re PR rtl-optimization/40924 (miscompiles with -O3 (seemingly related to attribute...
[gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "hashtab.h"
29 #include "tm.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "flags.h"
36 #include "df.h"
37 #include "cselib.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "alloc-pool.h"
41 #include "alias.h"
42 #include "insn-config.h"
43 #include "expr.h"
44 #include "recog.h"
45 #include "dse.h"
46 #include "optabs.h"
47 #include "dbgcnt.h"
48 #include "target.h"
49
50 /* This file contains three techniques for performing Dead Store
51 Elimination (dse).
52
53 * The first technique performs dse locally on any base address. It
54 is based on the cselib which is a local value numbering technique.
55 This technique is local to a basic block but deals with a fairly
56 general addresses.
57
58 * The second technique performs dse globally but is restricted to
59 base addresses that are either constant or are relative to the
60 frame_pointer.
61
62 * The third technique, (which is only done after register allocation)
63 processes the spill spill slots. This differs from the second
64 technique because it takes advantage of the fact that spilling is
65 completely free from the effects of aliasing.
66
67 Logically, dse is a backwards dataflow problem. A store can be
68 deleted if it if cannot be reached in the backward direction by any
69 use of the value being stored. However, the local technique uses a
70 forwards scan of the basic block because cselib requires that the
71 block be processed in that order.
72
73 The pass is logically broken into 7 steps:
74
75 0) Initialization.
76
77 1) The local algorithm, as well as scanning the insns for the two
78 global algorithms.
79
80 2) Analysis to see if the global algs are necessary. In the case
81 of stores base on a constant address, there must be at least two
82 stores to that address, to make it possible to delete some of the
83 stores. In the case of stores off of the frame or spill related
84 stores, only one store to an address is necessary because those
85 stores die at the end of the function.
86
87 3) Set up the global dataflow equations based on processing the
88 info parsed in the first step.
89
90 4) Solve the dataflow equations.
91
92 5) Delete the insns that the global analysis has indicated are
93 unnecessary.
94
95 6) Delete insns that store the same value as preceeding store
96 where the earlier store couldn't be eliminated.
97
98 7) Cleanup.
99
100 This step uses cselib and canon_rtx to build the largest expression
101 possible for each address. This pass is a forwards pass through
102 each basic block. From the point of view of the global technique,
103 the first pass could examine a block in either direction. The
104 forwards ordering is to accommodate cselib.
105
106 We a simplifying assumption: addresses fall into four broad
107 categories:
108
109 1) base has rtx_varies_p == false, offset is constant.
110 2) base has rtx_varies_p == false, offset variable.
111 3) base has rtx_varies_p == true, offset constant.
112 4) base has rtx_varies_p == true, offset variable.
113
114 The local passes are able to process all 4 kinds of addresses. The
115 global pass only handles (1).
116
117 The global problem is formulated as follows:
118
119 A store, S1, to address A, where A is not relative to the stack
120 frame, can be eliminated if all paths from S1 to the end of the
121 of the function contain another store to A before a read to A.
122
123 If the address A is relative to the stack frame, a store S2 to A
124 can be eliminated if there are no paths from S1 that reach the
125 end of the function that read A before another store to A. In
126 this case S2 can be deleted if there are paths to from S2 to the
127 end of the function that have no reads or writes to A. This
128 second case allows stores to the stack frame to be deleted that
129 would otherwise die when the function returns. This cannot be
130 done if stores_off_frame_dead_at_return is not true. See the doc
131 for that variable for when this variable is false.
132
133 The global problem is formulated as a backwards set union
134 dataflow problem where the stores are the gens and reads are the
135 kills. Set union problems are rare and require some special
136 handling given our representation of bitmaps. A straightforward
137 implementation of requires a lot of bitmaps filled with 1s.
138 These are expensive and cumbersome in our bitmap formulation so
139 care has been taken to avoid large vectors filled with 1s. See
140 the comments in bb_info and in the dataflow confluence functions
141 for details.
142
143 There are two places for further enhancements to this algorithm:
144
145 1) The original dse which was embedded in a pass called flow also
146 did local address forwarding. For example in
147
148 A <- r100
149 ... <- A
150
151 flow would replace the right hand side of the second insn with a
152 reference to r100. Most of the information is available to add this
153 to this pass. It has not done it because it is a lot of work in
154 the case that either r100 is assigned to between the first and
155 second insn and/or the second insn is a load of part of the value
156 stored by the first insn.
157
158 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
159 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
160 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
161 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
162
163 2) The cleaning up of spill code is quite profitable. It currently
164 depends on reading tea leaves and chicken entrails left by reload.
165 This pass depends on reload creating a singleton alias set for each
166 spill slot and telling the next dse pass which of these alias sets
167 are the singletons. Rather than analyze the addresses of the
168 spills, dse's spill processing just does analysis of the loads and
169 stores that use those alias sets. There are three cases where this
170 falls short:
171
172 a) Reload sometimes creates the slot for one mode of access, and
173 then inserts loads and/or stores for a smaller mode. In this
174 case, the current code just punts on the slot. The proper thing
175 to do is to back out and use one bit vector position for each
176 byte of the entity associated with the slot. This depends on
177 KNOWING that reload always generates the accesses for each of the
178 bytes in some canonical (read that easy to understand several
179 passes after reload happens) way.
180
181 b) Reload sometimes decides that spill slot it allocated was not
182 large enough for the mode and goes back and allocates more slots
183 with the same mode and alias set. The backout in this case is a
184 little more graceful than (a). In this case the slot is unmarked
185 as being a spill slot and if final address comes out to be based
186 off the frame pointer, the global algorithm handles this slot.
187
188 c) For any pass that may prespill, there is currently no
189 mechanism to tell the dse pass that the slot being used has the
190 special properties that reload uses. It may be that all that is
191 required is to have those passes make the same calls that reload
192 does, assuming that the alias sets can be manipulated in the same
193 way. */
194
195 /* There are limits to the size of constant offsets we model for the
196 global problem. There are certainly test cases, that exceed this
197 limit, however, it is unlikely that there are important programs
198 that really have constant offsets this size. */
199 #define MAX_OFFSET (64 * 1024)
200
201
202 static bitmap scratch = NULL;
203 struct insn_info;
204
205 /* This structure holds information about a candidate store. */
206 struct store_info
207 {
208
209 /* False means this is a clobber. */
210 bool is_set;
211
212 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
213 bool is_large;
214
215 /* The id of the mem group of the base address. If rtx_varies_p is
216 true, this is -1. Otherwise, it is the index into the group
217 table. */
218 int group_id;
219
220 /* This is the cselib value. */
221 cselib_val *cse_base;
222
223 /* This canonized mem. */
224 rtx mem;
225
226 /* Canonized MEM address for use by canon_true_dependence. */
227 rtx mem_addr;
228
229 /* If this is non-zero, it is the alias set of a spill location. */
230 alias_set_type alias_set;
231
232 /* The offset of the first and byte before the last byte associated
233 with the operation. */
234 HOST_WIDE_INT begin, end;
235
236 union
237 {
238 /* A bitmask as wide as the number of bytes in the word that
239 contains a 1 if the byte may be needed. The store is unused if
240 all of the bits are 0. This is used if IS_LARGE is false. */
241 unsigned HOST_WIDE_INT small_bitmask;
242
243 struct
244 {
245 /* A bitmap with one bit per byte. Cleared bit means the position
246 is needed. Used if IS_LARGE is false. */
247 bitmap bmap;
248
249 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
250 equal to END - BEGIN, the whole store is unused. */
251 int count;
252 } large;
253 } positions_needed;
254
255 /* The next store info for this insn. */
256 struct store_info *next;
257
258 /* The right hand side of the store. This is used if there is a
259 subsequent reload of the mems address somewhere later in the
260 basic block. */
261 rtx rhs;
262
263 /* If rhs is or holds a constant, this contains that constant,
264 otherwise NULL. */
265 rtx const_rhs;
266
267 /* Set if this store stores the same constant value as REDUNDANT_REASON
268 insn stored. These aren't eliminated early, because doing that
269 might prevent the earlier larger store to be eliminated. */
270 struct insn_info *redundant_reason;
271 };
272
273 /* Return a bitmask with the first N low bits set. */
274
275 static unsigned HOST_WIDE_INT
276 lowpart_bitmask (int n)
277 {
278 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
279 return mask >> (HOST_BITS_PER_WIDE_INT - n);
280 }
281
282 typedef struct store_info *store_info_t;
283 static alloc_pool cse_store_info_pool;
284 static alloc_pool rtx_store_info_pool;
285
286 /* This structure holds information about a load. These are only
287 built for rtx bases. */
288 struct read_info
289 {
290 /* The id of the mem group of the base address. */
291 int group_id;
292
293 /* If this is non-zero, it is the alias set of a spill location. */
294 alias_set_type alias_set;
295
296 /* The offset of the first and byte after the last byte associated
297 with the operation. If begin == end == 0, the read did not have
298 a constant offset. */
299 int begin, end;
300
301 /* The mem being read. */
302 rtx mem;
303
304 /* The next read_info for this insn. */
305 struct read_info *next;
306 };
307 typedef struct read_info *read_info_t;
308 static alloc_pool read_info_pool;
309
310
311 /* One of these records is created for each insn. */
312
313 struct insn_info
314 {
315 /* Set true if the insn contains a store but the insn itself cannot
316 be deleted. This is set if the insn is a parallel and there is
317 more than one non dead output or if the insn is in some way
318 volatile. */
319 bool cannot_delete;
320
321 /* This field is only used by the global algorithm. It is set true
322 if the insn contains any read of mem except for a (1). This is
323 also set if the insn is a call or has a clobber mem. If the insn
324 contains a wild read, the use_rec will be null. */
325 bool wild_read;
326
327 /* This field is only used for the processing of const functions.
328 These functions cannot read memory, but they can read the stack
329 because that is where they may get their parms. We need to be
330 this conservative because, like the store motion pass, we don't
331 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
332 Moreover, we need to distinguish two cases:
333 1. Before reload (register elimination), the stores related to
334 outgoing arguments are stack pointer based and thus deemed
335 of non-constant base in this pass. This requires special
336 handling but also means that the frame pointer based stores
337 need not be killed upon encountering a const function call.
338 2. After reload, the stores related to outgoing arguments can be
339 either stack pointer or hard frame pointer based. This means
340 that we have no other choice than also killing all the frame
341 pointer based stores upon encountering a const function call.
342 This field is set after reload for const function calls. Having
343 this set is less severe than a wild read, it just means that all
344 the frame related stores are killed rather than all the stores. */
345 bool frame_read;
346
347 /* This field is only used for the processing of const functions.
348 It is set if the insn may contain a stack pointer based store. */
349 bool stack_pointer_based;
350
351 /* This is true if any of the sets within the store contains a
352 cselib base. Such stores can only be deleted by the local
353 algorithm. */
354 bool contains_cselib_groups;
355
356 /* The insn. */
357 rtx insn;
358
359 /* The list of mem sets or mem clobbers that are contained in this
360 insn. If the insn is deletable, it contains only one mem set.
361 But it could also contain clobbers. Insns that contain more than
362 one mem set are not deletable, but each of those mems are here in
363 order to provide info to delete other insns. */
364 store_info_t store_rec;
365
366 /* The linked list of mem uses in this insn. Only the reads from
367 rtx bases are listed here. The reads to cselib bases are
368 completely processed during the first scan and so are never
369 created. */
370 read_info_t read_rec;
371
372 /* The prev insn in the basic block. */
373 struct insn_info * prev_insn;
374
375 /* The linked list of insns that are in consideration for removal in
376 the forwards pass thru the basic block. This pointer may be
377 trash as it is not cleared when a wild read occurs. The only
378 time it is guaranteed to be correct is when the traversal starts
379 at active_local_stores. */
380 struct insn_info * next_local_store;
381 };
382
383 typedef struct insn_info *insn_info_t;
384 static alloc_pool insn_info_pool;
385
386 /* The linked list of stores that are under consideration in this
387 basic block. */
388 static insn_info_t active_local_stores;
389
390 struct bb_info
391 {
392
393 /* Pointer to the insn info for the last insn in the block. These
394 are linked so this is how all of the insns are reached. During
395 scanning this is the current insn being scanned. */
396 insn_info_t last_insn;
397
398 /* The info for the global dataflow problem. */
399
400
401 /* This is set if the transfer function should and in the wild_read
402 bitmap before applying the kill and gen sets. That vector knocks
403 out most of the bits in the bitmap and thus speeds up the
404 operations. */
405 bool apply_wild_read;
406
407 /* The following 4 bitvectors hold information about which positions
408 of which stores are live or dead. They are indexed by
409 get_bitmap_index. */
410
411 /* The set of store positions that exist in this block before a wild read. */
412 bitmap gen;
413
414 /* The set of load positions that exist in this block above the
415 same position of a store. */
416 bitmap kill;
417
418 /* The set of stores that reach the top of the block without being
419 killed by a read.
420
421 Do not represent the in if it is all ones. Note that this is
422 what the bitvector should logically be initialized to for a set
423 intersection problem. However, like the kill set, this is too
424 expensive. So initially, the in set will only be created for the
425 exit block and any block that contains a wild read. */
426 bitmap in;
427
428 /* The set of stores that reach the bottom of the block from it's
429 successors.
430
431 Do not represent the in if it is all ones. Note that this is
432 what the bitvector should logically be initialized to for a set
433 intersection problem. However, like the kill and in set, this is
434 too expensive. So what is done is that the confluence operator
435 just initializes the vector from one of the out sets of the
436 successors of the block. */
437 bitmap out;
438
439 /* The following bitvector is indexed by the reg number. It
440 contains the set of regs that are live at the current instruction
441 being processed. While it contains info for all of the
442 registers, only the pseudos are actually examined. It is used to
443 assure that shift sequences that are inserted do not accidently
444 clobber live hard regs. */
445 bitmap regs_live;
446 };
447
448 typedef struct bb_info *bb_info_t;
449 static alloc_pool bb_info_pool;
450
451 /* Table to hold all bb_infos. */
452 static bb_info_t *bb_table;
453
454 /* There is a group_info for each rtx base that is used to reference
455 memory. There are also not many of the rtx bases because they are
456 very limited in scope. */
457
458 struct group_info
459 {
460 /* The actual base of the address. */
461 rtx rtx_base;
462
463 /* The sequential id of the base. This allows us to have a
464 canonical ordering of these that is not based on addresses. */
465 int id;
466
467 /* True if there are any positions that are to be processed
468 globally. */
469 bool process_globally;
470
471 /* True if the base of this group is either the frame_pointer or
472 hard_frame_pointer. */
473 bool frame_related;
474
475 /* A mem wrapped around the base pointer for the group in order to
476 do read dependency. */
477 rtx base_mem;
478
479 /* Canonized version of base_mem's address. */
480 rtx canon_base_addr;
481
482 /* These two sets of two bitmaps are used to keep track of how many
483 stores are actually referencing that position from this base. We
484 only do this for rtx bases as this will be used to assign
485 positions in the bitmaps for the global problem. Bit N is set in
486 store1 on the first store for offset N. Bit N is set in store2
487 for the second store to offset N. This is all we need since we
488 only care about offsets that have two or more stores for them.
489
490 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
491 for 0 and greater offsets.
492
493 There is one special case here, for stores into the stack frame,
494 we will or store1 into store2 before deciding which stores look
495 at globally. This is because stores to the stack frame that have
496 no other reads before the end of the function can also be
497 deleted. */
498 bitmap store1_n, store1_p, store2_n, store2_p;
499
500 /* The positions in this bitmap have the same assignments as the in,
501 out, gen and kill bitmaps. This bitmap is all zeros except for
502 the positions that are occupied by stores for this group. */
503 bitmap group_kill;
504
505 /* The offset_map is used to map the offsets from this base into
506 positions in the global bitmaps. It is only created after all of
507 the all of stores have been scanned and we know which ones we
508 care about. */
509 int *offset_map_n, *offset_map_p;
510 int offset_map_size_n, offset_map_size_p;
511 };
512 typedef struct group_info *group_info_t;
513 typedef const struct group_info *const_group_info_t;
514 static alloc_pool rtx_group_info_pool;
515
516 /* Tables of group_info structures, hashed by base value. */
517 static htab_t rtx_group_table;
518
519 /* Index into the rtx_group_vec. */
520 static int rtx_group_next_id;
521
522 DEF_VEC_P(group_info_t);
523 DEF_VEC_ALLOC_P(group_info_t,heap);
524
525 static VEC(group_info_t,heap) *rtx_group_vec;
526
527
528 /* This structure holds the set of changes that are being deferred
529 when removing read operation. See replace_read. */
530 struct deferred_change
531 {
532
533 /* The mem that is being replaced. */
534 rtx *loc;
535
536 /* The reg it is being replaced with. */
537 rtx reg;
538
539 struct deferred_change *next;
540 };
541
542 typedef struct deferred_change *deferred_change_t;
543 static alloc_pool deferred_change_pool;
544
545 static deferred_change_t deferred_change_list = NULL;
546
547 /* This are used to hold the alias sets of spill variables. Since
548 these are never aliased and there may be a lot of them, it makes
549 sense to treat them specially. This bitvector is only allocated in
550 calls from dse_record_singleton_alias_set which currently is only
551 made during reload1. So when dse is called before reload this
552 mechanism does nothing. */
553
554 static bitmap clear_alias_sets = NULL;
555
556 /* The set of clear_alias_sets that have been disqualified because
557 there are loads or stores using a different mode than the alias set
558 was registered with. */
559 static bitmap disqualified_clear_alias_sets = NULL;
560
561 /* The group that holds all of the clear_alias_sets. */
562 static group_info_t clear_alias_group;
563
564 /* The modes of the clear_alias_sets. */
565 static htab_t clear_alias_mode_table;
566
567 /* Hash table element to look up the mode for an alias set. */
568 struct clear_alias_mode_holder
569 {
570 alias_set_type alias_set;
571 enum machine_mode mode;
572 };
573
574 static alloc_pool clear_alias_mode_pool;
575
576 /* This is true except if cfun->stdarg -- i.e. we cannot do
577 this for vararg functions because they play games with the frame. */
578 static bool stores_off_frame_dead_at_return;
579
580 /* Counter for stats. */
581 static int globally_deleted;
582 static int locally_deleted;
583 static int spill_deleted;
584
585 static bitmap all_blocks;
586
587 /* The number of bits used in the global bitmaps. */
588 static unsigned int current_position;
589
590
591 static bool gate_dse (void);
592 static bool gate_dse1 (void);
593 static bool gate_dse2 (void);
594
595 \f
596 /*----------------------------------------------------------------------------
597 Zeroth step.
598
599 Initialization.
600 ----------------------------------------------------------------------------*/
601
602 /* Hashtable callbacks for maintaining the "bases" field of
603 store_group_info, given that the addresses are function invariants. */
604
605 static int
606 clear_alias_mode_eq (const void *p1, const void *p2)
607 {
608 const struct clear_alias_mode_holder * h1
609 = (const struct clear_alias_mode_holder *) p1;
610 const struct clear_alias_mode_holder * h2
611 = (const struct clear_alias_mode_holder *) p2;
612 return h1->alias_set == h2->alias_set;
613 }
614
615
616 static hashval_t
617 clear_alias_mode_hash (const void *p)
618 {
619 const struct clear_alias_mode_holder *holder
620 = (const struct clear_alias_mode_holder *) p;
621 return holder->alias_set;
622 }
623
624
625 /* Find the entry associated with ALIAS_SET. */
626
627 static struct clear_alias_mode_holder *
628 clear_alias_set_lookup (alias_set_type alias_set)
629 {
630 struct clear_alias_mode_holder tmp_holder;
631 void **slot;
632
633 tmp_holder.alias_set = alias_set;
634 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
635 gcc_assert (*slot);
636
637 return (struct clear_alias_mode_holder *) *slot;
638 }
639
640
641 /* Hashtable callbacks for maintaining the "bases" field of
642 store_group_info, given that the addresses are function invariants. */
643
644 static int
645 invariant_group_base_eq (const void *p1, const void *p2)
646 {
647 const_group_info_t gi1 = (const_group_info_t) p1;
648 const_group_info_t gi2 = (const_group_info_t) p2;
649 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
650 }
651
652
653 static hashval_t
654 invariant_group_base_hash (const void *p)
655 {
656 const_group_info_t gi = (const_group_info_t) p;
657 int do_not_record;
658 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
659 }
660
661
662 /* Get the GROUP for BASE. Add a new group if it is not there. */
663
664 static group_info_t
665 get_group_info (rtx base)
666 {
667 struct group_info tmp_gi;
668 group_info_t gi;
669 void **slot;
670
671 if (base)
672 {
673 /* Find the store_base_info structure for BASE, creating a new one
674 if necessary. */
675 tmp_gi.rtx_base = base;
676 slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
677 gi = (group_info_t) *slot;
678 }
679 else
680 {
681 if (!clear_alias_group)
682 {
683 clear_alias_group = gi =
684 (group_info_t) pool_alloc (rtx_group_info_pool);
685 memset (gi, 0, sizeof (struct group_info));
686 gi->id = rtx_group_next_id++;
687 gi->store1_n = BITMAP_ALLOC (NULL);
688 gi->store1_p = BITMAP_ALLOC (NULL);
689 gi->store2_n = BITMAP_ALLOC (NULL);
690 gi->store2_p = BITMAP_ALLOC (NULL);
691 gi->group_kill = BITMAP_ALLOC (NULL);
692 gi->process_globally = false;
693 gi->offset_map_size_n = 0;
694 gi->offset_map_size_p = 0;
695 gi->offset_map_n = NULL;
696 gi->offset_map_p = NULL;
697 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
698 }
699 return clear_alias_group;
700 }
701
702 if (gi == NULL)
703 {
704 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
705 gi->rtx_base = base;
706 gi->id = rtx_group_next_id++;
707 gi->base_mem = gen_rtx_MEM (QImode, base);
708 gi->canon_base_addr = canon_rtx (base);
709 gi->store1_n = BITMAP_ALLOC (NULL);
710 gi->store1_p = BITMAP_ALLOC (NULL);
711 gi->store2_n = BITMAP_ALLOC (NULL);
712 gi->store2_p = BITMAP_ALLOC (NULL);
713 gi->group_kill = BITMAP_ALLOC (NULL);
714 gi->process_globally = false;
715 gi->frame_related =
716 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
717 gi->offset_map_size_n = 0;
718 gi->offset_map_size_p = 0;
719 gi->offset_map_n = NULL;
720 gi->offset_map_p = NULL;
721 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
722 }
723
724 return gi;
725 }
726
727
728 /* Initialization of data structures. */
729
730 static void
731 dse_step0 (void)
732 {
733 locally_deleted = 0;
734 globally_deleted = 0;
735 spill_deleted = 0;
736
737 scratch = BITMAP_ALLOC (NULL);
738
739 rtx_store_info_pool
740 = create_alloc_pool ("rtx_store_info_pool",
741 sizeof (struct store_info), 100);
742 read_info_pool
743 = create_alloc_pool ("read_info_pool",
744 sizeof (struct read_info), 100);
745 insn_info_pool
746 = create_alloc_pool ("insn_info_pool",
747 sizeof (struct insn_info), 100);
748 bb_info_pool
749 = create_alloc_pool ("bb_info_pool",
750 sizeof (struct bb_info), 100);
751 rtx_group_info_pool
752 = create_alloc_pool ("rtx_group_info_pool",
753 sizeof (struct group_info), 100);
754 deferred_change_pool
755 = create_alloc_pool ("deferred_change_pool",
756 sizeof (struct deferred_change), 10);
757
758 rtx_group_table = htab_create (11, invariant_group_base_hash,
759 invariant_group_base_eq, NULL);
760
761 bb_table = XCNEWVEC (bb_info_t, last_basic_block);
762 rtx_group_next_id = 0;
763
764 stores_off_frame_dead_at_return = !cfun->stdarg;
765
766 init_alias_analysis ();
767
768 if (clear_alias_sets)
769 clear_alias_group = get_group_info (NULL);
770 else
771 clear_alias_group = NULL;
772 }
773
774
775 \f
776 /*----------------------------------------------------------------------------
777 First step.
778
779 Scan all of the insns. Any random ordering of the blocks is fine.
780 Each block is scanned in forward order to accommodate cselib which
781 is used to remove stores with non-constant bases.
782 ----------------------------------------------------------------------------*/
783
784 /* Delete all of the store_info recs from INSN_INFO. */
785
786 static void
787 free_store_info (insn_info_t insn_info)
788 {
789 store_info_t store_info = insn_info->store_rec;
790 while (store_info)
791 {
792 store_info_t next = store_info->next;
793 if (store_info->is_large)
794 BITMAP_FREE (store_info->positions_needed.large.bmap);
795 if (store_info->cse_base)
796 pool_free (cse_store_info_pool, store_info);
797 else
798 pool_free (rtx_store_info_pool, store_info);
799 store_info = next;
800 }
801
802 insn_info->cannot_delete = true;
803 insn_info->contains_cselib_groups = false;
804 insn_info->store_rec = NULL;
805 }
806
807
808 struct insn_size {
809 int size;
810 rtx insn;
811 };
812
813
814 /* Add an insn to do the add inside a x if it is a
815 PRE/POST-INC/DEC/MODIFY. D is an structure containing the insn and
816 the size of the mode of the MEM that this is inside of. */
817
818 static int
819 replace_inc_dec (rtx *r, void *d)
820 {
821 rtx x = *r;
822 struct insn_size *data = (struct insn_size *)d;
823 switch (GET_CODE (x))
824 {
825 case PRE_INC:
826 case POST_INC:
827 {
828 rtx r1 = XEXP (x, 0);
829 rtx c = gen_int_mode (data->size, Pmode);
830 emit_insn_before (gen_rtx_SET (Pmode, r1,
831 gen_rtx_PLUS (Pmode, r1, c)),
832 data->insn);
833 return -1;
834 }
835
836 case PRE_DEC:
837 case POST_DEC:
838 {
839 rtx r1 = XEXP (x, 0);
840 rtx c = gen_int_mode (-data->size, Pmode);
841 emit_insn_before (gen_rtx_SET (Pmode, r1,
842 gen_rtx_PLUS (Pmode, r1, c)),
843 data->insn);
844 return -1;
845 }
846
847 case PRE_MODIFY:
848 case POST_MODIFY:
849 {
850 /* We can reuse the add because we are about to delete the
851 insn that contained it. */
852 rtx add = XEXP (x, 0);
853 rtx r1 = XEXP (add, 0);
854 emit_insn_before (gen_rtx_SET (Pmode, r1, add), data->insn);
855 return -1;
856 }
857
858 default:
859 return 0;
860 }
861 }
862
863
864 /* If X is a MEM, check the address to see if it is PRE/POST-INC/DEC/MODIFY
865 and generate an add to replace that. */
866
867 static int
868 replace_inc_dec_mem (rtx *r, void *d)
869 {
870 rtx x = *r;
871 if (x != NULL_RTX && MEM_P (x))
872 {
873 struct insn_size data;
874
875 data.size = GET_MODE_SIZE (GET_MODE (x));
876 data.insn = (rtx) d;
877
878 for_each_rtx (&XEXP (x, 0), replace_inc_dec, &data);
879
880 return -1;
881 }
882 return 0;
883 }
884
885 /* Before we delete INSN, make sure that the auto inc/dec, if it is
886 there, is split into a separate insn. */
887
888 static void
889 check_for_inc_dec (rtx insn)
890 {
891 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
892 if (note)
893 for_each_rtx (&insn, replace_inc_dec_mem, insn);
894 }
895
896
897 /* Delete the insn and free all of the fields inside INSN_INFO. */
898
899 static void
900 delete_dead_store_insn (insn_info_t insn_info)
901 {
902 read_info_t read_info;
903
904 if (!dbg_cnt (dse))
905 return;
906
907 check_for_inc_dec (insn_info->insn);
908 if (dump_file)
909 {
910 fprintf (dump_file, "Locally deleting insn %d ",
911 INSN_UID (insn_info->insn));
912 if (insn_info->store_rec->alias_set)
913 fprintf (dump_file, "alias set %d\n",
914 (int) insn_info->store_rec->alias_set);
915 else
916 fprintf (dump_file, "\n");
917 }
918
919 free_store_info (insn_info);
920 read_info = insn_info->read_rec;
921
922 while (read_info)
923 {
924 read_info_t next = read_info->next;
925 pool_free (read_info_pool, read_info);
926 read_info = next;
927 }
928 insn_info->read_rec = NULL;
929
930 delete_insn (insn_info->insn);
931 locally_deleted++;
932 insn_info->insn = NULL;
933
934 insn_info->wild_read = false;
935 }
936
937
938 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
939 OFFSET and WIDTH. */
940
941 static void
942 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width)
943 {
944 HOST_WIDE_INT i;
945
946 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
947 for (i=offset; i<offset+width; i++)
948 {
949 bitmap store1;
950 bitmap store2;
951 int ai;
952 if (i < 0)
953 {
954 store1 = group->store1_n;
955 store2 = group->store2_n;
956 ai = -i;
957 }
958 else
959 {
960 store1 = group->store1_p;
961 store2 = group->store2_p;
962 ai = i;
963 }
964
965 if (bitmap_bit_p (store1, ai))
966 bitmap_set_bit (store2, ai);
967 else
968 {
969 bitmap_set_bit (store1, ai);
970 if (i < 0)
971 {
972 if (group->offset_map_size_n < ai)
973 group->offset_map_size_n = ai;
974 }
975 else
976 {
977 if (group->offset_map_size_p < ai)
978 group->offset_map_size_p = ai;
979 }
980 }
981 }
982 }
983
984
985 /* Set the BB_INFO so that the last insn is marked as a wild read. */
986
987 static void
988 add_wild_read (bb_info_t bb_info)
989 {
990 insn_info_t insn_info = bb_info->last_insn;
991 read_info_t *ptr = &insn_info->read_rec;
992
993 while (*ptr)
994 {
995 read_info_t next = (*ptr)->next;
996 if ((*ptr)->alias_set == 0)
997 {
998 pool_free (read_info_pool, *ptr);
999 *ptr = next;
1000 }
1001 else
1002 ptr = &(*ptr)->next;
1003 }
1004 insn_info->wild_read = true;
1005 active_local_stores = NULL;
1006 }
1007
1008
1009 /* Return true if X is a constant or one of the registers that behave
1010 as a constant over the life of a function. This is equivalent to
1011 !rtx_varies_p for memory addresses. */
1012
1013 static bool
1014 const_or_frame_p (rtx x)
1015 {
1016 switch (GET_CODE (x))
1017 {
1018 case MEM:
1019 return MEM_READONLY_P (x);
1020
1021 case CONST:
1022 case CONST_INT:
1023 case CONST_DOUBLE:
1024 case CONST_VECTOR:
1025 case SYMBOL_REF:
1026 case LABEL_REF:
1027 return true;
1028
1029 case REG:
1030 /* Note that we have to test for the actual rtx used for the frame
1031 and arg pointers and not just the register number in case we have
1032 eliminated the frame and/or arg pointer and are using it
1033 for pseudos. */
1034 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1035 /* The arg pointer varies if it is not a fixed register. */
1036 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1037 || x == pic_offset_table_rtx)
1038 return true;
1039 return false;
1040
1041 default:
1042 return false;
1043 }
1044 }
1045
1046 /* Take all reasonable action to put the address of MEM into the form
1047 that we can do analysis on.
1048
1049 The gold standard is to get the address into the form: address +
1050 OFFSET where address is something that rtx_varies_p considers a
1051 constant. When we can get the address in this form, we can do
1052 global analysis on it. Note that for constant bases, address is
1053 not actually returned, only the group_id. The address can be
1054 obtained from that.
1055
1056 If that fails, we try cselib to get a value we can at least use
1057 locally. If that fails we return false.
1058
1059 The GROUP_ID is set to -1 for cselib bases and the index of the
1060 group for non_varying bases.
1061
1062 FOR_READ is true if this is a mem read and false if not. */
1063
1064 static bool
1065 canon_address (rtx mem,
1066 alias_set_type *alias_set_out,
1067 int *group_id,
1068 HOST_WIDE_INT *offset,
1069 cselib_val **base)
1070 {
1071 rtx mem_address = XEXP (mem, 0);
1072 rtx expanded_address, address;
1073 int expanded;
1074
1075 /* Make sure that cselib is has initialized all of the operands of
1076 the address before asking it to do the subst. */
1077
1078 if (clear_alias_sets)
1079 {
1080 /* If this is a spill, do not do any further processing. */
1081 alias_set_type alias_set = MEM_ALIAS_SET (mem);
1082 if (dump_file)
1083 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1084 if (bitmap_bit_p (clear_alias_sets, alias_set))
1085 {
1086 struct clear_alias_mode_holder *entry
1087 = clear_alias_set_lookup (alias_set);
1088
1089 /* If the modes do not match, we cannot process this set. */
1090 if (entry->mode != GET_MODE (mem))
1091 {
1092 if (dump_file)
1093 fprintf (dump_file,
1094 "disqualifying alias set %d, (%s) != (%s)\n",
1095 (int) alias_set, GET_MODE_NAME (entry->mode),
1096 GET_MODE_NAME (GET_MODE (mem)));
1097
1098 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1099 return false;
1100 }
1101
1102 *alias_set_out = alias_set;
1103 *group_id = clear_alias_group->id;
1104 return true;
1105 }
1106 }
1107
1108 *alias_set_out = 0;
1109
1110 cselib_lookup (mem_address, Pmode, 1);
1111
1112 if (dump_file)
1113 {
1114 fprintf (dump_file, " mem: ");
1115 print_inline_rtx (dump_file, mem_address, 0);
1116 fprintf (dump_file, "\n");
1117 }
1118
1119 /* First see if just canon_rtx (mem_address) is const or frame,
1120 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1121 address = NULL_RTX;
1122 for (expanded = 0; expanded < 2; expanded++)
1123 {
1124 if (expanded)
1125 {
1126 /* Use cselib to replace all of the reg references with the full
1127 expression. This will take care of the case where we have
1128
1129 r_x = base + offset;
1130 val = *r_x;
1131
1132 by making it into
1133
1134 val = *(base + offset); */
1135
1136 expanded_address = cselib_expand_value_rtx (mem_address,
1137 scratch, 5);
1138
1139 /* If this fails, just go with the address from first
1140 iteration. */
1141 if (!expanded_address)
1142 break;
1143 }
1144 else
1145 expanded_address = mem_address;
1146
1147 /* Split the address into canonical BASE + OFFSET terms. */
1148 address = canon_rtx (expanded_address);
1149
1150 *offset = 0;
1151
1152 if (dump_file)
1153 {
1154 if (expanded)
1155 {
1156 fprintf (dump_file, "\n after cselib_expand address: ");
1157 print_inline_rtx (dump_file, expanded_address, 0);
1158 fprintf (dump_file, "\n");
1159 }
1160
1161 fprintf (dump_file, "\n after canon_rtx address: ");
1162 print_inline_rtx (dump_file, address, 0);
1163 fprintf (dump_file, "\n");
1164 }
1165
1166 if (GET_CODE (address) == CONST)
1167 address = XEXP (address, 0);
1168
1169 if (GET_CODE (address) == PLUS
1170 && CONST_INT_P (XEXP (address, 1)))
1171 {
1172 *offset = INTVAL (XEXP (address, 1));
1173 address = XEXP (address, 0);
1174 }
1175
1176 if (const_or_frame_p (address))
1177 {
1178 group_info_t group = get_group_info (address);
1179
1180 if (dump_file)
1181 fprintf (dump_file, " gid=%d offset=%d \n",
1182 group->id, (int)*offset);
1183 *base = NULL;
1184 *group_id = group->id;
1185 return true;
1186 }
1187 }
1188
1189 *base = cselib_lookup (address, Pmode, true);
1190 *group_id = -1;
1191
1192 if (*base == NULL)
1193 {
1194 if (dump_file)
1195 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1196 return false;
1197 }
1198 if (dump_file)
1199 fprintf (dump_file, " varying cselib base=%d offset = %d\n",
1200 (*base)->value, (int)*offset);
1201 return true;
1202 }
1203
1204
1205 /* Clear the rhs field from the active_local_stores array. */
1206
1207 static void
1208 clear_rhs_from_active_local_stores (void)
1209 {
1210 insn_info_t ptr = active_local_stores;
1211
1212 while (ptr)
1213 {
1214 store_info_t store_info = ptr->store_rec;
1215 /* Skip the clobbers. */
1216 while (!store_info->is_set)
1217 store_info = store_info->next;
1218
1219 store_info->rhs = NULL;
1220 store_info->const_rhs = NULL;
1221
1222 ptr = ptr->next_local_store;
1223 }
1224 }
1225
1226
1227 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1228
1229 static inline void
1230 set_position_unneeded (store_info_t s_info, int pos)
1231 {
1232 if (__builtin_expect (s_info->is_large, false))
1233 {
1234 if (!bitmap_bit_p (s_info->positions_needed.large.bmap, pos))
1235 {
1236 s_info->positions_needed.large.count++;
1237 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1238 }
1239 }
1240 else
1241 s_info->positions_needed.small_bitmask
1242 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1243 }
1244
1245 /* Mark the whole store S_INFO as unneeded. */
1246
1247 static inline void
1248 set_all_positions_unneeded (store_info_t s_info)
1249 {
1250 if (__builtin_expect (s_info->is_large, false))
1251 {
1252 int pos, end = s_info->end - s_info->begin;
1253 for (pos = 0; pos < end; pos++)
1254 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1255 s_info->positions_needed.large.count = end;
1256 }
1257 else
1258 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1259 }
1260
1261 /* Return TRUE if any bytes from S_INFO store are needed. */
1262
1263 static inline bool
1264 any_positions_needed_p (store_info_t s_info)
1265 {
1266 if (__builtin_expect (s_info->is_large, false))
1267 return (s_info->positions_needed.large.count
1268 < s_info->end - s_info->begin);
1269 else
1270 return (s_info->positions_needed.small_bitmask
1271 != (unsigned HOST_WIDE_INT) 0);
1272 }
1273
1274 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1275 store are needed. */
1276
1277 static inline bool
1278 all_positions_needed_p (store_info_t s_info, int start, int width)
1279 {
1280 if (__builtin_expect (s_info->is_large, false))
1281 {
1282 int end = start + width;
1283 while (start < end)
1284 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1285 return false;
1286 return true;
1287 }
1288 else
1289 {
1290 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1291 return (s_info->positions_needed.small_bitmask & mask) == mask;
1292 }
1293 }
1294
1295
1296 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1297 HOST_WIDE_INT, basic_block, bool);
1298
1299
1300 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1301 there is a candidate store, after adding it to the appropriate
1302 local store group if so. */
1303
1304 static int
1305 record_store (rtx body, bb_info_t bb_info)
1306 {
1307 rtx mem, rhs, const_rhs, mem_addr;
1308 HOST_WIDE_INT offset = 0;
1309 HOST_WIDE_INT width = 0;
1310 alias_set_type spill_alias_set;
1311 insn_info_t insn_info = bb_info->last_insn;
1312 store_info_t store_info = NULL;
1313 int group_id;
1314 cselib_val *base = NULL;
1315 insn_info_t ptr, last, redundant_reason;
1316 bool store_is_unused;
1317
1318 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1319 return 0;
1320
1321 mem = SET_DEST (body);
1322
1323 /* If this is not used, then this cannot be used to keep the insn
1324 from being deleted. On the other hand, it does provide something
1325 that can be used to prove that another store is dead. */
1326 store_is_unused
1327 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1328
1329 /* Check whether that value is a suitable memory location. */
1330 if (!MEM_P (mem))
1331 {
1332 /* If the set or clobber is unused, then it does not effect our
1333 ability to get rid of the entire insn. */
1334 if (!store_is_unused)
1335 insn_info->cannot_delete = true;
1336 return 0;
1337 }
1338
1339 /* At this point we know mem is a mem. */
1340 if (GET_MODE (mem) == BLKmode)
1341 {
1342 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1343 {
1344 if (dump_file)
1345 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1346 add_wild_read (bb_info);
1347 insn_info->cannot_delete = true;
1348 return 0;
1349 }
1350 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1351 as memset (addr, 0, 36); */
1352 else if (!MEM_SIZE (mem)
1353 || !CONST_INT_P (MEM_SIZE (mem))
1354 || GET_CODE (body) != SET
1355 || INTVAL (MEM_SIZE (mem)) <= 0
1356 || INTVAL (MEM_SIZE (mem)) > MAX_OFFSET
1357 || !CONST_INT_P (SET_SRC (body)))
1358 {
1359 if (!store_is_unused)
1360 {
1361 /* If the set or clobber is unused, then it does not effect our
1362 ability to get rid of the entire insn. */
1363 insn_info->cannot_delete = true;
1364 clear_rhs_from_active_local_stores ();
1365 }
1366 return 0;
1367 }
1368 }
1369
1370 /* We can still process a volatile mem, we just cannot delete it. */
1371 if (MEM_VOLATILE_P (mem))
1372 insn_info->cannot_delete = true;
1373
1374 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1375 {
1376 clear_rhs_from_active_local_stores ();
1377 return 0;
1378 }
1379
1380 if (GET_MODE (mem) == BLKmode)
1381 width = INTVAL (MEM_SIZE (mem));
1382 else
1383 {
1384 width = GET_MODE_SIZE (GET_MODE (mem));
1385 gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
1386 }
1387
1388 if (spill_alias_set)
1389 {
1390 bitmap store1 = clear_alias_group->store1_p;
1391 bitmap store2 = clear_alias_group->store2_p;
1392
1393 gcc_assert (GET_MODE (mem) != BLKmode);
1394
1395 if (bitmap_bit_p (store1, spill_alias_set))
1396 bitmap_set_bit (store2, spill_alias_set);
1397 else
1398 bitmap_set_bit (store1, spill_alias_set);
1399
1400 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1401 clear_alias_group->offset_map_size_p = spill_alias_set;
1402
1403 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1404
1405 if (dump_file)
1406 fprintf (dump_file, " processing spill store %d(%s)\n",
1407 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1408 }
1409 else if (group_id >= 0)
1410 {
1411 /* In the restrictive case where the base is a constant or the
1412 frame pointer we can do global analysis. */
1413
1414 group_info_t group
1415 = VEC_index (group_info_t, rtx_group_vec, group_id);
1416
1417 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1418 set_usage_bits (group, offset, width);
1419
1420 if (dump_file)
1421 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1422 group_id, (int)offset, (int)(offset+width));
1423 }
1424 else
1425 {
1426 rtx base_term = find_base_term (XEXP (mem, 0));
1427 if (!base_term
1428 || (GET_CODE (base_term) == ADDRESS
1429 && GET_MODE (base_term) == Pmode
1430 && XEXP (base_term, 0) == stack_pointer_rtx))
1431 insn_info->stack_pointer_based = true;
1432 insn_info->contains_cselib_groups = true;
1433
1434 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1435 group_id = -1;
1436
1437 if (dump_file)
1438 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1439 (int)offset, (int)(offset+width));
1440 }
1441
1442 const_rhs = rhs = NULL_RTX;
1443 if (GET_CODE (body) == SET
1444 /* No place to keep the value after ra. */
1445 && !reload_completed
1446 && (REG_P (SET_SRC (body))
1447 || GET_CODE (SET_SRC (body)) == SUBREG
1448 || CONSTANT_P (SET_SRC (body)))
1449 && !MEM_VOLATILE_P (mem)
1450 /* Sometimes the store and reload is used for truncation and
1451 rounding. */
1452 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1453 {
1454 rhs = SET_SRC (body);
1455 if (CONSTANT_P (rhs))
1456 const_rhs = rhs;
1457 else if (body == PATTERN (insn_info->insn))
1458 {
1459 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1460 if (tem && CONSTANT_P (XEXP (tem, 0)))
1461 const_rhs = XEXP (tem, 0);
1462 }
1463 if (const_rhs == NULL_RTX && REG_P (rhs))
1464 {
1465 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1466
1467 if (tem && CONSTANT_P (tem))
1468 const_rhs = tem;
1469 }
1470 }
1471
1472 /* Check to see if this stores causes some other stores to be
1473 dead. */
1474 ptr = active_local_stores;
1475 last = NULL;
1476 redundant_reason = NULL;
1477 mem = canon_rtx (mem);
1478 /* For alias_set != 0 canon_true_dependence should be never called. */
1479 if (spill_alias_set)
1480 mem_addr = NULL_RTX;
1481 else
1482 {
1483 if (group_id < 0)
1484 mem_addr = base->val_rtx;
1485 else
1486 {
1487 group_info_t group
1488 = VEC_index (group_info_t, rtx_group_vec, group_id);
1489 mem_addr = group->canon_base_addr;
1490 }
1491 if (offset)
1492 mem_addr = plus_constant (mem_addr, offset);
1493 }
1494
1495 while (ptr)
1496 {
1497 insn_info_t next = ptr->next_local_store;
1498 store_info_t s_info = ptr->store_rec;
1499 bool del = true;
1500
1501 /* Skip the clobbers. We delete the active insn if this insn
1502 shadows the set. To have been put on the active list, it
1503 has exactly on set. */
1504 while (!s_info->is_set)
1505 s_info = s_info->next;
1506
1507 if (s_info->alias_set != spill_alias_set)
1508 del = false;
1509 else if (s_info->alias_set)
1510 {
1511 struct clear_alias_mode_holder *entry
1512 = clear_alias_set_lookup (s_info->alias_set);
1513 /* Generally, spills cannot be processed if and of the
1514 references to the slot have a different mode. But if
1515 we are in the same block and mode is exactly the same
1516 between this store and one before in the same block,
1517 we can still delete it. */
1518 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1519 && (GET_MODE (mem) == entry->mode))
1520 {
1521 del = true;
1522 set_all_positions_unneeded (s_info);
1523 }
1524 if (dump_file)
1525 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1526 INSN_UID (ptr->insn), (int) s_info->alias_set);
1527 }
1528 else if ((s_info->group_id == group_id)
1529 && (s_info->cse_base == base))
1530 {
1531 HOST_WIDE_INT i;
1532 if (dump_file)
1533 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1534 INSN_UID (ptr->insn), s_info->group_id,
1535 (int)s_info->begin, (int)s_info->end);
1536
1537 /* Even if PTR won't be eliminated as unneeded, if both
1538 PTR and this insn store the same constant value, we might
1539 eliminate this insn instead. */
1540 if (s_info->const_rhs
1541 && const_rhs
1542 && offset >= s_info->begin
1543 && offset + width <= s_info->end
1544 && all_positions_needed_p (s_info, offset - s_info->begin,
1545 width))
1546 {
1547 if (GET_MODE (mem) == BLKmode)
1548 {
1549 if (GET_MODE (s_info->mem) == BLKmode
1550 && s_info->const_rhs == const_rhs)
1551 redundant_reason = ptr;
1552 }
1553 else if (s_info->const_rhs == const0_rtx
1554 && const_rhs == const0_rtx)
1555 redundant_reason = ptr;
1556 else
1557 {
1558 rtx val;
1559 start_sequence ();
1560 val = get_stored_val (s_info, GET_MODE (mem),
1561 offset, offset + width,
1562 BLOCK_FOR_INSN (insn_info->insn),
1563 true);
1564 if (get_insns () != NULL)
1565 val = NULL_RTX;
1566 end_sequence ();
1567 if (val && rtx_equal_p (val, const_rhs))
1568 redundant_reason = ptr;
1569 }
1570 }
1571
1572 for (i = MAX (offset, s_info->begin);
1573 i < offset + width && i < s_info->end;
1574 i++)
1575 set_position_unneeded (s_info, i - s_info->begin);
1576 }
1577 else if (s_info->rhs)
1578 /* Need to see if it is possible for this store to overwrite
1579 the value of store_info. If it is, set the rhs to NULL to
1580 keep it from being used to remove a load. */
1581 {
1582 if (canon_true_dependence (s_info->mem,
1583 GET_MODE (s_info->mem),
1584 s_info->mem_addr,
1585 mem, mem_addr, rtx_varies_p))
1586 {
1587 s_info->rhs = NULL;
1588 s_info->const_rhs = NULL;
1589 }
1590 }
1591
1592 /* An insn can be deleted if every position of every one of
1593 its s_infos is zero. */
1594 if (any_positions_needed_p (s_info)
1595 || ptr->cannot_delete)
1596 del = false;
1597
1598 if (del)
1599 {
1600 insn_info_t insn_to_delete = ptr;
1601
1602 if (last)
1603 last->next_local_store = ptr->next_local_store;
1604 else
1605 active_local_stores = ptr->next_local_store;
1606
1607 delete_dead_store_insn (insn_to_delete);
1608 }
1609 else
1610 last = ptr;
1611
1612 ptr = next;
1613 }
1614
1615 /* Finish filling in the store_info. */
1616 store_info->next = insn_info->store_rec;
1617 insn_info->store_rec = store_info;
1618 store_info->mem = mem;
1619 store_info->alias_set = spill_alias_set;
1620 store_info->mem_addr = mem_addr;
1621 store_info->cse_base = base;
1622 if (width > HOST_BITS_PER_WIDE_INT)
1623 {
1624 store_info->is_large = true;
1625 store_info->positions_needed.large.count = 0;
1626 store_info->positions_needed.large.bmap = BITMAP_ALLOC (NULL);
1627 }
1628 else
1629 {
1630 store_info->is_large = false;
1631 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1632 }
1633 store_info->group_id = group_id;
1634 store_info->begin = offset;
1635 store_info->end = offset + width;
1636 store_info->is_set = GET_CODE (body) == SET;
1637 store_info->rhs = rhs;
1638 store_info->const_rhs = const_rhs;
1639 store_info->redundant_reason = redundant_reason;
1640
1641 /* If this is a clobber, we return 0. We will only be able to
1642 delete this insn if there is only one store USED store, but we
1643 can use the clobber to delete other stores earlier. */
1644 return store_info->is_set ? 1 : 0;
1645 }
1646
1647
1648 static void
1649 dump_insn_info (const char * start, insn_info_t insn_info)
1650 {
1651 fprintf (dump_file, "%s insn=%d %s\n", start,
1652 INSN_UID (insn_info->insn),
1653 insn_info->store_rec ? "has store" : "naked");
1654 }
1655
1656
1657 /* If the modes are different and the value's source and target do not
1658 line up, we need to extract the value from lower part of the rhs of
1659 the store, shift it, and then put it into a form that can be shoved
1660 into the read_insn. This function generates a right SHIFT of a
1661 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1662 shift sequence is returned or NULL if we failed to find a
1663 shift. */
1664
1665 static rtx
1666 find_shift_sequence (int access_size,
1667 store_info_t store_info,
1668 enum machine_mode read_mode,
1669 int shift, bool speed, bool require_cst)
1670 {
1671 enum machine_mode store_mode = GET_MODE (store_info->mem);
1672 enum machine_mode new_mode;
1673 rtx read_reg = NULL;
1674
1675 /* Some machines like the x86 have shift insns for each size of
1676 operand. Other machines like the ppc or the ia-64 may only have
1677 shift insns that shift values within 32 or 64 bit registers.
1678 This loop tries to find the smallest shift insn that will right
1679 justify the value we want to read but is available in one insn on
1680 the machine. */
1681
1682 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1683 MODE_INT);
1684 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1685 new_mode = GET_MODE_WIDER_MODE (new_mode))
1686 {
1687 rtx target, new_reg, shift_seq, insn, new_lhs;
1688 int cost;
1689
1690 /* If a constant was stored into memory, try to simplify it here,
1691 otherwise the cost of the shift might preclude this optimization
1692 e.g. at -Os, even when no actual shift will be needed. */
1693 if (store_info->const_rhs)
1694 {
1695 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1696 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1697 store_mode, byte);
1698 if (ret && CONSTANT_P (ret))
1699 {
1700 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1701 ret, GEN_INT (shift));
1702 if (ret && CONSTANT_P (ret))
1703 {
1704 byte = subreg_lowpart_offset (read_mode, new_mode);
1705 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1706 if (ret && CONSTANT_P (ret)
1707 && rtx_cost (ret, SET, speed) <= COSTS_N_INSNS (1))
1708 return ret;
1709 }
1710 }
1711 }
1712
1713 if (require_cst)
1714 return NULL_RTX;
1715
1716 /* Try a wider mode if truncating the store mode to NEW_MODE
1717 requires a real instruction. */
1718 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1719 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (new_mode),
1720 GET_MODE_BITSIZE (store_mode)))
1721 continue;
1722
1723 /* Also try a wider mode if the necessary punning is either not
1724 desirable or not possible. */
1725 if (!CONSTANT_P (store_info->rhs)
1726 && !MODES_TIEABLE_P (new_mode, store_mode))
1727 continue;
1728
1729 new_reg = gen_reg_rtx (new_mode);
1730
1731 start_sequence ();
1732
1733 /* In theory we could also check for an ashr. Ian Taylor knows
1734 of one dsp where the cost of these two was not the same. But
1735 this really is a rare case anyway. */
1736 target = expand_binop (new_mode, lshr_optab, new_reg,
1737 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1738
1739 shift_seq = get_insns ();
1740 end_sequence ();
1741
1742 if (target != new_reg || shift_seq == NULL)
1743 continue;
1744
1745 cost = 0;
1746 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1747 if (INSN_P (insn))
1748 cost += insn_rtx_cost (PATTERN (insn), speed);
1749
1750 /* The computation up to here is essentially independent
1751 of the arguments and could be precomputed. It may
1752 not be worth doing so. We could precompute if
1753 worthwhile or at least cache the results. The result
1754 technically depends on both SHIFT and ACCESS_SIZE,
1755 but in practice the answer will depend only on ACCESS_SIZE. */
1756
1757 if (cost > COSTS_N_INSNS (1))
1758 continue;
1759
1760 new_lhs = extract_low_bits (new_mode, store_mode,
1761 copy_rtx (store_info->rhs));
1762 if (new_lhs == NULL_RTX)
1763 continue;
1764
1765 /* We found an acceptable shift. Generate a move to
1766 take the value from the store and put it into the
1767 shift pseudo, then shift it, then generate another
1768 move to put in into the target of the read. */
1769 emit_move_insn (new_reg, new_lhs);
1770 emit_insn (shift_seq);
1771 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1772 break;
1773 }
1774
1775 return read_reg;
1776 }
1777
1778
1779 /* Call back for note_stores to find the hard regs set or clobbered by
1780 insn. Data is a bitmap of the hardregs set so far. */
1781
1782 static void
1783 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1784 {
1785 bitmap regs_set = (bitmap) data;
1786
1787 if (REG_P (x)
1788 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1789 {
1790 int regno = REGNO (x);
1791 int n = hard_regno_nregs[regno][GET_MODE (x)];
1792 while (--n >= 0)
1793 bitmap_set_bit (regs_set, regno + n);
1794 }
1795 }
1796
1797 /* Helper function for replace_read and record_store.
1798 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1799 to one before READ_END bytes read in READ_MODE. Return NULL
1800 if not successful. If REQUIRE_CST is true, return always constant. */
1801
1802 static rtx
1803 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1804 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1805 basic_block bb, bool require_cst)
1806 {
1807 enum machine_mode store_mode = GET_MODE (store_info->mem);
1808 int shift;
1809 int access_size; /* In bytes. */
1810 rtx read_reg;
1811
1812 /* To get here the read is within the boundaries of the write so
1813 shift will never be negative. Start out with the shift being in
1814 bytes. */
1815 if (store_mode == BLKmode)
1816 shift = 0;
1817 else if (BYTES_BIG_ENDIAN)
1818 shift = store_info->end - read_end;
1819 else
1820 shift = read_begin - store_info->begin;
1821
1822 access_size = shift + GET_MODE_SIZE (read_mode);
1823
1824 /* From now on it is bits. */
1825 shift *= BITS_PER_UNIT;
1826
1827 if (shift)
1828 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1829 optimize_bb_for_speed_p (bb),
1830 require_cst);
1831 else if (store_mode == BLKmode)
1832 {
1833 /* The store is a memset (addr, const_val, const_size). */
1834 gcc_assert (CONST_INT_P (store_info->rhs));
1835 store_mode = int_mode_for_mode (read_mode);
1836 if (store_mode == BLKmode)
1837 read_reg = NULL_RTX;
1838 else if (store_info->rhs == const0_rtx)
1839 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1840 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1841 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1842 read_reg = NULL_RTX;
1843 else
1844 {
1845 unsigned HOST_WIDE_INT c
1846 = INTVAL (store_info->rhs)
1847 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1848 int shift = BITS_PER_UNIT;
1849 while (shift < HOST_BITS_PER_WIDE_INT)
1850 {
1851 c |= (c << shift);
1852 shift <<= 1;
1853 }
1854 read_reg = GEN_INT (trunc_int_for_mode (c, store_mode));
1855 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1856 }
1857 }
1858 else if (store_info->const_rhs
1859 && (require_cst
1860 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1861 read_reg = extract_low_bits (read_mode, store_mode,
1862 copy_rtx (store_info->const_rhs));
1863 else
1864 read_reg = extract_low_bits (read_mode, store_mode,
1865 copy_rtx (store_info->rhs));
1866 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1867 read_reg = NULL_RTX;
1868 return read_reg;
1869 }
1870
1871 /* Take a sequence of:
1872 A <- r1
1873 ...
1874 ... <- A
1875
1876 and change it into
1877 r2 <- r1
1878 A <- r1
1879 ...
1880 ... <- r2
1881
1882 or
1883
1884 r3 <- extract (r1)
1885 r3 <- r3 >> shift
1886 r2 <- extract (r3)
1887 ... <- r2
1888
1889 or
1890
1891 r2 <- extract (r1)
1892 ... <- r2
1893
1894 Depending on the alignment and the mode of the store and
1895 subsequent load.
1896
1897
1898 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1899 and READ_INSN are for the read. Return true if the replacement
1900 went ok. */
1901
1902 static bool
1903 replace_read (store_info_t store_info, insn_info_t store_insn,
1904 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1905 bitmap regs_live)
1906 {
1907 enum machine_mode store_mode = GET_MODE (store_info->mem);
1908 enum machine_mode read_mode = GET_MODE (read_info->mem);
1909 rtx insns, this_insn, read_reg;
1910 basic_block bb;
1911
1912 if (!dbg_cnt (dse))
1913 return false;
1914
1915 /* Create a sequence of instructions to set up the read register.
1916 This sequence goes immediately before the store and its result
1917 is read by the load.
1918
1919 We need to keep this in perspective. We are replacing a read
1920 with a sequence of insns, but the read will almost certainly be
1921 in cache, so it is not going to be an expensive one. Thus, we
1922 are not willing to do a multi insn shift or worse a subroutine
1923 call to get rid of the read. */
1924 if (dump_file)
1925 fprintf (dump_file, "trying to replace %smode load in insn %d"
1926 " from %smode store in insn %d\n",
1927 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1928 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1929 start_sequence ();
1930 bb = BLOCK_FOR_INSN (read_insn->insn);
1931 read_reg = get_stored_val (store_info,
1932 read_mode, read_info->begin, read_info->end,
1933 bb, false);
1934 if (read_reg == NULL_RTX)
1935 {
1936 end_sequence ();
1937 if (dump_file)
1938 fprintf (dump_file, " -- could not extract bits of stored value\n");
1939 return false;
1940 }
1941 /* Force the value into a new register so that it won't be clobbered
1942 between the store and the load. */
1943 read_reg = copy_to_mode_reg (read_mode, read_reg);
1944 insns = get_insns ();
1945 end_sequence ();
1946
1947 if (insns != NULL_RTX)
1948 {
1949 /* Now we have to scan the set of new instructions to see if the
1950 sequence contains and sets of hardregs that happened to be
1951 live at this point. For instance, this can happen if one of
1952 the insns sets the CC and the CC happened to be live at that
1953 point. This does occasionally happen, see PR 37922. */
1954 bitmap regs_set = BITMAP_ALLOC (NULL);
1955
1956 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1957 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
1958
1959 bitmap_and_into (regs_set, regs_live);
1960 if (!bitmap_empty_p (regs_set))
1961 {
1962 if (dump_file)
1963 {
1964 fprintf (dump_file,
1965 "abandoning replacement because sequence clobbers live hardregs:");
1966 df_print_regset (dump_file, regs_set);
1967 }
1968
1969 BITMAP_FREE (regs_set);
1970 return false;
1971 }
1972 BITMAP_FREE (regs_set);
1973 }
1974
1975 if (validate_change (read_insn->insn, loc, read_reg, 0))
1976 {
1977 deferred_change_t deferred_change =
1978 (deferred_change_t) pool_alloc (deferred_change_pool);
1979
1980 /* Insert this right before the store insn where it will be safe
1981 from later insns that might change it before the read. */
1982 emit_insn_before (insns, store_insn->insn);
1983
1984 /* And now for the kludge part: cselib croaks if you just
1985 return at this point. There are two reasons for this:
1986
1987 1) Cselib has an idea of how many pseudos there are and
1988 that does not include the new ones we just added.
1989
1990 2) Cselib does not know about the move insn we added
1991 above the store_info, and there is no way to tell it
1992 about it, because it has "moved on".
1993
1994 Problem (1) is fixable with a certain amount of engineering.
1995 Problem (2) is requires starting the bb from scratch. This
1996 could be expensive.
1997
1998 So we are just going to have to lie. The move/extraction
1999 insns are not really an issue, cselib did not see them. But
2000 the use of the new pseudo read_insn is a real problem because
2001 cselib has not scanned this insn. The way that we solve this
2002 problem is that we are just going to put the mem back for now
2003 and when we are finished with the block, we undo this. We
2004 keep a table of mems to get rid of. At the end of the basic
2005 block we can put them back. */
2006
2007 *loc = read_info->mem;
2008 deferred_change->next = deferred_change_list;
2009 deferred_change_list = deferred_change;
2010 deferred_change->loc = loc;
2011 deferred_change->reg = read_reg;
2012
2013 /* Get rid of the read_info, from the point of view of the
2014 rest of dse, play like this read never happened. */
2015 read_insn->read_rec = read_info->next;
2016 pool_free (read_info_pool, read_info);
2017 if (dump_file)
2018 {
2019 fprintf (dump_file, " -- replaced the loaded MEM with ");
2020 print_simple_rtl (dump_file, read_reg);
2021 fprintf (dump_file, "\n");
2022 }
2023 return true;
2024 }
2025 else
2026 {
2027 if (dump_file)
2028 {
2029 fprintf (dump_file, " -- replacing the loaded MEM with ");
2030 print_simple_rtl (dump_file, read_reg);
2031 fprintf (dump_file, " led to an invalid instruction\n");
2032 }
2033 return false;
2034 }
2035 }
2036
2037 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2038 if LOC is a mem and if it is look at the address and kill any
2039 appropriate stores that may be active. */
2040
2041 static int
2042 check_mem_read_rtx (rtx *loc, void *data)
2043 {
2044 rtx mem = *loc, mem_addr;
2045 bb_info_t bb_info;
2046 insn_info_t insn_info;
2047 HOST_WIDE_INT offset = 0;
2048 HOST_WIDE_INT width = 0;
2049 alias_set_type spill_alias_set = 0;
2050 cselib_val *base = NULL;
2051 int group_id;
2052 read_info_t read_info;
2053
2054 if (!mem || !MEM_P (mem))
2055 return 0;
2056
2057 bb_info = (bb_info_t) data;
2058 insn_info = bb_info->last_insn;
2059
2060 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2061 || (MEM_VOLATILE_P (mem)))
2062 {
2063 if (dump_file)
2064 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2065 add_wild_read (bb_info);
2066 insn_info->cannot_delete = true;
2067 return 0;
2068 }
2069
2070 /* If it is reading readonly mem, then there can be no conflict with
2071 another write. */
2072 if (MEM_READONLY_P (mem))
2073 return 0;
2074
2075 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2076 {
2077 if (dump_file)
2078 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2079 add_wild_read (bb_info);
2080 return 0;
2081 }
2082
2083 if (GET_MODE (mem) == BLKmode)
2084 width = -1;
2085 else
2086 width = GET_MODE_SIZE (GET_MODE (mem));
2087
2088 read_info = (read_info_t) pool_alloc (read_info_pool);
2089 read_info->group_id = group_id;
2090 read_info->mem = mem;
2091 read_info->alias_set = spill_alias_set;
2092 read_info->begin = offset;
2093 read_info->end = offset + width;
2094 read_info->next = insn_info->read_rec;
2095 insn_info->read_rec = read_info;
2096 /* For alias_set != 0 canon_true_dependence should be never called. */
2097 if (spill_alias_set)
2098 mem_addr = NULL_RTX;
2099 else
2100 {
2101 if (group_id < 0)
2102 mem_addr = base->val_rtx;
2103 else
2104 {
2105 group_info_t group
2106 = VEC_index (group_info_t, rtx_group_vec, group_id);
2107 mem_addr = group->canon_base_addr;
2108 }
2109 if (offset)
2110 mem_addr = plus_constant (mem_addr, offset);
2111 }
2112
2113 /* We ignore the clobbers in store_info. The is mildly aggressive,
2114 but there really should not be a clobber followed by a read. */
2115
2116 if (spill_alias_set)
2117 {
2118 insn_info_t i_ptr = active_local_stores;
2119 insn_info_t last = NULL;
2120
2121 if (dump_file)
2122 fprintf (dump_file, " processing spill load %d\n",
2123 (int) spill_alias_set);
2124
2125 while (i_ptr)
2126 {
2127 store_info_t store_info = i_ptr->store_rec;
2128
2129 /* Skip the clobbers. */
2130 while (!store_info->is_set)
2131 store_info = store_info->next;
2132
2133 if (store_info->alias_set == spill_alias_set)
2134 {
2135 if (dump_file)
2136 dump_insn_info ("removing from active", i_ptr);
2137
2138 if (last)
2139 last->next_local_store = i_ptr->next_local_store;
2140 else
2141 active_local_stores = i_ptr->next_local_store;
2142 }
2143 else
2144 last = i_ptr;
2145 i_ptr = i_ptr->next_local_store;
2146 }
2147 }
2148 else if (group_id >= 0)
2149 {
2150 /* This is the restricted case where the base is a constant or
2151 the frame pointer and offset is a constant. */
2152 insn_info_t i_ptr = active_local_stores;
2153 insn_info_t last = NULL;
2154
2155 if (dump_file)
2156 {
2157 if (width == -1)
2158 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2159 group_id);
2160 else
2161 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2162 group_id, (int)offset, (int)(offset+width));
2163 }
2164
2165 while (i_ptr)
2166 {
2167 bool remove = false;
2168 store_info_t store_info = i_ptr->store_rec;
2169
2170 /* Skip the clobbers. */
2171 while (!store_info->is_set)
2172 store_info = store_info->next;
2173
2174 /* There are three cases here. */
2175 if (store_info->group_id < 0)
2176 /* We have a cselib store followed by a read from a
2177 const base. */
2178 remove
2179 = canon_true_dependence (store_info->mem,
2180 GET_MODE (store_info->mem),
2181 store_info->mem_addr,
2182 mem, mem_addr, rtx_varies_p);
2183
2184 else if (group_id == store_info->group_id)
2185 {
2186 /* This is a block mode load. We may get lucky and
2187 canon_true_dependence may save the day. */
2188 if (width == -1)
2189 remove
2190 = canon_true_dependence (store_info->mem,
2191 GET_MODE (store_info->mem),
2192 store_info->mem_addr,
2193 mem, mem_addr, rtx_varies_p);
2194
2195 /* If this read is just reading back something that we just
2196 stored, rewrite the read. */
2197 else
2198 {
2199 if (store_info->rhs
2200 && offset >= store_info->begin
2201 && offset + width <= store_info->end
2202 && all_positions_needed_p (store_info,
2203 offset - store_info->begin,
2204 width)
2205 && replace_read (store_info, i_ptr, read_info,
2206 insn_info, loc, bb_info->regs_live))
2207 return 0;
2208
2209 /* The bases are the same, just see if the offsets
2210 overlap. */
2211 if ((offset < store_info->end)
2212 && (offset + width > store_info->begin))
2213 remove = true;
2214 }
2215 }
2216
2217 /* else
2218 The else case that is missing here is that the
2219 bases are constant but different. There is nothing
2220 to do here because there is no overlap. */
2221
2222 if (remove)
2223 {
2224 if (dump_file)
2225 dump_insn_info ("removing from active", i_ptr);
2226
2227 if (last)
2228 last->next_local_store = i_ptr->next_local_store;
2229 else
2230 active_local_stores = i_ptr->next_local_store;
2231 }
2232 else
2233 last = i_ptr;
2234 i_ptr = i_ptr->next_local_store;
2235 }
2236 }
2237 else
2238 {
2239 insn_info_t i_ptr = active_local_stores;
2240 insn_info_t last = NULL;
2241 if (dump_file)
2242 {
2243 fprintf (dump_file, " processing cselib load mem:");
2244 print_inline_rtx (dump_file, mem, 0);
2245 fprintf (dump_file, "\n");
2246 }
2247
2248 while (i_ptr)
2249 {
2250 bool remove = false;
2251 store_info_t store_info = i_ptr->store_rec;
2252
2253 if (dump_file)
2254 fprintf (dump_file, " processing cselib load against insn %d\n",
2255 INSN_UID (i_ptr->insn));
2256
2257 /* Skip the clobbers. */
2258 while (!store_info->is_set)
2259 store_info = store_info->next;
2260
2261 /* If this read is just reading back something that we just
2262 stored, rewrite the read. */
2263 if (store_info->rhs
2264 && store_info->group_id == -1
2265 && store_info->cse_base == base
2266 && width != -1
2267 && offset >= store_info->begin
2268 && offset + width <= store_info->end
2269 && all_positions_needed_p (store_info,
2270 offset - store_info->begin, width)
2271 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2272 bb_info->regs_live))
2273 return 0;
2274
2275 if (!store_info->alias_set)
2276 remove = canon_true_dependence (store_info->mem,
2277 GET_MODE (store_info->mem),
2278 store_info->mem_addr,
2279 mem, mem_addr, rtx_varies_p);
2280
2281 if (remove)
2282 {
2283 if (dump_file)
2284 dump_insn_info ("removing from active", i_ptr);
2285
2286 if (last)
2287 last->next_local_store = i_ptr->next_local_store;
2288 else
2289 active_local_stores = i_ptr->next_local_store;
2290 }
2291 else
2292 last = i_ptr;
2293 i_ptr = i_ptr->next_local_store;
2294 }
2295 }
2296 return 0;
2297 }
2298
2299 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2300 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2301 true for any part of *LOC. */
2302
2303 static void
2304 check_mem_read_use (rtx *loc, void *data)
2305 {
2306 for_each_rtx (loc, check_mem_read_rtx, data);
2307 }
2308
2309
2310 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2311 So far it only handles arguments passed in registers. */
2312
2313 static bool
2314 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2315 {
2316 CUMULATIVE_ARGS args_so_far;
2317 tree arg;
2318 int idx;
2319
2320 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
2321
2322 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2323 for (idx = 0;
2324 arg != void_list_node && idx < nargs;
2325 arg = TREE_CHAIN (arg), idx++)
2326 {
2327 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2328 rtx reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1), link, tmp;
2329 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2330 || GET_MODE_CLASS (mode) != MODE_INT)
2331 return false;
2332
2333 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2334 link;
2335 link = XEXP (link, 1))
2336 if (GET_CODE (XEXP (link, 0)) == USE)
2337 {
2338 args[idx] = XEXP (XEXP (link, 0), 0);
2339 if (REG_P (args[idx])
2340 && REGNO (args[idx]) == REGNO (reg)
2341 && (GET_MODE (args[idx]) == mode
2342 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2343 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2344 <= UNITS_PER_WORD)
2345 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2346 > GET_MODE_SIZE (mode)))))
2347 break;
2348 }
2349 if (!link)
2350 return false;
2351
2352 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2353 if (GET_MODE (args[idx]) != mode)
2354 {
2355 if (!tmp || !CONST_INT_P (tmp))
2356 return false;
2357 tmp = GEN_INT (trunc_int_for_mode (INTVAL (tmp), mode));
2358 }
2359 if (tmp)
2360 args[idx] = tmp;
2361
2362 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
2363 }
2364 if (arg != void_list_node || idx != nargs)
2365 return false;
2366 return true;
2367 }
2368
2369
2370 /* Apply record_store to all candidate stores in INSN. Mark INSN
2371 if some part of it is not a candidate store and assigns to a
2372 non-register target. */
2373
2374 static void
2375 scan_insn (bb_info_t bb_info, rtx insn)
2376 {
2377 rtx body;
2378 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2379 int mems_found = 0;
2380 memset (insn_info, 0, sizeof (struct insn_info));
2381
2382 if (dump_file)
2383 fprintf (dump_file, "\n**scanning insn=%d\n",
2384 INSN_UID (insn));
2385
2386 insn_info->prev_insn = bb_info->last_insn;
2387 insn_info->insn = insn;
2388 bb_info->last_insn = insn_info;
2389
2390
2391 /* Cselib clears the table for this case, so we have to essentially
2392 do the same. */
2393 if (NONJUMP_INSN_P (insn)
2394 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2395 && MEM_VOLATILE_P (PATTERN (insn)))
2396 {
2397 add_wild_read (bb_info);
2398 insn_info->cannot_delete = true;
2399 return;
2400 }
2401
2402 /* Look at all of the uses in the insn. */
2403 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2404
2405 if (CALL_P (insn))
2406 {
2407 bool const_call;
2408 tree memset_call = NULL_TREE;
2409
2410 insn_info->cannot_delete = true;
2411
2412 /* Const functions cannot do anything bad i.e. read memory,
2413 however, they can read their parameters which may have
2414 been pushed onto the stack.
2415 memset and bzero don't read memory either. */
2416 const_call = RTL_CONST_CALL_P (insn);
2417 if (!const_call)
2418 {
2419 rtx call = PATTERN (insn);
2420 if (GET_CODE (call) == PARALLEL)
2421 call = XVECEXP (call, 0, 0);
2422 if (GET_CODE (call) == SET)
2423 call = SET_SRC (call);
2424 if (GET_CODE (call) == CALL
2425 && MEM_P (XEXP (call, 0))
2426 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2427 {
2428 rtx symbol = XEXP (XEXP (call, 0), 0);
2429 if (SYMBOL_REF_DECL (symbol)
2430 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2431 {
2432 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2433 == BUILT_IN_NORMAL
2434 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2435 == BUILT_IN_MEMSET))
2436 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2437 memset_call = SYMBOL_REF_DECL (symbol);
2438 }
2439 }
2440 }
2441 if (const_call || memset_call)
2442 {
2443 insn_info_t i_ptr = active_local_stores;
2444 insn_info_t last = NULL;
2445
2446 if (dump_file)
2447 fprintf (dump_file, "%s call %d\n",
2448 const_call ? "const" : "memset", INSN_UID (insn));
2449
2450 /* See the head comment of the frame_read field. */
2451 if (reload_completed)
2452 insn_info->frame_read = true;
2453
2454 /* Loop over the active stores and remove those which are
2455 killed by the const function call. */
2456 while (i_ptr)
2457 {
2458 bool remove_store = false;
2459
2460 /* The stack pointer based stores are always killed. */
2461 if (i_ptr->stack_pointer_based)
2462 remove_store = true;
2463
2464 /* If the frame is read, the frame related stores are killed. */
2465 else if (insn_info->frame_read)
2466 {
2467 store_info_t store_info = i_ptr->store_rec;
2468
2469 /* Skip the clobbers. */
2470 while (!store_info->is_set)
2471 store_info = store_info->next;
2472
2473 if (store_info->group_id >= 0
2474 && VEC_index (group_info_t, rtx_group_vec,
2475 store_info->group_id)->frame_related)
2476 remove_store = true;
2477 }
2478
2479 if (remove_store)
2480 {
2481 if (dump_file)
2482 dump_insn_info ("removing from active", i_ptr);
2483
2484 if (last)
2485 last->next_local_store = i_ptr->next_local_store;
2486 else
2487 active_local_stores = i_ptr->next_local_store;
2488 }
2489 else
2490 last = i_ptr;
2491
2492 i_ptr = i_ptr->next_local_store;
2493 }
2494
2495 if (memset_call)
2496 {
2497 rtx args[3];
2498 if (get_call_args (insn, memset_call, args, 3)
2499 && CONST_INT_P (args[1])
2500 && CONST_INT_P (args[2])
2501 && INTVAL (args[2]) > 0)
2502 {
2503 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2504 set_mem_size (mem, args[2]);
2505 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2506 mems_found += record_store (body, bb_info);
2507 if (dump_file)
2508 fprintf (dump_file, "handling memset as BLKmode store\n");
2509 if (mems_found == 1)
2510 {
2511 insn_info->next_local_store = active_local_stores;
2512 active_local_stores = insn_info;
2513 }
2514 }
2515 }
2516 }
2517
2518 else
2519 /* Every other call, including pure functions, may read memory. */
2520 add_wild_read (bb_info);
2521
2522 return;
2523 }
2524
2525 /* Assuming that there are sets in these insns, we cannot delete
2526 them. */
2527 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2528 || volatile_refs_p (PATTERN (insn))
2529 || (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
2530 || (RTX_FRAME_RELATED_P (insn))
2531 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2532 insn_info->cannot_delete = true;
2533
2534 body = PATTERN (insn);
2535 if (GET_CODE (body) == PARALLEL)
2536 {
2537 int i;
2538 for (i = 0; i < XVECLEN (body, 0); i++)
2539 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2540 }
2541 else
2542 mems_found += record_store (body, bb_info);
2543
2544 if (dump_file)
2545 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2546 mems_found, insn_info->cannot_delete ? "true" : "false");
2547
2548 /* If we found some sets of mems, add it into the active_local_stores so
2549 that it can be locally deleted if found dead or used for
2550 replace_read and redundant constant store elimination. Otherwise mark
2551 it as cannot delete. This simplifies the processing later. */
2552 if (mems_found == 1)
2553 {
2554 insn_info->next_local_store = active_local_stores;
2555 active_local_stores = insn_info;
2556 }
2557 else
2558 insn_info->cannot_delete = true;
2559 }
2560
2561
2562 /* Remove BASE from the set of active_local_stores. This is a
2563 callback from cselib that is used to get rid of the stores in
2564 active_local_stores. */
2565
2566 static void
2567 remove_useless_values (cselib_val *base)
2568 {
2569 insn_info_t insn_info = active_local_stores;
2570 insn_info_t last = NULL;
2571
2572 while (insn_info)
2573 {
2574 store_info_t store_info = insn_info->store_rec;
2575 bool del = false;
2576
2577 /* If ANY of the store_infos match the cselib group that is
2578 being deleted, then the insn can not be deleted. */
2579 while (store_info)
2580 {
2581 if ((store_info->group_id == -1)
2582 && (store_info->cse_base == base))
2583 {
2584 del = true;
2585 break;
2586 }
2587 store_info = store_info->next;
2588 }
2589
2590 if (del)
2591 {
2592 if (last)
2593 last->next_local_store = insn_info->next_local_store;
2594 else
2595 active_local_stores = insn_info->next_local_store;
2596 free_store_info (insn_info);
2597 }
2598 else
2599 last = insn_info;
2600
2601 insn_info = insn_info->next_local_store;
2602 }
2603 }
2604
2605
2606 /* Do all of step 1. */
2607
2608 static void
2609 dse_step1 (void)
2610 {
2611 basic_block bb;
2612 bitmap regs_live = BITMAP_ALLOC (NULL);
2613
2614 cselib_init (false);
2615 all_blocks = BITMAP_ALLOC (NULL);
2616 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2617 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2618
2619 FOR_ALL_BB (bb)
2620 {
2621 insn_info_t ptr;
2622 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2623
2624 memset (bb_info, 0, sizeof (struct bb_info));
2625 bitmap_set_bit (all_blocks, bb->index);
2626 bb_info->regs_live = regs_live;
2627
2628 bitmap_copy (regs_live, DF_LR_IN (bb));
2629 df_simulate_initialize_forwards (bb, regs_live);
2630
2631 bb_table[bb->index] = bb_info;
2632 cselib_discard_hook = remove_useless_values;
2633
2634 if (bb->index >= NUM_FIXED_BLOCKS)
2635 {
2636 rtx insn;
2637
2638 cse_store_info_pool
2639 = create_alloc_pool ("cse_store_info_pool",
2640 sizeof (struct store_info), 100);
2641 active_local_stores = NULL;
2642 cselib_clear_table ();
2643
2644 /* Scan the insns. */
2645 FOR_BB_INSNS (bb, insn)
2646 {
2647 if (INSN_P (insn))
2648 scan_insn (bb_info, insn);
2649 cselib_process_insn (insn);
2650 if (INSN_P (insn))
2651 df_simulate_one_insn_forwards (bb, insn, regs_live);
2652 }
2653
2654 /* This is something of a hack, because the global algorithm
2655 is supposed to take care of the case where stores go dead
2656 at the end of the function. However, the global
2657 algorithm must take a more conservative view of block
2658 mode reads than the local alg does. So to get the case
2659 where you have a store to the frame followed by a non
2660 overlapping block more read, we look at the active local
2661 stores at the end of the function and delete all of the
2662 frame and spill based ones. */
2663 if (stores_off_frame_dead_at_return
2664 && (EDGE_COUNT (bb->succs) == 0
2665 || (single_succ_p (bb)
2666 && single_succ (bb) == EXIT_BLOCK_PTR
2667 && ! crtl->calls_eh_return)))
2668 {
2669 insn_info_t i_ptr = active_local_stores;
2670 while (i_ptr)
2671 {
2672 store_info_t store_info = i_ptr->store_rec;
2673
2674 /* Skip the clobbers. */
2675 while (!store_info->is_set)
2676 store_info = store_info->next;
2677 if (store_info->alias_set && !i_ptr->cannot_delete)
2678 delete_dead_store_insn (i_ptr);
2679 else
2680 if (store_info->group_id >= 0)
2681 {
2682 group_info_t group
2683 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2684 if (group->frame_related && !i_ptr->cannot_delete)
2685 delete_dead_store_insn (i_ptr);
2686 }
2687
2688 i_ptr = i_ptr->next_local_store;
2689 }
2690 }
2691
2692 /* Get rid of the loads that were discovered in
2693 replace_read. Cselib is finished with this block. */
2694 while (deferred_change_list)
2695 {
2696 deferred_change_t next = deferred_change_list->next;
2697
2698 /* There is no reason to validate this change. That was
2699 done earlier. */
2700 *deferred_change_list->loc = deferred_change_list->reg;
2701 pool_free (deferred_change_pool, deferred_change_list);
2702 deferred_change_list = next;
2703 }
2704
2705 /* Get rid of all of the cselib based store_infos in this
2706 block and mark the containing insns as not being
2707 deletable. */
2708 ptr = bb_info->last_insn;
2709 while (ptr)
2710 {
2711 if (ptr->contains_cselib_groups)
2712 {
2713 store_info_t s_info = ptr->store_rec;
2714 while (s_info && !s_info->is_set)
2715 s_info = s_info->next;
2716 if (s_info
2717 && s_info->redundant_reason
2718 && s_info->redundant_reason->insn
2719 && !ptr->cannot_delete)
2720 {
2721 if (dump_file)
2722 fprintf (dump_file, "Locally deleting insn %d "
2723 "because insn %d stores the "
2724 "same value and couldn't be "
2725 "eliminated\n",
2726 INSN_UID (ptr->insn),
2727 INSN_UID (s_info->redundant_reason->insn));
2728 delete_dead_store_insn (ptr);
2729 }
2730 if (s_info)
2731 s_info->redundant_reason = NULL;
2732 free_store_info (ptr);
2733 }
2734 else
2735 {
2736 store_info_t s_info;
2737
2738 /* Free at least positions_needed bitmaps. */
2739 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2740 if (s_info->is_large)
2741 {
2742 BITMAP_FREE (s_info->positions_needed.large.bmap);
2743 s_info->is_large = false;
2744 }
2745 }
2746 ptr = ptr->prev_insn;
2747 }
2748
2749 free_alloc_pool (cse_store_info_pool);
2750 }
2751 bb_info->regs_live = NULL;
2752 }
2753
2754 BITMAP_FREE (regs_live);
2755 cselib_finish ();
2756 htab_empty (rtx_group_table);
2757 }
2758
2759 \f
2760 /*----------------------------------------------------------------------------
2761 Second step.
2762
2763 Assign each byte position in the stores that we are going to
2764 analyze globally to a position in the bitmaps. Returns true if
2765 there are any bit positions assigned.
2766 ----------------------------------------------------------------------------*/
2767
2768 static void
2769 dse_step2_init (void)
2770 {
2771 unsigned int i;
2772 group_info_t group;
2773
2774 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2775 {
2776 /* For all non stack related bases, we only consider a store to
2777 be deletable if there are two or more stores for that
2778 position. This is because it takes one store to make the
2779 other store redundant. However, for the stores that are
2780 stack related, we consider them if there is only one store
2781 for the position. We do this because the stack related
2782 stores can be deleted if their is no read between them and
2783 the end of the function.
2784
2785 To make this work in the current framework, we take the stack
2786 related bases add all of the bits from store1 into store2.
2787 This has the effect of making the eligible even if there is
2788 only one store. */
2789
2790 if (stores_off_frame_dead_at_return && group->frame_related)
2791 {
2792 bitmap_ior_into (group->store2_n, group->store1_n);
2793 bitmap_ior_into (group->store2_p, group->store1_p);
2794 if (dump_file)
2795 fprintf (dump_file, "group %d is frame related ", i);
2796 }
2797
2798 group->offset_map_size_n++;
2799 group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
2800 group->offset_map_size_p++;
2801 group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
2802 group->process_globally = false;
2803 if (dump_file)
2804 {
2805 fprintf (dump_file, "group %d(%d+%d): ", i,
2806 (int)bitmap_count_bits (group->store2_n),
2807 (int)bitmap_count_bits (group->store2_p));
2808 bitmap_print (dump_file, group->store2_n, "n ", " ");
2809 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2810 }
2811 }
2812 }
2813
2814
2815 /* Init the offset tables for the normal case. */
2816
2817 static bool
2818 dse_step2_nospill (void)
2819 {
2820 unsigned int i;
2821 group_info_t group;
2822 /* Position 0 is unused because 0 is used in the maps to mean
2823 unused. */
2824 current_position = 1;
2825
2826 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2827 {
2828 bitmap_iterator bi;
2829 unsigned int j;
2830
2831 if (group == clear_alias_group)
2832 continue;
2833
2834 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2835 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2836 bitmap_clear (group->group_kill);
2837
2838 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2839 {
2840 bitmap_set_bit (group->group_kill, current_position);
2841 group->offset_map_n[j] = current_position++;
2842 group->process_globally = true;
2843 }
2844 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2845 {
2846 bitmap_set_bit (group->group_kill, current_position);
2847 group->offset_map_p[j] = current_position++;
2848 group->process_globally = true;
2849 }
2850 }
2851 return current_position != 1;
2852 }
2853
2854
2855 /* Init the offset tables for the spill case. */
2856
2857 static bool
2858 dse_step2_spill (void)
2859 {
2860 unsigned int j;
2861 group_info_t group = clear_alias_group;
2862 bitmap_iterator bi;
2863
2864 /* Position 0 is unused because 0 is used in the maps to mean
2865 unused. */
2866 current_position = 1;
2867
2868 if (dump_file)
2869 {
2870 bitmap_print (dump_file, clear_alias_sets,
2871 "clear alias sets ", "\n");
2872 bitmap_print (dump_file, disqualified_clear_alias_sets,
2873 "disqualified clear alias sets ", "\n");
2874 }
2875
2876 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2877 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2878 bitmap_clear (group->group_kill);
2879
2880 /* Remove the disqualified positions from the store2_p set. */
2881 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
2882
2883 /* We do not need to process the store2_n set because
2884 alias_sets are always positive. */
2885 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2886 {
2887 bitmap_set_bit (group->group_kill, current_position);
2888 group->offset_map_p[j] = current_position++;
2889 group->process_globally = true;
2890 }
2891
2892 return current_position != 1;
2893 }
2894
2895
2896 \f
2897 /*----------------------------------------------------------------------------
2898 Third step.
2899
2900 Build the bit vectors for the transfer functions.
2901 ----------------------------------------------------------------------------*/
2902
2903
2904 /* Note that this is NOT a general purpose function. Any mem that has
2905 an alias set registered here expected to be COMPLETELY unaliased:
2906 i.e it's addresses are not and need not be examined.
2907
2908 It is known that all references to this address will have this
2909 alias set and there are NO other references to this address in the
2910 function.
2911
2912 Currently the only place that is known to be clean enough to use
2913 this interface is the code that assigns the spill locations.
2914
2915 All of the mems that have alias_sets registered are subjected to a
2916 very powerful form of dse where function calls, volatile reads and
2917 writes, and reads from random location are not taken into account.
2918
2919 It is also assumed that these locations go dead when the function
2920 returns. This assumption could be relaxed if there were found to
2921 be places that this assumption was not correct.
2922
2923 The MODE is passed in and saved. The mode of each load or store to
2924 a mem with ALIAS_SET is checked against MEM. If the size of that
2925 load or store is different from MODE, processing is halted on this
2926 alias set. For the vast majority of aliases sets, all of the loads
2927 and stores will use the same mode. But vectors are treated
2928 differently: the alias set is established for the entire vector,
2929 but reload will insert loads and stores for individual elements and
2930 we do not necessarily have the information to track those separate
2931 elements. So when we see a mode mismatch, we just bail. */
2932
2933
2934 void
2935 dse_record_singleton_alias_set (alias_set_type alias_set,
2936 enum machine_mode mode)
2937 {
2938 struct clear_alias_mode_holder tmp_holder;
2939 struct clear_alias_mode_holder *entry;
2940 void **slot;
2941
2942 /* If we are not going to run dse, we need to return now or there
2943 will be problems with allocating the bitmaps. */
2944 if ((!gate_dse()) || !alias_set)
2945 return;
2946
2947 if (!clear_alias_sets)
2948 {
2949 clear_alias_sets = BITMAP_ALLOC (NULL);
2950 disqualified_clear_alias_sets = BITMAP_ALLOC (NULL);
2951 clear_alias_mode_table = htab_create (11, clear_alias_mode_hash,
2952 clear_alias_mode_eq, NULL);
2953 clear_alias_mode_pool = create_alloc_pool ("clear_alias_mode_pool",
2954 sizeof (struct clear_alias_mode_holder), 100);
2955 }
2956
2957 bitmap_set_bit (clear_alias_sets, alias_set);
2958
2959 tmp_holder.alias_set = alias_set;
2960
2961 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, INSERT);
2962 gcc_assert (*slot == NULL);
2963
2964 *slot = entry =
2965 (struct clear_alias_mode_holder *) pool_alloc (clear_alias_mode_pool);
2966 entry->alias_set = alias_set;
2967 entry->mode = mode;
2968 }
2969
2970
2971 /* Remove ALIAS_SET from the sets of stack slots being considered. */
2972
2973 void
2974 dse_invalidate_singleton_alias_set (alias_set_type alias_set)
2975 {
2976 if ((!gate_dse()) || !alias_set)
2977 return;
2978
2979 bitmap_clear_bit (clear_alias_sets, alias_set);
2980 }
2981
2982
2983 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2984 there, return 0. */
2985
2986 static int
2987 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
2988 {
2989 if (offset < 0)
2990 {
2991 HOST_WIDE_INT offset_p = -offset;
2992 if (offset_p >= group_info->offset_map_size_n)
2993 return 0;
2994 return group_info->offset_map_n[offset_p];
2995 }
2996 else
2997 {
2998 if (offset >= group_info->offset_map_size_p)
2999 return 0;
3000 return group_info->offset_map_p[offset];
3001 }
3002 }
3003
3004
3005 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3006 may be NULL. */
3007
3008 static void
3009 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
3010 {
3011 while (store_info)
3012 {
3013 HOST_WIDE_INT i;
3014 group_info_t group_info
3015 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3016 if (group_info->process_globally)
3017 for (i = store_info->begin; i < store_info->end; i++)
3018 {
3019 int index = get_bitmap_index (group_info, i);
3020 if (index != 0)
3021 {
3022 bitmap_set_bit (gen, index);
3023 if (kill)
3024 bitmap_clear_bit (kill, index);
3025 }
3026 }
3027 store_info = store_info->next;
3028 }
3029 }
3030
3031
3032 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3033 may be NULL. */
3034
3035 static void
3036 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3037 {
3038 while (store_info)
3039 {
3040 if (store_info->alias_set)
3041 {
3042 int index = get_bitmap_index (clear_alias_group,
3043 store_info->alias_set);
3044 if (index != 0)
3045 {
3046 bitmap_set_bit (gen, index);
3047 if (kill)
3048 bitmap_clear_bit (kill, index);
3049 }
3050 }
3051 store_info = store_info->next;
3052 }
3053 }
3054
3055
3056 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3057 may be NULL. */
3058
3059 static void
3060 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3061 {
3062 read_info_t read_info = insn_info->read_rec;
3063 int i;
3064 group_info_t group;
3065
3066 /* If this insn reads the frame, kill all the frame related stores. */
3067 if (insn_info->frame_read)
3068 {
3069 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3070 if (group->process_globally && group->frame_related)
3071 {
3072 if (kill)
3073 bitmap_ior_into (kill, group->group_kill);
3074 bitmap_and_compl_into (gen, group->group_kill);
3075 }
3076 }
3077
3078 while (read_info)
3079 {
3080 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3081 {
3082 if (group->process_globally)
3083 {
3084 if (i == read_info->group_id)
3085 {
3086 if (read_info->begin > read_info->end)
3087 {
3088 /* Begin > end for block mode reads. */
3089 if (kill)
3090 bitmap_ior_into (kill, group->group_kill);
3091 bitmap_and_compl_into (gen, group->group_kill);
3092 }
3093 else
3094 {
3095 /* The groups are the same, just process the
3096 offsets. */
3097 HOST_WIDE_INT j;
3098 for (j = read_info->begin; j < read_info->end; j++)
3099 {
3100 int index = get_bitmap_index (group, j);
3101 if (index != 0)
3102 {
3103 if (kill)
3104 bitmap_set_bit (kill, index);
3105 bitmap_clear_bit (gen, index);
3106 }
3107 }
3108 }
3109 }
3110 else
3111 {
3112 /* The groups are different, if the alias sets
3113 conflict, clear the entire group. We only need
3114 to apply this test if the read_info is a cselib
3115 read. Anything with a constant base cannot alias
3116 something else with a different constant
3117 base. */
3118 if ((read_info->group_id < 0)
3119 && canon_true_dependence (group->base_mem,
3120 QImode,
3121 group->canon_base_addr,
3122 read_info->mem, NULL_RTX,
3123 rtx_varies_p))
3124 {
3125 if (kill)
3126 bitmap_ior_into (kill, group->group_kill);
3127 bitmap_and_compl_into (gen, group->group_kill);
3128 }
3129 }
3130 }
3131 }
3132
3133 read_info = read_info->next;
3134 }
3135 }
3136
3137 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3138 may be NULL. */
3139
3140 static void
3141 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3142 {
3143 while (read_info)
3144 {
3145 if (read_info->alias_set)
3146 {
3147 int index = get_bitmap_index (clear_alias_group,
3148 read_info->alias_set);
3149 if (index != 0)
3150 {
3151 if (kill)
3152 bitmap_set_bit (kill, index);
3153 bitmap_clear_bit (gen, index);
3154 }
3155 }
3156
3157 read_info = read_info->next;
3158 }
3159 }
3160
3161
3162 /* Return the insn in BB_INFO before the first wild read or if there
3163 are no wild reads in the block, return the last insn. */
3164
3165 static insn_info_t
3166 find_insn_before_first_wild_read (bb_info_t bb_info)
3167 {
3168 insn_info_t insn_info = bb_info->last_insn;
3169 insn_info_t last_wild_read = NULL;
3170
3171 while (insn_info)
3172 {
3173 if (insn_info->wild_read)
3174 {
3175 last_wild_read = insn_info->prev_insn;
3176 /* Block starts with wild read. */
3177 if (!last_wild_read)
3178 return NULL;
3179 }
3180
3181 insn_info = insn_info->prev_insn;
3182 }
3183
3184 if (last_wild_read)
3185 return last_wild_read;
3186 else
3187 return bb_info->last_insn;
3188 }
3189
3190
3191 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3192 the block in order to build the gen and kill sets for the block.
3193 We start at ptr which may be the last insn in the block or may be
3194 the first insn with a wild read. In the latter case we are able to
3195 skip the rest of the block because it just does not matter:
3196 anything that happens is hidden by the wild read. */
3197
3198 static void
3199 dse_step3_scan (bool for_spills, basic_block bb)
3200 {
3201 bb_info_t bb_info = bb_table[bb->index];
3202 insn_info_t insn_info;
3203
3204 if (for_spills)
3205 /* There are no wild reads in the spill case. */
3206 insn_info = bb_info->last_insn;
3207 else
3208 insn_info = find_insn_before_first_wild_read (bb_info);
3209
3210 /* In the spill case or in the no_spill case if there is no wild
3211 read in the block, we will need a kill set. */
3212 if (insn_info == bb_info->last_insn)
3213 {
3214 if (bb_info->kill)
3215 bitmap_clear (bb_info->kill);
3216 else
3217 bb_info->kill = BITMAP_ALLOC (NULL);
3218 }
3219 else
3220 if (bb_info->kill)
3221 BITMAP_FREE (bb_info->kill);
3222
3223 while (insn_info)
3224 {
3225 /* There may have been code deleted by the dce pass run before
3226 this phase. */
3227 if (insn_info->insn && INSN_P (insn_info->insn))
3228 {
3229 /* Process the read(s) last. */
3230 if (for_spills)
3231 {
3232 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3233 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3234 }
3235 else
3236 {
3237 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3238 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3239 }
3240 }
3241
3242 insn_info = insn_info->prev_insn;
3243 }
3244 }
3245
3246
3247 /* Set the gen set of the exit block, and also any block with no
3248 successors that does not have a wild read. */
3249
3250 static void
3251 dse_step3_exit_block_scan (bb_info_t bb_info)
3252 {
3253 /* The gen set is all 0's for the exit block except for the
3254 frame_pointer_group. */
3255
3256 if (stores_off_frame_dead_at_return)
3257 {
3258 unsigned int i;
3259 group_info_t group;
3260
3261 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3262 {
3263 if (group->process_globally && group->frame_related)
3264 bitmap_ior_into (bb_info->gen, group->group_kill);
3265 }
3266 }
3267 }
3268
3269
3270 /* Find all of the blocks that are not backwards reachable from the
3271 exit block or any block with no successors (BB). These are the
3272 infinite loops or infinite self loops. These blocks will still
3273 have their bits set in UNREACHABLE_BLOCKS. */
3274
3275 static void
3276 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3277 {
3278 edge e;
3279 edge_iterator ei;
3280
3281 if (TEST_BIT (unreachable_blocks, bb->index))
3282 {
3283 RESET_BIT (unreachable_blocks, bb->index);
3284 FOR_EACH_EDGE (e, ei, bb->preds)
3285 {
3286 mark_reachable_blocks (unreachable_blocks, e->src);
3287 }
3288 }
3289 }
3290
3291 /* Build the transfer functions for the function. */
3292
3293 static void
3294 dse_step3 (bool for_spills)
3295 {
3296 basic_block bb;
3297 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
3298 sbitmap_iterator sbi;
3299 bitmap all_ones = NULL;
3300 unsigned int i;
3301
3302 sbitmap_ones (unreachable_blocks);
3303
3304 FOR_ALL_BB (bb)
3305 {
3306 bb_info_t bb_info = bb_table[bb->index];
3307 if (bb_info->gen)
3308 bitmap_clear (bb_info->gen);
3309 else
3310 bb_info->gen = BITMAP_ALLOC (NULL);
3311
3312 if (bb->index == ENTRY_BLOCK)
3313 ;
3314 else if (bb->index == EXIT_BLOCK)
3315 dse_step3_exit_block_scan (bb_info);
3316 else
3317 dse_step3_scan (for_spills, bb);
3318 if (EDGE_COUNT (bb->succs) == 0)
3319 mark_reachable_blocks (unreachable_blocks, bb);
3320
3321 /* If this is the second time dataflow is run, delete the old
3322 sets. */
3323 if (bb_info->in)
3324 BITMAP_FREE (bb_info->in);
3325 if (bb_info->out)
3326 BITMAP_FREE (bb_info->out);
3327 }
3328
3329 /* For any block in an infinite loop, we must initialize the out set
3330 to all ones. This could be expensive, but almost never occurs in
3331 practice. However, it is common in regression tests. */
3332 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
3333 {
3334 if (bitmap_bit_p (all_blocks, i))
3335 {
3336 bb_info_t bb_info = bb_table[i];
3337 if (!all_ones)
3338 {
3339 unsigned int j;
3340 group_info_t group;
3341
3342 all_ones = BITMAP_ALLOC (NULL);
3343 for (j = 0; VEC_iterate (group_info_t, rtx_group_vec, j, group); j++)
3344 bitmap_ior_into (all_ones, group->group_kill);
3345 }
3346 if (!bb_info->out)
3347 {
3348 bb_info->out = BITMAP_ALLOC (NULL);
3349 bitmap_copy (bb_info->out, all_ones);
3350 }
3351 }
3352 }
3353
3354 if (all_ones)
3355 BITMAP_FREE (all_ones);
3356 sbitmap_free (unreachable_blocks);
3357 }
3358
3359
3360 \f
3361 /*----------------------------------------------------------------------------
3362 Fourth step.
3363
3364 Solve the bitvector equations.
3365 ----------------------------------------------------------------------------*/
3366
3367
3368 /* Confluence function for blocks with no successors. Create an out
3369 set from the gen set of the exit block. This block logically has
3370 the exit block as a successor. */
3371
3372
3373
3374 static void
3375 dse_confluence_0 (basic_block bb)
3376 {
3377 bb_info_t bb_info = bb_table[bb->index];
3378
3379 if (bb->index == EXIT_BLOCK)
3380 return;
3381
3382 if (!bb_info->out)
3383 {
3384 bb_info->out = BITMAP_ALLOC (NULL);
3385 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3386 }
3387 }
3388
3389 /* Propagate the information from the in set of the dest of E to the
3390 out set of the src of E. If the various in or out sets are not
3391 there, that means they are all ones. */
3392
3393 static void
3394 dse_confluence_n (edge e)
3395 {
3396 bb_info_t src_info = bb_table[e->src->index];
3397 bb_info_t dest_info = bb_table[e->dest->index];
3398
3399 if (dest_info->in)
3400 {
3401 if (src_info->out)
3402 bitmap_and_into (src_info->out, dest_info->in);
3403 else
3404 {
3405 src_info->out = BITMAP_ALLOC (NULL);
3406 bitmap_copy (src_info->out, dest_info->in);
3407 }
3408 }
3409 }
3410
3411
3412 /* Propagate the info from the out to the in set of BB_INDEX's basic
3413 block. There are three cases:
3414
3415 1) The block has no kill set. In this case the kill set is all
3416 ones. It does not matter what the out set of the block is, none of
3417 the info can reach the top. The only thing that reaches the top is
3418 the gen set and we just copy the set.
3419
3420 2) There is a kill set but no out set and bb has successors. In
3421 this case we just return. Eventually an out set will be created and
3422 it is better to wait than to create a set of ones.
3423
3424 3) There is both a kill and out set. We apply the obvious transfer
3425 function.
3426 */
3427
3428 static bool
3429 dse_transfer_function (int bb_index)
3430 {
3431 bb_info_t bb_info = bb_table[bb_index];
3432
3433 if (bb_info->kill)
3434 {
3435 if (bb_info->out)
3436 {
3437 /* Case 3 above. */
3438 if (bb_info->in)
3439 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3440 bb_info->out, bb_info->kill);
3441 else
3442 {
3443 bb_info->in = BITMAP_ALLOC (NULL);
3444 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3445 bb_info->out, bb_info->kill);
3446 return true;
3447 }
3448 }
3449 else
3450 /* Case 2 above. */
3451 return false;
3452 }
3453 else
3454 {
3455 /* Case 1 above. If there is already an in set, nothing
3456 happens. */
3457 if (bb_info->in)
3458 return false;
3459 else
3460 {
3461 bb_info->in = BITMAP_ALLOC (NULL);
3462 bitmap_copy (bb_info->in, bb_info->gen);
3463 return true;
3464 }
3465 }
3466 }
3467
3468 /* Solve the dataflow equations. */
3469
3470 static void
3471 dse_step4 (void)
3472 {
3473 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3474 dse_confluence_n, dse_transfer_function,
3475 all_blocks, df_get_postorder (DF_BACKWARD),
3476 df_get_n_blocks (DF_BACKWARD));
3477 if (dump_file)
3478 {
3479 basic_block bb;
3480
3481 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3482 FOR_ALL_BB (bb)
3483 {
3484 bb_info_t bb_info = bb_table[bb->index];
3485
3486 df_print_bb_index (bb, dump_file);
3487 if (bb_info->in)
3488 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3489 else
3490 fprintf (dump_file, " in: *MISSING*\n");
3491 if (bb_info->gen)
3492 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3493 else
3494 fprintf (dump_file, " gen: *MISSING*\n");
3495 if (bb_info->kill)
3496 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3497 else
3498 fprintf (dump_file, " kill: *MISSING*\n");
3499 if (bb_info->out)
3500 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3501 else
3502 fprintf (dump_file, " out: *MISSING*\n\n");
3503 }
3504 }
3505 }
3506
3507
3508 \f
3509 /*----------------------------------------------------------------------------
3510 Fifth step.
3511
3512 Delete the stores that can only be deleted using the global information.
3513 ----------------------------------------------------------------------------*/
3514
3515
3516 static void
3517 dse_step5_nospill (void)
3518 {
3519 basic_block bb;
3520 FOR_EACH_BB (bb)
3521 {
3522 bb_info_t bb_info = bb_table[bb->index];
3523 insn_info_t insn_info = bb_info->last_insn;
3524 bitmap v = bb_info->out;
3525
3526 while (insn_info)
3527 {
3528 bool deleted = false;
3529 if (dump_file && insn_info->insn)
3530 {
3531 fprintf (dump_file, "starting to process insn %d\n",
3532 INSN_UID (insn_info->insn));
3533 bitmap_print (dump_file, v, " v: ", "\n");
3534 }
3535
3536 /* There may have been code deleted by the dce pass run before
3537 this phase. */
3538 if (insn_info->insn
3539 && INSN_P (insn_info->insn)
3540 && (!insn_info->cannot_delete)
3541 && (!bitmap_empty_p (v)))
3542 {
3543 store_info_t store_info = insn_info->store_rec;
3544
3545 /* Try to delete the current insn. */
3546 deleted = true;
3547
3548 /* Skip the clobbers. */
3549 while (!store_info->is_set)
3550 store_info = store_info->next;
3551
3552 if (store_info->alias_set)
3553 deleted = false;
3554 else
3555 {
3556 HOST_WIDE_INT i;
3557 group_info_t group_info
3558 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3559
3560 for (i = store_info->begin; i < store_info->end; i++)
3561 {
3562 int index = get_bitmap_index (group_info, i);
3563
3564 if (dump_file)
3565 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3566 if (index == 0 || !bitmap_bit_p (v, index))
3567 {
3568 if (dump_file)
3569 fprintf (dump_file, "failing at i = %d\n", (int)i);
3570 deleted = false;
3571 break;
3572 }
3573 }
3574 }
3575 if (deleted)
3576 {
3577 if (dbg_cnt (dse))
3578 {
3579 check_for_inc_dec (insn_info->insn);
3580 delete_insn (insn_info->insn);
3581 insn_info->insn = NULL;
3582 globally_deleted++;
3583 }
3584 }
3585 }
3586 /* We do want to process the local info if the insn was
3587 deleted. For instance, if the insn did a wild read, we
3588 no longer need to trash the info. */
3589 if (insn_info->insn
3590 && INSN_P (insn_info->insn)
3591 && (!deleted))
3592 {
3593 scan_stores_nospill (insn_info->store_rec, v, NULL);
3594 if (insn_info->wild_read)
3595 {
3596 if (dump_file)
3597 fprintf (dump_file, "wild read\n");
3598 bitmap_clear (v);
3599 }
3600 else if (insn_info->read_rec)
3601 {
3602 if (dump_file)
3603 fprintf (dump_file, "regular read\n");
3604 scan_reads_nospill (insn_info, v, NULL);
3605 }
3606 }
3607
3608 insn_info = insn_info->prev_insn;
3609 }
3610 }
3611 }
3612
3613
3614 static void
3615 dse_step5_spill (void)
3616 {
3617 basic_block bb;
3618 FOR_EACH_BB (bb)
3619 {
3620 bb_info_t bb_info = bb_table[bb->index];
3621 insn_info_t insn_info = bb_info->last_insn;
3622 bitmap v = bb_info->out;
3623
3624 while (insn_info)
3625 {
3626 bool deleted = false;
3627 /* There may have been code deleted by the dce pass run before
3628 this phase. */
3629 if (insn_info->insn
3630 && INSN_P (insn_info->insn)
3631 && (!insn_info->cannot_delete)
3632 && (!bitmap_empty_p (v)))
3633 {
3634 /* Try to delete the current insn. */
3635 store_info_t store_info = insn_info->store_rec;
3636 deleted = true;
3637
3638 while (store_info)
3639 {
3640 if (store_info->alias_set)
3641 {
3642 int index = get_bitmap_index (clear_alias_group,
3643 store_info->alias_set);
3644 if (index == 0 || !bitmap_bit_p (v, index))
3645 {
3646 deleted = false;
3647 break;
3648 }
3649 }
3650 else
3651 deleted = false;
3652 store_info = store_info->next;
3653 }
3654 if (deleted && dbg_cnt (dse))
3655 {
3656 if (dump_file)
3657 fprintf (dump_file, "Spill deleting insn %d\n",
3658 INSN_UID (insn_info->insn));
3659 check_for_inc_dec (insn_info->insn);
3660 delete_insn (insn_info->insn);
3661 spill_deleted++;
3662 insn_info->insn = NULL;
3663 }
3664 }
3665
3666 if (insn_info->insn
3667 && INSN_P (insn_info->insn)
3668 && (!deleted))
3669 {
3670 scan_stores_spill (insn_info->store_rec, v, NULL);
3671 scan_reads_spill (insn_info->read_rec, v, NULL);
3672 }
3673
3674 insn_info = insn_info->prev_insn;
3675 }
3676 }
3677 }
3678
3679
3680 \f
3681 /*----------------------------------------------------------------------------
3682 Sixth step.
3683
3684 Delete stores made redundant by earlier stores (which store the same
3685 value) that couldn't be eliminated.
3686 ----------------------------------------------------------------------------*/
3687
3688 static void
3689 dse_step6 (void)
3690 {
3691 basic_block bb;
3692
3693 FOR_ALL_BB (bb)
3694 {
3695 bb_info_t bb_info = bb_table[bb->index];
3696 insn_info_t insn_info = bb_info->last_insn;
3697
3698 while (insn_info)
3699 {
3700 /* There may have been code deleted by the dce pass run before
3701 this phase. */
3702 if (insn_info->insn
3703 && INSN_P (insn_info->insn)
3704 && !insn_info->cannot_delete)
3705 {
3706 store_info_t s_info = insn_info->store_rec;
3707
3708 while (s_info && !s_info->is_set)
3709 s_info = s_info->next;
3710 if (s_info
3711 && s_info->redundant_reason
3712 && s_info->redundant_reason->insn
3713 && INSN_P (s_info->redundant_reason->insn))
3714 {
3715 rtx rinsn = s_info->redundant_reason->insn;
3716 if (dump_file)
3717 fprintf (dump_file, "Locally deleting insn %d "
3718 "because insn %d stores the "
3719 "same value and couldn't be "
3720 "eliminated\n",
3721 INSN_UID (insn_info->insn),
3722 INSN_UID (rinsn));
3723 delete_dead_store_insn (insn_info);
3724 }
3725 }
3726 insn_info = insn_info->prev_insn;
3727 }
3728 }
3729 }
3730 \f
3731 /*----------------------------------------------------------------------------
3732 Seventh step.
3733
3734 Destroy everything left standing.
3735 ----------------------------------------------------------------------------*/
3736
3737 static void
3738 dse_step7 (bool global_done)
3739 {
3740 unsigned int i;
3741 group_info_t group;
3742 basic_block bb;
3743
3744 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3745 {
3746 free (group->offset_map_n);
3747 free (group->offset_map_p);
3748 BITMAP_FREE (group->store1_n);
3749 BITMAP_FREE (group->store1_p);
3750 BITMAP_FREE (group->store2_n);
3751 BITMAP_FREE (group->store2_p);
3752 BITMAP_FREE (group->group_kill);
3753 }
3754
3755 if (global_done)
3756 FOR_ALL_BB (bb)
3757 {
3758 bb_info_t bb_info = bb_table[bb->index];
3759 BITMAP_FREE (bb_info->gen);
3760 if (bb_info->kill)
3761 BITMAP_FREE (bb_info->kill);
3762 if (bb_info->in)
3763 BITMAP_FREE (bb_info->in);
3764 if (bb_info->out)
3765 BITMAP_FREE (bb_info->out);
3766 }
3767
3768 if (clear_alias_sets)
3769 {
3770 BITMAP_FREE (clear_alias_sets);
3771 BITMAP_FREE (disqualified_clear_alias_sets);
3772 free_alloc_pool (clear_alias_mode_pool);
3773 htab_delete (clear_alias_mode_table);
3774 }
3775
3776 end_alias_analysis ();
3777 free (bb_table);
3778 htab_delete (rtx_group_table);
3779 VEC_free (group_info_t, heap, rtx_group_vec);
3780 BITMAP_FREE (all_blocks);
3781 BITMAP_FREE (scratch);
3782
3783 free_alloc_pool (rtx_store_info_pool);
3784 free_alloc_pool (read_info_pool);
3785 free_alloc_pool (insn_info_pool);
3786 free_alloc_pool (bb_info_pool);
3787 free_alloc_pool (rtx_group_info_pool);
3788 free_alloc_pool (deferred_change_pool);
3789 }
3790
3791
3792 /* -------------------------------------------------------------------------
3793 DSE
3794 ------------------------------------------------------------------------- */
3795
3796 /* Callback for running pass_rtl_dse. */
3797
3798 static unsigned int
3799 rest_of_handle_dse (void)
3800 {
3801 bool did_global = false;
3802
3803 df_set_flags (DF_DEFER_INSN_RESCAN);
3804
3805 /* Need the notes since we must track live hardregs in the forwards
3806 direction. */
3807 df_note_add_problem ();
3808 df_analyze ();
3809
3810 dse_step0 ();
3811 dse_step1 ();
3812 dse_step2_init ();
3813 if (dse_step2_nospill ())
3814 {
3815 df_set_flags (DF_LR_RUN_DCE);
3816 df_analyze ();
3817 did_global = true;
3818 if (dump_file)
3819 fprintf (dump_file, "doing global processing\n");
3820 dse_step3 (false);
3821 dse_step4 ();
3822 dse_step5_nospill ();
3823 }
3824
3825 /* For the instance of dse that runs after reload, we make a special
3826 pass to process the spills. These are special in that they are
3827 totally transparent, i.e, there is no aliasing issues that need
3828 to be considered. This means that the wild reads that kill
3829 everything else do not apply here. */
3830 if (clear_alias_sets && dse_step2_spill ())
3831 {
3832 if (!did_global)
3833 {
3834 df_set_flags (DF_LR_RUN_DCE);
3835 df_analyze ();
3836 }
3837 did_global = true;
3838 if (dump_file)
3839 fprintf (dump_file, "doing global spill processing\n");
3840 dse_step3 (true);
3841 dse_step4 ();
3842 dse_step5_spill ();
3843 }
3844
3845 dse_step6 ();
3846 dse_step7 (did_global);
3847
3848 if (dump_file)
3849 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3850 locally_deleted, globally_deleted, spill_deleted);
3851 return 0;
3852 }
3853
3854 static bool
3855 gate_dse (void)
3856 {
3857 return gate_dse1 () || gate_dse2 ();
3858 }
3859
3860 static bool
3861 gate_dse1 (void)
3862 {
3863 return optimize > 0 && flag_dse
3864 && dbg_cnt (dse1);
3865 }
3866
3867 static bool
3868 gate_dse2 (void)
3869 {
3870 return optimize > 0 && flag_dse
3871 && dbg_cnt (dse2);
3872 }
3873
3874 struct rtl_opt_pass pass_rtl_dse1 =
3875 {
3876 {
3877 RTL_PASS,
3878 "dse1", /* name */
3879 gate_dse1, /* gate */
3880 rest_of_handle_dse, /* execute */
3881 NULL, /* sub */
3882 NULL, /* next */
3883 0, /* static_pass_number */
3884 TV_DSE1, /* tv_id */
3885 0, /* properties_required */
3886 0, /* properties_provided */
3887 0, /* properties_destroyed */
3888 0, /* todo_flags_start */
3889 TODO_dump_func |
3890 TODO_df_finish | TODO_verify_rtl_sharing |
3891 TODO_ggc_collect /* todo_flags_finish */
3892 }
3893 };
3894
3895 struct rtl_opt_pass pass_rtl_dse2 =
3896 {
3897 {
3898 RTL_PASS,
3899 "dse2", /* name */
3900 gate_dse2, /* gate */
3901 rest_of_handle_dse, /* execute */
3902 NULL, /* sub */
3903 NULL, /* next */
3904 0, /* static_pass_number */
3905 TV_DSE2, /* tv_id */
3906 0, /* properties_required */
3907 0, /* properties_provided */
3908 0, /* properties_destroyed */
3909 0, /* todo_flags_start */
3910 TODO_dump_func |
3911 TODO_df_finish | TODO_verify_rtl_sharing |
3912 TODO_ggc_collect /* todo_flags_finish */
3913 }
3914 };