single_set takes an insn
[gcc.git] / gcc / dwarf2cfi.c
1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "version.h"
25 #include "flags.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "function.h"
30 #include "basic-block.h"
31 #include "dwarf2.h"
32 #include "dwarf2out.h"
33 #include "dwarf2asm.h"
34 #include "ggc.h"
35 #include "hash-table.h"
36 #include "tm_p.h"
37 #include "target.h"
38 #include "common/common-target.h"
39 #include "tree-pass.h"
40
41 #include "except.h" /* expand_builtin_dwarf_sp_column */
42 #include "expr.h" /* init_return_column_size */
43 #include "regs.h" /* expand_builtin_init_dwarf_reg_sizes */
44 #include "output.h" /* asm_out_file */
45 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
46
47
48 /* ??? Poison these here until it can be done generically. They've been
49 totally replaced in this file; make sure it stays that way. */
50 #undef DWARF2_UNWIND_INFO
51 #undef DWARF2_FRAME_INFO
52 #if (GCC_VERSION >= 3000)
53 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
54 #endif
55
56 #ifndef INCOMING_RETURN_ADDR_RTX
57 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
58 #endif
59
60 /* Maximum size (in bytes) of an artificially generated label. */
61 #define MAX_ARTIFICIAL_LABEL_BYTES 30
62 \f
63 /* A collected description of an entire row of the abstract CFI table. */
64 typedef struct GTY(()) dw_cfi_row_struct
65 {
66 /* The expression that computes the CFA, expressed in two different ways.
67 The CFA member for the simple cases, and the full CFI expression for
68 the complex cases. The later will be a DW_CFA_cfa_expression. */
69 dw_cfa_location cfa;
70 dw_cfi_ref cfa_cfi;
71
72 /* The expressions for any register column that is saved. */
73 cfi_vec reg_save;
74 } dw_cfi_row;
75
76 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
77 typedef struct GTY(()) reg_saved_in_data_struct {
78 rtx orig_reg;
79 rtx saved_in_reg;
80 } reg_saved_in_data;
81
82
83 /* Since we no longer have a proper CFG, we're going to create a facsimile
84 of one on the fly while processing the frame-related insns.
85
86 We create dw_trace_info structures for each extended basic block beginning
87 and ending at a "save point". Save points are labels, barriers, certain
88 notes, and of course the beginning and end of the function.
89
90 As we encounter control transfer insns, we propagate the "current"
91 row state across the edges to the starts of traces. When checking is
92 enabled, we validate that we propagate the same data from all sources.
93
94 All traces are members of the TRACE_INFO array, in the order in which
95 they appear in the instruction stream.
96
97 All save points are present in the TRACE_INDEX hash, mapping the insn
98 starting a trace to the dw_trace_info describing the trace. */
99
100 typedef struct
101 {
102 /* The insn that begins the trace. */
103 rtx_insn *head;
104
105 /* The row state at the beginning and end of the trace. */
106 dw_cfi_row *beg_row, *end_row;
107
108 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
109 while scanning insns. However, the args_size value is irrelevant at
110 any point except can_throw_internal_p insns. Therefore the "delay"
111 sizes the values that must actually be emitted for this trace. */
112 HOST_WIDE_INT beg_true_args_size, end_true_args_size;
113 HOST_WIDE_INT beg_delay_args_size, end_delay_args_size;
114
115 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
116 rtx_insn *eh_head;
117
118 /* The following variables contain data used in interpreting frame related
119 expressions. These are not part of the "real" row state as defined by
120 Dwarf, but it seems like they need to be propagated into a trace in case
121 frame related expressions have been sunk. */
122 /* ??? This seems fragile. These variables are fragments of a larger
123 expression. If we do not keep the entire expression together, we risk
124 not being able to put it together properly. Consider forcing targets
125 to generate self-contained expressions and dropping all of the magic
126 interpretation code in this file. Or at least refusing to shrink wrap
127 any frame related insn that doesn't contain a complete expression. */
128
129 /* The register used for saving registers to the stack, and its offset
130 from the CFA. */
131 dw_cfa_location cfa_store;
132
133 /* A temporary register holding an integral value used in adjusting SP
134 or setting up the store_reg. The "offset" field holds the integer
135 value, not an offset. */
136 dw_cfa_location cfa_temp;
137
138 /* A set of registers saved in other registers. This is the inverse of
139 the row->reg_save info, if the entry is a DW_CFA_register. This is
140 implemented as a flat array because it normally contains zero or 1
141 entry, depending on the target. IA-64 is the big spender here, using
142 a maximum of 5 entries. */
143 vec<reg_saved_in_data> regs_saved_in_regs;
144
145 /* An identifier for this trace. Used only for debugging dumps. */
146 unsigned id;
147
148 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
149 bool switch_sections;
150
151 /* True if we've seen different values incoming to beg_true_args_size. */
152 bool args_size_undefined;
153 } dw_trace_info;
154
155
156 typedef dw_trace_info *dw_trace_info_ref;
157
158
159 /* Hashtable helpers. */
160
161 struct trace_info_hasher : typed_noop_remove <dw_trace_info>
162 {
163 typedef dw_trace_info value_type;
164 typedef dw_trace_info compare_type;
165 static inline hashval_t hash (const value_type *);
166 static inline bool equal (const value_type *, const compare_type *);
167 };
168
169 inline hashval_t
170 trace_info_hasher::hash (const value_type *ti)
171 {
172 return INSN_UID (ti->head);
173 }
174
175 inline bool
176 trace_info_hasher::equal (const value_type *a, const compare_type *b)
177 {
178 return a->head == b->head;
179 }
180
181
182 /* The variables making up the pseudo-cfg, as described above. */
183 static vec<dw_trace_info> trace_info;
184 static vec<dw_trace_info_ref> trace_work_list;
185 static hash_table<trace_info_hasher> *trace_index;
186
187 /* A vector of call frame insns for the CIE. */
188 cfi_vec cie_cfi_vec;
189
190 /* The state of the first row of the FDE table, which includes the
191 state provided by the CIE. */
192 static GTY(()) dw_cfi_row *cie_cfi_row;
193
194 static GTY(()) reg_saved_in_data *cie_return_save;
195
196 static GTY(()) unsigned long dwarf2out_cfi_label_num;
197
198 /* The insn after which a new CFI note should be emitted. */
199 static rtx add_cfi_insn;
200
201 /* When non-null, add_cfi will add the CFI to this vector. */
202 static cfi_vec *add_cfi_vec;
203
204 /* The current instruction trace. */
205 static dw_trace_info *cur_trace;
206
207 /* The current, i.e. most recently generated, row of the CFI table. */
208 static dw_cfi_row *cur_row;
209
210 /* A copy of the current CFA, for use during the processing of a
211 single insn. */
212 static dw_cfa_location *cur_cfa;
213
214 /* We delay emitting a register save until either (a) we reach the end
215 of the prologue or (b) the register is clobbered. This clusters
216 register saves so that there are fewer pc advances. */
217
218 typedef struct {
219 rtx reg;
220 rtx saved_reg;
221 HOST_WIDE_INT cfa_offset;
222 } queued_reg_save;
223
224
225 static vec<queued_reg_save> queued_reg_saves;
226
227 /* True if any CFI directives were emitted at the current insn. */
228 static bool any_cfis_emitted;
229
230 /* Short-hand for commonly used register numbers. */
231 static unsigned dw_stack_pointer_regnum;
232 static unsigned dw_frame_pointer_regnum;
233 \f
234 /* Hook used by __throw. */
235
236 rtx
237 expand_builtin_dwarf_sp_column (void)
238 {
239 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
240 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
241 }
242
243 /* MEM is a memory reference for the register size table, each element of
244 which has mode MODE. Initialize column C as a return address column. */
245
246 static void
247 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
248 {
249 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
250 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
251 emit_move_insn (adjust_address (mem, mode, offset),
252 gen_int_mode (size, mode));
253 }
254
255 /* Generate code to initialize the register size table. */
256
257 void
258 expand_builtin_init_dwarf_reg_sizes (tree address)
259 {
260 unsigned int i;
261 enum machine_mode mode = TYPE_MODE (char_type_node);
262 rtx addr = expand_normal (address);
263 rtx mem = gen_rtx_MEM (BLKmode, addr);
264 bool wrote_return_column = false;
265
266 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
267 {
268 unsigned int dnum = DWARF_FRAME_REGNUM (i);
269 unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
270
271 if (rnum < DWARF_FRAME_REGISTERS)
272 {
273 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
274 HOST_WIDE_INT size;
275 enum machine_mode save_mode = targetm.dwarf_frame_reg_mode (i);
276
277 if (dnum == DWARF_FRAME_RETURN_COLUMN)
278 {
279 if (save_mode == VOIDmode)
280 continue;
281 wrote_return_column = true;
282 }
283 size = GET_MODE_SIZE (save_mode);
284 if (offset < 0)
285 continue;
286
287 emit_move_insn (adjust_address (mem, mode, offset),
288 gen_int_mode (size, mode));
289 }
290 }
291
292 if (!wrote_return_column)
293 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
294
295 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
296 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
297 #endif
298
299 targetm.init_dwarf_reg_sizes_extra (address);
300 }
301
302 \f
303 static dw_trace_info *
304 get_trace_info (rtx_insn *insn)
305 {
306 dw_trace_info dummy;
307 dummy.head = insn;
308 return trace_index->find_with_hash (&dummy, INSN_UID (insn));
309 }
310
311 static bool
312 save_point_p (rtx_insn *insn)
313 {
314 /* Labels, except those that are really jump tables. */
315 if (LABEL_P (insn))
316 return inside_basic_block_p (insn);
317
318 /* We split traces at the prologue/epilogue notes because those
319 are points at which the unwind info is usually stable. This
320 makes it easier to find spots with identical unwind info so
321 that we can use remember/restore_state opcodes. */
322 if (NOTE_P (insn))
323 switch (NOTE_KIND (insn))
324 {
325 case NOTE_INSN_PROLOGUE_END:
326 case NOTE_INSN_EPILOGUE_BEG:
327 return true;
328 }
329
330 return false;
331 }
332
333 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
334
335 static inline HOST_WIDE_INT
336 div_data_align (HOST_WIDE_INT off)
337 {
338 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
339 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
340 return r;
341 }
342
343 /* Return true if we need a signed version of a given opcode
344 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
345
346 static inline bool
347 need_data_align_sf_opcode (HOST_WIDE_INT off)
348 {
349 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
350 }
351
352 /* Return a pointer to a newly allocated Call Frame Instruction. */
353
354 static inline dw_cfi_ref
355 new_cfi (void)
356 {
357 dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> ();
358
359 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
360 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
361
362 return cfi;
363 }
364
365 /* Return a newly allocated CFI row, with no defined data. */
366
367 static dw_cfi_row *
368 new_cfi_row (void)
369 {
370 dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> ();
371
372 row->cfa.reg = INVALID_REGNUM;
373
374 return row;
375 }
376
377 /* Return a copy of an existing CFI row. */
378
379 static dw_cfi_row *
380 copy_cfi_row (dw_cfi_row *src)
381 {
382 dw_cfi_row *dst = ggc_alloc<dw_cfi_row> ();
383
384 *dst = *src;
385 dst->reg_save = vec_safe_copy (src->reg_save);
386
387 return dst;
388 }
389
390 /* Generate a new label for the CFI info to refer to. */
391
392 static char *
393 dwarf2out_cfi_label (void)
394 {
395 int num = dwarf2out_cfi_label_num++;
396 char label[20];
397
398 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
399
400 return xstrdup (label);
401 }
402
403 /* Add CFI either to the current insn stream or to a vector, or both. */
404
405 static void
406 add_cfi (dw_cfi_ref cfi)
407 {
408 any_cfis_emitted = true;
409
410 if (add_cfi_insn != NULL)
411 {
412 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
413 NOTE_CFI (add_cfi_insn) = cfi;
414 }
415
416 if (add_cfi_vec != NULL)
417 vec_safe_push (*add_cfi_vec, cfi);
418 }
419
420 static void
421 add_cfi_args_size (HOST_WIDE_INT size)
422 {
423 dw_cfi_ref cfi = new_cfi ();
424
425 /* While we can occasionally have args_size < 0 internally, this state
426 should not persist at a point we actually need an opcode. */
427 gcc_assert (size >= 0);
428
429 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
430 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
431
432 add_cfi (cfi);
433 }
434
435 static void
436 add_cfi_restore (unsigned reg)
437 {
438 dw_cfi_ref cfi = new_cfi ();
439
440 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
441 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
442
443 add_cfi (cfi);
444 }
445
446 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
447 that the register column is no longer saved. */
448
449 static void
450 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
451 {
452 if (vec_safe_length (row->reg_save) <= column)
453 vec_safe_grow_cleared (row->reg_save, column + 1);
454 (*row->reg_save)[column] = cfi;
455 }
456
457 /* This function fills in aa dw_cfa_location structure from a dwarf location
458 descriptor sequence. */
459
460 static void
461 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc)
462 {
463 struct dw_loc_descr_node *ptr;
464 cfa->offset = 0;
465 cfa->base_offset = 0;
466 cfa->indirect = 0;
467 cfa->reg = -1;
468
469 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
470 {
471 enum dwarf_location_atom op = ptr->dw_loc_opc;
472
473 switch (op)
474 {
475 case DW_OP_reg0:
476 case DW_OP_reg1:
477 case DW_OP_reg2:
478 case DW_OP_reg3:
479 case DW_OP_reg4:
480 case DW_OP_reg5:
481 case DW_OP_reg6:
482 case DW_OP_reg7:
483 case DW_OP_reg8:
484 case DW_OP_reg9:
485 case DW_OP_reg10:
486 case DW_OP_reg11:
487 case DW_OP_reg12:
488 case DW_OP_reg13:
489 case DW_OP_reg14:
490 case DW_OP_reg15:
491 case DW_OP_reg16:
492 case DW_OP_reg17:
493 case DW_OP_reg18:
494 case DW_OP_reg19:
495 case DW_OP_reg20:
496 case DW_OP_reg21:
497 case DW_OP_reg22:
498 case DW_OP_reg23:
499 case DW_OP_reg24:
500 case DW_OP_reg25:
501 case DW_OP_reg26:
502 case DW_OP_reg27:
503 case DW_OP_reg28:
504 case DW_OP_reg29:
505 case DW_OP_reg30:
506 case DW_OP_reg31:
507 cfa->reg = op - DW_OP_reg0;
508 break;
509 case DW_OP_regx:
510 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
511 break;
512 case DW_OP_breg0:
513 case DW_OP_breg1:
514 case DW_OP_breg2:
515 case DW_OP_breg3:
516 case DW_OP_breg4:
517 case DW_OP_breg5:
518 case DW_OP_breg6:
519 case DW_OP_breg7:
520 case DW_OP_breg8:
521 case DW_OP_breg9:
522 case DW_OP_breg10:
523 case DW_OP_breg11:
524 case DW_OP_breg12:
525 case DW_OP_breg13:
526 case DW_OP_breg14:
527 case DW_OP_breg15:
528 case DW_OP_breg16:
529 case DW_OP_breg17:
530 case DW_OP_breg18:
531 case DW_OP_breg19:
532 case DW_OP_breg20:
533 case DW_OP_breg21:
534 case DW_OP_breg22:
535 case DW_OP_breg23:
536 case DW_OP_breg24:
537 case DW_OP_breg25:
538 case DW_OP_breg26:
539 case DW_OP_breg27:
540 case DW_OP_breg28:
541 case DW_OP_breg29:
542 case DW_OP_breg30:
543 case DW_OP_breg31:
544 cfa->reg = op - DW_OP_breg0;
545 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
546 break;
547 case DW_OP_bregx:
548 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
549 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
550 break;
551 case DW_OP_deref:
552 cfa->indirect = 1;
553 break;
554 case DW_OP_plus_uconst:
555 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
556 break;
557 default:
558 gcc_unreachable ();
559 }
560 }
561 }
562
563 /* Find the previous value for the CFA, iteratively. CFI is the opcode
564 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
565 one level of remember/restore state processing. */
566
567 void
568 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
569 {
570 switch (cfi->dw_cfi_opc)
571 {
572 case DW_CFA_def_cfa_offset:
573 case DW_CFA_def_cfa_offset_sf:
574 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
575 break;
576 case DW_CFA_def_cfa_register:
577 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
578 break;
579 case DW_CFA_def_cfa:
580 case DW_CFA_def_cfa_sf:
581 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
582 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
583 break;
584 case DW_CFA_def_cfa_expression:
585 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
586 break;
587
588 case DW_CFA_remember_state:
589 gcc_assert (!remember->in_use);
590 *remember = *loc;
591 remember->in_use = 1;
592 break;
593 case DW_CFA_restore_state:
594 gcc_assert (remember->in_use);
595 *loc = *remember;
596 remember->in_use = 0;
597 break;
598
599 default:
600 break;
601 }
602 }
603
604 /* Determine if two dw_cfa_location structures define the same data. */
605
606 bool
607 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
608 {
609 return (loc1->reg == loc2->reg
610 && loc1->offset == loc2->offset
611 && loc1->indirect == loc2->indirect
612 && (loc1->indirect == 0
613 || loc1->base_offset == loc2->base_offset));
614 }
615
616 /* Determine if two CFI operands are identical. */
617
618 static bool
619 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
620 {
621 switch (t)
622 {
623 case dw_cfi_oprnd_unused:
624 return true;
625 case dw_cfi_oprnd_reg_num:
626 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
627 case dw_cfi_oprnd_offset:
628 return a->dw_cfi_offset == b->dw_cfi_offset;
629 case dw_cfi_oprnd_addr:
630 return (a->dw_cfi_addr == b->dw_cfi_addr
631 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
632 case dw_cfi_oprnd_loc:
633 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
634 }
635 gcc_unreachable ();
636 }
637
638 /* Determine if two CFI entries are identical. */
639
640 static bool
641 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
642 {
643 enum dwarf_call_frame_info opc;
644
645 /* Make things easier for our callers, including missing operands. */
646 if (a == b)
647 return true;
648 if (a == NULL || b == NULL)
649 return false;
650
651 /* Obviously, the opcodes must match. */
652 opc = a->dw_cfi_opc;
653 if (opc != b->dw_cfi_opc)
654 return false;
655
656 /* Compare the two operands, re-using the type of the operands as
657 already exposed elsewhere. */
658 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
659 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
660 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
661 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
662 }
663
664 /* Determine if two CFI_ROW structures are identical. */
665
666 static bool
667 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
668 {
669 size_t i, n_a, n_b, n_max;
670
671 if (a->cfa_cfi)
672 {
673 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
674 return false;
675 }
676 else if (!cfa_equal_p (&a->cfa, &b->cfa))
677 return false;
678
679 n_a = vec_safe_length (a->reg_save);
680 n_b = vec_safe_length (b->reg_save);
681 n_max = MAX (n_a, n_b);
682
683 for (i = 0; i < n_max; ++i)
684 {
685 dw_cfi_ref r_a = NULL, r_b = NULL;
686
687 if (i < n_a)
688 r_a = (*a->reg_save)[i];
689 if (i < n_b)
690 r_b = (*b->reg_save)[i];
691
692 if (!cfi_equal_p (r_a, r_b))
693 return false;
694 }
695
696 return true;
697 }
698
699 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
700 what opcode to emit. Returns the CFI opcode to effect the change, or
701 NULL if NEW_CFA == OLD_CFA. */
702
703 static dw_cfi_ref
704 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
705 {
706 dw_cfi_ref cfi;
707
708 /* If nothing changed, no need to issue any call frame instructions. */
709 if (cfa_equal_p (old_cfa, new_cfa))
710 return NULL;
711
712 cfi = new_cfi ();
713
714 if (new_cfa->reg == old_cfa->reg && !new_cfa->indirect && !old_cfa->indirect)
715 {
716 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
717 the CFA register did not change but the offset did. The data
718 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
719 in the assembler via the .cfi_def_cfa_offset directive. */
720 if (new_cfa->offset < 0)
721 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
722 else
723 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
724 cfi->dw_cfi_oprnd1.dw_cfi_offset = new_cfa->offset;
725 }
726 else if (new_cfa->offset == old_cfa->offset
727 && old_cfa->reg != INVALID_REGNUM
728 && !new_cfa->indirect
729 && !old_cfa->indirect)
730 {
731 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
732 indicating the CFA register has changed to <register> but the
733 offset has not changed. */
734 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
735 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
736 }
737 else if (new_cfa->indirect == 0)
738 {
739 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
740 indicating the CFA register has changed to <register> with
741 the specified offset. The data factoring for DW_CFA_def_cfa_sf
742 happens in output_cfi, or in the assembler via the .cfi_def_cfa
743 directive. */
744 if (new_cfa->offset < 0)
745 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
746 else
747 cfi->dw_cfi_opc = DW_CFA_def_cfa;
748 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
749 cfi->dw_cfi_oprnd2.dw_cfi_offset = new_cfa->offset;
750 }
751 else
752 {
753 /* Construct a DW_CFA_def_cfa_expression instruction to
754 calculate the CFA using a full location expression since no
755 register-offset pair is available. */
756 struct dw_loc_descr_node *loc_list;
757
758 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
759 loc_list = build_cfa_loc (new_cfa, 0);
760 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
761 }
762
763 return cfi;
764 }
765
766 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
767
768 static void
769 def_cfa_1 (dw_cfa_location *new_cfa)
770 {
771 dw_cfi_ref cfi;
772
773 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
774 cur_trace->cfa_store.offset = new_cfa->offset;
775
776 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
777 if (cfi)
778 {
779 cur_row->cfa = *new_cfa;
780 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
781 ? cfi : NULL);
782
783 add_cfi (cfi);
784 }
785 }
786
787 /* Add the CFI for saving a register. REG is the CFA column number.
788 If SREG is -1, the register is saved at OFFSET from the CFA;
789 otherwise it is saved in SREG. */
790
791 static void
792 reg_save (unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
793 {
794 dw_fde_ref fde = cfun ? cfun->fde : NULL;
795 dw_cfi_ref cfi = new_cfi ();
796
797 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
798
799 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
800 if (fde
801 && fde->stack_realign
802 && sreg == INVALID_REGNUM)
803 {
804 cfi->dw_cfi_opc = DW_CFA_expression;
805 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
806 cfi->dw_cfi_oprnd2.dw_cfi_loc
807 = build_cfa_aligned_loc (&cur_row->cfa, offset,
808 fde->stack_realignment);
809 }
810 else if (sreg == INVALID_REGNUM)
811 {
812 if (need_data_align_sf_opcode (offset))
813 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
814 else if (reg & ~0x3f)
815 cfi->dw_cfi_opc = DW_CFA_offset_extended;
816 else
817 cfi->dw_cfi_opc = DW_CFA_offset;
818 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
819 }
820 else if (sreg == reg)
821 {
822 /* While we could emit something like DW_CFA_same_value or
823 DW_CFA_restore, we never expect to see something like that
824 in a prologue. This is more likely to be a bug. A backend
825 can always bypass this by using REG_CFA_RESTORE directly. */
826 gcc_unreachable ();
827 }
828 else
829 {
830 cfi->dw_cfi_opc = DW_CFA_register;
831 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
832 }
833
834 add_cfi (cfi);
835 update_row_reg_save (cur_row, reg, cfi);
836 }
837
838 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
839 and adjust data structures to match. */
840
841 static void
842 notice_args_size (rtx insn)
843 {
844 HOST_WIDE_INT args_size, delta;
845 rtx note;
846
847 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
848 if (note == NULL)
849 return;
850
851 args_size = INTVAL (XEXP (note, 0));
852 delta = args_size - cur_trace->end_true_args_size;
853 if (delta == 0)
854 return;
855
856 cur_trace->end_true_args_size = args_size;
857
858 /* If the CFA is computed off the stack pointer, then we must adjust
859 the computation of the CFA as well. */
860 if (cur_cfa->reg == dw_stack_pointer_regnum)
861 {
862 gcc_assert (!cur_cfa->indirect);
863
864 /* Convert a change in args_size (always a positive in the
865 direction of stack growth) to a change in stack pointer. */
866 #ifndef STACK_GROWS_DOWNWARD
867 delta = -delta;
868 #endif
869 cur_cfa->offset += delta;
870 }
871 }
872
873 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
874 data within the trace related to EH insns and args_size. */
875
876 static void
877 notice_eh_throw (rtx_insn *insn)
878 {
879 HOST_WIDE_INT args_size;
880
881 args_size = cur_trace->end_true_args_size;
882 if (cur_trace->eh_head == NULL)
883 {
884 cur_trace->eh_head = insn;
885 cur_trace->beg_delay_args_size = args_size;
886 cur_trace->end_delay_args_size = args_size;
887 }
888 else if (cur_trace->end_delay_args_size != args_size)
889 {
890 cur_trace->end_delay_args_size = args_size;
891
892 /* ??? If the CFA is the stack pointer, search backward for the last
893 CFI note and insert there. Given that the stack changed for the
894 args_size change, there *must* be such a note in between here and
895 the last eh insn. */
896 add_cfi_args_size (args_size);
897 }
898 }
899
900 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
901 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
902 used in places where rtl is prohibited. */
903
904 static inline unsigned
905 dwf_regno (const_rtx reg)
906 {
907 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
908 return DWARF_FRAME_REGNUM (REGNO (reg));
909 }
910
911 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
912
913 static bool
914 compare_reg_or_pc (rtx x, rtx y)
915 {
916 if (REG_P (x) && REG_P (y))
917 return REGNO (x) == REGNO (y);
918 return x == y;
919 }
920
921 /* Record SRC as being saved in DEST. DEST may be null to delete an
922 existing entry. SRC may be a register or PC_RTX. */
923
924 static void
925 record_reg_saved_in_reg (rtx dest, rtx src)
926 {
927 reg_saved_in_data *elt;
928 size_t i;
929
930 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt)
931 if (compare_reg_or_pc (elt->orig_reg, src))
932 {
933 if (dest == NULL)
934 cur_trace->regs_saved_in_regs.unordered_remove (i);
935 else
936 elt->saved_in_reg = dest;
937 return;
938 }
939
940 if (dest == NULL)
941 return;
942
943 reg_saved_in_data e = {src, dest};
944 cur_trace->regs_saved_in_regs.safe_push (e);
945 }
946
947 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
948 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
949
950 static void
951 queue_reg_save (rtx reg, rtx sreg, HOST_WIDE_INT offset)
952 {
953 queued_reg_save *q;
954 queued_reg_save e = {reg, sreg, offset};
955 size_t i;
956
957 /* Duplicates waste space, but it's also necessary to remove them
958 for correctness, since the queue gets output in reverse order. */
959 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
960 if (compare_reg_or_pc (q->reg, reg))
961 {
962 *q = e;
963 return;
964 }
965
966 queued_reg_saves.safe_push (e);
967 }
968
969 /* Output all the entries in QUEUED_REG_SAVES. */
970
971 static void
972 dwarf2out_flush_queued_reg_saves (void)
973 {
974 queued_reg_save *q;
975 size_t i;
976
977 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
978 {
979 unsigned int reg, sreg;
980
981 record_reg_saved_in_reg (q->saved_reg, q->reg);
982
983 if (q->reg == pc_rtx)
984 reg = DWARF_FRAME_RETURN_COLUMN;
985 else
986 reg = dwf_regno (q->reg);
987 if (q->saved_reg)
988 sreg = dwf_regno (q->saved_reg);
989 else
990 sreg = INVALID_REGNUM;
991 reg_save (reg, sreg, q->cfa_offset);
992 }
993
994 queued_reg_saves.truncate (0);
995 }
996
997 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
998 location for? Or, does it clobber a register which we've previously
999 said that some other register is saved in, and for which we now
1000 have a new location for? */
1001
1002 static bool
1003 clobbers_queued_reg_save (const_rtx insn)
1004 {
1005 queued_reg_save *q;
1006 size_t iq;
1007
1008 FOR_EACH_VEC_ELT (queued_reg_saves, iq, q)
1009 {
1010 size_t ir;
1011 reg_saved_in_data *rir;
1012
1013 if (modified_in_p (q->reg, insn))
1014 return true;
1015
1016 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir)
1017 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1018 && modified_in_p (rir->saved_in_reg, insn))
1019 return true;
1020 }
1021
1022 return false;
1023 }
1024
1025 /* What register, if any, is currently saved in REG? */
1026
1027 static rtx
1028 reg_saved_in (rtx reg)
1029 {
1030 unsigned int regn = REGNO (reg);
1031 queued_reg_save *q;
1032 reg_saved_in_data *rir;
1033 size_t i;
1034
1035 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1036 if (q->saved_reg && regn == REGNO (q->saved_reg))
1037 return q->reg;
1038
1039 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir)
1040 if (regn == REGNO (rir->saved_in_reg))
1041 return rir->orig_reg;
1042
1043 return NULL_RTX;
1044 }
1045
1046 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1047
1048 static void
1049 dwarf2out_frame_debug_def_cfa (rtx pat)
1050 {
1051 memset (cur_cfa, 0, sizeof (*cur_cfa));
1052
1053 if (GET_CODE (pat) == PLUS)
1054 {
1055 cur_cfa->offset = INTVAL (XEXP (pat, 1));
1056 pat = XEXP (pat, 0);
1057 }
1058 if (MEM_P (pat))
1059 {
1060 cur_cfa->indirect = 1;
1061 pat = XEXP (pat, 0);
1062 if (GET_CODE (pat) == PLUS)
1063 {
1064 cur_cfa->base_offset = INTVAL (XEXP (pat, 1));
1065 pat = XEXP (pat, 0);
1066 }
1067 }
1068 /* ??? If this fails, we could be calling into the _loc functions to
1069 define a full expression. So far no port does that. */
1070 gcc_assert (REG_P (pat));
1071 cur_cfa->reg = dwf_regno (pat);
1072 }
1073
1074 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1075
1076 static void
1077 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1078 {
1079 rtx src, dest;
1080
1081 gcc_assert (GET_CODE (pat) == SET);
1082 dest = XEXP (pat, 0);
1083 src = XEXP (pat, 1);
1084
1085 switch (GET_CODE (src))
1086 {
1087 case PLUS:
1088 gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1089 cur_cfa->offset -= INTVAL (XEXP (src, 1));
1090 break;
1091
1092 case REG:
1093 break;
1094
1095 default:
1096 gcc_unreachable ();
1097 }
1098
1099 cur_cfa->reg = dwf_regno (dest);
1100 gcc_assert (cur_cfa->indirect == 0);
1101 }
1102
1103 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1104
1105 static void
1106 dwarf2out_frame_debug_cfa_offset (rtx set)
1107 {
1108 HOST_WIDE_INT offset;
1109 rtx src, addr, span;
1110 unsigned int sregno;
1111
1112 src = XEXP (set, 1);
1113 addr = XEXP (set, 0);
1114 gcc_assert (MEM_P (addr));
1115 addr = XEXP (addr, 0);
1116
1117 /* As documented, only consider extremely simple addresses. */
1118 switch (GET_CODE (addr))
1119 {
1120 case REG:
1121 gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1122 offset = -cur_cfa->offset;
1123 break;
1124 case PLUS:
1125 gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1126 offset = INTVAL (XEXP (addr, 1)) - cur_cfa->offset;
1127 break;
1128 default:
1129 gcc_unreachable ();
1130 }
1131
1132 if (src == pc_rtx)
1133 {
1134 span = NULL;
1135 sregno = DWARF_FRAME_RETURN_COLUMN;
1136 }
1137 else
1138 {
1139 span = targetm.dwarf_register_span (src);
1140 sregno = dwf_regno (src);
1141 }
1142
1143 /* ??? We'd like to use queue_reg_save, but we need to come up with
1144 a different flushing heuristic for epilogues. */
1145 if (!span)
1146 reg_save (sregno, INVALID_REGNUM, offset);
1147 else
1148 {
1149 /* We have a PARALLEL describing where the contents of SRC live.
1150 Adjust the offset for each piece of the PARALLEL. */
1151 HOST_WIDE_INT span_offset = offset;
1152
1153 gcc_assert (GET_CODE (span) == PARALLEL);
1154
1155 const int par_len = XVECLEN (span, 0);
1156 for (int par_index = 0; par_index < par_len; par_index++)
1157 {
1158 rtx elem = XVECEXP (span, 0, par_index);
1159 sregno = dwf_regno (src);
1160 reg_save (sregno, INVALID_REGNUM, span_offset);
1161 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1162 }
1163 }
1164 }
1165
1166 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1167
1168 static void
1169 dwarf2out_frame_debug_cfa_register (rtx set)
1170 {
1171 rtx src, dest;
1172 unsigned sregno, dregno;
1173
1174 src = XEXP (set, 1);
1175 dest = XEXP (set, 0);
1176
1177 record_reg_saved_in_reg (dest, src);
1178 if (src == pc_rtx)
1179 sregno = DWARF_FRAME_RETURN_COLUMN;
1180 else
1181 sregno = dwf_regno (src);
1182
1183 dregno = dwf_regno (dest);
1184
1185 /* ??? We'd like to use queue_reg_save, but we need to come up with
1186 a different flushing heuristic for epilogues. */
1187 reg_save (sregno, dregno, 0);
1188 }
1189
1190 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1191
1192 static void
1193 dwarf2out_frame_debug_cfa_expression (rtx set)
1194 {
1195 rtx src, dest, span;
1196 dw_cfi_ref cfi = new_cfi ();
1197 unsigned regno;
1198
1199 dest = SET_DEST (set);
1200 src = SET_SRC (set);
1201
1202 gcc_assert (REG_P (src));
1203 gcc_assert (MEM_P (dest));
1204
1205 span = targetm.dwarf_register_span (src);
1206 gcc_assert (!span);
1207
1208 regno = dwf_regno (src);
1209
1210 cfi->dw_cfi_opc = DW_CFA_expression;
1211 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1212 cfi->dw_cfi_oprnd2.dw_cfi_loc
1213 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1214 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1215
1216 /* ??? We'd like to use queue_reg_save, were the interface different,
1217 and, as above, we could manage flushing for epilogues. */
1218 add_cfi (cfi);
1219 update_row_reg_save (cur_row, regno, cfi);
1220 }
1221
1222 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1223
1224 static void
1225 dwarf2out_frame_debug_cfa_restore (rtx reg)
1226 {
1227 gcc_assert (REG_P (reg));
1228
1229 rtx span = targetm.dwarf_register_span (reg);
1230 if (!span)
1231 {
1232 unsigned int regno = dwf_regno (reg);
1233 add_cfi_restore (regno);
1234 update_row_reg_save (cur_row, regno, NULL);
1235 }
1236 else
1237 {
1238 /* We have a PARALLEL describing where the contents of REG live.
1239 Restore the register for each piece of the PARALLEL. */
1240 gcc_assert (GET_CODE (span) == PARALLEL);
1241
1242 const int par_len = XVECLEN (span, 0);
1243 for (int par_index = 0; par_index < par_len; par_index++)
1244 {
1245 reg = XVECEXP (span, 0, par_index);
1246 gcc_assert (REG_P (reg));
1247 unsigned int regno = dwf_regno (reg);
1248 add_cfi_restore (regno);
1249 update_row_reg_save (cur_row, regno, NULL);
1250 }
1251 }
1252 }
1253
1254 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1255 ??? Perhaps we should note in the CIE where windows are saved (instead of
1256 assuming 0(cfa)) and what registers are in the window. */
1257
1258 static void
1259 dwarf2out_frame_debug_cfa_window_save (void)
1260 {
1261 dw_cfi_ref cfi = new_cfi ();
1262
1263 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1264 add_cfi (cfi);
1265 }
1266
1267 /* Record call frame debugging information for an expression EXPR,
1268 which either sets SP or FP (adjusting how we calculate the frame
1269 address) or saves a register to the stack or another register.
1270 LABEL indicates the address of EXPR.
1271
1272 This function encodes a state machine mapping rtxes to actions on
1273 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1274 users need not read the source code.
1275
1276 The High-Level Picture
1277
1278 Changes in the register we use to calculate the CFA: Currently we
1279 assume that if you copy the CFA register into another register, we
1280 should take the other one as the new CFA register; this seems to
1281 work pretty well. If it's wrong for some target, it's simple
1282 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1283
1284 Changes in the register we use for saving registers to the stack:
1285 This is usually SP, but not always. Again, we deduce that if you
1286 copy SP into another register (and SP is not the CFA register),
1287 then the new register is the one we will be using for register
1288 saves. This also seems to work.
1289
1290 Register saves: There's not much guesswork about this one; if
1291 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1292 register save, and the register used to calculate the destination
1293 had better be the one we think we're using for this purpose.
1294 It's also assumed that a copy from a call-saved register to another
1295 register is saving that register if RTX_FRAME_RELATED_P is set on
1296 that instruction. If the copy is from a call-saved register to
1297 the *same* register, that means that the register is now the same
1298 value as in the caller.
1299
1300 Except: If the register being saved is the CFA register, and the
1301 offset is nonzero, we are saving the CFA, so we assume we have to
1302 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1303 the intent is to save the value of SP from the previous frame.
1304
1305 In addition, if a register has previously been saved to a different
1306 register,
1307
1308 Invariants / Summaries of Rules
1309
1310 cfa current rule for calculating the CFA. It usually
1311 consists of a register and an offset. This is
1312 actually stored in *cur_cfa, but abbreviated
1313 for the purposes of this documentation.
1314 cfa_store register used by prologue code to save things to the stack
1315 cfa_store.offset is the offset from the value of
1316 cfa_store.reg to the actual CFA
1317 cfa_temp register holding an integral value. cfa_temp.offset
1318 stores the value, which will be used to adjust the
1319 stack pointer. cfa_temp is also used like cfa_store,
1320 to track stores to the stack via fp or a temp reg.
1321
1322 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1323 with cfa.reg as the first operand changes the cfa.reg and its
1324 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1325 cfa_temp.offset.
1326
1327 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1328 expression yielding a constant. This sets cfa_temp.reg
1329 and cfa_temp.offset.
1330
1331 Rule 5: Create a new register cfa_store used to save items to the
1332 stack.
1333
1334 Rules 10-14: Save a register to the stack. Define offset as the
1335 difference of the original location and cfa_store's
1336 location (or cfa_temp's location if cfa_temp is used).
1337
1338 Rules 16-20: If AND operation happens on sp in prologue, we assume
1339 stack is realigned. We will use a group of DW_OP_XXX
1340 expressions to represent the location of the stored
1341 register instead of CFA+offset.
1342
1343 The Rules
1344
1345 "{a,b}" indicates a choice of a xor b.
1346 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1347
1348 Rule 1:
1349 (set <reg1> <reg2>:cfa.reg)
1350 effects: cfa.reg = <reg1>
1351 cfa.offset unchanged
1352 cfa_temp.reg = <reg1>
1353 cfa_temp.offset = cfa.offset
1354
1355 Rule 2:
1356 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1357 {<const_int>,<reg>:cfa_temp.reg}))
1358 effects: cfa.reg = sp if fp used
1359 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1360 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1361 if cfa_store.reg==sp
1362
1363 Rule 3:
1364 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1365 effects: cfa.reg = fp
1366 cfa_offset += +/- <const_int>
1367
1368 Rule 4:
1369 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1370 constraints: <reg1> != fp
1371 <reg1> != sp
1372 effects: cfa.reg = <reg1>
1373 cfa_temp.reg = <reg1>
1374 cfa_temp.offset = cfa.offset
1375
1376 Rule 5:
1377 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1378 constraints: <reg1> != fp
1379 <reg1> != sp
1380 effects: cfa_store.reg = <reg1>
1381 cfa_store.offset = cfa.offset - cfa_temp.offset
1382
1383 Rule 6:
1384 (set <reg> <const_int>)
1385 effects: cfa_temp.reg = <reg>
1386 cfa_temp.offset = <const_int>
1387
1388 Rule 7:
1389 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1390 effects: cfa_temp.reg = <reg1>
1391 cfa_temp.offset |= <const_int>
1392
1393 Rule 8:
1394 (set <reg> (high <exp>))
1395 effects: none
1396
1397 Rule 9:
1398 (set <reg> (lo_sum <exp> <const_int>))
1399 effects: cfa_temp.reg = <reg>
1400 cfa_temp.offset = <const_int>
1401
1402 Rule 10:
1403 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1404 effects: cfa_store.offset -= <const_int>
1405 cfa.offset = cfa_store.offset if cfa.reg == sp
1406 cfa.reg = sp
1407 cfa.base_offset = -cfa_store.offset
1408
1409 Rule 11:
1410 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1411 effects: cfa_store.offset += -/+ mode_size(mem)
1412 cfa.offset = cfa_store.offset if cfa.reg == sp
1413 cfa.reg = sp
1414 cfa.base_offset = -cfa_store.offset
1415
1416 Rule 12:
1417 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1418
1419 <reg2>)
1420 effects: cfa.reg = <reg1>
1421 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1422
1423 Rule 13:
1424 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1425 effects: cfa.reg = <reg1>
1426 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1427
1428 Rule 14:
1429 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1430 effects: cfa.reg = <reg1>
1431 cfa.base_offset = -cfa_temp.offset
1432 cfa_temp.offset -= mode_size(mem)
1433
1434 Rule 15:
1435 (set <reg> {unspec, unspec_volatile})
1436 effects: target-dependent
1437
1438 Rule 16:
1439 (set sp (and: sp <const_int>))
1440 constraints: cfa_store.reg == sp
1441 effects: cfun->fde.stack_realign = 1
1442 cfa_store.offset = 0
1443 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1444
1445 Rule 17:
1446 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1447 effects: cfa_store.offset += -/+ mode_size(mem)
1448
1449 Rule 18:
1450 (set (mem ({pre_inc, pre_dec} sp)) fp)
1451 constraints: fde->stack_realign == 1
1452 effects: cfa_store.offset = 0
1453 cfa.reg != HARD_FRAME_POINTER_REGNUM
1454
1455 Rule 19:
1456 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1457 constraints: fde->stack_realign == 1
1458 && cfa.offset == 0
1459 && cfa.indirect == 0
1460 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1461 effects: Use DW_CFA_def_cfa_expression to define cfa
1462 cfa.reg == fde->drap_reg */
1463
1464 static void
1465 dwarf2out_frame_debug_expr (rtx expr)
1466 {
1467 rtx src, dest, span;
1468 HOST_WIDE_INT offset;
1469 dw_fde_ref fde;
1470
1471 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1472 the PARALLEL independently. The first element is always processed if
1473 it is a SET. This is for backward compatibility. Other elements
1474 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1475 flag is set in them. */
1476 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1477 {
1478 int par_index;
1479 int limit = XVECLEN (expr, 0);
1480 rtx elem;
1481
1482 /* PARALLELs have strict read-modify-write semantics, so we
1483 ought to evaluate every rvalue before changing any lvalue.
1484 It's cumbersome to do that in general, but there's an
1485 easy approximation that is enough for all current users:
1486 handle register saves before register assignments. */
1487 if (GET_CODE (expr) == PARALLEL)
1488 for (par_index = 0; par_index < limit; par_index++)
1489 {
1490 elem = XVECEXP (expr, 0, par_index);
1491 if (GET_CODE (elem) == SET
1492 && MEM_P (SET_DEST (elem))
1493 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1494 dwarf2out_frame_debug_expr (elem);
1495 }
1496
1497 for (par_index = 0; par_index < limit; par_index++)
1498 {
1499 elem = XVECEXP (expr, 0, par_index);
1500 if (GET_CODE (elem) == SET
1501 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1502 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1503 dwarf2out_frame_debug_expr (elem);
1504 }
1505 return;
1506 }
1507
1508 gcc_assert (GET_CODE (expr) == SET);
1509
1510 src = SET_SRC (expr);
1511 dest = SET_DEST (expr);
1512
1513 if (REG_P (src))
1514 {
1515 rtx rsi = reg_saved_in (src);
1516 if (rsi)
1517 src = rsi;
1518 }
1519
1520 fde = cfun->fde;
1521
1522 switch (GET_CODE (dest))
1523 {
1524 case REG:
1525 switch (GET_CODE (src))
1526 {
1527 /* Setting FP from SP. */
1528 case REG:
1529 if (cur_cfa->reg == dwf_regno (src))
1530 {
1531 /* Rule 1 */
1532 /* Update the CFA rule wrt SP or FP. Make sure src is
1533 relative to the current CFA register.
1534
1535 We used to require that dest be either SP or FP, but the
1536 ARM copies SP to a temporary register, and from there to
1537 FP. So we just rely on the backends to only set
1538 RTX_FRAME_RELATED_P on appropriate insns. */
1539 cur_cfa->reg = dwf_regno (dest);
1540 cur_trace->cfa_temp.reg = cur_cfa->reg;
1541 cur_trace->cfa_temp.offset = cur_cfa->offset;
1542 }
1543 else
1544 {
1545 /* Saving a register in a register. */
1546 gcc_assert (!fixed_regs [REGNO (dest)]
1547 /* For the SPARC and its register window. */
1548 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1549
1550 /* After stack is aligned, we can only save SP in FP
1551 if drap register is used. In this case, we have
1552 to restore stack pointer with the CFA value and we
1553 don't generate this DWARF information. */
1554 if (fde
1555 && fde->stack_realign
1556 && REGNO (src) == STACK_POINTER_REGNUM)
1557 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1558 && fde->drap_reg != INVALID_REGNUM
1559 && cur_cfa->reg != dwf_regno (src));
1560 else
1561 queue_reg_save (src, dest, 0);
1562 }
1563 break;
1564
1565 case PLUS:
1566 case MINUS:
1567 case LO_SUM:
1568 if (dest == stack_pointer_rtx)
1569 {
1570 /* Rule 2 */
1571 /* Adjusting SP. */
1572 switch (GET_CODE (XEXP (src, 1)))
1573 {
1574 case CONST_INT:
1575 offset = INTVAL (XEXP (src, 1));
1576 break;
1577 case REG:
1578 gcc_assert (dwf_regno (XEXP (src, 1))
1579 == cur_trace->cfa_temp.reg);
1580 offset = cur_trace->cfa_temp.offset;
1581 break;
1582 default:
1583 gcc_unreachable ();
1584 }
1585
1586 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1587 {
1588 /* Restoring SP from FP in the epilogue. */
1589 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1590 cur_cfa->reg = dw_stack_pointer_regnum;
1591 }
1592 else if (GET_CODE (src) == LO_SUM)
1593 /* Assume we've set the source reg of the LO_SUM from sp. */
1594 ;
1595 else
1596 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1597
1598 if (GET_CODE (src) != MINUS)
1599 offset = -offset;
1600 if (cur_cfa->reg == dw_stack_pointer_regnum)
1601 cur_cfa->offset += offset;
1602 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1603 cur_trace->cfa_store.offset += offset;
1604 }
1605 else if (dest == hard_frame_pointer_rtx)
1606 {
1607 /* Rule 3 */
1608 /* Either setting the FP from an offset of the SP,
1609 or adjusting the FP */
1610 gcc_assert (frame_pointer_needed);
1611
1612 gcc_assert (REG_P (XEXP (src, 0))
1613 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1614 && CONST_INT_P (XEXP (src, 1)));
1615 offset = INTVAL (XEXP (src, 1));
1616 if (GET_CODE (src) != MINUS)
1617 offset = -offset;
1618 cur_cfa->offset += offset;
1619 cur_cfa->reg = dw_frame_pointer_regnum;
1620 }
1621 else
1622 {
1623 gcc_assert (GET_CODE (src) != MINUS);
1624
1625 /* Rule 4 */
1626 if (REG_P (XEXP (src, 0))
1627 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1628 && CONST_INT_P (XEXP (src, 1)))
1629 {
1630 /* Setting a temporary CFA register that will be copied
1631 into the FP later on. */
1632 offset = - INTVAL (XEXP (src, 1));
1633 cur_cfa->offset += offset;
1634 cur_cfa->reg = dwf_regno (dest);
1635 /* Or used to save regs to the stack. */
1636 cur_trace->cfa_temp.reg = cur_cfa->reg;
1637 cur_trace->cfa_temp.offset = cur_cfa->offset;
1638 }
1639
1640 /* Rule 5 */
1641 else if (REG_P (XEXP (src, 0))
1642 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1643 && XEXP (src, 1) == stack_pointer_rtx)
1644 {
1645 /* Setting a scratch register that we will use instead
1646 of SP for saving registers to the stack. */
1647 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1648 cur_trace->cfa_store.reg = dwf_regno (dest);
1649 cur_trace->cfa_store.offset
1650 = cur_cfa->offset - cur_trace->cfa_temp.offset;
1651 }
1652
1653 /* Rule 9 */
1654 else if (GET_CODE (src) == LO_SUM
1655 && CONST_INT_P (XEXP (src, 1)))
1656 {
1657 cur_trace->cfa_temp.reg = dwf_regno (dest);
1658 cur_trace->cfa_temp.offset = INTVAL (XEXP (src, 1));
1659 }
1660 else
1661 gcc_unreachable ();
1662 }
1663 break;
1664
1665 /* Rule 6 */
1666 case CONST_INT:
1667 cur_trace->cfa_temp.reg = dwf_regno (dest);
1668 cur_trace->cfa_temp.offset = INTVAL (src);
1669 break;
1670
1671 /* Rule 7 */
1672 case IOR:
1673 gcc_assert (REG_P (XEXP (src, 0))
1674 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1675 && CONST_INT_P (XEXP (src, 1)));
1676
1677 cur_trace->cfa_temp.reg = dwf_regno (dest);
1678 cur_trace->cfa_temp.offset |= INTVAL (XEXP (src, 1));
1679 break;
1680
1681 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1682 which will fill in all of the bits. */
1683 /* Rule 8 */
1684 case HIGH:
1685 break;
1686
1687 /* Rule 15 */
1688 case UNSPEC:
1689 case UNSPEC_VOLATILE:
1690 /* All unspecs should be represented by REG_CFA_* notes. */
1691 gcc_unreachable ();
1692 return;
1693
1694 /* Rule 16 */
1695 case AND:
1696 /* If this AND operation happens on stack pointer in prologue,
1697 we assume the stack is realigned and we extract the
1698 alignment. */
1699 if (fde && XEXP (src, 0) == stack_pointer_rtx)
1700 {
1701 /* We interpret reg_save differently with stack_realign set.
1702 Thus we must flush whatever we have queued first. */
1703 dwarf2out_flush_queued_reg_saves ();
1704
1705 gcc_assert (cur_trace->cfa_store.reg
1706 == dwf_regno (XEXP (src, 0)));
1707 fde->stack_realign = 1;
1708 fde->stack_realignment = INTVAL (XEXP (src, 1));
1709 cur_trace->cfa_store.offset = 0;
1710
1711 if (cur_cfa->reg != dw_stack_pointer_regnum
1712 && cur_cfa->reg != dw_frame_pointer_regnum)
1713 fde->drap_reg = cur_cfa->reg;
1714 }
1715 return;
1716
1717 default:
1718 gcc_unreachable ();
1719 }
1720 break;
1721
1722 case MEM:
1723
1724 /* Saving a register to the stack. Make sure dest is relative to the
1725 CFA register. */
1726 switch (GET_CODE (XEXP (dest, 0)))
1727 {
1728 /* Rule 10 */
1729 /* With a push. */
1730 case PRE_MODIFY:
1731 case POST_MODIFY:
1732 /* We can't handle variable size modifications. */
1733 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1734 == CONST_INT);
1735 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1736
1737 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1738 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1739
1740 cur_trace->cfa_store.offset += offset;
1741 if (cur_cfa->reg == dw_stack_pointer_regnum)
1742 cur_cfa->offset = cur_trace->cfa_store.offset;
1743
1744 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
1745 offset -= cur_trace->cfa_store.offset;
1746 else
1747 offset = -cur_trace->cfa_store.offset;
1748 break;
1749
1750 /* Rule 11 */
1751 case PRE_INC:
1752 case PRE_DEC:
1753 case POST_DEC:
1754 offset = GET_MODE_SIZE (GET_MODE (dest));
1755 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1756 offset = -offset;
1757
1758 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1759 == STACK_POINTER_REGNUM)
1760 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1761
1762 cur_trace->cfa_store.offset += offset;
1763
1764 /* Rule 18: If stack is aligned, we will use FP as a
1765 reference to represent the address of the stored
1766 regiser. */
1767 if (fde
1768 && fde->stack_realign
1769 && REG_P (src)
1770 && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
1771 {
1772 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
1773 cur_trace->cfa_store.offset = 0;
1774 }
1775
1776 if (cur_cfa->reg == dw_stack_pointer_regnum)
1777 cur_cfa->offset = cur_trace->cfa_store.offset;
1778
1779 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
1780 offset += -cur_trace->cfa_store.offset;
1781 else
1782 offset = -cur_trace->cfa_store.offset;
1783 break;
1784
1785 /* Rule 12 */
1786 /* With an offset. */
1787 case PLUS:
1788 case MINUS:
1789 case LO_SUM:
1790 {
1791 unsigned int regno;
1792
1793 gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
1794 && REG_P (XEXP (XEXP (dest, 0), 0)));
1795 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1796 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1797 offset = -offset;
1798
1799 regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
1800
1801 if (cur_cfa->reg == regno)
1802 offset -= cur_cfa->offset;
1803 else if (cur_trace->cfa_store.reg == regno)
1804 offset -= cur_trace->cfa_store.offset;
1805 else
1806 {
1807 gcc_assert (cur_trace->cfa_temp.reg == regno);
1808 offset -= cur_trace->cfa_temp.offset;
1809 }
1810 }
1811 break;
1812
1813 /* Rule 13 */
1814 /* Without an offset. */
1815 case REG:
1816 {
1817 unsigned int regno = dwf_regno (XEXP (dest, 0));
1818
1819 if (cur_cfa->reg == regno)
1820 offset = -cur_cfa->offset;
1821 else if (cur_trace->cfa_store.reg == regno)
1822 offset = -cur_trace->cfa_store.offset;
1823 else
1824 {
1825 gcc_assert (cur_trace->cfa_temp.reg == regno);
1826 offset = -cur_trace->cfa_temp.offset;
1827 }
1828 }
1829 break;
1830
1831 /* Rule 14 */
1832 case POST_INC:
1833 gcc_assert (cur_trace->cfa_temp.reg
1834 == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1835 offset = -cur_trace->cfa_temp.offset;
1836 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1837 break;
1838
1839 default:
1840 gcc_unreachable ();
1841 }
1842
1843 /* Rule 17 */
1844 /* If the source operand of this MEM operation is a memory,
1845 we only care how much stack grew. */
1846 if (MEM_P (src))
1847 break;
1848
1849 if (REG_P (src)
1850 && REGNO (src) != STACK_POINTER_REGNUM
1851 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1852 && dwf_regno (src) == cur_cfa->reg)
1853 {
1854 /* We're storing the current CFA reg into the stack. */
1855
1856 if (cur_cfa->offset == 0)
1857 {
1858 /* Rule 19 */
1859 /* If stack is aligned, putting CFA reg into stack means
1860 we can no longer use reg + offset to represent CFA.
1861 Here we use DW_CFA_def_cfa_expression instead. The
1862 result of this expression equals to the original CFA
1863 value. */
1864 if (fde
1865 && fde->stack_realign
1866 && cur_cfa->indirect == 0
1867 && cur_cfa->reg != dw_frame_pointer_regnum)
1868 {
1869 gcc_assert (fde->drap_reg == cur_cfa->reg);
1870
1871 cur_cfa->indirect = 1;
1872 cur_cfa->reg = dw_frame_pointer_regnum;
1873 cur_cfa->base_offset = offset;
1874 cur_cfa->offset = 0;
1875
1876 fde->drap_reg_saved = 1;
1877 break;
1878 }
1879
1880 /* If the source register is exactly the CFA, assume
1881 we're saving SP like any other register; this happens
1882 on the ARM. */
1883 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
1884 break;
1885 }
1886 else
1887 {
1888 /* Otherwise, we'll need to look in the stack to
1889 calculate the CFA. */
1890 rtx x = XEXP (dest, 0);
1891
1892 if (!REG_P (x))
1893 x = XEXP (x, 0);
1894 gcc_assert (REG_P (x));
1895
1896 cur_cfa->reg = dwf_regno (x);
1897 cur_cfa->base_offset = offset;
1898 cur_cfa->indirect = 1;
1899 break;
1900 }
1901 }
1902
1903 if (REG_P (src))
1904 span = targetm.dwarf_register_span (src);
1905 else
1906 span = NULL;
1907
1908 if (!span)
1909 queue_reg_save (src, NULL_RTX, offset);
1910 else
1911 {
1912 /* We have a PARALLEL describing where the contents of SRC live.
1913 Queue register saves for each piece of the PARALLEL. */
1914 HOST_WIDE_INT span_offset = offset;
1915
1916 gcc_assert (GET_CODE (span) == PARALLEL);
1917
1918 const int par_len = XVECLEN (span, 0);
1919 for (int par_index = 0; par_index < par_len; par_index++)
1920 {
1921 rtx elem = XVECEXP (span, 0, par_index);
1922 queue_reg_save (elem, NULL_RTX, span_offset);
1923 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1924 }
1925 }
1926 break;
1927
1928 default:
1929 gcc_unreachable ();
1930 }
1931 }
1932
1933 /* Record call frame debugging information for INSN, which either sets
1934 SP or FP (adjusting how we calculate the frame address) or saves a
1935 register to the stack. */
1936
1937 static void
1938 dwarf2out_frame_debug (rtx_insn *insn)
1939 {
1940 rtx note, n, pat;
1941 bool handled_one = false;
1942
1943 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1944 switch (REG_NOTE_KIND (note))
1945 {
1946 case REG_FRAME_RELATED_EXPR:
1947 pat = XEXP (note, 0);
1948 goto do_frame_expr;
1949
1950 case REG_CFA_DEF_CFA:
1951 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
1952 handled_one = true;
1953 break;
1954
1955 case REG_CFA_ADJUST_CFA:
1956 n = XEXP (note, 0);
1957 if (n == NULL)
1958 {
1959 n = PATTERN (insn);
1960 if (GET_CODE (n) == PARALLEL)
1961 n = XVECEXP (n, 0, 0);
1962 }
1963 dwarf2out_frame_debug_adjust_cfa (n);
1964 handled_one = true;
1965 break;
1966
1967 case REG_CFA_OFFSET:
1968 n = XEXP (note, 0);
1969 if (n == NULL)
1970 n = single_set (insn);
1971 dwarf2out_frame_debug_cfa_offset (n);
1972 handled_one = true;
1973 break;
1974
1975 case REG_CFA_REGISTER:
1976 n = XEXP (note, 0);
1977 if (n == NULL)
1978 {
1979 n = PATTERN (insn);
1980 if (GET_CODE (n) == PARALLEL)
1981 n = XVECEXP (n, 0, 0);
1982 }
1983 dwarf2out_frame_debug_cfa_register (n);
1984 handled_one = true;
1985 break;
1986
1987 case REG_CFA_EXPRESSION:
1988 n = XEXP (note, 0);
1989 if (n == NULL)
1990 n = single_set (insn);
1991 dwarf2out_frame_debug_cfa_expression (n);
1992 handled_one = true;
1993 break;
1994
1995 case REG_CFA_RESTORE:
1996 n = XEXP (note, 0);
1997 if (n == NULL)
1998 {
1999 n = PATTERN (insn);
2000 if (GET_CODE (n) == PARALLEL)
2001 n = XVECEXP (n, 0, 0);
2002 n = XEXP (n, 0);
2003 }
2004 dwarf2out_frame_debug_cfa_restore (n);
2005 handled_one = true;
2006 break;
2007
2008 case REG_CFA_SET_VDRAP:
2009 n = XEXP (note, 0);
2010 if (REG_P (n))
2011 {
2012 dw_fde_ref fde = cfun->fde;
2013 if (fde)
2014 {
2015 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2016 if (REG_P (n))
2017 fde->vdrap_reg = dwf_regno (n);
2018 }
2019 }
2020 handled_one = true;
2021 break;
2022
2023 case REG_CFA_WINDOW_SAVE:
2024 dwarf2out_frame_debug_cfa_window_save ();
2025 handled_one = true;
2026 break;
2027
2028 case REG_CFA_FLUSH_QUEUE:
2029 /* The actual flush happens elsewhere. */
2030 handled_one = true;
2031 break;
2032
2033 default:
2034 break;
2035 }
2036
2037 if (!handled_one)
2038 {
2039 pat = PATTERN (insn);
2040 do_frame_expr:
2041 dwarf2out_frame_debug_expr (pat);
2042
2043 /* Check again. A parallel can save and update the same register.
2044 We could probably check just once, here, but this is safer than
2045 removing the check at the start of the function. */
2046 if (clobbers_queued_reg_save (pat))
2047 dwarf2out_flush_queued_reg_saves ();
2048 }
2049 }
2050
2051 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2052
2053 static void
2054 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2055 {
2056 size_t i, n_old, n_new, n_max;
2057 dw_cfi_ref cfi;
2058
2059 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2060 add_cfi (new_row->cfa_cfi);
2061 else
2062 {
2063 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2064 if (cfi)
2065 add_cfi (cfi);
2066 }
2067
2068 n_old = vec_safe_length (old_row->reg_save);
2069 n_new = vec_safe_length (new_row->reg_save);
2070 n_max = MAX (n_old, n_new);
2071
2072 for (i = 0; i < n_max; ++i)
2073 {
2074 dw_cfi_ref r_old = NULL, r_new = NULL;
2075
2076 if (i < n_old)
2077 r_old = (*old_row->reg_save)[i];
2078 if (i < n_new)
2079 r_new = (*new_row->reg_save)[i];
2080
2081 if (r_old == r_new)
2082 ;
2083 else if (r_new == NULL)
2084 add_cfi_restore (i);
2085 else if (!cfi_equal_p (r_old, r_new))
2086 add_cfi (r_new);
2087 }
2088 }
2089
2090 /* Examine CFI and return true if a cfi label and set_loc is needed
2091 beforehand. Even when generating CFI assembler instructions, we
2092 still have to add the cfi to the list so that lookup_cfa_1 works
2093 later on. When -g2 and above we even need to force emitting of
2094 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2095 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2096 and so don't use convert_cfa_to_fb_loc_list. */
2097
2098 static bool
2099 cfi_label_required_p (dw_cfi_ref cfi)
2100 {
2101 if (!dwarf2out_do_cfi_asm ())
2102 return true;
2103
2104 if (dwarf_version == 2
2105 && debug_info_level > DINFO_LEVEL_TERSE
2106 && (write_symbols == DWARF2_DEBUG
2107 || write_symbols == VMS_AND_DWARF2_DEBUG))
2108 {
2109 switch (cfi->dw_cfi_opc)
2110 {
2111 case DW_CFA_def_cfa_offset:
2112 case DW_CFA_def_cfa_offset_sf:
2113 case DW_CFA_def_cfa_register:
2114 case DW_CFA_def_cfa:
2115 case DW_CFA_def_cfa_sf:
2116 case DW_CFA_def_cfa_expression:
2117 case DW_CFA_restore_state:
2118 return true;
2119 default:
2120 return false;
2121 }
2122 }
2123 return false;
2124 }
2125
2126 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2127 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2128 necessary. */
2129 static void
2130 add_cfis_to_fde (void)
2131 {
2132 dw_fde_ref fde = cfun->fde;
2133 rtx_insn *insn, *next;
2134 /* We always start with a function_begin label. */
2135 bool first = false;
2136
2137 for (insn = get_insns (); insn; insn = next)
2138 {
2139 next = NEXT_INSN (insn);
2140
2141 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2142 {
2143 fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi);
2144 /* Don't attempt to advance_loc4 between labels
2145 in different sections. */
2146 first = true;
2147 }
2148
2149 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2150 {
2151 bool required = cfi_label_required_p (NOTE_CFI (insn));
2152 while (next)
2153 if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2154 {
2155 required |= cfi_label_required_p (NOTE_CFI (next));
2156 next = NEXT_INSN (next);
2157 }
2158 else if (active_insn_p (next)
2159 || (NOTE_P (next) && (NOTE_KIND (next)
2160 == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2161 break;
2162 else
2163 next = NEXT_INSN (next);
2164 if (required)
2165 {
2166 int num = dwarf2out_cfi_label_num;
2167 const char *label = dwarf2out_cfi_label ();
2168 dw_cfi_ref xcfi;
2169 rtx tmp;
2170
2171 /* Set the location counter to the new label. */
2172 xcfi = new_cfi ();
2173 xcfi->dw_cfi_opc = (first ? DW_CFA_set_loc
2174 : DW_CFA_advance_loc4);
2175 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2176 vec_safe_push (fde->dw_fde_cfi, xcfi);
2177
2178 tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2179 NOTE_LABEL_NUMBER (tmp) = num;
2180 }
2181
2182 do
2183 {
2184 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2185 vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn));
2186 insn = NEXT_INSN (insn);
2187 }
2188 while (insn != next);
2189 first = false;
2190 }
2191 }
2192 }
2193
2194 /* If LABEL is the start of a trace, then initialize the state of that
2195 trace from CUR_TRACE and CUR_ROW. */
2196
2197 static void
2198 maybe_record_trace_start (rtx_insn *start, rtx_insn *origin)
2199 {
2200 dw_trace_info *ti;
2201 HOST_WIDE_INT args_size;
2202
2203 ti = get_trace_info (start);
2204 gcc_assert (ti != NULL);
2205
2206 if (dump_file)
2207 {
2208 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
2209 cur_trace->id, ti->id,
2210 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2211 (origin ? INSN_UID (origin) : 0));
2212 }
2213
2214 args_size = cur_trace->end_true_args_size;
2215 if (ti->beg_row == NULL)
2216 {
2217 /* This is the first time we've encountered this trace. Propagate
2218 state across the edge and push the trace onto the work list. */
2219 ti->beg_row = copy_cfi_row (cur_row);
2220 ti->beg_true_args_size = args_size;
2221
2222 ti->cfa_store = cur_trace->cfa_store;
2223 ti->cfa_temp = cur_trace->cfa_temp;
2224 ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy ();
2225
2226 trace_work_list.safe_push (ti);
2227
2228 if (dump_file)
2229 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2230 }
2231 else
2232 {
2233
2234 /* We ought to have the same state incoming to a given trace no
2235 matter how we arrive at the trace. Anything else means we've
2236 got some kind of optimization error. */
2237 gcc_checking_assert (cfi_row_equal_p (cur_row, ti->beg_row));
2238
2239 /* The args_size is allowed to conflict if it isn't actually used. */
2240 if (ti->beg_true_args_size != args_size)
2241 ti->args_size_undefined = true;
2242 }
2243 }
2244
2245 /* Similarly, but handle the args_size and CFA reset across EH
2246 and non-local goto edges. */
2247
2248 static void
2249 maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin)
2250 {
2251 HOST_WIDE_INT save_args_size, delta;
2252 dw_cfa_location save_cfa;
2253
2254 save_args_size = cur_trace->end_true_args_size;
2255 if (save_args_size == 0)
2256 {
2257 maybe_record_trace_start (start, origin);
2258 return;
2259 }
2260
2261 delta = -save_args_size;
2262 cur_trace->end_true_args_size = 0;
2263
2264 save_cfa = cur_row->cfa;
2265 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2266 {
2267 /* Convert a change in args_size (always a positive in the
2268 direction of stack growth) to a change in stack pointer. */
2269 #ifndef STACK_GROWS_DOWNWARD
2270 delta = -delta;
2271 #endif
2272 cur_row->cfa.offset += delta;
2273 }
2274
2275 maybe_record_trace_start (start, origin);
2276
2277 cur_trace->end_true_args_size = save_args_size;
2278 cur_row->cfa = save_cfa;
2279 }
2280
2281 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2282 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2283
2284 static void
2285 create_trace_edges (rtx_insn *insn)
2286 {
2287 rtx tmp;
2288 int i, n;
2289
2290 if (JUMP_P (insn))
2291 {
2292 rtx_jump_table_data *table;
2293
2294 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2295 return;
2296
2297 if (tablejump_p (insn, NULL, &table))
2298 {
2299 rtvec vec = table->get_labels ();
2300
2301 n = GET_NUM_ELEM (vec);
2302 for (i = 0; i < n; ++i)
2303 {
2304 rtx_insn *lab = as_a <rtx_insn *> (XEXP (RTVEC_ELT (vec, i), 0));
2305 maybe_record_trace_start (lab, insn);
2306 }
2307 }
2308 else if (computed_jump_p (insn))
2309 {
2310 for (rtx_insn_list *lab = forced_labels; lab; lab = lab->next ())
2311 maybe_record_trace_start (lab->insn (), insn);
2312 }
2313 else if (returnjump_p (insn))
2314 ;
2315 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2316 {
2317 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2318 for (i = 0; i < n; ++i)
2319 {
2320 rtx_insn *lab =
2321 as_a <rtx_insn *> (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0));
2322 maybe_record_trace_start (lab, insn);
2323 }
2324 }
2325 else
2326 {
2327 rtx_insn *lab = JUMP_LABEL_AS_INSN (insn);
2328 gcc_assert (lab != NULL);
2329 maybe_record_trace_start (lab, insn);
2330 }
2331 }
2332 else if (CALL_P (insn))
2333 {
2334 /* Sibling calls don't have edges inside this function. */
2335 if (SIBLING_CALL_P (insn))
2336 return;
2337
2338 /* Process non-local goto edges. */
2339 if (can_nonlocal_goto (insn))
2340 for (rtx_insn_list *lab = nonlocal_goto_handler_labels;
2341 lab;
2342 lab = lab->next ())
2343 maybe_record_trace_start_abnormal (lab->insn (), insn);
2344 }
2345 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2346 {
2347 int i, n = seq->len ();
2348 for (i = 0; i < n; ++i)
2349 create_trace_edges (seq->insn (i));
2350 return;
2351 }
2352
2353 /* Process EH edges. */
2354 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2355 {
2356 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2357 if (lp)
2358 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2359 }
2360 }
2361
2362 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2363
2364 static void
2365 scan_insn_after (rtx_insn *insn)
2366 {
2367 if (RTX_FRAME_RELATED_P (insn))
2368 dwarf2out_frame_debug (insn);
2369 notice_args_size (insn);
2370 }
2371
2372 /* Scan the trace beginning at INSN and create the CFI notes for the
2373 instructions therein. */
2374
2375 static void
2376 scan_trace (dw_trace_info *trace)
2377 {
2378 rtx_insn *prev, *insn = trace->head;
2379 dw_cfa_location this_cfa;
2380
2381 if (dump_file)
2382 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2383 trace->id, rtx_name[(int) GET_CODE (insn)],
2384 INSN_UID (insn));
2385
2386 trace->end_row = copy_cfi_row (trace->beg_row);
2387 trace->end_true_args_size = trace->beg_true_args_size;
2388
2389 cur_trace = trace;
2390 cur_row = trace->end_row;
2391
2392 this_cfa = cur_row->cfa;
2393 cur_cfa = &this_cfa;
2394
2395 for (prev = insn, insn = NEXT_INSN (insn);
2396 insn;
2397 prev = insn, insn = NEXT_INSN (insn))
2398 {
2399 rtx_insn *control;
2400
2401 /* Do everything that happens "before" the insn. */
2402 add_cfi_insn = prev;
2403
2404 /* Notice the end of a trace. */
2405 if (BARRIER_P (insn))
2406 {
2407 /* Don't bother saving the unneeded queued registers at all. */
2408 queued_reg_saves.truncate (0);
2409 break;
2410 }
2411 if (save_point_p (insn))
2412 {
2413 /* Propagate across fallthru edges. */
2414 dwarf2out_flush_queued_reg_saves ();
2415 maybe_record_trace_start (insn, NULL);
2416 break;
2417 }
2418
2419 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2420 continue;
2421
2422 /* Handle all changes to the row state. Sequences require special
2423 handling for the positioning of the notes. */
2424 if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2425 {
2426 rtx_insn *elt;
2427 int i, n = pat->len ();
2428
2429 control = pat->insn (0);
2430 if (can_throw_internal (control))
2431 notice_eh_throw (control);
2432 dwarf2out_flush_queued_reg_saves ();
2433
2434 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
2435 {
2436 /* ??? Hopefully multiple delay slots are not annulled. */
2437 gcc_assert (n == 2);
2438 gcc_assert (!RTX_FRAME_RELATED_P (control));
2439 gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2440
2441 elt = pat->insn (1);
2442
2443 if (INSN_FROM_TARGET_P (elt))
2444 {
2445 HOST_WIDE_INT restore_args_size;
2446 cfi_vec save_row_reg_save;
2447
2448 /* If ELT is an instruction from target of an annulled
2449 branch, the effects are for the target only and so
2450 the args_size and CFA along the current path
2451 shouldn't change. */
2452 add_cfi_insn = NULL;
2453 restore_args_size = cur_trace->end_true_args_size;
2454 cur_cfa = &cur_row->cfa;
2455 save_row_reg_save = vec_safe_copy (cur_row->reg_save);
2456
2457 scan_insn_after (elt);
2458
2459 /* ??? Should we instead save the entire row state? */
2460 gcc_assert (!queued_reg_saves.length ());
2461
2462 create_trace_edges (control);
2463
2464 cur_trace->end_true_args_size = restore_args_size;
2465 cur_row->cfa = this_cfa;
2466 cur_row->reg_save = save_row_reg_save;
2467 cur_cfa = &this_cfa;
2468 }
2469 else
2470 {
2471 /* If ELT is a annulled branch-taken instruction (i.e.
2472 executed only when branch is not taken), the args_size
2473 and CFA should not change through the jump. */
2474 create_trace_edges (control);
2475
2476 /* Update and continue with the trace. */
2477 add_cfi_insn = insn;
2478 scan_insn_after (elt);
2479 def_cfa_1 (&this_cfa);
2480 }
2481 continue;
2482 }
2483
2484 /* The insns in the delay slot should all be considered to happen
2485 "before" a call insn. Consider a call with a stack pointer
2486 adjustment in the delay slot. The backtrace from the callee
2487 should include the sp adjustment. Unfortunately, that leaves
2488 us with an unavoidable unwinding error exactly at the call insn
2489 itself. For jump insns we'd prefer to avoid this error by
2490 placing the notes after the sequence. */
2491 if (JUMP_P (control))
2492 add_cfi_insn = insn;
2493
2494 for (i = 1; i < n; ++i)
2495 {
2496 elt = pat->insn (i);
2497 scan_insn_after (elt);
2498 }
2499
2500 /* Make sure any register saves are visible at the jump target. */
2501 dwarf2out_flush_queued_reg_saves ();
2502 any_cfis_emitted = false;
2503
2504 /* However, if there is some adjustment on the call itself, e.g.
2505 a call_pop, that action should be considered to happen after
2506 the call returns. */
2507 add_cfi_insn = insn;
2508 scan_insn_after (control);
2509 }
2510 else
2511 {
2512 /* Flush data before calls and jumps, and of course if necessary. */
2513 if (can_throw_internal (insn))
2514 {
2515 notice_eh_throw (insn);
2516 dwarf2out_flush_queued_reg_saves ();
2517 }
2518 else if (!NONJUMP_INSN_P (insn)
2519 || clobbers_queued_reg_save (insn)
2520 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2521 dwarf2out_flush_queued_reg_saves ();
2522 any_cfis_emitted = false;
2523
2524 add_cfi_insn = insn;
2525 scan_insn_after (insn);
2526 control = insn;
2527 }
2528
2529 /* Between frame-related-p and args_size we might have otherwise
2530 emitted two cfa adjustments. Do it now. */
2531 def_cfa_1 (&this_cfa);
2532
2533 /* Minimize the number of advances by emitting the entire queue
2534 once anything is emitted. */
2535 if (any_cfis_emitted
2536 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2537 dwarf2out_flush_queued_reg_saves ();
2538
2539 /* Note that a test for control_flow_insn_p does exactly the
2540 same tests as are done to actually create the edges. So
2541 always call the routine and let it not create edges for
2542 non-control-flow insns. */
2543 create_trace_edges (control);
2544 }
2545
2546 add_cfi_insn = NULL;
2547 cur_row = NULL;
2548 cur_trace = NULL;
2549 cur_cfa = NULL;
2550 }
2551
2552 /* Scan the function and create the initial set of CFI notes. */
2553
2554 static void
2555 create_cfi_notes (void)
2556 {
2557 dw_trace_info *ti;
2558
2559 gcc_checking_assert (!queued_reg_saves.exists ());
2560 gcc_checking_assert (!trace_work_list.exists ());
2561
2562 /* Always begin at the entry trace. */
2563 ti = &trace_info[0];
2564 scan_trace (ti);
2565
2566 while (!trace_work_list.is_empty ())
2567 {
2568 ti = trace_work_list.pop ();
2569 scan_trace (ti);
2570 }
2571
2572 queued_reg_saves.release ();
2573 trace_work_list.release ();
2574 }
2575
2576 /* Return the insn before the first NOTE_INSN_CFI after START. */
2577
2578 static rtx_insn *
2579 before_next_cfi_note (rtx_insn *start)
2580 {
2581 rtx_insn *prev = start;
2582 while (start)
2583 {
2584 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2585 return prev;
2586 prev = start;
2587 start = NEXT_INSN (start);
2588 }
2589 gcc_unreachable ();
2590 }
2591
2592 /* Insert CFI notes between traces to properly change state between them. */
2593
2594 static void
2595 connect_traces (void)
2596 {
2597 unsigned i, n = trace_info.length ();
2598 dw_trace_info *prev_ti, *ti;
2599
2600 /* ??? Ideally, we should have both queued and processed every trace.
2601 However the current representation of constant pools on various targets
2602 is indistinguishable from unreachable code. Assume for the moment that
2603 we can simply skip over such traces. */
2604 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2605 these are not "real" instructions, and should not be considered.
2606 This could be generically useful for tablejump data as well. */
2607 /* Remove all unprocessed traces from the list. */
2608 for (i = n - 1; i > 0; --i)
2609 {
2610 ti = &trace_info[i];
2611 if (ti->beg_row == NULL)
2612 {
2613 trace_info.ordered_remove (i);
2614 n -= 1;
2615 }
2616 else
2617 gcc_assert (ti->end_row != NULL);
2618 }
2619
2620 /* Work from the end back to the beginning. This lets us easily insert
2621 remember/restore_state notes in the correct order wrt other notes. */
2622 prev_ti = &trace_info[n - 1];
2623 for (i = n - 1; i > 0; --i)
2624 {
2625 dw_cfi_row *old_row;
2626
2627 ti = prev_ti;
2628 prev_ti = &trace_info[i - 1];
2629
2630 add_cfi_insn = ti->head;
2631
2632 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2633 for the portion of the function in the alternate text
2634 section. The row state at the very beginning of that
2635 new FDE will be exactly the row state from the CIE. */
2636 if (ti->switch_sections)
2637 old_row = cie_cfi_row;
2638 else
2639 {
2640 old_row = prev_ti->end_row;
2641 /* If there's no change from the previous end state, fine. */
2642 if (cfi_row_equal_p (old_row, ti->beg_row))
2643 ;
2644 /* Otherwise check for the common case of sharing state with
2645 the beginning of an epilogue, but not the end. Insert
2646 remember/restore opcodes in that case. */
2647 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2648 {
2649 dw_cfi_ref cfi;
2650
2651 /* Note that if we blindly insert the remember at the
2652 start of the trace, we can wind up increasing the
2653 size of the unwind info due to extra advance opcodes.
2654 Instead, put the remember immediately before the next
2655 state change. We know there must be one, because the
2656 state at the beginning and head of the trace differ. */
2657 add_cfi_insn = before_next_cfi_note (prev_ti->head);
2658 cfi = new_cfi ();
2659 cfi->dw_cfi_opc = DW_CFA_remember_state;
2660 add_cfi (cfi);
2661
2662 add_cfi_insn = ti->head;
2663 cfi = new_cfi ();
2664 cfi->dw_cfi_opc = DW_CFA_restore_state;
2665 add_cfi (cfi);
2666
2667 old_row = prev_ti->beg_row;
2668 }
2669 /* Otherwise, we'll simply change state from the previous end. */
2670 }
2671
2672 change_cfi_row (old_row, ti->beg_row);
2673
2674 if (dump_file && add_cfi_insn != ti->head)
2675 {
2676 rtx_insn *note;
2677
2678 fprintf (dump_file, "Fixup between trace %u and %u:\n",
2679 prev_ti->id, ti->id);
2680
2681 note = ti->head;
2682 do
2683 {
2684 note = NEXT_INSN (note);
2685 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2686 output_cfi_directive (dump_file, NOTE_CFI (note));
2687 }
2688 while (note != add_cfi_insn);
2689 }
2690 }
2691
2692 /* Connect args_size between traces that have can_throw_internal insns. */
2693 if (cfun->eh->lp_array)
2694 {
2695 HOST_WIDE_INT prev_args_size = 0;
2696
2697 for (i = 0; i < n; ++i)
2698 {
2699 ti = &trace_info[i];
2700
2701 if (ti->switch_sections)
2702 prev_args_size = 0;
2703 if (ti->eh_head == NULL)
2704 continue;
2705 gcc_assert (!ti->args_size_undefined);
2706
2707 if (ti->beg_delay_args_size != prev_args_size)
2708 {
2709 /* ??? Search back to previous CFI note. */
2710 add_cfi_insn = PREV_INSN (ti->eh_head);
2711 add_cfi_args_size (ti->beg_delay_args_size);
2712 }
2713
2714 prev_args_size = ti->end_delay_args_size;
2715 }
2716 }
2717 }
2718
2719 /* Set up the pseudo-cfg of instruction traces, as described at the
2720 block comment at the top of the file. */
2721
2722 static void
2723 create_pseudo_cfg (void)
2724 {
2725 bool saw_barrier, switch_sections;
2726 dw_trace_info ti;
2727 rtx_insn *insn;
2728 unsigned i;
2729
2730 /* The first trace begins at the start of the function,
2731 and begins with the CIE row state. */
2732 trace_info.create (16);
2733 memset (&ti, 0, sizeof (ti));
2734 ti.head = get_insns ();
2735 ti.beg_row = cie_cfi_row;
2736 ti.cfa_store = cie_cfi_row->cfa;
2737 ti.cfa_temp.reg = INVALID_REGNUM;
2738 trace_info.quick_push (ti);
2739
2740 if (cie_return_save)
2741 ti.regs_saved_in_regs.safe_push (*cie_return_save);
2742
2743 /* Walk all the insns, collecting start of trace locations. */
2744 saw_barrier = false;
2745 switch_sections = false;
2746 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2747 {
2748 if (BARRIER_P (insn))
2749 saw_barrier = true;
2750 else if (NOTE_P (insn)
2751 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2752 {
2753 /* We should have just seen a barrier. */
2754 gcc_assert (saw_barrier);
2755 switch_sections = true;
2756 }
2757 /* Watch out for save_point notes between basic blocks.
2758 In particular, a note after a barrier. Do not record these,
2759 delaying trace creation until the label. */
2760 else if (save_point_p (insn)
2761 && (LABEL_P (insn) || !saw_barrier))
2762 {
2763 memset (&ti, 0, sizeof (ti));
2764 ti.head = insn;
2765 ti.switch_sections = switch_sections;
2766 ti.id = trace_info.length () - 1;
2767 trace_info.safe_push (ti);
2768
2769 saw_barrier = false;
2770 switch_sections = false;
2771 }
2772 }
2773
2774 /* Create the trace index after we've finished building trace_info,
2775 avoiding stale pointer problems due to reallocation. */
2776 trace_index
2777 = new hash_table<trace_info_hasher> (trace_info.length ());
2778 dw_trace_info *tp;
2779 FOR_EACH_VEC_ELT (trace_info, i, tp)
2780 {
2781 dw_trace_info **slot;
2782
2783 if (dump_file)
2784 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", i,
2785 rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
2786 tp->switch_sections ? " (section switch)" : "");
2787
2788 slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT);
2789 gcc_assert (*slot == NULL);
2790 *slot = tp;
2791 }
2792 }
2793
2794 /* Record the initial position of the return address. RTL is
2795 INCOMING_RETURN_ADDR_RTX. */
2796
2797 static void
2798 initial_return_save (rtx rtl)
2799 {
2800 unsigned int reg = INVALID_REGNUM;
2801 HOST_WIDE_INT offset = 0;
2802
2803 switch (GET_CODE (rtl))
2804 {
2805 case REG:
2806 /* RA is in a register. */
2807 reg = dwf_regno (rtl);
2808 break;
2809
2810 case MEM:
2811 /* RA is on the stack. */
2812 rtl = XEXP (rtl, 0);
2813 switch (GET_CODE (rtl))
2814 {
2815 case REG:
2816 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2817 offset = 0;
2818 break;
2819
2820 case PLUS:
2821 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2822 offset = INTVAL (XEXP (rtl, 1));
2823 break;
2824
2825 case MINUS:
2826 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2827 offset = -INTVAL (XEXP (rtl, 1));
2828 break;
2829
2830 default:
2831 gcc_unreachable ();
2832 }
2833
2834 break;
2835
2836 case PLUS:
2837 /* The return address is at some offset from any value we can
2838 actually load. For instance, on the SPARC it is in %i7+8. Just
2839 ignore the offset for now; it doesn't matter for unwinding frames. */
2840 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
2841 initial_return_save (XEXP (rtl, 0));
2842 return;
2843
2844 default:
2845 gcc_unreachable ();
2846 }
2847
2848 if (reg != DWARF_FRAME_RETURN_COLUMN)
2849 {
2850 if (reg != INVALID_REGNUM)
2851 record_reg_saved_in_reg (rtl, pc_rtx);
2852 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
2853 }
2854 }
2855
2856 static void
2857 create_cie_data (void)
2858 {
2859 dw_cfa_location loc;
2860 dw_trace_info cie_trace;
2861
2862 dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
2863 dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2864
2865 memset (&cie_trace, 0, sizeof (cie_trace));
2866 cur_trace = &cie_trace;
2867
2868 add_cfi_vec = &cie_cfi_vec;
2869 cie_cfi_row = cur_row = new_cfi_row ();
2870
2871 /* On entry, the Canonical Frame Address is at SP. */
2872 memset (&loc, 0, sizeof (loc));
2873 loc.reg = dw_stack_pointer_regnum;
2874 loc.offset = INCOMING_FRAME_SP_OFFSET;
2875 def_cfa_1 (&loc);
2876
2877 if (targetm.debug_unwind_info () == UI_DWARF2
2878 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
2879 {
2880 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2881
2882 /* For a few targets, we have the return address incoming into a
2883 register, but choose a different return column. This will result
2884 in a DW_CFA_register for the return, and an entry in
2885 regs_saved_in_regs to match. If the target later stores that
2886 return address register to the stack, we want to be able to emit
2887 the DW_CFA_offset against the return column, not the intermediate
2888 save register. Save the contents of regs_saved_in_regs so that
2889 we can re-initialize it at the start of each function. */
2890 switch (cie_trace.regs_saved_in_regs.length ())
2891 {
2892 case 0:
2893 break;
2894 case 1:
2895 cie_return_save = ggc_alloc<reg_saved_in_data> ();
2896 *cie_return_save = cie_trace.regs_saved_in_regs[0];
2897 cie_trace.regs_saved_in_regs.release ();
2898 break;
2899 default:
2900 gcc_unreachable ();
2901 }
2902 }
2903
2904 add_cfi_vec = NULL;
2905 cur_row = NULL;
2906 cur_trace = NULL;
2907 }
2908
2909 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2910 state at each location within the function. These notes will be
2911 emitted during pass_final. */
2912
2913 static unsigned int
2914 execute_dwarf2_frame (void)
2915 {
2916 /* The first time we're called, compute the incoming frame state. */
2917 if (cie_cfi_vec == NULL)
2918 create_cie_data ();
2919
2920 dwarf2out_alloc_current_fde ();
2921
2922 create_pseudo_cfg ();
2923
2924 /* Do the work. */
2925 create_cfi_notes ();
2926 connect_traces ();
2927 add_cfis_to_fde ();
2928
2929 /* Free all the data we allocated. */
2930 {
2931 size_t i;
2932 dw_trace_info *ti;
2933
2934 FOR_EACH_VEC_ELT (trace_info, i, ti)
2935 ti->regs_saved_in_regs.release ();
2936 }
2937 trace_info.release ();
2938
2939 delete trace_index;
2940 trace_index = NULL;
2941
2942 return 0;
2943 }
2944 \f
2945 /* Convert a DWARF call frame info. operation to its string name */
2946
2947 static const char *
2948 dwarf_cfi_name (unsigned int cfi_opc)
2949 {
2950 const char *name = get_DW_CFA_name (cfi_opc);
2951
2952 if (name != NULL)
2953 return name;
2954
2955 return "DW_CFA_<unknown>";
2956 }
2957
2958 /* This routine will generate the correct assembly data for a location
2959 description based on a cfi entry with a complex address. */
2960
2961 static void
2962 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
2963 {
2964 dw_loc_descr_ref loc;
2965 unsigned long size;
2966
2967 if (cfi->dw_cfi_opc == DW_CFA_expression)
2968 {
2969 unsigned r =
2970 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2971 dw2_asm_output_data (1, r, NULL);
2972 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
2973 }
2974 else
2975 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2976
2977 /* Output the size of the block. */
2978 size = size_of_locs (loc);
2979 dw2_asm_output_data_uleb128 (size, NULL);
2980
2981 /* Now output the operations themselves. */
2982 output_loc_sequence (loc, for_eh);
2983 }
2984
2985 /* Similar, but used for .cfi_escape. */
2986
2987 static void
2988 output_cfa_loc_raw (dw_cfi_ref cfi)
2989 {
2990 dw_loc_descr_ref loc;
2991 unsigned long size;
2992
2993 if (cfi->dw_cfi_opc == DW_CFA_expression)
2994 {
2995 unsigned r =
2996 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
2997 fprintf (asm_out_file, "%#x,", r);
2998 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
2999 }
3000 else
3001 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3002
3003 /* Output the size of the block. */
3004 size = size_of_locs (loc);
3005 dw2_asm_output_data_uleb128_raw (size);
3006 fputc (',', asm_out_file);
3007
3008 /* Now output the operations themselves. */
3009 output_loc_sequence_raw (loc);
3010 }
3011
3012 /* Output a Call Frame Information opcode and its operand(s). */
3013
3014 void
3015 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3016 {
3017 unsigned long r;
3018 HOST_WIDE_INT off;
3019
3020 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3021 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3022 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3023 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3024 ((unsigned HOST_WIDE_INT)
3025 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3026 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3027 {
3028 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3029 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3030 "DW_CFA_offset, column %#lx", r);
3031 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3032 dw2_asm_output_data_uleb128 (off, NULL);
3033 }
3034 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3035 {
3036 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3037 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3038 "DW_CFA_restore, column %#lx", r);
3039 }
3040 else
3041 {
3042 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3043 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3044
3045 switch (cfi->dw_cfi_opc)
3046 {
3047 case DW_CFA_set_loc:
3048 if (for_eh)
3049 dw2_asm_output_encoded_addr_rtx (
3050 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3051 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3052 false, NULL);
3053 else
3054 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3055 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3056 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3057 break;
3058
3059 case DW_CFA_advance_loc1:
3060 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3061 fde->dw_fde_current_label, NULL);
3062 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3063 break;
3064
3065 case DW_CFA_advance_loc2:
3066 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3067 fde->dw_fde_current_label, NULL);
3068 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3069 break;
3070
3071 case DW_CFA_advance_loc4:
3072 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3073 fde->dw_fde_current_label, NULL);
3074 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3075 break;
3076
3077 case DW_CFA_MIPS_advance_loc8:
3078 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3079 fde->dw_fde_current_label, NULL);
3080 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3081 break;
3082
3083 case DW_CFA_offset_extended:
3084 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3085 dw2_asm_output_data_uleb128 (r, NULL);
3086 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3087 dw2_asm_output_data_uleb128 (off, NULL);
3088 break;
3089
3090 case DW_CFA_def_cfa:
3091 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3092 dw2_asm_output_data_uleb128 (r, NULL);
3093 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3094 break;
3095
3096 case DW_CFA_offset_extended_sf:
3097 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3098 dw2_asm_output_data_uleb128 (r, NULL);
3099 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3100 dw2_asm_output_data_sleb128 (off, NULL);
3101 break;
3102
3103 case DW_CFA_def_cfa_sf:
3104 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3105 dw2_asm_output_data_uleb128 (r, NULL);
3106 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3107 dw2_asm_output_data_sleb128 (off, NULL);
3108 break;
3109
3110 case DW_CFA_restore_extended:
3111 case DW_CFA_undefined:
3112 case DW_CFA_same_value:
3113 case DW_CFA_def_cfa_register:
3114 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3115 dw2_asm_output_data_uleb128 (r, NULL);
3116 break;
3117
3118 case DW_CFA_register:
3119 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3120 dw2_asm_output_data_uleb128 (r, NULL);
3121 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3122 dw2_asm_output_data_uleb128 (r, NULL);
3123 break;
3124
3125 case DW_CFA_def_cfa_offset:
3126 case DW_CFA_GNU_args_size:
3127 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3128 break;
3129
3130 case DW_CFA_def_cfa_offset_sf:
3131 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3132 dw2_asm_output_data_sleb128 (off, NULL);
3133 break;
3134
3135 case DW_CFA_GNU_window_save:
3136 break;
3137
3138 case DW_CFA_def_cfa_expression:
3139 case DW_CFA_expression:
3140 output_cfa_loc (cfi, for_eh);
3141 break;
3142
3143 case DW_CFA_GNU_negative_offset_extended:
3144 /* Obsoleted by DW_CFA_offset_extended_sf. */
3145 gcc_unreachable ();
3146
3147 default:
3148 break;
3149 }
3150 }
3151 }
3152
3153 /* Similar, but do it via assembler directives instead. */
3154
3155 void
3156 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3157 {
3158 unsigned long r, r2;
3159
3160 switch (cfi->dw_cfi_opc)
3161 {
3162 case DW_CFA_advance_loc:
3163 case DW_CFA_advance_loc1:
3164 case DW_CFA_advance_loc2:
3165 case DW_CFA_advance_loc4:
3166 case DW_CFA_MIPS_advance_loc8:
3167 case DW_CFA_set_loc:
3168 /* Should only be created in a code path not followed when emitting
3169 via directives. The assembler is going to take care of this for
3170 us. But this routines is also used for debugging dumps, so
3171 print something. */
3172 gcc_assert (f != asm_out_file);
3173 fprintf (f, "\t.cfi_advance_loc\n");
3174 break;
3175
3176 case DW_CFA_offset:
3177 case DW_CFA_offset_extended:
3178 case DW_CFA_offset_extended_sf:
3179 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3180 fprintf (f, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3181 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3182 break;
3183
3184 case DW_CFA_restore:
3185 case DW_CFA_restore_extended:
3186 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3187 fprintf (f, "\t.cfi_restore %lu\n", r);
3188 break;
3189
3190 case DW_CFA_undefined:
3191 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3192 fprintf (f, "\t.cfi_undefined %lu\n", r);
3193 break;
3194
3195 case DW_CFA_same_value:
3196 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3197 fprintf (f, "\t.cfi_same_value %lu\n", r);
3198 break;
3199
3200 case DW_CFA_def_cfa:
3201 case DW_CFA_def_cfa_sf:
3202 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3203 fprintf (f, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3204 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3205 break;
3206
3207 case DW_CFA_def_cfa_register:
3208 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3209 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3210 break;
3211
3212 case DW_CFA_register:
3213 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3214 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3215 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3216 break;
3217
3218 case DW_CFA_def_cfa_offset:
3219 case DW_CFA_def_cfa_offset_sf:
3220 fprintf (f, "\t.cfi_def_cfa_offset "
3221 HOST_WIDE_INT_PRINT_DEC"\n",
3222 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3223 break;
3224
3225 case DW_CFA_remember_state:
3226 fprintf (f, "\t.cfi_remember_state\n");
3227 break;
3228 case DW_CFA_restore_state:
3229 fprintf (f, "\t.cfi_restore_state\n");
3230 break;
3231
3232 case DW_CFA_GNU_args_size:
3233 if (f == asm_out_file)
3234 {
3235 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3236 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3237 if (flag_debug_asm)
3238 fprintf (f, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3239 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3240 fputc ('\n', f);
3241 }
3242 else
3243 {
3244 fprintf (f, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC "\n",
3245 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3246 }
3247 break;
3248
3249 case DW_CFA_GNU_window_save:
3250 fprintf (f, "\t.cfi_window_save\n");
3251 break;
3252
3253 case DW_CFA_def_cfa_expression:
3254 if (f != asm_out_file)
3255 {
3256 fprintf (f, "\t.cfi_def_cfa_expression ...\n");
3257 break;
3258 }
3259 /* FALLTHRU */
3260 case DW_CFA_expression:
3261 if (f != asm_out_file)
3262 {
3263 fprintf (f, "\t.cfi_cfa_expression ...\n");
3264 break;
3265 }
3266 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3267 output_cfa_loc_raw (cfi);
3268 fputc ('\n', f);
3269 break;
3270
3271 default:
3272 gcc_unreachable ();
3273 }
3274 }
3275
3276 void
3277 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3278 {
3279 if (dwarf2out_do_cfi_asm ())
3280 output_cfi_directive (asm_out_file, cfi);
3281 }
3282
3283 static void
3284 dump_cfi_row (FILE *f, dw_cfi_row *row)
3285 {
3286 dw_cfi_ref cfi;
3287 unsigned i;
3288
3289 cfi = row->cfa_cfi;
3290 if (!cfi)
3291 {
3292 dw_cfa_location dummy;
3293 memset (&dummy, 0, sizeof (dummy));
3294 dummy.reg = INVALID_REGNUM;
3295 cfi = def_cfa_0 (&dummy, &row->cfa);
3296 }
3297 output_cfi_directive (f, cfi);
3298
3299 FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi)
3300 if (cfi)
3301 output_cfi_directive (f, cfi);
3302 }
3303
3304 void debug_cfi_row (dw_cfi_row *row);
3305
3306 void
3307 debug_cfi_row (dw_cfi_row *row)
3308 {
3309 dump_cfi_row (stderr, row);
3310 }
3311 \f
3312
3313 /* Save the result of dwarf2out_do_frame across PCH.
3314 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3315 static GTY(()) signed char saved_do_cfi_asm = 0;
3316
3317 /* Decide whether we want to emit frame unwind information for the current
3318 translation unit. */
3319
3320 bool
3321 dwarf2out_do_frame (void)
3322 {
3323 /* We want to emit correct CFA location expressions or lists, so we
3324 have to return true if we're going to output debug info, even if
3325 we're not going to output frame or unwind info. */
3326 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3327 return true;
3328
3329 if (saved_do_cfi_asm > 0)
3330 return true;
3331
3332 if (targetm.debug_unwind_info () == UI_DWARF2)
3333 return true;
3334
3335 if ((flag_unwind_tables || flag_exceptions)
3336 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3337 return true;
3338
3339 return false;
3340 }
3341
3342 /* Decide whether to emit frame unwind via assembler directives. */
3343
3344 bool
3345 dwarf2out_do_cfi_asm (void)
3346 {
3347 int enc;
3348
3349 if (saved_do_cfi_asm != 0)
3350 return saved_do_cfi_asm > 0;
3351
3352 /* Assume failure for a moment. */
3353 saved_do_cfi_asm = -1;
3354
3355 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3356 return false;
3357 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3358 return false;
3359
3360 /* Make sure the personality encoding is one the assembler can support.
3361 In particular, aligned addresses can't be handled. */
3362 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3363 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3364 return false;
3365 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3366 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3367 return false;
3368
3369 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3370 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3371 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3372 && !flag_unwind_tables && !flag_exceptions
3373 && targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
3374 return false;
3375
3376 /* Success! */
3377 saved_do_cfi_asm = 1;
3378 return true;
3379 }
3380
3381 namespace {
3382
3383 const pass_data pass_data_dwarf2_frame =
3384 {
3385 RTL_PASS, /* type */
3386 "dwarf2", /* name */
3387 OPTGROUP_NONE, /* optinfo_flags */
3388 TV_FINAL, /* tv_id */
3389 0, /* properties_required */
3390 0, /* properties_provided */
3391 0, /* properties_destroyed */
3392 0, /* todo_flags_start */
3393 0, /* todo_flags_finish */
3394 };
3395
3396 class pass_dwarf2_frame : public rtl_opt_pass
3397 {
3398 public:
3399 pass_dwarf2_frame (gcc::context *ctxt)
3400 : rtl_opt_pass (pass_data_dwarf2_frame, ctxt)
3401 {}
3402
3403 /* opt_pass methods: */
3404 virtual bool gate (function *);
3405 virtual unsigned int execute (function *) { return execute_dwarf2_frame (); }
3406
3407 }; // class pass_dwarf2_frame
3408
3409 bool
3410 pass_dwarf2_frame::gate (function *)
3411 {
3412 #ifndef HAVE_prologue
3413 /* Targets which still implement the prologue in assembler text
3414 cannot use the generic dwarf2 unwinding. */
3415 return false;
3416 #endif
3417
3418 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3419 from the optimized shrink-wrapping annotations that we will compute.
3420 For now, only produce the CFI notes for dwarf2. */
3421 return dwarf2out_do_frame ();
3422 }
3423
3424 } // anon namespace
3425
3426 rtl_opt_pass *
3427 make_pass_dwarf2_frame (gcc::context *ctxt)
3428 {
3429 return new pass_dwarf2_frame (ctxt);
3430 }
3431
3432 #include "gt-dwarf2cfi.h"