re PR debug/49864 (ICE: in maybe_record_trace_start, at dwarf2cfi.c:2439)
[gcc.git] / gcc / dwarf2cfi.c
1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "version.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "function.h"
30 #include "basic-block.h"
31 #include "dwarf2.h"
32 #include "dwarf2out.h"
33 #include "dwarf2asm.h"
34 #include "ggc.h"
35 #include "tm_p.h"
36 #include "target.h"
37 #include "common/common-target.h"
38 #include "tree-pass.h"
39
40 #include "except.h" /* expand_builtin_dwarf_sp_column */
41 #include "expr.h" /* init_return_column_size */
42 #include "regs.h" /* expand_builtin_init_dwarf_reg_sizes */
43 #include "output.h" /* asm_out_file */
44 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
45
46
47 /* ??? Poison these here until it can be done generically. They've been
48 totally replaced in this file; make sure it stays that way. */
49 #undef DWARF2_UNWIND_INFO
50 #undef DWARF2_FRAME_INFO
51 #if (GCC_VERSION >= 3000)
52 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
53 #endif
54
55 #ifndef INCOMING_RETURN_ADDR_RTX
56 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
57 #endif
58
59 /* Maximum size (in bytes) of an artificially generated label. */
60 #define MAX_ARTIFICIAL_LABEL_BYTES 30
61 \f
62 /* A collected description of an entire row of the abstract CFI table. */
63 typedef struct GTY(()) dw_cfi_row_struct
64 {
65 /* The expression that computes the CFA, expressed in two different ways.
66 The CFA member for the simple cases, and the full CFI expression for
67 the complex cases. The later will be a DW_CFA_cfa_expression. */
68 dw_cfa_location cfa;
69 dw_cfi_ref cfa_cfi;
70
71 /* The expressions for any register column that is saved. */
72 cfi_vec reg_save;
73 } dw_cfi_row;
74
75 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
76 typedef struct GTY(()) reg_saved_in_data_struct {
77 rtx orig_reg;
78 rtx saved_in_reg;
79 } reg_saved_in_data;
80
81 DEF_VEC_O (reg_saved_in_data);
82 DEF_VEC_ALLOC_O (reg_saved_in_data, heap);
83
84 /* Since we no longer have a proper CFG, we're going to create a facsimile
85 of one on the fly while processing the frame-related insns.
86
87 We create dw_trace_info structures for each extended basic block beginning
88 and ending at a "save point". Save points are labels, barriers, certain
89 notes, and of course the beginning and end of the function.
90
91 As we encounter control transfer insns, we propagate the "current"
92 row state across the edges to the starts of traces. When checking is
93 enabled, we validate that we propagate the same data from all sources.
94
95 All traces are members of the TRACE_INFO array, in the order in which
96 they appear in the instruction stream.
97
98 All save points are present in the TRACE_INDEX hash, mapping the insn
99 starting a trace to the dw_trace_info describing the trace. */
100
101 typedef struct
102 {
103 /* The insn that begins the trace. */
104 rtx head;
105
106 /* The row state at the beginning and end of the trace. */
107 dw_cfi_row *beg_row, *end_row;
108
109 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
110 while scanning insns. However, the args_size value is irrelevant at
111 any point except can_throw_internal_p insns. Therefore the "delay"
112 sizes the values that must actually be emitted for this trace. */
113 HOST_WIDE_INT beg_true_args_size, end_true_args_size;
114 HOST_WIDE_INT beg_delay_args_size, end_delay_args_size;
115
116 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
117 rtx eh_head;
118
119 /* The following variables contain data used in interpreting frame related
120 expressions. These are not part of the "real" row state as defined by
121 Dwarf, but it seems like they need to be propagated into a trace in case
122 frame related expressions have been sunk. */
123 /* ??? This seems fragile. These variables are fragments of a larger
124 expression. If we do not keep the entire expression together, we risk
125 not being able to put it together properly. Consider forcing targets
126 to generate self-contained expressions and dropping all of the magic
127 interpretation code in this file. Or at least refusing to shrink wrap
128 any frame related insn that doesn't contain a complete expression. */
129
130 /* The register used for saving registers to the stack, and its offset
131 from the CFA. */
132 dw_cfa_location cfa_store;
133
134 /* A temporary register holding an integral value used in adjusting SP
135 or setting up the store_reg. The "offset" field holds the integer
136 value, not an offset. */
137 dw_cfa_location cfa_temp;
138
139 /* A set of registers saved in other registers. This is the inverse of
140 the row->reg_save info, if the entry is a DW_CFA_register. This is
141 implemented as a flat array because it normally contains zero or 1
142 entry, depending on the target. IA-64 is the big spender here, using
143 a maximum of 5 entries. */
144 VEC(reg_saved_in_data, heap) *regs_saved_in_regs;
145
146 /* An identifier for this trace. Used only for debugging dumps. */
147 unsigned id;
148
149 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
150 bool switch_sections;
151
152 /* True if we've seen different values incoming to beg_true_args_size. */
153 bool args_size_undefined;
154 } dw_trace_info;
155
156 DEF_VEC_O (dw_trace_info);
157 DEF_VEC_ALLOC_O (dw_trace_info, heap);
158
159 typedef dw_trace_info *dw_trace_info_ref;
160
161 DEF_VEC_P (dw_trace_info_ref);
162 DEF_VEC_ALLOC_P (dw_trace_info_ref, heap);
163
164 /* The variables making up the pseudo-cfg, as described above. */
165 static VEC (dw_trace_info, heap) *trace_info;
166 static VEC (dw_trace_info_ref, heap) *trace_work_list;
167 static htab_t trace_index;
168
169 /* A vector of call frame insns for the CIE. */
170 cfi_vec cie_cfi_vec;
171
172 /* The state of the first row of the FDE table, which includes the
173 state provided by the CIE. */
174 static GTY(()) dw_cfi_row *cie_cfi_row;
175
176 static GTY(()) reg_saved_in_data *cie_return_save;
177
178 static GTY(()) unsigned long dwarf2out_cfi_label_num;
179
180 /* The insn after which a new CFI note should be emitted. */
181 static rtx add_cfi_insn;
182
183 /* When non-null, add_cfi will add the CFI to this vector. */
184 static cfi_vec *add_cfi_vec;
185
186 /* The current instruction trace. */
187 static dw_trace_info *cur_trace;
188
189 /* The current, i.e. most recently generated, row of the CFI table. */
190 static dw_cfi_row *cur_row;
191
192 /* A copy of the current CFA, for use during the processing of a
193 single insn. */
194 static dw_cfa_location *cur_cfa;
195
196 /* We delay emitting a register save until either (a) we reach the end
197 of the prologue or (b) the register is clobbered. This clusters
198 register saves so that there are fewer pc advances. */
199
200 typedef struct {
201 rtx reg;
202 rtx saved_reg;
203 HOST_WIDE_INT cfa_offset;
204 } queued_reg_save;
205
206 DEF_VEC_O (queued_reg_save);
207 DEF_VEC_ALLOC_O (queued_reg_save, heap);
208
209 static VEC(queued_reg_save, heap) *queued_reg_saves;
210
211 /* True if any CFI directives were emitted at the current insn. */
212 static bool any_cfis_emitted;
213
214 /* Short-hand for commonly used register numbers. */
215 static unsigned dw_stack_pointer_regnum;
216 static unsigned dw_frame_pointer_regnum;
217 \f
218 /* Hook used by __throw. */
219
220 rtx
221 expand_builtin_dwarf_sp_column (void)
222 {
223 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
224 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
225 }
226
227 /* MEM is a memory reference for the register size table, each element of
228 which has mode MODE. Initialize column C as a return address column. */
229
230 static void
231 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
232 {
233 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
234 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
235 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
236 }
237
238 /* Generate code to initialize the register size table. */
239
240 void
241 expand_builtin_init_dwarf_reg_sizes (tree address)
242 {
243 unsigned int i;
244 enum machine_mode mode = TYPE_MODE (char_type_node);
245 rtx addr = expand_normal (address);
246 rtx mem = gen_rtx_MEM (BLKmode, addr);
247 bool wrote_return_column = false;
248
249 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
250 {
251 unsigned int dnum = DWARF_FRAME_REGNUM (i);
252 unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
253
254 if (rnum < DWARF_FRAME_REGISTERS)
255 {
256 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
257 enum machine_mode save_mode = reg_raw_mode[i];
258 HOST_WIDE_INT size;
259
260 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
261 save_mode = choose_hard_reg_mode (i, 1, true);
262 if (dnum == DWARF_FRAME_RETURN_COLUMN)
263 {
264 if (save_mode == VOIDmode)
265 continue;
266 wrote_return_column = true;
267 }
268 size = GET_MODE_SIZE (save_mode);
269 if (offset < 0)
270 continue;
271
272 emit_move_insn (adjust_address (mem, mode, offset),
273 gen_int_mode (size, mode));
274 }
275 }
276
277 if (!wrote_return_column)
278 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
279
280 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
281 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
282 #endif
283
284 targetm.init_dwarf_reg_sizes_extra (address);
285 }
286
287 \f
288 static hashval_t
289 dw_trace_info_hash (const void *ptr)
290 {
291 const dw_trace_info *ti = (const dw_trace_info *) ptr;
292 return INSN_UID (ti->head);
293 }
294
295 static int
296 dw_trace_info_eq (const void *ptr_a, const void *ptr_b)
297 {
298 const dw_trace_info *a = (const dw_trace_info *) ptr_a;
299 const dw_trace_info *b = (const dw_trace_info *) ptr_b;
300 return a->head == b->head;
301 }
302
303 static dw_trace_info *
304 get_trace_info (rtx insn)
305 {
306 dw_trace_info dummy;
307 dummy.head = insn;
308 return (dw_trace_info *)
309 htab_find_with_hash (trace_index, &dummy, INSN_UID (insn));
310 }
311
312 static bool
313 save_point_p (rtx insn)
314 {
315 /* Labels, except those that are really jump tables. */
316 if (LABEL_P (insn))
317 return inside_basic_block_p (insn);
318
319 /* We split traces at the prologue/epilogue notes because those
320 are points at which the unwind info is usually stable. This
321 makes it easier to find spots with identical unwind info so
322 that we can use remember/restore_state opcodes. */
323 if (NOTE_P (insn))
324 switch (NOTE_KIND (insn))
325 {
326 case NOTE_INSN_PROLOGUE_END:
327 case NOTE_INSN_EPILOGUE_BEG:
328 return true;
329 }
330
331 return false;
332 }
333
334 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
335
336 static inline HOST_WIDE_INT
337 div_data_align (HOST_WIDE_INT off)
338 {
339 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
340 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
341 return r;
342 }
343
344 /* Return true if we need a signed version of a given opcode
345 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
346
347 static inline bool
348 need_data_align_sf_opcode (HOST_WIDE_INT off)
349 {
350 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
351 }
352
353 /* Return a pointer to a newly allocated Call Frame Instruction. */
354
355 static inline dw_cfi_ref
356 new_cfi (void)
357 {
358 dw_cfi_ref cfi = ggc_alloc_dw_cfi_node ();
359
360 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
361 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
362
363 return cfi;
364 }
365
366 /* Return a newly allocated CFI row, with no defined data. */
367
368 static dw_cfi_row *
369 new_cfi_row (void)
370 {
371 dw_cfi_row *row = ggc_alloc_cleared_dw_cfi_row ();
372
373 row->cfa.reg = INVALID_REGNUM;
374
375 return row;
376 }
377
378 /* Return a copy of an existing CFI row. */
379
380 static dw_cfi_row *
381 copy_cfi_row (dw_cfi_row *src)
382 {
383 dw_cfi_row *dst = ggc_alloc_dw_cfi_row ();
384
385 *dst = *src;
386 dst->reg_save = VEC_copy (dw_cfi_ref, gc, src->reg_save);
387
388 return dst;
389 }
390
391 /* Generate a new label for the CFI info to refer to. */
392
393 static char *
394 dwarf2out_cfi_label (void)
395 {
396 int num = dwarf2out_cfi_label_num++;
397 char label[20];
398
399 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
400
401 return xstrdup (label);
402 }
403
404 /* Add CFI either to the current insn stream or to a vector, or both. */
405
406 static void
407 add_cfi (dw_cfi_ref cfi)
408 {
409 any_cfis_emitted = true;
410
411 if (add_cfi_insn != NULL)
412 {
413 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
414 NOTE_CFI (add_cfi_insn) = cfi;
415 }
416
417 if (add_cfi_vec != NULL)
418 VEC_safe_push (dw_cfi_ref, gc, *add_cfi_vec, cfi);
419 }
420
421 static void
422 add_cfi_args_size (HOST_WIDE_INT size)
423 {
424 dw_cfi_ref cfi = new_cfi ();
425
426 /* While we can occasionally have args_size < 0 internally, this state
427 should not persist at a point we actually need an opcode. */
428 gcc_assert (size >= 0);
429
430 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
431 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
432
433 add_cfi (cfi);
434 }
435
436 static void
437 add_cfi_restore (unsigned reg)
438 {
439 dw_cfi_ref cfi = new_cfi ();
440
441 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
442 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
443
444 add_cfi (cfi);
445 }
446
447 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
448 that the register column is no longer saved. */
449
450 static void
451 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
452 {
453 if (VEC_length (dw_cfi_ref, row->reg_save) <= column)
454 VEC_safe_grow_cleared (dw_cfi_ref, gc, row->reg_save, column + 1);
455 VEC_replace (dw_cfi_ref, row->reg_save, column, cfi);
456 }
457
458 /* This function fills in aa dw_cfa_location structure from a dwarf location
459 descriptor sequence. */
460
461 static void
462 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
463 {
464 struct dw_loc_descr_struct *ptr;
465 cfa->offset = 0;
466 cfa->base_offset = 0;
467 cfa->indirect = 0;
468 cfa->reg = -1;
469
470 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
471 {
472 enum dwarf_location_atom op = ptr->dw_loc_opc;
473
474 switch (op)
475 {
476 case DW_OP_reg0:
477 case DW_OP_reg1:
478 case DW_OP_reg2:
479 case DW_OP_reg3:
480 case DW_OP_reg4:
481 case DW_OP_reg5:
482 case DW_OP_reg6:
483 case DW_OP_reg7:
484 case DW_OP_reg8:
485 case DW_OP_reg9:
486 case DW_OP_reg10:
487 case DW_OP_reg11:
488 case DW_OP_reg12:
489 case DW_OP_reg13:
490 case DW_OP_reg14:
491 case DW_OP_reg15:
492 case DW_OP_reg16:
493 case DW_OP_reg17:
494 case DW_OP_reg18:
495 case DW_OP_reg19:
496 case DW_OP_reg20:
497 case DW_OP_reg21:
498 case DW_OP_reg22:
499 case DW_OP_reg23:
500 case DW_OP_reg24:
501 case DW_OP_reg25:
502 case DW_OP_reg26:
503 case DW_OP_reg27:
504 case DW_OP_reg28:
505 case DW_OP_reg29:
506 case DW_OP_reg30:
507 case DW_OP_reg31:
508 cfa->reg = op - DW_OP_reg0;
509 break;
510 case DW_OP_regx:
511 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
512 break;
513 case DW_OP_breg0:
514 case DW_OP_breg1:
515 case DW_OP_breg2:
516 case DW_OP_breg3:
517 case DW_OP_breg4:
518 case DW_OP_breg5:
519 case DW_OP_breg6:
520 case DW_OP_breg7:
521 case DW_OP_breg8:
522 case DW_OP_breg9:
523 case DW_OP_breg10:
524 case DW_OP_breg11:
525 case DW_OP_breg12:
526 case DW_OP_breg13:
527 case DW_OP_breg14:
528 case DW_OP_breg15:
529 case DW_OP_breg16:
530 case DW_OP_breg17:
531 case DW_OP_breg18:
532 case DW_OP_breg19:
533 case DW_OP_breg20:
534 case DW_OP_breg21:
535 case DW_OP_breg22:
536 case DW_OP_breg23:
537 case DW_OP_breg24:
538 case DW_OP_breg25:
539 case DW_OP_breg26:
540 case DW_OP_breg27:
541 case DW_OP_breg28:
542 case DW_OP_breg29:
543 case DW_OP_breg30:
544 case DW_OP_breg31:
545 cfa->reg = op - DW_OP_breg0;
546 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
547 break;
548 case DW_OP_bregx:
549 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
550 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
551 break;
552 case DW_OP_deref:
553 cfa->indirect = 1;
554 break;
555 case DW_OP_plus_uconst:
556 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
557 break;
558 default:
559 gcc_unreachable ();
560 }
561 }
562 }
563
564 /* Find the previous value for the CFA, iteratively. CFI is the opcode
565 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
566 one level of remember/restore state processing. */
567
568 void
569 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
570 {
571 switch (cfi->dw_cfi_opc)
572 {
573 case DW_CFA_def_cfa_offset:
574 case DW_CFA_def_cfa_offset_sf:
575 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
576 break;
577 case DW_CFA_def_cfa_register:
578 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
579 break;
580 case DW_CFA_def_cfa:
581 case DW_CFA_def_cfa_sf:
582 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
583 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
584 break;
585 case DW_CFA_def_cfa_expression:
586 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
587 break;
588
589 case DW_CFA_remember_state:
590 gcc_assert (!remember->in_use);
591 *remember = *loc;
592 remember->in_use = 1;
593 break;
594 case DW_CFA_restore_state:
595 gcc_assert (remember->in_use);
596 *loc = *remember;
597 remember->in_use = 0;
598 break;
599
600 default:
601 break;
602 }
603 }
604
605 /* Determine if two dw_cfa_location structures define the same data. */
606
607 bool
608 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
609 {
610 return (loc1->reg == loc2->reg
611 && loc1->offset == loc2->offset
612 && loc1->indirect == loc2->indirect
613 && (loc1->indirect == 0
614 || loc1->base_offset == loc2->base_offset));
615 }
616
617 /* Determine if two CFI operands are identical. */
618
619 static bool
620 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
621 {
622 switch (t)
623 {
624 case dw_cfi_oprnd_unused:
625 return true;
626 case dw_cfi_oprnd_reg_num:
627 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
628 case dw_cfi_oprnd_offset:
629 return a->dw_cfi_offset == b->dw_cfi_offset;
630 case dw_cfi_oprnd_addr:
631 return (a->dw_cfi_addr == b->dw_cfi_addr
632 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
633 case dw_cfi_oprnd_loc:
634 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
635 }
636 gcc_unreachable ();
637 }
638
639 /* Determine if two CFI entries are identical. */
640
641 static bool
642 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
643 {
644 enum dwarf_call_frame_info opc;
645
646 /* Make things easier for our callers, including missing operands. */
647 if (a == b)
648 return true;
649 if (a == NULL || b == NULL)
650 return false;
651
652 /* Obviously, the opcodes must match. */
653 opc = a->dw_cfi_opc;
654 if (opc != b->dw_cfi_opc)
655 return false;
656
657 /* Compare the two operands, re-using the type of the operands as
658 already exposed elsewhere. */
659 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
660 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
661 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
662 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
663 }
664
665 /* Determine if two CFI_ROW structures are identical. */
666
667 static bool
668 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
669 {
670 size_t i, n_a, n_b, n_max;
671
672 if (a->cfa_cfi)
673 {
674 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
675 return false;
676 }
677 else if (!cfa_equal_p (&a->cfa, &b->cfa))
678 return false;
679
680 n_a = VEC_length (dw_cfi_ref, a->reg_save);
681 n_b = VEC_length (dw_cfi_ref, b->reg_save);
682 n_max = MAX (n_a, n_b);
683
684 for (i = 0; i < n_max; ++i)
685 {
686 dw_cfi_ref r_a = NULL, r_b = NULL;
687
688 if (i < n_a)
689 r_a = VEC_index (dw_cfi_ref, a->reg_save, i);
690 if (i < n_b)
691 r_b = VEC_index (dw_cfi_ref, b->reg_save, i);
692
693 if (!cfi_equal_p (r_a, r_b))
694 return false;
695 }
696
697 return true;
698 }
699
700 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
701 what opcode to emit. Returns the CFI opcode to effect the change, or
702 NULL if NEW_CFA == OLD_CFA. */
703
704 static dw_cfi_ref
705 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
706 {
707 dw_cfi_ref cfi;
708
709 /* If nothing changed, no need to issue any call frame instructions. */
710 if (cfa_equal_p (old_cfa, new_cfa))
711 return NULL;
712
713 cfi = new_cfi ();
714
715 if (new_cfa->reg == old_cfa->reg && !new_cfa->indirect && !old_cfa->indirect)
716 {
717 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
718 the CFA register did not change but the offset did. The data
719 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
720 in the assembler via the .cfi_def_cfa_offset directive. */
721 if (new_cfa->offset < 0)
722 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
723 else
724 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
725 cfi->dw_cfi_oprnd1.dw_cfi_offset = new_cfa->offset;
726 }
727
728 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
729 else if (new_cfa->offset == old_cfa->offset
730 && old_cfa->reg != INVALID_REGNUM
731 && !new_cfa->indirect
732 && !old_cfa->indirect)
733 {
734 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
735 indicating the CFA register has changed to <register> but the
736 offset has not changed. */
737 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
738 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
739 }
740 #endif
741
742 else if (new_cfa->indirect == 0)
743 {
744 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
745 indicating the CFA register has changed to <register> with
746 the specified offset. The data factoring for DW_CFA_def_cfa_sf
747 happens in output_cfi, or in the assembler via the .cfi_def_cfa
748 directive. */
749 if (new_cfa->offset < 0)
750 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
751 else
752 cfi->dw_cfi_opc = DW_CFA_def_cfa;
753 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
754 cfi->dw_cfi_oprnd2.dw_cfi_offset = new_cfa->offset;
755 }
756 else
757 {
758 /* Construct a DW_CFA_def_cfa_expression instruction to
759 calculate the CFA using a full location expression since no
760 register-offset pair is available. */
761 struct dw_loc_descr_struct *loc_list;
762
763 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
764 loc_list = build_cfa_loc (new_cfa, 0);
765 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
766 }
767
768 return cfi;
769 }
770
771 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
772
773 static void
774 def_cfa_1 (dw_cfa_location *new_cfa)
775 {
776 dw_cfi_ref cfi;
777
778 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
779 cur_trace->cfa_store.offset = new_cfa->offset;
780
781 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
782 if (cfi)
783 {
784 cur_row->cfa = *new_cfa;
785 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
786 ? cfi : NULL);
787
788 add_cfi (cfi);
789 }
790 }
791
792 /* Add the CFI for saving a register. REG is the CFA column number.
793 If SREG is -1, the register is saved at OFFSET from the CFA;
794 otherwise it is saved in SREG. */
795
796 static void
797 reg_save (unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
798 {
799 dw_fde_ref fde = cfun ? cfun->fde : NULL;
800 dw_cfi_ref cfi = new_cfi ();
801
802 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
803
804 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
805 if (fde
806 && fde->stack_realign
807 && sreg == INVALID_REGNUM)
808 {
809 cfi->dw_cfi_opc = DW_CFA_expression;
810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
811 cfi->dw_cfi_oprnd2.dw_cfi_loc
812 = build_cfa_aligned_loc (&cur_row->cfa, offset,
813 fde->stack_realignment);
814 }
815 else if (sreg == INVALID_REGNUM)
816 {
817 if (need_data_align_sf_opcode (offset))
818 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
819 else if (reg & ~0x3f)
820 cfi->dw_cfi_opc = DW_CFA_offset_extended;
821 else
822 cfi->dw_cfi_opc = DW_CFA_offset;
823 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
824 }
825 else if (sreg == reg)
826 {
827 /* While we could emit something like DW_CFA_same_value or
828 DW_CFA_restore, we never expect to see something like that
829 in a prologue. This is more likely to be a bug. A backend
830 can always bypass this by using REG_CFA_RESTORE directly. */
831 gcc_unreachable ();
832 }
833 else
834 {
835 cfi->dw_cfi_opc = DW_CFA_register;
836 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
837 }
838
839 add_cfi (cfi);
840 update_row_reg_save (cur_row, reg, cfi);
841 }
842
843 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
844 and adjust data structures to match. */
845
846 static void
847 notice_args_size (rtx insn)
848 {
849 HOST_WIDE_INT args_size, delta;
850 rtx note;
851
852 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
853 if (note == NULL)
854 return;
855
856 args_size = INTVAL (XEXP (note, 0));
857 delta = args_size - cur_trace->end_true_args_size;
858 if (delta == 0)
859 return;
860
861 cur_trace->end_true_args_size = args_size;
862
863 /* If the CFA is computed off the stack pointer, then we must adjust
864 the computation of the CFA as well. */
865 if (cur_cfa->reg == dw_stack_pointer_regnum)
866 {
867 gcc_assert (!cur_cfa->indirect);
868
869 /* Convert a change in args_size (always a positive in the
870 direction of stack growth) to a change in stack pointer. */
871 #ifndef STACK_GROWS_DOWNWARD
872 delta = -delta;
873 #endif
874 cur_cfa->offset += delta;
875 }
876 }
877
878 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
879 data within the trace related to EH insns and args_size. */
880
881 static void
882 notice_eh_throw (rtx insn)
883 {
884 HOST_WIDE_INT args_size;
885
886 args_size = cur_trace->end_true_args_size;
887 if (cur_trace->eh_head == NULL)
888 {
889 cur_trace->eh_head = insn;
890 cur_trace->beg_delay_args_size = args_size;
891 cur_trace->end_delay_args_size = args_size;
892 }
893 else if (cur_trace->end_delay_args_size != args_size)
894 {
895 cur_trace->end_delay_args_size = args_size;
896
897 /* ??? If the CFA is the stack pointer, search backward for the last
898 CFI note and insert there. Given that the stack changed for the
899 args_size change, there *must* be such a note in between here and
900 the last eh insn. */
901 add_cfi_args_size (args_size);
902 }
903 }
904
905 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
906 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
907 used in places where rtl is prohibited. */
908
909 static inline unsigned
910 dwf_regno (const_rtx reg)
911 {
912 return DWARF_FRAME_REGNUM (REGNO (reg));
913 }
914
915 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
916
917 static bool
918 compare_reg_or_pc (rtx x, rtx y)
919 {
920 if (REG_P (x) && REG_P (y))
921 return REGNO (x) == REGNO (y);
922 return x == y;
923 }
924
925 /* Record SRC as being saved in DEST. DEST may be null to delete an
926 existing entry. SRC may be a register or PC_RTX. */
927
928 static void
929 record_reg_saved_in_reg (rtx dest, rtx src)
930 {
931 reg_saved_in_data *elt;
932 size_t i;
933
934 FOR_EACH_VEC_ELT (reg_saved_in_data, cur_trace->regs_saved_in_regs, i, elt)
935 if (compare_reg_or_pc (elt->orig_reg, src))
936 {
937 if (dest == NULL)
938 VEC_unordered_remove (reg_saved_in_data,
939 cur_trace->regs_saved_in_regs, i);
940 else
941 elt->saved_in_reg = dest;
942 return;
943 }
944
945 if (dest == NULL)
946 return;
947
948 elt = VEC_safe_push (reg_saved_in_data, heap,
949 cur_trace->regs_saved_in_regs, NULL);
950 elt->orig_reg = src;
951 elt->saved_in_reg = dest;
952 }
953
954 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
955 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
956
957 static void
958 queue_reg_save (rtx reg, rtx sreg, HOST_WIDE_INT offset)
959 {
960 queued_reg_save *q;
961 size_t i;
962
963 /* Duplicates waste space, but it's also necessary to remove them
964 for correctness, since the queue gets output in reverse order. */
965 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
966 if (compare_reg_or_pc (q->reg, reg))
967 goto found;
968
969 q = VEC_safe_push (queued_reg_save, heap, queued_reg_saves, NULL);
970
971 found:
972 q->reg = reg;
973 q->saved_reg = sreg;
974 q->cfa_offset = offset;
975 }
976
977 /* Output all the entries in QUEUED_REG_SAVES. */
978
979 static void
980 dwarf2out_flush_queued_reg_saves (void)
981 {
982 queued_reg_save *q;
983 size_t i;
984
985 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
986 {
987 unsigned int reg, sreg;
988
989 record_reg_saved_in_reg (q->saved_reg, q->reg);
990
991 if (q->reg == pc_rtx)
992 reg = DWARF_FRAME_RETURN_COLUMN;
993 else
994 reg = dwf_regno (q->reg);
995 if (q->saved_reg)
996 sreg = dwf_regno (q->saved_reg);
997 else
998 sreg = INVALID_REGNUM;
999 reg_save (reg, sreg, q->cfa_offset);
1000 }
1001
1002 VEC_truncate (queued_reg_save, queued_reg_saves, 0);
1003 }
1004
1005 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1006 location for? Or, does it clobber a register which we've previously
1007 said that some other register is saved in, and for which we now
1008 have a new location for? */
1009
1010 static bool
1011 clobbers_queued_reg_save (const_rtx insn)
1012 {
1013 queued_reg_save *q;
1014 size_t iq;
1015
1016 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, iq, q)
1017 {
1018 size_t ir;
1019 reg_saved_in_data *rir;
1020
1021 if (modified_in_p (q->reg, insn))
1022 return true;
1023
1024 FOR_EACH_VEC_ELT (reg_saved_in_data,
1025 cur_trace->regs_saved_in_regs, ir, rir)
1026 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1027 && modified_in_p (rir->saved_in_reg, insn))
1028 return true;
1029 }
1030
1031 return false;
1032 }
1033
1034 /* What register, if any, is currently saved in REG? */
1035
1036 static rtx
1037 reg_saved_in (rtx reg)
1038 {
1039 unsigned int regn = REGNO (reg);
1040 queued_reg_save *q;
1041 reg_saved_in_data *rir;
1042 size_t i;
1043
1044 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
1045 if (q->saved_reg && regn == REGNO (q->saved_reg))
1046 return q->reg;
1047
1048 FOR_EACH_VEC_ELT (reg_saved_in_data, cur_trace->regs_saved_in_regs, i, rir)
1049 if (regn == REGNO (rir->saved_in_reg))
1050 return rir->orig_reg;
1051
1052 return NULL_RTX;
1053 }
1054
1055 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1056
1057 static void
1058 dwarf2out_frame_debug_def_cfa (rtx pat)
1059 {
1060 memset (cur_cfa, 0, sizeof (*cur_cfa));
1061
1062 if (GET_CODE (pat) == PLUS)
1063 {
1064 cur_cfa->offset = INTVAL (XEXP (pat, 1));
1065 pat = XEXP (pat, 0);
1066 }
1067 if (MEM_P (pat))
1068 {
1069 cur_cfa->indirect = 1;
1070 pat = XEXP (pat, 0);
1071 if (GET_CODE (pat) == PLUS)
1072 {
1073 cur_cfa->base_offset = INTVAL (XEXP (pat, 1));
1074 pat = XEXP (pat, 0);
1075 }
1076 }
1077 /* ??? If this fails, we could be calling into the _loc functions to
1078 define a full expression. So far no port does that. */
1079 gcc_assert (REG_P (pat));
1080 cur_cfa->reg = dwf_regno (pat);
1081 }
1082
1083 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1084
1085 static void
1086 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1087 {
1088 rtx src, dest;
1089
1090 gcc_assert (GET_CODE (pat) == SET);
1091 dest = XEXP (pat, 0);
1092 src = XEXP (pat, 1);
1093
1094 switch (GET_CODE (src))
1095 {
1096 case PLUS:
1097 gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1098 cur_cfa->offset -= INTVAL (XEXP (src, 1));
1099 break;
1100
1101 case REG:
1102 break;
1103
1104 default:
1105 gcc_unreachable ();
1106 }
1107
1108 cur_cfa->reg = dwf_regno (dest);
1109 gcc_assert (cur_cfa->indirect == 0);
1110 }
1111
1112 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1113
1114 static void
1115 dwarf2out_frame_debug_cfa_offset (rtx set)
1116 {
1117 HOST_WIDE_INT offset;
1118 rtx src, addr, span;
1119 unsigned int sregno;
1120
1121 src = XEXP (set, 1);
1122 addr = XEXP (set, 0);
1123 gcc_assert (MEM_P (addr));
1124 addr = XEXP (addr, 0);
1125
1126 /* As documented, only consider extremely simple addresses. */
1127 switch (GET_CODE (addr))
1128 {
1129 case REG:
1130 gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1131 offset = -cur_cfa->offset;
1132 break;
1133 case PLUS:
1134 gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1135 offset = INTVAL (XEXP (addr, 1)) - cur_cfa->offset;
1136 break;
1137 default:
1138 gcc_unreachable ();
1139 }
1140
1141 if (src == pc_rtx)
1142 {
1143 span = NULL;
1144 sregno = DWARF_FRAME_RETURN_COLUMN;
1145 }
1146 else
1147 {
1148 span = targetm.dwarf_register_span (src);
1149 sregno = dwf_regno (src);
1150 }
1151
1152 /* ??? We'd like to use queue_reg_save, but we need to come up with
1153 a different flushing heuristic for epilogues. */
1154 if (!span)
1155 reg_save (sregno, INVALID_REGNUM, offset);
1156 else
1157 {
1158 /* We have a PARALLEL describing where the contents of SRC live.
1159 Queue register saves for each piece of the PARALLEL. */
1160 int par_index;
1161 int limit;
1162 HOST_WIDE_INT span_offset = offset;
1163
1164 gcc_assert (GET_CODE (span) == PARALLEL);
1165
1166 limit = XVECLEN (span, 0);
1167 for (par_index = 0; par_index < limit; par_index++)
1168 {
1169 rtx elem = XVECEXP (span, 0, par_index);
1170
1171 sregno = dwf_regno (src);
1172 reg_save (sregno, INVALID_REGNUM, span_offset);
1173 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1174 }
1175 }
1176 }
1177
1178 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1179
1180 static void
1181 dwarf2out_frame_debug_cfa_register (rtx set)
1182 {
1183 rtx src, dest;
1184 unsigned sregno, dregno;
1185
1186 src = XEXP (set, 1);
1187 dest = XEXP (set, 0);
1188
1189 record_reg_saved_in_reg (dest, src);
1190 if (src == pc_rtx)
1191 sregno = DWARF_FRAME_RETURN_COLUMN;
1192 else
1193 sregno = dwf_regno (src);
1194
1195 dregno = dwf_regno (dest);
1196
1197 /* ??? We'd like to use queue_reg_save, but we need to come up with
1198 a different flushing heuristic for epilogues. */
1199 reg_save (sregno, dregno, 0);
1200 }
1201
1202 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1203
1204 static void
1205 dwarf2out_frame_debug_cfa_expression (rtx set)
1206 {
1207 rtx src, dest, span;
1208 dw_cfi_ref cfi = new_cfi ();
1209 unsigned regno;
1210
1211 dest = SET_DEST (set);
1212 src = SET_SRC (set);
1213
1214 gcc_assert (REG_P (src));
1215 gcc_assert (MEM_P (dest));
1216
1217 span = targetm.dwarf_register_span (src);
1218 gcc_assert (!span);
1219
1220 regno = dwf_regno (src);
1221
1222 cfi->dw_cfi_opc = DW_CFA_expression;
1223 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1224 cfi->dw_cfi_oprnd2.dw_cfi_loc
1225 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1226 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1227
1228 /* ??? We'd like to use queue_reg_save, were the interface different,
1229 and, as above, we could manage flushing for epilogues. */
1230 add_cfi (cfi);
1231 update_row_reg_save (cur_row, regno, cfi);
1232 }
1233
1234 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1235
1236 static void
1237 dwarf2out_frame_debug_cfa_restore (rtx reg)
1238 {
1239 unsigned int regno = dwf_regno (reg);
1240
1241 add_cfi_restore (regno);
1242 update_row_reg_save (cur_row, regno, NULL);
1243 }
1244
1245 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1246 ??? Perhaps we should note in the CIE where windows are saved (instead of
1247 assuming 0(cfa)) and what registers are in the window. */
1248
1249 static void
1250 dwarf2out_frame_debug_cfa_window_save (void)
1251 {
1252 dw_cfi_ref cfi = new_cfi ();
1253
1254 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1255 add_cfi (cfi);
1256 }
1257
1258 /* Record call frame debugging information for an expression EXPR,
1259 which either sets SP or FP (adjusting how we calculate the frame
1260 address) or saves a register to the stack or another register.
1261 LABEL indicates the address of EXPR.
1262
1263 This function encodes a state machine mapping rtxes to actions on
1264 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1265 users need not read the source code.
1266
1267 The High-Level Picture
1268
1269 Changes in the register we use to calculate the CFA: Currently we
1270 assume that if you copy the CFA register into another register, we
1271 should take the other one as the new CFA register; this seems to
1272 work pretty well. If it's wrong for some target, it's simple
1273 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1274
1275 Changes in the register we use for saving registers to the stack:
1276 This is usually SP, but not always. Again, we deduce that if you
1277 copy SP into another register (and SP is not the CFA register),
1278 then the new register is the one we will be using for register
1279 saves. This also seems to work.
1280
1281 Register saves: There's not much guesswork about this one; if
1282 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1283 register save, and the register used to calculate the destination
1284 had better be the one we think we're using for this purpose.
1285 It's also assumed that a copy from a call-saved register to another
1286 register is saving that register if RTX_FRAME_RELATED_P is set on
1287 that instruction. If the copy is from a call-saved register to
1288 the *same* register, that means that the register is now the same
1289 value as in the caller.
1290
1291 Except: If the register being saved is the CFA register, and the
1292 offset is nonzero, we are saving the CFA, so we assume we have to
1293 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1294 the intent is to save the value of SP from the previous frame.
1295
1296 In addition, if a register has previously been saved to a different
1297 register,
1298
1299 Invariants / Summaries of Rules
1300
1301 cfa current rule for calculating the CFA. It usually
1302 consists of a register and an offset. This is
1303 actually stored in *cur_cfa, but abbreviated
1304 for the purposes of this documentation.
1305 cfa_store register used by prologue code to save things to the stack
1306 cfa_store.offset is the offset from the value of
1307 cfa_store.reg to the actual CFA
1308 cfa_temp register holding an integral value. cfa_temp.offset
1309 stores the value, which will be used to adjust the
1310 stack pointer. cfa_temp is also used like cfa_store,
1311 to track stores to the stack via fp or a temp reg.
1312
1313 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1314 with cfa.reg as the first operand changes the cfa.reg and its
1315 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1316 cfa_temp.offset.
1317
1318 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1319 expression yielding a constant. This sets cfa_temp.reg
1320 and cfa_temp.offset.
1321
1322 Rule 5: Create a new register cfa_store used to save items to the
1323 stack.
1324
1325 Rules 10-14: Save a register to the stack. Define offset as the
1326 difference of the original location and cfa_store's
1327 location (or cfa_temp's location if cfa_temp is used).
1328
1329 Rules 16-20: If AND operation happens on sp in prologue, we assume
1330 stack is realigned. We will use a group of DW_OP_XXX
1331 expressions to represent the location of the stored
1332 register instead of CFA+offset.
1333
1334 The Rules
1335
1336 "{a,b}" indicates a choice of a xor b.
1337 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1338
1339 Rule 1:
1340 (set <reg1> <reg2>:cfa.reg)
1341 effects: cfa.reg = <reg1>
1342 cfa.offset unchanged
1343 cfa_temp.reg = <reg1>
1344 cfa_temp.offset = cfa.offset
1345
1346 Rule 2:
1347 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1348 {<const_int>,<reg>:cfa_temp.reg}))
1349 effects: cfa.reg = sp if fp used
1350 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1351 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1352 if cfa_store.reg==sp
1353
1354 Rule 3:
1355 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1356 effects: cfa.reg = fp
1357 cfa_offset += +/- <const_int>
1358
1359 Rule 4:
1360 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1361 constraints: <reg1> != fp
1362 <reg1> != sp
1363 effects: cfa.reg = <reg1>
1364 cfa_temp.reg = <reg1>
1365 cfa_temp.offset = cfa.offset
1366
1367 Rule 5:
1368 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1369 constraints: <reg1> != fp
1370 <reg1> != sp
1371 effects: cfa_store.reg = <reg1>
1372 cfa_store.offset = cfa.offset - cfa_temp.offset
1373
1374 Rule 6:
1375 (set <reg> <const_int>)
1376 effects: cfa_temp.reg = <reg>
1377 cfa_temp.offset = <const_int>
1378
1379 Rule 7:
1380 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1381 effects: cfa_temp.reg = <reg1>
1382 cfa_temp.offset |= <const_int>
1383
1384 Rule 8:
1385 (set <reg> (high <exp>))
1386 effects: none
1387
1388 Rule 9:
1389 (set <reg> (lo_sum <exp> <const_int>))
1390 effects: cfa_temp.reg = <reg>
1391 cfa_temp.offset = <const_int>
1392
1393 Rule 10:
1394 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1395 effects: cfa_store.offset -= <const_int>
1396 cfa.offset = cfa_store.offset if cfa.reg == sp
1397 cfa.reg = sp
1398 cfa.base_offset = -cfa_store.offset
1399
1400 Rule 11:
1401 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1402 effects: cfa_store.offset += -/+ mode_size(mem)
1403 cfa.offset = cfa_store.offset if cfa.reg == sp
1404 cfa.reg = sp
1405 cfa.base_offset = -cfa_store.offset
1406
1407 Rule 12:
1408 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1409
1410 <reg2>)
1411 effects: cfa.reg = <reg1>
1412 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1413
1414 Rule 13:
1415 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1416 effects: cfa.reg = <reg1>
1417 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1418
1419 Rule 14:
1420 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1421 effects: cfa.reg = <reg1>
1422 cfa.base_offset = -cfa_temp.offset
1423 cfa_temp.offset -= mode_size(mem)
1424
1425 Rule 15:
1426 (set <reg> {unspec, unspec_volatile})
1427 effects: target-dependent
1428
1429 Rule 16:
1430 (set sp (and: sp <const_int>))
1431 constraints: cfa_store.reg == sp
1432 effects: cfun->fde.stack_realign = 1
1433 cfa_store.offset = 0
1434 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1435
1436 Rule 17:
1437 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1438 effects: cfa_store.offset += -/+ mode_size(mem)
1439
1440 Rule 18:
1441 (set (mem ({pre_inc, pre_dec} sp)) fp)
1442 constraints: fde->stack_realign == 1
1443 effects: cfa_store.offset = 0
1444 cfa.reg != HARD_FRAME_POINTER_REGNUM
1445
1446 Rule 19:
1447 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1448 constraints: fde->stack_realign == 1
1449 && cfa.offset == 0
1450 && cfa.indirect == 0
1451 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1452 effects: Use DW_CFA_def_cfa_expression to define cfa
1453 cfa.reg == fde->drap_reg */
1454
1455 static void
1456 dwarf2out_frame_debug_expr (rtx expr)
1457 {
1458 rtx src, dest, span;
1459 HOST_WIDE_INT offset;
1460 dw_fde_ref fde;
1461
1462 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1463 the PARALLEL independently. The first element is always processed if
1464 it is a SET. This is for backward compatibility. Other elements
1465 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1466 flag is set in them. */
1467 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1468 {
1469 int par_index;
1470 int limit = XVECLEN (expr, 0);
1471 rtx elem;
1472
1473 /* PARALLELs have strict read-modify-write semantics, so we
1474 ought to evaluate every rvalue before changing any lvalue.
1475 It's cumbersome to do that in general, but there's an
1476 easy approximation that is enough for all current users:
1477 handle register saves before register assignments. */
1478 if (GET_CODE (expr) == PARALLEL)
1479 for (par_index = 0; par_index < limit; par_index++)
1480 {
1481 elem = XVECEXP (expr, 0, par_index);
1482 if (GET_CODE (elem) == SET
1483 && MEM_P (SET_DEST (elem))
1484 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1485 dwarf2out_frame_debug_expr (elem);
1486 }
1487
1488 for (par_index = 0; par_index < limit; par_index++)
1489 {
1490 elem = XVECEXP (expr, 0, par_index);
1491 if (GET_CODE (elem) == SET
1492 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1493 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1494 dwarf2out_frame_debug_expr (elem);
1495 }
1496 return;
1497 }
1498
1499 gcc_assert (GET_CODE (expr) == SET);
1500
1501 src = SET_SRC (expr);
1502 dest = SET_DEST (expr);
1503
1504 if (REG_P (src))
1505 {
1506 rtx rsi = reg_saved_in (src);
1507 if (rsi)
1508 src = rsi;
1509 }
1510
1511 fde = cfun->fde;
1512
1513 switch (GET_CODE (dest))
1514 {
1515 case REG:
1516 switch (GET_CODE (src))
1517 {
1518 /* Setting FP from SP. */
1519 case REG:
1520 if (cur_cfa->reg == dwf_regno (src))
1521 {
1522 /* Rule 1 */
1523 /* Update the CFA rule wrt SP or FP. Make sure src is
1524 relative to the current CFA register.
1525
1526 We used to require that dest be either SP or FP, but the
1527 ARM copies SP to a temporary register, and from there to
1528 FP. So we just rely on the backends to only set
1529 RTX_FRAME_RELATED_P on appropriate insns. */
1530 cur_cfa->reg = dwf_regno (dest);
1531 cur_trace->cfa_temp.reg = cur_cfa->reg;
1532 cur_trace->cfa_temp.offset = cur_cfa->offset;
1533 }
1534 else
1535 {
1536 /* Saving a register in a register. */
1537 gcc_assert (!fixed_regs [REGNO (dest)]
1538 /* For the SPARC and its register window. */
1539 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1540
1541 /* After stack is aligned, we can only save SP in FP
1542 if drap register is used. In this case, we have
1543 to restore stack pointer with the CFA value and we
1544 don't generate this DWARF information. */
1545 if (fde
1546 && fde->stack_realign
1547 && REGNO (src) == STACK_POINTER_REGNUM)
1548 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1549 && fde->drap_reg != INVALID_REGNUM
1550 && cur_cfa->reg != dwf_regno (src));
1551 else
1552 queue_reg_save (src, dest, 0);
1553 }
1554 break;
1555
1556 case PLUS:
1557 case MINUS:
1558 case LO_SUM:
1559 if (dest == stack_pointer_rtx)
1560 {
1561 /* Rule 2 */
1562 /* Adjusting SP. */
1563 switch (GET_CODE (XEXP (src, 1)))
1564 {
1565 case CONST_INT:
1566 offset = INTVAL (XEXP (src, 1));
1567 break;
1568 case REG:
1569 gcc_assert (dwf_regno (XEXP (src, 1))
1570 == cur_trace->cfa_temp.reg);
1571 offset = cur_trace->cfa_temp.offset;
1572 break;
1573 default:
1574 gcc_unreachable ();
1575 }
1576
1577 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1578 {
1579 /* Restoring SP from FP in the epilogue. */
1580 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1581 cur_cfa->reg = dw_stack_pointer_regnum;
1582 }
1583 else if (GET_CODE (src) == LO_SUM)
1584 /* Assume we've set the source reg of the LO_SUM from sp. */
1585 ;
1586 else
1587 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1588
1589 if (GET_CODE (src) != MINUS)
1590 offset = -offset;
1591 if (cur_cfa->reg == dw_stack_pointer_regnum)
1592 cur_cfa->offset += offset;
1593 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1594 cur_trace->cfa_store.offset += offset;
1595 }
1596 else if (dest == hard_frame_pointer_rtx)
1597 {
1598 /* Rule 3 */
1599 /* Either setting the FP from an offset of the SP,
1600 or adjusting the FP */
1601 gcc_assert (frame_pointer_needed);
1602
1603 gcc_assert (REG_P (XEXP (src, 0))
1604 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1605 && CONST_INT_P (XEXP (src, 1)));
1606 offset = INTVAL (XEXP (src, 1));
1607 if (GET_CODE (src) != MINUS)
1608 offset = -offset;
1609 cur_cfa->offset += offset;
1610 cur_cfa->reg = dw_frame_pointer_regnum;
1611 }
1612 else
1613 {
1614 gcc_assert (GET_CODE (src) != MINUS);
1615
1616 /* Rule 4 */
1617 if (REG_P (XEXP (src, 0))
1618 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1619 && CONST_INT_P (XEXP (src, 1)))
1620 {
1621 /* Setting a temporary CFA register that will be copied
1622 into the FP later on. */
1623 offset = - INTVAL (XEXP (src, 1));
1624 cur_cfa->offset += offset;
1625 cur_cfa->reg = dwf_regno (dest);
1626 /* Or used to save regs to the stack. */
1627 cur_trace->cfa_temp.reg = cur_cfa->reg;
1628 cur_trace->cfa_temp.offset = cur_cfa->offset;
1629 }
1630
1631 /* Rule 5 */
1632 else if (REG_P (XEXP (src, 0))
1633 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1634 && XEXP (src, 1) == stack_pointer_rtx)
1635 {
1636 /* Setting a scratch register that we will use instead
1637 of SP for saving registers to the stack. */
1638 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1639 cur_trace->cfa_store.reg = dwf_regno (dest);
1640 cur_trace->cfa_store.offset
1641 = cur_cfa->offset - cur_trace->cfa_temp.offset;
1642 }
1643
1644 /* Rule 9 */
1645 else if (GET_CODE (src) == LO_SUM
1646 && CONST_INT_P (XEXP (src, 1)))
1647 {
1648 cur_trace->cfa_temp.reg = dwf_regno (dest);
1649 cur_trace->cfa_temp.offset = INTVAL (XEXP (src, 1));
1650 }
1651 else
1652 gcc_unreachable ();
1653 }
1654 break;
1655
1656 /* Rule 6 */
1657 case CONST_INT:
1658 cur_trace->cfa_temp.reg = dwf_regno (dest);
1659 cur_trace->cfa_temp.offset = INTVAL (src);
1660 break;
1661
1662 /* Rule 7 */
1663 case IOR:
1664 gcc_assert (REG_P (XEXP (src, 0))
1665 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1666 && CONST_INT_P (XEXP (src, 1)));
1667
1668 cur_trace->cfa_temp.reg = dwf_regno (dest);
1669 cur_trace->cfa_temp.offset |= INTVAL (XEXP (src, 1));
1670 break;
1671
1672 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1673 which will fill in all of the bits. */
1674 /* Rule 8 */
1675 case HIGH:
1676 break;
1677
1678 /* Rule 15 */
1679 case UNSPEC:
1680 case UNSPEC_VOLATILE:
1681 /* All unspecs should be represented by REG_CFA_* notes. */
1682 gcc_unreachable ();
1683 return;
1684
1685 /* Rule 16 */
1686 case AND:
1687 /* If this AND operation happens on stack pointer in prologue,
1688 we assume the stack is realigned and we extract the
1689 alignment. */
1690 if (fde && XEXP (src, 0) == stack_pointer_rtx)
1691 {
1692 /* We interpret reg_save differently with stack_realign set.
1693 Thus we must flush whatever we have queued first. */
1694 dwarf2out_flush_queued_reg_saves ();
1695
1696 gcc_assert (cur_trace->cfa_store.reg
1697 == dwf_regno (XEXP (src, 0)));
1698 fde->stack_realign = 1;
1699 fde->stack_realignment = INTVAL (XEXP (src, 1));
1700 cur_trace->cfa_store.offset = 0;
1701
1702 if (cur_cfa->reg != dw_stack_pointer_regnum
1703 && cur_cfa->reg != dw_frame_pointer_regnum)
1704 fde->drap_reg = cur_cfa->reg;
1705 }
1706 return;
1707
1708 default:
1709 gcc_unreachable ();
1710 }
1711 break;
1712
1713 case MEM:
1714
1715 /* Saving a register to the stack. Make sure dest is relative to the
1716 CFA register. */
1717 switch (GET_CODE (XEXP (dest, 0)))
1718 {
1719 /* Rule 10 */
1720 /* With a push. */
1721 case PRE_MODIFY:
1722 case POST_MODIFY:
1723 /* We can't handle variable size modifications. */
1724 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1725 == CONST_INT);
1726 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1727
1728 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1729 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1730
1731 cur_trace->cfa_store.offset += offset;
1732 if (cur_cfa->reg == dw_stack_pointer_regnum)
1733 cur_cfa->offset = cur_trace->cfa_store.offset;
1734
1735 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
1736 offset -= cur_trace->cfa_store.offset;
1737 else
1738 offset = -cur_trace->cfa_store.offset;
1739 break;
1740
1741 /* Rule 11 */
1742 case PRE_INC:
1743 case PRE_DEC:
1744 case POST_DEC:
1745 offset = GET_MODE_SIZE (GET_MODE (dest));
1746 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1747 offset = -offset;
1748
1749 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1750 == STACK_POINTER_REGNUM)
1751 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1752
1753 cur_trace->cfa_store.offset += offset;
1754
1755 /* Rule 18: If stack is aligned, we will use FP as a
1756 reference to represent the address of the stored
1757 regiser. */
1758 if (fde
1759 && fde->stack_realign
1760 && src == hard_frame_pointer_rtx)
1761 {
1762 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
1763 cur_trace->cfa_store.offset = 0;
1764 }
1765
1766 if (cur_cfa->reg == dw_stack_pointer_regnum)
1767 cur_cfa->offset = cur_trace->cfa_store.offset;
1768
1769 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
1770 offset += -cur_trace->cfa_store.offset;
1771 else
1772 offset = -cur_trace->cfa_store.offset;
1773 break;
1774
1775 /* Rule 12 */
1776 /* With an offset. */
1777 case PLUS:
1778 case MINUS:
1779 case LO_SUM:
1780 {
1781 unsigned int regno;
1782
1783 gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
1784 && REG_P (XEXP (XEXP (dest, 0), 0)));
1785 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1786 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1787 offset = -offset;
1788
1789 regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
1790
1791 if (cur_cfa->reg == regno)
1792 offset -= cur_cfa->offset;
1793 else if (cur_trace->cfa_store.reg == regno)
1794 offset -= cur_trace->cfa_store.offset;
1795 else
1796 {
1797 gcc_assert (cur_trace->cfa_temp.reg == regno);
1798 offset -= cur_trace->cfa_temp.offset;
1799 }
1800 }
1801 break;
1802
1803 /* Rule 13 */
1804 /* Without an offset. */
1805 case REG:
1806 {
1807 unsigned int regno = dwf_regno (XEXP (dest, 0));
1808
1809 if (cur_cfa->reg == regno)
1810 offset = -cur_cfa->offset;
1811 else if (cur_trace->cfa_store.reg == regno)
1812 offset = -cur_trace->cfa_store.offset;
1813 else
1814 {
1815 gcc_assert (cur_trace->cfa_temp.reg == regno);
1816 offset = -cur_trace->cfa_temp.offset;
1817 }
1818 }
1819 break;
1820
1821 /* Rule 14 */
1822 case POST_INC:
1823 gcc_assert (cur_trace->cfa_temp.reg
1824 == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1825 offset = -cur_trace->cfa_temp.offset;
1826 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1827 break;
1828
1829 default:
1830 gcc_unreachable ();
1831 }
1832
1833 /* Rule 17 */
1834 /* If the source operand of this MEM operation is a memory,
1835 we only care how much stack grew. */
1836 if (MEM_P (src))
1837 break;
1838
1839 if (REG_P (src)
1840 && REGNO (src) != STACK_POINTER_REGNUM
1841 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1842 && dwf_regno (src) == cur_cfa->reg)
1843 {
1844 /* We're storing the current CFA reg into the stack. */
1845
1846 if (cur_cfa->offset == 0)
1847 {
1848 /* Rule 19 */
1849 /* If stack is aligned, putting CFA reg into stack means
1850 we can no longer use reg + offset to represent CFA.
1851 Here we use DW_CFA_def_cfa_expression instead. The
1852 result of this expression equals to the original CFA
1853 value. */
1854 if (fde
1855 && fde->stack_realign
1856 && cur_cfa->indirect == 0
1857 && cur_cfa->reg != dw_frame_pointer_regnum)
1858 {
1859 gcc_assert (fde->drap_reg == cur_cfa->reg);
1860
1861 cur_cfa->indirect = 1;
1862 cur_cfa->reg = dw_frame_pointer_regnum;
1863 cur_cfa->base_offset = offset;
1864 cur_cfa->offset = 0;
1865
1866 fde->drap_reg_saved = 1;
1867 break;
1868 }
1869
1870 /* If the source register is exactly the CFA, assume
1871 we're saving SP like any other register; this happens
1872 on the ARM. */
1873 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
1874 break;
1875 }
1876 else
1877 {
1878 /* Otherwise, we'll need to look in the stack to
1879 calculate the CFA. */
1880 rtx x = XEXP (dest, 0);
1881
1882 if (!REG_P (x))
1883 x = XEXP (x, 0);
1884 gcc_assert (REG_P (x));
1885
1886 cur_cfa->reg = dwf_regno (x);
1887 cur_cfa->base_offset = offset;
1888 cur_cfa->indirect = 1;
1889 break;
1890 }
1891 }
1892
1893 span = NULL;
1894 if (REG_P (src))
1895 span = targetm.dwarf_register_span (src);
1896 if (!span)
1897 queue_reg_save (src, NULL_RTX, offset);
1898 else
1899 {
1900 /* We have a PARALLEL describing where the contents of SRC live.
1901 Queue register saves for each piece of the PARALLEL. */
1902 int par_index;
1903 int limit;
1904 HOST_WIDE_INT span_offset = offset;
1905
1906 gcc_assert (GET_CODE (span) == PARALLEL);
1907
1908 limit = XVECLEN (span, 0);
1909 for (par_index = 0; par_index < limit; par_index++)
1910 {
1911 rtx elem = XVECEXP (span, 0, par_index);
1912 queue_reg_save (elem, NULL_RTX, span_offset);
1913 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1914 }
1915 }
1916 break;
1917
1918 default:
1919 gcc_unreachable ();
1920 }
1921 }
1922
1923 /* Record call frame debugging information for INSN, which either sets
1924 SP or FP (adjusting how we calculate the frame address) or saves a
1925 register to the stack. */
1926
1927 static void
1928 dwarf2out_frame_debug (rtx insn)
1929 {
1930 rtx note, n;
1931 bool handled_one = false;
1932 bool need_flush = false;
1933
1934 any_cfis_emitted = false;
1935
1936 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1937 switch (REG_NOTE_KIND (note))
1938 {
1939 case REG_FRAME_RELATED_EXPR:
1940 insn = XEXP (note, 0);
1941 goto do_frame_expr;
1942
1943 case REG_CFA_DEF_CFA:
1944 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
1945 handled_one = true;
1946 break;
1947
1948 case REG_CFA_ADJUST_CFA:
1949 n = XEXP (note, 0);
1950 if (n == NULL)
1951 {
1952 n = PATTERN (insn);
1953 if (GET_CODE (n) == PARALLEL)
1954 n = XVECEXP (n, 0, 0);
1955 }
1956 dwarf2out_frame_debug_adjust_cfa (n);
1957 handled_one = true;
1958 break;
1959
1960 case REG_CFA_OFFSET:
1961 n = XEXP (note, 0);
1962 if (n == NULL)
1963 n = single_set (insn);
1964 dwarf2out_frame_debug_cfa_offset (n);
1965 handled_one = true;
1966 break;
1967
1968 case REG_CFA_REGISTER:
1969 n = XEXP (note, 0);
1970 if (n == NULL)
1971 {
1972 n = PATTERN (insn);
1973 if (GET_CODE (n) == PARALLEL)
1974 n = XVECEXP (n, 0, 0);
1975 }
1976 dwarf2out_frame_debug_cfa_register (n);
1977 handled_one = true;
1978 break;
1979
1980 case REG_CFA_EXPRESSION:
1981 n = XEXP (note, 0);
1982 if (n == NULL)
1983 n = single_set (insn);
1984 dwarf2out_frame_debug_cfa_expression (n);
1985 handled_one = true;
1986 break;
1987
1988 case REG_CFA_RESTORE:
1989 n = XEXP (note, 0);
1990 if (n == NULL)
1991 {
1992 n = PATTERN (insn);
1993 if (GET_CODE (n) == PARALLEL)
1994 n = XVECEXP (n, 0, 0);
1995 n = XEXP (n, 0);
1996 }
1997 dwarf2out_frame_debug_cfa_restore (n);
1998 handled_one = true;
1999 break;
2000
2001 case REG_CFA_SET_VDRAP:
2002 n = XEXP (note, 0);
2003 if (REG_P (n))
2004 {
2005 dw_fde_ref fde = cfun->fde;
2006 if (fde)
2007 {
2008 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2009 if (REG_P (n))
2010 fde->vdrap_reg = dwf_regno (n);
2011 }
2012 }
2013 handled_one = true;
2014 break;
2015
2016 case REG_CFA_WINDOW_SAVE:
2017 dwarf2out_frame_debug_cfa_window_save ();
2018 handled_one = true;
2019 break;
2020
2021 case REG_CFA_FLUSH_QUEUE:
2022 /* The actual flush happens below. */
2023 need_flush = true;
2024 handled_one = true;
2025 break;
2026
2027 default:
2028 break;
2029 }
2030
2031 if (handled_one)
2032 {
2033 /* Minimize the number of advances by emitting the entire queue
2034 once anything is emitted. */
2035 need_flush |= any_cfis_emitted;
2036 }
2037 else
2038 {
2039 insn = PATTERN (insn);
2040 do_frame_expr:
2041 dwarf2out_frame_debug_expr (insn);
2042
2043 /* Check again. A parallel can save and update the same register.
2044 We could probably check just once, here, but this is safer than
2045 removing the check at the start of the function. */
2046 if (any_cfis_emitted || clobbers_queued_reg_save (insn))
2047 need_flush = true;
2048 }
2049
2050 if (need_flush)
2051 dwarf2out_flush_queued_reg_saves ();
2052 }
2053
2054 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2055
2056 static void
2057 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2058 {
2059 size_t i, n_old, n_new, n_max;
2060 dw_cfi_ref cfi;
2061
2062 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2063 add_cfi (new_row->cfa_cfi);
2064 else
2065 {
2066 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2067 if (cfi)
2068 add_cfi (cfi);
2069 }
2070
2071 n_old = VEC_length (dw_cfi_ref, old_row->reg_save);
2072 n_new = VEC_length (dw_cfi_ref, new_row->reg_save);
2073 n_max = MAX (n_old, n_new);
2074
2075 for (i = 0; i < n_max; ++i)
2076 {
2077 dw_cfi_ref r_old = NULL, r_new = NULL;
2078
2079 if (i < n_old)
2080 r_old = VEC_index (dw_cfi_ref, old_row->reg_save, i);
2081 if (i < n_new)
2082 r_new = VEC_index (dw_cfi_ref, new_row->reg_save, i);
2083
2084 if (r_old == r_new)
2085 ;
2086 else if (r_new == NULL)
2087 add_cfi_restore (i);
2088 else if (!cfi_equal_p (r_old, r_new))
2089 add_cfi (r_new);
2090 }
2091 }
2092
2093 /* Examine CFI and return true if a cfi label and set_loc is needed
2094 beforehand. Even when generating CFI assembler instructions, we
2095 still have to add the cfi to the list so that lookup_cfa_1 works
2096 later on. When -g2 and above we even need to force emitting of
2097 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2098 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2099 and so don't use convert_cfa_to_fb_loc_list. */
2100
2101 static bool
2102 cfi_label_required_p (dw_cfi_ref cfi)
2103 {
2104 if (!dwarf2out_do_cfi_asm ())
2105 return true;
2106
2107 if (dwarf_version == 2
2108 && debug_info_level > DINFO_LEVEL_TERSE
2109 && (write_symbols == DWARF2_DEBUG
2110 || write_symbols == VMS_AND_DWARF2_DEBUG))
2111 {
2112 switch (cfi->dw_cfi_opc)
2113 {
2114 case DW_CFA_def_cfa_offset:
2115 case DW_CFA_def_cfa_offset_sf:
2116 case DW_CFA_def_cfa_register:
2117 case DW_CFA_def_cfa:
2118 case DW_CFA_def_cfa_sf:
2119 case DW_CFA_def_cfa_expression:
2120 case DW_CFA_restore_state:
2121 return true;
2122 default:
2123 return false;
2124 }
2125 }
2126 return false;
2127 }
2128
2129 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2130 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2131 necessary. */
2132 static void
2133 add_cfis_to_fde (void)
2134 {
2135 dw_fde_ref fde = cfun->fde;
2136 rtx insn, next;
2137 /* We always start with a function_begin label. */
2138 bool first = false;
2139
2140 for (insn = get_insns (); insn; insn = next)
2141 {
2142 next = NEXT_INSN (insn);
2143
2144 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2145 {
2146 fde->dw_fde_switch_cfi_index
2147 = VEC_length (dw_cfi_ref, fde->dw_fde_cfi);
2148 /* Don't attempt to advance_loc4 between labels
2149 in different sections. */
2150 first = true;
2151 }
2152
2153 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2154 {
2155 bool required = cfi_label_required_p (NOTE_CFI (insn));
2156 while (next && NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2157 {
2158 required |= cfi_label_required_p (NOTE_CFI (next));
2159 next = NEXT_INSN (next);
2160 }
2161 if (required)
2162 {
2163 int num = dwarf2out_cfi_label_num;
2164 const char *label = dwarf2out_cfi_label ();
2165 dw_cfi_ref xcfi;
2166 rtx tmp;
2167
2168 /* Set the location counter to the new label. */
2169 xcfi = new_cfi ();
2170 xcfi->dw_cfi_opc = (first ? DW_CFA_set_loc
2171 : DW_CFA_advance_loc4);
2172 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2173 VEC_safe_push (dw_cfi_ref, gc, fde->dw_fde_cfi, xcfi);
2174
2175 tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2176 NOTE_LABEL_NUMBER (tmp) = num;
2177 }
2178
2179 do
2180 {
2181 VEC_safe_push (dw_cfi_ref, gc, fde->dw_fde_cfi, NOTE_CFI (insn));
2182 insn = NEXT_INSN (insn);
2183 }
2184 while (insn != next);
2185 first = false;
2186 }
2187 }
2188 }
2189
2190 /* If LABEL is the start of a trace, then initialize the state of that
2191 trace from CUR_TRACE and CUR_ROW. */
2192
2193 static void
2194 maybe_record_trace_start (rtx start, rtx origin)
2195 {
2196 dw_trace_info *ti;
2197 HOST_WIDE_INT args_size;
2198
2199 ti = get_trace_info (start);
2200 gcc_assert (ti != NULL);
2201
2202 if (dump_file)
2203 {
2204 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
2205 cur_trace->id, ti->id,
2206 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2207 (origin ? INSN_UID (origin) : 0));
2208 }
2209
2210 args_size = cur_trace->end_true_args_size;
2211 if (ti->beg_row == NULL)
2212 {
2213 /* This is the first time we've encountered this trace. Propagate
2214 state across the edge and push the trace onto the work list. */
2215 ti->beg_row = copy_cfi_row (cur_row);
2216 ti->beg_true_args_size = args_size;
2217
2218 ti->cfa_store = cur_trace->cfa_store;
2219 ti->cfa_temp = cur_trace->cfa_temp;
2220 ti->regs_saved_in_regs = VEC_copy (reg_saved_in_data, heap,
2221 cur_trace->regs_saved_in_regs);
2222
2223 VEC_safe_push (dw_trace_info_ref, heap, trace_work_list, ti);
2224
2225 if (dump_file)
2226 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2227 }
2228 else
2229 {
2230
2231 /* We ought to have the same state incoming to a given trace no
2232 matter how we arrive at the trace. Anything else means we've
2233 got some kind of optimization error. */
2234 gcc_checking_assert (cfi_row_equal_p (cur_row, ti->beg_row));
2235
2236 /* The args_size is allowed to conflict if it isn't actually used. */
2237 if (ti->beg_true_args_size != args_size)
2238 ti->args_size_undefined = true;
2239 }
2240 }
2241
2242 /* Similarly, but handle the args_size and CFA reset across EH
2243 and non-local goto edges. */
2244
2245 static void
2246 maybe_record_trace_start_abnormal (rtx start, rtx origin)
2247 {
2248 HOST_WIDE_INT save_args_size, delta;
2249 dw_cfa_location save_cfa;
2250
2251 save_args_size = cur_trace->end_true_args_size;
2252 if (save_args_size == 0)
2253 {
2254 maybe_record_trace_start (start, origin);
2255 return;
2256 }
2257
2258 delta = -save_args_size;
2259 cur_trace->end_true_args_size = 0;
2260
2261 save_cfa = cur_row->cfa;
2262 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2263 {
2264 /* Convert a change in args_size (always a positive in the
2265 direction of stack growth) to a change in stack pointer. */
2266 #ifndef STACK_GROWS_DOWNWARD
2267 delta = -delta;
2268 #endif
2269 cur_row->cfa.offset += delta;
2270 }
2271
2272 maybe_record_trace_start (start, origin);
2273
2274 cur_trace->end_true_args_size = save_args_size;
2275 cur_row->cfa = save_cfa;
2276 }
2277
2278 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2279 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2280
2281 static void
2282 create_trace_edges (rtx insn)
2283 {
2284 rtx tmp, lab;
2285 int i, n;
2286
2287 if (JUMP_P (insn))
2288 {
2289 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2290 return;
2291
2292 if (tablejump_p (insn, NULL, &tmp))
2293 {
2294 rtvec vec;
2295
2296 tmp = PATTERN (tmp);
2297 vec = XVEC (tmp, GET_CODE (tmp) == ADDR_DIFF_VEC);
2298
2299 n = GET_NUM_ELEM (vec);
2300 for (i = 0; i < n; ++i)
2301 {
2302 lab = XEXP (RTVEC_ELT (vec, i), 0);
2303 maybe_record_trace_start (lab, insn);
2304 }
2305 }
2306 else if (computed_jump_p (insn))
2307 {
2308 for (lab = forced_labels; lab; lab = XEXP (lab, 1))
2309 maybe_record_trace_start (XEXP (lab, 0), insn);
2310 }
2311 else if (returnjump_p (insn))
2312 ;
2313 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2314 {
2315 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2316 for (i = 0; i < n; ++i)
2317 {
2318 lab = XEXP (ASM_OPERANDS_LABEL (tmp, i), 0);
2319 maybe_record_trace_start (lab, insn);
2320 }
2321 }
2322 else
2323 {
2324 lab = JUMP_LABEL (insn);
2325 gcc_assert (lab != NULL);
2326 maybe_record_trace_start (lab, insn);
2327 }
2328 }
2329 else if (CALL_P (insn))
2330 {
2331 /* Sibling calls don't have edges inside this function. */
2332 if (SIBLING_CALL_P (insn))
2333 return;
2334
2335 /* Process non-local goto edges. */
2336 if (can_nonlocal_goto (insn))
2337 for (lab = nonlocal_goto_handler_labels; lab; lab = XEXP (lab, 1))
2338 maybe_record_trace_start_abnormal (XEXP (lab, 0), insn);
2339 }
2340 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2341 {
2342 rtx seq = PATTERN (insn);
2343 int i, n = XVECLEN (seq, 0);
2344 for (i = 0; i < n; ++i)
2345 create_trace_edges (XVECEXP (seq, 0, i));
2346 return;
2347 }
2348
2349 /* Process EH edges. */
2350 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2351 {
2352 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2353 if (lp)
2354 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2355 }
2356 }
2357
2358 /* Scan the trace beginning at INSN and create the CFI notes for the
2359 instructions therein. */
2360
2361 static void
2362 scan_trace (dw_trace_info *trace)
2363 {
2364 rtx insn = trace->head;
2365 dw_cfa_location this_cfa;
2366
2367 if (dump_file)
2368 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2369 trace->id, rtx_name[(int) GET_CODE (insn)],
2370 INSN_UID (insn));
2371
2372 trace->end_row = copy_cfi_row (trace->beg_row);
2373 trace->end_true_args_size = trace->beg_true_args_size;
2374
2375 cur_trace = trace;
2376 cur_row = trace->end_row;
2377
2378 this_cfa = cur_row->cfa;
2379 cur_cfa = &this_cfa;
2380
2381 for (insn = NEXT_INSN (insn); insn ; insn = NEXT_INSN (insn))
2382 {
2383 /* Do everything that happens "before" the insn. */
2384 add_cfi_insn = PREV_INSN (insn);
2385
2386 /* Notice the end of a trace. */
2387 if (BARRIER_P (insn))
2388 {
2389 /* Don't bother saving the unneeded queued registers at all. */
2390 VEC_truncate (queued_reg_save, queued_reg_saves, 0);
2391 break;
2392 }
2393 if (save_point_p (insn))
2394 {
2395 /* Propagate across fallthru edges. */
2396 dwarf2out_flush_queued_reg_saves ();
2397 maybe_record_trace_start (insn, NULL);
2398 break;
2399 }
2400
2401 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2402 continue;
2403
2404 /* Flush data before calls and jumps, and of course if necessary. */
2405 if (can_throw_internal (insn))
2406 {
2407 dwarf2out_flush_queued_reg_saves ();
2408 notice_eh_throw (insn);
2409 }
2410 else if (!NONJUMP_INSN_P (insn)
2411 || clobbers_queued_reg_save (insn)
2412 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2413 dwarf2out_flush_queued_reg_saves ();
2414
2415 /* Do everything that happens "after" the insn. */
2416 add_cfi_insn = insn;
2417
2418 /* Handle changes to the row state. */
2419 if (RTX_FRAME_RELATED_P (insn))
2420 dwarf2out_frame_debug (insn);
2421
2422 /* Look for REG_ARGS_SIZE, and handle it. */
2423 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2424 {
2425 rtx elt, pat = PATTERN (insn);
2426 int i, n = XVECLEN (pat, 0);
2427
2428 if (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0)))
2429 {
2430 /* ??? Hopefully multiple delay slots are not annulled. */
2431 gcc_assert (n == 2);
2432 elt = XVECEXP (pat, 0, 1);
2433
2434 /* If ELT is an instruction from target of an annulled branch,
2435 the effects are for the target only and so the args_size
2436 and CFA along the current path shouldn't change. */
2437 if (INSN_FROM_TARGET_P (elt))
2438 {
2439 HOST_WIDE_INT restore_args_size;
2440
2441 restore_args_size = cur_trace->end_true_args_size;
2442 cur_cfa = &cur_row->cfa;
2443
2444 notice_args_size (elt);
2445 create_trace_edges (insn);
2446
2447 cur_trace->end_true_args_size = restore_args_size;
2448 cur_row->cfa = this_cfa;
2449 cur_cfa = &this_cfa;
2450 continue;
2451 }
2452 }
2453
2454 for (i = 1; i < n; ++i)
2455 {
2456 elt = XVECEXP (pat, 0, i);
2457 notice_args_size (elt);
2458 }
2459 }
2460 else
2461 notice_args_size (insn);
2462
2463 /* Between frame-related-p and args_size we might have otherwise
2464 emitted two cfa adjustments. Do it now. */
2465 def_cfa_1 (&this_cfa);
2466
2467 /* Note that a test for control_flow_insn_p does exactly the
2468 same tests as are done to actually create the edges. So
2469 always call the routine and let it not create edges for
2470 non-control-flow insns. */
2471 create_trace_edges (insn);
2472 }
2473
2474 add_cfi_insn = NULL;
2475 cur_row = NULL;
2476 cur_trace = NULL;
2477 cur_cfa = NULL;
2478 }
2479
2480 /* Scan the function and create the initial set of CFI notes. */
2481
2482 static void
2483 create_cfi_notes (void)
2484 {
2485 dw_trace_info *ti;
2486
2487 gcc_checking_assert (queued_reg_saves == NULL);
2488 gcc_checking_assert (trace_work_list == NULL);
2489
2490 /* Always begin at the entry trace. */
2491 ti = VEC_index (dw_trace_info, trace_info, 0);
2492 scan_trace (ti);
2493
2494 while (!VEC_empty (dw_trace_info_ref, trace_work_list))
2495 {
2496 ti = VEC_pop (dw_trace_info_ref, trace_work_list);
2497 scan_trace (ti);
2498 }
2499
2500 VEC_free (queued_reg_save, heap, queued_reg_saves);
2501 VEC_free (dw_trace_info_ref, heap, trace_work_list);
2502 }
2503
2504 /* Return the insn before the first NOTE_INSN_CFI after START. */
2505
2506 static rtx
2507 before_next_cfi_note (rtx start)
2508 {
2509 rtx prev = start;
2510 while (start)
2511 {
2512 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2513 return prev;
2514 prev = start;
2515 start = NEXT_INSN (start);
2516 }
2517 gcc_unreachable ();
2518 }
2519
2520 /* Insert CFI notes between traces to properly change state between them. */
2521
2522 static void
2523 connect_traces (void)
2524 {
2525 unsigned i, n = VEC_length (dw_trace_info, trace_info);
2526 dw_trace_info *prev_ti, *ti;
2527
2528 /* ??? Ideally, we should have both queued and processed every trace.
2529 However the current representation of constant pools on various targets
2530 is indistinguishable from unreachable code. Assume for the moment that
2531 we can simply skip over such traces. */
2532 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2533 these are not "real" instructions, and should not be considered.
2534 This could be generically useful for tablejump data as well. */
2535 /* Remove all unprocessed traces from the list. */
2536 for (i = n - 1; i > 0; --i)
2537 {
2538 ti = VEC_index (dw_trace_info, trace_info, i);
2539 if (ti->beg_row == NULL)
2540 {
2541 VEC_ordered_remove (dw_trace_info, trace_info, i);
2542 n -= 1;
2543 }
2544 else
2545 gcc_assert (ti->end_row != NULL);
2546 }
2547
2548 /* Work from the end back to the beginning. This lets us easily insert
2549 remember/restore_state notes in the correct order wrt other notes. */
2550 prev_ti = VEC_index (dw_trace_info, trace_info, n - 1);
2551 for (i = n - 1; i > 0; --i)
2552 {
2553 dw_cfi_row *old_row;
2554
2555 ti = prev_ti;
2556 prev_ti = VEC_index (dw_trace_info, trace_info, i - 1);
2557
2558 add_cfi_insn = ti->head;
2559
2560 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2561 for the portion of the function in the alternate text
2562 section. The row state at the very beginning of that
2563 new FDE will be exactly the row state from the CIE. */
2564 if (ti->switch_sections)
2565 old_row = cie_cfi_row;
2566 else
2567 {
2568 old_row = prev_ti->end_row;
2569 /* If there's no change from the previous end state, fine. */
2570 if (cfi_row_equal_p (old_row, ti->beg_row))
2571 ;
2572 /* Otherwise check for the common case of sharing state with
2573 the beginning of an epilogue, but not the end. Insert
2574 remember/restore opcodes in that case. */
2575 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2576 {
2577 dw_cfi_ref cfi;
2578
2579 /* Note that if we blindly insert the remember at the
2580 start of the trace, we can wind up increasing the
2581 size of the unwind info due to extra advance opcodes.
2582 Instead, put the remember immediately before the next
2583 state change. We know there must be one, because the
2584 state at the beginning and head of the trace differ. */
2585 add_cfi_insn = before_next_cfi_note (prev_ti->head);
2586 cfi = new_cfi ();
2587 cfi->dw_cfi_opc = DW_CFA_remember_state;
2588 add_cfi (cfi);
2589
2590 add_cfi_insn = ti->head;
2591 cfi = new_cfi ();
2592 cfi->dw_cfi_opc = DW_CFA_restore_state;
2593 add_cfi (cfi);
2594
2595 old_row = prev_ti->beg_row;
2596 }
2597 /* Otherwise, we'll simply change state from the previous end. */
2598 }
2599
2600 change_cfi_row (old_row, ti->beg_row);
2601
2602 if (dump_file && add_cfi_insn != ti->head)
2603 {
2604 rtx note;
2605
2606 fprintf (dump_file, "Fixup between trace %u and %u:\n",
2607 prev_ti->id, ti->id);
2608
2609 note = ti->head;
2610 do
2611 {
2612 note = NEXT_INSN (note);
2613 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2614 output_cfi_directive (dump_file, NOTE_CFI (note));
2615 }
2616 while (note != add_cfi_insn);
2617 }
2618 }
2619
2620 /* Connect args_size between traces that have can_throw_internal insns. */
2621 if (cfun->eh->lp_array != NULL)
2622 {
2623 HOST_WIDE_INT prev_args_size = 0;
2624
2625 for (i = 0; i < n; ++i)
2626 {
2627 ti = VEC_index (dw_trace_info, trace_info, i);
2628
2629 if (ti->switch_sections)
2630 prev_args_size = 0;
2631 if (ti->eh_head == NULL)
2632 continue;
2633 gcc_assert (!ti->args_size_undefined);
2634
2635 if (ti->beg_delay_args_size != prev_args_size)
2636 {
2637 /* ??? Search back to previous CFI note. */
2638 add_cfi_insn = PREV_INSN (ti->eh_head);
2639 add_cfi_args_size (ti->beg_delay_args_size);
2640 }
2641
2642 prev_args_size = ti->end_delay_args_size;
2643 }
2644 }
2645 }
2646
2647 /* Set up the pseudo-cfg of instruction traces, as described at the
2648 block comment at the top of the file. */
2649
2650 static void
2651 create_pseudo_cfg (void)
2652 {
2653 bool saw_barrier, switch_sections;
2654 dw_trace_info *ti;
2655 rtx insn;
2656 unsigned i;
2657
2658 /* The first trace begins at the start of the function,
2659 and begins with the CIE row state. */
2660 trace_info = VEC_alloc (dw_trace_info, heap, 16);
2661 ti = VEC_quick_push (dw_trace_info, trace_info, NULL);
2662
2663 memset (ti, 0, sizeof (*ti));
2664 ti->head = get_insns ();
2665 ti->beg_row = cie_cfi_row;
2666 ti->cfa_store = cie_cfi_row->cfa;
2667 ti->cfa_temp.reg = INVALID_REGNUM;
2668 if (cie_return_save)
2669 VEC_safe_push (reg_saved_in_data, heap,
2670 ti->regs_saved_in_regs, cie_return_save);
2671
2672 /* Walk all the insns, collecting start of trace locations. */
2673 saw_barrier = false;
2674 switch_sections = false;
2675 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2676 {
2677 if (BARRIER_P (insn))
2678 saw_barrier = true;
2679 else if (NOTE_P (insn)
2680 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2681 {
2682 /* We should have just seen a barrier. */
2683 gcc_assert (saw_barrier);
2684 switch_sections = true;
2685 }
2686 /* Watch out for save_point notes between basic blocks.
2687 In particular, a note after a barrier. Do not record these,
2688 delaying trace creation until the label. */
2689 else if (save_point_p (insn)
2690 && (LABEL_P (insn) || !saw_barrier))
2691 {
2692 ti = VEC_safe_push (dw_trace_info, heap, trace_info, NULL);
2693 memset (ti, 0, sizeof (*ti));
2694 ti->head = insn;
2695 ti->switch_sections = switch_sections;
2696 ti->id = VEC_length (dw_trace_info, trace_info) - 1;
2697
2698 saw_barrier = false;
2699 switch_sections = false;
2700 }
2701 }
2702
2703 /* Create the trace index after we've finished building trace_info,
2704 avoiding stale pointer problems due to reallocation. */
2705 trace_index = htab_create (VEC_length (dw_trace_info, trace_info),
2706 dw_trace_info_hash, dw_trace_info_eq, NULL);
2707 FOR_EACH_VEC_ELT (dw_trace_info, trace_info, i, ti)
2708 {
2709 void **slot;
2710
2711 if (dump_file)
2712 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", i,
2713 rtx_name[(int) GET_CODE (ti->head)], INSN_UID (ti->head),
2714 ti->switch_sections ? " (section switch)" : "");
2715
2716 slot = htab_find_slot_with_hash (trace_index, ti,
2717 INSN_UID (ti->head), INSERT);
2718 gcc_assert (*slot == NULL);
2719 *slot = (void *) ti;
2720 }
2721 }
2722
2723 /* Record the initial position of the return address. RTL is
2724 INCOMING_RETURN_ADDR_RTX. */
2725
2726 static void
2727 initial_return_save (rtx rtl)
2728 {
2729 unsigned int reg = INVALID_REGNUM;
2730 HOST_WIDE_INT offset = 0;
2731
2732 switch (GET_CODE (rtl))
2733 {
2734 case REG:
2735 /* RA is in a register. */
2736 reg = dwf_regno (rtl);
2737 break;
2738
2739 case MEM:
2740 /* RA is on the stack. */
2741 rtl = XEXP (rtl, 0);
2742 switch (GET_CODE (rtl))
2743 {
2744 case REG:
2745 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2746 offset = 0;
2747 break;
2748
2749 case PLUS:
2750 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2751 offset = INTVAL (XEXP (rtl, 1));
2752 break;
2753
2754 case MINUS:
2755 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2756 offset = -INTVAL (XEXP (rtl, 1));
2757 break;
2758
2759 default:
2760 gcc_unreachable ();
2761 }
2762
2763 break;
2764
2765 case PLUS:
2766 /* The return address is at some offset from any value we can
2767 actually load. For instance, on the SPARC it is in %i7+8. Just
2768 ignore the offset for now; it doesn't matter for unwinding frames. */
2769 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
2770 initial_return_save (XEXP (rtl, 0));
2771 return;
2772
2773 default:
2774 gcc_unreachable ();
2775 }
2776
2777 if (reg != DWARF_FRAME_RETURN_COLUMN)
2778 {
2779 if (reg != INVALID_REGNUM)
2780 record_reg_saved_in_reg (rtl, pc_rtx);
2781 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
2782 }
2783 }
2784
2785 static void
2786 create_cie_data (void)
2787 {
2788 dw_cfa_location loc;
2789 dw_trace_info cie_trace;
2790
2791 dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
2792 dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2793
2794 memset (&cie_trace, 0, sizeof(cie_trace));
2795 cur_trace = &cie_trace;
2796
2797 add_cfi_vec = &cie_cfi_vec;
2798 cie_cfi_row = cur_row = new_cfi_row ();
2799
2800 /* On entry, the Canonical Frame Address is at SP. */
2801 memset(&loc, 0, sizeof (loc));
2802 loc.reg = dw_stack_pointer_regnum;
2803 loc.offset = INCOMING_FRAME_SP_OFFSET;
2804 def_cfa_1 (&loc);
2805
2806 if (targetm.debug_unwind_info () == UI_DWARF2
2807 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
2808 {
2809 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2810
2811 /* For a few targets, we have the return address incoming into a
2812 register, but choose a different return column. This will result
2813 in a DW_CFA_register for the return, and an entry in
2814 regs_saved_in_regs to match. If the target later stores that
2815 return address register to the stack, we want to be able to emit
2816 the DW_CFA_offset against the return column, not the intermediate
2817 save register. Save the contents of regs_saved_in_regs so that
2818 we can re-initialize it at the start of each function. */
2819 switch (VEC_length (reg_saved_in_data, cie_trace.regs_saved_in_regs))
2820 {
2821 case 0:
2822 break;
2823 case 1:
2824 cie_return_save = ggc_alloc_reg_saved_in_data ();
2825 *cie_return_save = *VEC_index (reg_saved_in_data,
2826 cie_trace.regs_saved_in_regs, 0);
2827 VEC_free (reg_saved_in_data, heap, cie_trace.regs_saved_in_regs);
2828 break;
2829 default:
2830 gcc_unreachable ();
2831 }
2832 }
2833
2834 add_cfi_vec = NULL;
2835 cur_row = NULL;
2836 cur_trace = NULL;
2837 }
2838
2839 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2840 state at each location within the function. These notes will be
2841 emitted during pass_final. */
2842
2843 static unsigned int
2844 execute_dwarf2_frame (void)
2845 {
2846 /* The first time we're called, compute the incoming frame state. */
2847 if (cie_cfi_vec == NULL)
2848 create_cie_data ();
2849
2850 dwarf2out_alloc_current_fde ();
2851
2852 create_pseudo_cfg ();
2853
2854 /* Do the work. */
2855 create_cfi_notes ();
2856 connect_traces ();
2857 add_cfis_to_fde ();
2858
2859 /* Free all the data we allocated. */
2860 {
2861 size_t i;
2862 dw_trace_info *ti;
2863
2864 FOR_EACH_VEC_ELT (dw_trace_info, trace_info, i, ti)
2865 VEC_free (reg_saved_in_data, heap, ti->regs_saved_in_regs);
2866 }
2867 VEC_free (dw_trace_info, heap, trace_info);
2868
2869 htab_delete (trace_index);
2870 trace_index = NULL;
2871
2872 return 0;
2873 }
2874 \f
2875 /* Convert a DWARF call frame info. operation to its string name */
2876
2877 static const char *
2878 dwarf_cfi_name (unsigned int cfi_opc)
2879 {
2880 switch (cfi_opc)
2881 {
2882 case DW_CFA_advance_loc:
2883 return "DW_CFA_advance_loc";
2884 case DW_CFA_offset:
2885 return "DW_CFA_offset";
2886 case DW_CFA_restore:
2887 return "DW_CFA_restore";
2888 case DW_CFA_nop:
2889 return "DW_CFA_nop";
2890 case DW_CFA_set_loc:
2891 return "DW_CFA_set_loc";
2892 case DW_CFA_advance_loc1:
2893 return "DW_CFA_advance_loc1";
2894 case DW_CFA_advance_loc2:
2895 return "DW_CFA_advance_loc2";
2896 case DW_CFA_advance_loc4:
2897 return "DW_CFA_advance_loc4";
2898 case DW_CFA_offset_extended:
2899 return "DW_CFA_offset_extended";
2900 case DW_CFA_restore_extended:
2901 return "DW_CFA_restore_extended";
2902 case DW_CFA_undefined:
2903 return "DW_CFA_undefined";
2904 case DW_CFA_same_value:
2905 return "DW_CFA_same_value";
2906 case DW_CFA_register:
2907 return "DW_CFA_register";
2908 case DW_CFA_remember_state:
2909 return "DW_CFA_remember_state";
2910 case DW_CFA_restore_state:
2911 return "DW_CFA_restore_state";
2912 case DW_CFA_def_cfa:
2913 return "DW_CFA_def_cfa";
2914 case DW_CFA_def_cfa_register:
2915 return "DW_CFA_def_cfa_register";
2916 case DW_CFA_def_cfa_offset:
2917 return "DW_CFA_def_cfa_offset";
2918
2919 /* DWARF 3 */
2920 case DW_CFA_def_cfa_expression:
2921 return "DW_CFA_def_cfa_expression";
2922 case DW_CFA_expression:
2923 return "DW_CFA_expression";
2924 case DW_CFA_offset_extended_sf:
2925 return "DW_CFA_offset_extended_sf";
2926 case DW_CFA_def_cfa_sf:
2927 return "DW_CFA_def_cfa_sf";
2928 case DW_CFA_def_cfa_offset_sf:
2929 return "DW_CFA_def_cfa_offset_sf";
2930
2931 /* SGI/MIPS specific */
2932 case DW_CFA_MIPS_advance_loc8:
2933 return "DW_CFA_MIPS_advance_loc8";
2934
2935 /* GNU extensions */
2936 case DW_CFA_GNU_window_save:
2937 return "DW_CFA_GNU_window_save";
2938 case DW_CFA_GNU_args_size:
2939 return "DW_CFA_GNU_args_size";
2940 case DW_CFA_GNU_negative_offset_extended:
2941 return "DW_CFA_GNU_negative_offset_extended";
2942
2943 default:
2944 return "DW_CFA_<unknown>";
2945 }
2946 }
2947
2948 /* This routine will generate the correct assembly data for a location
2949 description based on a cfi entry with a complex address. */
2950
2951 static void
2952 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
2953 {
2954 dw_loc_descr_ref loc;
2955 unsigned long size;
2956
2957 if (cfi->dw_cfi_opc == DW_CFA_expression)
2958 {
2959 unsigned r =
2960 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2961 dw2_asm_output_data (1, r, NULL);
2962 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
2963 }
2964 else
2965 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2966
2967 /* Output the size of the block. */
2968 size = size_of_locs (loc);
2969 dw2_asm_output_data_uleb128 (size, NULL);
2970
2971 /* Now output the operations themselves. */
2972 output_loc_sequence (loc, for_eh);
2973 }
2974
2975 /* Similar, but used for .cfi_escape. */
2976
2977 static void
2978 output_cfa_loc_raw (dw_cfi_ref cfi)
2979 {
2980 dw_loc_descr_ref loc;
2981 unsigned long size;
2982
2983 if (cfi->dw_cfi_opc == DW_CFA_expression)
2984 {
2985 unsigned r =
2986 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
2987 fprintf (asm_out_file, "%#x,", r);
2988 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
2989 }
2990 else
2991 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2992
2993 /* Output the size of the block. */
2994 size = size_of_locs (loc);
2995 dw2_asm_output_data_uleb128_raw (size);
2996 fputc (',', asm_out_file);
2997
2998 /* Now output the operations themselves. */
2999 output_loc_sequence_raw (loc);
3000 }
3001
3002 /* Output a Call Frame Information opcode and its operand(s). */
3003
3004 void
3005 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3006 {
3007 unsigned long r;
3008 HOST_WIDE_INT off;
3009
3010 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3011 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3012 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3013 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3014 ((unsigned HOST_WIDE_INT)
3015 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3016 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3017 {
3018 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3019 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3020 "DW_CFA_offset, column %#lx", r);
3021 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3022 dw2_asm_output_data_uleb128 (off, NULL);
3023 }
3024 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3025 {
3026 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3027 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3028 "DW_CFA_restore, column %#lx", r);
3029 }
3030 else
3031 {
3032 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3033 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3034
3035 switch (cfi->dw_cfi_opc)
3036 {
3037 case DW_CFA_set_loc:
3038 if (for_eh)
3039 dw2_asm_output_encoded_addr_rtx (
3040 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3041 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3042 false, NULL);
3043 else
3044 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3045 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3046 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3047 break;
3048
3049 case DW_CFA_advance_loc1:
3050 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3051 fde->dw_fde_current_label, NULL);
3052 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3053 break;
3054
3055 case DW_CFA_advance_loc2:
3056 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3057 fde->dw_fde_current_label, NULL);
3058 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3059 break;
3060
3061 case DW_CFA_advance_loc4:
3062 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3063 fde->dw_fde_current_label, NULL);
3064 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3065 break;
3066
3067 case DW_CFA_MIPS_advance_loc8:
3068 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3069 fde->dw_fde_current_label, NULL);
3070 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3071 break;
3072
3073 case DW_CFA_offset_extended:
3074 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3075 dw2_asm_output_data_uleb128 (r, NULL);
3076 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3077 dw2_asm_output_data_uleb128 (off, NULL);
3078 break;
3079
3080 case DW_CFA_def_cfa:
3081 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3082 dw2_asm_output_data_uleb128 (r, NULL);
3083 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3084 break;
3085
3086 case DW_CFA_offset_extended_sf:
3087 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3088 dw2_asm_output_data_uleb128 (r, NULL);
3089 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3090 dw2_asm_output_data_sleb128 (off, NULL);
3091 break;
3092
3093 case DW_CFA_def_cfa_sf:
3094 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3095 dw2_asm_output_data_uleb128 (r, NULL);
3096 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3097 dw2_asm_output_data_sleb128 (off, NULL);
3098 break;
3099
3100 case DW_CFA_restore_extended:
3101 case DW_CFA_undefined:
3102 case DW_CFA_same_value:
3103 case DW_CFA_def_cfa_register:
3104 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3105 dw2_asm_output_data_uleb128 (r, NULL);
3106 break;
3107
3108 case DW_CFA_register:
3109 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3110 dw2_asm_output_data_uleb128 (r, NULL);
3111 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3112 dw2_asm_output_data_uleb128 (r, NULL);
3113 break;
3114
3115 case DW_CFA_def_cfa_offset:
3116 case DW_CFA_GNU_args_size:
3117 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3118 break;
3119
3120 case DW_CFA_def_cfa_offset_sf:
3121 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3122 dw2_asm_output_data_sleb128 (off, NULL);
3123 break;
3124
3125 case DW_CFA_GNU_window_save:
3126 break;
3127
3128 case DW_CFA_def_cfa_expression:
3129 case DW_CFA_expression:
3130 output_cfa_loc (cfi, for_eh);
3131 break;
3132
3133 case DW_CFA_GNU_negative_offset_extended:
3134 /* Obsoleted by DW_CFA_offset_extended_sf. */
3135 gcc_unreachable ();
3136
3137 default:
3138 break;
3139 }
3140 }
3141 }
3142
3143 /* Similar, but do it via assembler directives instead. */
3144
3145 void
3146 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3147 {
3148 unsigned long r, r2;
3149
3150 switch (cfi->dw_cfi_opc)
3151 {
3152 case DW_CFA_advance_loc:
3153 case DW_CFA_advance_loc1:
3154 case DW_CFA_advance_loc2:
3155 case DW_CFA_advance_loc4:
3156 case DW_CFA_MIPS_advance_loc8:
3157 case DW_CFA_set_loc:
3158 /* Should only be created in a code path not followed when emitting
3159 via directives. The assembler is going to take care of this for
3160 us. But this routines is also used for debugging dumps, so
3161 print something. */
3162 gcc_assert (f != asm_out_file);
3163 fprintf (f, "\t.cfi_advance_loc\n");
3164 break;
3165
3166 case DW_CFA_offset:
3167 case DW_CFA_offset_extended:
3168 case DW_CFA_offset_extended_sf:
3169 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3170 fprintf (f, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3171 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3172 break;
3173
3174 case DW_CFA_restore:
3175 case DW_CFA_restore_extended:
3176 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3177 fprintf (f, "\t.cfi_restore %lu\n", r);
3178 break;
3179
3180 case DW_CFA_undefined:
3181 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3182 fprintf (f, "\t.cfi_undefined %lu\n", r);
3183 break;
3184
3185 case DW_CFA_same_value:
3186 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3187 fprintf (f, "\t.cfi_same_value %lu\n", r);
3188 break;
3189
3190 case DW_CFA_def_cfa:
3191 case DW_CFA_def_cfa_sf:
3192 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3193 fprintf (f, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3194 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3195 break;
3196
3197 case DW_CFA_def_cfa_register:
3198 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3199 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3200 break;
3201
3202 case DW_CFA_register:
3203 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3204 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3205 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3206 break;
3207
3208 case DW_CFA_def_cfa_offset:
3209 case DW_CFA_def_cfa_offset_sf:
3210 fprintf (f, "\t.cfi_def_cfa_offset "
3211 HOST_WIDE_INT_PRINT_DEC"\n",
3212 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3213 break;
3214
3215 case DW_CFA_remember_state:
3216 fprintf (f, "\t.cfi_remember_state\n");
3217 break;
3218 case DW_CFA_restore_state:
3219 fprintf (f, "\t.cfi_restore_state\n");
3220 break;
3221
3222 case DW_CFA_GNU_args_size:
3223 if (f == asm_out_file)
3224 {
3225 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3226 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3227 if (flag_debug_asm)
3228 fprintf (f, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3229 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3230 fputc ('\n', f);
3231 }
3232 else
3233 {
3234 fprintf (f, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC "\n",
3235 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3236 }
3237 break;
3238
3239 case DW_CFA_GNU_window_save:
3240 fprintf (f, "\t.cfi_window_save\n");
3241 break;
3242
3243 case DW_CFA_def_cfa_expression:
3244 if (f != asm_out_file)
3245 {
3246 fprintf (f, "\t.cfi_def_cfa_expression ...\n");
3247 break;
3248 }
3249 /* FALLTHRU */
3250 case DW_CFA_expression:
3251 if (f != asm_out_file)
3252 {
3253 fprintf (f, "\t.cfi_cfa_expression ...\n");
3254 break;
3255 }
3256 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3257 output_cfa_loc_raw (cfi);
3258 fputc ('\n', f);
3259 break;
3260
3261 default:
3262 gcc_unreachable ();
3263 }
3264 }
3265
3266 void
3267 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3268 {
3269 if (dwarf2out_do_cfi_asm ())
3270 output_cfi_directive (asm_out_file, cfi);
3271 }
3272
3273 static void
3274 dump_cfi_row (FILE *f, dw_cfi_row *row)
3275 {
3276 dw_cfi_ref cfi;
3277 unsigned i;
3278
3279 cfi = row->cfa_cfi;
3280 if (!cfi)
3281 {
3282 dw_cfa_location dummy;
3283 memset(&dummy, 0, sizeof(dummy));
3284 dummy.reg = INVALID_REGNUM;
3285 cfi = def_cfa_0 (&dummy, &row->cfa);
3286 }
3287 output_cfi_directive (f, cfi);
3288
3289 FOR_EACH_VEC_ELT (dw_cfi_ref, row->reg_save, i, cfi)
3290 if (cfi)
3291 output_cfi_directive (f, cfi);
3292 }
3293
3294 void debug_cfi_row (dw_cfi_row *row);
3295
3296 void
3297 debug_cfi_row (dw_cfi_row *row)
3298 {
3299 dump_cfi_row (stderr, row);
3300 }
3301 \f
3302
3303 /* Save the result of dwarf2out_do_frame across PCH.
3304 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3305 static GTY(()) signed char saved_do_cfi_asm = 0;
3306
3307 /* Decide whether we want to emit frame unwind information for the current
3308 translation unit. */
3309
3310 bool
3311 dwarf2out_do_frame (void)
3312 {
3313 /* We want to emit correct CFA location expressions or lists, so we
3314 have to return true if we're going to output debug info, even if
3315 we're not going to output frame or unwind info. */
3316 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3317 return true;
3318
3319 if (saved_do_cfi_asm > 0)
3320 return true;
3321
3322 if (targetm.debug_unwind_info () == UI_DWARF2)
3323 return true;
3324
3325 if ((flag_unwind_tables || flag_exceptions)
3326 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3327 return true;
3328
3329 return false;
3330 }
3331
3332 /* Decide whether to emit frame unwind via assembler directives. */
3333
3334 bool
3335 dwarf2out_do_cfi_asm (void)
3336 {
3337 int enc;
3338
3339 #ifdef MIPS_DEBUGGING_INFO
3340 return false;
3341 #endif
3342
3343 if (saved_do_cfi_asm != 0)
3344 return saved_do_cfi_asm > 0;
3345
3346 /* Assume failure for a moment. */
3347 saved_do_cfi_asm = -1;
3348
3349 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3350 return false;
3351 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3352 return false;
3353
3354 /* Make sure the personality encoding is one the assembler can support.
3355 In particular, aligned addresses can't be handled. */
3356 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3357 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3358 return false;
3359 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3360 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3361 return false;
3362
3363 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3364 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3365 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3366 && !flag_unwind_tables && !flag_exceptions
3367 && targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
3368 return false;
3369
3370 /* Success! */
3371 saved_do_cfi_asm = 1;
3372 return true;
3373 }
3374
3375 static bool
3376 gate_dwarf2_frame (void)
3377 {
3378 #ifndef HAVE_prologue
3379 /* Targets which still implement the prologue in assembler text
3380 cannot use the generic dwarf2 unwinding. */
3381 return false;
3382 #endif
3383
3384 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3385 from the optimized shrink-wrapping annotations that we will compute.
3386 For now, only produce the CFI notes for dwarf2. */
3387 return dwarf2out_do_frame ();
3388 }
3389
3390 struct rtl_opt_pass pass_dwarf2_frame =
3391 {
3392 {
3393 RTL_PASS,
3394 "dwarf2", /* name */
3395 gate_dwarf2_frame, /* gate */
3396 execute_dwarf2_frame, /* execute */
3397 NULL, /* sub */
3398 NULL, /* next */
3399 0, /* static_pass_number */
3400 TV_FINAL, /* tv_id */
3401 0, /* properties_required */
3402 0, /* properties_provided */
3403 0, /* properties_destroyed */
3404 0, /* todo_flags_start */
3405 0 /* todo_flags_finish */
3406 }
3407 };
3408
3409 #include "gt-dwarf2cfi.h"