Work towards NEXT_INSN/PREV_INSN requiring insns as their params
[gcc.git] / gcc / dwarf2cfi.c
1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "version.h"
25 #include "flags.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "function.h"
30 #include "basic-block.h"
31 #include "dwarf2.h"
32 #include "dwarf2out.h"
33 #include "dwarf2asm.h"
34 #include "ggc.h"
35 #include "hash-table.h"
36 #include "tm_p.h"
37 #include "target.h"
38 #include "common/common-target.h"
39 #include "tree-pass.h"
40
41 #include "except.h" /* expand_builtin_dwarf_sp_column */
42 #include "expr.h" /* init_return_column_size */
43 #include "regs.h" /* expand_builtin_init_dwarf_reg_sizes */
44 #include "output.h" /* asm_out_file */
45 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
46
47
48 /* ??? Poison these here until it can be done generically. They've been
49 totally replaced in this file; make sure it stays that way. */
50 #undef DWARF2_UNWIND_INFO
51 #undef DWARF2_FRAME_INFO
52 #if (GCC_VERSION >= 3000)
53 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
54 #endif
55
56 #ifndef INCOMING_RETURN_ADDR_RTX
57 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
58 #endif
59
60 /* Maximum size (in bytes) of an artificially generated label. */
61 #define MAX_ARTIFICIAL_LABEL_BYTES 30
62 \f
63 /* A collected description of an entire row of the abstract CFI table. */
64 typedef struct GTY(()) dw_cfi_row_struct
65 {
66 /* The expression that computes the CFA, expressed in two different ways.
67 The CFA member for the simple cases, and the full CFI expression for
68 the complex cases. The later will be a DW_CFA_cfa_expression. */
69 dw_cfa_location cfa;
70 dw_cfi_ref cfa_cfi;
71
72 /* The expressions for any register column that is saved. */
73 cfi_vec reg_save;
74 } dw_cfi_row;
75
76 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
77 typedef struct GTY(()) reg_saved_in_data_struct {
78 rtx orig_reg;
79 rtx saved_in_reg;
80 } reg_saved_in_data;
81
82
83 /* Since we no longer have a proper CFG, we're going to create a facsimile
84 of one on the fly while processing the frame-related insns.
85
86 We create dw_trace_info structures for each extended basic block beginning
87 and ending at a "save point". Save points are labels, barriers, certain
88 notes, and of course the beginning and end of the function.
89
90 As we encounter control transfer insns, we propagate the "current"
91 row state across the edges to the starts of traces. When checking is
92 enabled, we validate that we propagate the same data from all sources.
93
94 All traces are members of the TRACE_INFO array, in the order in which
95 they appear in the instruction stream.
96
97 All save points are present in the TRACE_INDEX hash, mapping the insn
98 starting a trace to the dw_trace_info describing the trace. */
99
100 typedef struct
101 {
102 /* The insn that begins the trace. */
103 rtx_insn *head;
104
105 /* The row state at the beginning and end of the trace. */
106 dw_cfi_row *beg_row, *end_row;
107
108 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
109 while scanning insns. However, the args_size value is irrelevant at
110 any point except can_throw_internal_p insns. Therefore the "delay"
111 sizes the values that must actually be emitted for this trace. */
112 HOST_WIDE_INT beg_true_args_size, end_true_args_size;
113 HOST_WIDE_INT beg_delay_args_size, end_delay_args_size;
114
115 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
116 rtx_insn *eh_head;
117
118 /* The following variables contain data used in interpreting frame related
119 expressions. These are not part of the "real" row state as defined by
120 Dwarf, but it seems like they need to be propagated into a trace in case
121 frame related expressions have been sunk. */
122 /* ??? This seems fragile. These variables are fragments of a larger
123 expression. If we do not keep the entire expression together, we risk
124 not being able to put it together properly. Consider forcing targets
125 to generate self-contained expressions and dropping all of the magic
126 interpretation code in this file. Or at least refusing to shrink wrap
127 any frame related insn that doesn't contain a complete expression. */
128
129 /* The register used for saving registers to the stack, and its offset
130 from the CFA. */
131 dw_cfa_location cfa_store;
132
133 /* A temporary register holding an integral value used in adjusting SP
134 or setting up the store_reg. The "offset" field holds the integer
135 value, not an offset. */
136 dw_cfa_location cfa_temp;
137
138 /* A set of registers saved in other registers. This is the inverse of
139 the row->reg_save info, if the entry is a DW_CFA_register. This is
140 implemented as a flat array because it normally contains zero or 1
141 entry, depending on the target. IA-64 is the big spender here, using
142 a maximum of 5 entries. */
143 vec<reg_saved_in_data> regs_saved_in_regs;
144
145 /* An identifier for this trace. Used only for debugging dumps. */
146 unsigned id;
147
148 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
149 bool switch_sections;
150
151 /* True if we've seen different values incoming to beg_true_args_size. */
152 bool args_size_undefined;
153 } dw_trace_info;
154
155
156 typedef dw_trace_info *dw_trace_info_ref;
157
158
159 /* Hashtable helpers. */
160
161 struct trace_info_hasher : typed_noop_remove <dw_trace_info>
162 {
163 typedef dw_trace_info value_type;
164 typedef dw_trace_info compare_type;
165 static inline hashval_t hash (const value_type *);
166 static inline bool equal (const value_type *, const compare_type *);
167 };
168
169 inline hashval_t
170 trace_info_hasher::hash (const value_type *ti)
171 {
172 return INSN_UID (ti->head);
173 }
174
175 inline bool
176 trace_info_hasher::equal (const value_type *a, const compare_type *b)
177 {
178 return a->head == b->head;
179 }
180
181
182 /* The variables making up the pseudo-cfg, as described above. */
183 static vec<dw_trace_info> trace_info;
184 static vec<dw_trace_info_ref> trace_work_list;
185 static hash_table<trace_info_hasher> *trace_index;
186
187 /* A vector of call frame insns for the CIE. */
188 cfi_vec cie_cfi_vec;
189
190 /* The state of the first row of the FDE table, which includes the
191 state provided by the CIE. */
192 static GTY(()) dw_cfi_row *cie_cfi_row;
193
194 static GTY(()) reg_saved_in_data *cie_return_save;
195
196 static GTY(()) unsigned long dwarf2out_cfi_label_num;
197
198 /* The insn after which a new CFI note should be emitted. */
199 static rtx add_cfi_insn;
200
201 /* When non-null, add_cfi will add the CFI to this vector. */
202 static cfi_vec *add_cfi_vec;
203
204 /* The current instruction trace. */
205 static dw_trace_info *cur_trace;
206
207 /* The current, i.e. most recently generated, row of the CFI table. */
208 static dw_cfi_row *cur_row;
209
210 /* A copy of the current CFA, for use during the processing of a
211 single insn. */
212 static dw_cfa_location *cur_cfa;
213
214 /* We delay emitting a register save until either (a) we reach the end
215 of the prologue or (b) the register is clobbered. This clusters
216 register saves so that there are fewer pc advances. */
217
218 typedef struct {
219 rtx reg;
220 rtx saved_reg;
221 HOST_WIDE_INT cfa_offset;
222 } queued_reg_save;
223
224
225 static vec<queued_reg_save> queued_reg_saves;
226
227 /* True if any CFI directives were emitted at the current insn. */
228 static bool any_cfis_emitted;
229
230 /* Short-hand for commonly used register numbers. */
231 static unsigned dw_stack_pointer_regnum;
232 static unsigned dw_frame_pointer_regnum;
233 \f
234 /* Hook used by __throw. */
235
236 rtx
237 expand_builtin_dwarf_sp_column (void)
238 {
239 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
240 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
241 }
242
243 /* MEM is a memory reference for the register size table, each element of
244 which has mode MODE. Initialize column C as a return address column. */
245
246 static void
247 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
248 {
249 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
250 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
251 emit_move_insn (adjust_address (mem, mode, offset),
252 gen_int_mode (size, mode));
253 }
254
255 /* Generate code to initialize the register size table. */
256
257 void
258 expand_builtin_init_dwarf_reg_sizes (tree address)
259 {
260 unsigned int i;
261 enum machine_mode mode = TYPE_MODE (char_type_node);
262 rtx addr = expand_normal (address);
263 rtx mem = gen_rtx_MEM (BLKmode, addr);
264 bool wrote_return_column = false;
265
266 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
267 {
268 unsigned int dnum = DWARF_FRAME_REGNUM (i);
269 unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
270
271 if (rnum < DWARF_FRAME_REGISTERS)
272 {
273 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
274 enum machine_mode save_mode = reg_raw_mode[i];
275 HOST_WIDE_INT size;
276
277 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
278 save_mode = choose_hard_reg_mode (i, 1, true);
279 if (dnum == DWARF_FRAME_RETURN_COLUMN)
280 {
281 if (save_mode == VOIDmode)
282 continue;
283 wrote_return_column = true;
284 }
285 size = GET_MODE_SIZE (save_mode);
286 if (offset < 0)
287 continue;
288
289 emit_move_insn (adjust_address (mem, mode, offset),
290 gen_int_mode (size, mode));
291 }
292 }
293
294 if (!wrote_return_column)
295 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
296
297 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
298 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
299 #endif
300
301 targetm.init_dwarf_reg_sizes_extra (address);
302 }
303
304 \f
305 static dw_trace_info *
306 get_trace_info (rtx_insn *insn)
307 {
308 dw_trace_info dummy;
309 dummy.head = insn;
310 return trace_index->find_with_hash (&dummy, INSN_UID (insn));
311 }
312
313 static bool
314 save_point_p (rtx_insn *insn)
315 {
316 /* Labels, except those that are really jump tables. */
317 if (LABEL_P (insn))
318 return inside_basic_block_p (insn);
319
320 /* We split traces at the prologue/epilogue notes because those
321 are points at which the unwind info is usually stable. This
322 makes it easier to find spots with identical unwind info so
323 that we can use remember/restore_state opcodes. */
324 if (NOTE_P (insn))
325 switch (NOTE_KIND (insn))
326 {
327 case NOTE_INSN_PROLOGUE_END:
328 case NOTE_INSN_EPILOGUE_BEG:
329 return true;
330 }
331
332 return false;
333 }
334
335 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
336
337 static inline HOST_WIDE_INT
338 div_data_align (HOST_WIDE_INT off)
339 {
340 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
341 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
342 return r;
343 }
344
345 /* Return true if we need a signed version of a given opcode
346 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
347
348 static inline bool
349 need_data_align_sf_opcode (HOST_WIDE_INT off)
350 {
351 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
352 }
353
354 /* Return a pointer to a newly allocated Call Frame Instruction. */
355
356 static inline dw_cfi_ref
357 new_cfi (void)
358 {
359 dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> ();
360
361 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
362 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
363
364 return cfi;
365 }
366
367 /* Return a newly allocated CFI row, with no defined data. */
368
369 static dw_cfi_row *
370 new_cfi_row (void)
371 {
372 dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> ();
373
374 row->cfa.reg = INVALID_REGNUM;
375
376 return row;
377 }
378
379 /* Return a copy of an existing CFI row. */
380
381 static dw_cfi_row *
382 copy_cfi_row (dw_cfi_row *src)
383 {
384 dw_cfi_row *dst = ggc_alloc<dw_cfi_row> ();
385
386 *dst = *src;
387 dst->reg_save = vec_safe_copy (src->reg_save);
388
389 return dst;
390 }
391
392 /* Generate a new label for the CFI info to refer to. */
393
394 static char *
395 dwarf2out_cfi_label (void)
396 {
397 int num = dwarf2out_cfi_label_num++;
398 char label[20];
399
400 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
401
402 return xstrdup (label);
403 }
404
405 /* Add CFI either to the current insn stream or to a vector, or both. */
406
407 static void
408 add_cfi (dw_cfi_ref cfi)
409 {
410 any_cfis_emitted = true;
411
412 if (add_cfi_insn != NULL)
413 {
414 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
415 NOTE_CFI (add_cfi_insn) = cfi;
416 }
417
418 if (add_cfi_vec != NULL)
419 vec_safe_push (*add_cfi_vec, cfi);
420 }
421
422 static void
423 add_cfi_args_size (HOST_WIDE_INT size)
424 {
425 dw_cfi_ref cfi = new_cfi ();
426
427 /* While we can occasionally have args_size < 0 internally, this state
428 should not persist at a point we actually need an opcode. */
429 gcc_assert (size >= 0);
430
431 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
432 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
433
434 add_cfi (cfi);
435 }
436
437 static void
438 add_cfi_restore (unsigned reg)
439 {
440 dw_cfi_ref cfi = new_cfi ();
441
442 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
443 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
444
445 add_cfi (cfi);
446 }
447
448 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
449 that the register column is no longer saved. */
450
451 static void
452 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
453 {
454 if (vec_safe_length (row->reg_save) <= column)
455 vec_safe_grow_cleared (row->reg_save, column + 1);
456 (*row->reg_save)[column] = cfi;
457 }
458
459 /* This function fills in aa dw_cfa_location structure from a dwarf location
460 descriptor sequence. */
461
462 static void
463 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc)
464 {
465 struct dw_loc_descr_node *ptr;
466 cfa->offset = 0;
467 cfa->base_offset = 0;
468 cfa->indirect = 0;
469 cfa->reg = -1;
470
471 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
472 {
473 enum dwarf_location_atom op = ptr->dw_loc_opc;
474
475 switch (op)
476 {
477 case DW_OP_reg0:
478 case DW_OP_reg1:
479 case DW_OP_reg2:
480 case DW_OP_reg3:
481 case DW_OP_reg4:
482 case DW_OP_reg5:
483 case DW_OP_reg6:
484 case DW_OP_reg7:
485 case DW_OP_reg8:
486 case DW_OP_reg9:
487 case DW_OP_reg10:
488 case DW_OP_reg11:
489 case DW_OP_reg12:
490 case DW_OP_reg13:
491 case DW_OP_reg14:
492 case DW_OP_reg15:
493 case DW_OP_reg16:
494 case DW_OP_reg17:
495 case DW_OP_reg18:
496 case DW_OP_reg19:
497 case DW_OP_reg20:
498 case DW_OP_reg21:
499 case DW_OP_reg22:
500 case DW_OP_reg23:
501 case DW_OP_reg24:
502 case DW_OP_reg25:
503 case DW_OP_reg26:
504 case DW_OP_reg27:
505 case DW_OP_reg28:
506 case DW_OP_reg29:
507 case DW_OP_reg30:
508 case DW_OP_reg31:
509 cfa->reg = op - DW_OP_reg0;
510 break;
511 case DW_OP_regx:
512 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
513 break;
514 case DW_OP_breg0:
515 case DW_OP_breg1:
516 case DW_OP_breg2:
517 case DW_OP_breg3:
518 case DW_OP_breg4:
519 case DW_OP_breg5:
520 case DW_OP_breg6:
521 case DW_OP_breg7:
522 case DW_OP_breg8:
523 case DW_OP_breg9:
524 case DW_OP_breg10:
525 case DW_OP_breg11:
526 case DW_OP_breg12:
527 case DW_OP_breg13:
528 case DW_OP_breg14:
529 case DW_OP_breg15:
530 case DW_OP_breg16:
531 case DW_OP_breg17:
532 case DW_OP_breg18:
533 case DW_OP_breg19:
534 case DW_OP_breg20:
535 case DW_OP_breg21:
536 case DW_OP_breg22:
537 case DW_OP_breg23:
538 case DW_OP_breg24:
539 case DW_OP_breg25:
540 case DW_OP_breg26:
541 case DW_OP_breg27:
542 case DW_OP_breg28:
543 case DW_OP_breg29:
544 case DW_OP_breg30:
545 case DW_OP_breg31:
546 cfa->reg = op - DW_OP_breg0;
547 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
548 break;
549 case DW_OP_bregx:
550 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
551 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
552 break;
553 case DW_OP_deref:
554 cfa->indirect = 1;
555 break;
556 case DW_OP_plus_uconst:
557 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
558 break;
559 default:
560 gcc_unreachable ();
561 }
562 }
563 }
564
565 /* Find the previous value for the CFA, iteratively. CFI is the opcode
566 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
567 one level of remember/restore state processing. */
568
569 void
570 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
571 {
572 switch (cfi->dw_cfi_opc)
573 {
574 case DW_CFA_def_cfa_offset:
575 case DW_CFA_def_cfa_offset_sf:
576 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
577 break;
578 case DW_CFA_def_cfa_register:
579 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
580 break;
581 case DW_CFA_def_cfa:
582 case DW_CFA_def_cfa_sf:
583 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
584 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
585 break;
586 case DW_CFA_def_cfa_expression:
587 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
588 break;
589
590 case DW_CFA_remember_state:
591 gcc_assert (!remember->in_use);
592 *remember = *loc;
593 remember->in_use = 1;
594 break;
595 case DW_CFA_restore_state:
596 gcc_assert (remember->in_use);
597 *loc = *remember;
598 remember->in_use = 0;
599 break;
600
601 default:
602 break;
603 }
604 }
605
606 /* Determine if two dw_cfa_location structures define the same data. */
607
608 bool
609 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
610 {
611 return (loc1->reg == loc2->reg
612 && loc1->offset == loc2->offset
613 && loc1->indirect == loc2->indirect
614 && (loc1->indirect == 0
615 || loc1->base_offset == loc2->base_offset));
616 }
617
618 /* Determine if two CFI operands are identical. */
619
620 static bool
621 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
622 {
623 switch (t)
624 {
625 case dw_cfi_oprnd_unused:
626 return true;
627 case dw_cfi_oprnd_reg_num:
628 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
629 case dw_cfi_oprnd_offset:
630 return a->dw_cfi_offset == b->dw_cfi_offset;
631 case dw_cfi_oprnd_addr:
632 return (a->dw_cfi_addr == b->dw_cfi_addr
633 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
634 case dw_cfi_oprnd_loc:
635 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
636 }
637 gcc_unreachable ();
638 }
639
640 /* Determine if two CFI entries are identical. */
641
642 static bool
643 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
644 {
645 enum dwarf_call_frame_info opc;
646
647 /* Make things easier for our callers, including missing operands. */
648 if (a == b)
649 return true;
650 if (a == NULL || b == NULL)
651 return false;
652
653 /* Obviously, the opcodes must match. */
654 opc = a->dw_cfi_opc;
655 if (opc != b->dw_cfi_opc)
656 return false;
657
658 /* Compare the two operands, re-using the type of the operands as
659 already exposed elsewhere. */
660 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
661 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
662 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
663 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
664 }
665
666 /* Determine if two CFI_ROW structures are identical. */
667
668 static bool
669 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
670 {
671 size_t i, n_a, n_b, n_max;
672
673 if (a->cfa_cfi)
674 {
675 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
676 return false;
677 }
678 else if (!cfa_equal_p (&a->cfa, &b->cfa))
679 return false;
680
681 n_a = vec_safe_length (a->reg_save);
682 n_b = vec_safe_length (b->reg_save);
683 n_max = MAX (n_a, n_b);
684
685 for (i = 0; i < n_max; ++i)
686 {
687 dw_cfi_ref r_a = NULL, r_b = NULL;
688
689 if (i < n_a)
690 r_a = (*a->reg_save)[i];
691 if (i < n_b)
692 r_b = (*b->reg_save)[i];
693
694 if (!cfi_equal_p (r_a, r_b))
695 return false;
696 }
697
698 return true;
699 }
700
701 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
702 what opcode to emit. Returns the CFI opcode to effect the change, or
703 NULL if NEW_CFA == OLD_CFA. */
704
705 static dw_cfi_ref
706 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
707 {
708 dw_cfi_ref cfi;
709
710 /* If nothing changed, no need to issue any call frame instructions. */
711 if (cfa_equal_p (old_cfa, new_cfa))
712 return NULL;
713
714 cfi = new_cfi ();
715
716 if (new_cfa->reg == old_cfa->reg && !new_cfa->indirect && !old_cfa->indirect)
717 {
718 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
719 the CFA register did not change but the offset did. The data
720 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
721 in the assembler via the .cfi_def_cfa_offset directive. */
722 if (new_cfa->offset < 0)
723 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
724 else
725 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
726 cfi->dw_cfi_oprnd1.dw_cfi_offset = new_cfa->offset;
727 }
728 else if (new_cfa->offset == old_cfa->offset
729 && old_cfa->reg != INVALID_REGNUM
730 && !new_cfa->indirect
731 && !old_cfa->indirect)
732 {
733 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
734 indicating the CFA register has changed to <register> but the
735 offset has not changed. */
736 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
737 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
738 }
739 else if (new_cfa->indirect == 0)
740 {
741 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
742 indicating the CFA register has changed to <register> with
743 the specified offset. The data factoring for DW_CFA_def_cfa_sf
744 happens in output_cfi, or in the assembler via the .cfi_def_cfa
745 directive. */
746 if (new_cfa->offset < 0)
747 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
748 else
749 cfi->dw_cfi_opc = DW_CFA_def_cfa;
750 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
751 cfi->dw_cfi_oprnd2.dw_cfi_offset = new_cfa->offset;
752 }
753 else
754 {
755 /* Construct a DW_CFA_def_cfa_expression instruction to
756 calculate the CFA using a full location expression since no
757 register-offset pair is available. */
758 struct dw_loc_descr_node *loc_list;
759
760 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
761 loc_list = build_cfa_loc (new_cfa, 0);
762 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
763 }
764
765 return cfi;
766 }
767
768 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
769
770 static void
771 def_cfa_1 (dw_cfa_location *new_cfa)
772 {
773 dw_cfi_ref cfi;
774
775 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
776 cur_trace->cfa_store.offset = new_cfa->offset;
777
778 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
779 if (cfi)
780 {
781 cur_row->cfa = *new_cfa;
782 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
783 ? cfi : NULL);
784
785 add_cfi (cfi);
786 }
787 }
788
789 /* Add the CFI for saving a register. REG is the CFA column number.
790 If SREG is -1, the register is saved at OFFSET from the CFA;
791 otherwise it is saved in SREG. */
792
793 static void
794 reg_save (unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
795 {
796 dw_fde_ref fde = cfun ? cfun->fde : NULL;
797 dw_cfi_ref cfi = new_cfi ();
798
799 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
800
801 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
802 if (fde
803 && fde->stack_realign
804 && sreg == INVALID_REGNUM)
805 {
806 cfi->dw_cfi_opc = DW_CFA_expression;
807 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
808 cfi->dw_cfi_oprnd2.dw_cfi_loc
809 = build_cfa_aligned_loc (&cur_row->cfa, offset,
810 fde->stack_realignment);
811 }
812 else if (sreg == INVALID_REGNUM)
813 {
814 if (need_data_align_sf_opcode (offset))
815 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
816 else if (reg & ~0x3f)
817 cfi->dw_cfi_opc = DW_CFA_offset_extended;
818 else
819 cfi->dw_cfi_opc = DW_CFA_offset;
820 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
821 }
822 else if (sreg == reg)
823 {
824 /* While we could emit something like DW_CFA_same_value or
825 DW_CFA_restore, we never expect to see something like that
826 in a prologue. This is more likely to be a bug. A backend
827 can always bypass this by using REG_CFA_RESTORE directly. */
828 gcc_unreachable ();
829 }
830 else
831 {
832 cfi->dw_cfi_opc = DW_CFA_register;
833 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
834 }
835
836 add_cfi (cfi);
837 update_row_reg_save (cur_row, reg, cfi);
838 }
839
840 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
841 and adjust data structures to match. */
842
843 static void
844 notice_args_size (rtx insn)
845 {
846 HOST_WIDE_INT args_size, delta;
847 rtx note;
848
849 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
850 if (note == NULL)
851 return;
852
853 args_size = INTVAL (XEXP (note, 0));
854 delta = args_size - cur_trace->end_true_args_size;
855 if (delta == 0)
856 return;
857
858 cur_trace->end_true_args_size = args_size;
859
860 /* If the CFA is computed off the stack pointer, then we must adjust
861 the computation of the CFA as well. */
862 if (cur_cfa->reg == dw_stack_pointer_regnum)
863 {
864 gcc_assert (!cur_cfa->indirect);
865
866 /* Convert a change in args_size (always a positive in the
867 direction of stack growth) to a change in stack pointer. */
868 #ifndef STACK_GROWS_DOWNWARD
869 delta = -delta;
870 #endif
871 cur_cfa->offset += delta;
872 }
873 }
874
875 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
876 data within the trace related to EH insns and args_size. */
877
878 static void
879 notice_eh_throw (rtx_insn *insn)
880 {
881 HOST_WIDE_INT args_size;
882
883 args_size = cur_trace->end_true_args_size;
884 if (cur_trace->eh_head == NULL)
885 {
886 cur_trace->eh_head = insn;
887 cur_trace->beg_delay_args_size = args_size;
888 cur_trace->end_delay_args_size = args_size;
889 }
890 else if (cur_trace->end_delay_args_size != args_size)
891 {
892 cur_trace->end_delay_args_size = args_size;
893
894 /* ??? If the CFA is the stack pointer, search backward for the last
895 CFI note and insert there. Given that the stack changed for the
896 args_size change, there *must* be such a note in between here and
897 the last eh insn. */
898 add_cfi_args_size (args_size);
899 }
900 }
901
902 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
903 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
904 used in places where rtl is prohibited. */
905
906 static inline unsigned
907 dwf_regno (const_rtx reg)
908 {
909 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
910 return DWARF_FRAME_REGNUM (REGNO (reg));
911 }
912
913 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
914
915 static bool
916 compare_reg_or_pc (rtx x, rtx y)
917 {
918 if (REG_P (x) && REG_P (y))
919 return REGNO (x) == REGNO (y);
920 return x == y;
921 }
922
923 /* Record SRC as being saved in DEST. DEST may be null to delete an
924 existing entry. SRC may be a register or PC_RTX. */
925
926 static void
927 record_reg_saved_in_reg (rtx dest, rtx src)
928 {
929 reg_saved_in_data *elt;
930 size_t i;
931
932 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt)
933 if (compare_reg_or_pc (elt->orig_reg, src))
934 {
935 if (dest == NULL)
936 cur_trace->regs_saved_in_regs.unordered_remove (i);
937 else
938 elt->saved_in_reg = dest;
939 return;
940 }
941
942 if (dest == NULL)
943 return;
944
945 reg_saved_in_data e = {src, dest};
946 cur_trace->regs_saved_in_regs.safe_push (e);
947 }
948
949 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
950 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
951
952 static void
953 queue_reg_save (rtx reg, rtx sreg, HOST_WIDE_INT offset)
954 {
955 queued_reg_save *q;
956 queued_reg_save e = {reg, sreg, offset};
957 size_t i;
958
959 /* Duplicates waste space, but it's also necessary to remove them
960 for correctness, since the queue gets output in reverse order. */
961 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
962 if (compare_reg_or_pc (q->reg, reg))
963 {
964 *q = e;
965 return;
966 }
967
968 queued_reg_saves.safe_push (e);
969 }
970
971 /* Output all the entries in QUEUED_REG_SAVES. */
972
973 static void
974 dwarf2out_flush_queued_reg_saves (void)
975 {
976 queued_reg_save *q;
977 size_t i;
978
979 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
980 {
981 unsigned int reg, sreg;
982
983 record_reg_saved_in_reg (q->saved_reg, q->reg);
984
985 if (q->reg == pc_rtx)
986 reg = DWARF_FRAME_RETURN_COLUMN;
987 else
988 reg = dwf_regno (q->reg);
989 if (q->saved_reg)
990 sreg = dwf_regno (q->saved_reg);
991 else
992 sreg = INVALID_REGNUM;
993 reg_save (reg, sreg, q->cfa_offset);
994 }
995
996 queued_reg_saves.truncate (0);
997 }
998
999 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1000 location for? Or, does it clobber a register which we've previously
1001 said that some other register is saved in, and for which we now
1002 have a new location for? */
1003
1004 static bool
1005 clobbers_queued_reg_save (const_rtx insn)
1006 {
1007 queued_reg_save *q;
1008 size_t iq;
1009
1010 FOR_EACH_VEC_ELT (queued_reg_saves, iq, q)
1011 {
1012 size_t ir;
1013 reg_saved_in_data *rir;
1014
1015 if (modified_in_p (q->reg, insn))
1016 return true;
1017
1018 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir)
1019 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1020 && modified_in_p (rir->saved_in_reg, insn))
1021 return true;
1022 }
1023
1024 return false;
1025 }
1026
1027 /* What register, if any, is currently saved in REG? */
1028
1029 static rtx
1030 reg_saved_in (rtx reg)
1031 {
1032 unsigned int regn = REGNO (reg);
1033 queued_reg_save *q;
1034 reg_saved_in_data *rir;
1035 size_t i;
1036
1037 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1038 if (q->saved_reg && regn == REGNO (q->saved_reg))
1039 return q->reg;
1040
1041 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir)
1042 if (regn == REGNO (rir->saved_in_reg))
1043 return rir->orig_reg;
1044
1045 return NULL_RTX;
1046 }
1047
1048 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1049
1050 static void
1051 dwarf2out_frame_debug_def_cfa (rtx pat)
1052 {
1053 memset (cur_cfa, 0, sizeof (*cur_cfa));
1054
1055 if (GET_CODE (pat) == PLUS)
1056 {
1057 cur_cfa->offset = INTVAL (XEXP (pat, 1));
1058 pat = XEXP (pat, 0);
1059 }
1060 if (MEM_P (pat))
1061 {
1062 cur_cfa->indirect = 1;
1063 pat = XEXP (pat, 0);
1064 if (GET_CODE (pat) == PLUS)
1065 {
1066 cur_cfa->base_offset = INTVAL (XEXP (pat, 1));
1067 pat = XEXP (pat, 0);
1068 }
1069 }
1070 /* ??? If this fails, we could be calling into the _loc functions to
1071 define a full expression. So far no port does that. */
1072 gcc_assert (REG_P (pat));
1073 cur_cfa->reg = dwf_regno (pat);
1074 }
1075
1076 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1077
1078 static void
1079 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1080 {
1081 rtx src, dest;
1082
1083 gcc_assert (GET_CODE (pat) == SET);
1084 dest = XEXP (pat, 0);
1085 src = XEXP (pat, 1);
1086
1087 switch (GET_CODE (src))
1088 {
1089 case PLUS:
1090 gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1091 cur_cfa->offset -= INTVAL (XEXP (src, 1));
1092 break;
1093
1094 case REG:
1095 break;
1096
1097 default:
1098 gcc_unreachable ();
1099 }
1100
1101 cur_cfa->reg = dwf_regno (dest);
1102 gcc_assert (cur_cfa->indirect == 0);
1103 }
1104
1105 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1106
1107 static void
1108 dwarf2out_frame_debug_cfa_offset (rtx set)
1109 {
1110 HOST_WIDE_INT offset;
1111 rtx src, addr, span;
1112 unsigned int sregno;
1113
1114 src = XEXP (set, 1);
1115 addr = XEXP (set, 0);
1116 gcc_assert (MEM_P (addr));
1117 addr = XEXP (addr, 0);
1118
1119 /* As documented, only consider extremely simple addresses. */
1120 switch (GET_CODE (addr))
1121 {
1122 case REG:
1123 gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1124 offset = -cur_cfa->offset;
1125 break;
1126 case PLUS:
1127 gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1128 offset = INTVAL (XEXP (addr, 1)) - cur_cfa->offset;
1129 break;
1130 default:
1131 gcc_unreachable ();
1132 }
1133
1134 if (src == pc_rtx)
1135 {
1136 span = NULL;
1137 sregno = DWARF_FRAME_RETURN_COLUMN;
1138 }
1139 else
1140 {
1141 span = targetm.dwarf_register_span (src);
1142 sregno = dwf_regno (src);
1143 }
1144
1145 /* ??? We'd like to use queue_reg_save, but we need to come up with
1146 a different flushing heuristic for epilogues. */
1147 if (!span)
1148 reg_save (sregno, INVALID_REGNUM, offset);
1149 else
1150 {
1151 /* We have a PARALLEL describing where the contents of SRC live.
1152 Adjust the offset for each piece of the PARALLEL. */
1153 HOST_WIDE_INT span_offset = offset;
1154
1155 gcc_assert (GET_CODE (span) == PARALLEL);
1156
1157 const int par_len = XVECLEN (span, 0);
1158 for (int par_index = 0; par_index < par_len; par_index++)
1159 {
1160 rtx elem = XVECEXP (span, 0, par_index);
1161 sregno = dwf_regno (src);
1162 reg_save (sregno, INVALID_REGNUM, span_offset);
1163 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1164 }
1165 }
1166 }
1167
1168 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1169
1170 static void
1171 dwarf2out_frame_debug_cfa_register (rtx set)
1172 {
1173 rtx src, dest;
1174 unsigned sregno, dregno;
1175
1176 src = XEXP (set, 1);
1177 dest = XEXP (set, 0);
1178
1179 record_reg_saved_in_reg (dest, src);
1180 if (src == pc_rtx)
1181 sregno = DWARF_FRAME_RETURN_COLUMN;
1182 else
1183 sregno = dwf_regno (src);
1184
1185 dregno = dwf_regno (dest);
1186
1187 /* ??? We'd like to use queue_reg_save, but we need to come up with
1188 a different flushing heuristic for epilogues. */
1189 reg_save (sregno, dregno, 0);
1190 }
1191
1192 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1193
1194 static void
1195 dwarf2out_frame_debug_cfa_expression (rtx set)
1196 {
1197 rtx src, dest, span;
1198 dw_cfi_ref cfi = new_cfi ();
1199 unsigned regno;
1200
1201 dest = SET_DEST (set);
1202 src = SET_SRC (set);
1203
1204 gcc_assert (REG_P (src));
1205 gcc_assert (MEM_P (dest));
1206
1207 span = targetm.dwarf_register_span (src);
1208 gcc_assert (!span);
1209
1210 regno = dwf_regno (src);
1211
1212 cfi->dw_cfi_opc = DW_CFA_expression;
1213 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1214 cfi->dw_cfi_oprnd2.dw_cfi_loc
1215 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1216 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1217
1218 /* ??? We'd like to use queue_reg_save, were the interface different,
1219 and, as above, we could manage flushing for epilogues. */
1220 add_cfi (cfi);
1221 update_row_reg_save (cur_row, regno, cfi);
1222 }
1223
1224 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1225
1226 static void
1227 dwarf2out_frame_debug_cfa_restore (rtx reg)
1228 {
1229 gcc_assert (REG_P (reg));
1230
1231 rtx span = targetm.dwarf_register_span (reg);
1232 if (!span)
1233 {
1234 unsigned int regno = dwf_regno (reg);
1235 add_cfi_restore (regno);
1236 update_row_reg_save (cur_row, regno, NULL);
1237 }
1238 else
1239 {
1240 /* We have a PARALLEL describing where the contents of REG live.
1241 Restore the register for each piece of the PARALLEL. */
1242 gcc_assert (GET_CODE (span) == PARALLEL);
1243
1244 const int par_len = XVECLEN (span, 0);
1245 for (int par_index = 0; par_index < par_len; par_index++)
1246 {
1247 reg = XVECEXP (span, 0, par_index);
1248 gcc_assert (REG_P (reg));
1249 unsigned int regno = dwf_regno (reg);
1250 add_cfi_restore (regno);
1251 update_row_reg_save (cur_row, regno, NULL);
1252 }
1253 }
1254 }
1255
1256 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1257 ??? Perhaps we should note in the CIE where windows are saved (instead of
1258 assuming 0(cfa)) and what registers are in the window. */
1259
1260 static void
1261 dwarf2out_frame_debug_cfa_window_save (void)
1262 {
1263 dw_cfi_ref cfi = new_cfi ();
1264
1265 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1266 add_cfi (cfi);
1267 }
1268
1269 /* Record call frame debugging information for an expression EXPR,
1270 which either sets SP or FP (adjusting how we calculate the frame
1271 address) or saves a register to the stack or another register.
1272 LABEL indicates the address of EXPR.
1273
1274 This function encodes a state machine mapping rtxes to actions on
1275 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1276 users need not read the source code.
1277
1278 The High-Level Picture
1279
1280 Changes in the register we use to calculate the CFA: Currently we
1281 assume that if you copy the CFA register into another register, we
1282 should take the other one as the new CFA register; this seems to
1283 work pretty well. If it's wrong for some target, it's simple
1284 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1285
1286 Changes in the register we use for saving registers to the stack:
1287 This is usually SP, but not always. Again, we deduce that if you
1288 copy SP into another register (and SP is not the CFA register),
1289 then the new register is the one we will be using for register
1290 saves. This also seems to work.
1291
1292 Register saves: There's not much guesswork about this one; if
1293 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1294 register save, and the register used to calculate the destination
1295 had better be the one we think we're using for this purpose.
1296 It's also assumed that a copy from a call-saved register to another
1297 register is saving that register if RTX_FRAME_RELATED_P is set on
1298 that instruction. If the copy is from a call-saved register to
1299 the *same* register, that means that the register is now the same
1300 value as in the caller.
1301
1302 Except: If the register being saved is the CFA register, and the
1303 offset is nonzero, we are saving the CFA, so we assume we have to
1304 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1305 the intent is to save the value of SP from the previous frame.
1306
1307 In addition, if a register has previously been saved to a different
1308 register,
1309
1310 Invariants / Summaries of Rules
1311
1312 cfa current rule for calculating the CFA. It usually
1313 consists of a register and an offset. This is
1314 actually stored in *cur_cfa, but abbreviated
1315 for the purposes of this documentation.
1316 cfa_store register used by prologue code to save things to the stack
1317 cfa_store.offset is the offset from the value of
1318 cfa_store.reg to the actual CFA
1319 cfa_temp register holding an integral value. cfa_temp.offset
1320 stores the value, which will be used to adjust the
1321 stack pointer. cfa_temp is also used like cfa_store,
1322 to track stores to the stack via fp or a temp reg.
1323
1324 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1325 with cfa.reg as the first operand changes the cfa.reg and its
1326 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1327 cfa_temp.offset.
1328
1329 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1330 expression yielding a constant. This sets cfa_temp.reg
1331 and cfa_temp.offset.
1332
1333 Rule 5: Create a new register cfa_store used to save items to the
1334 stack.
1335
1336 Rules 10-14: Save a register to the stack. Define offset as the
1337 difference of the original location and cfa_store's
1338 location (or cfa_temp's location if cfa_temp is used).
1339
1340 Rules 16-20: If AND operation happens on sp in prologue, we assume
1341 stack is realigned. We will use a group of DW_OP_XXX
1342 expressions to represent the location of the stored
1343 register instead of CFA+offset.
1344
1345 The Rules
1346
1347 "{a,b}" indicates a choice of a xor b.
1348 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1349
1350 Rule 1:
1351 (set <reg1> <reg2>:cfa.reg)
1352 effects: cfa.reg = <reg1>
1353 cfa.offset unchanged
1354 cfa_temp.reg = <reg1>
1355 cfa_temp.offset = cfa.offset
1356
1357 Rule 2:
1358 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1359 {<const_int>,<reg>:cfa_temp.reg}))
1360 effects: cfa.reg = sp if fp used
1361 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1362 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1363 if cfa_store.reg==sp
1364
1365 Rule 3:
1366 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1367 effects: cfa.reg = fp
1368 cfa_offset += +/- <const_int>
1369
1370 Rule 4:
1371 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1372 constraints: <reg1> != fp
1373 <reg1> != sp
1374 effects: cfa.reg = <reg1>
1375 cfa_temp.reg = <reg1>
1376 cfa_temp.offset = cfa.offset
1377
1378 Rule 5:
1379 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1380 constraints: <reg1> != fp
1381 <reg1> != sp
1382 effects: cfa_store.reg = <reg1>
1383 cfa_store.offset = cfa.offset - cfa_temp.offset
1384
1385 Rule 6:
1386 (set <reg> <const_int>)
1387 effects: cfa_temp.reg = <reg>
1388 cfa_temp.offset = <const_int>
1389
1390 Rule 7:
1391 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1392 effects: cfa_temp.reg = <reg1>
1393 cfa_temp.offset |= <const_int>
1394
1395 Rule 8:
1396 (set <reg> (high <exp>))
1397 effects: none
1398
1399 Rule 9:
1400 (set <reg> (lo_sum <exp> <const_int>))
1401 effects: cfa_temp.reg = <reg>
1402 cfa_temp.offset = <const_int>
1403
1404 Rule 10:
1405 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1406 effects: cfa_store.offset -= <const_int>
1407 cfa.offset = cfa_store.offset if cfa.reg == sp
1408 cfa.reg = sp
1409 cfa.base_offset = -cfa_store.offset
1410
1411 Rule 11:
1412 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1413 effects: cfa_store.offset += -/+ mode_size(mem)
1414 cfa.offset = cfa_store.offset if cfa.reg == sp
1415 cfa.reg = sp
1416 cfa.base_offset = -cfa_store.offset
1417
1418 Rule 12:
1419 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1420
1421 <reg2>)
1422 effects: cfa.reg = <reg1>
1423 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1424
1425 Rule 13:
1426 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1427 effects: cfa.reg = <reg1>
1428 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1429
1430 Rule 14:
1431 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1432 effects: cfa.reg = <reg1>
1433 cfa.base_offset = -cfa_temp.offset
1434 cfa_temp.offset -= mode_size(mem)
1435
1436 Rule 15:
1437 (set <reg> {unspec, unspec_volatile})
1438 effects: target-dependent
1439
1440 Rule 16:
1441 (set sp (and: sp <const_int>))
1442 constraints: cfa_store.reg == sp
1443 effects: cfun->fde.stack_realign = 1
1444 cfa_store.offset = 0
1445 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1446
1447 Rule 17:
1448 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1449 effects: cfa_store.offset += -/+ mode_size(mem)
1450
1451 Rule 18:
1452 (set (mem ({pre_inc, pre_dec} sp)) fp)
1453 constraints: fde->stack_realign == 1
1454 effects: cfa_store.offset = 0
1455 cfa.reg != HARD_FRAME_POINTER_REGNUM
1456
1457 Rule 19:
1458 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1459 constraints: fde->stack_realign == 1
1460 && cfa.offset == 0
1461 && cfa.indirect == 0
1462 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1463 effects: Use DW_CFA_def_cfa_expression to define cfa
1464 cfa.reg == fde->drap_reg */
1465
1466 static void
1467 dwarf2out_frame_debug_expr (rtx expr)
1468 {
1469 rtx src, dest, span;
1470 HOST_WIDE_INT offset;
1471 dw_fde_ref fde;
1472
1473 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1474 the PARALLEL independently. The first element is always processed if
1475 it is a SET. This is for backward compatibility. Other elements
1476 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1477 flag is set in them. */
1478 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1479 {
1480 int par_index;
1481 int limit = XVECLEN (expr, 0);
1482 rtx elem;
1483
1484 /* PARALLELs have strict read-modify-write semantics, so we
1485 ought to evaluate every rvalue before changing any lvalue.
1486 It's cumbersome to do that in general, but there's an
1487 easy approximation that is enough for all current users:
1488 handle register saves before register assignments. */
1489 if (GET_CODE (expr) == PARALLEL)
1490 for (par_index = 0; par_index < limit; par_index++)
1491 {
1492 elem = XVECEXP (expr, 0, par_index);
1493 if (GET_CODE (elem) == SET
1494 && MEM_P (SET_DEST (elem))
1495 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1496 dwarf2out_frame_debug_expr (elem);
1497 }
1498
1499 for (par_index = 0; par_index < limit; par_index++)
1500 {
1501 elem = XVECEXP (expr, 0, par_index);
1502 if (GET_CODE (elem) == SET
1503 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1504 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1505 dwarf2out_frame_debug_expr (elem);
1506 }
1507 return;
1508 }
1509
1510 gcc_assert (GET_CODE (expr) == SET);
1511
1512 src = SET_SRC (expr);
1513 dest = SET_DEST (expr);
1514
1515 if (REG_P (src))
1516 {
1517 rtx rsi = reg_saved_in (src);
1518 if (rsi)
1519 src = rsi;
1520 }
1521
1522 fde = cfun->fde;
1523
1524 switch (GET_CODE (dest))
1525 {
1526 case REG:
1527 switch (GET_CODE (src))
1528 {
1529 /* Setting FP from SP. */
1530 case REG:
1531 if (cur_cfa->reg == dwf_regno (src))
1532 {
1533 /* Rule 1 */
1534 /* Update the CFA rule wrt SP or FP. Make sure src is
1535 relative to the current CFA register.
1536
1537 We used to require that dest be either SP or FP, but the
1538 ARM copies SP to a temporary register, and from there to
1539 FP. So we just rely on the backends to only set
1540 RTX_FRAME_RELATED_P on appropriate insns. */
1541 cur_cfa->reg = dwf_regno (dest);
1542 cur_trace->cfa_temp.reg = cur_cfa->reg;
1543 cur_trace->cfa_temp.offset = cur_cfa->offset;
1544 }
1545 else
1546 {
1547 /* Saving a register in a register. */
1548 gcc_assert (!fixed_regs [REGNO (dest)]
1549 /* For the SPARC and its register window. */
1550 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1551
1552 /* After stack is aligned, we can only save SP in FP
1553 if drap register is used. In this case, we have
1554 to restore stack pointer with the CFA value and we
1555 don't generate this DWARF information. */
1556 if (fde
1557 && fde->stack_realign
1558 && REGNO (src) == STACK_POINTER_REGNUM)
1559 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1560 && fde->drap_reg != INVALID_REGNUM
1561 && cur_cfa->reg != dwf_regno (src));
1562 else
1563 queue_reg_save (src, dest, 0);
1564 }
1565 break;
1566
1567 case PLUS:
1568 case MINUS:
1569 case LO_SUM:
1570 if (dest == stack_pointer_rtx)
1571 {
1572 /* Rule 2 */
1573 /* Adjusting SP. */
1574 switch (GET_CODE (XEXP (src, 1)))
1575 {
1576 case CONST_INT:
1577 offset = INTVAL (XEXP (src, 1));
1578 break;
1579 case REG:
1580 gcc_assert (dwf_regno (XEXP (src, 1))
1581 == cur_trace->cfa_temp.reg);
1582 offset = cur_trace->cfa_temp.offset;
1583 break;
1584 default:
1585 gcc_unreachable ();
1586 }
1587
1588 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1589 {
1590 /* Restoring SP from FP in the epilogue. */
1591 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1592 cur_cfa->reg = dw_stack_pointer_regnum;
1593 }
1594 else if (GET_CODE (src) == LO_SUM)
1595 /* Assume we've set the source reg of the LO_SUM from sp. */
1596 ;
1597 else
1598 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1599
1600 if (GET_CODE (src) != MINUS)
1601 offset = -offset;
1602 if (cur_cfa->reg == dw_stack_pointer_regnum)
1603 cur_cfa->offset += offset;
1604 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1605 cur_trace->cfa_store.offset += offset;
1606 }
1607 else if (dest == hard_frame_pointer_rtx)
1608 {
1609 /* Rule 3 */
1610 /* Either setting the FP from an offset of the SP,
1611 or adjusting the FP */
1612 gcc_assert (frame_pointer_needed);
1613
1614 gcc_assert (REG_P (XEXP (src, 0))
1615 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1616 && CONST_INT_P (XEXP (src, 1)));
1617 offset = INTVAL (XEXP (src, 1));
1618 if (GET_CODE (src) != MINUS)
1619 offset = -offset;
1620 cur_cfa->offset += offset;
1621 cur_cfa->reg = dw_frame_pointer_regnum;
1622 }
1623 else
1624 {
1625 gcc_assert (GET_CODE (src) != MINUS);
1626
1627 /* Rule 4 */
1628 if (REG_P (XEXP (src, 0))
1629 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1630 && CONST_INT_P (XEXP (src, 1)))
1631 {
1632 /* Setting a temporary CFA register that will be copied
1633 into the FP later on. */
1634 offset = - INTVAL (XEXP (src, 1));
1635 cur_cfa->offset += offset;
1636 cur_cfa->reg = dwf_regno (dest);
1637 /* Or used to save regs to the stack. */
1638 cur_trace->cfa_temp.reg = cur_cfa->reg;
1639 cur_trace->cfa_temp.offset = cur_cfa->offset;
1640 }
1641
1642 /* Rule 5 */
1643 else if (REG_P (XEXP (src, 0))
1644 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1645 && XEXP (src, 1) == stack_pointer_rtx)
1646 {
1647 /* Setting a scratch register that we will use instead
1648 of SP for saving registers to the stack. */
1649 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1650 cur_trace->cfa_store.reg = dwf_regno (dest);
1651 cur_trace->cfa_store.offset
1652 = cur_cfa->offset - cur_trace->cfa_temp.offset;
1653 }
1654
1655 /* Rule 9 */
1656 else if (GET_CODE (src) == LO_SUM
1657 && CONST_INT_P (XEXP (src, 1)))
1658 {
1659 cur_trace->cfa_temp.reg = dwf_regno (dest);
1660 cur_trace->cfa_temp.offset = INTVAL (XEXP (src, 1));
1661 }
1662 else
1663 gcc_unreachable ();
1664 }
1665 break;
1666
1667 /* Rule 6 */
1668 case CONST_INT:
1669 cur_trace->cfa_temp.reg = dwf_regno (dest);
1670 cur_trace->cfa_temp.offset = INTVAL (src);
1671 break;
1672
1673 /* Rule 7 */
1674 case IOR:
1675 gcc_assert (REG_P (XEXP (src, 0))
1676 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1677 && CONST_INT_P (XEXP (src, 1)));
1678
1679 cur_trace->cfa_temp.reg = dwf_regno (dest);
1680 cur_trace->cfa_temp.offset |= INTVAL (XEXP (src, 1));
1681 break;
1682
1683 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1684 which will fill in all of the bits. */
1685 /* Rule 8 */
1686 case HIGH:
1687 break;
1688
1689 /* Rule 15 */
1690 case UNSPEC:
1691 case UNSPEC_VOLATILE:
1692 /* All unspecs should be represented by REG_CFA_* notes. */
1693 gcc_unreachable ();
1694 return;
1695
1696 /* Rule 16 */
1697 case AND:
1698 /* If this AND operation happens on stack pointer in prologue,
1699 we assume the stack is realigned and we extract the
1700 alignment. */
1701 if (fde && XEXP (src, 0) == stack_pointer_rtx)
1702 {
1703 /* We interpret reg_save differently with stack_realign set.
1704 Thus we must flush whatever we have queued first. */
1705 dwarf2out_flush_queued_reg_saves ();
1706
1707 gcc_assert (cur_trace->cfa_store.reg
1708 == dwf_regno (XEXP (src, 0)));
1709 fde->stack_realign = 1;
1710 fde->stack_realignment = INTVAL (XEXP (src, 1));
1711 cur_trace->cfa_store.offset = 0;
1712
1713 if (cur_cfa->reg != dw_stack_pointer_regnum
1714 && cur_cfa->reg != dw_frame_pointer_regnum)
1715 fde->drap_reg = cur_cfa->reg;
1716 }
1717 return;
1718
1719 default:
1720 gcc_unreachable ();
1721 }
1722 break;
1723
1724 case MEM:
1725
1726 /* Saving a register to the stack. Make sure dest is relative to the
1727 CFA register. */
1728 switch (GET_CODE (XEXP (dest, 0)))
1729 {
1730 /* Rule 10 */
1731 /* With a push. */
1732 case PRE_MODIFY:
1733 case POST_MODIFY:
1734 /* We can't handle variable size modifications. */
1735 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1736 == CONST_INT);
1737 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1738
1739 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1740 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1741
1742 cur_trace->cfa_store.offset += offset;
1743 if (cur_cfa->reg == dw_stack_pointer_regnum)
1744 cur_cfa->offset = cur_trace->cfa_store.offset;
1745
1746 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
1747 offset -= cur_trace->cfa_store.offset;
1748 else
1749 offset = -cur_trace->cfa_store.offset;
1750 break;
1751
1752 /* Rule 11 */
1753 case PRE_INC:
1754 case PRE_DEC:
1755 case POST_DEC:
1756 offset = GET_MODE_SIZE (GET_MODE (dest));
1757 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1758 offset = -offset;
1759
1760 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1761 == STACK_POINTER_REGNUM)
1762 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1763
1764 cur_trace->cfa_store.offset += offset;
1765
1766 /* Rule 18: If stack is aligned, we will use FP as a
1767 reference to represent the address of the stored
1768 regiser. */
1769 if (fde
1770 && fde->stack_realign
1771 && REG_P (src)
1772 && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
1773 {
1774 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
1775 cur_trace->cfa_store.offset = 0;
1776 }
1777
1778 if (cur_cfa->reg == dw_stack_pointer_regnum)
1779 cur_cfa->offset = cur_trace->cfa_store.offset;
1780
1781 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
1782 offset += -cur_trace->cfa_store.offset;
1783 else
1784 offset = -cur_trace->cfa_store.offset;
1785 break;
1786
1787 /* Rule 12 */
1788 /* With an offset. */
1789 case PLUS:
1790 case MINUS:
1791 case LO_SUM:
1792 {
1793 unsigned int regno;
1794
1795 gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
1796 && REG_P (XEXP (XEXP (dest, 0), 0)));
1797 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1798 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1799 offset = -offset;
1800
1801 regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
1802
1803 if (cur_cfa->reg == regno)
1804 offset -= cur_cfa->offset;
1805 else if (cur_trace->cfa_store.reg == regno)
1806 offset -= cur_trace->cfa_store.offset;
1807 else
1808 {
1809 gcc_assert (cur_trace->cfa_temp.reg == regno);
1810 offset -= cur_trace->cfa_temp.offset;
1811 }
1812 }
1813 break;
1814
1815 /* Rule 13 */
1816 /* Without an offset. */
1817 case REG:
1818 {
1819 unsigned int regno = dwf_regno (XEXP (dest, 0));
1820
1821 if (cur_cfa->reg == regno)
1822 offset = -cur_cfa->offset;
1823 else if (cur_trace->cfa_store.reg == regno)
1824 offset = -cur_trace->cfa_store.offset;
1825 else
1826 {
1827 gcc_assert (cur_trace->cfa_temp.reg == regno);
1828 offset = -cur_trace->cfa_temp.offset;
1829 }
1830 }
1831 break;
1832
1833 /* Rule 14 */
1834 case POST_INC:
1835 gcc_assert (cur_trace->cfa_temp.reg
1836 == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1837 offset = -cur_trace->cfa_temp.offset;
1838 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1839 break;
1840
1841 default:
1842 gcc_unreachable ();
1843 }
1844
1845 /* Rule 17 */
1846 /* If the source operand of this MEM operation is a memory,
1847 we only care how much stack grew. */
1848 if (MEM_P (src))
1849 break;
1850
1851 if (REG_P (src)
1852 && REGNO (src) != STACK_POINTER_REGNUM
1853 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1854 && dwf_regno (src) == cur_cfa->reg)
1855 {
1856 /* We're storing the current CFA reg into the stack. */
1857
1858 if (cur_cfa->offset == 0)
1859 {
1860 /* Rule 19 */
1861 /* If stack is aligned, putting CFA reg into stack means
1862 we can no longer use reg + offset to represent CFA.
1863 Here we use DW_CFA_def_cfa_expression instead. The
1864 result of this expression equals to the original CFA
1865 value. */
1866 if (fde
1867 && fde->stack_realign
1868 && cur_cfa->indirect == 0
1869 && cur_cfa->reg != dw_frame_pointer_regnum)
1870 {
1871 gcc_assert (fde->drap_reg == cur_cfa->reg);
1872
1873 cur_cfa->indirect = 1;
1874 cur_cfa->reg = dw_frame_pointer_regnum;
1875 cur_cfa->base_offset = offset;
1876 cur_cfa->offset = 0;
1877
1878 fde->drap_reg_saved = 1;
1879 break;
1880 }
1881
1882 /* If the source register is exactly the CFA, assume
1883 we're saving SP like any other register; this happens
1884 on the ARM. */
1885 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
1886 break;
1887 }
1888 else
1889 {
1890 /* Otherwise, we'll need to look in the stack to
1891 calculate the CFA. */
1892 rtx x = XEXP (dest, 0);
1893
1894 if (!REG_P (x))
1895 x = XEXP (x, 0);
1896 gcc_assert (REG_P (x));
1897
1898 cur_cfa->reg = dwf_regno (x);
1899 cur_cfa->base_offset = offset;
1900 cur_cfa->indirect = 1;
1901 break;
1902 }
1903 }
1904
1905 if (REG_P (src))
1906 span = targetm.dwarf_register_span (src);
1907 else
1908 span = NULL;
1909
1910 if (!span)
1911 queue_reg_save (src, NULL_RTX, offset);
1912 else
1913 {
1914 /* We have a PARALLEL describing where the contents of SRC live.
1915 Queue register saves for each piece of the PARALLEL. */
1916 HOST_WIDE_INT span_offset = offset;
1917
1918 gcc_assert (GET_CODE (span) == PARALLEL);
1919
1920 const int par_len = XVECLEN (span, 0);
1921 for (int par_index = 0; par_index < par_len; par_index++)
1922 {
1923 rtx elem = XVECEXP (span, 0, par_index);
1924 queue_reg_save (elem, NULL_RTX, span_offset);
1925 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1926 }
1927 }
1928 break;
1929
1930 default:
1931 gcc_unreachable ();
1932 }
1933 }
1934
1935 /* Record call frame debugging information for INSN, which either sets
1936 SP or FP (adjusting how we calculate the frame address) or saves a
1937 register to the stack. */
1938
1939 static void
1940 dwarf2out_frame_debug (rtx insn)
1941 {
1942 rtx note, n;
1943 bool handled_one = false;
1944
1945 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1946 switch (REG_NOTE_KIND (note))
1947 {
1948 case REG_FRAME_RELATED_EXPR:
1949 insn = XEXP (note, 0);
1950 goto do_frame_expr;
1951
1952 case REG_CFA_DEF_CFA:
1953 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
1954 handled_one = true;
1955 break;
1956
1957 case REG_CFA_ADJUST_CFA:
1958 n = XEXP (note, 0);
1959 if (n == NULL)
1960 {
1961 n = PATTERN (insn);
1962 if (GET_CODE (n) == PARALLEL)
1963 n = XVECEXP (n, 0, 0);
1964 }
1965 dwarf2out_frame_debug_adjust_cfa (n);
1966 handled_one = true;
1967 break;
1968
1969 case REG_CFA_OFFSET:
1970 n = XEXP (note, 0);
1971 if (n == NULL)
1972 n = single_set (insn);
1973 dwarf2out_frame_debug_cfa_offset (n);
1974 handled_one = true;
1975 break;
1976
1977 case REG_CFA_REGISTER:
1978 n = XEXP (note, 0);
1979 if (n == NULL)
1980 {
1981 n = PATTERN (insn);
1982 if (GET_CODE (n) == PARALLEL)
1983 n = XVECEXP (n, 0, 0);
1984 }
1985 dwarf2out_frame_debug_cfa_register (n);
1986 handled_one = true;
1987 break;
1988
1989 case REG_CFA_EXPRESSION:
1990 n = XEXP (note, 0);
1991 if (n == NULL)
1992 n = single_set (insn);
1993 dwarf2out_frame_debug_cfa_expression (n);
1994 handled_one = true;
1995 break;
1996
1997 case REG_CFA_RESTORE:
1998 n = XEXP (note, 0);
1999 if (n == NULL)
2000 {
2001 n = PATTERN (insn);
2002 if (GET_CODE (n) == PARALLEL)
2003 n = XVECEXP (n, 0, 0);
2004 n = XEXP (n, 0);
2005 }
2006 dwarf2out_frame_debug_cfa_restore (n);
2007 handled_one = true;
2008 break;
2009
2010 case REG_CFA_SET_VDRAP:
2011 n = XEXP (note, 0);
2012 if (REG_P (n))
2013 {
2014 dw_fde_ref fde = cfun->fde;
2015 if (fde)
2016 {
2017 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2018 if (REG_P (n))
2019 fde->vdrap_reg = dwf_regno (n);
2020 }
2021 }
2022 handled_one = true;
2023 break;
2024
2025 case REG_CFA_WINDOW_SAVE:
2026 dwarf2out_frame_debug_cfa_window_save ();
2027 handled_one = true;
2028 break;
2029
2030 case REG_CFA_FLUSH_QUEUE:
2031 /* The actual flush happens elsewhere. */
2032 handled_one = true;
2033 break;
2034
2035 default:
2036 break;
2037 }
2038
2039 if (!handled_one)
2040 {
2041 insn = PATTERN (insn);
2042 do_frame_expr:
2043 dwarf2out_frame_debug_expr (insn);
2044
2045 /* Check again. A parallel can save and update the same register.
2046 We could probably check just once, here, but this is safer than
2047 removing the check at the start of the function. */
2048 if (clobbers_queued_reg_save (insn))
2049 dwarf2out_flush_queued_reg_saves ();
2050 }
2051 }
2052
2053 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2054
2055 static void
2056 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2057 {
2058 size_t i, n_old, n_new, n_max;
2059 dw_cfi_ref cfi;
2060
2061 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2062 add_cfi (new_row->cfa_cfi);
2063 else
2064 {
2065 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2066 if (cfi)
2067 add_cfi (cfi);
2068 }
2069
2070 n_old = vec_safe_length (old_row->reg_save);
2071 n_new = vec_safe_length (new_row->reg_save);
2072 n_max = MAX (n_old, n_new);
2073
2074 for (i = 0; i < n_max; ++i)
2075 {
2076 dw_cfi_ref r_old = NULL, r_new = NULL;
2077
2078 if (i < n_old)
2079 r_old = (*old_row->reg_save)[i];
2080 if (i < n_new)
2081 r_new = (*new_row->reg_save)[i];
2082
2083 if (r_old == r_new)
2084 ;
2085 else if (r_new == NULL)
2086 add_cfi_restore (i);
2087 else if (!cfi_equal_p (r_old, r_new))
2088 add_cfi (r_new);
2089 }
2090 }
2091
2092 /* Examine CFI and return true if a cfi label and set_loc is needed
2093 beforehand. Even when generating CFI assembler instructions, we
2094 still have to add the cfi to the list so that lookup_cfa_1 works
2095 later on. When -g2 and above we even need to force emitting of
2096 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2097 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2098 and so don't use convert_cfa_to_fb_loc_list. */
2099
2100 static bool
2101 cfi_label_required_p (dw_cfi_ref cfi)
2102 {
2103 if (!dwarf2out_do_cfi_asm ())
2104 return true;
2105
2106 if (dwarf_version == 2
2107 && debug_info_level > DINFO_LEVEL_TERSE
2108 && (write_symbols == DWARF2_DEBUG
2109 || write_symbols == VMS_AND_DWARF2_DEBUG))
2110 {
2111 switch (cfi->dw_cfi_opc)
2112 {
2113 case DW_CFA_def_cfa_offset:
2114 case DW_CFA_def_cfa_offset_sf:
2115 case DW_CFA_def_cfa_register:
2116 case DW_CFA_def_cfa:
2117 case DW_CFA_def_cfa_sf:
2118 case DW_CFA_def_cfa_expression:
2119 case DW_CFA_restore_state:
2120 return true;
2121 default:
2122 return false;
2123 }
2124 }
2125 return false;
2126 }
2127
2128 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2129 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2130 necessary. */
2131 static void
2132 add_cfis_to_fde (void)
2133 {
2134 dw_fde_ref fde = cfun->fde;
2135 rtx_insn *insn, *next;
2136 /* We always start with a function_begin label. */
2137 bool first = false;
2138
2139 for (insn = get_insns (); insn; insn = next)
2140 {
2141 next = NEXT_INSN (insn);
2142
2143 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2144 {
2145 fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi);
2146 /* Don't attempt to advance_loc4 between labels
2147 in different sections. */
2148 first = true;
2149 }
2150
2151 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2152 {
2153 bool required = cfi_label_required_p (NOTE_CFI (insn));
2154 while (next)
2155 if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2156 {
2157 required |= cfi_label_required_p (NOTE_CFI (next));
2158 next = NEXT_INSN (next);
2159 }
2160 else if (active_insn_p (next)
2161 || (NOTE_P (next) && (NOTE_KIND (next)
2162 == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2163 break;
2164 else
2165 next = NEXT_INSN (next);
2166 if (required)
2167 {
2168 int num = dwarf2out_cfi_label_num;
2169 const char *label = dwarf2out_cfi_label ();
2170 dw_cfi_ref xcfi;
2171 rtx tmp;
2172
2173 /* Set the location counter to the new label. */
2174 xcfi = new_cfi ();
2175 xcfi->dw_cfi_opc = (first ? DW_CFA_set_loc
2176 : DW_CFA_advance_loc4);
2177 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2178 vec_safe_push (fde->dw_fde_cfi, xcfi);
2179
2180 tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2181 NOTE_LABEL_NUMBER (tmp) = num;
2182 }
2183
2184 do
2185 {
2186 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2187 vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn));
2188 insn = NEXT_INSN (insn);
2189 }
2190 while (insn != next);
2191 first = false;
2192 }
2193 }
2194 }
2195
2196 /* If LABEL is the start of a trace, then initialize the state of that
2197 trace from CUR_TRACE and CUR_ROW. */
2198
2199 static void
2200 maybe_record_trace_start (rtx_insn *start, rtx_insn *origin)
2201 {
2202 dw_trace_info *ti;
2203 HOST_WIDE_INT args_size;
2204
2205 ti = get_trace_info (start);
2206 gcc_assert (ti != NULL);
2207
2208 if (dump_file)
2209 {
2210 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
2211 cur_trace->id, ti->id,
2212 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2213 (origin ? INSN_UID (origin) : 0));
2214 }
2215
2216 args_size = cur_trace->end_true_args_size;
2217 if (ti->beg_row == NULL)
2218 {
2219 /* This is the first time we've encountered this trace. Propagate
2220 state across the edge and push the trace onto the work list. */
2221 ti->beg_row = copy_cfi_row (cur_row);
2222 ti->beg_true_args_size = args_size;
2223
2224 ti->cfa_store = cur_trace->cfa_store;
2225 ti->cfa_temp = cur_trace->cfa_temp;
2226 ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy ();
2227
2228 trace_work_list.safe_push (ti);
2229
2230 if (dump_file)
2231 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2232 }
2233 else
2234 {
2235
2236 /* We ought to have the same state incoming to a given trace no
2237 matter how we arrive at the trace. Anything else means we've
2238 got some kind of optimization error. */
2239 gcc_checking_assert (cfi_row_equal_p (cur_row, ti->beg_row));
2240
2241 /* The args_size is allowed to conflict if it isn't actually used. */
2242 if (ti->beg_true_args_size != args_size)
2243 ti->args_size_undefined = true;
2244 }
2245 }
2246
2247 /* Similarly, but handle the args_size and CFA reset across EH
2248 and non-local goto edges. */
2249
2250 static void
2251 maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin)
2252 {
2253 HOST_WIDE_INT save_args_size, delta;
2254 dw_cfa_location save_cfa;
2255
2256 save_args_size = cur_trace->end_true_args_size;
2257 if (save_args_size == 0)
2258 {
2259 maybe_record_trace_start (start, origin);
2260 return;
2261 }
2262
2263 delta = -save_args_size;
2264 cur_trace->end_true_args_size = 0;
2265
2266 save_cfa = cur_row->cfa;
2267 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2268 {
2269 /* Convert a change in args_size (always a positive in the
2270 direction of stack growth) to a change in stack pointer. */
2271 #ifndef STACK_GROWS_DOWNWARD
2272 delta = -delta;
2273 #endif
2274 cur_row->cfa.offset += delta;
2275 }
2276
2277 maybe_record_trace_start (start, origin);
2278
2279 cur_trace->end_true_args_size = save_args_size;
2280 cur_row->cfa = save_cfa;
2281 }
2282
2283 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2284 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2285
2286 static void
2287 create_trace_edges (rtx_insn *insn)
2288 {
2289 rtx tmp;
2290 int i, n;
2291
2292 if (JUMP_P (insn))
2293 {
2294 rtx_jump_table_data *table;
2295
2296 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2297 return;
2298
2299 if (tablejump_p (insn, NULL, &table))
2300 {
2301 rtvec vec = table->get_labels ();
2302
2303 n = GET_NUM_ELEM (vec);
2304 for (i = 0; i < n; ++i)
2305 {
2306 rtx_insn *lab = as_a <rtx_insn *> (XEXP (RTVEC_ELT (vec, i), 0));
2307 maybe_record_trace_start (lab, insn);
2308 }
2309 }
2310 else if (computed_jump_p (insn))
2311 {
2312 for (rtx_insn_list *lab = forced_labels; lab; lab = lab->next ())
2313 maybe_record_trace_start (lab->insn (), insn);
2314 }
2315 else if (returnjump_p (insn))
2316 ;
2317 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2318 {
2319 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2320 for (i = 0; i < n; ++i)
2321 {
2322 rtx_insn *lab =
2323 as_a <rtx_insn *> (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0));
2324 maybe_record_trace_start (lab, insn);
2325 }
2326 }
2327 else
2328 {
2329 rtx_insn *lab = JUMP_LABEL_AS_INSN (insn);
2330 gcc_assert (lab != NULL);
2331 maybe_record_trace_start (lab, insn);
2332 }
2333 }
2334 else if (CALL_P (insn))
2335 {
2336 /* Sibling calls don't have edges inside this function. */
2337 if (SIBLING_CALL_P (insn))
2338 return;
2339
2340 /* Process non-local goto edges. */
2341 if (can_nonlocal_goto (insn))
2342 for (rtx_insn_list *lab = nonlocal_goto_handler_labels;
2343 lab;
2344 lab = lab->next ())
2345 maybe_record_trace_start_abnormal (lab->insn (), insn);
2346 }
2347 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2348 {
2349 int i, n = seq->len ();
2350 for (i = 0; i < n; ++i)
2351 create_trace_edges (seq->insn (i));
2352 return;
2353 }
2354
2355 /* Process EH edges. */
2356 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2357 {
2358 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2359 if (lp)
2360 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2361 }
2362 }
2363
2364 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2365
2366 static void
2367 scan_insn_after (rtx insn)
2368 {
2369 if (RTX_FRAME_RELATED_P (insn))
2370 dwarf2out_frame_debug (insn);
2371 notice_args_size (insn);
2372 }
2373
2374 /* Scan the trace beginning at INSN and create the CFI notes for the
2375 instructions therein. */
2376
2377 static void
2378 scan_trace (dw_trace_info *trace)
2379 {
2380 rtx_insn *prev, *insn = trace->head;
2381 dw_cfa_location this_cfa;
2382
2383 if (dump_file)
2384 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2385 trace->id, rtx_name[(int) GET_CODE (insn)],
2386 INSN_UID (insn));
2387
2388 trace->end_row = copy_cfi_row (trace->beg_row);
2389 trace->end_true_args_size = trace->beg_true_args_size;
2390
2391 cur_trace = trace;
2392 cur_row = trace->end_row;
2393
2394 this_cfa = cur_row->cfa;
2395 cur_cfa = &this_cfa;
2396
2397 for (prev = insn, insn = NEXT_INSN (insn);
2398 insn;
2399 prev = insn, insn = NEXT_INSN (insn))
2400 {
2401 rtx_insn *control;
2402
2403 /* Do everything that happens "before" the insn. */
2404 add_cfi_insn = prev;
2405
2406 /* Notice the end of a trace. */
2407 if (BARRIER_P (insn))
2408 {
2409 /* Don't bother saving the unneeded queued registers at all. */
2410 queued_reg_saves.truncate (0);
2411 break;
2412 }
2413 if (save_point_p (insn))
2414 {
2415 /* Propagate across fallthru edges. */
2416 dwarf2out_flush_queued_reg_saves ();
2417 maybe_record_trace_start (insn, NULL);
2418 break;
2419 }
2420
2421 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2422 continue;
2423
2424 /* Handle all changes to the row state. Sequences require special
2425 handling for the positioning of the notes. */
2426 if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2427 {
2428 rtx elt;
2429 int i, n = pat->len ();
2430
2431 control = pat->insn (0);
2432 if (can_throw_internal (control))
2433 notice_eh_throw (control);
2434 dwarf2out_flush_queued_reg_saves ();
2435
2436 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
2437 {
2438 /* ??? Hopefully multiple delay slots are not annulled. */
2439 gcc_assert (n == 2);
2440 gcc_assert (!RTX_FRAME_RELATED_P (control));
2441 gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2442
2443 elt = pat->element (1);
2444
2445 if (INSN_FROM_TARGET_P (elt))
2446 {
2447 HOST_WIDE_INT restore_args_size;
2448 cfi_vec save_row_reg_save;
2449
2450 /* If ELT is an instruction from target of an annulled
2451 branch, the effects are for the target only and so
2452 the args_size and CFA along the current path
2453 shouldn't change. */
2454 add_cfi_insn = NULL;
2455 restore_args_size = cur_trace->end_true_args_size;
2456 cur_cfa = &cur_row->cfa;
2457 save_row_reg_save = vec_safe_copy (cur_row->reg_save);
2458
2459 scan_insn_after (elt);
2460
2461 /* ??? Should we instead save the entire row state? */
2462 gcc_assert (!queued_reg_saves.length ());
2463
2464 create_trace_edges (control);
2465
2466 cur_trace->end_true_args_size = restore_args_size;
2467 cur_row->cfa = this_cfa;
2468 cur_row->reg_save = save_row_reg_save;
2469 cur_cfa = &this_cfa;
2470 }
2471 else
2472 {
2473 /* If ELT is a annulled branch-taken instruction (i.e.
2474 executed only when branch is not taken), the args_size
2475 and CFA should not change through the jump. */
2476 create_trace_edges (control);
2477
2478 /* Update and continue with the trace. */
2479 add_cfi_insn = insn;
2480 scan_insn_after (elt);
2481 def_cfa_1 (&this_cfa);
2482 }
2483 continue;
2484 }
2485
2486 /* The insns in the delay slot should all be considered to happen
2487 "before" a call insn. Consider a call with a stack pointer
2488 adjustment in the delay slot. The backtrace from the callee
2489 should include the sp adjustment. Unfortunately, that leaves
2490 us with an unavoidable unwinding error exactly at the call insn
2491 itself. For jump insns we'd prefer to avoid this error by
2492 placing the notes after the sequence. */
2493 if (JUMP_P (control))
2494 add_cfi_insn = insn;
2495
2496 for (i = 1; i < n; ++i)
2497 {
2498 elt = pat->element (i);
2499 scan_insn_after (elt);
2500 }
2501
2502 /* Make sure any register saves are visible at the jump target. */
2503 dwarf2out_flush_queued_reg_saves ();
2504 any_cfis_emitted = false;
2505
2506 /* However, if there is some adjustment on the call itself, e.g.
2507 a call_pop, that action should be considered to happen after
2508 the call returns. */
2509 add_cfi_insn = insn;
2510 scan_insn_after (control);
2511 }
2512 else
2513 {
2514 /* Flush data before calls and jumps, and of course if necessary. */
2515 if (can_throw_internal (insn))
2516 {
2517 notice_eh_throw (insn);
2518 dwarf2out_flush_queued_reg_saves ();
2519 }
2520 else if (!NONJUMP_INSN_P (insn)
2521 || clobbers_queued_reg_save (insn)
2522 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2523 dwarf2out_flush_queued_reg_saves ();
2524 any_cfis_emitted = false;
2525
2526 add_cfi_insn = insn;
2527 scan_insn_after (insn);
2528 control = insn;
2529 }
2530
2531 /* Between frame-related-p and args_size we might have otherwise
2532 emitted two cfa adjustments. Do it now. */
2533 def_cfa_1 (&this_cfa);
2534
2535 /* Minimize the number of advances by emitting the entire queue
2536 once anything is emitted. */
2537 if (any_cfis_emitted
2538 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2539 dwarf2out_flush_queued_reg_saves ();
2540
2541 /* Note that a test for control_flow_insn_p does exactly the
2542 same tests as are done to actually create the edges. So
2543 always call the routine and let it not create edges for
2544 non-control-flow insns. */
2545 create_trace_edges (control);
2546 }
2547
2548 add_cfi_insn = NULL;
2549 cur_row = NULL;
2550 cur_trace = NULL;
2551 cur_cfa = NULL;
2552 }
2553
2554 /* Scan the function and create the initial set of CFI notes. */
2555
2556 static void
2557 create_cfi_notes (void)
2558 {
2559 dw_trace_info *ti;
2560
2561 gcc_checking_assert (!queued_reg_saves.exists ());
2562 gcc_checking_assert (!trace_work_list.exists ());
2563
2564 /* Always begin at the entry trace. */
2565 ti = &trace_info[0];
2566 scan_trace (ti);
2567
2568 while (!trace_work_list.is_empty ())
2569 {
2570 ti = trace_work_list.pop ();
2571 scan_trace (ti);
2572 }
2573
2574 queued_reg_saves.release ();
2575 trace_work_list.release ();
2576 }
2577
2578 /* Return the insn before the first NOTE_INSN_CFI after START. */
2579
2580 static rtx_insn *
2581 before_next_cfi_note (rtx_insn *start)
2582 {
2583 rtx_insn *prev = start;
2584 while (start)
2585 {
2586 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2587 return prev;
2588 prev = start;
2589 start = NEXT_INSN (start);
2590 }
2591 gcc_unreachable ();
2592 }
2593
2594 /* Insert CFI notes between traces to properly change state between them. */
2595
2596 static void
2597 connect_traces (void)
2598 {
2599 unsigned i, n = trace_info.length ();
2600 dw_trace_info *prev_ti, *ti;
2601
2602 /* ??? Ideally, we should have both queued and processed every trace.
2603 However the current representation of constant pools on various targets
2604 is indistinguishable from unreachable code. Assume for the moment that
2605 we can simply skip over such traces. */
2606 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2607 these are not "real" instructions, and should not be considered.
2608 This could be generically useful for tablejump data as well. */
2609 /* Remove all unprocessed traces from the list. */
2610 for (i = n - 1; i > 0; --i)
2611 {
2612 ti = &trace_info[i];
2613 if (ti->beg_row == NULL)
2614 {
2615 trace_info.ordered_remove (i);
2616 n -= 1;
2617 }
2618 else
2619 gcc_assert (ti->end_row != NULL);
2620 }
2621
2622 /* Work from the end back to the beginning. This lets us easily insert
2623 remember/restore_state notes in the correct order wrt other notes. */
2624 prev_ti = &trace_info[n - 1];
2625 for (i = n - 1; i > 0; --i)
2626 {
2627 dw_cfi_row *old_row;
2628
2629 ti = prev_ti;
2630 prev_ti = &trace_info[i - 1];
2631
2632 add_cfi_insn = ti->head;
2633
2634 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2635 for the portion of the function in the alternate text
2636 section. The row state at the very beginning of that
2637 new FDE will be exactly the row state from the CIE. */
2638 if (ti->switch_sections)
2639 old_row = cie_cfi_row;
2640 else
2641 {
2642 old_row = prev_ti->end_row;
2643 /* If there's no change from the previous end state, fine. */
2644 if (cfi_row_equal_p (old_row, ti->beg_row))
2645 ;
2646 /* Otherwise check for the common case of sharing state with
2647 the beginning of an epilogue, but not the end. Insert
2648 remember/restore opcodes in that case. */
2649 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2650 {
2651 dw_cfi_ref cfi;
2652
2653 /* Note that if we blindly insert the remember at the
2654 start of the trace, we can wind up increasing the
2655 size of the unwind info due to extra advance opcodes.
2656 Instead, put the remember immediately before the next
2657 state change. We know there must be one, because the
2658 state at the beginning and head of the trace differ. */
2659 add_cfi_insn = before_next_cfi_note (prev_ti->head);
2660 cfi = new_cfi ();
2661 cfi->dw_cfi_opc = DW_CFA_remember_state;
2662 add_cfi (cfi);
2663
2664 add_cfi_insn = ti->head;
2665 cfi = new_cfi ();
2666 cfi->dw_cfi_opc = DW_CFA_restore_state;
2667 add_cfi (cfi);
2668
2669 old_row = prev_ti->beg_row;
2670 }
2671 /* Otherwise, we'll simply change state from the previous end. */
2672 }
2673
2674 change_cfi_row (old_row, ti->beg_row);
2675
2676 if (dump_file && add_cfi_insn != ti->head)
2677 {
2678 rtx_insn *note;
2679
2680 fprintf (dump_file, "Fixup between trace %u and %u:\n",
2681 prev_ti->id, ti->id);
2682
2683 note = ti->head;
2684 do
2685 {
2686 note = NEXT_INSN (note);
2687 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2688 output_cfi_directive (dump_file, NOTE_CFI (note));
2689 }
2690 while (note != add_cfi_insn);
2691 }
2692 }
2693
2694 /* Connect args_size between traces that have can_throw_internal insns. */
2695 if (cfun->eh->lp_array)
2696 {
2697 HOST_WIDE_INT prev_args_size = 0;
2698
2699 for (i = 0; i < n; ++i)
2700 {
2701 ti = &trace_info[i];
2702
2703 if (ti->switch_sections)
2704 prev_args_size = 0;
2705 if (ti->eh_head == NULL)
2706 continue;
2707 gcc_assert (!ti->args_size_undefined);
2708
2709 if (ti->beg_delay_args_size != prev_args_size)
2710 {
2711 /* ??? Search back to previous CFI note. */
2712 add_cfi_insn = PREV_INSN (ti->eh_head);
2713 add_cfi_args_size (ti->beg_delay_args_size);
2714 }
2715
2716 prev_args_size = ti->end_delay_args_size;
2717 }
2718 }
2719 }
2720
2721 /* Set up the pseudo-cfg of instruction traces, as described at the
2722 block comment at the top of the file. */
2723
2724 static void
2725 create_pseudo_cfg (void)
2726 {
2727 bool saw_barrier, switch_sections;
2728 dw_trace_info ti;
2729 rtx_insn *insn;
2730 unsigned i;
2731
2732 /* The first trace begins at the start of the function,
2733 and begins with the CIE row state. */
2734 trace_info.create (16);
2735 memset (&ti, 0, sizeof (ti));
2736 ti.head = get_insns ();
2737 ti.beg_row = cie_cfi_row;
2738 ti.cfa_store = cie_cfi_row->cfa;
2739 ti.cfa_temp.reg = INVALID_REGNUM;
2740 trace_info.quick_push (ti);
2741
2742 if (cie_return_save)
2743 ti.regs_saved_in_regs.safe_push (*cie_return_save);
2744
2745 /* Walk all the insns, collecting start of trace locations. */
2746 saw_barrier = false;
2747 switch_sections = false;
2748 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2749 {
2750 if (BARRIER_P (insn))
2751 saw_barrier = true;
2752 else if (NOTE_P (insn)
2753 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2754 {
2755 /* We should have just seen a barrier. */
2756 gcc_assert (saw_barrier);
2757 switch_sections = true;
2758 }
2759 /* Watch out for save_point notes between basic blocks.
2760 In particular, a note after a barrier. Do not record these,
2761 delaying trace creation until the label. */
2762 else if (save_point_p (insn)
2763 && (LABEL_P (insn) || !saw_barrier))
2764 {
2765 memset (&ti, 0, sizeof (ti));
2766 ti.head = insn;
2767 ti.switch_sections = switch_sections;
2768 ti.id = trace_info.length () - 1;
2769 trace_info.safe_push (ti);
2770
2771 saw_barrier = false;
2772 switch_sections = false;
2773 }
2774 }
2775
2776 /* Create the trace index after we've finished building trace_info,
2777 avoiding stale pointer problems due to reallocation. */
2778 trace_index
2779 = new hash_table<trace_info_hasher> (trace_info.length ());
2780 dw_trace_info *tp;
2781 FOR_EACH_VEC_ELT (trace_info, i, tp)
2782 {
2783 dw_trace_info **slot;
2784
2785 if (dump_file)
2786 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", i,
2787 rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
2788 tp->switch_sections ? " (section switch)" : "");
2789
2790 slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT);
2791 gcc_assert (*slot == NULL);
2792 *slot = tp;
2793 }
2794 }
2795
2796 /* Record the initial position of the return address. RTL is
2797 INCOMING_RETURN_ADDR_RTX. */
2798
2799 static void
2800 initial_return_save (rtx rtl)
2801 {
2802 unsigned int reg = INVALID_REGNUM;
2803 HOST_WIDE_INT offset = 0;
2804
2805 switch (GET_CODE (rtl))
2806 {
2807 case REG:
2808 /* RA is in a register. */
2809 reg = dwf_regno (rtl);
2810 break;
2811
2812 case MEM:
2813 /* RA is on the stack. */
2814 rtl = XEXP (rtl, 0);
2815 switch (GET_CODE (rtl))
2816 {
2817 case REG:
2818 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2819 offset = 0;
2820 break;
2821
2822 case PLUS:
2823 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2824 offset = INTVAL (XEXP (rtl, 1));
2825 break;
2826
2827 case MINUS:
2828 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2829 offset = -INTVAL (XEXP (rtl, 1));
2830 break;
2831
2832 default:
2833 gcc_unreachable ();
2834 }
2835
2836 break;
2837
2838 case PLUS:
2839 /* The return address is at some offset from any value we can
2840 actually load. For instance, on the SPARC it is in %i7+8. Just
2841 ignore the offset for now; it doesn't matter for unwinding frames. */
2842 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
2843 initial_return_save (XEXP (rtl, 0));
2844 return;
2845
2846 default:
2847 gcc_unreachable ();
2848 }
2849
2850 if (reg != DWARF_FRAME_RETURN_COLUMN)
2851 {
2852 if (reg != INVALID_REGNUM)
2853 record_reg_saved_in_reg (rtl, pc_rtx);
2854 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
2855 }
2856 }
2857
2858 static void
2859 create_cie_data (void)
2860 {
2861 dw_cfa_location loc;
2862 dw_trace_info cie_trace;
2863
2864 dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
2865 dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2866
2867 memset (&cie_trace, 0, sizeof (cie_trace));
2868 cur_trace = &cie_trace;
2869
2870 add_cfi_vec = &cie_cfi_vec;
2871 cie_cfi_row = cur_row = new_cfi_row ();
2872
2873 /* On entry, the Canonical Frame Address is at SP. */
2874 memset (&loc, 0, sizeof (loc));
2875 loc.reg = dw_stack_pointer_regnum;
2876 loc.offset = INCOMING_FRAME_SP_OFFSET;
2877 def_cfa_1 (&loc);
2878
2879 if (targetm.debug_unwind_info () == UI_DWARF2
2880 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
2881 {
2882 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2883
2884 /* For a few targets, we have the return address incoming into a
2885 register, but choose a different return column. This will result
2886 in a DW_CFA_register for the return, and an entry in
2887 regs_saved_in_regs to match. If the target later stores that
2888 return address register to the stack, we want to be able to emit
2889 the DW_CFA_offset against the return column, not the intermediate
2890 save register. Save the contents of regs_saved_in_regs so that
2891 we can re-initialize it at the start of each function. */
2892 switch (cie_trace.regs_saved_in_regs.length ())
2893 {
2894 case 0:
2895 break;
2896 case 1:
2897 cie_return_save = ggc_alloc<reg_saved_in_data> ();
2898 *cie_return_save = cie_trace.regs_saved_in_regs[0];
2899 cie_trace.regs_saved_in_regs.release ();
2900 break;
2901 default:
2902 gcc_unreachable ();
2903 }
2904 }
2905
2906 add_cfi_vec = NULL;
2907 cur_row = NULL;
2908 cur_trace = NULL;
2909 }
2910
2911 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2912 state at each location within the function. These notes will be
2913 emitted during pass_final. */
2914
2915 static unsigned int
2916 execute_dwarf2_frame (void)
2917 {
2918 /* The first time we're called, compute the incoming frame state. */
2919 if (cie_cfi_vec == NULL)
2920 create_cie_data ();
2921
2922 dwarf2out_alloc_current_fde ();
2923
2924 create_pseudo_cfg ();
2925
2926 /* Do the work. */
2927 create_cfi_notes ();
2928 connect_traces ();
2929 add_cfis_to_fde ();
2930
2931 /* Free all the data we allocated. */
2932 {
2933 size_t i;
2934 dw_trace_info *ti;
2935
2936 FOR_EACH_VEC_ELT (trace_info, i, ti)
2937 ti->regs_saved_in_regs.release ();
2938 }
2939 trace_info.release ();
2940
2941 delete trace_index;
2942 trace_index = NULL;
2943
2944 return 0;
2945 }
2946 \f
2947 /* Convert a DWARF call frame info. operation to its string name */
2948
2949 static const char *
2950 dwarf_cfi_name (unsigned int cfi_opc)
2951 {
2952 const char *name = get_DW_CFA_name (cfi_opc);
2953
2954 if (name != NULL)
2955 return name;
2956
2957 return "DW_CFA_<unknown>";
2958 }
2959
2960 /* This routine will generate the correct assembly data for a location
2961 description based on a cfi entry with a complex address. */
2962
2963 static void
2964 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
2965 {
2966 dw_loc_descr_ref loc;
2967 unsigned long size;
2968
2969 if (cfi->dw_cfi_opc == DW_CFA_expression)
2970 {
2971 unsigned r =
2972 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2973 dw2_asm_output_data (1, r, NULL);
2974 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
2975 }
2976 else
2977 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2978
2979 /* Output the size of the block. */
2980 size = size_of_locs (loc);
2981 dw2_asm_output_data_uleb128 (size, NULL);
2982
2983 /* Now output the operations themselves. */
2984 output_loc_sequence (loc, for_eh);
2985 }
2986
2987 /* Similar, but used for .cfi_escape. */
2988
2989 static void
2990 output_cfa_loc_raw (dw_cfi_ref cfi)
2991 {
2992 dw_loc_descr_ref loc;
2993 unsigned long size;
2994
2995 if (cfi->dw_cfi_opc == DW_CFA_expression)
2996 {
2997 unsigned r =
2998 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
2999 fprintf (asm_out_file, "%#x,", r);
3000 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3001 }
3002 else
3003 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3004
3005 /* Output the size of the block. */
3006 size = size_of_locs (loc);
3007 dw2_asm_output_data_uleb128_raw (size);
3008 fputc (',', asm_out_file);
3009
3010 /* Now output the operations themselves. */
3011 output_loc_sequence_raw (loc);
3012 }
3013
3014 /* Output a Call Frame Information opcode and its operand(s). */
3015
3016 void
3017 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3018 {
3019 unsigned long r;
3020 HOST_WIDE_INT off;
3021
3022 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3023 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3024 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3025 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3026 ((unsigned HOST_WIDE_INT)
3027 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3028 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3029 {
3030 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3031 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3032 "DW_CFA_offset, column %#lx", r);
3033 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3034 dw2_asm_output_data_uleb128 (off, NULL);
3035 }
3036 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3037 {
3038 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3039 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3040 "DW_CFA_restore, column %#lx", r);
3041 }
3042 else
3043 {
3044 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3045 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3046
3047 switch (cfi->dw_cfi_opc)
3048 {
3049 case DW_CFA_set_loc:
3050 if (for_eh)
3051 dw2_asm_output_encoded_addr_rtx (
3052 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3053 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3054 false, NULL);
3055 else
3056 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3057 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3058 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3059 break;
3060
3061 case DW_CFA_advance_loc1:
3062 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3063 fde->dw_fde_current_label, NULL);
3064 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3065 break;
3066
3067 case DW_CFA_advance_loc2:
3068 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3069 fde->dw_fde_current_label, NULL);
3070 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3071 break;
3072
3073 case DW_CFA_advance_loc4:
3074 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3075 fde->dw_fde_current_label, NULL);
3076 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3077 break;
3078
3079 case DW_CFA_MIPS_advance_loc8:
3080 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3081 fde->dw_fde_current_label, NULL);
3082 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3083 break;
3084
3085 case DW_CFA_offset_extended:
3086 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3087 dw2_asm_output_data_uleb128 (r, NULL);
3088 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3089 dw2_asm_output_data_uleb128 (off, NULL);
3090 break;
3091
3092 case DW_CFA_def_cfa:
3093 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3094 dw2_asm_output_data_uleb128 (r, NULL);
3095 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3096 break;
3097
3098 case DW_CFA_offset_extended_sf:
3099 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3100 dw2_asm_output_data_uleb128 (r, NULL);
3101 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3102 dw2_asm_output_data_sleb128 (off, NULL);
3103 break;
3104
3105 case DW_CFA_def_cfa_sf:
3106 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3107 dw2_asm_output_data_uleb128 (r, NULL);
3108 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3109 dw2_asm_output_data_sleb128 (off, NULL);
3110 break;
3111
3112 case DW_CFA_restore_extended:
3113 case DW_CFA_undefined:
3114 case DW_CFA_same_value:
3115 case DW_CFA_def_cfa_register:
3116 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3117 dw2_asm_output_data_uleb128 (r, NULL);
3118 break;
3119
3120 case DW_CFA_register:
3121 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3122 dw2_asm_output_data_uleb128 (r, NULL);
3123 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3124 dw2_asm_output_data_uleb128 (r, NULL);
3125 break;
3126
3127 case DW_CFA_def_cfa_offset:
3128 case DW_CFA_GNU_args_size:
3129 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3130 break;
3131
3132 case DW_CFA_def_cfa_offset_sf:
3133 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3134 dw2_asm_output_data_sleb128 (off, NULL);
3135 break;
3136
3137 case DW_CFA_GNU_window_save:
3138 break;
3139
3140 case DW_CFA_def_cfa_expression:
3141 case DW_CFA_expression:
3142 output_cfa_loc (cfi, for_eh);
3143 break;
3144
3145 case DW_CFA_GNU_negative_offset_extended:
3146 /* Obsoleted by DW_CFA_offset_extended_sf. */
3147 gcc_unreachable ();
3148
3149 default:
3150 break;
3151 }
3152 }
3153 }
3154
3155 /* Similar, but do it via assembler directives instead. */
3156
3157 void
3158 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3159 {
3160 unsigned long r, r2;
3161
3162 switch (cfi->dw_cfi_opc)
3163 {
3164 case DW_CFA_advance_loc:
3165 case DW_CFA_advance_loc1:
3166 case DW_CFA_advance_loc2:
3167 case DW_CFA_advance_loc4:
3168 case DW_CFA_MIPS_advance_loc8:
3169 case DW_CFA_set_loc:
3170 /* Should only be created in a code path not followed when emitting
3171 via directives. The assembler is going to take care of this for
3172 us. But this routines is also used for debugging dumps, so
3173 print something. */
3174 gcc_assert (f != asm_out_file);
3175 fprintf (f, "\t.cfi_advance_loc\n");
3176 break;
3177
3178 case DW_CFA_offset:
3179 case DW_CFA_offset_extended:
3180 case DW_CFA_offset_extended_sf:
3181 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3182 fprintf (f, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3183 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3184 break;
3185
3186 case DW_CFA_restore:
3187 case DW_CFA_restore_extended:
3188 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3189 fprintf (f, "\t.cfi_restore %lu\n", r);
3190 break;
3191
3192 case DW_CFA_undefined:
3193 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3194 fprintf (f, "\t.cfi_undefined %lu\n", r);
3195 break;
3196
3197 case DW_CFA_same_value:
3198 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3199 fprintf (f, "\t.cfi_same_value %lu\n", r);
3200 break;
3201
3202 case DW_CFA_def_cfa:
3203 case DW_CFA_def_cfa_sf:
3204 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3205 fprintf (f, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3206 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3207 break;
3208
3209 case DW_CFA_def_cfa_register:
3210 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3211 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3212 break;
3213
3214 case DW_CFA_register:
3215 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3216 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3217 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3218 break;
3219
3220 case DW_CFA_def_cfa_offset:
3221 case DW_CFA_def_cfa_offset_sf:
3222 fprintf (f, "\t.cfi_def_cfa_offset "
3223 HOST_WIDE_INT_PRINT_DEC"\n",
3224 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3225 break;
3226
3227 case DW_CFA_remember_state:
3228 fprintf (f, "\t.cfi_remember_state\n");
3229 break;
3230 case DW_CFA_restore_state:
3231 fprintf (f, "\t.cfi_restore_state\n");
3232 break;
3233
3234 case DW_CFA_GNU_args_size:
3235 if (f == asm_out_file)
3236 {
3237 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3238 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3239 if (flag_debug_asm)
3240 fprintf (f, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3241 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3242 fputc ('\n', f);
3243 }
3244 else
3245 {
3246 fprintf (f, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC "\n",
3247 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3248 }
3249 break;
3250
3251 case DW_CFA_GNU_window_save:
3252 fprintf (f, "\t.cfi_window_save\n");
3253 break;
3254
3255 case DW_CFA_def_cfa_expression:
3256 if (f != asm_out_file)
3257 {
3258 fprintf (f, "\t.cfi_def_cfa_expression ...\n");
3259 break;
3260 }
3261 /* FALLTHRU */
3262 case DW_CFA_expression:
3263 if (f != asm_out_file)
3264 {
3265 fprintf (f, "\t.cfi_cfa_expression ...\n");
3266 break;
3267 }
3268 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3269 output_cfa_loc_raw (cfi);
3270 fputc ('\n', f);
3271 break;
3272
3273 default:
3274 gcc_unreachable ();
3275 }
3276 }
3277
3278 void
3279 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3280 {
3281 if (dwarf2out_do_cfi_asm ())
3282 output_cfi_directive (asm_out_file, cfi);
3283 }
3284
3285 static void
3286 dump_cfi_row (FILE *f, dw_cfi_row *row)
3287 {
3288 dw_cfi_ref cfi;
3289 unsigned i;
3290
3291 cfi = row->cfa_cfi;
3292 if (!cfi)
3293 {
3294 dw_cfa_location dummy;
3295 memset (&dummy, 0, sizeof (dummy));
3296 dummy.reg = INVALID_REGNUM;
3297 cfi = def_cfa_0 (&dummy, &row->cfa);
3298 }
3299 output_cfi_directive (f, cfi);
3300
3301 FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi)
3302 if (cfi)
3303 output_cfi_directive (f, cfi);
3304 }
3305
3306 void debug_cfi_row (dw_cfi_row *row);
3307
3308 void
3309 debug_cfi_row (dw_cfi_row *row)
3310 {
3311 dump_cfi_row (stderr, row);
3312 }
3313 \f
3314
3315 /* Save the result of dwarf2out_do_frame across PCH.
3316 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3317 static GTY(()) signed char saved_do_cfi_asm = 0;
3318
3319 /* Decide whether we want to emit frame unwind information for the current
3320 translation unit. */
3321
3322 bool
3323 dwarf2out_do_frame (void)
3324 {
3325 /* We want to emit correct CFA location expressions or lists, so we
3326 have to return true if we're going to output debug info, even if
3327 we're not going to output frame or unwind info. */
3328 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3329 return true;
3330
3331 if (saved_do_cfi_asm > 0)
3332 return true;
3333
3334 if (targetm.debug_unwind_info () == UI_DWARF2)
3335 return true;
3336
3337 if ((flag_unwind_tables || flag_exceptions)
3338 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3339 return true;
3340
3341 return false;
3342 }
3343
3344 /* Decide whether to emit frame unwind via assembler directives. */
3345
3346 bool
3347 dwarf2out_do_cfi_asm (void)
3348 {
3349 int enc;
3350
3351 if (saved_do_cfi_asm != 0)
3352 return saved_do_cfi_asm > 0;
3353
3354 /* Assume failure for a moment. */
3355 saved_do_cfi_asm = -1;
3356
3357 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3358 return false;
3359 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3360 return false;
3361
3362 /* Make sure the personality encoding is one the assembler can support.
3363 In particular, aligned addresses can't be handled. */
3364 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3365 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3366 return false;
3367 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3368 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3369 return false;
3370
3371 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3372 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3373 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3374 && !flag_unwind_tables && !flag_exceptions
3375 && targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
3376 return false;
3377
3378 /* Success! */
3379 saved_do_cfi_asm = 1;
3380 return true;
3381 }
3382
3383 namespace {
3384
3385 const pass_data pass_data_dwarf2_frame =
3386 {
3387 RTL_PASS, /* type */
3388 "dwarf2", /* name */
3389 OPTGROUP_NONE, /* optinfo_flags */
3390 TV_FINAL, /* tv_id */
3391 0, /* properties_required */
3392 0, /* properties_provided */
3393 0, /* properties_destroyed */
3394 0, /* todo_flags_start */
3395 0, /* todo_flags_finish */
3396 };
3397
3398 class pass_dwarf2_frame : public rtl_opt_pass
3399 {
3400 public:
3401 pass_dwarf2_frame (gcc::context *ctxt)
3402 : rtl_opt_pass (pass_data_dwarf2_frame, ctxt)
3403 {}
3404
3405 /* opt_pass methods: */
3406 virtual bool gate (function *);
3407 virtual unsigned int execute (function *) { return execute_dwarf2_frame (); }
3408
3409 }; // class pass_dwarf2_frame
3410
3411 bool
3412 pass_dwarf2_frame::gate (function *)
3413 {
3414 #ifndef HAVE_prologue
3415 /* Targets which still implement the prologue in assembler text
3416 cannot use the generic dwarf2 unwinding. */
3417 return false;
3418 #endif
3419
3420 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3421 from the optimized shrink-wrapping annotations that we will compute.
3422 For now, only produce the CFI notes for dwarf2. */
3423 return dwarf2out_do_frame ();
3424 }
3425
3426 } // anon namespace
3427
3428 rtl_opt_pass *
3429 make_pass_dwarf2_frame (gcc::context *ctxt)
3430 {
3431 return new pass_dwarf2_frame (ctxt);
3432 }
3433
3434 #include "gt-dwarf2cfi.h"