arm.h (REG_CLASS_CONTENTS): Remove soft frame pointer from CORE_REGS and GENERAL_REGS...
[gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
6 and Kenneth Zadeck <zadeck@naturalbridge.com>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #undef BASELINE
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "hashtab.h"
30 #include "tm.h"
31 #include "rtl.h"
32 #include "tree.h"
33 #include "tm_p.h"
34 #include "regs.h"
35 #include "hard-reg-set.h"
36 #include "flags.h"
37 #include "df.h"
38 #include "cselib.h"
39 #include "timevar.h"
40 #include "tree-pass.h"
41 #include "alloc-pool.h"
42 #include "alias.h"
43 #include "insn-config.h"
44 #include "expr.h"
45 #include "recog.h"
46 #include "dse.h"
47 #include "optabs.h"
48 #include "dbgcnt.h"
49 #include "target.h"
50
51 /* This file contains three techniques for performing Dead Store
52 Elimination (dse).
53
54 * The first technique performs dse locally on any base address. It
55 is based on the cselib which is a local value numbering technique.
56 This technique is local to a basic block but deals with a fairly
57 general addresses.
58
59 * The second technique performs dse globally but is restricted to
60 base addresses that are either constant or are relative to the
61 frame_pointer.
62
63 * The third technique, (which is only done after register allocation)
64 processes the spill spill slots. This differs from the second
65 technique because it takes advantage of the fact that spilling is
66 completely free from the effects of aliasing.
67
68 Logically, dse is a backwards dataflow problem. A store can be
69 deleted if it if cannot be reached in the backward direction by any
70 use of the value being stored. However, the local technique uses a
71 forwards scan of the basic block because cselib requires that the
72 block be processed in that order.
73
74 The pass is logically broken into 7 steps:
75
76 0) Initialization.
77
78 1) The local algorithm, as well as scanning the insns for the two
79 global algorithms.
80
81 2) Analysis to see if the global algs are necessary. In the case
82 of stores base on a constant address, there must be at least two
83 stores to that address, to make it possible to delete some of the
84 stores. In the case of stores off of the frame or spill related
85 stores, only one store to an address is necessary because those
86 stores die at the end of the function.
87
88 3) Set up the global dataflow equations based on processing the
89 info parsed in the first step.
90
91 4) Solve the dataflow equations.
92
93 5) Delete the insns that the global analysis has indicated are
94 unnecessary.
95
96 6) Delete insns that store the same value as preceeding store
97 where the earlier store couldn't be eliminated.
98
99 7) Cleanup.
100
101 This step uses cselib and canon_rtx to build the largest expression
102 possible for each address. This pass is a forwards pass through
103 each basic block. From the point of view of the global technique,
104 the first pass could examine a block in either direction. The
105 forwards ordering is to accommodate cselib.
106
107 We a simplifying assumption: addresses fall into four broad
108 categories:
109
110 1) base has rtx_varies_p == false, offset is constant.
111 2) base has rtx_varies_p == false, offset variable.
112 3) base has rtx_varies_p == true, offset constant.
113 4) base has rtx_varies_p == true, offset variable.
114
115 The local passes are able to process all 4 kinds of addresses. The
116 global pass only handles (1).
117
118 The global problem is formulated as follows:
119
120 A store, S1, to address A, where A is not relative to the stack
121 frame, can be eliminated if all paths from S1 to the end of the
122 of the function contain another store to A before a read to A.
123
124 If the address A is relative to the stack frame, a store S2 to A
125 can be eliminated if there are no paths from S1 that reach the
126 end of the function that read A before another store to A. In
127 this case S2 can be deleted if there are paths to from S2 to the
128 end of the function that have no reads or writes to A. This
129 second case allows stores to the stack frame to be deleted that
130 would otherwise die when the function returns. This cannot be
131 done if stores_off_frame_dead_at_return is not true. See the doc
132 for that variable for when this variable is false.
133
134 The global problem is formulated as a backwards set union
135 dataflow problem where the stores are the gens and reads are the
136 kills. Set union problems are rare and require some special
137 handling given our representation of bitmaps. A straightforward
138 implementation of requires a lot of bitmaps filled with 1s.
139 These are expensive and cumbersome in our bitmap formulation so
140 care has been taken to avoid large vectors filled with 1s. See
141 the comments in bb_info and in the dataflow confluence functions
142 for details.
143
144 There are two places for further enhancements to this algorithm:
145
146 1) The original dse which was embedded in a pass called flow also
147 did local address forwarding. For example in
148
149 A <- r100
150 ... <- A
151
152 flow would replace the right hand side of the second insn with a
153 reference to r100. Most of the information is available to add this
154 to this pass. It has not done it because it is a lot of work in
155 the case that either r100 is assigned to between the first and
156 second insn and/or the second insn is a load of part of the value
157 stored by the first insn.
158
159 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
160 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
161 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
162 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
163
164 2) The cleaning up of spill code is quite profitable. It currently
165 depends on reading tea leaves and chicken entrails left by reload.
166 This pass depends on reload creating a singleton alias set for each
167 spill slot and telling the next dse pass which of these alias sets
168 are the singletons. Rather than analyze the addresses of the
169 spills, dse's spill processing just does analysis of the loads and
170 stores that use those alias sets. There are three cases where this
171 falls short:
172
173 a) Reload sometimes creates the slot for one mode of access, and
174 then inserts loads and/or stores for a smaller mode. In this
175 case, the current code just punts on the slot. The proper thing
176 to do is to back out and use one bit vector position for each
177 byte of the entity associated with the slot. This depends on
178 KNOWING that reload always generates the accesses for each of the
179 bytes in some canonical (read that easy to understand several
180 passes after reload happens) way.
181
182 b) Reload sometimes decides that spill slot it allocated was not
183 large enough for the mode and goes back and allocates more slots
184 with the same mode and alias set. The backout in this case is a
185 little more graceful than (a). In this case the slot is unmarked
186 as being a spill slot and if final address comes out to be based
187 off the frame pointer, the global algorithm handles this slot.
188
189 c) For any pass that may prespill, there is currently no
190 mechanism to tell the dse pass that the slot being used has the
191 special properties that reload uses. It may be that all that is
192 required is to have those passes make the same calls that reload
193 does, assuming that the alias sets can be manipulated in the same
194 way. */
195
196 /* There are limits to the size of constant offsets we model for the
197 global problem. There are certainly test cases, that exceed this
198 limit, however, it is unlikely that there are important programs
199 that really have constant offsets this size. */
200 #define MAX_OFFSET (64 * 1024)
201
202
203 static bitmap scratch = NULL;
204 struct insn_info;
205
206 /* This structure holds information about a candidate store. */
207 struct store_info
208 {
209
210 /* False means this is a clobber. */
211 bool is_set;
212
213 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
214 bool is_large;
215
216 /* The id of the mem group of the base address. If rtx_varies_p is
217 true, this is -1. Otherwise, it is the index into the group
218 table. */
219 int group_id;
220
221 /* This is the cselib value. */
222 cselib_val *cse_base;
223
224 /* This canonized mem. */
225 rtx mem;
226
227 /* Canonized MEM address for use by canon_true_dependence. */
228 rtx mem_addr;
229
230 /* If this is non-zero, it is the alias set of a spill location. */
231 alias_set_type alias_set;
232
233 /* The offset of the first and byte before the last byte associated
234 with the operation. */
235 HOST_WIDE_INT begin, end;
236
237 union
238 {
239 /* A bitmask as wide as the number of bytes in the word that
240 contains a 1 if the byte may be needed. The store is unused if
241 all of the bits are 0. This is used if IS_LARGE is false. */
242 unsigned HOST_WIDE_INT small_bitmask;
243
244 struct
245 {
246 /* A bitmap with one bit per byte. Cleared bit means the position
247 is needed. Used if IS_LARGE is false. */
248 bitmap bmap;
249
250 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
251 equal to END - BEGIN, the whole store is unused. */
252 int count;
253 } large;
254 } positions_needed;
255
256 /* The next store info for this insn. */
257 struct store_info *next;
258
259 /* The right hand side of the store. This is used if there is a
260 subsequent reload of the mems address somewhere later in the
261 basic block. */
262 rtx rhs;
263
264 /* If rhs is or holds a constant, this contains that constant,
265 otherwise NULL. */
266 rtx const_rhs;
267
268 /* Set if this store stores the same constant value as REDUNDANT_REASON
269 insn stored. These aren't eliminated early, because doing that
270 might prevent the earlier larger store to be eliminated. */
271 struct insn_info *redundant_reason;
272 };
273
274 /* Return a bitmask with the first N low bits set. */
275
276 static unsigned HOST_WIDE_INT
277 lowpart_bitmask (int n)
278 {
279 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
280 return mask >> (HOST_BITS_PER_WIDE_INT - n);
281 }
282
283 typedef struct store_info *store_info_t;
284 static alloc_pool cse_store_info_pool;
285 static alloc_pool rtx_store_info_pool;
286
287 /* This structure holds information about a load. These are only
288 built for rtx bases. */
289 struct read_info
290 {
291 /* The id of the mem group of the base address. */
292 int group_id;
293
294 /* If this is non-zero, it is the alias set of a spill location. */
295 alias_set_type alias_set;
296
297 /* The offset of the first and byte after the last byte associated
298 with the operation. If begin == end == 0, the read did not have
299 a constant offset. */
300 int begin, end;
301
302 /* The mem being read. */
303 rtx mem;
304
305 /* The next read_info for this insn. */
306 struct read_info *next;
307 };
308 typedef struct read_info *read_info_t;
309 static alloc_pool read_info_pool;
310
311
312 /* One of these records is created for each insn. */
313
314 struct insn_info
315 {
316 /* Set true if the insn contains a store but the insn itself cannot
317 be deleted. This is set if the insn is a parallel and there is
318 more than one non dead output or if the insn is in some way
319 volatile. */
320 bool cannot_delete;
321
322 /* This field is only used by the global algorithm. It is set true
323 if the insn contains any read of mem except for a (1). This is
324 also set if the insn is a call or has a clobber mem. If the insn
325 contains a wild read, the use_rec will be null. */
326 bool wild_read;
327
328 /* This field is only used for the processing of const functions.
329 These functions cannot read memory, but they can read the stack
330 because that is where they may get their parms. We need to be
331 this conservative because, like the store motion pass, we don't
332 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
333 Moreover, we need to distinguish two cases:
334 1. Before reload (register elimination), the stores related to
335 outgoing arguments are stack pointer based and thus deemed
336 of non-constant base in this pass. This requires special
337 handling but also means that the frame pointer based stores
338 need not be killed upon encountering a const function call.
339 2. After reload, the stores related to outgoing arguments can be
340 either stack pointer or hard frame pointer based. This means
341 that we have no other choice than also killing all the frame
342 pointer based stores upon encountering a const function call.
343 This field is set after reload for const function calls. Having
344 this set is less severe than a wild read, it just means that all
345 the frame related stores are killed rather than all the stores. */
346 bool frame_read;
347
348 /* This field is only used for the processing of const functions.
349 It is set if the insn may contain a stack pointer based store. */
350 bool stack_pointer_based;
351
352 /* This is true if any of the sets within the store contains a
353 cselib base. Such stores can only be deleted by the local
354 algorithm. */
355 bool contains_cselib_groups;
356
357 /* The insn. */
358 rtx insn;
359
360 /* The list of mem sets or mem clobbers that are contained in this
361 insn. If the insn is deletable, it contains only one mem set.
362 But it could also contain clobbers. Insns that contain more than
363 one mem set are not deletable, but each of those mems are here in
364 order to provide info to delete other insns. */
365 store_info_t store_rec;
366
367 /* The linked list of mem uses in this insn. Only the reads from
368 rtx bases are listed here. The reads to cselib bases are
369 completely processed during the first scan and so are never
370 created. */
371 read_info_t read_rec;
372
373 /* The prev insn in the basic block. */
374 struct insn_info * prev_insn;
375
376 /* The linked list of insns that are in consideration for removal in
377 the forwards pass thru the basic block. This pointer may be
378 trash as it is not cleared when a wild read occurs. The only
379 time it is guaranteed to be correct is when the traversal starts
380 at active_local_stores. */
381 struct insn_info * next_local_store;
382 };
383
384 typedef struct insn_info *insn_info_t;
385 static alloc_pool insn_info_pool;
386
387 /* The linked list of stores that are under consideration in this
388 basic block. */
389 static insn_info_t active_local_stores;
390
391 struct bb_info
392 {
393
394 /* Pointer to the insn info for the last insn in the block. These
395 are linked so this is how all of the insns are reached. During
396 scanning this is the current insn being scanned. */
397 insn_info_t last_insn;
398
399 /* The info for the global dataflow problem. */
400
401
402 /* This is set if the transfer function should and in the wild_read
403 bitmap before applying the kill and gen sets. That vector knocks
404 out most of the bits in the bitmap and thus speeds up the
405 operations. */
406 bool apply_wild_read;
407
408 /* The following 4 bitvectors hold information about which positions
409 of which stores are live or dead. They are indexed by
410 get_bitmap_index. */
411
412 /* The set of store positions that exist in this block before a wild read. */
413 bitmap gen;
414
415 /* The set of load positions that exist in this block above the
416 same position of a store. */
417 bitmap kill;
418
419 /* The set of stores that reach the top of the block without being
420 killed by a read.
421
422 Do not represent the in if it is all ones. Note that this is
423 what the bitvector should logically be initialized to for a set
424 intersection problem. However, like the kill set, this is too
425 expensive. So initially, the in set will only be created for the
426 exit block and any block that contains a wild read. */
427 bitmap in;
428
429 /* The set of stores that reach the bottom of the block from it's
430 successors.
431
432 Do not represent the in if it is all ones. Note that this is
433 what the bitvector should logically be initialized to for a set
434 intersection problem. However, like the kill and in set, this is
435 too expensive. So what is done is that the confluence operator
436 just initializes the vector from one of the out sets of the
437 successors of the block. */
438 bitmap out;
439
440 /* The following bitvector is indexed by the reg number. It
441 contains the set of regs that are live at the current instruction
442 being processed. While it contains info for all of the
443 registers, only the pseudos are actually examined. It is used to
444 assure that shift sequences that are inserted do not accidently
445 clobber live hard regs. */
446 bitmap regs_live;
447 };
448
449 typedef struct bb_info *bb_info_t;
450 static alloc_pool bb_info_pool;
451
452 /* Table to hold all bb_infos. */
453 static bb_info_t *bb_table;
454
455 /* There is a group_info for each rtx base that is used to reference
456 memory. There are also not many of the rtx bases because they are
457 very limited in scope. */
458
459 struct group_info
460 {
461 /* The actual base of the address. */
462 rtx rtx_base;
463
464 /* The sequential id of the base. This allows us to have a
465 canonical ordering of these that is not based on addresses. */
466 int id;
467
468 /* True if there are any positions that are to be processed
469 globally. */
470 bool process_globally;
471
472 /* True if the base of this group is either the frame_pointer or
473 hard_frame_pointer. */
474 bool frame_related;
475
476 /* A mem wrapped around the base pointer for the group in order to do
477 read dependency. It must be given BLKmode in order to encompass all
478 the possible offsets from the base. */
479 rtx base_mem;
480
481 /* Canonized version of base_mem's address. */
482 rtx canon_base_addr;
483
484 /* These two sets of two bitmaps are used to keep track of how many
485 stores are actually referencing that position from this base. We
486 only do this for rtx bases as this will be used to assign
487 positions in the bitmaps for the global problem. Bit N is set in
488 store1 on the first store for offset N. Bit N is set in store2
489 for the second store to offset N. This is all we need since we
490 only care about offsets that have two or more stores for them.
491
492 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
493 for 0 and greater offsets.
494
495 There is one special case here, for stores into the stack frame,
496 we will or store1 into store2 before deciding which stores look
497 at globally. This is because stores to the stack frame that have
498 no other reads before the end of the function can also be
499 deleted. */
500 bitmap store1_n, store1_p, store2_n, store2_p;
501
502 /* The positions in this bitmap have the same assignments as the in,
503 out, gen and kill bitmaps. This bitmap is all zeros except for
504 the positions that are occupied by stores for this group. */
505 bitmap group_kill;
506
507 /* The offset_map is used to map the offsets from this base into
508 positions in the global bitmaps. It is only created after all of
509 the all of stores have been scanned and we know which ones we
510 care about. */
511 int *offset_map_n, *offset_map_p;
512 int offset_map_size_n, offset_map_size_p;
513 };
514 typedef struct group_info *group_info_t;
515 typedef const struct group_info *const_group_info_t;
516 static alloc_pool rtx_group_info_pool;
517
518 /* Tables of group_info structures, hashed by base value. */
519 static htab_t rtx_group_table;
520
521 /* Index into the rtx_group_vec. */
522 static int rtx_group_next_id;
523
524 DEF_VEC_P(group_info_t);
525 DEF_VEC_ALLOC_P(group_info_t,heap);
526
527 static VEC(group_info_t,heap) *rtx_group_vec;
528
529
530 /* This structure holds the set of changes that are being deferred
531 when removing read operation. See replace_read. */
532 struct deferred_change
533 {
534
535 /* The mem that is being replaced. */
536 rtx *loc;
537
538 /* The reg it is being replaced with. */
539 rtx reg;
540
541 struct deferred_change *next;
542 };
543
544 typedef struct deferred_change *deferred_change_t;
545 static alloc_pool deferred_change_pool;
546
547 static deferred_change_t deferred_change_list = NULL;
548
549 /* This are used to hold the alias sets of spill variables. Since
550 these are never aliased and there may be a lot of them, it makes
551 sense to treat them specially. This bitvector is only allocated in
552 calls from dse_record_singleton_alias_set which currently is only
553 made during reload1. So when dse is called before reload this
554 mechanism does nothing. */
555
556 static bitmap clear_alias_sets = NULL;
557
558 /* The set of clear_alias_sets that have been disqualified because
559 there are loads or stores using a different mode than the alias set
560 was registered with. */
561 static bitmap disqualified_clear_alias_sets = NULL;
562
563 /* The group that holds all of the clear_alias_sets. */
564 static group_info_t clear_alias_group;
565
566 /* The modes of the clear_alias_sets. */
567 static htab_t clear_alias_mode_table;
568
569 /* Hash table element to look up the mode for an alias set. */
570 struct clear_alias_mode_holder
571 {
572 alias_set_type alias_set;
573 enum machine_mode mode;
574 };
575
576 static alloc_pool clear_alias_mode_pool;
577
578 /* This is true except if cfun->stdarg -- i.e. we cannot do
579 this for vararg functions because they play games with the frame. */
580 static bool stores_off_frame_dead_at_return;
581
582 /* Counter for stats. */
583 static int globally_deleted;
584 static int locally_deleted;
585 static int spill_deleted;
586
587 static bitmap all_blocks;
588
589 /* The number of bits used in the global bitmaps. */
590 static unsigned int current_position;
591
592
593 static bool gate_dse (void);
594 static bool gate_dse1 (void);
595 static bool gate_dse2 (void);
596
597 \f
598 /*----------------------------------------------------------------------------
599 Zeroth step.
600
601 Initialization.
602 ----------------------------------------------------------------------------*/
603
604 /* Hashtable callbacks for maintaining the "bases" field of
605 store_group_info, given that the addresses are function invariants. */
606
607 static int
608 clear_alias_mode_eq (const void *p1, const void *p2)
609 {
610 const struct clear_alias_mode_holder * h1
611 = (const struct clear_alias_mode_holder *) p1;
612 const struct clear_alias_mode_holder * h2
613 = (const struct clear_alias_mode_holder *) p2;
614 return h1->alias_set == h2->alias_set;
615 }
616
617
618 static hashval_t
619 clear_alias_mode_hash (const void *p)
620 {
621 const struct clear_alias_mode_holder *holder
622 = (const struct clear_alias_mode_holder *) p;
623 return holder->alias_set;
624 }
625
626
627 /* Find the entry associated with ALIAS_SET. */
628
629 static struct clear_alias_mode_holder *
630 clear_alias_set_lookup (alias_set_type alias_set)
631 {
632 struct clear_alias_mode_holder tmp_holder;
633 void **slot;
634
635 tmp_holder.alias_set = alias_set;
636 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
637 gcc_assert (*slot);
638
639 return (struct clear_alias_mode_holder *) *slot;
640 }
641
642
643 /* Hashtable callbacks for maintaining the "bases" field of
644 store_group_info, given that the addresses are function invariants. */
645
646 static int
647 invariant_group_base_eq (const void *p1, const void *p2)
648 {
649 const_group_info_t gi1 = (const_group_info_t) p1;
650 const_group_info_t gi2 = (const_group_info_t) p2;
651 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
652 }
653
654
655 static hashval_t
656 invariant_group_base_hash (const void *p)
657 {
658 const_group_info_t gi = (const_group_info_t) p;
659 int do_not_record;
660 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
661 }
662
663
664 /* Get the GROUP for BASE. Add a new group if it is not there. */
665
666 static group_info_t
667 get_group_info (rtx base)
668 {
669 struct group_info tmp_gi;
670 group_info_t gi;
671 void **slot;
672
673 if (base)
674 {
675 /* Find the store_base_info structure for BASE, creating a new one
676 if necessary. */
677 tmp_gi.rtx_base = base;
678 slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
679 gi = (group_info_t) *slot;
680 }
681 else
682 {
683 if (!clear_alias_group)
684 {
685 clear_alias_group = gi =
686 (group_info_t) pool_alloc (rtx_group_info_pool);
687 memset (gi, 0, sizeof (struct group_info));
688 gi->id = rtx_group_next_id++;
689 gi->store1_n = BITMAP_ALLOC (NULL);
690 gi->store1_p = BITMAP_ALLOC (NULL);
691 gi->store2_n = BITMAP_ALLOC (NULL);
692 gi->store2_p = BITMAP_ALLOC (NULL);
693 gi->group_kill = BITMAP_ALLOC (NULL);
694 gi->process_globally = false;
695 gi->offset_map_size_n = 0;
696 gi->offset_map_size_p = 0;
697 gi->offset_map_n = NULL;
698 gi->offset_map_p = NULL;
699 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
700 }
701 return clear_alias_group;
702 }
703
704 if (gi == NULL)
705 {
706 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
707 gi->rtx_base = base;
708 gi->id = rtx_group_next_id++;
709 gi->base_mem = gen_rtx_MEM (BLKmode, base);
710 gi->canon_base_addr = canon_rtx (base);
711 gi->store1_n = BITMAP_ALLOC (NULL);
712 gi->store1_p = BITMAP_ALLOC (NULL);
713 gi->store2_n = BITMAP_ALLOC (NULL);
714 gi->store2_p = BITMAP_ALLOC (NULL);
715 gi->group_kill = BITMAP_ALLOC (NULL);
716 gi->process_globally = false;
717 gi->frame_related =
718 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
719 gi->offset_map_size_n = 0;
720 gi->offset_map_size_p = 0;
721 gi->offset_map_n = NULL;
722 gi->offset_map_p = NULL;
723 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
724 }
725
726 return gi;
727 }
728
729
730 /* Initialization of data structures. */
731
732 static void
733 dse_step0 (void)
734 {
735 locally_deleted = 0;
736 globally_deleted = 0;
737 spill_deleted = 0;
738
739 scratch = BITMAP_ALLOC (NULL);
740
741 rtx_store_info_pool
742 = create_alloc_pool ("rtx_store_info_pool",
743 sizeof (struct store_info), 100);
744 read_info_pool
745 = create_alloc_pool ("read_info_pool",
746 sizeof (struct read_info), 100);
747 insn_info_pool
748 = create_alloc_pool ("insn_info_pool",
749 sizeof (struct insn_info), 100);
750 bb_info_pool
751 = create_alloc_pool ("bb_info_pool",
752 sizeof (struct bb_info), 100);
753 rtx_group_info_pool
754 = create_alloc_pool ("rtx_group_info_pool",
755 sizeof (struct group_info), 100);
756 deferred_change_pool
757 = create_alloc_pool ("deferred_change_pool",
758 sizeof (struct deferred_change), 10);
759
760 rtx_group_table = htab_create (11, invariant_group_base_hash,
761 invariant_group_base_eq, NULL);
762
763 bb_table = XCNEWVEC (bb_info_t, last_basic_block);
764 rtx_group_next_id = 0;
765
766 stores_off_frame_dead_at_return = !cfun->stdarg;
767
768 init_alias_analysis ();
769
770 if (clear_alias_sets)
771 clear_alias_group = get_group_info (NULL);
772 else
773 clear_alias_group = NULL;
774 }
775
776
777 \f
778 /*----------------------------------------------------------------------------
779 First step.
780
781 Scan all of the insns. Any random ordering of the blocks is fine.
782 Each block is scanned in forward order to accommodate cselib which
783 is used to remove stores with non-constant bases.
784 ----------------------------------------------------------------------------*/
785
786 /* Delete all of the store_info recs from INSN_INFO. */
787
788 static void
789 free_store_info (insn_info_t insn_info)
790 {
791 store_info_t store_info = insn_info->store_rec;
792 while (store_info)
793 {
794 store_info_t next = store_info->next;
795 if (store_info->is_large)
796 BITMAP_FREE (store_info->positions_needed.large.bmap);
797 if (store_info->cse_base)
798 pool_free (cse_store_info_pool, store_info);
799 else
800 pool_free (rtx_store_info_pool, store_info);
801 store_info = next;
802 }
803
804 insn_info->cannot_delete = true;
805 insn_info->contains_cselib_groups = false;
806 insn_info->store_rec = NULL;
807 }
808
809
810 struct insn_size {
811 int size;
812 rtx insn;
813 };
814
815
816 /* Add an insn to do the add inside a x if it is a
817 PRE/POST-INC/DEC/MODIFY. D is an structure containing the insn and
818 the size of the mode of the MEM that this is inside of. */
819
820 static int
821 replace_inc_dec (rtx *r, void *d)
822 {
823 rtx x = *r;
824 struct insn_size *data = (struct insn_size *)d;
825 switch (GET_CODE (x))
826 {
827 case PRE_INC:
828 case POST_INC:
829 {
830 rtx r1 = XEXP (x, 0);
831 rtx c = gen_int_mode (data->size, GET_MODE (r1));
832 emit_insn_before (gen_rtx_SET (VOIDmode, r1,
833 gen_rtx_PLUS (GET_MODE (r1), r1, c)),
834 data->insn);
835 return -1;
836 }
837
838 case PRE_DEC:
839 case POST_DEC:
840 {
841 rtx r1 = XEXP (x, 0);
842 rtx c = gen_int_mode (-data->size, GET_MODE (r1));
843 emit_insn_before (gen_rtx_SET (VOIDmode, r1,
844 gen_rtx_PLUS (GET_MODE (r1), r1, c)),
845 data->insn);
846 return -1;
847 }
848
849 case PRE_MODIFY:
850 case POST_MODIFY:
851 {
852 /* We can reuse the add because we are about to delete the
853 insn that contained it. */
854 rtx add = XEXP (x, 0);
855 rtx r1 = XEXP (add, 0);
856 emit_insn_before (gen_rtx_SET (VOIDmode, r1, add), data->insn);
857 return -1;
858 }
859
860 default:
861 return 0;
862 }
863 }
864
865
866 /* If X is a MEM, check the address to see if it is PRE/POST-INC/DEC/MODIFY
867 and generate an add to replace that. */
868
869 static int
870 replace_inc_dec_mem (rtx *r, void *d)
871 {
872 rtx x = *r;
873 if (x != NULL_RTX && MEM_P (x))
874 {
875 struct insn_size data;
876
877 data.size = GET_MODE_SIZE (GET_MODE (x));
878 data.insn = (rtx) d;
879
880 for_each_rtx (&XEXP (x, 0), replace_inc_dec, &data);
881
882 return -1;
883 }
884 return 0;
885 }
886
887 /* Before we delete INSN, make sure that the auto inc/dec, if it is
888 there, is split into a separate insn. */
889
890 static void
891 check_for_inc_dec (rtx insn)
892 {
893 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
894 if (note)
895 for_each_rtx (&insn, replace_inc_dec_mem, insn);
896 }
897
898
899 /* Delete the insn and free all of the fields inside INSN_INFO. */
900
901 static void
902 delete_dead_store_insn (insn_info_t insn_info)
903 {
904 read_info_t read_info;
905
906 if (!dbg_cnt (dse))
907 return;
908
909 check_for_inc_dec (insn_info->insn);
910 if (dump_file)
911 {
912 fprintf (dump_file, "Locally deleting insn %d ",
913 INSN_UID (insn_info->insn));
914 if (insn_info->store_rec->alias_set)
915 fprintf (dump_file, "alias set %d\n",
916 (int) insn_info->store_rec->alias_set);
917 else
918 fprintf (dump_file, "\n");
919 }
920
921 free_store_info (insn_info);
922 read_info = insn_info->read_rec;
923
924 while (read_info)
925 {
926 read_info_t next = read_info->next;
927 pool_free (read_info_pool, read_info);
928 read_info = next;
929 }
930 insn_info->read_rec = NULL;
931
932 delete_insn (insn_info->insn);
933 locally_deleted++;
934 insn_info->insn = NULL;
935
936 insn_info->wild_read = false;
937 }
938
939
940 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
941 OFFSET and WIDTH. */
942
943 static void
944 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width)
945 {
946 HOST_WIDE_INT i;
947
948 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
949 for (i=offset; i<offset+width; i++)
950 {
951 bitmap store1;
952 bitmap store2;
953 int ai;
954 if (i < 0)
955 {
956 store1 = group->store1_n;
957 store2 = group->store2_n;
958 ai = -i;
959 }
960 else
961 {
962 store1 = group->store1_p;
963 store2 = group->store2_p;
964 ai = i;
965 }
966
967 if (!bitmap_set_bit (store1, ai))
968 bitmap_set_bit (store2, ai);
969 else
970 {
971 if (i < 0)
972 {
973 if (group->offset_map_size_n < ai)
974 group->offset_map_size_n = ai;
975 }
976 else
977 {
978 if (group->offset_map_size_p < ai)
979 group->offset_map_size_p = ai;
980 }
981 }
982 }
983 }
984
985
986 /* Set the BB_INFO so that the last insn is marked as a wild read. */
987
988 static void
989 add_wild_read (bb_info_t bb_info)
990 {
991 insn_info_t insn_info = bb_info->last_insn;
992 read_info_t *ptr = &insn_info->read_rec;
993
994 while (*ptr)
995 {
996 read_info_t next = (*ptr)->next;
997 if ((*ptr)->alias_set == 0)
998 {
999 pool_free (read_info_pool, *ptr);
1000 *ptr = next;
1001 }
1002 else
1003 ptr = &(*ptr)->next;
1004 }
1005 insn_info->wild_read = true;
1006 active_local_stores = NULL;
1007 }
1008
1009
1010 /* Return true if X is a constant or one of the registers that behave
1011 as a constant over the life of a function. This is equivalent to
1012 !rtx_varies_p for memory addresses. */
1013
1014 static bool
1015 const_or_frame_p (rtx x)
1016 {
1017 switch (GET_CODE (x))
1018 {
1019 case CONST:
1020 case CONST_INT:
1021 case CONST_DOUBLE:
1022 case CONST_VECTOR:
1023 case SYMBOL_REF:
1024 case LABEL_REF:
1025 return true;
1026
1027 case REG:
1028 /* Note that we have to test for the actual rtx used for the frame
1029 and arg pointers and not just the register number in case we have
1030 eliminated the frame and/or arg pointer and are using it
1031 for pseudos. */
1032 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1033 /* The arg pointer varies if it is not a fixed register. */
1034 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1035 || x == pic_offset_table_rtx)
1036 return true;
1037 return false;
1038
1039 default:
1040 return false;
1041 }
1042 }
1043
1044 /* Take all reasonable action to put the address of MEM into the form
1045 that we can do analysis on.
1046
1047 The gold standard is to get the address into the form: address +
1048 OFFSET where address is something that rtx_varies_p considers a
1049 constant. When we can get the address in this form, we can do
1050 global analysis on it. Note that for constant bases, address is
1051 not actually returned, only the group_id. The address can be
1052 obtained from that.
1053
1054 If that fails, we try cselib to get a value we can at least use
1055 locally. If that fails we return false.
1056
1057 The GROUP_ID is set to -1 for cselib bases and the index of the
1058 group for non_varying bases.
1059
1060 FOR_READ is true if this is a mem read and false if not. */
1061
1062 static bool
1063 canon_address (rtx mem,
1064 alias_set_type *alias_set_out,
1065 int *group_id,
1066 HOST_WIDE_INT *offset,
1067 cselib_val **base)
1068 {
1069 enum machine_mode address_mode
1070 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
1071 rtx mem_address = XEXP (mem, 0);
1072 rtx expanded_address, address;
1073 int expanded;
1074
1075 /* Make sure that cselib is has initialized all of the operands of
1076 the address before asking it to do the subst. */
1077
1078 if (clear_alias_sets)
1079 {
1080 /* If this is a spill, do not do any further processing. */
1081 alias_set_type alias_set = MEM_ALIAS_SET (mem);
1082 if (dump_file)
1083 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1084 if (bitmap_bit_p (clear_alias_sets, alias_set))
1085 {
1086 struct clear_alias_mode_holder *entry
1087 = clear_alias_set_lookup (alias_set);
1088
1089 /* If the modes do not match, we cannot process this set. */
1090 if (entry->mode != GET_MODE (mem))
1091 {
1092 if (dump_file)
1093 fprintf (dump_file,
1094 "disqualifying alias set %d, (%s) != (%s)\n",
1095 (int) alias_set, GET_MODE_NAME (entry->mode),
1096 GET_MODE_NAME (GET_MODE (mem)));
1097
1098 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1099 return false;
1100 }
1101
1102 *alias_set_out = alias_set;
1103 *group_id = clear_alias_group->id;
1104 return true;
1105 }
1106 }
1107
1108 *alias_set_out = 0;
1109
1110 cselib_lookup (mem_address, address_mode, 1);
1111
1112 if (dump_file)
1113 {
1114 fprintf (dump_file, " mem: ");
1115 print_inline_rtx (dump_file, mem_address, 0);
1116 fprintf (dump_file, "\n");
1117 }
1118
1119 /* First see if just canon_rtx (mem_address) is const or frame,
1120 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1121 address = NULL_RTX;
1122 for (expanded = 0; expanded < 2; expanded++)
1123 {
1124 if (expanded)
1125 {
1126 /* Use cselib to replace all of the reg references with the full
1127 expression. This will take care of the case where we have
1128
1129 r_x = base + offset;
1130 val = *r_x;
1131
1132 by making it into
1133
1134 val = *(base + offset); */
1135
1136 expanded_address = cselib_expand_value_rtx (mem_address,
1137 scratch, 5);
1138
1139 /* If this fails, just go with the address from first
1140 iteration. */
1141 if (!expanded_address)
1142 break;
1143 }
1144 else
1145 expanded_address = mem_address;
1146
1147 /* Split the address into canonical BASE + OFFSET terms. */
1148 address = canon_rtx (expanded_address);
1149
1150 *offset = 0;
1151
1152 if (dump_file)
1153 {
1154 if (expanded)
1155 {
1156 fprintf (dump_file, "\n after cselib_expand address: ");
1157 print_inline_rtx (dump_file, expanded_address, 0);
1158 fprintf (dump_file, "\n");
1159 }
1160
1161 fprintf (dump_file, "\n after canon_rtx address: ");
1162 print_inline_rtx (dump_file, address, 0);
1163 fprintf (dump_file, "\n");
1164 }
1165
1166 if (GET_CODE (address) == CONST)
1167 address = XEXP (address, 0);
1168
1169 if (GET_CODE (address) == PLUS
1170 && CONST_INT_P (XEXP (address, 1)))
1171 {
1172 *offset = INTVAL (XEXP (address, 1));
1173 address = XEXP (address, 0);
1174 }
1175
1176 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1177 && const_or_frame_p (address))
1178 {
1179 group_info_t group = get_group_info (address);
1180
1181 if (dump_file)
1182 fprintf (dump_file, " gid=%d offset=%d \n",
1183 group->id, (int)*offset);
1184 *base = NULL;
1185 *group_id = group->id;
1186 return true;
1187 }
1188 }
1189
1190 *base = cselib_lookup (address, address_mode, true);
1191 *group_id = -1;
1192
1193 if (*base == NULL)
1194 {
1195 if (dump_file)
1196 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1197 return false;
1198 }
1199 if (dump_file)
1200 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1201 (*base)->uid, (*base)->hash, (int)*offset);
1202 return true;
1203 }
1204
1205
1206 /* Clear the rhs field from the active_local_stores array. */
1207
1208 static void
1209 clear_rhs_from_active_local_stores (void)
1210 {
1211 insn_info_t ptr = active_local_stores;
1212
1213 while (ptr)
1214 {
1215 store_info_t store_info = ptr->store_rec;
1216 /* Skip the clobbers. */
1217 while (!store_info->is_set)
1218 store_info = store_info->next;
1219
1220 store_info->rhs = NULL;
1221 store_info->const_rhs = NULL;
1222
1223 ptr = ptr->next_local_store;
1224 }
1225 }
1226
1227
1228 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1229
1230 static inline void
1231 set_position_unneeded (store_info_t s_info, int pos)
1232 {
1233 if (__builtin_expect (s_info->is_large, false))
1234 {
1235 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1236 s_info->positions_needed.large.count++;
1237 }
1238 else
1239 s_info->positions_needed.small_bitmask
1240 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1241 }
1242
1243 /* Mark the whole store S_INFO as unneeded. */
1244
1245 static inline void
1246 set_all_positions_unneeded (store_info_t s_info)
1247 {
1248 if (__builtin_expect (s_info->is_large, false))
1249 {
1250 int pos, end = s_info->end - s_info->begin;
1251 for (pos = 0; pos < end; pos++)
1252 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1253 s_info->positions_needed.large.count = end;
1254 }
1255 else
1256 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1257 }
1258
1259 /* Return TRUE if any bytes from S_INFO store are needed. */
1260
1261 static inline bool
1262 any_positions_needed_p (store_info_t s_info)
1263 {
1264 if (__builtin_expect (s_info->is_large, false))
1265 return (s_info->positions_needed.large.count
1266 < s_info->end - s_info->begin);
1267 else
1268 return (s_info->positions_needed.small_bitmask
1269 != (unsigned HOST_WIDE_INT) 0);
1270 }
1271
1272 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1273 store are needed. */
1274
1275 static inline bool
1276 all_positions_needed_p (store_info_t s_info, int start, int width)
1277 {
1278 if (__builtin_expect (s_info->is_large, false))
1279 {
1280 int end = start + width;
1281 while (start < end)
1282 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1283 return false;
1284 return true;
1285 }
1286 else
1287 {
1288 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1289 return (s_info->positions_needed.small_bitmask & mask) == mask;
1290 }
1291 }
1292
1293
1294 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1295 HOST_WIDE_INT, basic_block, bool);
1296
1297
1298 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1299 there is a candidate store, after adding it to the appropriate
1300 local store group if so. */
1301
1302 static int
1303 record_store (rtx body, bb_info_t bb_info)
1304 {
1305 rtx mem, rhs, const_rhs, mem_addr;
1306 HOST_WIDE_INT offset = 0;
1307 HOST_WIDE_INT width = 0;
1308 alias_set_type spill_alias_set;
1309 insn_info_t insn_info = bb_info->last_insn;
1310 store_info_t store_info = NULL;
1311 int group_id;
1312 cselib_val *base = NULL;
1313 insn_info_t ptr, last, redundant_reason;
1314 bool store_is_unused;
1315
1316 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1317 return 0;
1318
1319 mem = SET_DEST (body);
1320
1321 /* If this is not used, then this cannot be used to keep the insn
1322 from being deleted. On the other hand, it does provide something
1323 that can be used to prove that another store is dead. */
1324 store_is_unused
1325 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1326
1327 /* Check whether that value is a suitable memory location. */
1328 if (!MEM_P (mem))
1329 {
1330 /* If the set or clobber is unused, then it does not effect our
1331 ability to get rid of the entire insn. */
1332 if (!store_is_unused)
1333 insn_info->cannot_delete = true;
1334 return 0;
1335 }
1336
1337 /* At this point we know mem is a mem. */
1338 if (GET_MODE (mem) == BLKmode)
1339 {
1340 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1341 {
1342 if (dump_file)
1343 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1344 add_wild_read (bb_info);
1345 insn_info->cannot_delete = true;
1346 return 0;
1347 }
1348 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1349 as memset (addr, 0, 36); */
1350 else if (!MEM_SIZE (mem)
1351 || !CONST_INT_P (MEM_SIZE (mem))
1352 || GET_CODE (body) != SET
1353 || INTVAL (MEM_SIZE (mem)) <= 0
1354 || INTVAL (MEM_SIZE (mem)) > MAX_OFFSET
1355 || !CONST_INT_P (SET_SRC (body)))
1356 {
1357 if (!store_is_unused)
1358 {
1359 /* If the set or clobber is unused, then it does not effect our
1360 ability to get rid of the entire insn. */
1361 insn_info->cannot_delete = true;
1362 clear_rhs_from_active_local_stores ();
1363 }
1364 return 0;
1365 }
1366 }
1367
1368 /* We can still process a volatile mem, we just cannot delete it. */
1369 if (MEM_VOLATILE_P (mem))
1370 insn_info->cannot_delete = true;
1371
1372 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1373 {
1374 clear_rhs_from_active_local_stores ();
1375 return 0;
1376 }
1377
1378 if (GET_MODE (mem) == BLKmode)
1379 width = INTVAL (MEM_SIZE (mem));
1380 else
1381 {
1382 width = GET_MODE_SIZE (GET_MODE (mem));
1383 gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
1384 }
1385
1386 if (spill_alias_set)
1387 {
1388 bitmap store1 = clear_alias_group->store1_p;
1389 bitmap store2 = clear_alias_group->store2_p;
1390
1391 gcc_assert (GET_MODE (mem) != BLKmode);
1392
1393 if (!bitmap_set_bit (store1, spill_alias_set))
1394 bitmap_set_bit (store2, spill_alias_set);
1395
1396 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1397 clear_alias_group->offset_map_size_p = spill_alias_set;
1398
1399 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1400
1401 if (dump_file)
1402 fprintf (dump_file, " processing spill store %d(%s)\n",
1403 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1404 }
1405 else if (group_id >= 0)
1406 {
1407 /* In the restrictive case where the base is a constant or the
1408 frame pointer we can do global analysis. */
1409
1410 group_info_t group
1411 = VEC_index (group_info_t, rtx_group_vec, group_id);
1412
1413 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1414 set_usage_bits (group, offset, width);
1415
1416 if (dump_file)
1417 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1418 group_id, (int)offset, (int)(offset+width));
1419 }
1420 else
1421 {
1422 rtx base_term = find_base_term (XEXP (mem, 0));
1423 if (!base_term
1424 || (GET_CODE (base_term) == ADDRESS
1425 && GET_MODE (base_term) == Pmode
1426 && XEXP (base_term, 0) == stack_pointer_rtx))
1427 insn_info->stack_pointer_based = true;
1428 insn_info->contains_cselib_groups = true;
1429
1430 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1431 group_id = -1;
1432
1433 if (dump_file)
1434 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1435 (int)offset, (int)(offset+width));
1436 }
1437
1438 const_rhs = rhs = NULL_RTX;
1439 if (GET_CODE (body) == SET
1440 /* No place to keep the value after ra. */
1441 && !reload_completed
1442 && (REG_P (SET_SRC (body))
1443 || GET_CODE (SET_SRC (body)) == SUBREG
1444 || CONSTANT_P (SET_SRC (body)))
1445 && !MEM_VOLATILE_P (mem)
1446 /* Sometimes the store and reload is used for truncation and
1447 rounding. */
1448 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1449 {
1450 rhs = SET_SRC (body);
1451 if (CONSTANT_P (rhs))
1452 const_rhs = rhs;
1453 else if (body == PATTERN (insn_info->insn))
1454 {
1455 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1456 if (tem && CONSTANT_P (XEXP (tem, 0)))
1457 const_rhs = XEXP (tem, 0);
1458 }
1459 if (const_rhs == NULL_RTX && REG_P (rhs))
1460 {
1461 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1462
1463 if (tem && CONSTANT_P (tem))
1464 const_rhs = tem;
1465 }
1466 }
1467
1468 /* Check to see if this stores causes some other stores to be
1469 dead. */
1470 ptr = active_local_stores;
1471 last = NULL;
1472 redundant_reason = NULL;
1473 mem = canon_rtx (mem);
1474 /* For alias_set != 0 canon_true_dependence should be never called. */
1475 if (spill_alias_set)
1476 mem_addr = NULL_RTX;
1477 else
1478 {
1479 if (group_id < 0)
1480 mem_addr = base->val_rtx;
1481 else
1482 {
1483 group_info_t group
1484 = VEC_index (group_info_t, rtx_group_vec, group_id);
1485 mem_addr = group->canon_base_addr;
1486 }
1487 if (offset)
1488 mem_addr = plus_constant (mem_addr, offset);
1489 }
1490
1491 while (ptr)
1492 {
1493 insn_info_t next = ptr->next_local_store;
1494 store_info_t s_info = ptr->store_rec;
1495 bool del = true;
1496
1497 /* Skip the clobbers. We delete the active insn if this insn
1498 shadows the set. To have been put on the active list, it
1499 has exactly on set. */
1500 while (!s_info->is_set)
1501 s_info = s_info->next;
1502
1503 if (s_info->alias_set != spill_alias_set)
1504 del = false;
1505 else if (s_info->alias_set)
1506 {
1507 struct clear_alias_mode_holder *entry
1508 = clear_alias_set_lookup (s_info->alias_set);
1509 /* Generally, spills cannot be processed if and of the
1510 references to the slot have a different mode. But if
1511 we are in the same block and mode is exactly the same
1512 between this store and one before in the same block,
1513 we can still delete it. */
1514 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1515 && (GET_MODE (mem) == entry->mode))
1516 {
1517 del = true;
1518 set_all_positions_unneeded (s_info);
1519 }
1520 if (dump_file)
1521 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1522 INSN_UID (ptr->insn), (int) s_info->alias_set);
1523 }
1524 else if ((s_info->group_id == group_id)
1525 && (s_info->cse_base == base))
1526 {
1527 HOST_WIDE_INT i;
1528 if (dump_file)
1529 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1530 INSN_UID (ptr->insn), s_info->group_id,
1531 (int)s_info->begin, (int)s_info->end);
1532
1533 /* Even if PTR won't be eliminated as unneeded, if both
1534 PTR and this insn store the same constant value, we might
1535 eliminate this insn instead. */
1536 if (s_info->const_rhs
1537 && const_rhs
1538 && offset >= s_info->begin
1539 && offset + width <= s_info->end
1540 && all_positions_needed_p (s_info, offset - s_info->begin,
1541 width))
1542 {
1543 if (GET_MODE (mem) == BLKmode)
1544 {
1545 if (GET_MODE (s_info->mem) == BLKmode
1546 && s_info->const_rhs == const_rhs)
1547 redundant_reason = ptr;
1548 }
1549 else if (s_info->const_rhs == const0_rtx
1550 && const_rhs == const0_rtx)
1551 redundant_reason = ptr;
1552 else
1553 {
1554 rtx val;
1555 start_sequence ();
1556 val = get_stored_val (s_info, GET_MODE (mem),
1557 offset, offset + width,
1558 BLOCK_FOR_INSN (insn_info->insn),
1559 true);
1560 if (get_insns () != NULL)
1561 val = NULL_RTX;
1562 end_sequence ();
1563 if (val && rtx_equal_p (val, const_rhs))
1564 redundant_reason = ptr;
1565 }
1566 }
1567
1568 for (i = MAX (offset, s_info->begin);
1569 i < offset + width && i < s_info->end;
1570 i++)
1571 set_position_unneeded (s_info, i - s_info->begin);
1572 }
1573 else if (s_info->rhs)
1574 /* Need to see if it is possible for this store to overwrite
1575 the value of store_info. If it is, set the rhs to NULL to
1576 keep it from being used to remove a load. */
1577 {
1578 if (canon_true_dependence (s_info->mem,
1579 GET_MODE (s_info->mem),
1580 s_info->mem_addr,
1581 mem, mem_addr, rtx_varies_p))
1582 {
1583 s_info->rhs = NULL;
1584 s_info->const_rhs = NULL;
1585 }
1586 }
1587
1588 /* An insn can be deleted if every position of every one of
1589 its s_infos is zero. */
1590 if (any_positions_needed_p (s_info)
1591 || ptr->cannot_delete)
1592 del = false;
1593
1594 if (del)
1595 {
1596 insn_info_t insn_to_delete = ptr;
1597
1598 if (last)
1599 last->next_local_store = ptr->next_local_store;
1600 else
1601 active_local_stores = ptr->next_local_store;
1602
1603 delete_dead_store_insn (insn_to_delete);
1604 }
1605 else
1606 last = ptr;
1607
1608 ptr = next;
1609 }
1610
1611 /* Finish filling in the store_info. */
1612 store_info->next = insn_info->store_rec;
1613 insn_info->store_rec = store_info;
1614 store_info->mem = mem;
1615 store_info->alias_set = spill_alias_set;
1616 store_info->mem_addr = mem_addr;
1617 store_info->cse_base = base;
1618 if (width > HOST_BITS_PER_WIDE_INT)
1619 {
1620 store_info->is_large = true;
1621 store_info->positions_needed.large.count = 0;
1622 store_info->positions_needed.large.bmap = BITMAP_ALLOC (NULL);
1623 }
1624 else
1625 {
1626 store_info->is_large = false;
1627 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1628 }
1629 store_info->group_id = group_id;
1630 store_info->begin = offset;
1631 store_info->end = offset + width;
1632 store_info->is_set = GET_CODE (body) == SET;
1633 store_info->rhs = rhs;
1634 store_info->const_rhs = const_rhs;
1635 store_info->redundant_reason = redundant_reason;
1636
1637 /* If this is a clobber, we return 0. We will only be able to
1638 delete this insn if there is only one store USED store, but we
1639 can use the clobber to delete other stores earlier. */
1640 return store_info->is_set ? 1 : 0;
1641 }
1642
1643
1644 static void
1645 dump_insn_info (const char * start, insn_info_t insn_info)
1646 {
1647 fprintf (dump_file, "%s insn=%d %s\n", start,
1648 INSN_UID (insn_info->insn),
1649 insn_info->store_rec ? "has store" : "naked");
1650 }
1651
1652
1653 /* If the modes are different and the value's source and target do not
1654 line up, we need to extract the value from lower part of the rhs of
1655 the store, shift it, and then put it into a form that can be shoved
1656 into the read_insn. This function generates a right SHIFT of a
1657 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1658 shift sequence is returned or NULL if we failed to find a
1659 shift. */
1660
1661 static rtx
1662 find_shift_sequence (int access_size,
1663 store_info_t store_info,
1664 enum machine_mode read_mode,
1665 int shift, bool speed, bool require_cst)
1666 {
1667 enum machine_mode store_mode = GET_MODE (store_info->mem);
1668 enum machine_mode new_mode;
1669 rtx read_reg = NULL;
1670
1671 /* Some machines like the x86 have shift insns for each size of
1672 operand. Other machines like the ppc or the ia-64 may only have
1673 shift insns that shift values within 32 or 64 bit registers.
1674 This loop tries to find the smallest shift insn that will right
1675 justify the value we want to read but is available in one insn on
1676 the machine. */
1677
1678 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1679 MODE_INT);
1680 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1681 new_mode = GET_MODE_WIDER_MODE (new_mode))
1682 {
1683 rtx target, new_reg, shift_seq, insn, new_lhs;
1684 int cost;
1685
1686 /* If a constant was stored into memory, try to simplify it here,
1687 otherwise the cost of the shift might preclude this optimization
1688 e.g. at -Os, even when no actual shift will be needed. */
1689 if (store_info->const_rhs)
1690 {
1691 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1692 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1693 store_mode, byte);
1694 if (ret && CONSTANT_P (ret))
1695 {
1696 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1697 ret, GEN_INT (shift));
1698 if (ret && CONSTANT_P (ret))
1699 {
1700 byte = subreg_lowpart_offset (read_mode, new_mode);
1701 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1702 if (ret && CONSTANT_P (ret)
1703 && rtx_cost (ret, SET, speed) <= COSTS_N_INSNS (1))
1704 return ret;
1705 }
1706 }
1707 }
1708
1709 if (require_cst)
1710 return NULL_RTX;
1711
1712 /* Try a wider mode if truncating the store mode to NEW_MODE
1713 requires a real instruction. */
1714 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1715 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (new_mode),
1716 GET_MODE_BITSIZE (store_mode)))
1717 continue;
1718
1719 /* Also try a wider mode if the necessary punning is either not
1720 desirable or not possible. */
1721 if (!CONSTANT_P (store_info->rhs)
1722 && !MODES_TIEABLE_P (new_mode, store_mode))
1723 continue;
1724
1725 new_reg = gen_reg_rtx (new_mode);
1726
1727 start_sequence ();
1728
1729 /* In theory we could also check for an ashr. Ian Taylor knows
1730 of one dsp where the cost of these two was not the same. But
1731 this really is a rare case anyway. */
1732 target = expand_binop (new_mode, lshr_optab, new_reg,
1733 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1734
1735 shift_seq = get_insns ();
1736 end_sequence ();
1737
1738 if (target != new_reg || shift_seq == NULL)
1739 continue;
1740
1741 cost = 0;
1742 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1743 if (INSN_P (insn))
1744 cost += insn_rtx_cost (PATTERN (insn), speed);
1745
1746 /* The computation up to here is essentially independent
1747 of the arguments and could be precomputed. It may
1748 not be worth doing so. We could precompute if
1749 worthwhile or at least cache the results. The result
1750 technically depends on both SHIFT and ACCESS_SIZE,
1751 but in practice the answer will depend only on ACCESS_SIZE. */
1752
1753 if (cost > COSTS_N_INSNS (1))
1754 continue;
1755
1756 new_lhs = extract_low_bits (new_mode, store_mode,
1757 copy_rtx (store_info->rhs));
1758 if (new_lhs == NULL_RTX)
1759 continue;
1760
1761 /* We found an acceptable shift. Generate a move to
1762 take the value from the store and put it into the
1763 shift pseudo, then shift it, then generate another
1764 move to put in into the target of the read. */
1765 emit_move_insn (new_reg, new_lhs);
1766 emit_insn (shift_seq);
1767 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1768 break;
1769 }
1770
1771 return read_reg;
1772 }
1773
1774
1775 /* Call back for note_stores to find the hard regs set or clobbered by
1776 insn. Data is a bitmap of the hardregs set so far. */
1777
1778 static void
1779 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1780 {
1781 bitmap regs_set = (bitmap) data;
1782
1783 if (REG_P (x)
1784 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1785 {
1786 int regno = REGNO (x);
1787 int n = hard_regno_nregs[regno][GET_MODE (x)];
1788 while (--n >= 0)
1789 bitmap_set_bit (regs_set, regno + n);
1790 }
1791 }
1792
1793 /* Helper function for replace_read and record_store.
1794 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1795 to one before READ_END bytes read in READ_MODE. Return NULL
1796 if not successful. If REQUIRE_CST is true, return always constant. */
1797
1798 static rtx
1799 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1800 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1801 basic_block bb, bool require_cst)
1802 {
1803 enum machine_mode store_mode = GET_MODE (store_info->mem);
1804 int shift;
1805 int access_size; /* In bytes. */
1806 rtx read_reg;
1807
1808 /* To get here the read is within the boundaries of the write so
1809 shift will never be negative. Start out with the shift being in
1810 bytes. */
1811 if (store_mode == BLKmode)
1812 shift = 0;
1813 else if (BYTES_BIG_ENDIAN)
1814 shift = store_info->end - read_end;
1815 else
1816 shift = read_begin - store_info->begin;
1817
1818 access_size = shift + GET_MODE_SIZE (read_mode);
1819
1820 /* From now on it is bits. */
1821 shift *= BITS_PER_UNIT;
1822
1823 if (shift)
1824 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1825 optimize_bb_for_speed_p (bb),
1826 require_cst);
1827 else if (store_mode == BLKmode)
1828 {
1829 /* The store is a memset (addr, const_val, const_size). */
1830 gcc_assert (CONST_INT_P (store_info->rhs));
1831 store_mode = int_mode_for_mode (read_mode);
1832 if (store_mode == BLKmode)
1833 read_reg = NULL_RTX;
1834 else if (store_info->rhs == const0_rtx)
1835 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1836 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1837 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1838 read_reg = NULL_RTX;
1839 else
1840 {
1841 unsigned HOST_WIDE_INT c
1842 = INTVAL (store_info->rhs)
1843 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1844 int shift = BITS_PER_UNIT;
1845 while (shift < HOST_BITS_PER_WIDE_INT)
1846 {
1847 c |= (c << shift);
1848 shift <<= 1;
1849 }
1850 read_reg = GEN_INT (trunc_int_for_mode (c, store_mode));
1851 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1852 }
1853 }
1854 else if (store_info->const_rhs
1855 && (require_cst
1856 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1857 read_reg = extract_low_bits (read_mode, store_mode,
1858 copy_rtx (store_info->const_rhs));
1859 else
1860 read_reg = extract_low_bits (read_mode, store_mode,
1861 copy_rtx (store_info->rhs));
1862 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1863 read_reg = NULL_RTX;
1864 return read_reg;
1865 }
1866
1867 /* Take a sequence of:
1868 A <- r1
1869 ...
1870 ... <- A
1871
1872 and change it into
1873 r2 <- r1
1874 A <- r1
1875 ...
1876 ... <- r2
1877
1878 or
1879
1880 r3 <- extract (r1)
1881 r3 <- r3 >> shift
1882 r2 <- extract (r3)
1883 ... <- r2
1884
1885 or
1886
1887 r2 <- extract (r1)
1888 ... <- r2
1889
1890 Depending on the alignment and the mode of the store and
1891 subsequent load.
1892
1893
1894 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1895 and READ_INSN are for the read. Return true if the replacement
1896 went ok. */
1897
1898 static bool
1899 replace_read (store_info_t store_info, insn_info_t store_insn,
1900 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1901 bitmap regs_live)
1902 {
1903 enum machine_mode store_mode = GET_MODE (store_info->mem);
1904 enum machine_mode read_mode = GET_MODE (read_info->mem);
1905 rtx insns, this_insn, read_reg;
1906 basic_block bb;
1907
1908 if (!dbg_cnt (dse))
1909 return false;
1910
1911 /* Create a sequence of instructions to set up the read register.
1912 This sequence goes immediately before the store and its result
1913 is read by the load.
1914
1915 We need to keep this in perspective. We are replacing a read
1916 with a sequence of insns, but the read will almost certainly be
1917 in cache, so it is not going to be an expensive one. Thus, we
1918 are not willing to do a multi insn shift or worse a subroutine
1919 call to get rid of the read. */
1920 if (dump_file)
1921 fprintf (dump_file, "trying to replace %smode load in insn %d"
1922 " from %smode store in insn %d\n",
1923 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1924 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1925 start_sequence ();
1926 bb = BLOCK_FOR_INSN (read_insn->insn);
1927 read_reg = get_stored_val (store_info,
1928 read_mode, read_info->begin, read_info->end,
1929 bb, false);
1930 if (read_reg == NULL_RTX)
1931 {
1932 end_sequence ();
1933 if (dump_file)
1934 fprintf (dump_file, " -- could not extract bits of stored value\n");
1935 return false;
1936 }
1937 /* Force the value into a new register so that it won't be clobbered
1938 between the store and the load. */
1939 read_reg = copy_to_mode_reg (read_mode, read_reg);
1940 insns = get_insns ();
1941 end_sequence ();
1942
1943 if (insns != NULL_RTX)
1944 {
1945 /* Now we have to scan the set of new instructions to see if the
1946 sequence contains and sets of hardregs that happened to be
1947 live at this point. For instance, this can happen if one of
1948 the insns sets the CC and the CC happened to be live at that
1949 point. This does occasionally happen, see PR 37922. */
1950 bitmap regs_set = BITMAP_ALLOC (NULL);
1951
1952 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1953 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
1954
1955 bitmap_and_into (regs_set, regs_live);
1956 if (!bitmap_empty_p (regs_set))
1957 {
1958 if (dump_file)
1959 {
1960 fprintf (dump_file,
1961 "abandoning replacement because sequence clobbers live hardregs:");
1962 df_print_regset (dump_file, regs_set);
1963 }
1964
1965 BITMAP_FREE (regs_set);
1966 return false;
1967 }
1968 BITMAP_FREE (regs_set);
1969 }
1970
1971 if (validate_change (read_insn->insn, loc, read_reg, 0))
1972 {
1973 deferred_change_t deferred_change =
1974 (deferred_change_t) pool_alloc (deferred_change_pool);
1975
1976 /* Insert this right before the store insn where it will be safe
1977 from later insns that might change it before the read. */
1978 emit_insn_before (insns, store_insn->insn);
1979
1980 /* And now for the kludge part: cselib croaks if you just
1981 return at this point. There are two reasons for this:
1982
1983 1) Cselib has an idea of how many pseudos there are and
1984 that does not include the new ones we just added.
1985
1986 2) Cselib does not know about the move insn we added
1987 above the store_info, and there is no way to tell it
1988 about it, because it has "moved on".
1989
1990 Problem (1) is fixable with a certain amount of engineering.
1991 Problem (2) is requires starting the bb from scratch. This
1992 could be expensive.
1993
1994 So we are just going to have to lie. The move/extraction
1995 insns are not really an issue, cselib did not see them. But
1996 the use of the new pseudo read_insn is a real problem because
1997 cselib has not scanned this insn. The way that we solve this
1998 problem is that we are just going to put the mem back for now
1999 and when we are finished with the block, we undo this. We
2000 keep a table of mems to get rid of. At the end of the basic
2001 block we can put them back. */
2002
2003 *loc = read_info->mem;
2004 deferred_change->next = deferred_change_list;
2005 deferred_change_list = deferred_change;
2006 deferred_change->loc = loc;
2007 deferred_change->reg = read_reg;
2008
2009 /* Get rid of the read_info, from the point of view of the
2010 rest of dse, play like this read never happened. */
2011 read_insn->read_rec = read_info->next;
2012 pool_free (read_info_pool, read_info);
2013 if (dump_file)
2014 {
2015 fprintf (dump_file, " -- replaced the loaded MEM with ");
2016 print_simple_rtl (dump_file, read_reg);
2017 fprintf (dump_file, "\n");
2018 }
2019 return true;
2020 }
2021 else
2022 {
2023 if (dump_file)
2024 {
2025 fprintf (dump_file, " -- replacing the loaded MEM with ");
2026 print_simple_rtl (dump_file, read_reg);
2027 fprintf (dump_file, " led to an invalid instruction\n");
2028 }
2029 return false;
2030 }
2031 }
2032
2033 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2034 if LOC is a mem and if it is look at the address and kill any
2035 appropriate stores that may be active. */
2036
2037 static int
2038 check_mem_read_rtx (rtx *loc, void *data)
2039 {
2040 rtx mem = *loc, mem_addr;
2041 bb_info_t bb_info;
2042 insn_info_t insn_info;
2043 HOST_WIDE_INT offset = 0;
2044 HOST_WIDE_INT width = 0;
2045 alias_set_type spill_alias_set = 0;
2046 cselib_val *base = NULL;
2047 int group_id;
2048 read_info_t read_info;
2049
2050 if (!mem || !MEM_P (mem))
2051 return 0;
2052
2053 bb_info = (bb_info_t) data;
2054 insn_info = bb_info->last_insn;
2055
2056 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2057 || (MEM_VOLATILE_P (mem)))
2058 {
2059 if (dump_file)
2060 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2061 add_wild_read (bb_info);
2062 insn_info->cannot_delete = true;
2063 return 0;
2064 }
2065
2066 /* If it is reading readonly mem, then there can be no conflict with
2067 another write. */
2068 if (MEM_READONLY_P (mem))
2069 return 0;
2070
2071 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2072 {
2073 if (dump_file)
2074 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2075 add_wild_read (bb_info);
2076 return 0;
2077 }
2078
2079 if (GET_MODE (mem) == BLKmode)
2080 width = -1;
2081 else
2082 width = GET_MODE_SIZE (GET_MODE (mem));
2083
2084 read_info = (read_info_t) pool_alloc (read_info_pool);
2085 read_info->group_id = group_id;
2086 read_info->mem = mem;
2087 read_info->alias_set = spill_alias_set;
2088 read_info->begin = offset;
2089 read_info->end = offset + width;
2090 read_info->next = insn_info->read_rec;
2091 insn_info->read_rec = read_info;
2092 /* For alias_set != 0 canon_true_dependence should be never called. */
2093 if (spill_alias_set)
2094 mem_addr = NULL_RTX;
2095 else
2096 {
2097 if (group_id < 0)
2098 mem_addr = base->val_rtx;
2099 else
2100 {
2101 group_info_t group
2102 = VEC_index (group_info_t, rtx_group_vec, group_id);
2103 mem_addr = group->canon_base_addr;
2104 }
2105 if (offset)
2106 mem_addr = plus_constant (mem_addr, offset);
2107 }
2108
2109 /* We ignore the clobbers in store_info. The is mildly aggressive,
2110 but there really should not be a clobber followed by a read. */
2111
2112 if (spill_alias_set)
2113 {
2114 insn_info_t i_ptr = active_local_stores;
2115 insn_info_t last = NULL;
2116
2117 if (dump_file)
2118 fprintf (dump_file, " processing spill load %d\n",
2119 (int) spill_alias_set);
2120
2121 while (i_ptr)
2122 {
2123 store_info_t store_info = i_ptr->store_rec;
2124
2125 /* Skip the clobbers. */
2126 while (!store_info->is_set)
2127 store_info = store_info->next;
2128
2129 if (store_info->alias_set == spill_alias_set)
2130 {
2131 if (dump_file)
2132 dump_insn_info ("removing from active", i_ptr);
2133
2134 if (last)
2135 last->next_local_store = i_ptr->next_local_store;
2136 else
2137 active_local_stores = i_ptr->next_local_store;
2138 }
2139 else
2140 last = i_ptr;
2141 i_ptr = i_ptr->next_local_store;
2142 }
2143 }
2144 else if (group_id >= 0)
2145 {
2146 /* This is the restricted case where the base is a constant or
2147 the frame pointer and offset is a constant. */
2148 insn_info_t i_ptr = active_local_stores;
2149 insn_info_t last = NULL;
2150
2151 if (dump_file)
2152 {
2153 if (width == -1)
2154 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2155 group_id);
2156 else
2157 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2158 group_id, (int)offset, (int)(offset+width));
2159 }
2160
2161 while (i_ptr)
2162 {
2163 bool remove = false;
2164 store_info_t store_info = i_ptr->store_rec;
2165
2166 /* Skip the clobbers. */
2167 while (!store_info->is_set)
2168 store_info = store_info->next;
2169
2170 /* There are three cases here. */
2171 if (store_info->group_id < 0)
2172 /* We have a cselib store followed by a read from a
2173 const base. */
2174 remove
2175 = canon_true_dependence (store_info->mem,
2176 GET_MODE (store_info->mem),
2177 store_info->mem_addr,
2178 mem, mem_addr, rtx_varies_p);
2179
2180 else if (group_id == store_info->group_id)
2181 {
2182 /* This is a block mode load. We may get lucky and
2183 canon_true_dependence may save the day. */
2184 if (width == -1)
2185 remove
2186 = canon_true_dependence (store_info->mem,
2187 GET_MODE (store_info->mem),
2188 store_info->mem_addr,
2189 mem, mem_addr, rtx_varies_p);
2190
2191 /* If this read is just reading back something that we just
2192 stored, rewrite the read. */
2193 else
2194 {
2195 if (store_info->rhs
2196 && offset >= store_info->begin
2197 && offset + width <= store_info->end
2198 && all_positions_needed_p (store_info,
2199 offset - store_info->begin,
2200 width)
2201 && replace_read (store_info, i_ptr, read_info,
2202 insn_info, loc, bb_info->regs_live))
2203 return 0;
2204
2205 /* The bases are the same, just see if the offsets
2206 overlap. */
2207 if ((offset < store_info->end)
2208 && (offset + width > store_info->begin))
2209 remove = true;
2210 }
2211 }
2212
2213 /* else
2214 The else case that is missing here is that the
2215 bases are constant but different. There is nothing
2216 to do here because there is no overlap. */
2217
2218 if (remove)
2219 {
2220 if (dump_file)
2221 dump_insn_info ("removing from active", i_ptr);
2222
2223 if (last)
2224 last->next_local_store = i_ptr->next_local_store;
2225 else
2226 active_local_stores = i_ptr->next_local_store;
2227 }
2228 else
2229 last = i_ptr;
2230 i_ptr = i_ptr->next_local_store;
2231 }
2232 }
2233 else
2234 {
2235 insn_info_t i_ptr = active_local_stores;
2236 insn_info_t last = NULL;
2237 if (dump_file)
2238 {
2239 fprintf (dump_file, " processing cselib load mem:");
2240 print_inline_rtx (dump_file, mem, 0);
2241 fprintf (dump_file, "\n");
2242 }
2243
2244 while (i_ptr)
2245 {
2246 bool remove = false;
2247 store_info_t store_info = i_ptr->store_rec;
2248
2249 if (dump_file)
2250 fprintf (dump_file, " processing cselib load against insn %d\n",
2251 INSN_UID (i_ptr->insn));
2252
2253 /* Skip the clobbers. */
2254 while (!store_info->is_set)
2255 store_info = store_info->next;
2256
2257 /* If this read is just reading back something that we just
2258 stored, rewrite the read. */
2259 if (store_info->rhs
2260 && store_info->group_id == -1
2261 && store_info->cse_base == base
2262 && width != -1
2263 && offset >= store_info->begin
2264 && offset + width <= store_info->end
2265 && all_positions_needed_p (store_info,
2266 offset - store_info->begin, width)
2267 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2268 bb_info->regs_live))
2269 return 0;
2270
2271 if (!store_info->alias_set)
2272 remove = canon_true_dependence (store_info->mem,
2273 GET_MODE (store_info->mem),
2274 store_info->mem_addr,
2275 mem, mem_addr, rtx_varies_p);
2276
2277 if (remove)
2278 {
2279 if (dump_file)
2280 dump_insn_info ("removing from active", i_ptr);
2281
2282 if (last)
2283 last->next_local_store = i_ptr->next_local_store;
2284 else
2285 active_local_stores = i_ptr->next_local_store;
2286 }
2287 else
2288 last = i_ptr;
2289 i_ptr = i_ptr->next_local_store;
2290 }
2291 }
2292 return 0;
2293 }
2294
2295 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2296 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2297 true for any part of *LOC. */
2298
2299 static void
2300 check_mem_read_use (rtx *loc, void *data)
2301 {
2302 for_each_rtx (loc, check_mem_read_rtx, data);
2303 }
2304
2305
2306 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2307 So far it only handles arguments passed in registers. */
2308
2309 static bool
2310 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2311 {
2312 CUMULATIVE_ARGS args_so_far;
2313 tree arg;
2314 int idx;
2315
2316 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
2317
2318 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2319 for (idx = 0;
2320 arg != void_list_node && idx < nargs;
2321 arg = TREE_CHAIN (arg), idx++)
2322 {
2323 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2324 rtx reg, link, tmp;
2325 reg = targetm.calls.function_arg (&args_so_far, mode, NULL_TREE, true);
2326 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2327 || GET_MODE_CLASS (mode) != MODE_INT)
2328 return false;
2329
2330 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2331 link;
2332 link = XEXP (link, 1))
2333 if (GET_CODE (XEXP (link, 0)) == USE)
2334 {
2335 args[idx] = XEXP (XEXP (link, 0), 0);
2336 if (REG_P (args[idx])
2337 && REGNO (args[idx]) == REGNO (reg)
2338 && (GET_MODE (args[idx]) == mode
2339 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2340 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2341 <= UNITS_PER_WORD)
2342 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2343 > GET_MODE_SIZE (mode)))))
2344 break;
2345 }
2346 if (!link)
2347 return false;
2348
2349 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2350 if (GET_MODE (args[idx]) != mode)
2351 {
2352 if (!tmp || !CONST_INT_P (tmp))
2353 return false;
2354 tmp = GEN_INT (trunc_int_for_mode (INTVAL (tmp), mode));
2355 }
2356 if (tmp)
2357 args[idx] = tmp;
2358
2359 targetm.calls.function_arg_advance (&args_so_far, mode, NULL_TREE, true);
2360 }
2361 if (arg != void_list_node || idx != nargs)
2362 return false;
2363 return true;
2364 }
2365
2366
2367 /* Apply record_store to all candidate stores in INSN. Mark INSN
2368 if some part of it is not a candidate store and assigns to a
2369 non-register target. */
2370
2371 static void
2372 scan_insn (bb_info_t bb_info, rtx insn)
2373 {
2374 rtx body;
2375 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2376 int mems_found = 0;
2377 memset (insn_info, 0, sizeof (struct insn_info));
2378
2379 if (dump_file)
2380 fprintf (dump_file, "\n**scanning insn=%d\n",
2381 INSN_UID (insn));
2382
2383 insn_info->prev_insn = bb_info->last_insn;
2384 insn_info->insn = insn;
2385 bb_info->last_insn = insn_info;
2386
2387 if (DEBUG_INSN_P (insn))
2388 {
2389 insn_info->cannot_delete = true;
2390 return;
2391 }
2392
2393 /* Cselib clears the table for this case, so we have to essentially
2394 do the same. */
2395 if (NONJUMP_INSN_P (insn)
2396 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2397 && MEM_VOLATILE_P (PATTERN (insn)))
2398 {
2399 add_wild_read (bb_info);
2400 insn_info->cannot_delete = true;
2401 return;
2402 }
2403
2404 /* Look at all of the uses in the insn. */
2405 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2406
2407 if (CALL_P (insn))
2408 {
2409 bool const_call;
2410 tree memset_call = NULL_TREE;
2411
2412 insn_info->cannot_delete = true;
2413
2414 /* Const functions cannot do anything bad i.e. read memory,
2415 however, they can read their parameters which may have
2416 been pushed onto the stack.
2417 memset and bzero don't read memory either. */
2418 const_call = RTL_CONST_CALL_P (insn);
2419 if (!const_call)
2420 {
2421 rtx call = PATTERN (insn);
2422 if (GET_CODE (call) == PARALLEL)
2423 call = XVECEXP (call, 0, 0);
2424 if (GET_CODE (call) == SET)
2425 call = SET_SRC (call);
2426 if (GET_CODE (call) == CALL
2427 && MEM_P (XEXP (call, 0))
2428 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2429 {
2430 rtx symbol = XEXP (XEXP (call, 0), 0);
2431 if (SYMBOL_REF_DECL (symbol)
2432 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2433 {
2434 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2435 == BUILT_IN_NORMAL
2436 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2437 == BUILT_IN_MEMSET))
2438 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2439 memset_call = SYMBOL_REF_DECL (symbol);
2440 }
2441 }
2442 }
2443 if (const_call || memset_call)
2444 {
2445 insn_info_t i_ptr = active_local_stores;
2446 insn_info_t last = NULL;
2447
2448 if (dump_file)
2449 fprintf (dump_file, "%s call %d\n",
2450 const_call ? "const" : "memset", INSN_UID (insn));
2451
2452 /* See the head comment of the frame_read field. */
2453 if (reload_completed)
2454 insn_info->frame_read = true;
2455
2456 /* Loop over the active stores and remove those which are
2457 killed by the const function call. */
2458 while (i_ptr)
2459 {
2460 bool remove_store = false;
2461
2462 /* The stack pointer based stores are always killed. */
2463 if (i_ptr->stack_pointer_based)
2464 remove_store = true;
2465
2466 /* If the frame is read, the frame related stores are killed. */
2467 else if (insn_info->frame_read)
2468 {
2469 store_info_t store_info = i_ptr->store_rec;
2470
2471 /* Skip the clobbers. */
2472 while (!store_info->is_set)
2473 store_info = store_info->next;
2474
2475 if (store_info->group_id >= 0
2476 && VEC_index (group_info_t, rtx_group_vec,
2477 store_info->group_id)->frame_related)
2478 remove_store = true;
2479 }
2480
2481 if (remove_store)
2482 {
2483 if (dump_file)
2484 dump_insn_info ("removing from active", i_ptr);
2485
2486 if (last)
2487 last->next_local_store = i_ptr->next_local_store;
2488 else
2489 active_local_stores = i_ptr->next_local_store;
2490 }
2491 else
2492 last = i_ptr;
2493
2494 i_ptr = i_ptr->next_local_store;
2495 }
2496
2497 if (memset_call)
2498 {
2499 rtx args[3];
2500 if (get_call_args (insn, memset_call, args, 3)
2501 && CONST_INT_P (args[1])
2502 && CONST_INT_P (args[2])
2503 && INTVAL (args[2]) > 0)
2504 {
2505 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2506 set_mem_size (mem, args[2]);
2507 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2508 mems_found += record_store (body, bb_info);
2509 if (dump_file)
2510 fprintf (dump_file, "handling memset as BLKmode store\n");
2511 if (mems_found == 1)
2512 {
2513 insn_info->next_local_store = active_local_stores;
2514 active_local_stores = insn_info;
2515 }
2516 }
2517 }
2518 }
2519
2520 else
2521 /* Every other call, including pure functions, may read memory. */
2522 add_wild_read (bb_info);
2523
2524 return;
2525 }
2526
2527 /* Assuming that there are sets in these insns, we cannot delete
2528 them. */
2529 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2530 || volatile_refs_p (PATTERN (insn))
2531 || insn_could_throw_p (insn)
2532 || (RTX_FRAME_RELATED_P (insn))
2533 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2534 insn_info->cannot_delete = true;
2535
2536 body = PATTERN (insn);
2537 if (GET_CODE (body) == PARALLEL)
2538 {
2539 int i;
2540 for (i = 0; i < XVECLEN (body, 0); i++)
2541 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2542 }
2543 else
2544 mems_found += record_store (body, bb_info);
2545
2546 if (dump_file)
2547 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2548 mems_found, insn_info->cannot_delete ? "true" : "false");
2549
2550 /* If we found some sets of mems, add it into the active_local_stores so
2551 that it can be locally deleted if found dead or used for
2552 replace_read and redundant constant store elimination. Otherwise mark
2553 it as cannot delete. This simplifies the processing later. */
2554 if (mems_found == 1)
2555 {
2556 insn_info->next_local_store = active_local_stores;
2557 active_local_stores = insn_info;
2558 }
2559 else
2560 insn_info->cannot_delete = true;
2561 }
2562
2563
2564 /* Remove BASE from the set of active_local_stores. This is a
2565 callback from cselib that is used to get rid of the stores in
2566 active_local_stores. */
2567
2568 static void
2569 remove_useless_values (cselib_val *base)
2570 {
2571 insn_info_t insn_info = active_local_stores;
2572 insn_info_t last = NULL;
2573
2574 while (insn_info)
2575 {
2576 store_info_t store_info = insn_info->store_rec;
2577 bool del = false;
2578
2579 /* If ANY of the store_infos match the cselib group that is
2580 being deleted, then the insn can not be deleted. */
2581 while (store_info)
2582 {
2583 if ((store_info->group_id == -1)
2584 && (store_info->cse_base == base))
2585 {
2586 del = true;
2587 break;
2588 }
2589 store_info = store_info->next;
2590 }
2591
2592 if (del)
2593 {
2594 if (last)
2595 last->next_local_store = insn_info->next_local_store;
2596 else
2597 active_local_stores = insn_info->next_local_store;
2598 free_store_info (insn_info);
2599 }
2600 else
2601 last = insn_info;
2602
2603 insn_info = insn_info->next_local_store;
2604 }
2605 }
2606
2607
2608 /* Do all of step 1. */
2609
2610 static void
2611 dse_step1 (void)
2612 {
2613 basic_block bb;
2614 bitmap regs_live = BITMAP_ALLOC (NULL);
2615
2616 cselib_init (0);
2617 all_blocks = BITMAP_ALLOC (NULL);
2618 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2619 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2620
2621 FOR_ALL_BB (bb)
2622 {
2623 insn_info_t ptr;
2624 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2625
2626 memset (bb_info, 0, sizeof (struct bb_info));
2627 bitmap_set_bit (all_blocks, bb->index);
2628 bb_info->regs_live = regs_live;
2629
2630 bitmap_copy (regs_live, DF_LR_IN (bb));
2631 df_simulate_initialize_forwards (bb, regs_live);
2632
2633 bb_table[bb->index] = bb_info;
2634 cselib_discard_hook = remove_useless_values;
2635
2636 if (bb->index >= NUM_FIXED_BLOCKS)
2637 {
2638 rtx insn;
2639
2640 cse_store_info_pool
2641 = create_alloc_pool ("cse_store_info_pool",
2642 sizeof (struct store_info), 100);
2643 active_local_stores = NULL;
2644 cselib_clear_table ();
2645
2646 /* Scan the insns. */
2647 FOR_BB_INSNS (bb, insn)
2648 {
2649 if (INSN_P (insn))
2650 scan_insn (bb_info, insn);
2651 cselib_process_insn (insn);
2652 if (INSN_P (insn))
2653 df_simulate_one_insn_forwards (bb, insn, regs_live);
2654 }
2655
2656 /* This is something of a hack, because the global algorithm
2657 is supposed to take care of the case where stores go dead
2658 at the end of the function. However, the global
2659 algorithm must take a more conservative view of block
2660 mode reads than the local alg does. So to get the case
2661 where you have a store to the frame followed by a non
2662 overlapping block more read, we look at the active local
2663 stores at the end of the function and delete all of the
2664 frame and spill based ones. */
2665 if (stores_off_frame_dead_at_return
2666 && (EDGE_COUNT (bb->succs) == 0
2667 || (single_succ_p (bb)
2668 && single_succ (bb) == EXIT_BLOCK_PTR
2669 && ! crtl->calls_eh_return)))
2670 {
2671 insn_info_t i_ptr = active_local_stores;
2672 while (i_ptr)
2673 {
2674 store_info_t store_info = i_ptr->store_rec;
2675
2676 /* Skip the clobbers. */
2677 while (!store_info->is_set)
2678 store_info = store_info->next;
2679 if (store_info->alias_set && !i_ptr->cannot_delete)
2680 delete_dead_store_insn (i_ptr);
2681 else
2682 if (store_info->group_id >= 0)
2683 {
2684 group_info_t group
2685 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2686 if (group->frame_related && !i_ptr->cannot_delete)
2687 delete_dead_store_insn (i_ptr);
2688 }
2689
2690 i_ptr = i_ptr->next_local_store;
2691 }
2692 }
2693
2694 /* Get rid of the loads that were discovered in
2695 replace_read. Cselib is finished with this block. */
2696 while (deferred_change_list)
2697 {
2698 deferred_change_t next = deferred_change_list->next;
2699
2700 /* There is no reason to validate this change. That was
2701 done earlier. */
2702 *deferred_change_list->loc = deferred_change_list->reg;
2703 pool_free (deferred_change_pool, deferred_change_list);
2704 deferred_change_list = next;
2705 }
2706
2707 /* Get rid of all of the cselib based store_infos in this
2708 block and mark the containing insns as not being
2709 deletable. */
2710 ptr = bb_info->last_insn;
2711 while (ptr)
2712 {
2713 if (ptr->contains_cselib_groups)
2714 {
2715 store_info_t s_info = ptr->store_rec;
2716 while (s_info && !s_info->is_set)
2717 s_info = s_info->next;
2718 if (s_info
2719 && s_info->redundant_reason
2720 && s_info->redundant_reason->insn
2721 && !ptr->cannot_delete)
2722 {
2723 if (dump_file)
2724 fprintf (dump_file, "Locally deleting insn %d "
2725 "because insn %d stores the "
2726 "same value and couldn't be "
2727 "eliminated\n",
2728 INSN_UID (ptr->insn),
2729 INSN_UID (s_info->redundant_reason->insn));
2730 delete_dead_store_insn (ptr);
2731 }
2732 if (s_info)
2733 s_info->redundant_reason = NULL;
2734 free_store_info (ptr);
2735 }
2736 else
2737 {
2738 store_info_t s_info;
2739
2740 /* Free at least positions_needed bitmaps. */
2741 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2742 if (s_info->is_large)
2743 {
2744 BITMAP_FREE (s_info->positions_needed.large.bmap);
2745 s_info->is_large = false;
2746 }
2747 }
2748 ptr = ptr->prev_insn;
2749 }
2750
2751 free_alloc_pool (cse_store_info_pool);
2752 }
2753 bb_info->regs_live = NULL;
2754 }
2755
2756 BITMAP_FREE (regs_live);
2757 cselib_finish ();
2758 htab_empty (rtx_group_table);
2759 }
2760
2761 \f
2762 /*----------------------------------------------------------------------------
2763 Second step.
2764
2765 Assign each byte position in the stores that we are going to
2766 analyze globally to a position in the bitmaps. Returns true if
2767 there are any bit positions assigned.
2768 ----------------------------------------------------------------------------*/
2769
2770 static void
2771 dse_step2_init (void)
2772 {
2773 unsigned int i;
2774 group_info_t group;
2775
2776 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2777 {
2778 /* For all non stack related bases, we only consider a store to
2779 be deletable if there are two or more stores for that
2780 position. This is because it takes one store to make the
2781 other store redundant. However, for the stores that are
2782 stack related, we consider them if there is only one store
2783 for the position. We do this because the stack related
2784 stores can be deleted if their is no read between them and
2785 the end of the function.
2786
2787 To make this work in the current framework, we take the stack
2788 related bases add all of the bits from store1 into store2.
2789 This has the effect of making the eligible even if there is
2790 only one store. */
2791
2792 if (stores_off_frame_dead_at_return && group->frame_related)
2793 {
2794 bitmap_ior_into (group->store2_n, group->store1_n);
2795 bitmap_ior_into (group->store2_p, group->store1_p);
2796 if (dump_file)
2797 fprintf (dump_file, "group %d is frame related ", i);
2798 }
2799
2800 group->offset_map_size_n++;
2801 group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
2802 group->offset_map_size_p++;
2803 group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
2804 group->process_globally = false;
2805 if (dump_file)
2806 {
2807 fprintf (dump_file, "group %d(%d+%d): ", i,
2808 (int)bitmap_count_bits (group->store2_n),
2809 (int)bitmap_count_bits (group->store2_p));
2810 bitmap_print (dump_file, group->store2_n, "n ", " ");
2811 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2812 }
2813 }
2814 }
2815
2816
2817 /* Init the offset tables for the normal case. */
2818
2819 static bool
2820 dse_step2_nospill (void)
2821 {
2822 unsigned int i;
2823 group_info_t group;
2824 /* Position 0 is unused because 0 is used in the maps to mean
2825 unused. */
2826 current_position = 1;
2827
2828 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2829 {
2830 bitmap_iterator bi;
2831 unsigned int j;
2832
2833 if (group == clear_alias_group)
2834 continue;
2835
2836 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2837 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2838 bitmap_clear (group->group_kill);
2839
2840 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2841 {
2842 bitmap_set_bit (group->group_kill, current_position);
2843 group->offset_map_n[j] = current_position++;
2844 group->process_globally = true;
2845 }
2846 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2847 {
2848 bitmap_set_bit (group->group_kill, current_position);
2849 group->offset_map_p[j] = current_position++;
2850 group->process_globally = true;
2851 }
2852 }
2853 return current_position != 1;
2854 }
2855
2856
2857 /* Init the offset tables for the spill case. */
2858
2859 static bool
2860 dse_step2_spill (void)
2861 {
2862 unsigned int j;
2863 group_info_t group = clear_alias_group;
2864 bitmap_iterator bi;
2865
2866 /* Position 0 is unused because 0 is used in the maps to mean
2867 unused. */
2868 current_position = 1;
2869
2870 if (dump_file)
2871 {
2872 bitmap_print (dump_file, clear_alias_sets,
2873 "clear alias sets ", "\n");
2874 bitmap_print (dump_file, disqualified_clear_alias_sets,
2875 "disqualified clear alias sets ", "\n");
2876 }
2877
2878 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2879 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2880 bitmap_clear (group->group_kill);
2881
2882 /* Remove the disqualified positions from the store2_p set. */
2883 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
2884
2885 /* We do not need to process the store2_n set because
2886 alias_sets are always positive. */
2887 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2888 {
2889 bitmap_set_bit (group->group_kill, current_position);
2890 group->offset_map_p[j] = current_position++;
2891 group->process_globally = true;
2892 }
2893
2894 return current_position != 1;
2895 }
2896
2897
2898 \f
2899 /*----------------------------------------------------------------------------
2900 Third step.
2901
2902 Build the bit vectors for the transfer functions.
2903 ----------------------------------------------------------------------------*/
2904
2905
2906 /* Note that this is NOT a general purpose function. Any mem that has
2907 an alias set registered here expected to be COMPLETELY unaliased:
2908 i.e it's addresses are not and need not be examined.
2909
2910 It is known that all references to this address will have this
2911 alias set and there are NO other references to this address in the
2912 function.
2913
2914 Currently the only place that is known to be clean enough to use
2915 this interface is the code that assigns the spill locations.
2916
2917 All of the mems that have alias_sets registered are subjected to a
2918 very powerful form of dse where function calls, volatile reads and
2919 writes, and reads from random location are not taken into account.
2920
2921 It is also assumed that these locations go dead when the function
2922 returns. This assumption could be relaxed if there were found to
2923 be places that this assumption was not correct.
2924
2925 The MODE is passed in and saved. The mode of each load or store to
2926 a mem with ALIAS_SET is checked against MEM. If the size of that
2927 load or store is different from MODE, processing is halted on this
2928 alias set. For the vast majority of aliases sets, all of the loads
2929 and stores will use the same mode. But vectors are treated
2930 differently: the alias set is established for the entire vector,
2931 but reload will insert loads and stores for individual elements and
2932 we do not necessarily have the information to track those separate
2933 elements. So when we see a mode mismatch, we just bail. */
2934
2935
2936 void
2937 dse_record_singleton_alias_set (alias_set_type alias_set,
2938 enum machine_mode mode)
2939 {
2940 struct clear_alias_mode_holder tmp_holder;
2941 struct clear_alias_mode_holder *entry;
2942 void **slot;
2943
2944 /* If we are not going to run dse, we need to return now or there
2945 will be problems with allocating the bitmaps. */
2946 if ((!gate_dse()) || !alias_set)
2947 return;
2948
2949 if (!clear_alias_sets)
2950 {
2951 clear_alias_sets = BITMAP_ALLOC (NULL);
2952 disqualified_clear_alias_sets = BITMAP_ALLOC (NULL);
2953 clear_alias_mode_table = htab_create (11, clear_alias_mode_hash,
2954 clear_alias_mode_eq, NULL);
2955 clear_alias_mode_pool = create_alloc_pool ("clear_alias_mode_pool",
2956 sizeof (struct clear_alias_mode_holder), 100);
2957 }
2958
2959 bitmap_set_bit (clear_alias_sets, alias_set);
2960
2961 tmp_holder.alias_set = alias_set;
2962
2963 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, INSERT);
2964 gcc_assert (*slot == NULL);
2965
2966 *slot = entry =
2967 (struct clear_alias_mode_holder *) pool_alloc (clear_alias_mode_pool);
2968 entry->alias_set = alias_set;
2969 entry->mode = mode;
2970 }
2971
2972
2973 /* Remove ALIAS_SET from the sets of stack slots being considered. */
2974
2975 void
2976 dse_invalidate_singleton_alias_set (alias_set_type alias_set)
2977 {
2978 if ((!gate_dse()) || !alias_set)
2979 return;
2980
2981 bitmap_clear_bit (clear_alias_sets, alias_set);
2982 }
2983
2984
2985 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2986 there, return 0. */
2987
2988 static int
2989 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
2990 {
2991 if (offset < 0)
2992 {
2993 HOST_WIDE_INT offset_p = -offset;
2994 if (offset_p >= group_info->offset_map_size_n)
2995 return 0;
2996 return group_info->offset_map_n[offset_p];
2997 }
2998 else
2999 {
3000 if (offset >= group_info->offset_map_size_p)
3001 return 0;
3002 return group_info->offset_map_p[offset];
3003 }
3004 }
3005
3006
3007 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3008 may be NULL. */
3009
3010 static void
3011 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
3012 {
3013 while (store_info)
3014 {
3015 HOST_WIDE_INT i;
3016 group_info_t group_info
3017 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3018 if (group_info->process_globally)
3019 for (i = store_info->begin; i < store_info->end; i++)
3020 {
3021 int index = get_bitmap_index (group_info, i);
3022 if (index != 0)
3023 {
3024 bitmap_set_bit (gen, index);
3025 if (kill)
3026 bitmap_clear_bit (kill, index);
3027 }
3028 }
3029 store_info = store_info->next;
3030 }
3031 }
3032
3033
3034 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3035 may be NULL. */
3036
3037 static void
3038 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3039 {
3040 while (store_info)
3041 {
3042 if (store_info->alias_set)
3043 {
3044 int index = get_bitmap_index (clear_alias_group,
3045 store_info->alias_set);
3046 if (index != 0)
3047 {
3048 bitmap_set_bit (gen, index);
3049 if (kill)
3050 bitmap_clear_bit (kill, index);
3051 }
3052 }
3053 store_info = store_info->next;
3054 }
3055 }
3056
3057
3058 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3059 may be NULL. */
3060
3061 static void
3062 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3063 {
3064 read_info_t read_info = insn_info->read_rec;
3065 int i;
3066 group_info_t group;
3067
3068 /* If this insn reads the frame, kill all the frame related stores. */
3069 if (insn_info->frame_read)
3070 {
3071 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3072 if (group->process_globally && group->frame_related)
3073 {
3074 if (kill)
3075 bitmap_ior_into (kill, group->group_kill);
3076 bitmap_and_compl_into (gen, group->group_kill);
3077 }
3078 }
3079
3080 while (read_info)
3081 {
3082 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3083 {
3084 if (group->process_globally)
3085 {
3086 if (i == read_info->group_id)
3087 {
3088 if (read_info->begin > read_info->end)
3089 {
3090 /* Begin > end for block mode reads. */
3091 if (kill)
3092 bitmap_ior_into (kill, group->group_kill);
3093 bitmap_and_compl_into (gen, group->group_kill);
3094 }
3095 else
3096 {
3097 /* The groups are the same, just process the
3098 offsets. */
3099 HOST_WIDE_INT j;
3100 for (j = read_info->begin; j < read_info->end; j++)
3101 {
3102 int index = get_bitmap_index (group, j);
3103 if (index != 0)
3104 {
3105 if (kill)
3106 bitmap_set_bit (kill, index);
3107 bitmap_clear_bit (gen, index);
3108 }
3109 }
3110 }
3111 }
3112 else
3113 {
3114 /* The groups are different, if the alias sets
3115 conflict, clear the entire group. We only need
3116 to apply this test if the read_info is a cselib
3117 read. Anything with a constant base cannot alias
3118 something else with a different constant
3119 base. */
3120 if ((read_info->group_id < 0)
3121 && canon_true_dependence (group->base_mem,
3122 GET_MODE (group->base_mem),
3123 group->canon_base_addr,
3124 read_info->mem, NULL_RTX,
3125 rtx_varies_p))
3126 {
3127 if (kill)
3128 bitmap_ior_into (kill, group->group_kill);
3129 bitmap_and_compl_into (gen, group->group_kill);
3130 }
3131 }
3132 }
3133 }
3134
3135 read_info = read_info->next;
3136 }
3137 }
3138
3139 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3140 may be NULL. */
3141
3142 static void
3143 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3144 {
3145 while (read_info)
3146 {
3147 if (read_info->alias_set)
3148 {
3149 int index = get_bitmap_index (clear_alias_group,
3150 read_info->alias_set);
3151 if (index != 0)
3152 {
3153 if (kill)
3154 bitmap_set_bit (kill, index);
3155 bitmap_clear_bit (gen, index);
3156 }
3157 }
3158
3159 read_info = read_info->next;
3160 }
3161 }
3162
3163
3164 /* Return the insn in BB_INFO before the first wild read or if there
3165 are no wild reads in the block, return the last insn. */
3166
3167 static insn_info_t
3168 find_insn_before_first_wild_read (bb_info_t bb_info)
3169 {
3170 insn_info_t insn_info = bb_info->last_insn;
3171 insn_info_t last_wild_read = NULL;
3172
3173 while (insn_info)
3174 {
3175 if (insn_info->wild_read)
3176 {
3177 last_wild_read = insn_info->prev_insn;
3178 /* Block starts with wild read. */
3179 if (!last_wild_read)
3180 return NULL;
3181 }
3182
3183 insn_info = insn_info->prev_insn;
3184 }
3185
3186 if (last_wild_read)
3187 return last_wild_read;
3188 else
3189 return bb_info->last_insn;
3190 }
3191
3192
3193 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3194 the block in order to build the gen and kill sets for the block.
3195 We start at ptr which may be the last insn in the block or may be
3196 the first insn with a wild read. In the latter case we are able to
3197 skip the rest of the block because it just does not matter:
3198 anything that happens is hidden by the wild read. */
3199
3200 static void
3201 dse_step3_scan (bool for_spills, basic_block bb)
3202 {
3203 bb_info_t bb_info = bb_table[bb->index];
3204 insn_info_t insn_info;
3205
3206 if (for_spills)
3207 /* There are no wild reads in the spill case. */
3208 insn_info = bb_info->last_insn;
3209 else
3210 insn_info = find_insn_before_first_wild_read (bb_info);
3211
3212 /* In the spill case or in the no_spill case if there is no wild
3213 read in the block, we will need a kill set. */
3214 if (insn_info == bb_info->last_insn)
3215 {
3216 if (bb_info->kill)
3217 bitmap_clear (bb_info->kill);
3218 else
3219 bb_info->kill = BITMAP_ALLOC (NULL);
3220 }
3221 else
3222 if (bb_info->kill)
3223 BITMAP_FREE (bb_info->kill);
3224
3225 while (insn_info)
3226 {
3227 /* There may have been code deleted by the dce pass run before
3228 this phase. */
3229 if (insn_info->insn && INSN_P (insn_info->insn))
3230 {
3231 /* Process the read(s) last. */
3232 if (for_spills)
3233 {
3234 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3235 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3236 }
3237 else
3238 {
3239 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3240 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3241 }
3242 }
3243
3244 insn_info = insn_info->prev_insn;
3245 }
3246 }
3247
3248
3249 /* Set the gen set of the exit block, and also any block with no
3250 successors that does not have a wild read. */
3251
3252 static void
3253 dse_step3_exit_block_scan (bb_info_t bb_info)
3254 {
3255 /* The gen set is all 0's for the exit block except for the
3256 frame_pointer_group. */
3257
3258 if (stores_off_frame_dead_at_return)
3259 {
3260 unsigned int i;
3261 group_info_t group;
3262
3263 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3264 {
3265 if (group->process_globally && group->frame_related)
3266 bitmap_ior_into (bb_info->gen, group->group_kill);
3267 }
3268 }
3269 }
3270
3271
3272 /* Find all of the blocks that are not backwards reachable from the
3273 exit block or any block with no successors (BB). These are the
3274 infinite loops or infinite self loops. These blocks will still
3275 have their bits set in UNREACHABLE_BLOCKS. */
3276
3277 static void
3278 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3279 {
3280 edge e;
3281 edge_iterator ei;
3282
3283 if (TEST_BIT (unreachable_blocks, bb->index))
3284 {
3285 RESET_BIT (unreachable_blocks, bb->index);
3286 FOR_EACH_EDGE (e, ei, bb->preds)
3287 {
3288 mark_reachable_blocks (unreachable_blocks, e->src);
3289 }
3290 }
3291 }
3292
3293 /* Build the transfer functions for the function. */
3294
3295 static void
3296 dse_step3 (bool for_spills)
3297 {
3298 basic_block bb;
3299 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
3300 sbitmap_iterator sbi;
3301 bitmap all_ones = NULL;
3302 unsigned int i;
3303
3304 sbitmap_ones (unreachable_blocks);
3305
3306 FOR_ALL_BB (bb)
3307 {
3308 bb_info_t bb_info = bb_table[bb->index];
3309 if (bb_info->gen)
3310 bitmap_clear (bb_info->gen);
3311 else
3312 bb_info->gen = BITMAP_ALLOC (NULL);
3313
3314 if (bb->index == ENTRY_BLOCK)
3315 ;
3316 else if (bb->index == EXIT_BLOCK)
3317 dse_step3_exit_block_scan (bb_info);
3318 else
3319 dse_step3_scan (for_spills, bb);
3320 if (EDGE_COUNT (bb->succs) == 0)
3321 mark_reachable_blocks (unreachable_blocks, bb);
3322
3323 /* If this is the second time dataflow is run, delete the old
3324 sets. */
3325 if (bb_info->in)
3326 BITMAP_FREE (bb_info->in);
3327 if (bb_info->out)
3328 BITMAP_FREE (bb_info->out);
3329 }
3330
3331 /* For any block in an infinite loop, we must initialize the out set
3332 to all ones. This could be expensive, but almost never occurs in
3333 practice. However, it is common in regression tests. */
3334 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
3335 {
3336 if (bitmap_bit_p (all_blocks, i))
3337 {
3338 bb_info_t bb_info = bb_table[i];
3339 if (!all_ones)
3340 {
3341 unsigned int j;
3342 group_info_t group;
3343
3344 all_ones = BITMAP_ALLOC (NULL);
3345 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, j, group)
3346 bitmap_ior_into (all_ones, group->group_kill);
3347 }
3348 if (!bb_info->out)
3349 {
3350 bb_info->out = BITMAP_ALLOC (NULL);
3351 bitmap_copy (bb_info->out, all_ones);
3352 }
3353 }
3354 }
3355
3356 if (all_ones)
3357 BITMAP_FREE (all_ones);
3358 sbitmap_free (unreachable_blocks);
3359 }
3360
3361
3362 \f
3363 /*----------------------------------------------------------------------------
3364 Fourth step.
3365
3366 Solve the bitvector equations.
3367 ----------------------------------------------------------------------------*/
3368
3369
3370 /* Confluence function for blocks with no successors. Create an out
3371 set from the gen set of the exit block. This block logically has
3372 the exit block as a successor. */
3373
3374
3375
3376 static void
3377 dse_confluence_0 (basic_block bb)
3378 {
3379 bb_info_t bb_info = bb_table[bb->index];
3380
3381 if (bb->index == EXIT_BLOCK)
3382 return;
3383
3384 if (!bb_info->out)
3385 {
3386 bb_info->out = BITMAP_ALLOC (NULL);
3387 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3388 }
3389 }
3390
3391 /* Propagate the information from the in set of the dest of E to the
3392 out set of the src of E. If the various in or out sets are not
3393 there, that means they are all ones. */
3394
3395 static bool
3396 dse_confluence_n (edge e)
3397 {
3398 bb_info_t src_info = bb_table[e->src->index];
3399 bb_info_t dest_info = bb_table[e->dest->index];
3400
3401 if (dest_info->in)
3402 {
3403 if (src_info->out)
3404 bitmap_and_into (src_info->out, dest_info->in);
3405 else
3406 {
3407 src_info->out = BITMAP_ALLOC (NULL);
3408 bitmap_copy (src_info->out, dest_info->in);
3409 }
3410 }
3411 return true;
3412 }
3413
3414
3415 /* Propagate the info from the out to the in set of BB_INDEX's basic
3416 block. There are three cases:
3417
3418 1) The block has no kill set. In this case the kill set is all
3419 ones. It does not matter what the out set of the block is, none of
3420 the info can reach the top. The only thing that reaches the top is
3421 the gen set and we just copy the set.
3422
3423 2) There is a kill set but no out set and bb has successors. In
3424 this case we just return. Eventually an out set will be created and
3425 it is better to wait than to create a set of ones.
3426
3427 3) There is both a kill and out set. We apply the obvious transfer
3428 function.
3429 */
3430
3431 static bool
3432 dse_transfer_function (int bb_index)
3433 {
3434 bb_info_t bb_info = bb_table[bb_index];
3435
3436 if (bb_info->kill)
3437 {
3438 if (bb_info->out)
3439 {
3440 /* Case 3 above. */
3441 if (bb_info->in)
3442 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3443 bb_info->out, bb_info->kill);
3444 else
3445 {
3446 bb_info->in = BITMAP_ALLOC (NULL);
3447 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3448 bb_info->out, bb_info->kill);
3449 return true;
3450 }
3451 }
3452 else
3453 /* Case 2 above. */
3454 return false;
3455 }
3456 else
3457 {
3458 /* Case 1 above. If there is already an in set, nothing
3459 happens. */
3460 if (bb_info->in)
3461 return false;
3462 else
3463 {
3464 bb_info->in = BITMAP_ALLOC (NULL);
3465 bitmap_copy (bb_info->in, bb_info->gen);
3466 return true;
3467 }
3468 }
3469 }
3470
3471 /* Solve the dataflow equations. */
3472
3473 static void
3474 dse_step4 (void)
3475 {
3476 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3477 dse_confluence_n, dse_transfer_function,
3478 all_blocks, df_get_postorder (DF_BACKWARD),
3479 df_get_n_blocks (DF_BACKWARD));
3480 if (dump_file)
3481 {
3482 basic_block bb;
3483
3484 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3485 FOR_ALL_BB (bb)
3486 {
3487 bb_info_t bb_info = bb_table[bb->index];
3488
3489 df_print_bb_index (bb, dump_file);
3490 if (bb_info->in)
3491 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3492 else
3493 fprintf (dump_file, " in: *MISSING*\n");
3494 if (bb_info->gen)
3495 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3496 else
3497 fprintf (dump_file, " gen: *MISSING*\n");
3498 if (bb_info->kill)
3499 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3500 else
3501 fprintf (dump_file, " kill: *MISSING*\n");
3502 if (bb_info->out)
3503 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3504 else
3505 fprintf (dump_file, " out: *MISSING*\n\n");
3506 }
3507 }
3508 }
3509
3510
3511 \f
3512 /*----------------------------------------------------------------------------
3513 Fifth step.
3514
3515 Delete the stores that can only be deleted using the global information.
3516 ----------------------------------------------------------------------------*/
3517
3518
3519 static void
3520 dse_step5_nospill (void)
3521 {
3522 basic_block bb;
3523 FOR_EACH_BB (bb)
3524 {
3525 bb_info_t bb_info = bb_table[bb->index];
3526 insn_info_t insn_info = bb_info->last_insn;
3527 bitmap v = bb_info->out;
3528
3529 while (insn_info)
3530 {
3531 bool deleted = false;
3532 if (dump_file && insn_info->insn)
3533 {
3534 fprintf (dump_file, "starting to process insn %d\n",
3535 INSN_UID (insn_info->insn));
3536 bitmap_print (dump_file, v, " v: ", "\n");
3537 }
3538
3539 /* There may have been code deleted by the dce pass run before
3540 this phase. */
3541 if (insn_info->insn
3542 && INSN_P (insn_info->insn)
3543 && (!insn_info->cannot_delete)
3544 && (!bitmap_empty_p (v)))
3545 {
3546 store_info_t store_info = insn_info->store_rec;
3547
3548 /* Try to delete the current insn. */
3549 deleted = true;
3550
3551 /* Skip the clobbers. */
3552 while (!store_info->is_set)
3553 store_info = store_info->next;
3554
3555 if (store_info->alias_set)
3556 deleted = false;
3557 else
3558 {
3559 HOST_WIDE_INT i;
3560 group_info_t group_info
3561 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3562
3563 for (i = store_info->begin; i < store_info->end; i++)
3564 {
3565 int index = get_bitmap_index (group_info, i);
3566
3567 if (dump_file)
3568 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3569 if (index == 0 || !bitmap_bit_p (v, index))
3570 {
3571 if (dump_file)
3572 fprintf (dump_file, "failing at i = %d\n", (int)i);
3573 deleted = false;
3574 break;
3575 }
3576 }
3577 }
3578 if (deleted)
3579 {
3580 if (dbg_cnt (dse))
3581 {
3582 check_for_inc_dec (insn_info->insn);
3583 delete_insn (insn_info->insn);
3584 insn_info->insn = NULL;
3585 globally_deleted++;
3586 }
3587 }
3588 }
3589 /* We do want to process the local info if the insn was
3590 deleted. For instance, if the insn did a wild read, we
3591 no longer need to trash the info. */
3592 if (insn_info->insn
3593 && INSN_P (insn_info->insn)
3594 && (!deleted))
3595 {
3596 scan_stores_nospill (insn_info->store_rec, v, NULL);
3597 if (insn_info->wild_read)
3598 {
3599 if (dump_file)
3600 fprintf (dump_file, "wild read\n");
3601 bitmap_clear (v);
3602 }
3603 else if (insn_info->read_rec)
3604 {
3605 if (dump_file)
3606 fprintf (dump_file, "regular read\n");
3607 scan_reads_nospill (insn_info, v, NULL);
3608 }
3609 }
3610
3611 insn_info = insn_info->prev_insn;
3612 }
3613 }
3614 }
3615
3616
3617 static void
3618 dse_step5_spill (void)
3619 {
3620 basic_block bb;
3621 FOR_EACH_BB (bb)
3622 {
3623 bb_info_t bb_info = bb_table[bb->index];
3624 insn_info_t insn_info = bb_info->last_insn;
3625 bitmap v = bb_info->out;
3626
3627 while (insn_info)
3628 {
3629 bool deleted = false;
3630 /* There may have been code deleted by the dce pass run before
3631 this phase. */
3632 if (insn_info->insn
3633 && INSN_P (insn_info->insn)
3634 && (!insn_info->cannot_delete)
3635 && (!bitmap_empty_p (v)))
3636 {
3637 /* Try to delete the current insn. */
3638 store_info_t store_info = insn_info->store_rec;
3639 deleted = true;
3640
3641 while (store_info)
3642 {
3643 if (store_info->alias_set)
3644 {
3645 int index = get_bitmap_index (clear_alias_group,
3646 store_info->alias_set);
3647 if (index == 0 || !bitmap_bit_p (v, index))
3648 {
3649 deleted = false;
3650 break;
3651 }
3652 }
3653 else
3654 deleted = false;
3655 store_info = store_info->next;
3656 }
3657 if (deleted && dbg_cnt (dse))
3658 {
3659 if (dump_file)
3660 fprintf (dump_file, "Spill deleting insn %d\n",
3661 INSN_UID (insn_info->insn));
3662 check_for_inc_dec (insn_info->insn);
3663 delete_insn (insn_info->insn);
3664 spill_deleted++;
3665 insn_info->insn = NULL;
3666 }
3667 }
3668
3669 if (insn_info->insn
3670 && INSN_P (insn_info->insn)
3671 && (!deleted))
3672 {
3673 scan_stores_spill (insn_info->store_rec, v, NULL);
3674 scan_reads_spill (insn_info->read_rec, v, NULL);
3675 }
3676
3677 insn_info = insn_info->prev_insn;
3678 }
3679 }
3680 }
3681
3682
3683 \f
3684 /*----------------------------------------------------------------------------
3685 Sixth step.
3686
3687 Delete stores made redundant by earlier stores (which store the same
3688 value) that couldn't be eliminated.
3689 ----------------------------------------------------------------------------*/
3690
3691 static void
3692 dse_step6 (void)
3693 {
3694 basic_block bb;
3695
3696 FOR_ALL_BB (bb)
3697 {
3698 bb_info_t bb_info = bb_table[bb->index];
3699 insn_info_t insn_info = bb_info->last_insn;
3700
3701 while (insn_info)
3702 {
3703 /* There may have been code deleted by the dce pass run before
3704 this phase. */
3705 if (insn_info->insn
3706 && INSN_P (insn_info->insn)
3707 && !insn_info->cannot_delete)
3708 {
3709 store_info_t s_info = insn_info->store_rec;
3710
3711 while (s_info && !s_info->is_set)
3712 s_info = s_info->next;
3713 if (s_info
3714 && s_info->redundant_reason
3715 && s_info->redundant_reason->insn
3716 && INSN_P (s_info->redundant_reason->insn))
3717 {
3718 rtx rinsn = s_info->redundant_reason->insn;
3719 if (dump_file)
3720 fprintf (dump_file, "Locally deleting insn %d "
3721 "because insn %d stores the "
3722 "same value and couldn't be "
3723 "eliminated\n",
3724 INSN_UID (insn_info->insn),
3725 INSN_UID (rinsn));
3726 delete_dead_store_insn (insn_info);
3727 }
3728 }
3729 insn_info = insn_info->prev_insn;
3730 }
3731 }
3732 }
3733 \f
3734 /*----------------------------------------------------------------------------
3735 Seventh step.
3736
3737 Destroy everything left standing.
3738 ----------------------------------------------------------------------------*/
3739
3740 static void
3741 dse_step7 (bool global_done)
3742 {
3743 unsigned int i;
3744 group_info_t group;
3745 basic_block bb;
3746
3747 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3748 {
3749 free (group->offset_map_n);
3750 free (group->offset_map_p);
3751 BITMAP_FREE (group->store1_n);
3752 BITMAP_FREE (group->store1_p);
3753 BITMAP_FREE (group->store2_n);
3754 BITMAP_FREE (group->store2_p);
3755 BITMAP_FREE (group->group_kill);
3756 }
3757
3758 if (global_done)
3759 FOR_ALL_BB (bb)
3760 {
3761 bb_info_t bb_info = bb_table[bb->index];
3762 BITMAP_FREE (bb_info->gen);
3763 if (bb_info->kill)
3764 BITMAP_FREE (bb_info->kill);
3765 if (bb_info->in)
3766 BITMAP_FREE (bb_info->in);
3767 if (bb_info->out)
3768 BITMAP_FREE (bb_info->out);
3769 }
3770
3771 if (clear_alias_sets)
3772 {
3773 BITMAP_FREE (clear_alias_sets);
3774 BITMAP_FREE (disqualified_clear_alias_sets);
3775 free_alloc_pool (clear_alias_mode_pool);
3776 htab_delete (clear_alias_mode_table);
3777 }
3778
3779 end_alias_analysis ();
3780 free (bb_table);
3781 htab_delete (rtx_group_table);
3782 VEC_free (group_info_t, heap, rtx_group_vec);
3783 BITMAP_FREE (all_blocks);
3784 BITMAP_FREE (scratch);
3785
3786 free_alloc_pool (rtx_store_info_pool);
3787 free_alloc_pool (read_info_pool);
3788 free_alloc_pool (insn_info_pool);
3789 free_alloc_pool (bb_info_pool);
3790 free_alloc_pool (rtx_group_info_pool);
3791 free_alloc_pool (deferred_change_pool);
3792 }
3793
3794
3795 /* -------------------------------------------------------------------------
3796 DSE
3797 ------------------------------------------------------------------------- */
3798
3799 /* Callback for running pass_rtl_dse. */
3800
3801 static unsigned int
3802 rest_of_handle_dse (void)
3803 {
3804 bool did_global = false;
3805
3806 df_set_flags (DF_DEFER_INSN_RESCAN);
3807
3808 /* Need the notes since we must track live hardregs in the forwards
3809 direction. */
3810 df_note_add_problem ();
3811 df_analyze ();
3812
3813 dse_step0 ();
3814 dse_step1 ();
3815 dse_step2_init ();
3816 if (dse_step2_nospill ())
3817 {
3818 df_set_flags (DF_LR_RUN_DCE);
3819 df_analyze ();
3820 did_global = true;
3821 if (dump_file)
3822 fprintf (dump_file, "doing global processing\n");
3823 dse_step3 (false);
3824 dse_step4 ();
3825 dse_step5_nospill ();
3826 }
3827
3828 /* For the instance of dse that runs after reload, we make a special
3829 pass to process the spills. These are special in that they are
3830 totally transparent, i.e, there is no aliasing issues that need
3831 to be considered. This means that the wild reads that kill
3832 everything else do not apply here. */
3833 if (clear_alias_sets && dse_step2_spill ())
3834 {
3835 if (!did_global)
3836 {
3837 df_set_flags (DF_LR_RUN_DCE);
3838 df_analyze ();
3839 }
3840 did_global = true;
3841 if (dump_file)
3842 fprintf (dump_file, "doing global spill processing\n");
3843 dse_step3 (true);
3844 dse_step4 ();
3845 dse_step5_spill ();
3846 }
3847
3848 dse_step6 ();
3849 dse_step7 (did_global);
3850
3851 if (dump_file)
3852 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3853 locally_deleted, globally_deleted, spill_deleted);
3854 return 0;
3855 }
3856
3857 static bool
3858 gate_dse (void)
3859 {
3860 return gate_dse1 () || gate_dse2 ();
3861 }
3862
3863 static bool
3864 gate_dse1 (void)
3865 {
3866 return optimize > 0 && flag_dse
3867 && dbg_cnt (dse1);
3868 }
3869
3870 static bool
3871 gate_dse2 (void)
3872 {
3873 return optimize > 0 && flag_dse
3874 && dbg_cnt (dse2);
3875 }
3876
3877 struct rtl_opt_pass pass_rtl_dse1 =
3878 {
3879 {
3880 RTL_PASS,
3881 "dse1", /* name */
3882 gate_dse1, /* gate */
3883 rest_of_handle_dse, /* execute */
3884 NULL, /* sub */
3885 NULL, /* next */
3886 0, /* static_pass_number */
3887 TV_DSE1, /* tv_id */
3888 0, /* properties_required */
3889 0, /* properties_provided */
3890 0, /* properties_destroyed */
3891 0, /* todo_flags_start */
3892 TODO_dump_func |
3893 TODO_df_finish | TODO_verify_rtl_sharing |
3894 TODO_ggc_collect /* todo_flags_finish */
3895 }
3896 };
3897
3898 struct rtl_opt_pass pass_rtl_dse2 =
3899 {
3900 {
3901 RTL_PASS,
3902 "dse2", /* name */
3903 gate_dse2, /* gate */
3904 rest_of_handle_dse, /* execute */
3905 NULL, /* sub */
3906 NULL, /* next */
3907 0, /* static_pass_number */
3908 TV_DSE2, /* tv_id */
3909 0, /* properties_required */
3910 0, /* properties_provided */
3911 0, /* properties_destroyed */
3912 0, /* todo_flags_start */
3913 TODO_dump_func |
3914 TODO_df_finish | TODO_verify_rtl_sharing |
3915 TODO_ggc_collect /* todo_flags_finish */
3916 }
3917 };