = GET_MODE_SIZE (GET_MODE (x));
832 data.insn = (rtx) d;
833
834 for_each_rtx (&XEXP (x, 0), replace_inc_dec, &data);
835
836 return -1;
837 }
838 return 0;
839 }
840
841 /* Before we delete INSN, make sure that the auto inc/dec, if it is
842 there, is split into a separate insn. */
843
844 static void
845 check_for_inc_dec (rtx insn)
846 {
847 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
848 if (note)
849 for_each_rtx (&insn, replace_inc_dec_mem, insn);
850 }
851
852
853 /* Delete the insn and free all of the fields inside INSN_INFO. */
854
855 static void
856 delete_dead_store_insn (insn_info_t insn_info)
857 {
858 read_info_t read_info;
859
860 if (!dbg_cnt (dse))
861 return;
862
863 check_for_inc_dec (insn_info->insn);
864 if (dump_file)
865 {
866 fprintf (dump_file, "Locally deleting insn %d ",
867 INSN_UID (insn_info->insn));
868 if (insn_info->store_rec->alias_set)
869 fprintf (dump_file, "alias set %d\n",
870 (int) insn_info->store_rec->alias_set);
871 else
872 fprintf (dump_file, "\n");
873 }
874
875 free_store_info (insn_info);
876 read_info = insn_info->read_rec;
877
878 while (read_info)
879 {
880 read_info_t next = read_info->next;
881 pool_free (read_info_pool, read_info);
882 read_info = next;
883 }
884 insn_info->read_rec = NULL;
885
886 delete_insn (insn_info->insn);
887 locally_deleted++;
888 insn_info->insn = NULL;
889
890 insn_info->wild_read = false;
891 }
892
893
894 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
895 OFFSET and WIDTH. */
896
897 static void
898 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width)
899 {
900 HOST_WIDE_INT i;
901
902 if ((offset > -MAX_OFFSET) && (offset < MAX_OFFSET))
903 for (i=offset; i<offset+width; i++)
904 {
905 bitmap store1;
906 bitmap store2;
907 int ai;
908 if (i < 0)
909 {
910 store1 = group->store1_n;
911 store2 = group->store2_n;
912 ai = -i;
913 }
914 else
915 {
916 store1 = group->store1_p;
917 store2 = group->store2_p;
918 ai = i;
919 }
920
921 if (bitmap_bit_p (store1, ai))
922 bitmap_set_bit (store2, ai);
923 else
924 {
925 bitmap_set_bit (store1, ai);
926 if (i < 0)
927 {
928 if (group->offset_map_size_n < ai)
929 group->offset_map_size_n = ai;
930 }
931 else
932 {
933 if (group->offset_map_size_p < ai)
934 group->offset_map_size_p = ai;
935 }
936 }
937 }
938 }
939
940
941 /* Set the BB_INFO so that the last insn is marked as a wild read. */
942
943 static void
944 add_wild_read (bb_info_t bb_info)
945 {
946 insn_info_t insn_info = bb_info->last_insn;
947 read_info_t *ptr = &insn_info->read_rec;
948
949 while (*ptr)
950 {
951 read_info_t next = (*ptr)->next;
952 if ((*ptr)->alias_set == 0)
953 {
954 pool_free (read_info_pool, *ptr);
955 *ptr = next;
956 }
957 else
958 ptr = &(*ptr)->next;
959 }
960 insn_info->wild_read = true;
961 active_local_stores = NULL;
962 }
963
964
965 /* Return true if X is a constant or one of the registers that behave
966 as a constant over the life of a function. This is equivalent to
967 !rtx_varies_p for memory addresses. */
968
969 static bool
970 const_or_frame_p (rtx x)
971 {
972 switch (GET_CODE (x))
973 {
974 case MEM:
975 return MEM_READONLY_P (x);
976
977 case CONST:
978 case CONST_INT:
979 case CONST_DOUBLE:
980 case CONST_VECTOR:
981 case SYMBOL_REF:
982 case LABEL_REF:
983 return true;
984
985 case REG:
986 /* Note that we have to test for the actual rtx used for the frame
987 and arg pointers and not just the register number in case we have
988 eliminated the frame and/or arg pointer and are using it
989 for pseudos. */
990 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
991 /* The arg pointer varies if it is not a fixed register. */
992 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
993 || x == pic_offset_table_rtx)
994 return true;
995 return false;
996
997 default:
998 return false;
999 }
1000 }
1001
1002 /* Take all reasonable action to put the address of MEM into the form
1003 that we can do analysis on.
1004
1005 The gold standard is to get the address into the form: address +
1006 OFFSET where address is something that rtx_varies_p considers a
1007 constant. When we can get the address in this form, we can do
1008 global analysis on it. Note that for constant bases, address is
1009 not actually returned, only the group_id. The address can be
1010 obtained from that.
1011
1012 If that fails, we try cselib to get a value we can at least use
1013 locally. If that fails we return false.
1014
1015 The GROUP_ID is set to -1 for cselib bases and the index of the
1016 group for non_varying bases.
1017
1018 FOR_READ is true if this is a mem read and false if not. */
1019
1020 static bool
1021 canon_address (rtx mem,
1022 alias_set_type *alias_set_out,
1023 int *group_id,
1024 HOST_WIDE_INT *offset,
1025 cselib_val **base)
1026 {
1027 rtx mem_address = XEXP (mem, 0);
1028 rtx expanded_address, address;
1029 /* Make sure that cselib is has initialized all of the operands of
1030 the address before asking it to do the subst. */
1031
1032 if (clear_alias_sets)
1033 {
1034 /* If this is a spill, do not do any further processing. */
1035 alias_set_type alias_set = MEM_ALIAS_SET (mem);
1036 if (dump_file)
1037 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1038 if (bitmap_bit_p (clear_alias_sets, alias_set))
1039 {
1040 struct clear_alias_mode_holder *entry
1041 = clear_alias_set_lookup (alias_set);
1042
1043 /* If the modes do not match, we cannot process this set. */
1044 if (entry->mode != GET_MODE (mem))
1045 {
1046 if (dump_file)
1047 fprintf (dump_file,
1048 "disqualifying alias set %d, (%s) != (%s)\n",
1049 (int) alias_set, GET_MODE_NAME (entry->mode),
1050 GET_MODE_NAME (GET_MODE (mem)));
1051
1052 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1053 return false;
1054 }
1055
1056 *alias_set_out = alias_set;
1057 *group_id = clear_alias_group->id;
1058 return true;
1059 }
1060 }
1061
1062 *alias_set_out = 0;
1063
1064 cselib_lookup (mem_address, Pmode, 1);
1065
1066 if (dump_file)
1067 {
1068 fprintf (dump_file, " mem: ");
1069 print_inline_rtx (dump_file, mem_address, 0);
1070 fprintf (dump_file, "\n");
1071 }
1072
1073 /* Use cselib to replace all of the reg references with the full
1074 expression. This will take care of the case where we have
1075
1076 r_x = base + offset;
1077 val = *r_x;
1078
1079 by making it into
1080
1081 val = *(base + offset);
1082 */
1083
1084 expanded_address = cselib_expand_value_rtx (mem_address, scratch, 5);
1085
1086 /* If this fails, just go with the mem_address. */
1087 if (!expanded_address)
1088 expanded_address = mem_address;
1089
1090 /* Split the address into canonical BASE + OFFSET terms. */
1091 address = canon_rtx (expanded_address);
1092
1093 *offset = 0;
1094
1095 if (dump_file)
1096 {
1097 fprintf (dump_file, "\n after cselib_expand address: ");
1098 print_inline_rtx (dump_file, expanded_address, 0);
1099 fprintf (dump_file, "\n");
1100
1101 fprintf (dump_file, "\n after canon_rtx address: ");
1102 print_inline_rtx (dump_file, address, 0);
1103 fprintf (dump_file, "\n");
1104 }
1105
1106 if (GET_CODE (address) == CONST)
1107 address = XEXP (address, 0);
1108
1109 if (GET_CODE (address) == PLUS && GET_CODE (XEXP (address, 1)) == CONST_INT)
1110 {
1111 *offset = INTVAL (XEXP (address, 1));
1112 address = XEXP (address, 0);
1113 }
1114
1115 if (const_or_frame_p (address))
1116 {
1117 group_info_t group = get_group_info (address);
1118
1119 if (dump_file)
1120 fprintf (dump_file, " gid=%d offset=%d \n", group->id, (int)*offset);
1121 *base = NULL;
1122 *group_id = group->id;
1123 }
1124 else
1125 {
1126 *base = cselib_lookup (address, Pmode, true);
1127 *group_id = -1;
1128
1129 if (*base == NULL)
1130 {
1131 if (dump_file)
1132 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1133 return false;
1134 }
1135 if (dump_file)
1136 fprintf (dump_file, " varying cselib base=%d offset = %d\n",
1137 (*base)->value, (int)*offset);
1138 }
1139 return true;
1140 }
1141
1142
1143 /* Clear the rhs field from the active_local_stores array. */
1144
1145 static void
1146 clear_rhs_from_active_local_stores (void)
1147 {
1148 insn_info_t ptr = active_local_stores;
1149
1150 while (ptr)
1151 {
1152 store_info_t store_info = ptr->store_rec;
1153 /* Skip the clobbers. */
1154 while (!store_info->is_set)
1155 store_info = store_info->next;
1156
1157 store_info->rhs = NULL;
1158
1159 ptr = ptr->next_local_store;
1160 }
1161 }
1162
1163
1164 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1165 there is a candidate store, after adding it to the appropriate
1166 local store group if so. */
1167
1168 static int
1169 record_store (rtx body, bb_info_t bb_info)
1170 {
1171 rtx mem;
1172 HOST_WIDE_INT offset = 0;
1173 HOST_WIDE_INT width = 0;
1174 alias_set_type spill_alias_set;
1175 insn_info_t insn_info = bb_info->last_insn;
1176 store_info_t store_info = NULL;
1177 int group_id;
1178 cselib_val *base = NULL;
1179 insn_info_t ptr, last;
1180 bool store_is_unused;
1181
1182 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1183 return 0;
1184
1185 /* If this is not used, then this cannot be used to keep the insn
1186 from being deleted. On the other hand, it does provide something
1187 that can be used to prove that another store is dead. */
1188 store_is_unused
1189 = (find_reg_note (insn_info->insn, REG_UNUSED, body) != NULL);
1190
1191 /* Check whether that value is a suitable memory location. */
1192 mem = SET_DEST (body);
1193 if (!MEM_P (mem))
1194 {
1195 /* If the set or clobber is unused, then it does not effect our
1196 ability to get rid of the entire insn. */
1197 if (!store_is_unused)
1198 insn_info->cannot_delete = true;
1199 return 0;
1200 }
1201
1202 /* At this point we know mem is a mem. */
1203 if (GET_MODE (mem) == BLKmode)
1204 {
1205 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1206 {
1207 if (dump_file)
1208 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1209 add_wild_read (bb_info);
1210 insn_info->cannot_delete = true;
1211 }
1212 else if (!store_is_unused)
1213 {
1214 /* If the set or clobber is unused, then it does not effect our
1215 ability to get rid of the entire insn. */
1216 insn_info->cannot_delete = true;
1217 clear_rhs_from_active_local_stores ();
1218 }
1219 return 0;
1220 }
1221
1222 /* We can still process a volatile mem, we just cannot delete it. */
1223 if (MEM_VOLATILE_P (mem))
1224 insn_info->cannot_delete = true;
1225
1226 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1227 {
1228 clear_rhs_from_active_local_stores ();
1229 return 0;
1230 }
1231
1232 width = GET_MODE_SIZE (GET_MODE (mem));
1233
1234 if (spill_alias_set)
1235 {
1236 bitmap store1 = clear_alias_group->store1_p;
1237 bitmap store2 = clear_alias_group->store2_p;
1238
1239 if (bitmap_bit_p (store1, spill_alias_set))
1240 bitmap_set_bit (store2, spill_alias_set);
1241 else
1242 bitmap_set_bit (store1, spill_alias_set);
1243
1244 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1245 clear_alias_group->offset_map_size_p = spill_alias_set;
1246
1247 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1248
1249 if (dump_file)
1250 fprintf (dump_file, " processing spill store %d(%s)\n",
1251 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1252 }
1253 else if (group_id >= 0)
1254 {
1255 /* In the restrictive case where the base is a constant or the
1256 frame pointer we can do global analysis. */
1257
1258 group_info_t group
1259 = VEC_index (group_info_t, rtx_group_vec, group_id);
1260
1261 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1262 set_usage_bits (group, offset, width);
1263
1264 if (dump_file)
1265 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1266 group_id, (int)offset, (int)(offset+width));
1267 }
1268 else
1269 {
1270 rtx base_term = find_base_term (XEXP (mem, 0));
1271 if (!base_term
1272 || (GET_CODE (base_term) == ADDRESS
1273 && GET_MODE (base_term) == Pmode
1274 && XEXP (base_term, 0) == stack_pointer_rtx))
1275 insn_info->stack_pointer_based = true;
1276 insn_info->contains_cselib_groups = true;
1277
1278 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1279 group_id = -1;
1280
1281 if (dump_file)
1282 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1283 (int)offset, (int)(offset+width));
1284 }
1285
1286 /* Check to see if this stores causes some other stores to be
1287 dead. */
1288 ptr = active_local_stores;
1289 last = NULL;
1290
1291 while (ptr)
1292 {
1293 insn_info_t next = ptr->next_local_store;
1294 store_info_t s_info = ptr->store_rec;
1295 bool del = true;
1296
1297 /* Skip the clobbers. We delete the active insn if this insn
1298 shadows the set. To have been put on the active list, it
1299 has exactly on set. */
1300 while (!s_info->is_set)
1301 s_info = s_info->next;
1302
1303 if (s_info->alias_set != spill_alias_set)
1304 del = false;
1305 else if (s_info->alias_set)
1306 {
1307 struct clear_alias_mode_holder *entry
1308 = clear_alias_set_lookup (s_info->alias_set);
1309 /* Generally, spills cannot be processed if and of the
1310 references to the slot have a different mode. But if
1311 we are in the same block and mode is exactly the same
1312 between this store and one before in the same block,
1313 we can still delete it. */
1314 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1315 && (GET_MODE (mem) == entry->mode))
1316 {
1317 del = true;
1318 s_info->positions_needed = (unsigned HOST_WIDE_INT) 0;
1319 }
1320 if (dump_file)
1321 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1322 INSN_UID (ptr->insn), (int) s_info->alias_set);
1323 }
1324 else if ((s_info->group_id == group_id)
1325 && (s_info->cse_base == base))
1326 {
1327 HOST_WIDE_INT i;
1328 if (dump_file)
1329 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1330 INSN_UID (ptr->insn), s_info->group_id,
1331 (int)s_info->begin, (int)s_info->end);
1332 for (i = offset; i < offset+width; i++)
1333 if (i >= s_info->begin && i < s_info->end)
1334 s_info->positions_needed
1335 &= ~(((unsigned HOST_WIDE_INT) 1) << (i - s_info->begin));
1336 }
1337 else if (s_info->rhs)
1338 /* Need to see if it is possible for this store to overwrite
1339 the value of store_info. If it is, set the rhs to NULL to
1340 keep it from being used to remove a load. */
1341 {
1342 if (canon_true_dependence (s_info->mem,
1343 GET_MODE (s_info->mem),
1344 s_info->mem_addr,
1345 mem, rtx_varies_p))
1346 s_info->rhs = NULL;
1347 }
1348
1349 /* An insn can be deleted if every position of every one of
1350 its s_infos is zero. */
1351 if (s_info->positions_needed != (unsigned HOST_WIDE_INT) 0)
1352 del = false;
1353
1354 if (del)
1355 {
1356 insn_info_t insn_to_delete = ptr;
1357
1358 if (last)
1359 last->next_local_store = ptr->next_local_store;
1360 else
1361 active_local_stores = ptr->next_local_store;
1362
1363 delete_dead_store_insn (insn_to_delete);
1364 }
1365 else
1366 last = ptr;
1367
1368 ptr = next;
1369 }
1370
1371 gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
1372
1373 /* Finish filling in the store_info. */
1374 store_info->next = insn_info->store_rec;
1375 insn_info->store_rec = store_info;
1376 store_info->mem = canon_rtx (mem);
1377 store_info->alias_set = spill_alias_set;
1378 store_info->mem_addr = get_addr (XEXP (mem, 0));
1379 store_info->cse_base = base;
1380 store_info->positions_needed = lowpart_bitmask (width);
1381 store_info->group_id = group_id;
1382 store_info->begin = offset;
1383 store_info->end = offset + width;
1384 store_info->is_set = GET_CODE (body) == SET;
1385
1386 if (store_info->is_set
1387 /* No place to keep the value after ra. */
1388 && !reload_completed
1389 && (REG_P (SET_SRC (body))
1390 || GET_CODE (SET_SRC (body)) == SUBREG
1391 || CONSTANT_P (SET_SRC (body)))
1392 /* Sometimes the store and reload is used for truncation and
1393 rounding. */
1394 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1395 store_info->rhs = SET_SRC (body);
1396 else
1397 store_info->rhs = NULL;
1398
1399 /* If this is a clobber, we return 0. We will only be able to
1400 delete this insn if there is only one store USED store, but we
1401 can use the clobber to delete other stores earlier. */
1402 return store_info->is_set ? 1 : 0;
1403 }
1404
1405
1406 static void
1407 dump_insn_info (const char * start, insn_info_t insn_info)
1408 {
1409 fprintf (dump_file, "%s insn=%d %s\n", start,
1410 INSN_UID (insn_info->insn),
1411 insn_info->store_rec ? "has store" : "naked");
1412 }
1413
1414
1415 /* If the modes are different and the value's source and target do not
1416 line up, we need to extract the value from lower part of the rhs of
1417 the store, shift it, and then put it into a form that can be shoved
1418 into the read_insn. This function generates a right SHIFT of a
1419 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1420 shift sequence is returned or NULL if we failed to find a
1421 shift. */
1422
1423 static rtx
1424 find_shift_sequence (int access_size,
1425 store_info_t store_info,
1426 read_info_t read_info,
1427 int shift,
1428 bool speed)
1429 {
1430 enum machine_mode store_mode = GET_MODE (store_info->mem);
1431 enum machine_mode read_mode = GET_MODE (read_info->mem);
1432 enum machine_mode new_mode;
1433 rtx read_reg = NULL;
1434
1435 /* Some machines like the x86 have shift insns for each size of
1436 operand. Other machines like the ppc or the ia-64 may only have
1437 shift insns that shift values within 32 or 64 bit registers.
1438 This loop tries to find the smallest shift insn that will right
1439 justify the value we want to read but is available in one insn on
1440 the machine. */
1441
1442 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1443 MODE_INT);
1444 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1445 new_mode = GET_MODE_WIDER_MODE (new_mode))
1446 {
1447 rtx target, new_reg, shift_seq, insn, new_lhs;
1448 int cost;
1449
1450 /* Try a wider mode if truncating the store mode to NEW_MODE
1451 requires a real instruction. */
1452 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1453 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (new_mode),
1454 GET_MODE_BITSIZE (store_mode)))
1455 continue;
1456
1457 /* Also try a wider mode if the necessary punning is either not
1458 desirable or not possible. */
1459 if (!CONSTANT_P (store_info->rhs)
1460 && !MODES_TIEABLE_P (new_mode, store_mode))
1461 continue;
1462
1463 new_reg = gen_reg_rtx (new_mode);
1464
1465 start_sequence ();
1466
1467 /* In theory we could also check for an ashr. Ian Taylor knows
1468 of one dsp where the cost of these two was not the same. But
1469 this really is a rare case anyway. */
1470 target = expand_binop (new_mode, lshr_optab, new_reg,
1471 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1472
1473 shift_seq = get_insns ();
1474 end_sequence ();
1475
1476 if (target != new_reg || shift_seq == NULL)
1477 continue;
1478
1479 cost = 0;
1480 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1481 if (INSN_P (insn))
1482 cost += insn_rtx_cost (PATTERN (insn), speed);
1483
1484 /* The computation up to here is essentially independent
1485 of the arguments and could be precomputed. It may
1486 not be worth doing so. We could precompute if
1487 worthwhile or at least cache the results. The result
1488 technically depends on both SHIFT and ACCESS_SIZE,
1489 but in practice the answer will depend only on ACCESS_SIZE. */
1490
1491 if (cost > COSTS_N_INSNS (1))
1492 continue;
1493
1494 new_lhs = extract_low_bits (new_mode, store_mode,
1495 copy_rtx (store_info->rhs));
1496 if (new_lhs == NULL_RTX)
1497 continue;
1498
1499 /* We found an acceptable shift. Generate a move to
1500 take the value from the store and put it into the
1501 shift pseudo, then shift it, then generate another
1502 move to put in into the target of the read. */
1503 emit_move_insn (new_reg, new_lhs);
1504 emit_insn (shift_seq);
1505 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1506 break;
1507 }
1508
1509 return read_reg;
1510 }
1511
1512
1513 /* Take a sequence of:
1514 A <- r1
1515 ...
1516 ... <- A
1517
1518 and change it into
1519 r2 <- r1
1520 A <- r1
1521 ...
1522 ... <- r2
1523
1524 or
1525
1526 r3 <- extract (r1)
1527 r3 <- r3 >> shift
1528 r2 <- extract (r3)
1529 ... <- r2
1530
1531 or
1532
1533 r2 <- extract (r1)
1534 ... <- r2
1535
1536 Depending on the alignment and the mode of the store and
1537 subsequent load.
1538
1539
1540 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1541 and READ_INSN are for the read. Return true if the replacement
1542 went ok. */
1543
1544 static bool
1545 replace_read (store_info_t store_info, insn_info_t store_insn,
1546 read_info_t read_info, insn_info_t read_insn, rtx *loc)
1547 {
1548 enum machine_mode store_mode = GET_MODE (store_info->mem);
1549 enum machine_mode read_mode = GET_MODE (read_info->mem);
1550 int shift;
1551 int access_size; /* In bytes. */
1552 rtx insns, read_reg;
1553
1554 if (!dbg_cnt (dse))
1555 return false;
1556
1557 /* To get here the read is within the boundaries of the write so
1558 shift will never be negative. Start out with the shift being in
1559 bytes. */
1560 if (BYTES_BIG_ENDIAN)
1561 shift = store_info->end - read_info->end;
1562 else
1563 shift = read_info->begin - store_info->begin;
1564
1565 access_size = shift + GET_MODE_SIZE (read_mode);
1566
1567 /* From now on it is bits. */
1568 shift *= BITS_PER_UNIT;
1569
1570 /* Create a sequence of instructions to set up the read register.
1571 This sequence goes immediately before the store and its result
1572 is read by the load.
1573
1574 We need to keep this in perspective. We are replacing a read
1575 with a sequence of insns, but the read will almost certainly be
1576 in cache, so it is not going to be an expensive one. Thus, we
1577 are not willing to do a multi insn shift or worse a subroutine
1578 call to get rid of the read. */
1579 if (dump_file)
1580 fprintf (dump_file, "trying to replace %smode load in insn %d"
1581 " from %smode store in insn %d\n",
1582 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1583 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1584 start_sequence ();
1585 if (shift)
1586 read_reg = find_shift_sequence (access_size, store_info, read_info, shift,
1587 optimize_bb_for_speed_p (BLOCK_FOR_INSN (read_insn->insn)));
1588 else
1589 read_reg = extract_low_bits (read_mode, store_mode,
1590 copy_rtx (store_info->rhs));
1591 if (read_reg == NULL_RTX)
1592 {
1593 end_sequence ();
1594 if (dump_file)
1595 fprintf (dump_file, " -- could not extract bits of stored value\n");
1596 return false;
1597 }
1598 /* Force the value into a new register so that it won't be clobbered
1599 between the store and the load. */
1600 read_reg = copy_to_mode_reg (read_mode, read_reg);
1601 insns = get_insns ();
1602 end_sequence ();
1603
1604 if (validate_change (read_insn->insn, loc, read_reg, 0))
1605 {
1606 deferred_change_t deferred_change =
1607 (deferred_change_t) pool_alloc (deferred_change_pool);
1608
1609 /* Insert this right before the store insn where it will be safe
1610 from later insns that might change it before the read. */
1611 emit_insn_before (insns, store_insn->insn);
1612
1613 /* And now for the kludge part: cselib croaks if you just
1614 return at this point. There are two reasons for this:
1615
1616 1) Cselib has an idea of how many pseudos there are and
1617 that does not include the new ones we just added.
1618
1619 2) Cselib does not know about the move insn we added
1620 above the store_info, and there is no way to tell it
1621 about it, because it has "moved on".
1622
1623 Problem (1) is fixable with a certain amount of engineering.
1624 Problem (2) is requires starting the bb from scratch. This
1625 could be expensive.
1626
1627 So we are just going to have to lie. The move/extraction
1628 insns are not really an issue, cselib did not see them. But
1629 the use of the new pseudo read_insn is a real problem because
1630 cselib has not scanned this insn. The way that we solve this
1631 problem is that we are just going to put the mem back for now
1632 and when we are finished with the block, we undo this. We
1633 keep a table of mems to get rid of. At the end of the basic
1634 block we can put them back. */
1635
1636 *loc = read_info->mem;
1637 deferred_change->next = deferred_change_list;
1638 deferred_change_list = deferred_change;
1639 deferred_change->loc = loc;
1640 deferred_change->reg = read_reg;
1641
1642 /* Get rid of the read_info, from the point of view of the
1643 rest of dse, play like this read never happened. */
1644 read_insn->read_rec = read_info->next;
1645 pool_free (read_info_pool, read_info);
1646 if (dump_file)
1647 {
1648 fprintf (dump_file, " -- replaced the loaded MEM with ");
1649 print_simple_rtl (dump_file, read_reg);
1650 fprintf (dump_file, "\n");
1651 }
1652 return true;
1653 }
1654 else
1655 {
1656 if (dump_file)
1657 {
1658 fprintf (dump_file, " -- replacing the loaded MEM with ");
1659 print_simple_rtl (dump_file, read_reg);
1660 fprintf (dump_file, " led to an invalid instruction\n");
1661 }
1662 return false;
1663 }
1664 }
1665
1666 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
1667 if LOC is a mem and if it is look at the address and kill any
1668 appropriate stores that may be active. */
1669
1670 static int
1671 check_mem_read_rtx (rtx *loc, void *data)
1672 {
1673 rtx mem = *loc;
1674 bb_info_t bb_info;
1675 insn_info_t insn_info;
1676 HOST_WIDE_INT offset = 0;
1677 HOST_WIDE_INT width = 0;
1678 alias_set_type spill_alias_set = 0;
1679 cselib_val *base = NULL;
1680 int group_id;
1681 read_info_t read_info;
1682
1683 if (!mem || !MEM_P (mem))
1684 return 0;
1685
1686 bb_info = (bb_info_t) data;
1687 insn_info = bb_info->last_insn;
1688
1689 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
1690 || (MEM_VOLATILE_P (mem)))
1691 {
1692 if (dump_file)
1693 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
1694 add_wild_read (bb_info);
1695 insn_info->cannot_delete = true;
1696 return 0;
1697 }
1698
1699 /* If it is reading readonly mem, then there can be no conflict with
1700 another write. */
1701 if (MEM_READONLY_P (mem))
1702 return 0;
1703
1704 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1705 {
1706 if (dump_file)
1707 fprintf (dump_file, " adding wild read, canon_address failure.\n");
1708 add_wild_read (bb_info);
1709 return 0;
1710 }
1711
1712 if (GET_MODE (mem) == BLKmode)
1713 width = -1;
1714 else
1715 width = GET_MODE_SIZE (GET_MODE (mem));
1716
1717 read_info = (read_info_t) pool_alloc (read_info_pool);
1718 read_info->group_id = group_id;
1719 read_info->mem = mem;
1720 read_info->alias_set = spill_alias_set;
1721 read_info->begin = offset;
1722 read_info->end = offset + width;
1723 read_info->next = insn_info->read_rec;
1724 insn_info->read_rec = read_info;
1725
1726 /* We ignore the clobbers in store_info. The is mildly aggressive,
1727 but there really should not be a clobber followed by a read. */
1728
1729 if (spill_alias_set)
1730 {
1731 insn_info_t i_ptr = active_local_stores;
1732 insn_info_t last = NULL;
1733
1734 if (dump_file)
1735 fprintf (dump_file, " processing spill load %d\n",
1736 (int) spill_alias_set);
1737
1738 while (i_ptr)
1739 {
1740 store_info_t store_info = i_ptr->store_rec;
1741
1742 /* Skip the clobbers. */
1743 while (!store_info->is_set)
1744 store_info = store_info->next;
1745
1746 if (store_info->alias_set == spill_alias_set)
1747 {
1748 if (dump_file)
1749 dump_insn_info ("removing from active", i_ptr);
1750
1751 if (last)
1752 last->next_local_store = i_ptr->next_local_store;
1753 else
1754 active_local_stores = i_ptr->next_local_store;
1755 }
1756 else
1757 last = i_ptr;
1758 i_ptr = i_ptr->next_local_store;
1759 }
1760 }
1761 else if (group_id >= 0)
1762 {
1763 /* This is the restricted case where the base is a constant or
1764 the frame pointer and offset is a constant. */
1765 insn_info_t i_ptr = active_local_stores;
1766 insn_info_t last = NULL;
1767
1768 if (dump_file)
1769 {
1770 if (width == -1)
1771 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
1772 group_id);
1773 else
1774 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
1775 group_id, (int)offset, (int)(offset+width));
1776 }
1777
1778 while (i_ptr)
1779 {
1780 bool remove = false;
1781 store_info_t store_info = i_ptr->store_rec;
1782
1783 /* Skip the clobbers. */
1784 while (!store_info->is_set)
1785 store_info = store_info->next;
1786
1787 /* There are three cases here. */
1788 if (store_info->group_id < 0)
1789 /* We have a cselib store followed by a read from a
1790 const base. */
1791 remove
1792 = canon_true_dependence (store_info->mem,
1793 GET_MODE (store_info->mem),
1794 store_info->mem_addr,
1795 mem, rtx_varies_p);
1796
1797 else if (group_id == store_info->group_id)
1798 {
1799 /* This is a block mode load. We may get lucky and
1800 canon_true_dependence may save the day. */
1801 if (width == -1)
1802 remove
1803 = canon_true_dependence (store_info->mem,
1804 GET_MODE (store_info->mem),
1805 store_info->mem_addr,
1806 mem, rtx_varies_p);
1807
1808 /* If this read is just reading back something that we just
1809 stored, rewrite the read. */
1810 else
1811 {
1812 if (store_info->rhs
1813 && (offset >= store_info->begin)
1814 && (offset + width <= store_info->end))
1815 {
1816 unsigned HOST_WIDE_INT mask
1817 = (lowpart_bitmask (width)
1818 << (offset - store_info->begin));
1819
1820 if ((store_info->positions_needed & mask) == mask
1821 && replace_read (store_info, i_ptr,
1822 read_info, insn_info, loc))
1823 return 0;
1824 }
1825 /* The bases are the same, just see if the offsets
1826 overlap. */
1827 if ((offset < store_info->end)
1828 && (offset + width > store_info->begin))
1829 remove = true;
1830 }
1831 }
1832
1833 /* else
1834 The else case that is missing here is that the
1835 bases are constant but different. There is nothing
1836 to do here because there is no overlap. */
1837
1838 if (remove)
1839 {
1840 if (dump_file)
1841 dump_insn_info ("removing from active", i_ptr);
1842
1843 if (last)
1844 last->next_local_store = i_ptr->next_local_store;
1845 else
1846 active_local_stores = i_ptr->next_local_store;
1847 }
1848 else
1849 last = i_ptr;
1850 i_ptr = i_ptr->next_local_store;
1851 }
1852 }
1853 else
1854 {
1855 insn_info_t i_ptr = active_local_stores;
1856 insn_info_t last = NULL;
1857 if (dump_file)
1858 {
1859 fprintf (dump_file, " processing cselib load mem:");
1860 print_inline_rtx (dump_file, mem, 0);
1861 fprintf (dump_file, "\n");
1862 }
1863
1864 while (i_ptr)
1865 {
1866 bool remove = false;
1867 store_info_t store_info = i_ptr->store_rec;
1868
1869 if (dump_file)
1870 fprintf (dump_file, " processing cselib load against insn %d\n",
1871 INSN_UID (i_ptr->insn));
1872
1873 /* Skip the clobbers. */
1874 while (!store_info->is_set)
1875 store_info = store_info->next;
1876
1877 /* If this read is just reading back something that we just
1878 stored, rewrite the read. */
1879 if (store_info->rhs
1880 && store_info->group_id == -1
1881 && store_info->cse_base == base
1882 && (offset >= store_info->begin)
1883 && (offset + width <= store_info->end))
1884 {
1885 unsigned HOST_WIDE_INT mask
1886 = (lowpart_bitmask (width)
1887 << (offset - store_info->begin));
1888
1889 if ((store_info->positions_needed & mask) == mask
1890 && replace_read (store_info, i_ptr,
1891 read_info, insn_info, loc))
1892 return 0;
1893 }
1894
1895 if (!store_info->alias_set)
1896 remove = canon_true_dependence (store_info->mem,
1897 GET_MODE (store_info->mem),
1898 store_info->mem_addr,
1899 mem, rtx_varies_p);
1900
1901 if (remove)
1902 {
1903 if (dump_file)
1904 dump_insn_info ("removing from active", i_ptr);
1905
1906 if (last)
1907 last->next_local_store = i_ptr->next_local_store;
1908 else
1909 active_local_stores = i_ptr->next_local_store;
1910 }
1911 else
1912 last = i_ptr;
1913 i_ptr = i_ptr->next_local_store;
1914 }
1915 }
1916 return 0;
1917 }
1918
1919 /* A for_each_rtx callback in which DATA points the INSN_INFO for
1920 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
1921 true for any part of *LOC. */
1922
1923 static void
1924 check_mem_read_use (rtx *loc, void *data)
1925 {
1926 for_each_rtx (loc, check_mem_read_rtx, data);
1927 }
1928
1929 /* Apply record_store to all candidate stores in INSN. Mark INSN
1930 if some part of it is not a candidate store and assigns to a
1931 non-register target. */
1932
1933 static void
1934 scan_insn (bb_info_t bb_info, rtx insn)
1935 {
1936 rtx body;
1937 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
1938 int mems_found = 0;
1939 memset (insn_info, 0, sizeof (struct insn_info));
1940
1941 if (dump_file)
1942 fprintf (dump_file, "\n**scanning insn=%d\n",
1943 INSN_UID (insn));
1944
1945 insn_info->prev_insn = bb_info->last_insn;
1946 insn_info->insn = insn;
1947 bb_info->last_insn = insn_info;
1948
1949
1950 /* Cselib clears the table for this case, so we have to essentially
1951 do the same. */
1952 if (NONJUMP_INSN_P (insn)
1953 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1954 && MEM_VOLATILE_P (PATTERN (insn)))
1955 {
1956 add_wild_read (bb_info);
1957 insn_info->cannot_delete = true;
1958 return;
1959 }
1960
1961 /* Look at all of the uses in the insn. */
1962 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
1963
1964 if (CALL_P (insn))
1965 {
1966 insn_info->cannot_delete = true;
1967
1968 /* Const functions cannot do anything bad i.e. read memory,
1969 however, they can read their parameters which may have
1970 been pushed onto the stack. */
1971 if (RTL_CONST_CALL_P (insn))
1972 {
1973 insn_info_t i_ptr = active_local_stores;
1974 insn_info_t last = NULL;
1975
1976 if (dump_file)
1977 fprintf (dump_file, "const call %d\n", INSN_UID (insn));
1978
1979 /* See the head comment of the frame_read field. */
1980 if (reload_completed)
1981 insn_info->frame_read = true;
1982
1983 /* Loop over the active stores and remove those which are
1984 killed by the const function call. */
1985 while (i_ptr)
1986 {
1987 bool remove_store = false;
1988
1989 /* The stack pointer based stores are always killed. */
1990 if (i_ptr->stack_pointer_based)
1991 remove_store = true;
1992
1993 /* If the frame is read, the frame related stores are killed. */
1994 else if (insn_info->frame_read)
1995 {
1996 store_info_t store_info = i_ptr->store_rec;
1997
1998 /* Skip the clobbers. */
1999 while (!store_info->is_set)
2000 store_info = store_info->next;
2001
2002 if (store_info->group_id >= 0
2003 && VEC_index (group_info_t, rtx_group_vec,
2004 store_info->group_id)->frame_related)
2005 remove_store = true;
2006 }
2007
2008 if (remove_store)
2009 {
2010 if (dump_file)
2011 dump_insn_info ("removing from active", i_ptr);
2012
2013 if (last)
2014 last->next_local_store = i_ptr->next_local_store;
2015 else
2016 active_local_stores = i_ptr->next_local_store;
2017 }
2018 else
2019 last = i_ptr;
2020
2021 i_ptr = i_ptr->next_local_store;
2022 }
2023 }
2024
2025 else
2026 /* Every other call, including pure functions, may read memory. */
2027 add_wild_read (bb_info);
2028
2029 return;
2030 }
2031
2032 /* Assuming that there are sets in these insns, we cannot delete
2033 them. */
2034 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2035 || volatile_refs_p (PATTERN (insn))
2036 || (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
2037 || (RTX_FRAME_RELATED_P (insn))
2038 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2039 insn_info->cannot_delete = true;
2040
2041 body = PATTERN (insn);
2042 if (GET_CODE (body) == PARALLEL)
2043 {
2044 int i;
2045 for (i = 0; i < XVECLEN (body, 0); i++)
2046 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2047 }
2048 else
2049 mems_found += record_store (body, bb_info);
2050
2051 if (dump_file)
2052 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2053 mems_found, insn_info->cannot_delete ? "true" : "false");
2054
2055 /* If we found some sets of mems, and the insn has not been marked
2056 cannot delete, add it into the active_local_stores so that it can
2057 be locally deleted if found dead. Otherwise mark it as cannot
2058 delete. This simplifies the processing later. */
2059 if (mems_found == 1 && !insn_info->cannot_delete)
2060 {
2061 insn_info->next_local_store = active_local_stores;
2062 active_local_stores = insn_info;
2063 }
2064 else
2065 insn_info->cannot_delete = true;
2066 }
2067
2068
2069 /* Remove BASE from the set of active_local_stores. This is a
2070 callback from cselib that is used to get rid of the stores in
2071 active_local_stores. */
2072
2073 static void
2074 remove_useless_values (cselib_val *base)
2075 {
2076 insn_info_t insn_info = active_local_stores;
2077 insn_info_t last = NULL;
2078
2079 while (insn_info)
2080 {
2081 store_info_t store_info = insn_info->store_rec;
2082 bool del = false;
2083
2084 /* If ANY of the store_infos match the cselib group that is
2085 being deleted, then the insn can not be deleted. */
2086 while (store_info)
2087 {
2088 if ((store_info->group_id == -1)
2089 && (store_info->cse_base == base))
2090 {
2091 del = true;
2092 break;
2093 }
2094 store_info = store_info->next;
2095 }
2096
2097 if (del)
2098 {
2099 if (last)
2100 last->next_local_store = insn_info->next_local_store;
2101 else
2102 active_local_stores = insn_info->next_local_store;
2103 free_store_info (insn_info);
2104 }
2105 else
2106 last = insn_info;
2107
2108 insn_info = insn_info->next_local_store;
2109 }
2110 }
2111
2112
2113 /* Do all of step 1. */
2114
2115 static void
2116 dse_step1 (void)
2117 {
2118 basic_block bb;
2119
2120 cselib_init (false);
2121 all_blocks = BITMAP_ALLOC (NULL);
2122 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2123 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2124
2125 FOR_ALL_BB (bb)
2126 {
2127 insn_info_t ptr;
2128 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2129
2130 memset (bb_info, 0, sizeof (struct bb_info));
2131 bitmap_set_bit (all_blocks, bb->index);
2132
2133 bb_table[bb->index] = bb_info;
2134 cselib_discard_hook = remove_useless_values;
2135
2136 if (bb->index >= NUM_FIXED_BLOCKS)
2137 {
2138 rtx insn;
2139
2140 cse_store_info_pool
2141 = create_alloc_pool ("cse_store_info_pool",
2142 sizeof (struct store_info), 100);
2143 active_local_stores = NULL;
2144 cselib_clear_table ();
2145
2146 /* Scan the insns. */
2147 FOR_BB_INSNS (bb, insn)
2148 {
2149 if (INSN_P (insn))
2150 scan_insn (bb_info, insn);
2151 cselib_process_insn (insn);
2152 }
2153
2154 /* This is something of a hack, because the global algorithm
2155 is supposed to take care of the case where stores go dead
2156 at the end of the function. However, the global
2157 algorithm must take a more conservative view of block
2158 mode reads than the local alg does. So to get the case
2159 where you have a store to the frame followed by a non
2160 overlapping block more read, we look at the active local
2161 stores at the end of the function and delete all of the
2162 frame and spill based ones. */
2163 if (stores_off_frame_dead_at_return
2164 && (EDGE_COUNT (bb->succs) == 0
2165 || (single_succ_p (bb)
2166 && single_succ (bb) == EXIT_BLOCK_PTR
2167 && ! crtl->calls_eh_return)))
2168 {
2169 insn_info_t i_ptr = active_local_stores;
2170 while (i_ptr)
2171 {
2172 store_info_t store_info = i_ptr->store_rec;
2173
2174 /* Skip the clobbers. */
2175 while (!store_info->is_set)
2176 store_info = store_info->next;
2177 if (store_info->alias_set)
2178 delete_dead_store_insn (i_ptr);
2179 else
2180 if (store_info->group_id >= 0)
2181 {
2182 group_info_t group
2183 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2184 if (group->frame_related)
2185 delete_dead_store_insn (i_ptr);
2186 }
2187
2188 i_ptr = i_ptr->next_local_store;
2189 }
2190 }
2191
2192 /* Get rid of the loads that were discovered in
2193 replace_read. Cselib is finished with this block. */
2194 while (deferred_change_list)
2195 {
2196 deferred_change_t next = deferred_change_list->next;
2197
2198 /* There is no reason to validate this change. That was
2199 done earlier. */
2200 *deferred_change_list->loc = deferred_change_list->reg;
2201 pool_free (deferred_change_pool, deferred_change_list);
2202 deferred_change_list = next;
2203 }
2204
2205 /* Get rid of all of the cselib based store_infos in this
2206 block and mark the containing insns as not being
2207 deletable. */
2208 ptr = bb_info->last_insn;
2209 while (ptr)
2210 {
2211 if (ptr->contains_cselib_groups)
2212 free_store_info (ptr);
2213 ptr = ptr->prev_insn;
2214 }
2215
2216 free_alloc_pool (cse_store_info_pool);
2217 }
2218 }
2219
2220 cselib_finish ();
2221 htab_empty (rtx_group_table);
2222 }
2223
2224 \f
2225 /*----------------------------------------------------------------------------
2226 Second step.
2227
2228 Assign each byte position in the stores that we are going to
2229 analyze globally to a position in the bitmaps. Returns true if
2230 there are any bit positions assigned.
2231 ----------------------------------------------------------------------------*/
2232
2233 static void
2234 dse_step2_init (void)
2235 {
2236 unsigned int i;
2237 group_info_t group;
2238
2239 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2240 {
2241 /* For all non stack related bases, we only consider a store to
2242 be deletable if there are two or more stores for that
2243 position. This is because it takes one store to make the
2244 other store redundant. However, for the stores that are
2245 stack related, we consider them if there is only one store
2246 for the position. We do this because the stack related
2247 stores can be deleted if their is no read between them and
2248 the end of the function.
2249
2250 To make this work in the current framework, we take the stack
2251 related bases add all of the bits from store1 into store2.
2252 This has the effect of making the eligible even if there is
2253 only one store. */
2254
2255 if (stores_off_frame_dead_at_return && group->frame_related)
2256 {
2257 bitmap_ior_into (group->store2_n, group->store1_n);
2258 bitmap_ior_into (group->store2_p, group->store1_p);
2259 if (dump_file)
2260 fprintf (dump_file, "group %d is frame related ", i);
2261 }
2262
2263 group->offset_map_size_n++;
2264 group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
2265 group->offset_map_size_p++;
2266 group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
2267 group->process_globally = false;
2268 if (dump_file)
2269 {
2270 fprintf (dump_file, "group %d(%d+%d): ", i,
2271 (int)bitmap_count_bits (group->store2_n),
2272 (int)bitmap_count_bits (group->store2_p));
2273 bitmap_print (dump_file, group->store2_n, "n ", " ");
2274 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2275 }
2276 }
2277 }
2278
2279
2280 /* Init the offset tables for the normal case. */
2281
2282 static bool
2283 dse_step2_nospill (void)
2284 {
2285 unsigned int i;
2286 group_info_t group;
2287 /* Position 0 is unused because 0 is used in the maps to mean
2288 unused. */
2289 current_position = 1;
2290
2291 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2292 {
2293 bitmap_iterator bi;
2294 unsigned int j;
2295
2296 if (group == clear_alias_group)
2297 continue;
2298
2299 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2300 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2301 bitmap_clear (group->group_kill);
2302
2303 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2304 {
2305 bitmap_set_bit (group->group_kill, current_position);
2306 group->offset_map_n[j] = current_position++;
2307 group->process_globally = true;
2308 }
2309 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2310 {
2311 bitmap_set_bit (group->group_kill, current_position);
2312 group->offset_map_p[j] = current_position++;
2313 group->process_globally = true;
2314 }
2315 }
2316 return current_position != 1;
2317 }
2318
2319
2320 /* Init the offset tables for the spill case. */
2321
2322 static bool
2323 dse_step2_spill (void)
2324 {
2325 unsigned int j;
2326 group_info_t group = clear_alias_group;
2327 bitmap_iterator bi;
2328
2329 /* Position 0 is unused because 0 is used in the maps to mean
2330 unused. */
2331 current_position = 1;
2332
2333 if (dump_file)
2334 {
2335 bitmap_print (dump_file, clear_alias_sets,
2336 "clear alias sets ", "\n");
2337 bitmap_print (dump_file, disqualified_clear_alias_sets,
2338 "disqualified clear alias sets ", "\n");
2339 }
2340
2341 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2342 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2343 bitmap_clear (group->group_kill);
2344
2345 /* Remove the disqualified positions from the store2_p set. */
2346 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
2347
2348 /* We do not need to process the store2_n set because
2349 alias_sets are always positive. */
2350 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2351 {
2352 bitmap_set_bit (group->group_kill, current_position);
2353 group->offset_map_p[j] = current_position++;
2354 group->process_globally = true;
2355 }
2356
2357 return current_position != 1;
2358 }
2359
2360
2361 \f
2362 /*----------------------------------------------------------------------------
2363 Third step.
2364
2365 Build the bit vectors for the transfer functions.
2366 ----------------------------------------------------------------------------*/
2367
2368
2369 /* Note that this is NOT a general purpose function. Any mem that has
2370 an alias set registered here expected to be COMPLETELY unaliased:
2371 i.e it's addresses are not and need not be examined.
2372
2373 It is known that all references to this address will have this
2374 alias set and there are NO other references to this address in the
2375 function.
2376
2377 Currently the only place that is known to be clean enough to use
2378 this interface is the code that assigns the spill locations.
2379
2380 All of the mems that have alias_sets registered are subjected to a
2381 very powerful form of dse where function calls, volatile reads and
2382 writes, and reads from random location are not taken into account.
2383
2384 It is also assumed that these locations go dead when the function
2385 returns. This assumption could be relaxed if there were found to
2386 be places that this assumption was not correct.
2387
2388 The MODE is passed in and saved. The mode of each load or store to
2389 a mem with ALIAS_SET is checked against MEM. If the size of that
2390 load or store is different from MODE, processing is halted on this
2391 alias set. For the vast majority of aliases sets, all of the loads
2392 and stores will use the same mode. But vectors are treated
2393 differently: the alias set is established for the entire vector,
2394 but reload will insert loads and stores for individual elements and
2395 we do not necessarily have the information to track those separate
2396 elements. So when we see a mode mismatch, we just bail. */
2397
2398
2399 void
2400 dse_record_singleton_alias_set (alias_set_type alias_set,
2401 enum machine_mode mode)
2402 {
2403 struct clear_alias_mode_holder tmp_holder;
2404 struct clear_alias_mode_holder *entry;
2405 void **slot;
2406
2407 /* If we are not going to run dse, we need to return now or there
2408 will be problems with allocating the bitmaps. */
2409 if ((!gate_dse()) || !alias_set)
2410 return;
2411
2412 if (!clear_alias_sets)
2413 {
2414 clear_alias_sets = BITMAP_ALLOC (NULL);
2415 disqualified_clear_alias_sets = BITMAP_ALLOC (NULL);
2416 clear_alias_mode_table = htab_create (11, clear_alias_mode_hash,
2417 clear_alias_mode_eq, NULL);
2418 clear_alias_mode_pool = create_alloc_pool ("clear_alias_mode_pool",
2419 sizeof (struct clear_alias_mode_holder), 100);
2420 }
2421
2422 bitmap_set_bit (clear_alias_sets, alias_set);
2423
2424 tmp_holder.alias_set = alias_set;
2425
2426 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, INSERT);
2427 gcc_assert (*slot == NULL);
2428
2429 *slot = entry =
2430 (struct clear_alias_mode_holder *) pool_alloc (clear_alias_mode_pool);
2431 entry->alias_set = alias_set;
2432 entry->mode = mode;
2433 }
2434
2435
2436 /* Remove ALIAS_SET from the sets of stack slots being considered. */
2437
2438 void
2439 dse_invalidate_singleton_alias_set (alias_set_type alias_set)
2440 {
2441 if ((!gate_dse()) || !alias_set)
2442 return;
2443
2444 bitmap_clear_bit (clear_alias_sets, alias_set);
2445 }
2446
2447
2448 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2449 there, return 0. */
2450
2451 static int
2452 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
2453 {
2454 if (offset < 0)
2455 {
2456 HOST_WIDE_INT offset_p = -offset;
2457 if (offset_p >= group_info->offset_map_size_n)
2458 return 0;
2459 return group_info->offset_map_n[offset_p];
2460 }
2461 else
2462 {
2463 if (offset >= group_info->offset_map_size_p)
2464 return 0;
2465 return group_info->offset_map_p[offset];
2466 }
2467 }
2468
2469
2470 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2471 may be NULL. */
2472
2473 static void
2474 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
2475 {
2476 while (store_info)
2477 {
2478 HOST_WIDE_INT i;
2479 group_info_t group_info
2480 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2481 if (group_info->process_globally)
2482 for (i = store_info->begin; i < store_info->end; i++)
2483 {
2484 int index = get_bitmap_index (group_info, i);
2485 if (index != 0)
2486 {
2487 bitmap_set_bit (gen, index);
2488 if (kill)
2489 bitmap_clear_bit (kill, index);
2490 }
2491 }
2492 store_info = store_info->next;
2493 }
2494 }
2495
2496
2497 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2498 may be NULL. */
2499
2500 static void
2501 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
2502 {
2503 while (store_info)
2504 {
2505 if (store_info->alias_set)
2506 {
2507 int index = get_bitmap_index (clear_alias_group,
2508 store_info->alias_set);
2509 if (index != 0)
2510 {
2511 bitmap_set_bit (gen, index);
2512 if (kill)
2513 bitmap_clear_bit (kill, index);
2514 }
2515 }
2516 store_info = store_info->next;
2517 }
2518 }
2519
2520
2521 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2522 may be NULL. */
2523
2524 static void
2525 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
2526 {
2527 read_info_t read_info = insn_info->read_rec;
2528 int i;
2529 group_info_t group;
2530
2531 /* If this insn reads the frame, kill all the frame related stores. */
2532 if (insn_info->frame_read)
2533 {
2534 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2535 if (group->process_globally && group->frame_related)
2536 {
2537 if (kill)
2538 bitmap_ior_into (kill, group->group_kill);
2539 bitmap_and_compl_into (gen, group->group_kill);
2540 }
2541 }
2542
2543 while (read_info)
2544 {
2545 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2546 {
2547 if (group->process_globally)
2548 {
2549 if (i == read_info->group_id)
2550 {
2551 if (read_info->begin > read_info->end)
2552 {
2553 /* Begin > end for block mode reads. */
2554 if (kill)
2555 bitmap_ior_into (kill, group->group_kill);
2556 bitmap_and_compl_into (gen, group->group_kill);
2557 }
2558 else
2559 {
2560 /* The groups are the same, just process the
2561 offsets. */
2562 HOST_WIDE_INT j;
2563 for (j = read_info->begin; j < read_info->end; j++)
2564 {
2565 int index = get_bitmap_index (group, j);
2566 if (index != 0)
2567 {
2568 if (kill)
2569 bitmap_set_bit (kill, index);
2570 bitmap_clear_bit (gen, index);
2571 }
2572 }
2573 }
2574 }
2575 else
2576 {
2577 /* The groups are different, if the alias sets
2578 conflict, clear the entire group. We only need
2579 to apply this test if the read_info is a cselib
2580 read. Anything with a constant base cannot alias
2581 something else with a different constant
2582 base. */
2583 if ((read_info->group_id < 0)
2584 && canon_true_dependence (group->base_mem,
2585 QImode,
2586 group->canon_base_mem,
2587 read_info->mem, rtx_varies_p))
2588 {
2589 if (kill)
2590 bitmap_ior_into (kill, group->group_kill);
2591 bitmap_and_compl_into (gen, group->group_kill);
2592 }
2593 }
2594 }
2595 }
2596
2597 read_info = read_info->next;
2598 }
2599 }
2600
2601 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2602 may be NULL. */
2603
2604 static void
2605 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
2606 {
2607 while (read_info)
2608 {
2609 if (read_info->alias_set)
2610 {
2611 int index = get_bitmap_index (clear_alias_group,
2612 read_info->alias_set);
2613 if (index != 0)
2614 {
2615 if (kill)
2616 bitmap_set_bit (kill, index);
2617 bitmap_clear_bit (gen, index);
2618 }
2619 }
2620
2621 read_info = read_info->next;
2622 }
2623 }
2624
2625
2626 /* Return the insn in BB_INFO before the first wild read or if there
2627 are no wild reads in the block, return the last insn. */
2628
2629 static insn_info_t
2630 find_insn_before_first_wild_read (bb_info_t bb_info)
2631 {
2632 insn_info_t insn_info = bb_info->last_insn;
2633 insn_info_t last_wild_read = NULL;
2634
2635 while (insn_info)
2636 {
2637 if (insn_info->wild_read)
2638 {
2639 last_wild_read = insn_info->prev_insn;
2640 /* Block starts with wild read. */
2641 if (!last_wild_read)
2642 return NULL;
2643 }
2644
2645 insn_info = insn_info->prev_insn;
2646 }
2647
2648 if (last_wild_read)
2649 return last_wild_read;
2650 else
2651 return bb_info->last_insn;
2652 }
2653
2654
2655 /* Scan the insns in BB_INFO starting at PTR and going to the top of
2656 the block in order to build the gen and kill sets for the block.
2657 We start at ptr which may be the last insn in the block or may be
2658 the first insn with a wild read. In the latter case we are able to
2659 skip the rest of the block because it just does not matter:
2660 anything that happens is hidden by the wild read. */
2661
2662 static void
2663 dse_step3_scan (bool for_spills, basic_block bb)
2664 {
2665 bb_info_t bb_info = bb_table[bb->index];
2666 insn_info_t insn_info;
2667
2668 if (for_spills)
2669 /* There are no wild reads in the spill case. */
2670 insn_info = bb_info->last_insn;
2671 else
2672 insn_info = find_insn_before_first_wild_read (bb_info);
2673
2674 /* In the spill case or in the no_spill case if there is no wild
2675 read in the block, we will need a kill set. */
2676 if (insn_info == bb_info->last_insn)
2677 {
2678 if (bb_info->kill)
2679 bitmap_clear (bb_info->kill);
2680 else
2681 bb_info->kill = BITMAP_ALLOC (NULL);
2682 }
2683 else
2684 if (bb_info->kill)
2685 BITMAP_FREE (bb_info->kill);
2686
2687 while (insn_info)
2688 {
2689 /* There may have been code deleted by the dce pass run before
2690 this phase. */
2691 if (insn_info->insn && INSN_P (insn_info->insn))
2692 {
2693 /* Process the read(s) last. */
2694 if (for_spills)
2695 {
2696 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
2697 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
2698 }
2699 else
2700 {
2701 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
2702 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
2703 }
2704 }
2705
2706 insn_info = insn_info->prev_insn;
2707 }
2708 }
2709
2710
2711 /* Set the gen set of the exit block, and also any block with no
2712 successors that does not have a wild read. */
2713
2714 static void
2715 dse_step3_exit_block_scan (bb_info_t bb_info)
2716 {
2717 /* The gen set is all 0's for the exit block except for the
2718 frame_pointer_group. */
2719
2720 if (stores_off_frame_dead_at_return)
2721 {
2722 unsigned int i;
2723 group_info_t group;
2724
2725 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2726 {
2727 if (group->process_globally && group->frame_related)
2728 bitmap_ior_into (bb_info->gen, group->group_kill);
2729 }
2730 }
2731 }
2732
2733
2734 /* Find all of the blocks that are not backwards reachable from the
2735 exit block or any block with no successors (BB). These are the
2736 infinite loops or infinite self loops. These blocks will still
2737 have their bits set in UNREACHABLE_BLOCKS. */
2738
2739 static void
2740 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
2741 {
2742 edge e;
2743 edge_iterator ei;
2744
2745 if (TEST_BIT (unreachable_blocks, bb->index))
2746 {
2747 RESET_BIT (unreachable_blocks, bb->index);
2748 FOR_EACH_EDGE (e, ei, bb->preds)
2749 {
2750 mark_reachable_blocks (unreachable_blocks, e->src);
2751 }
2752 }
2753 }
2754
2755 /* Build the transfer functions for the function. */
2756
2757 static void
2758 dse_step3 (bool for_spills)
2759 {
2760 basic_block bb;
2761 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
2762 sbitmap_iterator sbi;
2763 bitmap all_ones = NULL;
2764 unsigned int i;
2765
2766 sbitmap_ones (unreachable_blocks);
2767
2768 FOR_ALL_BB (bb)
2769 {
2770 bb_info_t bb_info = bb_table[bb->index];
2771 if (bb_info->gen)
2772 bitmap_clear (bb_info->gen);
2773 else
2774 bb_info->gen = BITMAP_ALLOC (NULL);
2775
2776 if (bb->index == ENTRY_BLOCK)
2777 ;
2778 else if (bb->index == EXIT_BLOCK)
2779 dse_step3_exit_block_scan (bb_info);
2780 else
2781 dse_step3_scan (for_spills, bb);
2782 if (EDGE_COUNT (bb->succs) == 0)
2783 mark_reachable_blocks (unreachable_blocks, bb);
2784
2785 /* If this is the second time dataflow is run, delete the old
2786 sets. */
2787 if (bb_info->in)
2788 BITMAP_FREE (bb_info->in);
2789 if (bb_info->out)
2790 BITMAP_FREE (bb_info->out);
2791 }
2792
2793 /* For any block in an infinite loop, we must initialize the out set
2794 to all ones. This could be expensive, but almost never occurs in
2795 practice. However, it is common in regression tests. */
2796 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
2797 {
2798 if (bitmap_bit_p (all_blocks, i))
2799 {
2800 bb_info_t bb_info = bb_table[i];
2801 if (!all_ones)
2802 {
2803 unsigned int j;
2804 group_info_t group;
2805
2806 all_ones = BITMAP_ALLOC (NULL);
2807 for (j = 0; VEC_iterate (group_info_t, rtx_group_vec, j, group); j++)
2808 bitmap_ior_into (all_ones, group->group_kill);
2809 }
2810 if (!bb_info->out)
2811 {
2812 bb_info->out = BITMAP_ALLOC (NULL);
2813 bitmap_copy (bb_info->out, all_ones);
2814 }
2815 }
2816 }
2817
2818 if (all_ones)
2819 BITMAP_FREE (all_ones);
2820 sbitmap_free (unreachable_blocks);
2821 }
2822
2823
2824 \f
2825 /*----------------------------------------------------------------------------
2826 Fourth step.
2827
2828 Solve the bitvector equations.
2829 ----------------------------------------------------------------------------*/
2830
2831
2832 /* Confluence function for blocks with no successors. Create an out
2833 set from the gen set of the exit block. This block logically has
2834 the exit block as a successor. */
2835
2836
2837
2838 static void
2839 dse_confluence_0 (basic_block bb)
2840 {
2841 bb_info_t bb_info = bb_table[bb->index];
2842
2843 if (bb->index == EXIT_BLOCK)
2844 return;
2845
2846 if (!bb_info->out)
2847 {
2848 bb_info->out = BITMAP_ALLOC (NULL);
2849 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
2850 }
2851 }
2852
2853 /* Propagate the information from the in set of the dest of E to the
2854 out set of the src of E. If the various in or out sets are not
2855 there, that means they are all ones. */
2856
2857 static void
2858 dse_confluence_n (edge e)
2859 {
2860 bb_info_t src_info = bb_table[e->src->index];
2861 bb_info_t dest_info = bb_table[e->dest->index];
2862
2863 if (dest_info->in)
2864 {
2865 if (src_info->out)
2866 bitmap_and_into (src_info->out, dest_info->in);
2867 else
2868 {
2869 src_info->out = BITMAP_ALLOC (NULL);
2870 bitmap_copy (src_info->out, dest_info->in);
2871 }
2872 }
2873 }
2874
2875
2876 /* Propagate the info from the out to the in set of BB_INDEX's basic
2877 block. There are three cases:
2878
2879 1) The block has no kill set. In this case the kill set is all
2880 ones. It does not matter what the out set of the block is, none of
2881 the info can reach the top. The only thing that reaches the top is
2882 the gen set and we just copy the set.
2883
2884 2) There is a kill set but no out set and bb has successors. In
2885 this case we just return. Eventually an out set will be created and
2886 it is better to wait than to create a set of ones.
2887
2888 3) There is both a kill and out set. We apply the obvious transfer
2889 function.
2890 */
2891
2892 static bool
2893 dse_transfer_function (int bb_index)
2894 {
2895 bb_info_t bb_info = bb_table[bb_index];
2896
2897 if (bb_info->kill)
2898 {
2899 if (bb_info->out)
2900 {
2901 /* Case 3 above. */
2902 if (bb_info->in)
2903 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
2904 bb_info->out, bb_info->kill);
2905 else
2906 {
2907 bb_info->in = BITMAP_ALLOC (NULL);
2908 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
2909 bb_info->out, bb_info->kill);
2910 return true;
2911 }
2912 }
2913 else
2914 /* Case 2 above. */
2915 return false;
2916 }
2917 else
2918 {
2919 /* Case 1 above. If there is already an in set, nothing
2920 happens. */
2921 if (bb_info->in)
2922 return false;
2923 else
2924 {
2925 bb_info->in = BITMAP_ALLOC (NULL);
2926 bitmap_copy (bb_info->in, bb_info->gen);
2927 return true;
2928 }
2929 }
2930 }
2931
2932 /* Solve the dataflow equations. */
2933
2934 static void
2935 dse_step4 (void)
2936 {
2937 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
2938 dse_confluence_n, dse_transfer_function,
2939 all_blocks, df_get_postorder (DF_BACKWARD),
2940 df_get_n_blocks (DF_BACKWARD));
2941 if (dump_file)
2942 {
2943 basic_block bb;
2944
2945 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
2946 FOR_ALL_BB (bb)
2947 {
2948 bb_info_t bb_info = bb_table[bb->index];
2949
2950 df_print_bb_index (bb, dump_file);
2951 if (bb_info->in)
2952 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
2953 else
2954 fprintf (dump_file, " in: *MISSING*\n");
2955 if (bb_info->gen)
2956 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
2957 else
2958 fprintf (dump_file, " gen: *MISSING*\n");
2959 if (bb_info->kill)
2960 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
2961 else
2962 fprintf (dump_file, " kill: *MISSING*\n");
2963 if (bb_info->out)
2964 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
2965 else
2966 fprintf (dump_file, " out: *MISSING*\n\n");
2967 }
2968 }
2969 }
2970
2971
2972 \f
2973 /*----------------------------------------------------------------------------
2974 Fifth step.
2975
2976 Delete the stores that can only be deleted using the global information.
2977 ----------------------------------------------------------------------------*/
2978
2979
2980 static void
2981 dse_step5_nospill (void)
2982 {
2983 basic_block bb;
2984 FOR_EACH_BB (bb)
2985 {
2986 bb_info_t bb_info = bb_table[bb->index];
2987 insn_info_t insn_info = bb_info->last_insn;
2988 bitmap v = bb_info->out;
2989
2990 while (insn_info)
2991 {
2992 bool deleted = false;
2993 if (dump_file && insn_info->insn)
2994 {
2995 fprintf (dump_file, "starting to process insn %d\n",
2996 INSN_UID (insn_info->insn));
2997 bitmap_print (dump_file, v, " v: ", "\n");
2998 }
2999
3000 /* There may have been code deleted by the dce pass run before
3001 this phase. */
3002 if (insn_info->insn
3003 && INSN_P (insn_info->insn)
3004 && (!insn_info->cannot_delete)
3005 && (!bitmap_empty_p (v)))
3006 {
3007 store_info_t store_info = insn_info->store_rec;
3008
3009 /* Try to delete the current insn. */
3010 deleted = true;
3011
3012 /* Skip the clobbers. */
3013 while (!store_info->is_set)
3014 store_info = store_info->next;
3015
3016 if (store_info->alias_set)
3017 deleted = false;
3018 else
3019 {
3020 HOST_WIDE_INT i;
3021 group_info_t group_info
3022 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3023
3024 for (i = store_info->begin; i < store_info->end; i++)
3025 {
3026 int index = get_bitmap_index (group_info, i);
3027
3028 if (dump_file)
3029 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3030 if (index == 0 || !bitmap_bit_p (v, index))
3031 {
3032 if (dump_file)
3033 fprintf (dump_file, "failing at i = %d\n", (int)i);
3034 deleted = false;
3035 break;
3036 }
3037 }
3038 }
3039 if (deleted)
3040 {
3041 if (dbg_cnt (dse))
3042 {
3043 check_for_inc_dec (insn_info->insn);
3044 delete_insn (insn_info->insn);
3045 insn_info->insn = NULL;
3046 globally_deleted++;
3047 }
3048 }
3049 }
3050 /* We do want to process the local info if the insn was
3051 deleted. For instance, if the insn did a wild read, we
3052 no longer need to trash the info. */
3053 if (insn_info->insn
3054 && INSN_P (insn_info->insn)
3055 && (!deleted))
3056 {
3057 scan_stores_nospill (insn_info->store_rec, v, NULL);
3058 if (insn_info->wild_read)
3059 {
3060 if (dump_file)
3061 fprintf (dump_file, "wild read\n");
3062 bitmap_clear (v);
3063 }
3064 else if (insn_info->read_rec)
3065 {
3066 if (dump_file)
3067 fprintf (dump_file, "regular read\n");
3068 scan_reads_nospill (insn_info, v, NULL);
3069 }
3070 }
3071
3072 insn_info = insn_info->prev_insn;
3073 }
3074 }
3075 }
3076
3077
3078 static void
3079 dse_step5_spill (void)
3080 {
3081 basic_block bb;
3082 FOR_EACH_BB (bb)
3083 {
3084 bb_info_t bb_info = bb_table[bb->index];
3085 insn_info_t insn_info = bb_info->last_insn;
3086 bitmap v = bb_info->out;
3087
3088 while (insn_info)
3089 {
3090 bool deleted = false;
3091 /* There may have been code deleted by the dce pass run before
3092 this phase. */
3093 if (insn_info->insn
3094 && INSN_P (insn_info->insn)
3095 && (!insn_info->cannot_delete)
3096 && (!bitmap_empty_p (v)))
3097 {
3098 /* Try to delete the current insn. */
3099 store_info_t store_info = insn_info->store_rec;
3100 deleted = true;
3101
3102 while (store_info)
3103 {
3104 if (store_info->alias_set)
3105 {
3106 int index = get_bitmap_index (clear_alias_group,
3107 store_info->alias_set);
3108 if (index == 0 || !bitmap_bit_p (v, index))
3109 {
3110 deleted = false;
3111 break;
3112 }
3113 }
3114 else
3115 deleted = false;
3116 store_info = store_info->next;
3117 }
3118 if (deleted && dbg_cnt (dse))
3119 {
3120 if (dump_file)
3121 fprintf (dump_file, "Spill deleting insn %d\n",
3122 INSN_UID (insn_info->insn));
3123 check_for_inc_dec (insn_info->insn);
3124 delete_insn (insn_info->insn);
3125 spill_deleted++;
3126 insn_info->insn = NULL;
3127 }
3128 }
3129
3130 if (insn_info->insn
3131 && INSN_P (insn_info->insn)
3132 && (!deleted))
3133 {
3134 scan_stores_spill (insn_info->store_rec, v, NULL);
3135 scan_reads_spill (insn_info->read_rec, v, NULL);
3136 }
3137
3138 insn_info = insn_info->prev_insn;
3139 }
3140 }
3141 }
3142
3143
3144 \f
3145 /*----------------------------------------------------------------------------
3146 Sixth step.
3147
3148 Destroy everything left standing.
3149 ----------------------------------------------------------------------------*/
3150
3151 static void
3152 dse_step6 (bool global_done)
3153 {
3154 unsigned int i;
3155 group_info_t group;
3156 basic_block bb;
3157
3158 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3159 {
3160 free (group->offset_map_n);
3161 free (group->offset_map_p);
3162 BITMAP_FREE (group->store1_n);
3163 BITMAP_FREE (group->store1_p);
3164 BITMAP_FREE (group->store2_n);
3165 BITMAP_FREE (group->store2_p);
3166 BITMAP_FREE (group->group_kill);
3167 }
3168
3169 if (global_done)
3170 FOR_ALL_BB (bb)
3171 {
3172 bb_info_t bb_info = bb_table[bb->index];
3173 BITMAP_FREE (bb_info->gen);
3174 if (bb_info->kill)
3175 BITMAP_FREE (bb_info->kill);
3176 if (bb_info->in)
3177 BITMAP_FREE (bb_info->in);
3178 if (bb_info->out)
3179 BITMAP_FREE (bb_info->out);
3180 }
3181
3182 if (clear_alias_sets)
3183 {
3184 BITMAP_FREE (clear_alias_sets);
3185 BITMAP_FREE (disqualified_clear_alias_sets);
3186 free_alloc_pool (clear_alias_mode_pool);
3187 htab_delete (clear_alias_mode_table);
3188 }
3189
3190 end_alias_analysis ();
3191 free (bb_table);
3192 htab_delete (rtx_group_table);
3193 VEC_free (group_info_t, heap, rtx_group_vec);
3194 BITMAP_FREE (all_blocks);
3195 BITMAP_FREE (scratch);
3196
3197 free_alloc_pool (rtx_store_info_pool);
3198 free_alloc_pool (read_info_pool);
3199 free_alloc_pool (insn_info_pool);
3200 free_alloc_pool (bb_info_pool);
3201 free_alloc_pool (rtx_group_info_pool);
3202 free_alloc_pool (deferred_change_pool);
3203 }
3204
3205
3206 /* -------------------------------------------------------------------------
3207 DSE
3208 ------------------------------------------------------------------------- */
3209
3210 /* Callback for running pass_rtl_dse. */
3211
3212 static unsigned int
3213 rest_of_handle_dse (void)
3214 {
3215 bool did_global = false;
3216
3217 df_set_flags (DF_DEFER_INSN_RESCAN);
3218
3219 dse_step0 ();
3220 dse_step1 ();
3221 dse_step2_init ();
3222 if (dse_step2_nospill ())
3223 {
3224 df_set_flags (DF_LR_RUN_DCE);
3225 df_analyze ();
3226 did_global = true;
3227 if (dump_file)
3228 fprintf (dump_file, "doing global processing\n");
3229 dse_step3 (false);
3230 dse_step4 ();
3231 dse_step5_nospill ();
3232 }
3233
3234 /* For the instance of dse that runs after reload, we make a special
3235 pass to process the spills. These are special in that they are
3236 totally transparent, i.e, there is no aliasing issues that need
3237 to be considered. This means that the wild reads that kill
3238 everything else do not apply here. */
3239 if (clear_alias_sets && dse_step2_spill ())
3240 {
3241 if (!did_global)
3242 {
3243 df_set_flags (DF_LR_RUN_DCE);
3244 df_analyze ();
3245 }
3246 did_global = true;
3247 if (dump_file)
3248 fprintf (dump_file, "doing global spill processing\n");
3249 dse_step3 (true);
3250 dse_step4 ();
3251 dse_step5_spill ();
3252 }
3253
3254 dse_step6 (did_global);
3255
3256 if (dump_file)
3257 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3258 locally_deleted, globally_deleted, spill_deleted);
3259 return 0;
3260 }
3261
3262 static bool
3263 gate_dse (void)
3264 {
3265 return gate_dse1 () || gate_dse2 ();
3266 }
3267
3268 static bool
3269 gate_dse1 (void)
3270 {
3271 return optimize > 0 && flag_dse
3272 && dbg_cnt (dse1);
3273 }
3274
3275 static bool
3276 gate_dse2 (void)
3277 {
3278 return optimize > 0 && flag_dse
3279 && dbg_cnt (dse2);
3280 }
3281
3282 struct rtl_opt_pass pass_rtl_dse1 =
3283 {
3284 {
3285 RTL_PASS,
3286 "dse1", /* name */
3287 gate_dse1, /* gate */
3288 rest_of_handle_dse, /* execute */
3289 NULL, /* sub */
3290 NULL, /* next */
3291 0, /* static_pass_number */
3292 TV_DSE1, /* tv_id */
3293 0, /* properties_required */
3294 0, /* properties_provided */
3295 0, /* properties_destroyed */
3296 0, /* todo_flags_start */
3297 TODO_dump_func |
3298 TODO_df_finish | TODO_verify_rtl_sharing |
3299 TODO_ggc_collect /* todo_flags_finish */
3300 }
3301 };
3302
3303 struct rtl_opt_pass pass_rtl_dse2 =
3304 {
3305 {
3306 RTL_PASS,
3307 "dse2", /* name */
3308 gate_dse2, /* gate */
3309 rest_of_handle_dse, /* execute */
3310 NULL, /* sub */
3311 NULL, /* next */
3312 0, /* static_pass_number */
3313 TV_DSE2, /* tv_id */
3314 0, /* properties_required */
3315 0, /* properties_provided */
3316 0, /* properties_destroyed */
3317 0, /* todo_flags_start */
3318 TODO_dump_func |
3319 TODO_df_finish | TODO_verify_rtl_sharing |
3320 TODO_ggc_collect /* todo_flags_finish */
3321 }
3322 };