usage.adb: Change "pragma inline" to "pragma Inline" in information and error messages
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
70
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
74
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
89
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
92
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
95
96 int
97 dwarf2out_do_frame (void)
98 {
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
108 );
109 }
110
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
115
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
118
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
122 {
123 #ifdef EH_FRAME_SECTION_NAME
124 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
125 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
126 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
127 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
128 int flags;
129
130 flags = (! flag_pic
131 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
132 && (fde_encoding & 0x70) != DW_EH_PE_aligned
133 && (per_encoding & 0x70) != DW_EH_PE_absptr
134 && (per_encoding & 0x70) != DW_EH_PE_aligned
135 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
136 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
137 ? 0 : SECTION_WRITE;
138 named_section_flags (EH_FRAME_SECTION_NAME, flags);
139 #else
140 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
141 #endif
142 #endif
143 }
144
145 /* Version of targetm.eh_frame_section for systems using collect2. */
146 void
147 collect2_eh_frame_section (void)
148 {
149 tree label = get_file_function_name ('F');
150
151 data_section ();
152 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
153 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
154 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
155 }
156
157 /* Default version of targetm.eh_frame_section. */
158 void
159 default_eh_frame_section (void)
160 {
161 #ifdef EH_FRAME_SECTION_NAME
162 named_section_eh_frame_section ();
163 #else
164 collect2_eh_frame_section ();
165 #endif
166 }
167
168 /* Array of RTXes referenced by the debugging information, which therefore
169 must be kept around forever. */
170 static GTY(()) varray_type used_rtx_varray;
171
172 /* A pointer to the base of a list of incomplete types which might be
173 completed at some later time. incomplete_types_list needs to be a VARRAY
174 because we want to tell the garbage collector about it. */
175 static GTY(()) varray_type incomplete_types;
176
177 /* A pointer to the base of a table of references to declaration
178 scopes. This table is a display which tracks the nesting
179 of declaration scopes at the current scope and containing
180 scopes. This table is used to find the proper place to
181 define type declaration DIE's. */
182 static GTY(()) varray_type decl_scope_table;
183
184 /* How to start an assembler comment. */
185 #ifndef ASM_COMMENT_START
186 #define ASM_COMMENT_START ";#"
187 #endif
188
189 typedef struct dw_cfi_struct *dw_cfi_ref;
190 typedef struct dw_fde_struct *dw_fde_ref;
191 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
192
193 /* Call frames are described using a sequence of Call Frame
194 Information instructions. The register number, offset
195 and address fields are provided as possible operands;
196 their use is selected by the opcode field. */
197
198 enum dw_cfi_oprnd_type {
199 dw_cfi_oprnd_unused,
200 dw_cfi_oprnd_reg_num,
201 dw_cfi_oprnd_offset,
202 dw_cfi_oprnd_addr,
203 dw_cfi_oprnd_loc
204 };
205
206 typedef union dw_cfi_oprnd_struct GTY(())
207 {
208 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
209 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
210 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
211 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
212 }
213 dw_cfi_oprnd;
214
215 typedef struct dw_cfi_struct GTY(())
216 {
217 dw_cfi_ref dw_cfi_next;
218 enum dwarf_call_frame_info dw_cfi_opc;
219 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
220 dw_cfi_oprnd1;
221 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
222 dw_cfi_oprnd2;
223 }
224 dw_cfi_node;
225
226 /* This is how we define the location of the CFA. We use to handle it
227 as REG + OFFSET all the time, but now it can be more complex.
228 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
229 Instead of passing around REG and OFFSET, we pass a copy
230 of this structure. */
231 typedef struct cfa_loc GTY(())
232 {
233 unsigned long reg;
234 HOST_WIDE_INT offset;
235 HOST_WIDE_INT base_offset;
236 int indirect; /* 1 if CFA is accessed via a dereference. */
237 } dw_cfa_location;
238
239 /* All call frame descriptions (FDE's) in the GCC generated DWARF
240 refer to a single Common Information Entry (CIE), defined at
241 the beginning of the .debug_frame section. This use of a single
242 CIE obviates the need to keep track of multiple CIE's
243 in the DWARF generation routines below. */
244
245 typedef struct dw_fde_struct GTY(())
246 {
247 tree decl;
248 const char *dw_fde_begin;
249 const char *dw_fde_current_label;
250 const char *dw_fde_end;
251 dw_cfi_ref dw_fde_cfi;
252 unsigned funcdef_number;
253 unsigned all_throwers_are_sibcalls : 1;
254 unsigned nothrow : 1;
255 unsigned uses_eh_lsda : 1;
256 }
257 dw_fde_node;
258
259 /* Maximum size (in bytes) of an artificially generated label. */
260 #define MAX_ARTIFICIAL_LABEL_BYTES 30
261
262 /* The size of addresses as they appear in the Dwarf 2 data.
263 Some architectures use word addresses to refer to code locations,
264 but Dwarf 2 info always uses byte addresses. On such machines,
265 Dwarf 2 addresses need to be larger than the architecture's
266 pointers. */
267 #ifndef DWARF2_ADDR_SIZE
268 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
269 #endif
270
271 /* The size in bytes of a DWARF field indicating an offset or length
272 relative to a debug info section, specified to be 4 bytes in the
273 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
274 as PTR_SIZE. */
275
276 #ifndef DWARF_OFFSET_SIZE
277 #define DWARF_OFFSET_SIZE 4
278 #endif
279
280 /* According to the (draft) DWARF 3 specification, the initial length
281 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
282 bytes are 0xffffffff, followed by the length stored in the next 8
283 bytes.
284
285 However, the SGI/MIPS ABI uses an initial length which is equal to
286 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
287
288 #ifndef DWARF_INITIAL_LENGTH_SIZE
289 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
290 #endif
291
292 #define DWARF_VERSION 2
293
294 /* Round SIZE up to the nearest BOUNDARY. */
295 #define DWARF_ROUND(SIZE,BOUNDARY) \
296 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
297
298 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
299 #ifndef DWARF_CIE_DATA_ALIGNMENT
300 #ifdef STACK_GROWS_DOWNWARD
301 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
302 #else
303 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
304 #endif
305 #endif
306
307 /* A pointer to the base of a table that contains frame description
308 information for each routine. */
309 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
310
311 /* Number of elements currently allocated for fde_table. */
312 static GTY(()) unsigned fde_table_allocated;
313
314 /* Number of elements in fde_table currently in use. */
315 static GTY(()) unsigned fde_table_in_use;
316
317 /* Size (in elements) of increments by which we may expand the
318 fde_table. */
319 #define FDE_TABLE_INCREMENT 256
320
321 /* A list of call frame insns for the CIE. */
322 static GTY(()) dw_cfi_ref cie_cfi_head;
323
324 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
325 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
326 attribute that accelerates the lookup of the FDE associated
327 with the subprogram. This variable holds the table index of the FDE
328 associated with the current function (body) definition. */
329 static unsigned current_funcdef_fde;
330 #endif
331
332 struct indirect_string_node GTY(())
333 {
334 const char *str;
335 unsigned int refcount;
336 unsigned int form;
337 char *label;
338 };
339
340 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
341
342 static GTY(()) int dw2_string_counter;
343 static GTY(()) unsigned long dwarf2out_cfi_label_num;
344
345 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
346
347 /* Forward declarations for functions defined in this file. */
348
349 static char *stripattributes (const char *);
350 static const char *dwarf_cfi_name (unsigned);
351 static dw_cfi_ref new_cfi (void);
352 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
353 static void add_fde_cfi (const char *, dw_cfi_ref);
354 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
355 static void lookup_cfa (dw_cfa_location *);
356 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
357 static void initial_return_save (rtx);
358 static HOST_WIDE_INT stack_adjust_offset (rtx);
359 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
360 static void output_call_frame_info (int);
361 static void dwarf2out_stack_adjust (rtx);
362 static void flush_queued_reg_saves (void);
363 static bool clobbers_queued_reg_save (rtx);
364 static void dwarf2out_frame_debug_expr (rtx, const char *);
365
366 /* Support for complex CFA locations. */
367 static void output_cfa_loc (dw_cfi_ref);
368 static void get_cfa_from_loc_descr (dw_cfa_location *,
369 struct dw_loc_descr_struct *);
370 static struct dw_loc_descr_struct *build_cfa_loc
371 (dw_cfa_location *);
372 static void def_cfa_1 (const char *, dw_cfa_location *);
373
374 /* How to start an assembler comment. */
375 #ifndef ASM_COMMENT_START
376 #define ASM_COMMENT_START ";#"
377 #endif
378
379 /* Data and reference forms for relocatable data. */
380 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
381 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
382
383 #ifndef DEBUG_FRAME_SECTION
384 #define DEBUG_FRAME_SECTION ".debug_frame"
385 #endif
386
387 #ifndef FUNC_BEGIN_LABEL
388 #define FUNC_BEGIN_LABEL "LFB"
389 #endif
390
391 #ifndef FUNC_END_LABEL
392 #define FUNC_END_LABEL "LFE"
393 #endif
394
395 #ifndef FRAME_BEGIN_LABEL
396 #define FRAME_BEGIN_LABEL "Lframe"
397 #endif
398 #define CIE_AFTER_SIZE_LABEL "LSCIE"
399 #define CIE_END_LABEL "LECIE"
400 #define FDE_LABEL "LSFDE"
401 #define FDE_AFTER_SIZE_LABEL "LASFDE"
402 #define FDE_END_LABEL "LEFDE"
403 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
404 #define LINE_NUMBER_END_LABEL "LELT"
405 #define LN_PROLOG_AS_LABEL "LASLTP"
406 #define LN_PROLOG_END_LABEL "LELTP"
407 #define DIE_LABEL_PREFIX "DW"
408
409 /* The DWARF 2 CFA column which tracks the return address. Normally this
410 is the column for PC, or the first column after all of the hard
411 registers. */
412 #ifndef DWARF_FRAME_RETURN_COLUMN
413 #ifdef PC_REGNUM
414 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
415 #else
416 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
417 #endif
418 #endif
419
420 /* The mapping from gcc register number to DWARF 2 CFA column number. By
421 default, we just provide columns for all registers. */
422 #ifndef DWARF_FRAME_REGNUM
423 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
424 #endif
425
426 /* The offset from the incoming value of %sp to the top of the stack frame
427 for the current function. */
428 #ifndef INCOMING_FRAME_SP_OFFSET
429 #define INCOMING_FRAME_SP_OFFSET 0
430 #endif
431 \f
432 /* Hook used by __throw. */
433
434 rtx
435 expand_builtin_dwarf_sp_column (void)
436 {
437 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
438 }
439
440 /* Return a pointer to a copy of the section string name S with all
441 attributes stripped off, and an asterisk prepended (for assemble_name). */
442
443 static inline char *
444 stripattributes (const char *s)
445 {
446 char *stripped = xmalloc (strlen (s) + 2);
447 char *p = stripped;
448
449 *p++ = '*';
450
451 while (*s && *s != ',')
452 *p++ = *s++;
453
454 *p = '\0';
455 return stripped;
456 }
457
458 /* Generate code to initialize the register size table. */
459
460 void
461 expand_builtin_init_dwarf_reg_sizes (tree address)
462 {
463 int i;
464 enum machine_mode mode = TYPE_MODE (char_type_node);
465 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
466 rtx mem = gen_rtx_MEM (BLKmode, addr);
467 bool wrote_return_column = false;
468
469 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
471 {
472 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
473 enum machine_mode save_mode = reg_raw_mode[i];
474 HOST_WIDE_INT size;
475
476 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
477 save_mode = choose_hard_reg_mode (i, 1, true);
478 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
479 {
480 if (save_mode == VOIDmode)
481 continue;
482 wrote_return_column = true;
483 }
484 size = GET_MODE_SIZE (save_mode);
485 if (offset < 0)
486 continue;
487
488 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
489 }
490
491 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
492 gcc_assert (wrote_return_column);
493 i = DWARF_ALT_FRAME_RETURN_COLUMN;
494 wrote_return_column = false;
495 #else
496 i = DWARF_FRAME_RETURN_COLUMN;
497 #endif
498
499 if (! wrote_return_column)
500 {
501 enum machine_mode save_mode = Pmode;
502 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
503 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
504 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
505 }
506 }
507
508 /* Convert a DWARF call frame info. operation to its string name */
509
510 static const char *
511 dwarf_cfi_name (unsigned int cfi_opc)
512 {
513 switch (cfi_opc)
514 {
515 case DW_CFA_advance_loc:
516 return "DW_CFA_advance_loc";
517 case DW_CFA_offset:
518 return "DW_CFA_offset";
519 case DW_CFA_restore:
520 return "DW_CFA_restore";
521 case DW_CFA_nop:
522 return "DW_CFA_nop";
523 case DW_CFA_set_loc:
524 return "DW_CFA_set_loc";
525 case DW_CFA_advance_loc1:
526 return "DW_CFA_advance_loc1";
527 case DW_CFA_advance_loc2:
528 return "DW_CFA_advance_loc2";
529 case DW_CFA_advance_loc4:
530 return "DW_CFA_advance_loc4";
531 case DW_CFA_offset_extended:
532 return "DW_CFA_offset_extended";
533 case DW_CFA_restore_extended:
534 return "DW_CFA_restore_extended";
535 case DW_CFA_undefined:
536 return "DW_CFA_undefined";
537 case DW_CFA_same_value:
538 return "DW_CFA_same_value";
539 case DW_CFA_register:
540 return "DW_CFA_register";
541 case DW_CFA_remember_state:
542 return "DW_CFA_remember_state";
543 case DW_CFA_restore_state:
544 return "DW_CFA_restore_state";
545 case DW_CFA_def_cfa:
546 return "DW_CFA_def_cfa";
547 case DW_CFA_def_cfa_register:
548 return "DW_CFA_def_cfa_register";
549 case DW_CFA_def_cfa_offset:
550 return "DW_CFA_def_cfa_offset";
551
552 /* DWARF 3 */
553 case DW_CFA_def_cfa_expression:
554 return "DW_CFA_def_cfa_expression";
555 case DW_CFA_expression:
556 return "DW_CFA_expression";
557 case DW_CFA_offset_extended_sf:
558 return "DW_CFA_offset_extended_sf";
559 case DW_CFA_def_cfa_sf:
560 return "DW_CFA_def_cfa_sf";
561 case DW_CFA_def_cfa_offset_sf:
562 return "DW_CFA_def_cfa_offset_sf";
563
564 /* SGI/MIPS specific */
565 case DW_CFA_MIPS_advance_loc8:
566 return "DW_CFA_MIPS_advance_loc8";
567
568 /* GNU extensions */
569 case DW_CFA_GNU_window_save:
570 return "DW_CFA_GNU_window_save";
571 case DW_CFA_GNU_args_size:
572 return "DW_CFA_GNU_args_size";
573 case DW_CFA_GNU_negative_offset_extended:
574 return "DW_CFA_GNU_negative_offset_extended";
575
576 default:
577 return "DW_CFA_<unknown>";
578 }
579 }
580
581 /* Return a pointer to a newly allocated Call Frame Instruction. */
582
583 static inline dw_cfi_ref
584 new_cfi (void)
585 {
586 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
587
588 cfi->dw_cfi_next = NULL;
589 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
590 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
591
592 return cfi;
593 }
594
595 /* Add a Call Frame Instruction to list of instructions. */
596
597 static inline void
598 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
599 {
600 dw_cfi_ref *p;
601
602 /* Find the end of the chain. */
603 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
604 ;
605
606 *p = cfi;
607 }
608
609 /* Generate a new label for the CFI info to refer to. */
610
611 char *
612 dwarf2out_cfi_label (void)
613 {
614 static char label[20];
615
616 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
617 ASM_OUTPUT_LABEL (asm_out_file, label);
618 return label;
619 }
620
621 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
622 or to the CIE if LABEL is NULL. */
623
624 static void
625 add_fde_cfi (const char *label, dw_cfi_ref cfi)
626 {
627 if (label)
628 {
629 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
630
631 if (*label == 0)
632 label = dwarf2out_cfi_label ();
633
634 if (fde->dw_fde_current_label == NULL
635 || strcmp (label, fde->dw_fde_current_label) != 0)
636 {
637 dw_cfi_ref xcfi;
638
639 fde->dw_fde_current_label = label = xstrdup (label);
640
641 /* Set the location counter to the new label. */
642 xcfi = new_cfi ();
643 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
644 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
645 add_cfi (&fde->dw_fde_cfi, xcfi);
646 }
647
648 add_cfi (&fde->dw_fde_cfi, cfi);
649 }
650
651 else
652 add_cfi (&cie_cfi_head, cfi);
653 }
654
655 /* Subroutine of lookup_cfa. */
656
657 static inline void
658 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
659 {
660 switch (cfi->dw_cfi_opc)
661 {
662 case DW_CFA_def_cfa_offset:
663 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
664 break;
665 case DW_CFA_def_cfa_register:
666 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
667 break;
668 case DW_CFA_def_cfa:
669 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
670 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
671 break;
672 case DW_CFA_def_cfa_expression:
673 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
674 break;
675 default:
676 break;
677 }
678 }
679
680 /* Find the previous value for the CFA. */
681
682 static void
683 lookup_cfa (dw_cfa_location *loc)
684 {
685 dw_cfi_ref cfi;
686
687 loc->reg = (unsigned long) -1;
688 loc->offset = 0;
689 loc->indirect = 0;
690 loc->base_offset = 0;
691
692 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
693 lookup_cfa_1 (cfi, loc);
694
695 if (fde_table_in_use)
696 {
697 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
698 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
699 lookup_cfa_1 (cfi, loc);
700 }
701 }
702
703 /* The current rule for calculating the DWARF2 canonical frame address. */
704 static dw_cfa_location cfa;
705
706 /* The register used for saving registers to the stack, and its offset
707 from the CFA. */
708 static dw_cfa_location cfa_store;
709
710 /* The running total of the size of arguments pushed onto the stack. */
711 static HOST_WIDE_INT args_size;
712
713 /* The last args_size we actually output. */
714 static HOST_WIDE_INT old_args_size;
715
716 /* Entry point to update the canonical frame address (CFA).
717 LABEL is passed to add_fde_cfi. The value of CFA is now to be
718 calculated from REG+OFFSET. */
719
720 void
721 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
722 {
723 dw_cfa_location loc;
724 loc.indirect = 0;
725 loc.base_offset = 0;
726 loc.reg = reg;
727 loc.offset = offset;
728 def_cfa_1 (label, &loc);
729 }
730
731 /* This routine does the actual work. The CFA is now calculated from
732 the dw_cfa_location structure. */
733
734 static void
735 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
736 {
737 dw_cfi_ref cfi;
738 dw_cfa_location old_cfa, loc;
739
740 cfa = *loc_p;
741 loc = *loc_p;
742
743 if (cfa_store.reg == loc.reg && loc.indirect == 0)
744 cfa_store.offset = loc.offset;
745
746 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
747 lookup_cfa (&old_cfa);
748
749 /* If nothing changed, no need to issue any call frame instructions. */
750 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
751 && loc.indirect == old_cfa.indirect
752 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
753 return;
754
755 cfi = new_cfi ();
756
757 if (loc.reg == old_cfa.reg && !loc.indirect)
758 {
759 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
760 indicating the CFA register did not change but the offset
761 did. */
762 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
763 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
764 }
765
766 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
767 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
768 && !loc.indirect)
769 {
770 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
771 indicating the CFA register has changed to <register> but the
772 offset has not changed. */
773 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
774 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
775 }
776 #endif
777
778 else if (loc.indirect == 0)
779 {
780 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
781 indicating the CFA register has changed to <register> with
782 the specified offset. */
783 cfi->dw_cfi_opc = DW_CFA_def_cfa;
784 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
785 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
786 }
787 else
788 {
789 /* Construct a DW_CFA_def_cfa_expression instruction to
790 calculate the CFA using a full location expression since no
791 register-offset pair is available. */
792 struct dw_loc_descr_struct *loc_list;
793
794 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
795 loc_list = build_cfa_loc (&loc);
796 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
797 }
798
799 add_fde_cfi (label, cfi);
800 }
801
802 /* Add the CFI for saving a register. REG is the CFA column number.
803 LABEL is passed to add_fde_cfi.
804 If SREG is -1, the register is saved at OFFSET from the CFA;
805 otherwise it is saved in SREG. */
806
807 static void
808 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
809 {
810 dw_cfi_ref cfi = new_cfi ();
811
812 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
813
814 if (sreg == INVALID_REGNUM)
815 {
816 if (reg & ~0x3f)
817 /* The register number won't fit in 6 bits, so we have to use
818 the long form. */
819 cfi->dw_cfi_opc = DW_CFA_offset_extended;
820 else
821 cfi->dw_cfi_opc = DW_CFA_offset;
822
823 #ifdef ENABLE_CHECKING
824 {
825 /* If we get an offset that is not a multiple of
826 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
827 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
828 description. */
829 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
830
831 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
832 }
833 #endif
834 offset /= DWARF_CIE_DATA_ALIGNMENT;
835 if (offset < 0)
836 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
837
838 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
839 }
840 else if (sreg == reg)
841 cfi->dw_cfi_opc = DW_CFA_same_value;
842 else
843 {
844 cfi->dw_cfi_opc = DW_CFA_register;
845 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
846 }
847
848 add_fde_cfi (label, cfi);
849 }
850
851 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
852 This CFI tells the unwinder that it needs to restore the window registers
853 from the previous frame's window save area.
854
855 ??? Perhaps we should note in the CIE where windows are saved (instead of
856 assuming 0(cfa)) and what registers are in the window. */
857
858 void
859 dwarf2out_window_save (const char *label)
860 {
861 dw_cfi_ref cfi = new_cfi ();
862
863 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
864 add_fde_cfi (label, cfi);
865 }
866
867 /* Add a CFI to update the running total of the size of arguments
868 pushed onto the stack. */
869
870 void
871 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
872 {
873 dw_cfi_ref cfi;
874
875 if (size == old_args_size)
876 return;
877
878 old_args_size = size;
879
880 cfi = new_cfi ();
881 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
882 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
883 add_fde_cfi (label, cfi);
884 }
885
886 /* Entry point for saving a register to the stack. REG is the GCC register
887 number. LABEL and OFFSET are passed to reg_save. */
888
889 void
890 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
891 {
892 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
893 }
894
895 /* Entry point for saving the return address in the stack.
896 LABEL and OFFSET are passed to reg_save. */
897
898 void
899 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
900 {
901 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
902 }
903
904 /* Entry point for saving the return address in a register.
905 LABEL and SREG are passed to reg_save. */
906
907 void
908 dwarf2out_return_reg (const char *label, unsigned int sreg)
909 {
910 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
911 }
912
913 /* Record the initial position of the return address. RTL is
914 INCOMING_RETURN_ADDR_RTX. */
915
916 static void
917 initial_return_save (rtx rtl)
918 {
919 unsigned int reg = INVALID_REGNUM;
920 HOST_WIDE_INT offset = 0;
921
922 switch (GET_CODE (rtl))
923 {
924 case REG:
925 /* RA is in a register. */
926 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
927 break;
928
929 case MEM:
930 /* RA is on the stack. */
931 rtl = XEXP (rtl, 0);
932 switch (GET_CODE (rtl))
933 {
934 case REG:
935 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
936 offset = 0;
937 break;
938
939 case PLUS:
940 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
941 offset = INTVAL (XEXP (rtl, 1));
942 break;
943
944 case MINUS:
945 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
946 offset = -INTVAL (XEXP (rtl, 1));
947 break;
948
949 default:
950 gcc_unreachable ();
951 }
952
953 break;
954
955 case PLUS:
956 /* The return address is at some offset from any value we can
957 actually load. For instance, on the SPARC it is in %i7+8. Just
958 ignore the offset for now; it doesn't matter for unwinding frames. */
959 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
960 initial_return_save (XEXP (rtl, 0));
961 return;
962
963 default:
964 gcc_unreachable ();
965 }
966
967 if (reg != DWARF_FRAME_RETURN_COLUMN)
968 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
969 }
970
971 /* Given a SET, calculate the amount of stack adjustment it
972 contains. */
973
974 static HOST_WIDE_INT
975 stack_adjust_offset (rtx pattern)
976 {
977 rtx src = SET_SRC (pattern);
978 rtx dest = SET_DEST (pattern);
979 HOST_WIDE_INT offset = 0;
980 enum rtx_code code;
981
982 if (dest == stack_pointer_rtx)
983 {
984 /* (set (reg sp) (plus (reg sp) (const_int))) */
985 code = GET_CODE (src);
986 if (! (code == PLUS || code == MINUS)
987 || XEXP (src, 0) != stack_pointer_rtx
988 || GET_CODE (XEXP (src, 1)) != CONST_INT)
989 return 0;
990
991 offset = INTVAL (XEXP (src, 1));
992 if (code == PLUS)
993 offset = -offset;
994 }
995 else if (MEM_P (dest))
996 {
997 /* (set (mem (pre_dec (reg sp))) (foo)) */
998 src = XEXP (dest, 0);
999 code = GET_CODE (src);
1000
1001 switch (code)
1002 {
1003 case PRE_MODIFY:
1004 case POST_MODIFY:
1005 if (XEXP (src, 0) == stack_pointer_rtx)
1006 {
1007 rtx val = XEXP (XEXP (src, 1), 1);
1008 /* We handle only adjustments by constant amount. */
1009 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1010 && GET_CODE (val) == CONST_INT);
1011 offset = -INTVAL (val);
1012 break;
1013 }
1014 return 0;
1015
1016 case PRE_DEC:
1017 case POST_DEC:
1018 if (XEXP (src, 0) == stack_pointer_rtx)
1019 {
1020 offset = GET_MODE_SIZE (GET_MODE (dest));
1021 break;
1022 }
1023 return 0;
1024
1025 case PRE_INC:
1026 case POST_INC:
1027 if (XEXP (src, 0) == stack_pointer_rtx)
1028 {
1029 offset = -GET_MODE_SIZE (GET_MODE (dest));
1030 break;
1031 }
1032 return 0;
1033
1034 default:
1035 return 0;
1036 }
1037 }
1038 else
1039 return 0;
1040
1041 return offset;
1042 }
1043
1044 /* Check INSN to see if it looks like a push or a stack adjustment, and
1045 make a note of it if it does. EH uses this information to find out how
1046 much extra space it needs to pop off the stack. */
1047
1048 static void
1049 dwarf2out_stack_adjust (rtx insn)
1050 {
1051 HOST_WIDE_INT offset;
1052 const char *label;
1053 int i;
1054
1055 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1056 with this function. Proper support would require all frame-related
1057 insns to be marked, and to be able to handle saving state around
1058 epilogues textually in the middle of the function. */
1059 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1060 return;
1061
1062 if (!flag_asynchronous_unwind_tables && CALL_P (insn))
1063 {
1064 /* Extract the size of the args from the CALL rtx itself. */
1065 insn = PATTERN (insn);
1066 if (GET_CODE (insn) == PARALLEL)
1067 insn = XVECEXP (insn, 0, 0);
1068 if (GET_CODE (insn) == SET)
1069 insn = SET_SRC (insn);
1070 gcc_assert (GET_CODE (insn) == CALL);
1071
1072 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1073 return;
1074 }
1075
1076 /* If only calls can throw, and we have a frame pointer,
1077 save up adjustments until we see the CALL_INSN. */
1078 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1079 return;
1080
1081 if (BARRIER_P (insn))
1082 {
1083 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1084 the compiler will have already emitted a stack adjustment, but
1085 doesn't bother for calls to noreturn functions. */
1086 #ifdef STACK_GROWS_DOWNWARD
1087 offset = -args_size;
1088 #else
1089 offset = args_size;
1090 #endif
1091 }
1092 else if (GET_CODE (PATTERN (insn)) == SET)
1093 offset = stack_adjust_offset (PATTERN (insn));
1094 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1095 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1096 {
1097 /* There may be stack adjustments inside compound insns. Search
1098 for them. */
1099 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1100 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1101 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1102 }
1103 else
1104 return;
1105
1106 if (offset == 0)
1107 return;
1108
1109 if (cfa.reg == STACK_POINTER_REGNUM)
1110 cfa.offset += offset;
1111
1112 #ifndef STACK_GROWS_DOWNWARD
1113 offset = -offset;
1114 #endif
1115
1116 args_size += offset;
1117 if (args_size < 0)
1118 args_size = 0;
1119
1120 label = dwarf2out_cfi_label ();
1121 def_cfa_1 (label, &cfa);
1122 dwarf2out_args_size (label, args_size);
1123 }
1124
1125 #endif
1126
1127 /* We delay emitting a register save until either (a) we reach the end
1128 of the prologue or (b) the register is clobbered. This clusters
1129 register saves so that there are fewer pc advances. */
1130
1131 struct queued_reg_save GTY(())
1132 {
1133 struct queued_reg_save *next;
1134 rtx reg;
1135 HOST_WIDE_INT cfa_offset;
1136 rtx saved_reg;
1137 };
1138
1139 static GTY(()) struct queued_reg_save *queued_reg_saves;
1140
1141 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1142 struct reg_saved_in_data GTY(()) {
1143 rtx orig_reg;
1144 rtx saved_in_reg;
1145 };
1146
1147 /* A list of registers saved in other registers.
1148 The list intentionally has a small maximum capacity of 4; if your
1149 port needs more than that, you might consider implementing a
1150 more efficient data structure. */
1151 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1152 static GTY(()) size_t num_regs_saved_in_regs;
1153
1154 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1155 static const char *last_reg_save_label;
1156
1157 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1158 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1159
1160 static void
1161 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1162 {
1163 struct queued_reg_save *q;
1164
1165 /* Duplicates waste space, but it's also necessary to remove them
1166 for correctness, since the queue gets output in reverse
1167 order. */
1168 for (q = queued_reg_saves; q != NULL; q = q->next)
1169 if (REGNO (q->reg) == REGNO (reg))
1170 break;
1171
1172 if (q == NULL)
1173 {
1174 q = ggc_alloc (sizeof (*q));
1175 q->next = queued_reg_saves;
1176 queued_reg_saves = q;
1177 }
1178
1179 q->reg = reg;
1180 q->cfa_offset = offset;
1181 q->saved_reg = sreg;
1182
1183 last_reg_save_label = label;
1184 }
1185
1186 /* Output all the entries in QUEUED_REG_SAVES. */
1187
1188 static void
1189 flush_queued_reg_saves (void)
1190 {
1191 struct queued_reg_save *q;
1192
1193 for (q = queued_reg_saves; q; q = q->next)
1194 {
1195 size_t i;
1196 unsigned int reg, sreg;
1197
1198 for (i = 0; i < num_regs_saved_in_regs; i++)
1199 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1200 break;
1201 if (q->saved_reg && i == num_regs_saved_in_regs)
1202 {
1203 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1204 num_regs_saved_in_regs++;
1205 }
1206 if (i != num_regs_saved_in_regs)
1207 {
1208 regs_saved_in_regs[i].orig_reg = q->reg;
1209 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1210 }
1211
1212 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1213 if (q->saved_reg)
1214 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1215 else
1216 sreg = INVALID_REGNUM;
1217 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1218 }
1219
1220 queued_reg_saves = NULL;
1221 last_reg_save_label = NULL;
1222 }
1223
1224 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1225 location for? Or, does it clobber a register which we've previously
1226 said that some other register is saved in, and for which we now
1227 have a new location for? */
1228
1229 static bool
1230 clobbers_queued_reg_save (rtx insn)
1231 {
1232 struct queued_reg_save *q;
1233
1234 for (q = queued_reg_saves; q; q = q->next)
1235 {
1236 size_t i;
1237 if (modified_in_p (q->reg, insn))
1238 return true;
1239 for (i = 0; i < num_regs_saved_in_regs; i++)
1240 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1241 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1242 return true;
1243 }
1244
1245 return false;
1246 }
1247
1248 /* What register, if any, is currently saved in REG? */
1249
1250 static rtx
1251 reg_saved_in (rtx reg)
1252 {
1253 unsigned int regn = REGNO (reg);
1254 size_t i;
1255 struct queued_reg_save *q;
1256
1257 for (q = queued_reg_saves; q; q = q->next)
1258 if (q->saved_reg && regn == REGNO (q->saved_reg))
1259 return q->reg;
1260
1261 for (i = 0; i < num_regs_saved_in_regs; i++)
1262 if (regs_saved_in_regs[i].saved_in_reg
1263 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1264 return regs_saved_in_regs[i].orig_reg;
1265
1266 return NULL_RTX;
1267 }
1268
1269
1270 /* A temporary register holding an integral value used in adjusting SP
1271 or setting up the store_reg. The "offset" field holds the integer
1272 value, not an offset. */
1273 static dw_cfa_location cfa_temp;
1274
1275 /* Record call frame debugging information for an expression EXPR,
1276 which either sets SP or FP (adjusting how we calculate the frame
1277 address) or saves a register to the stack or another register.
1278 LABEL indicates the address of EXPR.
1279
1280 This function encodes a state machine mapping rtxes to actions on
1281 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1282 users need not read the source code.
1283
1284 The High-Level Picture
1285
1286 Changes in the register we use to calculate the CFA: Currently we
1287 assume that if you copy the CFA register into another register, we
1288 should take the other one as the new CFA register; this seems to
1289 work pretty well. If it's wrong for some target, it's simple
1290 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1291
1292 Changes in the register we use for saving registers to the stack:
1293 This is usually SP, but not always. Again, we deduce that if you
1294 copy SP into another register (and SP is not the CFA register),
1295 then the new register is the one we will be using for register
1296 saves. This also seems to work.
1297
1298 Register saves: There's not much guesswork about this one; if
1299 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1300 register save, and the register used to calculate the destination
1301 had better be the one we think we're using for this purpose.
1302 It's also assumed that a copy from a call-saved register to another
1303 register is saving that register if RTX_FRAME_RELATED_P is set on
1304 that instruction. If the copy is from a call-saved register to
1305 the *same* register, that means that the register is now the same
1306 value as in the caller.
1307
1308 Except: If the register being saved is the CFA register, and the
1309 offset is nonzero, we are saving the CFA, so we assume we have to
1310 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1311 the intent is to save the value of SP from the previous frame.
1312
1313 In addition, if a register has previously been saved to a different
1314 register,
1315
1316 Invariants / Summaries of Rules
1317
1318 cfa current rule for calculating the CFA. It usually
1319 consists of a register and an offset.
1320 cfa_store register used by prologue code to save things to the stack
1321 cfa_store.offset is the offset from the value of
1322 cfa_store.reg to the actual CFA
1323 cfa_temp register holding an integral value. cfa_temp.offset
1324 stores the value, which will be used to adjust the
1325 stack pointer. cfa_temp is also used like cfa_store,
1326 to track stores to the stack via fp or a temp reg.
1327
1328 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1329 with cfa.reg as the first operand changes the cfa.reg and its
1330 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1331 cfa_temp.offset.
1332
1333 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1334 expression yielding a constant. This sets cfa_temp.reg
1335 and cfa_temp.offset.
1336
1337 Rule 5: Create a new register cfa_store used to save items to the
1338 stack.
1339
1340 Rules 10-14: Save a register to the stack. Define offset as the
1341 difference of the original location and cfa_store's
1342 location (or cfa_temp's location if cfa_temp is used).
1343
1344 The Rules
1345
1346 "{a,b}" indicates a choice of a xor b.
1347 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1348
1349 Rule 1:
1350 (set <reg1> <reg2>:cfa.reg)
1351 effects: cfa.reg = <reg1>
1352 cfa.offset unchanged
1353 cfa_temp.reg = <reg1>
1354 cfa_temp.offset = cfa.offset
1355
1356 Rule 2:
1357 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1358 {<const_int>,<reg>:cfa_temp.reg}))
1359 effects: cfa.reg = sp if fp used
1360 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1361 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1362 if cfa_store.reg==sp
1363
1364 Rule 3:
1365 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1366 effects: cfa.reg = fp
1367 cfa_offset += +/- <const_int>
1368
1369 Rule 4:
1370 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1371 constraints: <reg1> != fp
1372 <reg1> != sp
1373 effects: cfa.reg = <reg1>
1374 cfa_temp.reg = <reg1>
1375 cfa_temp.offset = cfa.offset
1376
1377 Rule 5:
1378 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1379 constraints: <reg1> != fp
1380 <reg1> != sp
1381 effects: cfa_store.reg = <reg1>
1382 cfa_store.offset = cfa.offset - cfa_temp.offset
1383
1384 Rule 6:
1385 (set <reg> <const_int>)
1386 effects: cfa_temp.reg = <reg>
1387 cfa_temp.offset = <const_int>
1388
1389 Rule 7:
1390 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1391 effects: cfa_temp.reg = <reg1>
1392 cfa_temp.offset |= <const_int>
1393
1394 Rule 8:
1395 (set <reg> (high <exp>))
1396 effects: none
1397
1398 Rule 9:
1399 (set <reg> (lo_sum <exp> <const_int>))
1400 effects: cfa_temp.reg = <reg>
1401 cfa_temp.offset = <const_int>
1402
1403 Rule 10:
1404 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1405 effects: cfa_store.offset -= <const_int>
1406 cfa.offset = cfa_store.offset if cfa.reg == sp
1407 cfa.reg = sp
1408 cfa.base_offset = -cfa_store.offset
1409
1410 Rule 11:
1411 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1412 effects: cfa_store.offset += -/+ mode_size(mem)
1413 cfa.offset = cfa_store.offset if cfa.reg == sp
1414 cfa.reg = sp
1415 cfa.base_offset = -cfa_store.offset
1416
1417 Rule 12:
1418 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1419
1420 <reg2>)
1421 effects: cfa.reg = <reg1>
1422 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1423
1424 Rule 13:
1425 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1426 effects: cfa.reg = <reg1>
1427 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1428
1429 Rule 14:
1430 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1431 effects: cfa.reg = <reg1>
1432 cfa.base_offset = -cfa_temp.offset
1433 cfa_temp.offset -= mode_size(mem) */
1434
1435 static void
1436 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1437 {
1438 rtx src, dest;
1439 HOST_WIDE_INT offset;
1440
1441 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1442 the PARALLEL independently. The first element is always processed if
1443 it is a SET. This is for backward compatibility. Other elements
1444 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1445 flag is set in them. */
1446 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1447 {
1448 int par_index;
1449 int limit = XVECLEN (expr, 0);
1450
1451 for (par_index = 0; par_index < limit; par_index++)
1452 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1453 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1454 || par_index == 0))
1455 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1456
1457 return;
1458 }
1459
1460 gcc_assert (GET_CODE (expr) == SET);
1461
1462 src = SET_SRC (expr);
1463 dest = SET_DEST (expr);
1464
1465 if (GET_CODE (src) == REG)
1466 {
1467 rtx rsi = reg_saved_in (src);
1468 if (rsi)
1469 src = rsi;
1470 }
1471
1472 switch (GET_CODE (dest))
1473 {
1474 case REG:
1475 switch (GET_CODE (src))
1476 {
1477 /* Setting FP from SP. */
1478 case REG:
1479 if (cfa.reg == (unsigned) REGNO (src))
1480 {
1481 /* Rule 1 */
1482 /* Update the CFA rule wrt SP or FP. Make sure src is
1483 relative to the current CFA register.
1484
1485 We used to require that dest be either SP or FP, but the
1486 ARM copies SP to a temporary register, and from there to
1487 FP. So we just rely on the backends to only set
1488 RTX_FRAME_RELATED_P on appropriate insns. */
1489 cfa.reg = REGNO (dest);
1490 cfa_temp.reg = cfa.reg;
1491 cfa_temp.offset = cfa.offset;
1492 }
1493 else
1494 {
1495 /* Saving a register in a register. */
1496 gcc_assert (call_used_regs [REGNO (dest)]
1497 && !fixed_regs [REGNO (dest)]);
1498 queue_reg_save (label, src, dest, 0);
1499 }
1500 break;
1501
1502 case PLUS:
1503 case MINUS:
1504 case LO_SUM:
1505 if (dest == stack_pointer_rtx)
1506 {
1507 /* Rule 2 */
1508 /* Adjusting SP. */
1509 switch (GET_CODE (XEXP (src, 1)))
1510 {
1511 case CONST_INT:
1512 offset = INTVAL (XEXP (src, 1));
1513 break;
1514 case REG:
1515 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1516 == cfa_temp.reg);
1517 offset = cfa_temp.offset;
1518 break;
1519 default:
1520 gcc_unreachable ();
1521 }
1522
1523 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1524 {
1525 /* Restoring SP from FP in the epilogue. */
1526 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1527 cfa.reg = STACK_POINTER_REGNUM;
1528 }
1529 else if (GET_CODE (src) == LO_SUM)
1530 /* Assume we've set the source reg of the LO_SUM from sp. */
1531 ;
1532 else
1533 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1534
1535 if (GET_CODE (src) != MINUS)
1536 offset = -offset;
1537 if (cfa.reg == STACK_POINTER_REGNUM)
1538 cfa.offset += offset;
1539 if (cfa_store.reg == STACK_POINTER_REGNUM)
1540 cfa_store.offset += offset;
1541 }
1542 else if (dest == hard_frame_pointer_rtx)
1543 {
1544 /* Rule 3 */
1545 /* Either setting the FP from an offset of the SP,
1546 or adjusting the FP */
1547 gcc_assert (frame_pointer_needed);
1548
1549 gcc_assert (REG_P (XEXP (src, 0))
1550 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1551 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1552 offset = INTVAL (XEXP (src, 1));
1553 if (GET_CODE (src) != MINUS)
1554 offset = -offset;
1555 cfa.offset += offset;
1556 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1557 }
1558 else
1559 {
1560 gcc_assert (GET_CODE (src) != MINUS);
1561
1562 /* Rule 4 */
1563 if (REG_P (XEXP (src, 0))
1564 && REGNO (XEXP (src, 0)) == cfa.reg
1565 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1566 {
1567 /* Setting a temporary CFA register that will be copied
1568 into the FP later on. */
1569 offset = - INTVAL (XEXP (src, 1));
1570 cfa.offset += offset;
1571 cfa.reg = REGNO (dest);
1572 /* Or used to save regs to the stack. */
1573 cfa_temp.reg = cfa.reg;
1574 cfa_temp.offset = cfa.offset;
1575 }
1576
1577 /* Rule 5 */
1578 else if (REG_P (XEXP (src, 0))
1579 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1580 && XEXP (src, 1) == stack_pointer_rtx)
1581 {
1582 /* Setting a scratch register that we will use instead
1583 of SP for saving registers to the stack. */
1584 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1585 cfa_store.reg = REGNO (dest);
1586 cfa_store.offset = cfa.offset - cfa_temp.offset;
1587 }
1588
1589 /* Rule 9 */
1590 else if (GET_CODE (src) == LO_SUM
1591 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1592 {
1593 cfa_temp.reg = REGNO (dest);
1594 cfa_temp.offset = INTVAL (XEXP (src, 1));
1595 }
1596 else
1597 gcc_unreachable ();
1598 }
1599 break;
1600
1601 /* Rule 6 */
1602 case CONST_INT:
1603 cfa_temp.reg = REGNO (dest);
1604 cfa_temp.offset = INTVAL (src);
1605 break;
1606
1607 /* Rule 7 */
1608 case IOR:
1609 gcc_assert (REG_P (XEXP (src, 0))
1610 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1611 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1612
1613 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1614 cfa_temp.reg = REGNO (dest);
1615 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1616 break;
1617
1618 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1619 which will fill in all of the bits. */
1620 /* Rule 8 */
1621 case HIGH:
1622 break;
1623
1624 default:
1625 gcc_unreachable ();
1626 }
1627
1628 def_cfa_1 (label, &cfa);
1629 break;
1630
1631 case MEM:
1632 gcc_assert (REG_P (src));
1633
1634 /* Saving a register to the stack. Make sure dest is relative to the
1635 CFA register. */
1636 switch (GET_CODE (XEXP (dest, 0)))
1637 {
1638 /* Rule 10 */
1639 /* With a push. */
1640 case PRE_MODIFY:
1641 /* We can't handle variable size modifications. */
1642 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1643 == CONST_INT);
1644 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1645
1646 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1647 && cfa_store.reg == STACK_POINTER_REGNUM);
1648
1649 cfa_store.offset += offset;
1650 if (cfa.reg == STACK_POINTER_REGNUM)
1651 cfa.offset = cfa_store.offset;
1652
1653 offset = -cfa_store.offset;
1654 break;
1655
1656 /* Rule 11 */
1657 case PRE_INC:
1658 case PRE_DEC:
1659 offset = GET_MODE_SIZE (GET_MODE (dest));
1660 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1661 offset = -offset;
1662
1663 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1664 && cfa_store.reg == STACK_POINTER_REGNUM);
1665
1666 cfa_store.offset += offset;
1667 if (cfa.reg == STACK_POINTER_REGNUM)
1668 cfa.offset = cfa_store.offset;
1669
1670 offset = -cfa_store.offset;
1671 break;
1672
1673 /* Rule 12 */
1674 /* With an offset. */
1675 case PLUS:
1676 case MINUS:
1677 case LO_SUM:
1678 {
1679 int regno;
1680
1681 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1682 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1683 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1684 offset = -offset;
1685
1686 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1687
1688 if (cfa_store.reg == (unsigned) regno)
1689 offset -= cfa_store.offset;
1690 else
1691 {
1692 gcc_assert (cfa_temp.reg == (unsigned) regno);
1693 offset -= cfa_temp.offset;
1694 }
1695 }
1696 break;
1697
1698 /* Rule 13 */
1699 /* Without an offset. */
1700 case REG:
1701 {
1702 int regno = REGNO (XEXP (dest, 0));
1703
1704 if (cfa_store.reg == (unsigned) regno)
1705 offset = -cfa_store.offset;
1706 else
1707 {
1708 gcc_assert (cfa_temp.reg == (unsigned) regno);
1709 offset = -cfa_temp.offset;
1710 }
1711 }
1712 break;
1713
1714 /* Rule 14 */
1715 case POST_INC:
1716 gcc_assert (cfa_temp.reg
1717 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1718 offset = -cfa_temp.offset;
1719 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1720 break;
1721
1722 default:
1723 gcc_unreachable ();
1724 }
1725
1726 if (REGNO (src) != STACK_POINTER_REGNUM
1727 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1728 && (unsigned) REGNO (src) == cfa.reg)
1729 {
1730 /* We're storing the current CFA reg into the stack. */
1731
1732 if (cfa.offset == 0)
1733 {
1734 /* If the source register is exactly the CFA, assume
1735 we're saving SP like any other register; this happens
1736 on the ARM. */
1737 def_cfa_1 (label, &cfa);
1738 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1739 break;
1740 }
1741 else
1742 {
1743 /* Otherwise, we'll need to look in the stack to
1744 calculate the CFA. */
1745 rtx x = XEXP (dest, 0);
1746
1747 if (!REG_P (x))
1748 x = XEXP (x, 0);
1749 gcc_assert (REG_P (x));
1750
1751 cfa.reg = REGNO (x);
1752 cfa.base_offset = offset;
1753 cfa.indirect = 1;
1754 def_cfa_1 (label, &cfa);
1755 break;
1756 }
1757 }
1758
1759 def_cfa_1 (label, &cfa);
1760 queue_reg_save (label, src, NULL_RTX, offset);
1761 break;
1762
1763 default:
1764 gcc_unreachable ();
1765 }
1766 }
1767
1768 /* Record call frame debugging information for INSN, which either
1769 sets SP or FP (adjusting how we calculate the frame address) or saves a
1770 register to the stack. If INSN is NULL_RTX, initialize our state. */
1771
1772 void
1773 dwarf2out_frame_debug (rtx insn)
1774 {
1775 const char *label;
1776 rtx src;
1777
1778 if (insn == NULL_RTX)
1779 {
1780 size_t i;
1781
1782 /* Flush any queued register saves. */
1783 flush_queued_reg_saves ();
1784
1785 /* Set up state for generating call frame debug info. */
1786 lookup_cfa (&cfa);
1787 gcc_assert (cfa.reg
1788 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1789
1790 cfa.reg = STACK_POINTER_REGNUM;
1791 cfa_store = cfa;
1792 cfa_temp.reg = -1;
1793 cfa_temp.offset = 0;
1794
1795 for (i = 0; i < num_regs_saved_in_regs; i++)
1796 {
1797 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1798 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1799 }
1800 num_regs_saved_in_regs = 0;
1801 return;
1802 }
1803
1804 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1805 flush_queued_reg_saves ();
1806
1807 if (! RTX_FRAME_RELATED_P (insn))
1808 {
1809 if (!ACCUMULATE_OUTGOING_ARGS)
1810 dwarf2out_stack_adjust (insn);
1811
1812 return;
1813 }
1814
1815 label = dwarf2out_cfi_label ();
1816 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1817 if (src)
1818 insn = XEXP (src, 0);
1819 else
1820 insn = PATTERN (insn);
1821
1822 dwarf2out_frame_debug_expr (insn, label);
1823 }
1824
1825 #endif
1826
1827 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1828 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1829 (enum dwarf_call_frame_info cfi);
1830
1831 static enum dw_cfi_oprnd_type
1832 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1833 {
1834 switch (cfi)
1835 {
1836 case DW_CFA_nop:
1837 case DW_CFA_GNU_window_save:
1838 return dw_cfi_oprnd_unused;
1839
1840 case DW_CFA_set_loc:
1841 case DW_CFA_advance_loc1:
1842 case DW_CFA_advance_loc2:
1843 case DW_CFA_advance_loc4:
1844 case DW_CFA_MIPS_advance_loc8:
1845 return dw_cfi_oprnd_addr;
1846
1847 case DW_CFA_offset:
1848 case DW_CFA_offset_extended:
1849 case DW_CFA_def_cfa:
1850 case DW_CFA_offset_extended_sf:
1851 case DW_CFA_def_cfa_sf:
1852 case DW_CFA_restore_extended:
1853 case DW_CFA_undefined:
1854 case DW_CFA_same_value:
1855 case DW_CFA_def_cfa_register:
1856 case DW_CFA_register:
1857 return dw_cfi_oprnd_reg_num;
1858
1859 case DW_CFA_def_cfa_offset:
1860 case DW_CFA_GNU_args_size:
1861 case DW_CFA_def_cfa_offset_sf:
1862 return dw_cfi_oprnd_offset;
1863
1864 case DW_CFA_def_cfa_expression:
1865 case DW_CFA_expression:
1866 return dw_cfi_oprnd_loc;
1867
1868 default:
1869 gcc_unreachable ();
1870 }
1871 }
1872
1873 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1874 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1875 (enum dwarf_call_frame_info cfi);
1876
1877 static enum dw_cfi_oprnd_type
1878 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1879 {
1880 switch (cfi)
1881 {
1882 case DW_CFA_def_cfa:
1883 case DW_CFA_def_cfa_sf:
1884 case DW_CFA_offset:
1885 case DW_CFA_offset_extended_sf:
1886 case DW_CFA_offset_extended:
1887 return dw_cfi_oprnd_offset;
1888
1889 case DW_CFA_register:
1890 return dw_cfi_oprnd_reg_num;
1891
1892 default:
1893 return dw_cfi_oprnd_unused;
1894 }
1895 }
1896
1897 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1898
1899 /* Map register numbers held in the call frame info that gcc has
1900 collected using DWARF_FRAME_REGNUM to those that should be output in
1901 .debug_frame and .eh_frame. */
1902 #ifndef DWARF2_FRAME_REG_OUT
1903 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1904 #endif
1905
1906 /* Output a Call Frame Information opcode and its operand(s). */
1907
1908 static void
1909 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1910 {
1911 unsigned long r;
1912 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1913 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1914 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1915 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1916 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1917 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1918 {
1919 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1920 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1921 "DW_CFA_offset, column 0x%lx", r);
1922 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1923 }
1924 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1925 {
1926 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1927 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1928 "DW_CFA_restore, column 0x%lx", r);
1929 }
1930 else
1931 {
1932 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1933 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1934
1935 switch (cfi->dw_cfi_opc)
1936 {
1937 case DW_CFA_set_loc:
1938 if (for_eh)
1939 dw2_asm_output_encoded_addr_rtx (
1940 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1941 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1942 NULL);
1943 else
1944 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1945 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1946 break;
1947
1948 case DW_CFA_advance_loc1:
1949 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1950 fde->dw_fde_current_label, NULL);
1951 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1952 break;
1953
1954 case DW_CFA_advance_loc2:
1955 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1956 fde->dw_fde_current_label, NULL);
1957 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1958 break;
1959
1960 case DW_CFA_advance_loc4:
1961 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1962 fde->dw_fde_current_label, NULL);
1963 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1964 break;
1965
1966 case DW_CFA_MIPS_advance_loc8:
1967 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1968 fde->dw_fde_current_label, NULL);
1969 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1970 break;
1971
1972 case DW_CFA_offset_extended:
1973 case DW_CFA_def_cfa:
1974 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1975 dw2_asm_output_data_uleb128 (r, NULL);
1976 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1977 break;
1978
1979 case DW_CFA_offset_extended_sf:
1980 case DW_CFA_def_cfa_sf:
1981 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1982 dw2_asm_output_data_uleb128 (r, NULL);
1983 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1984 break;
1985
1986 case DW_CFA_restore_extended:
1987 case DW_CFA_undefined:
1988 case DW_CFA_same_value:
1989 case DW_CFA_def_cfa_register:
1990 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1991 dw2_asm_output_data_uleb128 (r, NULL);
1992 break;
1993
1994 case DW_CFA_register:
1995 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1996 dw2_asm_output_data_uleb128 (r, NULL);
1997 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
1998 dw2_asm_output_data_uleb128 (r, NULL);
1999 break;
2000
2001 case DW_CFA_def_cfa_offset:
2002 case DW_CFA_GNU_args_size:
2003 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2004 break;
2005
2006 case DW_CFA_def_cfa_offset_sf:
2007 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2008 break;
2009
2010 case DW_CFA_GNU_window_save:
2011 break;
2012
2013 case DW_CFA_def_cfa_expression:
2014 case DW_CFA_expression:
2015 output_cfa_loc (cfi);
2016 break;
2017
2018 case DW_CFA_GNU_negative_offset_extended:
2019 /* Obsoleted by DW_CFA_offset_extended_sf. */
2020 gcc_unreachable ();
2021
2022 default:
2023 break;
2024 }
2025 }
2026 }
2027
2028 /* Output the call frame information used to record information
2029 that relates to calculating the frame pointer, and records the
2030 location of saved registers. */
2031
2032 static void
2033 output_call_frame_info (int for_eh)
2034 {
2035 unsigned int i;
2036 dw_fde_ref fde;
2037 dw_cfi_ref cfi;
2038 char l1[20], l2[20], section_start_label[20];
2039 bool any_lsda_needed = false;
2040 char augmentation[6];
2041 int augmentation_size;
2042 int fde_encoding = DW_EH_PE_absptr;
2043 int per_encoding = DW_EH_PE_absptr;
2044 int lsda_encoding = DW_EH_PE_absptr;
2045
2046 /* Don't emit a CIE if there won't be any FDEs. */
2047 if (fde_table_in_use == 0)
2048 return;
2049
2050 /* If we make FDEs linkonce, we may have to emit an empty label for
2051 an FDE that wouldn't otherwise be emitted. We want to avoid
2052 having an FDE kept around when the function it refers to is
2053 discarded. (Example where this matters: a primary function
2054 template in C++ requires EH information, but an explicit
2055 specialization doesn't. */
2056 if (TARGET_USES_WEAK_UNWIND_INFO
2057 && ! flag_asynchronous_unwind_tables
2058 && for_eh)
2059 for (i = 0; i < fde_table_in_use; i++)
2060 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2061 && !fde_table[i].uses_eh_lsda
2062 && ! DECL_ONE_ONLY (fde_table[i].decl))
2063 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2064 for_eh, /* empty */ 1);
2065
2066 /* If we don't have any functions we'll want to unwind out of, don't
2067 emit any EH unwind information. Note that if exceptions aren't
2068 enabled, we won't have collected nothrow information, and if we
2069 asked for asynchronous tables, we always want this info. */
2070 if (for_eh)
2071 {
2072 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2073
2074 for (i = 0; i < fde_table_in_use; i++)
2075 if (fde_table[i].uses_eh_lsda)
2076 any_eh_needed = any_lsda_needed = true;
2077 else if (TARGET_USES_WEAK_UNWIND_INFO
2078 && DECL_ONE_ONLY (fde_table[i].decl))
2079 any_eh_needed = true;
2080 else if (! fde_table[i].nothrow
2081 && ! fde_table[i].all_throwers_are_sibcalls)
2082 any_eh_needed = true;
2083
2084 if (! any_eh_needed)
2085 return;
2086 }
2087
2088 /* We're going to be generating comments, so turn on app. */
2089 if (flag_debug_asm)
2090 app_enable ();
2091
2092 if (for_eh)
2093 targetm.asm_out.eh_frame_section ();
2094 else
2095 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2096
2097 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2098 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2099
2100 /* Output the CIE. */
2101 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2102 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2103 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2104 "Length of Common Information Entry");
2105 ASM_OUTPUT_LABEL (asm_out_file, l1);
2106
2107 /* Now that the CIE pointer is PC-relative for EH,
2108 use 0 to identify the CIE. */
2109 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2110 (for_eh ? 0 : DW_CIE_ID),
2111 "CIE Identifier Tag");
2112
2113 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2114
2115 augmentation[0] = 0;
2116 augmentation_size = 0;
2117 if (for_eh)
2118 {
2119 char *p;
2120
2121 /* Augmentation:
2122 z Indicates that a uleb128 is present to size the
2123 augmentation section.
2124 L Indicates the encoding (and thus presence) of
2125 an LSDA pointer in the FDE augmentation.
2126 R Indicates a non-default pointer encoding for
2127 FDE code pointers.
2128 P Indicates the presence of an encoding + language
2129 personality routine in the CIE augmentation. */
2130
2131 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2132 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2133 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2134
2135 p = augmentation + 1;
2136 if (eh_personality_libfunc)
2137 {
2138 *p++ = 'P';
2139 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2140 }
2141 if (any_lsda_needed)
2142 {
2143 *p++ = 'L';
2144 augmentation_size += 1;
2145 }
2146 if (fde_encoding != DW_EH_PE_absptr)
2147 {
2148 *p++ = 'R';
2149 augmentation_size += 1;
2150 }
2151 if (p > augmentation + 1)
2152 {
2153 augmentation[0] = 'z';
2154 *p = '\0';
2155 }
2156
2157 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2158 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2159 {
2160 int offset = ( 4 /* Length */
2161 + 4 /* CIE Id */
2162 + 1 /* CIE version */
2163 + strlen (augmentation) + 1 /* Augmentation */
2164 + size_of_uleb128 (1) /* Code alignment */
2165 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2166 + 1 /* RA column */
2167 + 1 /* Augmentation size */
2168 + 1 /* Personality encoding */ );
2169 int pad = -offset & (PTR_SIZE - 1);
2170
2171 augmentation_size += pad;
2172
2173 /* Augmentations should be small, so there's scarce need to
2174 iterate for a solution. Die if we exceed one uleb128 byte. */
2175 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2176 }
2177 }
2178
2179 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2180 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2181 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2182 "CIE Data Alignment Factor");
2183
2184 if (DW_CIE_VERSION == 1)
2185 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2186 else
2187 dw2_asm_output_data_uleb128 (DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2188
2189 if (augmentation[0])
2190 {
2191 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2192 if (eh_personality_libfunc)
2193 {
2194 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2195 eh_data_format_name (per_encoding));
2196 dw2_asm_output_encoded_addr_rtx (per_encoding,
2197 eh_personality_libfunc, NULL);
2198 }
2199
2200 if (any_lsda_needed)
2201 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2202 eh_data_format_name (lsda_encoding));
2203
2204 if (fde_encoding != DW_EH_PE_absptr)
2205 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2206 eh_data_format_name (fde_encoding));
2207 }
2208
2209 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2210 output_cfi (cfi, NULL, for_eh);
2211
2212 /* Pad the CIE out to an address sized boundary. */
2213 ASM_OUTPUT_ALIGN (asm_out_file,
2214 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2215 ASM_OUTPUT_LABEL (asm_out_file, l2);
2216
2217 /* Loop through all of the FDE's. */
2218 for (i = 0; i < fde_table_in_use; i++)
2219 {
2220 fde = &fde_table[i];
2221
2222 /* Don't emit EH unwind info for leaf functions that don't need it. */
2223 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2224 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2225 && (! TARGET_USES_WEAK_UNWIND_INFO || ! DECL_ONE_ONLY (fde->decl))
2226 && !fde->uses_eh_lsda)
2227 continue;
2228
2229 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2230 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2231 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2232 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2233 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2234 "FDE Length");
2235 ASM_OUTPUT_LABEL (asm_out_file, l1);
2236
2237 if (for_eh)
2238 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2239 else
2240 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2241 "FDE CIE offset");
2242
2243 if (for_eh)
2244 {
2245 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2246 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2247 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2248 sym_ref,
2249 "FDE initial location");
2250 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2251 fde->dw_fde_end, fde->dw_fde_begin,
2252 "FDE address range");
2253 }
2254 else
2255 {
2256 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2257 "FDE initial location");
2258 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2259 fde->dw_fde_end, fde->dw_fde_begin,
2260 "FDE address range");
2261 }
2262
2263 if (augmentation[0])
2264 {
2265 if (any_lsda_needed)
2266 {
2267 int size = size_of_encoded_value (lsda_encoding);
2268
2269 if (lsda_encoding == DW_EH_PE_aligned)
2270 {
2271 int offset = ( 4 /* Length */
2272 + 4 /* CIE offset */
2273 + 2 * size_of_encoded_value (fde_encoding)
2274 + 1 /* Augmentation size */ );
2275 int pad = -offset & (PTR_SIZE - 1);
2276
2277 size += pad;
2278 gcc_assert (size_of_uleb128 (size) == 1);
2279 }
2280
2281 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2282
2283 if (fde->uses_eh_lsda)
2284 {
2285 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2286 fde->funcdef_number);
2287 dw2_asm_output_encoded_addr_rtx (
2288 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2289 "Language Specific Data Area");
2290 }
2291 else
2292 {
2293 if (lsda_encoding == DW_EH_PE_aligned)
2294 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2295 dw2_asm_output_data
2296 (size_of_encoded_value (lsda_encoding), 0,
2297 "Language Specific Data Area (none)");
2298 }
2299 }
2300 else
2301 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2302 }
2303
2304 /* Loop through the Call Frame Instructions associated with
2305 this FDE. */
2306 fde->dw_fde_current_label = fde->dw_fde_begin;
2307 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2308 output_cfi (cfi, fde, for_eh);
2309
2310 /* Pad the FDE out to an address sized boundary. */
2311 ASM_OUTPUT_ALIGN (asm_out_file,
2312 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2313 ASM_OUTPUT_LABEL (asm_out_file, l2);
2314 }
2315
2316 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2317 dw2_asm_output_data (4, 0, "End of Table");
2318 #ifdef MIPS_DEBUGGING_INFO
2319 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2320 get a value of 0. Putting .align 0 after the label fixes it. */
2321 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2322 #endif
2323
2324 /* Turn off app to make assembly quicker. */
2325 if (flag_debug_asm)
2326 app_disable ();
2327 }
2328
2329 /* Output a marker (i.e. a label) for the beginning of a function, before
2330 the prologue. */
2331
2332 void
2333 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2334 const char *file ATTRIBUTE_UNUSED)
2335 {
2336 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2337 char * dup_label;
2338 dw_fde_ref fde;
2339
2340 current_function_func_begin_label = NULL;
2341
2342 #ifdef TARGET_UNWIND_INFO
2343 /* ??? current_function_func_begin_label is also used by except.c
2344 for call-site information. We must emit this label if it might
2345 be used. */
2346 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2347 && ! dwarf2out_do_frame ())
2348 return;
2349 #else
2350 if (! dwarf2out_do_frame ())
2351 return;
2352 #endif
2353
2354 function_section (current_function_decl);
2355 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2356 current_function_funcdef_no);
2357 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2358 current_function_funcdef_no);
2359 dup_label = xstrdup (label);
2360 current_function_func_begin_label = dup_label;
2361
2362 #ifdef TARGET_UNWIND_INFO
2363 /* We can elide the fde allocation if we're not emitting debug info. */
2364 if (! dwarf2out_do_frame ())
2365 return;
2366 #endif
2367
2368 /* Expand the fde table if necessary. */
2369 if (fde_table_in_use == fde_table_allocated)
2370 {
2371 fde_table_allocated += FDE_TABLE_INCREMENT;
2372 fde_table = ggc_realloc (fde_table,
2373 fde_table_allocated * sizeof (dw_fde_node));
2374 memset (fde_table + fde_table_in_use, 0,
2375 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2376 }
2377
2378 /* Record the FDE associated with this function. */
2379 current_funcdef_fde = fde_table_in_use;
2380
2381 /* Add the new FDE at the end of the fde_table. */
2382 fde = &fde_table[fde_table_in_use++];
2383 fde->decl = current_function_decl;
2384 fde->dw_fde_begin = dup_label;
2385 fde->dw_fde_current_label = NULL;
2386 fde->dw_fde_end = NULL;
2387 fde->dw_fde_cfi = NULL;
2388 fde->funcdef_number = current_function_funcdef_no;
2389 fde->nothrow = TREE_NOTHROW (current_function_decl);
2390 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2391 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2392
2393 args_size = old_args_size = 0;
2394
2395 /* We only want to output line number information for the genuine dwarf2
2396 prologue case, not the eh frame case. */
2397 #ifdef DWARF2_DEBUGGING_INFO
2398 if (file)
2399 dwarf2out_source_line (line, file);
2400 #endif
2401 }
2402
2403 /* Output a marker (i.e. a label) for the absolute end of the generated code
2404 for a function definition. This gets called *after* the epilogue code has
2405 been generated. */
2406
2407 void
2408 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2409 const char *file ATTRIBUTE_UNUSED)
2410 {
2411 dw_fde_ref fde;
2412 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2413
2414 /* Output a label to mark the endpoint of the code generated for this
2415 function. */
2416 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2417 current_function_funcdef_no);
2418 ASM_OUTPUT_LABEL (asm_out_file, label);
2419 fde = &fde_table[fde_table_in_use - 1];
2420 fde->dw_fde_end = xstrdup (label);
2421 }
2422
2423 void
2424 dwarf2out_frame_init (void)
2425 {
2426 /* Allocate the initial hunk of the fde_table. */
2427 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2428 fde_table_allocated = FDE_TABLE_INCREMENT;
2429 fde_table_in_use = 0;
2430
2431 /* Generate the CFA instructions common to all FDE's. Do it now for the
2432 sake of lookup_cfa. */
2433
2434 #ifdef DWARF2_UNWIND_INFO
2435 /* On entry, the Canonical Frame Address is at SP. */
2436 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2437 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2438 #endif
2439 }
2440
2441 void
2442 dwarf2out_frame_finish (void)
2443 {
2444 /* Output call frame information. */
2445 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2446 output_call_frame_info (0);
2447
2448 #ifndef TARGET_UNWIND_INFO
2449 /* Output another copy for the unwinder. */
2450 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2451 output_call_frame_info (1);
2452 #endif
2453 }
2454 #endif
2455 \f
2456 /* And now, the subset of the debugging information support code necessary
2457 for emitting location expressions. */
2458
2459 /* We need some way to distinguish DW_OP_addr with a direct symbol
2460 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2461 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2462
2463
2464 typedef struct dw_val_struct *dw_val_ref;
2465 typedef struct die_struct *dw_die_ref;
2466 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2467 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2468
2469 /* Each DIE may have a series of attribute/value pairs. Values
2470 can take on several forms. The forms that are used in this
2471 implementation are listed below. */
2472
2473 enum dw_val_class
2474 {
2475 dw_val_class_addr,
2476 dw_val_class_offset,
2477 dw_val_class_loc,
2478 dw_val_class_loc_list,
2479 dw_val_class_range_list,
2480 dw_val_class_const,
2481 dw_val_class_unsigned_const,
2482 dw_val_class_long_long,
2483 dw_val_class_vec,
2484 dw_val_class_flag,
2485 dw_val_class_die_ref,
2486 dw_val_class_fde_ref,
2487 dw_val_class_lbl_id,
2488 dw_val_class_lbl_offset,
2489 dw_val_class_str
2490 };
2491
2492 /* Describe a double word constant value. */
2493 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2494
2495 typedef struct dw_long_long_struct GTY(())
2496 {
2497 unsigned long hi;
2498 unsigned long low;
2499 }
2500 dw_long_long_const;
2501
2502 /* Describe a floating point constant value, or a vector constant value. */
2503
2504 typedef struct dw_vec_struct GTY(())
2505 {
2506 unsigned char * GTY((length ("%h.length"))) array;
2507 unsigned length;
2508 unsigned elt_size;
2509 }
2510 dw_vec_const;
2511
2512 /* The dw_val_node describes an attribute's value, as it is
2513 represented internally. */
2514
2515 typedef struct dw_val_struct GTY(())
2516 {
2517 enum dw_val_class val_class;
2518 union dw_val_struct_union
2519 {
2520 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2521 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2522 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2523 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2524 HOST_WIDE_INT GTY ((default)) val_int;
2525 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2526 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2527 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2528 struct dw_val_die_union
2529 {
2530 dw_die_ref die;
2531 int external;
2532 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2533 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2534 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2535 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2536 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2537 }
2538 GTY ((desc ("%1.val_class"))) v;
2539 }
2540 dw_val_node;
2541
2542 /* Locations in memory are described using a sequence of stack machine
2543 operations. */
2544
2545 typedef struct dw_loc_descr_struct GTY(())
2546 {
2547 dw_loc_descr_ref dw_loc_next;
2548 enum dwarf_location_atom dw_loc_opc;
2549 dw_val_node dw_loc_oprnd1;
2550 dw_val_node dw_loc_oprnd2;
2551 int dw_loc_addr;
2552 }
2553 dw_loc_descr_node;
2554
2555 /* Location lists are ranges + location descriptions for that range,
2556 so you can track variables that are in different places over
2557 their entire life. */
2558 typedef struct dw_loc_list_struct GTY(())
2559 {
2560 dw_loc_list_ref dw_loc_next;
2561 const char *begin; /* Label for begin address of range */
2562 const char *end; /* Label for end address of range */
2563 char *ll_symbol; /* Label for beginning of location list.
2564 Only on head of list */
2565 const char *section; /* Section this loclist is relative to */
2566 dw_loc_descr_ref expr;
2567 } dw_loc_list_node;
2568
2569 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2570
2571 static const char *dwarf_stack_op_name (unsigned);
2572 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2573 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2574 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2575 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2576 static unsigned long size_of_locs (dw_loc_descr_ref);
2577 static void output_loc_operands (dw_loc_descr_ref);
2578 static void output_loc_sequence (dw_loc_descr_ref);
2579
2580 /* Convert a DWARF stack opcode into its string name. */
2581
2582 static const char *
2583 dwarf_stack_op_name (unsigned int op)
2584 {
2585 switch (op)
2586 {
2587 case DW_OP_addr:
2588 case INTERNAL_DW_OP_tls_addr:
2589 return "DW_OP_addr";
2590 case DW_OP_deref:
2591 return "DW_OP_deref";
2592 case DW_OP_const1u:
2593 return "DW_OP_const1u";
2594 case DW_OP_const1s:
2595 return "DW_OP_const1s";
2596 case DW_OP_const2u:
2597 return "DW_OP_const2u";
2598 case DW_OP_const2s:
2599 return "DW_OP_const2s";
2600 case DW_OP_const4u:
2601 return "DW_OP_const4u";
2602 case DW_OP_const4s:
2603 return "DW_OP_const4s";
2604 case DW_OP_const8u:
2605 return "DW_OP_const8u";
2606 case DW_OP_const8s:
2607 return "DW_OP_const8s";
2608 case DW_OP_constu:
2609 return "DW_OP_constu";
2610 case DW_OP_consts:
2611 return "DW_OP_consts";
2612 case DW_OP_dup:
2613 return "DW_OP_dup";
2614 case DW_OP_drop:
2615 return "DW_OP_drop";
2616 case DW_OP_over:
2617 return "DW_OP_over";
2618 case DW_OP_pick:
2619 return "DW_OP_pick";
2620 case DW_OP_swap:
2621 return "DW_OP_swap";
2622 case DW_OP_rot:
2623 return "DW_OP_rot";
2624 case DW_OP_xderef:
2625 return "DW_OP_xderef";
2626 case DW_OP_abs:
2627 return "DW_OP_abs";
2628 case DW_OP_and:
2629 return "DW_OP_and";
2630 case DW_OP_div:
2631 return "DW_OP_div";
2632 case DW_OP_minus:
2633 return "DW_OP_minus";
2634 case DW_OP_mod:
2635 return "DW_OP_mod";
2636 case DW_OP_mul:
2637 return "DW_OP_mul";
2638 case DW_OP_neg:
2639 return "DW_OP_neg";
2640 case DW_OP_not:
2641 return "DW_OP_not";
2642 case DW_OP_or:
2643 return "DW_OP_or";
2644 case DW_OP_plus:
2645 return "DW_OP_plus";
2646 case DW_OP_plus_uconst:
2647 return "DW_OP_plus_uconst";
2648 case DW_OP_shl:
2649 return "DW_OP_shl";
2650 case DW_OP_shr:
2651 return "DW_OP_shr";
2652 case DW_OP_shra:
2653 return "DW_OP_shra";
2654 case DW_OP_xor:
2655 return "DW_OP_xor";
2656 case DW_OP_bra:
2657 return "DW_OP_bra";
2658 case DW_OP_eq:
2659 return "DW_OP_eq";
2660 case DW_OP_ge:
2661 return "DW_OP_ge";
2662 case DW_OP_gt:
2663 return "DW_OP_gt";
2664 case DW_OP_le:
2665 return "DW_OP_le";
2666 case DW_OP_lt:
2667 return "DW_OP_lt";
2668 case DW_OP_ne:
2669 return "DW_OP_ne";
2670 case DW_OP_skip:
2671 return "DW_OP_skip";
2672 case DW_OP_lit0:
2673 return "DW_OP_lit0";
2674 case DW_OP_lit1:
2675 return "DW_OP_lit1";
2676 case DW_OP_lit2:
2677 return "DW_OP_lit2";
2678 case DW_OP_lit3:
2679 return "DW_OP_lit3";
2680 case DW_OP_lit4:
2681 return "DW_OP_lit4";
2682 case DW_OP_lit5:
2683 return "DW_OP_lit5";
2684 case DW_OP_lit6:
2685 return "DW_OP_lit6";
2686 case DW_OP_lit7:
2687 return "DW_OP_lit7";
2688 case DW_OP_lit8:
2689 return "DW_OP_lit8";
2690 case DW_OP_lit9:
2691 return "DW_OP_lit9";
2692 case DW_OP_lit10:
2693 return "DW_OP_lit10";
2694 case DW_OP_lit11:
2695 return "DW_OP_lit11";
2696 case DW_OP_lit12:
2697 return "DW_OP_lit12";
2698 case DW_OP_lit13:
2699 return "DW_OP_lit13";
2700 case DW_OP_lit14:
2701 return "DW_OP_lit14";
2702 case DW_OP_lit15:
2703 return "DW_OP_lit15";
2704 case DW_OP_lit16:
2705 return "DW_OP_lit16";
2706 case DW_OP_lit17:
2707 return "DW_OP_lit17";
2708 case DW_OP_lit18:
2709 return "DW_OP_lit18";
2710 case DW_OP_lit19:
2711 return "DW_OP_lit19";
2712 case DW_OP_lit20:
2713 return "DW_OP_lit20";
2714 case DW_OP_lit21:
2715 return "DW_OP_lit21";
2716 case DW_OP_lit22:
2717 return "DW_OP_lit22";
2718 case DW_OP_lit23:
2719 return "DW_OP_lit23";
2720 case DW_OP_lit24:
2721 return "DW_OP_lit24";
2722 case DW_OP_lit25:
2723 return "DW_OP_lit25";
2724 case DW_OP_lit26:
2725 return "DW_OP_lit26";
2726 case DW_OP_lit27:
2727 return "DW_OP_lit27";
2728 case DW_OP_lit28:
2729 return "DW_OP_lit28";
2730 case DW_OP_lit29:
2731 return "DW_OP_lit29";
2732 case DW_OP_lit30:
2733 return "DW_OP_lit30";
2734 case DW_OP_lit31:
2735 return "DW_OP_lit31";
2736 case DW_OP_reg0:
2737 return "DW_OP_reg0";
2738 case DW_OP_reg1:
2739 return "DW_OP_reg1";
2740 case DW_OP_reg2:
2741 return "DW_OP_reg2";
2742 case DW_OP_reg3:
2743 return "DW_OP_reg3";
2744 case DW_OP_reg4:
2745 return "DW_OP_reg4";
2746 case DW_OP_reg5:
2747 return "DW_OP_reg5";
2748 case DW_OP_reg6:
2749 return "DW_OP_reg6";
2750 case DW_OP_reg7:
2751 return "DW_OP_reg7";
2752 case DW_OP_reg8:
2753 return "DW_OP_reg8";
2754 case DW_OP_reg9:
2755 return "DW_OP_reg9";
2756 case DW_OP_reg10:
2757 return "DW_OP_reg10";
2758 case DW_OP_reg11:
2759 return "DW_OP_reg11";
2760 case DW_OP_reg12:
2761 return "DW_OP_reg12";
2762 case DW_OP_reg13:
2763 return "DW_OP_reg13";
2764 case DW_OP_reg14:
2765 return "DW_OP_reg14";
2766 case DW_OP_reg15:
2767 return "DW_OP_reg15";
2768 case DW_OP_reg16:
2769 return "DW_OP_reg16";
2770 case DW_OP_reg17:
2771 return "DW_OP_reg17";
2772 case DW_OP_reg18:
2773 return "DW_OP_reg18";
2774 case DW_OP_reg19:
2775 return "DW_OP_reg19";
2776 case DW_OP_reg20:
2777 return "DW_OP_reg20";
2778 case DW_OP_reg21:
2779 return "DW_OP_reg21";
2780 case DW_OP_reg22:
2781 return "DW_OP_reg22";
2782 case DW_OP_reg23:
2783 return "DW_OP_reg23";
2784 case DW_OP_reg24:
2785 return "DW_OP_reg24";
2786 case DW_OP_reg25:
2787 return "DW_OP_reg25";
2788 case DW_OP_reg26:
2789 return "DW_OP_reg26";
2790 case DW_OP_reg27:
2791 return "DW_OP_reg27";
2792 case DW_OP_reg28:
2793 return "DW_OP_reg28";
2794 case DW_OP_reg29:
2795 return "DW_OP_reg29";
2796 case DW_OP_reg30:
2797 return "DW_OP_reg30";
2798 case DW_OP_reg31:
2799 return "DW_OP_reg31";
2800 case DW_OP_breg0:
2801 return "DW_OP_breg0";
2802 case DW_OP_breg1:
2803 return "DW_OP_breg1";
2804 case DW_OP_breg2:
2805 return "DW_OP_breg2";
2806 case DW_OP_breg3:
2807 return "DW_OP_breg3";
2808 case DW_OP_breg4:
2809 return "DW_OP_breg4";
2810 case DW_OP_breg5:
2811 return "DW_OP_breg5";
2812 case DW_OP_breg6:
2813 return "DW_OP_breg6";
2814 case DW_OP_breg7:
2815 return "DW_OP_breg7";
2816 case DW_OP_breg8:
2817 return "DW_OP_breg8";
2818 case DW_OP_breg9:
2819 return "DW_OP_breg9";
2820 case DW_OP_breg10:
2821 return "DW_OP_breg10";
2822 case DW_OP_breg11:
2823 return "DW_OP_breg11";
2824 case DW_OP_breg12:
2825 return "DW_OP_breg12";
2826 case DW_OP_breg13:
2827 return "DW_OP_breg13";
2828 case DW_OP_breg14:
2829 return "DW_OP_breg14";
2830 case DW_OP_breg15:
2831 return "DW_OP_breg15";
2832 case DW_OP_breg16:
2833 return "DW_OP_breg16";
2834 case DW_OP_breg17:
2835 return "DW_OP_breg17";
2836 case DW_OP_breg18:
2837 return "DW_OP_breg18";
2838 case DW_OP_breg19:
2839 return "DW_OP_breg19";
2840 case DW_OP_breg20:
2841 return "DW_OP_breg20";
2842 case DW_OP_breg21:
2843 return "DW_OP_breg21";
2844 case DW_OP_breg22:
2845 return "DW_OP_breg22";
2846 case DW_OP_breg23:
2847 return "DW_OP_breg23";
2848 case DW_OP_breg24:
2849 return "DW_OP_breg24";
2850 case DW_OP_breg25:
2851 return "DW_OP_breg25";
2852 case DW_OP_breg26:
2853 return "DW_OP_breg26";
2854 case DW_OP_breg27:
2855 return "DW_OP_breg27";
2856 case DW_OP_breg28:
2857 return "DW_OP_breg28";
2858 case DW_OP_breg29:
2859 return "DW_OP_breg29";
2860 case DW_OP_breg30:
2861 return "DW_OP_breg30";
2862 case DW_OP_breg31:
2863 return "DW_OP_breg31";
2864 case DW_OP_regx:
2865 return "DW_OP_regx";
2866 case DW_OP_fbreg:
2867 return "DW_OP_fbreg";
2868 case DW_OP_bregx:
2869 return "DW_OP_bregx";
2870 case DW_OP_piece:
2871 return "DW_OP_piece";
2872 case DW_OP_deref_size:
2873 return "DW_OP_deref_size";
2874 case DW_OP_xderef_size:
2875 return "DW_OP_xderef_size";
2876 case DW_OP_nop:
2877 return "DW_OP_nop";
2878 case DW_OP_push_object_address:
2879 return "DW_OP_push_object_address";
2880 case DW_OP_call2:
2881 return "DW_OP_call2";
2882 case DW_OP_call4:
2883 return "DW_OP_call4";
2884 case DW_OP_call_ref:
2885 return "DW_OP_call_ref";
2886 case DW_OP_GNU_push_tls_address:
2887 return "DW_OP_GNU_push_tls_address";
2888 default:
2889 return "OP_<unknown>";
2890 }
2891 }
2892
2893 /* Return a pointer to a newly allocated location description. Location
2894 descriptions are simple expression terms that can be strung
2895 together to form more complicated location (address) descriptions. */
2896
2897 static inline dw_loc_descr_ref
2898 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2899 unsigned HOST_WIDE_INT oprnd2)
2900 {
2901 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2902
2903 descr->dw_loc_opc = op;
2904 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2905 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2906 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2907 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2908
2909 return descr;
2910 }
2911
2912
2913 /* Add a location description term to a location description expression. */
2914
2915 static inline void
2916 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2917 {
2918 dw_loc_descr_ref *d;
2919
2920 /* Find the end of the chain. */
2921 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2922 ;
2923
2924 *d = descr;
2925 }
2926
2927 /* Return the size of a location descriptor. */
2928
2929 static unsigned long
2930 size_of_loc_descr (dw_loc_descr_ref loc)
2931 {
2932 unsigned long size = 1;
2933
2934 switch (loc->dw_loc_opc)
2935 {
2936 case DW_OP_addr:
2937 case INTERNAL_DW_OP_tls_addr:
2938 size += DWARF2_ADDR_SIZE;
2939 break;
2940 case DW_OP_const1u:
2941 case DW_OP_const1s:
2942 size += 1;
2943 break;
2944 case DW_OP_const2u:
2945 case DW_OP_const2s:
2946 size += 2;
2947 break;
2948 case DW_OP_const4u:
2949 case DW_OP_const4s:
2950 size += 4;
2951 break;
2952 case DW_OP_const8u:
2953 case DW_OP_const8s:
2954 size += 8;
2955 break;
2956 case DW_OP_constu:
2957 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2958 break;
2959 case DW_OP_consts:
2960 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2961 break;
2962 case DW_OP_pick:
2963 size += 1;
2964 break;
2965 case DW_OP_plus_uconst:
2966 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2967 break;
2968 case DW_OP_skip:
2969 case DW_OP_bra:
2970 size += 2;
2971 break;
2972 case DW_OP_breg0:
2973 case DW_OP_breg1:
2974 case DW_OP_breg2:
2975 case DW_OP_breg3:
2976 case DW_OP_breg4:
2977 case DW_OP_breg5:
2978 case DW_OP_breg6:
2979 case DW_OP_breg7:
2980 case DW_OP_breg8:
2981 case DW_OP_breg9:
2982 case DW_OP_breg10:
2983 case DW_OP_breg11:
2984 case DW_OP_breg12:
2985 case DW_OP_breg13:
2986 case DW_OP_breg14:
2987 case DW_OP_breg15:
2988 case DW_OP_breg16:
2989 case DW_OP_breg17:
2990 case DW_OP_breg18:
2991 case DW_OP_breg19:
2992 case DW_OP_breg20:
2993 case DW_OP_breg21:
2994 case DW_OP_breg22:
2995 case DW_OP_breg23:
2996 case DW_OP_breg24:
2997 case DW_OP_breg25:
2998 case DW_OP_breg26:
2999 case DW_OP_breg27:
3000 case DW_OP_breg28:
3001 case DW_OP_breg29:
3002 case DW_OP_breg30:
3003 case DW_OP_breg31:
3004 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3005 break;
3006 case DW_OP_regx:
3007 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3008 break;
3009 case DW_OP_fbreg:
3010 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3011 break;
3012 case DW_OP_bregx:
3013 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3014 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3015 break;
3016 case DW_OP_piece:
3017 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3018 break;
3019 case DW_OP_deref_size:
3020 case DW_OP_xderef_size:
3021 size += 1;
3022 break;
3023 case DW_OP_call2:
3024 size += 2;
3025 break;
3026 case DW_OP_call4:
3027 size += 4;
3028 break;
3029 case DW_OP_call_ref:
3030 size += DWARF2_ADDR_SIZE;
3031 break;
3032 default:
3033 break;
3034 }
3035
3036 return size;
3037 }
3038
3039 /* Return the size of a series of location descriptors. */
3040
3041 static unsigned long
3042 size_of_locs (dw_loc_descr_ref loc)
3043 {
3044 unsigned long size;
3045
3046 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3047 {
3048 loc->dw_loc_addr = size;
3049 size += size_of_loc_descr (loc);
3050 }
3051
3052 return size;
3053 }
3054
3055 /* Output location description stack opcode's operands (if any). */
3056
3057 static void
3058 output_loc_operands (dw_loc_descr_ref loc)
3059 {
3060 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3061 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3062
3063 switch (loc->dw_loc_opc)
3064 {
3065 #ifdef DWARF2_DEBUGGING_INFO
3066 case DW_OP_addr:
3067 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3068 break;
3069 case DW_OP_const2u:
3070 case DW_OP_const2s:
3071 dw2_asm_output_data (2, val1->v.val_int, NULL);
3072 break;
3073 case DW_OP_const4u:
3074 case DW_OP_const4s:
3075 dw2_asm_output_data (4, val1->v.val_int, NULL);
3076 break;
3077 case DW_OP_const8u:
3078 case DW_OP_const8s:
3079 gcc_assert (HOST_BITS_PER_LONG >= 64);
3080 dw2_asm_output_data (8, val1->v.val_int, NULL);
3081 break;
3082 case DW_OP_skip:
3083 case DW_OP_bra:
3084 {
3085 int offset;
3086
3087 gcc_assert (val1->val_class == dw_val_class_loc);
3088 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3089
3090 dw2_asm_output_data (2, offset, NULL);
3091 }
3092 break;
3093 #else
3094 case DW_OP_addr:
3095 case DW_OP_const2u:
3096 case DW_OP_const2s:
3097 case DW_OP_const4u:
3098 case DW_OP_const4s:
3099 case DW_OP_const8u:
3100 case DW_OP_const8s:
3101 case DW_OP_skip:
3102 case DW_OP_bra:
3103 /* We currently don't make any attempt to make sure these are
3104 aligned properly like we do for the main unwind info, so
3105 don't support emitting things larger than a byte if we're
3106 only doing unwinding. */
3107 gcc_unreachable ();
3108 #endif
3109 case DW_OP_const1u:
3110 case DW_OP_const1s:
3111 dw2_asm_output_data (1, val1->v.val_int, NULL);
3112 break;
3113 case DW_OP_constu:
3114 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3115 break;
3116 case DW_OP_consts:
3117 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3118 break;
3119 case DW_OP_pick:
3120 dw2_asm_output_data (1, val1->v.val_int, NULL);
3121 break;
3122 case DW_OP_plus_uconst:
3123 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3124 break;
3125 case DW_OP_breg0:
3126 case DW_OP_breg1:
3127 case DW_OP_breg2:
3128 case DW_OP_breg3:
3129 case DW_OP_breg4:
3130 case DW_OP_breg5:
3131 case DW_OP_breg6:
3132 case DW_OP_breg7:
3133 case DW_OP_breg8:
3134 case DW_OP_breg9:
3135 case DW_OP_breg10:
3136 case DW_OP_breg11:
3137 case DW_OP_breg12:
3138 case DW_OP_breg13:
3139 case DW_OP_breg14:
3140 case DW_OP_breg15:
3141 case DW_OP_breg16:
3142 case DW_OP_breg17:
3143 case DW_OP_breg18:
3144 case DW_OP_breg19:
3145 case DW_OP_breg20:
3146 case DW_OP_breg21:
3147 case DW_OP_breg22:
3148 case DW_OP_breg23:
3149 case DW_OP_breg24:
3150 case DW_OP_breg25:
3151 case DW_OP_breg26:
3152 case DW_OP_breg27:
3153 case DW_OP_breg28:
3154 case DW_OP_breg29:
3155 case DW_OP_breg30:
3156 case DW_OP_breg31:
3157 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3158 break;
3159 case DW_OP_regx:
3160 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3161 break;
3162 case DW_OP_fbreg:
3163 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3164 break;
3165 case DW_OP_bregx:
3166 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3167 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3168 break;
3169 case DW_OP_piece:
3170 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3171 break;
3172 case DW_OP_deref_size:
3173 case DW_OP_xderef_size:
3174 dw2_asm_output_data (1, val1->v.val_int, NULL);
3175 break;
3176
3177 case INTERNAL_DW_OP_tls_addr:
3178 #ifdef ASM_OUTPUT_DWARF_DTPREL
3179 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3180 val1->v.val_addr);
3181 fputc ('\n', asm_out_file);
3182 #else
3183 gcc_unreachable ();
3184 #endif
3185 break;
3186
3187 default:
3188 /* Other codes have no operands. */
3189 break;
3190 }
3191 }
3192
3193 /* Output a sequence of location operations. */
3194
3195 static void
3196 output_loc_sequence (dw_loc_descr_ref loc)
3197 {
3198 for (; loc != NULL; loc = loc->dw_loc_next)
3199 {
3200 /* Output the opcode. */
3201 dw2_asm_output_data (1, loc->dw_loc_opc,
3202 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3203
3204 /* Output the operand(s) (if any). */
3205 output_loc_operands (loc);
3206 }
3207 }
3208
3209 /* This routine will generate the correct assembly data for a location
3210 description based on a cfi entry with a complex address. */
3211
3212 static void
3213 output_cfa_loc (dw_cfi_ref cfi)
3214 {
3215 dw_loc_descr_ref loc;
3216 unsigned long size;
3217
3218 /* Output the size of the block. */
3219 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3220 size = size_of_locs (loc);
3221 dw2_asm_output_data_uleb128 (size, NULL);
3222
3223 /* Now output the operations themselves. */
3224 output_loc_sequence (loc);
3225 }
3226
3227 /* This function builds a dwarf location descriptor sequence from
3228 a dw_cfa_location. */
3229
3230 static struct dw_loc_descr_struct *
3231 build_cfa_loc (dw_cfa_location *cfa)
3232 {
3233 struct dw_loc_descr_struct *head, *tmp;
3234
3235 gcc_assert (cfa->indirect);
3236
3237 if (cfa->base_offset)
3238 {
3239 if (cfa->reg <= 31)
3240 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3241 else
3242 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3243 }
3244 else if (cfa->reg <= 31)
3245 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3246 else
3247 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3248
3249 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3250 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3251 add_loc_descr (&head, tmp);
3252 if (cfa->offset != 0)
3253 {
3254 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3255 add_loc_descr (&head, tmp);
3256 }
3257
3258 return head;
3259 }
3260
3261 /* This function fills in aa dw_cfa_location structure from a dwarf location
3262 descriptor sequence. */
3263
3264 static void
3265 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3266 {
3267 struct dw_loc_descr_struct *ptr;
3268 cfa->offset = 0;
3269 cfa->base_offset = 0;
3270 cfa->indirect = 0;
3271 cfa->reg = -1;
3272
3273 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3274 {
3275 enum dwarf_location_atom op = ptr->dw_loc_opc;
3276
3277 switch (op)
3278 {
3279 case DW_OP_reg0:
3280 case DW_OP_reg1:
3281 case DW_OP_reg2:
3282 case DW_OP_reg3:
3283 case DW_OP_reg4:
3284 case DW_OP_reg5:
3285 case DW_OP_reg6:
3286 case DW_OP_reg7:
3287 case DW_OP_reg8:
3288 case DW_OP_reg9:
3289 case DW_OP_reg10:
3290 case DW_OP_reg11:
3291 case DW_OP_reg12:
3292 case DW_OP_reg13:
3293 case DW_OP_reg14:
3294 case DW_OP_reg15:
3295 case DW_OP_reg16:
3296 case DW_OP_reg17:
3297 case DW_OP_reg18:
3298 case DW_OP_reg19:
3299 case DW_OP_reg20:
3300 case DW_OP_reg21:
3301 case DW_OP_reg22:
3302 case DW_OP_reg23:
3303 case DW_OP_reg24:
3304 case DW_OP_reg25:
3305 case DW_OP_reg26:
3306 case DW_OP_reg27:
3307 case DW_OP_reg28:
3308 case DW_OP_reg29:
3309 case DW_OP_reg30:
3310 case DW_OP_reg31:
3311 cfa->reg = op - DW_OP_reg0;
3312 break;
3313 case DW_OP_regx:
3314 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3315 break;
3316 case DW_OP_breg0:
3317 case DW_OP_breg1:
3318 case DW_OP_breg2:
3319 case DW_OP_breg3:
3320 case DW_OP_breg4:
3321 case DW_OP_breg5:
3322 case DW_OP_breg6:
3323 case DW_OP_breg7:
3324 case DW_OP_breg8:
3325 case DW_OP_breg9:
3326 case DW_OP_breg10:
3327 case DW_OP_breg11:
3328 case DW_OP_breg12:
3329 case DW_OP_breg13:
3330 case DW_OP_breg14:
3331 case DW_OP_breg15:
3332 case DW_OP_breg16:
3333 case DW_OP_breg17:
3334 case DW_OP_breg18:
3335 case DW_OP_breg19:
3336 case DW_OP_breg20:
3337 case DW_OP_breg21:
3338 case DW_OP_breg22:
3339 case DW_OP_breg23:
3340 case DW_OP_breg24:
3341 case DW_OP_breg25:
3342 case DW_OP_breg26:
3343 case DW_OP_breg27:
3344 case DW_OP_breg28:
3345 case DW_OP_breg29:
3346 case DW_OP_breg30:
3347 case DW_OP_breg31:
3348 cfa->reg = op - DW_OP_breg0;
3349 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3350 break;
3351 case DW_OP_bregx:
3352 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3353 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3354 break;
3355 case DW_OP_deref:
3356 cfa->indirect = 1;
3357 break;
3358 case DW_OP_plus_uconst:
3359 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3360 break;
3361 default:
3362 internal_error ("DW_LOC_OP %s not implemented\n",
3363 dwarf_stack_op_name (ptr->dw_loc_opc));
3364 }
3365 }
3366 }
3367 #endif /* .debug_frame support */
3368 \f
3369 /* And now, the support for symbolic debugging information. */
3370 #ifdef DWARF2_DEBUGGING_INFO
3371
3372 /* .debug_str support. */
3373 static int output_indirect_string (void **, void *);
3374
3375 static void dwarf2out_init (const char *);
3376 static void dwarf2out_finish (const char *);
3377 static void dwarf2out_define (unsigned int, const char *);
3378 static void dwarf2out_undef (unsigned int, const char *);
3379 static void dwarf2out_start_source_file (unsigned, const char *);
3380 static void dwarf2out_end_source_file (unsigned);
3381 static void dwarf2out_begin_block (unsigned, unsigned);
3382 static void dwarf2out_end_block (unsigned, unsigned);
3383 static bool dwarf2out_ignore_block (tree);
3384 static void dwarf2out_global_decl (tree);
3385 static void dwarf2out_type_decl (tree, int);
3386 static void dwarf2out_imported_module_or_decl (tree, tree);
3387 static void dwarf2out_abstract_function (tree);
3388 static void dwarf2out_var_location (rtx);
3389 static void dwarf2out_begin_function (tree);
3390
3391 /* The debug hooks structure. */
3392
3393 const struct gcc_debug_hooks dwarf2_debug_hooks =
3394 {
3395 dwarf2out_init,
3396 dwarf2out_finish,
3397 dwarf2out_define,
3398 dwarf2out_undef,
3399 dwarf2out_start_source_file,
3400 dwarf2out_end_source_file,
3401 dwarf2out_begin_block,
3402 dwarf2out_end_block,
3403 dwarf2out_ignore_block,
3404 dwarf2out_source_line,
3405 dwarf2out_begin_prologue,
3406 debug_nothing_int_charstar, /* end_prologue */
3407 dwarf2out_end_epilogue,
3408 dwarf2out_begin_function,
3409 debug_nothing_int, /* end_function */
3410 dwarf2out_decl, /* function_decl */
3411 dwarf2out_global_decl,
3412 dwarf2out_type_decl, /* type_decl */
3413 dwarf2out_imported_module_or_decl,
3414 debug_nothing_tree, /* deferred_inline_function */
3415 /* The DWARF 2 backend tries to reduce debugging bloat by not
3416 emitting the abstract description of inline functions until
3417 something tries to reference them. */
3418 dwarf2out_abstract_function, /* outlining_inline_function */
3419 debug_nothing_rtx, /* label */
3420 debug_nothing_int, /* handle_pch */
3421 dwarf2out_var_location
3422 };
3423 #endif
3424 \f
3425 /* NOTE: In the comments in this file, many references are made to
3426 "Debugging Information Entries". This term is abbreviated as `DIE'
3427 throughout the remainder of this file. */
3428
3429 /* An internal representation of the DWARF output is built, and then
3430 walked to generate the DWARF debugging info. The walk of the internal
3431 representation is done after the entire program has been compiled.
3432 The types below are used to describe the internal representation. */
3433
3434 /* Various DIE's use offsets relative to the beginning of the
3435 .debug_info section to refer to each other. */
3436
3437 typedef long int dw_offset;
3438
3439 /* Define typedefs here to avoid circular dependencies. */
3440
3441 typedef struct dw_attr_struct *dw_attr_ref;
3442 typedef struct dw_line_info_struct *dw_line_info_ref;
3443 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3444 typedef struct pubname_struct *pubname_ref;
3445 typedef struct dw_ranges_struct *dw_ranges_ref;
3446
3447 /* Each entry in the line_info_table maintains the file and
3448 line number associated with the label generated for that
3449 entry. The label gives the PC value associated with
3450 the line number entry. */
3451
3452 typedef struct dw_line_info_struct GTY(())
3453 {
3454 unsigned long dw_file_num;
3455 unsigned long dw_line_num;
3456 }
3457 dw_line_info_entry;
3458
3459 /* Line information for functions in separate sections; each one gets its
3460 own sequence. */
3461 typedef struct dw_separate_line_info_struct GTY(())
3462 {
3463 unsigned long dw_file_num;
3464 unsigned long dw_line_num;
3465 unsigned long function;
3466 }
3467 dw_separate_line_info_entry;
3468
3469 /* Each DIE attribute has a field specifying the attribute kind,
3470 a link to the next attribute in the chain, and an attribute value.
3471 Attributes are typically linked below the DIE they modify. */
3472
3473 typedef struct dw_attr_struct GTY(())
3474 {
3475 enum dwarf_attribute dw_attr;
3476 dw_attr_ref dw_attr_next;
3477 dw_val_node dw_attr_val;
3478 }
3479 dw_attr_node;
3480
3481 /* The Debugging Information Entry (DIE) structure */
3482
3483 typedef struct die_struct GTY(())
3484 {
3485 enum dwarf_tag die_tag;
3486 char *die_symbol;
3487 dw_attr_ref die_attr;
3488 dw_die_ref die_parent;
3489 dw_die_ref die_child;
3490 dw_die_ref die_sib;
3491 dw_die_ref die_definition; /* ref from a specification to its definition */
3492 dw_offset die_offset;
3493 unsigned long die_abbrev;
3494 int die_mark;
3495 unsigned int decl_id;
3496 }
3497 die_node;
3498
3499 /* The pubname structure */
3500
3501 typedef struct pubname_struct GTY(())
3502 {
3503 dw_die_ref die;
3504 char *name;
3505 }
3506 pubname_entry;
3507
3508 struct dw_ranges_struct GTY(())
3509 {
3510 int block_num;
3511 };
3512
3513 /* The limbo die list structure. */
3514 typedef struct limbo_die_struct GTY(())
3515 {
3516 dw_die_ref die;
3517 tree created_for;
3518 struct limbo_die_struct *next;
3519 }
3520 limbo_die_node;
3521
3522 /* How to start an assembler comment. */
3523 #ifndef ASM_COMMENT_START
3524 #define ASM_COMMENT_START ";#"
3525 #endif
3526
3527 /* Define a macro which returns nonzero for a TYPE_DECL which was
3528 implicitly generated for a tagged type.
3529
3530 Note that unlike the gcc front end (which generates a NULL named
3531 TYPE_DECL node for each complete tagged type, each array type, and
3532 each function type node created) the g++ front end generates a
3533 _named_ TYPE_DECL node for each tagged type node created.
3534 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3535 generate a DW_TAG_typedef DIE for them. */
3536
3537 #define TYPE_DECL_IS_STUB(decl) \
3538 (DECL_NAME (decl) == NULL_TREE \
3539 || (DECL_ARTIFICIAL (decl) \
3540 && is_tagged_type (TREE_TYPE (decl)) \
3541 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3542 /* This is necessary for stub decls that \
3543 appear in nested inline functions. */ \
3544 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3545 && (decl_ultimate_origin (decl) \
3546 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3547
3548 /* Information concerning the compilation unit's programming
3549 language, and compiler version. */
3550
3551 /* Fixed size portion of the DWARF compilation unit header. */
3552 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3553 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3554
3555 /* Fixed size portion of public names info. */
3556 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3557
3558 /* Fixed size portion of the address range info. */
3559 #define DWARF_ARANGES_HEADER_SIZE \
3560 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3561 DWARF2_ADDR_SIZE * 2) \
3562 - DWARF_INITIAL_LENGTH_SIZE)
3563
3564 /* Size of padding portion in the address range info. It must be
3565 aligned to twice the pointer size. */
3566 #define DWARF_ARANGES_PAD_SIZE \
3567 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3568 DWARF2_ADDR_SIZE * 2) \
3569 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3570
3571 /* Use assembler line directives if available. */
3572 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3573 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3574 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3575 #else
3576 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3577 #endif
3578 #endif
3579
3580 /* Minimum line offset in a special line info. opcode.
3581 This value was chosen to give a reasonable range of values. */
3582 #define DWARF_LINE_BASE -10
3583
3584 /* First special line opcode - leave room for the standard opcodes. */
3585 #define DWARF_LINE_OPCODE_BASE 10
3586
3587 /* Range of line offsets in a special line info. opcode. */
3588 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3589
3590 /* Flag that indicates the initial value of the is_stmt_start flag.
3591 In the present implementation, we do not mark any lines as
3592 the beginning of a source statement, because that information
3593 is not made available by the GCC front-end. */
3594 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3595
3596 #ifdef DWARF2_DEBUGGING_INFO
3597 /* This location is used by calc_die_sizes() to keep track
3598 the offset of each DIE within the .debug_info section. */
3599 static unsigned long next_die_offset;
3600 #endif
3601
3602 /* Record the root of the DIE's built for the current compilation unit. */
3603 static GTY(()) dw_die_ref comp_unit_die;
3604
3605 /* A list of DIEs with a NULL parent waiting to be relocated. */
3606 static GTY(()) limbo_die_node *limbo_die_list;
3607
3608 /* Filenames referenced by this compilation unit. */
3609 static GTY(()) varray_type file_table;
3610 static GTY(()) varray_type file_table_emitted;
3611 static GTY(()) size_t file_table_last_lookup_index;
3612
3613 /* A hash table of references to DIE's that describe declarations.
3614 The key is a DECL_UID() which is a unique number identifying each decl. */
3615 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3616
3617 /* Node of the variable location list. */
3618 struct var_loc_node GTY ((chain_next ("%h.next")))
3619 {
3620 rtx GTY (()) var_loc_note;
3621 const char * GTY (()) label;
3622 struct var_loc_node * GTY (()) next;
3623 };
3624
3625 /* Variable location list. */
3626 struct var_loc_list_def GTY (())
3627 {
3628 struct var_loc_node * GTY (()) first;
3629
3630 /* Do not mark the last element of the chained list because
3631 it is marked through the chain. */
3632 struct var_loc_node * GTY ((skip ("%h"))) last;
3633
3634 /* DECL_UID of the variable decl. */
3635 unsigned int decl_id;
3636 };
3637 typedef struct var_loc_list_def var_loc_list;
3638
3639
3640 /* Table of decl location linked lists. */
3641 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3642
3643 /* A pointer to the base of a list of references to DIE's that
3644 are uniquely identified by their tag, presence/absence of
3645 children DIE's, and list of attribute/value pairs. */
3646 static GTY((length ("abbrev_die_table_allocated")))
3647 dw_die_ref *abbrev_die_table;
3648
3649 /* Number of elements currently allocated for abbrev_die_table. */
3650 static GTY(()) unsigned abbrev_die_table_allocated;
3651
3652 /* Number of elements in type_die_table currently in use. */
3653 static GTY(()) unsigned abbrev_die_table_in_use;
3654
3655 /* Size (in elements) of increments by which we may expand the
3656 abbrev_die_table. */
3657 #define ABBREV_DIE_TABLE_INCREMENT 256
3658
3659 /* A pointer to the base of a table that contains line information
3660 for each source code line in .text in the compilation unit. */
3661 static GTY((length ("line_info_table_allocated")))
3662 dw_line_info_ref line_info_table;
3663
3664 /* Number of elements currently allocated for line_info_table. */
3665 static GTY(()) unsigned line_info_table_allocated;
3666
3667 /* Number of elements in line_info_table currently in use. */
3668 static GTY(()) unsigned line_info_table_in_use;
3669
3670 /* A pointer to the base of a table that contains line information
3671 for each source code line outside of .text in the compilation unit. */
3672 static GTY ((length ("separate_line_info_table_allocated")))
3673 dw_separate_line_info_ref separate_line_info_table;
3674
3675 /* Number of elements currently allocated for separate_line_info_table. */
3676 static GTY(()) unsigned separate_line_info_table_allocated;
3677
3678 /* Number of elements in separate_line_info_table currently in use. */
3679 static GTY(()) unsigned separate_line_info_table_in_use;
3680
3681 /* Size (in elements) of increments by which we may expand the
3682 line_info_table. */
3683 #define LINE_INFO_TABLE_INCREMENT 1024
3684
3685 /* A pointer to the base of a table that contains a list of publicly
3686 accessible names. */
3687 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3688
3689 /* Number of elements currently allocated for pubname_table. */
3690 static GTY(()) unsigned pubname_table_allocated;
3691
3692 /* Number of elements in pubname_table currently in use. */
3693 static GTY(()) unsigned pubname_table_in_use;
3694
3695 /* Size (in elements) of increments by which we may expand the
3696 pubname_table. */
3697 #define PUBNAME_TABLE_INCREMENT 64
3698
3699 /* Array of dies for which we should generate .debug_arange info. */
3700 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3701
3702 /* Number of elements currently allocated for arange_table. */
3703 static GTY(()) unsigned arange_table_allocated;
3704
3705 /* Number of elements in arange_table currently in use. */
3706 static GTY(()) unsigned arange_table_in_use;
3707
3708 /* Size (in elements) of increments by which we may expand the
3709 arange_table. */
3710 #define ARANGE_TABLE_INCREMENT 64
3711
3712 /* Array of dies for which we should generate .debug_ranges info. */
3713 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3714
3715 /* Number of elements currently allocated for ranges_table. */
3716 static GTY(()) unsigned ranges_table_allocated;
3717
3718 /* Number of elements in ranges_table currently in use. */
3719 static GTY(()) unsigned ranges_table_in_use;
3720
3721 /* Size (in elements) of increments by which we may expand the
3722 ranges_table. */
3723 #define RANGES_TABLE_INCREMENT 64
3724
3725 /* Whether we have location lists that need outputting */
3726 static GTY(()) unsigned have_location_lists;
3727
3728 /* Unique label counter. */
3729 static GTY(()) unsigned int loclabel_num;
3730
3731 #ifdef DWARF2_DEBUGGING_INFO
3732 /* Record whether the function being analyzed contains inlined functions. */
3733 static int current_function_has_inlines;
3734 #endif
3735 #if 0 && defined (MIPS_DEBUGGING_INFO)
3736 static int comp_unit_has_inlines;
3737 #endif
3738
3739 /* Number of file tables emitted in maybe_emit_file(). */
3740 static GTY(()) int emitcount = 0;
3741
3742 /* Number of internal labels generated by gen_internal_sym(). */
3743 static GTY(()) int label_num;
3744
3745 #ifdef DWARF2_DEBUGGING_INFO
3746
3747 /* Forward declarations for functions defined in this file. */
3748
3749 static int is_pseudo_reg (rtx);
3750 static tree type_main_variant (tree);
3751 static int is_tagged_type (tree);
3752 static const char *dwarf_tag_name (unsigned);
3753 static const char *dwarf_attr_name (unsigned);
3754 static const char *dwarf_form_name (unsigned);
3755 #if 0
3756 static const char *dwarf_type_encoding_name (unsigned);
3757 #endif
3758 static tree decl_ultimate_origin (tree);
3759 static tree block_ultimate_origin (tree);
3760 static tree decl_class_context (tree);
3761 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3762 static inline enum dw_val_class AT_class (dw_attr_ref);
3763 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3764 static inline unsigned AT_flag (dw_attr_ref);
3765 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3766 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3767 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3768 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3769 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3770 unsigned long);
3771 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3772 unsigned int, unsigned char *);
3773 static hashval_t debug_str_do_hash (const void *);
3774 static int debug_str_eq (const void *, const void *);
3775 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3776 static inline const char *AT_string (dw_attr_ref);
3777 static int AT_string_form (dw_attr_ref);
3778 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3779 static void add_AT_specification (dw_die_ref, dw_die_ref);
3780 static inline dw_die_ref AT_ref (dw_attr_ref);
3781 static inline int AT_ref_external (dw_attr_ref);
3782 static inline void set_AT_ref_external (dw_attr_ref, int);
3783 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3784 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3785 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3786 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3787 dw_loc_list_ref);
3788 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3789 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3790 static inline rtx AT_addr (dw_attr_ref);
3791 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3792 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3793 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3794 unsigned HOST_WIDE_INT);
3795 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3796 unsigned long);
3797 static inline const char *AT_lbl (dw_attr_ref);
3798 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3799 static const char *get_AT_low_pc (dw_die_ref);
3800 static const char *get_AT_hi_pc (dw_die_ref);
3801 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3802 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3803 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3804 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3805 static bool is_c_family (void);
3806 static bool is_cxx (void);
3807 static bool is_java (void);
3808 static bool is_fortran (void);
3809 static bool is_ada (void);
3810 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3811 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3812 static inline void free_die (dw_die_ref);
3813 static void remove_children (dw_die_ref);
3814 static void add_child_die (dw_die_ref, dw_die_ref);
3815 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3816 static dw_die_ref lookup_type_die (tree);
3817 static void equate_type_number_to_die (tree, dw_die_ref);
3818 static hashval_t decl_die_table_hash (const void *);
3819 static int decl_die_table_eq (const void *, const void *);
3820 static dw_die_ref lookup_decl_die (tree);
3821 static hashval_t decl_loc_table_hash (const void *);
3822 static int decl_loc_table_eq (const void *, const void *);
3823 static var_loc_list *lookup_decl_loc (tree);
3824 static void equate_decl_number_to_die (tree, dw_die_ref);
3825 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3826 static void print_spaces (FILE *);
3827 static void print_die (dw_die_ref, FILE *);
3828 static void print_dwarf_line_table (FILE *);
3829 static void reverse_die_lists (dw_die_ref);
3830 static void reverse_all_dies (dw_die_ref);
3831 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3832 static dw_die_ref pop_compile_unit (dw_die_ref);
3833 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3834 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3835 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3836 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3837 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3838 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3839 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3840 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3841 static void compute_section_prefix (dw_die_ref);
3842 static int is_type_die (dw_die_ref);
3843 static int is_comdat_die (dw_die_ref);
3844 static int is_symbol_die (dw_die_ref);
3845 static void assign_symbol_names (dw_die_ref);
3846 static void break_out_includes (dw_die_ref);
3847 static hashval_t htab_cu_hash (const void *);
3848 static int htab_cu_eq (const void *, const void *);
3849 static void htab_cu_del (void *);
3850 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3851 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3852 static void add_sibling_attributes (dw_die_ref);
3853 static void build_abbrev_table (dw_die_ref);
3854 static void output_location_lists (dw_die_ref);
3855 static int constant_size (long unsigned);
3856 static unsigned long size_of_die (dw_die_ref);
3857 static void calc_die_sizes (dw_die_ref);
3858 static void mark_dies (dw_die_ref);
3859 static void unmark_dies (dw_die_ref);
3860 static void unmark_all_dies (dw_die_ref);
3861 static unsigned long size_of_pubnames (void);
3862 static unsigned long size_of_aranges (void);
3863 static enum dwarf_form value_format (dw_attr_ref);
3864 static void output_value_format (dw_attr_ref);
3865 static void output_abbrev_section (void);
3866 static void output_die_symbol (dw_die_ref);
3867 static void output_die (dw_die_ref);
3868 static void output_compilation_unit_header (void);
3869 static void output_comp_unit (dw_die_ref, int);
3870 static const char *dwarf2_name (tree, int);
3871 static void add_pubname (tree, dw_die_ref);
3872 static void output_pubnames (void);
3873 static void add_arange (tree, dw_die_ref);
3874 static void output_aranges (void);
3875 static unsigned int add_ranges (tree);
3876 static void output_ranges (void);
3877 static void output_line_info (void);
3878 static void output_file_names (void);
3879 static dw_die_ref base_type_die (tree);
3880 static tree root_type (tree);
3881 static int is_base_type (tree);
3882 static bool is_subrange_type (tree);
3883 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3884 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3885 static int type_is_enum (tree);
3886 static unsigned int dbx_reg_number (rtx);
3887 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3888 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3889 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3890 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3891 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3892 static int is_based_loc (rtx);
3893 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3894 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3895 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3896 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
3897 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
3898 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3899 static tree field_type (tree);
3900 static unsigned int simple_type_align_in_bits (tree);
3901 static unsigned int simple_decl_align_in_bits (tree);
3902 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3903 static HOST_WIDE_INT field_byte_offset (tree);
3904 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3905 dw_loc_descr_ref);
3906 static void add_data_member_location_attribute (dw_die_ref, tree);
3907 static void add_const_value_attribute (dw_die_ref, rtx);
3908 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3909 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3910 static void insert_float (rtx, unsigned char *);
3911 static rtx rtl_for_decl_location (tree);
3912 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3913 enum dwarf_attribute);
3914 static void tree_add_const_value_attribute (dw_die_ref, tree);
3915 static void add_name_attribute (dw_die_ref, const char *);
3916 static void add_comp_dir_attribute (dw_die_ref);
3917 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3918 static void add_subscript_info (dw_die_ref, tree);
3919 static void add_byte_size_attribute (dw_die_ref, tree);
3920 static void add_bit_offset_attribute (dw_die_ref, tree);
3921 static void add_bit_size_attribute (dw_die_ref, tree);
3922 static void add_prototyped_attribute (dw_die_ref, tree);
3923 static void add_abstract_origin_attribute (dw_die_ref, tree);
3924 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3925 static void add_src_coords_attributes (dw_die_ref, tree);
3926 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3927 static void push_decl_scope (tree);
3928 static void pop_decl_scope (void);
3929 static dw_die_ref scope_die_for (tree, dw_die_ref);
3930 static inline int local_scope_p (dw_die_ref);
3931 static inline int class_or_namespace_scope_p (dw_die_ref);
3932 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3933 static void add_calling_convention_attribute (dw_die_ref, tree);
3934 static const char *type_tag (tree);
3935 static tree member_declared_type (tree);
3936 #if 0
3937 static const char *decl_start_label (tree);
3938 #endif
3939 static void gen_array_type_die (tree, dw_die_ref);
3940 static void gen_set_type_die (tree, dw_die_ref);
3941 #if 0
3942 static void gen_entry_point_die (tree, dw_die_ref);
3943 #endif
3944 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3945 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3946 static void gen_inlined_union_type_die (tree, dw_die_ref);
3947 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3948 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3949 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3950 static void gen_formal_types_die (tree, dw_die_ref);
3951 static void gen_subprogram_die (tree, dw_die_ref);
3952 static void gen_variable_die (tree, dw_die_ref);
3953 static void gen_label_die (tree, dw_die_ref);
3954 static void gen_lexical_block_die (tree, dw_die_ref, int);
3955 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3956 static void gen_field_die (tree, dw_die_ref);
3957 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3958 static dw_die_ref gen_compile_unit_die (const char *);
3959 static void gen_string_type_die (tree, dw_die_ref);
3960 static void gen_inheritance_die (tree, tree, dw_die_ref);
3961 static void gen_member_die (tree, dw_die_ref);
3962 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3963 static void gen_subroutine_type_die (tree, dw_die_ref);
3964 static void gen_typedef_die (tree, dw_die_ref);
3965 static void gen_type_die (tree, dw_die_ref);
3966 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3967 static void gen_block_die (tree, dw_die_ref, int);
3968 static void decls_for_scope (tree, dw_die_ref, int);
3969 static int is_redundant_typedef (tree);
3970 static void gen_namespace_die (tree);
3971 static void gen_decl_die (tree, dw_die_ref);
3972 static dw_die_ref force_decl_die (tree);
3973 static dw_die_ref force_type_die (tree);
3974 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3975 static void declare_in_namespace (tree, dw_die_ref);
3976 static unsigned lookup_filename (const char *);
3977 static void init_file_table (void);
3978 static void retry_incomplete_types (void);
3979 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3980 static void splice_child_die (dw_die_ref, dw_die_ref);
3981 static int file_info_cmp (const void *, const void *);
3982 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3983 const char *, const char *, unsigned);
3984 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3985 const char *, const char *,
3986 const char *);
3987 static void output_loc_list (dw_loc_list_ref);
3988 static char *gen_internal_sym (const char *);
3989
3990 static void prune_unmark_dies (dw_die_ref);
3991 static void prune_unused_types_mark (dw_die_ref, int);
3992 static void prune_unused_types_walk (dw_die_ref);
3993 static void prune_unused_types_walk_attribs (dw_die_ref);
3994 static void prune_unused_types_prune (dw_die_ref);
3995 static void prune_unused_types (void);
3996 static int maybe_emit_file (int);
3997
3998 /* Section names used to hold DWARF debugging information. */
3999 #ifndef DEBUG_INFO_SECTION
4000 #define DEBUG_INFO_SECTION ".debug_info"
4001 #endif
4002 #ifndef DEBUG_ABBREV_SECTION
4003 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4004 #endif
4005 #ifndef DEBUG_ARANGES_SECTION
4006 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4007 #endif
4008 #ifndef DEBUG_MACINFO_SECTION
4009 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4010 #endif
4011 #ifndef DEBUG_LINE_SECTION
4012 #define DEBUG_LINE_SECTION ".debug_line"
4013 #endif
4014 #ifndef DEBUG_LOC_SECTION
4015 #define DEBUG_LOC_SECTION ".debug_loc"
4016 #endif
4017 #ifndef DEBUG_PUBNAMES_SECTION
4018 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4019 #endif
4020 #ifndef DEBUG_STR_SECTION
4021 #define DEBUG_STR_SECTION ".debug_str"
4022 #endif
4023 #ifndef DEBUG_RANGES_SECTION
4024 #define DEBUG_RANGES_SECTION ".debug_ranges"
4025 #endif
4026
4027 /* Standard ELF section names for compiled code and data. */
4028 #ifndef TEXT_SECTION_NAME
4029 #define TEXT_SECTION_NAME ".text"
4030 #endif
4031
4032 /* Section flags for .debug_str section. */
4033 #define DEBUG_STR_SECTION_FLAGS \
4034 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4035 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4036 : SECTION_DEBUG)
4037
4038 /* Labels we insert at beginning sections we can reference instead of
4039 the section names themselves. */
4040
4041 #ifndef TEXT_SECTION_LABEL
4042 #define TEXT_SECTION_LABEL "Ltext"
4043 #endif
4044 #ifndef DEBUG_LINE_SECTION_LABEL
4045 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4046 #endif
4047 #ifndef DEBUG_INFO_SECTION_LABEL
4048 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4049 #endif
4050 #ifndef DEBUG_ABBREV_SECTION_LABEL
4051 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4052 #endif
4053 #ifndef DEBUG_LOC_SECTION_LABEL
4054 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4055 #endif
4056 #ifndef DEBUG_RANGES_SECTION_LABEL
4057 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4058 #endif
4059 #ifndef DEBUG_MACINFO_SECTION_LABEL
4060 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4061 #endif
4062
4063 /* Definitions of defaults for formats and names of various special
4064 (artificial) labels which may be generated within this file (when the -g
4065 options is used and DWARF2_DEBUGGING_INFO is in effect.
4066 If necessary, these may be overridden from within the tm.h file, but
4067 typically, overriding these defaults is unnecessary. */
4068
4069 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4070 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4071 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4072 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4073 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4074 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4075 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4076 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4077
4078 #ifndef TEXT_END_LABEL
4079 #define TEXT_END_LABEL "Letext"
4080 #endif
4081 #ifndef BLOCK_BEGIN_LABEL
4082 #define BLOCK_BEGIN_LABEL "LBB"
4083 #endif
4084 #ifndef BLOCK_END_LABEL
4085 #define BLOCK_END_LABEL "LBE"
4086 #endif
4087 #ifndef LINE_CODE_LABEL
4088 #define LINE_CODE_LABEL "LM"
4089 #endif
4090 #ifndef SEPARATE_LINE_CODE_LABEL
4091 #define SEPARATE_LINE_CODE_LABEL "LSM"
4092 #endif
4093 \f
4094 /* We allow a language front-end to designate a function that is to be
4095 called to "demangle" any name before it it put into a DIE. */
4096
4097 static const char *(*demangle_name_func) (const char *);
4098
4099 void
4100 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4101 {
4102 demangle_name_func = func;
4103 }
4104
4105 /* Test if rtl node points to a pseudo register. */
4106
4107 static inline int
4108 is_pseudo_reg (rtx rtl)
4109 {
4110 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4111 || (GET_CODE (rtl) == SUBREG
4112 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4113 }
4114
4115 /* Return a reference to a type, with its const and volatile qualifiers
4116 removed. */
4117
4118 static inline tree
4119 type_main_variant (tree type)
4120 {
4121 type = TYPE_MAIN_VARIANT (type);
4122
4123 /* ??? There really should be only one main variant among any group of
4124 variants of a given type (and all of the MAIN_VARIANT values for all
4125 members of the group should point to that one type) but sometimes the C
4126 front-end messes this up for array types, so we work around that bug
4127 here. */
4128 if (TREE_CODE (type) == ARRAY_TYPE)
4129 while (type != TYPE_MAIN_VARIANT (type))
4130 type = TYPE_MAIN_VARIANT (type);
4131
4132 return type;
4133 }
4134
4135 /* Return nonzero if the given type node represents a tagged type. */
4136
4137 static inline int
4138 is_tagged_type (tree type)
4139 {
4140 enum tree_code code = TREE_CODE (type);
4141
4142 return (code == RECORD_TYPE || code == UNION_TYPE
4143 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4144 }
4145
4146 /* Convert a DIE tag into its string name. */
4147
4148 static const char *
4149 dwarf_tag_name (unsigned int tag)
4150 {
4151 switch (tag)
4152 {
4153 case DW_TAG_padding:
4154 return "DW_TAG_padding";
4155 case DW_TAG_array_type:
4156 return "DW_TAG_array_type";
4157 case DW_TAG_class_type:
4158 return "DW_TAG_class_type";
4159 case DW_TAG_entry_point:
4160 return "DW_TAG_entry_point";
4161 case DW_TAG_enumeration_type:
4162 return "DW_TAG_enumeration_type";
4163 case DW_TAG_formal_parameter:
4164 return "DW_TAG_formal_parameter";
4165 case DW_TAG_imported_declaration:
4166 return "DW_TAG_imported_declaration";
4167 case DW_TAG_label:
4168 return "DW_TAG_label";
4169 case DW_TAG_lexical_block:
4170 return "DW_TAG_lexical_block";
4171 case DW_TAG_member:
4172 return "DW_TAG_member";
4173 case DW_TAG_pointer_type:
4174 return "DW_TAG_pointer_type";
4175 case DW_TAG_reference_type:
4176 return "DW_TAG_reference_type";
4177 case DW_TAG_compile_unit:
4178 return "DW_TAG_compile_unit";
4179 case DW_TAG_string_type:
4180 return "DW_TAG_string_type";
4181 case DW_TAG_structure_type:
4182 return "DW_TAG_structure_type";
4183 case DW_TAG_subroutine_type:
4184 return "DW_TAG_subroutine_type";
4185 case DW_TAG_typedef:
4186 return "DW_TAG_typedef";
4187 case DW_TAG_union_type:
4188 return "DW_TAG_union_type";
4189 case DW_TAG_unspecified_parameters:
4190 return "DW_TAG_unspecified_parameters";
4191 case DW_TAG_variant:
4192 return "DW_TAG_variant";
4193 case DW_TAG_common_block:
4194 return "DW_TAG_common_block";
4195 case DW_TAG_common_inclusion:
4196 return "DW_TAG_common_inclusion";
4197 case DW_TAG_inheritance:
4198 return "DW_TAG_inheritance";
4199 case DW_TAG_inlined_subroutine:
4200 return "DW_TAG_inlined_subroutine";
4201 case DW_TAG_module:
4202 return "DW_TAG_module";
4203 case DW_TAG_ptr_to_member_type:
4204 return "DW_TAG_ptr_to_member_type";
4205 case DW_TAG_set_type:
4206 return "DW_TAG_set_type";
4207 case DW_TAG_subrange_type:
4208 return "DW_TAG_subrange_type";
4209 case DW_TAG_with_stmt:
4210 return "DW_TAG_with_stmt";
4211 case DW_TAG_access_declaration:
4212 return "DW_TAG_access_declaration";
4213 case DW_TAG_base_type:
4214 return "DW_TAG_base_type";
4215 case DW_TAG_catch_block:
4216 return "DW_TAG_catch_block";
4217 case DW_TAG_const_type:
4218 return "DW_TAG_const_type";
4219 case DW_TAG_constant:
4220 return "DW_TAG_constant";
4221 case DW_TAG_enumerator:
4222 return "DW_TAG_enumerator";
4223 case DW_TAG_file_type:
4224 return "DW_TAG_file_type";
4225 case DW_TAG_friend:
4226 return "DW_TAG_friend";
4227 case DW_TAG_namelist:
4228 return "DW_TAG_namelist";
4229 case DW_TAG_namelist_item:
4230 return "DW_TAG_namelist_item";
4231 case DW_TAG_namespace:
4232 return "DW_TAG_namespace";
4233 case DW_TAG_packed_type:
4234 return "DW_TAG_packed_type";
4235 case DW_TAG_subprogram:
4236 return "DW_TAG_subprogram";
4237 case DW_TAG_template_type_param:
4238 return "DW_TAG_template_type_param";
4239 case DW_TAG_template_value_param:
4240 return "DW_TAG_template_value_param";
4241 case DW_TAG_thrown_type:
4242 return "DW_TAG_thrown_type";
4243 case DW_TAG_try_block:
4244 return "DW_TAG_try_block";
4245 case DW_TAG_variant_part:
4246 return "DW_TAG_variant_part";
4247 case DW_TAG_variable:
4248 return "DW_TAG_variable";
4249 case DW_TAG_volatile_type:
4250 return "DW_TAG_volatile_type";
4251 case DW_TAG_imported_module:
4252 return "DW_TAG_imported_module";
4253 case DW_TAG_MIPS_loop:
4254 return "DW_TAG_MIPS_loop";
4255 case DW_TAG_format_label:
4256 return "DW_TAG_format_label";
4257 case DW_TAG_function_template:
4258 return "DW_TAG_function_template";
4259 case DW_TAG_class_template:
4260 return "DW_TAG_class_template";
4261 case DW_TAG_GNU_BINCL:
4262 return "DW_TAG_GNU_BINCL";
4263 case DW_TAG_GNU_EINCL:
4264 return "DW_TAG_GNU_EINCL";
4265 default:
4266 return "DW_TAG_<unknown>";
4267 }
4268 }
4269
4270 /* Convert a DWARF attribute code into its string name. */
4271
4272 static const char *
4273 dwarf_attr_name (unsigned int attr)
4274 {
4275 switch (attr)
4276 {
4277 case DW_AT_sibling:
4278 return "DW_AT_sibling";
4279 case DW_AT_location:
4280 return "DW_AT_location";
4281 case DW_AT_name:
4282 return "DW_AT_name";
4283 case DW_AT_ordering:
4284 return "DW_AT_ordering";
4285 case DW_AT_subscr_data:
4286 return "DW_AT_subscr_data";
4287 case DW_AT_byte_size:
4288 return "DW_AT_byte_size";
4289 case DW_AT_bit_offset:
4290 return "DW_AT_bit_offset";
4291 case DW_AT_bit_size:
4292 return "DW_AT_bit_size";
4293 case DW_AT_element_list:
4294 return "DW_AT_element_list";
4295 case DW_AT_stmt_list:
4296 return "DW_AT_stmt_list";
4297 case DW_AT_low_pc:
4298 return "DW_AT_low_pc";
4299 case DW_AT_high_pc:
4300 return "DW_AT_high_pc";
4301 case DW_AT_language:
4302 return "DW_AT_language";
4303 case DW_AT_member:
4304 return "DW_AT_member";
4305 case DW_AT_discr:
4306 return "DW_AT_discr";
4307 case DW_AT_discr_value:
4308 return "DW_AT_discr_value";
4309 case DW_AT_visibility:
4310 return "DW_AT_visibility";
4311 case DW_AT_import:
4312 return "DW_AT_import";
4313 case DW_AT_string_length:
4314 return "DW_AT_string_length";
4315 case DW_AT_common_reference:
4316 return "DW_AT_common_reference";
4317 case DW_AT_comp_dir:
4318 return "DW_AT_comp_dir";
4319 case DW_AT_const_value:
4320 return "DW_AT_const_value";
4321 case DW_AT_containing_type:
4322 return "DW_AT_containing_type";
4323 case DW_AT_default_value:
4324 return "DW_AT_default_value";
4325 case DW_AT_inline:
4326 return "DW_AT_inline";
4327 case DW_AT_is_optional:
4328 return "DW_AT_is_optional";
4329 case DW_AT_lower_bound:
4330 return "DW_AT_lower_bound";
4331 case DW_AT_producer:
4332 return "DW_AT_producer";
4333 case DW_AT_prototyped:
4334 return "DW_AT_prototyped";
4335 case DW_AT_return_addr:
4336 return "DW_AT_return_addr";
4337 case DW_AT_start_scope:
4338 return "DW_AT_start_scope";
4339 case DW_AT_stride_size:
4340 return "DW_AT_stride_size";
4341 case DW_AT_upper_bound:
4342 return "DW_AT_upper_bound";
4343 case DW_AT_abstract_origin:
4344 return "DW_AT_abstract_origin";
4345 case DW_AT_accessibility:
4346 return "DW_AT_accessibility";
4347 case DW_AT_address_class:
4348 return "DW_AT_address_class";
4349 case DW_AT_artificial:
4350 return "DW_AT_artificial";
4351 case DW_AT_base_types:
4352 return "DW_AT_base_types";
4353 case DW_AT_calling_convention:
4354 return "DW_AT_calling_convention";
4355 case DW_AT_count:
4356 return "DW_AT_count";
4357 case DW_AT_data_member_location:
4358 return "DW_AT_data_member_location";
4359 case DW_AT_decl_column:
4360 return "DW_AT_decl_column";
4361 case DW_AT_decl_file:
4362 return "DW_AT_decl_file";
4363 case DW_AT_decl_line:
4364 return "DW_AT_decl_line";
4365 case DW_AT_declaration:
4366 return "DW_AT_declaration";
4367 case DW_AT_discr_list:
4368 return "DW_AT_discr_list";
4369 case DW_AT_encoding:
4370 return "DW_AT_encoding";
4371 case DW_AT_external:
4372 return "DW_AT_external";
4373 case DW_AT_frame_base:
4374 return "DW_AT_frame_base";
4375 case DW_AT_friend:
4376 return "DW_AT_friend";
4377 case DW_AT_identifier_case:
4378 return "DW_AT_identifier_case";
4379 case DW_AT_macro_info:
4380 return "DW_AT_macro_info";
4381 case DW_AT_namelist_items:
4382 return "DW_AT_namelist_items";
4383 case DW_AT_priority:
4384 return "DW_AT_priority";
4385 case DW_AT_segment:
4386 return "DW_AT_segment";
4387 case DW_AT_specification:
4388 return "DW_AT_specification";
4389 case DW_AT_static_link:
4390 return "DW_AT_static_link";
4391 case DW_AT_type:
4392 return "DW_AT_type";
4393 case DW_AT_use_location:
4394 return "DW_AT_use_location";
4395 case DW_AT_variable_parameter:
4396 return "DW_AT_variable_parameter";
4397 case DW_AT_virtuality:
4398 return "DW_AT_virtuality";
4399 case DW_AT_vtable_elem_location:
4400 return "DW_AT_vtable_elem_location";
4401
4402 case DW_AT_allocated:
4403 return "DW_AT_allocated";
4404 case DW_AT_associated:
4405 return "DW_AT_associated";
4406 case DW_AT_data_location:
4407 return "DW_AT_data_location";
4408 case DW_AT_stride:
4409 return "DW_AT_stride";
4410 case DW_AT_entry_pc:
4411 return "DW_AT_entry_pc";
4412 case DW_AT_use_UTF8:
4413 return "DW_AT_use_UTF8";
4414 case DW_AT_extension:
4415 return "DW_AT_extension";
4416 case DW_AT_ranges:
4417 return "DW_AT_ranges";
4418 case DW_AT_trampoline:
4419 return "DW_AT_trampoline";
4420 case DW_AT_call_column:
4421 return "DW_AT_call_column";
4422 case DW_AT_call_file:
4423 return "DW_AT_call_file";
4424 case DW_AT_call_line:
4425 return "DW_AT_call_line";
4426
4427 case DW_AT_MIPS_fde:
4428 return "DW_AT_MIPS_fde";
4429 case DW_AT_MIPS_loop_begin:
4430 return "DW_AT_MIPS_loop_begin";
4431 case DW_AT_MIPS_tail_loop_begin:
4432 return "DW_AT_MIPS_tail_loop_begin";
4433 case DW_AT_MIPS_epilog_begin:
4434 return "DW_AT_MIPS_epilog_begin";
4435 case DW_AT_MIPS_loop_unroll_factor:
4436 return "DW_AT_MIPS_loop_unroll_factor";
4437 case DW_AT_MIPS_software_pipeline_depth:
4438 return "DW_AT_MIPS_software_pipeline_depth";
4439 case DW_AT_MIPS_linkage_name:
4440 return "DW_AT_MIPS_linkage_name";
4441 case DW_AT_MIPS_stride:
4442 return "DW_AT_MIPS_stride";
4443 case DW_AT_MIPS_abstract_name:
4444 return "DW_AT_MIPS_abstract_name";
4445 case DW_AT_MIPS_clone_origin:
4446 return "DW_AT_MIPS_clone_origin";
4447 case DW_AT_MIPS_has_inlines:
4448 return "DW_AT_MIPS_has_inlines";
4449
4450 case DW_AT_sf_names:
4451 return "DW_AT_sf_names";
4452 case DW_AT_src_info:
4453 return "DW_AT_src_info";
4454 case DW_AT_mac_info:
4455 return "DW_AT_mac_info";
4456 case DW_AT_src_coords:
4457 return "DW_AT_src_coords";
4458 case DW_AT_body_begin:
4459 return "DW_AT_body_begin";
4460 case DW_AT_body_end:
4461 return "DW_AT_body_end";
4462 case DW_AT_GNU_vector:
4463 return "DW_AT_GNU_vector";
4464
4465 case DW_AT_VMS_rtnbeg_pd_address:
4466 return "DW_AT_VMS_rtnbeg_pd_address";
4467
4468 default:
4469 return "DW_AT_<unknown>";
4470 }
4471 }
4472
4473 /* Convert a DWARF value form code into its string name. */
4474
4475 static const char *
4476 dwarf_form_name (unsigned int form)
4477 {
4478 switch (form)
4479 {
4480 case DW_FORM_addr:
4481 return "DW_FORM_addr";
4482 case DW_FORM_block2:
4483 return "DW_FORM_block2";
4484 case DW_FORM_block4:
4485 return "DW_FORM_block4";
4486 case DW_FORM_data2:
4487 return "DW_FORM_data2";
4488 case DW_FORM_data4:
4489 return "DW_FORM_data4";
4490 case DW_FORM_data8:
4491 return "DW_FORM_data8";
4492 case DW_FORM_string:
4493 return "DW_FORM_string";
4494 case DW_FORM_block:
4495 return "DW_FORM_block";
4496 case DW_FORM_block1:
4497 return "DW_FORM_block1";
4498 case DW_FORM_data1:
4499 return "DW_FORM_data1";
4500 case DW_FORM_flag:
4501 return "DW_FORM_flag";
4502 case DW_FORM_sdata:
4503 return "DW_FORM_sdata";
4504 case DW_FORM_strp:
4505 return "DW_FORM_strp";
4506 case DW_FORM_udata:
4507 return "DW_FORM_udata";
4508 case DW_FORM_ref_addr:
4509 return "DW_FORM_ref_addr";
4510 case DW_FORM_ref1:
4511 return "DW_FORM_ref1";
4512 case DW_FORM_ref2:
4513 return "DW_FORM_ref2";
4514 case DW_FORM_ref4:
4515 return "DW_FORM_ref4";
4516 case DW_FORM_ref8:
4517 return "DW_FORM_ref8";
4518 case DW_FORM_ref_udata:
4519 return "DW_FORM_ref_udata";
4520 case DW_FORM_indirect:
4521 return "DW_FORM_indirect";
4522 default:
4523 return "DW_FORM_<unknown>";
4524 }
4525 }
4526
4527 /* Convert a DWARF type code into its string name. */
4528
4529 #if 0
4530 static const char *
4531 dwarf_type_encoding_name (unsigned enc)
4532 {
4533 switch (enc)
4534 {
4535 case DW_ATE_address:
4536 return "DW_ATE_address";
4537 case DW_ATE_boolean:
4538 return "DW_ATE_boolean";
4539 case DW_ATE_complex_float:
4540 return "DW_ATE_complex_float";
4541 case DW_ATE_float:
4542 return "DW_ATE_float";
4543 case DW_ATE_signed:
4544 return "DW_ATE_signed";
4545 case DW_ATE_signed_char:
4546 return "DW_ATE_signed_char";
4547 case DW_ATE_unsigned:
4548 return "DW_ATE_unsigned";
4549 case DW_ATE_unsigned_char:
4550 return "DW_ATE_unsigned_char";
4551 default:
4552 return "DW_ATE_<unknown>";
4553 }
4554 }
4555 #endif
4556 \f
4557 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4558 instance of an inlined instance of a decl which is local to an inline
4559 function, so we have to trace all of the way back through the origin chain
4560 to find out what sort of node actually served as the original seed for the
4561 given block. */
4562
4563 static tree
4564 decl_ultimate_origin (tree decl)
4565 {
4566 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4567 nodes in the function to point to themselves; ignore that if
4568 we're trying to output the abstract instance of this function. */
4569 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4570 return NULL_TREE;
4571
4572 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4573 most distant ancestor, this should never happen. */
4574 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4575
4576 return DECL_ABSTRACT_ORIGIN (decl);
4577 }
4578
4579 /* Determine the "ultimate origin" of a block. The block may be an inlined
4580 instance of an inlined instance of a block which is local to an inline
4581 function, so we have to trace all of the way back through the origin chain
4582 to find out what sort of node actually served as the original seed for the
4583 given block. */
4584
4585 static tree
4586 block_ultimate_origin (tree block)
4587 {
4588 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4589
4590 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4591 nodes in the function to point to themselves; ignore that if
4592 we're trying to output the abstract instance of this function. */
4593 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4594 return NULL_TREE;
4595
4596 if (immediate_origin == NULL_TREE)
4597 return NULL_TREE;
4598 else
4599 {
4600 tree ret_val;
4601 tree lookahead = immediate_origin;
4602
4603 do
4604 {
4605 ret_val = lookahead;
4606 lookahead = (TREE_CODE (ret_val) == BLOCK
4607 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4608 }
4609 while (lookahead != NULL && lookahead != ret_val);
4610
4611 return ret_val;
4612 }
4613 }
4614
4615 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4616 of a virtual function may refer to a base class, so we check the 'this'
4617 parameter. */
4618
4619 static tree
4620 decl_class_context (tree decl)
4621 {
4622 tree context = NULL_TREE;
4623
4624 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4625 context = DECL_CONTEXT (decl);
4626 else
4627 context = TYPE_MAIN_VARIANT
4628 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4629
4630 if (context && !TYPE_P (context))
4631 context = NULL_TREE;
4632
4633 return context;
4634 }
4635 \f
4636 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4637 addition order, and correct that in reverse_all_dies. */
4638
4639 static inline void
4640 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4641 {
4642 if (die != NULL && attr != NULL)
4643 {
4644 attr->dw_attr_next = die->die_attr;
4645 die->die_attr = attr;
4646 }
4647 }
4648
4649 static inline enum dw_val_class
4650 AT_class (dw_attr_ref a)
4651 {
4652 return a->dw_attr_val.val_class;
4653 }
4654
4655 /* Add a flag value attribute to a DIE. */
4656
4657 static inline void
4658 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4659 {
4660 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4661
4662 attr->dw_attr_next = NULL;
4663 attr->dw_attr = attr_kind;
4664 attr->dw_attr_val.val_class = dw_val_class_flag;
4665 attr->dw_attr_val.v.val_flag = flag;
4666 add_dwarf_attr (die, attr);
4667 }
4668
4669 static inline unsigned
4670 AT_flag (dw_attr_ref a)
4671 {
4672 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4673 return a->dw_attr_val.v.val_flag;
4674 }
4675
4676 /* Add a signed integer attribute value to a DIE. */
4677
4678 static inline void
4679 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4680 {
4681 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4682
4683 attr->dw_attr_next = NULL;
4684 attr->dw_attr = attr_kind;
4685 attr->dw_attr_val.val_class = dw_val_class_const;
4686 attr->dw_attr_val.v.val_int = int_val;
4687 add_dwarf_attr (die, attr);
4688 }
4689
4690 static inline HOST_WIDE_INT
4691 AT_int (dw_attr_ref a)
4692 {
4693 gcc_assert (a && AT_class (a) == dw_val_class_const);
4694 return a->dw_attr_val.v.val_int;
4695 }
4696
4697 /* Add an unsigned integer attribute value to a DIE. */
4698
4699 static inline void
4700 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4701 unsigned HOST_WIDE_INT unsigned_val)
4702 {
4703 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4704
4705 attr->dw_attr_next = NULL;
4706 attr->dw_attr = attr_kind;
4707 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4708 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4709 add_dwarf_attr (die, attr);
4710 }
4711
4712 static inline unsigned HOST_WIDE_INT
4713 AT_unsigned (dw_attr_ref a)
4714 {
4715 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4716 return a->dw_attr_val.v.val_unsigned;
4717 }
4718
4719 /* Add an unsigned double integer attribute value to a DIE. */
4720
4721 static inline void
4722 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4723 long unsigned int val_hi, long unsigned int val_low)
4724 {
4725 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4726
4727 attr->dw_attr_next = NULL;
4728 attr->dw_attr = attr_kind;
4729 attr->dw_attr_val.val_class = dw_val_class_long_long;
4730 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4731 attr->dw_attr_val.v.val_long_long.low = val_low;
4732 add_dwarf_attr (die, attr);
4733 }
4734
4735 /* Add a floating point attribute value to a DIE and return it. */
4736
4737 static inline void
4738 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4739 unsigned int length, unsigned int elt_size, unsigned char *array)
4740 {
4741 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4742
4743 attr->dw_attr_next = NULL;
4744 attr->dw_attr = attr_kind;
4745 attr->dw_attr_val.val_class = dw_val_class_vec;
4746 attr->dw_attr_val.v.val_vec.length = length;
4747 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4748 attr->dw_attr_val.v.val_vec.array = array;
4749 add_dwarf_attr (die, attr);
4750 }
4751
4752 /* Hash and equality functions for debug_str_hash. */
4753
4754 static hashval_t
4755 debug_str_do_hash (const void *x)
4756 {
4757 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4758 }
4759
4760 static int
4761 debug_str_eq (const void *x1, const void *x2)
4762 {
4763 return strcmp ((((const struct indirect_string_node *)x1)->str),
4764 (const char *)x2) == 0;
4765 }
4766
4767 /* Add a string attribute value to a DIE. */
4768
4769 static inline void
4770 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4771 {
4772 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4773 struct indirect_string_node *node;
4774 void **slot;
4775
4776 if (! debug_str_hash)
4777 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4778 debug_str_eq, NULL);
4779
4780 slot = htab_find_slot_with_hash (debug_str_hash, str,
4781 htab_hash_string (str), INSERT);
4782 if (*slot == NULL)
4783 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4784 node = (struct indirect_string_node *) *slot;
4785 node->str = ggc_strdup (str);
4786 node->refcount++;
4787
4788 attr->dw_attr_next = NULL;
4789 attr->dw_attr = attr_kind;
4790 attr->dw_attr_val.val_class = dw_val_class_str;
4791 attr->dw_attr_val.v.val_str = node;
4792 add_dwarf_attr (die, attr);
4793 }
4794
4795 static inline const char *
4796 AT_string (dw_attr_ref a)
4797 {
4798 gcc_assert (a && AT_class (a) == dw_val_class_str);
4799 return a->dw_attr_val.v.val_str->str;
4800 }
4801
4802 /* Find out whether a string should be output inline in DIE
4803 or out-of-line in .debug_str section. */
4804
4805 static int
4806 AT_string_form (dw_attr_ref a)
4807 {
4808 struct indirect_string_node *node;
4809 unsigned int len;
4810 char label[32];
4811
4812 gcc_assert (a && AT_class (a) == dw_val_class_str);
4813
4814 node = a->dw_attr_val.v.val_str;
4815 if (node->form)
4816 return node->form;
4817
4818 len = strlen (node->str) + 1;
4819
4820 /* If the string is shorter or equal to the size of the reference, it is
4821 always better to put it inline. */
4822 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4823 return node->form = DW_FORM_string;
4824
4825 /* If we cannot expect the linker to merge strings in .debug_str
4826 section, only put it into .debug_str if it is worth even in this
4827 single module. */
4828 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4829 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4830 return node->form = DW_FORM_string;
4831
4832 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4833 ++dw2_string_counter;
4834 node->label = xstrdup (label);
4835
4836 return node->form = DW_FORM_strp;
4837 }
4838
4839 /* Add a DIE reference attribute value to a DIE. */
4840
4841 static inline void
4842 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4843 {
4844 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4845
4846 attr->dw_attr_next = NULL;
4847 attr->dw_attr = attr_kind;
4848 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4849 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4850 attr->dw_attr_val.v.val_die_ref.external = 0;
4851 add_dwarf_attr (die, attr);
4852 }
4853
4854 /* Add an AT_specification attribute to a DIE, and also make the back
4855 pointer from the specification to the definition. */
4856
4857 static inline void
4858 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4859 {
4860 add_AT_die_ref (die, DW_AT_specification, targ_die);
4861 gcc_assert (!targ_die->die_definition);
4862 targ_die->die_definition = die;
4863 }
4864
4865 static inline dw_die_ref
4866 AT_ref (dw_attr_ref a)
4867 {
4868 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4869 return a->dw_attr_val.v.val_die_ref.die;
4870 }
4871
4872 static inline int
4873 AT_ref_external (dw_attr_ref a)
4874 {
4875 if (a && AT_class (a) == dw_val_class_die_ref)
4876 return a->dw_attr_val.v.val_die_ref.external;
4877
4878 return 0;
4879 }
4880
4881 static inline void
4882 set_AT_ref_external (dw_attr_ref a, int i)
4883 {
4884 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4885 a->dw_attr_val.v.val_die_ref.external = i;
4886 }
4887
4888 /* Add an FDE reference attribute value to a DIE. */
4889
4890 static inline void
4891 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4892 {
4893 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4894
4895 attr->dw_attr_next = NULL;
4896 attr->dw_attr = attr_kind;
4897 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4898 attr->dw_attr_val.v.val_fde_index = targ_fde;
4899 add_dwarf_attr (die, attr);
4900 }
4901
4902 /* Add a location description attribute value to a DIE. */
4903
4904 static inline void
4905 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4906 {
4907 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4908
4909 attr->dw_attr_next = NULL;
4910 attr->dw_attr = attr_kind;
4911 attr->dw_attr_val.val_class = dw_val_class_loc;
4912 attr->dw_attr_val.v.val_loc = loc;
4913 add_dwarf_attr (die, attr);
4914 }
4915
4916 static inline dw_loc_descr_ref
4917 AT_loc (dw_attr_ref a)
4918 {
4919 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4920 return a->dw_attr_val.v.val_loc;
4921 }
4922
4923 static inline void
4924 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4925 {
4926 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4927
4928 attr->dw_attr_next = NULL;
4929 attr->dw_attr = attr_kind;
4930 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4931 attr->dw_attr_val.v.val_loc_list = loc_list;
4932 add_dwarf_attr (die, attr);
4933 have_location_lists = 1;
4934 }
4935
4936 static inline dw_loc_list_ref
4937 AT_loc_list (dw_attr_ref a)
4938 {
4939 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4940 return a->dw_attr_val.v.val_loc_list;
4941 }
4942
4943 /* Add an address constant attribute value to a DIE. */
4944
4945 static inline void
4946 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4947 {
4948 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4949
4950 attr->dw_attr_next = NULL;
4951 attr->dw_attr = attr_kind;
4952 attr->dw_attr_val.val_class = dw_val_class_addr;
4953 attr->dw_attr_val.v.val_addr = addr;
4954 add_dwarf_attr (die, attr);
4955 }
4956
4957 static inline rtx
4958 AT_addr (dw_attr_ref a)
4959 {
4960 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4961 return a->dw_attr_val.v.val_addr;
4962 }
4963
4964 /* Add a label identifier attribute value to a DIE. */
4965
4966 static inline void
4967 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4968 {
4969 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4970
4971 attr->dw_attr_next = NULL;
4972 attr->dw_attr = attr_kind;
4973 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4974 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4975 add_dwarf_attr (die, attr);
4976 }
4977
4978 /* Add a section offset attribute value to a DIE. */
4979
4980 static inline void
4981 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4982 {
4983 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4984
4985 attr->dw_attr_next = NULL;
4986 attr->dw_attr = attr_kind;
4987 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4988 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4989 add_dwarf_attr (die, attr);
4990 }
4991
4992 /* Add an offset attribute value to a DIE. */
4993
4994 static inline void
4995 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4996 unsigned HOST_WIDE_INT offset)
4997 {
4998 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4999
5000 attr->dw_attr_next = NULL;
5001 attr->dw_attr = attr_kind;
5002 attr->dw_attr_val.val_class = dw_val_class_offset;
5003 attr->dw_attr_val.v.val_offset = offset;
5004 add_dwarf_attr (die, attr);
5005 }
5006
5007 /* Add an range_list attribute value to a DIE. */
5008
5009 static void
5010 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5011 long unsigned int offset)
5012 {
5013 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5014
5015 attr->dw_attr_next = NULL;
5016 attr->dw_attr = attr_kind;
5017 attr->dw_attr_val.val_class = dw_val_class_range_list;
5018 attr->dw_attr_val.v.val_offset = offset;
5019 add_dwarf_attr (die, attr);
5020 }
5021
5022 static inline const char *
5023 AT_lbl (dw_attr_ref a)
5024 {
5025 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5026 || AT_class (a) == dw_val_class_lbl_offset));
5027 return a->dw_attr_val.v.val_lbl_id;
5028 }
5029
5030 /* Get the attribute of type attr_kind. */
5031
5032 static dw_attr_ref
5033 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5034 {
5035 dw_attr_ref a;
5036 dw_die_ref spec = NULL;
5037
5038 if (die != NULL)
5039 {
5040 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5041 if (a->dw_attr == attr_kind)
5042 return a;
5043 else if (a->dw_attr == DW_AT_specification
5044 || a->dw_attr == DW_AT_abstract_origin)
5045 spec = AT_ref (a);
5046
5047 if (spec)
5048 return get_AT (spec, attr_kind);
5049 }
5050
5051 return NULL;
5052 }
5053
5054 /* Return the "low pc" attribute value, typically associated with a subprogram
5055 DIE. Return null if the "low pc" attribute is either not present, or if it
5056 cannot be represented as an assembler label identifier. */
5057
5058 static inline const char *
5059 get_AT_low_pc (dw_die_ref die)
5060 {
5061 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5062
5063 return a ? AT_lbl (a) : NULL;
5064 }
5065
5066 /* Return the "high pc" attribute value, typically associated with a subprogram
5067 DIE. Return null if the "high pc" attribute is either not present, or if it
5068 cannot be represented as an assembler label identifier. */
5069
5070 static inline const char *
5071 get_AT_hi_pc (dw_die_ref die)
5072 {
5073 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5074
5075 return a ? AT_lbl (a) : NULL;
5076 }
5077
5078 /* Return the value of the string attribute designated by ATTR_KIND, or
5079 NULL if it is not present. */
5080
5081 static inline const char *
5082 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5083 {
5084 dw_attr_ref a = get_AT (die, attr_kind);
5085
5086 return a ? AT_string (a) : NULL;
5087 }
5088
5089 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5090 if it is not present. */
5091
5092 static inline int
5093 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5094 {
5095 dw_attr_ref a = get_AT (die, attr_kind);
5096
5097 return a ? AT_flag (a) : 0;
5098 }
5099
5100 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5101 if it is not present. */
5102
5103 static inline unsigned
5104 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5105 {
5106 dw_attr_ref a = get_AT (die, attr_kind);
5107
5108 return a ? AT_unsigned (a) : 0;
5109 }
5110
5111 static inline dw_die_ref
5112 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5113 {
5114 dw_attr_ref a = get_AT (die, attr_kind);
5115
5116 return a ? AT_ref (a) : NULL;
5117 }
5118
5119 /* Return TRUE if the language is C or C++. */
5120
5121 static inline bool
5122 is_c_family (void)
5123 {
5124 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5125
5126 return (lang == DW_LANG_C || lang == DW_LANG_C89
5127 || lang == DW_LANG_C_plus_plus);
5128 }
5129
5130 /* Return TRUE if the language is C++. */
5131
5132 static inline bool
5133 is_cxx (void)
5134 {
5135 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5136 == DW_LANG_C_plus_plus);
5137 }
5138
5139 /* Return TRUE if the language is Fortran. */
5140
5141 static inline bool
5142 is_fortran (void)
5143 {
5144 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5145
5146 return (lang == DW_LANG_Fortran77
5147 || lang == DW_LANG_Fortran90
5148 || lang == DW_LANG_Fortran95);
5149 }
5150
5151 /* Return TRUE if the language is Java. */
5152
5153 static inline bool
5154 is_java (void)
5155 {
5156 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5157
5158 return lang == DW_LANG_Java;
5159 }
5160
5161 /* Return TRUE if the language is Ada. */
5162
5163 static inline bool
5164 is_ada (void)
5165 {
5166 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5167
5168 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5169 }
5170
5171 /* Free up the memory used by A. */
5172
5173 static inline void free_AT (dw_attr_ref);
5174 static inline void
5175 free_AT (dw_attr_ref a)
5176 {
5177 if (AT_class (a) == dw_val_class_str)
5178 if (a->dw_attr_val.v.val_str->refcount)
5179 a->dw_attr_val.v.val_str->refcount--;
5180 }
5181
5182 /* Remove the specified attribute if present. */
5183
5184 static void
5185 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5186 {
5187 dw_attr_ref *p;
5188 dw_attr_ref removed = NULL;
5189
5190 if (die != NULL)
5191 {
5192 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5193 if ((*p)->dw_attr == attr_kind)
5194 {
5195 removed = *p;
5196 *p = (*p)->dw_attr_next;
5197 break;
5198 }
5199
5200 if (removed != 0)
5201 free_AT (removed);
5202 }
5203 }
5204
5205 /* Remove child die whose die_tag is specified tag. */
5206
5207 static void
5208 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5209 {
5210 dw_die_ref current, prev, next;
5211 current = die->die_child;
5212 prev = NULL;
5213 while (current != NULL)
5214 {
5215 if (current->die_tag == tag)
5216 {
5217 next = current->die_sib;
5218 if (prev == NULL)
5219 die->die_child = next;
5220 else
5221 prev->die_sib = next;
5222 free_die (current);
5223 current = next;
5224 }
5225 else
5226 {
5227 prev = current;
5228 current = current->die_sib;
5229 }
5230 }
5231 }
5232
5233 /* Free up the memory used by DIE. */
5234
5235 static inline void
5236 free_die (dw_die_ref die)
5237 {
5238 remove_children (die);
5239 }
5240
5241 /* Discard the children of this DIE. */
5242
5243 static void
5244 remove_children (dw_die_ref die)
5245 {
5246 dw_die_ref child_die = die->die_child;
5247
5248 die->die_child = NULL;
5249
5250 while (child_die != NULL)
5251 {
5252 dw_die_ref tmp_die = child_die;
5253 dw_attr_ref a;
5254
5255 child_die = child_die->die_sib;
5256
5257 for (a = tmp_die->die_attr; a != NULL;)
5258 {
5259 dw_attr_ref tmp_a = a;
5260
5261 a = a->dw_attr_next;
5262 free_AT (tmp_a);
5263 }
5264
5265 free_die (tmp_die);
5266 }
5267 }
5268
5269 /* Add a child DIE below its parent. We build the lists up in reverse
5270 addition order, and correct that in reverse_all_dies. */
5271
5272 static inline void
5273 add_child_die (dw_die_ref die, dw_die_ref child_die)
5274 {
5275 if (die != NULL && child_die != NULL)
5276 {
5277 gcc_assert (die != child_die);
5278
5279 child_die->die_parent = die;
5280 child_die->die_sib = die->die_child;
5281 die->die_child = child_die;
5282 }
5283 }
5284
5285 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5286 is the specification, to the front of PARENT's list of children. */
5287
5288 static void
5289 splice_child_die (dw_die_ref parent, dw_die_ref child)
5290 {
5291 dw_die_ref *p;
5292
5293 /* We want the declaration DIE from inside the class, not the
5294 specification DIE at toplevel. */
5295 if (child->die_parent != parent)
5296 {
5297 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5298
5299 if (tmp)
5300 child = tmp;
5301 }
5302
5303 gcc_assert (child->die_parent == parent
5304 || (child->die_parent
5305 == get_AT_ref (parent, DW_AT_specification)));
5306
5307 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5308 if (*p == child)
5309 {
5310 *p = child->die_sib;
5311 break;
5312 }
5313
5314 child->die_parent = parent;
5315 child->die_sib = parent->die_child;
5316 parent->die_child = child;
5317 }
5318
5319 /* Return a pointer to a newly created DIE node. */
5320
5321 static inline dw_die_ref
5322 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5323 {
5324 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5325
5326 die->die_tag = tag_value;
5327
5328 if (parent_die != NULL)
5329 add_child_die (parent_die, die);
5330 else
5331 {
5332 limbo_die_node *limbo_node;
5333
5334 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5335 limbo_node->die = die;
5336 limbo_node->created_for = t;
5337 limbo_node->next = limbo_die_list;
5338 limbo_die_list = limbo_node;
5339 }
5340
5341 return die;
5342 }
5343
5344 /* Return the DIE associated with the given type specifier. */
5345
5346 static inline dw_die_ref
5347 lookup_type_die (tree type)
5348 {
5349 return TYPE_SYMTAB_DIE (type);
5350 }
5351
5352 /* Equate a DIE to a given type specifier. */
5353
5354 static inline void
5355 equate_type_number_to_die (tree type, dw_die_ref type_die)
5356 {
5357 TYPE_SYMTAB_DIE (type) = type_die;
5358 }
5359
5360 /* Returns a hash value for X (which really is a die_struct). */
5361
5362 static hashval_t
5363 decl_die_table_hash (const void *x)
5364 {
5365 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5366 }
5367
5368 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5369
5370 static int
5371 decl_die_table_eq (const void *x, const void *y)
5372 {
5373 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5374 }
5375
5376 /* Return the DIE associated with a given declaration. */
5377
5378 static inline dw_die_ref
5379 lookup_decl_die (tree decl)
5380 {
5381 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5382 }
5383
5384 /* Returns a hash value for X (which really is a var_loc_list). */
5385
5386 static hashval_t
5387 decl_loc_table_hash (const void *x)
5388 {
5389 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5390 }
5391
5392 /* Return nonzero if decl_id of var_loc_list X is the same as
5393 UID of decl *Y. */
5394
5395 static int
5396 decl_loc_table_eq (const void *x, const void *y)
5397 {
5398 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5399 }
5400
5401 /* Return the var_loc list associated with a given declaration. */
5402
5403 static inline var_loc_list *
5404 lookup_decl_loc (tree decl)
5405 {
5406 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5407 }
5408
5409 /* Equate a DIE to a particular declaration. */
5410
5411 static void
5412 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5413 {
5414 unsigned int decl_id = DECL_UID (decl);
5415 void **slot;
5416
5417 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5418 *slot = decl_die;
5419 decl_die->decl_id = decl_id;
5420 }
5421
5422 /* Add a variable location node to the linked list for DECL. */
5423
5424 static void
5425 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5426 {
5427 unsigned int decl_id = DECL_UID (decl);
5428 var_loc_list *temp;
5429 void **slot;
5430
5431 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5432 if (*slot == NULL)
5433 {
5434 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5435 temp->decl_id = decl_id;
5436 *slot = temp;
5437 }
5438 else
5439 temp = *slot;
5440
5441 if (temp->last)
5442 {
5443 /* If the current location is the same as the end of the list,
5444 we have nothing to do. */
5445 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5446 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5447 {
5448 /* Add LOC to the end of list and update LAST. */
5449 temp->last->next = loc;
5450 temp->last = loc;
5451 }
5452 }
5453 /* Do not add empty location to the beginning of the list. */
5454 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5455 {
5456 temp->first = loc;
5457 temp->last = loc;
5458 }
5459 }
5460 \f
5461 /* Keep track of the number of spaces used to indent the
5462 output of the debugging routines that print the structure of
5463 the DIE internal representation. */
5464 static int print_indent;
5465
5466 /* Indent the line the number of spaces given by print_indent. */
5467
5468 static inline void
5469 print_spaces (FILE *outfile)
5470 {
5471 fprintf (outfile, "%*s", print_indent, "");
5472 }
5473
5474 /* Print the information associated with a given DIE, and its children.
5475 This routine is a debugging aid only. */
5476
5477 static void
5478 print_die (dw_die_ref die, FILE *outfile)
5479 {
5480 dw_attr_ref a;
5481 dw_die_ref c;
5482
5483 print_spaces (outfile);
5484 fprintf (outfile, "DIE %4lu: %s\n",
5485 die->die_offset, dwarf_tag_name (die->die_tag));
5486 print_spaces (outfile);
5487 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5488 fprintf (outfile, " offset: %lu\n", die->die_offset);
5489
5490 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5491 {
5492 print_spaces (outfile);
5493 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5494
5495 switch (AT_class (a))
5496 {
5497 case dw_val_class_addr:
5498 fprintf (outfile, "address");
5499 break;
5500 case dw_val_class_offset:
5501 fprintf (outfile, "offset");
5502 break;
5503 case dw_val_class_loc:
5504 fprintf (outfile, "location descriptor");
5505 break;
5506 case dw_val_class_loc_list:
5507 fprintf (outfile, "location list -> label:%s",
5508 AT_loc_list (a)->ll_symbol);
5509 break;
5510 case dw_val_class_range_list:
5511 fprintf (outfile, "range list");
5512 break;
5513 case dw_val_class_const:
5514 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5515 break;
5516 case dw_val_class_unsigned_const:
5517 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5518 break;
5519 case dw_val_class_long_long:
5520 fprintf (outfile, "constant (%lu,%lu)",
5521 a->dw_attr_val.v.val_long_long.hi,
5522 a->dw_attr_val.v.val_long_long.low);
5523 break;
5524 case dw_val_class_vec:
5525 fprintf (outfile, "floating-point or vector constant");
5526 break;
5527 case dw_val_class_flag:
5528 fprintf (outfile, "%u", AT_flag (a));
5529 break;
5530 case dw_val_class_die_ref:
5531 if (AT_ref (a) != NULL)
5532 {
5533 if (AT_ref (a)->die_symbol)
5534 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5535 else
5536 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5537 }
5538 else
5539 fprintf (outfile, "die -> <null>");
5540 break;
5541 case dw_val_class_lbl_id:
5542 case dw_val_class_lbl_offset:
5543 fprintf (outfile, "label: %s", AT_lbl (a));
5544 break;
5545 case dw_val_class_str:
5546 if (AT_string (a) != NULL)
5547 fprintf (outfile, "\"%s\"", AT_string (a));
5548 else
5549 fprintf (outfile, "<null>");
5550 break;
5551 default:
5552 break;
5553 }
5554
5555 fprintf (outfile, "\n");
5556 }
5557
5558 if (die->die_child != NULL)
5559 {
5560 print_indent += 4;
5561 for (c = die->die_child; c != NULL; c = c->die_sib)
5562 print_die (c, outfile);
5563
5564 print_indent -= 4;
5565 }
5566 if (print_indent == 0)
5567 fprintf (outfile, "\n");
5568 }
5569
5570 /* Print the contents of the source code line number correspondence table.
5571 This routine is a debugging aid only. */
5572
5573 static void
5574 print_dwarf_line_table (FILE *outfile)
5575 {
5576 unsigned i;
5577 dw_line_info_ref line_info;
5578
5579 fprintf (outfile, "\n\nDWARF source line information\n");
5580 for (i = 1; i < line_info_table_in_use; i++)
5581 {
5582 line_info = &line_info_table[i];
5583 fprintf (outfile, "%5d: ", i);
5584 fprintf (outfile, "%-20s",
5585 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5586 fprintf (outfile, "%6ld", line_info->dw_line_num);
5587 fprintf (outfile, "\n");
5588 }
5589
5590 fprintf (outfile, "\n\n");
5591 }
5592
5593 /* Print the information collected for a given DIE. */
5594
5595 void
5596 debug_dwarf_die (dw_die_ref die)
5597 {
5598 print_die (die, stderr);
5599 }
5600
5601 /* Print all DWARF information collected for the compilation unit.
5602 This routine is a debugging aid only. */
5603
5604 void
5605 debug_dwarf (void)
5606 {
5607 print_indent = 0;
5608 print_die (comp_unit_die, stderr);
5609 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5610 print_dwarf_line_table (stderr);
5611 }
5612 \f
5613 /* We build up the lists of children and attributes by pushing new ones
5614 onto the beginning of the list. Reverse the lists for DIE so that
5615 they are in order of addition. */
5616
5617 static void
5618 reverse_die_lists (dw_die_ref die)
5619 {
5620 dw_die_ref c, cp, cn;
5621 dw_attr_ref a, ap, an;
5622
5623 for (a = die->die_attr, ap = 0; a; a = an)
5624 {
5625 an = a->dw_attr_next;
5626 a->dw_attr_next = ap;
5627 ap = a;
5628 }
5629
5630 die->die_attr = ap;
5631
5632 for (c = die->die_child, cp = 0; c; c = cn)
5633 {
5634 cn = c->die_sib;
5635 c->die_sib = cp;
5636 cp = c;
5637 }
5638
5639 die->die_child = cp;
5640 }
5641
5642 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5643 reverse all dies in add_sibling_attributes, which runs through all the dies,
5644 it would reverse all the dies. Now, however, since we don't call
5645 reverse_die_lists in add_sibling_attributes, we need a routine to
5646 recursively reverse all the dies. This is that routine. */
5647
5648 static void
5649 reverse_all_dies (dw_die_ref die)
5650 {
5651 dw_die_ref c;
5652
5653 reverse_die_lists (die);
5654
5655 for (c = die->die_child; c; c = c->die_sib)
5656 reverse_all_dies (c);
5657 }
5658
5659 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5660 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5661 DIE that marks the start of the DIEs for this include file. */
5662
5663 static dw_die_ref
5664 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5665 {
5666 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5667 dw_die_ref new_unit = gen_compile_unit_die (filename);
5668
5669 new_unit->die_sib = old_unit;
5670 return new_unit;
5671 }
5672
5673 /* Close an include-file CU and reopen the enclosing one. */
5674
5675 static dw_die_ref
5676 pop_compile_unit (dw_die_ref old_unit)
5677 {
5678 dw_die_ref new_unit = old_unit->die_sib;
5679
5680 old_unit->die_sib = NULL;
5681 return new_unit;
5682 }
5683
5684 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5685 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5686
5687 /* Calculate the checksum of a location expression. */
5688
5689 static inline void
5690 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5691 {
5692 CHECKSUM (loc->dw_loc_opc);
5693 CHECKSUM (loc->dw_loc_oprnd1);
5694 CHECKSUM (loc->dw_loc_oprnd2);
5695 }
5696
5697 /* Calculate the checksum of an attribute. */
5698
5699 static void
5700 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5701 {
5702 dw_loc_descr_ref loc;
5703 rtx r;
5704
5705 CHECKSUM (at->dw_attr);
5706
5707 /* We don't care about differences in file numbering. */
5708 if (at->dw_attr == DW_AT_decl_file
5709 /* Or that this was compiled with a different compiler snapshot; if
5710 the output is the same, that's what matters. */
5711 || at->dw_attr == DW_AT_producer)
5712 return;
5713
5714 switch (AT_class (at))
5715 {
5716 case dw_val_class_const:
5717 CHECKSUM (at->dw_attr_val.v.val_int);
5718 break;
5719 case dw_val_class_unsigned_const:
5720 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5721 break;
5722 case dw_val_class_long_long:
5723 CHECKSUM (at->dw_attr_val.v.val_long_long);
5724 break;
5725 case dw_val_class_vec:
5726 CHECKSUM (at->dw_attr_val.v.val_vec);
5727 break;
5728 case dw_val_class_flag:
5729 CHECKSUM (at->dw_attr_val.v.val_flag);
5730 break;
5731 case dw_val_class_str:
5732 CHECKSUM_STRING (AT_string (at));
5733 break;
5734
5735 case dw_val_class_addr:
5736 r = AT_addr (at);
5737 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5738 CHECKSUM_STRING (XSTR (r, 0));
5739 break;
5740
5741 case dw_val_class_offset:
5742 CHECKSUM (at->dw_attr_val.v.val_offset);
5743 break;
5744
5745 case dw_val_class_loc:
5746 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5747 loc_checksum (loc, ctx);
5748 break;
5749
5750 case dw_val_class_die_ref:
5751 die_checksum (AT_ref (at), ctx, mark);
5752 break;
5753
5754 case dw_val_class_fde_ref:
5755 case dw_val_class_lbl_id:
5756 case dw_val_class_lbl_offset:
5757 break;
5758
5759 default:
5760 break;
5761 }
5762 }
5763
5764 /* Calculate the checksum of a DIE. */
5765
5766 static void
5767 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5768 {
5769 dw_die_ref c;
5770 dw_attr_ref a;
5771
5772 /* To avoid infinite recursion. */
5773 if (die->die_mark)
5774 {
5775 CHECKSUM (die->die_mark);
5776 return;
5777 }
5778 die->die_mark = ++(*mark);
5779
5780 CHECKSUM (die->die_tag);
5781
5782 for (a = die->die_attr; a; a = a->dw_attr_next)
5783 attr_checksum (a, ctx, mark);
5784
5785 for (c = die->die_child; c; c = c->die_sib)
5786 die_checksum (c, ctx, mark);
5787 }
5788
5789 #undef CHECKSUM
5790 #undef CHECKSUM_STRING
5791
5792 /* Do the location expressions look same? */
5793 static inline int
5794 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5795 {
5796 return loc1->dw_loc_opc == loc2->dw_loc_opc
5797 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5798 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5799 }
5800
5801 /* Do the values look the same? */
5802 static int
5803 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5804 {
5805 dw_loc_descr_ref loc1, loc2;
5806 rtx r1, r2;
5807
5808 if (v1->val_class != v2->val_class)
5809 return 0;
5810
5811 switch (v1->val_class)
5812 {
5813 case dw_val_class_const:
5814 return v1->v.val_int == v2->v.val_int;
5815 case dw_val_class_unsigned_const:
5816 return v1->v.val_unsigned == v2->v.val_unsigned;
5817 case dw_val_class_long_long:
5818 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5819 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5820 case dw_val_class_vec:
5821 if (v1->v.val_vec.length != v2->v.val_vec.length
5822 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5823 return 0;
5824 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5825 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5826 return 0;
5827 return 1;
5828 case dw_val_class_flag:
5829 return v1->v.val_flag == v2->v.val_flag;
5830 case dw_val_class_str:
5831 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5832
5833 case dw_val_class_addr:
5834 r1 = v1->v.val_addr;
5835 r2 = v2->v.val_addr;
5836 if (GET_CODE (r1) != GET_CODE (r2))
5837 return 0;
5838 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5839 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5840
5841 case dw_val_class_offset:
5842 return v1->v.val_offset == v2->v.val_offset;
5843
5844 case dw_val_class_loc:
5845 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5846 loc1 && loc2;
5847 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5848 if (!same_loc_p (loc1, loc2, mark))
5849 return 0;
5850 return !loc1 && !loc2;
5851
5852 case dw_val_class_die_ref:
5853 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5854
5855 case dw_val_class_fde_ref:
5856 case dw_val_class_lbl_id:
5857 case dw_val_class_lbl_offset:
5858 return 1;
5859
5860 default:
5861 return 1;
5862 }
5863 }
5864
5865 /* Do the attributes look the same? */
5866
5867 static int
5868 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5869 {
5870 if (at1->dw_attr != at2->dw_attr)
5871 return 0;
5872
5873 /* We don't care about differences in file numbering. */
5874 if (at1->dw_attr == DW_AT_decl_file
5875 /* Or that this was compiled with a different compiler snapshot; if
5876 the output is the same, that's what matters. */
5877 || at1->dw_attr == DW_AT_producer)
5878 return 1;
5879
5880 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5881 }
5882
5883 /* Do the dies look the same? */
5884
5885 static int
5886 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5887 {
5888 dw_die_ref c1, c2;
5889 dw_attr_ref a1, a2;
5890
5891 /* To avoid infinite recursion. */
5892 if (die1->die_mark)
5893 return die1->die_mark == die2->die_mark;
5894 die1->die_mark = die2->die_mark = ++(*mark);
5895
5896 if (die1->die_tag != die2->die_tag)
5897 return 0;
5898
5899 for (a1 = die1->die_attr, a2 = die2->die_attr;
5900 a1 && a2;
5901 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5902 if (!same_attr_p (a1, a2, mark))
5903 return 0;
5904 if (a1 || a2)
5905 return 0;
5906
5907 for (c1 = die1->die_child, c2 = die2->die_child;
5908 c1 && c2;
5909 c1 = c1->die_sib, c2 = c2->die_sib)
5910 if (!same_die_p (c1, c2, mark))
5911 return 0;
5912 if (c1 || c2)
5913 return 0;
5914
5915 return 1;
5916 }
5917
5918 /* Do the dies look the same? Wrapper around same_die_p. */
5919
5920 static int
5921 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5922 {
5923 int mark = 0;
5924 int ret = same_die_p (die1, die2, &mark);
5925
5926 unmark_all_dies (die1);
5927 unmark_all_dies (die2);
5928
5929 return ret;
5930 }
5931
5932 /* The prefix to attach to symbols on DIEs in the current comdat debug
5933 info section. */
5934 static char *comdat_symbol_id;
5935
5936 /* The index of the current symbol within the current comdat CU. */
5937 static unsigned int comdat_symbol_number;
5938
5939 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5940 children, and set comdat_symbol_id accordingly. */
5941
5942 static void
5943 compute_section_prefix (dw_die_ref unit_die)
5944 {
5945 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5946 const char *base = die_name ? lbasename (die_name) : "anonymous";
5947 char *name = alloca (strlen (base) + 64);
5948 char *p;
5949 int i, mark;
5950 unsigned char checksum[16];
5951 struct md5_ctx ctx;
5952
5953 /* Compute the checksum of the DIE, then append part of it as hex digits to
5954 the name filename of the unit. */
5955
5956 md5_init_ctx (&ctx);
5957 mark = 0;
5958 die_checksum (unit_die, &ctx, &mark);
5959 unmark_all_dies (unit_die);
5960 md5_finish_ctx (&ctx, checksum);
5961
5962 sprintf (name, "%s.", base);
5963 clean_symbol_name (name);
5964
5965 p = name + strlen (name);
5966 for (i = 0; i < 4; i++)
5967 {
5968 sprintf (p, "%.2x", checksum[i]);
5969 p += 2;
5970 }
5971
5972 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5973 comdat_symbol_number = 0;
5974 }
5975
5976 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5977
5978 static int
5979 is_type_die (dw_die_ref die)
5980 {
5981 switch (die->die_tag)
5982 {
5983 case DW_TAG_array_type:
5984 case DW_TAG_class_type:
5985 case DW_TAG_enumeration_type:
5986 case DW_TAG_pointer_type:
5987 case DW_TAG_reference_type:
5988 case DW_TAG_string_type:
5989 case DW_TAG_structure_type:
5990 case DW_TAG_subroutine_type:
5991 case DW_TAG_union_type:
5992 case DW_TAG_ptr_to_member_type:
5993 case DW_TAG_set_type:
5994 case DW_TAG_subrange_type:
5995 case DW_TAG_base_type:
5996 case DW_TAG_const_type:
5997 case DW_TAG_file_type:
5998 case DW_TAG_packed_type:
5999 case DW_TAG_volatile_type:
6000 case DW_TAG_typedef:
6001 return 1;
6002 default:
6003 return 0;
6004 }
6005 }
6006
6007 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6008 Basically, we want to choose the bits that are likely to be shared between
6009 compilations (types) and leave out the bits that are specific to individual
6010 compilations (functions). */
6011
6012 static int
6013 is_comdat_die (dw_die_ref c)
6014 {
6015 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6016 we do for stabs. The advantage is a greater likelihood of sharing between
6017 objects that don't include headers in the same order (and therefore would
6018 put the base types in a different comdat). jason 8/28/00 */
6019
6020 if (c->die_tag == DW_TAG_base_type)
6021 return 0;
6022
6023 if (c->die_tag == DW_TAG_pointer_type
6024 || c->die_tag == DW_TAG_reference_type
6025 || c->die_tag == DW_TAG_const_type
6026 || c->die_tag == DW_TAG_volatile_type)
6027 {
6028 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6029
6030 return t ? is_comdat_die (t) : 0;
6031 }
6032
6033 return is_type_die (c);
6034 }
6035
6036 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6037 compilation unit. */
6038
6039 static int
6040 is_symbol_die (dw_die_ref c)
6041 {
6042 return (is_type_die (c)
6043 || (get_AT (c, DW_AT_declaration)
6044 && !get_AT (c, DW_AT_specification)));
6045 }
6046
6047 static char *
6048 gen_internal_sym (const char *prefix)
6049 {
6050 char buf[256];
6051
6052 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6053 return xstrdup (buf);
6054 }
6055
6056 /* Assign symbols to all worthy DIEs under DIE. */
6057
6058 static void
6059 assign_symbol_names (dw_die_ref die)
6060 {
6061 dw_die_ref c;
6062
6063 if (is_symbol_die (die))
6064 {
6065 if (comdat_symbol_id)
6066 {
6067 char *p = alloca (strlen (comdat_symbol_id) + 64);
6068
6069 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6070 comdat_symbol_id, comdat_symbol_number++);
6071 die->die_symbol = xstrdup (p);
6072 }
6073 else
6074 die->die_symbol = gen_internal_sym ("LDIE");
6075 }
6076
6077 for (c = die->die_child; c != NULL; c = c->die_sib)
6078 assign_symbol_names (c);
6079 }
6080
6081 struct cu_hash_table_entry
6082 {
6083 dw_die_ref cu;
6084 unsigned min_comdat_num, max_comdat_num;
6085 struct cu_hash_table_entry *next;
6086 };
6087
6088 /* Routines to manipulate hash table of CUs. */
6089 static hashval_t
6090 htab_cu_hash (const void *of)
6091 {
6092 const struct cu_hash_table_entry *entry = of;
6093
6094 return htab_hash_string (entry->cu->die_symbol);
6095 }
6096
6097 static int
6098 htab_cu_eq (const void *of1, const void *of2)
6099 {
6100 const struct cu_hash_table_entry *entry1 = of1;
6101 const struct die_struct *entry2 = of2;
6102
6103 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6104 }
6105
6106 static void
6107 htab_cu_del (void *what)
6108 {
6109 struct cu_hash_table_entry *next, *entry = what;
6110
6111 while (entry)
6112 {
6113 next = entry->next;
6114 free (entry);
6115 entry = next;
6116 }
6117 }
6118
6119 /* Check whether we have already seen this CU and set up SYM_NUM
6120 accordingly. */
6121 static int
6122 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6123 {
6124 struct cu_hash_table_entry dummy;
6125 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6126
6127 dummy.max_comdat_num = 0;
6128
6129 slot = (struct cu_hash_table_entry **)
6130 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6131 INSERT);
6132 entry = *slot;
6133
6134 for (; entry; last = entry, entry = entry->next)
6135 {
6136 if (same_die_p_wrap (cu, entry->cu))
6137 break;
6138 }
6139
6140 if (entry)
6141 {
6142 *sym_num = entry->min_comdat_num;
6143 return 1;
6144 }
6145
6146 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6147 entry->cu = cu;
6148 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6149 entry->next = *slot;
6150 *slot = entry;
6151
6152 return 0;
6153 }
6154
6155 /* Record SYM_NUM to record of CU in HTABLE. */
6156 static void
6157 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6158 {
6159 struct cu_hash_table_entry **slot, *entry;
6160
6161 slot = (struct cu_hash_table_entry **)
6162 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6163 NO_INSERT);
6164 entry = *slot;
6165
6166 entry->max_comdat_num = sym_num;
6167 }
6168
6169 /* Traverse the DIE (which is always comp_unit_die), and set up
6170 additional compilation units for each of the include files we see
6171 bracketed by BINCL/EINCL. */
6172
6173 static void
6174 break_out_includes (dw_die_ref die)
6175 {
6176 dw_die_ref *ptr;
6177 dw_die_ref unit = NULL;
6178 limbo_die_node *node, **pnode;
6179 htab_t cu_hash_table;
6180
6181 for (ptr = &(die->die_child); *ptr;)
6182 {
6183 dw_die_ref c = *ptr;
6184
6185 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6186 || (unit && is_comdat_die (c)))
6187 {
6188 /* This DIE is for a secondary CU; remove it from the main one. */
6189 *ptr = c->die_sib;
6190
6191 if (c->die_tag == DW_TAG_GNU_BINCL)
6192 {
6193 unit = push_new_compile_unit (unit, c);
6194 free_die (c);
6195 }
6196 else if (c->die_tag == DW_TAG_GNU_EINCL)
6197 {
6198 unit = pop_compile_unit (unit);
6199 free_die (c);
6200 }
6201 else
6202 add_child_die (unit, c);
6203 }
6204 else
6205 {
6206 /* Leave this DIE in the main CU. */
6207 ptr = &(c->die_sib);
6208 continue;
6209 }
6210 }
6211
6212 #if 0
6213 /* We can only use this in debugging, since the frontend doesn't check
6214 to make sure that we leave every include file we enter. */
6215 gcc_assert (!unit);
6216 #endif
6217
6218 assign_symbol_names (die);
6219 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6220 for (node = limbo_die_list, pnode = &limbo_die_list;
6221 node;
6222 node = node->next)
6223 {
6224 int is_dupl;
6225
6226 compute_section_prefix (node->die);
6227 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6228 &comdat_symbol_number);
6229 assign_symbol_names (node->die);
6230 if (is_dupl)
6231 *pnode = node->next;
6232 else
6233 {
6234 pnode = &node->next;
6235 record_comdat_symbol_number (node->die, cu_hash_table,
6236 comdat_symbol_number);
6237 }
6238 }
6239 htab_delete (cu_hash_table);
6240 }
6241
6242 /* Traverse the DIE and add a sibling attribute if it may have the
6243 effect of speeding up access to siblings. To save some space,
6244 avoid generating sibling attributes for DIE's without children. */
6245
6246 static void
6247 add_sibling_attributes (dw_die_ref die)
6248 {
6249 dw_die_ref c;
6250
6251 if (die->die_tag != DW_TAG_compile_unit
6252 && die->die_sib && die->die_child != NULL)
6253 /* Add the sibling link to the front of the attribute list. */
6254 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6255
6256 for (c = die->die_child; c != NULL; c = c->die_sib)
6257 add_sibling_attributes (c);
6258 }
6259
6260 /* Output all location lists for the DIE and its children. */
6261
6262 static void
6263 output_location_lists (dw_die_ref die)
6264 {
6265 dw_die_ref c;
6266 dw_attr_ref d_attr;
6267
6268 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6269 if (AT_class (d_attr) == dw_val_class_loc_list)
6270 output_loc_list (AT_loc_list (d_attr));
6271
6272 for (c = die->die_child; c != NULL; c = c->die_sib)
6273 output_location_lists (c);
6274
6275 }
6276
6277 /* The format of each DIE (and its attribute value pairs) is encoded in an
6278 abbreviation table. This routine builds the abbreviation table and assigns
6279 a unique abbreviation id for each abbreviation entry. The children of each
6280 die are visited recursively. */
6281
6282 static void
6283 build_abbrev_table (dw_die_ref die)
6284 {
6285 unsigned long abbrev_id;
6286 unsigned int n_alloc;
6287 dw_die_ref c;
6288 dw_attr_ref d_attr, a_attr;
6289
6290 /* Scan the DIE references, and mark as external any that refer to
6291 DIEs from other CUs (i.e. those which are not marked). */
6292 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6293 if (AT_class (d_attr) == dw_val_class_die_ref
6294 && AT_ref (d_attr)->die_mark == 0)
6295 {
6296 gcc_assert (AT_ref (d_attr)->die_symbol);
6297
6298 set_AT_ref_external (d_attr, 1);
6299 }
6300
6301 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6302 {
6303 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6304
6305 if (abbrev->die_tag == die->die_tag)
6306 {
6307 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6308 {
6309 a_attr = abbrev->die_attr;
6310 d_attr = die->die_attr;
6311
6312 while (a_attr != NULL && d_attr != NULL)
6313 {
6314 if ((a_attr->dw_attr != d_attr->dw_attr)
6315 || (value_format (a_attr) != value_format (d_attr)))
6316 break;
6317
6318 a_attr = a_attr->dw_attr_next;
6319 d_attr = d_attr->dw_attr_next;
6320 }
6321
6322 if (a_attr == NULL && d_attr == NULL)
6323 break;
6324 }
6325 }
6326 }
6327
6328 if (abbrev_id >= abbrev_die_table_in_use)
6329 {
6330 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6331 {
6332 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6333 abbrev_die_table = ggc_realloc (abbrev_die_table,
6334 sizeof (dw_die_ref) * n_alloc);
6335
6336 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6337 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6338 abbrev_die_table_allocated = n_alloc;
6339 }
6340
6341 ++abbrev_die_table_in_use;
6342 abbrev_die_table[abbrev_id] = die;
6343 }
6344
6345 die->die_abbrev = abbrev_id;
6346 for (c = die->die_child; c != NULL; c = c->die_sib)
6347 build_abbrev_table (c);
6348 }
6349 \f
6350 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6351
6352 static int
6353 constant_size (long unsigned int value)
6354 {
6355 int log;
6356
6357 if (value == 0)
6358 log = 0;
6359 else
6360 log = floor_log2 (value);
6361
6362 log = log / 8;
6363 log = 1 << (floor_log2 (log) + 1);
6364
6365 return log;
6366 }
6367
6368 /* Return the size of a DIE as it is represented in the
6369 .debug_info section. */
6370
6371 static unsigned long
6372 size_of_die (dw_die_ref die)
6373 {
6374 unsigned long size = 0;
6375 dw_attr_ref a;
6376
6377 size += size_of_uleb128 (die->die_abbrev);
6378 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6379 {
6380 switch (AT_class (a))
6381 {
6382 case dw_val_class_addr:
6383 size += DWARF2_ADDR_SIZE;
6384 break;
6385 case dw_val_class_offset:
6386 size += DWARF_OFFSET_SIZE;
6387 break;
6388 case dw_val_class_loc:
6389 {
6390 unsigned long lsize = size_of_locs (AT_loc (a));
6391
6392 /* Block length. */
6393 size += constant_size (lsize);
6394 size += lsize;
6395 }
6396 break;
6397 case dw_val_class_loc_list:
6398 size += DWARF_OFFSET_SIZE;
6399 break;
6400 case dw_val_class_range_list:
6401 size += DWARF_OFFSET_SIZE;
6402 break;
6403 case dw_val_class_const:
6404 size += size_of_sleb128 (AT_int (a));
6405 break;
6406 case dw_val_class_unsigned_const:
6407 size += constant_size (AT_unsigned (a));
6408 break;
6409 case dw_val_class_long_long:
6410 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6411 break;
6412 case dw_val_class_vec:
6413 size += 1 + (a->dw_attr_val.v.val_vec.length
6414 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6415 break;
6416 case dw_val_class_flag:
6417 size += 1;
6418 break;
6419 case dw_val_class_die_ref:
6420 if (AT_ref_external (a))
6421 size += DWARF2_ADDR_SIZE;
6422 else
6423 size += DWARF_OFFSET_SIZE;
6424 break;
6425 case dw_val_class_fde_ref:
6426 size += DWARF_OFFSET_SIZE;
6427 break;
6428 case dw_val_class_lbl_id:
6429 size += DWARF2_ADDR_SIZE;
6430 break;
6431 case dw_val_class_lbl_offset:
6432 size += DWARF_OFFSET_SIZE;
6433 break;
6434 case dw_val_class_str:
6435 if (AT_string_form (a) == DW_FORM_strp)
6436 size += DWARF_OFFSET_SIZE;
6437 else
6438 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6439 break;
6440 default:
6441 gcc_unreachable ();
6442 }
6443 }
6444
6445 return size;
6446 }
6447
6448 /* Size the debugging information associated with a given DIE. Visits the
6449 DIE's children recursively. Updates the global variable next_die_offset, on
6450 each time through. Uses the current value of next_die_offset to update the
6451 die_offset field in each DIE. */
6452
6453 static void
6454 calc_die_sizes (dw_die_ref die)
6455 {
6456 dw_die_ref c;
6457
6458 die->die_offset = next_die_offset;
6459 next_die_offset += size_of_die (die);
6460
6461 for (c = die->die_child; c != NULL; c = c->die_sib)
6462 calc_die_sizes (c);
6463
6464 if (die->die_child != NULL)
6465 /* Count the null byte used to terminate sibling lists. */
6466 next_die_offset += 1;
6467 }
6468
6469 /* Set the marks for a die and its children. We do this so
6470 that we know whether or not a reference needs to use FORM_ref_addr; only
6471 DIEs in the same CU will be marked. We used to clear out the offset
6472 and use that as the flag, but ran into ordering problems. */
6473
6474 static void
6475 mark_dies (dw_die_ref die)
6476 {
6477 dw_die_ref c;
6478
6479 gcc_assert (!die->die_mark);
6480
6481 die->die_mark = 1;
6482 for (c = die->die_child; c; c = c->die_sib)
6483 mark_dies (c);
6484 }
6485
6486 /* Clear the marks for a die and its children. */
6487
6488 static void
6489 unmark_dies (dw_die_ref die)
6490 {
6491 dw_die_ref c;
6492
6493 gcc_assert (die->die_mark);
6494
6495 die->die_mark = 0;
6496 for (c = die->die_child; c; c = c->die_sib)
6497 unmark_dies (c);
6498 }
6499
6500 /* Clear the marks for a die, its children and referred dies. */
6501
6502 static void
6503 unmark_all_dies (dw_die_ref die)
6504 {
6505 dw_die_ref c;
6506 dw_attr_ref a;
6507
6508 if (!die->die_mark)
6509 return;
6510 die->die_mark = 0;
6511
6512 for (c = die->die_child; c; c = c->die_sib)
6513 unmark_all_dies (c);
6514
6515 for (a = die->die_attr; a; a = a->dw_attr_next)
6516 if (AT_class (a) == dw_val_class_die_ref)
6517 unmark_all_dies (AT_ref (a));
6518 }
6519
6520 /* Return the size of the .debug_pubnames table generated for the
6521 compilation unit. */
6522
6523 static unsigned long
6524 size_of_pubnames (void)
6525 {
6526 unsigned long size;
6527 unsigned i;
6528
6529 size = DWARF_PUBNAMES_HEADER_SIZE;
6530 for (i = 0; i < pubname_table_in_use; i++)
6531 {
6532 pubname_ref p = &pubname_table[i];
6533 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6534 }
6535
6536 size += DWARF_OFFSET_SIZE;
6537 return size;
6538 }
6539
6540 /* Return the size of the information in the .debug_aranges section. */
6541
6542 static unsigned long
6543 size_of_aranges (void)
6544 {
6545 unsigned long size;
6546
6547 size = DWARF_ARANGES_HEADER_SIZE;
6548
6549 /* Count the address/length pair for this compilation unit. */
6550 size += 2 * DWARF2_ADDR_SIZE;
6551 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6552
6553 /* Count the two zero words used to terminated the address range table. */
6554 size += 2 * DWARF2_ADDR_SIZE;
6555 return size;
6556 }
6557 \f
6558 /* Select the encoding of an attribute value. */
6559
6560 static enum dwarf_form
6561 value_format (dw_attr_ref a)
6562 {
6563 switch (a->dw_attr_val.val_class)
6564 {
6565 case dw_val_class_addr:
6566 return DW_FORM_addr;
6567 case dw_val_class_range_list:
6568 case dw_val_class_offset:
6569 switch (DWARF_OFFSET_SIZE)
6570 {
6571 case 4:
6572 return DW_FORM_data4;
6573 case 8:
6574 return DW_FORM_data8;
6575 default:
6576 gcc_unreachable ();
6577 }
6578 case dw_val_class_loc_list:
6579 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6580 .debug_loc section */
6581 return DW_FORM_data4;
6582 case dw_val_class_loc:
6583 switch (constant_size (size_of_locs (AT_loc (a))))
6584 {
6585 case 1:
6586 return DW_FORM_block1;
6587 case 2:
6588 return DW_FORM_block2;
6589 default:
6590 gcc_unreachable ();
6591 }
6592 case dw_val_class_const:
6593 return DW_FORM_sdata;
6594 case dw_val_class_unsigned_const:
6595 switch (constant_size (AT_unsigned (a)))
6596 {
6597 case 1:
6598 return DW_FORM_data1;
6599 case 2:
6600 return DW_FORM_data2;
6601 case 4:
6602 return DW_FORM_data4;
6603 case 8:
6604 return DW_FORM_data8;
6605 default:
6606 gcc_unreachable ();
6607 }
6608 case dw_val_class_long_long:
6609 return DW_FORM_block1;
6610 case dw_val_class_vec:
6611 return DW_FORM_block1;
6612 case dw_val_class_flag:
6613 return DW_FORM_flag;
6614 case dw_val_class_die_ref:
6615 if (AT_ref_external (a))
6616 return DW_FORM_ref_addr;
6617 else
6618 return DW_FORM_ref;
6619 case dw_val_class_fde_ref:
6620 return DW_FORM_data;
6621 case dw_val_class_lbl_id:
6622 return DW_FORM_addr;
6623 case dw_val_class_lbl_offset:
6624 return DW_FORM_data;
6625 case dw_val_class_str:
6626 return AT_string_form (a);
6627
6628 default:
6629 gcc_unreachable ();
6630 }
6631 }
6632
6633 /* Output the encoding of an attribute value. */
6634
6635 static void
6636 output_value_format (dw_attr_ref a)
6637 {
6638 enum dwarf_form form = value_format (a);
6639
6640 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6641 }
6642
6643 /* Output the .debug_abbrev section which defines the DIE abbreviation
6644 table. */
6645
6646 static void
6647 output_abbrev_section (void)
6648 {
6649 unsigned long abbrev_id;
6650
6651 dw_attr_ref a_attr;
6652
6653 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6654 {
6655 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6656
6657 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6658 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6659 dwarf_tag_name (abbrev->die_tag));
6660
6661 if (abbrev->die_child != NULL)
6662 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6663 else
6664 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6665
6666 for (a_attr = abbrev->die_attr; a_attr != NULL;
6667 a_attr = a_attr->dw_attr_next)
6668 {
6669 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6670 dwarf_attr_name (a_attr->dw_attr));
6671 output_value_format (a_attr);
6672 }
6673
6674 dw2_asm_output_data (1, 0, NULL);
6675 dw2_asm_output_data (1, 0, NULL);
6676 }
6677
6678 /* Terminate the table. */
6679 dw2_asm_output_data (1, 0, NULL);
6680 }
6681
6682 /* Output a symbol we can use to refer to this DIE from another CU. */
6683
6684 static inline void
6685 output_die_symbol (dw_die_ref die)
6686 {
6687 char *sym = die->die_symbol;
6688
6689 if (sym == 0)
6690 return;
6691
6692 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6693 /* We make these global, not weak; if the target doesn't support
6694 .linkonce, it doesn't support combining the sections, so debugging
6695 will break. */
6696 targetm.asm_out.globalize_label (asm_out_file, sym);
6697
6698 ASM_OUTPUT_LABEL (asm_out_file, sym);
6699 }
6700
6701 /* Return a new location list, given the begin and end range, and the
6702 expression. gensym tells us whether to generate a new internal symbol for
6703 this location list node, which is done for the head of the list only. */
6704
6705 static inline dw_loc_list_ref
6706 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6707 const char *section, unsigned int gensym)
6708 {
6709 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6710
6711 retlist->begin = begin;
6712 retlist->end = end;
6713 retlist->expr = expr;
6714 retlist->section = section;
6715 if (gensym)
6716 retlist->ll_symbol = gen_internal_sym ("LLST");
6717
6718 return retlist;
6719 }
6720
6721 /* Add a location description expression to a location list. */
6722
6723 static inline void
6724 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6725 const char *begin, const char *end,
6726 const char *section)
6727 {
6728 dw_loc_list_ref *d;
6729
6730 /* Find the end of the chain. */
6731 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6732 ;
6733
6734 /* Add a new location list node to the list. */
6735 *d = new_loc_list (descr, begin, end, section, 0);
6736 }
6737
6738 /* Output the location list given to us. */
6739
6740 static void
6741 output_loc_list (dw_loc_list_ref list_head)
6742 {
6743 dw_loc_list_ref curr = list_head;
6744
6745 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6746
6747 /* Walk the location list, and output each range + expression. */
6748 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6749 {
6750 unsigned long size;
6751 if (separate_line_info_table_in_use == 0)
6752 {
6753 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6754 "Location list begin address (%s)",
6755 list_head->ll_symbol);
6756 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6757 "Location list end address (%s)",
6758 list_head->ll_symbol);
6759 }
6760 else
6761 {
6762 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6763 "Location list begin address (%s)",
6764 list_head->ll_symbol);
6765 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6766 "Location list end address (%s)",
6767 list_head->ll_symbol);
6768 }
6769 size = size_of_locs (curr->expr);
6770
6771 /* Output the block length for this list of location operations. */
6772 gcc_assert (size <= 0xffff);
6773 dw2_asm_output_data (2, size, "%s", "Location expression size");
6774
6775 output_loc_sequence (curr->expr);
6776 }
6777
6778 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6779 "Location list terminator begin (%s)",
6780 list_head->ll_symbol);
6781 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6782 "Location list terminator end (%s)",
6783 list_head->ll_symbol);
6784 }
6785
6786 /* Output the DIE and its attributes. Called recursively to generate
6787 the definitions of each child DIE. */
6788
6789 static void
6790 output_die (dw_die_ref die)
6791 {
6792 dw_attr_ref a;
6793 dw_die_ref c;
6794 unsigned long size;
6795
6796 /* If someone in another CU might refer to us, set up a symbol for
6797 them to point to. */
6798 if (die->die_symbol)
6799 output_die_symbol (die);
6800
6801 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6802 die->die_offset, dwarf_tag_name (die->die_tag));
6803
6804 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6805 {
6806 const char *name = dwarf_attr_name (a->dw_attr);
6807
6808 switch (AT_class (a))
6809 {
6810 case dw_val_class_addr:
6811 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6812 break;
6813
6814 case dw_val_class_offset:
6815 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6816 "%s", name);
6817 break;
6818
6819 case dw_val_class_range_list:
6820 {
6821 char *p = strchr (ranges_section_label, '\0');
6822
6823 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6824 a->dw_attr_val.v.val_offset);
6825 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6826 "%s", name);
6827 *p = '\0';
6828 }
6829 break;
6830
6831 case dw_val_class_loc:
6832 size = size_of_locs (AT_loc (a));
6833
6834 /* Output the block length for this list of location operations. */
6835 dw2_asm_output_data (constant_size (size), size, "%s", name);
6836
6837 output_loc_sequence (AT_loc (a));
6838 break;
6839
6840 case dw_val_class_const:
6841 /* ??? It would be slightly more efficient to use a scheme like is
6842 used for unsigned constants below, but gdb 4.x does not sign
6843 extend. Gdb 5.x does sign extend. */
6844 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6845 break;
6846
6847 case dw_val_class_unsigned_const:
6848 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6849 AT_unsigned (a), "%s", name);
6850 break;
6851
6852 case dw_val_class_long_long:
6853 {
6854 unsigned HOST_WIDE_INT first, second;
6855
6856 dw2_asm_output_data (1,
6857 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6858 "%s", name);
6859
6860 if (WORDS_BIG_ENDIAN)
6861 {
6862 first = a->dw_attr_val.v.val_long_long.hi;
6863 second = a->dw_attr_val.v.val_long_long.low;
6864 }
6865 else
6866 {
6867 first = a->dw_attr_val.v.val_long_long.low;
6868 second = a->dw_attr_val.v.val_long_long.hi;
6869 }
6870
6871 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6872 first, "long long constant");
6873 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6874 second, NULL);
6875 }
6876 break;
6877
6878 case dw_val_class_vec:
6879 {
6880 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6881 unsigned int len = a->dw_attr_val.v.val_vec.length;
6882 unsigned int i;
6883 unsigned char *p;
6884
6885 dw2_asm_output_data (1, len * elt_size, "%s", name);
6886 if (elt_size > sizeof (HOST_WIDE_INT))
6887 {
6888 elt_size /= 2;
6889 len *= 2;
6890 }
6891 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6892 i < len;
6893 i++, p += elt_size)
6894 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6895 "fp or vector constant word %u", i);
6896 break;
6897 }
6898
6899 case dw_val_class_flag:
6900 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6901 break;
6902
6903 case dw_val_class_loc_list:
6904 {
6905 char *sym = AT_loc_list (a)->ll_symbol;
6906
6907 gcc_assert (sym);
6908 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6909 }
6910 break;
6911
6912 case dw_val_class_die_ref:
6913 if (AT_ref_external (a))
6914 {
6915 char *sym = AT_ref (a)->die_symbol;
6916
6917 gcc_assert (sym);
6918 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6919 }
6920 else
6921 {
6922 gcc_assert (AT_ref (a)->die_offset);
6923 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6924 "%s", name);
6925 }
6926 break;
6927
6928 case dw_val_class_fde_ref:
6929 {
6930 char l1[20];
6931
6932 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6933 a->dw_attr_val.v.val_fde_index * 2);
6934 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6935 }
6936 break;
6937
6938 case dw_val_class_lbl_id:
6939 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6940 break;
6941
6942 case dw_val_class_lbl_offset:
6943 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6944 break;
6945
6946 case dw_val_class_str:
6947 if (AT_string_form (a) == DW_FORM_strp)
6948 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6949 a->dw_attr_val.v.val_str->label,
6950 "%s: \"%s\"", name, AT_string (a));
6951 else
6952 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6953 break;
6954
6955 default:
6956 gcc_unreachable ();
6957 }
6958 }
6959
6960 for (c = die->die_child; c != NULL; c = c->die_sib)
6961 output_die (c);
6962
6963 /* Add null byte to terminate sibling list. */
6964 if (die->die_child != NULL)
6965 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6966 die->die_offset);
6967 }
6968
6969 /* Output the compilation unit that appears at the beginning of the
6970 .debug_info section, and precedes the DIE descriptions. */
6971
6972 static void
6973 output_compilation_unit_header (void)
6974 {
6975 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6976 dw2_asm_output_data (4, 0xffffffff,
6977 "Initial length escape value indicating 64-bit DWARF extension");
6978 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6979 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6980 "Length of Compilation Unit Info");
6981 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6982 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6983 "Offset Into Abbrev. Section");
6984 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6985 }
6986
6987 /* Output the compilation unit DIE and its children. */
6988
6989 static void
6990 output_comp_unit (dw_die_ref die, int output_if_empty)
6991 {
6992 const char *secname;
6993 char *oldsym, *tmp;
6994
6995 /* Unless we are outputting main CU, we may throw away empty ones. */
6996 if (!output_if_empty && die->die_child == NULL)
6997 return;
6998
6999 /* Even if there are no children of this DIE, we must output the information
7000 about the compilation unit. Otherwise, on an empty translation unit, we
7001 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7002 will then complain when examining the file. First mark all the DIEs in
7003 this CU so we know which get local refs. */
7004 mark_dies (die);
7005
7006 build_abbrev_table (die);
7007
7008 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7009 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7010 calc_die_sizes (die);
7011
7012 oldsym = die->die_symbol;
7013 if (oldsym)
7014 {
7015 tmp = alloca (strlen (oldsym) + 24);
7016
7017 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7018 secname = tmp;
7019 die->die_symbol = NULL;
7020 }
7021 else
7022 secname = (const char *) DEBUG_INFO_SECTION;
7023
7024 /* Output debugging information. */
7025 named_section_flags (secname, SECTION_DEBUG);
7026 output_compilation_unit_header ();
7027 output_die (die);
7028
7029 /* Leave the marks on the main CU, so we can check them in
7030 output_pubnames. */
7031 if (oldsym)
7032 {
7033 unmark_dies (die);
7034 die->die_symbol = oldsym;
7035 }
7036 }
7037
7038 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7039 output of lang_hooks.decl_printable_name for C++ looks like
7040 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7041
7042 static const char *
7043 dwarf2_name (tree decl, int scope)
7044 {
7045 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7046 }
7047
7048 /* Add a new entry to .debug_pubnames if appropriate. */
7049
7050 static void
7051 add_pubname (tree decl, dw_die_ref die)
7052 {
7053 pubname_ref p;
7054
7055 if (! TREE_PUBLIC (decl))
7056 return;
7057
7058 if (pubname_table_in_use == pubname_table_allocated)
7059 {
7060 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7061 pubname_table
7062 = ggc_realloc (pubname_table,
7063 (pubname_table_allocated * sizeof (pubname_entry)));
7064 memset (pubname_table + pubname_table_in_use, 0,
7065 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7066 }
7067
7068 p = &pubname_table[pubname_table_in_use++];
7069 p->die = die;
7070 p->name = xstrdup (dwarf2_name (decl, 1));
7071 }
7072
7073 /* Output the public names table used to speed up access to externally
7074 visible names. For now, only generate entries for externally
7075 visible procedures. */
7076
7077 static void
7078 output_pubnames (void)
7079 {
7080 unsigned i;
7081 unsigned long pubnames_length = size_of_pubnames ();
7082
7083 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7084 dw2_asm_output_data (4, 0xffffffff,
7085 "Initial length escape value indicating 64-bit DWARF extension");
7086 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7087 "Length of Public Names Info");
7088 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7089 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7090 "Offset of Compilation Unit Info");
7091 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7092 "Compilation Unit Length");
7093
7094 for (i = 0; i < pubname_table_in_use; i++)
7095 {
7096 pubname_ref pub = &pubname_table[i];
7097
7098 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7099 gcc_assert (pub->die->die_mark);
7100
7101 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7102 "DIE offset");
7103
7104 dw2_asm_output_nstring (pub->name, -1, "external name");
7105 }
7106
7107 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7108 }
7109
7110 /* Add a new entry to .debug_aranges if appropriate. */
7111
7112 static void
7113 add_arange (tree decl, dw_die_ref die)
7114 {
7115 if (! DECL_SECTION_NAME (decl))
7116 return;
7117
7118 if (arange_table_in_use == arange_table_allocated)
7119 {
7120 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7121 arange_table = ggc_realloc (arange_table,
7122 (arange_table_allocated
7123 * sizeof (dw_die_ref)));
7124 memset (arange_table + arange_table_in_use, 0,
7125 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7126 }
7127
7128 arange_table[arange_table_in_use++] = die;
7129 }
7130
7131 /* Output the information that goes into the .debug_aranges table.
7132 Namely, define the beginning and ending address range of the
7133 text section generated for this compilation unit. */
7134
7135 static void
7136 output_aranges (void)
7137 {
7138 unsigned i;
7139 unsigned long aranges_length = size_of_aranges ();
7140
7141 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7142 dw2_asm_output_data (4, 0xffffffff,
7143 "Initial length escape value indicating 64-bit DWARF extension");
7144 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7145 "Length of Address Ranges Info");
7146 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7147 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7148 "Offset of Compilation Unit Info");
7149 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7150 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7151
7152 /* We need to align to twice the pointer size here. */
7153 if (DWARF_ARANGES_PAD_SIZE)
7154 {
7155 /* Pad using a 2 byte words so that padding is correct for any
7156 pointer size. */
7157 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7158 2 * DWARF2_ADDR_SIZE);
7159 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7160 dw2_asm_output_data (2, 0, NULL);
7161 }
7162
7163 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7164 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7165 text_section_label, "Length");
7166
7167 for (i = 0; i < arange_table_in_use; i++)
7168 {
7169 dw_die_ref die = arange_table[i];
7170
7171 /* We shouldn't see aranges for DIEs outside of the main CU. */
7172 gcc_assert (die->die_mark);
7173
7174 if (die->die_tag == DW_TAG_subprogram)
7175 {
7176 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7177 "Address");
7178 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7179 get_AT_low_pc (die), "Length");
7180 }
7181 else
7182 {
7183 /* A static variable; extract the symbol from DW_AT_location.
7184 Note that this code isn't currently hit, as we only emit
7185 aranges for functions (jason 9/23/99). */
7186 dw_attr_ref a = get_AT (die, DW_AT_location);
7187 dw_loc_descr_ref loc;
7188
7189 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7190
7191 loc = AT_loc (a);
7192 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7193
7194 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7195 loc->dw_loc_oprnd1.v.val_addr, "Address");
7196 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7197 get_AT_unsigned (die, DW_AT_byte_size),
7198 "Length");
7199 }
7200 }
7201
7202 /* Output the terminator words. */
7203 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7204 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7205 }
7206
7207 /* Add a new entry to .debug_ranges. Return the offset at which it
7208 was placed. */
7209
7210 static unsigned int
7211 add_ranges (tree block)
7212 {
7213 unsigned int in_use = ranges_table_in_use;
7214
7215 if (in_use == ranges_table_allocated)
7216 {
7217 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7218 ranges_table
7219 = ggc_realloc (ranges_table, (ranges_table_allocated
7220 * sizeof (struct dw_ranges_struct)));
7221 memset (ranges_table + ranges_table_in_use, 0,
7222 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7223 }
7224
7225 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7226 ranges_table_in_use = in_use + 1;
7227
7228 return in_use * 2 * DWARF2_ADDR_SIZE;
7229 }
7230
7231 static void
7232 output_ranges (void)
7233 {
7234 unsigned i;
7235 static const char *const start_fmt = "Offset 0x%x";
7236 const char *fmt = start_fmt;
7237
7238 for (i = 0; i < ranges_table_in_use; i++)
7239 {
7240 int block_num = ranges_table[i].block_num;
7241
7242 if (block_num)
7243 {
7244 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7245 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7246
7247 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7248 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7249
7250 /* If all code is in the text section, then the compilation
7251 unit base address defaults to DW_AT_low_pc, which is the
7252 base of the text section. */
7253 if (separate_line_info_table_in_use == 0)
7254 {
7255 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7256 text_section_label,
7257 fmt, i * 2 * DWARF2_ADDR_SIZE);
7258 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7259 text_section_label, NULL);
7260 }
7261
7262 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7263 compilation unit base address to zero, which allows us to
7264 use absolute addresses, and not worry about whether the
7265 target supports cross-section arithmetic. */
7266 else
7267 {
7268 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7269 fmt, i * 2 * DWARF2_ADDR_SIZE);
7270 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7271 }
7272
7273 fmt = NULL;
7274 }
7275 else
7276 {
7277 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7278 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7279 fmt = start_fmt;
7280 }
7281 }
7282 }
7283
7284 /* Data structure containing information about input files. */
7285 struct file_info
7286 {
7287 char *path; /* Complete file name. */
7288 char *fname; /* File name part. */
7289 int length; /* Length of entire string. */
7290 int file_idx; /* Index in input file table. */
7291 int dir_idx; /* Index in directory table. */
7292 };
7293
7294 /* Data structure containing information about directories with source
7295 files. */
7296 struct dir_info
7297 {
7298 char *path; /* Path including directory name. */
7299 int length; /* Path length. */
7300 int prefix; /* Index of directory entry which is a prefix. */
7301 int count; /* Number of files in this directory. */
7302 int dir_idx; /* Index of directory used as base. */
7303 int used; /* Used in the end? */
7304 };
7305
7306 /* Callback function for file_info comparison. We sort by looking at
7307 the directories in the path. */
7308
7309 static int
7310 file_info_cmp (const void *p1, const void *p2)
7311 {
7312 const struct file_info *s1 = p1;
7313 const struct file_info *s2 = p2;
7314 unsigned char *cp1;
7315 unsigned char *cp2;
7316
7317 /* Take care of file names without directories. We need to make sure that
7318 we return consistent values to qsort since some will get confused if
7319 we return the same value when identical operands are passed in opposite
7320 orders. So if neither has a directory, return 0 and otherwise return
7321 1 or -1 depending on which one has the directory. */
7322 if ((s1->path == s1->fname || s2->path == s2->fname))
7323 return (s2->path == s2->fname) - (s1->path == s1->fname);
7324
7325 cp1 = (unsigned char *) s1->path;
7326 cp2 = (unsigned char *) s2->path;
7327
7328 while (1)
7329 {
7330 ++cp1;
7331 ++cp2;
7332 /* Reached the end of the first path? If so, handle like above. */
7333 if ((cp1 == (unsigned char *) s1->fname)
7334 || (cp2 == (unsigned char *) s2->fname))
7335 return ((cp2 == (unsigned char *) s2->fname)
7336 - (cp1 == (unsigned char *) s1->fname));
7337
7338 /* Character of current path component the same? */
7339 else if (*cp1 != *cp2)
7340 return *cp1 - *cp2;
7341 }
7342 }
7343
7344 /* Output the directory table and the file name table. We try to minimize
7345 the total amount of memory needed. A heuristic is used to avoid large
7346 slowdowns with many input files. */
7347
7348 static void
7349 output_file_names (void)
7350 {
7351 struct file_info *files;
7352 struct dir_info *dirs;
7353 int *saved;
7354 int *savehere;
7355 int *backmap;
7356 size_t ndirs;
7357 int idx_offset;
7358 size_t i;
7359 int idx;
7360
7361 /* Handle the case where file_table is empty. */
7362 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7363 {
7364 dw2_asm_output_data (1, 0, "End directory table");
7365 dw2_asm_output_data (1, 0, "End file name table");
7366 return;
7367 }
7368
7369 /* Allocate the various arrays we need. */
7370 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7371 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7372
7373 /* Sort the file names. */
7374 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7375 {
7376 char *f;
7377
7378 /* Skip all leading "./". */
7379 f = VARRAY_CHAR_PTR (file_table, i);
7380 while (f[0] == '.' && f[1] == '/')
7381 f += 2;
7382
7383 /* Create a new array entry. */
7384 files[i].path = f;
7385 files[i].length = strlen (f);
7386 files[i].file_idx = i;
7387
7388 /* Search for the file name part. */
7389 f = strrchr (f, '/');
7390 files[i].fname = f == NULL ? files[i].path : f + 1;
7391 }
7392
7393 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7394 sizeof (files[0]), file_info_cmp);
7395
7396 /* Find all the different directories used. */
7397 dirs[0].path = files[1].path;
7398 dirs[0].length = files[1].fname - files[1].path;
7399 dirs[0].prefix = -1;
7400 dirs[0].count = 1;
7401 dirs[0].dir_idx = 0;
7402 dirs[0].used = 0;
7403 files[1].dir_idx = 0;
7404 ndirs = 1;
7405
7406 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7407 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7408 && memcmp (dirs[ndirs - 1].path, files[i].path,
7409 dirs[ndirs - 1].length) == 0)
7410 {
7411 /* Same directory as last entry. */
7412 files[i].dir_idx = ndirs - 1;
7413 ++dirs[ndirs - 1].count;
7414 }
7415 else
7416 {
7417 size_t j;
7418
7419 /* This is a new directory. */
7420 dirs[ndirs].path = files[i].path;
7421 dirs[ndirs].length = files[i].fname - files[i].path;
7422 dirs[ndirs].count = 1;
7423 dirs[ndirs].dir_idx = ndirs;
7424 dirs[ndirs].used = 0;
7425 files[i].dir_idx = ndirs;
7426
7427 /* Search for a prefix. */
7428 dirs[ndirs].prefix = -1;
7429 for (j = 0; j < ndirs; j++)
7430 if (dirs[j].length < dirs[ndirs].length
7431 && dirs[j].length > 1
7432 && (dirs[ndirs].prefix == -1
7433 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7434 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7435 dirs[ndirs].prefix = j;
7436
7437 ++ndirs;
7438 }
7439
7440 /* Now to the actual work. We have to find a subset of the directories which
7441 allow expressing the file name using references to the directory table
7442 with the least amount of characters. We do not do an exhaustive search
7443 where we would have to check out every combination of every single
7444 possible prefix. Instead we use a heuristic which provides nearly optimal
7445 results in most cases and never is much off. */
7446 saved = alloca (ndirs * sizeof (int));
7447 savehere = alloca (ndirs * sizeof (int));
7448
7449 memset (saved, '\0', ndirs * sizeof (saved[0]));
7450 for (i = 0; i < ndirs; i++)
7451 {
7452 size_t j;
7453 int total;
7454
7455 /* We can always save some space for the current directory. But this
7456 does not mean it will be enough to justify adding the directory. */
7457 savehere[i] = dirs[i].length;
7458 total = (savehere[i] - saved[i]) * dirs[i].count;
7459
7460 for (j = i + 1; j < ndirs; j++)
7461 {
7462 savehere[j] = 0;
7463 if (saved[j] < dirs[i].length)
7464 {
7465 /* Determine whether the dirs[i] path is a prefix of the
7466 dirs[j] path. */
7467 int k;
7468
7469 k = dirs[j].prefix;
7470 while (k != -1 && k != (int) i)
7471 k = dirs[k].prefix;
7472
7473 if (k == (int) i)
7474 {
7475 /* Yes it is. We can possibly safe some memory but
7476 writing the filenames in dirs[j] relative to
7477 dirs[i]. */
7478 savehere[j] = dirs[i].length;
7479 total += (savehere[j] - saved[j]) * dirs[j].count;
7480 }
7481 }
7482 }
7483
7484 /* Check whether we can safe enough to justify adding the dirs[i]
7485 directory. */
7486 if (total > dirs[i].length + 1)
7487 {
7488 /* It's worthwhile adding. */
7489 for (j = i; j < ndirs; j++)
7490 if (savehere[j] > 0)
7491 {
7492 /* Remember how much we saved for this directory so far. */
7493 saved[j] = savehere[j];
7494
7495 /* Remember the prefix directory. */
7496 dirs[j].dir_idx = i;
7497 }
7498 }
7499 }
7500
7501 /* We have to emit them in the order they appear in the file_table array
7502 since the index is used in the debug info generation. To do this
7503 efficiently we generate a back-mapping of the indices first. */
7504 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7505 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7506 {
7507 backmap[files[i].file_idx] = i;
7508
7509 /* Mark this directory as used. */
7510 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7511 }
7512
7513 /* That was it. We are ready to emit the information. First emit the
7514 directory name table. We have to make sure the first actually emitted
7515 directory name has index one; zero is reserved for the current working
7516 directory. Make sure we do not confuse these indices with the one for the
7517 constructed table (even though most of the time they are identical). */
7518 idx = 1;
7519 idx_offset = dirs[0].length > 0 ? 1 : 0;
7520 for (i = 1 - idx_offset; i < ndirs; i++)
7521 if (dirs[i].used != 0)
7522 {
7523 dirs[i].used = idx++;
7524 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7525 "Directory Entry: 0x%x", dirs[i].used);
7526 }
7527
7528 dw2_asm_output_data (1, 0, "End directory table");
7529
7530 /* Correct the index for the current working directory entry if it
7531 exists. */
7532 if (idx_offset == 0)
7533 dirs[0].used = 0;
7534
7535 /* Now write all the file names. */
7536 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7537 {
7538 int file_idx = backmap[i];
7539 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7540
7541 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7542 "File Entry: 0x%lx", (unsigned long) i);
7543
7544 /* Include directory index. */
7545 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7546
7547 /* Modification time. */
7548 dw2_asm_output_data_uleb128 (0, NULL);
7549
7550 /* File length in bytes. */
7551 dw2_asm_output_data_uleb128 (0, NULL);
7552 }
7553
7554 dw2_asm_output_data (1, 0, "End file name table");
7555 }
7556
7557
7558 /* Output the source line number correspondence information. This
7559 information goes into the .debug_line section. */
7560
7561 static void
7562 output_line_info (void)
7563 {
7564 char l1[20], l2[20], p1[20], p2[20];
7565 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7566 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7567 unsigned opc;
7568 unsigned n_op_args;
7569 unsigned long lt_index;
7570 unsigned long current_line;
7571 long line_offset;
7572 long line_delta;
7573 unsigned long current_file;
7574 unsigned long function;
7575
7576 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7577 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7578 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7579 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7580
7581 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7582 dw2_asm_output_data (4, 0xffffffff,
7583 "Initial length escape value indicating 64-bit DWARF extension");
7584 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7585 "Length of Source Line Info");
7586 ASM_OUTPUT_LABEL (asm_out_file, l1);
7587
7588 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7589 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7590 ASM_OUTPUT_LABEL (asm_out_file, p1);
7591
7592 /* Define the architecture-dependent minimum instruction length (in
7593 bytes). In this implementation of DWARF, this field is used for
7594 information purposes only. Since GCC generates assembly language,
7595 we have no a priori knowledge of how many instruction bytes are
7596 generated for each source line, and therefore can use only the
7597 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7598 commands. Accordingly, we fix this as `1', which is "correct
7599 enough" for all architectures, and don't let the target override. */
7600 dw2_asm_output_data (1, 1,
7601 "Minimum Instruction Length");
7602
7603 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7604 "Default is_stmt_start flag");
7605 dw2_asm_output_data (1, DWARF_LINE_BASE,
7606 "Line Base Value (Special Opcodes)");
7607 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7608 "Line Range Value (Special Opcodes)");
7609 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7610 "Special Opcode Base");
7611
7612 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7613 {
7614 switch (opc)
7615 {
7616 case DW_LNS_advance_pc:
7617 case DW_LNS_advance_line:
7618 case DW_LNS_set_file:
7619 case DW_LNS_set_column:
7620 case DW_LNS_fixed_advance_pc:
7621 n_op_args = 1;
7622 break;
7623 default:
7624 n_op_args = 0;
7625 break;
7626 }
7627
7628 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7629 opc, n_op_args);
7630 }
7631
7632 /* Write out the information about the files we use. */
7633 output_file_names ();
7634 ASM_OUTPUT_LABEL (asm_out_file, p2);
7635
7636 /* We used to set the address register to the first location in the text
7637 section here, but that didn't accomplish anything since we already
7638 have a line note for the opening brace of the first function. */
7639
7640 /* Generate the line number to PC correspondence table, encoded as
7641 a series of state machine operations. */
7642 current_file = 1;
7643 current_line = 1;
7644 strcpy (prev_line_label, text_section_label);
7645 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7646 {
7647 dw_line_info_ref line_info = &line_info_table[lt_index];
7648
7649 #if 0
7650 /* Disable this optimization for now; GDB wants to see two line notes
7651 at the beginning of a function so it can find the end of the
7652 prologue. */
7653
7654 /* Don't emit anything for redundant notes. Just updating the
7655 address doesn't accomplish anything, because we already assume
7656 that anything after the last address is this line. */
7657 if (line_info->dw_line_num == current_line
7658 && line_info->dw_file_num == current_file)
7659 continue;
7660 #endif
7661
7662 /* Emit debug info for the address of the current line.
7663
7664 Unfortunately, we have little choice here currently, and must always
7665 use the most general form. GCC does not know the address delta
7666 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7667 attributes which will give an upper bound on the address range. We
7668 could perhaps use length attributes to determine when it is safe to
7669 use DW_LNS_fixed_advance_pc. */
7670
7671 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7672 if (0)
7673 {
7674 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7675 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7676 "DW_LNS_fixed_advance_pc");
7677 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7678 }
7679 else
7680 {
7681 /* This can handle any delta. This takes
7682 4+DWARF2_ADDR_SIZE bytes. */
7683 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7684 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7685 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7686 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7687 }
7688
7689 strcpy (prev_line_label, line_label);
7690
7691 /* Emit debug info for the source file of the current line, if
7692 different from the previous line. */
7693 if (line_info->dw_file_num != current_file)
7694 {
7695 current_file = line_info->dw_file_num;
7696 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7697 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7698 VARRAY_CHAR_PTR (file_table,
7699 current_file));
7700 }
7701
7702 /* Emit debug info for the current line number, choosing the encoding
7703 that uses the least amount of space. */
7704 if (line_info->dw_line_num != current_line)
7705 {
7706 line_offset = line_info->dw_line_num - current_line;
7707 line_delta = line_offset - DWARF_LINE_BASE;
7708 current_line = line_info->dw_line_num;
7709 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7710 /* This can handle deltas from -10 to 234, using the current
7711 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7712 takes 1 byte. */
7713 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7714 "line %lu", current_line);
7715 else
7716 {
7717 /* This can handle any delta. This takes at least 4 bytes,
7718 depending on the value being encoded. */
7719 dw2_asm_output_data (1, DW_LNS_advance_line,
7720 "advance to line %lu", current_line);
7721 dw2_asm_output_data_sleb128 (line_offset, NULL);
7722 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7723 }
7724 }
7725 else
7726 /* We still need to start a new row, so output a copy insn. */
7727 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7728 }
7729
7730 /* Emit debug info for the address of the end of the function. */
7731 if (0)
7732 {
7733 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7734 "DW_LNS_fixed_advance_pc");
7735 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7736 }
7737 else
7738 {
7739 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7740 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7741 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7742 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7743 }
7744
7745 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7746 dw2_asm_output_data_uleb128 (1, NULL);
7747 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7748
7749 function = 0;
7750 current_file = 1;
7751 current_line = 1;
7752 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7753 {
7754 dw_separate_line_info_ref line_info
7755 = &separate_line_info_table[lt_index];
7756
7757 #if 0
7758 /* Don't emit anything for redundant notes. */
7759 if (line_info->dw_line_num == current_line
7760 && line_info->dw_file_num == current_file
7761 && line_info->function == function)
7762 goto cont;
7763 #endif
7764
7765 /* Emit debug info for the address of the current line. If this is
7766 a new function, or the first line of a function, then we need
7767 to handle it differently. */
7768 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7769 lt_index);
7770 if (function != line_info->function)
7771 {
7772 function = line_info->function;
7773
7774 /* Set the address register to the first line in the function. */
7775 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7776 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7777 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7778 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7779 }
7780 else
7781 {
7782 /* ??? See the DW_LNS_advance_pc comment above. */
7783 if (0)
7784 {
7785 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7786 "DW_LNS_fixed_advance_pc");
7787 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7788 }
7789 else
7790 {
7791 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7792 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7793 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7794 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7795 }
7796 }
7797
7798 strcpy (prev_line_label, line_label);
7799
7800 /* Emit debug info for the source file of the current line, if
7801 different from the previous line. */
7802 if (line_info->dw_file_num != current_file)
7803 {
7804 current_file = line_info->dw_file_num;
7805 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7806 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7807 VARRAY_CHAR_PTR (file_table,
7808 current_file));
7809 }
7810
7811 /* Emit debug info for the current line number, choosing the encoding
7812 that uses the least amount of space. */
7813 if (line_info->dw_line_num != current_line)
7814 {
7815 line_offset = line_info->dw_line_num - current_line;
7816 line_delta = line_offset - DWARF_LINE_BASE;
7817 current_line = line_info->dw_line_num;
7818 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7819 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7820 "line %lu", current_line);
7821 else
7822 {
7823 dw2_asm_output_data (1, DW_LNS_advance_line,
7824 "advance to line %lu", current_line);
7825 dw2_asm_output_data_sleb128 (line_offset, NULL);
7826 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7827 }
7828 }
7829 else
7830 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7831
7832 #if 0
7833 cont:
7834 #endif
7835
7836 lt_index++;
7837
7838 /* If we're done with a function, end its sequence. */
7839 if (lt_index == separate_line_info_table_in_use
7840 || separate_line_info_table[lt_index].function != function)
7841 {
7842 current_file = 1;
7843 current_line = 1;
7844
7845 /* Emit debug info for the address of the end of the function. */
7846 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7847 if (0)
7848 {
7849 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7850 "DW_LNS_fixed_advance_pc");
7851 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7852 }
7853 else
7854 {
7855 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7856 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7857 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7858 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7859 }
7860
7861 /* Output the marker for the end of this sequence. */
7862 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7863 dw2_asm_output_data_uleb128 (1, NULL);
7864 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7865 }
7866 }
7867
7868 /* Output the marker for the end of the line number info. */
7869 ASM_OUTPUT_LABEL (asm_out_file, l2);
7870 }
7871 \f
7872 /* Given a pointer to a tree node for some base type, return a pointer to
7873 a DIE that describes the given type.
7874
7875 This routine must only be called for GCC type nodes that correspond to
7876 Dwarf base (fundamental) types. */
7877
7878 static dw_die_ref
7879 base_type_die (tree type)
7880 {
7881 dw_die_ref base_type_result;
7882 const char *type_name;
7883 enum dwarf_type encoding;
7884 tree name = TYPE_NAME (type);
7885
7886 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7887 return 0;
7888
7889 if (name)
7890 {
7891 if (TREE_CODE (name) == TYPE_DECL)
7892 name = DECL_NAME (name);
7893
7894 type_name = IDENTIFIER_POINTER (name);
7895 }
7896 else
7897 type_name = "__unknown__";
7898
7899 switch (TREE_CODE (type))
7900 {
7901 case INTEGER_TYPE:
7902 /* Carefully distinguish the C character types, without messing
7903 up if the language is not C. Note that we check only for the names
7904 that contain spaces; other names might occur by coincidence in other
7905 languages. */
7906 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7907 && (type == char_type_node
7908 || ! strcmp (type_name, "signed char")
7909 || ! strcmp (type_name, "unsigned char"))))
7910 {
7911 if (TYPE_UNSIGNED (type))
7912 encoding = DW_ATE_unsigned;
7913 else
7914 encoding = DW_ATE_signed;
7915 break;
7916 }
7917 /* else fall through. */
7918
7919 case CHAR_TYPE:
7920 /* GNU Pascal/Ada CHAR type. Not used in C. */
7921 if (TYPE_UNSIGNED (type))
7922 encoding = DW_ATE_unsigned_char;
7923 else
7924 encoding = DW_ATE_signed_char;
7925 break;
7926
7927 case REAL_TYPE:
7928 encoding = DW_ATE_float;
7929 break;
7930
7931 /* Dwarf2 doesn't know anything about complex ints, so use
7932 a user defined type for it. */
7933 case COMPLEX_TYPE:
7934 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7935 encoding = DW_ATE_complex_float;
7936 else
7937 encoding = DW_ATE_lo_user;
7938 break;
7939
7940 case BOOLEAN_TYPE:
7941 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7942 encoding = DW_ATE_boolean;
7943 break;
7944
7945 default:
7946 /* No other TREE_CODEs are Dwarf fundamental types. */
7947 gcc_unreachable ();
7948 }
7949
7950 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7951 if (demangle_name_func)
7952 type_name = (*demangle_name_func) (type_name);
7953
7954 add_AT_string (base_type_result, DW_AT_name, type_name);
7955 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7956 int_size_in_bytes (type));
7957 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7958
7959 return base_type_result;
7960 }
7961
7962 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7963 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7964 a given type is generally the same as the given type, except that if the
7965 given type is a pointer or reference type, then the root type of the given
7966 type is the root type of the "basis" type for the pointer or reference
7967 type. (This definition of the "root" type is recursive.) Also, the root
7968 type of a `const' qualified type or a `volatile' qualified type is the
7969 root type of the given type without the qualifiers. */
7970
7971 static tree
7972 root_type (tree type)
7973 {
7974 if (TREE_CODE (type) == ERROR_MARK)
7975 return error_mark_node;
7976
7977 switch (TREE_CODE (type))
7978 {
7979 case ERROR_MARK:
7980 return error_mark_node;
7981
7982 case POINTER_TYPE:
7983 case REFERENCE_TYPE:
7984 return type_main_variant (root_type (TREE_TYPE (type)));
7985
7986 default:
7987 return type_main_variant (type);
7988 }
7989 }
7990
7991 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7992 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7993
7994 static inline int
7995 is_base_type (tree type)
7996 {
7997 switch (TREE_CODE (type))
7998 {
7999 case ERROR_MARK:
8000 case VOID_TYPE:
8001 case INTEGER_TYPE:
8002 case REAL_TYPE:
8003 case COMPLEX_TYPE:
8004 case BOOLEAN_TYPE:
8005 case CHAR_TYPE:
8006 return 1;
8007
8008 case SET_TYPE:
8009 case ARRAY_TYPE:
8010 case RECORD_TYPE:
8011 case UNION_TYPE:
8012 case QUAL_UNION_TYPE:
8013 case ENUMERAL_TYPE:
8014 case FUNCTION_TYPE:
8015 case METHOD_TYPE:
8016 case POINTER_TYPE:
8017 case REFERENCE_TYPE:
8018 case FILE_TYPE:
8019 case OFFSET_TYPE:
8020 case LANG_TYPE:
8021 case VECTOR_TYPE:
8022 return 0;
8023
8024 default:
8025 gcc_unreachable ();
8026 }
8027
8028 return 0;
8029 }
8030
8031 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8032 node, return the size in bits for the type if it is a constant, or else
8033 return the alignment for the type if the type's size is not constant, or
8034 else return BITS_PER_WORD if the type actually turns out to be an
8035 ERROR_MARK node. */
8036
8037 static inline unsigned HOST_WIDE_INT
8038 simple_type_size_in_bits (tree type)
8039 {
8040 if (TREE_CODE (type) == ERROR_MARK)
8041 return BITS_PER_WORD;
8042 else if (TYPE_SIZE (type) == NULL_TREE)
8043 return 0;
8044 else if (host_integerp (TYPE_SIZE (type), 1))
8045 return tree_low_cst (TYPE_SIZE (type), 1);
8046 else
8047 return TYPE_ALIGN (type);
8048 }
8049
8050 /* Return true if the debug information for the given type should be
8051 emitted as a subrange type. */
8052
8053 static inline bool
8054 is_subrange_type (tree type)
8055 {
8056 tree subtype = TREE_TYPE (type);
8057
8058 /* Subrange types are identified by the fact that they are integer
8059 types, and that they have a subtype which is either an integer type
8060 or an enumeral type. */
8061
8062 if (TREE_CODE (type) != INTEGER_TYPE
8063 || subtype == NULL_TREE)
8064 return false;
8065
8066 if (TREE_CODE (subtype) != INTEGER_TYPE
8067 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8068 return false;
8069
8070 if (TREE_CODE (type) == TREE_CODE (subtype)
8071 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8072 && TYPE_MIN_VALUE (type) != NULL
8073 && TYPE_MIN_VALUE (subtype) != NULL
8074 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8075 && TYPE_MAX_VALUE (type) != NULL
8076 && TYPE_MAX_VALUE (subtype) != NULL
8077 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8078 {
8079 /* The type and its subtype have the same representation. If in
8080 addition the two types also have the same name, then the given
8081 type is not a subrange type, but rather a plain base type. */
8082 /* FIXME: brobecker/2004-03-22:
8083 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8084 therefore be sufficient to check the TYPE_SIZE node pointers
8085 rather than checking the actual size. Unfortunately, we have
8086 found some cases, such as in the Ada "integer" type, where
8087 this is not the case. Until this problem is solved, we need to
8088 keep checking the actual size. */
8089 tree type_name = TYPE_NAME (type);
8090 tree subtype_name = TYPE_NAME (subtype);
8091
8092 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8093 type_name = DECL_NAME (type_name);
8094
8095 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8096 subtype_name = DECL_NAME (subtype_name);
8097
8098 if (type_name == subtype_name)
8099 return false;
8100 }
8101
8102 return true;
8103 }
8104
8105 /* Given a pointer to a tree node for a subrange type, return a pointer
8106 to a DIE that describes the given type. */
8107
8108 static dw_die_ref
8109 subrange_type_die (tree type, dw_die_ref context_die)
8110 {
8111 dw_die_ref subtype_die;
8112 dw_die_ref subrange_die;
8113 tree name = TYPE_NAME (type);
8114 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8115 tree subtype = TREE_TYPE (type);
8116
8117 if (context_die == NULL)
8118 context_die = comp_unit_die;
8119
8120 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8121 subtype_die = gen_enumeration_type_die (subtype, context_die);
8122 else
8123 subtype_die = base_type_die (subtype);
8124
8125 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8126
8127 if (name != NULL)
8128 {
8129 if (TREE_CODE (name) == TYPE_DECL)
8130 name = DECL_NAME (name);
8131 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8132 }
8133
8134 if (int_size_in_bytes (subtype) != size_in_bytes)
8135 {
8136 /* The size of the subrange type and its base type do not match,
8137 so we need to generate a size attribute for the subrange type. */
8138 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8139 }
8140
8141 if (TYPE_MIN_VALUE (type) != NULL)
8142 add_bound_info (subrange_die, DW_AT_lower_bound,
8143 TYPE_MIN_VALUE (type));
8144 if (TYPE_MAX_VALUE (type) != NULL)
8145 add_bound_info (subrange_die, DW_AT_upper_bound,
8146 TYPE_MAX_VALUE (type));
8147 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8148
8149 return subrange_die;
8150 }
8151
8152 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8153 entry that chains various modifiers in front of the given type. */
8154
8155 static dw_die_ref
8156 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8157 dw_die_ref context_die)
8158 {
8159 enum tree_code code = TREE_CODE (type);
8160 dw_die_ref mod_type_die = NULL;
8161 dw_die_ref sub_die = NULL;
8162 tree item_type = NULL;
8163
8164 if (code != ERROR_MARK)
8165 {
8166 tree qualified_type;
8167
8168 /* See if we already have the appropriately qualified variant of
8169 this type. */
8170 qualified_type
8171 = get_qualified_type (type,
8172 ((is_const_type ? TYPE_QUAL_CONST : 0)
8173 | (is_volatile_type
8174 ? TYPE_QUAL_VOLATILE : 0)));
8175
8176 /* If we do, then we can just use its DIE, if it exists. */
8177 if (qualified_type)
8178 {
8179 mod_type_die = lookup_type_die (qualified_type);
8180 if (mod_type_die)
8181 return mod_type_die;
8182 }
8183
8184 /* Handle C typedef types. */
8185 if (qualified_type && TYPE_NAME (qualified_type)
8186 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8187 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8188 {
8189 tree type_name = TYPE_NAME (qualified_type);
8190 tree dtype = TREE_TYPE (type_name);
8191
8192 if (qualified_type == dtype)
8193 {
8194 /* For a named type, use the typedef. */
8195 gen_type_die (qualified_type, context_die);
8196 mod_type_die = lookup_type_die (qualified_type);
8197 }
8198 else if (is_const_type < TYPE_READONLY (dtype)
8199 || is_volatile_type < TYPE_VOLATILE (dtype))
8200 /* cv-unqualified version of named type. Just use the unnamed
8201 type to which it refers. */
8202 mod_type_die
8203 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8204 is_const_type, is_volatile_type,
8205 context_die);
8206
8207 /* Else cv-qualified version of named type; fall through. */
8208 }
8209
8210 if (mod_type_die)
8211 /* OK. */
8212 ;
8213 else if (is_const_type)
8214 {
8215 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8216 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8217 }
8218 else if (is_volatile_type)
8219 {
8220 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8221 sub_die = modified_type_die (type, 0, 0, context_die);
8222 }
8223 else if (code == POINTER_TYPE)
8224 {
8225 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8226 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8227 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8228 #if 0
8229 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8230 #endif
8231 item_type = TREE_TYPE (type);
8232 }
8233 else if (code == REFERENCE_TYPE)
8234 {
8235 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8236 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8237 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8238 #if 0
8239 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8240 #endif
8241 item_type = TREE_TYPE (type);
8242 }
8243 else if (is_subrange_type (type))
8244 mod_type_die = subrange_type_die (type, context_die);
8245 else if (is_base_type (type))
8246 mod_type_die = base_type_die (type);
8247 else
8248 {
8249 gen_type_die (type, context_die);
8250
8251 /* We have to get the type_main_variant here (and pass that to the
8252 `lookup_type_die' routine) because the ..._TYPE node we have
8253 might simply be a *copy* of some original type node (where the
8254 copy was created to help us keep track of typedef names) and
8255 that copy might have a different TYPE_UID from the original
8256 ..._TYPE node. */
8257 if (TREE_CODE (type) != VECTOR_TYPE)
8258 mod_type_die = lookup_type_die (type_main_variant (type));
8259 else
8260 /* Vectors have the debugging information in the type,
8261 not the main variant. */
8262 mod_type_die = lookup_type_die (type);
8263 gcc_assert (mod_type_die);
8264 }
8265
8266 /* We want to equate the qualified type to the die below. */
8267 type = qualified_type;
8268 }
8269
8270 if (type)
8271 equate_type_number_to_die (type, mod_type_die);
8272 if (item_type)
8273 /* We must do this after the equate_type_number_to_die call, in case
8274 this is a recursive type. This ensures that the modified_type_die
8275 recursion will terminate even if the type is recursive. Recursive
8276 types are possible in Ada. */
8277 sub_die = modified_type_die (item_type,
8278 TYPE_READONLY (item_type),
8279 TYPE_VOLATILE (item_type),
8280 context_die);
8281
8282 if (sub_die != NULL)
8283 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8284
8285 return mod_type_die;
8286 }
8287
8288 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8289 an enumerated type. */
8290
8291 static inline int
8292 type_is_enum (tree type)
8293 {
8294 return TREE_CODE (type) == ENUMERAL_TYPE;
8295 }
8296
8297 /* Return the DBX register number described by a given RTL node. */
8298
8299 static unsigned int
8300 dbx_reg_number (rtx rtl)
8301 {
8302 unsigned regno = REGNO (rtl);
8303
8304 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8305
8306 return DBX_REGISTER_NUMBER (regno);
8307 }
8308
8309 /* Return a location descriptor that designates a machine register or
8310 zero if there is none. */
8311
8312 static dw_loc_descr_ref
8313 reg_loc_descriptor (rtx rtl)
8314 {
8315 unsigned reg;
8316 rtx regs;
8317
8318 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8319 return 0;
8320
8321 reg = dbx_reg_number (rtl);
8322 regs = targetm.dwarf_register_span (rtl);
8323
8324 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8325 || regs)
8326 return multiple_reg_loc_descriptor (rtl, regs);
8327 else
8328 return one_reg_loc_descriptor (reg);
8329 }
8330
8331 /* Return a location descriptor that designates a machine register for
8332 a given hard register number. */
8333
8334 static dw_loc_descr_ref
8335 one_reg_loc_descriptor (unsigned int regno)
8336 {
8337 if (regno <= 31)
8338 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8339 else
8340 return new_loc_descr (DW_OP_regx, regno, 0);
8341 }
8342
8343 /* Given an RTL of a register, return a location descriptor that
8344 designates a value that spans more than one register. */
8345
8346 static dw_loc_descr_ref
8347 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8348 {
8349 int nregs, size, i;
8350 unsigned reg;
8351 dw_loc_descr_ref loc_result = NULL;
8352
8353 reg = dbx_reg_number (rtl);
8354 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8355
8356 /* Simple, contiguous registers. */
8357 if (regs == NULL_RTX)
8358 {
8359 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8360
8361 loc_result = NULL;
8362 while (nregs--)
8363 {
8364 dw_loc_descr_ref t;
8365
8366 t = one_reg_loc_descriptor (reg);
8367 add_loc_descr (&loc_result, t);
8368 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8369 ++reg;
8370 }
8371 return loc_result;
8372 }
8373
8374 /* Now onto stupid register sets in non contiguous locations. */
8375
8376 gcc_assert (GET_CODE (regs) == PARALLEL);
8377
8378 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8379 loc_result = NULL;
8380
8381 for (i = 0; i < XVECLEN (regs, 0); ++i)
8382 {
8383 dw_loc_descr_ref t;
8384
8385 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8386 add_loc_descr (&loc_result, t);
8387 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8388 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8389 }
8390 return loc_result;
8391 }
8392
8393 /* Return a location descriptor that designates a constant. */
8394
8395 static dw_loc_descr_ref
8396 int_loc_descriptor (HOST_WIDE_INT i)
8397 {
8398 enum dwarf_location_atom op;
8399
8400 /* Pick the smallest representation of a constant, rather than just
8401 defaulting to the LEB encoding. */
8402 if (i >= 0)
8403 {
8404 if (i <= 31)
8405 op = DW_OP_lit0 + i;
8406 else if (i <= 0xff)
8407 op = DW_OP_const1u;
8408 else if (i <= 0xffff)
8409 op = DW_OP_const2u;
8410 else if (HOST_BITS_PER_WIDE_INT == 32
8411 || i <= 0xffffffff)
8412 op = DW_OP_const4u;
8413 else
8414 op = DW_OP_constu;
8415 }
8416 else
8417 {
8418 if (i >= -0x80)
8419 op = DW_OP_const1s;
8420 else if (i >= -0x8000)
8421 op = DW_OP_const2s;
8422 else if (HOST_BITS_PER_WIDE_INT == 32
8423 || i >= -0x80000000)
8424 op = DW_OP_const4s;
8425 else
8426 op = DW_OP_consts;
8427 }
8428
8429 return new_loc_descr (op, i, 0);
8430 }
8431
8432 /* Return a location descriptor that designates a base+offset location. */
8433
8434 static dw_loc_descr_ref
8435 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8436 {
8437 dw_loc_descr_ref loc_result;
8438 /* For the "frame base", we use the frame pointer or stack pointer
8439 registers, since the RTL for local variables is relative to one of
8440 them. */
8441 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8442 ? HARD_FRAME_POINTER_REGNUM
8443 : STACK_POINTER_REGNUM);
8444
8445 if (reg == fp_reg && can_use_fbreg)
8446 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8447 else if (reg <= 31)
8448 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8449 else
8450 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8451
8452 return loc_result;
8453 }
8454
8455 /* Return true if this RTL expression describes a base+offset calculation. */
8456
8457 static inline int
8458 is_based_loc (rtx rtl)
8459 {
8460 return (GET_CODE (rtl) == PLUS
8461 && ((REG_P (XEXP (rtl, 0))
8462 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8463 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8464 }
8465
8466 /* The following routine converts the RTL for a variable or parameter
8467 (resident in memory) into an equivalent Dwarf representation of a
8468 mechanism for getting the address of that same variable onto the top of a
8469 hypothetical "address evaluation" stack.
8470
8471 When creating memory location descriptors, we are effectively transforming
8472 the RTL for a memory-resident object into its Dwarf postfix expression
8473 equivalent. This routine recursively descends an RTL tree, turning
8474 it into Dwarf postfix code as it goes.
8475
8476 MODE is the mode of the memory reference, needed to handle some
8477 autoincrement addressing modes.
8478
8479 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8480 list for RTL. We can't use it when we are emitting location list for
8481 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8482 which describes how frame base changes when !frame_pointer_needed.
8483
8484 Return 0 if we can't represent the location. */
8485
8486 static dw_loc_descr_ref
8487 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8488 {
8489 dw_loc_descr_ref mem_loc_result = NULL;
8490 enum dwarf_location_atom op;
8491
8492 /* Note that for a dynamically sized array, the location we will generate a
8493 description of here will be the lowest numbered location which is
8494 actually within the array. That's *not* necessarily the same as the
8495 zeroth element of the array. */
8496
8497 rtl = targetm.delegitimize_address (rtl);
8498
8499 switch (GET_CODE (rtl))
8500 {
8501 case POST_INC:
8502 case POST_DEC:
8503 case POST_MODIFY:
8504 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8505 just fall into the SUBREG code. */
8506
8507 /* ... fall through ... */
8508
8509 case SUBREG:
8510 /* The case of a subreg may arise when we have a local (register)
8511 variable or a formal (register) parameter which doesn't quite fill
8512 up an entire register. For now, just assume that it is
8513 legitimate to make the Dwarf info refer to the whole register which
8514 contains the given subreg. */
8515 rtl = SUBREG_REG (rtl);
8516
8517 /* ... fall through ... */
8518
8519 case REG:
8520 /* Whenever a register number forms a part of the description of the
8521 method for calculating the (dynamic) address of a memory resident
8522 object, DWARF rules require the register number be referred to as
8523 a "base register". This distinction is not based in any way upon
8524 what category of register the hardware believes the given register
8525 belongs to. This is strictly DWARF terminology we're dealing with
8526 here. Note that in cases where the location of a memory-resident
8527 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8528 OP_CONST (0)) the actual DWARF location descriptor that we generate
8529 may just be OP_BASEREG (basereg). This may look deceptively like
8530 the object in question was allocated to a register (rather than in
8531 memory) so DWARF consumers need to be aware of the subtle
8532 distinction between OP_REG and OP_BASEREG. */
8533 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8534 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8535 can_use_fbreg);
8536 break;
8537
8538 case MEM:
8539 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8540 can_use_fbreg);
8541 if (mem_loc_result != 0)
8542 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8543 break;
8544
8545 case LO_SUM:
8546 rtl = XEXP (rtl, 1);
8547
8548 /* ... fall through ... */
8549
8550 case LABEL_REF:
8551 /* Some ports can transform a symbol ref into a label ref, because
8552 the symbol ref is too far away and has to be dumped into a constant
8553 pool. */
8554 case CONST:
8555 case SYMBOL_REF:
8556 /* Alternatively, the symbol in the constant pool might be referenced
8557 by a different symbol. */
8558 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8559 {
8560 bool marked;
8561 rtx tmp = get_pool_constant_mark (rtl, &marked);
8562
8563 if (GET_CODE (tmp) == SYMBOL_REF)
8564 {
8565 rtl = tmp;
8566 if (CONSTANT_POOL_ADDRESS_P (tmp))
8567 get_pool_constant_mark (tmp, &marked);
8568 else
8569 marked = true;
8570 }
8571
8572 /* If all references to this pool constant were optimized away,
8573 it was not output and thus we can't represent it.
8574 FIXME: might try to use DW_OP_const_value here, though
8575 DW_OP_piece complicates it. */
8576 if (!marked)
8577 return 0;
8578 }
8579
8580 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8581 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8582 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8583 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8584 break;
8585
8586 case PRE_MODIFY:
8587 /* Extract the PLUS expression nested inside and fall into
8588 PLUS code below. */
8589 rtl = XEXP (rtl, 1);
8590 goto plus;
8591
8592 case PRE_INC:
8593 case PRE_DEC:
8594 /* Turn these into a PLUS expression and fall into the PLUS code
8595 below. */
8596 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8597 GEN_INT (GET_CODE (rtl) == PRE_INC
8598 ? GET_MODE_UNIT_SIZE (mode)
8599 : -GET_MODE_UNIT_SIZE (mode)));
8600
8601 /* ... fall through ... */
8602
8603 case PLUS:
8604 plus:
8605 if (is_based_loc (rtl))
8606 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8607 INTVAL (XEXP (rtl, 1)),
8608 can_use_fbreg);
8609 else
8610 {
8611 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8612 can_use_fbreg);
8613 if (mem_loc_result == 0)
8614 break;
8615
8616 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8617 && INTVAL (XEXP (rtl, 1)) >= 0)
8618 add_loc_descr (&mem_loc_result,
8619 new_loc_descr (DW_OP_plus_uconst,
8620 INTVAL (XEXP (rtl, 1)), 0));
8621 else
8622 {
8623 add_loc_descr (&mem_loc_result,
8624 mem_loc_descriptor (XEXP (rtl, 1), mode,
8625 can_use_fbreg));
8626 add_loc_descr (&mem_loc_result,
8627 new_loc_descr (DW_OP_plus, 0, 0));
8628 }
8629 }
8630 break;
8631
8632 /* If a pseudo-reg is optimized away, it is possible for it to
8633 be replaced with a MEM containing a multiply or shift. */
8634 case MULT:
8635 op = DW_OP_mul;
8636 goto do_binop;
8637
8638 case ASHIFT:
8639 op = DW_OP_shl;
8640 goto do_binop;
8641
8642 case ASHIFTRT:
8643 op = DW_OP_shra;
8644 goto do_binop;
8645
8646 case LSHIFTRT:
8647 op = DW_OP_shr;
8648 goto do_binop;
8649
8650 do_binop:
8651 {
8652 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8653 can_use_fbreg);
8654 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8655 can_use_fbreg);
8656
8657 if (op0 == 0 || op1 == 0)
8658 break;
8659
8660 mem_loc_result = op0;
8661 add_loc_descr (&mem_loc_result, op1);
8662 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8663 break;
8664 }
8665
8666 case CONST_INT:
8667 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8668 break;
8669
8670 default:
8671 gcc_unreachable ();
8672 }
8673
8674 return mem_loc_result;
8675 }
8676
8677 /* Return a descriptor that describes the concatenation of two locations.
8678 This is typically a complex variable. */
8679
8680 static dw_loc_descr_ref
8681 concat_loc_descriptor (rtx x0, rtx x1)
8682 {
8683 dw_loc_descr_ref cc_loc_result = NULL;
8684 dw_loc_descr_ref x0_ref = loc_descriptor (x0, true);
8685 dw_loc_descr_ref x1_ref = loc_descriptor (x1, true);
8686
8687 if (x0_ref == 0 || x1_ref == 0)
8688 return 0;
8689
8690 cc_loc_result = x0_ref;
8691 add_loc_descr (&cc_loc_result,
8692 new_loc_descr (DW_OP_piece,
8693 GET_MODE_SIZE (GET_MODE (x0)), 0));
8694
8695 add_loc_descr (&cc_loc_result, x1_ref);
8696 add_loc_descr (&cc_loc_result,
8697 new_loc_descr (DW_OP_piece,
8698 GET_MODE_SIZE (GET_MODE (x1)), 0));
8699
8700 return cc_loc_result;
8701 }
8702
8703 /* Output a proper Dwarf location descriptor for a variable or parameter
8704 which is either allocated in a register or in a memory location. For a
8705 register, we just generate an OP_REG and the register number. For a
8706 memory location we provide a Dwarf postfix expression describing how to
8707 generate the (dynamic) address of the object onto the address stack.
8708
8709 If we don't know how to describe it, return 0. */
8710
8711 static dw_loc_descr_ref
8712 loc_descriptor (rtx rtl, bool can_use_fbreg)
8713 {
8714 dw_loc_descr_ref loc_result = NULL;
8715
8716 switch (GET_CODE (rtl))
8717 {
8718 case SUBREG:
8719 /* The case of a subreg may arise when we have a local (register)
8720 variable or a formal (register) parameter which doesn't quite fill
8721 up an entire register. For now, just assume that it is
8722 legitimate to make the Dwarf info refer to the whole register which
8723 contains the given subreg. */
8724 rtl = SUBREG_REG (rtl);
8725
8726 /* ... fall through ... */
8727
8728 case REG:
8729 loc_result = reg_loc_descriptor (rtl);
8730 break;
8731
8732 case MEM:
8733 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8734 can_use_fbreg);
8735 break;
8736
8737 case CONCAT:
8738 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8739 break;
8740
8741 case VAR_LOCATION:
8742 /* Single part. */
8743 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8744 {
8745 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8746 break;
8747 }
8748
8749 rtl = XEXP (rtl, 1);
8750 /* FALLTHRU */
8751
8752 case PARALLEL:
8753 {
8754 rtvec par_elems = XVEC (rtl, 0);
8755 int num_elem = GET_NUM_ELEM (par_elems);
8756 enum machine_mode mode;
8757 int i;
8758
8759 /* Create the first one, so we have something to add to. */
8760 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8761 can_use_fbreg);
8762 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8763 add_loc_descr (&loc_result,
8764 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8765 for (i = 1; i < num_elem; i++)
8766 {
8767 dw_loc_descr_ref temp;
8768
8769 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8770 can_use_fbreg);
8771 add_loc_descr (&loc_result, temp);
8772 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8773 add_loc_descr (&loc_result,
8774 new_loc_descr (DW_OP_piece,
8775 GET_MODE_SIZE (mode), 0));
8776 }
8777 }
8778 break;
8779
8780 default:
8781 gcc_unreachable ();
8782 }
8783
8784 return loc_result;
8785 }
8786
8787 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8788 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8789 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8790 top-level invocation, and we require the address of LOC; is 0 if we require
8791 the value of LOC. */
8792
8793 static dw_loc_descr_ref
8794 loc_descriptor_from_tree_1 (tree loc, int want_address)
8795 {
8796 dw_loc_descr_ref ret, ret1;
8797 int have_address = 0;
8798 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8799 enum dwarf_location_atom op;
8800
8801 /* ??? Most of the time we do not take proper care for sign/zero
8802 extending the values properly. Hopefully this won't be a real
8803 problem... */
8804
8805 switch (TREE_CODE (loc))
8806 {
8807 case ERROR_MARK:
8808 return 0;
8809
8810 case PLACEHOLDER_EXPR:
8811 /* This case involves extracting fields from an object to determine the
8812 position of other fields. We don't try to encode this here. The
8813 only user of this is Ada, which encodes the needed information using
8814 the names of types. */
8815 return 0;
8816
8817 case CALL_EXPR:
8818 return 0;
8819
8820 case PREINCREMENT_EXPR:
8821 case PREDECREMENT_EXPR:
8822 case POSTINCREMENT_EXPR:
8823 case POSTDECREMENT_EXPR:
8824 /* There are no opcodes for these operations. */
8825 return 0;
8826
8827 case ADDR_EXPR:
8828 /* If we already want an address, there's nothing we can do. */
8829 if (want_address)
8830 return 0;
8831
8832 /* Otherwise, process the argument and look for the address. */
8833 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
8834
8835 case VAR_DECL:
8836 if (DECL_THREAD_LOCAL (loc))
8837 {
8838 rtx rtl;
8839
8840 #ifndef ASM_OUTPUT_DWARF_DTPREL
8841 /* If this is not defined, we have no way to emit the data. */
8842 return 0;
8843 #endif
8844
8845 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8846 look up addresses of objects in the current module. */
8847 if (DECL_EXTERNAL (loc))
8848 return 0;
8849
8850 rtl = rtl_for_decl_location (loc);
8851 if (rtl == NULL_RTX)
8852 return 0;
8853
8854 if (!MEM_P (rtl))
8855 return 0;
8856 rtl = XEXP (rtl, 0);
8857 if (! CONSTANT_P (rtl))
8858 return 0;
8859
8860 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8861 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8862 ret->dw_loc_oprnd1.v.val_addr = rtl;
8863
8864 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8865 add_loc_descr (&ret, ret1);
8866
8867 have_address = 1;
8868 break;
8869 }
8870 /* FALLTHRU */
8871
8872 case PARM_DECL:
8873 if (DECL_VALUE_EXPR (loc))
8874 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc), want_address);
8875 /* FALLTHRU */
8876
8877 case RESULT_DECL:
8878 {
8879 rtx rtl = rtl_for_decl_location (loc);
8880
8881 if (rtl == NULL_RTX)
8882 return 0;
8883 else if (GET_CODE (rtl) == CONST_INT)
8884 {
8885 HOST_WIDE_INT val = INTVAL (rtl);
8886 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
8887 val &= GET_MODE_MASK (DECL_MODE (loc));
8888 ret = int_loc_descriptor (val);
8889 }
8890 else if (GET_CODE (rtl) == CONST_STRING)
8891 return 0;
8892 else if (CONSTANT_P (rtl))
8893 {
8894 ret = new_loc_descr (DW_OP_addr, 0, 0);
8895 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8896 ret->dw_loc_oprnd1.v.val_addr = rtl;
8897 }
8898 else
8899 {
8900 enum machine_mode mode;
8901
8902 /* Certain constructs can only be represented at top-level. */
8903 if (want_address == 2)
8904 return loc_descriptor (rtl, true);
8905
8906 mode = GET_MODE (rtl);
8907 if (MEM_P (rtl))
8908 {
8909 rtl = XEXP (rtl, 0);
8910 have_address = 1;
8911 }
8912 ret = mem_loc_descriptor (rtl, mode, true);
8913 }
8914 }
8915 break;
8916
8917 case INDIRECT_REF:
8918 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
8919 have_address = 1;
8920 break;
8921
8922 case COMPOUND_EXPR:
8923 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
8924
8925 case NOP_EXPR:
8926 case CONVERT_EXPR:
8927 case NON_LVALUE_EXPR:
8928 case VIEW_CONVERT_EXPR:
8929 case SAVE_EXPR:
8930 case MODIFY_EXPR:
8931 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
8932
8933 case COMPONENT_REF:
8934 case BIT_FIELD_REF:
8935 case ARRAY_REF:
8936 case ARRAY_RANGE_REF:
8937 {
8938 tree obj, offset;
8939 HOST_WIDE_INT bitsize, bitpos, bytepos;
8940 enum machine_mode mode;
8941 int volatilep;
8942
8943 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8944 &unsignedp, &volatilep);
8945
8946 if (obj == loc)
8947 return 0;
8948
8949 ret = loc_descriptor_from_tree_1 (obj, 1);
8950 if (ret == 0
8951 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8952 return 0;
8953
8954 if (offset != NULL_TREE)
8955 {
8956 /* Variable offset. */
8957 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
8958 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8959 }
8960
8961 bytepos = bitpos / BITS_PER_UNIT;
8962 if (bytepos > 0)
8963 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8964 else if (bytepos < 0)
8965 {
8966 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8967 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8968 }
8969
8970 have_address = 1;
8971 break;
8972 }
8973
8974 case INTEGER_CST:
8975 if (host_integerp (loc, 0))
8976 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8977 else
8978 return 0;
8979 break;
8980
8981 case CONSTRUCTOR:
8982 {
8983 /* Get an RTL for this, if something has been emitted. */
8984 rtx rtl = lookup_constant_def (loc);
8985 enum machine_mode mode;
8986
8987 if (!rtl || !MEM_P (rtl))
8988 return 0;
8989 mode = GET_MODE (rtl);
8990 rtl = XEXP (rtl, 0);
8991 ret = mem_loc_descriptor (rtl, mode, true);
8992 have_address = 1;
8993 break;
8994 }
8995
8996 case TRUTH_AND_EXPR:
8997 case TRUTH_ANDIF_EXPR:
8998 case BIT_AND_EXPR:
8999 op = DW_OP_and;
9000 goto do_binop;
9001
9002 case TRUTH_XOR_EXPR:
9003 case BIT_XOR_EXPR:
9004 op = DW_OP_xor;
9005 goto do_binop;
9006
9007 case TRUTH_OR_EXPR:
9008 case TRUTH_ORIF_EXPR:
9009 case BIT_IOR_EXPR:
9010 op = DW_OP_or;
9011 goto do_binop;
9012
9013 case FLOOR_DIV_EXPR:
9014 case CEIL_DIV_EXPR:
9015 case ROUND_DIV_EXPR:
9016 case TRUNC_DIV_EXPR:
9017 op = DW_OP_div;
9018 goto do_binop;
9019
9020 case MINUS_EXPR:
9021 op = DW_OP_minus;
9022 goto do_binop;
9023
9024 case FLOOR_MOD_EXPR:
9025 case CEIL_MOD_EXPR:
9026 case ROUND_MOD_EXPR:
9027 case TRUNC_MOD_EXPR:
9028 op = DW_OP_mod;
9029 goto do_binop;
9030
9031 case MULT_EXPR:
9032 op = DW_OP_mul;
9033 goto do_binop;
9034
9035 case LSHIFT_EXPR:
9036 op = DW_OP_shl;
9037 goto do_binop;
9038
9039 case RSHIFT_EXPR:
9040 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9041 goto do_binop;
9042
9043 case PLUS_EXPR:
9044 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9045 && host_integerp (TREE_OPERAND (loc, 1), 0))
9046 {
9047 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9048 if (ret == 0)
9049 return 0;
9050
9051 add_loc_descr (&ret,
9052 new_loc_descr (DW_OP_plus_uconst,
9053 tree_low_cst (TREE_OPERAND (loc, 1),
9054 0),
9055 0));
9056 break;
9057 }
9058
9059 op = DW_OP_plus;
9060 goto do_binop;
9061
9062 case LE_EXPR:
9063 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9064 return 0;
9065
9066 op = DW_OP_le;
9067 goto do_binop;
9068
9069 case GE_EXPR:
9070 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9071 return 0;
9072
9073 op = DW_OP_ge;
9074 goto do_binop;
9075
9076 case LT_EXPR:
9077 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9078 return 0;
9079
9080 op = DW_OP_lt;
9081 goto do_binop;
9082
9083 case GT_EXPR:
9084 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9085 return 0;
9086
9087 op = DW_OP_gt;
9088 goto do_binop;
9089
9090 case EQ_EXPR:
9091 op = DW_OP_eq;
9092 goto do_binop;
9093
9094 case NE_EXPR:
9095 op = DW_OP_ne;
9096 goto do_binop;
9097
9098 do_binop:
9099 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9100 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9101 if (ret == 0 || ret1 == 0)
9102 return 0;
9103
9104 add_loc_descr (&ret, ret1);
9105 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9106 break;
9107
9108 case TRUTH_NOT_EXPR:
9109 case BIT_NOT_EXPR:
9110 op = DW_OP_not;
9111 goto do_unop;
9112
9113 case ABS_EXPR:
9114 op = DW_OP_abs;
9115 goto do_unop;
9116
9117 case NEGATE_EXPR:
9118 op = DW_OP_neg;
9119 goto do_unop;
9120
9121 do_unop:
9122 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9123 if (ret == 0)
9124 return 0;
9125
9126 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9127 break;
9128
9129 case MIN_EXPR:
9130 case MAX_EXPR:
9131 {
9132 const enum tree_code code =
9133 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9134
9135 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9136 build2 (code, integer_type_node,
9137 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9138 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9139 }
9140
9141 /* ... fall through ... */
9142
9143 case COND_EXPR:
9144 {
9145 dw_loc_descr_ref lhs
9146 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9147 dw_loc_descr_ref rhs
9148 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9149 dw_loc_descr_ref bra_node, jump_node, tmp;
9150
9151 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9152 if (ret == 0 || lhs == 0 || rhs == 0)
9153 return 0;
9154
9155 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9156 add_loc_descr (&ret, bra_node);
9157
9158 add_loc_descr (&ret, rhs);
9159 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9160 add_loc_descr (&ret, jump_node);
9161
9162 add_loc_descr (&ret, lhs);
9163 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9164 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9165
9166 /* ??? Need a node to point the skip at. Use a nop. */
9167 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9168 add_loc_descr (&ret, tmp);
9169 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9170 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9171 }
9172 break;
9173
9174 default:
9175 /* Leave front-end specific codes as simply unknown. This comes
9176 up, for instance, with the C STMT_EXPR. */
9177 if ((unsigned int) TREE_CODE (loc)
9178 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9179 return 0;
9180
9181 #ifdef ENABLE_CHECKING
9182 /* Otherwise this is a generic code; we should just lists all of
9183 these explicitly. Aborting means we forgot one. */
9184 gcc_unreachable ();
9185 #else
9186 /* In a release build, we want to degrade gracefully: better to
9187 generate incomplete debugging information than to crash. */
9188 return NULL;
9189 #endif
9190 }
9191
9192 /* Show if we can't fill the request for an address. */
9193 if (want_address && !have_address)
9194 return 0;
9195
9196 /* If we've got an address and don't want one, dereference. */
9197 if (!want_address && have_address)
9198 {
9199 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9200
9201 if (size > DWARF2_ADDR_SIZE || size == -1)
9202 return 0;
9203 else if (size == DWARF2_ADDR_SIZE)
9204 op = DW_OP_deref;
9205 else
9206 op = DW_OP_deref_size;
9207
9208 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9209 }
9210
9211 return ret;
9212 }
9213
9214 static inline dw_loc_descr_ref
9215 loc_descriptor_from_tree (tree loc)
9216 {
9217 return loc_descriptor_from_tree_1 (loc, 2);
9218 }
9219
9220 /* Given a value, round it up to the lowest multiple of `boundary'
9221 which is not less than the value itself. */
9222
9223 static inline HOST_WIDE_INT
9224 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9225 {
9226 return (((value + boundary - 1) / boundary) * boundary);
9227 }
9228
9229 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9230 pointer to the declared type for the relevant field variable, or return
9231 `integer_type_node' if the given node turns out to be an
9232 ERROR_MARK node. */
9233
9234 static inline tree
9235 field_type (tree decl)
9236 {
9237 tree type;
9238
9239 if (TREE_CODE (decl) == ERROR_MARK)
9240 return integer_type_node;
9241
9242 type = DECL_BIT_FIELD_TYPE (decl);
9243 if (type == NULL_TREE)
9244 type = TREE_TYPE (decl);
9245
9246 return type;
9247 }
9248
9249 /* Given a pointer to a tree node, return the alignment in bits for
9250 it, or else return BITS_PER_WORD if the node actually turns out to
9251 be an ERROR_MARK node. */
9252
9253 static inline unsigned
9254 simple_type_align_in_bits (tree type)
9255 {
9256 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9257 }
9258
9259 static inline unsigned
9260 simple_decl_align_in_bits (tree decl)
9261 {
9262 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9263 }
9264
9265 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9266 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9267 or return 0 if we are unable to determine what that offset is, either
9268 because the argument turns out to be a pointer to an ERROR_MARK node, or
9269 because the offset is actually variable. (We can't handle the latter case
9270 just yet). */
9271
9272 static HOST_WIDE_INT
9273 field_byte_offset (tree decl)
9274 {
9275 unsigned int type_align_in_bits;
9276 unsigned int decl_align_in_bits;
9277 unsigned HOST_WIDE_INT type_size_in_bits;
9278 HOST_WIDE_INT object_offset_in_bits;
9279 tree type;
9280 tree field_size_tree;
9281 HOST_WIDE_INT bitpos_int;
9282 HOST_WIDE_INT deepest_bitpos;
9283 unsigned HOST_WIDE_INT field_size_in_bits;
9284
9285 if (TREE_CODE (decl) == ERROR_MARK)
9286 return 0;
9287
9288 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9289
9290 type = field_type (decl);
9291 field_size_tree = DECL_SIZE (decl);
9292
9293 /* The size could be unspecified if there was an error, or for
9294 a flexible array member. */
9295 if (! field_size_tree)
9296 field_size_tree = bitsize_zero_node;
9297
9298 /* We cannot yet cope with fields whose positions are variable, so
9299 for now, when we see such things, we simply return 0. Someday, we may
9300 be able to handle such cases, but it will be damn difficult. */
9301 if (! host_integerp (bit_position (decl), 0))
9302 return 0;
9303
9304 bitpos_int = int_bit_position (decl);
9305
9306 /* If we don't know the size of the field, pretend it's a full word. */
9307 if (host_integerp (field_size_tree, 1))
9308 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9309 else
9310 field_size_in_bits = BITS_PER_WORD;
9311
9312 type_size_in_bits = simple_type_size_in_bits (type);
9313 type_align_in_bits = simple_type_align_in_bits (type);
9314 decl_align_in_bits = simple_decl_align_in_bits (decl);
9315
9316 /* The GCC front-end doesn't make any attempt to keep track of the starting
9317 bit offset (relative to the start of the containing structure type) of the
9318 hypothetical "containing object" for a bit-field. Thus, when computing
9319 the byte offset value for the start of the "containing object" of a
9320 bit-field, we must deduce this information on our own. This can be rather
9321 tricky to do in some cases. For example, handling the following structure
9322 type definition when compiling for an i386/i486 target (which only aligns
9323 long long's to 32-bit boundaries) can be very tricky:
9324
9325 struct S { int field1; long long field2:31; };
9326
9327 Fortunately, there is a simple rule-of-thumb which can be used in such
9328 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9329 structure shown above. It decides to do this based upon one simple rule
9330 for bit-field allocation. GCC allocates each "containing object" for each
9331 bit-field at the first (i.e. lowest addressed) legitimate alignment
9332 boundary (based upon the required minimum alignment for the declared type
9333 of the field) which it can possibly use, subject to the condition that
9334 there is still enough available space remaining in the containing object
9335 (when allocated at the selected point) to fully accommodate all of the
9336 bits of the bit-field itself.
9337
9338 This simple rule makes it obvious why GCC allocates 8 bytes for each
9339 object of the structure type shown above. When looking for a place to
9340 allocate the "containing object" for `field2', the compiler simply tries
9341 to allocate a 64-bit "containing object" at each successive 32-bit
9342 boundary (starting at zero) until it finds a place to allocate that 64-
9343 bit field such that at least 31 contiguous (and previously unallocated)
9344 bits remain within that selected 64 bit field. (As it turns out, for the
9345 example above, the compiler finds it is OK to allocate the "containing
9346 object" 64-bit field at bit-offset zero within the structure type.)
9347
9348 Here we attempt to work backwards from the limited set of facts we're
9349 given, and we try to deduce from those facts, where GCC must have believed
9350 that the containing object started (within the structure type). The value
9351 we deduce is then used (by the callers of this routine) to generate
9352 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9353 and, in the case of DW_AT_location, regular fields as well). */
9354
9355 /* Figure out the bit-distance from the start of the structure to the
9356 "deepest" bit of the bit-field. */
9357 deepest_bitpos = bitpos_int + field_size_in_bits;
9358
9359 /* This is the tricky part. Use some fancy footwork to deduce where the
9360 lowest addressed bit of the containing object must be. */
9361 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9362
9363 /* Round up to type_align by default. This works best for bitfields. */
9364 object_offset_in_bits += type_align_in_bits - 1;
9365 object_offset_in_bits /= type_align_in_bits;
9366 object_offset_in_bits *= type_align_in_bits;
9367
9368 if (object_offset_in_bits > bitpos_int)
9369 {
9370 /* Sigh, the decl must be packed. */
9371 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9372
9373 /* Round up to decl_align instead. */
9374 object_offset_in_bits += decl_align_in_bits - 1;
9375 object_offset_in_bits /= decl_align_in_bits;
9376 object_offset_in_bits *= decl_align_in_bits;
9377 }
9378
9379 return object_offset_in_bits / BITS_PER_UNIT;
9380 }
9381 \f
9382 /* The following routines define various Dwarf attributes and any data
9383 associated with them. */
9384
9385 /* Add a location description attribute value to a DIE.
9386
9387 This emits location attributes suitable for whole variables and
9388 whole parameters. Note that the location attributes for struct fields are
9389 generated by the routine `data_member_location_attribute' below. */
9390
9391 static inline void
9392 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9393 dw_loc_descr_ref descr)
9394 {
9395 if (descr != 0)
9396 add_AT_loc (die, attr_kind, descr);
9397 }
9398
9399 /* Attach the specialized form of location attribute used for data members of
9400 struct and union types. In the special case of a FIELD_DECL node which
9401 represents a bit-field, the "offset" part of this special location
9402 descriptor must indicate the distance in bytes from the lowest-addressed
9403 byte of the containing struct or union type to the lowest-addressed byte of
9404 the "containing object" for the bit-field. (See the `field_byte_offset'
9405 function above).
9406
9407 For any given bit-field, the "containing object" is a hypothetical object
9408 (of some integral or enum type) within which the given bit-field lives. The
9409 type of this hypothetical "containing object" is always the same as the
9410 declared type of the individual bit-field itself (for GCC anyway... the
9411 DWARF spec doesn't actually mandate this). Note that it is the size (in
9412 bytes) of the hypothetical "containing object" which will be given in the
9413 DW_AT_byte_size attribute for this bit-field. (See the
9414 `byte_size_attribute' function below.) It is also used when calculating the
9415 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9416 function below.) */
9417
9418 static void
9419 add_data_member_location_attribute (dw_die_ref die, tree decl)
9420 {
9421 HOST_WIDE_INT offset;
9422 dw_loc_descr_ref loc_descr = 0;
9423
9424 if (TREE_CODE (decl) == TREE_BINFO)
9425 {
9426 /* We're working on the TAG_inheritance for a base class. */
9427 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9428 {
9429 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9430 aren't at a fixed offset from all (sub)objects of the same
9431 type. We need to extract the appropriate offset from our
9432 vtable. The following dwarf expression means
9433
9434 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9435
9436 This is specific to the V3 ABI, of course. */
9437
9438 dw_loc_descr_ref tmp;
9439
9440 /* Make a copy of the object address. */
9441 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9442 add_loc_descr (&loc_descr, tmp);
9443
9444 /* Extract the vtable address. */
9445 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9446 add_loc_descr (&loc_descr, tmp);
9447
9448 /* Calculate the address of the offset. */
9449 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9450 gcc_assert (offset < 0);
9451
9452 tmp = int_loc_descriptor (-offset);
9453 add_loc_descr (&loc_descr, tmp);
9454 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9455 add_loc_descr (&loc_descr, tmp);
9456
9457 /* Extract the offset. */
9458 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9459 add_loc_descr (&loc_descr, tmp);
9460
9461 /* Add it to the object address. */
9462 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9463 add_loc_descr (&loc_descr, tmp);
9464 }
9465 else
9466 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9467 }
9468 else
9469 offset = field_byte_offset (decl);
9470
9471 if (! loc_descr)
9472 {
9473 enum dwarf_location_atom op;
9474
9475 /* The DWARF2 standard says that we should assume that the structure
9476 address is already on the stack, so we can specify a structure field
9477 address by using DW_OP_plus_uconst. */
9478
9479 #ifdef MIPS_DEBUGGING_INFO
9480 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9481 operator correctly. It works only if we leave the offset on the
9482 stack. */
9483 op = DW_OP_constu;
9484 #else
9485 op = DW_OP_plus_uconst;
9486 #endif
9487
9488 loc_descr = new_loc_descr (op, offset, 0);
9489 }
9490
9491 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9492 }
9493
9494 /* Writes integer values to dw_vec_const array. */
9495
9496 static void
9497 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9498 {
9499 while (size != 0)
9500 {
9501 *dest++ = val & 0xff;
9502 val >>= 8;
9503 --size;
9504 }
9505 }
9506
9507 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9508
9509 static HOST_WIDE_INT
9510 extract_int (const unsigned char *src, unsigned int size)
9511 {
9512 HOST_WIDE_INT val = 0;
9513
9514 src += size;
9515 while (size != 0)
9516 {
9517 val <<= 8;
9518 val |= *--src & 0xff;
9519 --size;
9520 }
9521 return val;
9522 }
9523
9524 /* Writes floating point values to dw_vec_const array. */
9525
9526 static void
9527 insert_float (rtx rtl, unsigned char *array)
9528 {
9529 REAL_VALUE_TYPE rv;
9530 long val[4];
9531 int i;
9532
9533 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9534 real_to_target (val, &rv, GET_MODE (rtl));
9535
9536 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9537 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9538 {
9539 insert_int (val[i], 4, array);
9540 array += 4;
9541 }
9542 }
9543
9544 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9545 does not have a "location" either in memory or in a register. These
9546 things can arise in GNU C when a constant is passed as an actual parameter
9547 to an inlined function. They can also arise in C++ where declared
9548 constants do not necessarily get memory "homes". */
9549
9550 static void
9551 add_const_value_attribute (dw_die_ref die, rtx rtl)
9552 {
9553 switch (GET_CODE (rtl))
9554 {
9555 case CONST_INT:
9556 {
9557 HOST_WIDE_INT val = INTVAL (rtl);
9558
9559 if (val < 0)
9560 add_AT_int (die, DW_AT_const_value, val);
9561 else
9562 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9563 }
9564 break;
9565
9566 case CONST_DOUBLE:
9567 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9568 floating-point constant. A CONST_DOUBLE is used whenever the
9569 constant requires more than one word in order to be adequately
9570 represented. We output CONST_DOUBLEs as blocks. */
9571 {
9572 enum machine_mode mode = GET_MODE (rtl);
9573
9574 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9575 {
9576 unsigned int length = GET_MODE_SIZE (mode);
9577 unsigned char *array = ggc_alloc (length);
9578
9579 insert_float (rtl, array);
9580 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9581 }
9582 else
9583 {
9584 /* ??? We really should be using HOST_WIDE_INT throughout. */
9585 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9586
9587 add_AT_long_long (die, DW_AT_const_value,
9588 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9589 }
9590 }
9591 break;
9592
9593 case CONST_VECTOR:
9594 {
9595 enum machine_mode mode = GET_MODE (rtl);
9596 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9597 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9598 unsigned char *array = ggc_alloc (length * elt_size);
9599 unsigned int i;
9600 unsigned char *p;
9601
9602 switch (GET_MODE_CLASS (mode))
9603 {
9604 case MODE_VECTOR_INT:
9605 for (i = 0, p = array; i < length; i++, p += elt_size)
9606 {
9607 rtx elt = CONST_VECTOR_ELT (rtl, i);
9608 HOST_WIDE_INT lo, hi;
9609
9610 switch (GET_CODE (elt))
9611 {
9612 case CONST_INT:
9613 lo = INTVAL (elt);
9614 hi = -(lo < 0);
9615 break;
9616
9617 case CONST_DOUBLE:
9618 lo = CONST_DOUBLE_LOW (elt);
9619 hi = CONST_DOUBLE_HIGH (elt);
9620 break;
9621
9622 default:
9623 gcc_unreachable ();
9624 }
9625
9626 if (elt_size <= sizeof (HOST_WIDE_INT))
9627 insert_int (lo, elt_size, p);
9628 else
9629 {
9630 unsigned char *p0 = p;
9631 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9632
9633 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9634 if (WORDS_BIG_ENDIAN)
9635 {
9636 p0 = p1;
9637 p1 = p;
9638 }
9639 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9640 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9641 }
9642 }
9643 break;
9644
9645 case MODE_VECTOR_FLOAT:
9646 for (i = 0, p = array; i < length; i++, p += elt_size)
9647 {
9648 rtx elt = CONST_VECTOR_ELT (rtl, i);
9649 insert_float (elt, p);
9650 }
9651 break;
9652
9653 default:
9654 gcc_unreachable ();
9655 }
9656
9657 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9658 }
9659 break;
9660
9661 case CONST_STRING:
9662 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9663 break;
9664
9665 case SYMBOL_REF:
9666 case LABEL_REF:
9667 case CONST:
9668 add_AT_addr (die, DW_AT_const_value, rtl);
9669 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9670 break;
9671
9672 case PLUS:
9673 /* In cases where an inlined instance of an inline function is passed
9674 the address of an `auto' variable (which is local to the caller) we
9675 can get a situation where the DECL_RTL of the artificial local
9676 variable (for the inlining) which acts as a stand-in for the
9677 corresponding formal parameter (of the inline function) will look
9678 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9679 exactly a compile-time constant expression, but it isn't the address
9680 of the (artificial) local variable either. Rather, it represents the
9681 *value* which the artificial local variable always has during its
9682 lifetime. We currently have no way to represent such quasi-constant
9683 values in Dwarf, so for now we just punt and generate nothing. */
9684 break;
9685
9686 default:
9687 /* No other kinds of rtx should be possible here. */
9688 gcc_unreachable ();
9689 }
9690
9691 }
9692
9693 static rtx
9694 rtl_for_decl_location (tree decl)
9695 {
9696 rtx rtl;
9697
9698 /* Here we have to decide where we are going to say the parameter "lives"
9699 (as far as the debugger is concerned). We only have a couple of
9700 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9701
9702 DECL_RTL normally indicates where the parameter lives during most of the
9703 activation of the function. If optimization is enabled however, this
9704 could be either NULL or else a pseudo-reg. Both of those cases indicate
9705 that the parameter doesn't really live anywhere (as far as the code
9706 generation parts of GCC are concerned) during most of the function's
9707 activation. That will happen (for example) if the parameter is never
9708 referenced within the function.
9709
9710 We could just generate a location descriptor here for all non-NULL
9711 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9712 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9713 where DECL_RTL is NULL or is a pseudo-reg.
9714
9715 Note however that we can only get away with using DECL_INCOMING_RTL as
9716 a backup substitute for DECL_RTL in certain limited cases. In cases
9717 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9718 we can be sure that the parameter was passed using the same type as it is
9719 declared to have within the function, and that its DECL_INCOMING_RTL
9720 points us to a place where a value of that type is passed.
9721
9722 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9723 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9724 because in these cases DECL_INCOMING_RTL points us to a value of some
9725 type which is *different* from the type of the parameter itself. Thus,
9726 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9727 such cases, the debugger would end up (for example) trying to fetch a
9728 `float' from a place which actually contains the first part of a
9729 `double'. That would lead to really incorrect and confusing
9730 output at debug-time.
9731
9732 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9733 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9734 are a couple of exceptions however. On little-endian machines we can
9735 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9736 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9737 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9738 when (on a little-endian machine) a non-prototyped function has a
9739 parameter declared to be of type `short' or `char'. In such cases,
9740 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9741 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9742 passed `int' value. If the debugger then uses that address to fetch
9743 a `short' or a `char' (on a little-endian machine) the result will be
9744 the correct data, so we allow for such exceptional cases below.
9745
9746 Note that our goal here is to describe the place where the given formal
9747 parameter lives during most of the function's activation (i.e. between the
9748 end of the prologue and the start of the epilogue). We'll do that as best
9749 as we can. Note however that if the given formal parameter is modified
9750 sometime during the execution of the function, then a stack backtrace (at
9751 debug-time) will show the function as having been called with the *new*
9752 value rather than the value which was originally passed in. This happens
9753 rarely enough that it is not a major problem, but it *is* a problem, and
9754 I'd like to fix it.
9755
9756 A future version of dwarf2out.c may generate two additional attributes for
9757 any given DW_TAG_formal_parameter DIE which will describe the "passed
9758 type" and the "passed location" for the given formal parameter in addition
9759 to the attributes we now generate to indicate the "declared type" and the
9760 "active location" for each parameter. This additional set of attributes
9761 could be used by debuggers for stack backtraces. Separately, note that
9762 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9763 This happens (for example) for inlined-instances of inline function formal
9764 parameters which are never referenced. This really shouldn't be
9765 happening. All PARM_DECL nodes should get valid non-NULL
9766 DECL_INCOMING_RTL values. FIXME. */
9767
9768 /* Use DECL_RTL as the "location" unless we find something better. */
9769 rtl = DECL_RTL_IF_SET (decl);
9770
9771 /* When generating abstract instances, ignore everything except
9772 constants, symbols living in memory, and symbols living in
9773 fixed registers. */
9774 if (! reload_completed)
9775 {
9776 if (rtl
9777 && (CONSTANT_P (rtl)
9778 || (MEM_P (rtl)
9779 && CONSTANT_P (XEXP (rtl, 0)))
9780 || (REG_P (rtl)
9781 && TREE_CODE (decl) == VAR_DECL
9782 && TREE_STATIC (decl))))
9783 {
9784 rtl = targetm.delegitimize_address (rtl);
9785 return rtl;
9786 }
9787 rtl = NULL_RTX;
9788 }
9789 else if (TREE_CODE (decl) == PARM_DECL)
9790 {
9791 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9792 {
9793 tree declared_type = type_main_variant (TREE_TYPE (decl));
9794 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9795
9796 /* This decl represents a formal parameter which was optimized out.
9797 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9798 all cases where (rtl == NULL_RTX) just below. */
9799 if (declared_type == passed_type)
9800 rtl = DECL_INCOMING_RTL (decl);
9801 else if (! BYTES_BIG_ENDIAN
9802 && TREE_CODE (declared_type) == INTEGER_TYPE
9803 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9804 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9805 rtl = DECL_INCOMING_RTL (decl);
9806 }
9807
9808 /* If the parm was passed in registers, but lives on the stack, then
9809 make a big endian correction if the mode of the type of the
9810 parameter is not the same as the mode of the rtl. */
9811 /* ??? This is the same series of checks that are made in dbxout.c before
9812 we reach the big endian correction code there. It isn't clear if all
9813 of these checks are necessary here, but keeping them all is the safe
9814 thing to do. */
9815 else if (MEM_P (rtl)
9816 && XEXP (rtl, 0) != const0_rtx
9817 && ! CONSTANT_P (XEXP (rtl, 0))
9818 /* Not passed in memory. */
9819 && !MEM_P (DECL_INCOMING_RTL (decl))
9820 /* Not passed by invisible reference. */
9821 && (!REG_P (XEXP (rtl, 0))
9822 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9823 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9824 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9825 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9826 #endif
9827 )
9828 /* Big endian correction check. */
9829 && BYTES_BIG_ENDIAN
9830 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9831 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9832 < UNITS_PER_WORD))
9833 {
9834 int offset = (UNITS_PER_WORD
9835 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9836
9837 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9838 plus_constant (XEXP (rtl, 0), offset));
9839 }
9840 }
9841 else if (TREE_CODE (decl) == VAR_DECL
9842 && rtl
9843 && MEM_P (rtl)
9844 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
9845 && BYTES_BIG_ENDIAN)
9846 {
9847 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
9848 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
9849
9850 /* If a variable is declared "register" yet is smaller than
9851 a register, then if we store the variable to memory, it
9852 looks like we're storing a register-sized value, when in
9853 fact we are not. We need to adjust the offset of the
9854 storage location to reflect the actual value's bytes,
9855 else gdb will not be able to display it. */
9856 if (rsize > dsize)
9857 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9858 plus_constant (XEXP (rtl, 0), rsize-dsize));
9859 }
9860
9861 if (rtl != NULL_RTX)
9862 {
9863 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9864 #ifdef LEAF_REG_REMAP
9865 if (current_function_uses_only_leaf_regs)
9866 leaf_renumber_regs_insn (rtl);
9867 #endif
9868 }
9869
9870 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9871 and will have been substituted directly into all expressions that use it.
9872 C does not have such a concept, but C++ and other languages do. */
9873 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9874 {
9875 /* If a variable is initialized with a string constant without embedded
9876 zeros, build CONST_STRING. */
9877 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9878 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9879 {
9880 tree arrtype = TREE_TYPE (decl);
9881 tree enttype = TREE_TYPE (arrtype);
9882 tree domain = TYPE_DOMAIN (arrtype);
9883 tree init = DECL_INITIAL (decl);
9884 enum machine_mode mode = TYPE_MODE (enttype);
9885
9886 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9887 && domain
9888 && integer_zerop (TYPE_MIN_VALUE (domain))
9889 && compare_tree_int (TYPE_MAX_VALUE (domain),
9890 TREE_STRING_LENGTH (init) - 1) == 0
9891 && ((size_t) TREE_STRING_LENGTH (init)
9892 == strlen (TREE_STRING_POINTER (init)) + 1))
9893 rtl = gen_rtx_CONST_STRING (VOIDmode,
9894 ggc_strdup (TREE_STRING_POINTER (init)));
9895 }
9896 /* If the initializer is something that we know will expand into an
9897 immediate RTL constant, expand it now. Expanding anything else
9898 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9899 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9900 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9901 {
9902 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9903 EXPAND_INITIALIZER);
9904 /* If expand_expr returns a MEM, it wasn't immediate. */
9905 gcc_assert (!rtl || !MEM_P (rtl));
9906 }
9907 }
9908
9909 if (rtl)
9910 rtl = targetm.delegitimize_address (rtl);
9911
9912 /* If we don't look past the constant pool, we risk emitting a
9913 reference to a constant pool entry that isn't referenced from
9914 code, and thus is not emitted. */
9915 if (rtl)
9916 rtl = avoid_constant_pool_reference (rtl);
9917
9918 return rtl;
9919 }
9920
9921 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9922 data attribute for a variable or a parameter. We generate the
9923 DW_AT_const_value attribute only in those cases where the given variable
9924 or parameter does not have a true "location" either in memory or in a
9925 register. This can happen (for example) when a constant is passed as an
9926 actual argument in a call to an inline function. (It's possible that
9927 these things can crop up in other ways also.) Note that one type of
9928 constant value which can be passed into an inlined function is a constant
9929 pointer. This can happen for example if an actual argument in an inlined
9930 function call evaluates to a compile-time constant address. */
9931
9932 static void
9933 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
9934 enum dwarf_attribute attr)
9935 {
9936 rtx rtl;
9937 dw_loc_descr_ref descr;
9938 var_loc_list *loc_list;
9939
9940 if (TREE_CODE (decl) == ERROR_MARK)
9941 return;
9942
9943 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
9944 || TREE_CODE (decl) == RESULT_DECL);
9945
9946 /* See if we possibly have multiple locations for this variable. */
9947 loc_list = lookup_decl_loc (decl);
9948
9949 /* If it truly has multiple locations, the first and last node will
9950 differ. */
9951 if (loc_list && loc_list->first != loc_list->last)
9952 {
9953 const char *secname;
9954 const char *endname;
9955 dw_loc_list_ref list;
9956 rtx varloc;
9957 struct var_loc_node *node;
9958
9959 /* We need to figure out what section we should use as the base
9960 for the address ranges where a given location is valid.
9961 1. If this particular DECL has a section associated with it,
9962 use that.
9963 2. If this function has a section associated with it, use
9964 that.
9965 3. Otherwise, use the text section.
9966 XXX: If you split a variable across multiple sections, this
9967 won't notice. */
9968
9969 if (DECL_SECTION_NAME (decl))
9970 {
9971 tree sectree = DECL_SECTION_NAME (decl);
9972 secname = TREE_STRING_POINTER (sectree);
9973 }
9974 else if (current_function_decl
9975 && DECL_SECTION_NAME (current_function_decl))
9976 {
9977 tree sectree = DECL_SECTION_NAME (current_function_decl);
9978 secname = TREE_STRING_POINTER (sectree);
9979 }
9980 else
9981 secname = text_section_label;
9982
9983 /* Now that we know what section we are using for a base,
9984 actually construct the list of locations.
9985 The first location information is what is passed to the
9986 function that creates the location list, and the remaining
9987 locations just get added on to that list.
9988 Note that we only know the start address for a location
9989 (IE location changes), so to build the range, we use
9990 the range [current location start, next location start].
9991 This means we have to special case the last node, and generate
9992 a range of [last location start, end of function label]. */
9993
9994 node = loc_list->first;
9995 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9996 list = new_loc_list (loc_descriptor (varloc, attr != DW_AT_frame_base),
9997 node->label, node->next->label, secname, 1);
9998 node = node->next;
9999
10000 for (; node->next; node = node->next)
10001 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10002 {
10003 /* The variable has a location between NODE->LABEL and
10004 NODE->NEXT->LABEL. */
10005 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10006 add_loc_descr_to_loc_list (&list,
10007 loc_descriptor (varloc,
10008 attr != DW_AT_frame_base),
10009 node->label, node->next->label, secname);
10010 }
10011
10012 /* If the variable has a location at the last label
10013 it keeps its location until the end of function. */
10014 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10015 {
10016 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10017
10018 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10019 if (!current_function_decl)
10020 endname = text_end_label;
10021 else
10022 {
10023 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10024 current_function_funcdef_no);
10025 endname = ggc_strdup (label_id);
10026 }
10027 add_loc_descr_to_loc_list (&list,
10028 loc_descriptor (varloc,
10029 attr != DW_AT_frame_base),
10030 node->label, endname, secname);
10031 }
10032
10033 /* Finally, add the location list to the DIE, and we are done. */
10034 add_AT_loc_list (die, attr, list);
10035 return;
10036 }
10037
10038 rtl = rtl_for_decl_location (decl);
10039 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10040 {
10041 add_const_value_attribute (die, rtl);
10042 return;
10043 }
10044
10045 descr = loc_descriptor_from_tree (decl);
10046 if (descr)
10047 add_AT_location_description (die, attr, descr);
10048 }
10049
10050 /* If we don't have a copy of this variable in memory for some reason (such
10051 as a C++ member constant that doesn't have an out-of-line definition),
10052 we should tell the debugger about the constant value. */
10053
10054 static void
10055 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10056 {
10057 tree init = DECL_INITIAL (decl);
10058 tree type = TREE_TYPE (decl);
10059
10060 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
10061 && initializer_constant_valid_p (init, type) == null_pointer_node)
10062 /* OK */;
10063 else
10064 return;
10065
10066 switch (TREE_CODE (type))
10067 {
10068 case INTEGER_TYPE:
10069 if (host_integerp (init, 0))
10070 add_AT_unsigned (var_die, DW_AT_const_value,
10071 tree_low_cst (init, 0));
10072 else
10073 add_AT_long_long (var_die, DW_AT_const_value,
10074 TREE_INT_CST_HIGH (init),
10075 TREE_INT_CST_LOW (init));
10076 break;
10077
10078 default:;
10079 }
10080 }
10081
10082 /* Generate a DW_AT_name attribute given some string value to be included as
10083 the value of the attribute. */
10084
10085 static void
10086 add_name_attribute (dw_die_ref die, const char *name_string)
10087 {
10088 if (name_string != NULL && *name_string != 0)
10089 {
10090 if (demangle_name_func)
10091 name_string = (*demangle_name_func) (name_string);
10092
10093 add_AT_string (die, DW_AT_name, name_string);
10094 }
10095 }
10096
10097 /* Generate a DW_AT_comp_dir attribute for DIE. */
10098
10099 static void
10100 add_comp_dir_attribute (dw_die_ref die)
10101 {
10102 const char *wd = get_src_pwd ();
10103 if (wd != NULL)
10104 add_AT_string (die, DW_AT_comp_dir, wd);
10105 }
10106
10107 /* Given a tree node describing an array bound (either lower or upper) output
10108 a representation for that bound. */
10109
10110 static void
10111 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10112 {
10113 switch (TREE_CODE (bound))
10114 {
10115 case ERROR_MARK:
10116 return;
10117
10118 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10119 case INTEGER_CST:
10120 if (! host_integerp (bound, 0)
10121 || (bound_attr == DW_AT_lower_bound
10122 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10123 || (is_fortran () && integer_onep (bound)))))
10124 /* Use the default. */
10125 ;
10126 else
10127 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10128 break;
10129
10130 case CONVERT_EXPR:
10131 case NOP_EXPR:
10132 case NON_LVALUE_EXPR:
10133 case VIEW_CONVERT_EXPR:
10134 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10135 break;
10136
10137 case SAVE_EXPR:
10138 break;
10139
10140 case VAR_DECL:
10141 case PARM_DECL:
10142 case RESULT_DECL:
10143 {
10144 dw_die_ref decl_die = lookup_decl_die (bound);
10145
10146 /* ??? Can this happen, or should the variable have been bound
10147 first? Probably it can, since I imagine that we try to create
10148 the types of parameters in the order in which they exist in
10149 the list, and won't have created a forward reference to a
10150 later parameter. */
10151 if (decl_die != NULL)
10152 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10153 break;
10154 }
10155
10156 default:
10157 {
10158 /* Otherwise try to create a stack operation procedure to
10159 evaluate the value of the array bound. */
10160
10161 dw_die_ref ctx, decl_die;
10162 dw_loc_descr_ref loc;
10163
10164 loc = loc_descriptor_from_tree (bound);
10165 if (loc == NULL)
10166 break;
10167
10168 if (current_function_decl == 0)
10169 ctx = comp_unit_die;
10170 else
10171 ctx = lookup_decl_die (current_function_decl);
10172
10173 decl_die = new_die (DW_TAG_variable, ctx, bound);
10174 add_AT_flag (decl_die, DW_AT_artificial, 1);
10175 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10176 add_AT_loc (decl_die, DW_AT_location, loc);
10177
10178 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10179 break;
10180 }
10181 }
10182 }
10183
10184 /* Note that the block of subscript information for an array type also
10185 includes information about the element type of type given array type. */
10186
10187 static void
10188 add_subscript_info (dw_die_ref type_die, tree type)
10189 {
10190 #ifndef MIPS_DEBUGGING_INFO
10191 unsigned dimension_number;
10192 #endif
10193 tree lower, upper;
10194 dw_die_ref subrange_die;
10195
10196 /* The GNU compilers represent multidimensional array types as sequences of
10197 one dimensional array types whose element types are themselves array
10198 types. Here we squish that down, so that each multidimensional array
10199 type gets only one array_type DIE in the Dwarf debugging info. The draft
10200 Dwarf specification say that we are allowed to do this kind of
10201 compression in C (because there is no difference between an array or
10202 arrays and a multidimensional array in C) but for other source languages
10203 (e.g. Ada) we probably shouldn't do this. */
10204
10205 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10206 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10207 We work around this by disabling this feature. See also
10208 gen_array_type_die. */
10209 #ifndef MIPS_DEBUGGING_INFO
10210 for (dimension_number = 0;
10211 TREE_CODE (type) == ARRAY_TYPE;
10212 type = TREE_TYPE (type), dimension_number++)
10213 #endif
10214 {
10215 tree domain = TYPE_DOMAIN (type);
10216
10217 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10218 and (in GNU C only) variable bounds. Handle all three forms
10219 here. */
10220 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10221 if (domain)
10222 {
10223 /* We have an array type with specified bounds. */
10224 lower = TYPE_MIN_VALUE (domain);
10225 upper = TYPE_MAX_VALUE (domain);
10226
10227 /* Define the index type. */
10228 if (TREE_TYPE (domain))
10229 {
10230 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10231 TREE_TYPE field. We can't emit debug info for this
10232 because it is an unnamed integral type. */
10233 if (TREE_CODE (domain) == INTEGER_TYPE
10234 && TYPE_NAME (domain) == NULL_TREE
10235 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10236 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10237 ;
10238 else
10239 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10240 type_die);
10241 }
10242
10243 /* ??? If upper is NULL, the array has unspecified length,
10244 but it does have a lower bound. This happens with Fortran
10245 dimension arr(N:*)
10246 Since the debugger is definitely going to need to know N
10247 to produce useful results, go ahead and output the lower
10248 bound solo, and hope the debugger can cope. */
10249
10250 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10251 if (upper)
10252 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10253 }
10254
10255 /* Otherwise we have an array type with an unspecified length. The
10256 DWARF-2 spec does not say how to handle this; let's just leave out the
10257 bounds. */
10258 }
10259 }
10260
10261 static void
10262 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10263 {
10264 unsigned size;
10265
10266 switch (TREE_CODE (tree_node))
10267 {
10268 case ERROR_MARK:
10269 size = 0;
10270 break;
10271 case ENUMERAL_TYPE:
10272 case RECORD_TYPE:
10273 case UNION_TYPE:
10274 case QUAL_UNION_TYPE:
10275 size = int_size_in_bytes (tree_node);
10276 break;
10277 case FIELD_DECL:
10278 /* For a data member of a struct or union, the DW_AT_byte_size is
10279 generally given as the number of bytes normally allocated for an
10280 object of the *declared* type of the member itself. This is true
10281 even for bit-fields. */
10282 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10283 break;
10284 default:
10285 gcc_unreachable ();
10286 }
10287
10288 /* Note that `size' might be -1 when we get to this point. If it is, that
10289 indicates that the byte size of the entity in question is variable. We
10290 have no good way of expressing this fact in Dwarf at the present time,
10291 so just let the -1 pass on through. */
10292 add_AT_unsigned (die, DW_AT_byte_size, size);
10293 }
10294
10295 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10296 which specifies the distance in bits from the highest order bit of the
10297 "containing object" for the bit-field to the highest order bit of the
10298 bit-field itself.
10299
10300 For any given bit-field, the "containing object" is a hypothetical object
10301 (of some integral or enum type) within which the given bit-field lives. The
10302 type of this hypothetical "containing object" is always the same as the
10303 declared type of the individual bit-field itself. The determination of the
10304 exact location of the "containing object" for a bit-field is rather
10305 complicated. It's handled by the `field_byte_offset' function (above).
10306
10307 Note that it is the size (in bytes) of the hypothetical "containing object"
10308 which will be given in the DW_AT_byte_size attribute for this bit-field.
10309 (See `byte_size_attribute' above). */
10310
10311 static inline void
10312 add_bit_offset_attribute (dw_die_ref die, tree decl)
10313 {
10314 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10315 tree type = DECL_BIT_FIELD_TYPE (decl);
10316 HOST_WIDE_INT bitpos_int;
10317 HOST_WIDE_INT highest_order_object_bit_offset;
10318 HOST_WIDE_INT highest_order_field_bit_offset;
10319 HOST_WIDE_INT unsigned bit_offset;
10320
10321 /* Must be a field and a bit field. */
10322 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10323
10324 /* We can't yet handle bit-fields whose offsets are variable, so if we
10325 encounter such things, just return without generating any attribute
10326 whatsoever. Likewise for variable or too large size. */
10327 if (! host_integerp (bit_position (decl), 0)
10328 || ! host_integerp (DECL_SIZE (decl), 1))
10329 return;
10330
10331 bitpos_int = int_bit_position (decl);
10332
10333 /* Note that the bit offset is always the distance (in bits) from the
10334 highest-order bit of the "containing object" to the highest-order bit of
10335 the bit-field itself. Since the "high-order end" of any object or field
10336 is different on big-endian and little-endian machines, the computation
10337 below must take account of these differences. */
10338 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10339 highest_order_field_bit_offset = bitpos_int;
10340
10341 if (! BYTES_BIG_ENDIAN)
10342 {
10343 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10344 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10345 }
10346
10347 bit_offset
10348 = (! BYTES_BIG_ENDIAN
10349 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10350 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10351
10352 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10353 }
10354
10355 /* For a FIELD_DECL node which represents a bit field, output an attribute
10356 which specifies the length in bits of the given field. */
10357
10358 static inline void
10359 add_bit_size_attribute (dw_die_ref die, tree decl)
10360 {
10361 /* Must be a field and a bit field. */
10362 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10363 && DECL_BIT_FIELD_TYPE (decl));
10364
10365 if (host_integerp (DECL_SIZE (decl), 1))
10366 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10367 }
10368
10369 /* If the compiled language is ANSI C, then add a 'prototyped'
10370 attribute, if arg types are given for the parameters of a function. */
10371
10372 static inline void
10373 add_prototyped_attribute (dw_die_ref die, tree func_type)
10374 {
10375 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10376 && TYPE_ARG_TYPES (func_type) != NULL)
10377 add_AT_flag (die, DW_AT_prototyped, 1);
10378 }
10379
10380 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10381 by looking in either the type declaration or object declaration
10382 equate table. */
10383
10384 static inline void
10385 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10386 {
10387 dw_die_ref origin_die = NULL;
10388
10389 if (TREE_CODE (origin) != FUNCTION_DECL)
10390 {
10391 /* We may have gotten separated from the block for the inlined
10392 function, if we're in an exception handler or some such; make
10393 sure that the abstract function has been written out.
10394
10395 Doing this for nested functions is wrong, however; functions are
10396 distinct units, and our context might not even be inline. */
10397 tree fn = origin;
10398
10399 if (TYPE_P (fn))
10400 fn = TYPE_STUB_DECL (fn);
10401
10402 fn = decl_function_context (fn);
10403 if (fn)
10404 dwarf2out_abstract_function (fn);
10405 }
10406
10407 if (DECL_P (origin))
10408 origin_die = lookup_decl_die (origin);
10409 else if (TYPE_P (origin))
10410 origin_die = lookup_type_die (origin);
10411
10412 gcc_assert (origin_die);
10413
10414 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10415 }
10416
10417 /* We do not currently support the pure_virtual attribute. */
10418
10419 static inline void
10420 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10421 {
10422 if (DECL_VINDEX (func_decl))
10423 {
10424 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10425
10426 if (host_integerp (DECL_VINDEX (func_decl), 0))
10427 add_AT_loc (die, DW_AT_vtable_elem_location,
10428 new_loc_descr (DW_OP_constu,
10429 tree_low_cst (DECL_VINDEX (func_decl), 0),
10430 0));
10431
10432 /* GNU extension: Record what type this method came from originally. */
10433 if (debug_info_level > DINFO_LEVEL_TERSE)
10434 add_AT_die_ref (die, DW_AT_containing_type,
10435 lookup_type_die (DECL_CONTEXT (func_decl)));
10436 }
10437 }
10438 \f
10439 /* Add source coordinate attributes for the given decl. */
10440
10441 static void
10442 add_src_coords_attributes (dw_die_ref die, tree decl)
10443 {
10444 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10445 unsigned file_index = lookup_filename (s.file);
10446
10447 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10448 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10449 }
10450
10451 /* Add a DW_AT_name attribute and source coordinate attribute for the
10452 given decl, but only if it actually has a name. */
10453
10454 static void
10455 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10456 {
10457 tree decl_name;
10458
10459 decl_name = DECL_NAME (decl);
10460 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10461 {
10462 add_name_attribute (die, dwarf2_name (decl, 0));
10463 if (! DECL_ARTIFICIAL (decl))
10464 add_src_coords_attributes (die, decl);
10465
10466 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10467 && TREE_PUBLIC (decl)
10468 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10469 && !DECL_ABSTRACT (decl))
10470 add_AT_string (die, DW_AT_MIPS_linkage_name,
10471 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10472 }
10473
10474 #ifdef VMS_DEBUGGING_INFO
10475 /* Get the function's name, as described by its RTL. This may be different
10476 from the DECL_NAME name used in the source file. */
10477 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10478 {
10479 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10480 XEXP (DECL_RTL (decl), 0));
10481 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10482 }
10483 #endif
10484 }
10485
10486 /* Push a new declaration scope. */
10487
10488 static void
10489 push_decl_scope (tree scope)
10490 {
10491 VARRAY_PUSH_TREE (decl_scope_table, scope);
10492 }
10493
10494 /* Pop a declaration scope. */
10495
10496 static inline void
10497 pop_decl_scope (void)
10498 {
10499 gcc_assert (VARRAY_ACTIVE_SIZE (decl_scope_table) > 0);
10500
10501 VARRAY_POP (decl_scope_table);
10502 }
10503
10504 /* Return the DIE for the scope that immediately contains this type.
10505 Non-named types get global scope. Named types nested in other
10506 types get their containing scope if it's open, or global scope
10507 otherwise. All other types (i.e. function-local named types) get
10508 the current active scope. */
10509
10510 static dw_die_ref
10511 scope_die_for (tree t, dw_die_ref context_die)
10512 {
10513 dw_die_ref scope_die = NULL;
10514 tree containing_scope;
10515 int i;
10516
10517 /* Non-types always go in the current scope. */
10518 gcc_assert (TYPE_P (t));
10519
10520 containing_scope = TYPE_CONTEXT (t);
10521
10522 /* Use the containing namespace if it was passed in (for a declaration). */
10523 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10524 {
10525 if (context_die == lookup_decl_die (containing_scope))
10526 /* OK */;
10527 else
10528 containing_scope = NULL_TREE;
10529 }
10530
10531 /* Ignore function type "scopes" from the C frontend. They mean that
10532 a tagged type is local to a parmlist of a function declarator, but
10533 that isn't useful to DWARF. */
10534 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10535 containing_scope = NULL_TREE;
10536
10537 if (containing_scope == NULL_TREE)
10538 scope_die = comp_unit_die;
10539 else if (TYPE_P (containing_scope))
10540 {
10541 /* For types, we can just look up the appropriate DIE. But
10542 first we check to see if we're in the middle of emitting it
10543 so we know where the new DIE should go. */
10544 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10545 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10546 break;
10547
10548 if (i < 0)
10549 {
10550 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10551 || TREE_ASM_WRITTEN (containing_scope));
10552
10553 /* If none of the current dies are suitable, we get file scope. */
10554 scope_die = comp_unit_die;
10555 }
10556 else
10557 scope_die = lookup_type_die (containing_scope);
10558 }
10559 else
10560 scope_die = context_die;
10561
10562 return scope_die;
10563 }
10564
10565 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10566
10567 static inline int
10568 local_scope_p (dw_die_ref context_die)
10569 {
10570 for (; context_die; context_die = context_die->die_parent)
10571 if (context_die->die_tag == DW_TAG_inlined_subroutine
10572 || context_die->die_tag == DW_TAG_subprogram)
10573 return 1;
10574
10575 return 0;
10576 }
10577
10578 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10579 whether or not to treat a DIE in this context as a declaration. */
10580
10581 static inline int
10582 class_or_namespace_scope_p (dw_die_ref context_die)
10583 {
10584 return (context_die
10585 && (context_die->die_tag == DW_TAG_structure_type
10586 || context_die->die_tag == DW_TAG_union_type
10587 || context_die->die_tag == DW_TAG_namespace));
10588 }
10589
10590 /* Many forms of DIEs require a "type description" attribute. This
10591 routine locates the proper "type descriptor" die for the type given
10592 by 'type', and adds a DW_AT_type attribute below the given die. */
10593
10594 static void
10595 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10596 int decl_volatile, dw_die_ref context_die)
10597 {
10598 enum tree_code code = TREE_CODE (type);
10599 dw_die_ref type_die = NULL;
10600
10601 /* ??? If this type is an unnamed subrange type of an integral or
10602 floating-point type, use the inner type. This is because we have no
10603 support for unnamed types in base_type_die. This can happen if this is
10604 an Ada subrange type. Correct solution is emit a subrange type die. */
10605 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10606 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10607 type = TREE_TYPE (type), code = TREE_CODE (type);
10608
10609 if (code == ERROR_MARK
10610 /* Handle a special case. For functions whose return type is void, we
10611 generate *no* type attribute. (Note that no object may have type
10612 `void', so this only applies to function return types). */
10613 || code == VOID_TYPE)
10614 return;
10615
10616 type_die = modified_type_die (type,
10617 decl_const || TYPE_READONLY (type),
10618 decl_volatile || TYPE_VOLATILE (type),
10619 context_die);
10620
10621 if (type_die != NULL)
10622 add_AT_die_ref (object_die, DW_AT_type, type_die);
10623 }
10624
10625 /* Given an object die, add the calling convention attribute for the
10626 function call type. */
10627 static void
10628 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10629 {
10630 enum dwarf_calling_convention value = DW_CC_normal;
10631
10632 value = targetm.dwarf_calling_convention (type);
10633
10634 /* Only add the attribute if the backend requests it, and
10635 is not DW_CC_normal. */
10636 if (value && (value != DW_CC_normal))
10637 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10638 }
10639
10640 /* Given a tree pointer to a struct, class, union, or enum type node, return
10641 a pointer to the (string) tag name for the given type, or zero if the type
10642 was declared without a tag. */
10643
10644 static const char *
10645 type_tag (tree type)
10646 {
10647 const char *name = 0;
10648
10649 if (TYPE_NAME (type) != 0)
10650 {
10651 tree t = 0;
10652
10653 /* Find the IDENTIFIER_NODE for the type name. */
10654 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10655 t = TYPE_NAME (type);
10656
10657 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10658 a TYPE_DECL node, regardless of whether or not a `typedef' was
10659 involved. */
10660 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10661 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10662 t = DECL_NAME (TYPE_NAME (type));
10663
10664 /* Now get the name as a string, or invent one. */
10665 if (t != 0)
10666 name = IDENTIFIER_POINTER (t);
10667 }
10668
10669 return (name == 0 || *name == '\0') ? 0 : name;
10670 }
10671
10672 /* Return the type associated with a data member, make a special check
10673 for bit field types. */
10674
10675 static inline tree
10676 member_declared_type (tree member)
10677 {
10678 return (DECL_BIT_FIELD_TYPE (member)
10679 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10680 }
10681
10682 /* Get the decl's label, as described by its RTL. This may be different
10683 from the DECL_NAME name used in the source file. */
10684
10685 #if 0
10686 static const char *
10687 decl_start_label (tree decl)
10688 {
10689 rtx x;
10690 const char *fnname;
10691
10692 x = DECL_RTL (decl);
10693 gcc_assert (MEM_P (x));
10694
10695 x = XEXP (x, 0);
10696 gcc_assert (GET_CODE (x) == SYMBOL_REF);
10697
10698 fnname = XSTR (x, 0);
10699 return fnname;
10700 }
10701 #endif
10702 \f
10703 /* These routines generate the internal representation of the DIE's for
10704 the compilation unit. Debugging information is collected by walking
10705 the declaration trees passed in from dwarf2out_decl(). */
10706
10707 static void
10708 gen_array_type_die (tree type, dw_die_ref context_die)
10709 {
10710 dw_die_ref scope_die = scope_die_for (type, context_die);
10711 dw_die_ref array_die;
10712 tree element_type;
10713
10714 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10715 the inner array type comes before the outer array type. Thus we must
10716 call gen_type_die before we call new_die. See below also. */
10717 #ifdef MIPS_DEBUGGING_INFO
10718 gen_type_die (TREE_TYPE (type), context_die);
10719 #endif
10720
10721 array_die = new_die (DW_TAG_array_type, scope_die, type);
10722 add_name_attribute (array_die, type_tag (type));
10723 equate_type_number_to_die (type, array_die);
10724
10725 if (TREE_CODE (type) == VECTOR_TYPE)
10726 {
10727 /* The frontend feeds us a representation for the vector as a struct
10728 containing an array. Pull out the array type. */
10729 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10730 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10731 }
10732
10733 #if 0
10734 /* We default the array ordering. SDB will probably do
10735 the right things even if DW_AT_ordering is not present. It's not even
10736 an issue until we start to get into multidimensional arrays anyway. If
10737 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10738 then we'll have to put the DW_AT_ordering attribute back in. (But if
10739 and when we find out that we need to put these in, we will only do so
10740 for multidimensional arrays. */
10741 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10742 #endif
10743
10744 #ifdef MIPS_DEBUGGING_INFO
10745 /* The SGI compilers handle arrays of unknown bound by setting
10746 AT_declaration and not emitting any subrange DIEs. */
10747 if (! TYPE_DOMAIN (type))
10748 add_AT_flag (array_die, DW_AT_declaration, 1);
10749 else
10750 #endif
10751 add_subscript_info (array_die, type);
10752
10753 /* Add representation of the type of the elements of this array type. */
10754 element_type = TREE_TYPE (type);
10755
10756 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10757 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10758 We work around this by disabling this feature. See also
10759 add_subscript_info. */
10760 #ifndef MIPS_DEBUGGING_INFO
10761 while (TREE_CODE (element_type) == ARRAY_TYPE)
10762 element_type = TREE_TYPE (element_type);
10763
10764 gen_type_die (element_type, context_die);
10765 #endif
10766
10767 add_type_attribute (array_die, element_type, 0, 0, context_die);
10768 }
10769
10770 static void
10771 gen_set_type_die (tree type, dw_die_ref context_die)
10772 {
10773 dw_die_ref type_die
10774 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10775
10776 equate_type_number_to_die (type, type_die);
10777 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10778 }
10779
10780 #if 0
10781 static void
10782 gen_entry_point_die (tree decl, dw_die_ref context_die)
10783 {
10784 tree origin = decl_ultimate_origin (decl);
10785 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10786
10787 if (origin != NULL)
10788 add_abstract_origin_attribute (decl_die, origin);
10789 else
10790 {
10791 add_name_and_src_coords_attributes (decl_die, decl);
10792 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10793 0, 0, context_die);
10794 }
10795
10796 if (DECL_ABSTRACT (decl))
10797 equate_decl_number_to_die (decl, decl_die);
10798 else
10799 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10800 }
10801 #endif
10802
10803 /* Walk through the list of incomplete types again, trying once more to
10804 emit full debugging info for them. */
10805
10806 static void
10807 retry_incomplete_types (void)
10808 {
10809 int i;
10810
10811 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10812 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10813 }
10814
10815 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10816
10817 static void
10818 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10819 {
10820 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10821
10822 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10823 be incomplete and such types are not marked. */
10824 add_abstract_origin_attribute (type_die, type);
10825 }
10826
10827 /* Generate a DIE to represent an inlined instance of a structure type. */
10828
10829 static void
10830 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10831 {
10832 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10833
10834 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10835 be incomplete and such types are not marked. */
10836 add_abstract_origin_attribute (type_die, type);
10837 }
10838
10839 /* Generate a DIE to represent an inlined instance of a union type. */
10840
10841 static void
10842 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10843 {
10844 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10845
10846 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10847 be incomplete and such types are not marked. */
10848 add_abstract_origin_attribute (type_die, type);
10849 }
10850
10851 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10852 include all of the information about the enumeration values also. Each
10853 enumerated type name/value is listed as a child of the enumerated type
10854 DIE. */
10855
10856 static dw_die_ref
10857 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10858 {
10859 dw_die_ref type_die = lookup_type_die (type);
10860
10861 if (type_die == NULL)
10862 {
10863 type_die = new_die (DW_TAG_enumeration_type,
10864 scope_die_for (type, context_die), type);
10865 equate_type_number_to_die (type, type_die);
10866 add_name_attribute (type_die, type_tag (type));
10867 }
10868 else if (! TYPE_SIZE (type))
10869 return type_die;
10870 else
10871 remove_AT (type_die, DW_AT_declaration);
10872
10873 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10874 given enum type is incomplete, do not generate the DW_AT_byte_size
10875 attribute or the DW_AT_element_list attribute. */
10876 if (TYPE_SIZE (type))
10877 {
10878 tree link;
10879
10880 TREE_ASM_WRITTEN (type) = 1;
10881 add_byte_size_attribute (type_die, type);
10882 if (TYPE_STUB_DECL (type) != NULL_TREE)
10883 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10884
10885 /* If the first reference to this type was as the return type of an
10886 inline function, then it may not have a parent. Fix this now. */
10887 if (type_die->die_parent == NULL)
10888 add_child_die (scope_die_for (type, context_die), type_die);
10889
10890 for (link = TYPE_VALUES (type);
10891 link != NULL; link = TREE_CHAIN (link))
10892 {
10893 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10894 tree value = TREE_VALUE (link);
10895
10896 add_name_attribute (enum_die,
10897 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10898
10899 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
10900 /* DWARF2 does not provide a way of indicating whether or
10901 not enumeration constants are signed or unsigned. GDB
10902 always assumes the values are signed, so we output all
10903 values as if they were signed. That means that
10904 enumeration constants with very large unsigned values
10905 will appear to have negative values in the debugger. */
10906 add_AT_int (enum_die, DW_AT_const_value,
10907 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
10908 }
10909 }
10910 else
10911 add_AT_flag (type_die, DW_AT_declaration, 1);
10912
10913 return type_die;
10914 }
10915
10916 /* Generate a DIE to represent either a real live formal parameter decl or to
10917 represent just the type of some formal parameter position in some function
10918 type.
10919
10920 Note that this routine is a bit unusual because its argument may be a
10921 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10922 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10923 node. If it's the former then this function is being called to output a
10924 DIE to represent a formal parameter object (or some inlining thereof). If
10925 it's the latter, then this function is only being called to output a
10926 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10927 argument type of some subprogram type. */
10928
10929 static dw_die_ref
10930 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10931 {
10932 dw_die_ref parm_die
10933 = new_die (DW_TAG_formal_parameter, context_die, node);
10934 tree origin;
10935
10936 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10937 {
10938 case tcc_declaration:
10939 origin = decl_ultimate_origin (node);
10940 if (origin != NULL)
10941 add_abstract_origin_attribute (parm_die, origin);
10942 else
10943 {
10944 add_name_and_src_coords_attributes (parm_die, node);
10945 add_type_attribute (parm_die, TREE_TYPE (node),
10946 TREE_READONLY (node),
10947 TREE_THIS_VOLATILE (node),
10948 context_die);
10949 if (DECL_ARTIFICIAL (node))
10950 add_AT_flag (parm_die, DW_AT_artificial, 1);
10951 }
10952
10953 equate_decl_number_to_die (node, parm_die);
10954 if (! DECL_ABSTRACT (node))
10955 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
10956
10957 break;
10958
10959 case tcc_type:
10960 /* We were called with some kind of a ..._TYPE node. */
10961 add_type_attribute (parm_die, node, 0, 0, context_die);
10962 break;
10963
10964 default:
10965 gcc_unreachable ();
10966 }
10967
10968 return parm_die;
10969 }
10970
10971 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10972 at the end of an (ANSI prototyped) formal parameters list. */
10973
10974 static void
10975 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10976 {
10977 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10978 }
10979
10980 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10981 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10982 parameters as specified in some function type specification (except for
10983 those which appear as part of a function *definition*). */
10984
10985 static void
10986 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10987 {
10988 tree link;
10989 tree formal_type = NULL;
10990 tree first_parm_type;
10991 tree arg;
10992
10993 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10994 {
10995 arg = DECL_ARGUMENTS (function_or_method_type);
10996 function_or_method_type = TREE_TYPE (function_or_method_type);
10997 }
10998 else
10999 arg = NULL_TREE;
11000
11001 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11002
11003 /* Make our first pass over the list of formal parameter types and output a
11004 DW_TAG_formal_parameter DIE for each one. */
11005 for (link = first_parm_type; link; )
11006 {
11007 dw_die_ref parm_die;
11008
11009 formal_type = TREE_VALUE (link);
11010 if (formal_type == void_type_node)
11011 break;
11012
11013 /* Output a (nameless) DIE to represent the formal parameter itself. */
11014 parm_die = gen_formal_parameter_die (formal_type, context_die);
11015 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11016 && link == first_parm_type)
11017 || (arg && DECL_ARTIFICIAL (arg)))
11018 add_AT_flag (parm_die, DW_AT_artificial, 1);
11019
11020 link = TREE_CHAIN (link);
11021 if (arg)
11022 arg = TREE_CHAIN (arg);
11023 }
11024
11025 /* If this function type has an ellipsis, add a
11026 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11027 if (formal_type != void_type_node)
11028 gen_unspecified_parameters_die (function_or_method_type, context_die);
11029
11030 /* Make our second (and final) pass over the list of formal parameter types
11031 and output DIEs to represent those types (as necessary). */
11032 for (link = TYPE_ARG_TYPES (function_or_method_type);
11033 link && TREE_VALUE (link);
11034 link = TREE_CHAIN (link))
11035 gen_type_die (TREE_VALUE (link), context_die);
11036 }
11037
11038 /* We want to generate the DIE for TYPE so that we can generate the
11039 die for MEMBER, which has been defined; we will need to refer back
11040 to the member declaration nested within TYPE. If we're trying to
11041 generate minimal debug info for TYPE, processing TYPE won't do the
11042 trick; we need to attach the member declaration by hand. */
11043
11044 static void
11045 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11046 {
11047 gen_type_die (type, context_die);
11048
11049 /* If we're trying to avoid duplicate debug info, we may not have
11050 emitted the member decl for this function. Emit it now. */
11051 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11052 && ! lookup_decl_die (member))
11053 {
11054 gcc_assert (!decl_ultimate_origin (member));
11055
11056 push_decl_scope (type);
11057 if (TREE_CODE (member) == FUNCTION_DECL)
11058 gen_subprogram_die (member, lookup_type_die (type));
11059 else
11060 gen_variable_die (member, lookup_type_die (type));
11061
11062 pop_decl_scope ();
11063 }
11064 }
11065
11066 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11067 may later generate inlined and/or out-of-line instances of. */
11068
11069 static void
11070 dwarf2out_abstract_function (tree decl)
11071 {
11072 dw_die_ref old_die;
11073 tree save_fn;
11074 tree context;
11075 int was_abstract = DECL_ABSTRACT (decl);
11076
11077 /* Make sure we have the actual abstract inline, not a clone. */
11078 decl = DECL_ORIGIN (decl);
11079
11080 old_die = lookup_decl_die (decl);
11081 if (old_die && get_AT (old_die, DW_AT_inline))
11082 /* We've already generated the abstract instance. */
11083 return;
11084
11085 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11086 we don't get confused by DECL_ABSTRACT. */
11087 if (debug_info_level > DINFO_LEVEL_TERSE)
11088 {
11089 context = decl_class_context (decl);
11090 if (context)
11091 gen_type_die_for_member
11092 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11093 }
11094
11095 /* Pretend we've just finished compiling this function. */
11096 save_fn = current_function_decl;
11097 current_function_decl = decl;
11098
11099 set_decl_abstract_flags (decl, 1);
11100 dwarf2out_decl (decl);
11101 if (! was_abstract)
11102 set_decl_abstract_flags (decl, 0);
11103
11104 current_function_decl = save_fn;
11105 }
11106
11107 /* Generate a DIE to represent a declared function (either file-scope or
11108 block-local). */
11109
11110 static void
11111 gen_subprogram_die (tree decl, dw_die_ref context_die)
11112 {
11113 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11114 tree origin = decl_ultimate_origin (decl);
11115 dw_die_ref subr_die;
11116 rtx fp_reg;
11117 tree fn_arg_types;
11118 tree outer_scope;
11119 dw_die_ref old_die = lookup_decl_die (decl);
11120 int declaration = (current_function_decl != decl
11121 || class_or_namespace_scope_p (context_die));
11122
11123 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11124 started to generate the abstract instance of an inline, decided to output
11125 its containing class, and proceeded to emit the declaration of the inline
11126 from the member list for the class. If so, DECLARATION takes priority;
11127 we'll get back to the abstract instance when done with the class. */
11128
11129 /* The class-scope declaration DIE must be the primary DIE. */
11130 if (origin && declaration && class_or_namespace_scope_p (context_die))
11131 {
11132 origin = NULL;
11133 gcc_assert (!old_die);
11134 }
11135
11136 if (origin != NULL)
11137 {
11138 gcc_assert (!declaration || local_scope_p (context_die));
11139
11140 /* Fixup die_parent for the abstract instance of a nested
11141 inline function. */
11142 if (old_die && old_die->die_parent == NULL)
11143 add_child_die (context_die, old_die);
11144
11145 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11146 add_abstract_origin_attribute (subr_die, origin);
11147 }
11148 else if (old_die)
11149 {
11150 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11151 unsigned file_index = lookup_filename (s.file);
11152
11153 if (!get_AT_flag (old_die, DW_AT_declaration)
11154 /* We can have a normal definition following an inline one in the
11155 case of redefinition of GNU C extern inlines.
11156 It seems reasonable to use AT_specification in this case. */
11157 && !get_AT (old_die, DW_AT_inline))
11158 {
11159 /* ??? This can happen if there is a bug in the program, for
11160 instance, if it has duplicate function definitions. Ideally,
11161 we should detect this case and ignore it. For now, if we have
11162 already reported an error, any error at all, then assume that
11163 we got here because of an input error, not a dwarf2 bug. */
11164 gcc_assert (errorcount);
11165 return;
11166 }
11167
11168 /* If the definition comes from the same place as the declaration,
11169 maybe use the old DIE. We always want the DIE for this function
11170 that has the *_pc attributes to be under comp_unit_die so the
11171 debugger can find it. We also need to do this for abstract
11172 instances of inlines, since the spec requires the out-of-line copy
11173 to have the same parent. For local class methods, this doesn't
11174 apply; we just use the old DIE. */
11175 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11176 && (DECL_ARTIFICIAL (decl)
11177 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11178 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11179 == (unsigned) s.line))))
11180 {
11181 subr_die = old_die;
11182
11183 /* Clear out the declaration attribute and the formal parameters.
11184 Do not remove all children, because it is possible that this
11185 declaration die was forced using force_decl_die(). In such
11186 cases die that forced declaration die (e.g. TAG_imported_module)
11187 is one of the children that we do not want to remove. */
11188 remove_AT (subr_die, DW_AT_declaration);
11189 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11190 }
11191 else
11192 {
11193 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11194 add_AT_specification (subr_die, old_die);
11195 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11196 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11197 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11198 != (unsigned) s.line)
11199 add_AT_unsigned
11200 (subr_die, DW_AT_decl_line, s.line);
11201 }
11202 }
11203 else
11204 {
11205 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11206
11207 if (TREE_PUBLIC (decl))
11208 add_AT_flag (subr_die, DW_AT_external, 1);
11209
11210 add_name_and_src_coords_attributes (subr_die, decl);
11211 if (debug_info_level > DINFO_LEVEL_TERSE)
11212 {
11213 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11214 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11215 0, 0, context_die);
11216 }
11217
11218 add_pure_or_virtual_attribute (subr_die, decl);
11219 if (DECL_ARTIFICIAL (decl))
11220 add_AT_flag (subr_die, DW_AT_artificial, 1);
11221
11222 if (TREE_PROTECTED (decl))
11223 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11224 else if (TREE_PRIVATE (decl))
11225 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11226 }
11227
11228 if (declaration)
11229 {
11230 if (!old_die || !get_AT (old_die, DW_AT_inline))
11231 {
11232 add_AT_flag (subr_die, DW_AT_declaration, 1);
11233
11234 /* The first time we see a member function, it is in the context of
11235 the class to which it belongs. We make sure of this by emitting
11236 the class first. The next time is the definition, which is
11237 handled above. The two may come from the same source text.
11238
11239 Note that force_decl_die() forces function declaration die. It is
11240 later reused to represent definition. */
11241 equate_decl_number_to_die (decl, subr_die);
11242 }
11243 }
11244 else if (DECL_ABSTRACT (decl))
11245 {
11246 if (DECL_DECLARED_INLINE_P (decl))
11247 {
11248 if (cgraph_function_possibly_inlined_p (decl))
11249 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11250 else
11251 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11252 }
11253 else
11254 {
11255 if (cgraph_function_possibly_inlined_p (decl))
11256 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11257 else
11258 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11259 }
11260
11261 equate_decl_number_to_die (decl, subr_die);
11262 }
11263 else if (!DECL_EXTERNAL (decl))
11264 {
11265 if (!old_die || !get_AT (old_die, DW_AT_inline))
11266 equate_decl_number_to_die (decl, subr_die);
11267
11268 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11269 current_function_funcdef_no);
11270 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11271 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11272 current_function_funcdef_no);
11273 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11274
11275 add_pubname (decl, subr_die);
11276 add_arange (decl, subr_die);
11277
11278 #ifdef MIPS_DEBUGGING_INFO
11279 /* Add a reference to the FDE for this routine. */
11280 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11281 #endif
11282
11283 /* Define the "frame base" location for this routine. We use the
11284 frame pointer or stack pointer registers, since the RTL for local
11285 variables is relative to one of them. */
11286 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11287 {
11288 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11289 DW_AT_frame_base);
11290 }
11291 else
11292 {
11293 fp_reg
11294 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11295 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11296 }
11297
11298 if (cfun->static_chain_decl)
11299 add_AT_location_description (subr_die, DW_AT_static_link,
11300 loc_descriptor_from_tree (cfun->static_chain_decl));
11301 }
11302
11303 /* Now output descriptions of the arguments for this function. This gets
11304 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11305 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11306 `...' at the end of the formal parameter list. In order to find out if
11307 there was a trailing ellipsis or not, we must instead look at the type
11308 associated with the FUNCTION_DECL. This will be a node of type
11309 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11310 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11311 an ellipsis at the end. */
11312
11313 /* In the case where we are describing a mere function declaration, all we
11314 need to do here (and all we *can* do here) is to describe the *types* of
11315 its formal parameters. */
11316 if (debug_info_level <= DINFO_LEVEL_TERSE)
11317 ;
11318 else if (declaration)
11319 gen_formal_types_die (decl, subr_die);
11320 else
11321 {
11322 /* Generate DIEs to represent all known formal parameters. */
11323 tree arg_decls = DECL_ARGUMENTS (decl);
11324 tree parm;
11325
11326 /* When generating DIEs, generate the unspecified_parameters DIE
11327 instead if we come across the arg "__builtin_va_alist" */
11328 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11329 if (TREE_CODE (parm) == PARM_DECL)
11330 {
11331 if (DECL_NAME (parm)
11332 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11333 "__builtin_va_alist"))
11334 gen_unspecified_parameters_die (parm, subr_die);
11335 else
11336 gen_decl_die (parm, subr_die);
11337 }
11338
11339 /* Decide whether we need an unspecified_parameters DIE at the end.
11340 There are 2 more cases to do this for: 1) the ansi ... declaration -
11341 this is detectable when the end of the arg list is not a
11342 void_type_node 2) an unprototyped function declaration (not a
11343 definition). This just means that we have no info about the
11344 parameters at all. */
11345 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11346 if (fn_arg_types != NULL)
11347 {
11348 /* This is the prototyped case, check for.... */
11349 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11350 gen_unspecified_parameters_die (decl, subr_die);
11351 }
11352 else if (DECL_INITIAL (decl) == NULL_TREE)
11353 gen_unspecified_parameters_die (decl, subr_die);
11354 }
11355
11356 /* Output Dwarf info for all of the stuff within the body of the function
11357 (if it has one - it may be just a declaration). */
11358 outer_scope = DECL_INITIAL (decl);
11359
11360 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11361 a function. This BLOCK actually represents the outermost binding contour
11362 for the function, i.e. the contour in which the function's formal
11363 parameters and labels get declared. Curiously, it appears that the front
11364 end doesn't actually put the PARM_DECL nodes for the current function onto
11365 the BLOCK_VARS list for this outer scope, but are strung off of the
11366 DECL_ARGUMENTS list for the function instead.
11367
11368 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11369 the LABEL_DECL nodes for the function however, and we output DWARF info
11370 for those in decls_for_scope. Just within the `outer_scope' there will be
11371 a BLOCK node representing the function's outermost pair of curly braces,
11372 and any blocks used for the base and member initializers of a C++
11373 constructor function. */
11374 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11375 {
11376 /* Emit a DW_TAG_variable DIE for a named return value. */
11377 if (DECL_NAME (DECL_RESULT (decl)))
11378 gen_decl_die (DECL_RESULT (decl), subr_die);
11379
11380 current_function_has_inlines = 0;
11381 decls_for_scope (outer_scope, subr_die, 0);
11382
11383 #if 0 && defined (MIPS_DEBUGGING_INFO)
11384 if (current_function_has_inlines)
11385 {
11386 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11387 if (! comp_unit_has_inlines)
11388 {
11389 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11390 comp_unit_has_inlines = 1;
11391 }
11392 }
11393 #endif
11394 }
11395 }
11396
11397 /* Generate a DIE to represent a declared data object. */
11398
11399 static void
11400 gen_variable_die (tree decl, dw_die_ref context_die)
11401 {
11402 tree origin = decl_ultimate_origin (decl);
11403 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11404
11405 dw_die_ref old_die = lookup_decl_die (decl);
11406 int declaration = (DECL_EXTERNAL (decl)
11407 || class_or_namespace_scope_p (context_die));
11408
11409 if (origin != NULL)
11410 add_abstract_origin_attribute (var_die, origin);
11411
11412 /* Loop unrolling can create multiple blocks that refer to the same
11413 static variable, so we must test for the DW_AT_declaration flag.
11414
11415 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11416 copy decls and set the DECL_ABSTRACT flag on them instead of
11417 sharing them.
11418
11419 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11420 else if (old_die && TREE_STATIC (decl)
11421 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11422 {
11423 /* This is a definition of a C++ class level static. */
11424 add_AT_specification (var_die, old_die);
11425 if (DECL_NAME (decl))
11426 {
11427 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11428 unsigned file_index = lookup_filename (s.file);
11429
11430 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11431 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11432
11433 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11434 != (unsigned) s.line)
11435
11436 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11437 }
11438 }
11439 else
11440 {
11441 add_name_and_src_coords_attributes (var_die, decl);
11442 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11443 TREE_THIS_VOLATILE (decl), context_die);
11444
11445 if (TREE_PUBLIC (decl))
11446 add_AT_flag (var_die, DW_AT_external, 1);
11447
11448 if (DECL_ARTIFICIAL (decl))
11449 add_AT_flag (var_die, DW_AT_artificial, 1);
11450
11451 if (TREE_PROTECTED (decl))
11452 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11453 else if (TREE_PRIVATE (decl))
11454 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11455 }
11456
11457 if (declaration)
11458 add_AT_flag (var_die, DW_AT_declaration, 1);
11459
11460 if (DECL_ABSTRACT (decl) || declaration)
11461 equate_decl_number_to_die (decl, var_die);
11462
11463 if (! declaration && ! DECL_ABSTRACT (decl))
11464 {
11465 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11466 add_pubname (decl, var_die);
11467 }
11468 else
11469 tree_add_const_value_attribute (var_die, decl);
11470 }
11471
11472 /* Generate a DIE to represent a label identifier. */
11473
11474 static void
11475 gen_label_die (tree decl, dw_die_ref context_die)
11476 {
11477 tree origin = decl_ultimate_origin (decl);
11478 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11479 rtx insn;
11480 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11481
11482 if (origin != NULL)
11483 add_abstract_origin_attribute (lbl_die, origin);
11484 else
11485 add_name_and_src_coords_attributes (lbl_die, decl);
11486
11487 if (DECL_ABSTRACT (decl))
11488 equate_decl_number_to_die (decl, lbl_die);
11489 else
11490 {
11491 insn = DECL_RTL_IF_SET (decl);
11492
11493 /* Deleted labels are programmer specified labels which have been
11494 eliminated because of various optimizations. We still emit them
11495 here so that it is possible to put breakpoints on them. */
11496 if (insn
11497 && (LABEL_P (insn)
11498 || ((NOTE_P (insn)
11499 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11500 {
11501 /* When optimization is enabled (via -O) some parts of the compiler
11502 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11503 represent source-level labels which were explicitly declared by
11504 the user. This really shouldn't be happening though, so catch
11505 it if it ever does happen. */
11506 gcc_assert (!INSN_DELETED_P (insn));
11507
11508 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11509 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11510 }
11511 }
11512 }
11513
11514 /* Generate a DIE for a lexical block. */
11515
11516 static void
11517 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11518 {
11519 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11520 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11521
11522 if (! BLOCK_ABSTRACT (stmt))
11523 {
11524 if (BLOCK_FRAGMENT_CHAIN (stmt))
11525 {
11526 tree chain;
11527
11528 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11529
11530 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11531 do
11532 {
11533 add_ranges (chain);
11534 chain = BLOCK_FRAGMENT_CHAIN (chain);
11535 }
11536 while (chain);
11537 add_ranges (NULL);
11538 }
11539 else
11540 {
11541 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11542 BLOCK_NUMBER (stmt));
11543 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11544 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11545 BLOCK_NUMBER (stmt));
11546 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11547 }
11548 }
11549
11550 decls_for_scope (stmt, stmt_die, depth);
11551 }
11552
11553 /* Generate a DIE for an inlined subprogram. */
11554
11555 static void
11556 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11557 {
11558 tree decl = block_ultimate_origin (stmt);
11559
11560 /* Emit info for the abstract instance first, if we haven't yet. We
11561 must emit this even if the block is abstract, otherwise when we
11562 emit the block below (or elsewhere), we may end up trying to emit
11563 a die whose origin die hasn't been emitted, and crashing. */
11564 dwarf2out_abstract_function (decl);
11565
11566 if (! BLOCK_ABSTRACT (stmt))
11567 {
11568 dw_die_ref subr_die
11569 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11570 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11571
11572 add_abstract_origin_attribute (subr_die, decl);
11573 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11574 BLOCK_NUMBER (stmt));
11575 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11576 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11577 BLOCK_NUMBER (stmt));
11578 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11579 decls_for_scope (stmt, subr_die, depth);
11580 current_function_has_inlines = 1;
11581 }
11582 else
11583 /* We may get here if we're the outer block of function A that was
11584 inlined into function B that was inlined into function C. When
11585 generating debugging info for C, dwarf2out_abstract_function(B)
11586 would mark all inlined blocks as abstract, including this one.
11587 So, we wouldn't (and shouldn't) expect labels to be generated
11588 for this one. Instead, just emit debugging info for
11589 declarations within the block. This is particularly important
11590 in the case of initializers of arguments passed from B to us:
11591 if they're statement expressions containing declarations, we
11592 wouldn't generate dies for their abstract variables, and then,
11593 when generating dies for the real variables, we'd die (pun
11594 intended :-) */
11595 gen_lexical_block_die (stmt, context_die, depth);
11596 }
11597
11598 /* Generate a DIE for a field in a record, or structure. */
11599
11600 static void
11601 gen_field_die (tree decl, dw_die_ref context_die)
11602 {
11603 dw_die_ref decl_die;
11604
11605 if (TREE_TYPE (decl) == error_mark_node)
11606 return;
11607
11608 decl_die = new_die (DW_TAG_member, context_die, decl);
11609 add_name_and_src_coords_attributes (decl_die, decl);
11610 add_type_attribute (decl_die, member_declared_type (decl),
11611 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11612 context_die);
11613
11614 if (DECL_BIT_FIELD_TYPE (decl))
11615 {
11616 add_byte_size_attribute (decl_die, decl);
11617 add_bit_size_attribute (decl_die, decl);
11618 add_bit_offset_attribute (decl_die, decl);
11619 }
11620
11621 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11622 add_data_member_location_attribute (decl_die, decl);
11623
11624 if (DECL_ARTIFICIAL (decl))
11625 add_AT_flag (decl_die, DW_AT_artificial, 1);
11626
11627 if (TREE_PROTECTED (decl))
11628 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11629 else if (TREE_PRIVATE (decl))
11630 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11631
11632 /* Equate decl number to die, so that we can look up this decl later on. */
11633 equate_decl_number_to_die (decl, decl_die);
11634 }
11635
11636 #if 0
11637 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11638 Use modified_type_die instead.
11639 We keep this code here just in case these types of DIEs may be needed to
11640 represent certain things in other languages (e.g. Pascal) someday. */
11641
11642 static void
11643 gen_pointer_type_die (tree type, dw_die_ref context_die)
11644 {
11645 dw_die_ref ptr_die
11646 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11647
11648 equate_type_number_to_die (type, ptr_die);
11649 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11650 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11651 }
11652
11653 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11654 Use modified_type_die instead.
11655 We keep this code here just in case these types of DIEs may be needed to
11656 represent certain things in other languages (e.g. Pascal) someday. */
11657
11658 static void
11659 gen_reference_type_die (tree type, dw_die_ref context_die)
11660 {
11661 dw_die_ref ref_die
11662 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11663
11664 equate_type_number_to_die (type, ref_die);
11665 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11666 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11667 }
11668 #endif
11669
11670 /* Generate a DIE for a pointer to a member type. */
11671
11672 static void
11673 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11674 {
11675 dw_die_ref ptr_die
11676 = new_die (DW_TAG_ptr_to_member_type,
11677 scope_die_for (type, context_die), type);
11678
11679 equate_type_number_to_die (type, ptr_die);
11680 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11681 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11682 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11683 }
11684
11685 /* Generate the DIE for the compilation unit. */
11686
11687 static dw_die_ref
11688 gen_compile_unit_die (const char *filename)
11689 {
11690 dw_die_ref die;
11691 char producer[250];
11692 const char *language_string = lang_hooks.name;
11693 int language;
11694
11695 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11696
11697 if (filename)
11698 {
11699 add_name_attribute (die, filename);
11700 /* Don't add cwd for <built-in>. */
11701 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11702 add_comp_dir_attribute (die);
11703 }
11704
11705 sprintf (producer, "%s %s", language_string, version_string);
11706
11707 #ifdef MIPS_DEBUGGING_INFO
11708 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11709 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11710 not appear in the producer string, the debugger reaches the conclusion
11711 that the object file is stripped and has no debugging information.
11712 To get the MIPS/SGI debugger to believe that there is debugging
11713 information in the object file, we add a -g to the producer string. */
11714 if (debug_info_level > DINFO_LEVEL_TERSE)
11715 strcat (producer, " -g");
11716 #endif
11717
11718 add_AT_string (die, DW_AT_producer, producer);
11719
11720 if (strcmp (language_string, "GNU C++") == 0)
11721 language = DW_LANG_C_plus_plus;
11722 else if (strcmp (language_string, "GNU Ada") == 0)
11723 language = DW_LANG_Ada95;
11724 else if (strcmp (language_string, "GNU F77") == 0)
11725 language = DW_LANG_Fortran77;
11726 else if (strcmp (language_string, "GNU F95") == 0)
11727 language = DW_LANG_Fortran95;
11728 else if (strcmp (language_string, "GNU Pascal") == 0)
11729 language = DW_LANG_Pascal83;
11730 else if (strcmp (language_string, "GNU Java") == 0)
11731 language = DW_LANG_Java;
11732 else
11733 language = DW_LANG_C89;
11734
11735 add_AT_unsigned (die, DW_AT_language, language);
11736 return die;
11737 }
11738
11739 /* Generate a DIE for a string type. */
11740
11741 static void
11742 gen_string_type_die (tree type, dw_die_ref context_die)
11743 {
11744 dw_die_ref type_die
11745 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11746
11747 equate_type_number_to_die (type, type_die);
11748
11749 /* ??? Fudge the string length attribute for now.
11750 TODO: add string length info. */
11751 #if 0
11752 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11753 bound_representation (upper_bound, 0, 'u');
11754 #endif
11755 }
11756
11757 /* Generate the DIE for a base class. */
11758
11759 static void
11760 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11761 {
11762 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11763
11764 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11765 add_data_member_location_attribute (die, binfo);
11766
11767 if (BINFO_VIRTUAL_P (binfo))
11768 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11769
11770 if (access == access_public_node)
11771 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11772 else if (access == access_protected_node)
11773 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11774 }
11775
11776 /* Generate a DIE for a class member. */
11777
11778 static void
11779 gen_member_die (tree type, dw_die_ref context_die)
11780 {
11781 tree member;
11782 tree binfo = TYPE_BINFO (type);
11783 dw_die_ref child;
11784
11785 /* If this is not an incomplete type, output descriptions of each of its
11786 members. Note that as we output the DIEs necessary to represent the
11787 members of this record or union type, we will also be trying to output
11788 DIEs to represent the *types* of those members. However the `type'
11789 function (above) will specifically avoid generating type DIEs for member
11790 types *within* the list of member DIEs for this (containing) type except
11791 for those types (of members) which are explicitly marked as also being
11792 members of this (containing) type themselves. The g++ front- end can
11793 force any given type to be treated as a member of some other (containing)
11794 type by setting the TYPE_CONTEXT of the given (member) type to point to
11795 the TREE node representing the appropriate (containing) type. */
11796
11797 /* First output info about the base classes. */
11798 if (binfo)
11799 {
11800 VEC (tree) *accesses = BINFO_BASE_ACCESSES (binfo);
11801 int i;
11802 tree base;
11803
11804 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
11805 gen_inheritance_die (base,
11806 (accesses ? VEC_index (tree, accesses, i)
11807 : access_public_node), context_die);
11808 }
11809
11810 /* Now output info about the data members and type members. */
11811 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11812 {
11813 /* If we thought we were generating minimal debug info for TYPE
11814 and then changed our minds, some of the member declarations
11815 may have already been defined. Don't define them again, but
11816 do put them in the right order. */
11817
11818 child = lookup_decl_die (member);
11819 if (child)
11820 splice_child_die (context_die, child);
11821 else
11822 gen_decl_die (member, context_die);
11823 }
11824
11825 /* Now output info about the function members (if any). */
11826 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11827 {
11828 /* Don't include clones in the member list. */
11829 if (DECL_ABSTRACT_ORIGIN (member))
11830 continue;
11831
11832 child = lookup_decl_die (member);
11833 if (child)
11834 splice_child_die (context_die, child);
11835 else
11836 gen_decl_die (member, context_die);
11837 }
11838 }
11839
11840 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11841 is set, we pretend that the type was never defined, so we only get the
11842 member DIEs needed by later specification DIEs. */
11843
11844 static void
11845 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11846 {
11847 dw_die_ref type_die = lookup_type_die (type);
11848 dw_die_ref scope_die = 0;
11849 int nested = 0;
11850 int complete = (TYPE_SIZE (type)
11851 && (! TYPE_STUB_DECL (type)
11852 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11853 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11854
11855 if (type_die && ! complete)
11856 return;
11857
11858 if (TYPE_CONTEXT (type) != NULL_TREE
11859 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11860 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11861 nested = 1;
11862
11863 scope_die = scope_die_for (type, context_die);
11864
11865 if (! type_die || (nested && scope_die == comp_unit_die))
11866 /* First occurrence of type or toplevel definition of nested class. */
11867 {
11868 dw_die_ref old_die = type_die;
11869
11870 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11871 ? DW_TAG_structure_type : DW_TAG_union_type,
11872 scope_die, type);
11873 equate_type_number_to_die (type, type_die);
11874 if (old_die)
11875 add_AT_specification (type_die, old_die);
11876 else
11877 add_name_attribute (type_die, type_tag (type));
11878 }
11879 else
11880 remove_AT (type_die, DW_AT_declaration);
11881
11882 /* If this type has been completed, then give it a byte_size attribute and
11883 then give a list of members. */
11884 if (complete && !ns_decl)
11885 {
11886 /* Prevent infinite recursion in cases where the type of some member of
11887 this type is expressed in terms of this type itself. */
11888 TREE_ASM_WRITTEN (type) = 1;
11889 add_byte_size_attribute (type_die, type);
11890 if (TYPE_STUB_DECL (type) != NULL_TREE)
11891 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11892
11893 /* If the first reference to this type was as the return type of an
11894 inline function, then it may not have a parent. Fix this now. */
11895 if (type_die->die_parent == NULL)
11896 add_child_die (scope_die, type_die);
11897
11898 push_decl_scope (type);
11899 gen_member_die (type, type_die);
11900 pop_decl_scope ();
11901
11902 /* GNU extension: Record what type our vtable lives in. */
11903 if (TYPE_VFIELD (type))
11904 {
11905 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11906
11907 gen_type_die (vtype, context_die);
11908 add_AT_die_ref (type_die, DW_AT_containing_type,
11909 lookup_type_die (vtype));
11910 }
11911 }
11912 else
11913 {
11914 add_AT_flag (type_die, DW_AT_declaration, 1);
11915
11916 /* We don't need to do this for function-local types. */
11917 if (TYPE_STUB_DECL (type)
11918 && ! decl_function_context (TYPE_STUB_DECL (type)))
11919 VARRAY_PUSH_TREE (incomplete_types, type);
11920 }
11921 }
11922
11923 /* Generate a DIE for a subroutine _type_. */
11924
11925 static void
11926 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11927 {
11928 tree return_type = TREE_TYPE (type);
11929 dw_die_ref subr_die
11930 = new_die (DW_TAG_subroutine_type,
11931 scope_die_for (type, context_die), type);
11932
11933 equate_type_number_to_die (type, subr_die);
11934 add_prototyped_attribute (subr_die, type);
11935 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11936 add_calling_convention_attribute (subr_die, type);
11937 gen_formal_types_die (type, subr_die);
11938 }
11939
11940 /* Generate a DIE for a type definition. */
11941
11942 static void
11943 gen_typedef_die (tree decl, dw_die_ref context_die)
11944 {
11945 dw_die_ref type_die;
11946 tree origin;
11947
11948 if (TREE_ASM_WRITTEN (decl))
11949 return;
11950
11951 TREE_ASM_WRITTEN (decl) = 1;
11952 type_die = new_die (DW_TAG_typedef, context_die, decl);
11953 origin = decl_ultimate_origin (decl);
11954 if (origin != NULL)
11955 add_abstract_origin_attribute (type_die, origin);
11956 else
11957 {
11958 tree type;
11959
11960 add_name_and_src_coords_attributes (type_die, decl);
11961 if (DECL_ORIGINAL_TYPE (decl))
11962 {
11963 type = DECL_ORIGINAL_TYPE (decl);
11964
11965 gcc_assert (type != TREE_TYPE (decl));
11966 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11967 }
11968 else
11969 type = TREE_TYPE (decl);
11970
11971 add_type_attribute (type_die, type, TREE_READONLY (decl),
11972 TREE_THIS_VOLATILE (decl), context_die);
11973 }
11974
11975 if (DECL_ABSTRACT (decl))
11976 equate_decl_number_to_die (decl, type_die);
11977 }
11978
11979 /* Generate a type description DIE. */
11980
11981 static void
11982 gen_type_die (tree type, dw_die_ref context_die)
11983 {
11984 int need_pop;
11985
11986 if (type == NULL_TREE || type == error_mark_node)
11987 return;
11988
11989 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11990 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11991 {
11992 if (TREE_ASM_WRITTEN (type))
11993 return;
11994
11995 /* Prevent broken recursion; we can't hand off to the same type. */
11996 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
11997
11998 TREE_ASM_WRITTEN (type) = 1;
11999 gen_decl_die (TYPE_NAME (type), context_die);
12000 return;
12001 }
12002
12003 /* We are going to output a DIE to represent the unqualified version
12004 of this type (i.e. without any const or volatile qualifiers) so
12005 get the main variant (i.e. the unqualified version) of this type
12006 now. (Vectors are special because the debugging info is in the
12007 cloned type itself). */
12008 if (TREE_CODE (type) != VECTOR_TYPE)
12009 type = type_main_variant (type);
12010
12011 if (TREE_ASM_WRITTEN (type))
12012 return;
12013
12014 switch (TREE_CODE (type))
12015 {
12016 case ERROR_MARK:
12017 break;
12018
12019 case POINTER_TYPE:
12020 case REFERENCE_TYPE:
12021 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12022 ensures that the gen_type_die recursion will terminate even if the
12023 type is recursive. Recursive types are possible in Ada. */
12024 /* ??? We could perhaps do this for all types before the switch
12025 statement. */
12026 TREE_ASM_WRITTEN (type) = 1;
12027
12028 /* For these types, all that is required is that we output a DIE (or a
12029 set of DIEs) to represent the "basis" type. */
12030 gen_type_die (TREE_TYPE (type), context_die);
12031 break;
12032
12033 case OFFSET_TYPE:
12034 /* This code is used for C++ pointer-to-data-member types.
12035 Output a description of the relevant class type. */
12036 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12037
12038 /* Output a description of the type of the object pointed to. */
12039 gen_type_die (TREE_TYPE (type), context_die);
12040
12041 /* Now output a DIE to represent this pointer-to-data-member type
12042 itself. */
12043 gen_ptr_to_mbr_type_die (type, context_die);
12044 break;
12045
12046 case SET_TYPE:
12047 gen_type_die (TYPE_DOMAIN (type), context_die);
12048 gen_set_type_die (type, context_die);
12049 break;
12050
12051 case FILE_TYPE:
12052 gen_type_die (TREE_TYPE (type), context_die);
12053 /* No way to represent these in Dwarf yet! */
12054 gcc_unreachable ();
12055 break;
12056
12057 case FUNCTION_TYPE:
12058 /* Force out return type (in case it wasn't forced out already). */
12059 gen_type_die (TREE_TYPE (type), context_die);
12060 gen_subroutine_type_die (type, context_die);
12061 break;
12062
12063 case METHOD_TYPE:
12064 /* Force out return type (in case it wasn't forced out already). */
12065 gen_type_die (TREE_TYPE (type), context_die);
12066 gen_subroutine_type_die (type, context_die);
12067 break;
12068
12069 case ARRAY_TYPE:
12070 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12071 {
12072 gen_type_die (TREE_TYPE (type), context_die);
12073 gen_string_type_die (type, context_die);
12074 }
12075 else
12076 gen_array_type_die (type, context_die);
12077 break;
12078
12079 case VECTOR_TYPE:
12080 gen_array_type_die (type, context_die);
12081 break;
12082
12083 case ENUMERAL_TYPE:
12084 case RECORD_TYPE:
12085 case UNION_TYPE:
12086 case QUAL_UNION_TYPE:
12087 /* If this is a nested type whose containing class hasn't been written
12088 out yet, writing it out will cover this one, too. This does not apply
12089 to instantiations of member class templates; they need to be added to
12090 the containing class as they are generated. FIXME: This hurts the
12091 idea of combining type decls from multiple TUs, since we can't predict
12092 what set of template instantiations we'll get. */
12093 if (TYPE_CONTEXT (type)
12094 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12095 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12096 {
12097 gen_type_die (TYPE_CONTEXT (type), context_die);
12098
12099 if (TREE_ASM_WRITTEN (type))
12100 return;
12101
12102 /* If that failed, attach ourselves to the stub. */
12103 push_decl_scope (TYPE_CONTEXT (type));
12104 context_die = lookup_type_die (TYPE_CONTEXT (type));
12105 need_pop = 1;
12106 }
12107 else
12108 {
12109 declare_in_namespace (type, context_die);
12110 need_pop = 0;
12111 }
12112
12113 if (TREE_CODE (type) == ENUMERAL_TYPE)
12114 gen_enumeration_type_die (type, context_die);
12115 else
12116 gen_struct_or_union_type_die (type, context_die);
12117
12118 if (need_pop)
12119 pop_decl_scope ();
12120
12121 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12122 it up if it is ever completed. gen_*_type_die will set it for us
12123 when appropriate. */
12124 return;
12125
12126 case VOID_TYPE:
12127 case INTEGER_TYPE:
12128 case REAL_TYPE:
12129 case COMPLEX_TYPE:
12130 case BOOLEAN_TYPE:
12131 case CHAR_TYPE:
12132 /* No DIEs needed for fundamental types. */
12133 break;
12134
12135 case LANG_TYPE:
12136 /* No Dwarf representation currently defined. */
12137 break;
12138
12139 default:
12140 gcc_unreachable ();
12141 }
12142
12143 TREE_ASM_WRITTEN (type) = 1;
12144 }
12145
12146 /* Generate a DIE for a tagged type instantiation. */
12147
12148 static void
12149 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12150 {
12151 if (type == NULL_TREE || type == error_mark_node)
12152 return;
12153
12154 /* We are going to output a DIE to represent the unqualified version of
12155 this type (i.e. without any const or volatile qualifiers) so make sure
12156 that we have the main variant (i.e. the unqualified version) of this
12157 type now. */
12158 gcc_assert (type == type_main_variant (type));
12159
12160 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12161 an instance of an unresolved type. */
12162
12163 switch (TREE_CODE (type))
12164 {
12165 case ERROR_MARK:
12166 break;
12167
12168 case ENUMERAL_TYPE:
12169 gen_inlined_enumeration_type_die (type, context_die);
12170 break;
12171
12172 case RECORD_TYPE:
12173 gen_inlined_structure_type_die (type, context_die);
12174 break;
12175
12176 case UNION_TYPE:
12177 case QUAL_UNION_TYPE:
12178 gen_inlined_union_type_die (type, context_die);
12179 break;
12180
12181 default:
12182 gcc_unreachable ();
12183 }
12184 }
12185
12186 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12187 things which are local to the given block. */
12188
12189 static void
12190 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12191 {
12192 int must_output_die = 0;
12193 tree origin;
12194 tree decl;
12195 enum tree_code origin_code;
12196
12197 /* Ignore blocks never really used to make RTL. */
12198 if (stmt == NULL_TREE || !TREE_USED (stmt)
12199 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12200 return;
12201
12202 /* If the block is one fragment of a non-contiguous block, do not
12203 process the variables, since they will have been done by the
12204 origin block. Do process subblocks. */
12205 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12206 {
12207 tree sub;
12208
12209 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12210 gen_block_die (sub, context_die, depth + 1);
12211
12212 return;
12213 }
12214
12215 /* Determine the "ultimate origin" of this block. This block may be an
12216 inlined instance of an inlined instance of inline function, so we have
12217 to trace all of the way back through the origin chain to find out what
12218 sort of node actually served as the original seed for the creation of
12219 the current block. */
12220 origin = block_ultimate_origin (stmt);
12221 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12222
12223 /* Determine if we need to output any Dwarf DIEs at all to represent this
12224 block. */
12225 if (origin_code == FUNCTION_DECL)
12226 /* The outer scopes for inlinings *must* always be represented. We
12227 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12228 must_output_die = 1;
12229 else
12230 {
12231 /* In the case where the current block represents an inlining of the
12232 "body block" of an inline function, we must *NOT* output any DIE for
12233 this block because we have already output a DIE to represent the whole
12234 inlined function scope and the "body block" of any function doesn't
12235 really represent a different scope according to ANSI C rules. So we
12236 check here to make sure that this block does not represent a "body
12237 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12238 if (! is_body_block (origin ? origin : stmt))
12239 {
12240 /* Determine if this block directly contains any "significant"
12241 local declarations which we will need to output DIEs for. */
12242 if (debug_info_level > DINFO_LEVEL_TERSE)
12243 /* We are not in terse mode so *any* local declaration counts
12244 as being a "significant" one. */
12245 must_output_die = (BLOCK_VARS (stmt) != NULL);
12246 else
12247 /* We are in terse mode, so only local (nested) function
12248 definitions count as "significant" local declarations. */
12249 for (decl = BLOCK_VARS (stmt);
12250 decl != NULL; decl = TREE_CHAIN (decl))
12251 if (TREE_CODE (decl) == FUNCTION_DECL
12252 && DECL_INITIAL (decl))
12253 {
12254 must_output_die = 1;
12255 break;
12256 }
12257 }
12258 }
12259
12260 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12261 DIE for any block which contains no significant local declarations at
12262 all. Rather, in such cases we just call `decls_for_scope' so that any
12263 needed Dwarf info for any sub-blocks will get properly generated. Note
12264 that in terse mode, our definition of what constitutes a "significant"
12265 local declaration gets restricted to include only inlined function
12266 instances and local (nested) function definitions. */
12267 if (must_output_die)
12268 {
12269 if (origin_code == FUNCTION_DECL)
12270 gen_inlined_subroutine_die (stmt, context_die, depth);
12271 else
12272 gen_lexical_block_die (stmt, context_die, depth);
12273 }
12274 else
12275 decls_for_scope (stmt, context_die, depth);
12276 }
12277
12278 /* Generate all of the decls declared within a given scope and (recursively)
12279 all of its sub-blocks. */
12280
12281 static void
12282 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12283 {
12284 tree decl;
12285 tree subblocks;
12286
12287 /* Ignore blocks never really used to make RTL. */
12288 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12289 return;
12290
12291 /* Output the DIEs to represent all of the data objects and typedefs
12292 declared directly within this block but not within any nested
12293 sub-blocks. Also, nested function and tag DIEs have been
12294 generated with a parent of NULL; fix that up now. */
12295 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12296 {
12297 dw_die_ref die;
12298
12299 if (TREE_CODE (decl) == FUNCTION_DECL)
12300 die = lookup_decl_die (decl);
12301 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12302 die = lookup_type_die (TREE_TYPE (decl));
12303 else
12304 die = NULL;
12305
12306 if (die != NULL && die->die_parent == NULL)
12307 add_child_die (context_die, die);
12308 else
12309 gen_decl_die (decl, context_die);
12310 }
12311
12312 /* If we're at -g1, we're not interested in subblocks. */
12313 if (debug_info_level <= DINFO_LEVEL_TERSE)
12314 return;
12315
12316 /* Output the DIEs to represent all sub-blocks (and the items declared
12317 therein) of this block. */
12318 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12319 subblocks != NULL;
12320 subblocks = BLOCK_CHAIN (subblocks))
12321 gen_block_die (subblocks, context_die, depth + 1);
12322 }
12323
12324 /* Is this a typedef we can avoid emitting? */
12325
12326 static inline int
12327 is_redundant_typedef (tree decl)
12328 {
12329 if (TYPE_DECL_IS_STUB (decl))
12330 return 1;
12331
12332 if (DECL_ARTIFICIAL (decl)
12333 && DECL_CONTEXT (decl)
12334 && is_tagged_type (DECL_CONTEXT (decl))
12335 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12336 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12337 /* Also ignore the artificial member typedef for the class name. */
12338 return 1;
12339
12340 return 0;
12341 }
12342
12343 /* Returns the DIE for decl or aborts. */
12344
12345 static dw_die_ref
12346 force_decl_die (tree decl)
12347 {
12348 dw_die_ref decl_die;
12349 unsigned saved_external_flag;
12350 tree save_fn = NULL_TREE;
12351 decl_die = lookup_decl_die (decl);
12352 if (!decl_die)
12353 {
12354 dw_die_ref context_die;
12355 tree decl_context = DECL_CONTEXT (decl);
12356 if (decl_context)
12357 {
12358 /* Find die that represents this context. */
12359 if (TYPE_P (decl_context))
12360 context_die = force_type_die (decl_context);
12361 else
12362 context_die = force_decl_die (decl_context);
12363 }
12364 else
12365 context_die = comp_unit_die;
12366
12367 switch (TREE_CODE (decl))
12368 {
12369 case FUNCTION_DECL:
12370 /* Clear current_function_decl, so that gen_subprogram_die thinks
12371 that this is a declaration. At this point, we just want to force
12372 declaration die. */
12373 save_fn = current_function_decl;
12374 current_function_decl = NULL_TREE;
12375 gen_subprogram_die (decl, context_die);
12376 current_function_decl = save_fn;
12377 break;
12378
12379 case VAR_DECL:
12380 /* Set external flag to force declaration die. Restore it after
12381 gen_decl_die() call. */
12382 saved_external_flag = DECL_EXTERNAL (decl);
12383 DECL_EXTERNAL (decl) = 1;
12384 gen_decl_die (decl, context_die);
12385 DECL_EXTERNAL (decl) = saved_external_flag;
12386 break;
12387
12388 case NAMESPACE_DECL:
12389 dwarf2out_decl (decl);
12390 break;
12391
12392 default:
12393 gcc_unreachable ();
12394 }
12395
12396 /* See if we can find the die for this deci now.
12397 If not then abort. */
12398 if (!decl_die)
12399 decl_die = lookup_decl_die (decl);
12400 gcc_assert (decl_die);
12401 }
12402
12403 return decl_die;
12404 }
12405
12406 /* Returns the DIE for decl or aborts. */
12407
12408 static dw_die_ref
12409 force_type_die (tree type)
12410 {
12411 dw_die_ref type_die;
12412
12413 type_die = lookup_type_die (type);
12414 if (!type_die)
12415 {
12416 dw_die_ref context_die;
12417 if (TYPE_CONTEXT (type))
12418 if (TYPE_P (TYPE_CONTEXT (type)))
12419 context_die = force_type_die (TYPE_CONTEXT (type));
12420 else
12421 context_die = force_decl_die (TYPE_CONTEXT (type));
12422 else
12423 context_die = comp_unit_die;
12424
12425 gen_type_die (type, context_die);
12426 type_die = lookup_type_die (type);
12427 gcc_assert (type_die);
12428 }
12429 return type_die;
12430 }
12431
12432 /* Force out any required namespaces to be able to output DECL,
12433 and return the new context_die for it, if it's changed. */
12434
12435 static dw_die_ref
12436 setup_namespace_context (tree thing, dw_die_ref context_die)
12437 {
12438 tree context = (DECL_P (thing)
12439 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12440 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12441 /* Force out the namespace. */
12442 context_die = force_decl_die (context);
12443
12444 return context_die;
12445 }
12446
12447 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12448 type) within its namespace, if appropriate.
12449
12450 For compatibility with older debuggers, namespace DIEs only contain
12451 declarations; all definitions are emitted at CU scope. */
12452
12453 static void
12454 declare_in_namespace (tree thing, dw_die_ref context_die)
12455 {
12456 dw_die_ref ns_context;
12457
12458 if (debug_info_level <= DINFO_LEVEL_TERSE)
12459 return;
12460
12461 ns_context = setup_namespace_context (thing, context_die);
12462
12463 if (ns_context != context_die)
12464 {
12465 if (DECL_P (thing))
12466 gen_decl_die (thing, ns_context);
12467 else
12468 gen_type_die (thing, ns_context);
12469 }
12470 }
12471
12472 /* Generate a DIE for a namespace or namespace alias. */
12473
12474 static void
12475 gen_namespace_die (tree decl)
12476 {
12477 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12478
12479 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12480 they are an alias of. */
12481 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12482 {
12483 /* Output a real namespace. */
12484 dw_die_ref namespace_die
12485 = new_die (DW_TAG_namespace, context_die, decl);
12486 add_name_and_src_coords_attributes (namespace_die, decl);
12487 equate_decl_number_to_die (decl, namespace_die);
12488 }
12489 else
12490 {
12491 /* Output a namespace alias. */
12492
12493 /* Force out the namespace we are an alias of, if necessary. */
12494 dw_die_ref origin_die
12495 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12496
12497 /* Now create the namespace alias DIE. */
12498 dw_die_ref namespace_die
12499 = new_die (DW_TAG_imported_declaration, context_die, decl);
12500 add_name_and_src_coords_attributes (namespace_die, decl);
12501 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12502 equate_decl_number_to_die (decl, namespace_die);
12503 }
12504 }
12505
12506 /* Generate Dwarf debug information for a decl described by DECL. */
12507
12508 static void
12509 gen_decl_die (tree decl, dw_die_ref context_die)
12510 {
12511 tree origin;
12512
12513 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12514 return;
12515
12516 switch (TREE_CODE (decl))
12517 {
12518 case ERROR_MARK:
12519 break;
12520
12521 case CONST_DECL:
12522 /* The individual enumerators of an enum type get output when we output
12523 the Dwarf representation of the relevant enum type itself. */
12524 break;
12525
12526 case FUNCTION_DECL:
12527 /* Don't output any DIEs to represent mere function declarations,
12528 unless they are class members or explicit block externs. */
12529 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12530 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12531 break;
12532
12533 #if 0
12534 /* FIXME */
12535 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12536 on local redeclarations of global functions. That seems broken. */
12537 if (current_function_decl != decl)
12538 /* This is only a declaration. */;
12539 #endif
12540
12541 /* If we're emitting a clone, emit info for the abstract instance. */
12542 if (DECL_ORIGIN (decl) != decl)
12543 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12544
12545 /* If we're emitting an out-of-line copy of an inline function,
12546 emit info for the abstract instance and set up to refer to it. */
12547 else if (cgraph_function_possibly_inlined_p (decl)
12548 && ! DECL_ABSTRACT (decl)
12549 && ! class_or_namespace_scope_p (context_die)
12550 /* dwarf2out_abstract_function won't emit a die if this is just
12551 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12552 that case, because that works only if we have a die. */
12553 && DECL_INITIAL (decl) != NULL_TREE)
12554 {
12555 dwarf2out_abstract_function (decl);
12556 set_decl_origin_self (decl);
12557 }
12558
12559 /* Otherwise we're emitting the primary DIE for this decl. */
12560 else if (debug_info_level > DINFO_LEVEL_TERSE)
12561 {
12562 /* Before we describe the FUNCTION_DECL itself, make sure that we
12563 have described its return type. */
12564 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12565
12566 /* And its virtual context. */
12567 if (DECL_VINDEX (decl) != NULL_TREE)
12568 gen_type_die (DECL_CONTEXT (decl), context_die);
12569
12570 /* And its containing type. */
12571 origin = decl_class_context (decl);
12572 if (origin != NULL_TREE)
12573 gen_type_die_for_member (origin, decl, context_die);
12574
12575 /* And its containing namespace. */
12576 declare_in_namespace (decl, context_die);
12577 }
12578
12579 /* Now output a DIE to represent the function itself. */
12580 gen_subprogram_die (decl, context_die);
12581 break;
12582
12583 case TYPE_DECL:
12584 /* If we are in terse mode, don't generate any DIEs to represent any
12585 actual typedefs. */
12586 if (debug_info_level <= DINFO_LEVEL_TERSE)
12587 break;
12588
12589 /* In the special case of a TYPE_DECL node representing the declaration
12590 of some type tag, if the given TYPE_DECL is marked as having been
12591 instantiated from some other (original) TYPE_DECL node (e.g. one which
12592 was generated within the original definition of an inline function) we
12593 have to generate a special (abbreviated) DW_TAG_structure_type,
12594 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12595 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12596 {
12597 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12598 break;
12599 }
12600
12601 if (is_redundant_typedef (decl))
12602 gen_type_die (TREE_TYPE (decl), context_die);
12603 else
12604 /* Output a DIE to represent the typedef itself. */
12605 gen_typedef_die (decl, context_die);
12606 break;
12607
12608 case LABEL_DECL:
12609 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12610 gen_label_die (decl, context_die);
12611 break;
12612
12613 case VAR_DECL:
12614 case RESULT_DECL:
12615 /* If we are in terse mode, don't generate any DIEs to represent any
12616 variable declarations or definitions. */
12617 if (debug_info_level <= DINFO_LEVEL_TERSE)
12618 break;
12619
12620 /* Output any DIEs that are needed to specify the type of this data
12621 object. */
12622 gen_type_die (TREE_TYPE (decl), context_die);
12623
12624 /* And its containing type. */
12625 origin = decl_class_context (decl);
12626 if (origin != NULL_TREE)
12627 gen_type_die_for_member (origin, decl, context_die);
12628
12629 /* And its containing namespace. */
12630 declare_in_namespace (decl, context_die);
12631
12632 /* Now output the DIE to represent the data object itself. This gets
12633 complicated because of the possibility that the VAR_DECL really
12634 represents an inlined instance of a formal parameter for an inline
12635 function. */
12636 origin = decl_ultimate_origin (decl);
12637 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12638 gen_formal_parameter_die (decl, context_die);
12639 else
12640 gen_variable_die (decl, context_die);
12641 break;
12642
12643 case FIELD_DECL:
12644 /* Ignore the nameless fields that are used to skip bits but handle C++
12645 anonymous unions and structs. */
12646 if (DECL_NAME (decl) != NULL_TREE
12647 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12648 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12649 {
12650 gen_type_die (member_declared_type (decl), context_die);
12651 gen_field_die (decl, context_die);
12652 }
12653 break;
12654
12655 case PARM_DECL:
12656 gen_type_die (TREE_TYPE (decl), context_die);
12657 gen_formal_parameter_die (decl, context_die);
12658 break;
12659
12660 case NAMESPACE_DECL:
12661 gen_namespace_die (decl);
12662 break;
12663
12664 default:
12665 /* Probably some frontend-internal decl. Assume we don't care. */
12666 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
12667 break;
12668 }
12669 }
12670 \f
12671 /* Add Ada "use" clause information for SGI Workshop debugger. */
12672
12673 void
12674 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12675 {
12676 unsigned int file_index;
12677
12678 if (filename != NULL)
12679 {
12680 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12681 tree context_list_decl
12682 = build_decl (LABEL_DECL, get_identifier (context_list),
12683 void_type_node);
12684
12685 TREE_PUBLIC (context_list_decl) = TRUE;
12686 add_name_attribute (unit_die, context_list);
12687 file_index = lookup_filename (filename);
12688 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12689 add_pubname (context_list_decl, unit_die);
12690 }
12691 }
12692
12693 /* Output debug information for global decl DECL. Called from toplev.c after
12694 compilation proper has finished. */
12695
12696 static void
12697 dwarf2out_global_decl (tree decl)
12698 {
12699 /* Output DWARF2 information for file-scope tentative data object
12700 declarations, file-scope (extern) function declarations (which had no
12701 corresponding body) and file-scope tagged type declarations and
12702 definitions which have not yet been forced out. */
12703 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12704 dwarf2out_decl (decl);
12705 }
12706
12707 /* Output debug information for type decl DECL. Called from toplev.c
12708 and from language front ends (to record built-in types). */
12709 static void
12710 dwarf2out_type_decl (tree decl, int local)
12711 {
12712 if (!local)
12713 dwarf2out_decl (decl);
12714 }
12715
12716 /* Output debug information for imported module or decl. */
12717
12718 static void
12719 dwarf2out_imported_module_or_decl (tree decl, tree context)
12720 {
12721 dw_die_ref imported_die, at_import_die;
12722 dw_die_ref scope_die;
12723 unsigned file_index;
12724 expanded_location xloc;
12725
12726 if (debug_info_level <= DINFO_LEVEL_TERSE)
12727 return;
12728
12729 gcc_assert (decl);
12730
12731 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12732 We need decl DIE for reference and scope die. First, get DIE for the decl
12733 itself. */
12734
12735 /* Get the scope die for decl context. Use comp_unit_die for global module
12736 or decl. If die is not found for non globals, force new die. */
12737 if (!context)
12738 scope_die = comp_unit_die;
12739 else if (TYPE_P (context))
12740 scope_die = force_type_die (context);
12741 else
12742 scope_die = force_decl_die (context);
12743
12744 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12745 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12746 at_import_die = force_type_die (TREE_TYPE (decl));
12747 else
12748 at_import_die = force_decl_die (decl);
12749
12750 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12751 if (TREE_CODE (decl) == NAMESPACE_DECL)
12752 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12753 else
12754 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12755
12756 xloc = expand_location (input_location);
12757 file_index = lookup_filename (xloc.file);
12758 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12759 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
12760 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12761 }
12762
12763 /* Write the debugging output for DECL. */
12764
12765 void
12766 dwarf2out_decl (tree decl)
12767 {
12768 dw_die_ref context_die = comp_unit_die;
12769
12770 switch (TREE_CODE (decl))
12771 {
12772 case ERROR_MARK:
12773 return;
12774
12775 case FUNCTION_DECL:
12776 /* What we would really like to do here is to filter out all mere
12777 file-scope declarations of file-scope functions which are never
12778 referenced later within this translation unit (and keep all of ones
12779 that *are* referenced later on) but we aren't clairvoyant, so we have
12780 no idea which functions will be referenced in the future (i.e. later
12781 on within the current translation unit). So here we just ignore all
12782 file-scope function declarations which are not also definitions. If
12783 and when the debugger needs to know something about these functions,
12784 it will have to hunt around and find the DWARF information associated
12785 with the definition of the function.
12786
12787 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12788 nodes represent definitions and which ones represent mere
12789 declarations. We have to check DECL_INITIAL instead. That's because
12790 the C front-end supports some weird semantics for "extern inline"
12791 function definitions. These can get inlined within the current
12792 translation unit (an thus, we need to generate Dwarf info for their
12793 abstract instances so that the Dwarf info for the concrete inlined
12794 instances can have something to refer to) but the compiler never
12795 generates any out-of-lines instances of such things (despite the fact
12796 that they *are* definitions).
12797
12798 The important point is that the C front-end marks these "extern
12799 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12800 them anyway. Note that the C++ front-end also plays some similar games
12801 for inline function definitions appearing within include files which
12802 also contain `#pragma interface' pragmas. */
12803 if (DECL_INITIAL (decl) == NULL_TREE)
12804 return;
12805
12806 /* If we're a nested function, initially use a parent of NULL; if we're
12807 a plain function, this will be fixed up in decls_for_scope. If
12808 we're a method, it will be ignored, since we already have a DIE. */
12809 if (decl_function_context (decl)
12810 /* But if we're in terse mode, we don't care about scope. */
12811 && debug_info_level > DINFO_LEVEL_TERSE)
12812 context_die = NULL;
12813 break;
12814
12815 case VAR_DECL:
12816 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12817 declaration and if the declaration was never even referenced from
12818 within this entire compilation unit. We suppress these DIEs in
12819 order to save space in the .debug section (by eliminating entries
12820 which are probably useless). Note that we must not suppress
12821 block-local extern declarations (whether used or not) because that
12822 would screw-up the debugger's name lookup mechanism and cause it to
12823 miss things which really ought to be in scope at a given point. */
12824 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12825 return;
12826
12827 /* If we are in terse mode, don't generate any DIEs to represent any
12828 variable declarations or definitions. */
12829 if (debug_info_level <= DINFO_LEVEL_TERSE)
12830 return;
12831 break;
12832
12833 case NAMESPACE_DECL:
12834 if (debug_info_level <= DINFO_LEVEL_TERSE)
12835 return;
12836 if (lookup_decl_die (decl) != NULL)
12837 return;
12838 break;
12839
12840 case TYPE_DECL:
12841 /* Don't emit stubs for types unless they are needed by other DIEs. */
12842 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12843 return;
12844
12845 /* Don't bother trying to generate any DIEs to represent any of the
12846 normal built-in types for the language we are compiling. */
12847 if (DECL_IS_BUILTIN (decl))
12848 {
12849 /* OK, we need to generate one for `bool' so GDB knows what type
12850 comparisons have. */
12851 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12852 == DW_LANG_C_plus_plus)
12853 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12854 && ! DECL_IGNORED_P (decl))
12855 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12856
12857 return;
12858 }
12859
12860 /* If we are in terse mode, don't generate any DIEs for types. */
12861 if (debug_info_level <= DINFO_LEVEL_TERSE)
12862 return;
12863
12864 /* If we're a function-scope tag, initially use a parent of NULL;
12865 this will be fixed up in decls_for_scope. */
12866 if (decl_function_context (decl))
12867 context_die = NULL;
12868
12869 break;
12870
12871 default:
12872 return;
12873 }
12874
12875 gen_decl_die (decl, context_die);
12876 }
12877
12878 /* Output a marker (i.e. a label) for the beginning of the generated code for
12879 a lexical block. */
12880
12881 static void
12882 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12883 unsigned int blocknum)
12884 {
12885 function_section (current_function_decl);
12886 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12887 }
12888
12889 /* Output a marker (i.e. a label) for the end of the generated code for a
12890 lexical block. */
12891
12892 static void
12893 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12894 {
12895 function_section (current_function_decl);
12896 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12897 }
12898
12899 /* Returns nonzero if it is appropriate not to emit any debugging
12900 information for BLOCK, because it doesn't contain any instructions.
12901
12902 Don't allow this for blocks with nested functions or local classes
12903 as we would end up with orphans, and in the presence of scheduling
12904 we may end up calling them anyway. */
12905
12906 static bool
12907 dwarf2out_ignore_block (tree block)
12908 {
12909 tree decl;
12910
12911 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12912 if (TREE_CODE (decl) == FUNCTION_DECL
12913 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12914 return 0;
12915
12916 return 1;
12917 }
12918
12919 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12920 dwarf2out.c) and return its "index". The index of each (known) filename is
12921 just a unique number which is associated with only that one filename. We
12922 need such numbers for the sake of generating labels (in the .debug_sfnames
12923 section) and references to those files numbers (in the .debug_srcinfo
12924 and.debug_macinfo sections). If the filename given as an argument is not
12925 found in our current list, add it to the list and assign it the next
12926 available unique index number. In order to speed up searches, we remember
12927 the index of the filename was looked up last. This handles the majority of
12928 all searches. */
12929
12930 static unsigned
12931 lookup_filename (const char *file_name)
12932 {
12933 size_t i, n;
12934 char *save_file_name;
12935
12936 /* Check to see if the file name that was searched on the previous
12937 call matches this file name. If so, return the index. */
12938 if (file_table_last_lookup_index != 0)
12939 {
12940 const char *last
12941 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12942 if (strcmp (file_name, last) == 0)
12943 return file_table_last_lookup_index;
12944 }
12945
12946 /* Didn't match the previous lookup, search the table. */
12947 n = VARRAY_ACTIVE_SIZE (file_table);
12948 for (i = 1; i < n; i++)
12949 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12950 {
12951 file_table_last_lookup_index = i;
12952 return i;
12953 }
12954
12955 /* Add the new entry to the end of the filename table. */
12956 file_table_last_lookup_index = n;
12957 save_file_name = (char *) ggc_strdup (file_name);
12958 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12959 VARRAY_PUSH_UINT (file_table_emitted, 0);
12960
12961 return i;
12962 }
12963
12964 static int
12965 maybe_emit_file (int fileno)
12966 {
12967 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12968 {
12969 if (!VARRAY_UINT (file_table_emitted, fileno))
12970 {
12971 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12972 fprintf (asm_out_file, "\t.file %u ",
12973 VARRAY_UINT (file_table_emitted, fileno));
12974 output_quoted_string (asm_out_file,
12975 VARRAY_CHAR_PTR (file_table, fileno));
12976 fputc ('\n', asm_out_file);
12977 }
12978 return VARRAY_UINT (file_table_emitted, fileno);
12979 }
12980 else
12981 return fileno;
12982 }
12983
12984 static void
12985 init_file_table (void)
12986 {
12987 /* Allocate the initial hunk of the file_table. */
12988 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12989 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12990
12991 /* Skip the first entry - file numbers begin at 1. */
12992 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12993 VARRAY_PUSH_UINT (file_table_emitted, 0);
12994 file_table_last_lookup_index = 0;
12995 }
12996
12997 /* Called by the final INSN scan whenever we see a var location. We
12998 use it to drop labels in the right places, and throw the location in
12999 our lookup table. */
13000
13001 static void
13002 dwarf2out_var_location (rtx loc_note)
13003 {
13004 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13005 struct var_loc_node *newloc;
13006 rtx prev_insn;
13007 static rtx last_insn;
13008 static const char *last_label;
13009
13010 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13011 return;
13012 prev_insn = PREV_INSN (loc_note);
13013
13014 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13015 /* If the insn we processed last time is the previous insn
13016 and it is also a var location note, use the label we emitted
13017 last time. */
13018 if (last_insn != NULL_RTX
13019 && last_insn == prev_insn
13020 && NOTE_P (prev_insn)
13021 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13022 {
13023 newloc->label = last_label;
13024 }
13025 else
13026 {
13027 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13028 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13029 loclabel_num++;
13030 newloc->label = ggc_strdup (loclabel);
13031 }
13032 newloc->var_loc_note = loc_note;
13033 newloc->next = NULL;
13034
13035 last_insn = loc_note;
13036 last_label = newloc->label;
13037
13038 add_var_loc_to_decl (NOTE_VAR_LOCATION_DECL (loc_note), newloc);
13039 }
13040
13041 /* We need to reset the locations at the beginning of each
13042 function. We can't do this in the end_function hook, because the
13043 declarations that use the locations won't have been outputted when
13044 that hook is called. */
13045
13046 static void
13047 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13048 {
13049 htab_empty (decl_loc_table);
13050 }
13051
13052 /* Output a label to mark the beginning of a source code line entry
13053 and record information relating to this source line, in
13054 'line_info_table' for later output of the .debug_line section. */
13055
13056 static void
13057 dwarf2out_source_line (unsigned int line, const char *filename)
13058 {
13059 if (debug_info_level >= DINFO_LEVEL_NORMAL
13060 && line != 0)
13061 {
13062 function_section (current_function_decl);
13063
13064 /* If requested, emit something human-readable. */
13065 if (flag_debug_asm)
13066 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13067 filename, line);
13068
13069 if (DWARF2_ASM_LINE_DEBUG_INFO)
13070 {
13071 unsigned file_num = lookup_filename (filename);
13072
13073 file_num = maybe_emit_file (file_num);
13074
13075 /* Emit the .loc directive understood by GNU as. */
13076 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13077
13078 /* Indicate that line number info exists. */
13079 line_info_table_in_use++;
13080
13081 /* Indicate that multiple line number tables exist. */
13082 if (DECL_SECTION_NAME (current_function_decl))
13083 separate_line_info_table_in_use++;
13084 }
13085 else if (DECL_SECTION_NAME (current_function_decl))
13086 {
13087 dw_separate_line_info_ref line_info;
13088 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13089 separate_line_info_table_in_use);
13090
13091 /* Expand the line info table if necessary. */
13092 if (separate_line_info_table_in_use
13093 == separate_line_info_table_allocated)
13094 {
13095 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13096 separate_line_info_table
13097 = ggc_realloc (separate_line_info_table,
13098 separate_line_info_table_allocated
13099 * sizeof (dw_separate_line_info_entry));
13100 memset (separate_line_info_table
13101 + separate_line_info_table_in_use,
13102 0,
13103 (LINE_INFO_TABLE_INCREMENT
13104 * sizeof (dw_separate_line_info_entry)));
13105 }
13106
13107 /* Add the new entry at the end of the line_info_table. */
13108 line_info
13109 = &separate_line_info_table[separate_line_info_table_in_use++];
13110 line_info->dw_file_num = lookup_filename (filename);
13111 line_info->dw_line_num = line;
13112 line_info->function = current_function_funcdef_no;
13113 }
13114 else
13115 {
13116 dw_line_info_ref line_info;
13117
13118 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13119 line_info_table_in_use);
13120
13121 /* Expand the line info table if necessary. */
13122 if (line_info_table_in_use == line_info_table_allocated)
13123 {
13124 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13125 line_info_table
13126 = ggc_realloc (line_info_table,
13127 (line_info_table_allocated
13128 * sizeof (dw_line_info_entry)));
13129 memset (line_info_table + line_info_table_in_use, 0,
13130 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13131 }
13132
13133 /* Add the new entry at the end of the line_info_table. */
13134 line_info = &line_info_table[line_info_table_in_use++];
13135 line_info->dw_file_num = lookup_filename (filename);
13136 line_info->dw_line_num = line;
13137 }
13138 }
13139 }
13140
13141 /* Record the beginning of a new source file. */
13142
13143 static void
13144 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13145 {
13146 if (flag_eliminate_dwarf2_dups)
13147 {
13148 /* Record the beginning of the file for break_out_includes. */
13149 dw_die_ref bincl_die;
13150
13151 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13152 add_AT_string (bincl_die, DW_AT_name, filename);
13153 }
13154
13155 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13156 {
13157 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13158 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13159 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13160 lineno);
13161 maybe_emit_file (lookup_filename (filename));
13162 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13163 "Filename we just started");
13164 }
13165 }
13166
13167 /* Record the end of a source file. */
13168
13169 static void
13170 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13171 {
13172 if (flag_eliminate_dwarf2_dups)
13173 /* Record the end of the file for break_out_includes. */
13174 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13175
13176 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13177 {
13178 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13179 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13180 }
13181 }
13182
13183 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13184 the tail part of the directive line, i.e. the part which is past the
13185 initial whitespace, #, whitespace, directive-name, whitespace part. */
13186
13187 static void
13188 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13189 const char *buffer ATTRIBUTE_UNUSED)
13190 {
13191 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13192 {
13193 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13194 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13195 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13196 dw2_asm_output_nstring (buffer, -1, "The macro");
13197 }
13198 }
13199
13200 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13201 the tail part of the directive line, i.e. the part which is past the
13202 initial whitespace, #, whitespace, directive-name, whitespace part. */
13203
13204 static void
13205 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13206 const char *buffer ATTRIBUTE_UNUSED)
13207 {
13208 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13209 {
13210 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13211 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13212 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13213 dw2_asm_output_nstring (buffer, -1, "The macro");
13214 }
13215 }
13216
13217 /* Set up for Dwarf output at the start of compilation. */
13218
13219 static void
13220 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13221 {
13222 init_file_table ();
13223
13224 /* Allocate the decl_die_table. */
13225 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13226 decl_die_table_eq, NULL);
13227
13228 /* Allocate the decl_loc_table. */
13229 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13230 decl_loc_table_eq, NULL);
13231
13232 /* Allocate the initial hunk of the decl_scope_table. */
13233 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13234
13235 /* Allocate the initial hunk of the abbrev_die_table. */
13236 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13237 * sizeof (dw_die_ref));
13238 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13239 /* Zero-th entry is allocated, but unused. */
13240 abbrev_die_table_in_use = 1;
13241
13242 /* Allocate the initial hunk of the line_info_table. */
13243 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13244 * sizeof (dw_line_info_entry));
13245 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13246
13247 /* Zero-th entry is allocated, but unused. */
13248 line_info_table_in_use = 1;
13249
13250 /* Generate the initial DIE for the .debug section. Note that the (string)
13251 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13252 will (typically) be a relative pathname and that this pathname should be
13253 taken as being relative to the directory from which the compiler was
13254 invoked when the given (base) source file was compiled. We will fill
13255 in this value in dwarf2out_finish. */
13256 comp_unit_die = gen_compile_unit_die (NULL);
13257
13258 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13259
13260 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13261
13262 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13263 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13264 DEBUG_ABBREV_SECTION_LABEL, 0);
13265 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13266 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13267 else
13268 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
13269
13270 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13271 DEBUG_INFO_SECTION_LABEL, 0);
13272 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13273 DEBUG_LINE_SECTION_LABEL, 0);
13274 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13275 DEBUG_RANGES_SECTION_LABEL, 0);
13276 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13277 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13278 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13279 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13280 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13281 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13282
13283 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13284 {
13285 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13286 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13287 DEBUG_MACINFO_SECTION_LABEL, 0);
13288 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13289 }
13290
13291 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13292 {
13293 text_section ();
13294 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13295 }
13296 }
13297
13298 /* A helper function for dwarf2out_finish called through
13299 ht_forall. Emit one queued .debug_str string. */
13300
13301 static int
13302 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13303 {
13304 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13305
13306 if (node->form == DW_FORM_strp)
13307 {
13308 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13309 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13310 assemble_string (node->str, strlen (node->str) + 1);
13311 }
13312
13313 return 1;
13314 }
13315
13316
13317
13318 /* Clear the marks for a die and its children.
13319 Be cool if the mark isn't set. */
13320
13321 static void
13322 prune_unmark_dies (dw_die_ref die)
13323 {
13324 dw_die_ref c;
13325 die->die_mark = 0;
13326 for (c = die->die_child; c; c = c->die_sib)
13327 prune_unmark_dies (c);
13328 }
13329
13330
13331 /* Given DIE that we're marking as used, find any other dies
13332 it references as attributes and mark them as used. */
13333
13334 static void
13335 prune_unused_types_walk_attribs (dw_die_ref die)
13336 {
13337 dw_attr_ref a;
13338
13339 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13340 {
13341 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13342 {
13343 /* A reference to another DIE.
13344 Make sure that it will get emitted. */
13345 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13346 }
13347 else if (a->dw_attr == DW_AT_decl_file)
13348 {
13349 /* A reference to a file. Make sure the file name is emitted. */
13350 a->dw_attr_val.v.val_unsigned =
13351 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13352 }
13353 }
13354 }
13355
13356
13357 /* Mark DIE as being used. If DOKIDS is true, then walk down
13358 to DIE's children. */
13359
13360 static void
13361 prune_unused_types_mark (dw_die_ref die, int dokids)
13362 {
13363 dw_die_ref c;
13364
13365 if (die->die_mark == 0)
13366 {
13367 /* We haven't done this node yet. Mark it as used. */
13368 die->die_mark = 1;
13369
13370 /* We also have to mark its parents as used.
13371 (But we don't want to mark our parents' kids due to this.) */
13372 if (die->die_parent)
13373 prune_unused_types_mark (die->die_parent, 0);
13374
13375 /* Mark any referenced nodes. */
13376 prune_unused_types_walk_attribs (die);
13377
13378 /* If this node is a specification,
13379 also mark the definition, if it exists. */
13380 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13381 prune_unused_types_mark (die->die_definition, 1);
13382 }
13383
13384 if (dokids && die->die_mark != 2)
13385 {
13386 /* We need to walk the children, but haven't done so yet.
13387 Remember that we've walked the kids. */
13388 die->die_mark = 2;
13389
13390 /* Walk them. */
13391 for (c = die->die_child; c; c = c->die_sib)
13392 {
13393 /* If this is an array type, we need to make sure our
13394 kids get marked, even if they're types. */
13395 if (die->die_tag == DW_TAG_array_type)
13396 prune_unused_types_mark (c, 1);
13397 else
13398 prune_unused_types_walk (c);
13399 }
13400 }
13401 }
13402
13403
13404 /* Walk the tree DIE and mark types that we actually use. */
13405
13406 static void
13407 prune_unused_types_walk (dw_die_ref die)
13408 {
13409 dw_die_ref c;
13410
13411 /* Don't do anything if this node is already marked. */
13412 if (die->die_mark)
13413 return;
13414
13415 switch (die->die_tag) {
13416 case DW_TAG_const_type:
13417 case DW_TAG_packed_type:
13418 case DW_TAG_pointer_type:
13419 case DW_TAG_reference_type:
13420 case DW_TAG_volatile_type:
13421 case DW_TAG_typedef:
13422 case DW_TAG_array_type:
13423 case DW_TAG_structure_type:
13424 case DW_TAG_union_type:
13425 case DW_TAG_class_type:
13426 case DW_TAG_friend:
13427 case DW_TAG_variant_part:
13428 case DW_TAG_enumeration_type:
13429 case DW_TAG_subroutine_type:
13430 case DW_TAG_string_type:
13431 case DW_TAG_set_type:
13432 case DW_TAG_subrange_type:
13433 case DW_TAG_ptr_to_member_type:
13434 case DW_TAG_file_type:
13435 /* It's a type node --- don't mark it. */
13436 return;
13437
13438 default:
13439 /* Mark everything else. */
13440 break;
13441 }
13442
13443 die->die_mark = 1;
13444
13445 /* Now, mark any dies referenced from here. */
13446 prune_unused_types_walk_attribs (die);
13447
13448 /* Mark children. */
13449 for (c = die->die_child; c; c = c->die_sib)
13450 prune_unused_types_walk (c);
13451 }
13452
13453
13454 /* Remove from the tree DIE any dies that aren't marked. */
13455
13456 static void
13457 prune_unused_types_prune (dw_die_ref die)
13458 {
13459 dw_die_ref c, p, n;
13460
13461 gcc_assert (die->die_mark);
13462
13463 p = NULL;
13464 for (c = die->die_child; c; c = n)
13465 {
13466 n = c->die_sib;
13467 if (c->die_mark)
13468 {
13469 prune_unused_types_prune (c);
13470 p = c;
13471 }
13472 else
13473 {
13474 if (p)
13475 p->die_sib = n;
13476 else
13477 die->die_child = n;
13478 free_die (c);
13479 }
13480 }
13481 }
13482
13483
13484 /* Remove dies representing declarations that we never use. */
13485
13486 static void
13487 prune_unused_types (void)
13488 {
13489 unsigned int i;
13490 limbo_die_node *node;
13491
13492 /* Clear all the marks. */
13493 prune_unmark_dies (comp_unit_die);
13494 for (node = limbo_die_list; node; node = node->next)
13495 prune_unmark_dies (node->die);
13496
13497 /* Set the mark on nodes that are actually used. */
13498 prune_unused_types_walk (comp_unit_die);
13499 for (node = limbo_die_list; node; node = node->next)
13500 prune_unused_types_walk (node->die);
13501
13502 /* Also set the mark on nodes referenced from the
13503 pubname_table or arange_table. */
13504 for (i = 0; i < pubname_table_in_use; i++)
13505 prune_unused_types_mark (pubname_table[i].die, 1);
13506 for (i = 0; i < arange_table_in_use; i++)
13507 prune_unused_types_mark (arange_table[i], 1);
13508
13509 /* Get rid of nodes that aren't marked. */
13510 prune_unused_types_prune (comp_unit_die);
13511 for (node = limbo_die_list; node; node = node->next)
13512 prune_unused_types_prune (node->die);
13513
13514 /* Leave the marks clear. */
13515 prune_unmark_dies (comp_unit_die);
13516 for (node = limbo_die_list; node; node = node->next)
13517 prune_unmark_dies (node->die);
13518 }
13519
13520 /* Output stuff that dwarf requires at the end of every file,
13521 and generate the DWARF-2 debugging info. */
13522
13523 static void
13524 dwarf2out_finish (const char *filename)
13525 {
13526 limbo_die_node *node, *next_node;
13527 dw_die_ref die = 0;
13528
13529 /* Add the name for the main input file now. We delayed this from
13530 dwarf2out_init to avoid complications with PCH. */
13531 add_name_attribute (comp_unit_die, filename);
13532 if (filename[0] != DIR_SEPARATOR)
13533 add_comp_dir_attribute (comp_unit_die);
13534 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13535 {
13536 size_t i;
13537 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13538 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13539 /* Don't add cwd for <built-in>. */
13540 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13541 {
13542 add_comp_dir_attribute (comp_unit_die);
13543 break;
13544 }
13545 }
13546
13547 /* Traverse the limbo die list, and add parent/child links. The only
13548 dies without parents that should be here are concrete instances of
13549 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13550 For concrete instances, we can get the parent die from the abstract
13551 instance. */
13552 for (node = limbo_die_list; node; node = next_node)
13553 {
13554 next_node = node->next;
13555 die = node->die;
13556
13557 if (die->die_parent == NULL)
13558 {
13559 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13560
13561 if (origin)
13562 add_child_die (origin->die_parent, die);
13563 else if (die == comp_unit_die)
13564 ;
13565 else if (errorcount > 0 || sorrycount > 0)
13566 /* It's OK to be confused by errors in the input. */
13567 add_child_die (comp_unit_die, die);
13568 else
13569 {
13570 /* In certain situations, the lexical block containing a
13571 nested function can be optimized away, which results
13572 in the nested function die being orphaned. Likewise
13573 with the return type of that nested function. Force
13574 this to be a child of the containing function.
13575
13576 It may happen that even the containing function got fully
13577 inlined and optimized out. In that case we are lost and
13578 assign the empty child. This should not be big issue as
13579 the function is likely unreachable too. */
13580 tree context = NULL_TREE;
13581
13582 gcc_assert (node->created_for);
13583
13584 if (DECL_P (node->created_for))
13585 context = DECL_CONTEXT (node->created_for);
13586 else if (TYPE_P (node->created_for))
13587 context = TYPE_CONTEXT (node->created_for);
13588
13589 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
13590
13591 origin = lookup_decl_die (context);
13592 if (origin)
13593 add_child_die (origin, die);
13594 else
13595 add_child_die (comp_unit_die, die);
13596 }
13597 }
13598 }
13599
13600 limbo_die_list = NULL;
13601
13602 /* Walk through the list of incomplete types again, trying once more to
13603 emit full debugging info for them. */
13604 retry_incomplete_types ();
13605
13606 /* We need to reverse all the dies before break_out_includes, or
13607 we'll see the end of an include file before the beginning. */
13608 reverse_all_dies (comp_unit_die);
13609
13610 if (flag_eliminate_unused_debug_types)
13611 prune_unused_types ();
13612
13613 /* Generate separate CUs for each of the include files we've seen.
13614 They will go into limbo_die_list. */
13615 if (flag_eliminate_dwarf2_dups)
13616 break_out_includes (comp_unit_die);
13617
13618 /* Traverse the DIE's and add add sibling attributes to those DIE's
13619 that have children. */
13620 add_sibling_attributes (comp_unit_die);
13621 for (node = limbo_die_list; node; node = node->next)
13622 add_sibling_attributes (node->die);
13623
13624 /* Output a terminator label for the .text section. */
13625 text_section ();
13626 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13627
13628 /* Output the source line correspondence table. We must do this
13629 even if there is no line information. Otherwise, on an empty
13630 translation unit, we will generate a present, but empty,
13631 .debug_info section. IRIX 6.5 `nm' will then complain when
13632 examining the file. */
13633 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13634 {
13635 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13636 output_line_info ();
13637 }
13638
13639 /* Output location list section if necessary. */
13640 if (have_location_lists)
13641 {
13642 /* Output the location lists info. */
13643 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13644 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13645 DEBUG_LOC_SECTION_LABEL, 0);
13646 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13647 output_location_lists (die);
13648 have_location_lists = 0;
13649 }
13650
13651 /* We can only use the low/high_pc attributes if all of the code was
13652 in .text. */
13653 if (separate_line_info_table_in_use == 0)
13654 {
13655 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13656 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13657 }
13658
13659 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13660 "base address". Use zero so that these addresses become absolute. */
13661 else if (have_location_lists || ranges_table_in_use)
13662 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13663
13664 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13665 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13666 debug_line_section_label);
13667
13668 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13669 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13670
13671 /* Output all of the compilation units. We put the main one last so that
13672 the offsets are available to output_pubnames. */
13673 for (node = limbo_die_list; node; node = node->next)
13674 output_comp_unit (node->die, 0);
13675
13676 output_comp_unit (comp_unit_die, 0);
13677
13678 /* Output the abbreviation table. */
13679 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13680 output_abbrev_section ();
13681
13682 /* Output public names table if necessary. */
13683 if (pubname_table_in_use)
13684 {
13685 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13686 output_pubnames ();
13687 }
13688
13689 /* Output the address range information. We only put functions in the arange
13690 table, so don't write it out if we don't have any. */
13691 if (fde_table_in_use)
13692 {
13693 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13694 output_aranges ();
13695 }
13696
13697 /* Output ranges section if necessary. */
13698 if (ranges_table_in_use)
13699 {
13700 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13701 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13702 output_ranges ();
13703 }
13704
13705 /* Have to end the primary source file. */
13706 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13707 {
13708 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13709 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13710 dw2_asm_output_data (1, 0, "End compilation unit");
13711 }
13712
13713 /* If we emitted any DW_FORM_strp form attribute, output the string
13714 table too. */
13715 if (debug_str_hash)
13716 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13717 }
13718 #else
13719
13720 /* This should never be used, but its address is needed for comparisons. */
13721 const struct gcc_debug_hooks dwarf2_debug_hooks;
13722
13723 #endif /* DWARF2_DEBUGGING_INFO */
13724
13725 #include "gt-dwarf2out.h"