Remove MIPS_DEBUGGING_INFO support
[gcc.git] / gcc / dwarf2cfi.c
1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "version.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "function.h"
30 #include "basic-block.h"
31 #include "dwarf2.h"
32 #include "dwarf2out.h"
33 #include "dwarf2asm.h"
34 #include "ggc.h"
35 #include "tm_p.h"
36 #include "target.h"
37 #include "common/common-target.h"
38 #include "tree-pass.h"
39
40 #include "except.h" /* expand_builtin_dwarf_sp_column */
41 #include "expr.h" /* init_return_column_size */
42 #include "regs.h" /* expand_builtin_init_dwarf_reg_sizes */
43 #include "output.h" /* asm_out_file */
44 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
45
46
47 /* ??? Poison these here until it can be done generically. They've been
48 totally replaced in this file; make sure it stays that way. */
49 #undef DWARF2_UNWIND_INFO
50 #undef DWARF2_FRAME_INFO
51 #if (GCC_VERSION >= 3000)
52 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
53 #endif
54
55 #ifndef INCOMING_RETURN_ADDR_RTX
56 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
57 #endif
58
59 /* Maximum size (in bytes) of an artificially generated label. */
60 #define MAX_ARTIFICIAL_LABEL_BYTES 30
61 \f
62 /* A collected description of an entire row of the abstract CFI table. */
63 typedef struct GTY(()) dw_cfi_row_struct
64 {
65 /* The expression that computes the CFA, expressed in two different ways.
66 The CFA member for the simple cases, and the full CFI expression for
67 the complex cases. The later will be a DW_CFA_cfa_expression. */
68 dw_cfa_location cfa;
69 dw_cfi_ref cfa_cfi;
70
71 /* The expressions for any register column that is saved. */
72 cfi_vec reg_save;
73 } dw_cfi_row;
74
75 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
76 typedef struct GTY(()) reg_saved_in_data_struct {
77 rtx orig_reg;
78 rtx saved_in_reg;
79 } reg_saved_in_data;
80
81 DEF_VEC_O (reg_saved_in_data);
82 DEF_VEC_ALLOC_O (reg_saved_in_data, heap);
83
84 /* Since we no longer have a proper CFG, we're going to create a facsimile
85 of one on the fly while processing the frame-related insns.
86
87 We create dw_trace_info structures for each extended basic block beginning
88 and ending at a "save point". Save points are labels, barriers, certain
89 notes, and of course the beginning and end of the function.
90
91 As we encounter control transfer insns, we propagate the "current"
92 row state across the edges to the starts of traces. When checking is
93 enabled, we validate that we propagate the same data from all sources.
94
95 All traces are members of the TRACE_INFO array, in the order in which
96 they appear in the instruction stream.
97
98 All save points are present in the TRACE_INDEX hash, mapping the insn
99 starting a trace to the dw_trace_info describing the trace. */
100
101 typedef struct
102 {
103 /* The insn that begins the trace. */
104 rtx head;
105
106 /* The row state at the beginning and end of the trace. */
107 dw_cfi_row *beg_row, *end_row;
108
109 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
110 while scanning insns. However, the args_size value is irrelevant at
111 any point except can_throw_internal_p insns. Therefore the "delay"
112 sizes the values that must actually be emitted for this trace. */
113 HOST_WIDE_INT beg_true_args_size, end_true_args_size;
114 HOST_WIDE_INT beg_delay_args_size, end_delay_args_size;
115
116 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
117 rtx eh_head;
118
119 /* The following variables contain data used in interpreting frame related
120 expressions. These are not part of the "real" row state as defined by
121 Dwarf, but it seems like they need to be propagated into a trace in case
122 frame related expressions have been sunk. */
123 /* ??? This seems fragile. These variables are fragments of a larger
124 expression. If we do not keep the entire expression together, we risk
125 not being able to put it together properly. Consider forcing targets
126 to generate self-contained expressions and dropping all of the magic
127 interpretation code in this file. Or at least refusing to shrink wrap
128 any frame related insn that doesn't contain a complete expression. */
129
130 /* The register used for saving registers to the stack, and its offset
131 from the CFA. */
132 dw_cfa_location cfa_store;
133
134 /* A temporary register holding an integral value used in adjusting SP
135 or setting up the store_reg. The "offset" field holds the integer
136 value, not an offset. */
137 dw_cfa_location cfa_temp;
138
139 /* A set of registers saved in other registers. This is the inverse of
140 the row->reg_save info, if the entry is a DW_CFA_register. This is
141 implemented as a flat array because it normally contains zero or 1
142 entry, depending on the target. IA-64 is the big spender here, using
143 a maximum of 5 entries. */
144 VEC(reg_saved_in_data, heap) *regs_saved_in_regs;
145
146 /* An identifier for this trace. Used only for debugging dumps. */
147 unsigned id;
148
149 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
150 bool switch_sections;
151
152 /* True if we've seen different values incoming to beg_true_args_size. */
153 bool args_size_undefined;
154 } dw_trace_info;
155
156 DEF_VEC_O (dw_trace_info);
157 DEF_VEC_ALLOC_O (dw_trace_info, heap);
158
159 typedef dw_trace_info *dw_trace_info_ref;
160
161 DEF_VEC_P (dw_trace_info_ref);
162 DEF_VEC_ALLOC_P (dw_trace_info_ref, heap);
163
164 /* The variables making up the pseudo-cfg, as described above. */
165 static VEC (dw_trace_info, heap) *trace_info;
166 static VEC (dw_trace_info_ref, heap) *trace_work_list;
167 static htab_t trace_index;
168
169 /* A vector of call frame insns for the CIE. */
170 cfi_vec cie_cfi_vec;
171
172 /* The state of the first row of the FDE table, which includes the
173 state provided by the CIE. */
174 static GTY(()) dw_cfi_row *cie_cfi_row;
175
176 static GTY(()) reg_saved_in_data *cie_return_save;
177
178 static GTY(()) unsigned long dwarf2out_cfi_label_num;
179
180 /* The insn after which a new CFI note should be emitted. */
181 static rtx add_cfi_insn;
182
183 /* When non-null, add_cfi will add the CFI to this vector. */
184 static cfi_vec *add_cfi_vec;
185
186 /* The current instruction trace. */
187 static dw_trace_info *cur_trace;
188
189 /* The current, i.e. most recently generated, row of the CFI table. */
190 static dw_cfi_row *cur_row;
191
192 /* A copy of the current CFA, for use during the processing of a
193 single insn. */
194 static dw_cfa_location *cur_cfa;
195
196 /* We delay emitting a register save until either (a) we reach the end
197 of the prologue or (b) the register is clobbered. This clusters
198 register saves so that there are fewer pc advances. */
199
200 typedef struct {
201 rtx reg;
202 rtx saved_reg;
203 HOST_WIDE_INT cfa_offset;
204 } queued_reg_save;
205
206 DEF_VEC_O (queued_reg_save);
207 DEF_VEC_ALLOC_O (queued_reg_save, heap);
208
209 static VEC(queued_reg_save, heap) *queued_reg_saves;
210
211 /* True if any CFI directives were emitted at the current insn. */
212 static bool any_cfis_emitted;
213
214 /* Short-hand for commonly used register numbers. */
215 static unsigned dw_stack_pointer_regnum;
216 static unsigned dw_frame_pointer_regnum;
217 \f
218 /* Hook used by __throw. */
219
220 rtx
221 expand_builtin_dwarf_sp_column (void)
222 {
223 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
224 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
225 }
226
227 /* MEM is a memory reference for the register size table, each element of
228 which has mode MODE. Initialize column C as a return address column. */
229
230 static void
231 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
232 {
233 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
234 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
235 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
236 }
237
238 /* Generate code to initialize the register size table. */
239
240 void
241 expand_builtin_init_dwarf_reg_sizes (tree address)
242 {
243 unsigned int i;
244 enum machine_mode mode = TYPE_MODE (char_type_node);
245 rtx addr = expand_normal (address);
246 rtx mem = gen_rtx_MEM (BLKmode, addr);
247 bool wrote_return_column = false;
248
249 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
250 {
251 unsigned int dnum = DWARF_FRAME_REGNUM (i);
252 unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
253
254 if (rnum < DWARF_FRAME_REGISTERS)
255 {
256 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
257 enum machine_mode save_mode = reg_raw_mode[i];
258 HOST_WIDE_INT size;
259
260 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
261 save_mode = choose_hard_reg_mode (i, 1, true);
262 if (dnum == DWARF_FRAME_RETURN_COLUMN)
263 {
264 if (save_mode == VOIDmode)
265 continue;
266 wrote_return_column = true;
267 }
268 size = GET_MODE_SIZE (save_mode);
269 if (offset < 0)
270 continue;
271
272 emit_move_insn (adjust_address (mem, mode, offset),
273 gen_int_mode (size, mode));
274 }
275 }
276
277 if (!wrote_return_column)
278 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
279
280 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
281 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
282 #endif
283
284 targetm.init_dwarf_reg_sizes_extra (address);
285 }
286
287 \f
288 static hashval_t
289 dw_trace_info_hash (const void *ptr)
290 {
291 const dw_trace_info *ti = (const dw_trace_info *) ptr;
292 return INSN_UID (ti->head);
293 }
294
295 static int
296 dw_trace_info_eq (const void *ptr_a, const void *ptr_b)
297 {
298 const dw_trace_info *a = (const dw_trace_info *) ptr_a;
299 const dw_trace_info *b = (const dw_trace_info *) ptr_b;
300 return a->head == b->head;
301 }
302
303 static dw_trace_info *
304 get_trace_info (rtx insn)
305 {
306 dw_trace_info dummy;
307 dummy.head = insn;
308 return (dw_trace_info *)
309 htab_find_with_hash (trace_index, &dummy, INSN_UID (insn));
310 }
311
312 static bool
313 save_point_p (rtx insn)
314 {
315 /* Labels, except those that are really jump tables. */
316 if (LABEL_P (insn))
317 return inside_basic_block_p (insn);
318
319 /* We split traces at the prologue/epilogue notes because those
320 are points at which the unwind info is usually stable. This
321 makes it easier to find spots with identical unwind info so
322 that we can use remember/restore_state opcodes. */
323 if (NOTE_P (insn))
324 switch (NOTE_KIND (insn))
325 {
326 case NOTE_INSN_PROLOGUE_END:
327 case NOTE_INSN_EPILOGUE_BEG:
328 return true;
329 }
330
331 return false;
332 }
333
334 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
335
336 static inline HOST_WIDE_INT
337 div_data_align (HOST_WIDE_INT off)
338 {
339 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
340 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
341 return r;
342 }
343
344 /* Return true if we need a signed version of a given opcode
345 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
346
347 static inline bool
348 need_data_align_sf_opcode (HOST_WIDE_INT off)
349 {
350 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
351 }
352
353 /* Return a pointer to a newly allocated Call Frame Instruction. */
354
355 static inline dw_cfi_ref
356 new_cfi (void)
357 {
358 dw_cfi_ref cfi = ggc_alloc_dw_cfi_node ();
359
360 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
361 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
362
363 return cfi;
364 }
365
366 /* Return a newly allocated CFI row, with no defined data. */
367
368 static dw_cfi_row *
369 new_cfi_row (void)
370 {
371 dw_cfi_row *row = ggc_alloc_cleared_dw_cfi_row ();
372
373 row->cfa.reg = INVALID_REGNUM;
374
375 return row;
376 }
377
378 /* Return a copy of an existing CFI row. */
379
380 static dw_cfi_row *
381 copy_cfi_row (dw_cfi_row *src)
382 {
383 dw_cfi_row *dst = ggc_alloc_dw_cfi_row ();
384
385 *dst = *src;
386 dst->reg_save = VEC_copy (dw_cfi_ref, gc, src->reg_save);
387
388 return dst;
389 }
390
391 /* Generate a new label for the CFI info to refer to. */
392
393 static char *
394 dwarf2out_cfi_label (void)
395 {
396 int num = dwarf2out_cfi_label_num++;
397 char label[20];
398
399 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
400
401 return xstrdup (label);
402 }
403
404 /* Add CFI either to the current insn stream or to a vector, or both. */
405
406 static void
407 add_cfi (dw_cfi_ref cfi)
408 {
409 any_cfis_emitted = true;
410
411 if (add_cfi_insn != NULL)
412 {
413 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
414 NOTE_CFI (add_cfi_insn) = cfi;
415 }
416
417 if (add_cfi_vec != NULL)
418 VEC_safe_push (dw_cfi_ref, gc, *add_cfi_vec, cfi);
419 }
420
421 static void
422 add_cfi_args_size (HOST_WIDE_INT size)
423 {
424 dw_cfi_ref cfi = new_cfi ();
425
426 /* While we can occasionally have args_size < 0 internally, this state
427 should not persist at a point we actually need an opcode. */
428 gcc_assert (size >= 0);
429
430 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
431 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
432
433 add_cfi (cfi);
434 }
435
436 static void
437 add_cfi_restore (unsigned reg)
438 {
439 dw_cfi_ref cfi = new_cfi ();
440
441 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
442 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
443
444 add_cfi (cfi);
445 }
446
447 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
448 that the register column is no longer saved. */
449
450 static void
451 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
452 {
453 if (VEC_length (dw_cfi_ref, row->reg_save) <= column)
454 VEC_safe_grow_cleared (dw_cfi_ref, gc, row->reg_save, column + 1);
455 VEC_replace (dw_cfi_ref, row->reg_save, column, cfi);
456 }
457
458 /* This function fills in aa dw_cfa_location structure from a dwarf location
459 descriptor sequence. */
460
461 static void
462 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
463 {
464 struct dw_loc_descr_struct *ptr;
465 cfa->offset = 0;
466 cfa->base_offset = 0;
467 cfa->indirect = 0;
468 cfa->reg = -1;
469
470 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
471 {
472 enum dwarf_location_atom op = ptr->dw_loc_opc;
473
474 switch (op)
475 {
476 case DW_OP_reg0:
477 case DW_OP_reg1:
478 case DW_OP_reg2:
479 case DW_OP_reg3:
480 case DW_OP_reg4:
481 case DW_OP_reg5:
482 case DW_OP_reg6:
483 case DW_OP_reg7:
484 case DW_OP_reg8:
485 case DW_OP_reg9:
486 case DW_OP_reg10:
487 case DW_OP_reg11:
488 case DW_OP_reg12:
489 case DW_OP_reg13:
490 case DW_OP_reg14:
491 case DW_OP_reg15:
492 case DW_OP_reg16:
493 case DW_OP_reg17:
494 case DW_OP_reg18:
495 case DW_OP_reg19:
496 case DW_OP_reg20:
497 case DW_OP_reg21:
498 case DW_OP_reg22:
499 case DW_OP_reg23:
500 case DW_OP_reg24:
501 case DW_OP_reg25:
502 case DW_OP_reg26:
503 case DW_OP_reg27:
504 case DW_OP_reg28:
505 case DW_OP_reg29:
506 case DW_OP_reg30:
507 case DW_OP_reg31:
508 cfa->reg = op - DW_OP_reg0;
509 break;
510 case DW_OP_regx:
511 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
512 break;
513 case DW_OP_breg0:
514 case DW_OP_breg1:
515 case DW_OP_breg2:
516 case DW_OP_breg3:
517 case DW_OP_breg4:
518 case DW_OP_breg5:
519 case DW_OP_breg6:
520 case DW_OP_breg7:
521 case DW_OP_breg8:
522 case DW_OP_breg9:
523 case DW_OP_breg10:
524 case DW_OP_breg11:
525 case DW_OP_breg12:
526 case DW_OP_breg13:
527 case DW_OP_breg14:
528 case DW_OP_breg15:
529 case DW_OP_breg16:
530 case DW_OP_breg17:
531 case DW_OP_breg18:
532 case DW_OP_breg19:
533 case DW_OP_breg20:
534 case DW_OP_breg21:
535 case DW_OP_breg22:
536 case DW_OP_breg23:
537 case DW_OP_breg24:
538 case DW_OP_breg25:
539 case DW_OP_breg26:
540 case DW_OP_breg27:
541 case DW_OP_breg28:
542 case DW_OP_breg29:
543 case DW_OP_breg30:
544 case DW_OP_breg31:
545 cfa->reg = op - DW_OP_breg0;
546 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
547 break;
548 case DW_OP_bregx:
549 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
550 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
551 break;
552 case DW_OP_deref:
553 cfa->indirect = 1;
554 break;
555 case DW_OP_plus_uconst:
556 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
557 break;
558 default:
559 gcc_unreachable ();
560 }
561 }
562 }
563
564 /* Find the previous value for the CFA, iteratively. CFI is the opcode
565 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
566 one level of remember/restore state processing. */
567
568 void
569 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
570 {
571 switch (cfi->dw_cfi_opc)
572 {
573 case DW_CFA_def_cfa_offset:
574 case DW_CFA_def_cfa_offset_sf:
575 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
576 break;
577 case DW_CFA_def_cfa_register:
578 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
579 break;
580 case DW_CFA_def_cfa:
581 case DW_CFA_def_cfa_sf:
582 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
583 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
584 break;
585 case DW_CFA_def_cfa_expression:
586 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
587 break;
588
589 case DW_CFA_remember_state:
590 gcc_assert (!remember->in_use);
591 *remember = *loc;
592 remember->in_use = 1;
593 break;
594 case DW_CFA_restore_state:
595 gcc_assert (remember->in_use);
596 *loc = *remember;
597 remember->in_use = 0;
598 break;
599
600 default:
601 break;
602 }
603 }
604
605 /* Determine if two dw_cfa_location structures define the same data. */
606
607 bool
608 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
609 {
610 return (loc1->reg == loc2->reg
611 && loc1->offset == loc2->offset
612 && loc1->indirect == loc2->indirect
613 && (loc1->indirect == 0
614 || loc1->base_offset == loc2->base_offset));
615 }
616
617 /* Determine if two CFI operands are identical. */
618
619 static bool
620 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
621 {
622 switch (t)
623 {
624 case dw_cfi_oprnd_unused:
625 return true;
626 case dw_cfi_oprnd_reg_num:
627 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
628 case dw_cfi_oprnd_offset:
629 return a->dw_cfi_offset == b->dw_cfi_offset;
630 case dw_cfi_oprnd_addr:
631 return (a->dw_cfi_addr == b->dw_cfi_addr
632 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
633 case dw_cfi_oprnd_loc:
634 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
635 }
636 gcc_unreachable ();
637 }
638
639 /* Determine if two CFI entries are identical. */
640
641 static bool
642 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
643 {
644 enum dwarf_call_frame_info opc;
645
646 /* Make things easier for our callers, including missing operands. */
647 if (a == b)
648 return true;
649 if (a == NULL || b == NULL)
650 return false;
651
652 /* Obviously, the opcodes must match. */
653 opc = a->dw_cfi_opc;
654 if (opc != b->dw_cfi_opc)
655 return false;
656
657 /* Compare the two operands, re-using the type of the operands as
658 already exposed elsewhere. */
659 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
660 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
661 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
662 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
663 }
664
665 /* Determine if two CFI_ROW structures are identical. */
666
667 static bool
668 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
669 {
670 size_t i, n_a, n_b, n_max;
671
672 if (a->cfa_cfi)
673 {
674 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
675 return false;
676 }
677 else if (!cfa_equal_p (&a->cfa, &b->cfa))
678 return false;
679
680 n_a = VEC_length (dw_cfi_ref, a->reg_save);
681 n_b = VEC_length (dw_cfi_ref, b->reg_save);
682 n_max = MAX (n_a, n_b);
683
684 for (i = 0; i < n_max; ++i)
685 {
686 dw_cfi_ref r_a = NULL, r_b = NULL;
687
688 if (i < n_a)
689 r_a = VEC_index (dw_cfi_ref, a->reg_save, i);
690 if (i < n_b)
691 r_b = VEC_index (dw_cfi_ref, b->reg_save, i);
692
693 if (!cfi_equal_p (r_a, r_b))
694 return false;
695 }
696
697 return true;
698 }
699
700 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
701 what opcode to emit. Returns the CFI opcode to effect the change, or
702 NULL if NEW_CFA == OLD_CFA. */
703
704 static dw_cfi_ref
705 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
706 {
707 dw_cfi_ref cfi;
708
709 /* If nothing changed, no need to issue any call frame instructions. */
710 if (cfa_equal_p (old_cfa, new_cfa))
711 return NULL;
712
713 cfi = new_cfi ();
714
715 if (new_cfa->reg == old_cfa->reg && !new_cfa->indirect && !old_cfa->indirect)
716 {
717 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
718 the CFA register did not change but the offset did. The data
719 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
720 in the assembler via the .cfi_def_cfa_offset directive. */
721 if (new_cfa->offset < 0)
722 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
723 else
724 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
725 cfi->dw_cfi_oprnd1.dw_cfi_offset = new_cfa->offset;
726 }
727 else if (new_cfa->offset == old_cfa->offset
728 && old_cfa->reg != INVALID_REGNUM
729 && !new_cfa->indirect
730 && !old_cfa->indirect)
731 {
732 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
733 indicating the CFA register has changed to <register> but the
734 offset has not changed. */
735 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
736 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
737 }
738 else if (new_cfa->indirect == 0)
739 {
740 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
741 indicating the CFA register has changed to <register> with
742 the specified offset. The data factoring for DW_CFA_def_cfa_sf
743 happens in output_cfi, or in the assembler via the .cfi_def_cfa
744 directive. */
745 if (new_cfa->offset < 0)
746 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
747 else
748 cfi->dw_cfi_opc = DW_CFA_def_cfa;
749 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
750 cfi->dw_cfi_oprnd2.dw_cfi_offset = new_cfa->offset;
751 }
752 else
753 {
754 /* Construct a DW_CFA_def_cfa_expression instruction to
755 calculate the CFA using a full location expression since no
756 register-offset pair is available. */
757 struct dw_loc_descr_struct *loc_list;
758
759 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
760 loc_list = build_cfa_loc (new_cfa, 0);
761 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
762 }
763
764 return cfi;
765 }
766
767 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
768
769 static void
770 def_cfa_1 (dw_cfa_location *new_cfa)
771 {
772 dw_cfi_ref cfi;
773
774 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
775 cur_trace->cfa_store.offset = new_cfa->offset;
776
777 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
778 if (cfi)
779 {
780 cur_row->cfa = *new_cfa;
781 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
782 ? cfi : NULL);
783
784 add_cfi (cfi);
785 }
786 }
787
788 /* Add the CFI for saving a register. REG is the CFA column number.
789 If SREG is -1, the register is saved at OFFSET from the CFA;
790 otherwise it is saved in SREG. */
791
792 static void
793 reg_save (unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
794 {
795 dw_fde_ref fde = cfun ? cfun->fde : NULL;
796 dw_cfi_ref cfi = new_cfi ();
797
798 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
799
800 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
801 if (fde
802 && fde->stack_realign
803 && sreg == INVALID_REGNUM)
804 {
805 cfi->dw_cfi_opc = DW_CFA_expression;
806 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
807 cfi->dw_cfi_oprnd2.dw_cfi_loc
808 = build_cfa_aligned_loc (&cur_row->cfa, offset,
809 fde->stack_realignment);
810 }
811 else if (sreg == INVALID_REGNUM)
812 {
813 if (need_data_align_sf_opcode (offset))
814 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
815 else if (reg & ~0x3f)
816 cfi->dw_cfi_opc = DW_CFA_offset_extended;
817 else
818 cfi->dw_cfi_opc = DW_CFA_offset;
819 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
820 }
821 else if (sreg == reg)
822 {
823 /* While we could emit something like DW_CFA_same_value or
824 DW_CFA_restore, we never expect to see something like that
825 in a prologue. This is more likely to be a bug. A backend
826 can always bypass this by using REG_CFA_RESTORE directly. */
827 gcc_unreachable ();
828 }
829 else
830 {
831 cfi->dw_cfi_opc = DW_CFA_register;
832 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
833 }
834
835 add_cfi (cfi);
836 update_row_reg_save (cur_row, reg, cfi);
837 }
838
839 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
840 and adjust data structures to match. */
841
842 static void
843 notice_args_size (rtx insn)
844 {
845 HOST_WIDE_INT args_size, delta;
846 rtx note;
847
848 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
849 if (note == NULL)
850 return;
851
852 args_size = INTVAL (XEXP (note, 0));
853 delta = args_size - cur_trace->end_true_args_size;
854 if (delta == 0)
855 return;
856
857 cur_trace->end_true_args_size = args_size;
858
859 /* If the CFA is computed off the stack pointer, then we must adjust
860 the computation of the CFA as well. */
861 if (cur_cfa->reg == dw_stack_pointer_regnum)
862 {
863 gcc_assert (!cur_cfa->indirect);
864
865 /* Convert a change in args_size (always a positive in the
866 direction of stack growth) to a change in stack pointer. */
867 #ifndef STACK_GROWS_DOWNWARD
868 delta = -delta;
869 #endif
870 cur_cfa->offset += delta;
871 }
872 }
873
874 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
875 data within the trace related to EH insns and args_size. */
876
877 static void
878 notice_eh_throw (rtx insn)
879 {
880 HOST_WIDE_INT args_size;
881
882 args_size = cur_trace->end_true_args_size;
883 if (cur_trace->eh_head == NULL)
884 {
885 cur_trace->eh_head = insn;
886 cur_trace->beg_delay_args_size = args_size;
887 cur_trace->end_delay_args_size = args_size;
888 }
889 else if (cur_trace->end_delay_args_size != args_size)
890 {
891 cur_trace->end_delay_args_size = args_size;
892
893 /* ??? If the CFA is the stack pointer, search backward for the last
894 CFI note and insert there. Given that the stack changed for the
895 args_size change, there *must* be such a note in between here and
896 the last eh insn. */
897 add_cfi_args_size (args_size);
898 }
899 }
900
901 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
902 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
903 used in places where rtl is prohibited. */
904
905 static inline unsigned
906 dwf_regno (const_rtx reg)
907 {
908 return DWARF_FRAME_REGNUM (REGNO (reg));
909 }
910
911 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
912
913 static bool
914 compare_reg_or_pc (rtx x, rtx y)
915 {
916 if (REG_P (x) && REG_P (y))
917 return REGNO (x) == REGNO (y);
918 return x == y;
919 }
920
921 /* Record SRC as being saved in DEST. DEST may be null to delete an
922 existing entry. SRC may be a register or PC_RTX. */
923
924 static void
925 record_reg_saved_in_reg (rtx dest, rtx src)
926 {
927 reg_saved_in_data *elt;
928 size_t i;
929
930 FOR_EACH_VEC_ELT (reg_saved_in_data, cur_trace->regs_saved_in_regs, i, elt)
931 if (compare_reg_or_pc (elt->orig_reg, src))
932 {
933 if (dest == NULL)
934 VEC_unordered_remove (reg_saved_in_data,
935 cur_trace->regs_saved_in_regs, i);
936 else
937 elt->saved_in_reg = dest;
938 return;
939 }
940
941 if (dest == NULL)
942 return;
943
944 elt = VEC_safe_push (reg_saved_in_data, heap,
945 cur_trace->regs_saved_in_regs, NULL);
946 elt->orig_reg = src;
947 elt->saved_in_reg = dest;
948 }
949
950 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
951 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
952
953 static void
954 queue_reg_save (rtx reg, rtx sreg, HOST_WIDE_INT offset)
955 {
956 queued_reg_save *q;
957 size_t i;
958
959 /* Duplicates waste space, but it's also necessary to remove them
960 for correctness, since the queue gets output in reverse order. */
961 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
962 if (compare_reg_or_pc (q->reg, reg))
963 goto found;
964
965 q = VEC_safe_push (queued_reg_save, heap, queued_reg_saves, NULL);
966
967 found:
968 q->reg = reg;
969 q->saved_reg = sreg;
970 q->cfa_offset = offset;
971 }
972
973 /* Output all the entries in QUEUED_REG_SAVES. */
974
975 static void
976 dwarf2out_flush_queued_reg_saves (void)
977 {
978 queued_reg_save *q;
979 size_t i;
980
981 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
982 {
983 unsigned int reg, sreg;
984
985 record_reg_saved_in_reg (q->saved_reg, q->reg);
986
987 if (q->reg == pc_rtx)
988 reg = DWARF_FRAME_RETURN_COLUMN;
989 else
990 reg = dwf_regno (q->reg);
991 if (q->saved_reg)
992 sreg = dwf_regno (q->saved_reg);
993 else
994 sreg = INVALID_REGNUM;
995 reg_save (reg, sreg, q->cfa_offset);
996 }
997
998 VEC_truncate (queued_reg_save, queued_reg_saves, 0);
999 }
1000
1001 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1002 location for? Or, does it clobber a register which we've previously
1003 said that some other register is saved in, and for which we now
1004 have a new location for? */
1005
1006 static bool
1007 clobbers_queued_reg_save (const_rtx insn)
1008 {
1009 queued_reg_save *q;
1010 size_t iq;
1011
1012 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, iq, q)
1013 {
1014 size_t ir;
1015 reg_saved_in_data *rir;
1016
1017 if (modified_in_p (q->reg, insn))
1018 return true;
1019
1020 FOR_EACH_VEC_ELT (reg_saved_in_data,
1021 cur_trace->regs_saved_in_regs, ir, rir)
1022 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1023 && modified_in_p (rir->saved_in_reg, insn))
1024 return true;
1025 }
1026
1027 return false;
1028 }
1029
1030 /* What register, if any, is currently saved in REG? */
1031
1032 static rtx
1033 reg_saved_in (rtx reg)
1034 {
1035 unsigned int regn = REGNO (reg);
1036 queued_reg_save *q;
1037 reg_saved_in_data *rir;
1038 size_t i;
1039
1040 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
1041 if (q->saved_reg && regn == REGNO (q->saved_reg))
1042 return q->reg;
1043
1044 FOR_EACH_VEC_ELT (reg_saved_in_data, cur_trace->regs_saved_in_regs, i, rir)
1045 if (regn == REGNO (rir->saved_in_reg))
1046 return rir->orig_reg;
1047
1048 return NULL_RTX;
1049 }
1050
1051 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1052
1053 static void
1054 dwarf2out_frame_debug_def_cfa (rtx pat)
1055 {
1056 memset (cur_cfa, 0, sizeof (*cur_cfa));
1057
1058 if (GET_CODE (pat) == PLUS)
1059 {
1060 cur_cfa->offset = INTVAL (XEXP (pat, 1));
1061 pat = XEXP (pat, 0);
1062 }
1063 if (MEM_P (pat))
1064 {
1065 cur_cfa->indirect = 1;
1066 pat = XEXP (pat, 0);
1067 if (GET_CODE (pat) == PLUS)
1068 {
1069 cur_cfa->base_offset = INTVAL (XEXP (pat, 1));
1070 pat = XEXP (pat, 0);
1071 }
1072 }
1073 /* ??? If this fails, we could be calling into the _loc functions to
1074 define a full expression. So far no port does that. */
1075 gcc_assert (REG_P (pat));
1076 cur_cfa->reg = dwf_regno (pat);
1077 }
1078
1079 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1080
1081 static void
1082 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1083 {
1084 rtx src, dest;
1085
1086 gcc_assert (GET_CODE (pat) == SET);
1087 dest = XEXP (pat, 0);
1088 src = XEXP (pat, 1);
1089
1090 switch (GET_CODE (src))
1091 {
1092 case PLUS:
1093 gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1094 cur_cfa->offset -= INTVAL (XEXP (src, 1));
1095 break;
1096
1097 case REG:
1098 break;
1099
1100 default:
1101 gcc_unreachable ();
1102 }
1103
1104 cur_cfa->reg = dwf_regno (dest);
1105 gcc_assert (cur_cfa->indirect == 0);
1106 }
1107
1108 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1109
1110 static void
1111 dwarf2out_frame_debug_cfa_offset (rtx set)
1112 {
1113 HOST_WIDE_INT offset;
1114 rtx src, addr, span;
1115 unsigned int sregno;
1116
1117 src = XEXP (set, 1);
1118 addr = XEXP (set, 0);
1119 gcc_assert (MEM_P (addr));
1120 addr = XEXP (addr, 0);
1121
1122 /* As documented, only consider extremely simple addresses. */
1123 switch (GET_CODE (addr))
1124 {
1125 case REG:
1126 gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1127 offset = -cur_cfa->offset;
1128 break;
1129 case PLUS:
1130 gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1131 offset = INTVAL (XEXP (addr, 1)) - cur_cfa->offset;
1132 break;
1133 default:
1134 gcc_unreachable ();
1135 }
1136
1137 if (src == pc_rtx)
1138 {
1139 span = NULL;
1140 sregno = DWARF_FRAME_RETURN_COLUMN;
1141 }
1142 else
1143 {
1144 span = targetm.dwarf_register_span (src);
1145 sregno = dwf_regno (src);
1146 }
1147
1148 /* ??? We'd like to use queue_reg_save, but we need to come up with
1149 a different flushing heuristic for epilogues. */
1150 if (!span)
1151 reg_save (sregno, INVALID_REGNUM, offset);
1152 else
1153 {
1154 /* We have a PARALLEL describing where the contents of SRC live.
1155 Queue register saves for each piece of the PARALLEL. */
1156 int par_index;
1157 int limit;
1158 HOST_WIDE_INT span_offset = offset;
1159
1160 gcc_assert (GET_CODE (span) == PARALLEL);
1161
1162 limit = XVECLEN (span, 0);
1163 for (par_index = 0; par_index < limit; par_index++)
1164 {
1165 rtx elem = XVECEXP (span, 0, par_index);
1166
1167 sregno = dwf_regno (src);
1168 reg_save (sregno, INVALID_REGNUM, span_offset);
1169 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1170 }
1171 }
1172 }
1173
1174 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1175
1176 static void
1177 dwarf2out_frame_debug_cfa_register (rtx set)
1178 {
1179 rtx src, dest;
1180 unsigned sregno, dregno;
1181
1182 src = XEXP (set, 1);
1183 dest = XEXP (set, 0);
1184
1185 record_reg_saved_in_reg (dest, src);
1186 if (src == pc_rtx)
1187 sregno = DWARF_FRAME_RETURN_COLUMN;
1188 else
1189 sregno = dwf_regno (src);
1190
1191 dregno = dwf_regno (dest);
1192
1193 /* ??? We'd like to use queue_reg_save, but we need to come up with
1194 a different flushing heuristic for epilogues. */
1195 reg_save (sregno, dregno, 0);
1196 }
1197
1198 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1199
1200 static void
1201 dwarf2out_frame_debug_cfa_expression (rtx set)
1202 {
1203 rtx src, dest, span;
1204 dw_cfi_ref cfi = new_cfi ();
1205 unsigned regno;
1206
1207 dest = SET_DEST (set);
1208 src = SET_SRC (set);
1209
1210 gcc_assert (REG_P (src));
1211 gcc_assert (MEM_P (dest));
1212
1213 span = targetm.dwarf_register_span (src);
1214 gcc_assert (!span);
1215
1216 regno = dwf_regno (src);
1217
1218 cfi->dw_cfi_opc = DW_CFA_expression;
1219 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1220 cfi->dw_cfi_oprnd2.dw_cfi_loc
1221 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1222 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1223
1224 /* ??? We'd like to use queue_reg_save, were the interface different,
1225 and, as above, we could manage flushing for epilogues. */
1226 add_cfi (cfi);
1227 update_row_reg_save (cur_row, regno, cfi);
1228 }
1229
1230 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1231
1232 static void
1233 dwarf2out_frame_debug_cfa_restore (rtx reg)
1234 {
1235 unsigned int regno = dwf_regno (reg);
1236
1237 add_cfi_restore (regno);
1238 update_row_reg_save (cur_row, regno, NULL);
1239 }
1240
1241 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1242 ??? Perhaps we should note in the CIE where windows are saved (instead of
1243 assuming 0(cfa)) and what registers are in the window. */
1244
1245 static void
1246 dwarf2out_frame_debug_cfa_window_save (void)
1247 {
1248 dw_cfi_ref cfi = new_cfi ();
1249
1250 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1251 add_cfi (cfi);
1252 }
1253
1254 /* Record call frame debugging information for an expression EXPR,
1255 which either sets SP or FP (adjusting how we calculate the frame
1256 address) or saves a register to the stack or another register.
1257 LABEL indicates the address of EXPR.
1258
1259 This function encodes a state machine mapping rtxes to actions on
1260 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1261 users need not read the source code.
1262
1263 The High-Level Picture
1264
1265 Changes in the register we use to calculate the CFA: Currently we
1266 assume that if you copy the CFA register into another register, we
1267 should take the other one as the new CFA register; this seems to
1268 work pretty well. If it's wrong for some target, it's simple
1269 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1270
1271 Changes in the register we use for saving registers to the stack:
1272 This is usually SP, but not always. Again, we deduce that if you
1273 copy SP into another register (and SP is not the CFA register),
1274 then the new register is the one we will be using for register
1275 saves. This also seems to work.
1276
1277 Register saves: There's not much guesswork about this one; if
1278 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1279 register save, and the register used to calculate the destination
1280 had better be the one we think we're using for this purpose.
1281 It's also assumed that a copy from a call-saved register to another
1282 register is saving that register if RTX_FRAME_RELATED_P is set on
1283 that instruction. If the copy is from a call-saved register to
1284 the *same* register, that means that the register is now the same
1285 value as in the caller.
1286
1287 Except: If the register being saved is the CFA register, and the
1288 offset is nonzero, we are saving the CFA, so we assume we have to
1289 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1290 the intent is to save the value of SP from the previous frame.
1291
1292 In addition, if a register has previously been saved to a different
1293 register,
1294
1295 Invariants / Summaries of Rules
1296
1297 cfa current rule for calculating the CFA. It usually
1298 consists of a register and an offset. This is
1299 actually stored in *cur_cfa, but abbreviated
1300 for the purposes of this documentation.
1301 cfa_store register used by prologue code to save things to the stack
1302 cfa_store.offset is the offset from the value of
1303 cfa_store.reg to the actual CFA
1304 cfa_temp register holding an integral value. cfa_temp.offset
1305 stores the value, which will be used to adjust the
1306 stack pointer. cfa_temp is also used like cfa_store,
1307 to track stores to the stack via fp or a temp reg.
1308
1309 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1310 with cfa.reg as the first operand changes the cfa.reg and its
1311 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1312 cfa_temp.offset.
1313
1314 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1315 expression yielding a constant. This sets cfa_temp.reg
1316 and cfa_temp.offset.
1317
1318 Rule 5: Create a new register cfa_store used to save items to the
1319 stack.
1320
1321 Rules 10-14: Save a register to the stack. Define offset as the
1322 difference of the original location and cfa_store's
1323 location (or cfa_temp's location if cfa_temp is used).
1324
1325 Rules 16-20: If AND operation happens on sp in prologue, we assume
1326 stack is realigned. We will use a group of DW_OP_XXX
1327 expressions to represent the location of the stored
1328 register instead of CFA+offset.
1329
1330 The Rules
1331
1332 "{a,b}" indicates a choice of a xor b.
1333 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1334
1335 Rule 1:
1336 (set <reg1> <reg2>:cfa.reg)
1337 effects: cfa.reg = <reg1>
1338 cfa.offset unchanged
1339 cfa_temp.reg = <reg1>
1340 cfa_temp.offset = cfa.offset
1341
1342 Rule 2:
1343 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1344 {<const_int>,<reg>:cfa_temp.reg}))
1345 effects: cfa.reg = sp if fp used
1346 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1347 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1348 if cfa_store.reg==sp
1349
1350 Rule 3:
1351 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1352 effects: cfa.reg = fp
1353 cfa_offset += +/- <const_int>
1354
1355 Rule 4:
1356 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1357 constraints: <reg1> != fp
1358 <reg1> != sp
1359 effects: cfa.reg = <reg1>
1360 cfa_temp.reg = <reg1>
1361 cfa_temp.offset = cfa.offset
1362
1363 Rule 5:
1364 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1365 constraints: <reg1> != fp
1366 <reg1> != sp
1367 effects: cfa_store.reg = <reg1>
1368 cfa_store.offset = cfa.offset - cfa_temp.offset
1369
1370 Rule 6:
1371 (set <reg> <const_int>)
1372 effects: cfa_temp.reg = <reg>
1373 cfa_temp.offset = <const_int>
1374
1375 Rule 7:
1376 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1377 effects: cfa_temp.reg = <reg1>
1378 cfa_temp.offset |= <const_int>
1379
1380 Rule 8:
1381 (set <reg> (high <exp>))
1382 effects: none
1383
1384 Rule 9:
1385 (set <reg> (lo_sum <exp> <const_int>))
1386 effects: cfa_temp.reg = <reg>
1387 cfa_temp.offset = <const_int>
1388
1389 Rule 10:
1390 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1391 effects: cfa_store.offset -= <const_int>
1392 cfa.offset = cfa_store.offset if cfa.reg == sp
1393 cfa.reg = sp
1394 cfa.base_offset = -cfa_store.offset
1395
1396 Rule 11:
1397 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1398 effects: cfa_store.offset += -/+ mode_size(mem)
1399 cfa.offset = cfa_store.offset if cfa.reg == sp
1400 cfa.reg = sp
1401 cfa.base_offset = -cfa_store.offset
1402
1403 Rule 12:
1404 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1405
1406 <reg2>)
1407 effects: cfa.reg = <reg1>
1408 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1409
1410 Rule 13:
1411 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1412 effects: cfa.reg = <reg1>
1413 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1414
1415 Rule 14:
1416 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1417 effects: cfa.reg = <reg1>
1418 cfa.base_offset = -cfa_temp.offset
1419 cfa_temp.offset -= mode_size(mem)
1420
1421 Rule 15:
1422 (set <reg> {unspec, unspec_volatile})
1423 effects: target-dependent
1424
1425 Rule 16:
1426 (set sp (and: sp <const_int>))
1427 constraints: cfa_store.reg == sp
1428 effects: cfun->fde.stack_realign = 1
1429 cfa_store.offset = 0
1430 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1431
1432 Rule 17:
1433 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1434 effects: cfa_store.offset += -/+ mode_size(mem)
1435
1436 Rule 18:
1437 (set (mem ({pre_inc, pre_dec} sp)) fp)
1438 constraints: fde->stack_realign == 1
1439 effects: cfa_store.offset = 0
1440 cfa.reg != HARD_FRAME_POINTER_REGNUM
1441
1442 Rule 19:
1443 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1444 constraints: fde->stack_realign == 1
1445 && cfa.offset == 0
1446 && cfa.indirect == 0
1447 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1448 effects: Use DW_CFA_def_cfa_expression to define cfa
1449 cfa.reg == fde->drap_reg */
1450
1451 static void
1452 dwarf2out_frame_debug_expr (rtx expr)
1453 {
1454 rtx src, dest, span;
1455 HOST_WIDE_INT offset;
1456 dw_fde_ref fde;
1457
1458 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1459 the PARALLEL independently. The first element is always processed if
1460 it is a SET. This is for backward compatibility. Other elements
1461 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1462 flag is set in them. */
1463 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1464 {
1465 int par_index;
1466 int limit = XVECLEN (expr, 0);
1467 rtx elem;
1468
1469 /* PARALLELs have strict read-modify-write semantics, so we
1470 ought to evaluate every rvalue before changing any lvalue.
1471 It's cumbersome to do that in general, but there's an
1472 easy approximation that is enough for all current users:
1473 handle register saves before register assignments. */
1474 if (GET_CODE (expr) == PARALLEL)
1475 for (par_index = 0; par_index < limit; par_index++)
1476 {
1477 elem = XVECEXP (expr, 0, par_index);
1478 if (GET_CODE (elem) == SET
1479 && MEM_P (SET_DEST (elem))
1480 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1481 dwarf2out_frame_debug_expr (elem);
1482 }
1483
1484 for (par_index = 0; par_index < limit; par_index++)
1485 {
1486 elem = XVECEXP (expr, 0, par_index);
1487 if (GET_CODE (elem) == SET
1488 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1489 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1490 dwarf2out_frame_debug_expr (elem);
1491 }
1492 return;
1493 }
1494
1495 gcc_assert (GET_CODE (expr) == SET);
1496
1497 src = SET_SRC (expr);
1498 dest = SET_DEST (expr);
1499
1500 if (REG_P (src))
1501 {
1502 rtx rsi = reg_saved_in (src);
1503 if (rsi)
1504 src = rsi;
1505 }
1506
1507 fde = cfun->fde;
1508
1509 switch (GET_CODE (dest))
1510 {
1511 case REG:
1512 switch (GET_CODE (src))
1513 {
1514 /* Setting FP from SP. */
1515 case REG:
1516 if (cur_cfa->reg == dwf_regno (src))
1517 {
1518 /* Rule 1 */
1519 /* Update the CFA rule wrt SP or FP. Make sure src is
1520 relative to the current CFA register.
1521
1522 We used to require that dest be either SP or FP, but the
1523 ARM copies SP to a temporary register, and from there to
1524 FP. So we just rely on the backends to only set
1525 RTX_FRAME_RELATED_P on appropriate insns. */
1526 cur_cfa->reg = dwf_regno (dest);
1527 cur_trace->cfa_temp.reg = cur_cfa->reg;
1528 cur_trace->cfa_temp.offset = cur_cfa->offset;
1529 }
1530 else
1531 {
1532 /* Saving a register in a register. */
1533 gcc_assert (!fixed_regs [REGNO (dest)]
1534 /* For the SPARC and its register window. */
1535 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1536
1537 /* After stack is aligned, we can only save SP in FP
1538 if drap register is used. In this case, we have
1539 to restore stack pointer with the CFA value and we
1540 don't generate this DWARF information. */
1541 if (fde
1542 && fde->stack_realign
1543 && REGNO (src) == STACK_POINTER_REGNUM)
1544 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1545 && fde->drap_reg != INVALID_REGNUM
1546 && cur_cfa->reg != dwf_regno (src));
1547 else
1548 queue_reg_save (src, dest, 0);
1549 }
1550 break;
1551
1552 case PLUS:
1553 case MINUS:
1554 case LO_SUM:
1555 if (dest == stack_pointer_rtx)
1556 {
1557 /* Rule 2 */
1558 /* Adjusting SP. */
1559 switch (GET_CODE (XEXP (src, 1)))
1560 {
1561 case CONST_INT:
1562 offset = INTVAL (XEXP (src, 1));
1563 break;
1564 case REG:
1565 gcc_assert (dwf_regno (XEXP (src, 1))
1566 == cur_trace->cfa_temp.reg);
1567 offset = cur_trace->cfa_temp.offset;
1568 break;
1569 default:
1570 gcc_unreachable ();
1571 }
1572
1573 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1574 {
1575 /* Restoring SP from FP in the epilogue. */
1576 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1577 cur_cfa->reg = dw_stack_pointer_regnum;
1578 }
1579 else if (GET_CODE (src) == LO_SUM)
1580 /* Assume we've set the source reg of the LO_SUM from sp. */
1581 ;
1582 else
1583 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1584
1585 if (GET_CODE (src) != MINUS)
1586 offset = -offset;
1587 if (cur_cfa->reg == dw_stack_pointer_regnum)
1588 cur_cfa->offset += offset;
1589 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1590 cur_trace->cfa_store.offset += offset;
1591 }
1592 else if (dest == hard_frame_pointer_rtx)
1593 {
1594 /* Rule 3 */
1595 /* Either setting the FP from an offset of the SP,
1596 or adjusting the FP */
1597 gcc_assert (frame_pointer_needed);
1598
1599 gcc_assert (REG_P (XEXP (src, 0))
1600 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1601 && CONST_INT_P (XEXP (src, 1)));
1602 offset = INTVAL (XEXP (src, 1));
1603 if (GET_CODE (src) != MINUS)
1604 offset = -offset;
1605 cur_cfa->offset += offset;
1606 cur_cfa->reg = dw_frame_pointer_regnum;
1607 }
1608 else
1609 {
1610 gcc_assert (GET_CODE (src) != MINUS);
1611
1612 /* Rule 4 */
1613 if (REG_P (XEXP (src, 0))
1614 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1615 && CONST_INT_P (XEXP (src, 1)))
1616 {
1617 /* Setting a temporary CFA register that will be copied
1618 into the FP later on. */
1619 offset = - INTVAL (XEXP (src, 1));
1620 cur_cfa->offset += offset;
1621 cur_cfa->reg = dwf_regno (dest);
1622 /* Or used to save regs to the stack. */
1623 cur_trace->cfa_temp.reg = cur_cfa->reg;
1624 cur_trace->cfa_temp.offset = cur_cfa->offset;
1625 }
1626
1627 /* Rule 5 */
1628 else if (REG_P (XEXP (src, 0))
1629 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1630 && XEXP (src, 1) == stack_pointer_rtx)
1631 {
1632 /* Setting a scratch register that we will use instead
1633 of SP for saving registers to the stack. */
1634 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1635 cur_trace->cfa_store.reg = dwf_regno (dest);
1636 cur_trace->cfa_store.offset
1637 = cur_cfa->offset - cur_trace->cfa_temp.offset;
1638 }
1639
1640 /* Rule 9 */
1641 else if (GET_CODE (src) == LO_SUM
1642 && CONST_INT_P (XEXP (src, 1)))
1643 {
1644 cur_trace->cfa_temp.reg = dwf_regno (dest);
1645 cur_trace->cfa_temp.offset = INTVAL (XEXP (src, 1));
1646 }
1647 else
1648 gcc_unreachable ();
1649 }
1650 break;
1651
1652 /* Rule 6 */
1653 case CONST_INT:
1654 cur_trace->cfa_temp.reg = dwf_regno (dest);
1655 cur_trace->cfa_temp.offset = INTVAL (src);
1656 break;
1657
1658 /* Rule 7 */
1659 case IOR:
1660 gcc_assert (REG_P (XEXP (src, 0))
1661 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1662 && CONST_INT_P (XEXP (src, 1)));
1663
1664 cur_trace->cfa_temp.reg = dwf_regno (dest);
1665 cur_trace->cfa_temp.offset |= INTVAL (XEXP (src, 1));
1666 break;
1667
1668 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1669 which will fill in all of the bits. */
1670 /* Rule 8 */
1671 case HIGH:
1672 break;
1673
1674 /* Rule 15 */
1675 case UNSPEC:
1676 case UNSPEC_VOLATILE:
1677 /* All unspecs should be represented by REG_CFA_* notes. */
1678 gcc_unreachable ();
1679 return;
1680
1681 /* Rule 16 */
1682 case AND:
1683 /* If this AND operation happens on stack pointer in prologue,
1684 we assume the stack is realigned and we extract the
1685 alignment. */
1686 if (fde && XEXP (src, 0) == stack_pointer_rtx)
1687 {
1688 /* We interpret reg_save differently with stack_realign set.
1689 Thus we must flush whatever we have queued first. */
1690 dwarf2out_flush_queued_reg_saves ();
1691
1692 gcc_assert (cur_trace->cfa_store.reg
1693 == dwf_regno (XEXP (src, 0)));
1694 fde->stack_realign = 1;
1695 fde->stack_realignment = INTVAL (XEXP (src, 1));
1696 cur_trace->cfa_store.offset = 0;
1697
1698 if (cur_cfa->reg != dw_stack_pointer_regnum
1699 && cur_cfa->reg != dw_frame_pointer_regnum)
1700 fde->drap_reg = cur_cfa->reg;
1701 }
1702 return;
1703
1704 default:
1705 gcc_unreachable ();
1706 }
1707 break;
1708
1709 case MEM:
1710
1711 /* Saving a register to the stack. Make sure dest is relative to the
1712 CFA register. */
1713 switch (GET_CODE (XEXP (dest, 0)))
1714 {
1715 /* Rule 10 */
1716 /* With a push. */
1717 case PRE_MODIFY:
1718 case POST_MODIFY:
1719 /* We can't handle variable size modifications. */
1720 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1721 == CONST_INT);
1722 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1723
1724 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1725 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1726
1727 cur_trace->cfa_store.offset += offset;
1728 if (cur_cfa->reg == dw_stack_pointer_regnum)
1729 cur_cfa->offset = cur_trace->cfa_store.offset;
1730
1731 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
1732 offset -= cur_trace->cfa_store.offset;
1733 else
1734 offset = -cur_trace->cfa_store.offset;
1735 break;
1736
1737 /* Rule 11 */
1738 case PRE_INC:
1739 case PRE_DEC:
1740 case POST_DEC:
1741 offset = GET_MODE_SIZE (GET_MODE (dest));
1742 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1743 offset = -offset;
1744
1745 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1746 == STACK_POINTER_REGNUM)
1747 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1748
1749 cur_trace->cfa_store.offset += offset;
1750
1751 /* Rule 18: If stack is aligned, we will use FP as a
1752 reference to represent the address of the stored
1753 regiser. */
1754 if (fde
1755 && fde->stack_realign
1756 && REG_P (src)
1757 && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
1758 {
1759 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
1760 cur_trace->cfa_store.offset = 0;
1761 }
1762
1763 if (cur_cfa->reg == dw_stack_pointer_regnum)
1764 cur_cfa->offset = cur_trace->cfa_store.offset;
1765
1766 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
1767 offset += -cur_trace->cfa_store.offset;
1768 else
1769 offset = -cur_trace->cfa_store.offset;
1770 break;
1771
1772 /* Rule 12 */
1773 /* With an offset. */
1774 case PLUS:
1775 case MINUS:
1776 case LO_SUM:
1777 {
1778 unsigned int regno;
1779
1780 gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
1781 && REG_P (XEXP (XEXP (dest, 0), 0)));
1782 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1783 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1784 offset = -offset;
1785
1786 regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
1787
1788 if (cur_cfa->reg == regno)
1789 offset -= cur_cfa->offset;
1790 else if (cur_trace->cfa_store.reg == regno)
1791 offset -= cur_trace->cfa_store.offset;
1792 else
1793 {
1794 gcc_assert (cur_trace->cfa_temp.reg == regno);
1795 offset -= cur_trace->cfa_temp.offset;
1796 }
1797 }
1798 break;
1799
1800 /* Rule 13 */
1801 /* Without an offset. */
1802 case REG:
1803 {
1804 unsigned int regno = dwf_regno (XEXP (dest, 0));
1805
1806 if (cur_cfa->reg == regno)
1807 offset = -cur_cfa->offset;
1808 else if (cur_trace->cfa_store.reg == regno)
1809 offset = -cur_trace->cfa_store.offset;
1810 else
1811 {
1812 gcc_assert (cur_trace->cfa_temp.reg == regno);
1813 offset = -cur_trace->cfa_temp.offset;
1814 }
1815 }
1816 break;
1817
1818 /* Rule 14 */
1819 case POST_INC:
1820 gcc_assert (cur_trace->cfa_temp.reg
1821 == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1822 offset = -cur_trace->cfa_temp.offset;
1823 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1824 break;
1825
1826 default:
1827 gcc_unreachable ();
1828 }
1829
1830 /* Rule 17 */
1831 /* If the source operand of this MEM operation is a memory,
1832 we only care how much stack grew. */
1833 if (MEM_P (src))
1834 break;
1835
1836 if (REG_P (src)
1837 && REGNO (src) != STACK_POINTER_REGNUM
1838 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1839 && dwf_regno (src) == cur_cfa->reg)
1840 {
1841 /* We're storing the current CFA reg into the stack. */
1842
1843 if (cur_cfa->offset == 0)
1844 {
1845 /* Rule 19 */
1846 /* If stack is aligned, putting CFA reg into stack means
1847 we can no longer use reg + offset to represent CFA.
1848 Here we use DW_CFA_def_cfa_expression instead. The
1849 result of this expression equals to the original CFA
1850 value. */
1851 if (fde
1852 && fde->stack_realign
1853 && cur_cfa->indirect == 0
1854 && cur_cfa->reg != dw_frame_pointer_regnum)
1855 {
1856 gcc_assert (fde->drap_reg == cur_cfa->reg);
1857
1858 cur_cfa->indirect = 1;
1859 cur_cfa->reg = dw_frame_pointer_regnum;
1860 cur_cfa->base_offset = offset;
1861 cur_cfa->offset = 0;
1862
1863 fde->drap_reg_saved = 1;
1864 break;
1865 }
1866
1867 /* If the source register is exactly the CFA, assume
1868 we're saving SP like any other register; this happens
1869 on the ARM. */
1870 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
1871 break;
1872 }
1873 else
1874 {
1875 /* Otherwise, we'll need to look in the stack to
1876 calculate the CFA. */
1877 rtx x = XEXP (dest, 0);
1878
1879 if (!REG_P (x))
1880 x = XEXP (x, 0);
1881 gcc_assert (REG_P (x));
1882
1883 cur_cfa->reg = dwf_regno (x);
1884 cur_cfa->base_offset = offset;
1885 cur_cfa->indirect = 1;
1886 break;
1887 }
1888 }
1889
1890 span = NULL;
1891 if (REG_P (src))
1892 span = targetm.dwarf_register_span (src);
1893 if (!span)
1894 queue_reg_save (src, NULL_RTX, offset);
1895 else
1896 {
1897 /* We have a PARALLEL describing where the contents of SRC live.
1898 Queue register saves for each piece of the PARALLEL. */
1899 int par_index;
1900 int limit;
1901 HOST_WIDE_INT span_offset = offset;
1902
1903 gcc_assert (GET_CODE (span) == PARALLEL);
1904
1905 limit = XVECLEN (span, 0);
1906 for (par_index = 0; par_index < limit; par_index++)
1907 {
1908 rtx elem = XVECEXP (span, 0, par_index);
1909 queue_reg_save (elem, NULL_RTX, span_offset);
1910 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1911 }
1912 }
1913 break;
1914
1915 default:
1916 gcc_unreachable ();
1917 }
1918 }
1919
1920 /* Record call frame debugging information for INSN, which either sets
1921 SP or FP (adjusting how we calculate the frame address) or saves a
1922 register to the stack. */
1923
1924 static void
1925 dwarf2out_frame_debug (rtx insn)
1926 {
1927 rtx note, n;
1928 bool handled_one = false;
1929
1930 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1931 switch (REG_NOTE_KIND (note))
1932 {
1933 case REG_FRAME_RELATED_EXPR:
1934 insn = XEXP (note, 0);
1935 goto do_frame_expr;
1936
1937 case REG_CFA_DEF_CFA:
1938 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
1939 handled_one = true;
1940 break;
1941
1942 case REG_CFA_ADJUST_CFA:
1943 n = XEXP (note, 0);
1944 if (n == NULL)
1945 {
1946 n = PATTERN (insn);
1947 if (GET_CODE (n) == PARALLEL)
1948 n = XVECEXP (n, 0, 0);
1949 }
1950 dwarf2out_frame_debug_adjust_cfa (n);
1951 handled_one = true;
1952 break;
1953
1954 case REG_CFA_OFFSET:
1955 n = XEXP (note, 0);
1956 if (n == NULL)
1957 n = single_set (insn);
1958 dwarf2out_frame_debug_cfa_offset (n);
1959 handled_one = true;
1960 break;
1961
1962 case REG_CFA_REGISTER:
1963 n = XEXP (note, 0);
1964 if (n == NULL)
1965 {
1966 n = PATTERN (insn);
1967 if (GET_CODE (n) == PARALLEL)
1968 n = XVECEXP (n, 0, 0);
1969 }
1970 dwarf2out_frame_debug_cfa_register (n);
1971 handled_one = true;
1972 break;
1973
1974 case REG_CFA_EXPRESSION:
1975 n = XEXP (note, 0);
1976 if (n == NULL)
1977 n = single_set (insn);
1978 dwarf2out_frame_debug_cfa_expression (n);
1979 handled_one = true;
1980 break;
1981
1982 case REG_CFA_RESTORE:
1983 n = XEXP (note, 0);
1984 if (n == NULL)
1985 {
1986 n = PATTERN (insn);
1987 if (GET_CODE (n) == PARALLEL)
1988 n = XVECEXP (n, 0, 0);
1989 n = XEXP (n, 0);
1990 }
1991 dwarf2out_frame_debug_cfa_restore (n);
1992 handled_one = true;
1993 break;
1994
1995 case REG_CFA_SET_VDRAP:
1996 n = XEXP (note, 0);
1997 if (REG_P (n))
1998 {
1999 dw_fde_ref fde = cfun->fde;
2000 if (fde)
2001 {
2002 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2003 if (REG_P (n))
2004 fde->vdrap_reg = dwf_regno (n);
2005 }
2006 }
2007 handled_one = true;
2008 break;
2009
2010 case REG_CFA_WINDOW_SAVE:
2011 dwarf2out_frame_debug_cfa_window_save ();
2012 handled_one = true;
2013 break;
2014
2015 case REG_CFA_FLUSH_QUEUE:
2016 /* The actual flush happens elsewhere. */
2017 handled_one = true;
2018 break;
2019
2020 default:
2021 break;
2022 }
2023
2024 if (!handled_one)
2025 {
2026 insn = PATTERN (insn);
2027 do_frame_expr:
2028 dwarf2out_frame_debug_expr (insn);
2029
2030 /* Check again. A parallel can save and update the same register.
2031 We could probably check just once, here, but this is safer than
2032 removing the check at the start of the function. */
2033 if (clobbers_queued_reg_save (insn))
2034 dwarf2out_flush_queued_reg_saves ();
2035 }
2036 }
2037
2038 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2039
2040 static void
2041 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2042 {
2043 size_t i, n_old, n_new, n_max;
2044 dw_cfi_ref cfi;
2045
2046 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2047 add_cfi (new_row->cfa_cfi);
2048 else
2049 {
2050 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2051 if (cfi)
2052 add_cfi (cfi);
2053 }
2054
2055 n_old = VEC_length (dw_cfi_ref, old_row->reg_save);
2056 n_new = VEC_length (dw_cfi_ref, new_row->reg_save);
2057 n_max = MAX (n_old, n_new);
2058
2059 for (i = 0; i < n_max; ++i)
2060 {
2061 dw_cfi_ref r_old = NULL, r_new = NULL;
2062
2063 if (i < n_old)
2064 r_old = VEC_index (dw_cfi_ref, old_row->reg_save, i);
2065 if (i < n_new)
2066 r_new = VEC_index (dw_cfi_ref, new_row->reg_save, i);
2067
2068 if (r_old == r_new)
2069 ;
2070 else if (r_new == NULL)
2071 add_cfi_restore (i);
2072 else if (!cfi_equal_p (r_old, r_new))
2073 add_cfi (r_new);
2074 }
2075 }
2076
2077 /* Examine CFI and return true if a cfi label and set_loc is needed
2078 beforehand. Even when generating CFI assembler instructions, we
2079 still have to add the cfi to the list so that lookup_cfa_1 works
2080 later on. When -g2 and above we even need to force emitting of
2081 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2082 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2083 and so don't use convert_cfa_to_fb_loc_list. */
2084
2085 static bool
2086 cfi_label_required_p (dw_cfi_ref cfi)
2087 {
2088 if (!dwarf2out_do_cfi_asm ())
2089 return true;
2090
2091 if (dwarf_version == 2
2092 && debug_info_level > DINFO_LEVEL_TERSE
2093 && (write_symbols == DWARF2_DEBUG
2094 || write_symbols == VMS_AND_DWARF2_DEBUG))
2095 {
2096 switch (cfi->dw_cfi_opc)
2097 {
2098 case DW_CFA_def_cfa_offset:
2099 case DW_CFA_def_cfa_offset_sf:
2100 case DW_CFA_def_cfa_register:
2101 case DW_CFA_def_cfa:
2102 case DW_CFA_def_cfa_sf:
2103 case DW_CFA_def_cfa_expression:
2104 case DW_CFA_restore_state:
2105 return true;
2106 default:
2107 return false;
2108 }
2109 }
2110 return false;
2111 }
2112
2113 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2114 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2115 necessary. */
2116 static void
2117 add_cfis_to_fde (void)
2118 {
2119 dw_fde_ref fde = cfun->fde;
2120 rtx insn, next;
2121 /* We always start with a function_begin label. */
2122 bool first = false;
2123
2124 for (insn = get_insns (); insn; insn = next)
2125 {
2126 next = NEXT_INSN (insn);
2127
2128 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2129 {
2130 fde->dw_fde_switch_cfi_index
2131 = VEC_length (dw_cfi_ref, fde->dw_fde_cfi);
2132 /* Don't attempt to advance_loc4 between labels
2133 in different sections. */
2134 first = true;
2135 }
2136
2137 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2138 {
2139 bool required = cfi_label_required_p (NOTE_CFI (insn));
2140 while (next)
2141 if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2142 {
2143 required |= cfi_label_required_p (NOTE_CFI (next));
2144 next = NEXT_INSN (next);
2145 }
2146 else if (active_insn_p (next)
2147 || (NOTE_P (next) && (NOTE_KIND (next)
2148 == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2149 break;
2150 else
2151 next = NEXT_INSN (next);
2152 if (required)
2153 {
2154 int num = dwarf2out_cfi_label_num;
2155 const char *label = dwarf2out_cfi_label ();
2156 dw_cfi_ref xcfi;
2157 rtx tmp;
2158
2159 /* Set the location counter to the new label. */
2160 xcfi = new_cfi ();
2161 xcfi->dw_cfi_opc = (first ? DW_CFA_set_loc
2162 : DW_CFA_advance_loc4);
2163 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2164 VEC_safe_push (dw_cfi_ref, gc, fde->dw_fde_cfi, xcfi);
2165
2166 tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2167 NOTE_LABEL_NUMBER (tmp) = num;
2168 }
2169
2170 do
2171 {
2172 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2173 VEC_safe_push (dw_cfi_ref, gc, fde->dw_fde_cfi,
2174 NOTE_CFI (insn));
2175 insn = NEXT_INSN (insn);
2176 }
2177 while (insn != next);
2178 first = false;
2179 }
2180 }
2181 }
2182
2183 /* If LABEL is the start of a trace, then initialize the state of that
2184 trace from CUR_TRACE and CUR_ROW. */
2185
2186 static void
2187 maybe_record_trace_start (rtx start, rtx origin)
2188 {
2189 dw_trace_info *ti;
2190 HOST_WIDE_INT args_size;
2191
2192 ti = get_trace_info (start);
2193 gcc_assert (ti != NULL);
2194
2195 if (dump_file)
2196 {
2197 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
2198 cur_trace->id, ti->id,
2199 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2200 (origin ? INSN_UID (origin) : 0));
2201 }
2202
2203 args_size = cur_trace->end_true_args_size;
2204 if (ti->beg_row == NULL)
2205 {
2206 /* This is the first time we've encountered this trace. Propagate
2207 state across the edge and push the trace onto the work list. */
2208 ti->beg_row = copy_cfi_row (cur_row);
2209 ti->beg_true_args_size = args_size;
2210
2211 ti->cfa_store = cur_trace->cfa_store;
2212 ti->cfa_temp = cur_trace->cfa_temp;
2213 ti->regs_saved_in_regs = VEC_copy (reg_saved_in_data, heap,
2214 cur_trace->regs_saved_in_regs);
2215
2216 VEC_safe_push (dw_trace_info_ref, heap, trace_work_list, ti);
2217
2218 if (dump_file)
2219 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2220 }
2221 else
2222 {
2223
2224 /* We ought to have the same state incoming to a given trace no
2225 matter how we arrive at the trace. Anything else means we've
2226 got some kind of optimization error. */
2227 gcc_checking_assert (cfi_row_equal_p (cur_row, ti->beg_row));
2228
2229 /* The args_size is allowed to conflict if it isn't actually used. */
2230 if (ti->beg_true_args_size != args_size)
2231 ti->args_size_undefined = true;
2232 }
2233 }
2234
2235 /* Similarly, but handle the args_size and CFA reset across EH
2236 and non-local goto edges. */
2237
2238 static void
2239 maybe_record_trace_start_abnormal (rtx start, rtx origin)
2240 {
2241 HOST_WIDE_INT save_args_size, delta;
2242 dw_cfa_location save_cfa;
2243
2244 save_args_size = cur_trace->end_true_args_size;
2245 if (save_args_size == 0)
2246 {
2247 maybe_record_trace_start (start, origin);
2248 return;
2249 }
2250
2251 delta = -save_args_size;
2252 cur_trace->end_true_args_size = 0;
2253
2254 save_cfa = cur_row->cfa;
2255 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2256 {
2257 /* Convert a change in args_size (always a positive in the
2258 direction of stack growth) to a change in stack pointer. */
2259 #ifndef STACK_GROWS_DOWNWARD
2260 delta = -delta;
2261 #endif
2262 cur_row->cfa.offset += delta;
2263 }
2264
2265 maybe_record_trace_start (start, origin);
2266
2267 cur_trace->end_true_args_size = save_args_size;
2268 cur_row->cfa = save_cfa;
2269 }
2270
2271 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2272 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2273
2274 static void
2275 create_trace_edges (rtx insn)
2276 {
2277 rtx tmp, lab;
2278 int i, n;
2279
2280 if (JUMP_P (insn))
2281 {
2282 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2283 return;
2284
2285 if (tablejump_p (insn, NULL, &tmp))
2286 {
2287 rtvec vec;
2288
2289 tmp = PATTERN (tmp);
2290 vec = XVEC (tmp, GET_CODE (tmp) == ADDR_DIFF_VEC);
2291
2292 n = GET_NUM_ELEM (vec);
2293 for (i = 0; i < n; ++i)
2294 {
2295 lab = XEXP (RTVEC_ELT (vec, i), 0);
2296 maybe_record_trace_start (lab, insn);
2297 }
2298 }
2299 else if (computed_jump_p (insn))
2300 {
2301 for (lab = forced_labels; lab; lab = XEXP (lab, 1))
2302 maybe_record_trace_start (XEXP (lab, 0), insn);
2303 }
2304 else if (returnjump_p (insn))
2305 ;
2306 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2307 {
2308 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2309 for (i = 0; i < n; ++i)
2310 {
2311 lab = XEXP (ASM_OPERANDS_LABEL (tmp, i), 0);
2312 maybe_record_trace_start (lab, insn);
2313 }
2314 }
2315 else
2316 {
2317 lab = JUMP_LABEL (insn);
2318 gcc_assert (lab != NULL);
2319 maybe_record_trace_start (lab, insn);
2320 }
2321 }
2322 else if (CALL_P (insn))
2323 {
2324 /* Sibling calls don't have edges inside this function. */
2325 if (SIBLING_CALL_P (insn))
2326 return;
2327
2328 /* Process non-local goto edges. */
2329 if (can_nonlocal_goto (insn))
2330 for (lab = nonlocal_goto_handler_labels; lab; lab = XEXP (lab, 1))
2331 maybe_record_trace_start_abnormal (XEXP (lab, 0), insn);
2332 }
2333 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2334 {
2335 rtx seq = PATTERN (insn);
2336 int i, n = XVECLEN (seq, 0);
2337 for (i = 0; i < n; ++i)
2338 create_trace_edges (XVECEXP (seq, 0, i));
2339 return;
2340 }
2341
2342 /* Process EH edges. */
2343 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2344 {
2345 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2346 if (lp)
2347 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2348 }
2349 }
2350
2351 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2352
2353 static void
2354 scan_insn_after (rtx insn)
2355 {
2356 if (RTX_FRAME_RELATED_P (insn))
2357 dwarf2out_frame_debug (insn);
2358 notice_args_size (insn);
2359 }
2360
2361 /* Scan the trace beginning at INSN and create the CFI notes for the
2362 instructions therein. */
2363
2364 static void
2365 scan_trace (dw_trace_info *trace)
2366 {
2367 rtx prev, insn = trace->head;
2368 dw_cfa_location this_cfa;
2369
2370 if (dump_file)
2371 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2372 trace->id, rtx_name[(int) GET_CODE (insn)],
2373 INSN_UID (insn));
2374
2375 trace->end_row = copy_cfi_row (trace->beg_row);
2376 trace->end_true_args_size = trace->beg_true_args_size;
2377
2378 cur_trace = trace;
2379 cur_row = trace->end_row;
2380
2381 this_cfa = cur_row->cfa;
2382 cur_cfa = &this_cfa;
2383
2384 for (prev = insn, insn = NEXT_INSN (insn);
2385 insn;
2386 prev = insn, insn = NEXT_INSN (insn))
2387 {
2388 rtx control;
2389
2390 /* Do everything that happens "before" the insn. */
2391 add_cfi_insn = prev;
2392
2393 /* Notice the end of a trace. */
2394 if (BARRIER_P (insn))
2395 {
2396 /* Don't bother saving the unneeded queued registers at all. */
2397 VEC_truncate (queued_reg_save, queued_reg_saves, 0);
2398 break;
2399 }
2400 if (save_point_p (insn))
2401 {
2402 /* Propagate across fallthru edges. */
2403 dwarf2out_flush_queued_reg_saves ();
2404 maybe_record_trace_start (insn, NULL);
2405 break;
2406 }
2407
2408 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2409 continue;
2410
2411 /* Handle all changes to the row state. Sequences require special
2412 handling for the positioning of the notes. */
2413 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2414 {
2415 rtx elt, pat = PATTERN (insn);
2416 int i, n = XVECLEN (pat, 0);
2417
2418 control = XVECEXP (pat, 0, 0);
2419 if (can_throw_internal (control))
2420 notice_eh_throw (control);
2421 dwarf2out_flush_queued_reg_saves ();
2422
2423 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
2424 {
2425 /* ??? Hopefully multiple delay slots are not annulled. */
2426 gcc_assert (n == 2);
2427 gcc_assert (!RTX_FRAME_RELATED_P (control));
2428 gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2429
2430 elt = XVECEXP (pat, 0, 1);
2431
2432 /* If ELT is an instruction from target of an annulled branch,
2433 the effects are for the target only and so the args_size
2434 and CFA along the current path shouldn't change. */
2435 if (INSN_FROM_TARGET_P (elt))
2436 {
2437 HOST_WIDE_INT restore_args_size;
2438 cfi_vec save_row_reg_save;
2439
2440 add_cfi_insn = NULL;
2441 restore_args_size = cur_trace->end_true_args_size;
2442 cur_cfa = &cur_row->cfa;
2443 save_row_reg_save = VEC_copy (dw_cfi_ref, gc, cur_row->reg_save);
2444
2445 scan_insn_after (elt);
2446
2447 /* ??? Should we instead save the entire row state? */
2448 gcc_assert (!VEC_length (queued_reg_save, queued_reg_saves));
2449
2450 create_trace_edges (control);
2451
2452 cur_trace->end_true_args_size = restore_args_size;
2453 cur_row->cfa = this_cfa;
2454 cur_row->reg_save = save_row_reg_save;
2455 cur_cfa = &this_cfa;
2456 continue;
2457 }
2458 }
2459
2460 /* The insns in the delay slot should all be considered to happen
2461 "before" a call insn. Consider a call with a stack pointer
2462 adjustment in the delay slot. The backtrace from the callee
2463 should include the sp adjustment. Unfortunately, that leaves
2464 us with an unavoidable unwinding error exactly at the call insn
2465 itself. For jump insns we'd prefer to avoid this error by
2466 placing the notes after the sequence. */
2467 if (JUMP_P (control))
2468 add_cfi_insn = insn;
2469
2470 for (i = 1; i < n; ++i)
2471 {
2472 elt = XVECEXP (pat, 0, i);
2473 scan_insn_after (elt);
2474 }
2475
2476 /* Make sure any register saves are visible at the jump target. */
2477 dwarf2out_flush_queued_reg_saves ();
2478 any_cfis_emitted = false;
2479
2480 /* However, if there is some adjustment on the call itself, e.g.
2481 a call_pop, that action should be considered to happen after
2482 the call returns. */
2483 add_cfi_insn = insn;
2484 scan_insn_after (control);
2485 }
2486 else
2487 {
2488 /* Flush data before calls and jumps, and of course if necessary. */
2489 if (can_throw_internal (insn))
2490 {
2491 notice_eh_throw (insn);
2492 dwarf2out_flush_queued_reg_saves ();
2493 }
2494 else if (!NONJUMP_INSN_P (insn)
2495 || clobbers_queued_reg_save (insn)
2496 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2497 dwarf2out_flush_queued_reg_saves ();
2498 any_cfis_emitted = false;
2499
2500 add_cfi_insn = insn;
2501 scan_insn_after (insn);
2502 control = insn;
2503 }
2504
2505 /* Between frame-related-p and args_size we might have otherwise
2506 emitted two cfa adjustments. Do it now. */
2507 def_cfa_1 (&this_cfa);
2508
2509 /* Minimize the number of advances by emitting the entire queue
2510 once anything is emitted. */
2511 if (any_cfis_emitted
2512 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2513 dwarf2out_flush_queued_reg_saves ();
2514
2515 /* Note that a test for control_flow_insn_p does exactly the
2516 same tests as are done to actually create the edges. So
2517 always call the routine and let it not create edges for
2518 non-control-flow insns. */
2519 create_trace_edges (control);
2520 }
2521
2522 add_cfi_insn = NULL;
2523 cur_row = NULL;
2524 cur_trace = NULL;
2525 cur_cfa = NULL;
2526 }
2527
2528 /* Scan the function and create the initial set of CFI notes. */
2529
2530 static void
2531 create_cfi_notes (void)
2532 {
2533 dw_trace_info *ti;
2534
2535 gcc_checking_assert (queued_reg_saves == NULL);
2536 gcc_checking_assert (trace_work_list == NULL);
2537
2538 /* Always begin at the entry trace. */
2539 ti = VEC_index (dw_trace_info, trace_info, 0);
2540 scan_trace (ti);
2541
2542 while (!VEC_empty (dw_trace_info_ref, trace_work_list))
2543 {
2544 ti = VEC_pop (dw_trace_info_ref, trace_work_list);
2545 scan_trace (ti);
2546 }
2547
2548 VEC_free (queued_reg_save, heap, queued_reg_saves);
2549 VEC_free (dw_trace_info_ref, heap, trace_work_list);
2550 }
2551
2552 /* Return the insn before the first NOTE_INSN_CFI after START. */
2553
2554 static rtx
2555 before_next_cfi_note (rtx start)
2556 {
2557 rtx prev = start;
2558 while (start)
2559 {
2560 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2561 return prev;
2562 prev = start;
2563 start = NEXT_INSN (start);
2564 }
2565 gcc_unreachable ();
2566 }
2567
2568 /* Insert CFI notes between traces to properly change state between them. */
2569
2570 static void
2571 connect_traces (void)
2572 {
2573 unsigned i, n = VEC_length (dw_trace_info, trace_info);
2574 dw_trace_info *prev_ti, *ti;
2575
2576 /* ??? Ideally, we should have both queued and processed every trace.
2577 However the current representation of constant pools on various targets
2578 is indistinguishable from unreachable code. Assume for the moment that
2579 we can simply skip over such traces. */
2580 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2581 these are not "real" instructions, and should not be considered.
2582 This could be generically useful for tablejump data as well. */
2583 /* Remove all unprocessed traces from the list. */
2584 for (i = n - 1; i > 0; --i)
2585 {
2586 ti = VEC_index (dw_trace_info, trace_info, i);
2587 if (ti->beg_row == NULL)
2588 {
2589 VEC_ordered_remove (dw_trace_info, trace_info, i);
2590 n -= 1;
2591 }
2592 else
2593 gcc_assert (ti->end_row != NULL);
2594 }
2595
2596 /* Work from the end back to the beginning. This lets us easily insert
2597 remember/restore_state notes in the correct order wrt other notes. */
2598 prev_ti = VEC_index (dw_trace_info, trace_info, n - 1);
2599 for (i = n - 1; i > 0; --i)
2600 {
2601 dw_cfi_row *old_row;
2602
2603 ti = prev_ti;
2604 prev_ti = VEC_index (dw_trace_info, trace_info, i - 1);
2605
2606 add_cfi_insn = ti->head;
2607
2608 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2609 for the portion of the function in the alternate text
2610 section. The row state at the very beginning of that
2611 new FDE will be exactly the row state from the CIE. */
2612 if (ti->switch_sections)
2613 old_row = cie_cfi_row;
2614 else
2615 {
2616 old_row = prev_ti->end_row;
2617 /* If there's no change from the previous end state, fine. */
2618 if (cfi_row_equal_p (old_row, ti->beg_row))
2619 ;
2620 /* Otherwise check for the common case of sharing state with
2621 the beginning of an epilogue, but not the end. Insert
2622 remember/restore opcodes in that case. */
2623 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2624 {
2625 dw_cfi_ref cfi;
2626
2627 /* Note that if we blindly insert the remember at the
2628 start of the trace, we can wind up increasing the
2629 size of the unwind info due to extra advance opcodes.
2630 Instead, put the remember immediately before the next
2631 state change. We know there must be one, because the
2632 state at the beginning and head of the trace differ. */
2633 add_cfi_insn = before_next_cfi_note (prev_ti->head);
2634 cfi = new_cfi ();
2635 cfi->dw_cfi_opc = DW_CFA_remember_state;
2636 add_cfi (cfi);
2637
2638 add_cfi_insn = ti->head;
2639 cfi = new_cfi ();
2640 cfi->dw_cfi_opc = DW_CFA_restore_state;
2641 add_cfi (cfi);
2642
2643 old_row = prev_ti->beg_row;
2644 }
2645 /* Otherwise, we'll simply change state from the previous end. */
2646 }
2647
2648 change_cfi_row (old_row, ti->beg_row);
2649
2650 if (dump_file && add_cfi_insn != ti->head)
2651 {
2652 rtx note;
2653
2654 fprintf (dump_file, "Fixup between trace %u and %u:\n",
2655 prev_ti->id, ti->id);
2656
2657 note = ti->head;
2658 do
2659 {
2660 note = NEXT_INSN (note);
2661 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2662 output_cfi_directive (dump_file, NOTE_CFI (note));
2663 }
2664 while (note != add_cfi_insn);
2665 }
2666 }
2667
2668 /* Connect args_size between traces that have can_throw_internal insns. */
2669 if (cfun->eh->lp_array != NULL)
2670 {
2671 HOST_WIDE_INT prev_args_size = 0;
2672
2673 for (i = 0; i < n; ++i)
2674 {
2675 ti = VEC_index (dw_trace_info, trace_info, i);
2676
2677 if (ti->switch_sections)
2678 prev_args_size = 0;
2679 if (ti->eh_head == NULL)
2680 continue;
2681 gcc_assert (!ti->args_size_undefined);
2682
2683 if (ti->beg_delay_args_size != prev_args_size)
2684 {
2685 /* ??? Search back to previous CFI note. */
2686 add_cfi_insn = PREV_INSN (ti->eh_head);
2687 add_cfi_args_size (ti->beg_delay_args_size);
2688 }
2689
2690 prev_args_size = ti->end_delay_args_size;
2691 }
2692 }
2693 }
2694
2695 /* Set up the pseudo-cfg of instruction traces, as described at the
2696 block comment at the top of the file. */
2697
2698 static void
2699 create_pseudo_cfg (void)
2700 {
2701 bool saw_barrier, switch_sections;
2702 dw_trace_info *ti;
2703 rtx insn;
2704 unsigned i;
2705
2706 /* The first trace begins at the start of the function,
2707 and begins with the CIE row state. */
2708 trace_info = VEC_alloc (dw_trace_info, heap, 16);
2709 ti = VEC_quick_push (dw_trace_info, trace_info, NULL);
2710
2711 memset (ti, 0, sizeof (*ti));
2712 ti->head = get_insns ();
2713 ti->beg_row = cie_cfi_row;
2714 ti->cfa_store = cie_cfi_row->cfa;
2715 ti->cfa_temp.reg = INVALID_REGNUM;
2716 if (cie_return_save)
2717 VEC_safe_push (reg_saved_in_data, heap,
2718 ti->regs_saved_in_regs, cie_return_save);
2719
2720 /* Walk all the insns, collecting start of trace locations. */
2721 saw_barrier = false;
2722 switch_sections = false;
2723 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2724 {
2725 if (BARRIER_P (insn))
2726 saw_barrier = true;
2727 else if (NOTE_P (insn)
2728 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2729 {
2730 /* We should have just seen a barrier. */
2731 gcc_assert (saw_barrier);
2732 switch_sections = true;
2733 }
2734 /* Watch out for save_point notes between basic blocks.
2735 In particular, a note after a barrier. Do not record these,
2736 delaying trace creation until the label. */
2737 else if (save_point_p (insn)
2738 && (LABEL_P (insn) || !saw_barrier))
2739 {
2740 ti = VEC_safe_push (dw_trace_info, heap, trace_info, NULL);
2741 memset (ti, 0, sizeof (*ti));
2742 ti->head = insn;
2743 ti->switch_sections = switch_sections;
2744 ti->id = VEC_length (dw_trace_info, trace_info) - 1;
2745
2746 saw_barrier = false;
2747 switch_sections = false;
2748 }
2749 }
2750
2751 /* Create the trace index after we've finished building trace_info,
2752 avoiding stale pointer problems due to reallocation. */
2753 trace_index = htab_create (VEC_length (dw_trace_info, trace_info),
2754 dw_trace_info_hash, dw_trace_info_eq, NULL);
2755 FOR_EACH_VEC_ELT (dw_trace_info, trace_info, i, ti)
2756 {
2757 void **slot;
2758
2759 if (dump_file)
2760 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", i,
2761 rtx_name[(int) GET_CODE (ti->head)], INSN_UID (ti->head),
2762 ti->switch_sections ? " (section switch)" : "");
2763
2764 slot = htab_find_slot_with_hash (trace_index, ti,
2765 INSN_UID (ti->head), INSERT);
2766 gcc_assert (*slot == NULL);
2767 *slot = (void *) ti;
2768 }
2769 }
2770
2771 /* Record the initial position of the return address. RTL is
2772 INCOMING_RETURN_ADDR_RTX. */
2773
2774 static void
2775 initial_return_save (rtx rtl)
2776 {
2777 unsigned int reg = INVALID_REGNUM;
2778 HOST_WIDE_INT offset = 0;
2779
2780 switch (GET_CODE (rtl))
2781 {
2782 case REG:
2783 /* RA is in a register. */
2784 reg = dwf_regno (rtl);
2785 break;
2786
2787 case MEM:
2788 /* RA is on the stack. */
2789 rtl = XEXP (rtl, 0);
2790 switch (GET_CODE (rtl))
2791 {
2792 case REG:
2793 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2794 offset = 0;
2795 break;
2796
2797 case PLUS:
2798 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2799 offset = INTVAL (XEXP (rtl, 1));
2800 break;
2801
2802 case MINUS:
2803 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2804 offset = -INTVAL (XEXP (rtl, 1));
2805 break;
2806
2807 default:
2808 gcc_unreachable ();
2809 }
2810
2811 break;
2812
2813 case PLUS:
2814 /* The return address is at some offset from any value we can
2815 actually load. For instance, on the SPARC it is in %i7+8. Just
2816 ignore the offset for now; it doesn't matter for unwinding frames. */
2817 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
2818 initial_return_save (XEXP (rtl, 0));
2819 return;
2820
2821 default:
2822 gcc_unreachable ();
2823 }
2824
2825 if (reg != DWARF_FRAME_RETURN_COLUMN)
2826 {
2827 if (reg != INVALID_REGNUM)
2828 record_reg_saved_in_reg (rtl, pc_rtx);
2829 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
2830 }
2831 }
2832
2833 static void
2834 create_cie_data (void)
2835 {
2836 dw_cfa_location loc;
2837 dw_trace_info cie_trace;
2838
2839 dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
2840 dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2841
2842 memset (&cie_trace, 0, sizeof(cie_trace));
2843 cur_trace = &cie_trace;
2844
2845 add_cfi_vec = &cie_cfi_vec;
2846 cie_cfi_row = cur_row = new_cfi_row ();
2847
2848 /* On entry, the Canonical Frame Address is at SP. */
2849 memset(&loc, 0, sizeof (loc));
2850 loc.reg = dw_stack_pointer_regnum;
2851 loc.offset = INCOMING_FRAME_SP_OFFSET;
2852 def_cfa_1 (&loc);
2853
2854 if (targetm.debug_unwind_info () == UI_DWARF2
2855 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
2856 {
2857 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2858
2859 /* For a few targets, we have the return address incoming into a
2860 register, but choose a different return column. This will result
2861 in a DW_CFA_register for the return, and an entry in
2862 regs_saved_in_regs to match. If the target later stores that
2863 return address register to the stack, we want to be able to emit
2864 the DW_CFA_offset against the return column, not the intermediate
2865 save register. Save the contents of regs_saved_in_regs so that
2866 we can re-initialize it at the start of each function. */
2867 switch (VEC_length (reg_saved_in_data, cie_trace.regs_saved_in_regs))
2868 {
2869 case 0:
2870 break;
2871 case 1:
2872 cie_return_save = ggc_alloc_reg_saved_in_data ();
2873 *cie_return_save = *VEC_index (reg_saved_in_data,
2874 cie_trace.regs_saved_in_regs, 0);
2875 VEC_free (reg_saved_in_data, heap, cie_trace.regs_saved_in_regs);
2876 break;
2877 default:
2878 gcc_unreachable ();
2879 }
2880 }
2881
2882 add_cfi_vec = NULL;
2883 cur_row = NULL;
2884 cur_trace = NULL;
2885 }
2886
2887 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2888 state at each location within the function. These notes will be
2889 emitted during pass_final. */
2890
2891 static unsigned int
2892 execute_dwarf2_frame (void)
2893 {
2894 /* The first time we're called, compute the incoming frame state. */
2895 if (cie_cfi_vec == NULL)
2896 create_cie_data ();
2897
2898 dwarf2out_alloc_current_fde ();
2899
2900 create_pseudo_cfg ();
2901
2902 /* Do the work. */
2903 create_cfi_notes ();
2904 connect_traces ();
2905 add_cfis_to_fde ();
2906
2907 /* Free all the data we allocated. */
2908 {
2909 size_t i;
2910 dw_trace_info *ti;
2911
2912 FOR_EACH_VEC_ELT (dw_trace_info, trace_info, i, ti)
2913 VEC_free (reg_saved_in_data, heap, ti->regs_saved_in_regs);
2914 }
2915 VEC_free (dw_trace_info, heap, trace_info);
2916
2917 htab_delete (trace_index);
2918 trace_index = NULL;
2919
2920 return 0;
2921 }
2922 \f
2923 /* Convert a DWARF call frame info. operation to its string name */
2924
2925 static const char *
2926 dwarf_cfi_name (unsigned int cfi_opc)
2927 {
2928 switch (cfi_opc)
2929 {
2930 case DW_CFA_advance_loc:
2931 return "DW_CFA_advance_loc";
2932 case DW_CFA_offset:
2933 return "DW_CFA_offset";
2934 case DW_CFA_restore:
2935 return "DW_CFA_restore";
2936 case DW_CFA_nop:
2937 return "DW_CFA_nop";
2938 case DW_CFA_set_loc:
2939 return "DW_CFA_set_loc";
2940 case DW_CFA_advance_loc1:
2941 return "DW_CFA_advance_loc1";
2942 case DW_CFA_advance_loc2:
2943 return "DW_CFA_advance_loc2";
2944 case DW_CFA_advance_loc4:
2945 return "DW_CFA_advance_loc4";
2946 case DW_CFA_offset_extended:
2947 return "DW_CFA_offset_extended";
2948 case DW_CFA_restore_extended:
2949 return "DW_CFA_restore_extended";
2950 case DW_CFA_undefined:
2951 return "DW_CFA_undefined";
2952 case DW_CFA_same_value:
2953 return "DW_CFA_same_value";
2954 case DW_CFA_register:
2955 return "DW_CFA_register";
2956 case DW_CFA_remember_state:
2957 return "DW_CFA_remember_state";
2958 case DW_CFA_restore_state:
2959 return "DW_CFA_restore_state";
2960 case DW_CFA_def_cfa:
2961 return "DW_CFA_def_cfa";
2962 case DW_CFA_def_cfa_register:
2963 return "DW_CFA_def_cfa_register";
2964 case DW_CFA_def_cfa_offset:
2965 return "DW_CFA_def_cfa_offset";
2966
2967 /* DWARF 3 */
2968 case DW_CFA_def_cfa_expression:
2969 return "DW_CFA_def_cfa_expression";
2970 case DW_CFA_expression:
2971 return "DW_CFA_expression";
2972 case DW_CFA_offset_extended_sf:
2973 return "DW_CFA_offset_extended_sf";
2974 case DW_CFA_def_cfa_sf:
2975 return "DW_CFA_def_cfa_sf";
2976 case DW_CFA_def_cfa_offset_sf:
2977 return "DW_CFA_def_cfa_offset_sf";
2978
2979 /* SGI/MIPS specific */
2980 case DW_CFA_MIPS_advance_loc8:
2981 return "DW_CFA_MIPS_advance_loc8";
2982
2983 /* GNU extensions */
2984 case DW_CFA_GNU_window_save:
2985 return "DW_CFA_GNU_window_save";
2986 case DW_CFA_GNU_args_size:
2987 return "DW_CFA_GNU_args_size";
2988 case DW_CFA_GNU_negative_offset_extended:
2989 return "DW_CFA_GNU_negative_offset_extended";
2990
2991 default:
2992 return "DW_CFA_<unknown>";
2993 }
2994 }
2995
2996 /* This routine will generate the correct assembly data for a location
2997 description based on a cfi entry with a complex address. */
2998
2999 static void
3000 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
3001 {
3002 dw_loc_descr_ref loc;
3003 unsigned long size;
3004
3005 if (cfi->dw_cfi_opc == DW_CFA_expression)
3006 {
3007 unsigned r =
3008 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3009 dw2_asm_output_data (1, r, NULL);
3010 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3011 }
3012 else
3013 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3014
3015 /* Output the size of the block. */
3016 size = size_of_locs (loc);
3017 dw2_asm_output_data_uleb128 (size, NULL);
3018
3019 /* Now output the operations themselves. */
3020 output_loc_sequence (loc, for_eh);
3021 }
3022
3023 /* Similar, but used for .cfi_escape. */
3024
3025 static void
3026 output_cfa_loc_raw (dw_cfi_ref cfi)
3027 {
3028 dw_loc_descr_ref loc;
3029 unsigned long size;
3030
3031 if (cfi->dw_cfi_opc == DW_CFA_expression)
3032 {
3033 unsigned r =
3034 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3035 fprintf (asm_out_file, "%#x,", r);
3036 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3037 }
3038 else
3039 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3040
3041 /* Output the size of the block. */
3042 size = size_of_locs (loc);
3043 dw2_asm_output_data_uleb128_raw (size);
3044 fputc (',', asm_out_file);
3045
3046 /* Now output the operations themselves. */
3047 output_loc_sequence_raw (loc);
3048 }
3049
3050 /* Output a Call Frame Information opcode and its operand(s). */
3051
3052 void
3053 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3054 {
3055 unsigned long r;
3056 HOST_WIDE_INT off;
3057
3058 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3059 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3060 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3061 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3062 ((unsigned HOST_WIDE_INT)
3063 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3064 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3065 {
3066 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3067 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3068 "DW_CFA_offset, column %#lx", r);
3069 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3070 dw2_asm_output_data_uleb128 (off, NULL);
3071 }
3072 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3073 {
3074 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3075 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3076 "DW_CFA_restore, column %#lx", r);
3077 }
3078 else
3079 {
3080 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3081 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3082
3083 switch (cfi->dw_cfi_opc)
3084 {
3085 case DW_CFA_set_loc:
3086 if (for_eh)
3087 dw2_asm_output_encoded_addr_rtx (
3088 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3089 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3090 false, NULL);
3091 else
3092 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3093 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3094 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3095 break;
3096
3097 case DW_CFA_advance_loc1:
3098 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3099 fde->dw_fde_current_label, NULL);
3100 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3101 break;
3102
3103 case DW_CFA_advance_loc2:
3104 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3105 fde->dw_fde_current_label, NULL);
3106 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3107 break;
3108
3109 case DW_CFA_advance_loc4:
3110 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3111 fde->dw_fde_current_label, NULL);
3112 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3113 break;
3114
3115 case DW_CFA_MIPS_advance_loc8:
3116 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3117 fde->dw_fde_current_label, NULL);
3118 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3119 break;
3120
3121 case DW_CFA_offset_extended:
3122 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3123 dw2_asm_output_data_uleb128 (r, NULL);
3124 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3125 dw2_asm_output_data_uleb128 (off, NULL);
3126 break;
3127
3128 case DW_CFA_def_cfa:
3129 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3130 dw2_asm_output_data_uleb128 (r, NULL);
3131 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3132 break;
3133
3134 case DW_CFA_offset_extended_sf:
3135 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3136 dw2_asm_output_data_uleb128 (r, NULL);
3137 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3138 dw2_asm_output_data_sleb128 (off, NULL);
3139 break;
3140
3141 case DW_CFA_def_cfa_sf:
3142 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3143 dw2_asm_output_data_uleb128 (r, NULL);
3144 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3145 dw2_asm_output_data_sleb128 (off, NULL);
3146 break;
3147
3148 case DW_CFA_restore_extended:
3149 case DW_CFA_undefined:
3150 case DW_CFA_same_value:
3151 case DW_CFA_def_cfa_register:
3152 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3153 dw2_asm_output_data_uleb128 (r, NULL);
3154 break;
3155
3156 case DW_CFA_register:
3157 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3158 dw2_asm_output_data_uleb128 (r, NULL);
3159 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3160 dw2_asm_output_data_uleb128 (r, NULL);
3161 break;
3162
3163 case DW_CFA_def_cfa_offset:
3164 case DW_CFA_GNU_args_size:
3165 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3166 break;
3167
3168 case DW_CFA_def_cfa_offset_sf:
3169 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3170 dw2_asm_output_data_sleb128 (off, NULL);
3171 break;
3172
3173 case DW_CFA_GNU_window_save:
3174 break;
3175
3176 case DW_CFA_def_cfa_expression:
3177 case DW_CFA_expression:
3178 output_cfa_loc (cfi, for_eh);
3179 break;
3180
3181 case DW_CFA_GNU_negative_offset_extended:
3182 /* Obsoleted by DW_CFA_offset_extended_sf. */
3183 gcc_unreachable ();
3184
3185 default:
3186 break;
3187 }
3188 }
3189 }
3190
3191 /* Similar, but do it via assembler directives instead. */
3192
3193 void
3194 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3195 {
3196 unsigned long r, r2;
3197
3198 switch (cfi->dw_cfi_opc)
3199 {
3200 case DW_CFA_advance_loc:
3201 case DW_CFA_advance_loc1:
3202 case DW_CFA_advance_loc2:
3203 case DW_CFA_advance_loc4:
3204 case DW_CFA_MIPS_advance_loc8:
3205 case DW_CFA_set_loc:
3206 /* Should only be created in a code path not followed when emitting
3207 via directives. The assembler is going to take care of this for
3208 us. But this routines is also used for debugging dumps, so
3209 print something. */
3210 gcc_assert (f != asm_out_file);
3211 fprintf (f, "\t.cfi_advance_loc\n");
3212 break;
3213
3214 case DW_CFA_offset:
3215 case DW_CFA_offset_extended:
3216 case DW_CFA_offset_extended_sf:
3217 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3218 fprintf (f, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3219 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3220 break;
3221
3222 case DW_CFA_restore:
3223 case DW_CFA_restore_extended:
3224 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3225 fprintf (f, "\t.cfi_restore %lu\n", r);
3226 break;
3227
3228 case DW_CFA_undefined:
3229 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3230 fprintf (f, "\t.cfi_undefined %lu\n", r);
3231 break;
3232
3233 case DW_CFA_same_value:
3234 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3235 fprintf (f, "\t.cfi_same_value %lu\n", r);
3236 break;
3237
3238 case DW_CFA_def_cfa:
3239 case DW_CFA_def_cfa_sf:
3240 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3241 fprintf (f, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3242 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3243 break;
3244
3245 case DW_CFA_def_cfa_register:
3246 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3247 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3248 break;
3249
3250 case DW_CFA_register:
3251 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3252 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3253 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3254 break;
3255
3256 case DW_CFA_def_cfa_offset:
3257 case DW_CFA_def_cfa_offset_sf:
3258 fprintf (f, "\t.cfi_def_cfa_offset "
3259 HOST_WIDE_INT_PRINT_DEC"\n",
3260 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3261 break;
3262
3263 case DW_CFA_remember_state:
3264 fprintf (f, "\t.cfi_remember_state\n");
3265 break;
3266 case DW_CFA_restore_state:
3267 fprintf (f, "\t.cfi_restore_state\n");
3268 break;
3269
3270 case DW_CFA_GNU_args_size:
3271 if (f == asm_out_file)
3272 {
3273 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3274 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3275 if (flag_debug_asm)
3276 fprintf (f, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3277 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3278 fputc ('\n', f);
3279 }
3280 else
3281 {
3282 fprintf (f, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC "\n",
3283 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3284 }
3285 break;
3286
3287 case DW_CFA_GNU_window_save:
3288 fprintf (f, "\t.cfi_window_save\n");
3289 break;
3290
3291 case DW_CFA_def_cfa_expression:
3292 if (f != asm_out_file)
3293 {
3294 fprintf (f, "\t.cfi_def_cfa_expression ...\n");
3295 break;
3296 }
3297 /* FALLTHRU */
3298 case DW_CFA_expression:
3299 if (f != asm_out_file)
3300 {
3301 fprintf (f, "\t.cfi_cfa_expression ...\n");
3302 break;
3303 }
3304 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3305 output_cfa_loc_raw (cfi);
3306 fputc ('\n', f);
3307 break;
3308
3309 default:
3310 gcc_unreachable ();
3311 }
3312 }
3313
3314 void
3315 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3316 {
3317 if (dwarf2out_do_cfi_asm ())
3318 output_cfi_directive (asm_out_file, cfi);
3319 }
3320
3321 static void
3322 dump_cfi_row (FILE *f, dw_cfi_row *row)
3323 {
3324 dw_cfi_ref cfi;
3325 unsigned i;
3326
3327 cfi = row->cfa_cfi;
3328 if (!cfi)
3329 {
3330 dw_cfa_location dummy;
3331 memset(&dummy, 0, sizeof(dummy));
3332 dummy.reg = INVALID_REGNUM;
3333 cfi = def_cfa_0 (&dummy, &row->cfa);
3334 }
3335 output_cfi_directive (f, cfi);
3336
3337 FOR_EACH_VEC_ELT (dw_cfi_ref, row->reg_save, i, cfi)
3338 if (cfi)
3339 output_cfi_directive (f, cfi);
3340 }
3341
3342 void debug_cfi_row (dw_cfi_row *row);
3343
3344 void
3345 debug_cfi_row (dw_cfi_row *row)
3346 {
3347 dump_cfi_row (stderr, row);
3348 }
3349 \f
3350
3351 /* Save the result of dwarf2out_do_frame across PCH.
3352 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3353 static GTY(()) signed char saved_do_cfi_asm = 0;
3354
3355 /* Decide whether we want to emit frame unwind information for the current
3356 translation unit. */
3357
3358 bool
3359 dwarf2out_do_frame (void)
3360 {
3361 /* We want to emit correct CFA location expressions or lists, so we
3362 have to return true if we're going to output debug info, even if
3363 we're not going to output frame or unwind info. */
3364 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3365 return true;
3366
3367 if (saved_do_cfi_asm > 0)
3368 return true;
3369
3370 if (targetm.debug_unwind_info () == UI_DWARF2)
3371 return true;
3372
3373 if ((flag_unwind_tables || flag_exceptions)
3374 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3375 return true;
3376
3377 return false;
3378 }
3379
3380 /* Decide whether to emit frame unwind via assembler directives. */
3381
3382 bool
3383 dwarf2out_do_cfi_asm (void)
3384 {
3385 int enc;
3386
3387 if (saved_do_cfi_asm != 0)
3388 return saved_do_cfi_asm > 0;
3389
3390 /* Assume failure for a moment. */
3391 saved_do_cfi_asm = -1;
3392
3393 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3394 return false;
3395 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3396 return false;
3397
3398 /* Make sure the personality encoding is one the assembler can support.
3399 In particular, aligned addresses can't be handled. */
3400 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3401 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3402 return false;
3403 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3404 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3405 return false;
3406
3407 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3408 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3409 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3410 && !flag_unwind_tables && !flag_exceptions
3411 && targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
3412 return false;
3413
3414 /* Success! */
3415 saved_do_cfi_asm = 1;
3416 return true;
3417 }
3418
3419 static bool
3420 gate_dwarf2_frame (void)
3421 {
3422 #ifndef HAVE_prologue
3423 /* Targets which still implement the prologue in assembler text
3424 cannot use the generic dwarf2 unwinding. */
3425 return false;
3426 #endif
3427
3428 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3429 from the optimized shrink-wrapping annotations that we will compute.
3430 For now, only produce the CFI notes for dwarf2. */
3431 return dwarf2out_do_frame ();
3432 }
3433
3434 struct rtl_opt_pass pass_dwarf2_frame =
3435 {
3436 {
3437 RTL_PASS,
3438 "dwarf2", /* name */
3439 gate_dwarf2_frame, /* gate */
3440 execute_dwarf2_frame, /* execute */
3441 NULL, /* sub */
3442 NULL, /* next */
3443 0, /* static_pass_number */
3444 TV_FINAL, /* tv_id */
3445 0, /* properties_required */
3446 0, /* properties_provided */
3447 0, /* properties_destroyed */
3448 0, /* todo_flags_start */
3449 0 /* todo_flags_finish */
3450 }
3451 };
3452
3453 #include "gt-dwarf2cfi.h"