re PR bootstrap/53021 (bootstrap failure on Linux/ia32)
[gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
6 and Kenneth Zadeck <zadeck@naturalbridge.com>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #undef BASELINE
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "hashtab.h"
30 #include "tm.h"
31 #include "rtl.h"
32 #include "tree.h"
33 #include "tm_p.h"
34 #include "regs.h"
35 #include "hard-reg-set.h"
36 #include "regset.h"
37 #include "flags.h"
38 #include "df.h"
39 #include "cselib.h"
40 #include "timevar.h"
41 #include "tree-pass.h"
42 #include "alloc-pool.h"
43 #include "alias.h"
44 #include "insn-config.h"
45 #include "expr.h"
46 #include "recog.h"
47 #include "optabs.h"
48 #include "dbgcnt.h"
49 #include "target.h"
50 #include "params.h"
51 #include "tree-flow.h"
52
53 /* This file contains three techniques for performing Dead Store
54 Elimination (dse).
55
56 * The first technique performs dse locally on any base address. It
57 is based on the cselib which is a local value numbering technique.
58 This technique is local to a basic block but deals with a fairly
59 general addresses.
60
61 * The second technique performs dse globally but is restricted to
62 base addresses that are either constant or are relative to the
63 frame_pointer.
64
65 * The third technique, (which is only done after register allocation)
66 processes the spill spill slots. This differs from the second
67 technique because it takes advantage of the fact that spilling is
68 completely free from the effects of aliasing.
69
70 Logically, dse is a backwards dataflow problem. A store can be
71 deleted if it if cannot be reached in the backward direction by any
72 use of the value being stored. However, the local technique uses a
73 forwards scan of the basic block because cselib requires that the
74 block be processed in that order.
75
76 The pass is logically broken into 7 steps:
77
78 0) Initialization.
79
80 1) The local algorithm, as well as scanning the insns for the two
81 global algorithms.
82
83 2) Analysis to see if the global algs are necessary. In the case
84 of stores base on a constant address, there must be at least two
85 stores to that address, to make it possible to delete some of the
86 stores. In the case of stores off of the frame or spill related
87 stores, only one store to an address is necessary because those
88 stores die at the end of the function.
89
90 3) Set up the global dataflow equations based on processing the
91 info parsed in the first step.
92
93 4) Solve the dataflow equations.
94
95 5) Delete the insns that the global analysis has indicated are
96 unnecessary.
97
98 6) Delete insns that store the same value as preceeding store
99 where the earlier store couldn't be eliminated.
100
101 7) Cleanup.
102
103 This step uses cselib and canon_rtx to build the largest expression
104 possible for each address. This pass is a forwards pass through
105 each basic block. From the point of view of the global technique,
106 the first pass could examine a block in either direction. The
107 forwards ordering is to accommodate cselib.
108
109 We a simplifying assumption: addresses fall into four broad
110 categories:
111
112 1) base has rtx_varies_p == false, offset is constant.
113 2) base has rtx_varies_p == false, offset variable.
114 3) base has rtx_varies_p == true, offset constant.
115 4) base has rtx_varies_p == true, offset variable.
116
117 The local passes are able to process all 4 kinds of addresses. The
118 global pass only handles (1).
119
120 The global problem is formulated as follows:
121
122 A store, S1, to address A, where A is not relative to the stack
123 frame, can be eliminated if all paths from S1 to the end of the
124 of the function contain another store to A before a read to A.
125
126 If the address A is relative to the stack frame, a store S2 to A
127 can be eliminated if there are no paths from S1 that reach the
128 end of the function that read A before another store to A. In
129 this case S2 can be deleted if there are paths to from S2 to the
130 end of the function that have no reads or writes to A. This
131 second case allows stores to the stack frame to be deleted that
132 would otherwise die when the function returns. This cannot be
133 done if stores_off_frame_dead_at_return is not true. See the doc
134 for that variable for when this variable is false.
135
136 The global problem is formulated as a backwards set union
137 dataflow problem where the stores are the gens and reads are the
138 kills. Set union problems are rare and require some special
139 handling given our representation of bitmaps. A straightforward
140 implementation of requires a lot of bitmaps filled with 1s.
141 These are expensive and cumbersome in our bitmap formulation so
142 care has been taken to avoid large vectors filled with 1s. See
143 the comments in bb_info and in the dataflow confluence functions
144 for details.
145
146 There are two places for further enhancements to this algorithm:
147
148 1) The original dse which was embedded in a pass called flow also
149 did local address forwarding. For example in
150
151 A <- r100
152 ... <- A
153
154 flow would replace the right hand side of the second insn with a
155 reference to r100. Most of the information is available to add this
156 to this pass. It has not done it because it is a lot of work in
157 the case that either r100 is assigned to between the first and
158 second insn and/or the second insn is a load of part of the value
159 stored by the first insn.
160
161 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
162 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
163 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
164 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
165
166 2) The cleaning up of spill code is quite profitable. It currently
167 depends on reading tea leaves and chicken entrails left by reload.
168 This pass depends on reload creating a singleton alias set for each
169 spill slot and telling the next dse pass which of these alias sets
170 are the singletons. Rather than analyze the addresses of the
171 spills, dse's spill processing just does analysis of the loads and
172 stores that use those alias sets. There are three cases where this
173 falls short:
174
175 a) Reload sometimes creates the slot for one mode of access, and
176 then inserts loads and/or stores for a smaller mode. In this
177 case, the current code just punts on the slot. The proper thing
178 to do is to back out and use one bit vector position for each
179 byte of the entity associated with the slot. This depends on
180 KNOWING that reload always generates the accesses for each of the
181 bytes in some canonical (read that easy to understand several
182 passes after reload happens) way.
183
184 b) Reload sometimes decides that spill slot it allocated was not
185 large enough for the mode and goes back and allocates more slots
186 with the same mode and alias set. The backout in this case is a
187 little more graceful than (a). In this case the slot is unmarked
188 as being a spill slot and if final address comes out to be based
189 off the frame pointer, the global algorithm handles this slot.
190
191 c) For any pass that may prespill, there is currently no
192 mechanism to tell the dse pass that the slot being used has the
193 special properties that reload uses. It may be that all that is
194 required is to have those passes make the same calls that reload
195 does, assuming that the alias sets can be manipulated in the same
196 way. */
197
198 /* There are limits to the size of constant offsets we model for the
199 global problem. There are certainly test cases, that exceed this
200 limit, however, it is unlikely that there are important programs
201 that really have constant offsets this size. */
202 #define MAX_OFFSET (64 * 1024)
203
204
205 static bitmap scratch = NULL;
206 struct insn_info;
207
208 /* This structure holds information about a candidate store. */
209 struct store_info
210 {
211
212 /* False means this is a clobber. */
213 bool is_set;
214
215 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
216 bool is_large;
217
218 /* The id of the mem group of the base address. If rtx_varies_p is
219 true, this is -1. Otherwise, it is the index into the group
220 table. */
221 int group_id;
222
223 /* This is the cselib value. */
224 cselib_val *cse_base;
225
226 /* This canonized mem. */
227 rtx mem;
228
229 /* Canonized MEM address for use by canon_true_dependence. */
230 rtx mem_addr;
231
232 /* If this is non-zero, it is the alias set of a spill location. */
233 alias_set_type alias_set;
234
235 /* The offset of the first and byte before the last byte associated
236 with the operation. */
237 HOST_WIDE_INT begin, end;
238
239 union
240 {
241 /* A bitmask as wide as the number of bytes in the word that
242 contains a 1 if the byte may be needed. The store is unused if
243 all of the bits are 0. This is used if IS_LARGE is false. */
244 unsigned HOST_WIDE_INT small_bitmask;
245
246 struct
247 {
248 /* A bitmap with one bit per byte. Cleared bit means the position
249 is needed. Used if IS_LARGE is false. */
250 bitmap bmap;
251
252 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
253 equal to END - BEGIN, the whole store is unused. */
254 int count;
255 } large;
256 } positions_needed;
257
258 /* The next store info for this insn. */
259 struct store_info *next;
260
261 /* The right hand side of the store. This is used if there is a
262 subsequent reload of the mems address somewhere later in the
263 basic block. */
264 rtx rhs;
265
266 /* If rhs is or holds a constant, this contains that constant,
267 otherwise NULL. */
268 rtx const_rhs;
269
270 /* Set if this store stores the same constant value as REDUNDANT_REASON
271 insn stored. These aren't eliminated early, because doing that
272 might prevent the earlier larger store to be eliminated. */
273 struct insn_info *redundant_reason;
274 };
275
276 /* Return a bitmask with the first N low bits set. */
277
278 static unsigned HOST_WIDE_INT
279 lowpart_bitmask (int n)
280 {
281 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
282 return mask >> (HOST_BITS_PER_WIDE_INT - n);
283 }
284
285 typedef struct store_info *store_info_t;
286 static alloc_pool cse_store_info_pool;
287 static alloc_pool rtx_store_info_pool;
288
289 /* This structure holds information about a load. These are only
290 built for rtx bases. */
291 struct read_info
292 {
293 /* The id of the mem group of the base address. */
294 int group_id;
295
296 /* If this is non-zero, it is the alias set of a spill location. */
297 alias_set_type alias_set;
298
299 /* The offset of the first and byte after the last byte associated
300 with the operation. If begin == end == 0, the read did not have
301 a constant offset. */
302 int begin, end;
303
304 /* The mem being read. */
305 rtx mem;
306
307 /* The next read_info for this insn. */
308 struct read_info *next;
309 };
310 typedef struct read_info *read_info_t;
311 static alloc_pool read_info_pool;
312
313
314 /* One of these records is created for each insn. */
315
316 struct insn_info
317 {
318 /* Set true if the insn contains a store but the insn itself cannot
319 be deleted. This is set if the insn is a parallel and there is
320 more than one non dead output or if the insn is in some way
321 volatile. */
322 bool cannot_delete;
323
324 /* This field is only used by the global algorithm. It is set true
325 if the insn contains any read of mem except for a (1). This is
326 also set if the insn is a call or has a clobber mem. If the insn
327 contains a wild read, the use_rec will be null. */
328 bool wild_read;
329
330 /* This is true only for CALL instructions which could potentially read
331 any non-frame memory location. This field is used by the global
332 algorithm. */
333 bool non_frame_wild_read;
334
335 /* This field is only used for the processing of const functions.
336 These functions cannot read memory, but they can read the stack
337 because that is where they may get their parms. We need to be
338 this conservative because, like the store motion pass, we don't
339 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
340 Moreover, we need to distinguish two cases:
341 1. Before reload (register elimination), the stores related to
342 outgoing arguments are stack pointer based and thus deemed
343 of non-constant base in this pass. This requires special
344 handling but also means that the frame pointer based stores
345 need not be killed upon encountering a const function call.
346 2. After reload, the stores related to outgoing arguments can be
347 either stack pointer or hard frame pointer based. This means
348 that we have no other choice than also killing all the frame
349 pointer based stores upon encountering a const function call.
350 This field is set after reload for const function calls. Having
351 this set is less severe than a wild read, it just means that all
352 the frame related stores are killed rather than all the stores. */
353 bool frame_read;
354
355 /* This field is only used for the processing of const functions.
356 It is set if the insn may contain a stack pointer based store. */
357 bool stack_pointer_based;
358
359 /* This is true if any of the sets within the store contains a
360 cselib base. Such stores can only be deleted by the local
361 algorithm. */
362 bool contains_cselib_groups;
363
364 /* The insn. */
365 rtx insn;
366
367 /* The list of mem sets or mem clobbers that are contained in this
368 insn. If the insn is deletable, it contains only one mem set.
369 But it could also contain clobbers. Insns that contain more than
370 one mem set are not deletable, but each of those mems are here in
371 order to provide info to delete other insns. */
372 store_info_t store_rec;
373
374 /* The linked list of mem uses in this insn. Only the reads from
375 rtx bases are listed here. The reads to cselib bases are
376 completely processed during the first scan and so are never
377 created. */
378 read_info_t read_rec;
379
380 /* The live fixed registers. We assume only fixed registers can
381 cause trouble by being clobbered from an expanded pattern;
382 storing only the live fixed registers (rather than all registers)
383 means less memory needs to be allocated / copied for the individual
384 stores. */
385 regset fixed_regs_live;
386
387 /* The prev insn in the basic block. */
388 struct insn_info * prev_insn;
389
390 /* The linked list of insns that are in consideration for removal in
391 the forwards pass thru the basic block. This pointer may be
392 trash as it is not cleared when a wild read occurs. The only
393 time it is guaranteed to be correct is when the traversal starts
394 at active_local_stores. */
395 struct insn_info * next_local_store;
396 };
397
398 typedef struct insn_info *insn_info_t;
399 static alloc_pool insn_info_pool;
400
401 /* The linked list of stores that are under consideration in this
402 basic block. */
403 static insn_info_t active_local_stores;
404 static int active_local_stores_len;
405
406 struct bb_info
407 {
408
409 /* Pointer to the insn info for the last insn in the block. These
410 are linked so this is how all of the insns are reached. During
411 scanning this is the current insn being scanned. */
412 insn_info_t last_insn;
413
414 /* The info for the global dataflow problem. */
415
416
417 /* This is set if the transfer function should and in the wild_read
418 bitmap before applying the kill and gen sets. That vector knocks
419 out most of the bits in the bitmap and thus speeds up the
420 operations. */
421 bool apply_wild_read;
422
423 /* The following 4 bitvectors hold information about which positions
424 of which stores are live or dead. They are indexed by
425 get_bitmap_index. */
426
427 /* The set of store positions that exist in this block before a wild read. */
428 bitmap gen;
429
430 /* The set of load positions that exist in this block above the
431 same position of a store. */
432 bitmap kill;
433
434 /* The set of stores that reach the top of the block without being
435 killed by a read.
436
437 Do not represent the in if it is all ones. Note that this is
438 what the bitvector should logically be initialized to for a set
439 intersection problem. However, like the kill set, this is too
440 expensive. So initially, the in set will only be created for the
441 exit block and any block that contains a wild read. */
442 bitmap in;
443
444 /* The set of stores that reach the bottom of the block from it's
445 successors.
446
447 Do not represent the in if it is all ones. Note that this is
448 what the bitvector should logically be initialized to for a set
449 intersection problem. However, like the kill and in set, this is
450 too expensive. So what is done is that the confluence operator
451 just initializes the vector from one of the out sets of the
452 successors of the block. */
453 bitmap out;
454
455 /* The following bitvector is indexed by the reg number. It
456 contains the set of regs that are live at the current instruction
457 being processed. While it contains info for all of the
458 registers, only the hard registers are actually examined. It is used
459 to assure that shift and/or add sequences that are inserted do not
460 accidently clobber live hard regs. */
461 bitmap regs_live;
462 };
463
464 typedef struct bb_info *bb_info_t;
465 static alloc_pool bb_info_pool;
466
467 /* Table to hold all bb_infos. */
468 static bb_info_t *bb_table;
469
470 /* There is a group_info for each rtx base that is used to reference
471 memory. There are also not many of the rtx bases because they are
472 very limited in scope. */
473
474 struct group_info
475 {
476 /* The actual base of the address. */
477 rtx rtx_base;
478
479 /* The sequential id of the base. This allows us to have a
480 canonical ordering of these that is not based on addresses. */
481 int id;
482
483 /* True if there are any positions that are to be processed
484 globally. */
485 bool process_globally;
486
487 /* True if the base of this group is either the frame_pointer or
488 hard_frame_pointer. */
489 bool frame_related;
490
491 /* A mem wrapped around the base pointer for the group in order to do
492 read dependency. It must be given BLKmode in order to encompass all
493 the possible offsets from the base. */
494 rtx base_mem;
495
496 /* Canonized version of base_mem's address. */
497 rtx canon_base_addr;
498
499 /* These two sets of two bitmaps are used to keep track of how many
500 stores are actually referencing that position from this base. We
501 only do this for rtx bases as this will be used to assign
502 positions in the bitmaps for the global problem. Bit N is set in
503 store1 on the first store for offset N. Bit N is set in store2
504 for the second store to offset N. This is all we need since we
505 only care about offsets that have two or more stores for them.
506
507 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
508 for 0 and greater offsets.
509
510 There is one special case here, for stores into the stack frame,
511 we will or store1 into store2 before deciding which stores look
512 at globally. This is because stores to the stack frame that have
513 no other reads before the end of the function can also be
514 deleted. */
515 bitmap store1_n, store1_p, store2_n, store2_p;
516
517 /* These bitmaps keep track of offsets in this group escape this function.
518 An offset escapes if it corresponds to a named variable whose
519 addressable flag is set. */
520 bitmap escaped_n, escaped_p;
521
522 /* The positions in this bitmap have the same assignments as the in,
523 out, gen and kill bitmaps. This bitmap is all zeros except for
524 the positions that are occupied by stores for this group. */
525 bitmap group_kill;
526
527 /* The offset_map is used to map the offsets from this base into
528 positions in the global bitmaps. It is only created after all of
529 the all of stores have been scanned and we know which ones we
530 care about. */
531 int *offset_map_n, *offset_map_p;
532 int offset_map_size_n, offset_map_size_p;
533 };
534 typedef struct group_info *group_info_t;
535 typedef const struct group_info *const_group_info_t;
536 static alloc_pool rtx_group_info_pool;
537
538 /* Tables of group_info structures, hashed by base value. */
539 static htab_t rtx_group_table;
540
541 /* Index into the rtx_group_vec. */
542 static int rtx_group_next_id;
543
544 DEF_VEC_P(group_info_t);
545 DEF_VEC_ALLOC_P(group_info_t,heap);
546
547 static VEC(group_info_t,heap) *rtx_group_vec;
548
549
550 /* This structure holds the set of changes that are being deferred
551 when removing read operation. See replace_read. */
552 struct deferred_change
553 {
554
555 /* The mem that is being replaced. */
556 rtx *loc;
557
558 /* The reg it is being replaced with. */
559 rtx reg;
560
561 struct deferred_change *next;
562 };
563
564 typedef struct deferred_change *deferred_change_t;
565 static alloc_pool deferred_change_pool;
566
567 static deferred_change_t deferred_change_list = NULL;
568
569 /* This are used to hold the alias sets of spill variables. Since
570 these are never aliased and there may be a lot of them, it makes
571 sense to treat them specially. This bitvector is only allocated in
572 calls from dse_record_singleton_alias_set which currently is only
573 made during reload1. So when dse is called before reload this
574 mechanism does nothing. */
575
576 static bitmap clear_alias_sets = NULL;
577
578 /* The set of clear_alias_sets that have been disqualified because
579 there are loads or stores using a different mode than the alias set
580 was registered with. */
581 static bitmap disqualified_clear_alias_sets = NULL;
582
583 /* The group that holds all of the clear_alias_sets. */
584 static group_info_t clear_alias_group;
585
586 /* The modes of the clear_alias_sets. */
587 static htab_t clear_alias_mode_table;
588
589 /* Hash table element to look up the mode for an alias set. */
590 struct clear_alias_mode_holder
591 {
592 alias_set_type alias_set;
593 enum machine_mode mode;
594 };
595
596 static alloc_pool clear_alias_mode_pool;
597
598 /* This is true except if cfun->stdarg -- i.e. we cannot do
599 this for vararg functions because they play games with the frame. */
600 static bool stores_off_frame_dead_at_return;
601
602 /* Counter for stats. */
603 static int globally_deleted;
604 static int locally_deleted;
605 static int spill_deleted;
606
607 static bitmap all_blocks;
608
609 /* Locations that are killed by calls in the global phase. */
610 static bitmap kill_on_calls;
611
612 /* The number of bits used in the global bitmaps. */
613 static unsigned int current_position;
614
615
616 static bool gate_dse1 (void);
617 static bool gate_dse2 (void);
618
619 \f
620 /*----------------------------------------------------------------------------
621 Zeroth step.
622
623 Initialization.
624 ----------------------------------------------------------------------------*/
625
626
627 /* Find the entry associated with ALIAS_SET. */
628
629 static struct clear_alias_mode_holder *
630 clear_alias_set_lookup (alias_set_type alias_set)
631 {
632 struct clear_alias_mode_holder tmp_holder;
633 void **slot;
634
635 tmp_holder.alias_set = alias_set;
636 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
637 gcc_assert (*slot);
638
639 return (struct clear_alias_mode_holder *) *slot;
640 }
641
642
643 /* Hashtable callbacks for maintaining the "bases" field of
644 store_group_info, given that the addresses are function invariants. */
645
646 static int
647 invariant_group_base_eq (const void *p1, const void *p2)
648 {
649 const_group_info_t gi1 = (const_group_info_t) p1;
650 const_group_info_t gi2 = (const_group_info_t) p2;
651 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
652 }
653
654
655 static hashval_t
656 invariant_group_base_hash (const void *p)
657 {
658 const_group_info_t gi = (const_group_info_t) p;
659 int do_not_record;
660 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
661 }
662
663
664 /* Get the GROUP for BASE. Add a new group if it is not there. */
665
666 static group_info_t
667 get_group_info (rtx base)
668 {
669 struct group_info tmp_gi;
670 group_info_t gi;
671 void **slot;
672
673 if (base)
674 {
675 /* Find the store_base_info structure for BASE, creating a new one
676 if necessary. */
677 tmp_gi.rtx_base = base;
678 slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
679 gi = (group_info_t) *slot;
680 }
681 else
682 {
683 if (!clear_alias_group)
684 {
685 clear_alias_group = gi =
686 (group_info_t) pool_alloc (rtx_group_info_pool);
687 memset (gi, 0, sizeof (struct group_info));
688 gi->id = rtx_group_next_id++;
689 gi->store1_n = BITMAP_ALLOC (NULL);
690 gi->store1_p = BITMAP_ALLOC (NULL);
691 gi->store2_n = BITMAP_ALLOC (NULL);
692 gi->store2_p = BITMAP_ALLOC (NULL);
693 gi->escaped_p = BITMAP_ALLOC (NULL);
694 gi->escaped_n = BITMAP_ALLOC (NULL);
695 gi->group_kill = BITMAP_ALLOC (NULL);
696 gi->process_globally = false;
697 gi->offset_map_size_n = 0;
698 gi->offset_map_size_p = 0;
699 gi->offset_map_n = NULL;
700 gi->offset_map_p = NULL;
701 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
702 }
703 return clear_alias_group;
704 }
705
706 if (gi == NULL)
707 {
708 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
709 gi->rtx_base = base;
710 gi->id = rtx_group_next_id++;
711 gi->base_mem = gen_rtx_MEM (BLKmode, base);
712 gi->canon_base_addr = canon_rtx (base);
713 gi->store1_n = BITMAP_ALLOC (NULL);
714 gi->store1_p = BITMAP_ALLOC (NULL);
715 gi->store2_n = BITMAP_ALLOC (NULL);
716 gi->store2_p = BITMAP_ALLOC (NULL);
717 gi->escaped_p = BITMAP_ALLOC (NULL);
718 gi->escaped_n = BITMAP_ALLOC (NULL);
719 gi->group_kill = BITMAP_ALLOC (NULL);
720 gi->process_globally = false;
721 gi->frame_related =
722 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
723 gi->offset_map_size_n = 0;
724 gi->offset_map_size_p = 0;
725 gi->offset_map_n = NULL;
726 gi->offset_map_p = NULL;
727 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
728 }
729
730 return gi;
731 }
732
733
734 /* Initialization of data structures. */
735
736 static void
737 dse_step0 (void)
738 {
739 locally_deleted = 0;
740 globally_deleted = 0;
741 spill_deleted = 0;
742
743 scratch = BITMAP_ALLOC (NULL);
744 kill_on_calls = BITMAP_ALLOC (NULL);
745
746 rtx_store_info_pool
747 = create_alloc_pool ("rtx_store_info_pool",
748 sizeof (struct store_info), 100);
749 read_info_pool
750 = create_alloc_pool ("read_info_pool",
751 sizeof (struct read_info), 100);
752 insn_info_pool
753 = create_alloc_pool ("insn_info_pool",
754 sizeof (struct insn_info), 100);
755 bb_info_pool
756 = create_alloc_pool ("bb_info_pool",
757 sizeof (struct bb_info), 100);
758 rtx_group_info_pool
759 = create_alloc_pool ("rtx_group_info_pool",
760 sizeof (struct group_info), 100);
761 deferred_change_pool
762 = create_alloc_pool ("deferred_change_pool",
763 sizeof (struct deferred_change), 10);
764
765 rtx_group_table = htab_create (11, invariant_group_base_hash,
766 invariant_group_base_eq, NULL);
767
768 bb_table = XCNEWVEC (bb_info_t, last_basic_block);
769 rtx_group_next_id = 0;
770
771 stores_off_frame_dead_at_return = !cfun->stdarg;
772
773 init_alias_analysis ();
774
775 if (clear_alias_sets)
776 clear_alias_group = get_group_info (NULL);
777 else
778 clear_alias_group = NULL;
779 }
780
781
782 \f
783 /*----------------------------------------------------------------------------
784 First step.
785
786 Scan all of the insns. Any random ordering of the blocks is fine.
787 Each block is scanned in forward order to accommodate cselib which
788 is used to remove stores with non-constant bases.
789 ----------------------------------------------------------------------------*/
790
791 /* Delete all of the store_info recs from INSN_INFO. */
792
793 static void
794 free_store_info (insn_info_t insn_info)
795 {
796 store_info_t store_info = insn_info->store_rec;
797 while (store_info)
798 {
799 store_info_t next = store_info->next;
800 if (store_info->is_large)
801 BITMAP_FREE (store_info->positions_needed.large.bmap);
802 if (store_info->cse_base)
803 pool_free (cse_store_info_pool, store_info);
804 else
805 pool_free (rtx_store_info_pool, store_info);
806 store_info = next;
807 }
808
809 insn_info->cannot_delete = true;
810 insn_info->contains_cselib_groups = false;
811 insn_info->store_rec = NULL;
812 }
813
814 typedef struct
815 {
816 rtx first, current;
817 regset fixed_regs_live;
818 bool failure;
819 } note_add_store_info;
820
821 /* Callback for emit_inc_dec_insn_before via note_stores.
822 Check if a register is clobbered which is live afterwards. */
823
824 static void
825 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
826 {
827 rtx insn;
828 note_add_store_info *info = (note_add_store_info *) data;
829 int r, n;
830
831 if (!REG_P (loc))
832 return;
833
834 /* If this register is referenced by the current or an earlier insn,
835 that's OK. E.g. this applies to the register that is being incremented
836 with this addition. */
837 for (insn = info->first;
838 insn != NEXT_INSN (info->current);
839 insn = NEXT_INSN (insn))
840 if (reg_referenced_p (loc, PATTERN (insn)))
841 return;
842
843 /* If we come here, we have a clobber of a register that's only OK
844 if that register is not live. If we don't have liveness information
845 available, fail now. */
846 if (!info->fixed_regs_live)
847 {
848 info->failure = true;
849 return;
850 }
851 /* Now check if this is a live fixed register. */
852 r = REGNO (loc);
853 n = hard_regno_nregs[r][GET_MODE (loc)];
854 while (--n >= 0)
855 if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
856 info->failure = true;
857 }
858
859 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
860 SRC + SRCOFF before insn ARG. */
861
862 static int
863 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
864 rtx op ATTRIBUTE_UNUSED,
865 rtx dest, rtx src, rtx srcoff, void *arg)
866 {
867 insn_info_t insn_info = (insn_info_t) arg;
868 rtx insn = insn_info->insn, new_insn, cur;
869 note_add_store_info info;
870
871 /* We can reuse all operands without copying, because we are about
872 to delete the insn that contained it. */
873 if (srcoff)
874 {
875 start_sequence ();
876 emit_insn (gen_add3_insn (dest, src, srcoff));
877 new_insn = get_insns ();
878 end_sequence ();
879 }
880 else
881 new_insn = gen_move_insn (dest, src);
882 info.first = new_insn;
883 info.fixed_regs_live = insn_info->fixed_regs_live;
884 info.failure = false;
885 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
886 {
887 info.current = cur;
888 note_stores (PATTERN (cur), note_add_store, &info);
889 }
890
891 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
892 return it immediately, communicating the failure to its caller. */
893 if (info.failure)
894 return 1;
895
896 emit_insn_before (new_insn, insn);
897
898 return -1;
899 }
900
901 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
902 is there, is split into a separate insn.
903 Return true on success (or if there was nothing to do), false on failure. */
904
905 static bool
906 check_for_inc_dec_1 (insn_info_t insn_info)
907 {
908 rtx insn = insn_info->insn;
909 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
910 if (note)
911 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0;
912 return true;
913 }
914
915
916 /* Entry point for postreload. If you work on reload_cse, or you need this
917 anywhere else, consider if you can provide register liveness information
918 and add a parameter to this function so that it can be passed down in
919 insn_info.fixed_regs_live. */
920 bool
921 check_for_inc_dec (rtx insn)
922 {
923 struct insn_info insn_info;
924 rtx note;
925
926 insn_info.insn = insn;
927 insn_info.fixed_regs_live = NULL;
928 note = find_reg_note (insn, REG_INC, NULL_RTX);
929 if (note)
930 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0;
931 return true;
932 }
933
934 /* Delete the insn and free all of the fields inside INSN_INFO. */
935
936 static void
937 delete_dead_store_insn (insn_info_t insn_info)
938 {
939 read_info_t read_info;
940
941 if (!dbg_cnt (dse))
942 return;
943
944 if (!check_for_inc_dec_1 (insn_info))
945 return;
946 if (dump_file)
947 {
948 fprintf (dump_file, "Locally deleting insn %d ",
949 INSN_UID (insn_info->insn));
950 if (insn_info->store_rec->alias_set)
951 fprintf (dump_file, "alias set %d\n",
952 (int) insn_info->store_rec->alias_set);
953 else
954 fprintf (dump_file, "\n");
955 }
956
957 free_store_info (insn_info);
958 read_info = insn_info->read_rec;
959
960 while (read_info)
961 {
962 read_info_t next = read_info->next;
963 pool_free (read_info_pool, read_info);
964 read_info = next;
965 }
966 insn_info->read_rec = NULL;
967
968 delete_insn (insn_info->insn);
969 locally_deleted++;
970 insn_info->insn = NULL;
971
972 insn_info->wild_read = false;
973 }
974
975 /* Check if EXPR can possibly escape the current function scope. */
976 static bool
977 can_escape (tree expr)
978 {
979 tree base;
980 if (!expr)
981 return true;
982 base = get_base_address (expr);
983 if (DECL_P (base)
984 && !may_be_aliased (base))
985 return false;
986 return true;
987 }
988
989 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
990 OFFSET and WIDTH. */
991
992 static void
993 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
994 tree expr)
995 {
996 HOST_WIDE_INT i;
997 bool expr_escapes = can_escape (expr);
998 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
999 for (i=offset; i<offset+width; i++)
1000 {
1001 bitmap store1;
1002 bitmap store2;
1003 bitmap escaped;
1004 int ai;
1005 if (i < 0)
1006 {
1007 store1 = group->store1_n;
1008 store2 = group->store2_n;
1009 escaped = group->escaped_n;
1010 ai = -i;
1011 }
1012 else
1013 {
1014 store1 = group->store1_p;
1015 store2 = group->store2_p;
1016 escaped = group->escaped_p;
1017 ai = i;
1018 }
1019
1020 if (!bitmap_set_bit (store1, ai))
1021 bitmap_set_bit (store2, ai);
1022 else
1023 {
1024 if (i < 0)
1025 {
1026 if (group->offset_map_size_n < ai)
1027 group->offset_map_size_n = ai;
1028 }
1029 else
1030 {
1031 if (group->offset_map_size_p < ai)
1032 group->offset_map_size_p = ai;
1033 }
1034 }
1035 if (expr_escapes)
1036 bitmap_set_bit (escaped, ai);
1037 }
1038 }
1039
1040 static void
1041 reset_active_stores (void)
1042 {
1043 active_local_stores = NULL;
1044 active_local_stores_len = 0;
1045 }
1046
1047 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1048
1049 static void
1050 free_read_records (bb_info_t bb_info)
1051 {
1052 insn_info_t insn_info = bb_info->last_insn;
1053 read_info_t *ptr = &insn_info->read_rec;
1054 while (*ptr)
1055 {
1056 read_info_t next = (*ptr)->next;
1057 if ((*ptr)->alias_set == 0)
1058 {
1059 pool_free (read_info_pool, *ptr);
1060 *ptr = next;
1061 }
1062 else
1063 ptr = &(*ptr)->next;
1064 }
1065 }
1066
1067 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1068
1069 static void
1070 add_wild_read (bb_info_t bb_info)
1071 {
1072 insn_info_t insn_info = bb_info->last_insn;
1073 insn_info->wild_read = true;
1074 free_read_records (bb_info);
1075 reset_active_stores ();
1076 }
1077
1078 /* Set the BB_INFO so that the last insn is marked as a wild read of
1079 non-frame locations. */
1080
1081 static void
1082 add_non_frame_wild_read (bb_info_t bb_info)
1083 {
1084 insn_info_t insn_info = bb_info->last_insn;
1085 insn_info->non_frame_wild_read = true;
1086 free_read_records (bb_info);
1087 reset_active_stores ();
1088 }
1089
1090 /* Return true if X is a constant or one of the registers that behave
1091 as a constant over the life of a function. This is equivalent to
1092 !rtx_varies_p for memory addresses. */
1093
1094 static bool
1095 const_or_frame_p (rtx x)
1096 {
1097 switch (GET_CODE (x))
1098 {
1099 case CONST:
1100 case CONST_INT:
1101 case CONST_DOUBLE:
1102 case CONST_VECTOR:
1103 case SYMBOL_REF:
1104 case LABEL_REF:
1105 return true;
1106
1107 case REG:
1108 /* Note that we have to test for the actual rtx used for the frame
1109 and arg pointers and not just the register number in case we have
1110 eliminated the frame and/or arg pointer and are using it
1111 for pseudos. */
1112 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1113 /* The arg pointer varies if it is not a fixed register. */
1114 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1115 || x == pic_offset_table_rtx)
1116 return true;
1117 return false;
1118
1119 default:
1120 return false;
1121 }
1122 }
1123
1124 /* Take all reasonable action to put the address of MEM into the form
1125 that we can do analysis on.
1126
1127 The gold standard is to get the address into the form: address +
1128 OFFSET where address is something that rtx_varies_p considers a
1129 constant. When we can get the address in this form, we can do
1130 global analysis on it. Note that for constant bases, address is
1131 not actually returned, only the group_id. The address can be
1132 obtained from that.
1133
1134 If that fails, we try cselib to get a value we can at least use
1135 locally. If that fails we return false.
1136
1137 The GROUP_ID is set to -1 for cselib bases and the index of the
1138 group for non_varying bases.
1139
1140 FOR_READ is true if this is a mem read and false if not. */
1141
1142 static bool
1143 canon_address (rtx mem,
1144 alias_set_type *alias_set_out,
1145 int *group_id,
1146 HOST_WIDE_INT *offset,
1147 cselib_val **base)
1148 {
1149 enum machine_mode address_mode
1150 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
1151 rtx mem_address = XEXP (mem, 0);
1152 rtx expanded_address, address;
1153 int expanded;
1154
1155 /* Make sure that cselib is has initialized all of the operands of
1156 the address before asking it to do the subst. */
1157
1158 if (clear_alias_sets)
1159 {
1160 /* If this is a spill, do not do any further processing. */
1161 alias_set_type alias_set = MEM_ALIAS_SET (mem);
1162 if (dump_file)
1163 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1164 if (bitmap_bit_p (clear_alias_sets, alias_set))
1165 {
1166 struct clear_alias_mode_holder *entry
1167 = clear_alias_set_lookup (alias_set);
1168
1169 /* If the modes do not match, we cannot process this set. */
1170 if (entry->mode != GET_MODE (mem))
1171 {
1172 if (dump_file)
1173 fprintf (dump_file,
1174 "disqualifying alias set %d, (%s) != (%s)\n",
1175 (int) alias_set, GET_MODE_NAME (entry->mode),
1176 GET_MODE_NAME (GET_MODE (mem)));
1177
1178 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1179 return false;
1180 }
1181
1182 *alias_set_out = alias_set;
1183 *group_id = clear_alias_group->id;
1184 return true;
1185 }
1186 }
1187
1188 *alias_set_out = 0;
1189
1190 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1191
1192 if (dump_file)
1193 {
1194 fprintf (dump_file, " mem: ");
1195 print_inline_rtx (dump_file, mem_address, 0);
1196 fprintf (dump_file, "\n");
1197 }
1198
1199 /* First see if just canon_rtx (mem_address) is const or frame,
1200 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1201 address = NULL_RTX;
1202 for (expanded = 0; expanded < 2; expanded++)
1203 {
1204 if (expanded)
1205 {
1206 /* Use cselib to replace all of the reg references with the full
1207 expression. This will take care of the case where we have
1208
1209 r_x = base + offset;
1210 val = *r_x;
1211
1212 by making it into
1213
1214 val = *(base + offset); */
1215
1216 expanded_address = cselib_expand_value_rtx (mem_address,
1217 scratch, 5);
1218
1219 /* If this fails, just go with the address from first
1220 iteration. */
1221 if (!expanded_address)
1222 break;
1223 }
1224 else
1225 expanded_address = mem_address;
1226
1227 /* Split the address into canonical BASE + OFFSET terms. */
1228 address = canon_rtx (expanded_address);
1229
1230 *offset = 0;
1231
1232 if (dump_file)
1233 {
1234 if (expanded)
1235 {
1236 fprintf (dump_file, "\n after cselib_expand address: ");
1237 print_inline_rtx (dump_file, expanded_address, 0);
1238 fprintf (dump_file, "\n");
1239 }
1240
1241 fprintf (dump_file, "\n after canon_rtx address: ");
1242 print_inline_rtx (dump_file, address, 0);
1243 fprintf (dump_file, "\n");
1244 }
1245
1246 if (GET_CODE (address) == CONST)
1247 address = XEXP (address, 0);
1248
1249 if (GET_CODE (address) == PLUS
1250 && CONST_INT_P (XEXP (address, 1)))
1251 {
1252 *offset = INTVAL (XEXP (address, 1));
1253 address = XEXP (address, 0);
1254 }
1255
1256 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1257 && const_or_frame_p (address))
1258 {
1259 group_info_t group = get_group_info (address);
1260
1261 if (dump_file)
1262 fprintf (dump_file, " gid=%d offset=%d \n",
1263 group->id, (int)*offset);
1264 *base = NULL;
1265 *group_id = group->id;
1266 return true;
1267 }
1268 }
1269
1270 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1271 *group_id = -1;
1272
1273 if (*base == NULL)
1274 {
1275 if (dump_file)
1276 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1277 return false;
1278 }
1279 if (dump_file)
1280 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1281 (*base)->uid, (*base)->hash, (int)*offset);
1282 return true;
1283 }
1284
1285
1286 /* Clear the rhs field from the active_local_stores array. */
1287
1288 static void
1289 clear_rhs_from_active_local_stores (void)
1290 {
1291 insn_info_t ptr = active_local_stores;
1292
1293 while (ptr)
1294 {
1295 store_info_t store_info = ptr->store_rec;
1296 /* Skip the clobbers. */
1297 while (!store_info->is_set)
1298 store_info = store_info->next;
1299
1300 store_info->rhs = NULL;
1301 store_info->const_rhs = NULL;
1302
1303 ptr = ptr->next_local_store;
1304 }
1305 }
1306
1307
1308 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1309
1310 static inline void
1311 set_position_unneeded (store_info_t s_info, int pos)
1312 {
1313 if (__builtin_expect (s_info->is_large, false))
1314 {
1315 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1316 s_info->positions_needed.large.count++;
1317 }
1318 else
1319 s_info->positions_needed.small_bitmask
1320 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1321 }
1322
1323 /* Mark the whole store S_INFO as unneeded. */
1324
1325 static inline void
1326 set_all_positions_unneeded (store_info_t s_info)
1327 {
1328 if (__builtin_expect (s_info->is_large, false))
1329 {
1330 int pos, end = s_info->end - s_info->begin;
1331 for (pos = 0; pos < end; pos++)
1332 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1333 s_info->positions_needed.large.count = end;
1334 }
1335 else
1336 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1337 }
1338
1339 /* Return TRUE if any bytes from S_INFO store are needed. */
1340
1341 static inline bool
1342 any_positions_needed_p (store_info_t s_info)
1343 {
1344 if (__builtin_expect (s_info->is_large, false))
1345 return (s_info->positions_needed.large.count
1346 < s_info->end - s_info->begin);
1347 else
1348 return (s_info->positions_needed.small_bitmask
1349 != (unsigned HOST_WIDE_INT) 0);
1350 }
1351
1352 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1353 store are needed. */
1354
1355 static inline bool
1356 all_positions_needed_p (store_info_t s_info, int start, int width)
1357 {
1358 if (__builtin_expect (s_info->is_large, false))
1359 {
1360 int end = start + width;
1361 while (start < end)
1362 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1363 return false;
1364 return true;
1365 }
1366 else
1367 {
1368 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1369 return (s_info->positions_needed.small_bitmask & mask) == mask;
1370 }
1371 }
1372
1373
1374 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1375 HOST_WIDE_INT, basic_block, bool);
1376
1377
1378 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1379 there is a candidate store, after adding it to the appropriate
1380 local store group if so. */
1381
1382 static int
1383 record_store (rtx body, bb_info_t bb_info)
1384 {
1385 rtx mem, rhs, const_rhs, mem_addr;
1386 HOST_WIDE_INT offset = 0;
1387 HOST_WIDE_INT width = 0;
1388 alias_set_type spill_alias_set;
1389 insn_info_t insn_info = bb_info->last_insn;
1390 store_info_t store_info = NULL;
1391 int group_id;
1392 cselib_val *base = NULL;
1393 insn_info_t ptr, last, redundant_reason;
1394 bool store_is_unused;
1395
1396 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1397 return 0;
1398
1399 mem = SET_DEST (body);
1400
1401 /* If this is not used, then this cannot be used to keep the insn
1402 from being deleted. On the other hand, it does provide something
1403 that can be used to prove that another store is dead. */
1404 store_is_unused
1405 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1406
1407 /* Check whether that value is a suitable memory location. */
1408 if (!MEM_P (mem))
1409 {
1410 /* If the set or clobber is unused, then it does not effect our
1411 ability to get rid of the entire insn. */
1412 if (!store_is_unused)
1413 insn_info->cannot_delete = true;
1414 return 0;
1415 }
1416
1417 /* At this point we know mem is a mem. */
1418 if (GET_MODE (mem) == BLKmode)
1419 {
1420 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1421 {
1422 if (dump_file)
1423 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1424 add_wild_read (bb_info);
1425 insn_info->cannot_delete = true;
1426 return 0;
1427 }
1428 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1429 as memset (addr, 0, 36); */
1430 else if (!MEM_SIZE_KNOWN_P (mem)
1431 || MEM_SIZE (mem) <= 0
1432 || MEM_SIZE (mem) > MAX_OFFSET
1433 || GET_CODE (body) != SET
1434 || !CONST_INT_P (SET_SRC (body)))
1435 {
1436 if (!store_is_unused)
1437 {
1438 /* If the set or clobber is unused, then it does not effect our
1439 ability to get rid of the entire insn. */
1440 insn_info->cannot_delete = true;
1441 clear_rhs_from_active_local_stores ();
1442 }
1443 return 0;
1444 }
1445 }
1446
1447 /* We can still process a volatile mem, we just cannot delete it. */
1448 if (MEM_VOLATILE_P (mem))
1449 insn_info->cannot_delete = true;
1450
1451 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1452 {
1453 clear_rhs_from_active_local_stores ();
1454 return 0;
1455 }
1456
1457 if (GET_MODE (mem) == BLKmode)
1458 width = MEM_SIZE (mem);
1459 else
1460 {
1461 width = GET_MODE_SIZE (GET_MODE (mem));
1462 gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
1463 }
1464
1465 if (spill_alias_set)
1466 {
1467 bitmap store1 = clear_alias_group->store1_p;
1468 bitmap store2 = clear_alias_group->store2_p;
1469
1470 gcc_assert (GET_MODE (mem) != BLKmode);
1471
1472 if (!bitmap_set_bit (store1, spill_alias_set))
1473 bitmap_set_bit (store2, spill_alias_set);
1474
1475 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1476 clear_alias_group->offset_map_size_p = spill_alias_set;
1477
1478 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1479
1480 if (dump_file)
1481 fprintf (dump_file, " processing spill store %d(%s)\n",
1482 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1483 }
1484 else if (group_id >= 0)
1485 {
1486 /* In the restrictive case where the base is a constant or the
1487 frame pointer we can do global analysis. */
1488
1489 group_info_t group
1490 = VEC_index (group_info_t, rtx_group_vec, group_id);
1491 tree expr = MEM_EXPR (mem);
1492
1493 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1494 set_usage_bits (group, offset, width, expr);
1495
1496 if (dump_file)
1497 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1498 group_id, (int)offset, (int)(offset+width));
1499 }
1500 else
1501 {
1502 rtx base_term = find_base_term (XEXP (mem, 0));
1503 if (!base_term
1504 || (GET_CODE (base_term) == ADDRESS
1505 && GET_MODE (base_term) == Pmode
1506 && XWINT (base_term, 0) == UNIQUE_BASE_VALUE_SP))
1507 insn_info->stack_pointer_based = true;
1508 insn_info->contains_cselib_groups = true;
1509
1510 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1511 group_id = -1;
1512
1513 if (dump_file)
1514 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1515 (int)offset, (int)(offset+width));
1516 }
1517
1518 const_rhs = rhs = NULL_RTX;
1519 if (GET_CODE (body) == SET
1520 /* No place to keep the value after ra. */
1521 && !reload_completed
1522 && (REG_P (SET_SRC (body))
1523 || GET_CODE (SET_SRC (body)) == SUBREG
1524 || CONSTANT_P (SET_SRC (body)))
1525 && !MEM_VOLATILE_P (mem)
1526 /* Sometimes the store and reload is used for truncation and
1527 rounding. */
1528 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1529 {
1530 rhs = SET_SRC (body);
1531 if (CONSTANT_P (rhs))
1532 const_rhs = rhs;
1533 else if (body == PATTERN (insn_info->insn))
1534 {
1535 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1536 if (tem && CONSTANT_P (XEXP (tem, 0)))
1537 const_rhs = XEXP (tem, 0);
1538 }
1539 if (const_rhs == NULL_RTX && REG_P (rhs))
1540 {
1541 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1542
1543 if (tem && CONSTANT_P (tem))
1544 const_rhs = tem;
1545 }
1546 }
1547
1548 /* Check to see if this stores causes some other stores to be
1549 dead. */
1550 ptr = active_local_stores;
1551 last = NULL;
1552 redundant_reason = NULL;
1553 mem = canon_rtx (mem);
1554 /* For alias_set != 0 canon_true_dependence should be never called. */
1555 if (spill_alias_set)
1556 mem_addr = NULL_RTX;
1557 else
1558 {
1559 if (group_id < 0)
1560 mem_addr = base->val_rtx;
1561 else
1562 {
1563 group_info_t group
1564 = VEC_index (group_info_t, rtx_group_vec, group_id);
1565 mem_addr = group->canon_base_addr;
1566 }
1567 if (offset)
1568 mem_addr = plus_constant (mem_addr, offset);
1569 }
1570
1571 while (ptr)
1572 {
1573 insn_info_t next = ptr->next_local_store;
1574 store_info_t s_info = ptr->store_rec;
1575 bool del = true;
1576
1577 /* Skip the clobbers. We delete the active insn if this insn
1578 shadows the set. To have been put on the active list, it
1579 has exactly on set. */
1580 while (!s_info->is_set)
1581 s_info = s_info->next;
1582
1583 if (s_info->alias_set != spill_alias_set)
1584 del = false;
1585 else if (s_info->alias_set)
1586 {
1587 struct clear_alias_mode_holder *entry
1588 = clear_alias_set_lookup (s_info->alias_set);
1589 /* Generally, spills cannot be processed if and of the
1590 references to the slot have a different mode. But if
1591 we are in the same block and mode is exactly the same
1592 between this store and one before in the same block,
1593 we can still delete it. */
1594 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1595 && (GET_MODE (mem) == entry->mode))
1596 {
1597 del = true;
1598 set_all_positions_unneeded (s_info);
1599 }
1600 if (dump_file)
1601 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1602 INSN_UID (ptr->insn), (int) s_info->alias_set);
1603 }
1604 else if ((s_info->group_id == group_id)
1605 && (s_info->cse_base == base))
1606 {
1607 HOST_WIDE_INT i;
1608 if (dump_file)
1609 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1610 INSN_UID (ptr->insn), s_info->group_id,
1611 (int)s_info->begin, (int)s_info->end);
1612
1613 /* Even if PTR won't be eliminated as unneeded, if both
1614 PTR and this insn store the same constant value, we might
1615 eliminate this insn instead. */
1616 if (s_info->const_rhs
1617 && const_rhs
1618 && offset >= s_info->begin
1619 && offset + width <= s_info->end
1620 && all_positions_needed_p (s_info, offset - s_info->begin,
1621 width))
1622 {
1623 if (GET_MODE (mem) == BLKmode)
1624 {
1625 if (GET_MODE (s_info->mem) == BLKmode
1626 && s_info->const_rhs == const_rhs)
1627 redundant_reason = ptr;
1628 }
1629 else if (s_info->const_rhs == const0_rtx
1630 && const_rhs == const0_rtx)
1631 redundant_reason = ptr;
1632 else
1633 {
1634 rtx val;
1635 start_sequence ();
1636 val = get_stored_val (s_info, GET_MODE (mem),
1637 offset, offset + width,
1638 BLOCK_FOR_INSN (insn_info->insn),
1639 true);
1640 if (get_insns () != NULL)
1641 val = NULL_RTX;
1642 end_sequence ();
1643 if (val && rtx_equal_p (val, const_rhs))
1644 redundant_reason = ptr;
1645 }
1646 }
1647
1648 for (i = MAX (offset, s_info->begin);
1649 i < offset + width && i < s_info->end;
1650 i++)
1651 set_position_unneeded (s_info, i - s_info->begin);
1652 }
1653 else if (s_info->rhs)
1654 /* Need to see if it is possible for this store to overwrite
1655 the value of store_info. If it is, set the rhs to NULL to
1656 keep it from being used to remove a load. */
1657 {
1658 if (canon_true_dependence (s_info->mem,
1659 GET_MODE (s_info->mem),
1660 s_info->mem_addr,
1661 mem, mem_addr))
1662 {
1663 s_info->rhs = NULL;
1664 s_info->const_rhs = NULL;
1665 }
1666 }
1667
1668 /* An insn can be deleted if every position of every one of
1669 its s_infos is zero. */
1670 if (any_positions_needed_p (s_info))
1671 del = false;
1672
1673 if (del)
1674 {
1675 insn_info_t insn_to_delete = ptr;
1676
1677 active_local_stores_len--;
1678 if (last)
1679 last->next_local_store = ptr->next_local_store;
1680 else
1681 active_local_stores = ptr->next_local_store;
1682
1683 if (!insn_to_delete->cannot_delete)
1684 delete_dead_store_insn (insn_to_delete);
1685 }
1686 else
1687 last = ptr;
1688
1689 ptr = next;
1690 }
1691
1692 /* Finish filling in the store_info. */
1693 store_info->next = insn_info->store_rec;
1694 insn_info->store_rec = store_info;
1695 store_info->mem = mem;
1696 store_info->alias_set = spill_alias_set;
1697 store_info->mem_addr = mem_addr;
1698 store_info->cse_base = base;
1699 if (width > HOST_BITS_PER_WIDE_INT)
1700 {
1701 store_info->is_large = true;
1702 store_info->positions_needed.large.count = 0;
1703 store_info->positions_needed.large.bmap = BITMAP_ALLOC (NULL);
1704 }
1705 else
1706 {
1707 store_info->is_large = false;
1708 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1709 }
1710 store_info->group_id = group_id;
1711 store_info->begin = offset;
1712 store_info->end = offset + width;
1713 store_info->is_set = GET_CODE (body) == SET;
1714 store_info->rhs = rhs;
1715 store_info->const_rhs = const_rhs;
1716 store_info->redundant_reason = redundant_reason;
1717
1718 /* If this is a clobber, we return 0. We will only be able to
1719 delete this insn if there is only one store USED store, but we
1720 can use the clobber to delete other stores earlier. */
1721 return store_info->is_set ? 1 : 0;
1722 }
1723
1724
1725 static void
1726 dump_insn_info (const char * start, insn_info_t insn_info)
1727 {
1728 fprintf (dump_file, "%s insn=%d %s\n", start,
1729 INSN_UID (insn_info->insn),
1730 insn_info->store_rec ? "has store" : "naked");
1731 }
1732
1733
1734 /* If the modes are different and the value's source and target do not
1735 line up, we need to extract the value from lower part of the rhs of
1736 the store, shift it, and then put it into a form that can be shoved
1737 into the read_insn. This function generates a right SHIFT of a
1738 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1739 shift sequence is returned or NULL if we failed to find a
1740 shift. */
1741
1742 static rtx
1743 find_shift_sequence (int access_size,
1744 store_info_t store_info,
1745 enum machine_mode read_mode,
1746 int shift, bool speed, bool require_cst)
1747 {
1748 enum machine_mode store_mode = GET_MODE (store_info->mem);
1749 enum machine_mode new_mode;
1750 rtx read_reg = NULL;
1751
1752 /* Some machines like the x86 have shift insns for each size of
1753 operand. Other machines like the ppc or the ia-64 may only have
1754 shift insns that shift values within 32 or 64 bit registers.
1755 This loop tries to find the smallest shift insn that will right
1756 justify the value we want to read but is available in one insn on
1757 the machine. */
1758
1759 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1760 MODE_INT);
1761 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1762 new_mode = GET_MODE_WIDER_MODE (new_mode))
1763 {
1764 rtx target, new_reg, shift_seq, insn, new_lhs;
1765 int cost;
1766
1767 /* If a constant was stored into memory, try to simplify it here,
1768 otherwise the cost of the shift might preclude this optimization
1769 e.g. at -Os, even when no actual shift will be needed. */
1770 if (store_info->const_rhs)
1771 {
1772 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1773 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1774 store_mode, byte);
1775 if (ret && CONSTANT_P (ret))
1776 {
1777 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1778 ret, GEN_INT (shift));
1779 if (ret && CONSTANT_P (ret))
1780 {
1781 byte = subreg_lowpart_offset (read_mode, new_mode);
1782 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1783 if (ret && CONSTANT_P (ret)
1784 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1785 return ret;
1786 }
1787 }
1788 }
1789
1790 if (require_cst)
1791 return NULL_RTX;
1792
1793 /* Try a wider mode if truncating the store mode to NEW_MODE
1794 requires a real instruction. */
1795 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1796 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1797 continue;
1798
1799 /* Also try a wider mode if the necessary punning is either not
1800 desirable or not possible. */
1801 if (!CONSTANT_P (store_info->rhs)
1802 && !MODES_TIEABLE_P (new_mode, store_mode))
1803 continue;
1804
1805 new_reg = gen_reg_rtx (new_mode);
1806
1807 start_sequence ();
1808
1809 /* In theory we could also check for an ashr. Ian Taylor knows
1810 of one dsp where the cost of these two was not the same. But
1811 this really is a rare case anyway. */
1812 target = expand_binop (new_mode, lshr_optab, new_reg,
1813 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1814
1815 shift_seq = get_insns ();
1816 end_sequence ();
1817
1818 if (target != new_reg || shift_seq == NULL)
1819 continue;
1820
1821 cost = 0;
1822 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1823 if (INSN_P (insn))
1824 cost += insn_rtx_cost (PATTERN (insn), speed);
1825
1826 /* The computation up to here is essentially independent
1827 of the arguments and could be precomputed. It may
1828 not be worth doing so. We could precompute if
1829 worthwhile or at least cache the results. The result
1830 technically depends on both SHIFT and ACCESS_SIZE,
1831 but in practice the answer will depend only on ACCESS_SIZE. */
1832
1833 if (cost > COSTS_N_INSNS (1))
1834 continue;
1835
1836 new_lhs = extract_low_bits (new_mode, store_mode,
1837 copy_rtx (store_info->rhs));
1838 if (new_lhs == NULL_RTX)
1839 continue;
1840
1841 /* We found an acceptable shift. Generate a move to
1842 take the value from the store and put it into the
1843 shift pseudo, then shift it, then generate another
1844 move to put in into the target of the read. */
1845 emit_move_insn (new_reg, new_lhs);
1846 emit_insn (shift_seq);
1847 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1848 break;
1849 }
1850
1851 return read_reg;
1852 }
1853
1854
1855 /* Call back for note_stores to find the hard regs set or clobbered by
1856 insn. Data is a bitmap of the hardregs set so far. */
1857
1858 static void
1859 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1860 {
1861 bitmap regs_set = (bitmap) data;
1862
1863 if (REG_P (x)
1864 && HARD_REGISTER_P (x))
1865 {
1866 unsigned int regno = REGNO (x);
1867 bitmap_set_range (regs_set, regno,
1868 hard_regno_nregs[regno][GET_MODE (x)]);
1869 }
1870 }
1871
1872 /* Helper function for replace_read and record_store.
1873 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1874 to one before READ_END bytes read in READ_MODE. Return NULL
1875 if not successful. If REQUIRE_CST is true, return always constant. */
1876
1877 static rtx
1878 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1879 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1880 basic_block bb, bool require_cst)
1881 {
1882 enum machine_mode store_mode = GET_MODE (store_info->mem);
1883 int shift;
1884 int access_size; /* In bytes. */
1885 rtx read_reg;
1886
1887 /* To get here the read is within the boundaries of the write so
1888 shift will never be negative. Start out with the shift being in
1889 bytes. */
1890 if (store_mode == BLKmode)
1891 shift = 0;
1892 else if (BYTES_BIG_ENDIAN)
1893 shift = store_info->end - read_end;
1894 else
1895 shift = read_begin - store_info->begin;
1896
1897 access_size = shift + GET_MODE_SIZE (read_mode);
1898
1899 /* From now on it is bits. */
1900 shift *= BITS_PER_UNIT;
1901
1902 if (shift)
1903 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1904 optimize_bb_for_speed_p (bb),
1905 require_cst);
1906 else if (store_mode == BLKmode)
1907 {
1908 /* The store is a memset (addr, const_val, const_size). */
1909 gcc_assert (CONST_INT_P (store_info->rhs));
1910 store_mode = int_mode_for_mode (read_mode);
1911 if (store_mode == BLKmode)
1912 read_reg = NULL_RTX;
1913 else if (store_info->rhs == const0_rtx)
1914 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1915 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1916 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1917 read_reg = NULL_RTX;
1918 else
1919 {
1920 unsigned HOST_WIDE_INT c
1921 = INTVAL (store_info->rhs)
1922 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1923 int shift = BITS_PER_UNIT;
1924 while (shift < HOST_BITS_PER_WIDE_INT)
1925 {
1926 c |= (c << shift);
1927 shift <<= 1;
1928 }
1929 read_reg = gen_int_mode (c, store_mode);
1930 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1931 }
1932 }
1933 else if (store_info->const_rhs
1934 && (require_cst
1935 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1936 read_reg = extract_low_bits (read_mode, store_mode,
1937 copy_rtx (store_info->const_rhs));
1938 else
1939 read_reg = extract_low_bits (read_mode, store_mode,
1940 copy_rtx (store_info->rhs));
1941 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1942 read_reg = NULL_RTX;
1943 return read_reg;
1944 }
1945
1946 /* Take a sequence of:
1947 A <- r1
1948 ...
1949 ... <- A
1950
1951 and change it into
1952 r2 <- r1
1953 A <- r1
1954 ...
1955 ... <- r2
1956
1957 or
1958
1959 r3 <- extract (r1)
1960 r3 <- r3 >> shift
1961 r2 <- extract (r3)
1962 ... <- r2
1963
1964 or
1965
1966 r2 <- extract (r1)
1967 ... <- r2
1968
1969 Depending on the alignment and the mode of the store and
1970 subsequent load.
1971
1972
1973 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1974 and READ_INSN are for the read. Return true if the replacement
1975 went ok. */
1976
1977 static bool
1978 replace_read (store_info_t store_info, insn_info_t store_insn,
1979 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1980 bitmap regs_live)
1981 {
1982 enum machine_mode store_mode = GET_MODE (store_info->mem);
1983 enum machine_mode read_mode = GET_MODE (read_info->mem);
1984 rtx insns, this_insn, read_reg;
1985 basic_block bb;
1986
1987 if (!dbg_cnt (dse))
1988 return false;
1989
1990 /* Create a sequence of instructions to set up the read register.
1991 This sequence goes immediately before the store and its result
1992 is read by the load.
1993
1994 We need to keep this in perspective. We are replacing a read
1995 with a sequence of insns, but the read will almost certainly be
1996 in cache, so it is not going to be an expensive one. Thus, we
1997 are not willing to do a multi insn shift or worse a subroutine
1998 call to get rid of the read. */
1999 if (dump_file)
2000 fprintf (dump_file, "trying to replace %smode load in insn %d"
2001 " from %smode store in insn %d\n",
2002 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
2003 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
2004 start_sequence ();
2005 bb = BLOCK_FOR_INSN (read_insn->insn);
2006 read_reg = get_stored_val (store_info,
2007 read_mode, read_info->begin, read_info->end,
2008 bb, false);
2009 if (read_reg == NULL_RTX)
2010 {
2011 end_sequence ();
2012 if (dump_file)
2013 fprintf (dump_file, " -- could not extract bits of stored value\n");
2014 return false;
2015 }
2016 /* Force the value into a new register so that it won't be clobbered
2017 between the store and the load. */
2018 read_reg = copy_to_mode_reg (read_mode, read_reg);
2019 insns = get_insns ();
2020 end_sequence ();
2021
2022 if (insns != NULL_RTX)
2023 {
2024 /* Now we have to scan the set of new instructions to see if the
2025 sequence contains and sets of hardregs that happened to be
2026 live at this point. For instance, this can happen if one of
2027 the insns sets the CC and the CC happened to be live at that
2028 point. This does occasionally happen, see PR 37922. */
2029 bitmap regs_set = BITMAP_ALLOC (NULL);
2030
2031 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2032 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2033
2034 bitmap_and_into (regs_set, regs_live);
2035 if (!bitmap_empty_p (regs_set))
2036 {
2037 if (dump_file)
2038 {
2039 fprintf (dump_file,
2040 "abandoning replacement because sequence clobbers live hardregs:");
2041 df_print_regset (dump_file, regs_set);
2042 }
2043
2044 BITMAP_FREE (regs_set);
2045 return false;
2046 }
2047 BITMAP_FREE (regs_set);
2048 }
2049
2050 if (validate_change (read_insn->insn, loc, read_reg, 0))
2051 {
2052 deferred_change_t deferred_change =
2053 (deferred_change_t) pool_alloc (deferred_change_pool);
2054
2055 /* Insert this right before the store insn where it will be safe
2056 from later insns that might change it before the read. */
2057 emit_insn_before (insns, store_insn->insn);
2058
2059 /* And now for the kludge part: cselib croaks if you just
2060 return at this point. There are two reasons for this:
2061
2062 1) Cselib has an idea of how many pseudos there are and
2063 that does not include the new ones we just added.
2064
2065 2) Cselib does not know about the move insn we added
2066 above the store_info, and there is no way to tell it
2067 about it, because it has "moved on".
2068
2069 Problem (1) is fixable with a certain amount of engineering.
2070 Problem (2) is requires starting the bb from scratch. This
2071 could be expensive.
2072
2073 So we are just going to have to lie. The move/extraction
2074 insns are not really an issue, cselib did not see them. But
2075 the use of the new pseudo read_insn is a real problem because
2076 cselib has not scanned this insn. The way that we solve this
2077 problem is that we are just going to put the mem back for now
2078 and when we are finished with the block, we undo this. We
2079 keep a table of mems to get rid of. At the end of the basic
2080 block we can put them back. */
2081
2082 *loc = read_info->mem;
2083 deferred_change->next = deferred_change_list;
2084 deferred_change_list = deferred_change;
2085 deferred_change->loc = loc;
2086 deferred_change->reg = read_reg;
2087
2088 /* Get rid of the read_info, from the point of view of the
2089 rest of dse, play like this read never happened. */
2090 read_insn->read_rec = read_info->next;
2091 pool_free (read_info_pool, read_info);
2092 if (dump_file)
2093 {
2094 fprintf (dump_file, " -- replaced the loaded MEM with ");
2095 print_simple_rtl (dump_file, read_reg);
2096 fprintf (dump_file, "\n");
2097 }
2098 return true;
2099 }
2100 else
2101 {
2102 if (dump_file)
2103 {
2104 fprintf (dump_file, " -- replacing the loaded MEM with ");
2105 print_simple_rtl (dump_file, read_reg);
2106 fprintf (dump_file, " led to an invalid instruction\n");
2107 }
2108 return false;
2109 }
2110 }
2111
2112 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2113 if LOC is a mem and if it is look at the address and kill any
2114 appropriate stores that may be active. */
2115
2116 static int
2117 check_mem_read_rtx (rtx *loc, void *data)
2118 {
2119 rtx mem = *loc, mem_addr;
2120 bb_info_t bb_info;
2121 insn_info_t insn_info;
2122 HOST_WIDE_INT offset = 0;
2123 HOST_WIDE_INT width = 0;
2124 alias_set_type spill_alias_set = 0;
2125 cselib_val *base = NULL;
2126 int group_id;
2127 read_info_t read_info;
2128
2129 if (!mem || !MEM_P (mem))
2130 return 0;
2131
2132 bb_info = (bb_info_t) data;
2133 insn_info = bb_info->last_insn;
2134
2135 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2136 || (MEM_VOLATILE_P (mem)))
2137 {
2138 if (dump_file)
2139 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2140 add_wild_read (bb_info);
2141 insn_info->cannot_delete = true;
2142 return 0;
2143 }
2144
2145 /* If it is reading readonly mem, then there can be no conflict with
2146 another write. */
2147 if (MEM_READONLY_P (mem))
2148 return 0;
2149
2150 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2151 {
2152 if (dump_file)
2153 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2154 add_wild_read (bb_info);
2155 return 0;
2156 }
2157
2158 if (GET_MODE (mem) == BLKmode)
2159 width = -1;
2160 else
2161 width = GET_MODE_SIZE (GET_MODE (mem));
2162
2163 read_info = (read_info_t) pool_alloc (read_info_pool);
2164 read_info->group_id = group_id;
2165 read_info->mem = mem;
2166 read_info->alias_set = spill_alias_set;
2167 read_info->begin = offset;
2168 read_info->end = offset + width;
2169 read_info->next = insn_info->read_rec;
2170 insn_info->read_rec = read_info;
2171 /* For alias_set != 0 canon_true_dependence should be never called. */
2172 if (spill_alias_set)
2173 mem_addr = NULL_RTX;
2174 else
2175 {
2176 if (group_id < 0)
2177 mem_addr = base->val_rtx;
2178 else
2179 {
2180 group_info_t group
2181 = VEC_index (group_info_t, rtx_group_vec, group_id);
2182 mem_addr = group->canon_base_addr;
2183 }
2184 if (offset)
2185 mem_addr = plus_constant (mem_addr, offset);
2186 }
2187
2188 /* We ignore the clobbers in store_info. The is mildly aggressive,
2189 but there really should not be a clobber followed by a read. */
2190
2191 if (spill_alias_set)
2192 {
2193 insn_info_t i_ptr = active_local_stores;
2194 insn_info_t last = NULL;
2195
2196 if (dump_file)
2197 fprintf (dump_file, " processing spill load %d\n",
2198 (int) spill_alias_set);
2199
2200 while (i_ptr)
2201 {
2202 store_info_t store_info = i_ptr->store_rec;
2203
2204 /* Skip the clobbers. */
2205 while (!store_info->is_set)
2206 store_info = store_info->next;
2207
2208 if (store_info->alias_set == spill_alias_set)
2209 {
2210 if (dump_file)
2211 dump_insn_info ("removing from active", i_ptr);
2212
2213 active_local_stores_len--;
2214 if (last)
2215 last->next_local_store = i_ptr->next_local_store;
2216 else
2217 active_local_stores = i_ptr->next_local_store;
2218 }
2219 else
2220 last = i_ptr;
2221 i_ptr = i_ptr->next_local_store;
2222 }
2223 }
2224 else if (group_id >= 0)
2225 {
2226 /* This is the restricted case where the base is a constant or
2227 the frame pointer and offset is a constant. */
2228 insn_info_t i_ptr = active_local_stores;
2229 insn_info_t last = NULL;
2230
2231 if (dump_file)
2232 {
2233 if (width == -1)
2234 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2235 group_id);
2236 else
2237 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2238 group_id, (int)offset, (int)(offset+width));
2239 }
2240
2241 while (i_ptr)
2242 {
2243 bool remove = false;
2244 store_info_t store_info = i_ptr->store_rec;
2245
2246 /* Skip the clobbers. */
2247 while (!store_info->is_set)
2248 store_info = store_info->next;
2249
2250 /* There are three cases here. */
2251 if (store_info->group_id < 0)
2252 /* We have a cselib store followed by a read from a
2253 const base. */
2254 remove
2255 = canon_true_dependence (store_info->mem,
2256 GET_MODE (store_info->mem),
2257 store_info->mem_addr,
2258 mem, mem_addr);
2259
2260 else if (group_id == store_info->group_id)
2261 {
2262 /* This is a block mode load. We may get lucky and
2263 canon_true_dependence may save the day. */
2264 if (width == -1)
2265 remove
2266 = canon_true_dependence (store_info->mem,
2267 GET_MODE (store_info->mem),
2268 store_info->mem_addr,
2269 mem, mem_addr);
2270
2271 /* If this read is just reading back something that we just
2272 stored, rewrite the read. */
2273 else
2274 {
2275 if (store_info->rhs
2276 && offset >= store_info->begin
2277 && offset + width <= store_info->end
2278 && all_positions_needed_p (store_info,
2279 offset - store_info->begin,
2280 width)
2281 && replace_read (store_info, i_ptr, read_info,
2282 insn_info, loc, bb_info->regs_live))
2283 return 0;
2284
2285 /* The bases are the same, just see if the offsets
2286 overlap. */
2287 if ((offset < store_info->end)
2288 && (offset + width > store_info->begin))
2289 remove = true;
2290 }
2291 }
2292
2293 /* else
2294 The else case that is missing here is that the
2295 bases are constant but different. There is nothing
2296 to do here because there is no overlap. */
2297
2298 if (remove)
2299 {
2300 if (dump_file)
2301 dump_insn_info ("removing from active", i_ptr);
2302
2303 active_local_stores_len--;
2304 if (last)
2305 last->next_local_store = i_ptr->next_local_store;
2306 else
2307 active_local_stores = i_ptr->next_local_store;
2308 }
2309 else
2310 last = i_ptr;
2311 i_ptr = i_ptr->next_local_store;
2312 }
2313 }
2314 else
2315 {
2316 insn_info_t i_ptr = active_local_stores;
2317 insn_info_t last = NULL;
2318 if (dump_file)
2319 {
2320 fprintf (dump_file, " processing cselib load mem:");
2321 print_inline_rtx (dump_file, mem, 0);
2322 fprintf (dump_file, "\n");
2323 }
2324
2325 while (i_ptr)
2326 {
2327 bool remove = false;
2328 store_info_t store_info = i_ptr->store_rec;
2329
2330 if (dump_file)
2331 fprintf (dump_file, " processing cselib load against insn %d\n",
2332 INSN_UID (i_ptr->insn));
2333
2334 /* Skip the clobbers. */
2335 while (!store_info->is_set)
2336 store_info = store_info->next;
2337
2338 /* If this read is just reading back something that we just
2339 stored, rewrite the read. */
2340 if (store_info->rhs
2341 && store_info->group_id == -1
2342 && store_info->cse_base == base
2343 && width != -1
2344 && offset >= store_info->begin
2345 && offset + width <= store_info->end
2346 && all_positions_needed_p (store_info,
2347 offset - store_info->begin, width)
2348 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2349 bb_info->regs_live))
2350 return 0;
2351
2352 if (!store_info->alias_set)
2353 remove = canon_true_dependence (store_info->mem,
2354 GET_MODE (store_info->mem),
2355 store_info->mem_addr,
2356 mem, mem_addr);
2357
2358 if (remove)
2359 {
2360 if (dump_file)
2361 dump_insn_info ("removing from active", i_ptr);
2362
2363 active_local_stores_len--;
2364 if (last)
2365 last->next_local_store = i_ptr->next_local_store;
2366 else
2367 active_local_stores = i_ptr->next_local_store;
2368 }
2369 else
2370 last = i_ptr;
2371 i_ptr = i_ptr->next_local_store;
2372 }
2373 }
2374 return 0;
2375 }
2376
2377 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2378 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2379 true for any part of *LOC. */
2380
2381 static void
2382 check_mem_read_use (rtx *loc, void *data)
2383 {
2384 for_each_rtx (loc, check_mem_read_rtx, data);
2385 }
2386
2387
2388 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2389 So far it only handles arguments passed in registers. */
2390
2391 static bool
2392 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2393 {
2394 CUMULATIVE_ARGS args_so_far_v;
2395 cumulative_args_t args_so_far;
2396 tree arg;
2397 int idx;
2398
2399 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2400 args_so_far = pack_cumulative_args (&args_so_far_v);
2401
2402 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2403 for (idx = 0;
2404 arg != void_list_node && idx < nargs;
2405 arg = TREE_CHAIN (arg), idx++)
2406 {
2407 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2408 rtx reg, link, tmp;
2409 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2410 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2411 || GET_MODE_CLASS (mode) != MODE_INT)
2412 return false;
2413
2414 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2415 link;
2416 link = XEXP (link, 1))
2417 if (GET_CODE (XEXP (link, 0)) == USE)
2418 {
2419 args[idx] = XEXP (XEXP (link, 0), 0);
2420 if (REG_P (args[idx])
2421 && REGNO (args[idx]) == REGNO (reg)
2422 && (GET_MODE (args[idx]) == mode
2423 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2424 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2425 <= UNITS_PER_WORD)
2426 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2427 > GET_MODE_SIZE (mode)))))
2428 break;
2429 }
2430 if (!link)
2431 return false;
2432
2433 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2434 if (GET_MODE (args[idx]) != mode)
2435 {
2436 if (!tmp || !CONST_INT_P (tmp))
2437 return false;
2438 tmp = gen_int_mode (INTVAL (tmp), mode);
2439 }
2440 if (tmp)
2441 args[idx] = tmp;
2442
2443 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2444 }
2445 if (arg != void_list_node || idx != nargs)
2446 return false;
2447 return true;
2448 }
2449
2450 /* Return a bitmap of the fixed registers contained in IN. */
2451
2452 static bitmap
2453 copy_fixed_regs (const_bitmap in)
2454 {
2455 bitmap ret;
2456
2457 ret = ALLOC_REG_SET (NULL);
2458 bitmap_and (ret, in, fixed_reg_set_regset);
2459 return ret;
2460 }
2461
2462 /* Apply record_store to all candidate stores in INSN. Mark INSN
2463 if some part of it is not a candidate store and assigns to a
2464 non-register target. */
2465
2466 static void
2467 scan_insn (bb_info_t bb_info, rtx insn)
2468 {
2469 rtx body;
2470 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2471 int mems_found = 0;
2472 memset (insn_info, 0, sizeof (struct insn_info));
2473
2474 if (dump_file)
2475 fprintf (dump_file, "\n**scanning insn=%d\n",
2476 INSN_UID (insn));
2477
2478 insn_info->prev_insn = bb_info->last_insn;
2479 insn_info->insn = insn;
2480 bb_info->last_insn = insn_info;
2481
2482 if (DEBUG_INSN_P (insn))
2483 {
2484 insn_info->cannot_delete = true;
2485 return;
2486 }
2487
2488 /* Cselib clears the table for this case, so we have to essentially
2489 do the same. */
2490 if (NONJUMP_INSN_P (insn)
2491 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2492 && MEM_VOLATILE_P (PATTERN (insn)))
2493 {
2494 add_wild_read (bb_info);
2495 insn_info->cannot_delete = true;
2496 return;
2497 }
2498
2499 /* Look at all of the uses in the insn. */
2500 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2501
2502 if (CALL_P (insn))
2503 {
2504 bool const_call;
2505 tree memset_call = NULL_TREE;
2506
2507 insn_info->cannot_delete = true;
2508
2509 /* Const functions cannot do anything bad i.e. read memory,
2510 however, they can read their parameters which may have
2511 been pushed onto the stack.
2512 memset and bzero don't read memory either. */
2513 const_call = RTL_CONST_CALL_P (insn);
2514 if (!const_call)
2515 {
2516 rtx call = PATTERN (insn);
2517 if (GET_CODE (call) == PARALLEL)
2518 call = XVECEXP (call, 0, 0);
2519 if (GET_CODE (call) == SET)
2520 call = SET_SRC (call);
2521 if (GET_CODE (call) == CALL
2522 && MEM_P (XEXP (call, 0))
2523 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2524 {
2525 rtx symbol = XEXP (XEXP (call, 0), 0);
2526 if (SYMBOL_REF_DECL (symbol)
2527 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2528 {
2529 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2530 == BUILT_IN_NORMAL
2531 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2532 == BUILT_IN_MEMSET))
2533 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2534 memset_call = SYMBOL_REF_DECL (symbol);
2535 }
2536 }
2537 }
2538 if (const_call || memset_call)
2539 {
2540 insn_info_t i_ptr = active_local_stores;
2541 insn_info_t last = NULL;
2542
2543 if (dump_file)
2544 fprintf (dump_file, "%s call %d\n",
2545 const_call ? "const" : "memset", INSN_UID (insn));
2546
2547 /* See the head comment of the frame_read field. */
2548 if (reload_completed)
2549 insn_info->frame_read = true;
2550
2551 /* Loop over the active stores and remove those which are
2552 killed by the const function call. */
2553 while (i_ptr)
2554 {
2555 bool remove_store = false;
2556
2557 /* The stack pointer based stores are always killed. */
2558 if (i_ptr->stack_pointer_based)
2559 remove_store = true;
2560
2561 /* If the frame is read, the frame related stores are killed. */
2562 else if (insn_info->frame_read)
2563 {
2564 store_info_t store_info = i_ptr->store_rec;
2565
2566 /* Skip the clobbers. */
2567 while (!store_info->is_set)
2568 store_info = store_info->next;
2569
2570 if (store_info->group_id >= 0
2571 && VEC_index (group_info_t, rtx_group_vec,
2572 store_info->group_id)->frame_related)
2573 remove_store = true;
2574 }
2575
2576 if (remove_store)
2577 {
2578 if (dump_file)
2579 dump_insn_info ("removing from active", i_ptr);
2580
2581 active_local_stores_len--;
2582 if (last)
2583 last->next_local_store = i_ptr->next_local_store;
2584 else
2585 active_local_stores = i_ptr->next_local_store;
2586 }
2587 else
2588 last = i_ptr;
2589
2590 i_ptr = i_ptr->next_local_store;
2591 }
2592
2593 if (memset_call)
2594 {
2595 rtx args[3];
2596 if (get_call_args (insn, memset_call, args, 3)
2597 && CONST_INT_P (args[1])
2598 && CONST_INT_P (args[2])
2599 && INTVAL (args[2]) > 0)
2600 {
2601 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2602 set_mem_size (mem, INTVAL (args[2]));
2603 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2604 mems_found += record_store (body, bb_info);
2605 if (dump_file)
2606 fprintf (dump_file, "handling memset as BLKmode store\n");
2607 if (mems_found == 1)
2608 {
2609 if (active_local_stores_len++
2610 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2611 {
2612 active_local_stores_len = 1;
2613 active_local_stores = NULL;
2614 }
2615 insn_info->fixed_regs_live
2616 = copy_fixed_regs (bb_info->regs_live);
2617 insn_info->next_local_store = active_local_stores;
2618 active_local_stores = insn_info;
2619 }
2620 }
2621 }
2622 }
2623
2624 else
2625 /* Every other call, including pure functions, may read any memory
2626 that is not relative to the frame. */
2627 add_non_frame_wild_read (bb_info);
2628
2629 return;
2630 }
2631
2632 /* Assuming that there are sets in these insns, we cannot delete
2633 them. */
2634 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2635 || volatile_refs_p (PATTERN (insn))
2636 || insn_could_throw_p (insn)
2637 || (RTX_FRAME_RELATED_P (insn))
2638 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2639 insn_info->cannot_delete = true;
2640
2641 body = PATTERN (insn);
2642 if (GET_CODE (body) == PARALLEL)
2643 {
2644 int i;
2645 for (i = 0; i < XVECLEN (body, 0); i++)
2646 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2647 }
2648 else
2649 mems_found += record_store (body, bb_info);
2650
2651 if (dump_file)
2652 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2653 mems_found, insn_info->cannot_delete ? "true" : "false");
2654
2655 /* If we found some sets of mems, add it into the active_local_stores so
2656 that it can be locally deleted if found dead or used for
2657 replace_read and redundant constant store elimination. Otherwise mark
2658 it as cannot delete. This simplifies the processing later. */
2659 if (mems_found == 1)
2660 {
2661 if (active_local_stores_len++
2662 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2663 {
2664 active_local_stores_len = 1;
2665 active_local_stores = NULL;
2666 }
2667 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2668 insn_info->next_local_store = active_local_stores;
2669 active_local_stores = insn_info;
2670 }
2671 else
2672 insn_info->cannot_delete = true;
2673 }
2674
2675
2676 /* Remove BASE from the set of active_local_stores. This is a
2677 callback from cselib that is used to get rid of the stores in
2678 active_local_stores. */
2679
2680 static void
2681 remove_useless_values (cselib_val *base)
2682 {
2683 insn_info_t insn_info = active_local_stores;
2684 insn_info_t last = NULL;
2685
2686 while (insn_info)
2687 {
2688 store_info_t store_info = insn_info->store_rec;
2689 bool del = false;
2690
2691 /* If ANY of the store_infos match the cselib group that is
2692 being deleted, then the insn can not be deleted. */
2693 while (store_info)
2694 {
2695 if ((store_info->group_id == -1)
2696 && (store_info->cse_base == base))
2697 {
2698 del = true;
2699 break;
2700 }
2701 store_info = store_info->next;
2702 }
2703
2704 if (del)
2705 {
2706 active_local_stores_len--;
2707 if (last)
2708 last->next_local_store = insn_info->next_local_store;
2709 else
2710 active_local_stores = insn_info->next_local_store;
2711 free_store_info (insn_info);
2712 }
2713 else
2714 last = insn_info;
2715
2716 insn_info = insn_info->next_local_store;
2717 }
2718 }
2719
2720
2721 /* Do all of step 1. */
2722
2723 static void
2724 dse_step1 (void)
2725 {
2726 basic_block bb;
2727 bitmap regs_live = BITMAP_ALLOC (NULL);
2728
2729 cselib_init (0);
2730 all_blocks = BITMAP_ALLOC (NULL);
2731 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2732 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2733
2734 FOR_ALL_BB (bb)
2735 {
2736 insn_info_t ptr;
2737 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2738
2739 memset (bb_info, 0, sizeof (struct bb_info));
2740 bitmap_set_bit (all_blocks, bb->index);
2741 bb_info->regs_live = regs_live;
2742
2743 bitmap_copy (regs_live, DF_LR_IN (bb));
2744 df_simulate_initialize_forwards (bb, regs_live);
2745
2746 bb_table[bb->index] = bb_info;
2747 cselib_discard_hook = remove_useless_values;
2748
2749 if (bb->index >= NUM_FIXED_BLOCKS)
2750 {
2751 rtx insn;
2752
2753 cse_store_info_pool
2754 = create_alloc_pool ("cse_store_info_pool",
2755 sizeof (struct store_info), 100);
2756 active_local_stores = NULL;
2757 active_local_stores_len = 0;
2758 cselib_clear_table ();
2759
2760 /* Scan the insns. */
2761 FOR_BB_INSNS (bb, insn)
2762 {
2763 if (INSN_P (insn))
2764 scan_insn (bb_info, insn);
2765 cselib_process_insn (insn);
2766 if (INSN_P (insn))
2767 df_simulate_one_insn_forwards (bb, insn, regs_live);
2768 }
2769
2770 /* This is something of a hack, because the global algorithm
2771 is supposed to take care of the case where stores go dead
2772 at the end of the function. However, the global
2773 algorithm must take a more conservative view of block
2774 mode reads than the local alg does. So to get the case
2775 where you have a store to the frame followed by a non
2776 overlapping block more read, we look at the active local
2777 stores at the end of the function and delete all of the
2778 frame and spill based ones. */
2779 if (stores_off_frame_dead_at_return
2780 && (EDGE_COUNT (bb->succs) == 0
2781 || (single_succ_p (bb)
2782 && single_succ (bb) == EXIT_BLOCK_PTR
2783 && ! crtl->calls_eh_return)))
2784 {
2785 insn_info_t i_ptr = active_local_stores;
2786 while (i_ptr)
2787 {
2788 store_info_t store_info = i_ptr->store_rec;
2789
2790 /* Skip the clobbers. */
2791 while (!store_info->is_set)
2792 store_info = store_info->next;
2793 if (store_info->alias_set && !i_ptr->cannot_delete)
2794 delete_dead_store_insn (i_ptr);
2795 else
2796 if (store_info->group_id >= 0)
2797 {
2798 group_info_t group
2799 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2800 if (group->frame_related && !i_ptr->cannot_delete)
2801 delete_dead_store_insn (i_ptr);
2802 }
2803
2804 i_ptr = i_ptr->next_local_store;
2805 }
2806 }
2807
2808 /* Get rid of the loads that were discovered in
2809 replace_read. Cselib is finished with this block. */
2810 while (deferred_change_list)
2811 {
2812 deferred_change_t next = deferred_change_list->next;
2813
2814 /* There is no reason to validate this change. That was
2815 done earlier. */
2816 *deferred_change_list->loc = deferred_change_list->reg;
2817 pool_free (deferred_change_pool, deferred_change_list);
2818 deferred_change_list = next;
2819 }
2820
2821 /* Get rid of all of the cselib based store_infos in this
2822 block and mark the containing insns as not being
2823 deletable. */
2824 ptr = bb_info->last_insn;
2825 while (ptr)
2826 {
2827 if (ptr->contains_cselib_groups)
2828 {
2829 store_info_t s_info = ptr->store_rec;
2830 while (s_info && !s_info->is_set)
2831 s_info = s_info->next;
2832 if (s_info
2833 && s_info->redundant_reason
2834 && s_info->redundant_reason->insn
2835 && !ptr->cannot_delete)
2836 {
2837 if (dump_file)
2838 fprintf (dump_file, "Locally deleting insn %d "
2839 "because insn %d stores the "
2840 "same value and couldn't be "
2841 "eliminated\n",
2842 INSN_UID (ptr->insn),
2843 INSN_UID (s_info->redundant_reason->insn));
2844 delete_dead_store_insn (ptr);
2845 }
2846 if (s_info)
2847 s_info->redundant_reason = NULL;
2848 free_store_info (ptr);
2849 }
2850 else
2851 {
2852 store_info_t s_info;
2853
2854 /* Free at least positions_needed bitmaps. */
2855 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2856 if (s_info->is_large)
2857 {
2858 BITMAP_FREE (s_info->positions_needed.large.bmap);
2859 s_info->is_large = false;
2860 }
2861 }
2862 ptr = ptr->prev_insn;
2863 }
2864
2865 free_alloc_pool (cse_store_info_pool);
2866 }
2867 bb_info->regs_live = NULL;
2868 }
2869
2870 BITMAP_FREE (regs_live);
2871 cselib_finish ();
2872 htab_empty (rtx_group_table);
2873 }
2874
2875 \f
2876 /*----------------------------------------------------------------------------
2877 Second step.
2878
2879 Assign each byte position in the stores that we are going to
2880 analyze globally to a position in the bitmaps. Returns true if
2881 there are any bit positions assigned.
2882 ----------------------------------------------------------------------------*/
2883
2884 static void
2885 dse_step2_init (void)
2886 {
2887 unsigned int i;
2888 group_info_t group;
2889
2890 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2891 {
2892 /* For all non stack related bases, we only consider a store to
2893 be deletable if there are two or more stores for that
2894 position. This is because it takes one store to make the
2895 other store redundant. However, for the stores that are
2896 stack related, we consider them if there is only one store
2897 for the position. We do this because the stack related
2898 stores can be deleted if their is no read between them and
2899 the end of the function.
2900
2901 To make this work in the current framework, we take the stack
2902 related bases add all of the bits from store1 into store2.
2903 This has the effect of making the eligible even if there is
2904 only one store. */
2905
2906 if (stores_off_frame_dead_at_return && group->frame_related)
2907 {
2908 bitmap_ior_into (group->store2_n, group->store1_n);
2909 bitmap_ior_into (group->store2_p, group->store1_p);
2910 if (dump_file)
2911 fprintf (dump_file, "group %d is frame related ", i);
2912 }
2913
2914 group->offset_map_size_n++;
2915 group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
2916 group->offset_map_size_p++;
2917 group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
2918 group->process_globally = false;
2919 if (dump_file)
2920 {
2921 fprintf (dump_file, "group %d(%d+%d): ", i,
2922 (int)bitmap_count_bits (group->store2_n),
2923 (int)bitmap_count_bits (group->store2_p));
2924 bitmap_print (dump_file, group->store2_n, "n ", " ");
2925 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2926 }
2927 }
2928 }
2929
2930
2931 /* Init the offset tables for the normal case. */
2932
2933 static bool
2934 dse_step2_nospill (void)
2935 {
2936 unsigned int i;
2937 group_info_t group;
2938 /* Position 0 is unused because 0 is used in the maps to mean
2939 unused. */
2940 current_position = 1;
2941 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2942 {
2943 bitmap_iterator bi;
2944 unsigned int j;
2945
2946 if (group == clear_alias_group)
2947 continue;
2948
2949 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2950 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2951 bitmap_clear (group->group_kill);
2952
2953 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2954 {
2955 bitmap_set_bit (group->group_kill, current_position);
2956 if (bitmap_bit_p (group->escaped_n, j))
2957 bitmap_set_bit (kill_on_calls, current_position);
2958 group->offset_map_n[j] = current_position++;
2959 group->process_globally = true;
2960 }
2961 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2962 {
2963 bitmap_set_bit (group->group_kill, current_position);
2964 if (bitmap_bit_p (group->escaped_p, j))
2965 bitmap_set_bit (kill_on_calls, current_position);
2966 group->offset_map_p[j] = current_position++;
2967 group->process_globally = true;
2968 }
2969 }
2970 return current_position != 1;
2971 }
2972
2973
2974 /* Init the offset tables for the spill case. */
2975
2976 static bool
2977 dse_step2_spill (void)
2978 {
2979 unsigned int j;
2980 group_info_t group = clear_alias_group;
2981 bitmap_iterator bi;
2982
2983 /* Position 0 is unused because 0 is used in the maps to mean
2984 unused. */
2985 current_position = 1;
2986
2987 if (dump_file)
2988 {
2989 bitmap_print (dump_file, clear_alias_sets,
2990 "clear alias sets ", "\n");
2991 bitmap_print (dump_file, disqualified_clear_alias_sets,
2992 "disqualified clear alias sets ", "\n");
2993 }
2994
2995 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2996 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2997 bitmap_clear (group->group_kill);
2998
2999 /* Remove the disqualified positions from the store2_p set. */
3000 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
3001
3002 /* We do not need to process the store2_n set because
3003 alias_sets are always positive. */
3004 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
3005 {
3006 bitmap_set_bit (group->group_kill, current_position);
3007 group->offset_map_p[j] = current_position++;
3008 group->process_globally = true;
3009 }
3010
3011 return current_position != 1;
3012 }
3013
3014
3015 \f
3016 /*----------------------------------------------------------------------------
3017 Third step.
3018
3019 Build the bit vectors for the transfer functions.
3020 ----------------------------------------------------------------------------*/
3021
3022
3023 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3024 there, return 0. */
3025
3026 static int
3027 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
3028 {
3029 if (offset < 0)
3030 {
3031 HOST_WIDE_INT offset_p = -offset;
3032 if (offset_p >= group_info->offset_map_size_n)
3033 return 0;
3034 return group_info->offset_map_n[offset_p];
3035 }
3036 else
3037 {
3038 if (offset >= group_info->offset_map_size_p)
3039 return 0;
3040 return group_info->offset_map_p[offset];
3041 }
3042 }
3043
3044
3045 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3046 may be NULL. */
3047
3048 static void
3049 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
3050 {
3051 while (store_info)
3052 {
3053 HOST_WIDE_INT i;
3054 group_info_t group_info
3055 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3056 if (group_info->process_globally)
3057 for (i = store_info->begin; i < store_info->end; i++)
3058 {
3059 int index = get_bitmap_index (group_info, i);
3060 if (index != 0)
3061 {
3062 bitmap_set_bit (gen, index);
3063 if (kill)
3064 bitmap_clear_bit (kill, index);
3065 }
3066 }
3067 store_info = store_info->next;
3068 }
3069 }
3070
3071
3072 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3073 may be NULL. */
3074
3075 static void
3076 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3077 {
3078 while (store_info)
3079 {
3080 if (store_info->alias_set)
3081 {
3082 int index = get_bitmap_index (clear_alias_group,
3083 store_info->alias_set);
3084 if (index != 0)
3085 {
3086 bitmap_set_bit (gen, index);
3087 if (kill)
3088 bitmap_clear_bit (kill, index);
3089 }
3090 }
3091 store_info = store_info->next;
3092 }
3093 }
3094
3095
3096 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3097 may be NULL. */
3098
3099 static void
3100 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3101 {
3102 read_info_t read_info = insn_info->read_rec;
3103 int i;
3104 group_info_t group;
3105
3106 /* If this insn reads the frame, kill all the frame related stores. */
3107 if (insn_info->frame_read)
3108 {
3109 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3110 if (group->process_globally && group->frame_related)
3111 {
3112 if (kill)
3113 bitmap_ior_into (kill, group->group_kill);
3114 bitmap_and_compl_into (gen, group->group_kill);
3115 }
3116 }
3117 if (insn_info->non_frame_wild_read)
3118 {
3119 /* Kill all non-frame related stores. Kill all stores of variables that
3120 escape. */
3121 if (kill)
3122 bitmap_ior_into (kill, kill_on_calls);
3123 bitmap_and_compl_into (gen, kill_on_calls);
3124 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3125 if (group->process_globally && !group->frame_related)
3126 {
3127 if (kill)
3128 bitmap_ior_into (kill, group->group_kill);
3129 bitmap_and_compl_into (gen, group->group_kill);
3130 }
3131 }
3132 while (read_info)
3133 {
3134 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3135 {
3136 if (group->process_globally)
3137 {
3138 if (i == read_info->group_id)
3139 {
3140 if (read_info->begin > read_info->end)
3141 {
3142 /* Begin > end for block mode reads. */
3143 if (kill)
3144 bitmap_ior_into (kill, group->group_kill);
3145 bitmap_and_compl_into (gen, group->group_kill);
3146 }
3147 else
3148 {
3149 /* The groups are the same, just process the
3150 offsets. */
3151 HOST_WIDE_INT j;
3152 for (j = read_info->begin; j < read_info->end; j++)
3153 {
3154 int index = get_bitmap_index (group, j);
3155 if (index != 0)
3156 {
3157 if (kill)
3158 bitmap_set_bit (kill, index);
3159 bitmap_clear_bit (gen, index);
3160 }
3161 }
3162 }
3163 }
3164 else
3165 {
3166 /* The groups are different, if the alias sets
3167 conflict, clear the entire group. We only need
3168 to apply this test if the read_info is a cselib
3169 read. Anything with a constant base cannot alias
3170 something else with a different constant
3171 base. */
3172 if ((read_info->group_id < 0)
3173 && canon_true_dependence (group->base_mem,
3174 GET_MODE (group->base_mem),
3175 group->canon_base_addr,
3176 read_info->mem, NULL_RTX))
3177 {
3178 if (kill)
3179 bitmap_ior_into (kill, group->group_kill);
3180 bitmap_and_compl_into (gen, group->group_kill);
3181 }
3182 }
3183 }
3184 }
3185
3186 read_info = read_info->next;
3187 }
3188 }
3189
3190 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3191 may be NULL. */
3192
3193 static void
3194 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3195 {
3196 while (read_info)
3197 {
3198 if (read_info->alias_set)
3199 {
3200 int index = get_bitmap_index (clear_alias_group,
3201 read_info->alias_set);
3202 if (index != 0)
3203 {
3204 if (kill)
3205 bitmap_set_bit (kill, index);
3206 bitmap_clear_bit (gen, index);
3207 }
3208 }
3209
3210 read_info = read_info->next;
3211 }
3212 }
3213
3214
3215 /* Return the insn in BB_INFO before the first wild read or if there
3216 are no wild reads in the block, return the last insn. */
3217
3218 static insn_info_t
3219 find_insn_before_first_wild_read (bb_info_t bb_info)
3220 {
3221 insn_info_t insn_info = bb_info->last_insn;
3222 insn_info_t last_wild_read = NULL;
3223
3224 while (insn_info)
3225 {
3226 if (insn_info->wild_read)
3227 {
3228 last_wild_read = insn_info->prev_insn;
3229 /* Block starts with wild read. */
3230 if (!last_wild_read)
3231 return NULL;
3232 }
3233
3234 insn_info = insn_info->prev_insn;
3235 }
3236
3237 if (last_wild_read)
3238 return last_wild_read;
3239 else
3240 return bb_info->last_insn;
3241 }
3242
3243
3244 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3245 the block in order to build the gen and kill sets for the block.
3246 We start at ptr which may be the last insn in the block or may be
3247 the first insn with a wild read. In the latter case we are able to
3248 skip the rest of the block because it just does not matter:
3249 anything that happens is hidden by the wild read. */
3250
3251 static void
3252 dse_step3_scan (bool for_spills, basic_block bb)
3253 {
3254 bb_info_t bb_info = bb_table[bb->index];
3255 insn_info_t insn_info;
3256
3257 if (for_spills)
3258 /* There are no wild reads in the spill case. */
3259 insn_info = bb_info->last_insn;
3260 else
3261 insn_info = find_insn_before_first_wild_read (bb_info);
3262
3263 /* In the spill case or in the no_spill case if there is no wild
3264 read in the block, we will need a kill set. */
3265 if (insn_info == bb_info->last_insn)
3266 {
3267 if (bb_info->kill)
3268 bitmap_clear (bb_info->kill);
3269 else
3270 bb_info->kill = BITMAP_ALLOC (NULL);
3271 }
3272 else
3273 if (bb_info->kill)
3274 BITMAP_FREE (bb_info->kill);
3275
3276 while (insn_info)
3277 {
3278 /* There may have been code deleted by the dce pass run before
3279 this phase. */
3280 if (insn_info->insn && INSN_P (insn_info->insn))
3281 {
3282 /* Process the read(s) last. */
3283 if (for_spills)
3284 {
3285 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3286 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3287 }
3288 else
3289 {
3290 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3291 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3292 }
3293 }
3294
3295 insn_info = insn_info->prev_insn;
3296 }
3297 }
3298
3299
3300 /* Set the gen set of the exit block, and also any block with no
3301 successors that does not have a wild read. */
3302
3303 static void
3304 dse_step3_exit_block_scan (bb_info_t bb_info)
3305 {
3306 /* The gen set is all 0's for the exit block except for the
3307 frame_pointer_group. */
3308
3309 if (stores_off_frame_dead_at_return)
3310 {
3311 unsigned int i;
3312 group_info_t group;
3313
3314 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3315 {
3316 if (group->process_globally && group->frame_related)
3317 bitmap_ior_into (bb_info->gen, group->group_kill);
3318 }
3319 }
3320 }
3321
3322
3323 /* Find all of the blocks that are not backwards reachable from the
3324 exit block or any block with no successors (BB). These are the
3325 infinite loops or infinite self loops. These blocks will still
3326 have their bits set in UNREACHABLE_BLOCKS. */
3327
3328 static void
3329 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3330 {
3331 edge e;
3332 edge_iterator ei;
3333
3334 if (TEST_BIT (unreachable_blocks, bb->index))
3335 {
3336 RESET_BIT (unreachable_blocks, bb->index);
3337 FOR_EACH_EDGE (e, ei, bb->preds)
3338 {
3339 mark_reachable_blocks (unreachable_blocks, e->src);
3340 }
3341 }
3342 }
3343
3344 /* Build the transfer functions for the function. */
3345
3346 static void
3347 dse_step3 (bool for_spills)
3348 {
3349 basic_block bb;
3350 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
3351 sbitmap_iterator sbi;
3352 bitmap all_ones = NULL;
3353 unsigned int i;
3354
3355 sbitmap_ones (unreachable_blocks);
3356
3357 FOR_ALL_BB (bb)
3358 {
3359 bb_info_t bb_info = bb_table[bb->index];
3360 if (bb_info->gen)
3361 bitmap_clear (bb_info->gen);
3362 else
3363 bb_info->gen = BITMAP_ALLOC (NULL);
3364
3365 if (bb->index == ENTRY_BLOCK)
3366 ;
3367 else if (bb->index == EXIT_BLOCK)
3368 dse_step3_exit_block_scan (bb_info);
3369 else
3370 dse_step3_scan (for_spills, bb);
3371 if (EDGE_COUNT (bb->succs) == 0)
3372 mark_reachable_blocks (unreachable_blocks, bb);
3373
3374 /* If this is the second time dataflow is run, delete the old
3375 sets. */
3376 if (bb_info->in)
3377 BITMAP_FREE (bb_info->in);
3378 if (bb_info->out)
3379 BITMAP_FREE (bb_info->out);
3380 }
3381
3382 /* For any block in an infinite loop, we must initialize the out set
3383 to all ones. This could be expensive, but almost never occurs in
3384 practice. However, it is common in regression tests. */
3385 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
3386 {
3387 if (bitmap_bit_p (all_blocks, i))
3388 {
3389 bb_info_t bb_info = bb_table[i];
3390 if (!all_ones)
3391 {
3392 unsigned int j;
3393 group_info_t group;
3394
3395 all_ones = BITMAP_ALLOC (NULL);
3396 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, j, group)
3397 bitmap_ior_into (all_ones, group->group_kill);
3398 }
3399 if (!bb_info->out)
3400 {
3401 bb_info->out = BITMAP_ALLOC (NULL);
3402 bitmap_copy (bb_info->out, all_ones);
3403 }
3404 }
3405 }
3406
3407 if (all_ones)
3408 BITMAP_FREE (all_ones);
3409 sbitmap_free (unreachable_blocks);
3410 }
3411
3412
3413 \f
3414 /*----------------------------------------------------------------------------
3415 Fourth step.
3416
3417 Solve the bitvector equations.
3418 ----------------------------------------------------------------------------*/
3419
3420
3421 /* Confluence function for blocks with no successors. Create an out
3422 set from the gen set of the exit block. This block logically has
3423 the exit block as a successor. */
3424
3425
3426
3427 static void
3428 dse_confluence_0 (basic_block bb)
3429 {
3430 bb_info_t bb_info = bb_table[bb->index];
3431
3432 if (bb->index == EXIT_BLOCK)
3433 return;
3434
3435 if (!bb_info->out)
3436 {
3437 bb_info->out = BITMAP_ALLOC (NULL);
3438 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3439 }
3440 }
3441
3442 /* Propagate the information from the in set of the dest of E to the
3443 out set of the src of E. If the various in or out sets are not
3444 there, that means they are all ones. */
3445
3446 static bool
3447 dse_confluence_n (edge e)
3448 {
3449 bb_info_t src_info = bb_table[e->src->index];
3450 bb_info_t dest_info = bb_table[e->dest->index];
3451
3452 if (dest_info->in)
3453 {
3454 if (src_info->out)
3455 bitmap_and_into (src_info->out, dest_info->in);
3456 else
3457 {
3458 src_info->out = BITMAP_ALLOC (NULL);
3459 bitmap_copy (src_info->out, dest_info->in);
3460 }
3461 }
3462 return true;
3463 }
3464
3465
3466 /* Propagate the info from the out to the in set of BB_INDEX's basic
3467 block. There are three cases:
3468
3469 1) The block has no kill set. In this case the kill set is all
3470 ones. It does not matter what the out set of the block is, none of
3471 the info can reach the top. The only thing that reaches the top is
3472 the gen set and we just copy the set.
3473
3474 2) There is a kill set but no out set and bb has successors. In
3475 this case we just return. Eventually an out set will be created and
3476 it is better to wait than to create a set of ones.
3477
3478 3) There is both a kill and out set. We apply the obvious transfer
3479 function.
3480 */
3481
3482 static bool
3483 dse_transfer_function (int bb_index)
3484 {
3485 bb_info_t bb_info = bb_table[bb_index];
3486
3487 if (bb_info->kill)
3488 {
3489 if (bb_info->out)
3490 {
3491 /* Case 3 above. */
3492 if (bb_info->in)
3493 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3494 bb_info->out, bb_info->kill);
3495 else
3496 {
3497 bb_info->in = BITMAP_ALLOC (NULL);
3498 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3499 bb_info->out, bb_info->kill);
3500 return true;
3501 }
3502 }
3503 else
3504 /* Case 2 above. */
3505 return false;
3506 }
3507 else
3508 {
3509 /* Case 1 above. If there is already an in set, nothing
3510 happens. */
3511 if (bb_info->in)
3512 return false;
3513 else
3514 {
3515 bb_info->in = BITMAP_ALLOC (NULL);
3516 bitmap_copy (bb_info->in, bb_info->gen);
3517 return true;
3518 }
3519 }
3520 }
3521
3522 /* Solve the dataflow equations. */
3523
3524 static void
3525 dse_step4 (void)
3526 {
3527 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3528 dse_confluence_n, dse_transfer_function,
3529 all_blocks, df_get_postorder (DF_BACKWARD),
3530 df_get_n_blocks (DF_BACKWARD));
3531 if (dump_file)
3532 {
3533 basic_block bb;
3534
3535 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3536 FOR_ALL_BB (bb)
3537 {
3538 bb_info_t bb_info = bb_table[bb->index];
3539
3540 df_print_bb_index (bb, dump_file);
3541 if (bb_info->in)
3542 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3543 else
3544 fprintf (dump_file, " in: *MISSING*\n");
3545 if (bb_info->gen)
3546 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3547 else
3548 fprintf (dump_file, " gen: *MISSING*\n");
3549 if (bb_info->kill)
3550 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3551 else
3552 fprintf (dump_file, " kill: *MISSING*\n");
3553 if (bb_info->out)
3554 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3555 else
3556 fprintf (dump_file, " out: *MISSING*\n\n");
3557 }
3558 }
3559 }
3560
3561
3562 \f
3563 /*----------------------------------------------------------------------------
3564 Fifth step.
3565
3566 Delete the stores that can only be deleted using the global information.
3567 ----------------------------------------------------------------------------*/
3568
3569
3570 static void
3571 dse_step5_nospill (void)
3572 {
3573 basic_block bb;
3574 FOR_EACH_BB (bb)
3575 {
3576 bb_info_t bb_info = bb_table[bb->index];
3577 insn_info_t insn_info = bb_info->last_insn;
3578 bitmap v = bb_info->out;
3579
3580 while (insn_info)
3581 {
3582 bool deleted = false;
3583 if (dump_file && insn_info->insn)
3584 {
3585 fprintf (dump_file, "starting to process insn %d\n",
3586 INSN_UID (insn_info->insn));
3587 bitmap_print (dump_file, v, " v: ", "\n");
3588 }
3589
3590 /* There may have been code deleted by the dce pass run before
3591 this phase. */
3592 if (insn_info->insn
3593 && INSN_P (insn_info->insn)
3594 && (!insn_info->cannot_delete)
3595 && (!bitmap_empty_p (v)))
3596 {
3597 store_info_t store_info = insn_info->store_rec;
3598
3599 /* Try to delete the current insn. */
3600 deleted = true;
3601
3602 /* Skip the clobbers. */
3603 while (!store_info->is_set)
3604 store_info = store_info->next;
3605
3606 if (store_info->alias_set)
3607 deleted = false;
3608 else
3609 {
3610 HOST_WIDE_INT i;
3611 group_info_t group_info
3612 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3613
3614 for (i = store_info->begin; i < store_info->end; i++)
3615 {
3616 int index = get_bitmap_index (group_info, i);
3617
3618 if (dump_file)
3619 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3620 if (index == 0 || !bitmap_bit_p (v, index))
3621 {
3622 if (dump_file)
3623 fprintf (dump_file, "failing at i = %d\n", (int)i);
3624 deleted = false;
3625 break;
3626 }
3627 }
3628 }
3629 if (deleted)
3630 {
3631 if (dbg_cnt (dse)
3632 && check_for_inc_dec_1 (insn_info))
3633 {
3634 delete_insn (insn_info->insn);
3635 insn_info->insn = NULL;
3636 globally_deleted++;
3637 }
3638 }
3639 }
3640 /* We do want to process the local info if the insn was
3641 deleted. For instance, if the insn did a wild read, we
3642 no longer need to trash the info. */
3643 if (insn_info->insn
3644 && INSN_P (insn_info->insn)
3645 && (!deleted))
3646 {
3647 scan_stores_nospill (insn_info->store_rec, v, NULL);
3648 if (insn_info->wild_read)
3649 {
3650 if (dump_file)
3651 fprintf (dump_file, "wild read\n");
3652 bitmap_clear (v);
3653 }
3654 else if (insn_info->read_rec
3655 || insn_info->non_frame_wild_read)
3656 {
3657 if (dump_file && !insn_info->non_frame_wild_read)
3658 fprintf (dump_file, "regular read\n");
3659 else if (dump_file)
3660 fprintf (dump_file, "non-frame wild read\n");
3661 scan_reads_nospill (insn_info, v, NULL);
3662 }
3663 }
3664
3665 insn_info = insn_info->prev_insn;
3666 }
3667 }
3668 }
3669
3670
3671 static void
3672 dse_step5_spill (void)
3673 {
3674 basic_block bb;
3675 FOR_EACH_BB (bb)
3676 {
3677 bb_info_t bb_info = bb_table[bb->index];
3678 insn_info_t insn_info = bb_info->last_insn;
3679 bitmap v = bb_info->out;
3680
3681 while (insn_info)
3682 {
3683 bool deleted = false;
3684 /* There may have been code deleted by the dce pass run before
3685 this phase. */
3686 if (insn_info->insn
3687 && INSN_P (insn_info->insn)
3688 && (!insn_info->cannot_delete)
3689 && (!bitmap_empty_p (v)))
3690 {
3691 /* Try to delete the current insn. */
3692 store_info_t store_info = insn_info->store_rec;
3693 deleted = true;
3694
3695 while (store_info)
3696 {
3697 if (store_info->alias_set)
3698 {
3699 int index = get_bitmap_index (clear_alias_group,
3700 store_info->alias_set);
3701 if (index == 0 || !bitmap_bit_p (v, index))
3702 {
3703 deleted = false;
3704 break;
3705 }
3706 }
3707 else
3708 deleted = false;
3709 store_info = store_info->next;
3710 }
3711 if (deleted && dbg_cnt (dse)
3712 && check_for_inc_dec_1 (insn_info))
3713 {
3714 if (dump_file)
3715 fprintf (dump_file, "Spill deleting insn %d\n",
3716 INSN_UID (insn_info->insn));
3717 delete_insn (insn_info->insn);
3718 spill_deleted++;
3719 insn_info->insn = NULL;
3720 }
3721 }
3722
3723 if (insn_info->insn
3724 && INSN_P (insn_info->insn)
3725 && (!deleted))
3726 {
3727 scan_stores_spill (insn_info->store_rec, v, NULL);
3728 scan_reads_spill (insn_info->read_rec, v, NULL);
3729 }
3730
3731 insn_info = insn_info->prev_insn;
3732 }
3733 }
3734 }
3735
3736
3737 \f
3738 /*----------------------------------------------------------------------------
3739 Sixth step.
3740
3741 Delete stores made redundant by earlier stores (which store the same
3742 value) that couldn't be eliminated.
3743 ----------------------------------------------------------------------------*/
3744
3745 static void
3746 dse_step6 (void)
3747 {
3748 basic_block bb;
3749
3750 FOR_ALL_BB (bb)
3751 {
3752 bb_info_t bb_info = bb_table[bb->index];
3753 insn_info_t insn_info = bb_info->last_insn;
3754
3755 while (insn_info)
3756 {
3757 /* There may have been code deleted by the dce pass run before
3758 this phase. */
3759 if (insn_info->insn
3760 && INSN_P (insn_info->insn)
3761 && !insn_info->cannot_delete)
3762 {
3763 store_info_t s_info = insn_info->store_rec;
3764
3765 while (s_info && !s_info->is_set)
3766 s_info = s_info->next;
3767 if (s_info
3768 && s_info->redundant_reason
3769 && s_info->redundant_reason->insn
3770 && INSN_P (s_info->redundant_reason->insn))
3771 {
3772 rtx rinsn = s_info->redundant_reason->insn;
3773 if (dump_file)
3774 fprintf (dump_file, "Locally deleting insn %d "
3775 "because insn %d stores the "
3776 "same value and couldn't be "
3777 "eliminated\n",
3778 INSN_UID (insn_info->insn),
3779 INSN_UID (rinsn));
3780 delete_dead_store_insn (insn_info);
3781 }
3782 }
3783 insn_info = insn_info->prev_insn;
3784 }
3785 }
3786 }
3787 \f
3788 /*----------------------------------------------------------------------------
3789 Seventh step.
3790
3791 Destroy everything left standing.
3792 ----------------------------------------------------------------------------*/
3793
3794 static void
3795 dse_step7 (bool global_done)
3796 {
3797 unsigned int i;
3798 group_info_t group;
3799 basic_block bb;
3800
3801 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3802 {
3803 free (group->offset_map_n);
3804 free (group->offset_map_p);
3805 BITMAP_FREE (group->store1_n);
3806 BITMAP_FREE (group->store1_p);
3807 BITMAP_FREE (group->store2_n);
3808 BITMAP_FREE (group->store2_p);
3809 BITMAP_FREE (group->escaped_n);
3810 BITMAP_FREE (group->escaped_p);
3811 BITMAP_FREE (group->group_kill);
3812 }
3813
3814 if (global_done)
3815 FOR_ALL_BB (bb)
3816 {
3817 bb_info_t bb_info = bb_table[bb->index];
3818 BITMAP_FREE (bb_info->gen);
3819 if (bb_info->kill)
3820 BITMAP_FREE (bb_info->kill);
3821 if (bb_info->in)
3822 BITMAP_FREE (bb_info->in);
3823 if (bb_info->out)
3824 BITMAP_FREE (bb_info->out);
3825 }
3826
3827 if (clear_alias_sets)
3828 {
3829 BITMAP_FREE (clear_alias_sets);
3830 BITMAP_FREE (disqualified_clear_alias_sets);
3831 free_alloc_pool (clear_alias_mode_pool);
3832 htab_delete (clear_alias_mode_table);
3833 }
3834
3835 end_alias_analysis ();
3836 free (bb_table);
3837 htab_delete (rtx_group_table);
3838 VEC_free (group_info_t, heap, rtx_group_vec);
3839 BITMAP_FREE (all_blocks);
3840 BITMAP_FREE (scratch);
3841 BITMAP_FREE (kill_on_calls);
3842
3843 free_alloc_pool (rtx_store_info_pool);
3844 free_alloc_pool (read_info_pool);
3845 free_alloc_pool (insn_info_pool);
3846 free_alloc_pool (bb_info_pool);
3847 free_alloc_pool (rtx_group_info_pool);
3848 free_alloc_pool (deferred_change_pool);
3849 }
3850
3851
3852 /* -------------------------------------------------------------------------
3853 DSE
3854 ------------------------------------------------------------------------- */
3855
3856 /* Callback for running pass_rtl_dse. */
3857
3858 static unsigned int
3859 rest_of_handle_dse (void)
3860 {
3861 bool did_global = false;
3862
3863 df_set_flags (DF_DEFER_INSN_RESCAN);
3864
3865 /* Need the notes since we must track live hardregs in the forwards
3866 direction. */
3867 df_note_add_problem ();
3868 df_analyze ();
3869
3870 dse_step0 ();
3871 dse_step1 ();
3872 dse_step2_init ();
3873 if (dse_step2_nospill ())
3874 {
3875 df_set_flags (DF_LR_RUN_DCE);
3876 df_analyze ();
3877 did_global = true;
3878 if (dump_file)
3879 fprintf (dump_file, "doing global processing\n");
3880 dse_step3 (false);
3881 dse_step4 ();
3882 dse_step5_nospill ();
3883 }
3884
3885 /* For the instance of dse that runs after reload, we make a special
3886 pass to process the spills. These are special in that they are
3887 totally transparent, i.e, there is no aliasing issues that need
3888 to be considered. This means that the wild reads that kill
3889 everything else do not apply here. */
3890 if (clear_alias_sets && dse_step2_spill ())
3891 {
3892 if (!did_global)
3893 {
3894 df_set_flags (DF_LR_RUN_DCE);
3895 df_analyze ();
3896 }
3897 did_global = true;
3898 if (dump_file)
3899 fprintf (dump_file, "doing global spill processing\n");
3900 dse_step3 (true);
3901 dse_step4 ();
3902 dse_step5_spill ();
3903 }
3904
3905 dse_step6 ();
3906 dse_step7 (did_global);
3907
3908 if (dump_file)
3909 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3910 locally_deleted, globally_deleted, spill_deleted);
3911 return 0;
3912 }
3913
3914 static bool
3915 gate_dse1 (void)
3916 {
3917 return optimize > 0 && flag_dse
3918 && dbg_cnt (dse1);
3919 }
3920
3921 static bool
3922 gate_dse2 (void)
3923 {
3924 return optimize > 0 && flag_dse
3925 && dbg_cnt (dse2);
3926 }
3927
3928 struct rtl_opt_pass pass_rtl_dse1 =
3929 {
3930 {
3931 RTL_PASS,
3932 "dse1", /* name */
3933 gate_dse1, /* gate */
3934 rest_of_handle_dse, /* execute */
3935 NULL, /* sub */
3936 NULL, /* next */
3937 0, /* static_pass_number */
3938 TV_DSE1, /* tv_id */
3939 0, /* properties_required */
3940 0, /* properties_provided */
3941 0, /* properties_destroyed */
3942 0, /* todo_flags_start */
3943 TODO_df_finish | TODO_verify_rtl_sharing |
3944 TODO_ggc_collect /* todo_flags_finish */
3945 }
3946 };
3947
3948 struct rtl_opt_pass pass_rtl_dse2 =
3949 {
3950 {
3951 RTL_PASS,
3952 "dse2", /* name */
3953 gate_dse2, /* gate */
3954 rest_of_handle_dse, /* execute */
3955 NULL, /* sub */
3956 NULL, /* next */
3957 0, /* static_pass_number */
3958 TV_DSE2, /* tv_id */
3959 0, /* properties_required */
3960 0, /* properties_provided */
3961 0, /* properties_destroyed */
3962 0, /* todo_flags_start */
3963 TODO_df_finish | TODO_verify_rtl_sharing |
3964 TODO_ggc_collect /* todo_flags_finish */
3965 }
3966 };