bind_c_array_params_2.f90: Add "-mno-explicit-relocs" for alpha*-*-* targets.
[gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
6 and Kenneth Zadeck <zadeck@naturalbridge.com>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #undef BASELINE
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "hashtab.h"
30 #include "tm.h"
31 #include "rtl.h"
32 #include "tree.h"
33 #include "tm_p.h"
34 #include "regs.h"
35 #include "hard-reg-set.h"
36 #include "regset.h"
37 #include "flags.h"
38 #include "df.h"
39 #include "cselib.h"
40 #include "tree-pass.h"
41 #include "alloc-pool.h"
42 #include "alias.h"
43 #include "insn-config.h"
44 #include "expr.h"
45 #include "recog.h"
46 #include "optabs.h"
47 #include "dbgcnt.h"
48 #include "target.h"
49 #include "params.h"
50 #include "tree-flow.h" /* for may_be_aliased */
51
52 /* This file contains three techniques for performing Dead Store
53 Elimination (dse).
54
55 * The first technique performs dse locally on any base address. It
56 is based on the cselib which is a local value numbering technique.
57 This technique is local to a basic block but deals with a fairly
58 general addresses.
59
60 * The second technique performs dse globally but is restricted to
61 base addresses that are either constant or are relative to the
62 frame_pointer.
63
64 * The third technique, (which is only done after register allocation)
65 processes the spill spill slots. This differs from the second
66 technique because it takes advantage of the fact that spilling is
67 completely free from the effects of aliasing.
68
69 Logically, dse is a backwards dataflow problem. A store can be
70 deleted if it if cannot be reached in the backward direction by any
71 use of the value being stored. However, the local technique uses a
72 forwards scan of the basic block because cselib requires that the
73 block be processed in that order.
74
75 The pass is logically broken into 7 steps:
76
77 0) Initialization.
78
79 1) The local algorithm, as well as scanning the insns for the two
80 global algorithms.
81
82 2) Analysis to see if the global algs are necessary. In the case
83 of stores base on a constant address, there must be at least two
84 stores to that address, to make it possible to delete some of the
85 stores. In the case of stores off of the frame or spill related
86 stores, only one store to an address is necessary because those
87 stores die at the end of the function.
88
89 3) Set up the global dataflow equations based on processing the
90 info parsed in the first step.
91
92 4) Solve the dataflow equations.
93
94 5) Delete the insns that the global analysis has indicated are
95 unnecessary.
96
97 6) Delete insns that store the same value as preceding store
98 where the earlier store couldn't be eliminated.
99
100 7) Cleanup.
101
102 This step uses cselib and canon_rtx to build the largest expression
103 possible for each address. This pass is a forwards pass through
104 each basic block. From the point of view of the global technique,
105 the first pass could examine a block in either direction. The
106 forwards ordering is to accommodate cselib.
107
108 We a simplifying assumption: addresses fall into four broad
109 categories:
110
111 1) base has rtx_varies_p == false, offset is constant.
112 2) base has rtx_varies_p == false, offset variable.
113 3) base has rtx_varies_p == true, offset constant.
114 4) base has rtx_varies_p == true, offset variable.
115
116 The local passes are able to process all 4 kinds of addresses. The
117 global pass only handles (1).
118
119 The global problem is formulated as follows:
120
121 A store, S1, to address A, where A is not relative to the stack
122 frame, can be eliminated if all paths from S1 to the end of the
123 of the function contain another store to A before a read to A.
124
125 If the address A is relative to the stack frame, a store S2 to A
126 can be eliminated if there are no paths from S1 that reach the
127 end of the function that read A before another store to A. In
128 this case S2 can be deleted if there are paths to from S2 to the
129 end of the function that have no reads or writes to A. This
130 second case allows stores to the stack frame to be deleted that
131 would otherwise die when the function returns. This cannot be
132 done if stores_off_frame_dead_at_return is not true. See the doc
133 for that variable for when this variable is false.
134
135 The global problem is formulated as a backwards set union
136 dataflow problem where the stores are the gens and reads are the
137 kills. Set union problems are rare and require some special
138 handling given our representation of bitmaps. A straightforward
139 implementation of requires a lot of bitmaps filled with 1s.
140 These are expensive and cumbersome in our bitmap formulation so
141 care has been taken to avoid large vectors filled with 1s. See
142 the comments in bb_info and in the dataflow confluence functions
143 for details.
144
145 There are two places for further enhancements to this algorithm:
146
147 1) The original dse which was embedded in a pass called flow also
148 did local address forwarding. For example in
149
150 A <- r100
151 ... <- A
152
153 flow would replace the right hand side of the second insn with a
154 reference to r100. Most of the information is available to add this
155 to this pass. It has not done it because it is a lot of work in
156 the case that either r100 is assigned to between the first and
157 second insn and/or the second insn is a load of part of the value
158 stored by the first insn.
159
160 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
161 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
162 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
163 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
164
165 2) The cleaning up of spill code is quite profitable. It currently
166 depends on reading tea leaves and chicken entrails left by reload.
167 This pass depends on reload creating a singleton alias set for each
168 spill slot and telling the next dse pass which of these alias sets
169 are the singletons. Rather than analyze the addresses of the
170 spills, dse's spill processing just does analysis of the loads and
171 stores that use those alias sets. There are three cases where this
172 falls short:
173
174 a) Reload sometimes creates the slot for one mode of access, and
175 then inserts loads and/or stores for a smaller mode. In this
176 case, the current code just punts on the slot. The proper thing
177 to do is to back out and use one bit vector position for each
178 byte of the entity associated with the slot. This depends on
179 KNOWING that reload always generates the accesses for each of the
180 bytes in some canonical (read that easy to understand several
181 passes after reload happens) way.
182
183 b) Reload sometimes decides that spill slot it allocated was not
184 large enough for the mode and goes back and allocates more slots
185 with the same mode and alias set. The backout in this case is a
186 little more graceful than (a). In this case the slot is unmarked
187 as being a spill slot and if final address comes out to be based
188 off the frame pointer, the global algorithm handles this slot.
189
190 c) For any pass that may prespill, there is currently no
191 mechanism to tell the dse pass that the slot being used has the
192 special properties that reload uses. It may be that all that is
193 required is to have those passes make the same calls that reload
194 does, assuming that the alias sets can be manipulated in the same
195 way. */
196
197 /* There are limits to the size of constant offsets we model for the
198 global problem. There are certainly test cases, that exceed this
199 limit, however, it is unlikely that there are important programs
200 that really have constant offsets this size. */
201 #define MAX_OFFSET (64 * 1024)
202
203
204 static bitmap scratch = NULL;
205 struct insn_info;
206
207 /* This structure holds information about a candidate store. */
208 struct store_info
209 {
210
211 /* False means this is a clobber. */
212 bool is_set;
213
214 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
215 bool is_large;
216
217 /* The id of the mem group of the base address. If rtx_varies_p is
218 true, this is -1. Otherwise, it is the index into the group
219 table. */
220 int group_id;
221
222 /* This is the cselib value. */
223 cselib_val *cse_base;
224
225 /* This canonized mem. */
226 rtx mem;
227
228 /* Canonized MEM address for use by canon_true_dependence. */
229 rtx mem_addr;
230
231 /* If this is non-zero, it is the alias set of a spill location. */
232 alias_set_type alias_set;
233
234 /* The offset of the first and byte before the last byte associated
235 with the operation. */
236 HOST_WIDE_INT begin, end;
237
238 union
239 {
240 /* A bitmask as wide as the number of bytes in the word that
241 contains a 1 if the byte may be needed. The store is unused if
242 all of the bits are 0. This is used if IS_LARGE is false. */
243 unsigned HOST_WIDE_INT small_bitmask;
244
245 struct
246 {
247 /* A bitmap with one bit per byte. Cleared bit means the position
248 is needed. Used if IS_LARGE is false. */
249 bitmap bmap;
250
251 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
252 equal to END - BEGIN, the whole store is unused. */
253 int count;
254 } large;
255 } positions_needed;
256
257 /* The next store info for this insn. */
258 struct store_info *next;
259
260 /* The right hand side of the store. This is used if there is a
261 subsequent reload of the mems address somewhere later in the
262 basic block. */
263 rtx rhs;
264
265 /* If rhs is or holds a constant, this contains that constant,
266 otherwise NULL. */
267 rtx const_rhs;
268
269 /* Set if this store stores the same constant value as REDUNDANT_REASON
270 insn stored. These aren't eliminated early, because doing that
271 might prevent the earlier larger store to be eliminated. */
272 struct insn_info *redundant_reason;
273 };
274
275 /* Return a bitmask with the first N low bits set. */
276
277 static unsigned HOST_WIDE_INT
278 lowpart_bitmask (int n)
279 {
280 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
281 return mask >> (HOST_BITS_PER_WIDE_INT - n);
282 }
283
284 typedef struct store_info *store_info_t;
285 static alloc_pool cse_store_info_pool;
286 static alloc_pool rtx_store_info_pool;
287
288 /* This structure holds information about a load. These are only
289 built for rtx bases. */
290 struct read_info
291 {
292 /* The id of the mem group of the base address. */
293 int group_id;
294
295 /* If this is non-zero, it is the alias set of a spill location. */
296 alias_set_type alias_set;
297
298 /* The offset of the first and byte after the last byte associated
299 with the operation. If begin == end == 0, the read did not have
300 a constant offset. */
301 int begin, end;
302
303 /* The mem being read. */
304 rtx mem;
305
306 /* The next read_info for this insn. */
307 struct read_info *next;
308 };
309 typedef struct read_info *read_info_t;
310 static alloc_pool read_info_pool;
311
312
313 /* One of these records is created for each insn. */
314
315 struct insn_info
316 {
317 /* Set true if the insn contains a store but the insn itself cannot
318 be deleted. This is set if the insn is a parallel and there is
319 more than one non dead output or if the insn is in some way
320 volatile. */
321 bool cannot_delete;
322
323 /* This field is only used by the global algorithm. It is set true
324 if the insn contains any read of mem except for a (1). This is
325 also set if the insn is a call or has a clobber mem. If the insn
326 contains a wild read, the use_rec will be null. */
327 bool wild_read;
328
329 /* This is true only for CALL instructions which could potentially read
330 any non-frame memory location. This field is used by the global
331 algorithm. */
332 bool non_frame_wild_read;
333
334 /* This field is only used for the processing of const functions.
335 These functions cannot read memory, but they can read the stack
336 because that is where they may get their parms. We need to be
337 this conservative because, like the store motion pass, we don't
338 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
339 Moreover, we need to distinguish two cases:
340 1. Before reload (register elimination), the stores related to
341 outgoing arguments are stack pointer based and thus deemed
342 of non-constant base in this pass. This requires special
343 handling but also means that the frame pointer based stores
344 need not be killed upon encountering a const function call.
345 2. After reload, the stores related to outgoing arguments can be
346 either stack pointer or hard frame pointer based. This means
347 that we have no other choice than also killing all the frame
348 pointer based stores upon encountering a const function call.
349 This field is set after reload for const function calls. Having
350 this set is less severe than a wild read, it just means that all
351 the frame related stores are killed rather than all the stores. */
352 bool frame_read;
353
354 /* This field is only used for the processing of const functions.
355 It is set if the insn may contain a stack pointer based store. */
356 bool stack_pointer_based;
357
358 /* This is true if any of the sets within the store contains a
359 cselib base. Such stores can only be deleted by the local
360 algorithm. */
361 bool contains_cselib_groups;
362
363 /* The insn. */
364 rtx insn;
365
366 /* The list of mem sets or mem clobbers that are contained in this
367 insn. If the insn is deletable, it contains only one mem set.
368 But it could also contain clobbers. Insns that contain more than
369 one mem set are not deletable, but each of those mems are here in
370 order to provide info to delete other insns. */
371 store_info_t store_rec;
372
373 /* The linked list of mem uses in this insn. Only the reads from
374 rtx bases are listed here. The reads to cselib bases are
375 completely processed during the first scan and so are never
376 created. */
377 read_info_t read_rec;
378
379 /* The live fixed registers. We assume only fixed registers can
380 cause trouble by being clobbered from an expanded pattern;
381 storing only the live fixed registers (rather than all registers)
382 means less memory needs to be allocated / copied for the individual
383 stores. */
384 regset fixed_regs_live;
385
386 /* The prev insn in the basic block. */
387 struct insn_info * prev_insn;
388
389 /* The linked list of insns that are in consideration for removal in
390 the forwards pass through the basic block. This pointer may be
391 trash as it is not cleared when a wild read occurs. The only
392 time it is guaranteed to be correct is when the traversal starts
393 at active_local_stores. */
394 struct insn_info * next_local_store;
395 };
396
397 typedef struct insn_info *insn_info_t;
398 static alloc_pool insn_info_pool;
399
400 /* The linked list of stores that are under consideration in this
401 basic block. */
402 static insn_info_t active_local_stores;
403 static int active_local_stores_len;
404
405 struct bb_info
406 {
407
408 /* Pointer to the insn info for the last insn in the block. These
409 are linked so this is how all of the insns are reached. During
410 scanning this is the current insn being scanned. */
411 insn_info_t last_insn;
412
413 /* The info for the global dataflow problem. */
414
415
416 /* This is set if the transfer function should and in the wild_read
417 bitmap before applying the kill and gen sets. That vector knocks
418 out most of the bits in the bitmap and thus speeds up the
419 operations. */
420 bool apply_wild_read;
421
422 /* The following 4 bitvectors hold information about which positions
423 of which stores are live or dead. They are indexed by
424 get_bitmap_index. */
425
426 /* The set of store positions that exist in this block before a wild read. */
427 bitmap gen;
428
429 /* The set of load positions that exist in this block above the
430 same position of a store. */
431 bitmap kill;
432
433 /* The set of stores that reach the top of the block without being
434 killed by a read.
435
436 Do not represent the in if it is all ones. Note that this is
437 what the bitvector should logically be initialized to for a set
438 intersection problem. However, like the kill set, this is too
439 expensive. So initially, the in set will only be created for the
440 exit block and any block that contains a wild read. */
441 bitmap in;
442
443 /* The set of stores that reach the bottom of the block from it's
444 successors.
445
446 Do not represent the in if it is all ones. Note that this is
447 what the bitvector should logically be initialized to for a set
448 intersection problem. However, like the kill and in set, this is
449 too expensive. So what is done is that the confluence operator
450 just initializes the vector from one of the out sets of the
451 successors of the block. */
452 bitmap out;
453
454 /* The following bitvector is indexed by the reg number. It
455 contains the set of regs that are live at the current instruction
456 being processed. While it contains info for all of the
457 registers, only the hard registers are actually examined. It is used
458 to assure that shift and/or add sequences that are inserted do not
459 accidentally clobber live hard regs. */
460 bitmap regs_live;
461 };
462
463 typedef struct bb_info *bb_info_t;
464 static alloc_pool bb_info_pool;
465
466 /* Table to hold all bb_infos. */
467 static bb_info_t *bb_table;
468
469 /* There is a group_info for each rtx base that is used to reference
470 memory. There are also not many of the rtx bases because they are
471 very limited in scope. */
472
473 struct group_info
474 {
475 /* The actual base of the address. */
476 rtx rtx_base;
477
478 /* The sequential id of the base. This allows us to have a
479 canonical ordering of these that is not based on addresses. */
480 int id;
481
482 /* True if there are any positions that are to be processed
483 globally. */
484 bool process_globally;
485
486 /* True if the base of this group is either the frame_pointer or
487 hard_frame_pointer. */
488 bool frame_related;
489
490 /* A mem wrapped around the base pointer for the group in order to do
491 read dependency. It must be given BLKmode in order to encompass all
492 the possible offsets from the base. */
493 rtx base_mem;
494
495 /* Canonized version of base_mem's address. */
496 rtx canon_base_addr;
497
498 /* These two sets of two bitmaps are used to keep track of how many
499 stores are actually referencing that position from this base. We
500 only do this for rtx bases as this will be used to assign
501 positions in the bitmaps for the global problem. Bit N is set in
502 store1 on the first store for offset N. Bit N is set in store2
503 for the second store to offset N. This is all we need since we
504 only care about offsets that have two or more stores for them.
505
506 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
507 for 0 and greater offsets.
508
509 There is one special case here, for stores into the stack frame,
510 we will or store1 into store2 before deciding which stores look
511 at globally. This is because stores to the stack frame that have
512 no other reads before the end of the function can also be
513 deleted. */
514 bitmap store1_n, store1_p, store2_n, store2_p;
515
516 /* These bitmaps keep track of offsets in this group escape this function.
517 An offset escapes if it corresponds to a named variable whose
518 addressable flag is set. */
519 bitmap escaped_n, escaped_p;
520
521 /* The positions in this bitmap have the same assignments as the in,
522 out, gen and kill bitmaps. This bitmap is all zeros except for
523 the positions that are occupied by stores for this group. */
524 bitmap group_kill;
525
526 /* The offset_map is used to map the offsets from this base into
527 positions in the global bitmaps. It is only created after all of
528 the all of stores have been scanned and we know which ones we
529 care about. */
530 int *offset_map_n, *offset_map_p;
531 int offset_map_size_n, offset_map_size_p;
532 };
533 typedef struct group_info *group_info_t;
534 typedef const struct group_info *const_group_info_t;
535 static alloc_pool rtx_group_info_pool;
536
537 /* Tables of group_info structures, hashed by base value. */
538 static htab_t rtx_group_table;
539
540 /* Index into the rtx_group_vec. */
541 static int rtx_group_next_id;
542
543 DEF_VEC_P(group_info_t);
544 DEF_VEC_ALLOC_P(group_info_t,heap);
545
546 static VEC(group_info_t,heap) *rtx_group_vec;
547
548
549 /* This structure holds the set of changes that are being deferred
550 when removing read operation. See replace_read. */
551 struct deferred_change
552 {
553
554 /* The mem that is being replaced. */
555 rtx *loc;
556
557 /* The reg it is being replaced with. */
558 rtx reg;
559
560 struct deferred_change *next;
561 };
562
563 typedef struct deferred_change *deferred_change_t;
564 static alloc_pool deferred_change_pool;
565
566 static deferred_change_t deferred_change_list = NULL;
567
568 /* This are used to hold the alias sets of spill variables. Since
569 these are never aliased and there may be a lot of them, it makes
570 sense to treat them specially. This bitvector is only allocated in
571 calls from dse_record_singleton_alias_set which currently is only
572 made during reload1. So when dse is called before reload this
573 mechanism does nothing. */
574
575 static bitmap clear_alias_sets = NULL;
576
577 /* The set of clear_alias_sets that have been disqualified because
578 there are loads or stores using a different mode than the alias set
579 was registered with. */
580 static bitmap disqualified_clear_alias_sets = NULL;
581
582 /* The group that holds all of the clear_alias_sets. */
583 static group_info_t clear_alias_group;
584
585 /* The modes of the clear_alias_sets. */
586 static htab_t clear_alias_mode_table;
587
588 /* Hash table element to look up the mode for an alias set. */
589 struct clear_alias_mode_holder
590 {
591 alias_set_type alias_set;
592 enum machine_mode mode;
593 };
594
595 static alloc_pool clear_alias_mode_pool;
596
597 /* This is true except if cfun->stdarg -- i.e. we cannot do
598 this for vararg functions because they play games with the frame. */
599 static bool stores_off_frame_dead_at_return;
600
601 /* Counter for stats. */
602 static int globally_deleted;
603 static int locally_deleted;
604 static int spill_deleted;
605
606 static bitmap all_blocks;
607
608 /* Locations that are killed by calls in the global phase. */
609 static bitmap kill_on_calls;
610
611 /* The number of bits used in the global bitmaps. */
612 static unsigned int current_position;
613
614
615 static bool gate_dse1 (void);
616 static bool gate_dse2 (void);
617
618 \f
619 /*----------------------------------------------------------------------------
620 Zeroth step.
621
622 Initialization.
623 ----------------------------------------------------------------------------*/
624
625
626 /* Find the entry associated with ALIAS_SET. */
627
628 static struct clear_alias_mode_holder *
629 clear_alias_set_lookup (alias_set_type alias_set)
630 {
631 struct clear_alias_mode_holder tmp_holder;
632 void **slot;
633
634 tmp_holder.alias_set = alias_set;
635 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
636 gcc_assert (*slot);
637
638 return (struct clear_alias_mode_holder *) *slot;
639 }
640
641
642 /* Hashtable callbacks for maintaining the "bases" field of
643 store_group_info, given that the addresses are function invariants. */
644
645 static int
646 invariant_group_base_eq (const void *p1, const void *p2)
647 {
648 const_group_info_t gi1 = (const_group_info_t) p1;
649 const_group_info_t gi2 = (const_group_info_t) p2;
650 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
651 }
652
653
654 static hashval_t
655 invariant_group_base_hash (const void *p)
656 {
657 const_group_info_t gi = (const_group_info_t) p;
658 int do_not_record;
659 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
660 }
661
662
663 /* Get the GROUP for BASE. Add a new group if it is not there. */
664
665 static group_info_t
666 get_group_info (rtx base)
667 {
668 struct group_info tmp_gi;
669 group_info_t gi;
670 void **slot;
671
672 if (base)
673 {
674 /* Find the store_base_info structure for BASE, creating a new one
675 if necessary. */
676 tmp_gi.rtx_base = base;
677 slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
678 gi = (group_info_t) *slot;
679 }
680 else
681 {
682 if (!clear_alias_group)
683 {
684 clear_alias_group = gi =
685 (group_info_t) pool_alloc (rtx_group_info_pool);
686 memset (gi, 0, sizeof (struct group_info));
687 gi->id = rtx_group_next_id++;
688 gi->store1_n = BITMAP_ALLOC (NULL);
689 gi->store1_p = BITMAP_ALLOC (NULL);
690 gi->store2_n = BITMAP_ALLOC (NULL);
691 gi->store2_p = BITMAP_ALLOC (NULL);
692 gi->escaped_p = BITMAP_ALLOC (NULL);
693 gi->escaped_n = BITMAP_ALLOC (NULL);
694 gi->group_kill = BITMAP_ALLOC (NULL);
695 gi->process_globally = false;
696 gi->offset_map_size_n = 0;
697 gi->offset_map_size_p = 0;
698 gi->offset_map_n = NULL;
699 gi->offset_map_p = NULL;
700 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
701 }
702 return clear_alias_group;
703 }
704
705 if (gi == NULL)
706 {
707 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
708 gi->rtx_base = base;
709 gi->id = rtx_group_next_id++;
710 gi->base_mem = gen_rtx_MEM (BLKmode, base);
711 gi->canon_base_addr = canon_rtx (base);
712 gi->store1_n = BITMAP_ALLOC (NULL);
713 gi->store1_p = BITMAP_ALLOC (NULL);
714 gi->store2_n = BITMAP_ALLOC (NULL);
715 gi->store2_p = BITMAP_ALLOC (NULL);
716 gi->escaped_p = BITMAP_ALLOC (NULL);
717 gi->escaped_n = BITMAP_ALLOC (NULL);
718 gi->group_kill = BITMAP_ALLOC (NULL);
719 gi->process_globally = false;
720 gi->frame_related =
721 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
722 gi->offset_map_size_n = 0;
723 gi->offset_map_size_p = 0;
724 gi->offset_map_n = NULL;
725 gi->offset_map_p = NULL;
726 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
727 }
728
729 return gi;
730 }
731
732
733 /* Initialization of data structures. */
734
735 static void
736 dse_step0 (void)
737 {
738 locally_deleted = 0;
739 globally_deleted = 0;
740 spill_deleted = 0;
741
742 scratch = BITMAP_ALLOC (NULL);
743 kill_on_calls = BITMAP_ALLOC (NULL);
744
745 rtx_store_info_pool
746 = create_alloc_pool ("rtx_store_info_pool",
747 sizeof (struct store_info), 100);
748 read_info_pool
749 = create_alloc_pool ("read_info_pool",
750 sizeof (struct read_info), 100);
751 insn_info_pool
752 = create_alloc_pool ("insn_info_pool",
753 sizeof (struct insn_info), 100);
754 bb_info_pool
755 = create_alloc_pool ("bb_info_pool",
756 sizeof (struct bb_info), 100);
757 rtx_group_info_pool
758 = create_alloc_pool ("rtx_group_info_pool",
759 sizeof (struct group_info), 100);
760 deferred_change_pool
761 = create_alloc_pool ("deferred_change_pool",
762 sizeof (struct deferred_change), 10);
763
764 rtx_group_table = htab_create (11, invariant_group_base_hash,
765 invariant_group_base_eq, NULL);
766
767 bb_table = XCNEWVEC (bb_info_t, last_basic_block);
768 rtx_group_next_id = 0;
769
770 stores_off_frame_dead_at_return = !cfun->stdarg;
771
772 init_alias_analysis ();
773
774 if (clear_alias_sets)
775 clear_alias_group = get_group_info (NULL);
776 else
777 clear_alias_group = NULL;
778 }
779
780
781 \f
782 /*----------------------------------------------------------------------------
783 First step.
784
785 Scan all of the insns. Any random ordering of the blocks is fine.
786 Each block is scanned in forward order to accommodate cselib which
787 is used to remove stores with non-constant bases.
788 ----------------------------------------------------------------------------*/
789
790 /* Delete all of the store_info recs from INSN_INFO. */
791
792 static void
793 free_store_info (insn_info_t insn_info)
794 {
795 store_info_t store_info = insn_info->store_rec;
796 while (store_info)
797 {
798 store_info_t next = store_info->next;
799 if (store_info->is_large)
800 BITMAP_FREE (store_info->positions_needed.large.bmap);
801 if (store_info->cse_base)
802 pool_free (cse_store_info_pool, store_info);
803 else
804 pool_free (rtx_store_info_pool, store_info);
805 store_info = next;
806 }
807
808 insn_info->cannot_delete = true;
809 insn_info->contains_cselib_groups = false;
810 insn_info->store_rec = NULL;
811 }
812
813 typedef struct
814 {
815 rtx first, current;
816 regset fixed_regs_live;
817 bool failure;
818 } note_add_store_info;
819
820 /* Callback for emit_inc_dec_insn_before via note_stores.
821 Check if a register is clobbered which is live afterwards. */
822
823 static void
824 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
825 {
826 rtx insn;
827 note_add_store_info *info = (note_add_store_info *) data;
828 int r, n;
829
830 if (!REG_P (loc))
831 return;
832
833 /* If this register is referenced by the current or an earlier insn,
834 that's OK. E.g. this applies to the register that is being incremented
835 with this addition. */
836 for (insn = info->first;
837 insn != NEXT_INSN (info->current);
838 insn = NEXT_INSN (insn))
839 if (reg_referenced_p (loc, PATTERN (insn)))
840 return;
841
842 /* If we come here, we have a clobber of a register that's only OK
843 if that register is not live. If we don't have liveness information
844 available, fail now. */
845 if (!info->fixed_regs_live)
846 {
847 info->failure = true;
848 return;
849 }
850 /* Now check if this is a live fixed register. */
851 r = REGNO (loc);
852 n = hard_regno_nregs[r][GET_MODE (loc)];
853 while (--n >= 0)
854 if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
855 info->failure = true;
856 }
857
858 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
859 SRC + SRCOFF before insn ARG. */
860
861 static int
862 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
863 rtx op ATTRIBUTE_UNUSED,
864 rtx dest, rtx src, rtx srcoff, void *arg)
865 {
866 insn_info_t insn_info = (insn_info_t) arg;
867 rtx insn = insn_info->insn, new_insn, cur;
868 note_add_store_info info;
869
870 /* We can reuse all operands without copying, because we are about
871 to delete the insn that contained it. */
872 if (srcoff)
873 {
874 start_sequence ();
875 emit_insn (gen_add3_insn (dest, src, srcoff));
876 new_insn = get_insns ();
877 end_sequence ();
878 }
879 else
880 new_insn = gen_move_insn (dest, src);
881 info.first = new_insn;
882 info.fixed_regs_live = insn_info->fixed_regs_live;
883 info.failure = false;
884 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
885 {
886 info.current = cur;
887 note_stores (PATTERN (cur), note_add_store, &info);
888 }
889
890 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
891 return it immediately, communicating the failure to its caller. */
892 if (info.failure)
893 return 1;
894
895 emit_insn_before (new_insn, insn);
896
897 return -1;
898 }
899
900 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
901 is there, is split into a separate insn.
902 Return true on success (or if there was nothing to do), false on failure. */
903
904 static bool
905 check_for_inc_dec_1 (insn_info_t insn_info)
906 {
907 rtx insn = insn_info->insn;
908 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
909 if (note)
910 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0;
911 return true;
912 }
913
914
915 /* Entry point for postreload. If you work on reload_cse, or you need this
916 anywhere else, consider if you can provide register liveness information
917 and add a parameter to this function so that it can be passed down in
918 insn_info.fixed_regs_live. */
919 bool
920 check_for_inc_dec (rtx insn)
921 {
922 struct insn_info insn_info;
923 rtx note;
924
925 insn_info.insn = insn;
926 insn_info.fixed_regs_live = NULL;
927 note = find_reg_note (insn, REG_INC, NULL_RTX);
928 if (note)
929 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0;
930 return true;
931 }
932
933 /* Delete the insn and free all of the fields inside INSN_INFO. */
934
935 static void
936 delete_dead_store_insn (insn_info_t insn_info)
937 {
938 read_info_t read_info;
939
940 if (!dbg_cnt (dse))
941 return;
942
943 if (!check_for_inc_dec_1 (insn_info))
944 return;
945 if (dump_file)
946 {
947 fprintf (dump_file, "Locally deleting insn %d ",
948 INSN_UID (insn_info->insn));
949 if (insn_info->store_rec->alias_set)
950 fprintf (dump_file, "alias set %d\n",
951 (int) insn_info->store_rec->alias_set);
952 else
953 fprintf (dump_file, "\n");
954 }
955
956 free_store_info (insn_info);
957 read_info = insn_info->read_rec;
958
959 while (read_info)
960 {
961 read_info_t next = read_info->next;
962 pool_free (read_info_pool, read_info);
963 read_info = next;
964 }
965 insn_info->read_rec = NULL;
966
967 delete_insn (insn_info->insn);
968 locally_deleted++;
969 insn_info->insn = NULL;
970
971 insn_info->wild_read = false;
972 }
973
974 /* Check if EXPR can possibly escape the current function scope. */
975 static bool
976 can_escape (tree expr)
977 {
978 tree base;
979 if (!expr)
980 return true;
981 base = get_base_address (expr);
982 if (DECL_P (base)
983 && !may_be_aliased (base))
984 return false;
985 return true;
986 }
987
988 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
989 OFFSET and WIDTH. */
990
991 static void
992 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
993 tree expr)
994 {
995 HOST_WIDE_INT i;
996 bool expr_escapes = can_escape (expr);
997 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
998 for (i=offset; i<offset+width; i++)
999 {
1000 bitmap store1;
1001 bitmap store2;
1002 bitmap escaped;
1003 int ai;
1004 if (i < 0)
1005 {
1006 store1 = group->store1_n;
1007 store2 = group->store2_n;
1008 escaped = group->escaped_n;
1009 ai = -i;
1010 }
1011 else
1012 {
1013 store1 = group->store1_p;
1014 store2 = group->store2_p;
1015 escaped = group->escaped_p;
1016 ai = i;
1017 }
1018
1019 if (!bitmap_set_bit (store1, ai))
1020 bitmap_set_bit (store2, ai);
1021 else
1022 {
1023 if (i < 0)
1024 {
1025 if (group->offset_map_size_n < ai)
1026 group->offset_map_size_n = ai;
1027 }
1028 else
1029 {
1030 if (group->offset_map_size_p < ai)
1031 group->offset_map_size_p = ai;
1032 }
1033 }
1034 if (expr_escapes)
1035 bitmap_set_bit (escaped, ai);
1036 }
1037 }
1038
1039 static void
1040 reset_active_stores (void)
1041 {
1042 active_local_stores = NULL;
1043 active_local_stores_len = 0;
1044 }
1045
1046 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1047
1048 static void
1049 free_read_records (bb_info_t bb_info)
1050 {
1051 insn_info_t insn_info = bb_info->last_insn;
1052 read_info_t *ptr = &insn_info->read_rec;
1053 while (*ptr)
1054 {
1055 read_info_t next = (*ptr)->next;
1056 if ((*ptr)->alias_set == 0)
1057 {
1058 pool_free (read_info_pool, *ptr);
1059 *ptr = next;
1060 }
1061 else
1062 ptr = &(*ptr)->next;
1063 }
1064 }
1065
1066 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1067
1068 static void
1069 add_wild_read (bb_info_t bb_info)
1070 {
1071 insn_info_t insn_info = bb_info->last_insn;
1072 insn_info->wild_read = true;
1073 free_read_records (bb_info);
1074 reset_active_stores ();
1075 }
1076
1077 /* Set the BB_INFO so that the last insn is marked as a wild read of
1078 non-frame locations. */
1079
1080 static void
1081 add_non_frame_wild_read (bb_info_t bb_info)
1082 {
1083 insn_info_t insn_info = bb_info->last_insn;
1084 insn_info->non_frame_wild_read = true;
1085 free_read_records (bb_info);
1086 reset_active_stores ();
1087 }
1088
1089 /* Return true if X is a constant or one of the registers that behave
1090 as a constant over the life of a function. This is equivalent to
1091 !rtx_varies_p for memory addresses. */
1092
1093 static bool
1094 const_or_frame_p (rtx x)
1095 {
1096 switch (GET_CODE (x))
1097 {
1098 case CONST:
1099 case CONST_INT:
1100 case CONST_DOUBLE:
1101 case CONST_VECTOR:
1102 case SYMBOL_REF:
1103 case LABEL_REF:
1104 return true;
1105
1106 case REG:
1107 /* Note that we have to test for the actual rtx used for the frame
1108 and arg pointers and not just the register number in case we have
1109 eliminated the frame and/or arg pointer and are using it
1110 for pseudos. */
1111 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1112 /* The arg pointer varies if it is not a fixed register. */
1113 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1114 || x == pic_offset_table_rtx)
1115 return true;
1116 return false;
1117
1118 default:
1119 return false;
1120 }
1121 }
1122
1123 /* Take all reasonable action to put the address of MEM into the form
1124 that we can do analysis on.
1125
1126 The gold standard is to get the address into the form: address +
1127 OFFSET where address is something that rtx_varies_p considers a
1128 constant. When we can get the address in this form, we can do
1129 global analysis on it. Note that for constant bases, address is
1130 not actually returned, only the group_id. The address can be
1131 obtained from that.
1132
1133 If that fails, we try cselib to get a value we can at least use
1134 locally. If that fails we return false.
1135
1136 The GROUP_ID is set to -1 for cselib bases and the index of the
1137 group for non_varying bases.
1138
1139 FOR_READ is true if this is a mem read and false if not. */
1140
1141 static bool
1142 canon_address (rtx mem,
1143 alias_set_type *alias_set_out,
1144 int *group_id,
1145 HOST_WIDE_INT *offset,
1146 cselib_val **base)
1147 {
1148 enum machine_mode address_mode = get_address_mode (mem);
1149 rtx mem_address = XEXP (mem, 0);
1150 rtx expanded_address, address;
1151 int expanded;
1152
1153 /* Make sure that cselib is has initialized all of the operands of
1154 the address before asking it to do the subst. */
1155
1156 if (clear_alias_sets)
1157 {
1158 /* If this is a spill, do not do any further processing. */
1159 alias_set_type alias_set = MEM_ALIAS_SET (mem);
1160 if (dump_file)
1161 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1162 if (bitmap_bit_p (clear_alias_sets, alias_set))
1163 {
1164 struct clear_alias_mode_holder *entry
1165 = clear_alias_set_lookup (alias_set);
1166
1167 /* If the modes do not match, we cannot process this set. */
1168 if (entry->mode != GET_MODE (mem))
1169 {
1170 if (dump_file)
1171 fprintf (dump_file,
1172 "disqualifying alias set %d, (%s) != (%s)\n",
1173 (int) alias_set, GET_MODE_NAME (entry->mode),
1174 GET_MODE_NAME (GET_MODE (mem)));
1175
1176 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1177 return false;
1178 }
1179
1180 *alias_set_out = alias_set;
1181 *group_id = clear_alias_group->id;
1182 return true;
1183 }
1184 }
1185
1186 *alias_set_out = 0;
1187
1188 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1189
1190 if (dump_file)
1191 {
1192 fprintf (dump_file, " mem: ");
1193 print_inline_rtx (dump_file, mem_address, 0);
1194 fprintf (dump_file, "\n");
1195 }
1196
1197 /* First see if just canon_rtx (mem_address) is const or frame,
1198 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1199 address = NULL_RTX;
1200 for (expanded = 0; expanded < 2; expanded++)
1201 {
1202 if (expanded)
1203 {
1204 /* Use cselib to replace all of the reg references with the full
1205 expression. This will take care of the case where we have
1206
1207 r_x = base + offset;
1208 val = *r_x;
1209
1210 by making it into
1211
1212 val = *(base + offset); */
1213
1214 expanded_address = cselib_expand_value_rtx (mem_address,
1215 scratch, 5);
1216
1217 /* If this fails, just go with the address from first
1218 iteration. */
1219 if (!expanded_address)
1220 break;
1221 }
1222 else
1223 expanded_address = mem_address;
1224
1225 /* Split the address into canonical BASE + OFFSET terms. */
1226 address = canon_rtx (expanded_address);
1227
1228 *offset = 0;
1229
1230 if (dump_file)
1231 {
1232 if (expanded)
1233 {
1234 fprintf (dump_file, "\n after cselib_expand address: ");
1235 print_inline_rtx (dump_file, expanded_address, 0);
1236 fprintf (dump_file, "\n");
1237 }
1238
1239 fprintf (dump_file, "\n after canon_rtx address: ");
1240 print_inline_rtx (dump_file, address, 0);
1241 fprintf (dump_file, "\n");
1242 }
1243
1244 if (GET_CODE (address) == CONST)
1245 address = XEXP (address, 0);
1246
1247 if (GET_CODE (address) == PLUS
1248 && CONST_INT_P (XEXP (address, 1)))
1249 {
1250 *offset = INTVAL (XEXP (address, 1));
1251 address = XEXP (address, 0);
1252 }
1253
1254 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1255 && const_or_frame_p (address))
1256 {
1257 group_info_t group = get_group_info (address);
1258
1259 if (dump_file)
1260 fprintf (dump_file, " gid=%d offset=%d \n",
1261 group->id, (int)*offset);
1262 *base = NULL;
1263 *group_id = group->id;
1264 return true;
1265 }
1266 }
1267
1268 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1269 *group_id = -1;
1270
1271 if (*base == NULL)
1272 {
1273 if (dump_file)
1274 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1275 return false;
1276 }
1277 if (dump_file)
1278 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1279 (*base)->uid, (*base)->hash, (int)*offset);
1280 return true;
1281 }
1282
1283
1284 /* Clear the rhs field from the active_local_stores array. */
1285
1286 static void
1287 clear_rhs_from_active_local_stores (void)
1288 {
1289 insn_info_t ptr = active_local_stores;
1290
1291 while (ptr)
1292 {
1293 store_info_t store_info = ptr->store_rec;
1294 /* Skip the clobbers. */
1295 while (!store_info->is_set)
1296 store_info = store_info->next;
1297
1298 store_info->rhs = NULL;
1299 store_info->const_rhs = NULL;
1300
1301 ptr = ptr->next_local_store;
1302 }
1303 }
1304
1305
1306 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1307
1308 static inline void
1309 set_position_unneeded (store_info_t s_info, int pos)
1310 {
1311 if (__builtin_expect (s_info->is_large, false))
1312 {
1313 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1314 s_info->positions_needed.large.count++;
1315 }
1316 else
1317 s_info->positions_needed.small_bitmask
1318 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1319 }
1320
1321 /* Mark the whole store S_INFO as unneeded. */
1322
1323 static inline void
1324 set_all_positions_unneeded (store_info_t s_info)
1325 {
1326 if (__builtin_expect (s_info->is_large, false))
1327 {
1328 int pos, end = s_info->end - s_info->begin;
1329 for (pos = 0; pos < end; pos++)
1330 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1331 s_info->positions_needed.large.count = end;
1332 }
1333 else
1334 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1335 }
1336
1337 /* Return TRUE if any bytes from S_INFO store are needed. */
1338
1339 static inline bool
1340 any_positions_needed_p (store_info_t s_info)
1341 {
1342 if (__builtin_expect (s_info->is_large, false))
1343 return (s_info->positions_needed.large.count
1344 < s_info->end - s_info->begin);
1345 else
1346 return (s_info->positions_needed.small_bitmask
1347 != (unsigned HOST_WIDE_INT) 0);
1348 }
1349
1350 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1351 store are needed. */
1352
1353 static inline bool
1354 all_positions_needed_p (store_info_t s_info, int start, int width)
1355 {
1356 if (__builtin_expect (s_info->is_large, false))
1357 {
1358 int end = start + width;
1359 while (start < end)
1360 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1361 return false;
1362 return true;
1363 }
1364 else
1365 {
1366 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1367 return (s_info->positions_needed.small_bitmask & mask) == mask;
1368 }
1369 }
1370
1371
1372 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1373 HOST_WIDE_INT, basic_block, bool);
1374
1375
1376 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1377 there is a candidate store, after adding it to the appropriate
1378 local store group if so. */
1379
1380 static int
1381 record_store (rtx body, bb_info_t bb_info)
1382 {
1383 rtx mem, rhs, const_rhs, mem_addr;
1384 HOST_WIDE_INT offset = 0;
1385 HOST_WIDE_INT width = 0;
1386 alias_set_type spill_alias_set;
1387 insn_info_t insn_info = bb_info->last_insn;
1388 store_info_t store_info = NULL;
1389 int group_id;
1390 cselib_val *base = NULL;
1391 insn_info_t ptr, last, redundant_reason;
1392 bool store_is_unused;
1393
1394 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1395 return 0;
1396
1397 mem = SET_DEST (body);
1398
1399 /* If this is not used, then this cannot be used to keep the insn
1400 from being deleted. On the other hand, it does provide something
1401 that can be used to prove that another store is dead. */
1402 store_is_unused
1403 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1404
1405 /* Check whether that value is a suitable memory location. */
1406 if (!MEM_P (mem))
1407 {
1408 /* If the set or clobber is unused, then it does not effect our
1409 ability to get rid of the entire insn. */
1410 if (!store_is_unused)
1411 insn_info->cannot_delete = true;
1412 return 0;
1413 }
1414
1415 /* At this point we know mem is a mem. */
1416 if (GET_MODE (mem) == BLKmode)
1417 {
1418 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1419 {
1420 if (dump_file)
1421 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1422 add_wild_read (bb_info);
1423 insn_info->cannot_delete = true;
1424 return 0;
1425 }
1426 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1427 as memset (addr, 0, 36); */
1428 else if (!MEM_SIZE_KNOWN_P (mem)
1429 || MEM_SIZE (mem) <= 0
1430 || MEM_SIZE (mem) > MAX_OFFSET
1431 || GET_CODE (body) != SET
1432 || !CONST_INT_P (SET_SRC (body)))
1433 {
1434 if (!store_is_unused)
1435 {
1436 /* If the set or clobber is unused, then it does not effect our
1437 ability to get rid of the entire insn. */
1438 insn_info->cannot_delete = true;
1439 clear_rhs_from_active_local_stores ();
1440 }
1441 return 0;
1442 }
1443 }
1444
1445 /* We can still process a volatile mem, we just cannot delete it. */
1446 if (MEM_VOLATILE_P (mem))
1447 insn_info->cannot_delete = true;
1448
1449 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1450 {
1451 clear_rhs_from_active_local_stores ();
1452 return 0;
1453 }
1454
1455 if (GET_MODE (mem) == BLKmode)
1456 width = MEM_SIZE (mem);
1457 else
1458 {
1459 width = GET_MODE_SIZE (GET_MODE (mem));
1460 gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
1461 }
1462
1463 if (spill_alias_set)
1464 {
1465 bitmap store1 = clear_alias_group->store1_p;
1466 bitmap store2 = clear_alias_group->store2_p;
1467
1468 gcc_assert (GET_MODE (mem) != BLKmode);
1469
1470 if (!bitmap_set_bit (store1, spill_alias_set))
1471 bitmap_set_bit (store2, spill_alias_set);
1472
1473 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1474 clear_alias_group->offset_map_size_p = spill_alias_set;
1475
1476 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1477
1478 if (dump_file)
1479 fprintf (dump_file, " processing spill store %d(%s)\n",
1480 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1481 }
1482 else if (group_id >= 0)
1483 {
1484 /* In the restrictive case where the base is a constant or the
1485 frame pointer we can do global analysis. */
1486
1487 group_info_t group
1488 = VEC_index (group_info_t, rtx_group_vec, group_id);
1489 tree expr = MEM_EXPR (mem);
1490
1491 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1492 set_usage_bits (group, offset, width, expr);
1493
1494 if (dump_file)
1495 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1496 group_id, (int)offset, (int)(offset+width));
1497 }
1498 else
1499 {
1500 if (may_be_sp_based_p (XEXP (mem, 0)))
1501 insn_info->stack_pointer_based = true;
1502 insn_info->contains_cselib_groups = true;
1503
1504 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1505 group_id = -1;
1506
1507 if (dump_file)
1508 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1509 (int)offset, (int)(offset+width));
1510 }
1511
1512 const_rhs = rhs = NULL_RTX;
1513 if (GET_CODE (body) == SET
1514 /* No place to keep the value after ra. */
1515 && !reload_completed
1516 && (REG_P (SET_SRC (body))
1517 || GET_CODE (SET_SRC (body)) == SUBREG
1518 || CONSTANT_P (SET_SRC (body)))
1519 && !MEM_VOLATILE_P (mem)
1520 /* Sometimes the store and reload is used for truncation and
1521 rounding. */
1522 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1523 {
1524 rhs = SET_SRC (body);
1525 if (CONSTANT_P (rhs))
1526 const_rhs = rhs;
1527 else if (body == PATTERN (insn_info->insn))
1528 {
1529 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1530 if (tem && CONSTANT_P (XEXP (tem, 0)))
1531 const_rhs = XEXP (tem, 0);
1532 }
1533 if (const_rhs == NULL_RTX && REG_P (rhs))
1534 {
1535 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1536
1537 if (tem && CONSTANT_P (tem))
1538 const_rhs = tem;
1539 }
1540 }
1541
1542 /* Check to see if this stores causes some other stores to be
1543 dead. */
1544 ptr = active_local_stores;
1545 last = NULL;
1546 redundant_reason = NULL;
1547 mem = canon_rtx (mem);
1548 /* For alias_set != 0 canon_true_dependence should be never called. */
1549 if (spill_alias_set)
1550 mem_addr = NULL_RTX;
1551 else
1552 {
1553 if (group_id < 0)
1554 mem_addr = base->val_rtx;
1555 else
1556 {
1557 group_info_t group
1558 = VEC_index (group_info_t, rtx_group_vec, group_id);
1559 mem_addr = group->canon_base_addr;
1560 }
1561 if (offset)
1562 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1563 }
1564
1565 while (ptr)
1566 {
1567 insn_info_t next = ptr->next_local_store;
1568 store_info_t s_info = ptr->store_rec;
1569 bool del = true;
1570
1571 /* Skip the clobbers. We delete the active insn if this insn
1572 shadows the set. To have been put on the active list, it
1573 has exactly on set. */
1574 while (!s_info->is_set)
1575 s_info = s_info->next;
1576
1577 if (s_info->alias_set != spill_alias_set)
1578 del = false;
1579 else if (s_info->alias_set)
1580 {
1581 struct clear_alias_mode_holder *entry
1582 = clear_alias_set_lookup (s_info->alias_set);
1583 /* Generally, spills cannot be processed if and of the
1584 references to the slot have a different mode. But if
1585 we are in the same block and mode is exactly the same
1586 between this store and one before in the same block,
1587 we can still delete it. */
1588 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1589 && (GET_MODE (mem) == entry->mode))
1590 {
1591 del = true;
1592 set_all_positions_unneeded (s_info);
1593 }
1594 if (dump_file)
1595 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1596 INSN_UID (ptr->insn), (int) s_info->alias_set);
1597 }
1598 else if ((s_info->group_id == group_id)
1599 && (s_info->cse_base == base))
1600 {
1601 HOST_WIDE_INT i;
1602 if (dump_file)
1603 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1604 INSN_UID (ptr->insn), s_info->group_id,
1605 (int)s_info->begin, (int)s_info->end);
1606
1607 /* Even if PTR won't be eliminated as unneeded, if both
1608 PTR and this insn store the same constant value, we might
1609 eliminate this insn instead. */
1610 if (s_info->const_rhs
1611 && const_rhs
1612 && offset >= s_info->begin
1613 && offset + width <= s_info->end
1614 && all_positions_needed_p (s_info, offset - s_info->begin,
1615 width))
1616 {
1617 if (GET_MODE (mem) == BLKmode)
1618 {
1619 if (GET_MODE (s_info->mem) == BLKmode
1620 && s_info->const_rhs == const_rhs)
1621 redundant_reason = ptr;
1622 }
1623 else if (s_info->const_rhs == const0_rtx
1624 && const_rhs == const0_rtx)
1625 redundant_reason = ptr;
1626 else
1627 {
1628 rtx val;
1629 start_sequence ();
1630 val = get_stored_val (s_info, GET_MODE (mem),
1631 offset, offset + width,
1632 BLOCK_FOR_INSN (insn_info->insn),
1633 true);
1634 if (get_insns () != NULL)
1635 val = NULL_RTX;
1636 end_sequence ();
1637 if (val && rtx_equal_p (val, const_rhs))
1638 redundant_reason = ptr;
1639 }
1640 }
1641
1642 for (i = MAX (offset, s_info->begin);
1643 i < offset + width && i < s_info->end;
1644 i++)
1645 set_position_unneeded (s_info, i - s_info->begin);
1646 }
1647 else if (s_info->rhs)
1648 /* Need to see if it is possible for this store to overwrite
1649 the value of store_info. If it is, set the rhs to NULL to
1650 keep it from being used to remove a load. */
1651 {
1652 if (canon_true_dependence (s_info->mem,
1653 GET_MODE (s_info->mem),
1654 s_info->mem_addr,
1655 mem, mem_addr))
1656 {
1657 s_info->rhs = NULL;
1658 s_info->const_rhs = NULL;
1659 }
1660 }
1661
1662 /* An insn can be deleted if every position of every one of
1663 its s_infos is zero. */
1664 if (any_positions_needed_p (s_info))
1665 del = false;
1666
1667 if (del)
1668 {
1669 insn_info_t insn_to_delete = ptr;
1670
1671 active_local_stores_len--;
1672 if (last)
1673 last->next_local_store = ptr->next_local_store;
1674 else
1675 active_local_stores = ptr->next_local_store;
1676
1677 if (!insn_to_delete->cannot_delete)
1678 delete_dead_store_insn (insn_to_delete);
1679 }
1680 else
1681 last = ptr;
1682
1683 ptr = next;
1684 }
1685
1686 /* Finish filling in the store_info. */
1687 store_info->next = insn_info->store_rec;
1688 insn_info->store_rec = store_info;
1689 store_info->mem = mem;
1690 store_info->alias_set = spill_alias_set;
1691 store_info->mem_addr = mem_addr;
1692 store_info->cse_base = base;
1693 if (width > HOST_BITS_PER_WIDE_INT)
1694 {
1695 store_info->is_large = true;
1696 store_info->positions_needed.large.count = 0;
1697 store_info->positions_needed.large.bmap = BITMAP_ALLOC (NULL);
1698 }
1699 else
1700 {
1701 store_info->is_large = false;
1702 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1703 }
1704 store_info->group_id = group_id;
1705 store_info->begin = offset;
1706 store_info->end = offset + width;
1707 store_info->is_set = GET_CODE (body) == SET;
1708 store_info->rhs = rhs;
1709 store_info->const_rhs = const_rhs;
1710 store_info->redundant_reason = redundant_reason;
1711
1712 /* If this is a clobber, we return 0. We will only be able to
1713 delete this insn if there is only one store USED store, but we
1714 can use the clobber to delete other stores earlier. */
1715 return store_info->is_set ? 1 : 0;
1716 }
1717
1718
1719 static void
1720 dump_insn_info (const char * start, insn_info_t insn_info)
1721 {
1722 fprintf (dump_file, "%s insn=%d %s\n", start,
1723 INSN_UID (insn_info->insn),
1724 insn_info->store_rec ? "has store" : "naked");
1725 }
1726
1727
1728 /* If the modes are different and the value's source and target do not
1729 line up, we need to extract the value from lower part of the rhs of
1730 the store, shift it, and then put it into a form that can be shoved
1731 into the read_insn. This function generates a right SHIFT of a
1732 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1733 shift sequence is returned or NULL if we failed to find a
1734 shift. */
1735
1736 static rtx
1737 find_shift_sequence (int access_size,
1738 store_info_t store_info,
1739 enum machine_mode read_mode,
1740 int shift, bool speed, bool require_cst)
1741 {
1742 enum machine_mode store_mode = GET_MODE (store_info->mem);
1743 enum machine_mode new_mode;
1744 rtx read_reg = NULL;
1745
1746 /* Some machines like the x86 have shift insns for each size of
1747 operand. Other machines like the ppc or the ia-64 may only have
1748 shift insns that shift values within 32 or 64 bit registers.
1749 This loop tries to find the smallest shift insn that will right
1750 justify the value we want to read but is available in one insn on
1751 the machine. */
1752
1753 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1754 MODE_INT);
1755 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1756 new_mode = GET_MODE_WIDER_MODE (new_mode))
1757 {
1758 rtx target, new_reg, shift_seq, insn, new_lhs;
1759 int cost;
1760
1761 /* If a constant was stored into memory, try to simplify it here,
1762 otherwise the cost of the shift might preclude this optimization
1763 e.g. at -Os, even when no actual shift will be needed. */
1764 if (store_info->const_rhs)
1765 {
1766 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1767 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1768 store_mode, byte);
1769 if (ret && CONSTANT_P (ret))
1770 {
1771 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1772 ret, GEN_INT (shift));
1773 if (ret && CONSTANT_P (ret))
1774 {
1775 byte = subreg_lowpart_offset (read_mode, new_mode);
1776 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1777 if (ret && CONSTANT_P (ret)
1778 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1779 return ret;
1780 }
1781 }
1782 }
1783
1784 if (require_cst)
1785 return NULL_RTX;
1786
1787 /* Try a wider mode if truncating the store mode to NEW_MODE
1788 requires a real instruction. */
1789 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1790 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1791 continue;
1792
1793 /* Also try a wider mode if the necessary punning is either not
1794 desirable or not possible. */
1795 if (!CONSTANT_P (store_info->rhs)
1796 && !MODES_TIEABLE_P (new_mode, store_mode))
1797 continue;
1798
1799 new_reg = gen_reg_rtx (new_mode);
1800
1801 start_sequence ();
1802
1803 /* In theory we could also check for an ashr. Ian Taylor knows
1804 of one dsp where the cost of these two was not the same. But
1805 this really is a rare case anyway. */
1806 target = expand_binop (new_mode, lshr_optab, new_reg,
1807 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1808
1809 shift_seq = get_insns ();
1810 end_sequence ();
1811
1812 if (target != new_reg || shift_seq == NULL)
1813 continue;
1814
1815 cost = 0;
1816 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1817 if (INSN_P (insn))
1818 cost += insn_rtx_cost (PATTERN (insn), speed);
1819
1820 /* The computation up to here is essentially independent
1821 of the arguments and could be precomputed. It may
1822 not be worth doing so. We could precompute if
1823 worthwhile or at least cache the results. The result
1824 technically depends on both SHIFT and ACCESS_SIZE,
1825 but in practice the answer will depend only on ACCESS_SIZE. */
1826
1827 if (cost > COSTS_N_INSNS (1))
1828 continue;
1829
1830 new_lhs = extract_low_bits (new_mode, store_mode,
1831 copy_rtx (store_info->rhs));
1832 if (new_lhs == NULL_RTX)
1833 continue;
1834
1835 /* We found an acceptable shift. Generate a move to
1836 take the value from the store and put it into the
1837 shift pseudo, then shift it, then generate another
1838 move to put in into the target of the read. */
1839 emit_move_insn (new_reg, new_lhs);
1840 emit_insn (shift_seq);
1841 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1842 break;
1843 }
1844
1845 return read_reg;
1846 }
1847
1848
1849 /* Call back for note_stores to find the hard regs set or clobbered by
1850 insn. Data is a bitmap of the hardregs set so far. */
1851
1852 static void
1853 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1854 {
1855 bitmap regs_set = (bitmap) data;
1856
1857 if (REG_P (x)
1858 && HARD_REGISTER_P (x))
1859 {
1860 unsigned int regno = REGNO (x);
1861 bitmap_set_range (regs_set, regno,
1862 hard_regno_nregs[regno][GET_MODE (x)]);
1863 }
1864 }
1865
1866 /* Helper function for replace_read and record_store.
1867 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1868 to one before READ_END bytes read in READ_MODE. Return NULL
1869 if not successful. If REQUIRE_CST is true, return always constant. */
1870
1871 static rtx
1872 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1873 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1874 basic_block bb, bool require_cst)
1875 {
1876 enum machine_mode store_mode = GET_MODE (store_info->mem);
1877 int shift;
1878 int access_size; /* In bytes. */
1879 rtx read_reg;
1880
1881 /* To get here the read is within the boundaries of the write so
1882 shift will never be negative. Start out with the shift being in
1883 bytes. */
1884 if (store_mode == BLKmode)
1885 shift = 0;
1886 else if (BYTES_BIG_ENDIAN)
1887 shift = store_info->end - read_end;
1888 else
1889 shift = read_begin - store_info->begin;
1890
1891 access_size = shift + GET_MODE_SIZE (read_mode);
1892
1893 /* From now on it is bits. */
1894 shift *= BITS_PER_UNIT;
1895
1896 if (shift)
1897 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1898 optimize_bb_for_speed_p (bb),
1899 require_cst);
1900 else if (store_mode == BLKmode)
1901 {
1902 /* The store is a memset (addr, const_val, const_size). */
1903 gcc_assert (CONST_INT_P (store_info->rhs));
1904 store_mode = int_mode_for_mode (read_mode);
1905 if (store_mode == BLKmode)
1906 read_reg = NULL_RTX;
1907 else if (store_info->rhs == const0_rtx)
1908 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1909 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1910 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1911 read_reg = NULL_RTX;
1912 else
1913 {
1914 unsigned HOST_WIDE_INT c
1915 = INTVAL (store_info->rhs)
1916 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1917 int shift = BITS_PER_UNIT;
1918 while (shift < HOST_BITS_PER_WIDE_INT)
1919 {
1920 c |= (c << shift);
1921 shift <<= 1;
1922 }
1923 read_reg = gen_int_mode (c, store_mode);
1924 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1925 }
1926 }
1927 else if (store_info->const_rhs
1928 && (require_cst
1929 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1930 read_reg = extract_low_bits (read_mode, store_mode,
1931 copy_rtx (store_info->const_rhs));
1932 else
1933 read_reg = extract_low_bits (read_mode, store_mode,
1934 copy_rtx (store_info->rhs));
1935 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1936 read_reg = NULL_RTX;
1937 return read_reg;
1938 }
1939
1940 /* Take a sequence of:
1941 A <- r1
1942 ...
1943 ... <- A
1944
1945 and change it into
1946 r2 <- r1
1947 A <- r1
1948 ...
1949 ... <- r2
1950
1951 or
1952
1953 r3 <- extract (r1)
1954 r3 <- r3 >> shift
1955 r2 <- extract (r3)
1956 ... <- r2
1957
1958 or
1959
1960 r2 <- extract (r1)
1961 ... <- r2
1962
1963 Depending on the alignment and the mode of the store and
1964 subsequent load.
1965
1966
1967 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1968 and READ_INSN are for the read. Return true if the replacement
1969 went ok. */
1970
1971 static bool
1972 replace_read (store_info_t store_info, insn_info_t store_insn,
1973 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1974 bitmap regs_live)
1975 {
1976 enum machine_mode store_mode = GET_MODE (store_info->mem);
1977 enum machine_mode read_mode = GET_MODE (read_info->mem);
1978 rtx insns, this_insn, read_reg;
1979 basic_block bb;
1980
1981 if (!dbg_cnt (dse))
1982 return false;
1983
1984 /* Create a sequence of instructions to set up the read register.
1985 This sequence goes immediately before the store and its result
1986 is read by the load.
1987
1988 We need to keep this in perspective. We are replacing a read
1989 with a sequence of insns, but the read will almost certainly be
1990 in cache, so it is not going to be an expensive one. Thus, we
1991 are not willing to do a multi insn shift or worse a subroutine
1992 call to get rid of the read. */
1993 if (dump_file)
1994 fprintf (dump_file, "trying to replace %smode load in insn %d"
1995 " from %smode store in insn %d\n",
1996 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1997 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1998 start_sequence ();
1999 bb = BLOCK_FOR_INSN (read_insn->insn);
2000 read_reg = get_stored_val (store_info,
2001 read_mode, read_info->begin, read_info->end,
2002 bb, false);
2003 if (read_reg == NULL_RTX)
2004 {
2005 end_sequence ();
2006 if (dump_file)
2007 fprintf (dump_file, " -- could not extract bits of stored value\n");
2008 return false;
2009 }
2010 /* Force the value into a new register so that it won't be clobbered
2011 between the store and the load. */
2012 read_reg = copy_to_mode_reg (read_mode, read_reg);
2013 insns = get_insns ();
2014 end_sequence ();
2015
2016 if (insns != NULL_RTX)
2017 {
2018 /* Now we have to scan the set of new instructions to see if the
2019 sequence contains and sets of hardregs that happened to be
2020 live at this point. For instance, this can happen if one of
2021 the insns sets the CC and the CC happened to be live at that
2022 point. This does occasionally happen, see PR 37922. */
2023 bitmap regs_set = BITMAP_ALLOC (NULL);
2024
2025 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2026 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2027
2028 bitmap_and_into (regs_set, regs_live);
2029 if (!bitmap_empty_p (regs_set))
2030 {
2031 if (dump_file)
2032 {
2033 fprintf (dump_file,
2034 "abandoning replacement because sequence clobbers live hardregs:");
2035 df_print_regset (dump_file, regs_set);
2036 }
2037
2038 BITMAP_FREE (regs_set);
2039 return false;
2040 }
2041 BITMAP_FREE (regs_set);
2042 }
2043
2044 if (validate_change (read_insn->insn, loc, read_reg, 0))
2045 {
2046 deferred_change_t deferred_change =
2047 (deferred_change_t) pool_alloc (deferred_change_pool);
2048
2049 /* Insert this right before the store insn where it will be safe
2050 from later insns that might change it before the read. */
2051 emit_insn_before (insns, store_insn->insn);
2052
2053 /* And now for the kludge part: cselib croaks if you just
2054 return at this point. There are two reasons for this:
2055
2056 1) Cselib has an idea of how many pseudos there are and
2057 that does not include the new ones we just added.
2058
2059 2) Cselib does not know about the move insn we added
2060 above the store_info, and there is no way to tell it
2061 about it, because it has "moved on".
2062
2063 Problem (1) is fixable with a certain amount of engineering.
2064 Problem (2) is requires starting the bb from scratch. This
2065 could be expensive.
2066
2067 So we are just going to have to lie. The move/extraction
2068 insns are not really an issue, cselib did not see them. But
2069 the use of the new pseudo read_insn is a real problem because
2070 cselib has not scanned this insn. The way that we solve this
2071 problem is that we are just going to put the mem back for now
2072 and when we are finished with the block, we undo this. We
2073 keep a table of mems to get rid of. At the end of the basic
2074 block we can put them back. */
2075
2076 *loc = read_info->mem;
2077 deferred_change->next = deferred_change_list;
2078 deferred_change_list = deferred_change;
2079 deferred_change->loc = loc;
2080 deferred_change->reg = read_reg;
2081
2082 /* Get rid of the read_info, from the point of view of the
2083 rest of dse, play like this read never happened. */
2084 read_insn->read_rec = read_info->next;
2085 pool_free (read_info_pool, read_info);
2086 if (dump_file)
2087 {
2088 fprintf (dump_file, " -- replaced the loaded MEM with ");
2089 print_simple_rtl (dump_file, read_reg);
2090 fprintf (dump_file, "\n");
2091 }
2092 return true;
2093 }
2094 else
2095 {
2096 if (dump_file)
2097 {
2098 fprintf (dump_file, " -- replacing the loaded MEM with ");
2099 print_simple_rtl (dump_file, read_reg);
2100 fprintf (dump_file, " led to an invalid instruction\n");
2101 }
2102 return false;
2103 }
2104 }
2105
2106 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2107 if LOC is a mem and if it is look at the address and kill any
2108 appropriate stores that may be active. */
2109
2110 static int
2111 check_mem_read_rtx (rtx *loc, void *data)
2112 {
2113 rtx mem = *loc, mem_addr;
2114 bb_info_t bb_info;
2115 insn_info_t insn_info;
2116 HOST_WIDE_INT offset = 0;
2117 HOST_WIDE_INT width = 0;
2118 alias_set_type spill_alias_set = 0;
2119 cselib_val *base = NULL;
2120 int group_id;
2121 read_info_t read_info;
2122
2123 if (!mem || !MEM_P (mem))
2124 return 0;
2125
2126 bb_info = (bb_info_t) data;
2127 insn_info = bb_info->last_insn;
2128
2129 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2130 || (MEM_VOLATILE_P (mem)))
2131 {
2132 if (dump_file)
2133 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2134 add_wild_read (bb_info);
2135 insn_info->cannot_delete = true;
2136 return 0;
2137 }
2138
2139 /* If it is reading readonly mem, then there can be no conflict with
2140 another write. */
2141 if (MEM_READONLY_P (mem))
2142 return 0;
2143
2144 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2145 {
2146 if (dump_file)
2147 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2148 add_wild_read (bb_info);
2149 return 0;
2150 }
2151
2152 if (GET_MODE (mem) == BLKmode)
2153 width = -1;
2154 else
2155 width = GET_MODE_SIZE (GET_MODE (mem));
2156
2157 read_info = (read_info_t) pool_alloc (read_info_pool);
2158 read_info->group_id = group_id;
2159 read_info->mem = mem;
2160 read_info->alias_set = spill_alias_set;
2161 read_info->begin = offset;
2162 read_info->end = offset + width;
2163 read_info->next = insn_info->read_rec;
2164 insn_info->read_rec = read_info;
2165 /* For alias_set != 0 canon_true_dependence should be never called. */
2166 if (spill_alias_set)
2167 mem_addr = NULL_RTX;
2168 else
2169 {
2170 if (group_id < 0)
2171 mem_addr = base->val_rtx;
2172 else
2173 {
2174 group_info_t group
2175 = VEC_index (group_info_t, rtx_group_vec, group_id);
2176 mem_addr = group->canon_base_addr;
2177 }
2178 if (offset)
2179 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2180 }
2181
2182 /* We ignore the clobbers in store_info. The is mildly aggressive,
2183 but there really should not be a clobber followed by a read. */
2184
2185 if (spill_alias_set)
2186 {
2187 insn_info_t i_ptr = active_local_stores;
2188 insn_info_t last = NULL;
2189
2190 if (dump_file)
2191 fprintf (dump_file, " processing spill load %d\n",
2192 (int) spill_alias_set);
2193
2194 while (i_ptr)
2195 {
2196 store_info_t store_info = i_ptr->store_rec;
2197
2198 /* Skip the clobbers. */
2199 while (!store_info->is_set)
2200 store_info = store_info->next;
2201
2202 if (store_info->alias_set == spill_alias_set)
2203 {
2204 if (dump_file)
2205 dump_insn_info ("removing from active", i_ptr);
2206
2207 active_local_stores_len--;
2208 if (last)
2209 last->next_local_store = i_ptr->next_local_store;
2210 else
2211 active_local_stores = i_ptr->next_local_store;
2212 }
2213 else
2214 last = i_ptr;
2215 i_ptr = i_ptr->next_local_store;
2216 }
2217 }
2218 else if (group_id >= 0)
2219 {
2220 /* This is the restricted case where the base is a constant or
2221 the frame pointer and offset is a constant. */
2222 insn_info_t i_ptr = active_local_stores;
2223 insn_info_t last = NULL;
2224
2225 if (dump_file)
2226 {
2227 if (width == -1)
2228 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2229 group_id);
2230 else
2231 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2232 group_id, (int)offset, (int)(offset+width));
2233 }
2234
2235 while (i_ptr)
2236 {
2237 bool remove = false;
2238 store_info_t store_info = i_ptr->store_rec;
2239
2240 /* Skip the clobbers. */
2241 while (!store_info->is_set)
2242 store_info = store_info->next;
2243
2244 /* There are three cases here. */
2245 if (store_info->group_id < 0)
2246 /* We have a cselib store followed by a read from a
2247 const base. */
2248 remove
2249 = canon_true_dependence (store_info->mem,
2250 GET_MODE (store_info->mem),
2251 store_info->mem_addr,
2252 mem, mem_addr);
2253
2254 else if (group_id == store_info->group_id)
2255 {
2256 /* This is a block mode load. We may get lucky and
2257 canon_true_dependence may save the day. */
2258 if (width == -1)
2259 remove
2260 = canon_true_dependence (store_info->mem,
2261 GET_MODE (store_info->mem),
2262 store_info->mem_addr,
2263 mem, mem_addr);
2264
2265 /* If this read is just reading back something that we just
2266 stored, rewrite the read. */
2267 else
2268 {
2269 if (store_info->rhs
2270 && offset >= store_info->begin
2271 && offset + width <= store_info->end
2272 && all_positions_needed_p (store_info,
2273 offset - store_info->begin,
2274 width)
2275 && replace_read (store_info, i_ptr, read_info,
2276 insn_info, loc, bb_info->regs_live))
2277 return 0;
2278
2279 /* The bases are the same, just see if the offsets
2280 overlap. */
2281 if ((offset < store_info->end)
2282 && (offset + width > store_info->begin))
2283 remove = true;
2284 }
2285 }
2286
2287 /* else
2288 The else case that is missing here is that the
2289 bases are constant but different. There is nothing
2290 to do here because there is no overlap. */
2291
2292 if (remove)
2293 {
2294 if (dump_file)
2295 dump_insn_info ("removing from active", i_ptr);
2296
2297 active_local_stores_len--;
2298 if (last)
2299 last->next_local_store = i_ptr->next_local_store;
2300 else
2301 active_local_stores = i_ptr->next_local_store;
2302 }
2303 else
2304 last = i_ptr;
2305 i_ptr = i_ptr->next_local_store;
2306 }
2307 }
2308 else
2309 {
2310 insn_info_t i_ptr = active_local_stores;
2311 insn_info_t last = NULL;
2312 if (dump_file)
2313 {
2314 fprintf (dump_file, " processing cselib load mem:");
2315 print_inline_rtx (dump_file, mem, 0);
2316 fprintf (dump_file, "\n");
2317 }
2318
2319 while (i_ptr)
2320 {
2321 bool remove = false;
2322 store_info_t store_info = i_ptr->store_rec;
2323
2324 if (dump_file)
2325 fprintf (dump_file, " processing cselib load against insn %d\n",
2326 INSN_UID (i_ptr->insn));
2327
2328 /* Skip the clobbers. */
2329 while (!store_info->is_set)
2330 store_info = store_info->next;
2331
2332 /* If this read is just reading back something that we just
2333 stored, rewrite the read. */
2334 if (store_info->rhs
2335 && store_info->group_id == -1
2336 && store_info->cse_base == base
2337 && width != -1
2338 && offset >= store_info->begin
2339 && offset + width <= store_info->end
2340 && all_positions_needed_p (store_info,
2341 offset - store_info->begin, width)
2342 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2343 bb_info->regs_live))
2344 return 0;
2345
2346 if (!store_info->alias_set)
2347 remove = canon_true_dependence (store_info->mem,
2348 GET_MODE (store_info->mem),
2349 store_info->mem_addr,
2350 mem, mem_addr);
2351
2352 if (remove)
2353 {
2354 if (dump_file)
2355 dump_insn_info ("removing from active", i_ptr);
2356
2357 active_local_stores_len--;
2358 if (last)
2359 last->next_local_store = i_ptr->next_local_store;
2360 else
2361 active_local_stores = i_ptr->next_local_store;
2362 }
2363 else
2364 last = i_ptr;
2365 i_ptr = i_ptr->next_local_store;
2366 }
2367 }
2368 return 0;
2369 }
2370
2371 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2372 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2373 true for any part of *LOC. */
2374
2375 static void
2376 check_mem_read_use (rtx *loc, void *data)
2377 {
2378 for_each_rtx (loc, check_mem_read_rtx, data);
2379 }
2380
2381
2382 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2383 So far it only handles arguments passed in registers. */
2384
2385 static bool
2386 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2387 {
2388 CUMULATIVE_ARGS args_so_far_v;
2389 cumulative_args_t args_so_far;
2390 tree arg;
2391 int idx;
2392
2393 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2394 args_so_far = pack_cumulative_args (&args_so_far_v);
2395
2396 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2397 for (idx = 0;
2398 arg != void_list_node && idx < nargs;
2399 arg = TREE_CHAIN (arg), idx++)
2400 {
2401 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2402 rtx reg, link, tmp;
2403 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2404 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2405 || GET_MODE_CLASS (mode) != MODE_INT)
2406 return false;
2407
2408 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2409 link;
2410 link = XEXP (link, 1))
2411 if (GET_CODE (XEXP (link, 0)) == USE)
2412 {
2413 args[idx] = XEXP (XEXP (link, 0), 0);
2414 if (REG_P (args[idx])
2415 && REGNO (args[idx]) == REGNO (reg)
2416 && (GET_MODE (args[idx]) == mode
2417 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2418 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2419 <= UNITS_PER_WORD)
2420 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2421 > GET_MODE_SIZE (mode)))))
2422 break;
2423 }
2424 if (!link)
2425 return false;
2426
2427 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2428 if (GET_MODE (args[idx]) != mode)
2429 {
2430 if (!tmp || !CONST_INT_P (tmp))
2431 return false;
2432 tmp = gen_int_mode (INTVAL (tmp), mode);
2433 }
2434 if (tmp)
2435 args[idx] = tmp;
2436
2437 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2438 }
2439 if (arg != void_list_node || idx != nargs)
2440 return false;
2441 return true;
2442 }
2443
2444 /* Return a bitmap of the fixed registers contained in IN. */
2445
2446 static bitmap
2447 copy_fixed_regs (const_bitmap in)
2448 {
2449 bitmap ret;
2450
2451 ret = ALLOC_REG_SET (NULL);
2452 bitmap_and (ret, in, fixed_reg_set_regset);
2453 return ret;
2454 }
2455
2456 /* Apply record_store to all candidate stores in INSN. Mark INSN
2457 if some part of it is not a candidate store and assigns to a
2458 non-register target. */
2459
2460 static void
2461 scan_insn (bb_info_t bb_info, rtx insn)
2462 {
2463 rtx body;
2464 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2465 int mems_found = 0;
2466 memset (insn_info, 0, sizeof (struct insn_info));
2467
2468 if (dump_file)
2469 fprintf (dump_file, "\n**scanning insn=%d\n",
2470 INSN_UID (insn));
2471
2472 insn_info->prev_insn = bb_info->last_insn;
2473 insn_info->insn = insn;
2474 bb_info->last_insn = insn_info;
2475
2476 if (DEBUG_INSN_P (insn))
2477 {
2478 insn_info->cannot_delete = true;
2479 return;
2480 }
2481
2482 /* Cselib clears the table for this case, so we have to essentially
2483 do the same. */
2484 if (NONJUMP_INSN_P (insn)
2485 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2486 && MEM_VOLATILE_P (PATTERN (insn)))
2487 {
2488 add_wild_read (bb_info);
2489 insn_info->cannot_delete = true;
2490 return;
2491 }
2492
2493 /* Look at all of the uses in the insn. */
2494 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2495
2496 if (CALL_P (insn))
2497 {
2498 bool const_call;
2499 tree memset_call = NULL_TREE;
2500
2501 insn_info->cannot_delete = true;
2502
2503 /* Const functions cannot do anything bad i.e. read memory,
2504 however, they can read their parameters which may have
2505 been pushed onto the stack.
2506 memset and bzero don't read memory either. */
2507 const_call = RTL_CONST_CALL_P (insn);
2508 if (!const_call)
2509 {
2510 rtx call = PATTERN (insn);
2511 if (GET_CODE (call) == PARALLEL)
2512 call = XVECEXP (call, 0, 0);
2513 if (GET_CODE (call) == SET)
2514 call = SET_SRC (call);
2515 if (GET_CODE (call) == CALL
2516 && MEM_P (XEXP (call, 0))
2517 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2518 {
2519 rtx symbol = XEXP (XEXP (call, 0), 0);
2520 if (SYMBOL_REF_DECL (symbol)
2521 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2522 {
2523 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2524 == BUILT_IN_NORMAL
2525 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2526 == BUILT_IN_MEMSET))
2527 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2528 memset_call = SYMBOL_REF_DECL (symbol);
2529 }
2530 }
2531 }
2532 if (const_call || memset_call)
2533 {
2534 insn_info_t i_ptr = active_local_stores;
2535 insn_info_t last = NULL;
2536
2537 if (dump_file)
2538 fprintf (dump_file, "%s call %d\n",
2539 const_call ? "const" : "memset", INSN_UID (insn));
2540
2541 /* See the head comment of the frame_read field. */
2542 if (reload_completed)
2543 insn_info->frame_read = true;
2544
2545 /* Loop over the active stores and remove those which are
2546 killed by the const function call. */
2547 while (i_ptr)
2548 {
2549 bool remove_store = false;
2550
2551 /* The stack pointer based stores are always killed. */
2552 if (i_ptr->stack_pointer_based)
2553 remove_store = true;
2554
2555 /* If the frame is read, the frame related stores are killed. */
2556 else if (insn_info->frame_read)
2557 {
2558 store_info_t store_info = i_ptr->store_rec;
2559
2560 /* Skip the clobbers. */
2561 while (!store_info->is_set)
2562 store_info = store_info->next;
2563
2564 if (store_info->group_id >= 0
2565 && VEC_index (group_info_t, rtx_group_vec,
2566 store_info->group_id)->frame_related)
2567 remove_store = true;
2568 }
2569
2570 if (remove_store)
2571 {
2572 if (dump_file)
2573 dump_insn_info ("removing from active", i_ptr);
2574
2575 active_local_stores_len--;
2576 if (last)
2577 last->next_local_store = i_ptr->next_local_store;
2578 else
2579 active_local_stores = i_ptr->next_local_store;
2580 }
2581 else
2582 last = i_ptr;
2583
2584 i_ptr = i_ptr->next_local_store;
2585 }
2586
2587 if (memset_call)
2588 {
2589 rtx args[3];
2590 if (get_call_args (insn, memset_call, args, 3)
2591 && CONST_INT_P (args[1])
2592 && CONST_INT_P (args[2])
2593 && INTVAL (args[2]) > 0)
2594 {
2595 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2596 set_mem_size (mem, INTVAL (args[2]));
2597 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2598 mems_found += record_store (body, bb_info);
2599 if (dump_file)
2600 fprintf (dump_file, "handling memset as BLKmode store\n");
2601 if (mems_found == 1)
2602 {
2603 if (active_local_stores_len++
2604 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2605 {
2606 active_local_stores_len = 1;
2607 active_local_stores = NULL;
2608 }
2609 insn_info->fixed_regs_live
2610 = copy_fixed_regs (bb_info->regs_live);
2611 insn_info->next_local_store = active_local_stores;
2612 active_local_stores = insn_info;
2613 }
2614 }
2615 }
2616 }
2617
2618 else
2619 /* Every other call, including pure functions, may read any memory
2620 that is not relative to the frame. */
2621 add_non_frame_wild_read (bb_info);
2622
2623 return;
2624 }
2625
2626 /* Assuming that there are sets in these insns, we cannot delete
2627 them. */
2628 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2629 || volatile_refs_p (PATTERN (insn))
2630 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2631 || (RTX_FRAME_RELATED_P (insn))
2632 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2633 insn_info->cannot_delete = true;
2634
2635 body = PATTERN (insn);
2636 if (GET_CODE (body) == PARALLEL)
2637 {
2638 int i;
2639 for (i = 0; i < XVECLEN (body, 0); i++)
2640 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2641 }
2642 else
2643 mems_found += record_store (body, bb_info);
2644
2645 if (dump_file)
2646 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2647 mems_found, insn_info->cannot_delete ? "true" : "false");
2648
2649 /* If we found some sets of mems, add it into the active_local_stores so
2650 that it can be locally deleted if found dead or used for
2651 replace_read and redundant constant store elimination. Otherwise mark
2652 it as cannot delete. This simplifies the processing later. */
2653 if (mems_found == 1)
2654 {
2655 if (active_local_stores_len++
2656 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2657 {
2658 active_local_stores_len = 1;
2659 active_local_stores = NULL;
2660 }
2661 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2662 insn_info->next_local_store = active_local_stores;
2663 active_local_stores = insn_info;
2664 }
2665 else
2666 insn_info->cannot_delete = true;
2667 }
2668
2669
2670 /* Remove BASE from the set of active_local_stores. This is a
2671 callback from cselib that is used to get rid of the stores in
2672 active_local_stores. */
2673
2674 static void
2675 remove_useless_values (cselib_val *base)
2676 {
2677 insn_info_t insn_info = active_local_stores;
2678 insn_info_t last = NULL;
2679
2680 while (insn_info)
2681 {
2682 store_info_t store_info = insn_info->store_rec;
2683 bool del = false;
2684
2685 /* If ANY of the store_infos match the cselib group that is
2686 being deleted, then the insn can not be deleted. */
2687 while (store_info)
2688 {
2689 if ((store_info->group_id == -1)
2690 && (store_info->cse_base == base))
2691 {
2692 del = true;
2693 break;
2694 }
2695 store_info = store_info->next;
2696 }
2697
2698 if (del)
2699 {
2700 active_local_stores_len--;
2701 if (last)
2702 last->next_local_store = insn_info->next_local_store;
2703 else
2704 active_local_stores = insn_info->next_local_store;
2705 free_store_info (insn_info);
2706 }
2707 else
2708 last = insn_info;
2709
2710 insn_info = insn_info->next_local_store;
2711 }
2712 }
2713
2714
2715 /* Do all of step 1. */
2716
2717 static void
2718 dse_step1 (void)
2719 {
2720 basic_block bb;
2721 bitmap regs_live = BITMAP_ALLOC (NULL);
2722
2723 cselib_init (0);
2724 all_blocks = BITMAP_ALLOC (NULL);
2725 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2726 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2727
2728 FOR_ALL_BB (bb)
2729 {
2730 insn_info_t ptr;
2731 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2732
2733 memset (bb_info, 0, sizeof (struct bb_info));
2734 bitmap_set_bit (all_blocks, bb->index);
2735 bb_info->regs_live = regs_live;
2736
2737 bitmap_copy (regs_live, DF_LR_IN (bb));
2738 df_simulate_initialize_forwards (bb, regs_live);
2739
2740 bb_table[bb->index] = bb_info;
2741 cselib_discard_hook = remove_useless_values;
2742
2743 if (bb->index >= NUM_FIXED_BLOCKS)
2744 {
2745 rtx insn;
2746
2747 cse_store_info_pool
2748 = create_alloc_pool ("cse_store_info_pool",
2749 sizeof (struct store_info), 100);
2750 active_local_stores = NULL;
2751 active_local_stores_len = 0;
2752 cselib_clear_table ();
2753
2754 /* Scan the insns. */
2755 FOR_BB_INSNS (bb, insn)
2756 {
2757 if (INSN_P (insn))
2758 scan_insn (bb_info, insn);
2759 cselib_process_insn (insn);
2760 if (INSN_P (insn))
2761 df_simulate_one_insn_forwards (bb, insn, regs_live);
2762 }
2763
2764 /* This is something of a hack, because the global algorithm
2765 is supposed to take care of the case where stores go dead
2766 at the end of the function. However, the global
2767 algorithm must take a more conservative view of block
2768 mode reads than the local alg does. So to get the case
2769 where you have a store to the frame followed by a non
2770 overlapping block more read, we look at the active local
2771 stores at the end of the function and delete all of the
2772 frame and spill based ones. */
2773 if (stores_off_frame_dead_at_return
2774 && (EDGE_COUNT (bb->succs) == 0
2775 || (single_succ_p (bb)
2776 && single_succ (bb) == EXIT_BLOCK_PTR
2777 && ! crtl->calls_eh_return)))
2778 {
2779 insn_info_t i_ptr = active_local_stores;
2780 while (i_ptr)
2781 {
2782 store_info_t store_info = i_ptr->store_rec;
2783
2784 /* Skip the clobbers. */
2785 while (!store_info->is_set)
2786 store_info = store_info->next;
2787 if (store_info->alias_set && !i_ptr->cannot_delete)
2788 delete_dead_store_insn (i_ptr);
2789 else
2790 if (store_info->group_id >= 0)
2791 {
2792 group_info_t group
2793 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2794 if (group->frame_related && !i_ptr->cannot_delete)
2795 delete_dead_store_insn (i_ptr);
2796 }
2797
2798 i_ptr = i_ptr->next_local_store;
2799 }
2800 }
2801
2802 /* Get rid of the loads that were discovered in
2803 replace_read. Cselib is finished with this block. */
2804 while (deferred_change_list)
2805 {
2806 deferred_change_t next = deferred_change_list->next;
2807
2808 /* There is no reason to validate this change. That was
2809 done earlier. */
2810 *deferred_change_list->loc = deferred_change_list->reg;
2811 pool_free (deferred_change_pool, deferred_change_list);
2812 deferred_change_list = next;
2813 }
2814
2815 /* Get rid of all of the cselib based store_infos in this
2816 block and mark the containing insns as not being
2817 deletable. */
2818 ptr = bb_info->last_insn;
2819 while (ptr)
2820 {
2821 if (ptr->contains_cselib_groups)
2822 {
2823 store_info_t s_info = ptr->store_rec;
2824 while (s_info && !s_info->is_set)
2825 s_info = s_info->next;
2826 if (s_info
2827 && s_info->redundant_reason
2828 && s_info->redundant_reason->insn
2829 && !ptr->cannot_delete)
2830 {
2831 if (dump_file)
2832 fprintf (dump_file, "Locally deleting insn %d "
2833 "because insn %d stores the "
2834 "same value and couldn't be "
2835 "eliminated\n",
2836 INSN_UID (ptr->insn),
2837 INSN_UID (s_info->redundant_reason->insn));
2838 delete_dead_store_insn (ptr);
2839 }
2840 if (s_info)
2841 s_info->redundant_reason = NULL;
2842 free_store_info (ptr);
2843 }
2844 else
2845 {
2846 store_info_t s_info;
2847
2848 /* Free at least positions_needed bitmaps. */
2849 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2850 if (s_info->is_large)
2851 {
2852 BITMAP_FREE (s_info->positions_needed.large.bmap);
2853 s_info->is_large = false;
2854 }
2855 }
2856 ptr = ptr->prev_insn;
2857 }
2858
2859 free_alloc_pool (cse_store_info_pool);
2860 }
2861 bb_info->regs_live = NULL;
2862 }
2863
2864 BITMAP_FREE (regs_live);
2865 cselib_finish ();
2866 htab_empty (rtx_group_table);
2867 }
2868
2869 \f
2870 /*----------------------------------------------------------------------------
2871 Second step.
2872
2873 Assign each byte position in the stores that we are going to
2874 analyze globally to a position in the bitmaps. Returns true if
2875 there are any bit positions assigned.
2876 ----------------------------------------------------------------------------*/
2877
2878 static void
2879 dse_step2_init (void)
2880 {
2881 unsigned int i;
2882 group_info_t group;
2883
2884 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2885 {
2886 /* For all non stack related bases, we only consider a store to
2887 be deletable if there are two or more stores for that
2888 position. This is because it takes one store to make the
2889 other store redundant. However, for the stores that are
2890 stack related, we consider them if there is only one store
2891 for the position. We do this because the stack related
2892 stores can be deleted if their is no read between them and
2893 the end of the function.
2894
2895 To make this work in the current framework, we take the stack
2896 related bases add all of the bits from store1 into store2.
2897 This has the effect of making the eligible even if there is
2898 only one store. */
2899
2900 if (stores_off_frame_dead_at_return && group->frame_related)
2901 {
2902 bitmap_ior_into (group->store2_n, group->store1_n);
2903 bitmap_ior_into (group->store2_p, group->store1_p);
2904 if (dump_file)
2905 fprintf (dump_file, "group %d is frame related ", i);
2906 }
2907
2908 group->offset_map_size_n++;
2909 group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
2910 group->offset_map_size_p++;
2911 group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
2912 group->process_globally = false;
2913 if (dump_file)
2914 {
2915 fprintf (dump_file, "group %d(%d+%d): ", i,
2916 (int)bitmap_count_bits (group->store2_n),
2917 (int)bitmap_count_bits (group->store2_p));
2918 bitmap_print (dump_file, group->store2_n, "n ", " ");
2919 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2920 }
2921 }
2922 }
2923
2924
2925 /* Init the offset tables for the normal case. */
2926
2927 static bool
2928 dse_step2_nospill (void)
2929 {
2930 unsigned int i;
2931 group_info_t group;
2932 /* Position 0 is unused because 0 is used in the maps to mean
2933 unused. */
2934 current_position = 1;
2935 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2936 {
2937 bitmap_iterator bi;
2938 unsigned int j;
2939
2940 if (group == clear_alias_group)
2941 continue;
2942
2943 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2944 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2945 bitmap_clear (group->group_kill);
2946
2947 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2948 {
2949 bitmap_set_bit (group->group_kill, current_position);
2950 if (bitmap_bit_p (group->escaped_n, j))
2951 bitmap_set_bit (kill_on_calls, current_position);
2952 group->offset_map_n[j] = current_position++;
2953 group->process_globally = true;
2954 }
2955 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2956 {
2957 bitmap_set_bit (group->group_kill, current_position);
2958 if (bitmap_bit_p (group->escaped_p, j))
2959 bitmap_set_bit (kill_on_calls, current_position);
2960 group->offset_map_p[j] = current_position++;
2961 group->process_globally = true;
2962 }
2963 }
2964 return current_position != 1;
2965 }
2966
2967
2968 /* Init the offset tables for the spill case. */
2969
2970 static bool
2971 dse_step2_spill (void)
2972 {
2973 unsigned int j;
2974 group_info_t group = clear_alias_group;
2975 bitmap_iterator bi;
2976
2977 /* Position 0 is unused because 0 is used in the maps to mean
2978 unused. */
2979 current_position = 1;
2980
2981 if (dump_file)
2982 {
2983 bitmap_print (dump_file, clear_alias_sets,
2984 "clear alias sets ", "\n");
2985 bitmap_print (dump_file, disqualified_clear_alias_sets,
2986 "disqualified clear alias sets ", "\n");
2987 }
2988
2989 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2990 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2991 bitmap_clear (group->group_kill);
2992
2993 /* Remove the disqualified positions from the store2_p set. */
2994 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
2995
2996 /* We do not need to process the store2_n set because
2997 alias_sets are always positive. */
2998 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2999 {
3000 bitmap_set_bit (group->group_kill, current_position);
3001 group->offset_map_p[j] = current_position++;
3002 group->process_globally = true;
3003 }
3004
3005 return current_position != 1;
3006 }
3007
3008
3009 \f
3010 /*----------------------------------------------------------------------------
3011 Third step.
3012
3013 Build the bit vectors for the transfer functions.
3014 ----------------------------------------------------------------------------*/
3015
3016
3017 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3018 there, return 0. */
3019
3020 static int
3021 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
3022 {
3023 if (offset < 0)
3024 {
3025 HOST_WIDE_INT offset_p = -offset;
3026 if (offset_p >= group_info->offset_map_size_n)
3027 return 0;
3028 return group_info->offset_map_n[offset_p];
3029 }
3030 else
3031 {
3032 if (offset >= group_info->offset_map_size_p)
3033 return 0;
3034 return group_info->offset_map_p[offset];
3035 }
3036 }
3037
3038
3039 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3040 may be NULL. */
3041
3042 static void
3043 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
3044 {
3045 while (store_info)
3046 {
3047 HOST_WIDE_INT i;
3048 group_info_t group_info
3049 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3050 if (group_info->process_globally)
3051 for (i = store_info->begin; i < store_info->end; i++)
3052 {
3053 int index = get_bitmap_index (group_info, i);
3054 if (index != 0)
3055 {
3056 bitmap_set_bit (gen, index);
3057 if (kill)
3058 bitmap_clear_bit (kill, index);
3059 }
3060 }
3061 store_info = store_info->next;
3062 }
3063 }
3064
3065
3066 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3067 may be NULL. */
3068
3069 static void
3070 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3071 {
3072 while (store_info)
3073 {
3074 if (store_info->alias_set)
3075 {
3076 int index = get_bitmap_index (clear_alias_group,
3077 store_info->alias_set);
3078 if (index != 0)
3079 {
3080 bitmap_set_bit (gen, index);
3081 if (kill)
3082 bitmap_clear_bit (kill, index);
3083 }
3084 }
3085 store_info = store_info->next;
3086 }
3087 }
3088
3089
3090 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3091 may be NULL. */
3092
3093 static void
3094 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3095 {
3096 read_info_t read_info = insn_info->read_rec;
3097 int i;
3098 group_info_t group;
3099
3100 /* If this insn reads the frame, kill all the frame related stores. */
3101 if (insn_info->frame_read)
3102 {
3103 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3104 if (group->process_globally && group->frame_related)
3105 {
3106 if (kill)
3107 bitmap_ior_into (kill, group->group_kill);
3108 bitmap_and_compl_into (gen, group->group_kill);
3109 }
3110 }
3111 if (insn_info->non_frame_wild_read)
3112 {
3113 /* Kill all non-frame related stores. Kill all stores of variables that
3114 escape. */
3115 if (kill)
3116 bitmap_ior_into (kill, kill_on_calls);
3117 bitmap_and_compl_into (gen, kill_on_calls);
3118 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3119 if (group->process_globally && !group->frame_related)
3120 {
3121 if (kill)
3122 bitmap_ior_into (kill, group->group_kill);
3123 bitmap_and_compl_into (gen, group->group_kill);
3124 }
3125 }
3126 while (read_info)
3127 {
3128 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3129 {
3130 if (group->process_globally)
3131 {
3132 if (i == read_info->group_id)
3133 {
3134 if (read_info->begin > read_info->end)
3135 {
3136 /* Begin > end for block mode reads. */
3137 if (kill)
3138 bitmap_ior_into (kill, group->group_kill);
3139 bitmap_and_compl_into (gen, group->group_kill);
3140 }
3141 else
3142 {
3143 /* The groups are the same, just process the
3144 offsets. */
3145 HOST_WIDE_INT j;
3146 for (j = read_info->begin; j < read_info->end; j++)
3147 {
3148 int index = get_bitmap_index (group, j);
3149 if (index != 0)
3150 {
3151 if (kill)
3152 bitmap_set_bit (kill, index);
3153 bitmap_clear_bit (gen, index);
3154 }
3155 }
3156 }
3157 }
3158 else
3159 {
3160 /* The groups are different, if the alias sets
3161 conflict, clear the entire group. We only need
3162 to apply this test if the read_info is a cselib
3163 read. Anything with a constant base cannot alias
3164 something else with a different constant
3165 base. */
3166 if ((read_info->group_id < 0)
3167 && canon_true_dependence (group->base_mem,
3168 GET_MODE (group->base_mem),
3169 group->canon_base_addr,
3170 read_info->mem, NULL_RTX))
3171 {
3172 if (kill)
3173 bitmap_ior_into (kill, group->group_kill);
3174 bitmap_and_compl_into (gen, group->group_kill);
3175 }
3176 }
3177 }
3178 }
3179
3180 read_info = read_info->next;
3181 }
3182 }
3183
3184 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3185 may be NULL. */
3186
3187 static void
3188 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3189 {
3190 while (read_info)
3191 {
3192 if (read_info->alias_set)
3193 {
3194 int index = get_bitmap_index (clear_alias_group,
3195 read_info->alias_set);
3196 if (index != 0)
3197 {
3198 if (kill)
3199 bitmap_set_bit (kill, index);
3200 bitmap_clear_bit (gen, index);
3201 }
3202 }
3203
3204 read_info = read_info->next;
3205 }
3206 }
3207
3208
3209 /* Return the insn in BB_INFO before the first wild read or if there
3210 are no wild reads in the block, return the last insn. */
3211
3212 static insn_info_t
3213 find_insn_before_first_wild_read (bb_info_t bb_info)
3214 {
3215 insn_info_t insn_info = bb_info->last_insn;
3216 insn_info_t last_wild_read = NULL;
3217
3218 while (insn_info)
3219 {
3220 if (insn_info->wild_read)
3221 {
3222 last_wild_read = insn_info->prev_insn;
3223 /* Block starts with wild read. */
3224 if (!last_wild_read)
3225 return NULL;
3226 }
3227
3228 insn_info = insn_info->prev_insn;
3229 }
3230
3231 if (last_wild_read)
3232 return last_wild_read;
3233 else
3234 return bb_info->last_insn;
3235 }
3236
3237
3238 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3239 the block in order to build the gen and kill sets for the block.
3240 We start at ptr which may be the last insn in the block or may be
3241 the first insn with a wild read. In the latter case we are able to
3242 skip the rest of the block because it just does not matter:
3243 anything that happens is hidden by the wild read. */
3244
3245 static void
3246 dse_step3_scan (bool for_spills, basic_block bb)
3247 {
3248 bb_info_t bb_info = bb_table[bb->index];
3249 insn_info_t insn_info;
3250
3251 if (for_spills)
3252 /* There are no wild reads in the spill case. */
3253 insn_info = bb_info->last_insn;
3254 else
3255 insn_info = find_insn_before_first_wild_read (bb_info);
3256
3257 /* In the spill case or in the no_spill case if there is no wild
3258 read in the block, we will need a kill set. */
3259 if (insn_info == bb_info->last_insn)
3260 {
3261 if (bb_info->kill)
3262 bitmap_clear (bb_info->kill);
3263 else
3264 bb_info->kill = BITMAP_ALLOC (NULL);
3265 }
3266 else
3267 if (bb_info->kill)
3268 BITMAP_FREE (bb_info->kill);
3269
3270 while (insn_info)
3271 {
3272 /* There may have been code deleted by the dce pass run before
3273 this phase. */
3274 if (insn_info->insn && INSN_P (insn_info->insn))
3275 {
3276 /* Process the read(s) last. */
3277 if (for_spills)
3278 {
3279 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3280 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3281 }
3282 else
3283 {
3284 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3285 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3286 }
3287 }
3288
3289 insn_info = insn_info->prev_insn;
3290 }
3291 }
3292
3293
3294 /* Set the gen set of the exit block, and also any block with no
3295 successors that does not have a wild read. */
3296
3297 static void
3298 dse_step3_exit_block_scan (bb_info_t bb_info)
3299 {
3300 /* The gen set is all 0's for the exit block except for the
3301 frame_pointer_group. */
3302
3303 if (stores_off_frame_dead_at_return)
3304 {
3305 unsigned int i;
3306 group_info_t group;
3307
3308 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3309 {
3310 if (group->process_globally && group->frame_related)
3311 bitmap_ior_into (bb_info->gen, group->group_kill);
3312 }
3313 }
3314 }
3315
3316
3317 /* Find all of the blocks that are not backwards reachable from the
3318 exit block or any block with no successors (BB). These are the
3319 infinite loops or infinite self loops. These blocks will still
3320 have their bits set in UNREACHABLE_BLOCKS. */
3321
3322 static void
3323 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3324 {
3325 edge e;
3326 edge_iterator ei;
3327
3328 if (TEST_BIT (unreachable_blocks, bb->index))
3329 {
3330 RESET_BIT (unreachable_blocks, bb->index);
3331 FOR_EACH_EDGE (e, ei, bb->preds)
3332 {
3333 mark_reachable_blocks (unreachable_blocks, e->src);
3334 }
3335 }
3336 }
3337
3338 /* Build the transfer functions for the function. */
3339
3340 static void
3341 dse_step3 (bool for_spills)
3342 {
3343 basic_block bb;
3344 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
3345 sbitmap_iterator sbi;
3346 bitmap all_ones = NULL;
3347 unsigned int i;
3348
3349 sbitmap_ones (unreachable_blocks);
3350
3351 FOR_ALL_BB (bb)
3352 {
3353 bb_info_t bb_info = bb_table[bb->index];
3354 if (bb_info->gen)
3355 bitmap_clear (bb_info->gen);
3356 else
3357 bb_info->gen = BITMAP_ALLOC (NULL);
3358
3359 if (bb->index == ENTRY_BLOCK)
3360 ;
3361 else if (bb->index == EXIT_BLOCK)
3362 dse_step3_exit_block_scan (bb_info);
3363 else
3364 dse_step3_scan (for_spills, bb);
3365 if (EDGE_COUNT (bb->succs) == 0)
3366 mark_reachable_blocks (unreachable_blocks, bb);
3367
3368 /* If this is the second time dataflow is run, delete the old
3369 sets. */
3370 if (bb_info->in)
3371 BITMAP_FREE (bb_info->in);
3372 if (bb_info->out)
3373 BITMAP_FREE (bb_info->out);
3374 }
3375
3376 /* For any block in an infinite loop, we must initialize the out set
3377 to all ones. This could be expensive, but almost never occurs in
3378 practice. However, it is common in regression tests. */
3379 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
3380 {
3381 if (bitmap_bit_p (all_blocks, i))
3382 {
3383 bb_info_t bb_info = bb_table[i];
3384 if (!all_ones)
3385 {
3386 unsigned int j;
3387 group_info_t group;
3388
3389 all_ones = BITMAP_ALLOC (NULL);
3390 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, j, group)
3391 bitmap_ior_into (all_ones, group->group_kill);
3392 }
3393 if (!bb_info->out)
3394 {
3395 bb_info->out = BITMAP_ALLOC (NULL);
3396 bitmap_copy (bb_info->out, all_ones);
3397 }
3398 }
3399 }
3400
3401 if (all_ones)
3402 BITMAP_FREE (all_ones);
3403 sbitmap_free (unreachable_blocks);
3404 }
3405
3406
3407 \f
3408 /*----------------------------------------------------------------------------
3409 Fourth step.
3410
3411 Solve the bitvector equations.
3412 ----------------------------------------------------------------------------*/
3413
3414
3415 /* Confluence function for blocks with no successors. Create an out
3416 set from the gen set of the exit block. This block logically has
3417 the exit block as a successor. */
3418
3419
3420
3421 static void
3422 dse_confluence_0 (basic_block bb)
3423 {
3424 bb_info_t bb_info = bb_table[bb->index];
3425
3426 if (bb->index == EXIT_BLOCK)
3427 return;
3428
3429 if (!bb_info->out)
3430 {
3431 bb_info->out = BITMAP_ALLOC (NULL);
3432 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3433 }
3434 }
3435
3436 /* Propagate the information from the in set of the dest of E to the
3437 out set of the src of E. If the various in or out sets are not
3438 there, that means they are all ones. */
3439
3440 static bool
3441 dse_confluence_n (edge e)
3442 {
3443 bb_info_t src_info = bb_table[e->src->index];
3444 bb_info_t dest_info = bb_table[e->dest->index];
3445
3446 if (dest_info->in)
3447 {
3448 if (src_info->out)
3449 bitmap_and_into (src_info->out, dest_info->in);
3450 else
3451 {
3452 src_info->out = BITMAP_ALLOC (NULL);
3453 bitmap_copy (src_info->out, dest_info->in);
3454 }
3455 }
3456 return true;
3457 }
3458
3459
3460 /* Propagate the info from the out to the in set of BB_INDEX's basic
3461 block. There are three cases:
3462
3463 1) The block has no kill set. In this case the kill set is all
3464 ones. It does not matter what the out set of the block is, none of
3465 the info can reach the top. The only thing that reaches the top is
3466 the gen set and we just copy the set.
3467
3468 2) There is a kill set but no out set and bb has successors. In
3469 this case we just return. Eventually an out set will be created and
3470 it is better to wait than to create a set of ones.
3471
3472 3) There is both a kill and out set. We apply the obvious transfer
3473 function.
3474 */
3475
3476 static bool
3477 dse_transfer_function (int bb_index)
3478 {
3479 bb_info_t bb_info = bb_table[bb_index];
3480
3481 if (bb_info->kill)
3482 {
3483 if (bb_info->out)
3484 {
3485 /* Case 3 above. */
3486 if (bb_info->in)
3487 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3488 bb_info->out, bb_info->kill);
3489 else
3490 {
3491 bb_info->in = BITMAP_ALLOC (NULL);
3492 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3493 bb_info->out, bb_info->kill);
3494 return true;
3495 }
3496 }
3497 else
3498 /* Case 2 above. */
3499 return false;
3500 }
3501 else
3502 {
3503 /* Case 1 above. If there is already an in set, nothing
3504 happens. */
3505 if (bb_info->in)
3506 return false;
3507 else
3508 {
3509 bb_info->in = BITMAP_ALLOC (NULL);
3510 bitmap_copy (bb_info->in, bb_info->gen);
3511 return true;
3512 }
3513 }
3514 }
3515
3516 /* Solve the dataflow equations. */
3517
3518 static void
3519 dse_step4 (void)
3520 {
3521 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3522 dse_confluence_n, dse_transfer_function,
3523 all_blocks, df_get_postorder (DF_BACKWARD),
3524 df_get_n_blocks (DF_BACKWARD));
3525 if (dump_file)
3526 {
3527 basic_block bb;
3528
3529 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3530 FOR_ALL_BB (bb)
3531 {
3532 bb_info_t bb_info = bb_table[bb->index];
3533
3534 df_print_bb_index (bb, dump_file);
3535 if (bb_info->in)
3536 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3537 else
3538 fprintf (dump_file, " in: *MISSING*\n");
3539 if (bb_info->gen)
3540 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3541 else
3542 fprintf (dump_file, " gen: *MISSING*\n");
3543 if (bb_info->kill)
3544 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3545 else
3546 fprintf (dump_file, " kill: *MISSING*\n");
3547 if (bb_info->out)
3548 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3549 else
3550 fprintf (dump_file, " out: *MISSING*\n\n");
3551 }
3552 }
3553 }
3554
3555
3556 \f
3557 /*----------------------------------------------------------------------------
3558 Fifth step.
3559
3560 Delete the stores that can only be deleted using the global information.
3561 ----------------------------------------------------------------------------*/
3562
3563
3564 static void
3565 dse_step5_nospill (void)
3566 {
3567 basic_block bb;
3568 FOR_EACH_BB (bb)
3569 {
3570 bb_info_t bb_info = bb_table[bb->index];
3571 insn_info_t insn_info = bb_info->last_insn;
3572 bitmap v = bb_info->out;
3573
3574 while (insn_info)
3575 {
3576 bool deleted = false;
3577 if (dump_file && insn_info->insn)
3578 {
3579 fprintf (dump_file, "starting to process insn %d\n",
3580 INSN_UID (insn_info->insn));
3581 bitmap_print (dump_file, v, " v: ", "\n");
3582 }
3583
3584 /* There may have been code deleted by the dce pass run before
3585 this phase. */
3586 if (insn_info->insn
3587 && INSN_P (insn_info->insn)
3588 && (!insn_info->cannot_delete)
3589 && (!bitmap_empty_p (v)))
3590 {
3591 store_info_t store_info = insn_info->store_rec;
3592
3593 /* Try to delete the current insn. */
3594 deleted = true;
3595
3596 /* Skip the clobbers. */
3597 while (!store_info->is_set)
3598 store_info = store_info->next;
3599
3600 if (store_info->alias_set)
3601 deleted = false;
3602 else
3603 {
3604 HOST_WIDE_INT i;
3605 group_info_t group_info
3606 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3607
3608 for (i = store_info->begin; i < store_info->end; i++)
3609 {
3610 int index = get_bitmap_index (group_info, i);
3611
3612 if (dump_file)
3613 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3614 if (index == 0 || !bitmap_bit_p (v, index))
3615 {
3616 if (dump_file)
3617 fprintf (dump_file, "failing at i = %d\n", (int)i);
3618 deleted = false;
3619 break;
3620 }
3621 }
3622 }
3623 if (deleted)
3624 {
3625 if (dbg_cnt (dse)
3626 && check_for_inc_dec_1 (insn_info))
3627 {
3628 delete_insn (insn_info->insn);
3629 insn_info->insn = NULL;
3630 globally_deleted++;
3631 }
3632 }
3633 }
3634 /* We do want to process the local info if the insn was
3635 deleted. For instance, if the insn did a wild read, we
3636 no longer need to trash the info. */
3637 if (insn_info->insn
3638 && INSN_P (insn_info->insn)
3639 && (!deleted))
3640 {
3641 scan_stores_nospill (insn_info->store_rec, v, NULL);
3642 if (insn_info->wild_read)
3643 {
3644 if (dump_file)
3645 fprintf (dump_file, "wild read\n");
3646 bitmap_clear (v);
3647 }
3648 else if (insn_info->read_rec
3649 || insn_info->non_frame_wild_read)
3650 {
3651 if (dump_file && !insn_info->non_frame_wild_read)
3652 fprintf (dump_file, "regular read\n");
3653 else if (dump_file)
3654 fprintf (dump_file, "non-frame wild read\n");
3655 scan_reads_nospill (insn_info, v, NULL);
3656 }
3657 }
3658
3659 insn_info = insn_info->prev_insn;
3660 }
3661 }
3662 }
3663
3664
3665 static void
3666 dse_step5_spill (void)
3667 {
3668 basic_block bb;
3669 FOR_EACH_BB (bb)
3670 {
3671 bb_info_t bb_info = bb_table[bb->index];
3672 insn_info_t insn_info = bb_info->last_insn;
3673 bitmap v = bb_info->out;
3674
3675 while (insn_info)
3676 {
3677 bool deleted = false;
3678 /* There may have been code deleted by the dce pass run before
3679 this phase. */
3680 if (insn_info->insn
3681 && INSN_P (insn_info->insn)
3682 && (!insn_info->cannot_delete)
3683 && (!bitmap_empty_p (v)))
3684 {
3685 /* Try to delete the current insn. */
3686 store_info_t store_info = insn_info->store_rec;
3687 deleted = true;
3688
3689 while (store_info)
3690 {
3691 if (store_info->alias_set)
3692 {
3693 int index = get_bitmap_index (clear_alias_group,
3694 store_info->alias_set);
3695 if (index == 0 || !bitmap_bit_p (v, index))
3696 {
3697 deleted = false;
3698 break;
3699 }
3700 }
3701 else
3702 deleted = false;
3703 store_info = store_info->next;
3704 }
3705 if (deleted && dbg_cnt (dse)
3706 && check_for_inc_dec_1 (insn_info))
3707 {
3708 if (dump_file)
3709 fprintf (dump_file, "Spill deleting insn %d\n",
3710 INSN_UID (insn_info->insn));
3711 delete_insn (insn_info->insn);
3712 spill_deleted++;
3713 insn_info->insn = NULL;
3714 }
3715 }
3716
3717 if (insn_info->insn
3718 && INSN_P (insn_info->insn)
3719 && (!deleted))
3720 {
3721 scan_stores_spill (insn_info->store_rec, v, NULL);
3722 scan_reads_spill (insn_info->read_rec, v, NULL);
3723 }
3724
3725 insn_info = insn_info->prev_insn;
3726 }
3727 }
3728 }
3729
3730
3731 \f
3732 /*----------------------------------------------------------------------------
3733 Sixth step.
3734
3735 Delete stores made redundant by earlier stores (which store the same
3736 value) that couldn't be eliminated.
3737 ----------------------------------------------------------------------------*/
3738
3739 static void
3740 dse_step6 (void)
3741 {
3742 basic_block bb;
3743
3744 FOR_ALL_BB (bb)
3745 {
3746 bb_info_t bb_info = bb_table[bb->index];
3747 insn_info_t insn_info = bb_info->last_insn;
3748
3749 while (insn_info)
3750 {
3751 /* There may have been code deleted by the dce pass run before
3752 this phase. */
3753 if (insn_info->insn
3754 && INSN_P (insn_info->insn)
3755 && !insn_info->cannot_delete)
3756 {
3757 store_info_t s_info = insn_info->store_rec;
3758
3759 while (s_info && !s_info->is_set)
3760 s_info = s_info->next;
3761 if (s_info
3762 && s_info->redundant_reason
3763 && s_info->redundant_reason->insn
3764 && INSN_P (s_info->redundant_reason->insn))
3765 {
3766 rtx rinsn = s_info->redundant_reason->insn;
3767 if (dump_file)
3768 fprintf (dump_file, "Locally deleting insn %d "
3769 "because insn %d stores the "
3770 "same value and couldn't be "
3771 "eliminated\n",
3772 INSN_UID (insn_info->insn),
3773 INSN_UID (rinsn));
3774 delete_dead_store_insn (insn_info);
3775 }
3776 }
3777 insn_info = insn_info->prev_insn;
3778 }
3779 }
3780 }
3781 \f
3782 /*----------------------------------------------------------------------------
3783 Seventh step.
3784
3785 Destroy everything left standing.
3786 ----------------------------------------------------------------------------*/
3787
3788 static void
3789 dse_step7 (bool global_done)
3790 {
3791 unsigned int i;
3792 group_info_t group;
3793 basic_block bb;
3794
3795 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3796 {
3797 free (group->offset_map_n);
3798 free (group->offset_map_p);
3799 BITMAP_FREE (group->store1_n);
3800 BITMAP_FREE (group->store1_p);
3801 BITMAP_FREE (group->store2_n);
3802 BITMAP_FREE (group->store2_p);
3803 BITMAP_FREE (group->escaped_n);
3804 BITMAP_FREE (group->escaped_p);
3805 BITMAP_FREE (group->group_kill);
3806 }
3807
3808 if (global_done)
3809 FOR_ALL_BB (bb)
3810 {
3811 bb_info_t bb_info = bb_table[bb->index];
3812 BITMAP_FREE (bb_info->gen);
3813 if (bb_info->kill)
3814 BITMAP_FREE (bb_info->kill);
3815 if (bb_info->in)
3816 BITMAP_FREE (bb_info->in);
3817 if (bb_info->out)
3818 BITMAP_FREE (bb_info->out);
3819 }
3820
3821 if (clear_alias_sets)
3822 {
3823 BITMAP_FREE (clear_alias_sets);
3824 BITMAP_FREE (disqualified_clear_alias_sets);
3825 free_alloc_pool (clear_alias_mode_pool);
3826 htab_delete (clear_alias_mode_table);
3827 }
3828
3829 end_alias_analysis ();
3830 free (bb_table);
3831 htab_delete (rtx_group_table);
3832 VEC_free (group_info_t, heap, rtx_group_vec);
3833 BITMAP_FREE (all_blocks);
3834 BITMAP_FREE (scratch);
3835 BITMAP_FREE (kill_on_calls);
3836
3837 free_alloc_pool (rtx_store_info_pool);
3838 free_alloc_pool (read_info_pool);
3839 free_alloc_pool (insn_info_pool);
3840 free_alloc_pool (bb_info_pool);
3841 free_alloc_pool (rtx_group_info_pool);
3842 free_alloc_pool (deferred_change_pool);
3843 }
3844
3845
3846 /* -------------------------------------------------------------------------
3847 DSE
3848 ------------------------------------------------------------------------- */
3849
3850 /* Callback for running pass_rtl_dse. */
3851
3852 static unsigned int
3853 rest_of_handle_dse (void)
3854 {
3855 bool did_global = false;
3856
3857 df_set_flags (DF_DEFER_INSN_RESCAN);
3858
3859 /* Need the notes since we must track live hardregs in the forwards
3860 direction. */
3861 df_note_add_problem ();
3862 df_analyze ();
3863
3864 dse_step0 ();
3865 dse_step1 ();
3866 dse_step2_init ();
3867 if (dse_step2_nospill ())
3868 {
3869 df_set_flags (DF_LR_RUN_DCE);
3870 df_analyze ();
3871 did_global = true;
3872 if (dump_file)
3873 fprintf (dump_file, "doing global processing\n");
3874 dse_step3 (false);
3875 dse_step4 ();
3876 dse_step5_nospill ();
3877 }
3878
3879 /* For the instance of dse that runs after reload, we make a special
3880 pass to process the spills. These are special in that they are
3881 totally transparent, i.e, there is no aliasing issues that need
3882 to be considered. This means that the wild reads that kill
3883 everything else do not apply here. */
3884 if (clear_alias_sets && dse_step2_spill ())
3885 {
3886 if (!did_global)
3887 {
3888 df_set_flags (DF_LR_RUN_DCE);
3889 df_analyze ();
3890 }
3891 did_global = true;
3892 if (dump_file)
3893 fprintf (dump_file, "doing global spill processing\n");
3894 dse_step3 (true);
3895 dse_step4 ();
3896 dse_step5_spill ();
3897 }
3898
3899 dse_step6 ();
3900 dse_step7 (did_global);
3901
3902 if (dump_file)
3903 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3904 locally_deleted, globally_deleted, spill_deleted);
3905 return 0;
3906 }
3907
3908 static bool
3909 gate_dse1 (void)
3910 {
3911 return optimize > 0 && flag_dse
3912 && dbg_cnt (dse1);
3913 }
3914
3915 static bool
3916 gate_dse2 (void)
3917 {
3918 return optimize > 0 && flag_dse
3919 && dbg_cnt (dse2);
3920 }
3921
3922 struct rtl_opt_pass pass_rtl_dse1 =
3923 {
3924 {
3925 RTL_PASS,
3926 "dse1", /* name */
3927 gate_dse1, /* gate */
3928 rest_of_handle_dse, /* execute */
3929 NULL, /* sub */
3930 NULL, /* next */
3931 0, /* static_pass_number */
3932 TV_DSE1, /* tv_id */
3933 0, /* properties_required */
3934 0, /* properties_provided */
3935 0, /* properties_destroyed */
3936 0, /* todo_flags_start */
3937 TODO_df_finish | TODO_verify_rtl_sharing |
3938 TODO_ggc_collect /* todo_flags_finish */
3939 }
3940 };
3941
3942 struct rtl_opt_pass pass_rtl_dse2 =
3943 {
3944 {
3945 RTL_PASS,
3946 "dse2", /* name */
3947 gate_dse2, /* gate */
3948 rest_of_handle_dse, /* execute */
3949 NULL, /* sub */
3950 NULL, /* next */
3951 0, /* static_pass_number */
3952 TV_DSE2, /* tv_id */
3953 0, /* properties_required */
3954 0, /* properties_provided */
3955 0, /* properties_destroyed */
3956 0, /* todo_flags_start */
3957 TODO_df_finish | TODO_verify_rtl_sharing |
3958 TODO_ggc_collect /* todo_flags_finish */
3959 }
3960 };